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CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (order number 
253665) is part of a set that describes the architecture and programming environment of Intel® 64 and IA-32 
architecture processors. Other volumes in this set are:
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B & 2C: Instruction Set 

Reference (order numbers 253666, 253667 and 326018).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B & 3C: System 

Programming Guide (order numbers 253668, 253669 and 326019).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture 
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volumes 2A, 2B & 2C, describe the instruction set of the processor and the opcode structure. 
These volumes apply to application programmers and to programmers who write operating systems or executives. 
The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B & 3C, describe the oper-
ating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-system and 
BIOS designers. In addition, the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, 
addresses the programming environment for classes of software that host operating systems. 

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which 
include: 
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
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• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families 
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v3 product family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium® 
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors. 

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon 
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved 
Pentium® M processor microarchitecture. 

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel® Pentium® dual-core, Intel® 
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microarchi-
tecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel® 
Core™2 Extreme processor QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced 
Intel® Core™ microarchitecture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture and supports Intel 64 archi-
tecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel® 
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32nm version of Intel® 
microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and various 
Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These processors 
support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® CoreTM i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, 
Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code 
name Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 product 
family and the 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code name Ivy 
Bridge and support Intel 64 architecture.
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The Intel® Xeon® processor E5-4600/2600/1600 v2 product families and Intel® Xeon® processor E5-2400/1400 
v2 product families are based on the Intel® microarchitecture code name Ivy Bridge-EP and support Intel 64 archi-
tecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based on 
the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV, 
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™ 
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel® 
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors, Pentium® 
Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architec-
ture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microproces-
sors. Intel® 64 architecture is the instruction set architecture and programming environment which is the superset 
of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 1: BASIC ARCHITECTURE

A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related Intel 
manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — Intel® 64 and IA-32 Architectures. Introduces the Intel 64 and IA-32 architectures along with 
the families of Intel processors that are based on these architectures. It also gives an overview of the common 
features found in these processors and brief history of the Intel 64 and IA-32 architectures.

Chapter 3 — Basic Execution Environment. Introduces the models of memory organization and describes the 
register set used by applications.

Chapter 4 — Data Types. Describes the data types and addressing modes recognized by the processor; provides 
an overview of real numbers and floating-point formats and of floating-point exceptions.

Chapter 5 — Instruction Set Summary. Lists all Intel 64 and IA-32 instructions, divided into technology groups.

Chapter 6 — Procedure Calls, Interrupts, and Exceptions. Describes the procedure stack and mechanisms 
provided for making procedure calls and for servicing interrupts and exceptions.

Chapter 7 — Programming with General-Purpose Instructions. Describes basic load and store, program 
control, arithmetic, and string instructions that operate on basic data types, general-purpose and segment regis-
ters; also describes system instructions that are executed in protected mode.

Chapter 8 — Programming with the x87 FPU. Describes the x87 floating-point unit (FPU), including floating-
point registers and data types; gives an overview of the floating-point instruction set and describes the processor's 
floating-point exception conditions.

Chapter 9 — Programming with Intel® MMX™ Technology. Describes Intel MMX technology, including MMX 
registers and data types; also provides an overview of the MMX instruction set. 

Chapter 10 — Programming with Streaming SIMD Extensions (SSE). Describes SSE extensions, including 
XMM registers, the MXCSR register, and packed single-precision floating-point data types; provides an overview of 
the SSE instruction set and gives guidelines for writing code that accesses the SSE extensions. 

Chapter 11 — Programming with Streaming SIMD Extensions 2 (SSE2). Describes SSE2 extensions, 
including XMM registers and packed double-precision floating-point data types; provides an overview of the SSE2 
instruction set and gives guidelines for writing code that accesses SSE2 extensions. This chapter also describes 
SIMD floating-point exceptions that can be generated with SSE and SSE2 instructions. It also provides general 
guidelines for incorporating support for SSE and SSE2 extensions into operating system and applications code.

Chapter 12 — Programming with SSE3, SSSE3 and SSE4. Provides an overview of the SSE3 instruction set, 
Supplemental SSE3, SSE4, and guidelines for writing code that accesses these extensions.
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Chapter 13 — Managing State Using the XSAVE Feature Set. Describes the XSAVE feature set instructions 
and explains how software can enable the XSAVE feature set and XSAVE-enabled features.

Chapter 14 — Programming with AVX, FMA and AVX2. Provides an overview of the Intel® AVX instruction set, 
FMA and Intel AVX2 extensions and gives guidelines for writing code that accesses these extensions.

Chapter 15 — Programming with Intel Transactional Synchronization Extensions. Describes the instruc-
tion extensions that support lock elision techniques to improve the performance of multi-threaded software with 
contended locks.

Chapter 16 — Input/Output. Describes the processor’s I/O mechanism, including I/O port addressing, I/O 
instructions, and I/O protection mechanisms.

Chapter 17 — Processor Identification and Feature Determination. Describes how to determine the CPU 
type and features available in the processor.

Appendix A — EFLAGS Cross-Reference. Summarizes how the IA-32 instructions affect the flags in the EFLAGS 
register.

Appendix B — EFLAGS Condition Codes. Summarizes how conditional jump, move, and ‘byte set on condition 
code’ instructions use condition code flags (OF, CF, ZF, SF, and PF) in the EFLAGS register.

Appendix C — Floating-Point Exceptions Summary. Summarizes exceptions raised by the x87 FPU floating-
point and SSE/SSE2/SSE3 floating-point instructions.

Appendix D — Guidelines for Writing x87 FPU Exception Handlers. Describes how to design and write MS-
DOS* compatible exception handling facilities for FPU exceptions (includes software and hardware requirements 
and assembly-language code examples). This appendix also describes general techniques for writing robust FPU 
exception handlers.

Appendix E — Guidelines for Writing SIMD Floating-Point Exception Handlers. Gives guidelines for writing 
exception handlers for exceptions generated by SSE/SSE2/SSE3 floating-point instructions.

1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for 
hexadecimal and binary numbers. This notation is described below.

1.3.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses 
increase toward the top. Bit positions are numbered from right to left. The numerical value of a set bit is equal to 
two raised to the power of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this means 
the bytes of a word are numbered starting from the least significant byte. See Figure 1-1.
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1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as 
reserved, it is essential for compatibility with future processors that software treat these bits as having a future, 
though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredict-
able. 

Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of registers that contain such bits. 

Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated in the documentation, if any, 

or reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved bits in Intel 64 and IA-32 registers. 
Depending upon the values of reserved register bits will make software dependent upon the 
unspecified manner in which the processor handles these bits. Programs that depend upon 
reserved values risk incompatibility with future processors.

1.3.2.1  Instruction Operands

When instructions are represented symbolically, a subset of the IA-32 assembly language is used. In this subset, 
an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have the same function.
• The operands argument1, argument2, and argument3 are optional. There may be from zero to three 

operands, depending on the opcode. When present, they take the form of either literals or identifiers for data 
items. Operand identifiers are either reserved names of registers or are assumed to be assigned to data items 
declared in another part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left 
operand is the destination. 

Figure 1-1.  Bit and Byte Order
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For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand, 
and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order.

1.3.3 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for 
example, 0F82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, 
E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the character B (for 
example, 1010B). The “B” designation is only used in situations where confusion as to the type of number might 
arise.

1.3.4 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes. 
Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes memory. The 
range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing where a program may have many 
independent address spaces, called segments. For example, a program can keep its code (instructions) and stack 
in separate segments. Code addresses would always refer to the code space, and stack addresses would always 
refer to the stack space. The following notation is used to specify a byte address within a segment: 

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS 
register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS register points to the 
code segment and the EIP register contains the address of the instruction.

CS:EIP

1.3.5 A New Syntax for CPUID, CR, and MSR Values

Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register 
bits, and by reading model-specific registers. We are moving toward a new syntax to represent this information. 
See Figure 1-2.
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1.3.6 Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to 
divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other condi-
tions. Some types of exceptions may provide error codes. An error code reports additional information about the 
error. An example of the notation used to show an exception and error code is shown below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type of fault is 
reported. Under some conditions, exceptions that produce error codes may not be able to report an accurate code. 
In this case, the error code is zero, as shown below for a general-protection exception:

#GP(0)

1.4 RELATED LITERATURE

Literature related to Intel 64 and IA-32 processors is listed on-line at: 
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html.html

Figure 1-2.  Syntax for CPUID, CR, and MSR Data Presentation

Control Register Values
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If only one value, EAX is implied.

CPUID.01H:ECX.SSE [bit 25] = 1
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CPUID Input and Output
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CR4.OSFXSR[bit 9] = 1

Feature flag or field name 
with bit position(s)
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IA32_MISC_ENABLES.ENABLEFOPCODE[bit 2] = 1

Value (or range) of output

Example MSR name

OM17732

http://developer.intel.com/products/processor/manuals/index.htm
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Some of the documents listed at this web site can be viewed on-line; others can be ordered. The literature available 
is listed by Intel processor and then by the following literature types: applications notes, data sheets, manuals, 
papers, and specification updates. 

See also: 
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Fortran Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® VTune™ Performance Analyzer documentation and online help:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm 
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in three or five volumes):

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html.html
• Intel® 64 and IA-32 Architectures Optimization Reference Manual: 

http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-
manual.html

• Intel® Processor Identification with the CPUID Instruction, AP-485:
http://www.intel.com/Assets/PDF/appnote/241618.pdf

• Intel 64 Architecture x2APIC Specification:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specifi-
cation.html

• Intel 64 Architecture Processor Topology Enumeration:
http://softwarecommunity.intel.com/articles/eng/3887.htm

• Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
• Intel® SSE4 Programming Reference: http://edc.intel.com/Link.aspx?id=1630&wapkw=intel® sse4 

programming reference
• Developing Multi-threaded Applications: A Platform Consistent Approach:

http://cache-www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.pdf
• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:

http://software.intel.com/en-us/articles/ap949-using-spin-loops-on-intel-pentiumr-4-processor-and-intel-
xeonr-processor/

• Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

More relevant links are:
• Software network link:

http://softwarecommunity.intel.com/isn/home/
• Developer centers:

http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
• Processor support general link:

http://www.intel.com/support/processors/
• Software products and packages:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel 64 and IA-32 processor manuals (printed or PDF downloads):

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html.html
• Intel® Multi-Core Technology:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://softwarecommunity.intel.com/articles/eng/3887.htm
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://softwarecommunity.intel.com/isn/home/
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/support/processors/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
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http://software.intel.com/partner/multicore
• Intel® Hyper-Threading Technology (Intel® HT Technology):

http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

http://developer.intel.com/technology/hyperthread/
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CHAPTER 2
INTEL® 64 AND IA-32 ARCHITECTURES

The exponential growth of computing power and ownership has made the computer one of the most important 
forces shaping business and society. Intel 64 and IA-32 architectures have been at the forefront of the computer 
revolution and is today the preferred computer architecture, as measured by computers in use and the total 
computing power available in the world.

2.1 BRIEF HISTORY OF INTEL® 64 AND IA-32 ARCHITECTURE

The following sections provide a summary of the major technical evolutions from IA-32 to Intel 64 architecture: 
starting from the Intel 8086 processor to the latest Intel® Core® 2 Duo, Core 2 Quad and Intel Xeon processor 
5300 and 7300 series. Object code created for processors released as early as 1978 still executes on the latest 
processors in the Intel 64 and IA-32 architecture families.

2.1.1 16-bit Processors and Segmentation (1978)

The IA-32 architecture family was preceded by 16-bit processors, the 8086 and 8088. The 8086 has 16-bit regis-
ters and a 16-bit external data bus, with 20-bit addressing giving a 1-MByte address space. The 8088 is similar to 
the 8086 except it has an 8-bit external data bus. 

The 8086/8088 introduced segmentation to the IA-32 architecture. With segmentation, a 16-bit segment register 
contains a pointer to a memory segment of up to 64 KBytes. Using four segment registers at a time, 8086/8088 
processors are able to address up to 256 KBytes without switching between segments. The 20-bit addresses that 
can be formed using a segment register and an additional 16-bit pointer provide a total address range of 1 MByte.

2.1.2 The Intel® 286 Processor (1982)

The Intel 286 processor introduced protected mode operation into the IA-32 architecture. Protected mode uses the 
segment register content as selectors or pointers into descriptor tables. Descriptors provide 24-bit base addresses 
with a physical memory size of up to 16 MBytes, support for virtual memory management on a segment swapping 
basis, and a number of protection mechanisms. These mechanisms include: 
• Segment limit checking
• Read-only and execute-only segment options
• Four privilege levels 

2.1.3 The Intel386™ Processor (1985)

The Intel386 processor was the first 32-bit processor in the IA-32 architecture family. It introduced 32-bit registers 
for use both to hold operands and for addressing. The lower half of each 32-bit Intel386 register retains the prop-
erties of the 16-bit registers of earlier generations, permitting backward compatibility. The processor also provides 
a virtual-8086 mode that allows for even greater efficiency when executing programs created for 8086/8088 
processors. 

In addition, the Intel386 processor has support for:
• A 32-bit address bus that supports up to 4-GBytes of physical memory
• A segmented-memory model and a flat memory model
• Paging, with a fixed 4-KByte page size providing a method for virtual memory management
• Support for parallel stages
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2.1.4 The Intel486™ Processor (1989)

The Intel486™ processor added more parallel execution capability by expanding the Intel386 processor’s instruc-
tion decode and execution units into five pipelined stages. Each stage operates in parallel with the others on up to 
five instructions in different stages of execution. 

In addition, the processor added:
• An 8-KByte on-chip first-level cache that increased the percent of instructions that could execute at the scalar 

rate of one per clock
• An integrated x87 FPU
• Power saving and system management capabilities

2.1.5 The Intel® Pentium® Processor (1993)

The introduction of the Intel Pentium processor added a second execution pipeline to achieve superscalar perfor-
mance (two pipelines, known as u and v, together can execute two instructions per clock). The on-chip first-level 
cache doubled, with 8 KBytes devoted to code and another 8 KBytes devoted to data. The data cache uses the MESI 
protocol to support more efficient write-back cache in addition to the write-through cache previously used by the 
Intel486 processor. Branch prediction with an on-chip branch table was added to increase performance in looping 
constructs. 

In addition, the processor added:
• Extensions to make the virtual-8086 mode more efficient and allow for 4-MByte as well as 4-KByte pages
• Internal data paths of 128 and 256 bits add speed to internal data transfers
• Burstable external data bus was increased to 64 bits
• An APIC to support systems with multiple processors
• A dual processor mode to support glueless two processor systems

A subsequent stepping of the Pentium family introduced Intel MMX technology (the Pentium Processor with MMX 
technology). Intel MMX technology uses the single-instruction, multiple-data (SIMD) execution model to perform 
parallel computations on packed integer data contained in 64-bit registers. 

See Section 2.2.7, “SIMD Instructions.”

2.1.6 The P6 Family of Processors (1995-1999)

The P6 family of processors was based on a superscalar microarchitecture that set new performance standards; 
see also Section 2.2.1, “P6 Family Microarchitecture.” One of the goals in the design of the P6 family microarchitec-
ture was to exceed the performance of the Pentium processor significantly while using the same 0.6-micrometer, 
four-layer, metal BICMOS manufacturing process. Members of this family include the following: 
• The Intel Pentium Pro processor is three-way superscalar. Using parallel processing techniques, the 

processor is able on average to decode, dispatch, and complete execution of (retire) three instructions per 
clock cycle. The Pentium Pro introduced the dynamic execution (micro-data flow analysis, out-of-order 
execution, superior branch prediction, and speculative execution) in a superscalar implementation. The 
processor was further enhanced by its caches. It has the same two on-chip 8-KByte 1st-Level caches as the 
Pentium processor and an additional 256-KByte Level 2 cache in the same package as the processor.

• The Intel Pentium II processor added Intel MMX technology to the P6 family processors along with new 
packaging and several hardware enhancements. The processor core is packaged in the single edge contact 
cartridge (SECC). The Level l data and instruction caches were enlarged to 16 KBytes each, and Level 2 cache 
sizes of 256 KBytes, 512 KBytes, and 1 MByte are supported. A half-clock speed backside bus connects the 
Level 2 cache to the processor. Multiple low-power states such as AutoHALT, Stop-Grant, Sleep, and Deep Sleep 
are supported to conserve power when idling.

• The Pentium II Xeon processor combined the premium characteristics of previous generations of Intel 
processors. This includes: 4-way, 8-way (and up) scalability and a 2 MByte 2nd-Level cache running on a full-
clock speed backside bus.
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• The Intel Celeron processor family focused on the value PC market segment. Its introduction offers an 
integrated 128 KBytes of Level 2 cache and a plastic pin grid array (P.P.G.A.) form factor to lower system design 
cost.

• The Intel Pentium III processor introduced the Streaming SIMD Extensions (SSE) to the IA-32 architecture. 
SSE extensions expand the SIMD execution model introduced with the Intel MMX technology by providing a 
new set of 128-bit registers and the ability to perform SIMD operations on packed single-precision floating-
point values. See Section 2.2.7, “SIMD Instructions.”

• The Pentium III Xeon processor extended the performance levels of the IA-32 processors with the 
enhancement of a full-speed, on-die, and Advanced Transfer Cache.

2.1.7 The Intel® Pentium® 4 Processor Family (2000-2006) 

The Intel Pentium 4 processor family is based on Intel NetBurst microarchitecture; see Section 2.2.2, “Intel 
NetBurst® Microarchitecture.”

The Intel Pentium 4 processor introduced Streaming SIMD Extensions 2 (SSE2); see Section 2.2.7, “SIMD Instruc-
tions.” The Intel Pentium 4 processor 3.40 GHz, supporting Hyper-Threading Technology introduced Streaming 
SIMD Extensions 3 (SSE3); see Section 2.2.7, “SIMD Instructions.”

Intel 64 architecture was introduced in the Intel Pentium 4 Processor Extreme Edition supporting Hyper-Threading 
Technology and in the Intel Pentium 4 Processor 6xx and 5xx sequences.

Intel® Virtualization Technology (Intel® VT) was introduced in the Intel Pentium 4 processor 672 and 662.

2.1.8 The Intel® Xeon® Processor (2001- 2007)

Intel Xeon processors (with exception for dual-core Intel Xeon processor LV, Intel Xeon processor 5100 series) are 
based on the Intel NetBurst microarchitecture; see Section 2.2.2, “Intel NetBurst® Microarchitecture.” As a family, 
this group of IA-32 processors (more recently Intel 64 processors) is designed for use in multi-processor server 
systems and high-performance workstations. 

The Intel Xeon processor MP introduced support for Intel® Hyper-Threading Technology; see Section 2.2.8, “Intel® 
Hyper-Threading Technology.”

The 64-bit Intel Xeon processor 3.60 GHz (with an 800 MHz System Bus) was used to introduce Intel 64 architec-
ture. The Dual-Core Intel Xeon processor includes dual core technology. The Intel Xeon processor 70xx series 
includes Intel Virtualization Technology.

The Intel Xeon processor 5100 series introduces power-efficient, high performance Intel Core microarchitecture. 
This processor is based on Intel 64 architecture; it includes Intel Virtualization Technology and dual-core tech-
nology. The Intel Xeon processor 3000 series are also based on Intel Core microarchitecture. The Intel Xeon 
processor 5300 series introduces four processor cores in a physical package, they are also based on Intel Core 
microarchitecture. 

2.1.9 The Intel® Pentium® M Processor (2003-2006)

The Intel Pentium M processor family is a high performance, low power mobile processor family with microarchi-
tectural enhancements over previous generations of IA-32 Intel mobile processors. This family is designed for 
extending battery life and seamless integration with platform innovations that enable new usage models (such as 
extended mobility, ultra thin form-factors, and integrated wireless networking).

Its enhanced microarchitecture includes:
• Support for Intel Architecture with Dynamic Execution
• A high performance, low-power core manufactured using Intel’s advanced process technology with copper 

interconnect
• On-die, primary 32-KByte instruction cache and 32-KByte write-back data cache
• On-die, second-level cache (up to 2 MByte) with Advanced Transfer Cache Architecture



2-4 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

• Advanced Branch Prediction and Data Prefetch Logic
• Support for MMX technology, Streaming SIMD instructions, and the SSE2 instruction set
• A 400 or 533 MHz, Source-Synchronous Processor System Bus
• Advanced power management using Enhanced Intel SpeedStep® technology

2.1.10 The Intel® Pentium® Processor Extreme Edition (2005) 

The Intel Pentium processor Extreme Edition introduced dual-core technology. This technology provides advanced 
hardware multi-threading support. The processor is based on Intel NetBurst microarchitecture and supports SSE, 
SSE2, SSE3, Hyper-Threading Technology, and Intel 64 architecture.

See also:
• Section 2.2.2, “Intel NetBurst® Microarchitecture”
• Section 2.2.3, “Intel® Core™ Microarchitecture”
• Section 2.2.7, “SIMD Instructions”
• Section 2.2.8, “Intel® Hyper-Threading Technology”
• Section 2.2.9, “Multi-Core Technology”
• Section 2.2.10, “Intel® 64 Architecture”

2.1.11 The Intel® Core™ Duo and Intel® Core™ Solo Processors (2006-2007)

The Intel Core Duo processor offers power-efficient, dual-core performance with a low-power design that extends 
battery life. This family and the single-core Intel Core Solo processor offer microarchitectural enhancements over 
Pentium M processor family.

Its enhanced microarchitecture includes:
• Intel® Smart Cache which allows for efficient data sharing between two processor cores
• Improved decoding and SIMD execution
• Intel® Dynamic Power Coordination and Enhanced Intel® Deeper Sleep to reduce power consumption
• Intel® Advanced Thermal Manager which features digital thermal sensor interfaces
• Support for power-optimized 667 MHz bus

The dual-core Intel Xeon processor LV is based on the same microarchitecture as Intel Core Duo processor, and 
supports IA-32 architecture.

2.1.12 The Intel® Xeon® Processor 5100, 5300 Series and Intel® Core™2 Processor Family 
(2006)

The Intel Xeon processor 3000, 3200, 5100, 5300, and 7300 series, Intel Pentium Dual-Core, Intel Core 2 Extreme, 
Intel Core 2 Quad processors, and Intel Core 2 Duo processor family support Intel 64 architecture; they are based 
on the high-performance, power-efficient Intel® Core microarchitecture built on 65 nm process technology. The 
Intel Core microarchitecture includes the following innovative features:
• Intel® Wide Dynamic Execution to increase performance and execution throughput
• Intel® Intelligent Power Capability to reduce power consumption
• Intel® Advanced Smart Cache which allows for efficient data sharing between two processor cores
• Intel® Smart Memory Access to increase data bandwidth and hide latency of memory accesses
• Intel® Advanced Digital Media Boost which improves application performance using multiple generations of 

Streaming SIMD extensions 

The Intel Xeon processor 5300 series, Intel Core 2 Extreme processor QX6800 series, and Intel Core 2 Quad 
processors support Intel quad-core technology.
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2.1.13 The Intel® Xeon® Processor 5200, 5400, 7400 Series and Intel® Core™2 Processor 
Family (2007)

The Intel Xeon processor 5200, 5400, and 7400 series, Intel Core 2 Quad processor Q9000 Series, Intel Core 2 Duo 
processor E8000 series support Intel 64 architecture; they are based on the Enhanced Intel® Core microarchitec-
ture using 45 nm process technology. The Enhanced Intel Core microarchitecture provides the following improved 
features:
• A radix-16 divider, faster OS primitives further increases the performance of Intel® Wide Dynamic Execution. 
• Improves Intel® Advanced Smart Cache with Up to 50% larger level-two cache and up to 50% increase in way-

set associativity. 
• A 128-bit shuffler engine significantly improves the performance of Intel® Advanced Digital Media Boost and 

SSE4.

Intel Xeon processor 5400 series and Intel Core 2 Quad processor Q9000 Series support Intel quad-core tech-
nology. Intel Xeon processor 7400 series offers up to six processor cores and an L3 cache up to 16 MBytes.

2.1.14 The Intel® Atom™ Processor Family (2008)

The first generation of Intel® AtomTM processors are built on 45 nm process technology. They are based on a new 
microarchitecture, Intel® AtomTM microarchitecture, which is optimized for ultra low power devices. The Intel® 
AtomTM microarchitecture features two in-order execution pipelines that minimize power consumption, increase 
battery life, and enable ultra-small form factors. The initial Intel Atom Processor family and subsequent generations including 
Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series provide the following features:
• Enhanced Intel® SpeedStep® Technology
• Intel® Hyper-Threading Technology
• Deep Power Down Technology with Dynamic Cache Sizing
• Support for instruction set extensions up to and including Supplemental Streaming SIMD Extensions 3 

(SSSE3).
• Support for Intel® Virtualization Technology
• Support for Intel® 64 Architecture (excluding Intel Atom processor Z5xx Series)

2.1.15 The Intel® Atom™ Processor Family Based on Silvermont Microarchitecture (2013)

Intel Atom Processor C2xxx, E3xxx, S1xxx series are based on the Silvermont microarchitecture. Processors based on the Silvermont 
microarchitecture supports instruction set extensions up to and including SSE4.2, AESNI, and PCLMULQDQ.

2.1.16 The Intel® Core™i7 Processor Family (2008)

The Intel Core i7 processor 900 series support Intel 64 architecture; they are based on Intel® microarchitecture 
code name Nehalem using 45 nm process technology. The Intel Core i7 processor and Intel Xeon processor 5500 
series include the following innovative features:
• Intel® Turbo Boost Technology converts thermal headroom into higher performance. 
• Intel® HyperThreading Technology in conjunction with Quadcore to provide four cores and eight threads. 
• Dedicated power control unit to reduce active and idle power consumption.
• Integrated memory controller on the processor supporting three channel of DDR3 memory.
• 8 MB inclusive Intel® Smart Cache.
• Intel® QuickPath interconnect (QPI) providing point-to-point link to chipset.
• Support for SSE4.2 and SSE4.1 instruction sets.
• Second generation Intel Virtualization Technology.
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2.1.17 The Intel® Xeon® Processor 7500 Series (2010)

The Intel Xeon processor 7500 and 6500 series are based on Intel microarchitecture code name Nehalem using 45 
nm process technology. They support the same features described in Section 2.1.16, plus the following innovative 
features:
• Up to eight cores per physical processor package.
• Up to 24 MB inclusive Intel® Smart Cache.
• Provides Intel® Scalable Memory Interconnect (Intel® SMI) channels with Intel® 7500 Scalable Memory Buffer 

to connect to system memory. 
• Advanced RAS supporting software recoverable machine check architecture.

2.1.18 2010 Intel® Core™ Processor Family (2010)

2010 Intel Core processor family spans Intel Core i7, i5 and i3 processors. They are based on Intel® microarchitec-
ture code name Westmere using 32 nm process technology. The innovative features can include:
• Deliver smart performance using Intel Hyper-Threading Technology plus Intel Turbo Boost Technology. 
• Enhanced Intel Smart Cache and integrated memory controller.
• Intelligent power gating.
• Repartitioned platform with on-die integration of 45nm integrated graphics.
• Range of instruction set support up to AESNI, PCLMULQDQ, SSE4.2 and SSE4.1.

2.1.19 The Intel® Xeon® Processor 5600 Series (2010)

The Intel Xeon processor 5600 series are based on Intel microarchitecture code name Westmere using 32 nm 
process technology. They support the same features described in Section 2.1.16, plus the following innovative 
features:
• Up to six cores per physical processor package.
• Up to 12 MB enhanced Intel® Smart Cache.
• Support for AESNI, PCLMULQDQ, SSE4.2 and SSE4.1 instruction sets.
• Flexible Intel Virtualization Technologies across processor and I/O.

2.1.20 The Second Generation Intel® Core™ Processor Family (2011)

The Second Generation Intel Core processor family spans Intel Core i7, i5 and i3 processors based on the Sandy 
Bridge microarchitecture. They are built from 32 nm process technology and have innovative features including:
• Intel Turbo Boost Technology for Intel Core i5 and i7 processors
• Intel Hyper-Threading Technology. 
• Enhanced Intel Smart Cache and integrated memory controller.
• Processor graphics and built-in visual features like Intel® Quick Sync Video, Intel® InsiderTM etc.
• Range of instruction set support up to AVX, AESNI, PCLMULQDQ, SSE4.2 and SSE4.1.

Intel Xeon processor E3-1200 product family is also based on the Sandy Bridge microarchitecture.

Intel Xeon processor E5-2400/1400 product families are based on the Sandy Bridge-EP microarchitecture.

Intel Xeon processor E5-4600/2600/1600 product families are based on the Sandy Bridge-EP microarchitecture 
and provide support for multiple sockets.
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2.1.21 The Third Generation Intel® Core™ Processor Family (2012)

The Third Generation Intel Core processor family spans Intel Core i7, i5 and i3 processors based on the Ivy Bridge 
microarchitecture. The Intel Xeon processor E7-8800/4800/2800 v2 product families and Intel Xeon processor E3-
1200 v2 product family are also based on the Ivy Bridge microarchitecture.

The Intel Xeon processor E5-2400/1400 v2 product families are based on the Ivy Bridge-EP microarchitecture.

The Intel Xeon processor E5-4600/2600/1600 v2 product families are based on the Ivy Bridge-EP microarchitec-
ture and provide support for multiple sockets.

2.1.22 The Fourth Generation Intel® Core™ Processor Family (2013)

The Fourth Generation Intel Core processor family spans Intel Core i7, i5 and i3 processors based on the Haswell 
microarchitecture. Intel Xeon processor E3-1200 v3 product family is also based on the Haswell microarchitecture.

2.2 MORE ON SPECIFIC ADVANCES

The following sections provide more information on major innovations.

2.2.1 P6 Family Microarchitecture

The Pentium Pro processor introduced a new microarchitecture commonly referred to as P6 processor microarchi-
tecture. The P6 processor microarchitecture was later enhanced with an on-die, Level 2 cache, called Advanced 
Transfer Cache.

The microarchitecture is a three-way superscalar, pipelined architecture. Three-way superscalar means that by 
using parallel processing techniques, the processor is able on average to decode, dispatch, and complete execution 
of (retire) three instructions per clock cycle. To handle this level of instruction throughput, the P6 processor family 
uses a decoupled, 12-stage superpipeline that supports out-of-order instruction execution. 

Figure 2-1 shows a conceptual view of the P6 processor microarchitecture pipeline with the Advanced Transfer 
Cache enhancement. 
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To ensure a steady supply of instructions and data for the instruction execution pipeline, the P6 processor microar-
chitecture incorporates two cache levels. The Level 1 cache provides an 8-KByte instruction cache and an 8-KByte 
data cache, both closely coupled to the pipeline. The Level 2 cache provides 256-KByte, 512-KByte, or 1-MByte 
static RAM that is coupled to the core processor through a full clock-speed 64-bit cache bus.

The centerpiece of the P6 processor microarchitecture is an out-of-order execution mechanism called dynamic 
execution. Dynamic execution incorporates three data-processing concepts:
• Deep branch prediction allows the processor to decode instructions beyond branches to keep the instruction 

pipeline full. The P6 processor family implements highly optimized branch prediction algorithms to predict the 
direction of the instruction.

• Dynamic data flow analysis requires real-time analysis of the flow of data through the processor to 
determine dependencies and to detect opportunities for out-of-order instruction execution. The out-of-order 
execution core can monitor many instructions and execute these instructions in the order that best optimizes 
the use of the processor’s multiple execution units, while maintaining the data integrity.

• Speculative execution refers to the processor’s ability to execute instructions that lie beyond a conditional 
branch that has not yet been resolved, and ultimately to commit the results in the order of the original 
instruction stream. To make speculative execution possible, the P6 processor microarchitecture decouples the 
dispatch and execution of instructions from the commitment of results. The processor’s out-of-order execution 
core uses data-flow analysis to execute all available instructions in the instruction pool and store the results in 
temporary registers. The retirement unit then linearly searches the instruction pool for completed instructions 
that no longer have data dependencies with other instructions or unresolved branch predictions. When 
completed instructions are found, the retirement unit commits the results of these instructions to memory 
and/or the IA-32 registers (the processor’s eight general-purpose registers and eight x87 FPU data registers) 
in the order they were originally issued and retires the instructions from the instruction pool.

2.2.2 Intel NetBurst® Microarchitecture

The Intel NetBurst microarchitecture provides:

Figure 2-1.  The P6 Processor Microarchitecture with Advanced Transfer Cache Enhancement
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• The Rapid Execution Engine

— Arithmetic Logic Units (ALUs) run at twice the processor frequency 

— Basic integer operations can dispatch in 1/2 processor clock tick
• Hyper-Pipelined Technology

— Deep pipeline to enable industry-leading clock rates for desktop PCs and servers

— Frequency headroom and scalability to continue leadership into the future
• Advanced Dynamic Execution

— Deep, out-of-order, speculative execution engine

• Up to 126 instructions in flight

• Up to 48 loads and 24 stores in pipeline1

— Enhanced branch prediction capability

• Reduces the misprediction penalty associated with deeper pipelines 

• Advanced branch prediction algorithm

• 4K-entry branch target array
• New cache subsystem

— First level caches

• Advanced Execution Trace Cache stores decoded instructions

• Execution Trace Cache removes decoder latency from main execution loops

• Execution Trace Cache integrates path of program execution flow into a single line

• Low latency data cache

— Second level cache

• Full-speed, unified 8-way Level 2 on-die Advance Transfer Cache

• Bandwidth and performance increases with processor frequency
• High-performance, quad-pumped bus interface to the Intel NetBurst microarchitecture system bus

— Supports quad-pumped, scalable bus clock to achieve up to 4X effective speed

— Capable of delivering up to 8.5 GBytes of bandwidth per second
• Superscalar issue to enable parallelism
• Expanded hardware registers with renaming to avoid register name space limitations
• 64-byte cache line size (transfers data up to two lines per sector)

Figure 2-2 is an overview of the Intel NetBurst microarchitecture. This microarchitecture pipeline is made up of 
three sections: (1) the front end pipeline, (2) the out-of-order execution core, and (3) the retirement unit. 

1. Intel 64 and IA-32 processors based on the Intel NetBurst microarchitecture at 90 nm process can handle more than 24 stores in 
flight.
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2.2.2.1  The Front End Pipeline

The front end supplies instructions in program order to the out-of-order execution core. It performs a number of 
functions:
• Prefetches instructions that are likely to be executed
• Fetches instructions that have not already been prefetched
• Decodes instructions into micro-operations
• Generates microcode for complex instructions and special-purpose code
• Delivers decoded instructions from the execution trace cache
• Predicts branches using highly advanced algorithm

The pipeline is designed to address common problems in high-speed, pipelined microprocessors. Two of these 
problems contribute to major sources of delays:
• time to decode instructions fetched from the target
• wasted decode bandwidth due to branches or branch target in the middle of cache lines

The operation of the pipeline’s trace cache addresses these issues. Instructions are constantly being fetched and 
decoded by the translation engine (part of the fetch/decode logic) and built into sequences of micro-ops called 
traces. At any time, multiple traces (representing prefetched branches) are being stored in the trace cache. The 
trace cache is searched for the instruction that follows the active branch. If the instruction also appears as the first 
instruction in a pre-fetched branch, the fetch and decode of instructions from the memory hierarchy ceases and the 
pre-fetched branch becomes the new source of instructions (see Figure 2-2).

The trace cache and the translation engine have cooperating branch prediction hardware. Branch targets are 
predicted based on their linear addresses using branch target buffers (BTBs) and fetched as soon as possible.

Figure 2-2.  The Intel NetBurst Microarchitecture
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2.2.2.2  Out-Of-Order Execution Core

The out-of-order execution core’s ability to execute instructions out of order is a key factor in enabling parallelism. 
This feature enables the processor to reorder instructions so that if one micro-op is delayed, other micro-ops may 
proceed around it. The processor employs several buffers to smooth the flow of micro-ops.

The core is designed to facilitate parallel execution. It can dispatch up to six micro-ops per cycle (this exceeds trace 
cache and retirement micro-op bandwidth). Most pipelines can start executing a new micro-op every cycle, so 
several instructions can be in flight at a time for each pipeline. A number of arithmetic logical unit (ALU) instruc-
tions can start at two per cycle; many floating-point instructions can start once every two cycles. 

2.2.2.3  Retirement Unit

The retirement unit receives the results of the executed micro-ops from the out-of-order execution core and 
processes the results so that the architectural state updates according to the original program order. 

When a micro-op completes and writes its result, it is retired. Up to three micro-ops may be retired per cycle. The 
Reorder Buffer (ROB) is the unit in the processor which buffers completed micro-ops, updates the architectural 
state in order, and manages the ordering of exceptions. The retirement section also keeps track of branches and 
sends updated branch target information to the BTB. The BTB then purges pre-fetched traces that are no longer 
needed.

2.2.3 Intel® Core™ Microarchitecture

Intel Core microarchitecture introduces the following features that enable high performance and power-efficient 
performance for single-threaded as well as multi-threaded workloads:
• Intel® Wide Dynamic Execution enable each processor core to fetch, dispatch, execute in high bandwidths 

to support retirement of up to four instructions per cycle.

— Fourteen-stage efficient pipeline

— Three arithmetic logical units

— Four decoders to decode up to five instruction per cycle 

— Macro-fusion and micro-fusion to improve front-end throughput

— Peak issue rate of dispatching up to six micro-ops per cycle

— Peak retirement bandwidth of up to 4 micro-ops per cycle

— Advanced branch prediction

— Stack pointer tracker to improve efficiency of executing function/procedure entries and exits
• Intel® Advanced Smart Cache delivers higher bandwidth from the second level cache to the core, and 

optimal performance and flexibility for single-threaded and multi-threaded applications.

— Large second level cache up to 4 MB and 16-way associativity

— Optimized for multicore and single-threaded execution environments

— 256 bit internal data path to improve bandwidth from L2 to first-level data cache
• Intel® Smart Memory Access prefetches data from memory in response to data access patterns and reduces 

cache-miss exposure of out-of-order execution.

— Hardware prefetchers to reduce effective latency of second-level cache misses

— Hardware prefetchers to reduce effective latency of first-level data cache misses

— Memory disambiguation to improve efficiency of speculative execution execution engine
• Intel® Advanced Digital Media Boost improves most 128-bit SIMD instruction with single-cycle throughput 

and floating-point operations.

— Single-cycle throughput of most 128-bit SIMD instructions

— Up to eight floating-point operation per cycle
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— Three issue ports available to dispatching SIMD instructions for execution

Intel Core 2 Extreme, Intel Core 2 Duo processors and Intel Xeon processor 5100 series implement two processor 
cores based on the Intel Core microarchitecture, the functionality of the subsystems in each core are depicted in 
Figure 2-3. 

2.2.3.1  The Front End

The front end of Intel Core microarchitecture provides several enhancements to feed the Intel Wide Dynamic 
Execution engine:
• Instruction fetch unit prefetches instructions into an instruction queue to maintain steady supply of instruction 

to the decode units.
• Four-wide decode unit can decode 4 instructions per cycle or 5 instructions per cycle with Macrofusion.
• Macrofusion fuses common sequence of two instructions as one decoded instruction (micro-ops) to increase 

decoding throughput.
• Microfusion fuses common sequence of two micro-ops as one micro-ops to improve retirement throughput.
• Instruction queue provides caching of short loops to improve efficiency.
• Stack pointer tracker improves efficiency of executing procedure/function entries and exits.
• Branch prediction unit employs dedicated hardware to handle different types of branches for improved branch 

prediction.
• Advanced branch prediction algorithm directs instruction fetch unit to fetch instructions likely in the architec-

tural code path for decoding.

Figure 2-3.  The Intel Core Microarchitecture Pipeline Functionality
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2.2.3.2  Execution Core 

The execution core of the Intel Core microarchitecture is superscalar and can process instructions out of order to 
increase the overall rate of instructions executed per cycle (IPC). The execution core employs the following feature 
to improve execution throughput and efficiency:
• Up to six micro-ops can be dispatched to execute per cycle
• Up to four instructions can be retired per cycle
• Three full arithmetic logical units
• SIMD instructions can be dispatched through three issue ports
• Most SIMD instructions have 1-cycle throughput (including 128-bit SIMD instructions)
• Up to eight floating-point operation per cycle
• Many long-latency computation operation are pipelined in hardware to increase overall throughput
• Reduced exposure to data access delays using Intel Smart Memory Access

2.2.4 Intel® Atom™ Microarchitecture

Intel Atom microarchitecture maximizes power-efficient performance for single-threaded and multi-threaded 
workloads by providing:
• Advanced Micro-Ops Execution 

— Single-micro-op instruction execution from decode to retirement, including instructions with register-only, 
load, and store semantics.

— Sixteen-stage, in-order pipeline optimized for throughput and reduced power consumption.

— Dual pipelines to enable decode, issue, execution and retirement of two instructions per cycle.

— Advanced stack pointer to improve efficiency of executing function entry/returns.
• Intel® Smart Cache

— Second level cache is 512 KB and 8-way associativity.

— Optimized for multi-threaded and single-threaded execution environments

— 256 bit internal data path between L2 and L1 data cache improves high bandwidth.
• Efficient Memory Access

— Efficient hardware prefetchers to L1 and L2, speculatively loading data likely to be requested by processor 
to reduce cache miss impact.

• Intel® Digital Media Boost

— Two issue ports for dispatching SIMD instructions to execution units.

— Single-cycle throughput for most 128-bit integer SIMD instructions

— Up to six floating-point operations per cycle

— Up to two 128-bit SIMD integer operations per cycle

— Safe Instruction Recognition (SIR) to allow long-latency floating-point operations to retire out of order with 
respect to integer instructions.

2.2.5 Intel® Microarchitecture Code Name Nehalem

Intel microarchitecture code name Nehalem provides the foundation for many innovative features of Intel Core i7 
processors. It builds on the success of 45nm Intel Core microarchitecture and provides the following feature 
enhancements:
• Enhanced processor core

— Improved branch prediction and recovery from misprediction.
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— Enhanced loop streaming to improve front end performance and reduce power consumption.

— Deeper buffering in out-of-order engine to extract parallelism.

— Enhanced execution units to provide acceleration in CRC, string/text processing and data shuffling.
• Smart Memory Access

— Integrated memory controller provides low-latency access to system memory and scalable memory 
bandwidth

— New cache hierarchy organization with shared, inclusive L3 to reduce snoop traffic

— Two level TLBs and increased TLB size.

— Fast unaligned memory access.
• HyperThreading Technology

— Provides two hardware threads (logical processors) per core.

— Takes advantage of 4-wide execution engine, large L3, and massive memory bandwidth.
• Dedicated Power management Innovations

— Integrated microcontroller with optimized embedded firmware to manage power consumption.

— Embedded real-time sensors for temperature, current, and power.

— Integrated power gate to turn off/on per-core power consumption

— Versatility to reduce power consumption of memory, link subsystems.

2.2.6 Intel® Microarchitecture Code Name Sandy Bridge

Intel® microarchitecture code name Sandy Bridge builds on the successes of Intel® Core™ microarchitecture and 
Intel microarchitecture code name Nehalem. It offers the following innovative features:
• Intel Advanced Vector Extensions (Intel AVX)

— 256-bit floating-point instruction set extensions to the 128-bit Intel Streaming SIMD Extensions, providing 
up to 2X performance benefits relative to 128-bit code.

— Non-destructive destination encoding offers more flexible coding techniques.

— Supports flexible migration and co-existence between 256-bit AVX code, 128-bit AVX code and legacy 128-
bit SSE code.

• Enhanced front-end and execution engine

— New decoded Icache component that improves front-end bandwidth and reduces branch misprediction 
penalty.

— Advanced branch prediction.

— Additional macro-fusion support.

— Larger dynamic execution window.

— Multi-precision integer arithmetic enhancements (ADC/SBB, MUL/IMUL).

— LEA bandwidth improvement.

— Reduction of general execution stalls (read ports, writeback conflicts, bypass latency, partial stalls).

— Fast floating-point exception handling.

— XSAVE/XRSTORE performance improvements and XSAVEOPT new instruction.
• Cache hierarchy improvements for wider data path

— Doubling of bandwidth enabled by two symmetric ports for memory operation.

— Simultaneous handling of more in-flight loads and stores enabled by increased buffers.

— Internal bandwidth of two loads and one store each cycle.
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— Improved prefetching.

— High bandwidth low latency LLC architecture.

— High bandwidth ring architecture of on-die interconnect.

For additional information on Intel® Advanced Vector Extensions (AVX), see Section 5.13, “Intel® Advanced Vector 
Extensions (Intel® AVX)” and Chapter 14, “Programming with AVX, FMA and AVX2” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1.

2.2.7 SIMD Instructions

Beginning with the Pentium II and Pentium with Intel MMX technology processor families, six extensions have been 
introduced into the Intel 64 and IA-32 architectures to perform single-instruction multiple-data (SIMD) operations. 
These extensions include the MMX technology, SSE extensions, SSE2 extensions, SSE3 extensions, Supplemental 
Streaming SIMD Extensions 3, and SSE4. Each of these extensions provides a group of instructions that perform 
SIMD operations on packed integer and/or packed floating-point data elements. 

SIMD integer operations can use the 64-bit MMX or the 128-bit XMM registers. SIMD floating-point operations use 
128-bit XMM registers. Figure 2-4 shows a summary of the various SIMD extensions (MMX technology, SSE, SSE2, 
SSE3, SSSE3, and SSE4), the data types they operate on, and how the data types are packed into MMX and XMM 
registers.

The Intel MMX technology was introduced in the Pentium II and Pentium with MMX technology processor families. 
MMX instructions perform SIMD operations on packed byte, word, or doubleword integers located in MMX registers. 
These instructions are useful in applications that operate on integer arrays and streams of integer data that lend 
themselves to SIMD processing.

SSE extensions were introduced in the Pentium III processor family. SSE instructions operate on packed single-
precision floating-point values contained in XMM registers and on packed integers contained in MMX registers. 
Several SSE instructions provide state management, cache control, and memory ordering operations. Other SSE 
instructions are targeted at applications that operate on arrays of single-precision floating-point data elements (3-
D geometry, 3-D rendering, and video encoding and decoding applications).

SSE2 extensions were introduced in Pentium 4 and Intel Xeon processors. SSE2 instructions operate on packed 
double-precision floating-point values contained in XMM registers and on packed integers contained in MMX and 
XMM registers. SSE2 integer instructions extend IA-32 SIMD operations by adding new 128-bit SIMD integer oper-
ations and by expanding existing 64-bit SIMD integer operations to 128-bit XMM capability. SSE2 instructions also 
provide new cache control and memory ordering operations.

SSE3 extensions were introduced with the Pentium 4 processor supporting Hyper-Threading Technology (built on 
90 nm process technology). SSE3 offers 13 instructions that accelerate performance of Streaming SIMD Exten-
sions technology, Streaming SIMD Extensions 2 technology, and x87-FP math capabilities.

SSSE3 extensions were introduced with the Intel Xeon processor 5100 series and Intel Core 2 processor family. 
SSSE3 offer 32 instructions to accelerate processing of SIMD integer data.

SSE4 extensions offer 54 instructions. 47 of them are referred to as SSE4.1 instructions. SSE4.1 are introduced 
with Intel Xeon processor 5400 series and Intel Core 2 Extreme processor QX9650. The other 7 SSE4 instructions 
are referred to as SSE4.2 instructions.

AESNI and PCLMULQDQ introduce 7 new instructions. Six of them are primitives for accelerating algorithms based 
on AES encryption/decryption standard, referred to as AESNI.

The PCLMULQDQ instruction accelerates general-purpose block encryption, which can perform carry-less multipli-
cation for two binary numbers up to 64-bit wide.

Intel 64 architecture allows four generations of 128-bit SIMD extensions to access up to 16 XMM registers. IA-32 
architecture provides 8 XMM registers.

Intel® Advanced Vector Extensions offers comprehensive architectural enhancements over previous generations of 
Streaming SIMD Extensions. Intel AVX introduces the following architectural enhancements:
• Support for 256-bit wide vectors and SIMD register set.
• 256-bit floating-point instruction set enhancement with up to 2X performance gain relative to 128-bit 

Streaming SIMD extensions.
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• Instruction syntax support for generalized three-operand syntax to improve instruction programming flexibility 
and efficient encoding of new instruction extensions.

• Enhancement of legacy 128-bit SIMD instruction extensions to support three operand syntax and to simplify 
compiler vectorization of high-level language expressions.

• Support flexible deployment of 256-bit AVX code, 128-bit AVX code, legacy 128-bit code and scalar code.
In addition to performance considerations, programmers should also be cognizant of the implications of VEX-
encoded AVX instructions with the expectations of system software components that manage the processor state 
components enabled by XCR0. For additional information see Section 2.3.10.1, “Vector Length Transition and 
Programming Considerations” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

See also: 
• Section 5.4, “MMX™ Instructions,” and Chapter 9, “Programming with Intel® MMX™ Technology”
• Section 5.5, “SSE Instructions,” and Chapter 10, “Programming with Streaming SIMD Extensions (SSE)”
• Section 5.6, “SSE2 Instructions,” and Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2)”
• Section 5.7, “SSE3 Instructions”, Section 5.8, “Supplemental Streaming SIMD Extensions 3 (SSSE3) Instruc-

tions”, Section 5.9, “SSE4 Instructions”, and Chapter 12, “Programming with SSE3, SSSE3, SSE4 and AESNI”

Figure 2-4.  SIMD Extensions, Register Layouts, and Data Types
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2.2.8 Intel® Hyper-Threading Technology

Intel Hyper-Threading Technology (Intel HT Technology) was developed to improve the performance of IA-32 
processors when executing multi-threaded operating system and application code or single-threaded applications 
under multi-tasking environments. The technology enables a single physical processor to execute two or more 
separate code streams (threads) concurrently using shared execution resources. 

Intel HT Technology is one form of hardware multi-threading capability in IA-32 processor families. It differs from 
multi-processor capability using separate physically distinct packages with each physical processor package mated 
with a physical socket. Intel HT Technology provides hardware multi-threading capability with a single physical 
package by using shared execution resources in a processor core.

Architecturally, an IA-32 processor that supports Intel HT Technology consists of two or more logical processors, 
each of which has its own IA-32 architectural state. Each logical processor consists of a full set of IA-32 data regis-
ters, segment registers, control registers, debug registers, and most of the MSRs. Each also has its own advanced 
programmable interrupt controller (APIC). 

Figure 2-5 shows a comparison of a processor that supports Intel HT Technology (implemented with two logical 
processors) and a traditional dual processor system. 

Unlike a traditional MP system configuration that uses two or more separate physical IA-32 processors, the logical 
processors in an IA-32 processor supporting Intel HT Technology share the core resources of the physical 
processor. This includes the execution engine and the system bus interface. After power up and initialization, each 
logical processor can be independently directed to execute a specified thread, interrupted, or halted.

Intel HT Technology leverages the process and thread-level parallelism found in contemporary operating systems 
and high-performance applications by providing two or more logical processors on a single chip. This configuration 
allows two or more threads1 to be executed simultaneously on each a physical processor. Each logical processor 
executes instructions from an application thread using the resources in the processor core. The core executes 
these threads concurrently, using out-of-order instruction scheduling to maximize the use of execution units during 
each clock cycle.

2.2.8.1  Some Implementation Notes

All Intel HT Technology configurations require:
• A processor that supports Intel HT Technology

Figure 2-5.  Comparison of an IA-32 Processor Supporting Hyper-Threading Technology and a Traditional Dual 
Processor System

1. In the remainder of this document, the term “thread” will be used as a general term for the terms “process” and “thread.”
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• A chipset and BIOS that utilize the technology
• Operating system optimizations

See http://www.intel.com/products/ht/hyperthreading_more.htm for information.

At the firmware (BIOS) level, the basic procedures to initialize the logical processors in a processor supporting Intel 
HT Technology are the same as those for a traditional DP or MP platform. The mechanisms that are described in the 
Multiprocessor Specification, Version 1.4 to power-up and initialize physical processors in an MP system also apply 
to logical processors in a processor that supports Intel HT Technology. 

An operating system designed to run on a traditional DP or MP platform may use CPUID to determine the presence 
of hardware multi-threading support feature and the number of logical processors they provide.

Although existing operating system and application code should run correctly on a processor that supports Intel HT 
Technology, some code modifications are recommended to get the optimum benefit. These modifications are 
discussed in Chapter 7, “Multiple-Processor Management,” Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

2.2.9 Multi-Core Technology

Multi-core technology is another form of hardware multi-threading capability in IA-32 processor families. Multi-
core technology enhances hardware multi-threading capability by providing two or more execution cores in a phys-
ical package.

The Intel Pentium processor Extreme Edition is the first member in the IA-32 processor family to introduce multi-
core technology. The processor provides hardware multi-threading support with both two processor cores and Intel 
Hyper-Threading Technology. This means that the Intel Pentium processor Extreme Edition provides four logical 
processors in a physical package (two logical processors for each processor core). The Dual-Core Intel Xeon 
processor features multi-core, Intel Hyper-Threading Technology and supports multi-processor platforms. 

The Intel Pentium D processor also features multi-core technology. This processor provides hardware multi-
threading support with two processor cores but does not offer Intel Hyper-Threading Technology. This means that 
the Intel Pentium D processor provides two logical processors in a physical package, with each logical processor 
owning the complete execution resources of a processor core.

The Intel Core 2 processor family, Intel Xeon processor 3000 series, Intel Xeon processor 5100 series, and Intel 
Core Duo processor offer power-efficient multi-core technology. The processor contains two cores that share a 
smart second level cache. The Level 2 cache enables efficient data sharing between two cores to reduce memory 
traffic to the system bus.
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The Pentium® dual-core processor is based on the same technology as the Intel Core 2 Duo processor family.

The Intel Xeon processor 7300, 5300 and 3200 series, Intel Core 2 Extreme Quad-Core processor, and Intel Core 
2 Quad processors support Intel quad-core technology. The Quad-core Intel Xeon processors and the Quad-Core 
Intel Core 2 processor family are also in Figure 2-7. 

Figure 2-6.  Intel 64 and IA-32 Processors that Support Dual-Core 
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Intel Core i7 processors support Intel quad-core technology, Intel HyperThreading Technology, provides Intel 
QuickPath interconnect link to the chipset and have integrated memory controller supporting three channel to 
DDR3 memory.

Figure 2-7.  Intel 64 Processors that Support Quad-Core 

Figure 2-8.  Intel Core i7 Processor 
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2.2.10 Intel® 64 Architecture

Intel 64 architecture increases the linear address space for software to 64 bits and supports physical address space 
up to 46 bits. The technology also introduces a new operating mode referred to as IA-32e mode.

IA-32e mode operates in one of two sub-modes: (1) compatibility mode enables a 64-bit operating system to run 
most legacy 32-bit software unmodified, (2) 64-bit mode enables a 64-bit operating system to run applications 
written to access 64-bit address space. 

In the 64-bit mode, applications may access:
• 64-bit flat linear addressing
• 8 additional general-purpose registers (GPRs)
• 8 additional registers for streaming SIMD extensions (SSE, SSE2, SSE3 and SSSE3)
• 64-bit-wide GPRs and instruction pointers
• uniform byte-register addressing
• fast interrupt-prioritization mechanism
• a new instruction-pointer relative-addressing mode

An Intel 64 architecture processor supports existing IA-32 software because it is able to run all non-64-bit legacy 
modes supported by IA-32 architecture. Most existing IA-32 applications also run in compatibility mode.

2.2.11 Intel® Virtualization Technology (Intel® VT)

Intel® Virtualization Technology for Intel 64 and IA-32 architectures provide extensions that support virtualization. 
The extensions are referred to as Virtual Machine Extensions (VMX). An Intel 64 or IA-32 platform with VMX can 
function as multiple virtual systems (or virtual machines). Each virtual machine can run operating systems and 
applications in separate partitions. 

VMX also provides programming interface for a new layer of system software (called the Virtual Machine Monitor 
(VMM)) used to manage the operation of virtual machines. Information on VMX and on the programming of VMMs 
is in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B. Chapter 5, “VMX Instruction 
Reference,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, provides informa-
tion on VMX instructions. 

Intel Core i7 processor provides the following enhancements to Intel Virtualization Technology:
• Virtual processor ID (VPID) to reduce the cost of VMM managing transitions.
• Extended page table (EPT) to reduce the number of transitions for VMM to manage memory virtualization.
• Reduced latency of VM transitions.

2.3 INTEL® 64 AND IA-32 PROCESSOR GENERATIONS

In the mid-1960s, Intel cofounder and Chairman Emeritus Gordon Moore had this observation: “... the number of 
transistors that would be incorporated on a silicon die would double every 18 months for the next several years.” 
Over the past three and half decades, this prediction known as “Moore's Law” has continued to hold true.

The computing power and the complexity (or roughly, the number of transistors per processor) of Intel architecture 
processors has grown in close relation to Moore's law. By taking advantage of new process technology and new 
microarchitecture designs, each new generation of IA-32 processors has demonstrated frequency-scaling head-
room and new performance levels over the previous generation processors.
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The key features of the Intel Pentium 4 processor, Intel Xeon processor, Intel Xeon processor MP, Pentium III 
processor, and Pentium III Xeon processor with advanced transfer cache are shown in Table 2-1. Older generation 
IA-32 processors, which do not employ on-die Level 2 cache, are shown in Table 2-2. 

Table 2-1.  Key Features of Most Recent IA-32 Processors 

Intel 
Processor

Date 
Intro-
duced

Micro-architecture Top-Bin Clock 
Fre-quency at 
Intro-
duction

Tran-
sistors

Register 
Sizes1

NOTES:

1. The register size and external data bus size are given in bits.

System 
Bus Band-
width

Max. 
Extern. 
Addr. 
Space

On-Die 
Caches2

2. First level cache is denoted using the abbreviation L1, 2nd level cache is denoted as L2. The size
of L1 includes the first-level data cache and the instruction cache where applicable, but 
does not include the trace cache.

Intel Pentium 
M
Processor 
7553

3. Intel processor numbers are not a measure of performance. Processor numbers differentiate 
features within each processor family, not across different processor families. 
See http://www.intel.com/products/processor_number for details.

2004 Intel Pentium M 
Processor

2.00 GHz 140 M GP: 32 
FPU: 80 
MMX: 64
XMM: 128

3.2 GB/s 4 GB L1: 64 KB
L2: 2 MB

Intel Core Duo
Processor 
T26003

2006 Improved Intel 
Pentium M 
Processor 
Microarchitecture; 
Dual Core;

Intel Smart Cache, 
Advanced Thermal 
Manager

2.16 GHz  152M GP: 32 
FPU: 80 
MMX: 64
XMM: 128

5.3 GB/s 4 GB L1: 64 KB
L2: 2 MB 
(2MB Total)

Intel Atom
Processor 
Z5xx series

2008 Intel Atom 
Microarchitecture; 

Intel Virtualization 
Technology.

1.86 GHz - 
800 MHz

 47M GP: 32 
FPU: 80 
MMX: 64
XMM: 128

Up to 4.2 
GB/s

4 GB L1: 56 KB4

L2: 512KB 

4. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.

Table 2-2.  Key Features of Most Recent Intel 64 Processors

Intel 
Processor

Date 
Intro-
duced

Micro-architec-
ture

Top-Bin Fre-
quency at 
Intro-
duction

Tran-
sistors

Register 
Sizes

System 
Bus/QPI 
Link 
Speed

Max. 
Extern. 
Addr. 
Space

On-Die 
Caches

64-bit Intel 
Xeon
Processor 
with 800 MHz 
System Bus

2004 Intel NetBurst 
Microarchitecture; 
Intel Hyper-
Threading 
Technology; Intel 
64 Architecture

3.60 GHz 125 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
1 MB L2

64-bit Intel 
Xeon
Processor MP 
with 8MB L3

2005 Intel NetBurst 
Microarchitecture; 
Intel Hyper-
Threading 
Technology; Intel 
64 Architecture 

3.33 GHz 675M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

5.3 GB/s 1 1024 GB 
(1 TB)

12K µop 
Execution 
Trace Cache;
16 KB L1;
1 MB L2,
8 MB L3
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Intel Pentium 
4
Processor 
Extreme 
Edition 
Supporting 
Hyper-
Threading 
Technology

2005 Intel NetBurst 
Microarchitecture; 
Intel Hyper-
Threading 
Technology; Intel 
64 Architecture 

3.73 GHz 164 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
2 MB L2

Intel Pentium 
Processor 
Extreme 
Edition 840

2005 Intel NetBurst 
Microarchitecture; 
Intel Hyper-
Threading 
Technology; Intel 
64 Architecture;

Dual-core 2

3.20 GHz 230 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
1MB L2 
(2MB Total)

Dual-Core Intel 
Xeon 
Processor 
7041

2005 Intel NetBurst 
Microarchitecture; 
Intel Hyper-
Threading 
Technology; Intel 
64 Architecture;

Dual-core 3

3.00 GHz  321M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
2MB L2 
(4MB Total)

Intel Pentium 
4
Processor 672

2005 Intel NetBurst 
Microarchitecture; 
Intel Hyper-
Threading 
Technology; Intel 
64 Architecture;

Intel Virtualization 
Technology.

3.80 GHz 164 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
2MB L2 

Intel Pentium 
Processor 
Extreme 
Edition 955

2006 Intel NetBurst 
Microarchitecture; 
Intel 64 
Architecture; Dual 
Core;

Intel Virtualization 
Technology.

3.46 GHz  376M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 64 GB 12K µop 
Execution 
Trace Cache;
16 KB L1;
2MB L2 

(4MB Total)

Intel Core 2 
Extreme 
Processor 
X6800

2006 Intel Core 
Microarchitecture; 
Dual Core; 

Intel 64 
Architecture;

Intel Virtualization 
Technology.

2.93 GHz  291M GP: 32,64 
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 64 GB L1: 64 KB
L2: 4MB 
(4MB Total)

Table 2-2.  Key Features of Most Recent Intel 64 Processors (Contd.)

Intel 
Processor

Date 
Intro-
duced

Micro-architec-
ture

Top-Bin Fre-
quency at 
Intro-
duction

Tran-
sistors

Register 
Sizes

System 
Bus/QPI 
Link 
Speed

Max. 
Extern. 
Addr. 
Space

On-Die 
Caches
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Intel Xeon
Processor 
5160

2006 Intel Core 
Microarchitecture; 
Dual Core; 

Intel 64 
Architecture;

Intel Virtualization 
Technology.

3.00 GHz  291M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

10.6 GB/s 64 GB L1: 64 KB
L2: 4MB 
(4MB Total)

Intel Xeon
Processor 
7140

2006 Intel NetBurst 
Microarchitecture; 
Dual Core; 

Intel 64 
Architecture;

Intel Virtualization 
Technology.

3.40 GHz  1.3 B GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

12.8 GB/s 64 GB L1: 64 KB
L2: 1MB 
(2MB Total)

L3: 16 MB 
(16MB Total)

Intel Core 2 
Extreme 
Processor 
QX6700

2006 Intel Core 
Microarchitecture; 
Quad Core; 

Intel 64 
Architecture;

Intel Virtualization 
Technology.

2.66 GHz 582M GP: 32,64 
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 64 GB L1: 64 KB
L2: 4MB 
(4MB Total)

Quad-core 
Intel Xeon
Processor 
5355

2006 Intel Core 
Microarchitecture; 
Quad Core; 

Intel 64 
Architecture;

Intel Virtualization 
Technology.

2.66 GHz 582 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

10.6 GB/s 256 GB L1: 64 KB
L2: 4MB (8 
MB Total)

Intel Core 2 
Duo Processor 
E6850

2007 Intel Core 
Microarchitecture; 
Dual Core; 

Intel 64 
Architecture;

Intel Virtualization 
Technology;

Intel Trusted 
Execution 
Technology

3.00 GHz 291 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

10.6 GB/s 64 GB L1: 64 KB
L2: 4MB 
(4MB Total)

Intel Xeon
Processor 
7350

2007 Intel Core 
Microarchitecture; 
Quad Core; 

Intel 64 
Architecture;

Intel Virtualization 
Technology.

2.93 GHz  582 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 1024 GB L1: 64 KB
L2: 4MB 
(8MB Total)

Table 2-2.  Key Features of Most Recent Intel 64 Processors (Contd.)

Intel 
Processor

Date 
Intro-
duced

Micro-architec-
ture

Top-Bin Fre-
quency at 
Intro-
duction

Tran-
sistors

Register 
Sizes

System 
Bus/QPI 
Link 
Speed

Max. 
Extern. 
Addr. 
Space

On-Die 
Caches
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Intel Xeon
Processor 
5472

2007 Enhanced Intel 
Core 
Microarchitecture; 
Quad Core; 

Intel 64 
Architecture;

Intel Virtualization 
Technology.

3.00 GHz  820 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

12.8 GB/s 256 GB L1: 64 KB
L2: 6MB 
(12MB Total)

Intel Atom
Processor

2008 Intel Atom 
Microarchitecture; 
Intel 64 
Architecture;

Intel Virtualization 
Technology.

2.0 - 1.60 
GHz

47 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

Up to 4.2 
GB/s

Up to 
64GB

L1: 56 KB4

L2: 512KB 

Intel Xeon
Processor 
7460

2008 Enhanced Intel 
Core 
Microarchitecture; 
Six Cores; 

Intel 64 
Architecture;

Intel Virtualization 
Technology.

2.67 GHz  1.9 B GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

8.5 GB/s 1024 GB L1: 64 KB
L2: 3MB 
(9MB Total)

L3: 16MB

Intel Atom
Processor 330

2008 Intel Atom 
Microarchitecture; 
Intel 64 
Architecture;

Dual core;

Intel Virtualization 
Technology.

1.60 GHz 94 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

Up to 4.2 
GB/s

Up to 
64GB

L1: 56 KB5

L2: 512KB 
(1MB Total)

Intel Core i7-
965
Processor 
Extreme 
Edition

2008 Intel 
microarchitecture 
code name 
Nehalem; 
Quadcore; 
HyperThreading 
Technology; Intel 
QPI; Intel 64 
Architecture;

Intel Virtualization 
Technology.

3.20 GHz  731 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

QPI: 6.4 
GT/s; 
Memory: 
25 GB/s 

64 GB L1: 64 KB
L2: 256KB 

L3: 8MB

Table 2-2.  Key Features of Most Recent Intel 64 Processors (Contd.)
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Intel Core i7-
620M
Processor 

2010 Intel Turbo Boost 
Technology, Intel 
microarchitecture 
code name 
Westmere; 
Dualcore; 
HyperThreading 
Technology; Intel 
64 Architecture;

Intel Virtualization 
Technology., 
Integrated graphics

2.66 GHz  383 M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

64 GB L1: 64 KB
L2: 256KB 

L3: 4MB

Intel Xeon-
Processor 
5680

2010 Intel Turbo Boost 
Technology, Intel 
microarchitecture 
code name 
Westmere; Six core; 
HyperThreading 
Technology; Intel 
64 Architecture;

Intel Virtualization 
Technology.

3.33 GHz 1.1B GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

QPI: 6.4 
GT/s; 32 
GB/s

1 TB L1: 64 KB
L2: 256KB 

L3: 12MB

Intel Xeon-
Processor 
7560

2010 Intel Turbo Boost 
Technology, Intel 
microarchitecture 
code name 
Nehalem; Eight 
core; 
HyperThreading 
Technology; Intel 
64 Architecture;

Intel Virtualization 
Technology.

2.26 GHz 2.3B GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

QPI: 6.4 
GT/s; 
Memory: 
76 GB/s 

16 TB L1: 64 KB
L2: 256KB 

L3: 24MB

Intel Core i7-
2600K
Processor 

2011 Intel Turbo Boost 
Technology, Intel 
microarchitecture 
code name Sandy 
Bridge; Four core; 
HyperThreading 
Technology; Intel 
64 Architecture;

Intel Virtualization 
Technology., 
Processor graphics, 
Quicksync Video

3.40 GHz  995M GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

YMM: 256

DMI: 5 
GT/s; 
Memory: 
21 GB/s

64 GB L1: 64 KB
L2: 256KB 

L3: 8MB

Table 2-2.  Key Features of Most Recent Intel 64 Processors (Contd.)
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Intel Xeon-
Processor E3-
1280

2011 Intel Turbo Boost 
Technology, Intel 
microarchitecture 
code name Sandy 
Bridge; Four core; 
HyperThreading 
Technology; Intel 
64 Architecture;

Intel Virtualization 
Technology.

3.50 GHz GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

YMM: 256

DMI: 5 
GT/s; 
Memory: 
21 GB/s

1 TB L1: 64 KB
L2: 256KB 

L3: 8MB

Intel Xeon-
Processor E7-
8870

2011 Intel Turbo Boost 
Technology, Intel 
microarchitecture 
code name 
Westmere; Ten 
core; 
HyperThreading 
Technology; Intel 
64 Architecture;

Intel Virtualization 
Technology.

2.40 GHz 2.2B GP: 32, 64
FPU: 80 
MMX: 64
XMM: 128

QPI: 6.4 
GT/s; 
Memory: 
102 GB/s 

16 TB L1: 64 KB
L2: 256KB 

L3: 30MB

NOTES:

1. The 64-bit Intel Xeon Processor MP with an 8-MByte L3 supports a multi-processor platform with a dual system bus; this creates a 
platform bandwidth with 10.6 GBytes.

2. In Intel Pentium Processor Extreme Edition 840, the size of on-die cache is listed for each core. The total size of L2 in the physical
package in 2 MBytes.

3. In Dual-Core Intel Xeon Processor 7041, the size of on-die cache is listed for each core. The total size of L2 in the physical package in
4 MBytes.

4. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.

5. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.

Table 2-2.  Key Features of Most Recent Intel 64 Processors (Contd.)
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Table 2-3.  Key Features of Previous Generations of IA-32 Processors

Intel 
Processor

Date 
Intro-
duced

Max. Clock 
Frequency/
Technology at 
Introduction

Tran-
sistors

Register 
Sizes1

Ext. Data 
Bus Size2

Max. 
Extern. 
Addr. 
Space

Caches 

8086 1978 8 MHz 29 K 16 GP 16 1 MB None

Intel 286 1982 12.5 MHz 134 K 16 GP 16 16 MB Note 3

Intel386 DX 
Processor

1985 20 MHz 275 K 32 GP 32 4 GB Note 3

Intel486 DX 
Processor

1989 25 MHz 1.2 M 32 GP
80 FPU

32 4 GB L1: 8 KB

Pentium Processor 1993 60 MHz 3.1 M 32 GP
80 FPU

64 4 GB L1:16 KB

Pentium Pro 
Processor

1995 200 MHz 5.5 M 32 GP
80 FPU

64 64 GB L1: 16 KB
L2: 256 KB or 
512 KB 

Pentium II Processor 1997 266 MHz 7 M 32 GP
80 FPU
64 MMX

64 64 GB L1: 32 KB
L2: 256 KB or 
512 KB

Pentium III Processor 1999 500 MHz 8.2 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB L1: 32 KB
L2: 512 KB

Pentium III and 
Pentium III Xeon 
Processors

1999 700 MHz 28 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB L1: 32 KB
L2: 256 KB

Pentium 4 Processor 2000 1.50 GHz, Intel 
NetBurst 
Microarchitecture

42 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop 
Execution 
Trace Cache; 
L1: 8KB
L2: 256 KB

Intel Xeon Processor 2001 1.70 GHz, Intel 
NetBurst 
Microarchitecture

42 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop 
Execution 
Trace Cache; 
L1: 8KB
L2: 512KB

Intel Xeon Processor 2002 2.20 GHz, Intel 
NetBurst 
Microarchitecture, 
HyperThreading 
Technology

55 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop 
Execution 
Trace Cache; 
L1: 8KB
L2: 512KB

Pentium M Processor 2003 1.60 GHz, Intel 
NetBurst 
Microarchitecture

77 M 32 GP
80 FPU
64 MMX
128 XMM

64 4 GB L1: 64KB
L2: 1 MB
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NOTE:

1. The register size and external data bus size are given in bits. Note also that each 32-bit general-purpose (GP) registers can be 
addressed as an 8- or a 16-bit data registers in all of the processors.

2. Internal data paths are 2 to 4 times wider than the external data bus for each processor.

Intel Pentium 4
Processor 
Supporting Hyper-
Threading 
Technology at 90 nm 
process

2004 3.40 GHz, Intel 
NetBurst 
Microarchitecture, 
HyperThreading 
Technology

125 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop 
Execution 
Trace Cache; 
L1: 16KB
L2: 1 MB

Table 2-3.  Key Features of Previous Generations of IA-32 Processors (Contd.)
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CHAPTER 3
BASIC EXECUTION ENVIRONMENT

This chapter describes the basic execution environment of an Intel 64 or IA-32 processor as seen by assembly-
language programmers. It describes how the processor executes instructions and how it stores and manipulates 
data. The execution environment described here includes memory (the address space), general-purpose data 
registers, segment registers, the flag register, and the instruction pointer register.

3.1 MODES OF OPERATION

The IA-32 architecture supports three basic operating modes: protected mode, real-address mode, and system 
management mode. The operating mode determines which instructions and architectural features are accessible:
• Protected mode — This mode is the native state of the processor. Among the capabilities of protected mode 

is the ability to directly execute “real-address mode” 8086 software in a protected, multi-tasking environment. 
This feature is called virtual-8086 mode, although it is not actually a processor mode. Virtual-8086 mode is 
actually a protected mode attribute that can be enabled for any task. 

• Real-address mode — This mode implements the programming environment of the Intel 8086 processor with 
extensions (such as the ability to switch to protected or system management mode). The processor is placed in 
real-address mode following power-up or a reset.

• System management mode (SMM) — This mode provides an operating system or executive with a 
transparent mechanism for implementing platform-specific functions such as power management and system 
security. The processor enters SMM when the external SMM interrupt pin (SMI#) is activated or an SMI is 
received from the advanced programmable interrupt controller (APIC). 
In SMM, the processor switches to a separate address space while saving the basic context of the currently 
running program or task. SMM-specific code may then be executed transparently. Upon returning from SMM, 
the processor is placed back into its state prior to the system management interrupt. SMM was introduced with 
the Intel386™ SL and Intel486™ SL processors and became a standard IA-32 feature with the Pentium 
processor family. 

3.1.1 Intel® 64 Architecture

Intel 64 architecture adds IA-32e mode. IA-32e mode has two sub-modes.
These are:
• Compatibility mode (sub-mode of IA-32e mode) — Compatibility mode permits most legacy 16-bit and 

32-bit applications to run without re-compilation under a 64-bit operating system. For brevity, the compatibility 
sub-mode is referred to as compatibility mode in IA-32 architecture. The execution environment of compati-
bility mode is the same as described in Section 3.2. Compatibility mode also supports all of the privilege levels 
that are supported in 64-bit and protected modes. Legacy applications that run in Virtual 8086 mode or use 
hardware task management will not work in this mode. 
Compatibility mode is enabled by the operating system (OS) on a code segment basis. This means that a single 
64-bit OS can support 64-bit applications running in 64-bit mode and support legacy 32-bit applications (not 
recompiled for 64-bits) running in compatibility mode.
Compatibility mode is similar to 32-bit protected mode. Applications access only the first 4 GByte of linear-
address space. Compatibility mode uses 16-bit and 32-bit address and operand sizes. Like protected mode, this 
mode allows applications to access physical memory greater than 4 GByte using PAE (Physical Address Exten-
sions). 

• 64-bit mode (sub-mode of IA-32e mode) — This mode enables a 64-bit operating system to run applica-
tions written to access 64-bit linear address space. For brevity, the 64-bit sub-mode is referred to as 64-bit 
mode in IA-32 architecture.
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64-bit mode extends the number of general purpose registers and SIMD extension registers from 8 to 16. 
General purpose registers are widened to 64 bits. The mode also introduces a new opcode prefix (REX) to 
access the register extensions. See Section 3.2.1 for a detailed description.
64-bit mode is enabled by the operating system on a code-segment basis. Its default address size is 64 bits and 
its default operand size is 32 bits. The default operand size can be overridden on an instruction-by-instruction 
basis using a REX opcode prefix in conjunction with an operand size override prefix. 
REX prefixes allow a 64-bit operand to be specified when operating in 64-bit mode. By using this mechanism, 
many existing instructions have been promoted to allow the use of 64-bit registers and 64-bit addresses.

3.2 OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT

Any program or task running on an IA-32 processor is given a set of resources for executing instructions and for 
storing code, data, and state information. These resources (described briefly in the following paragraphs and 
shown in Figure 3-1) make up the basic execution environment for an IA-32 processor. 

An Intel 64 processor supports the basic execution environment of an IA-32 processor, and a similar environment 
under IA-32e mode that can execute 64-bit programs (64-bit sub-mode) and 32-bit programs (compatibility sub-
mode). 

The basic execution environment is used jointly by the application programs and the operating system or executive 
running on the processor.
• Address space — Any task or program running on an IA-32 processor can address a linear address space of 

up to 4 GBytes (232 bytes) and a physical address space of up to 64 GBytes (236 bytes). See Section 3.3.6, 
“Extended Physical Addressing in Protected Mode,” for more information about addressing an address space 
greater than 4 GBytes.

• Basic program execution registers — The eight general-purpose registers, the six segment registers, the 
EFLAGS register, and the EIP (instruction pointer) register comprise a basic execution environment in which to 
execute a set of general-purpose instructions. These instructions perform basic integer arithmetic on byte, 
word, and doubleword integers, handle program flow control, operate on bit and byte strings, and address 
memory. See Section 3.4, “Basic Program Execution Registers,” for more information about these registers.

• x87 FPU registers — The eight x87 FPU data registers, the x87 FPU control register, the status register, the 
x87 FPU instruction pointer register, the x87 FPU operand (data) pointer register, the x87 FPU tag register, and 
the x87 FPU opcode register provide an execution environment for operating on single-precision, double-
precision, and double extended-precision floating-point values, word integers, doubleword integers, quadword 
integers, and binary coded decimal (BCD) values. See Section 8.1, “x87 FPU Execution Environment,” for more 
information about these registers.

• MMX registers — The eight MMX registers support execution of single-instruction, multiple-data (SIMD) 
operations on 64-bit packed byte, word, and doubleword integers. See Section 9.2, “The MMX Technology 
Programming Environment,” for more information about these registers.

• XMM registers — The eight XMM data registers and the MXCSR register support execution of SIMD operations 
on 128-bit packed single-precision and double-precision floating-point values and on 128-bit packed byte, 
word, doubleword, and quadword integers. See Section 10.2, “SSE Programming Environment,” for more 
information about these registers.
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• Stack — To support procedure or subroutine calls and the passing of parameters between procedures or 
subroutines, a stack and stack management resources are included in the execution environment. The stack 
(not shown in Figure 3-1) is located in memory. See Section 6.2, “Stacks,” for more information about stack 
structure.

In addition to the resources provided in the basic execution environment, the IA-32 architecture provides the 
following resources as part of its system-level architecture. They provide extensive support for operating-system 
and system-development software. Except for the I/O ports, the system resources are described in detail in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A & 3B.

• I/O ports — The IA-32 architecture supports a transfers of data to and from input/output (I/O) ports. See 
Chapter 16, “Input/Output,” in this volume.

Figure 3-1.  IA-32 Basic Execution Environment for Non-64-bit Modes
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• Control registers — The five control registers (CR0 through CR4) determine the operating mode of the 
processor and the characteristics of the currently executing task. See Chapter 2, “System Architecture 
Overview,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Memory management registers — The GDTR, IDTR, task register, and LDTR specify the locations of data 
structures used in protected mode memory management. See Chapter 2, “System Architecture Overview,” in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Debug registers — The debug registers (DR0 through DR7) control and allow monitoring of the processor’s 
debugging operations. See in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

• Memory type range registers (MTRRs) — The MTRRs are used to assign memory types to regions of 
memory. See the sections on MTRRs in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volumes 3A & 3B.

• Machine specific registers (MSRs) — The processor provides a variety of machine specific registers that are 
used to control and report on processor performance. Virtually all MSRs handle system related functions and 
are not accessible to an application program. One exception to this rule is the time-stamp counter. The MSRs 
are described in Chapter 35, “Model-Specific Registers (MSRs),” of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3C.

• Machine check registers — The machine check registers consist of a set of control, status, and error-
reporting MSRs that are used to detect and report on hardware (machine) errors. See Chapter 15, “Machine-
Check Architecture,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Performance monitoring counters — The performance monitoring counters allow processor performance 
events to be monitored. See Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3C.

The remainder of this chapter describes the organization of memory and the address space, the basic program 
execution registers, and addressing modes. Refer to the following chapters in this volume for descriptions of the 
other program execution resources shown in Figure 3-1:
• x87 FPU registers — See Chapter 8, “Programming with the x87 FPU.”
• MMX Registers — See Chapter 9, “Programming with Intel® MMX™ Technology.”
• XMM registers — See Chapter 10, “Programming with Streaming SIMD Extensions (SSE),” Chapter 11, 

“Programming with Streaming SIMD Extensions 2 (SSE2),” and Chapter 12, “Programming with SSE3, SSSE3, 
SSE4 and AESNI.”

• Stack implementation and procedure calls — See Chapter 6, “Procedure Calls, Interrupts, and Exceptions.”

3.2.1 64-Bit Mode Execution Environment

The execution environment for 64-bit mode is similar to that described in Section 3.2. The following paragraphs 
describe the differences that apply. 
• Address space — A task or program running in 64-bit mode on an IA-32 processor can address linear address 

space of up to 264 bytes (subject to the canonical addressing requirement described in Section 3.3.7.1) and 
physical address space of up to 246 bytes. Software can query CPUID for the physical address size supported 
by a processor.

• Basic program execution registers — The number of general-purpose registers (GPRs) available is 16. GPRs 
are 64-bits wide and they support operations on byte, word, doubleword and quadword integers. Accessing 
byte registers is done uniformly to the lowest 8 bits. The instruction pointer register becomes 64 bits. The 
EFLAGS register is extended to 64 bits wide, and is referred to as the RFLAGS register. The upper 32 bits of 
RFLAGS is reserved. The lower 32 bits of RFLAGS is the same as EFLAGS. See Figure 3-2.

• XMM registers — There are 16 XMM data registers for SIMD operations. See Section 10.2, “SSE Programming 
Environment,” for more information about these registers.

• Stack — The stack pointer size is 64 bits. Stack size is not controlled by a bit in the SS descriptor (as it is in 
non-64-bit modes) nor can the pointer size be overridden by an instruction prefix.

• Control registers — Control registers expand to 64 bits. A new control register (the task priority register: CR8 
or TPR) has been added. See Chapter 2, “Intel® 64 and IA-32 Architectures,” in this volume.
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• Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debug, Branch Profile, TSC, and 
Quality of Service,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table 
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table 
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION

The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as 
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical 
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel 

Figure 3-2.  64-Bit Mode Execution Environment
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64 architecture. Intel 64 architecture introduces a changes in physical and linear address space; these are 
described in Section 3.3.3, Section 3.3.4, and Section 3.3.7.

Virtually any operating system or executive designed to work with an IA-32 or Intel 64 processor will use the 
processor’s memory management facilities to access memory. These facilities provide features such as segmenta-
tion and paging, which allow memory to be managed efficiently and reliably. Memory management is described in 
detail in Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A. The following paragraphs describe the basic methods of addressing memory when 
memory management is used.

3.3.1 IA-32 Memory Models

When employing the processor’s memory management facilities, programs do not directly address physical 
memory. Instead, they access memory using one of three memory models: flat, segmented, or real address mode:
• Flat memory model — Memory appears to a program as a single, continuous address space (Figure 3-3). This 

space is called a linear address space. Code, data, and stacks are all contained in this address space. Linear 
address space is byte addressable, with addresses running contiguously from 0 to 232 - 1 (if not in 64-bit 
mode). An address for any byte in linear address space is called a linear address.

• Segmented memory model — Memory appears to a program as a group of independent address spaces 
called segments. Code, data, and stacks are typically contained in separate segments. To address a byte in a 
segment, a program issues a logical address. This consists of a segment selector and an offset (logical 
addresses are often referred to as far pointers). The segment selector identifies the segment to be accessed 
and the offset identifies a byte in the address space of the segment. Programs running on an IA-32 processor 
can address up to 16,383 segments of different sizes and types, and each segment can be as large as 232 
bytes.
Internally, all the segments that are defined for a system are mapped into the processor’s linear address space. 
To access a memory location, the processor thus translates each logical address into a linear address. This 
translation is transparent to the application program.
The primary reason for using segmented memory is to increase the reliability of programs and systems. For 
example, placing a program’s stack in a separate segment prevents the stack from growing into the code or 
data space and overwriting instructions or data, respectively.

• Real-address mode memory model — This is the memory model for the Intel 8086 processor. It is 
supported to provide compatibility with existing programs written to run on the Intel 8086 processor. The real-
address mode uses a specific implementation of segmented memory in which the linear address space for the 
program and the operating system/executive consists of an array of segments of up to 64 KBytes in size each. 
The maximum size of the linear address space in real-address mode is 220 bytes. 
See also: Chapter 20, “8086 Emulation,” Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B.
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3.3.2 Paging and Virtual Memory

With the flat or the segmented memory model, linear address space is mapped into the processor’s physical 
address space either directly or through paging. When using direct mapping (paging disabled), each linear address 
has a one-to-one correspondence with a physical address. Linear addresses are sent out on the processor’s 
address lines without translation. 

When using the IA-32 architecture’s paging mechanism (paging enabled), linear address space is divided into 
pages which are mapped to virtual memory. The pages of virtual memory are then mapped as needed into physical 
memory. When an operating system or executive uses paging, the paging mechanism is transparent to an applica-
tion program. All that the application sees is linear address space.

In addition, IA-32 architecture’s paging mechanism includes extensions that support:
• Physical Address Extensions (PAE) to address physical address space greater than 4 GBytes.
• Page Size Extensions (PSE) to map linear address to physical address in 4-MBytes pages.

See also: Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A.

3.3.3 Memory Organization in 64-Bit Mode

Intel 64 architecture supports physical address space greater than 64 GBytes; the actual physical address size of 
IA-32 processors is implementation specific. In 64-bit mode, there is architectural support for 64-bit linear address 
space. However, processors supporting Intel 64 architecture may implement less than 64-bits (see Section 
3.3.7.1). The linear address space is mapped into the processor physical address space through the PAE paging 
mechanism.

Figure 3-3.  Three Memory Management Models
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3.3.4 Modes of Operation vs. Memory Model

When writing code for an IA-32 or Intel 64 processor, a programmer needs to know the operating mode the 
processor is going to be in when executing the code and the memory model being used. The relationship between 
operating modes and memory models is as follows:
• Protected mode — When in protected mode, the processor can use any of the memory models described in 

this section. (The real-addressing mode memory model is ordinarily used only when the processor is in the 
virtual-8086 mode.) The memory model used depends on the design of the operating system or executive. 
When multitasking is implemented, individual tasks can use different memory models.

• Real-address mode — When in real-address mode, the processor only supports the real-address mode 
memory model.

• System management mode — When in SMM, the processor switches to a separate address space, called the 
system management RAM (SMRAM). The memory model used to address bytes in this address space is similar 
to the real-address mode model. See Chapter 34, “System Management Mode,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3C, for more information on the memory model used in 
SMM.

• Compatibility mode — Software that needs to run in compatibility mode should observe the same memory 
model as those targeted to run in 32-bit protected mode. The effect of segmentation is the same as it is in 32-
bit protected mode semantics.

• 64-bit mode — Segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address 
space. Specifically, the processor treats the segment base of CS, DS, ES, and SS as zero in 64-bit mode (this 
makes a linear address equal an effective address). Segmented and real address modes are not available in 64-
bit mode.

3.3.5 32-Bit and 16-Bit Address and Operand Sizes

IA-32 processors in protected mode can be configured for 32-bit or 16-bit address and operand sizes. With 32-bit 
address and operand sizes, the maximum linear address or segment offset is FFFFFFFFH (232-1); operand sizes are 
typically 8 bits or 32 bits. With 16-bit address and operand sizes, the maximum linear address or segment offset is 
FFFFH (216-1); operand sizes are typically 8 bits or 16 bits. 

When using 32-bit addressing, a logical address (or far pointer) consists of a 16-bit segment selector and a 32-bit 
offset; when using 16-bit addressing, an address consists of a 16-bit segment selector and a 16-bit offset. 

Instruction prefixes allow temporary overrides of the default address and/or operand sizes from within a program.

When operating in protected mode, the segment descriptor for the currently executing code segment defines the 
default address and operand size. A segment descriptor is a system data structure not normally visible to applica-
tion code. Assembler directives allow the default addressing and operand size to be chosen for a program. The 
assembler and other tools then set up the segment descriptor for the code segment appropriately.

When operating in real-address mode, the default addressing and operand size is 16 bits. An address-size override 
can be used in real-address mode to enable 32-bit addressing. However, the maximum allowable 32-bit linear 
address is still 000FFFFFH (220-1).

3.3.6 Extended Physical Addressing in Protected Mode

Beginning with P6 family processors, the IA-32 architecture supports addressing of up to 64 GBytes (236 bytes) of 
physical memory. A program or task could not address locations in this address space directly. Instead, it addresses 
individual linear address spaces of up to 4 GBytes that mapped to 64-GByte physical address space through a 
virtual memory management mechanism. Using this mechanism, an operating system can enable a program to 
switch 4-GByte linear address spaces within 64-GByte physical address space.

The use of extended physical addressing requires the processor to operate in protected mode and the operating 
system to provide a virtual memory management system. See “36-Bit Physical Addressing Using the PAE Paging 
Mechanism” in Chapter 3, “Protected-Mode Memory Management,” of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A.
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3.3.7 Address Calculations in 64-Bit Mode

In most cases, 64-bit mode uses flat address space for code, data, and stacks. In 64-bit mode (if there is no 
address-size override), the size of effective address calculations is 64 bits. An effective-address calculation uses a 
64-bit base and index registers and sign-extend displacements to 64 bits.

In the flat address space of 64-bit mode, linear addresses are equal to effective addresses because the base 
address is zero. In the event that FS or GS segments are used with a non-zero base, this rule does not hold. In 64-
bit mode, the effective address components are added and the effective address is truncated (See for example the 
instruction LEA) before adding the full 64-bit segment base. The base is never truncated, regardless of addressing 
mode in 64-bit mode.

The instruction pointer is extended to 64 bits to support 64-bit code offsets. The 64-bit instruction pointer is called 
the RIP. Table 3-1 shows the relationship between RIP, EIP, and IP.

Table 3-1.  Instruction Pointer Sizes

Generally, displacements and immediates in 64-bit mode are not extended to 64 bits. They are still limited to 32 
bits and sign-extended during effective-address calculations. In 64-bit mode, however, support is provided for 64-
bit displacement and immediate forms of the MOV instruction. 

All 16-bit and 32-bit address calculations are zero-extended in IA-32e mode to form 64-bit addresses. Address 
calculations are first truncated to the effective address size of the current mode (64-bit mode or compatibility 
mode), as overridden by any address-size prefix. The result is then zero-extended to the full 64-bit address width. 
Because of this, 16-bit and 32-bit applications running in compatibility mode can access only the low 4 GBytes of 
the 64-bit mode effective addresses. Likewise, a 32-bit address generated in 64-bit mode can access only the low 
4 GBytes of the 64-bit mode effective addresses.

3.3.7.1  Canonical Addressing

In 64-bit mode, an address is considered to be in canonical form if address bits 63 through to the most-significant 
implemented bit by the microarchitecture are set to either all ones or all zeros.

Intel 64 architecture defines a 64-bit linear address. Implementations can support less. The first implementation 
of IA-32 processors with Intel 64 architecture supports a 48-bit linear address. This means a canonical address 
must have bits 63 through 48 set to zeros or ones (depending on whether bit 47 is a zero or one).

Although implementations may not use all 64 bits of the linear address, they should check bits 63 through the 
most-significant implemented bit to see if the address is in canonical form. If a linear-memory reference is not in 
canonical form, the implementation should generate an exception. In most cases, a general-protection exception 
(#GP) is generated. However, in the case of explicit or implied stack references, a stack fault (#SS) is generated. 

Instructions that have implied stack references, by default, use the SS segment register. These include PUSH/POP-
related instructions and instructions using RSP/RBP as base registers. In these cases, the canonical fault is #SF. 

If an instruction uses base registers RSP/RBP and uses a segment override prefix to specify a non-SS segment, a 
canonical fault generates a #GP (instead of an #SF). In 64-bit mode, only FS and GS segment-overrides are appli-
cable in this situation. Other segment override prefixes (CS, DS, ES and SS) are ignored. Note that this also means 
that an SS segment-override applied to a “non-stack” register reference is ignored. Such a sequence still produces 
a #GP for a canonical fault (and not an #SF).

3.4 BASIC PROGRAM EXECUTION REGISTERS

IA-32 architecture provides 16 basic program execution registers for use in general system and application 
programing (see Figure 3-4). These registers can be grouped as follows:

Bits 63:32 Bits 31:16 Bits 15:0

16-bit instruction pointer Not Modified IP

32-bit instruction pointer Zero Extension EIP

64-bit instruction pointer RIP
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• General-purpose registers. These eight registers are available for storing operands and pointers.
• Segment registers. These registers hold up to six segment selectors.
• EFLAGS (program status and control) register. The EFLAGS register report on the status of the program 

being executed and allows limited (application-program level) control of the processor. 
• EIP (instruction pointer) register. The EIP register contains a 32-bit pointer to the next instruction to be 

executed. 

3.4.1 General-Purpose Registers

The 32-bit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are provided for holding the 
following items:
• Operands for logical and arithmetic operations
• Operands for address calculations
• Memory pointers

Although all of these registers are available for general storage of operands, results, and pointers, caution should 
be used when referencing the ESP register. The ESP register holds the stack pointer and as a general rule should 
not be used for another purpose. 

Many instructions assign specific registers to hold operands. For example, string instructions use the contents of 
the ECX, ESI, and EDI registers as operands. When using a segmented memory model, some instructions assume 
that pointers in certain registers are relative to specific segments. For instance, some instructions assume that a 
pointer in the EBX register points to a memory location in the DS segment. 

Figure 3-4.  General System and Application Programming Registers
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The special uses of general-purpose registers by instructions are described in Chapter 5, “Instruction Set 
Summary,” in this volume. See also: Chapter 3 and Chapter 4 of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volumes 2A & 2B. The following is a summary of special uses:
• EAX — Accumulator for operands and results data
• EBX — Pointer to data in the DS segment
• ECX — Counter for string and loop operations
• EDX — I/O pointer
• ESI — Pointer to data in the segment pointed to by the DS register; source pointer for string operations
• EDI — Pointer to data (or destination) in the segment pointed to by the ES register; destination pointer for 

string operations
• ESP — Stack pointer (in the SS segment)
• EBP — Pointer to data on the stack (in the SS segment)

As shown in Figure 3-5, the lower 16 bits of the general-purpose registers map directly to the register set found in 
the 8086 and Intel 286 processors and can be referenced with the names AX, BX, CX, DX, BP, SI, DI, and SP. Each 
of the lower two bytes of the EAX, EBX, ECX, and EDX registers can be referenced by the names AH, BH, CH, and 
DH (high bytes) and AL, BL, CL, and DL (low bytes).

3.4.1.1  General-Purpose Registers in 64-Bit Mode

In 64-bit mode, there are 16 general purpose registers and the default operand size is 32 bits. However, general-
purpose registers are able to work with either 32-bit or 64-bit operands. If a 32-bit operand size is specified: EAX, 
EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D - R15D are available. If a 64-bit operand size is specified: RAX, RBX, RCX, 
RDX, RDI, RSI, RBP, RSP, R8-R15 are available. R8D-R15D/R8-R15 represent eight new general-purpose registers. 
All of these registers can be accessed at the byte, word, dword, and qword level. REX prefixes are used to generate 
64-bit operand sizes or to reference registers R8-R15.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved across transitions from 64-bit 
mode into compatibility mode then back into 64-bit mode. However, values of R8-R15 and XMM8-XMM15 are unde-
fined after transitions from 64-bit mode through compatibility mode to legacy or real mode and then back through 
compatibility mode to 64-bit mode.

Figure 3-5.  Alternate General-Purpose Register Names
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In 64-bit mode, there are limitations on accessing byte registers. An instruction cannot reference legacy high-bytes 
(for example: AH, BH, CH, DH) and one of the new byte registers at the same time (for example: the low byte of 
the RAX register). However, instructions may reference legacy low-bytes (for example: AL, BL, CL or DL) and new 
byte registers at the same time (for example: the low byte of the R8 register, or RBP). The architecture enforces 
this limitation by changing high-byte references (AH, BH, CH, DH) to low byte references (BPL, SPL, DIL, SIL: the 
low 8 bits for RBP, RSP, RDI and RSI) for instructions using a REX prefix.

When in 64-bit mode, operand size determines the number of valid bits in the destination general-purpose register: 
• 64-bit operands generate a 64-bit result in the destination general-purpose register.
• 32-bit operands generate a 32-bit result, zero-extended to a 64-bit result in the destination general-purpose 

register.
• 8-bit and 16-bit operands generate an 8-bit or 16-bit result. The upper 56 bits or 48 bits (respectively) of the 

destination general-purpose register are not modified by the operation. If the result of an 8-bit or 16-bit 
operation is intended for 64-bit address calculation, explicitly sign-extend the register to the full 64-bits. 

Because the upper 32 bits of 64-bit general-purpose registers are undefined in 32-bit modes, the upper 32 bits of 
any general-purpose register are not preserved when switching from 64-bit mode to a 32-bit mode (to protected 
mode or compatibility mode). Software must not depend on these bits to maintain a value after a 64-bit to 32-bit 
mode switch.

3.4.2 Segment Registers

The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. A segment selector is a special 
pointer that identifies a segment in memory. To access a particular segment in memory, the segment selector for 
that segment must be present in the appropriate segment register.

When writing application code, programmers generally create segment selectors with assembler directives and 
symbols. The assembler and other tools then create the actual segment selector values associated with these 
directives and symbols. If writing system code, programmers may need to create segment selectors directly. See 
Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

How segment registers are used depends on the type of memory management model that the operating system or 
executive is using. When using the flat (unsegmented) memory model, segment registers are loaded with segment 
selectors that point to overlapping segments, each of which begins at address 0 of the linear address space (see 
Figure 3-6). These overlapping segments then comprise the linear address space for the program. Typically, two 
overlapping segments are defined: one for code and another for data and stacks. The CS segment register points 
to the code segment and all the other segment registers point to the data and stack segment.

When using the segmented memory model, each segment register is ordinarily loaded with a different segment 
selector so that each segment register points to a different segment within the linear address space (see 
Figure 3-7). At any time, a program can thus access up to six segments in the linear address space. To access a 
segment not pointed to by one of the segment registers, a program must first load the segment selector for the 
segment to be accessed into a segment register.

Table 3-2.  Addressable General Purpose Registers

Register Type Without REX With REX

Byte Registers AL, BL, CL, DL, AH, BH, CH, DH AL, BL, CL, DL, DIL, SIL, BPL, SPL, R8L - R15L

Word Registers AX, BX, CX, DX, DI, SI, BP, SP AX, BX, CX, DX, DI, SI, BP, SP, R8W - R15W

Doubleword Registers EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D - R15D

Quadword Registers N.A. RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8 - R15
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Each of the segment registers is associated with one of three types of storage: code, data, or stack. For example, 
the CS register contains the segment selector for the code segment, where the instructions being executed are 
stored. The processor fetches instructions from the code segment, using a logical address that consists of the 
segment selector in the CS register and the contents of the EIP register. The EIP register contains the offset within 
the code segment of the next instruction to be executed. The CS register cannot be loaded explicitly by an applica-
tion program. Instead, it is loaded implicitly by instructions or internal processor operations that change program 
control (such as, procedure calls, interrupt handling, or task switching).

The DS, ES, FS, and GS registers point to four data segments. The availability of four data segments permits effi-
cient and secure access to different types of data structures. For example, four separate data segments might be 
created: one for the data structures of the current module, another for the data exported from a higher-level 
module, a third for a dynamically created data structure, and a fourth for data shared with another program. To 
access additional data segments, the application program must load segment selectors for these segments into the 
DS, ES, FS, and GS registers, as needed.

The SS register contains the segment selector for the stack segment, where the procedure stack is stored for the 
program, task, or handler currently being executed. All stack operations use the SS register to find the stack 

Figure 3-6.  Use of Segment Registers for Flat Memory Model

Figure 3-7.  Use of Segment Registers in Segmented Memory Model
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segment. Unlike the CS register, the SS register can be loaded explicitly, which permits application programs to set 
up multiple stacks and switch among them.

See Section 3.3, “Memory Organization,” for an overview of how the segment registers are used in real-address 
mode.

The four segment registers CS, DS, SS, and ES are the same as the segment registers found in the Intel 8086 and 
Intel 286 processors and the FS and GS registers were introduced into the IA-32 Architecture with the Intel386™ 
family of processors.

3.4.2.1  Segment Registers in 64-Bit Mode

In 64-bit mode: CS, DS, ES, SS are treated as if each segment base is 0, regardless of the value of the associated 
segment descriptor base. This creates a flat address space for code, data, and stack. FS and GS are exceptions. 
Both segment registers may be used as additional base registers in linear address calculations (in the addressing 
of local data and certain operating system data structures). 

Even though segmentation is generally disabled, segment register loads may cause the processor to perform 
segment access assists. During these activities, enabled processors will still perform most of the legacy checks on 
loaded values (even if the checks are not applicable in 64-bit mode). Such checks are needed because a segment 
register loaded in 64-bit mode may be used by an application running in compatibility mode. 

Limit checks for CS, DS, ES, SS, FS, and GS are disabled in 64-bit mode.

3.4.3 EFLAGS Register

The 32-bit EFLAGS register contains a group of status flags, a control flag, and a group of system flags. Figure 3-8 
defines the flags within this register. Following initialization of the processor (either by asserting the RESET pin or 
the INIT pin), the state of the EFLAGS register is 00000002H. Bits 1, 3, 5, 15, and 22 through 31 of this register 
are reserved. Software should not use or depend on the states of any of these bits.

Some of the flags in the EFLAGS register can be modified directly, using special-purpose instructions (described in 
the following sections). There are no instructions that allow the whole register to be examined or modified directly. 

The following instructions can be used to move groups of flags to and from the procedure stack or the EAX register: 
LAHF, SAHF, PUSHF, PUSHFD, POPF, and POPFD. After the contents of the EFLAGS register have been transferred to 
the procedure stack or EAX register, the flags can be examined and modified using the processor’s bit manipulation 
instructions (BT, BTS, BTR, and BTC).

When suspending a task (using the processor’s multitasking facilities), the processor automatically saves the state 
of the EFLAGS register in the task state segment (TSS) for the task being suspended. When binding itself to a new 
task, the processor loads the EFLAGS register with data from the new task’s TSS.

When a call is made to an interrupt or exception handler procedure, the processor automatically saves the state of 
the EFLAGS registers on the procedure stack. When an interrupt or exception is handled with a task switch, the 
state of the EFLAGS register is saved in the TSS for the task being suspended.
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As the IA-32 Architecture has evolved, flags have been added to the EFLAGS register, but the function and place-
ment of existing flags have remained the same from one family of the IA-32 processors to the next. As a result, 
code that accesses or modifies these flags for one family of IA-32 processors works as expected when run on later 
families of processors.

3.4.3.1  Status Flags

The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results of arithmetic instructions, 
such as the ADD, SUB, MUL, and DIV instructions. The status flag functions are:
CF (bit 0) Carry flag — Set if an arithmetic operation generates a carry or a borrow out of the most-

significant bit of the result; cleared otherwise. This flag indicates an overflow condition for 
unsigned-integer arithmetic. It is also used in multiple-precision arithmetic.

PF (bit 2) Parity flag — Set if the least-significant byte of the result contains an even number of 1 bits; 
cleared otherwise.

AF (bit 4) Adjust flag — Set if an arithmetic operation generates a carry or a borrow out of bit 3 of the 
result; cleared otherwise. This flag is used in binary-coded decimal (BCD) arithmetic.

ZF (bit 6) Zero flag — Set if the result is zero; cleared otherwise.
SF (bit 7) Sign flag — Set equal to the most-significant bit of the result, which is the sign bit of a signed 

integer. (0 indicates a positive value and 1 indicates a negative value.)
OF (bit 11) Overflow flag — Set if the integer result is too large a positive number or too small a nega-

tive number (excluding the sign-bit) to fit in the destination operand; cleared otherwise. This 
flag indicates an overflow condition for signed-integer (two’s complement) arithmetic.

Of these status flags, only the CF flag can be modified directly, using the STC, CLC, and CMC instructions. Also the 
bit instructions (BT, BTS, BTR, and BTC) copy a specified bit into the CF flag.

Figure 3-8.  EFLAGS Register
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The status flags allow a single arithmetic operation to produce results for three different data types: unsigned inte-
gers, signed integers, and BCD integers. If the result of an arithmetic operation is treated as an unsigned integer, 
the CF flag indicates an out-of-range condition (carry or a borrow); if treated as a signed integer (two’s comple-
ment number), the OF flag indicates a carry or borrow; and if treated as a BCD digit, the AF flag indicates a carry 
or borrow. The SF flag indicates the sign of a signed integer. The ZF flag indicates either a signed- or an unsigned-
integer zero.

When performing multiple-precision arithmetic on integers, the CF flag is used in conjunction with the add with 
carry (ADC) and subtract with borrow (SBB) instructions to propagate a carry or borrow from one computation to 
the next. 

The condition instructions Jcc (jump on condition code cc), SETcc (byte set on condition code cc), LOOPcc, and 
CMOVcc (conditional move) use one or more of the status flags as condition codes and test them for branch, set-
byte, or end-loop conditions.

3.4.3.2  DF Flag

The direction flag (DF, located in bit 10 of the EFLAGS register) controls string instructions (MOVS, CMPS, SCAS, 
LODS, and STOS). Setting the DF flag causes the string instructions to auto-decrement (to process strings from 
high addresses to low addresses). Clearing the DF flag causes the string instructions to auto-increment 
(process strings from low addresses to high addresses).

The STD and CLD instructions set and clear the DF flag, respectively.

3.4.3.3  System Flags and IOPL Field

The system flags and IOPL field in the EFLAGS register control operating-system or executive operations. They 
should not be modified by application programs. The functions of the system flags are as follows:
TF (bit 8) Trap flag — Set to enable single-step mode for debugging; clear to disable single-step mode.
IF (bit 9) Interrupt enable flag — Controls the response of the processor to maskable interrupt 

requests. Set to respond to maskable interrupts; cleared to inhibit maskable interrupts.
IOPL (bits 12 and 13)

I/O privilege level field — Indicates the I/O privilege level of the currently running program 
or task. The current privilege level (CPL) of the currently running program or task must be less 
than or equal to the I/O privilege level to access the I/O address space. The POPF and IRET 
instructions can modify this field only when operating at a CPL of 0.

NT (bit 14) Nested task flag — Controls the chaining of interrupted and called tasks. Set when the 
current task is linked to the previously executed task; cleared when the current task is not 
linked to another task.

RF (bit 16) Resume flag — Controls the processor’s response to debug exceptions.
VM (bit 17) Virtual-8086 mode flag — Set to enable virtual-8086 mode; clear to return to protected 

mode without virtual-8086 mode semantics.
AC (bit 18) Alignment check flag — Set this flag and the AM bit in the CR0 register to enable alignment 

checking of memory references; clear the AC flag and/or the AM bit to disable alignment 
checking.

VIF (bit 19) Virtual interrupt flag — Virtual image of the IF flag. Used in conjunction with the VIP flag. 
(To use this flag and the VIP flag the virtual mode extensions are enabled by setting the VME 
flag in control register CR4.)

VIP (bit 20) Virtual interrupt pending flag — Set to indicate that an interrupt is pending; clear when no 
interrupt is pending. (Software sets and clears this flag; the processor only reads it.) Used in 
conjunction with the VIF flag.

ID (bit 21) Identification flag — The ability of a program to set or clear this flag indicates support for 
the CPUID instruction.

For a detailed description of these flags: see Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3A. 
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3.4.3.4  RFLAGS Register in 64-Bit Mode

In 64-bit mode, EFLAGS is extended to 64 bits and called RFLAGS. The upper 32 bits of RFLAGS register is 
reserved. The lower 32 bits of RFLAGS is the same as EFLAGS.

3.5 INSTRUCTION POINTER

The instruction pointer (EIP) register contains the offset in the current code segment for the next instruction to be 
executed. It is advanced from one instruction boundary to the next in straight-line code or it is moved ahead or 
backwards by a number of instructions when executing JMP, Jcc, CALL, RET, and IRET instructions. 

The EIP register cannot be accessed directly by software; it is controlled implicitly by control-transfer instructions 
(such as JMP, Jcc, CALL, and RET), interrupts, and exceptions. The only way to read the EIP register is to execute 
a CALL instruction and then read the value of the return instruction pointer from the procedure stack. The EIP 
register can be loaded indirectly by modifying the value of a return instruction pointer on the procedure stack and 
executing a return instruction (RET or IRET). See Section 6.2.4.2, “Return Instruction Pointer.”

All IA-32 processors prefetch instructions. Because of instruction prefetching, an instruction address read from the 
bus during an instruction load does not match the value in the EIP register. Even though different processor gener-
ations use different prefetching mechanisms, the function of the EIP register to direct program flow remains fully 
compatible with all software written to run on IA-32 processors.

3.5.1 Instruction Pointer in 64-Bit Mode

In 64-bit mode, the RIP register becomes the instruction pointer. This register holds the 64-bit offset of the next 
instruction to be executed. 64-bit mode also supports a technique called RIP-relative addressing. Using this tech-
nique, the effective address is determined by adding a displacement to the RIP of the next instruction.

3.6 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES

When the processor is executing in protected mode, every code segment has a default operand-size attribute and 
address-size attribute. These attributes are selected with the D (default size) flag in the segment descriptor for the 
code segment (see Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A). When the D flag is set, the 32-bit operand-size and address-size attri-
butes are selected; when the flag is clear, the 16-bit size attributes are selected. When the processor is executing 
in real-address mode, virtual-8086 mode, or SMM, the default operand-size and address-size attributes are always 
16 bits.

The operand-size attribute selects the size of operands. When the 16-bit operand-size attribute is in force, oper-
ands can generally be either 8 bits or 16 bits, and when the 32-bit operand-size attribute is in force, operands can 
generally be 8 bits or 32 bits.

The address-size attribute selects the sizes of addresses used to address memory: 16 bits or 32 bits. When the 16-
bit address-size attribute is in force, segment offsets and displacements are 16 bits. This restriction limits the size 
of a segment to 64 KBytes. When the 32-bit address-size attribute is in force, segment offsets and displacements 
are 32 bits, allowing up to 4 GBytes to be addressed.

The default operand-size attribute and/or address-size attribute can be overridden for a particular instruction by 
adding an operand-size and/or address-size prefix to an instruction. See Chapter 2, “Instruction Format,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A. The effect of this prefix applies only 
to the targeted instruction.

Table 3-4 shows effective operand size and address size (when executing in protected mode or compatibility mode) 
depending on the settings of the D flag and the operand-size and address-size prefixes.
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3.6.1 Operand Size and Address Size in 64-Bit Mode

In 64-bit mode, the default address size is 64 bits and the default operand size is 32 bits. Defaults can be over-
ridden using prefixes. Address-size and operand-size prefixes allow mixing of 32/64-bit data and 32/64-bit 
addresses on an instruction-by-instruction basis. Table 3-4 shows valid combinations of the 66H instruction prefix 
and the REX.W prefix that may be used to specify operand-size overrides in 64-bit mode. Note that 16-bit 
addresses are not supported in 64-bit mode.

REX prefixes consist of 4-bit fields that form 16 different values. The W-bit field in the REX prefixes is referred to as 
REX.W. If the REX.W field is properly set, the prefix specifies an operand size override to 64 bits. Note that software 
can still use the operand-size 66H prefix to toggle to a 16-bit operand size. However, setting REX.W takes prece-
dence over the operand-size prefix (66H) when both are used.

In the case of SSE/SSE2/SSE3/SSSE3 SIMD instructions: the 66H, F2H, and F3H prefixes are mandatory for 
opcode extensions. In such a case, there is no interaction between a valid REX.W prefix and a 66H opcode exten-
sion prefix.

See Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A.

3.7 OPERAND ADDRESSING

IA-32 machine-instructions act on zero or more operands. Some operands are specified explicitly and others are 
implicit. The data for a source operand can be located in:
• the instruction itself (an immediate operand)
• a register
• a memory location
• an I/O port

Table 3-3.  Effective Operand- and Address-Size Attributes

D Flag in Code Segment Descriptor 0 0 0 0 1 1 1 1 

Operand-Size Prefix 66H N N Y Y N N Y Y 

Address-Size Prefix 67H N Y N Y N Y N Y 

Effective Operand Size 16 16 32 32 32 32 16 16 

Effective Address Size 16 32 16 32 32 16 32 16

NOTES:

Y: Yes - this instruction prefix is present.

N: No - this instruction prefix is not present.

Table 3-4.  Effective Operand- and Address-Size Attributes in 64-Bit Mode

L Flag in Code Segment Descriptor
1 1 1 1 1 1 1 1 

REX.W Prefix 0 0 0 0 1 1 1 1 

Operand-Size Prefix 66H N N Y Y N N Y Y 

Address-Size Prefix 67H N Y N Y N Y N Y 

Effective Operand Size 32 32 16 16 64 64 64 64

Effective Address Size 64 32 64 32 64 32 64 32

NOTES:

Y: Yes - this instruction prefix is present.

N: No - this instruction prefix is not present.
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When an instruction returns data to a destination operand, it can be returned to:
• a register
• a memory location
• an I/O port

3.7.1 Immediate Operands

Some instructions use data encoded in the instruction itself as a source operand. These operands are called imme-
diate operands (or simply immediates). For example, the following ADD instruction adds an immediate value of 14 
to the contents of the EAX register:

ADD EAX, 14

All arithmetic instructions (except the DIV and IDIV instructions) allow the source operand to be an immediate 
value. The maximum value allowed for an immediate operand varies among instructions, but can never be greater 
than the maximum value of an unsigned doubleword integer (232).

3.7.2 Register Operands

Source and destination operands can be any of the following registers, depending on the instruction being 
executed:
• 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, or EBP)
• 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, or BP)
• 8-bit general-purpose registers (AH, BH, CH, DH, AL, BL, CL, or DL)
• segment registers (CS, DS, SS, ES, FS, and GS)
• EFLAGS register
• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data operand pointer, and instruction 

pointer)
• MMX registers (MM0 through MM7)
• XMM registers (XMM0 through XMM7) and the MXCSR register
• control registers (CR0, CR2, CR3, and CR4) and system table pointer registers (GDTR, LDTR, IDTR, and task 

register)
• debug registers (DR0, DR1, DR2, DR3, DR6, and DR7)
• MSR registers

Some instructions (such as the DIV and MUL instructions) use quadword operands contained in a pair of 32-bit 
registers. Register pairs are represented with a colon separating them. For example, in the register pair EDX:EAX, 
EDX contains the high order bits and EAX contains the low order bits of a quadword operand. 

Several instructions (such as the PUSHFD and POPFD instructions) are provided to load and store the contents of 
the EFLAGS register or to set or clear individual flags in this register. Other instructions (such as the Jcc instruc-
tions) use the state of the status flags in the EFLAGS register as condition codes for branching or other decision 
making operations.

The processor contains a selection of system registers that are used to control memory management, interrupt and 
exception handling, task management, processor management, and debugging activities. Some of these system 
registers are accessible by an application program, the operating system, or the executive through a set of system 
instructions. When accessing a system register with a system instruction, the register is generally an implied 
operand of the instruction.
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3.7.2.1  Register Operands in 64-Bit Mode

Register operands in 64-bit mode can be any of the following:
• 64-bit general-purpose registers (RAX, RBX, RCX, RDX, RSI, RDI, RSP, RBP, or R8-R15)
• 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, or R8D-R15D)
• 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, BP, or R8W-R15W)
• 8-bit general-purpose registers: AL, BL, CL, DL, SIL, DIL, SPL, BPL, and R8L-R15L are available using REX 

prefixes; AL, BL, CL, DL, AH, BH, CH, DH are available without using REX prefixes.
• Segment registers (CS, DS, SS, ES, FS, and GS)
• RFLAGS register
• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data operand pointer, and instruction 

pointer)
• MMX registers (MM0 through MM7)
• XMM registers (XMM0 through XMM15) and the MXCSR register
• Control registers (CR0, CR2, CR3, CR4, and CR8) and system table pointer registers (GDTR, LDTR, IDTR, and 

task register)
• Debug registers (DR0, DR1, DR2, DR3, DR6, and DR7)
• MSR registers
• RDX:RAX register pair representing a 128-bit operand

3.7.3 Memory Operands

Source and destination operands in memory are referenced by means of a segment selector and an offset (see 
Figure 3-9). Segment selectors specify the segment containing the operand. Offsets specify the linear or effective 
address of the operand. Offsets can be 32 bits (represented by the notation m16:32) or 16 bits (represented by the 
notation m16:16).

3.7.3.1  Memory Operands in 64-Bit Mode

In 64-bit mode, a memory operand can be referenced by a segment selector and an offset. The offset can be 16 
bits, 32 bits or 64 bits (see Figure 3-10).

3.7.4 Specifying a Segment Selector

The segment selector can be specified either implicitly or explicitly. The most common method of specifying a 
segment selector is to load it in a segment register and then allow the processor to select the register implicitly, 
depending on the type of operation being performed. The processor automatically chooses a segment according to 
the rules given in Table 3-5. 

Figure 3-9.  Memory Operand Address

Figure 3-10.  Memory Operand Address in 64-Bit Mode
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When storing data in memory or loading data from memory, the DS segment default can be overridden to allow 
other segments to be accessed. Within an assembler, the segment override is generally handled with a colon “:” 
operator. For example, the following MOV instruction moves a value from register EAX into the segment pointed to 
by the ES register. The offset into the segment is contained in the EBX register:

MOV ES:[EBX], EAX;

At the machine level, a segment override is specified with a segment-override prefix, which is a byte placed at the 
beginning of an instruction. The following default segment selections cannot be overridden:
• Instruction fetches must be made from the code segment.
• Destination strings in string instructions must be stored in the data segment pointed to by the ES register.
• Push and pop operations must always reference the SS segment.

Some instructions require a segment selector to be specified explicitly. In these cases, the 16-bit segment selector 
can be located in a memory location or in a 16-bit register. For example, the following MOV instruction moves a 
segment selector located in register BX into segment register DS:

MOV DS, BX

Segment selectors can also be specified explicitly as part of a 48-bit far pointer in memory. Here, the first double-
word in memory contains the offset and the next word contains the segment selector.

3.7.4.1  Segmentation in 64-Bit Mode

In IA-32e mode, the effects of segmentation depend on whether the processor is running in compatibility mode or 
64-bit mode. In compatibility mode, segmentation functions just as it does in legacy IA-32 mode, using the 16-bit 
or 32-bit protected mode semantics described above.

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address 
space. The processor treats the segment base of CS, DS, ES, SS as zero, creating a linear address that is equal to 
the effective address. The exceptions are the FS and GS segments, whose segment registers (which hold the 
segment base) can be used as additional base registers in some linear address calculations.

3.7.5 Specifying an Offset

The offset part of a memory address can be specified directly as a static value (called a displacement) or through 
an address computation made up of one or more of the following components:
• Displacement — An 8-, 16-, or 32-bit value.
• Base — The value in a general-purpose register.
• Index — The value in a general-purpose register.
• Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

Table 3-5.  Default Segment Selection Rules

Reference Type Register Used Segment Used Default Selection Rule

Instructions CS Code Segment All instruction fetches.

Stack SS Stack Segment All stack pushes and pops.
Any memory reference which uses the ESP or EBP register as a base 
register.

Local Data DS Data Segment All data references, except when relative to stack or string destination.

Destination Strings ES Data Segment 
pointed to with the 
ES register

Destination of string instructions.
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The offset which results from adding these components is called an effective address. Each of these components 
can have either a positive or negative (2s complement) value, with the exception of the scaling factor. Figure 3-11 
shows all the possible ways that these components can be combined to create an effective address in the selected 
segment.

The uses of general-purpose registers as base or index components are restricted in the following manner:
• The ESP register cannot be used as an index register.
• When the ESP or EBP register is used as the base, the SS segment is the default segment. In all other cases, 

the DS segment is the default segment.

The base, index, and displacement components can be used in any combination, and any of these components can 
be NULL. A scale factor may be used only when an index also is used. Each possible combination is useful for data 
structures commonly used by programmers in high-level languages and assembly language. 

The following addressing modes suggest uses for common combinations of address components.
• Displacement  A displacement alone represents a direct (uncomputed) offset to the operand. Because the 

displacement is encoded in the instruction, this form of an address is sometimes called an absolute or static 
address. It is commonly used to access a statically allocated scalar operand.

• Base  A base alone represents an indirect offset to the operand. Since the value in the base register can 
change, it can be used for dynamic storage of variables and data structures.

• Base + Displacement  A base register and a displacement can be used together for two distinct purposes:

— As an index into an array when the element size is not 2, 4, or 8 bytes—The displacement component 
encodes the static offset to the beginning of the array. The base register holds the results of a calculation to 
determine the offset to a specific element within the array.

— To access a field of a record: the base register holds the address of the beginning of the record, while the 
displacement is a static offset to the field.

An important special case of this combination is access to parameters in a procedure activation record. A 
procedure activation record is the stack frame created when a procedure is entered. Here, the EBP register is 
the best choice for the base register, because it automatically selects the stack segment. This is a compact 
encoding for this common function.

• (Index ∗ Scale) + Displacement  This address mode offers an efficient way to index into a static array 
when the element size is 2, 4, or 8 bytes. The displacement locates the beginning of the array, the index 
register holds the subscript of the desired array element, and the processor automatically converts the 
subscript into an index by applying the scaling factor.

• Base + Index + Displacement  Using two registers together supports either a two-dimensional array (the 
displacement holds the address of the beginning of the array) or one of several instances of an array of records 
(the displacement is an offset to a field within the record).

• Base + (Index ∗ Scale) + Displacement  Using all the addressing components together allows efficient 
indexing of a two-dimensional array when the elements of the array are 2, 4, or 8 bytes in size.

Figure 3-11.  Offset (or Effective Address) Computation
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3.7.5.1  Specifying an Offset in 64-Bit Mode

The offset part of a memory address in 64-bit mode can be specified directly as a static value or through an address 
computation made up of one or more of the following components:
• Displacement — An 8-bit, 16-bit, or 32-bit value.
• Base — The value in a 64-bit general-purpose register.
• Index — The value in a 64-bit general-purpose register.
• Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

The base and index value can be specified in one of sixteen available general-purpose registers in most cases. See 
Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A.

The following unique combination of address components is also available.
• RIP + Displacement  In 64-bit mode, RIP-relative addressing uses a signed 32-bit displacement to 

calculate the effective address of the next instruction by sign-extend the 32-bit value and add to the 64-bit 
value in RIP.

3.7.6 Assembler and Compiler Addressing Modes

At the machine-code level, the selected combination of displacement, base register, index register, and scale factor 
is encoded in an instruction. All assemblers permit a programmer to use any of the allowable combinations of these 
addressing components to address operands. High-level language compilers will select an appropriate combination 
of these components based on the language construct a programmer defines.

3.7.7 I/O Port Addressing

The processor supports an I/O address space that contains up to 65,536 8-bit I/O ports. Ports that are 16-bit and 
32-bit may also be defined in the I/O address space. An I/O port can be addressed with either an immediate 
operand or a value in the DX register. See Chapter 16, “Input/Output,” for more information about I/O port 
addressing.
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CHAPTER 4
DATA TYPES

This chapter introduces data types defined for the Intel 64 and IA-32 architectures. A section at the end of this 
chapter describes the real-number and floating-point concepts used in x87 FPU, SSE, SSE2, SSE3, SSSE3, SSE4 
and Intel AVX extensions.

4.1 FUNDAMENTAL DATA TYPES

The fundamental data types are bytes, words, doublewords, quadwords, and double quadwords (see Figure 4-1). 
A byte is eight bits, a word is 2 bytes (16 bits), a doubleword is 4 bytes (32 bits), a quadword is 8 bytes (64 bits), 
and a double quadword is 16 bytes (128 bits). A subset of the IA-32 architecture instructions operates on these 
fundamental data types without any additional operand typing.

The quadword data type was introduced into the IA-32 architecture in the Intel486 processor; the double quad-
word data type was introduced in the Pentium III processor with the SSE extensions.

Figure 4-2 shows the byte order of each of the fundamental data types when referenced as operands in memory. 
The low byte (bits 0 through 7) of each data type occupies the lowest address in memory and that address is also 
the address of the operand.

Figure 4-1.  Fundamental Data Types
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4.1.1 Alignment of Words, Doublewords, Quadwords, and Double Quadwords

Words, doublewords, and quadwords do not need to be aligned in memory on natural boundaries. The natural 
boundaries for words, double words, and quadwords are even-numbered addresses, addresses evenly divisible by 
four, and addresses evenly divisible by eight, respectively. However, to improve the performance of programs, data 
structures (especially stacks) should be aligned on natural boundaries whenever possible. The reason for this is 
that the processor requires two memory accesses to make an unaligned memory access; aligned accesses require 
only one memory access. A word or doubleword operand that crosses a 4-byte boundary or a quadword operand 
that crosses an 8-byte boundary is considered unaligned and requires two separate memory bus cycles for access.

Some instructions that operate on double quadwords require memory operands to be aligned on a natural 
boundary. These instructions generate a general-protection exception (#GP) if an unaligned operand is specified. 
A natural boundary for a double quadword is any address evenly divisible by 16. Other instructions that operate on 
double quadwords permit unaligned access (without generating a general-protection exception). However, addi-
tional memory bus cycles are required to access unaligned data from memory.

4.2 NUMERIC DATA TYPES

Although bytes, words, and doublewords are fundamental data types, some instructions support additional inter-
pretations of these data types to allow operations to be performed on numeric data types (signed and unsigned 
integers, and floating-point numbers). Single-precision (32-bit) floating-point and double-precision (64-bit) 
floating-point data types are supported across all generations of SSE extensions and Intel AVX extensions. Half-
precision (16-bit) floating-point data type is supported only with F16C extensions (VCVTPH2PS, VCVTPS2PH). See 
Figure 4-3. 

Figure 4-2.  Bytes, Words, Doublewords, Quadwords, and Double Quadwords in Memory
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4.2.1 Integers

The Intel 64 and IA-32 architectures define two types of integers: unsigned and signed. Unsigned integers are ordi-
nary binary values ranging from 0 to the maximum positive number that can be encoded in the selected operand 
size. Signed integers are two’s complement binary values that can be used to represent both positive and negative 
integer values.

Some integer instructions (such as the ADD, SUB, PADDB, and PSUBB instructions) operate on either unsigned or 
signed integer operands. Other integer instructions (such as IMUL, MUL, IDIV, DIV, FIADD, and FISUB) operate on 
only one integer type.

The following sections describe the encodings and ranges of the two types of 
integers.

4.2.1.1  Unsigned Integers

Unsigned integers are unsigned binary numbers contained in a byte, word, doubleword, and quadword. Their 
values range from 0 to 255 for an unsigned byte integer, from 0 to 65,535 for an unsigned word integer, from 0 

Figure 4-3.  Numeric Data Types
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to 232 – 1 for an unsigned doubleword integer, and from 0 to 264 – 1 for an unsigned quadword integer. Unsigned 
integers are sometimes referred to as ordinals.

4.2.1.2  Signed Integers

Signed integers are signed binary numbers held in a byte, word, doubleword, or quadword. All operations on signed 
integers assume a two's complement representation. The sign bit is located in bit 7 in a byte integer, bit 15 in a 
word integer, bit 31 in a doubleword integer, and bit 63 in a quadword integer (see the signed integer encodings in 
Table 4-1).

The sign bit is set for negative integers and cleared for positive integers and zero. Integer values range from –128 
to +127 for a byte integer, from –32,768 to +32,767 for a word integer, from –231 to +231 – 1 for a doubleword 
integer, and from –263 to +263 – 1 for a quadword integer.

When storing integer values in memory, word integers are stored in 2 consecutive bytes; doubleword integers are 
stored in 4 consecutive bytes; and quadword integers are stored in 8 consecutive bytes.

The integer indefinite is a special value that is sometimes returned by the x87 FPU when operating on integer 
values. For more information, see Section 8.2.1, “Indefinites.”

4.2.2 Floating-Point Data Types

The IA-32 architecture defines and operates on three floating-point data types: single-precision floating-point, 
double-precision floating-point, and double-extended precision floating-point (see Figure 4-3). The data formats 
for these data types correspond directly to formats specified in the IEEE Standard 754 for Binary Floating-Point 
Arithmetic. 

Half-precision (16-bit) floating-point data type is supported only for conversion operation with single-precision 
floating data using F16C extensions (VCVTPH2PS, VCVTPS2PH).

Table 4-2 gives the length, precision, and approximate normalized range that can be represented by each of these 
data types. Denormal values are also supported in each of these types.

Table 4-1.  Signed Integer Encodings

Class Two’s Complement Encoding

Sign

Positive Largest 0 11..11

. .

. .

Smallest 0 00..01

Zero 0 00..00

Negative Smallest 1 11..11

. .

. .

Largest 1 00..00

Integer indefinite 1 00..00

Signed Byte Integer:
Signed Word Integer:
Signed Doubleword Integer:
Signed Quadword Integer:

← 7 bits →
← 15 bits →
← 31 bits →
← 63 bits →
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NOTE

Section 4.8, “Real Numbers and Floating-Point Formats,” gives an overview of the IEEE Standard 
754 floating-point formats and defines the terms integer bit, QNaN, SNaN, and denormal value.

Table 4-3 shows the floating-point encodings for zeros, denormalized finite numbers, normalized finite numbers, 
infinites, and NaNs for each of the three floating-point data types. It also gives the format for the QNaN floating-
point indefinite value. (See Section 4.8.3.7, “QNaN Floating-Point Indefinite,” for a discussion of the use of the 
QNaN floating-point indefinite value.)

For the single-precision and double-precision formats, only the fraction part of the significand is encoded. The 
integer is assumed to be 1 for all numbers except 0 and denormalized finite numbers. For the double extended-
precision format, the integer is contained in bit 63, and the most-significant fraction bit is bit 62. Here, the integer 
is explicitly set to 1 for normalized numbers, infinities, and NaNs, and to 0 for zero and denormalized numbers.

Table 4-2.  Length, Precision, and Range of Floating-Point Data Types

Data Type Length Precision
(Bits)

Approximate Normalized Range

Binary Decimal

Half Precision 16 11 2–14 to 215 3.1 × 10–5 to 6.50 × 104

Single Precision 32 24 2–126 to 2127 1.18 × 10–38 to 3.40 × 1038

Double Precision 64 53 2–1022 to 21023 2.23 × 10–308 to 1.79 × 10308

Double Extended 
Precision

80 64 2–16382 to 216383 3.37 × 10–4932 to 1.18 × 104932

Table 4-3.  Floating-Point Number and NaN Encodings

Class Sign Biased Exponent Significand

Integer1 Fraction

Positive +∞ 0 11..11 1 00..00

+Normals 0
.
.
0

11..10
    .
    .

00..01

1
.
.
1

11..11
    .
    .

00..00

+Denormals 0
.
.
0

00..00
    .
    .

00..00

0
.
.
0

11.11
    .
    .

00..01

+Zero 0 00..00 0 00..00

Negative −Zero 1 00..00 0 00..00

−Denormals 1
.
.
1

00..00
    .
    .

00..00

0
.
.
0

00..01
    .
    .

11..11

−Normals 1
.
.
1

00..01
    .
    .

11..10

1
.
.
1

00..00
    .
    .

11..11

-∞ 1 11..11 1 00..00
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The exponent of each floating-point data type is encoded in biased format; see Section 4.8.2.2, “Biased Exponent.” 
The biasing constant is 15 for the half-precision format, 127 for the single-precision format, 1023 for the double-
precision format, and 16,383 for the double extended-precision format.

When storing floating-point values in memory, half-precision values are stored in 2 consecutive bytes in memory; 
single-precision values are stored in 4 consecutive bytes in memory; double-precision values are stored in 8 
consecutive bytes; and double extended-precision values are stored in 10 consecutive bytes.

The single-precision and double-precision floating-point data types are operated on by x87 FPU, and 
SSE/SSE2/SSE3/SSE4.1 and Intel AVX instructions. The double-extended-precision floating-point format is only 
operated on by the x87 FPU. See Section 11.6.8, “Compatibility of SIMD and x87 FPU Floating-Point Data Types,” 
for a discussion of the compatibility of single-precision and double-precision floating-point data types between the 
x87 FPU and SSE/SSE2/SSE3 extensions.

4.3 POINTER DATA TYPES

Pointers are addresses of locations in memory. 

In non-64-bit modes, the architecture defines two types of pointers: a near pointer and a far pointer. A near 
pointer is a 32-bit (or 16-bit) offset (also called an effective address) within a segment. Near pointers are used 
for all memory references in a flat memory model or for references in a segmented model where the identity of the 
segment being accessed is implied. 

A far pointer is a logical address, consisting of a 16-bit segment selector and a 32-bit (or 16-bit) offset. Far pointers 
are used for memory references in a segmented memory model where the identity of a segment being accessed 
must be specified explicitly. Near and far pointers with 32-bit offsets are shown in Figure 4-4.

NaNs SNaN X 11..11 1 0X..XX2

QNaN X 11..11 1 1X..XX

QNaN Floating-
Point Indefinite

1 11..11 1 10..00

Half-Precision

Single-Precision:
Double-Precision:
Double Extended-Precision:

← 5Bits →
← 8 Bits →
← 11 Bits →
← 15 Bits →

← 10 Bits →
← 23 Bits →
← 52 Bits →
← 63 Bits →

NOTES:

1. Integer bit is implied and not stored for single-precision and double-precision formats.

2. The fraction for SNaN encodings must be non-zero with the most-significant bit 0.

Figure 4-4.  Pointer Data Types

Table 4-3.  Floating-Point Number and NaN Encodings (Contd.)

047

Far Pointer or Logical Address
Segment Selector

32 31
Offset

Near Pointer

031
Offset
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4.3.1 Pointer Data Types in 64-Bit Mode

In 64-bit mode (a sub-mode of IA-32e mode), a near pointer is 64 bits. This equates to an effective address. Far 
pointers in 64-bit mode can be one of three forms: 
• 16-bit segment selector, 16-bit offset if the operand size is 32 bits 
• 16-bit segment selector, 32-bit offset if the operand size is 32 bits 
• 16-bit segment selector, 64-bit offset if the operand size is 64 bits

See Figure 4-5.

4.4 BIT FIELD DATA TYPE

A bit field (see Figure 4-6) is a contiguous sequence of bits. It can begin at any bit position of any byte in memory 
and can contain up to 32 bits.

Figure 4-5.  Pointers in 64-Bit Mode

Figure 4-6.  Bit Field Data Type

16-bit Segment Selector 16-bit Offset

016 1531

16-bit Segment Selector 32-bit Offset

032 3147

16-bit Segment Selector 64-bit Offset

064 6379

64-bit Offset

063

Near Pointer

Far Pointer with 64-bit Operand Size

Far Pointer with 32-bit Operand Size

Far Pointer with 32-bit Operand Size

Bit Field

Field Length

Least

Bit
Significant
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4.5 STRING DATA TYPES

Strings are continuous sequences of bits, bytes, words, or doublewords. A bit string can begin at any bit position 
of any byte and can contain up to 232 – 1 bits. A byte string can contain bytes, words, or doublewords and can 
range from zero to 232 – 1 bytes (4 GBytes).

4.6 PACKED SIMD DATA TYPES

Intel 64 and IA-32 architectures define and operate on a set of 64-bit and 128-bit packed data type for use in SIMD 
operations. These data types consist of fundamental data types (packed bytes, words, doublewords, and quad-
words) and numeric interpretations of fundamental types for use in packed integer and packed floating-point oper-
ations.

4.6.1 64-Bit SIMD Packed Data Types

The 64-bit packed SIMD data types were introduced into the IA-32 architecture in the Intel MMX technology. They 
are operated on in MMX registers. The fundamental 64-bit packed data types are packed bytes, packed words, and 
packed doublewords (see Figure 4-7). When performing numeric SIMD operations on these data types, these data 
types are interpreted as containing byte, word, or doubleword integer values.

4.6.2 128-Bit Packed SIMD Data Types

The 128-bit packed SIMD data types were introduced into the IA-32 architecture in the SSE extensions and used 
with SSE2, SSE3 and SSSE3 extensions. They are operated on primarily in the 128-bit XMM registers and memory. 
The fundamental 128-bit packed data types are packed bytes, packed words, packed doublewords, and packed 
quadwords (see Figure 4-8). When performing SIMD operations on these fundamental data types in XMM registers, 
these data types are interpreted as containing packed or scalar single-precision floating-point or double-precision 
floating-point values, or as containing packed byte, word, doubleword, or quadword integer values.

Figure 4-7.  64-Bit Packed SIMD Data Types

Packed Words

Packed Bytes

Packed Doublewords

063

063

063

Packed Word Integers

Packed Byte Integers

Packed Doubleword Integers

063

063

063

Fundamental 64-Bit Packed SIMD Data Types

64-Bit Packed Integer Data Types
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4.7 BCD AND PACKED BCD INTEGERS

Binary-coded decimal integers (BCD integers) are unsigned 4-bit integers with valid values ranging from 0 to 9. IA-
32 architecture defines operations on BCD integers located in one or more general-purpose registers or in one or 
more x87 FPU registers (see Figure 4-9).

Figure 4-8.  128-Bit Packed SIMD Data Types

0127

Packed Words

Packed Bytes

Packed Doublewords

Packed Word Integers

Packed Byte Integers

Packed Doubleword Integers

Fundamental 128-Bit Packed SIMD Data Types

128-Bit Packed Floating-Point and Integer Data Types

Packed Quadwords

0127

0127

0127

0127

0127

0127

0127

0127

0127

Packed Quadword Integers

Packed Single Precision 
Floating Point

Packed Double Precision 
Floating Point
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When operating on BCD integers in general-purpose registers, the BCD values can be unpacked (one BCD digit per 
byte) or packed (two BCD digits per byte). The value of an unpacked BCD integer is the binary value of the low half-
byte (bits 0 through 3). The high half-byte (bits 4 through 7) can be any value during addition and subtraction, but 
must be zero during multiplication and division. Packed BCD integers allow two BCD digits to be contained in one 
byte. Here, the digit in the high half-byte is more significant than the digit in the low half-byte.

When operating on BCD integers in x87 FPU data registers, BCD values are packed in an 80-bit format and referred 
to as decimal integers. In this format, the first 9 bytes hold 18 BCD digits, 2 digits per byte. The least-significant 
digit is contained in the lower half-byte of byte 0 and the most-significant digit is contained in the upper half-byte 
of byte 9. The most significant bit of byte 10 contains the sign bit (0 = positive and 1 = negative; bits 0 through 6 
of byte 10 are don’t care bits). Negative decimal integers are not stored in two's complement form; they are distin-
guished from positive decimal integers only by the sign bit. The range of decimal integers that can be encoded in 
this format is –1018 + 1 to 1018 – 1. 
The decimal integer format exists in memory only. When a decimal integer is loaded in an x87 FPU data register, it 
is automatically converted to the double-extended-precision floating-point format. All decimal integers are exactly 
representable in double extended-precision format.

Table 4-4 gives the possible encodings of value in the decimal integer data type.

Figure 4-9.  BCD Data Types

Table 4-4.  Packed Decimal Integer Encodings

Magnitude

Class Sign digit digit digit digit ... digit

Positive

 Largest 0 0000000 1001 1001 1001 1001 ... 1001

. . .

. . .

 Smallest 0 0000000 0000 0000 0000 0000 ... 0001

 Zero 0 0000000 0000 0000 0000 0000 ... 0000

Negative

 Zero 1 0000000 0000 0000 0000 0000 ... 0000

 Smallest 1 0000000 0000 0000 0000 0000 ... 0001

. . .

. . .

 Largest 1 0000000 1001 1001 1001 1001 ... 1001

Packed BCD Integers

BCDBCD

0

BCD Integers

7
BCDX

34

0

80-Bit Packed BCD Decimal Integers

79
D0

4 Bits = 1 BCD Digit

Sign
D1D2D3D4D5D6D7D8D9D10D11D12D13D14D15D16D17

78 72 71
X

07 34
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The packed BCD integer indefinite encoding (FFFFC000000000000000H) is stored by the FBSTP instruction in 
response to a masked floating-point invalid-operation exception. Attempting to load this value with the FBLD 
instruction produces an undefined result.

4.8 REAL NUMBERS AND FLOATING-POINT FORMATS

This section describes how real numbers are represented in floating-point format in x87 FPU and 
SSE/SSE2/SSE3/SSE4.1 and Intel AVX floating-point instructions. It also introduces terms such as normalized 
numbers, denormalized numbers, biased exponents, signed zeros, and NaNs. Readers who are already familiar 
with floating-point processing techniques and the IEEE Standard 754 for Binary Floating-Point Arithmetic may wish 
to skip this section.

4.8.1 Real Number System

As shown in Figure 4-10, the real-number system comprises the continuum of real numbers from minus infinity (−
∞) to plus infinity (+ ∞).

Because the size and number of registers that any computer can have is limited, only a subset of the real-number 
continuum can be used in real-number (floating-point) calculations. As shown at the bottom of Figure 4-10, the 
subset of real numbers that the IA-32 architecture supports represents an approximation of the real number 
system. The range and precision of this real-number subset is determined by the IEEE Standard 754 floating-point 
formats. 

4.8.2 Floating-Point Format

To increase the speed and efficiency of real-number computations, computers and microprocessors typically repre-
sent real numbers in a binary floating-point format. In this format, a real number has three parts: a sign, a signif-
icand, and an exponent (see Figure 4-11).

The sign is a binary value that indicates whether the number is positive (0) or negative (1). The significand has 
two parts: a 1-bit binary integer (also referred to as the J-bit) and a binary fraction. The integer-bit is often not 
represented, but instead is an implied value. The exponent is a binary integer that represents the base-2 power by 
which the significand is multiplied.

Table 4-5 shows how the real number 178.125 (in ordinary decimal format) is stored in IEEE Standard 754 floating-
point format. The table lists a progression of real number notations that leads to the single-precision, 32-bit 
floating-point format. In this format, the significand is normalized (see Section 4.8.2.1, “Normalized Numbers”) 
and the exponent is biased (see Section 4.8.2.2, “Biased Exponent”). For the single-precision floating-point 
format, the biasing constant is +127.

Packed BCD 
Integer 
Indefinite

1 1111111 1111 1111 1100 0000 ... 0000

← 1 byte → ← 9 bytes →

Table 4-4.  Packed Decimal Integer Encodings (Contd.)
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Figure 4-10.  Binary Real Number System

Figure 4-11.  Binary Floating-Point Format

Table 4-5.  Real and Floating-Point Number Notation

Notation Value

Ordinary Decimal 178.125

Scientific Decimal 1.78125E10 2

Scientific Binary 1.0110010001E2111

Scientific Binary
(Biased Exponent)

 1.0110010001E210000110

IEEE Single-Precision Format Sign Biased Exponent Normalized Significand

0 10000110 01100100010000000000000

          1. (Implied)

Binary Real Number System

Subset of binary real numbers that can be represented with
IEEE single-precision (32-bit) floating-point format

+10

10.0000000000000000000000

1.11111111111111111111111
Precision 24 Binary Digits

Numbers within this range
cannot be represented.

ςς ςς
-100 -10 -1 0 1 10 100

ςς ςς
-100 -10 -1 0 1 10 100

Sign

Integer or J-Bit

Exponent Significand

Fraction
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4.8.2.1  Normalized Numbers

In most cases, floating-point numbers are encoded in normalized form. This means that except for zero, the signif-
icand is always made up of an integer of 1 and the following fraction:

1.fff...ff

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, the exponent is decre-
mented by one.)

Representing numbers in normalized form maximizes the number of significant digits that can be accommodated 
in a significand of a given width. To summarize, a normalized real number consists of a normalized significand that 
represents a real number between 1 and 2 and an exponent that specifies the number’s binary point.

4.8.2.2  Biased Exponent

In the IA-32 architecture, the exponents of floating-point numbers are encoded in a biased form. This means that 
a constant is added to the actual exponent so that the biased exponent is always a positive number. The value of 
the biasing constant depends on the number of bits available for representing exponents in the floating-point 
format being used. The biasing constant is chosen so that the smallest normalized number can be reciprocated 
without overflow.

See Section 4.2.2, “Floating-Point Data Types,” for a list of the biasing constants that the IA-32 architecture uses 
for the various sizes of floating-point data-types.

4.8.3 Real Number and Non-number Encodings

A variety of real numbers and special values can be encoded in the IEEE Standard 754 floating-point format. These 
numbers and values are generally divided into the following classes:
• Signed zeros
• Denormalized finite numbers
• Normalized finite numbers
• Signed infinities
• NaNs
• Indefinite numbers

(The term NaN stands for “Not a Number.”)

Figure 4-12 shows how the encodings for these numbers and non-numbers fit into the real number continuum. The 
encodings shown here are for the IEEE single-precision floating-point format. The term “S” indicates the sign bit, 
“E” the biased exponent, and “Sig” the significand. The exponent values are given in decimal. The integer bit is 
shown for the significands, even though the integer bit is implied in single-precision floating-point format.



4-14 Vol. 1

DATA TYPES

An IA-32 processor can operate on and/or return any of these values, depending on the type of computation being 
performed. The following sections describe these number and non-number classes.

4.8.3.1  Signed Zeros

Zero can be represented as a +0 or a −0 depending on the sign bit. Both encodings are equal in value. The sign of 
a zero result depends on the operation being performed and the rounding mode being used. Signed zeros have 
been provided to aid in implementing interval arithmetic. The sign of a zero may indicate the direction from which 
underflow occurred, or it may indicate the sign of an ∞ that has been reciprocated.

4.8.3.2  Normalized and Denormalized Finite Numbers

Non-zero, finite numbers are divided into two classes: normalized and denormalized. The normalized finite 
numbers comprise all the non-zero finite values that can be encoded in a normalized real number format between 
zero and ∞. In the single-precision floating-point format shown in Figure 4-12, this group of numbers includes all 
the numbers with biased exponents ranging from 1 to 25410 (unbiased, the exponent range is from −12610 to 
+12710).

When floating-point numbers become very close to zero, the normalized-number format can no longer be used to 
represent the numbers. This is because the range of the exponent is not large enough to compensate for shifting 
the binary point to the right to eliminate leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by making the integer bit (and 
perhaps other leading bits) of the significand zero. The numbers in this range are called denormalized (or tiny) 
numbers. The use of leading zeros with denormalized numbers allows smaller numbers to be represented. 
However, this denormalization causes a loss of precision (the number of significant bits in the fraction is reduced by 
the leading zeros).

When performing normalized floating-point computations, an IA-32 processor normally operates on normalized 
numbers and produces normalized numbers as results. Denormalized numbers represent an underflow condition. 
The exact conditions are specified in Section 4.9.1.5, “Numeric Underflow Exception (#U).”

A denormalized number is computed through a technique called gradual underflow. Table 4-6 gives an example of 
gradual underflow in the denormalization process. Here the single-precision format is being used, so the minimum 

Figure 4-12.  Real Numbers and NaNs

1 0
S E Sig1

− 0

1 0 − Denormalized
Finite

NaN

1 1...254 − Normalized
Finite

1 255 − ∞

255 SNaN

255 QNaN

NOTES:

3. Sign bit ignored.
2. Fraction must be non-zero.

0 0
S E Sig1

0 0

NaN

0 1...254

0 255

X3 255 1.0XX...2

255 1.1XX...

+ 0

+Denormalized
Finite

+Normalized
Finite

+ ∞

SNaN

QNaN X3

X3

X3

Real Number and NaN Encodings For 32-Bit Floating-Point Format

− Denormalized Finite
− Normalized Finite − 0− ∞ + ∞

+ Denormalized Finite
+ Normalized Finite+ 0

0.XXX...2

0.000...

1.000...

1.XXX...

1.000...

0.000...

0.XXX...2

1.XXX...

1.0XX...2

1.1XX...

1. Integer bit of fraction implied for
single-precision floating-point format.
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exponent (unbiased) is −12610. The true result in this example requires an exponent of −12910 in order to have a 
normalized number.   Since  −12910 is beyond the allowable exponent range, the result is denormalized by inserting 
leading zeros until the minimum exponent of −12610 is reached.

In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating a zero result. 

The Intel 64 and IA-32 architectures deal with denormal values in the following ways:
• It avoids creating denormals by normalizing numbers whenever possible.
• It provides the floating-point underflow exception to permit programmers to detect cases when denormals are 

created.
• It provides the floating-point denormal-operand exception to permit procedures or programs to detect when 

denormals are being used as source operands for computations.

4.8.3.3  Signed Infinities

The two infinities, + ∞ and − ∞, represent the maximum positive and negative real numbers, respectively, that can 
be represented in the floating-point format. Infinity is always represented by a significand of 1.00...00 (the integer 
bit may be implied) and the maximum biased exponent allowed in the specified format (for example, 25510 for the 
single-precision format).

The signs of infinities are observed, and comparisons are possible. Infinities are always interpreted in the affine 
sense; that is, –∞ is less than any finite number and +∞ is greater than any finite number. Arithmetic on infinities 
is always exact. Exceptions are generated only when the use of an infinity as a source operand constitutes an 
invalid operation.

Whereas denormalized numbers may represent an underflow condition, the two ∞ numbers may represent the 
result of an overflow condition. Here, the normalized result of a computation has a biased exponent greater than 
the largest allowable exponent for the selected result format.

4.8.3.4  NaNs

Since NaNs are non-numbers, they are not part of the real number line. In Figure 4-12, the encoding space for 
NaNs in the floating-point formats is shown above the ends of the real number line. This space includes any value 
with the maximum allowable biased exponent and a non-zero fraction (the sign bit is ignored for NaNs).

The IA-32 architecture defines two classes of NaNs: quiet NaNs (QNaNs) and signaling NaNs (SNaNs). A QNaN is a 
NaN with the most significant fraction bit set; an SNaN is a NaN with the most significant fraction bit clear. QNaNs 
are allowed to propagate through most arithmetic operations without signaling an exception. SNaNs generally 
signal a floating-point invalid-operation exception whenever they appear as operands in arithmetic operations.

SNaNs are typically used to trap or invoke an exception handler. They must be inserted by software; that is, the 
processor never generates an SNaN as a result of a floating-point operation.

Table 4-6.  Denormalization Process

Operation Sign Exponent* Significand

True Result 0 −129 1.01011100000...00

Denormalize 0 −128 0.10101110000...00

Denormalize 0 −127 0.01010111000...00

Denormalize 0 −126 0.00101011100...00

Denormal Result 0 −126 0.00101011100...00

* Expressed as an unbiased, decimal number.
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4.8.3.5  Operating on SNaNs and QNaNs

When a floating-point operation is performed on an SNaN and/or a QNaN, the result of the operation is either a 
QNaN delivered to the destination operand or the generation of a floating-point invalid operating exception, 
depending on the following rules:
• If one of the source operands is an SNaN and the floating-point invalid-operating exception is not masked (see 

Section 4.9.1.1, “Invalid Operation Exception (#I)”), the a floating-point invalid-operation exception is signaled 
and no result is stored in the destination operand.

• If either or both of the source operands are NaNs and floating-point invalid-operation exception is masked, the 
result is as shown in Table 4-7. When an SNaN is converted to a QNaN, the conversion is handled by setting the 
most-significant fraction bit of the SNaN to 1. Also, when one of the source operands is an SNaN, the floating-
point invalid-operation exception flag it set. Note that for some combinations of source operands, the result is 
different for x87 FPU operations and for SSE/SSE2/SSE3/SSE4.1 operations. Intel AVX follows the same 
behavior as SSE/SSE2/SSE3/SSE4.1 in this respect.

• When neither of the source operands is a NaN, but the operation generates a floating-point invalid-operation 
exception (see Tables 8-10 and 11-1), the result is commonly an SNaN source operand converted to a QNaN or 
the QNaN floating-point indefinite value.

Any exceptions to the behavior described in Table 4-7 are described in Section 8.5.1.2, “Invalid Arithmetic Operand 
Exception (#IA),” and Section 11.5.2.1, “Invalid Operation Exception (#I).”

4.8.3.6  Using SNaNs and QNaNs in Applications

Except for the rules given at the beginning of Section 4.8.3.4, “NaNs,” for encoding SNaNs and QNaNs, software is 
free to use the bits in the significand of a NaN for any purpose. Both SNaNs and QNaNs can be encoded to carry and 
store data, such as diagnostic information.

By unmasking the invalid operation exception, the programmer can use signaling NaNs to trap to the exception 
handler. The generality of this approach and the large number of NaN values that are available provide the sophis-
ticated programmer with a tool that can be applied to a variety of special situations.

Table 4-7.  Rules for Handling NaNs 

Source Operands Result1

SNaN and QNaN x87 FPU — QNaN source operand.

SSE/SSE2/SSE3/SSE4.1/AVX — First source operand (if this operand is an 
SNaN, it is converted to a QNaN)

Two SNaNs x87 FPU—SNaN source operand with the larger significand, converted into a 
QNaN

SSE/SSE2/SSE3/SSE4.1/AVX — First source operand converted to a QNaN

Two QNaNs x87 FPU — QNaN source operand with the larger
significand

SSE/SSE2/SSE3/SSE4.1/AVX — First source operand

SNaN and a floating-point value SNaN source operand, converted into a QNaN

QNaN and a floating-point value QNaN source operand

SNaN (for instructions that take only one operand) SNaN source operand, converted into a QNaN

QNaN (for instructions that take only one operand) QNaN source operand

NOTE:

1. For SSE/SSE2/SSE3/SSE4.1 instructions, the first operand is generally a source operand that becomes the destination operand. For 
AVX instructions, the first source operand is usually the 2nd operand in a non-destructive source syntax. Within the Result column, 
the x87 FPU notation also applies to the FISTTP instruction in SSE3; the SSE3 notation applies to the SIMD floating-point instruc-
tions.
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For example, a compiler can use signaling NaNs as references to uninitialized (real) array elements. The compiler 
can preinitialize each array element with a signaling NaN whose significand contained the index (relative position) 
of the element. Then, if an application program attempts to access an element that it had not initialized, it can use 
the NaN placed there by the compiler. If the invalid operation exception is unmasked, an interrupt will occur, and 
the exception handler will be invoked. The exception handler can determine which element has been accessed, 
since the operand address field of the exception pointer will point to the NaN, and the NaN will contain the index 
number of the array element.

Quiet NaNs are often used to speed up debugging. In its early testing phase, a program often contains multiple 
errors. An exception handler can be written to save diagnostic information in memory whenever it was invoked. 
After storing the diagnostic data, it can supply a quiet NaN as the result of the erroneous instruction, and that NaN 
can point to its associated diagnostic area in memory. The program will then continue, creating a different NaN for 
each error. When the program ends, the NaN results can be used to access the diagnostic data saved at the time 
the errors occurred. Many errors can thus be diagnosed and corrected in one test run.

In embedded applications that use computed results in further computations, an undetected QNaN can invalidate 
all subsequent results. Such applications should therefore periodically check for QNaNs and provide a recovery 
mechanism to be used if a QNaN result is detected. 

4.8.3.7  QNaN Floating-Point Indefinite

For the floating-point data type encodings (single-precision, double-precision, and double-extended-precision), 
one unique encoding (a QNaN) is reserved for representing the special value QNaN floating-point indefinite. The 
x87 FPU and the SSE/SSE2/SSE3/SSE4.1/AVX extensions return these indefinite values as responses to some 
masked floating-point exceptions. Table 4-3 shows the encoding used for the QNaN floating-point indefinite.

4.8.3.8  Half-Precision Floating-Point Operation

Half-precision floating-point values are not used by the processor directly for arithmetic operations. Two instruc-
tions, VCVTPH2PS, VCVTPS2PH, provide conversion only between half-precision and single-precision floating-point 
values.

The SIMD floating-point exception behavior of VCVTPH2PS and VCVTPS2PH are described in Section 14.4.1.

4.8.4 Rounding

When performing floating-point operations, the processor produces an infinitely precise floating-point result in the 
destination format (single-precision, double-precision, or double extended-precision floating-point) whenever 
possible. However, because only a subset of the numbers in the real number continuum can be represented in IEEE 
Standard 754 floating-point formats, it is often the case that an infinitely precise result cannot be encoded exactly 
in the format of the destination operand.

For example, the following value (a) has a 24-bit fraction. The least-significant bit of this fraction (the underlined 
bit) cannot be encoded exactly in the single-precision format (which has only a 23-bit fraction):

(a) 1.0001 0000 1000 0011 1001 0111E2 101

To round this result (a), the processor first selects two representable fractions b and c that most closely bracket a 
in value (b < a < c).

(b) 1.0001 0000 1000 0011 1001 011E2 101

(c) 1.0001 0000 1000 0011 1001 100E2 101

The processor then sets the result to b or to c according to the selected rounding mode. Rounding introduces an 
error in a result that is less than one unit in the last place (the least significant bit position of the floating-point 
value) to which the result is rounded.

The IEEE Standard 754 defines four rounding modes (see Table 4-8): round to nearest, round up, round down, and 
round toward zero. The default rounding mode (for the Intel 64 and IA-32 architectures) is round to nearest. This 
mode provides the most accurate and statistically unbiased estimate of the true result and is suitable for most 
applications. 
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The round up and round down modes are termed directed rounding and can be used to implement interval arith-
metic. Interval arithmetic is used to determine upper and lower bounds for the true result of a multistep computa-
tion, when the intermediate results of the computation are subject to rounding. 

The round toward zero mode (sometimes called the “chop” mode) is commonly used when performing integer 
arithmetic with the x87 FPU.

The rounded result is called the inexact result. When the processor produces an inexact result, the floating-point 
precision (inexact) flag (PE) is set (see Section 4.9.1.6, “Inexact-Result (Precision) Exception (#P)”).

The rounding modes have no effect on comparison operations, operations that produce exact results, or operations 
that produce NaN results.

4.8.4.1  Rounding Control (RC) Fields

In the Intel 64 and IA-32 architectures, the rounding mode is controlled by a 2-bit rounding-control (RC) field 
(Table 4-8 shows the encoding of this field). The RC field is implemented in two different locations: 
• x87 FPU control register (bits 10 and 11)
• The MXCSR register (bits 13 and 14)

Although these two RC fields perform the same function, they control rounding for different execution environ-
ments within the processor. The RC field in the x87 FPU control register controls rounding for computations 
performed with the x87 FPU instructions; the RC field in the MXCSR register controls rounding for SIMD floating-
point computations performed with the SSE/SSE2 instructions.

4.8.4.2  Truncation with SSE and SSE2 Conversion Instructions

The following SSE/SSE2 instructions automatically truncate the results of conversions from floating-point values to 
integers when the result it inexact: CVTTPD2DQ, CVTTPS2DQ, CVTTPD2PI, CVTTPS2PI, CVTTSD2SI, CVTTSS2SI. 
Here, truncation means the round toward zero mode described in Table 4-8.

4.9 OVERVIEW OF FLOATING-POINT EXCEPTIONS

The following section provides an overview of floating-point exceptions and their handling in the IA-32 architecture. 
For information specific to the x87 FPU and to the SSE/SSE2/SSE3/SSE4.1 extensions, refer to the following 
sections:
• Section 8.4, “x87 FPU Floating-Point Exception Handling”
• Section 11.5, “SSE, SSE2, and SSE3 Exceptions”

When operating on floating-point operands, the IA-32 architecture recognizes and detects six classes of exception 
conditions:
• Invalid operation (#I)

Table 4-8.  Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding Mode RC Field 
Setting

Description

Round to 
nearest (even)

00B Rounded result is the closest to the infinitely precise result. If two values are equally close, the 
result is the even value (that is, the one with the least-significant bit of zero). Default

Round down 
(toward −∞)

01B Rounded result is closest to but no greater than the infinitely precise result.

Round up 
(toward +∞)

10B Rounded result is closest to but no less than the infinitely precise result.

Round toward 
zero (Truncate)

11B Rounded result is closest to but no greater in absolute value than the infinitely precise result.
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• Divide-by-zero (#Z)
• Denormalized operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (precision) (#P)

The nomenclature of “#” symbol followed by one or two letters (for example, #P) is used in this manual to indicate 
exception conditions. It is merely a short-hand form and is not related to assembler mnemonics.

NOTE

All of the exceptions listed above except the denormal-operand exception (#D) are defined in IEEE 
Standard 754.

The invalid-operation, divide-by-zero and denormal-operand exceptions are pre-computation exceptions (that is, 
they are detected before any arithmetic operation occurs). The numeric-underflow, numeric-overflow and preci-
sion exceptions are post-computation exceptions.

Each of the six exception classes has a corresponding flag bit (IE, ZE, OE, UE, DE, or PE) and mask bit (IM, ZM, OM, 
UM, DM, or PM). When one or more floating-point exception conditions are detected, the processor sets the appro-
priate flag bits, then takes one of two possible courses of action, depending on the settings of the corresponding 
mask bits:
• Mask bit set. Handles the exception automatically, producing a predefined (and often times usable) result, 

while allowing program execution to continue undisturbed.
• Mask bit clear. Invokes a software exception handler to handle the exception.

The masked (default) responses to exceptions have been chosen to deliver a reasonable result for each exception 
condition and are generally satisfactory for most floating-point applications. By masking or unmasking specific 
floating-point exceptions, programmers can delegate responsibility for most exceptions to the processor and 
reserve the most severe exception conditions for software exception handlers. 

Because the exception flags are “sticky,” they provide a cumulative record of the exceptions that have occurred 
since they were last cleared. A programmer can thus mask all exceptions, run a calculation, and then inspect the 
exception flags to see if any exceptions were detected during the calculation.

In the IA-32 architecture, floating-point exception flag and mask bits are implemented in two different locations: 
• x87 FPU status word and control word. The flag bits are located at bits 0 through 5 of the x87 FPU status word 

and the mask bits are located at bits 0 through 5 of the x87 FPU control word (see Figures 8-4 and 8-6).
• MXCSR register. The flag bits are located at bits 0 through 5 of the MXCSR register and the mask bits are 

located at bits 7 through 12 of the register (see Figure 10-3).

Although these two sets of flag and mask bits perform the same function, they report on and control exceptions for 
different execution environments within the processor. The flag and mask bits in the x87 FPU status and control 
words control exception reporting and masking for computations performed with the x87 FPU instructions; the 
companion bits in the MXCSR register control exception reporting and masking for SIMD floating-point computa-
tions performed with the SSE/SSE2/SSE3 instructions.

Note that when exceptions are masked, the processor may detect multiple exceptions in a single instruction, 
because it continues executing the instruction after performing its masked response. For example, the processor 
can detect a denormalized operand, perform its masked response to this exception, and then detect numeric 
underflow.

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for exception precedence when 
more than one floating-point exception condition is detected for an instruction.

4.9.1 Floating-Point Exception Conditions

The following sections describe the various conditions that cause a floating-point exception to be generated and the 
masked response of the processor when these conditions are detected. The Intel® 64 and IA-32 Architectures 
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Software Developer’s Manual, Volumes 3A & 3B, list the floating-point exceptions that can be signaled for each 
floating-point instruction.

4.9.1.1  Invalid Operation Exception (#I)

The processor reports an invalid operation exception in response to one or more invalid arithmetic operands. If the 
invalid operation exception is masked, the processor sets the IE flag and returns an indefinite value or a QNaN. This 
value overwrites the destination register specified by the instruction. If the invalid operation exception is not 
masked, the IE flag is set, a software exception handler is invoked, and the operands remain unaltered.

See Section 4.8.3.6, “Using SNaNs and QNaNs in Applications,” for information about the result returned when an 
exception is caused by an SNaN.

The processor can detect a variety of invalid arithmetic operations that can be coded in a program. These opera-
tions generally indicate a programming error, such as dividing ∞ by ∞ . See the following sections for information 
regarding the invalid-operation exception when detected while executing x87 FPU or SSE/SSE2/SSE3 instructions:
• x87 FPU; Section 8.5.1, “Invalid Operation Exception”
• SIMD floating-point exceptions; Section 11.5.2.1, “Invalid Operation Exception (#I)”

4.9.1.2  Denormal Operand Exception (#D)

The processor reports the denormal-operand exception if an arithmetic instruction attempts to operate on a 
denormal operand (see Section 4.8.3.2, “Normalized and Denormalized Finite Numbers”). When the exception is 
masked, the processor sets the DE flag and proceeds with the instruction. Operating on denormal numbers will 
produce results at least as good as, and often better than, what can be obtained when denormal numbers are 
flushed to zero. Programmers can mask this exception so that a computation may proceed, then analyze any loss 
of accuracy when the final result is delivered.

When a denormal-operand exception is not masked, the DE flag is set, a software exception handler is invoked, and 
the operands remain unaltered. When denormal operands have reduced significance due to loss of low-order bits, 
it may be advisable to not operate on them. Precluding denormal operands from computations can be accom-
plished by an exception handler that responds to unmasked denormal-operand exceptions.

See the following sections for information regarding the denormal-operand exception when detected while 
executing x87 FPU or SSE/SSE2/SSE3 instructions:
• x87 FPU; Section 8.5.2, “Denormal Operand Exception (#D)”
• SIMD floating-point exceptions; Section 11.5.2.2, “Denormal-Operand Exception (#D)”

4.9.1.3  Divide-By-Zero Exception (#Z)

The processor reports the floating-point divide-by-zero exception whenever an instruction attempts to divide a 
finite non-zero operand by 0. The masked response for the divide-by-zero exception is to set the ZE flag and return 
an infinity signed with the exclusive OR of the sign of the operands. If the divide-by-zero exception is not masked, 
the ZE flag is set, a software exception handler is invoked, and the operands remain unaltered.

See the following sections for information regarding the divide-by-zero exception when detected while executing 
x87 FPU or SSE/SSE2 instructions:
• x87 FPU; Section 8.5.3, “Divide-By-Zero Exception (#Z)”
• SIMD floating-point exceptions; Section 11.5.2.3, “Divide-By-Zero Exception (#Z)”

4.9.1.4  Numeric Overflow Exception (#O)

The processor reports a floating-point numeric overflow exception whenever the rounded result of an instruction 
exceeds the largest allowable finite value that will fit into the destination operand. Table 4-9 shows the threshold 
range for numeric overflow for each of the floating-point formats; overflow occurs when a rounded result falls at or 
outside this threshold range.
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When a numeric-overflow exception occurs and the exception is masked, the processor sets the OE flag and 
returns one of the values shown in Table 4-10, according to the current rounding mode. See Section 4.8.4, 
“Rounding.”

When numeric overflow occurs and the numeric-overflow exception is not masked, the OE flag is set, a software 
exception handler is invoked, and the source and destination operands either remain unchanged or a biased result 
is stored in the destination operand (depending whether the overflow exception was generated during an 
SSE/SSE2/SSE3 floating-point operation or an x87 FPU operation).

See the following sections for information regarding the numeric overflow exception when detected while executing 
x87 FPU instructions or while executing SSE/SSE2/SSE3 instructions:
• x87 FPU; Section 8.5.4, “Numeric Overflow Exception (#O)”
• SIMD floating-point exceptions; Section 11.5.2.4, “Numeric Overflow Exception (#O)”

4.9.1.5  Numeric Underflow Exception (#U)

The processor detects a floating-point numeric underflow condition whenever the result of rounding with 
unbounded exponent (taking into account precision control for x87) is tiny; that is, less than the smallest possible 
normalized, finite value that will fit into the destination operand. Table 4-11 shows the threshold range for numeric 
underflow for each of the floating-point formats (assuming normalized results); underflow occurs when a rounded 
result falls strictly within the threshold range. The ability to detect and handle underflow is provided to prevent a 
very small result from propagating through a computation and causing another exception (such as overflow during 
division) to be generated at a later time.

How the processor handles an underflow condition, depends on two related conditions:

Table 4-9.  Numeric Overflow Thresholds

Floating-Point Format Overflow Thresholds

Single Precision | x | ≥ 1.0 ∗ 2128

Double Precision | x | ≥ 1.0 ∗ 21024

Double Extended Precision | x | ≥ 1.0 ∗ 216384

Table 4-10.  Masked Responses to Numeric Overflow

Rounding Mode Sign of True Result Result

To nearest + +∞

– –∞

Toward –∞ + Largest finite positive number

– –∞

Toward +∞ + +∞

– Largest finite negative number

Toward zero + Largest finite positive number

– Largest finite negative number

Table 4-11.  Numeric Underflow (Normalized) Thresholds

Floating-Point Format Underflow Thresholds*

Single Precision | x | < 1.0 ∗ 2−126

Double Precision | x | < 1.0 ∗ 2−1022

Double Extended Precision | x | < 1.0 ∗ 2−16382

* Where ‘x’ is the result rounded to destination precision with an unbounded exponent range.
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• creation of a tiny result
• creation of an inexact result; that is, a result that cannot be represented exactly in the destination format

Which of these events causes an underflow exception to be reported and how the processor responds to the excep-
tion condition depends on whether the underflow exception is masked:
• Underflow exception masked — The underflow exception is reported (the UE flag is set) only when the result 

is both tiny and inexact. The processor returns a denormalized result to the destination operand, regardless of 
inexactness.

• Underflow exception not masked — The underflow exception is reported when the result is tiny, regardless 
of inexactness. The processor leaves the source and destination operands unaltered or stores a biased result in 
the designating operand (depending whether the underflow exception was generated during an 
SSE/SSE2/SSE3 floating-point operation or an x87 FPU operation) and invokes a software exception handler.

See the following sections for information regarding the numeric underflow exception when detected while 
executing x87 FPU instructions or while executing SSE/SSE2/SSE3 instructions:
• x87 FPU; Section 8.5.5, “Numeric Underflow Exception (#U)”
• SIMD floating-point exceptions; Section 11.5.2.5, “Numeric Underflow Exception (#U)”

4.9.1.6  Inexact-Result (Precision) Exception (#P)

The inexact-result exception (also called the precision exception) occurs if the result of an operation is not exactly 
representable in the destination format. For example, the fraction 1/3 cannot be precisely represented in binary 
floating-point form. This exception occurs frequently and indicates that some (normally acceptable) accuracy will 
be lost due to rounding. The exception is supported for applications that need to perform exact arithmetic only. 
Because the rounded result is generally satisfactory for most applications, this exception is commonly masked.

If the inexact-result exception is masked when an inexact-result condition occurs and a numeric overflow or under-
flow condition has not occurred, the processor sets the PE flag and stores the rounded result in the destination 
operand. The current rounding mode determines the method used to round the result. See Section 4.8.4, 
“Rounding.”

If the inexact-result exception is not masked when an inexact result occurs and numeric overflow or underflow has 
not occurred, the PE flag is set, the rounded result is stored in the destination operand, and a software exception 
handler is invoked.

If an inexact result occurs in conjunction with numeric overflow or underflow, one of the following operations is 
carried out:
• If an inexact result occurs along with masked overflow or underflow, the OE flag or UE flag and the PE flag are 

set and the result is stored as described for the overflow or underflow exceptions; see Section 4.9.1.4, 
“Numeric Overflow Exception (#O),” or Section 4.9.1.5, “Numeric Underflow Exception (#U).” If the inexact 
result exception is unmasked, the processor also invokes a software exception handler.

• If an inexact result occurs along with unmasked overflow or underflow and the destination operand is a register, 
the OE or UE flag and the PE flag are set, the result is stored as described for the overflow or underflow 
exceptions, and a software exception handler is invoked.

If an unmasked numeric overflow or underflow exception occurs and the destination operand is a memory location 
(which can happen only for a floating-point store), the inexact-result condition is not reported and the C1 flag is 
cleared.

See the following sections for information regarding the inexact-result exception when detected while executing 
x87 FPU or SSE/SSE2/SSE3 instructions:
• x87 FPU; Section 8.5.6, “Inexact-Result (Precision) Exception (#P)”
• SIMD floating-point exceptions; Section 11.5.2.3, “Divide-By-Zero Exception (#Z)”

4.9.2 Floating-Point Exception Priority

The processor handles exceptions according to a predetermined precedence. When an instruction generates two or 
more exception conditions, the exception precedence sometimes results in the higher-priority exception being 
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handled and the lower-priority exceptions being ignored. For example, dividing an SNaN by zero can potentially 
signal an invalid-operation exception (due to the SNaN operand) and a divide-by-zero exception. Here, if both 
exceptions are masked, the processor handles the higher-priority exception only (the invalid-operation exception), 
returning a QNaN to the destination. Alternately, a denormal-operand or inexact-result exception can accompany 
a numeric underflow or overflow exception with both exceptions being handled.

The precedence for floating-point exceptions is as follows:

1. Invalid-operation exception, subdivided as follows:

a. stack underflow (occurs with x87 FPU only)

b. stack overflow (occurs with x87 FPU only)

c. operand of unsupported format (occurs with x87 FPU only when using the double extended-precision 
floating-point format)

d. SNaN operand

2. QNaN operand. Though this is not an exception, the handling of a QNaN operand has precedence over lower-
priority exceptions. For example, a QNaN divided by zero results in a QNaN, not a zero-divide exception.

3. Any other invalid-operation exception not mentioned above or a divide-by-zero exception.

4. Denormal-operand exception. If masked, then instruction execution continues and a lower-priority exception 
can occur as well.

5. Numeric overflow and underflow exceptions; possibly in conjunction with the inexact-result exception.

6. Inexact-result exception.

Invalid operation, zero divide, and denormal operand exceptions are detected before a floating-point operation 
begins. Overflow, underflow, and precision exceptions are not detected until a true result has been computed. 
When an unmasked pre-operation exception is detected, the destination operand has not yet been updated, and 
appears as if the offending instruction has not been executed. When an unmasked post-operation exception is 
detected, the destination operand may be updated with a result, depending on the nature of the exception (except 
for SSE/SSE2/SSE3 instructions, which do not update their destination operands in such cases).

4.9.3 Typical Actions of a Floating-Point Exception Handler

After the floating-point exception handler is invoked, the processor handles the exception in the same manner that 
it handles non-floating-point exceptions. The floating-point exception handler is normally part of the operating 
system or executive software, and it usually invokes a user-registered floating-point exception handle. 

A typical action of the exception handler is to store state information in memory. Other typical exception handler 
actions include:
• Examining the stored state information to determine the nature of the error
• Taking actions to correct the condition that caused the error
• Clearing the exception flags
• Returning to the interrupted program and resuming normal execution

In lieu of writing recovery procedures, the exception handler can do the following:
• Increment in software an exception counter for later display or printing
• Print or display diagnostic information (such as the state information)
• Halt further program execution
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CHAPTER 5
INSTRUCTION SET SUMMARY

This chapter provides an abridged overview of Intel 64 and IA-32 instructions. Instructions are divided into the 
following groups:
• General purpose
• x87 FPU
• x87 FPU and SIMD state management
• Intel® MMX technology
• SSE extensions
• SSE2 extensions
• SSE3 extensions
• SSSE3 extensions
• SSE4 extensions
• AESNI and PCLMULQDQ
• Intel® AVX extensions
• F16C, RDRAND, FS/GS base access
• FMA extensions
• Intel® AVX2 extensions
• Intel® Transactional Synchronization extensions
• System instructions
• IA-32e mode: 64-bit mode instructions
• VMX instructions
• SMX instructions

Table 5-1 lists the groups and IA-32 processors that support each group. More recent instruction set extensions are 
listed in Table 5-2. Within these groups, most instructions are collected into functional subgroups.

Table 5-1.  Instruction Groups in Intel 64 and IA-32 Processors

Instruction Set 
Architecture Intel 64 and IA-32 Processor Support

General Purpose All Intel 64 and IA-32 processors

 x87 FPU Intel486, Pentium, Pentium with MMX Technology, Celeron, Pentium Pro, Pentium II, Pentium II Xeon, 
Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, 
Intel Core 2 Duo processors, Intel Atom processors

x87 FPU and SIMD State 
Management

Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M, 
Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom processors

MMX Technology Pentium with MMX Technology, Celeron, Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, Pentium 
4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom 
processors 

SSE Extensions Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, 
Intel Core 2 Duo processors, Intel Atom processors

SSE2 Extensions Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, 
Intel Atom processors

SSE3 Extensions Pentium 4 supporting HT Technology (built on 90nm process technology), Intel Core Solo, Intel Core Duo, 
Intel Core 2 Duo processors, Intel Xeon processor 3xxxx, 5xxx, 7xxx Series, Intel Atom processors
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The following sections list instructions in each major group and subgroup. Given for each instruction is its 
mnemonic and descriptive names. When two or more mnemonics are given (for example, CMOVA/CMOVNBE), they 
represent different mnemonics for the same instruction opcode. Assemblers support redundant mnemonics for 
some instructions to make it easier to read code listings. For instance, CMOVA (Conditional move if above) and 
CMOVNBE (Conditional move if not below or equal) represent the same condition. For detailed information about 
specific instructions, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A & 3B.

5.1 GENERAL-PURPOSE INSTRUCTIONS

The general-purpose instructions preform basic data movement, arithmetic, logic, program flow, and string opera-
tions that programmers commonly use to write application and system software to run on Intel 64 and IA-32 
processors. They operate on data contained in memory, in the general-purpose registers (EAX, EBX, ECX, EDX, 
EDI, ESI, EBP, and ESP) and in the EFLAGS register. They also operate on address information contained in 
memory, the general-purpose registers, and the segment registers (CS, DS, SS, ES, FS, and GS). 

This group of instructions includes the data transfer, binary integer arithmetic, decimal arithmetic, logic operations, 
shift and rotate, bit and byte operations, program control, string, flag control, segment register operations, and 
miscellaneous subgroups. The sections that following introduce each subgroup. 

For more detailed information on general purpose-instructions, see Chapter 7, “Programming With General-
Purpose Instructions.”

SSSE3 Extensions Intel Xeon processor 3xxx, 5100, 5200, 5300, 5400, 5500, 5600, 7300, 7400, 7500 series, Intel Core 2 
Extreme processors QX6000 series, Intel Core 2 Duo, Intel Core 2 Quad processors, Intel Pentium Dual-Core 
processors, Intel Atom processors

IA-32e mode: 64-bit 
mode instructions

Intel 64 processors

System Instructions Intel 64 and IA-32 processors 

VMX Instructions Intel 64 and IA-32 processors supporting Intel Virtualization Technology

SMX Instructions Intel Core 2 Duo processor E6x50, E8xxx; Intel Core 2 Quad processor Q9xxx

Table 5-2.  Recent Instruction Set Extensions in Intel 64 and IA-32 Processors

Instruction Set 
Architecture Processor Generation Introduction

SSE4.1 Extensions Intel Xeon processor 3100, 3300, 5200, 5400, 7400, 7500 series, Intel Core 2 Extreme processors 
QX9000 series, Intel Core 2 Quad processor Q9000 series, Intel Core 2 Duo processors 8000 series, T9000 
series.

SSE4.2 Extensions Intel Core i7 965 processor, Intel Xeon processors X3400, X3500, X5500, X6500, X7500 series.

AESNI, PCLMULQDQ InteL Xeon processor E7 series, Intel Xeon processors X3600, X5600, Intel Core i7 980X processor; Use 
CPUID to verify presence of AESNI and PCLMULQDQ across Intel Core processor families.

Intel AVX Intel Xeon processor E3 and E5 families; 2nd Generation Intel Core i7, i5, i3 processor 2xxx families.

F16C, RDRAND, FS/GS 
base access

3rd Generation Intel Core processors, Intel Xeon processor E3-1200 v2 product family, Next Generation 
Intel Xeon processors.

FMA, AVX2, BMI1, BMI2, 
TSX, INVPCID

Intel Xeon processor E3-1200 v3 product family; 4th Generation Intel Core processor family.

Table 5-1.  Instruction Groups in Intel 64 and IA-32 Processors (Contd.)

Instruction Set 
Architecture Intel 64 and IA-32 Processor Support
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5.1.1 Data Transfer Instructions

The data transfer instructions move data between memory and the general-purpose and segment registers. They 
also perform specific operations such as conditional moves, stack access, and data conversion.
MOV Move data between general-purpose registers; move data between memory and general-

purpose or segment registers; move immediates to general-purpose registers
CMOVE/CMOVZ Conditional move if equal/Conditional move if zero
CMOVNE/CMOVNZ Conditional move if not equal/Conditional move if not zero
CMOVA/CMOVNBE Conditional move if above/Conditional move if not below or equal
CMOVAE/CMOVNB Conditional move if above or equal/Conditional move if not below
CMOVB/CMOVNAE Conditional move if below/Conditional move if not above or equal
CMOVBE/CMOVNA Conditional move if below or equal/Conditional move if not above
CMOVG/CMOVNLE Conditional move if greater/Conditional move if not less or equal
CMOVGE/CMOVNL Conditional move if greater or equal/Conditional move if not less
CMOVL/CMOVNGE Conditional move if less/Conditional move if not greater or equal
CMOVLE/CMOVNG Conditional move if less or equal/Conditional move if not greater
CMOVC Conditional move if carry
CMOVNC Conditional move if not carry
CMOVO Conditional move if overflow
CMOVNO Conditional move if not overflow
CMOVS Conditional move if sign (negative)
CMOVNS Conditional move if not sign (non-negative)
CMOVP/CMOVPE Conditional move if parity/Conditional move if parity even
CMOVNP/CMOVPO Conditional move if not parity/Conditional move if parity odd
XCHG Exchange
BSWAP Byte swap
XADD Exchange and add
CMPXCHG Compare and exchange
CMPXCHG8B Compare and exchange 8 bytes
PUSH Push onto stack
POP Pop off of stack
PUSHA/PUSHAD Push general-purpose registers onto stack
POPA/POPAD Pop general-purpose registers from stack
CWD/CDQ Convert word to doubleword/Convert doubleword to quadword
CBW/CWDE Convert byte to word/Convert word to doubleword in EAX register
MOVSX Move and sign extend
MOVZX Move and zero extend

5.1.2 Binary Arithmetic Instructions

The binary arithmetic instructions perform basic binary integer computations on byte, word, and doubleword inte-
gers located in memory and/or the general purpose registers.
ADD Integer add
ADC Add with carry
SUB Subtract
SBB Subtract with borrow
IMUL Signed multiply
MUL Unsigned multiply
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IDIV Signed divide
DIV Unsigned divide
INC Increment
DEC Decrement
NEG Negate
CMP Compare

5.1.3 Decimal Arithmetic Instructions

The decimal arithmetic instructions perform decimal arithmetic on binary coded decimal (BCD) data.
DAA Decimal adjust after addition
DAS Decimal adjust after subtraction
AAA ASCII adjust after addition
AAS ASCII adjust after subtraction
AAM ASCII adjust after multiplication
AAD ASCII adjust before division

5.1.4 Logical Instructions

The logical instructions perform basic AND, OR, XOR, and NOT logical operations on byte, word, and doubleword 
values.
AND Perform bitwise logical AND
OR Perform bitwise logical OR
XOR Perform bitwise logical exclusive OR
NOT Perform bitwise logical NOT

5.1.5 Shift and Rotate Instructions

The shift and rotate instructions shift and rotate the bits in word and doubleword operands.
SAR Shift arithmetic right
SHR Shift logical right
SAL/SHL Shift arithmetic left/Shift logical left
SHRD Shift right double
SHLD Shift left double
ROR Rotate right
ROL Rotate left
RCR Rotate through carry right
RCL Rotate through carry left

5.1.6 Bit and Byte Instructions

Bit instructions test and modify individual bits in word and doubleword operands. Byte instructions set the value of 
a byte operand to indicate the status of flags in the EFLAGS register.
BT Bit test
BTS Bit test and set
BTR Bit test and reset
BTC Bit test and complement
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BSF Bit scan forward
BSR Bit scan reverse
SETE/SETZ Set byte if equal/Set byte if zero
SETNE/SETNZ Set byte if not equal/Set byte if not zero
SETA/SETNBE Set byte if above/Set byte if not below or equal
SETAE/SETNB/SETNC Set byte if above or equal/Set byte if not below/Set byte if not carry
SETB/SETNAE/SETCSet byte if below/Set byte if not above or equal/Set byte if carry
SETBE/SETNA Set byte if below or equal/Set byte if not above
SETG/SETNLE Set byte if greater/Set byte if not less or equal 
SETGE/SETNL Set byte if greater or equal/Set byte if not less
SETL/SETNGE Set byte if less/Set byte if not greater or equal
SETLE/SETNG Set byte if less or equal/Set byte if not greater
SETS Set byte if sign (negative)
SETNS Set byte if not sign (non-negative)
SETO Set byte if overflow
SETNO Set byte if not overflow
SETPE/SETP Set byte if parity even/Set byte if parity
SETPO/SETNP Set byte if parity odd/Set byte if not parity
TEST Logical compare

5.1.7 Control Transfer Instructions

The control transfer instructions provide jump, conditional jump, loop, and call and return operations to control 
program flow.
JMP Jump 
JE/JZ Jump if equal/Jump if zero
JNE/JNZ Jump if not equal/Jump if not zero
JA/JNBE Jump if above/Jump if not below or equal
JAE/JNB Jump if above or equal/Jump if not below
JB/JNAE Jump if below/Jump if not above or equal
JBE/JNA Jump if below or equal/Jump if not above
JG/JNLE Jump if greater/Jump if not less or equal
JGE/JNL Jump if greater or equal/Jump if not less
JL/JNGE Jump if less/Jump if not greater or equal
JLE/JNG Jump if less or equal/Jump if not greater
JC Jump if carry
JNC Jump if not carry
JO Jump if overflow
JNO Jump if not overflow
JS Jump if sign (negative)
JNS Jump if not sign (non-negative)
JPO/JNP Jump if parity odd/Jump if not parity
JPE/JP Jump if parity even/Jump if parity
JCXZ/JECXZ Jump register CX zero/Jump register ECX zero
LOOP Loop with ECX counter
LOOPZ/LOOPE Loop with ECX and zero/Loop with ECX and equal
LOOPNZ/LOOPNE Loop with ECX and not zero/Loop with ECX and not equal
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CALL Call procedure
RET Return
IRET Return from interrupt
INT Software interrupt
INTO Interrupt on overflow
BOUND Detect value out of range
ENTER High-level procedure entry
LEAVE High-level procedure exit

5.1.8 String Instructions

The string instructions operate on strings of bytes, allowing them to be moved to and from memory.
MOVS/MOVSB Move string/Move byte string
MOVS/MOVSW Move string/Move word string
MOVS/MOVSD Move string/Move doubleword string
CMPS/CMPSB Compare string/Compare byte string
CMPS/CMPSW Compare string/Compare word string
CMPS/CMPSD Compare string/Compare doubleword string
SCAS/SCASB Scan string/Scan byte string
SCAS/SCASW Scan string/Scan word string
SCAS/SCASD Scan string/Scan doubleword string
LODS/LODSB Load string/Load byte string
LODS/LODSW Load string/Load word string
LODS/LODSD Load string/Load doubleword string
STOS/STOSB Store string/Store byte string
STOS/STOSW Store string/Store word string
STOS/STOSD Store string/Store doubleword string
REP Repeat while ECX not zero
REPE/REPZ Repeat while equal/Repeat while zero
REPNE/REPNZ Repeat while not equal/Repeat while not zero

5.1.9 I/O Instructions

These instructions move data between the processor’s I/O ports and a register or memory.
IN Read from a port
OUT Write to a port
INS/INSB Input string from port/Input byte string from port
INS/INSW Input string from port/Input word string from port
INS/INSD Input string from port/Input doubleword string from port
OUTS/OUTSB Output string to port/Output byte string to port
OUTS/OUTSW Output string to port/Output word string to port
OUTS/OUTSD Output string to port/Output doubleword string to port

5.1.10 Enter and Leave Instructions

These instructions provide machine-language support for procedure calls in block-structured languages.
ENTER High-level procedure entry
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LEAVE High-level procedure exit

5.1.11 Flag Control (EFLAG) Instructions

The flag control instructions operate on the flags in the EFLAGS register.
STC Set carry flag
CLC Clear the carry flag
CMC Complement the carry flag
CLD Clear the direction flag
STD Set direction flag
LAHF Load flags into AH register
SAHF Store AH register into flags
PUSHF/PUSHFD Push EFLAGS onto stack
POPF/POPFD Pop EFLAGS from stack
STI Set interrupt flag
CLI Clear the interrupt flag

5.1.12 Segment Register Instructions

The segment register instructions allow far pointers (segment addresses) to be loaded into the segment registers.
LDS Load far pointer using DS
LES Load far pointer using ES
LFS Load far pointer using FS
LGS Load far pointer using GS
LSS Load far pointer using SS

5.1.13 Miscellaneous Instructions

The miscellaneous instructions provide such functions as loading an effective address, executing a “no-operation,” 
and retrieving processor identification information.
LEA Load effective address
NOP No operation
UD2 Undefined instruction
XLAT/XLATB Table lookup translation
CPUID Processor identification
MOVBE Move data after swapping data bytes

5.1.14 Random Number Generator Instruction
RDRAND Retrieves a random number generated from hardware.

5.1.15 BMI1, BMI2
ANDN Bitwise AND of first source with inverted 2nd source operands.
BEXTR Contiguous bitwise extract

BLSI Extract lowest set bit
BLSMK Set all lower bits below first set bit to 1

BLSR Reset lowest set bit
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BZHI Zero high bits starting from specified bit position
LZCNT Count the number leading zero bits
MULX Unsigned multiply without affecting arithmetic flags
PDEP Parallel deposit of bits using a mask
PEXT Parallel extraction of bits using a mask
RORX Rotate right without affecting arithmetic flags
SARX Shift arithmetic right
SHLX Shift logic left
SHRX Shift logic right
TZCNT Count the number trailing zero bits 

5.1.15.1  Detection of VEX-encoded GPR Instructions, LZCNT and TZCNT

VEX-encoded general-purpose instructions do not operate on any vector registers. 
There are separate feature flags for the following subsets of instructions that operate on general purpose registers, 
and the detection requirements for hardware support are:
CPUID.(EAX=07H, ECX=0H):EBX.BMI1[bit 3]: if 1 indicates the processor supports the first group of advanced bit 
manipulation extensions (ANDN, BEXTR, BLSI, BLSMK, BLSR, TZCNT);
CPUID.(EAX=07H, ECX=0H):EBX.BMI2[bit 8]: if 1 indicates the processor supports the second group of advanced 
bit manipulation extensions (BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX);
CPUID.EAX=80000001H:ECX.LZCNT[bit 5]: if 1 indicates the processor supports the LZCNT instruction.

5.2 X87 FPU INSTRUCTIONS

The x87 FPU instructions are executed by the processor’s x87 FPU. These instructions operate on floating-point, 
integer, and binary-coded decimal (BCD) operands. For more detail on x87 FPU instructions, see Chapter 8, 
“Programming with the x87 FPU.”

These instructions are divided into the following subgroups: data transfer, load constants, and FPU control instruc-
tions. The sections that follow introduce each subgroup.

5.2.1 x87 FPU Data Transfer Instructions

The data transfer instructions move floating-point, integer, and BCD values between memory and the x87 FPU 
registers. They also perform conditional move operations on floating-point operands.
FLD Load floating-point value
FST Store floating-point value
FSTP Store floating-point value and pop
FILD Load integer
FIST Store integer
FISTP1 Store integer and pop
FBLD Load BCD
FBSTP Store BCD and pop
FXCH Exchange registers
FCMOVE Floating-point conditional move if equal
FCMOVNE Floating-point conditional move if not equal
FCMOVB Floating-point conditional move if below

1. SSE3 provides an instruction FISTTP for integer conversion.
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FCMOVBE Floating-point conditional move if below or equal
FCMOVNB Floating-point conditional move if not below
FCMOVNBE Floating-point conditional move if not below or equal
FCMOVU Floating-point conditional move if unordered
FCMOVNU Floating-point conditional move if not unordered

5.2.2 x87 FPU Basic Arithmetic Instructions

The basic arithmetic instructions perform basic arithmetic operations on floating-point and integer operands.
FADD Add floating-point
FADDP Add floating-point and pop
FIADD Add integer
FSUB Subtract floating-point
FSUBP Subtract floating-point and pop
FISUB Subtract integer
FSUBR Subtract floating-point reverse
FSUBRP Subtract floating-point reverse and pop
FISUBR Subtract integer reverse
FMUL Multiply floating-point
FMULP Multiply floating-point and pop
FIMUL Multiply integer
FDIV Divide floating-point
FDIVP Divide floating-point and pop
FIDIV Divide integer
FDIVR Divide floating-point reverse
FDIVRP Divide floating-point reverse and pop
FIDIVR Divide integer reverse
FPREM Partial remainder
FPREM1 IEEE Partial remainder
FABS Absolute value
FCHS Change sign
FRNDINT Round to integer
FSCALE Scale by power of two
FSQRT Square root
FXTRACT Extract exponent and significand

5.2.3 x87 FPU Comparison Instructions

The compare instructions examine or compare floating-point or integer operands.
FCOM Compare floating-point
FCOMP Compare floating-point and pop
FCOMPP Compare floating-point and pop twice
FUCOM Unordered compare floating-point
FUCOMP Unordered compare floating-point and pop
FUCOMPP Unordered compare floating-point and pop twice
FICOM Compare integer
FICOMP Compare integer and pop
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FCOMI Compare floating-point and set EFLAGS
FUCOMI Unordered compare floating-point and set EFLAGS
FCOMIP Compare floating-point, set EFLAGS, and pop
FUCOMIP Unordered compare floating-point, set EFLAGS, and pop
FTST Test floating-point (compare with 0.0)
FXAM Examine floating-point

5.2.4 x87 FPU Transcendental Instructions

The transcendental instructions perform basic trigonometric and logarithmic operations on floating-point operands.
FSIN Sine
FCOS Cosine
FSINCOS Sine and cosine
FPTAN Partial tangent
FPATAN Partial arctangent
F2XM1 2x − 1
FYL2X y∗log2x
FYL2XP1 y∗log2(x+1)

5.2.5 x87 FPU Load Constants Instructions

The load constants instructions load common constants, such as π, into the x87 floating-point registers.
FLD1 Load +1.0
FLDZ Load +0.0
FLDPI Load π
FLDL2E Load log2e
FLDLN2 Load loge2
FLDL2T Load log210
FLDLG2 Load log102

5.2.6 x87 FPU Control Instructions

The x87 FPU control instructions operate on the x87 FPU register stack and save and restore the x87 FPU state.
FINCSTP Increment FPU register stack pointer
FDECSTP Decrement FPU register stack pointer
FFREE Free floating-point register
FINIT Initialize FPU after checking error conditions
FNINIT Initialize FPU without checking error conditions
FCLEX Clear floating-point exception flags after checking for error 

conditions
FNCLEX Clear floating-point exception flags without checking for error 

conditions
FSTCW Store FPU control word after checking error conditions
FNSTCW Store FPU control word without checking error conditions
FLDCW Load FPU control word
FSTENV Store FPU environment after checking error conditions
FNSTENV Store FPU environment without checking error conditions
FLDENV Load FPU environment
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FSAVE Save FPU state after checking error conditions
FNSAVE Save FPU state without checking error conditions
FRSTOR Restore FPU state
FSTSW Store FPU status word after checking error conditions
FNSTSW Store FPU status word without checking error conditions
WAIT/FWAIT Wait for FPU
FNOP FPU no operation

5.3 X87 FPU AND SIMD STATE MANAGEMENT INSTRUCTIONS

Two state management instructions were introduced into the IA-32 architecture with the Pentium II processor 
family:
FXSAVE Save x87 FPU and SIMD state
FXRSTOR Restore x87 FPU and SIMD state

Initially, these instructions operated only on the x87 FPU (and MMX) registers to perform a fast save and restore, 
respectively, of the x87 FPU and MMX state. With the introduction of SSE extensions in the Pentium III processor 
family, these instructions were expanded to also save and restore the state of the XMM and MXCSR registers. Intel 
64 architecture also supports these instructions.

See Section 10.5, “FXSAVE and FXRSTOR Instructions,” for more detail.

5.4 MMX™ INSTRUCTIONS

Four extensions have been introduced into the IA-32 architecture to permit IA-32 processors to perform single-
instruction multiple-data (SIMD) operations. These extensions include the MMX technology, SSE extensions, SSE2 
extensions, and SSE3 extensions. For a discussion that puts SIMD instructions in their historical context, see 
Section 2.2.7, “SIMD Instructions.”

MMX instructions operate on packed byte, word, doubleword, or quadword integer operands contained in memory, 
in MMX registers, and/or in general-purpose registers. For more detail on these instructions, see Chapter 9, 
“Programming with Intel® MMX™ Technology.” 

MMX instructions can only be executed on Intel 64 and IA-32 processors that support the MMX technology. Support 
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in 
Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A.

MMX instructions are divided into the following subgroups: data transfer, conversion, packed arithmetic, compar-
ison, logical, shift and rotate, and state management instructions. The sections that follow introduce each 
subgroup.

5.4.1 MMX Data Transfer Instructions

The data transfer instructions move doubleword and quadword operands between MMX registers and between 
MMX registers and memory.
MOVD Move doubleword
MOVQ Move quadword

5.4.2 MMX Conversion Instructions

The conversion instructions pack and unpack bytes, words, and doublewords
PACKSSWB Pack words into bytes with signed saturation
PACKSSDW Pack doublewords into words with signed saturation
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PACKUSWB Pack words into bytes with unsigned saturation.
PUNPCKHBW Unpack high-order bytes
PUNPCKHWD Unpack high-order words
PUNPCKHDQ Unpack high-order doublewords
PUNPCKLBW Unpack low-order bytes
PUNPCKLWD Unpack low-order words
PUNPCKLDQ Unpack low-order doublewords

5.4.3 MMX Packed Arithmetic Instructions

The packed arithmetic instructions perform packed integer arithmetic on packed byte, word, and doubleword inte-
gers.
PADDB Add packed byte integers
PADDW Add packed word integers
PADDD Add packed doubleword integers
PADDSB Add packed signed byte integers with signed saturation
PADDSW Add packed signed word integers with signed saturation
PADDUSB Add packed unsigned byte integers with unsigned saturation
PADDUSW Add packed unsigned word integers with unsigned saturation
PSUBB Subtract packed byte integers
PSUBW Subtract packed word integers
PSUBD Subtract packed doubleword integers
PSUBSB Subtract packed signed byte integers with signed saturation
PSUBSW Subtract packed signed word integers with signed saturation
PSUBUSB Subtract packed unsigned byte integers with unsigned saturation
PSUBUSW Subtract packed unsigned word integers with unsigned 

saturation
PMULHW Multiply packed signed word integers and store high result
PMULLW Multiply packed signed word integers and store low result
PMADDWD Multiply and add packed word integers

5.4.4 MMX Comparison Instructions

The compare instructions compare packed bytes, words, or doublewords.
PCMPEQB Compare packed bytes for equal
PCMPEQW Compare packed words for equal
PCMPEQD Compare packed doublewords for equal
PCMPGTB Compare packed signed byte integers for greater than
PCMPGTW Compare packed signed word integers for greater than
PCMPGTD Compare packed signed doubleword integers for greater than

5.4.5 MMX Logical Instructions

The logical instructions perform AND, AND NOT, OR, and XOR operations on quadword operands.
PAND Bitwise logical AND
PANDN Bitwise logical AND NOT
POR Bitwise logical OR
PXOR Bitwise logical exclusive OR
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5.4.6 MMX Shift and Rotate Instructions

The shift and rotate instructions shift and rotate packed bytes, words, or doublewords, or quadwords in 64-bit 
operands.
PSLLW Shift packed words left logical
PSLLD Shift packed doublewords left logical
PSLLQ Shift packed quadword left logical
PSRLW Shift packed words right logical
PSRLD Shift packed doublewords right logical
PSRLQ Shift packed quadword right logical
PSRAW Shift packed words right arithmetic
PSRAD Shift packed doublewords right arithmetic

5.4.7 MMX State Management Instructions

The EMMS instruction clears the MMX state from the MMX registers.
EMMS Empty MMX state

5.5 SSE INSTRUCTIONS

SSE instructions represent an extension of the SIMD execution model introduced with the MMX technology. For 
more detail on these instructions, see Chapter 10, “Programming with Streaming SIMD Extensions (SSE).”

SSE instructions can only be executed on Intel 64 and IA-32 processors that support SSE extensions. Support for 
these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in 
Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A.

SSE instructions are divided into four subgroups (note that the first subgroup has subordinate subgroups of its 
own):
• SIMD single-precision floating-point instructions that operate on the XMM registers
• MXSCR state management instructions
• 64-bit SIMD integer instructions that operate on the MMX registers
• Cacheability control, prefetch, and instruction ordering instructions

The following sections provide an overview of these groups.

5.5.1 SSE SIMD Single-Precision Floating-Point Instructions

These instructions operate on packed and scalar single-precision floating-point values located in XMM registers 
and/or memory. This subgroup is further divided into the following subordinate subgroups: data transfer, packed 
arithmetic, comparison, logical, shuffle and unpack, and conversion instructions.

5.5.1.1  SSE Data Transfer Instructions

SSE data transfer instructions move packed and scalar single-precision floating-point operands between XMM 
registers and between XMM registers and memory.
MOVAPS Move four aligned packed single-precision floating-point values between XMM registers or 

between and XMM register and memory
MOVUPS Move four unaligned packed single-precision floating-point values between XMM registers or 

between and XMM register and memory
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MOVHPS Move two packed single-precision floating-point values to an from the high quadword of an 
XMM register and memory

MOVHLPS Move two packed single-precision floating-point values from the high quadword of an XMM 
register to the low quadword of another XMM register

MOVLPS Move two packed single-precision floating-point values to an from the low quadword of an 
XMM register and memory

MOVLHPS Move two packed single-precision floating-point values from the low quadword of an XMM 
register to the high quadword of another XMM register

MOVMSKPS Extract sign mask from four packed single-precision floating-point values
MOVSS Move scalar single-precision floating-point value between XMM registers or between an XMM 

register and memory

5.5.1.2  SSE Packed Arithmetic Instructions

SSE packed arithmetic instructions perform packed and scalar arithmetic operations on packed and scalar single-
precision floating-point operands.
ADDPS Add packed single-precision floating-point values
ADDSS Add scalar single-precision floating-point values
SUBPS Subtract packed single-precision floating-point values
SUBSS Subtract scalar single-precision floating-point values
MULPS Multiply packed single-precision floating-point values
MULSS Multiply scalar single-precision floating-point values
DIVPS Divide packed single-precision floating-point values
DIVSS Divide scalar single-precision floating-point values
RCPPS Compute reciprocals of packed single-precision floating-point values
RCPSS Compute reciprocal of scalar single-precision floating-point values
SQRTPS Compute square roots of packed single-precision floating-point values
SQRTSS Compute square root of scalar single-precision floating-point values
RSQRTPS Compute reciprocals of square roots of packed single-precision floating-point values
RSQRTSS Compute reciprocal of square root of scalar single-precision floating-point values
MAXPS Return maximum packed single-precision floating-point values
MAXSS Return maximum scalar single-precision floating-point values
MINPS Return minimum packed single-precision floating-point values
MINSS Return minimum scalar single-precision floating-point values

5.5.1.3  SSE Comparison Instructions

SSE compare instructions compare packed and scalar single-precision floating-point operands.
CMPPS Compare packed single-precision floating-point values
CMPSS Compare scalar single-precision floating-point values
COMISS Perform ordered comparison of scalar single-precision floating-point values and set flags in 

EFLAGS register
UCOMISS Perform unordered comparison of scalar single-precision floating-point values and set flags in 

EFLAGS register

5.5.1.4  SSE Logical Instructions

SSE logical instructions perform bitwise AND, AND NOT, OR, and XOR operations on packed single-precision 
floating-point operands.
ANDPS Perform bitwise logical AND of packed single-precision floating-point values



Vol. 1 5-15

INSTRUCTION SET SUMMARY

ANDNPS Perform bitwise logical AND NOT of packed single-precision floating-point values
ORPS Perform bitwise logical OR of packed single-precision floating-point values
XORPS Perform bitwise logical XOR of packed single-precision floating-point values

5.5.1.5  SSE Shuffle and Unpack Instructions

SSE shuffle and unpack instructions shuffle or interleave single-precision floating-point values in packed single-
precision floating-point operands.
SHUFPS Shuffles values in packed single-precision floating-point 

operands
UNPCKHPS Unpacks and interleaves the two high-order values from two single-precision floating-point 

operands
UNPCKLPS Unpacks and interleaves the two low-order values from two single-precision floating-point 

operands

5.5.1.6  SSE Conversion Instructions

SSE conversion instructions convert packed and individual doubleword integers into packed and scalar single-
precision floating-point values and vice versa.
CVTPI2PS Convert packed doubleword integers to packed single-precision floating-point values
CVTSI2SS Convert doubleword integer to scalar single-precision floating-point value
CVTPS2PI Convert packed single-precision floating-point values to packed doubleword integers
CVTTPS2PI Convert with truncation packed single-precision floating-point values to packed doubleword 

integers
CVTSS2SI Convert a scalar single-precision floating-point value to a doubleword integer
CVTTSS2SI Convert with truncation a scalar single-precision floating-point value to a scalar doubleword 

integer

5.5.2 SSE MXCSR State Management Instructions

MXCSR state management instructions allow saving and restoring the state of the MXCSR control and status 
register.
LDMXCSR Load MXCSR register
STMXCSR Save MXCSR register state

5.5.3 SSE 64-Bit SIMD Integer Instructions

These SSE 64-bit SIMD integer instructions perform additional operations on packed bytes, words, or doublewords 
contained in MMX registers. They represent enhancements to the MMX instruction set described in Section 5.4, 
“MMX™ Instructions.”
PAVGB Compute average of packed unsigned byte integers
PAVGW Compute average of packed unsigned word integers
PEXTRW Extract word
PINSRW Insert word
PMAXUB Maximum of packed unsigned byte integers
PMAXSW Maximum of packed signed word integers
PMINUB Minimum of packed unsigned byte integers
PMINSW Minimum of packed signed word integers
PMOVMSKB Move byte mask
PMULHUW Multiply packed unsigned integers and store high result
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PSADBW Compute sum of absolute differences
PSHUFW Shuffle packed integer word in MMX register

5.5.4 SSE Cacheability Control, Prefetch, and Instruction Ordering Instructions

The cacheability control instructions provide control over the caching of non-temporal data when storing data from 
the MMX and XMM registers to memory. The PREFETCHh allows data to be prefetched to a selected cache level. The 
SFENCE instruction controls instruction ordering on store operations.
MASKMOVQ Non-temporal store of selected bytes from an MMX register into memory
MOVNTQ Non-temporal store of quadword from an MMX register into memory
MOVNTPS Non-temporal store of four packed single-precision floating-point values from an XMM register 

into memory
PREFETCHh Load 32 or more of bytes from memory to a selected level of the processor’s cache hierarchy
SFENCE Serializes store operations

5.6 SSE2 INSTRUCTIONS

SSE2 extensions represent an extension of the SIMD execution model introduced with MMX technology and the 
SSE extensions. SSE2 instructions operate on packed double-precision floating-point operands and on packed 
byte, word, doubleword, and quadword operands located in the XMM registers. For more detail on these instruc-
tions, see Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2).”

SSE2 instructions can only be executed on Intel 64 and IA-32 processors that support the SSE2 extensions. 
Support for these instructions can be detected with the CPUID instruction. See the description of the CPUID 
instruction in Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A.

These instructions are divided into four subgroups (note that the first subgroup is further divided into subordinate 
subgroups):
• Packed and scalar double-precision floating-point instructions
• Packed single-precision floating-point conversion instructions
• 128-bit SIMD integer instructions
• Cacheability-control and instruction ordering instructions

The following sections give an overview of each subgroup.

5.6.1 SSE2 Packed and Scalar Double-Precision Floating-Point Instructions

SSE2 packed and scalar double-precision floating-point instructions are divided into the following subordinate 
subgroups: data movement, arithmetic, comparison, conversion, logical, and shuffle operations on double-preci-
sion floating-point operands. These are introduced in the sections that follow.

5.6.1.1  SSE2 Data Movement Instructions

SSE2 data movement instructions move double-precision floating-point data between XMM registers and between 
XMM registers and memory.
MOVAPD Move two aligned packed double-precision floating-point values between XMM registers or 

between and XMM register and memory
MOVUPD Move two unaligned packed double-precision floating-point values between XMM registers or 

between and XMM register and memory
MOVHPD Move high packed double-precision floating-point value to an from the high quadword of an 

XMM register and memory
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MOVLPD Move low packed single-precision floating-point value to an from the low quadword of an XMM 
register and memory

MOVMSKPD Extract sign mask from two packed double-precision floating-point values
MOVSD Move scalar double-precision floating-point value between XMM registers or between an XMM 

register and memory

5.6.1.2  SSE2 Packed Arithmetic Instructions

The arithmetic instructions perform addition, subtraction, multiply, divide, square root, and maximum/minimum 
operations on packed and scalar double-precision floating-point operands.
ADDPD Add packed double-precision floating-point values
ADDSD Add scalar double precision floating-point values
SUBPD Subtract scalar double-precision floating-point values
SUBSD Subtract scalar double-precision floating-point values
MULPD Multiply packed double-precision floating-point values
MULSD Multiply scalar double-precision floating-point values
DIVPD Divide packed double-precision floating-point values
DIVSD Divide scalar double-precision floating-point values
SQRTPD Compute packed square roots of packed double-precision floating-point values
SQRTSD Compute scalar square root of scalar double-precision floating-point values
MAXPD Return maximum packed double-precision floating-point values
MAXSD Return maximum scalar double-precision floating-point values
MINPD Return minimum packed double-precision floating-point values
MINSD Return minimum scalar double-precision floating-point values

5.6.1.3  SSE2 Logical Instructions

SSE2 logical instructions preform AND, AND NOT, OR, and XOR operations on packed double-precision floating-
point values.
ANDPD Perform bitwise logical AND of packed double-precision floating-point values
ANDNPD Perform bitwise logical AND NOT of packed double-precision floating-point values
ORPD Perform bitwise logical OR of packed double-precision floating-point values
XORPD Perform bitwise logical XOR of packed double-precision floating-point values

5.6.1.4  SSE2 Compare Instructions

SSE2 compare instructions compare packed and scalar double-precision floating-point values and return the 
results of the comparison either to the destination operand or to the EFLAGS register.
CMPPD Compare packed double-precision floating-point values
CMPSD Compare scalar double-precision floating-point values
COMISD Perform ordered comparison of scalar double-precision floating-point values and set flags in 

EFLAGS register
UCOMISD Perform unordered comparison of scalar double-precision floating-point values and set flags in 

EFLAGS register.

5.6.1.5  SSE2 Shuffle and Unpack Instructions

SSE2 shuffle and unpack instructions shuffle or interleave double-precision floating-point values in packed double-
precision floating-point operands.
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SHUFPD Shuffles values in packed double-precision floating-point 
operands

UNPCKHPD Unpacks and interleaves the high values from two packed double-precision floating-point 
operands

UNPCKLPD Unpacks and interleaves the low values from two packed double-precision floating-point oper-
ands

5.6.1.6  SSE2 Conversion Instructions

SSE2 conversion instructions convert packed and individual doubleword integers into packed and scalar double-
precision floating-point values and vice versa. They also convert between packed and scalar single-precision and 
double-precision floating-point values.
CVTPD2PI Convert packed double-precision floating-point values to packed doubleword integers.
CVTTPD2PI Convert with truncation packed double-precision floating-point values to packed doubleword 

integers
CVTPI2PD Convert packed doubleword integers to packed double-precision floating-point values
CVTPD2DQ Convert packed double-precision floating-point values to packed doubleword integers
CVTTPD2DQ Convert with truncation packed double-precision floating-point values to packed doubleword 

integers
CVTDQ2PD Convert packed doubleword integers to packed double-precision floating-point values
CVTPS2PD Convert packed single-precision floating-point values to packed double-precision floating-

point values
CVTPD2PS Convert packed double-precision floating-point values to packed single-precision floating-

point values
CVTSS2SD Convert scalar single-precision floating-point values to scalar double-precision floating-point 

values
CVTSD2SS Convert scalar double-precision floating-point values to scalar single-precision floating-point 

values
CVTSD2SI Convert scalar double-precision floating-point values to a doubleword integer
CVTTSD2SI Convert with truncation scalar double-precision floating-point values to scalar doubleword 

integers
CVTSI2SD Convert doubleword integer to scalar double-precision floating-point value

5.6.2 SSE2 Packed Single-Precision Floating-Point Instructions

SSE2 packed single-precision floating-point instructions perform conversion operations on single-precision 
floating-point and integer operands. These instructions represent enhancements to the SSE single-precision 
floating-point instructions.
CVTDQ2PS Convert packed doubleword integers to packed single-precision floating-point values
CVTPS2DQ Convert packed single-precision floating-point values to packed doubleword integers
CVTTPS2DQ Convert with truncation packed single-precision floating-point values to packed doubleword 

integers

5.6.3 SSE2 128-Bit SIMD Integer Instructions

SSE2 SIMD integer instructions perform additional operations on packed words, doublewords, and quadwords 
contained in XMM and MMX registers.
MOVDQA Move aligned double quadword.
MOVDQU Move unaligned double quadword
MOVQ2DQ Move quadword integer from MMX to XMM registers
MOVDQ2Q Move quadword integer from XMM to MMX registers
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PMULUDQ Multiply packed unsigned doubleword integers
PADDQ Add packed quadword integers
PSUBQ Subtract packed quadword integers
PSHUFLW Shuffle packed low words
PSHUFHW Shuffle packed high words
PSHUFD Shuffle packed doublewords
PSLLDQ Shift double quadword left logical
PSRLDQ Shift double quadword right logical
PUNPCKHQDQ Unpack high quadwords
PUNPCKLQDQ Unpack low quadwords

5.6.4 SSE2 Cacheability Control and Ordering Instructions

SSE2 cacheability control instructions provide additional operations for caching of non-temporal data when storing 
data from XMM registers to memory. LFENCE and MFENCE provide additional control of instruction ordering on 
store operations.
CLFLUSH Flushes and invalidates a memory operand and its associated cache line from all levels of the 

processor’s cache hierarchy
LFENCE Serializes load operations
MFENCE Serializes load and store operations
PAUSE Improves the performance of “spin-wait loops”
MASKMOVDQU Non-temporal store of selected bytes from an XMM register into memory
MOVNTPD Non-temporal store of two packed double-precision floating-point values from an XMM 

register into memory
MOVNTDQ Non-temporal store of double quadword from an XMM register into memory
MOVNTI Non-temporal store of a doubleword from a general-purpose register into memory

5.7 SSE3 INSTRUCTIONS

The SSE3 extensions offers 13 instructions that accelerate performance of Streaming SIMD Extensions technology, 
Streaming SIMD Extensions 2 technology, and x87-FP math capabilities. These instructions can be grouped into 
the following categories:
• One x87FPU instruction used in integer conversion
• One SIMD integer instruction that addresses unaligned data loads
• Two SIMD floating-point packed ADD/SUB instructions
• Four SIMD floating-point horizontal ADD/SUB instructions
• Three SIMD floating-point LOAD/MOVE/DUPLICATE instructions
• Two thread synchronization instructions

SSE3 instructions can only be executed on Intel 64 and IA-32 processors that support SSE3 extensions. Support 
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in 
Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A.

The sections that follow describe each subgroup.

5.7.1 SSE3 x87-FP Integer Conversion Instruction
FISTTP Behaves like the FISTP instruction but uses truncation, irrespective of the rounding mode 

specified in the floating-point control word (FCW)
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5.7.2 SSE3 Specialized 128-bit Unaligned Data Load Instruction
LDDQU Special 128-bit unaligned load designed to avoid cache line splits

5.7.3 SSE3 SIMD Floating-Point Packed ADD/SUB Instructions
ADDSUBPS Performs single-precision addition on the second and fourth pairs of 32-bit data elements 

within the operands; single-precision subtraction on the first and third pairs
ADDSUBPD Performs double-precision addition on the second pair of quadwords, and double-precision 

subtraction on the first pair

5.7.4 SSE3 SIMD Floating-Point Horizontal ADD/SUB Instructions
HADDPS Performs a single-precision addition on contiguous data elements. The first data element of 

the result is obtained by adding the first and second elements of the first operand; the second 
element by adding the third and fourth elements of the first operand; the third by adding the 
first and second elements of the second operand; and the fourth by adding the third and fourth 
elements of the second operand.

HSUBPS Performs a single-precision subtraction on contiguous data elements. The first data element of 
the result is obtained by subtracting the second element of the first operand from the first 
element of the first operand; the second element by subtracting the fourth element of the first 
operand from the third element of the first operand; the third by subtracting the second 
element of the second operand from the first element of the second operand; and the fourth 
by subtracting the fourth element of the second operand from the third element of the second 
operand.

HADDPD Performs a double-precision addition on contiguous data elements. The first data element of 
the result is obtained by adding the first and second elements of the first operand; the second 
element by adding the first and second elements of the second operand.

HSUBPD Performs a double-precision subtraction on contiguous data elements. The first data element 
of the result is obtained by subtracting the second element of the first operand from the first 
element of the first operand; the second element by subtracting the second element of the 
second operand from the first element of the second operand.

5.7.5 SSE3 SIMD Floating-Point LOAD/MOVE/DUPLICATE Instructions
MOVSHDUP Loads/moves 128 bits; duplicating the second and fourth 32-bit data elements
MOVSLDUP Loads/moves 128 bits; duplicating the first and third 32-bit data elements
MOVDDUP Loads/moves 64 bits (bits[63:0] if the source is a register) and returns the same 64 bits in 

both the lower and upper halves of the 128-bit result register; duplicates the 64 bits from the 
source

5.7.6 SSE3 Agent Synchronization Instructions
MONITOR Sets up an address range used to monitor write-back stores 
MWAIT Enables a logical processor to enter into an optimized state while waiting for a write-back store 

to the address range set up by the MONITOR instruction

5.8 SUPPLEMENTAL STREAMING SIMD EXTENSIONS 3 (SSSE3) INSTRUCTIONS

SSSE3 provide 32 instructions (represented by 14 mnemonics) to accelerate computations on packed integers. 
These include:
• Twelve instructions that perform horizontal addition or subtraction operations.
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• Six instructions that evaluate absolute values.
• Two instructions that perform multiply and add operations and speed up the evaluation of dot products.
• Two instructions that accelerate packed-integer multiply operations and produce integer values with scaling.
• Two instructions that perform a byte-wise, in-place shuffle according to the second shuffle control operand.
• Six instructions that negate packed integers in the destination operand if the signs of the corresponding 

element in the source operand is less than zero.
• Two instructions that align data from the composite of two operands.

SSSE3 instructions can only be executed on Intel 64 and IA-32 processors that support SSSE3 extensions. Support 
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in 
Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A.

The sections that follow describe each subgroup.

5.8.1 Horizontal Addition/Subtraction
PHADDW Adds two adjacent, signed 16-bit integers horizontally from the source and destination oper-

ands and packs the signed 16-bit results to the destination operand.
PHADDSW Adds two adjacent, signed 16-bit integers horizontally from the source and destination oper-

ands and packs the signed, saturated 16-bit results to the destination operand.
PHADDD Adds two adjacent, signed 32-bit integers horizontally from the source and destination oper-

ands and packs the signed 32-bit results to the destination operand.
PHSUBW Performs horizontal subtraction on each adjacent pair of 16-bit signed integers by subtracting 

the most significant word from the least significant word of each pair in the source and desti-
nation operands. The signed 16-bit results are packed and written to the destination operand.

PHSUBSW Performs horizontal subtraction on each adjacent pair of 16-bit signed integers by subtracting 
the most significant word from the least significant word of each pair in the source and desti-
nation operands. The signed, saturated 16-bit results are packed and written to the destina-
tion operand.

PHSUBD Performs horizontal subtraction on each adjacent pair of 32-bit signed integers by subtracting 
the most significant doubleword from the least significant double word of each pair in the 
source and destination operands. The signed 32-bit results are packed and written to the 
destination operand.

5.8.2 Packed Absolute Values
PABSB Computes the absolute value of each signed byte data element.
PABSW Computes the absolute value of each signed 16-bit data element.
PABSD Computes the absolute value of each signed 32-bit data element. 

5.8.3 Multiply and Add Packed Signed and Unsigned Bytes
PMADDUBSW Multiplies each unsigned byte value with the corresponding signed byte value to produce an 

intermediate, 16-bit signed integer. Each adjacent pair of 16-bit signed values are added hori-
zontally. The signed, saturated 16-bit results are packed to the destination operand.

5.8.4 Packed Multiply High with Round and Scale
PMULHRSW Multiplies vertically each signed 16-bit integer from the destination operand with the corre-

sponding signed 16-bit integer of the source operand, producing intermediate, signed 32-bit 
integers. Each intermediate 32-bit integer is truncated to the 18 most significant bits. 
Rounding is always performed by adding 1 to the least significant bit of the 18-bit intermediate 
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result. The final result is obtained by selecting the 16 bits immediately to the right of the most 
significant bit of each 18-bit intermediate result and packed to the destination operand.

5.8.5 Packed Shuffle Bytes
PSHUFB Permutes each byte in place, according to a shuffle control mask. The least significant three or 

four bits of each shuffle control byte of the control mask form the shuffle index. The shuffle 
mask is unaffected. If the most significant bit (bit 7) of a shuffle control byte is set, the 
constant zero is written in the result byte.

5.8.6 Packed Sign
PSIGNB/W/D Negates each signed integer element of the destination operand if the sign of the corre-

sponding data element in the source operand is less than zero.

5.8.7 Packed Align Right

PALIGNR Source operand is appended after the destination operand forming an intermediate value of 
twice the width of an operand. The result is extracted from the intermediate value into the 
destination operand by selecting the 128 bit or 64 bit value that are right-aligned to the byte 
offset specified by the immediate value.

5.9 SSE4 INSTRUCTIONS

Intel® Streaming SIMD Extensions 4 (SSE4) introduces 54 new instructions. 47 of the SSE4 instructions are 
referred to as SSE4.1 in this document, 7 new SSE4 instructions are referred to as SSE4.2. 

SSE4.1 is targeted to improve the performance of media, imaging, and 3D workloads. SSE4.1 adds instructions 
that improve compiler vectorization and significantly increase support for packed dword computation. The tech-
nology also provides a hint that can improve memory throughput when reading from uncacheable WC memory 
type.

The 47 SSE4.1 instructions include:
• Two instructions perform packed dword multiplies.
• Two instructions perform floating-point dot products with input/output selects.
• One instruction performs a load with a streaming hint.
• Six instructions simplify packed blending.
• Eight instructions expand support for packed integer MIN/MAX.
• Four instructions support floating-point round with selectable rounding mode and precision exception override.
• Seven instructions improve data insertion and extractions from XMM registers
• Twelve instructions improve packed integer format conversions (sign and zero extensions).
• One instruction improves SAD (sum absolute difference) generation for small block sizes.
• One instruction aids horizontal searching operations.
• One instruction improves masked comparisons.
• One instruction adds qword packed equality comparisons.
• One instruction adds dword packing with unsigned saturation.

The seven SSE4.2 instructions include:
• String and text processing that can take advantage of single-instruction multiple-data programming 

techniques.
• Application-targeted accelerator (ATA) instructions.
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• A SIMD integer instruction that enhances the capability of the 128-bit integer SIMD capability in SSE4.1.

5.10 SSE4.1 INSTRUCTIONS

SSE4.1 instructions can use an XMM register as a source or destination. Programming SSE4.1 is similar to 
programming 128-bit Integer SIMD and floating-point SIMD instructions in SSE/SSE2/SSE3/SSSE3. SSE4.1 does 
not provide any 64-bit integer SIMD instructions operating on MMX registers. The sections that follow describe 
each subgroup.

5.10.1 Dword Multiply Instructions 
PMULLD Returns four lower 32-bits of the 64-bit results of signed 32-bit integer multiplies.
PMULDQ Returns two 64-bit signed result of signed 32-bit integer multiplies.

5.10.2 Floating-Point Dot Product Instructions

DPPD Perform double-precision dot product for up to 2 elements and broadcast.
DPPS Perform single-precision dot products for up to 4 elements and broadcast

5.10.3 Streaming Load Hint Instruction
MOVNTDQA Provides a non-temporal hint that can cause adjacent 16-byte items within an aligned 64-byte 

region (a streaming line) to be fetched and held in a small set of temporary buffers 
(“streaming load buffers”). Subsequent streaming loads to other aligned 16-byte items in the 
same streaming line may be supplied from the streaming load buffer and can improve 
throughput.

5.10.4 Packed Blending Instructions
BLENDPD Conditionally copies specified double-precision floating-point data elements in the source 

operand to the corresponding data elements in the destination, using an immediate byte 
control. 

BLENDPS Conditionally copies specified single-precision floating-point data elements in the source 
operand to the corresponding data elements in the destination, using an immediate byte 
control.

BLENDVPD Conditionally copies specified double-precision floating-point data elements in the source 
operand to the corresponding data elements in the destination, using an implied mask. 

BLENDVPS Conditionally copies specified single-precision floating-point data elements in the source 
operand to the corresponding data elements in the destination, using an implied mask. 

PBLENDVB Conditionally copies specified byte elements in the source operand to the corresponding 
elements in the destination, using an implied mask.

PBLENDW Conditionally copies specified word elements in the source operand to the corresponding 
elements in the destination, using an immediate byte control.

5.10.5 Packed Integer MIN/MAX Instructions 
PMINUW Compare packed unsigned word integers.
PMINUD Compare packed unsigned dword integers.
PMINSB Compare packed signed byte integers.
PMINSD Compare packed signed dword integers.
PMAXUW Compare packed unsigned word integers.
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PMAXUD Compare packed unsigned dword integers.
PMAXSB Compare packed signed byte integers.
PMAXSD Compare packed signed dword integers.

5.10.6 Floating-Point Round Instructions with Selectable Rounding Mode

ROUNDPS Round packed single precision floating-point values into integer values and return rounded 
floating-point values.

ROUNDPD Round packed double precision floating-point values into integer values and return rounded 
floating-point values. 

ROUNDSS Round the low packed single precision floating-point value into an integer value and return a 
rounded floating-point value.

ROUNDSD Round the low packed double precision floating-point value into an integer value and return a 
rounded floating-point value.

5.10.7 Insertion and Extractions from XMM Registers
EXTRACTPS Extracts a single-precision floating-point value from a specified offset in an XMM register and 

stores the result to memory or a general-purpose register
INSERTPS Inserts a single-precision floating-point value from either a 32-bit memory location or selected 

from a specified offset in an XMM register to a specified offset in the destination XMM register. 
In addition, INSERTPS allows zeroing out selected data elements in the destination, using a 
mask.

PINSRB Insert a byte value from a register or memory into an XMM register 
PINSRD Insert a dword value from 32-bit register or memory into an XMM register
PINSRQ Insert a qword value from 64-bit register or memory into an XMM register
PEXTRB Extract a byte from an XMM register and insert the value into a general-purpose register or 

memory
PEXTRW Extract a word from an XMM register and insert the value into a general-purpose register or 

memory
PEXTRD Extract a dword from an XMM register and insert the value into a general-purpose register or 

memory
PEXTRQ Extract a qword from an XMM register and insert the value into a general-purpose register or 

memory

5.10.8 Packed Integer Format Conversions

PMOVSXBW Sign extend the lower 8-bit integer of each packed word element into packed signed word 
integers. 

PMOVZXBW Zero extend the lower 8-bit integer of each packed word element into packed signed word 
integers.

PMOVSXBD Sign extend the lower 8-bit integer of each packed dword element into packed signed dword 
integers.

PMOVZXBD Zero extend the lower 8-bit integer of each packed dword element into packed signed dword 
integers.

PMOVSXWD Sign extend the lower 16-bit integer of each packed dword element into packed signed dword 
integers.

PMOVZXWD Zero extend the lower 16-bit integer of each packed dword element into packed signed dword 
integers..

PMOVSXBQ Sign extend the lower 8-bit integer of each packed qword element into packed signed qword 
integers.
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PMOVZXBQ Zero extend the lower 8-bit integer of each packed qword element into packed signed qword 
integers.

PMOVSXWQ Sign extend the lower 16-bit integer of each packed qword element into packed signed qword 
integers.

PMOVZXWQ Zero extend the lower 16-bit integer of each packed qword element into packed signed qword 
integers.

PMOVSXDQ Sign extend the lower 32-bit integer of each packed qword element into packed signed qword 
integers.

PMOVZXDQ Zero extend the lower 32-bit integer of each packed qword element into packed signed qword 
integers.

5.10.9 Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks
MPSADBW Performs eight 4-byte wide Sum of Absolute Differences operations to produce eight word 

integers. 

5.10.10 Horizontal Search
PHMINPOSUW Finds the value and location of the minimum unsigned word from one of 8 horizontally packed 

unsigned words.  The resulting value and location (offset within the source) are packed into 
the low dword of the destination XMM register.

5.10.11 Packed Test
PTEST Performs a logical AND between the destination with this mask and sets the ZF flag if the 

result is zero. The CF flag (zero for TEST) is set if the inverted mask AND’d with the destination 
is all zero

5.10.12 Packed Qword Equality Comparisons
PCMPEQQ 128-bit packed qword equality test 

5.10.13 Dword Packing With Unsigned Saturation
PACKUSDW PACKUSDW packs dword to word with unsigned saturation

5.11 SSE4.2 INSTRUCTION SET

Five of the seven SSE4.2 instructions can use an XMM register as a source or destination. These include four 
text/string processing instructions and one packed quadword compare SIMD instruction. Programming these five 
SSE4.2 instructions is similar to programming 128-bit Integer SIMD in SSE2/SSSE3. SSE4.2 does not provide any 
64-bit integer SIMD instructions. 
The remaining two SSE4.2 instructions uses general-purpose registers to perform accelerated processing functions 
in specific application areas.

The sections that follow describe each subgroup.

5.11.1 String and Text Processing Instructions
PCMPESTRI Packed compare explicit-length strings, return index in ECX/RCX
PCMPESTRM Packed compare explicit-length strings, return mask in XMM0
PCMPISTRI Packed compare implicit-length strings, return index in ECX/RCX
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PCMPISTRM Packed compare implicit-length strings, return mask in XMM0

5.11.2 Packed Comparison SIMD integer Instruction
PCMPGTQ Performs logical compare of greater-than on packed integer quadwords.

5.11.3 Application-Targeted Accelerator Instructions
CRC32 Provides hardware acceleration to calculate cyclic redundancy checks for fast and efficient 

implementation of data integrity protocols.
POPCNT This instruction calculates of number of bits set to 1 in the second operand (source) and 

returns the count in the first operand (a destination register)

5.12 AESNI AND PCLMULQDQ

Six AESNI instructions operate on XMM registers to provide accelerated primitives for block encryption/decryption 
using Advanced Encryption Standard (FIPS-197). PCLMULQDQ instruction perform carry-less multiplication for two 
binary numbers up to 64-bit wide. 
AESDEC Perform an AES decryption round using an 128-bit state and a round key
AESDECLAST Perform the last AES decryption round using an 128-bit state and a round key
AESENC Perform an AES encryption round using an 128-bit state and a round key
AESENCLAST Perform the last AES encryption round using an 128-bit state and a round key
AESIMC Perform an inverse mix column transformation primitive
AESKEYGENASSIST Assist the creation of round keys with a key expansion schedule
PCLMULQDQ Perform carryless multiplication of two 64-bit numbers

5.13 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX)

Intel® Advanced Vector Extensions (AVX) promotes legacy 128-bit SIMD instruction sets that operate on XMM 
register set to use a “vector extension“ (VEX) prefix and operates on 256-bit vector registers (YMM). Almost all 
prior generations of 128-bit SIMD instructions that operates on XMM (but not on MMX registers) are promoted to 
support three-operand syntax with VEX-128 encoding.

VEX-prefix encoded AVX instructions support 256-bit and 128-bit floating-point operations by extending the legacy 
128-bit SIMD floating-point instructions to support three-operand syntax. 

Additional functional enhancements are also provided with VEX-encoded AVX instructions.
The list of AVX instructions are listed in the following tables:
• Table 14-2 lists 256-bit and 128-bit floating-point arithmetic instructions promoted from legacy 128-bit SIMD 

instruction sets.
• Table 14-3 lists 256-bit and 128-bit data movement and processing instructions promoted from legacy 128-bit 

SIMD instruction sets.
• Table 14-4 lists functional enhancements of 256-bit AVX instructions not available from legacy 128-bit SIMD 

instruction sets.
• Table 14-5 lists 128-bit integer and floating-point instructions promoted from legacy 128-bit SIMD instruction 

sets.
• Table 14-6 lists functional enhancements of 128-bit AVX instructions not available from legacy 128-bit SIMD 

instruction sets.
• Table 14-7 lists 128-bit data movement and processing instructions promoted from legacy instruction sets.
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5.14 16-BIT FLOATING-POINT CONVERSION

Conversion between single-precision floating-point (32-bit) and half-precision FP (16-bit) data are provided by 
VCVTPS2PH, VCVTPH2PS:
VCVTPH2PS Convert eight/four data element containing 16-bit floating-point data into eight/four single-

precision floating-point data.
VCVTPS2PH Convert eight/four data element containing single-precision floating-point data into eight/four 

16-bit floating-point data.

5.15 FUSED-MULTIPLY-ADD (FMA)

FMA extensions enhances Intel AVX with high-throughput, arithmetic capabilities covering fused multiply-add, 
fused multiply-subtract, fused multiply add/subtract interleave, signed-reversed multiply on fused multiply-add 
and multiply-subtract. FMA extensions provide 36 256-bit floating-point instructions to perform computation on 
256-bit vectors and additional 128-bit and scalar FMA instructions.
• Table 14-15 lists FMA instruction sets.

5.16 INTEL® ADVANCED VECTOR EXTENSIONS 2 (INTEL® AVX2)

Intel® AVX2 extends Intel AVX by promoting most of the 128-bit SIMD integer instructions with 256-bit numeric 
processing capabilities. Intel AVX2 instructions follow the same programming model as AVX instructions. 

In addition, AVX2 provide enhanced functionalities for broadcast/permute operations on data elements, vector 
shift instructions with variable-shift count per data element, and instructions to fetch non-contiguous data 
elements from memory.
• Table 14-18 lists promoted vector integer instructions in AVX2.
• Table 14-19 lists new instructions in AVX2 that complements AVX.

5.17 INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (TSX)
XABORT Abort an RTM transaction execution
XACQUIRE Prefix hint to the beginning of an HLE transaction region
XRELEASE Prefix hint to the end of an HLE transaction region
XBEGIN Transaction begin of an RTM transaction region
XEND Transaction end of an RTM transaction region
XTEST Test if executing in a transactional region

5.18 SYSTEM INSTRUCTIONS

The following system instructions are used to control those functions of the processor that are provided to support 
for operating systems and executives.
LGDT Load global descriptor table (GDT) register
SGDT Store global descriptor table (GDT) register
LLDT Load local descriptor table (LDT) register
SLDT Store local descriptor table (LDT) register
LTR Load task register
STR Store task register
LIDT Load interrupt descriptor table (IDT) register
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SIDT Store interrupt descriptor table (IDT) register
MOV Load and store control registers
LMSW Load machine status word
SMSW Store machine status word
CLTS Clear the task-switched flag
ARPL Adjust requested privilege level
LAR Load access rights
LSL Load segment limit
VERR Verify segment for reading
VERW Verify segment for writing
MOV Load and store debug registers
INVD Invalidate cache, no writeback
WBINVD Invalidate cache, with writeback
INVLPG Invalidate TLB Entry
INVPCID Invalidate Process-Context Identifier
LOCK (prefix) Lock Bus
HLT Halt processor
RSM Return from system management mode (SMM)
RDMSR Read model-specific register
WRMSR Write model-specific register
RDPMC Read performance monitoring counters
RDTSC Read time stamp counter
RDTSCP Read time stamp counter and processor ID
SYSENTER Fast System Call, transfers to a flat protected mode kernel at CPL = 0
SYSEXIT Fast System Call, transfers to a flat protected mode kernel at CPL = 3
XSAVE Save processor extended states to memory
XSAVEOPT Save processor extended states to memory, optimized
XRSTOR Restore processor extended states from memory
XGETBV Reads the state of an extended control register
XSETBV Writes the state of an extended control register
RDFSBASE Reads from FS base address at any privilege level
RDGSBASE Reads from GS base address at any privilege level
WRFSBASE Writes to FS base address at any privilege level
WRGSBASE Writes to GS base address at any privilege level

5.19 64-BIT MODE INSTRUCTIONS

The following instructions are introduced in 64-bit mode. This mode is a sub-mode of IA-32e mode.
CDQE Convert doubleword to quadword
CMPSQ Compare string operands
CMPXCHG16B Compare RDX:RAX with m128
LODSQ Load qword at address (R)SI into RAX
MOVSQ Move qword from address (R)SI to (R)DI
MOVZX (64-bits) Move doubleword to quadword, zero-extension
STOSQ Store RAX at address RDI
SWAPGS Exchanges current GS base register value with value in MSR address C0000102H
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SYSCALL Fast call to privilege level 0 system procedures
SYSRET Return from fast system call

5.20 VIRTUAL-MACHINE EXTENSIONS

The behavior of the VMCS-maintenance instructions is summarized below:
VMPTRLD Takes a single 64-bit source operand in memory. It makes the referenced VMCS active and 

current.
VMPTRST Takes a single 64-bit destination operand that is in memory. Current-VMCS pointer is stored 

into the destination operand.
VMCLEAR Takes a single 64-bit operand in memory. The instruction sets the launch state of the VMCS 

referenced by the operand to “clear”, renders that VMCS inactive, and ensures that data for 
the VMCS have been written to the VMCS-data area in the referenced VMCS region.

VMREAD Reads a component from the VMCS (the encoding of that field is given in a register operand) 
and stores it into a destination operand.

VMWRITE Writes a component to the VMCS (the encoding of that field is given in a register operand) 
from a source operand.

The behavior of the VMX management instructions is summarized below:
VMLAUNCH Launches a virtual machine managed by the VMCS. A VM entry occurs, transferring control to 

the VM.
VMRESUME Resumes a virtual machine managed by the VMCS. A VM entry occurs, transferring control to 

the VM.
VMXOFF Causes the processor to leave VMX operation.
VMXON Takes a single 64-bit source operand in memory. It causes a logical processor to enter VMX 

root operation and to use the memory referenced by the operand to support VMX operation.

The behavior of the VMX-specific TLB-management instructions is summarized below:
INVEPT Invalidate cached Extended Page Table (EPT) mappings in the processor to synchronize 

address translation in virtual machines with memory-resident EPT pages.
INVVPID Invalidate cached mappings of address translation based on the Virtual Processor ID 

(VPID).

None of the instructions above can be executed in compatibility mode; they generate invalid-opcode exceptions if 
executed in compatibility mode.

The behavior of the guest-available instructions is summarized below:
VMCALL Allows a guest in VMX non-root operation to call the VMM for service. A VM exit occurs, trans-

ferring control to the VMM.
VMFUNC This instruction allows software in VMX non-root operation to invoke a VM function, which is 

processor functionality enabled and configured by software in VMX root operation. No VM exit 
occurs.

5.21 SAFER MODE EXTENSIONS

The behavior of the GETSEC instruction leaves of the Safer Mode Extensions (SMX) are summarized below:
GETSEC[CAPABILITIES]Returns the available leaf functions of the GETSEC instruction.
GETSEC[ENTERACCS] Loads an authenticated code chipset module and enters authenticated code execution 

mode.
GETSEC[EXITAC] Exits authenticated code execution mode.
GETSEC[SENTER] Establishes a Measured Launched Environment (MLE) which has its dynamic root of trust 

anchored to a chipset supporting Intel Trusted Execution Technology.
GETSEC[SEXIT] Exits the MLE.
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GETSEC[PARAMETERS]Returns SMX related parameter information.
GETSEC[SMCRTL] SMX mode control.
GETSEC[WAKEUP] Wakes up sleeping logical processors inside an MLE.
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CHAPTER 6
PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

This chapter describes the facilities in the Intel 64 and IA-32 architectures for executing calls to procedures or 
subroutines. It also describes how interrupts and exceptions are handled from the perspective of an application 
programmer.

6.1 PROCEDURE CALL TYPES

The processor supports procedure calls in the following two different ways:
• CALL and RET instructions.
• ENTER and LEAVE instructions, in conjunction with the CALL and RET 

instructions.

Both of these procedure call mechanisms use the procedure stack, commonly referred to simply as “the stack,” to 
save the state of the calling procedure, pass parameters to the called procedure, and store local variables for the 
currently executing procedure.

The processor’s facilities for handling interrupts and exceptions are similar to those used by the CALL and RET 
instructions.

6.2 STACKS

The stack (see Figure 6-1) is a contiguous array of memory locations. It is contained in a segment and identified by 
the segment selector in the SS register. When using the flat memory model, the stack can be located anywhere in 
the linear address space for the program. A stack can be up to 4 GBytes long, the maximum size of a segment.

Items are placed on the stack using the PUSH instruction and removed from the stack using the POP instruction. 
When an item is pushed onto the stack, the processor decrements the ESP register, then writes the item at the new 
top of stack. When an item is popped off the stack, the processor reads the item from the top of stack, then incre-
ments the ESP register. In this manner, the stack grows down in memory (towards lesser addresses) when items 
are pushed on the stack and shrinks up (towards greater addresses) when the items are popped from the stack.

A program or operating system/executive can set up many stacks. For example, in multitasking systems, each task 
can be given its own stack. The number of stacks in a system is limited by the maximum number of segments and 
the available physical memory. 

When a system sets up many stacks, only one stack—the current stack—is available at a time. The current stack 
is the one contained in the segment referenced by the SS register.
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The processor references the SS register automatically for all stack operations. For example, when the ESP register 
is used as a memory address, it automatically points to an address in the current stack. Also, the CALL, RET, PUSH, 
POP, ENTER, and LEAVE instructions all perform operations on the current stack.

6.2.1 Setting Up a Stack

To set a stack and establish it as the current stack, the program or operating system/executive must do the 
following:

1. Establish a stack segment.

2. Load the segment selector for the stack segment into the SS register using a MOV, POP, or LSS instruction.

3. Load the stack pointer for the stack into the ESP register using a MOV, POP, or LSS instruction. The LSS 
instruction can be used to load the SS and ESP registers in one operation.

See “Segment Descriptors” in of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, 
for information on how to set up a segment descriptor and segment limits for a stack segment.

6.2.2 Stack Alignment

The stack pointer for a stack segment should be aligned on 16-bit (word) or 32-bit (double-word) boundaries, 
depending on the width of the stack segment. The D flag in the segment descriptor for the current code segment 
sets the stack-segment width (see “Segment Descriptors” in Chapter 3, “Protected-Mode Memory Management,” of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). The PUSH and POP instructions 
use the D flag to determine how much to decrement or increment the stack pointer on a push or pop operation, 
respectively. When the stack width is 16 bits, the stack pointer is incremented or decremented in 16-bit increments; 
when the width is 32 bits, the stack pointer is incremented or decremented in 32-bit increments. Pushing a 16-bit 
value onto a 32-bit wide stack can result in stack misaligned (that is, the stack pointer is not aligned on a double-
word boundary). One exception to this rule is when the contents of a segment register (a 16-bit segment selector) 

Figure 6-1.  Stack Structure
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are pushed onto a 32-bit wide stack. Here, the processor automatically aligns the stack pointer to the next 32-bit 
boundary.

The processor does not check stack pointer alignment. It is the responsibility of the programs, tasks, and system 
procedures running on the processor to maintain proper alignment of stack pointers. Misaligning a stack pointer 
can cause serious performance degradation and in some instances program failures.

6.2.3 Address-Size Attributes for Stack Accesses

Instructions that use the stack implicitly (such as the PUSH and POP instructions) have two address-size attributes 
each of either 16 or 32 bits. This is because they always have the implicit address of the top of the stack, and they 
may also have an explicit memory address (for example, PUSH Array1[EBX]). The attribute of the explicit address 
is determined by the D flag of the current code segment and the presence or absence of the 67H address-size 
prefix.

The address-size attribute of the top of the stack determines whether SP or ESP is used for the stack access. Stack 
operations with an address-size attribute of 16 use the 16-bit SP stack pointer register and can use a maximum 
stack address of FFFFH; stack operations with an address-size attribute of 32 bits use the 32-bit ESP register and 
can use a maximum address of FFFFFFFFH. The default address-size attribute for data segments used as stacks is 
controlled by the B flag of the segment’s descriptor. When this flag is clear, the default address-size attribute is 16; 
when the flag is set, the address-size attribute is 32.

6.2.4 Procedure Linking Information

The processor provides two pointers for linking of procedures: the stack-frame base pointer and the return instruc-
tion pointer. When used in conjunction with a standard software procedure-call technique, these pointers permit 
reliable and coherent linking of procedures.

6.2.4.1  Stack-Frame Base Pointer

The stack is typically divided into frames. Each stack frame can then contain local variables, parameters to be 
passed to another procedure, and procedure linking information. The stack-frame base pointer (contained in the 
EBP register) identifies a fixed reference point within the stack frame for the called procedure. To use the stack-
frame base pointer, the called procedure typically copies the contents of the ESP register into the EBP register prior 
to pushing any local variables on the stack. The stack-frame base pointer then permits easy access to data struc-
tures passed on the stack, to the return instruction pointer, and to local variables added to the stack by the called 
procedure.

Like the ESP register, the EBP register automatically points to an address in the current stack segment (that is, the 
segment specified by the current contents of the SS register). 

6.2.4.2  Return Instruction Pointer

Prior to branching to the first instruction of the called procedure, the CALL instruction pushes the address in the EIP 
register onto the current stack. This address is then called the return-instruction pointer and it points to the 
instruction where execution of the calling procedure should resume following a return from the called procedure. 
Upon returning from a called procedure, the RET instruction pops the return-instruction pointer from the stack 
back into the EIP register. Execution of the calling procedure then resumes.

The processor does not keep track of the location of the return-instruction pointer. It is thus up to the programmer 
to insure that stack pointer is pointing to the return-instruction pointer on the stack, prior to issuing a RET instruc-
tion. A common way to reset the stack pointer to the point to the return-instruction pointer is to move the contents 
of the EBP register into the ESP register. If the EBP register is loaded with the stack pointer immediately following 
a procedure call, it should point to the return instruction pointer on the stack.

The processor does not require that the return instruction pointer point back to the calling procedure. Prior to 
executing the RET instruction, the return instruction pointer can be manipulated in software to point to any address 
in the current code segment (near return) or another code segment (far return). Performing such an operation, 
however, should be undertaken very cautiously, using only well defined code entry points.
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6.2.5 Stack Behavior in 64-Bit Mode

In 64-bit mode, address calculations that reference SS segments are treated as if the segment base is zero. Fields 
(base, limit, and attribute) in segment descriptor registers are ignored. SS DPL is modified such that it is always 
equal to CPL. This will be true even if it is the only field in the SS descriptor that is modified. 

Registers E(SP), E(IP) and E(BP) are promoted to 64-bits and are re-named RSP, RIP, and RBP respectively. Some 
forms of segment load instructions are invalid (for example, LDS, POP ES).

PUSH/POP instructions increment/decrement the stack using a 64-bit width. When the contents of a segment 
register is pushed onto 64-bit stack, the pointer is automatically aligned to 64 bits (as with a stack that has a 32-
bit width).

6.3 CALLING PROCEDURES USING CALL AND RET

The CALL instruction allows control transfers to procedures within the current code segment (near call) and in a 
different code segment (far call). Near calls usually provide access to local procedures within the currently running 
program or task. Far calls are usually used to access operating system procedures or procedures in a different task. 
See “CALL—Call Procedure” in Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A, for a detailed description of the CALL instruction.

The RET instruction also allows near and far returns to match the near and far versions of the CALL instruction. In 
addition, the RET instruction allows a program to increment the stack pointer on a return to release parameters 
from the stack. The number of bytes released from the stack is determined by an optional argument (n) to the RET 
instruction. See “RET—Return from Procedure” in Chapter 4, “Instruction Set Reference, N-Z,” of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2B, for a detailed description of the RET instruction.

6.3.1 Near CALL and RET Operation

When executing a near call, the processor does the following (see Figure 6-2):
1. Pushes the current value of the EIP register on the stack.
2. Loads the offset of the called procedure in the EIP register.
3. Begins execution of the called procedure.

When executing a near return, the processor performs these actions:
1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.
2. If the RET instruction has an optional n argument, increments the stack pointer by the number of bytes 

specified with the n operand to release parameters from the stack.
3. Resumes execution of the calling procedure.

6.3.2 Far CALL and RET Operation

When executing a far call, the processor performs these actions (see Figure 6-2):

1. Pushes the current value of the CS register on the stack.

2. Pushes the current value of the EIP register on the stack.

3. Loads the segment selector of the segment that contains the called procedure in the CS register.

4. Loads the offset of the called procedure in the EIP register.

5. Begins execution of the called procedure.

When executing a far return, the processor does the following:

1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.

2. Pops the top-of-stack value (the segment selector for the code segment being returned to) into the CS register.
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3. If the RET instruction has an optional n argument, increments the stack pointer by the number of bytes 
specified with the n operand to release parameters from the stack.

4. Resumes execution of the calling procedure.

6.3.3 Parameter Passing

Parameters can be passed between procedures in any of three ways: through general-purpose registers, in an 
argument list, or on the stack.

6.3.3.1  Passing Parameters Through the General-Purpose Registers

The processor does not save the state of the general-purpose registers on procedure calls. A calling procedure can 
thus pass up to six parameters to the called procedure by copying the parameters into any of these registers 
(except the ESP and EBP registers) prior to executing the CALL instruction. The called procedure can likewise pass 
parameters back to the calling procedure through general-purpose registers.

6.3.3.2  Passing Parameters on the Stack

To pass a large number of parameters to the called procedure, the parameters can be placed on the stack, in the 
stack frame for the calling procedure. Here, it is useful to use the stack-frame base pointer (in the EBP register) to 
make a frame boundary for easy access to the parameters.

The stack can also be used to pass parameters back from the called procedure to the calling procedure.

6.3.3.3  Passing Parameters in an Argument List

An alternate method of passing a larger number of parameters (or a data structure) to the called procedure is to 
place the parameters in an argument list in one of the data segments in memory. A pointer to the argument list can 
then be passed to the called procedure through a general-purpose register or the stack. Parameters can also be 
passed back to the calling procedure in this same manner.

Figure 6-2.  Stack on Near and Far Calls
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6.3.4 Saving Procedure State Information

The processor does not save the contents of the general-purpose registers, segment registers, or the EFLAGS 
register on a procedure call. A calling procedure should explicitly save the values in any of the general-purpose 
registers that it will need when it resumes execution after a return. These values can be saved on the stack or in 
memory in one of the data segments.

The PUSHA and POPA instructions facilitate saving and restoring the contents of the general-purpose registers. 
PUSHA pushes the values in all the general-purpose registers on the stack in the following order: EAX, ECX, EDX, 
EBX, ESP (the value prior to executing the PUSHA instruction), EBP, ESI, and EDI. The POPA instruction pops all the 
register values saved with a PUSHA instruction (except the ESP value) from the stack to their respective registers.

If a called procedure changes the state of any of the segment registers explicitly, it should restore them to their 
former values before executing a return to the calling procedure.

If a calling procedure needs to maintain the state of the EFLAGS register, it can save and restore all or part of the 
register using the PUSHF/PUSHFD and POPF/POPFD instructions. The PUSHF instruction pushes the lower word of 
the EFLAGS register on the stack, while the PUSHFD instruction pushes the entire register. The POPF instruction 
pops a word from the stack into the lower word of the EFLAGS register, while the POPFD instruction pops a double 
word from the stack into the register.

6.3.5 Calls to Other Privilege Levels

The IA-32 architecture’s protection mechanism recognizes four privilege levels, numbered from 0 to 3, where a 
greater number mean less privilege. The reason to use privilege levels is to improve the reliability of operating 
systems. For example, Figure 6-3 shows how privilege levels can be interpreted as rings of protection. 

In this example, the highest privilege level 0 (at the center of the diagram) is used for segments that contain the 
most critical code modules in the system, usually the kernel of an operating system. The outer rings (with progres-
sively lower privileges) are used for segments that contain code modules for less critical software. 

Code modules in lower privilege segments can only access modules operating at higher privilege segments by 
means of a tightly controlled and protected interface called a gate. Attempts to access higher privilege segments 
without going through a protection gate and without having sufficient access rights causes a general-protection 
exception (#GP) to be generated.

Figure 6-3.  Protection Rings
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If an operating system or executive uses this multilevel protection mechanism, a call to a procedure that is in a 
more privileged protection level than the calling procedure is handled in a similar manner as a far call (see Section 
6.3.2, “Far CALL and RET Operation”). The differences are as follows:
• The segment selector provided in the CALL instruction references a special data structure called a call gate 

descriptor. Among other things, the call gate descriptor provides the following:

— access rights information

— the segment selector for the code segment of the called procedure

— an offset into the code segment (that is, the instruction pointer for the called procedure)
• The processor switches to a new stack to execute the called procedure. Each privilege level has its own stack. 

The segment selector and stack pointer for the privilege level 3 stack are stored in the SS and ESP registers, 
respectively, and are automatically saved when a call to a more privileged level occurs. The segment selectors 
and stack pointers for the privilege level 2, 1, and 0 stacks are stored in a system segment called the task state 
segment (TSS). 

The use of a call gate and the TSS during a stack switch are transparent to the calling procedure, except when a 
general-protection exception is raised.

6.3.6 CALL and RET Operation Between Privilege Levels

When making a call to a more privileged protection level, the processor does the following (see Figure 6-4):

1. Performs an access rights check (privilege check).

2. Temporarily saves (internally) the current contents of the SS, ESP, CS, and EIP registers.

3. Loads the segment selector and stack pointer for the new stack (that is, the stack for the privilege level being 
called) from the TSS into the SS and ESP registers and switches to the new stack.

Figure 6-4.  Stack Switch on a Call to a Different Privilege Level

Param 1
Param 2

ESP Before Call

Stack for
Calling Procedure

ESP After Call

Stack for
Called Procedure

Calling SS
Calling ESP

Calling CS

Param 1
Param 2

Calling EIP

Stack Frame
Before Call Stack Frame

After CallParam 3 Param 3

ESP After Return

ESP Before Return

Calling SS
Calling ESP

Calling CS

Param 1
Param 2

Calling EIP

Param 3

Param 1
Param 2
Param 3

Note: On a return, parameters are
released on both stacks based on the
optional n operand in the RET n instruction.



6-8 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

4. Pushes the temporarily saved SS and ESP values for the calling procedure’s stack onto the new stack.

5. Copies the parameters from the calling procedure’s stack to the new stack. A value in the call gate descriptor 
determines how many parameters to copy to the new stack.

6. Pushes the temporarily saved CS and EIP values for the calling procedure to the new stack.

7. Loads the segment selector for the new code segment and the new instruction pointer from the call gate into 
the CS and EIP registers, respectively.

8. Begins execution of the called procedure at the new privilege level.

When executing a return from the privileged procedure, the processor performs these actions:

1. Performs a privilege check.

2. Restores the CS and EIP registers to their values prior to the call.

3. If the RET instruction has an optional n argument, increments the stack pointer by the number of bytes 
specified with the n operand to release parameters from the stack. If the call gate descriptor specifies that one 
or more parameters be copied from one stack to the other, a RET n instruction must be used to release the 
parameters from both stacks. Here, the n operand specifies the number of bytes occupied on each stack by the 
parameters. On a return, the processor increments ESP by n for each stack to step over (effectively remove) 
these parameters from the stacks.

4. Restores the SS and ESP registers to their values prior to the call, which causes a switch back to the stack of 
the calling procedure.

5. If the RET instruction has an optional n argument, increments the stack pointer by the number of bytes 
specified with the n operand to release parameters from the stack (see explanation in step 3).

6. Resumes execution of the calling procedure.

See Chapter 5, “Protection,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for 
detailed information on calls to privileged levels and the call gate descriptor.

6.3.7 Branch Functions in 64-Bit Mode

The 64-bit extensions expand branching mechanisms to accommodate branches in 64-bit linear-address space. 
These are:
• Near-branch semantics are redefined in 64-bit mode
• In 64-bit mode and compatibility mode, 64-bit call-gate descriptors for far calls are available

In 64-bit mode, the operand size for all near branches (CALL, RET, JCC, JCXZ, JMP, and LOOP) is forced to 64 bits. 
These instructions update the 64-bit RIP without the need for a REX operand-size prefix. 

The following aspects of near branches are controlled by the effective operand size:
• Truncation of the size of the instruction pointer
• Size of a stack pop or push, due to a CALL or RET
• Size of a stack-pointer increment or decrement, due to a CALL or RET
• Indirect-branch operand size

In 64-bit mode, all of the above actions are forced to 64 bits regardless of operand size prefixes (operand size 
prefixes are silently ignored). However, the displacement field for relative branches is still limited to 32 bits and the 
address size for near branches is not forced in 64-bit mode. 

Address sizes affect the size of RCX used for JCXZ and LOOP; they also impact the address calculation for memory 
indirect branches. Such addresses are 64 bits by default; but they can be overridden to 32 bits by an address size 
prefix.

Software typically uses far branches to change privilege levels. The legacy IA-32 architecture provides the call-gate 
mechanism to allow software to branch from one privilege level to another, although call gates can also be used for 
branches that do not change privilege levels. When call gates are used, the selector portion of the direct or indirect 
pointer references a gate descriptor (the offset in the instruction is ignored). The offset to the destination’s code 
segment is taken from the call-gate descriptor. 
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64-bit mode redefines the type value of a 32-bit call-gate descriptor type to a 64-bit call gate descriptor and 
expands the size of the 64-bit descriptor to hold a 64-bit offset. The 64-bit mode call-gate descriptor allows far 
branches that reference any location in the supported linear-address space. These call gates also hold the target 
code selector (CS), allowing changes to privilege level and default size as a result of the gate transition.

Because immediates are generally specified up to 32 bits, the only way to specify a full 64-bit absolute RIP in 64-
bit mode is with an indirect branch. For this reason, direct far branches are eliminated from the instruction set in 
64-bit mode.

64-bit mode also expands the semantics of the SYSENTER and SYSEXIT instructions so that the instructions 
operate within a 64-bit memory space. The mode also introduces two new instructions: SYSCALL and SYSRET 
(which are valid only in 64-bit mode). For details, see “SYSENTER—Fast System Call,” “SYSEXIT—Fast Return from 
Fast System Call,” “SYSCALL—Fast System Call,” and “SYSRET—Return From Fast System Call” in Chapter 4, 
“Instruction Set Reference, N-Z,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2B.

6.4 INTERRUPTS AND EXCEPTIONS

The processor provides two mechanisms for interrupting program execution, interrupts and exceptions:
• An interrupt is an asynchronous event that is typically triggered by an I/O device.
• An exception is a synchronous event that is generated when the processor detects one or more predefined 

conditions while executing an instruction. The IA-32 architecture specifies three classes of exceptions: faults, 
traps, and aborts. 

The processor responds to interrupts and exceptions in essentially the same way. When an interrupt or exception 
is signaled, the processor halts execution of the current program or task and switches to a handler procedure that 
has been written specifically to handle the interrupt or exception condition. The processor accesses the handler 
procedure through an entry in the interrupt descriptor table (IDT). When the handler has completed handling the 
interrupt or exception, program control is returned to the interrupted program or task.

The operating system, executive, and/or device drivers normally handle interrupts and exceptions independently 
from application programs or tasks. Application programs can, however, access the interrupt and exception 
handlers incorporated in an operating system or executive through assembly-language calls. The remainder of this 
section gives a brief overview of the processor’s interrupt and exception handling mechanism. See Chapter 6, 
“Interrupt and Exception Handling,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3B, for a description of this mechanism.

The IA-32 Architecture defines 18 predefined interrupts and exceptions and 224 user defined interrupts, which are 
associated with entries in the IDT. Each interrupt and exception in the IDT is identified with a number, called a 
vector. Table 6-1 lists the interrupts and exceptions with entries in the IDT and their respective vector numbers. 
Vectors 0 through 8, 10 through 14, and 16 through 19 are the predefined interrupts and exceptions, and vectors 
32 through 255 are the user-defined interrupts, called maskable interrupts.

Note that the processor defines several additional interrupts that do not point to entries in the IDT; the most 
notable of these interrupts is the SMI interrupt. See Chapter 6, “Interrupt and Exception Handling,” in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for more information about the interrupts 
and exceptions.

When the processor detects an interrupt or exception, it does one of the following things:
• Executes an implicit call to a handler procedure.
• Executes an implicit call to a handler task.

6.4.1 Call and Return Operation for Interrupt or Exception Handling Procedures

A call to an interrupt or exception handler procedure is similar to a procedure call to another protection level (see 
Section 6.3.6, “CALL and RET Operation Between Privilege Levels”). Here, the interrupt vector references one of 
two kinds of gates: an interrupt gate or a trap gate. Interrupt and trap gates are similar to call gates in that they 
provide the following information:
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• Access rights information
• The segment selector for the code segment that contains the handler procedure
• An offset into the code segment to the first instruction of the handler procedure

The difference between an interrupt gate and a trap gate is as follows. If an interrupt or exception handler is called 
through an interrupt gate, the processor clears the interrupt enable (IF) flag in the EFLAGS register to prevent 
subsequent interrupts from interfering with the execution of the handler. When a handler is called through a trap 
gate, the state of the IF flag is not changed.

If the code segment for the handler procedure has the same privilege level as the currently executing program or 
task, the handler procedure uses the current stack; if the handler executes at a more privileged level, the processor 
switches to the stack for the handler’s privilege level. 

If no stack switch occurs, the processor does the following when calling an interrupt or exception handler (see 
Figure 6-5):

1. Pushes the current contents of the EFLAGS, CS, and EIP registers (in that order) on the stack.

Table 6-1.  Exceptions and Interrupts

Vector No. Mnemonic Description Source

 0 #DE Divide Error DIV and IDIV instructions.

 1 #DB Debug Any code or data reference.

 2 NMI Interrupt Non-maskable external interrupt.

 3 #BP Breakpoint INT 3 instruction.

 4 #OF Overflow INTO instruction.

 5 #BR BOUND Range Exceeded BOUND instruction.

 6 #UD Invalid Opcode (UnDefined Opcode) UD2 instruction or reserved opcode.1

 7 #NM Device Not Available (No Math Coprocessor) Floating-point or WAIT/FWAIT instruction.

 8 #DF Double Fault Any instruction that can generate an exception, an NMI, or 
an INTR.

 9 #MF CoProcessor Segment Overrun (reserved) Floating-point instruction.2

10 #TS Invalid TSS Task switch or TSS access.

11 #NP Segment Not Present Loading segment registers or accessing system segments.

12 #SS Stack Segment Fault Stack operations and SS register loads.

13 #GP General Protection Any memory reference and other protection checks.

14 #PF Page Fault Any memory reference.

15 Reserved

16 #MF Floating-Point Error (Math Fault) Floating-point or WAIT/FWAIT instruction.

17 #AC Alignment Check Any data reference in memory.3

18 #MC Machine Check Error codes (if any) and source are model dependent.4

19 #XM SIMD Floating-Point Exception SIMD Floating-Point Instruction5

20-31 Reserved

32-255 Maskable Interrupts External interrupt from INTR pin or INT n instruction.

NOTES:

1. The UD2 instruction was introduced in the Pentium Pro processor.

2. IA-32 processors after the Intel386 processor do not generate this exception.

3. This exception was introduced in the Intel486 processor.

4. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.

5. This exception was introduced in the Pentium III processor.
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2. Pushes an error code (if appropriate) on the stack.

3. Loads the segment selector for the new code segment and the new instruction pointer (from the interrupt gate 
or trap gate) into the CS and EIP registers, respectively.

4. If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

5. Begins execution of the handler procedure.

If a stack switch does occur, the processor does the following:

1. Temporarily saves (internally) the current contents of the SS, ESP, EFLAGS, CS, and EIP registers.

2. Loads the segment selector and stack pointer for the new stack (that is, the stack for the privilege level being 
called) from the TSS into the SS and ESP registers and switches to the new stack.

3. Pushes the temporarily saved SS, ESP, EFLAGS, CS, and EIP values for the interrupted procedure’s stack onto 
the new stack.

4. Pushes an error code on the new stack (if appropriate).

5. Loads the segment selector for the new code segment and the new instruction pointer (from the interrupt gate 
or trap gate) into the CS and EIP registers, respectively.

6. If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

7. Begins execution of the handler procedure at the new privilege level.

A return from an interrupt or exception handler is initiated with the IRET instruction. The IRET instruction is similar 
to the far RET instruction, except that it also restores the contents of the EFLAGS register for the interrupted proce-
dure. When executing a return from an interrupt or exception handler from the same privilege level as the inter-
rupted procedure, the processor performs these actions:

1. Restores the CS and EIP registers to their values prior to the interrupt or exception.

2. Restores the EFLAGS register.

Figure 6-5.  Stack Usage on Transfers to Interrupt and Exception Handling Routines
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3. Increments the stack pointer appropriately.

4. Resumes execution of the interrupted procedure.

When executing a return from an interrupt or exception handler from a different privilege level than the interrupted 
procedure, the processor performs these actions:

1. Performs a privilege check.

2. Restores the CS and EIP registers to their values prior to the interrupt or exception.

3. Restores the EFLAGS register.

4. Restores the SS and ESP registers to their values prior to the interrupt or exception, resulting in a stack switch 
back to the stack of the interrupted procedure.

5. Resumes execution of the interrupted procedure.

6.4.2 Calls to Interrupt or Exception Handler Tasks

Interrupt and exception handler routines can also be executed in a separate task. Here, an interrupt or exception 
causes a task switch to a handler task. The handler task is given its own address space and (optionally) can execute 
at a higher protection level than application programs or tasks. 

The switch to the handler task is accomplished with an implicit task call that references a task gate descriptor. 
The task gate provides access to the address space for the handler task. As part of the task switch, the processor 
saves complete state information for the interrupted program or task. Upon returning from the handler task, the 
state of the interrupted program or task is restored and execution continues. See Chapter 6, “Interrupt and Excep-
tion Handling,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for more infor-
mation on handling interrupts and exceptions through handler tasks.

6.4.3 Interrupt and Exception Handling in Real-Address Mode

When operating in real-address mode, the processor responds to an interrupt or exception with an implicit far call 
to an interrupt or exception handler. The processor uses the interrupt or exception vector number as an index into 
an interrupt table. The interrupt table contains instruction pointers to the interrupt and exception handler proce-
dures.

The processor saves the state of the EFLAGS register, the EIP register, the CS register, and an optional error code 
on the stack before switching to the handler procedure.

A return from the interrupt or exception handler is carried out with the IRET 
instruction. 

See Chapter 20, “8086 Emulation,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3B, for more information on handling interrupts and exceptions in real-address mode.

6.4.4 INT n, INTO, INT 3, and BOUND Instructions

The INT n, INTO, INT 3, and BOUND instructions allow a program or task to explicitly call an interrupt or exception 
handler. The INT n instruction uses an interrupt vector as an argument, which allows a program to call any interrupt 
handler.

The INTO instruction explicitly calls the overflow exception (#OF) handler if the overflow flag (OF) in the EFLAGS 
register is set. The OF flag indicates overflow on arithmetic instructions, but it does not automatically raise an over-
flow exception. An overflow exception can only be raised explicitly in either of the following ways:
• Execute the INTO instruction.
• Test the OF flag and execute the INT n instruction with an argument of 4 (the vector number of the overflow 

exception) if the flag is set.

Both the methods of dealing with overflow conditions allow a program to test for overflow at specific places in the 
instruction stream.
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The INT 3 instruction explicitly calls the breakpoint exception (#BP) handler.

The BOUND instruction explicitly calls the BOUND-range exceeded exception (#BR) handler if an operand is found 
to be not within predefined boundaries in memory. This instruction is provided for checking references to arrays 
and other data structures. Like the overflow exception, the BOUND-range exceeded exception can only be raised 
explicitly with the BOUND instruction or the INT n instruction with an argument of 5 (the vector number of the 
bounds-check exception). The processor does not implicitly perform bounds checks and raise the BOUND-range 
exceeded exception.

6.4.5 Handling Floating-Point Exceptions

When operating on individual or packed floating-point values, the IA-32 architecture supports a set of six floating-
point exceptions. These exceptions can be generated during operations performed by the x87 FPU instructions or 
by SSE/SSE2/SSE3 instructions. When an x87 FPU instruction (including the FISTTP instruction in SSE3) generates 
one or more of these exceptions, it in turn generates floating-point error exception (#MF); when an 
SSE/SSE2/SSE3 instruction generates a floating-point exception, it in turn generates SIMD floating-point excep-
tion (#XM). 

See the following sections for further descriptions of the floating-point exceptions, how they are generated, and 
how they are handled:
• Section 4.9.1, “Floating-Point Exception Conditions,” and Section 4.9.3, “Typical Actions of a Floating-Point 

Exception Handler”
• Section 8.4, “x87 FPU Floating-Point Exception Handling,” and Section 8.5, “x87 FPU Floating-Point Exception 

Conditions”
• Section 11.5.1, “SIMD Floating-Point Exceptions”
• Interrupt Behavior

6.4.6 Interrupt and Exception Behavior in 64-Bit Mode

64-bit extensions expand the legacy IA-32 interrupt-processing and exception-processing mechanism to allow 
support for 64-bit operating systems and applications. Changes include:
• All interrupt handlers pointed to by the IDT are 64-bit code (does not apply to the SMI handler).
• The size of interrupt-stack pushes is fixed at 64 bits. The processor uses 8-byte, zero extended stores.
• The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy environments, this push is 

conditional and based on a change in current privilege level (CPL).
• The new SS is set to NULL if there is a change in CPL.
• IRET behavior changes.
• There is a new interrupt stack-switch mechanism.
• The alignment of interrupt stack frame is different.

6.5 PROCEDURE CALLS FOR BLOCK-STRUCTURED LANGUAGES

The IA-32 architecture supports an alternate method of performing procedure calls with the ENTER (enter proce-
dure) and LEAVE (leave procedure) instructions. These instructions automatically create and release, respectively, 
stack frames for called procedures. The stack frames have predefined spaces for local variables and the necessary 
pointers to allow coherent returns from called procedures. They also allow scope rules to be implemented so that 
procedures can access their own local variables and some number of other variables located in other stack frames.

ENTER and LEAVE offer two benefits:
• They provide machine-language support for implementing block-structured languages, such as C and Pascal. 
• They simplify procedure entry and exit in compiler-generated code.
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6.5.1 ENTER Instruction

The ENTER instruction creates a stack frame compatible with the scope rules typically used in block-structured 
languages. In block-structured languages, the scope of a procedure is the set of variables to which it has access. 
The rules for scope vary among languages. They may be based on the nesting of procedures, the division of the 
program into separately compiled files, or some other modularization scheme.

ENTER has two operands. The first specifies the number of bytes to be reserved on the stack for dynamic storage 
for the procedure being called. Dynamic storage is the memory allocated for variables created when the procedure 
is called, also known as automatic variables. The second parameter is the lexical nesting level (from 0 to 31) of the 
procedure. The nesting level is the depth of a procedure in a hierarchy of procedure calls. The lexical level is unre-
lated to either the protection privilege level or to the I/O privilege level of the currently running program or task.

ENTER, in the following example, allocates 2 Kbytes of dynamic storage on the stack and sets up pointers to two 
previous stack frames in the stack frame for this procedure:

ENTER 2048,3

The lexical nesting level determines the number of stack frame pointers to copy into the new stack frame from the 
preceding frame. A stack frame pointer is a doubleword used to access the variables of a procedure. The set of 
stack frame pointers used by a procedure to access the variables of other procedures is called the display. The first 
doubleword in the display is a pointer to the previous stack frame. This pointer is used by a LEAVE instruction to 
undo the effect of an ENTER instruction by discarding the current stack frame.

After the ENTER instruction creates the display for a procedure, it allocates the dynamic local variables for the 
procedure by decrementing the contents of the ESP register by the number of bytes specified in the first parameter. 
This new value in the ESP register serves as the initial top-of-stack for all PUSH and POP operations within the 
procedure.

To allow a procedure to address its display, the ENTER instruction leaves the EBP register pointing to the first 
doubleword in the display. Because stacks grow down, this is actually the doubleword with the highest address in 
the display. Data manipulation instructions that specify the EBP register as a base register automatically address 
locations within the stack segment instead of the data segment.

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical level is 0, the non-nested 
form is used. The non-nested form pushes the contents of the EBP register on the stack, copies the contents of the 
ESP register into the EBP register, and subtracts the first operand from the contents of the ESP register to allocate 
dynamic storage. The non-nested form differs from the nested form in that no stack frame pointers are copied. The 
nested form of the ENTER instruction occurs when the second parameter (lexical level) is not zero.

The following pseudo code shows the formal definition of the ENTER instruction. STORAGE is the number of bytes 
of dynamic storage to allocate for local variables, and LEVEL is the lexical nesting level.

PUSH EBP;

FRAME_PTR ← ESP;

IF LEVEL > 0 

THEN

DO (LEVEL − 1) times

EBP ← EBP − 4;

PUSH Pointer(EBP); (* doubleword pointed to by EBP *)

OD;

PUSH FRAME_PTR;

FI;

EBP ← FRAME_PTR;

ESP ← ESP − STORAGE;

The main procedure (in which all other procedures are nested) operates at the highest lexical level, level 1. The 
first procedure it calls operates at the next deeper lexical level, level 2. A level 2 procedure can access the variables 
of the main program, which are at fixed locations specified by the compiler. In the case of level 1, the ENTER 
instruction allocates only the requested dynamic storage on the stack because there is no previous display to copy.
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A procedure that calls another procedure at a lower lexical level gives the called procedure access to the variables 
of the caller. The ENTER instruction provides this access by placing a pointer to the calling procedure's stack frame 
in the display.

A procedure that calls another procedure at the same lexical level should not give access to its variables. In this 
case, the ENTER instruction copies only that part of the display from the calling procedure which refers to previ-
ously nested procedures operating at higher lexical levels. The new stack frame does not include the pointer for 
addressing the calling procedure’s stack frame.

The ENTER instruction treats a re-entrant procedure as a call to a procedure at the same lexical level. In this case, 
each succeeding iteration of the re-entrant procedure can address only its own variables and the variables of the 
procedures within which it is nested. A re-entrant procedure always can address its own variables; it does not 
require pointers to the stack frames of previous iterations.

By copying only the stack frame pointers of procedures at higher lexical levels, the ENTER instruction makes 
certain that procedures access only those variables of higher lexical levels, not those at parallel lexical levels (see 
Figure 6-6).

Block-structured languages can use the lexical levels defined by ENTER to control access to the variables of nested 
procedures. In Figure 6-6, for example, if procedure A calls procedure B which, in turn, calls procedure C, then 
procedure C will have access to the variables of the MAIN procedure and procedure A, but not those of procedure 
B because they are at the same lexical level. The following definition describes the access to variables for the 
nested procedures in Figure 6-6.

1. MAIN has variables at fixed locations.

2. Procedure A can access only the variables of MAIN.

3. Procedure B can access only the variables of procedure A and MAIN. Procedure B cannot access the variables 
of procedure C or procedure D.

4. Procedure C can access only the variables of procedure A and MAIN. Procedure C cannot access the variables 
of procedure B or procedure D.

5. Procedure D can access the variables of procedure C, procedure A, and MAIN. Procedure D cannot access the 
variables of procedure B.

In Figure 6-7, an ENTER instruction at the beginning of the MAIN procedure creates three doublewords of dynamic 
storage for MAIN, but copies no pointers from other stack frames. The first doubleword in the display holds a copy 
of the last value in the EBP register before the ENTER instruction was executed. The second doubleword holds a 
copy of the contents of the EBP register following the ENTER instruction. After the instruction is executed, the EBP 
register points to the first doubleword pushed on the stack, and the ESP register points to the last doubleword in 
the stack frame.

When MAIN calls procedure A, the ENTER instruction creates a new display (see Figure 6-8). The first doubleword 
is the last value held in MAIN's EBP register. The second doubleword is a pointer to MAIN's stack frame which is 
copied from the second doubleword in MAIN's display. This happens to be another copy of the last value held in 
MAIN’s EBP register. Procedure A can access variables in MAIN because MAIN is at level 1. 

Figure 6-6.  Nested Procedures

Main (Lexical Level 1) 
Procedure A (Lexical Level 2) 
Procedure B (Lexical Level 3) 

Procedure C (Lexical Level 3)
Procedure D (Lexical Level 4) 
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Therefore the base address for the dynamic storage used in MAIN is the current address in the EBP register, plus 
four bytes to account for the saved contents of MAIN’s EBP register. All dynamic variables for MAIN are at fixed, 
positive offsets from this value. 

When procedure A calls procedure B, the ENTER instruction creates a new display (see Figure 6-9). The first 
doubleword holds a copy of the last value in procedure A’s EBP register. The second and third doublewords are 
copies of the two stack frame pointers in procedure A’s display. Procedure B can access variables in procedure A 
and MAIN by using the stack frame pointers in its display.

When procedure B calls procedure C, the ENTER instruction creates a new display for procedure C (see 
Figure 6-10). The first doubleword holds a copy of the last value in procedure B’s EBP register. This is used by the 
LEAVE instruction to restore procedure B’s stack frame. The second and third doublewords are copies of the two 
stack frame pointers in procedure A’s display. If procedure C were at the next deeper lexical level from procedure 
B, a fourth doubleword would be copied, which would be the stack frame pointer to procedure B’s local variables. 

Note that procedure B and procedure C are at the same level, so procedure C is not intended to access procedure 
B’s variables. This does not mean that procedure C is completely isolated from procedure B; procedure C is called 
by procedure B, so the pointer to the returning stack frame is a pointer to procedure B’s stack frame. In addition, 
procedure B can pass parameters to procedure C either on the stack or through variables global to both procedures 
(that is, variables in the scope of both procedures).

Figure 6-7.  Stack Frame After Entering the MAIN Procedure

Figure 6-8.  Stack Frame After Entering Procedure A
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Figure 6-9.  Stack Frame After Entering Procedure B
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6.5.2 LEAVE Instruction

The LEAVE instruction, which does not have any operands, reverses the action of the previous ENTER instruction. 
The LEAVE instruction copies the contents of the EBP register into the ESP register to release all stack space allo-
cated to the procedure. Then it restores the old value of the EBP register from the stack. This simultaneously 
restores the ESP register to its original value. A subsequent RET instruction then can remove any arguments and 
the return address pushed on the stack by the calling program for use by the procedure.

Figure 6-10.  Stack Frame After Entering Procedure C
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CHAPTER 7
PROGRAMMING WITH

GENERAL-PURPOSE INSTRUCTIONS

General-purpose (GP) instructions are a subset of the IA-32 instructions that represent the fundamental instruction 
set for the Intel IA-32 processors. These instructions were introduced into the IA-32 architecture with the first IA-
32 processors (the Intel 8086 and 8088). Additional instructions were added to the general-purpose instruction set 
in subsequent families of IA-32 processors (the Intel 286, Intel386, Intel486, Pentium, Pentium Pro, and Pentium 
II processors). 

Intel 64 architecture further extends the capability of most general-purpose instructions so that they are able to 
handle 64-bit data in 64-bit mode. A small number of general-purpose instructions (still supported in non-64-bit 
modes) are not supported in 64-bit mode.

General-purpose instructions perform basic data movement, memory addressing, arithmetic and logical, program 
flow control, input/output, and string operations on a set of integer, pointer, and BCD data types. This chapter 
provides an overview of the general-purpose instructions. See Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volumes 3A & 3B, for detailed descriptions of individual instructions.

7.1 PROGRAMMING ENVIRONMENT FOR GP INSTRUCTIONS

The programming environment for the general-purpose instructions consists of the set of registers and address 
space. The environment includes the following items:
• General-purpose registers — Eight 32-bit general-purpose registers (see Section 3.4.1, “General-Purpose 

Registers”) are used in non-64-bit modes to address operands in memory. These registers are referenced by 
the names EAX, EBX, ECX, EDX, EBP, ESI EDI, and ESP. 

• Segment registers — The six 16-bit segment registers contain segment pointers for use in accessing memory 
(see Section 3.4.2, “Segment Registers”). These registers are referenced by the names CS, DS, SS, ES, FS, and 
GS.

• EFLAGS register — This 32-bit register (see Section 3.4.3, “EFLAGS Register”) is used to provide status and 
control for basic arithmetic, compare, and system operations. 

• EIP register — This 32-bit register contains the current instruction pointer (see Section 3.4.3, “EFLAGS 
Register”). 

General-purpose instructions operate on the following data types. The width of valid data types is dependent on 
processor mode (see Chapter 4):
• Bytes, words, doublewords
• Signed and unsigned byte, word, doubleword integers
• Near and far pointers
• Bit fields
• BCD integers

7.2 PROGRAMMING ENVIRONMENT FOR GP INSTRUCTIONS IN 64-BIT MODE

The programming environment for the general-purpose instructions in 64-bit mode is similar to that described in 
Section 7.1.
• General-purpose registers — In 64-bit mode, sixteen general-purpose registers available. These include the 

eight GPRs described in Section 7.1 and eight new GPRs (R8D-R15D). R8D-R15D are available by using a REX 
prefix. All sixteen GPRs can be promoted to 64 bits. The 64-bit registers are referenced as RAX, RBX, RCX, RDX, 
RBP, RSI, RDI, RSP and R8-R15 (see Section 3.4.1.1, “General-Purpose Registers in 64-Bit Mode”). Promotion 
to 64-bit operand requires REX prefix encodings.
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• Segment registers — In 64-bit mode, segmentation is available but it is set up uniquely (see Section 3.4.2.1, 
“Segment Registers in 64-Bit Mode”).

• Flags and Status register — When the processor is running in 64-bit mode, EFLAGS becomes the 64-bit 
RFLAGS register (see Section 3.4.3, “EFLAGS Register”).

• Instruction Pointer register — In 64-bit mode, the EIP register becomes the 64-bit RIP register (see Section 
3.5.1, “Instruction Pointer in 64-Bit Mode”).

General-purpose instructions operate on the following data types in 64-bit mode. The width of valid data types is 
dependent on default operand size, address size, or a prefix that overrides the default size:
• Bytes, words, doublewords, quadwords
• Signed and unsigned byte, word, doubleword, quadword integers
• Near and far pointers
• Bit fields

See also: 
• Chapter 3, “Basic Execution Environment,” for more information about IA-32e modes.
• Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A, for more detailed information about REX prefixes.
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B for a complete listing of all 

instructions. This information documents the behavior of individual instructions in the 64-bit mode context.

7.3 SUMMARY OF GP INSTRUCTIONS

General purpose instructions are divided into the following subgroups: 
• Data transfer
• Binary arithmetic
• Decimal arithmetic
• Logical
• Shift and rotate
• Bit and byte
• Control transfer
• String
• I/O
• Enter and Leave
• Flag control
• Segment register
• Miscellaneous

Each sub-group of general-purpose instructions is discussed in the context of non-64-bit mode operation first. 
Changes in 64-bit mode beyond those affected by the use of the REX prefixes are discussed in separate sub-
sections within each subgroup. For a simple list of general-purpose instructions by subgroup, see Chapter 5.

7.3.1 Data Transfer Instructions

The data transfer instructions move bytes, words, doublewords, or quadwords both between memory and the 
processor’s registers and between registers. For the purpose of this discussion, these instructions are divided into 
subordinate subgroups that provide for:
• General data movement
• Exchange



Vol. 1 7-3

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

• Stack manipulation
• Type conversion

7.3.1.1  General Data Movement Instructions

Move instructions — The MOV (move) and CMOVcc (conditional move) instructions transfer data between 
memory and registers or between registers.

The MOV instruction performs basic load data and store data operations between memory and the processor’s 
registers and data movement operations between registers. It handles data transfers along the paths listed in 
Table 7-1. (See “MOV—Move to/from Control Registers” and “MOV—Move to/from Debug Registers” in Chapter 3, 
“Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A, for information on moving data to and from the control and debug registers.) 

The MOV instruction cannot move data from one memory location to another or from one segment register to 
another segment register. Memory-to-memory moves are performed with the MOVS (string move) instruction (see 
Section 7.3.9, “String Operations”). 

Conditional move instructions — The CMOVcc instructions are a group of instructions that check the state of the 
status flags in the EFLAGS register and perform a move operation if the flags are in a specified state. These instruc-
tions can be used to move a 16-bit or 32-bit value from memory to a general-purpose register or from one general-
purpose register to another. The flag state being tested is specified with a condition code (cc) associated with the 
instruction. If the condition is not satisfied, a move is not performed and execution continues with the instruction 
following the CMOVcc instruction.

Table 7-2 shows mnemonics for CMOVcc instructions and the conditions being tested for each instruction. The 
condition code mnemonics are appended to the letters “CMOV” to form the mnemonics for CMOVcc instructions. 
The instructions listed in Table 7-2 as pairs (for example, CMOVA/CMOVNBE) are alternate names for the same 
instruction. The assembler provides these alternate names to make it easier to read program listings.

CMOVcc instructions are useful for optimizing small IF constructions. They also help eliminate branching overhead 
for IF statements and the possibility of branch mispredictions by the processor. 

These conditional move instructions are supported in the P6 family, Pentium 4, and Intel Xeon processors. Software 
can check if CMOVcc instructions are supported by checking the processor’s feature information with the CPUID 
instruction.

Table 7-1.  Move Instruction Operations

Type of Data Movement Source → Destination

From memory to a register Memory location → General-purpose register

Memory location → Segment register

From a register to memory General-purpose register → Memory location

Segment register → Memory location

Between registers General-purpose register → General-purpose register

General-purpose register → Segment register

Segment register → General-purpose register

General-purpose register → Control register

Control register → General-purpose register

General-purpose register → Debug register

Debug register → General-purpose register

Immediate data to a register Immediate → General-purpose register

Immediate data to memory Immediate → Memory location
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7.3.1.2  Exchange Instructions 

The exchange instructions swap the contents of one or more operands and, in some cases, perform additional oper-
ations such as asserting the LOCK signal or modifying flags in the EFLAGS register.

The XCHG (exchange) instruction swaps the contents of two operands. This instruction takes the place of three 
MOV instructions and does not require a temporary location to save the contents of one operand location while the 
other is being loaded. When a memory operand is used with the XCHG instruction, the processor’s LOCK signal is 
automatically asserted. This instruction is thus useful for implementing semaphores or similar data structures for 
process synchronization. See “Bus Locking” in Chapter 8, “Multiple-Processor Management,”of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information on bus locking.

The BSWAP (byte swap) instruction reverses the byte order in a 32-bit register operand. Bit positions 0 through 7 
are exchanged with 24 through 31, and bit positions 8 through 15 are exchanged with 16 through 23. Executing 
this instruction twice in a row leaves the register with the same value as before. The BSWAP instruction is useful for 
converting between “big-endian” and “little-endian” data formats. This instruction also speeds execution of decimal 
arithmetic. (The XCHG instruction can be used to swap the bytes in a word.)

The XADD (exchange and add) instruction swaps two operands and then stores the sum of the two operands in the 
destination operand. The status flags in the EFLAGS register indicate the result of the addition. This instruction can 
be combined with the LOCK prefix (see “LOCK—Assert LOCK# Signal Prefix” in Chapter 3, “Instruction Set Refer-
ence, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A) in a multiprocessing 
system to allow multiple processors to execute one DO loop.

The CMPXCHG (compare and exchange) and CMPXCHG8B (compare and exchange 8 bytes) instructions are used 
to synchronize operations in systems that use multiple processors. The CMPXCHG instruction requires three oper-
ands: a source operand in a register, another source operand in the EAX register, and a destination operand. If 
the values contained in the destination operand and the EAX register are equal, the destination operand is 
replaced with the value of the other source operand (the value not in the EAX register). Otherwise, the original 

Table 7-2.  Conditional Move Instructions

Instruction Mnemonic Status Flag States Condition Description

Unsigned Conditional Moves

  CMOVA/CMOVNBE (CF or ZF) = 0 Above/not below or equal

  CMOVAE/CMOVNB CF = 0 Above or equal/not below

  CMOVNC CF = 0 Not carry

  CMOVB/CMOVNAE CF = 1 Below/not above or equal

  CMOVC CF = 1 Carry

  CMOVBE/CMOVNA (CF or ZF) = 1 Below or equal/not above

  CMOVE/CMOVZ ZF = 1 Equal/zero

  CMOVNE/CMOVNZ ZF = 0 Not equal/not zero

  CMOVP/CMOVPE PF = 1 Parity/parity even

  CMOVNP/CMOVPO PF = 0 Not parity/parity odd

Signed Conditional Moves

  CMOVGE/CMOVNL (SF xor OF) = 0 Greater or equal/not less

  CMOVL/CMOVNGE (SF xor OF) = 1 Less/not greater or equal

  CMOVLE/CMOVNG ((SF xor OF) or ZF) = 1 Less or equal/not greater

  CMOVO OF = 1 Overflow

  CMOVNO OF = 0 Not overflow

  CMOVS SF = 1 Sign (negative)

  CMOVNS SF = 0 Not sign (non-negative)



Vol. 1 7-5

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

value of the destination operand is loaded in the EAX register. The status flags in the EFLAGS register reflect the 
result that would have been obtained by subtracting the destination operand from the value in the EAX register.

The CMPXCHG instruction is commonly used for testing and modifying semaphores. It checks to see if a semaphore 
is free. If the semaphore is free, it is marked allocated; otherwise it gets the ID of the current owner. This is all 
done in one uninterruptible operation. In a single-processor system, the CMPXCHG instruction eliminates the need 
to switch to protection level 0 (to disable interrupts) before executing multiple instructions to test and modify a 
semaphore. 

For multiple processor systems, CMPXCHG can be combined with the LOCK prefix to perform the compare and 
exchange operation atomically. (See “Locked Atomic Operations” in Chapter 8, “Multiple-Processor Management,” 
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information on atomic 
operations.)

The CMPXCHG8B instruction also requires three operands: a 64-bit value in EDX:EAX, a 64-bit value in ECX:EBX, 
and a destination operand in memory. The instruction compares the 64-bit value in the EDX:EAX registers with the 
destination operand. If they are equal, the 64-bit value in the ECX:EBX register is stored in the destination 
operand. If the EDX:EAX register and the destination are not equal, the destination is loaded in the EDX:EAX 
register. The CMPXCHG8B instruction can be combined with the LOCK prefix to perform the operation atomically.

7.3.1.3  Exchange Instructions in 64-Bit Mode 

The CMPXCHG16B instruction is available in 64-bit mode only. It is an extension of the functionality provided by 
CMPXCHG8B that operates on 128-bits of data.

7.3.1.4  Stack Manipulation Instructions

The PUSH, POP, PUSHA (push all registers), and POPA (pop all registers) instructions move data to and from the 
stack. The PUSH instruction decrements the stack pointer (contained in the ESP register), then copies the source 
operand to the top of stack (see Figure 7-1). It operates on memory operands, immediate operands, and register 
operands (including segment registers). The PUSH instruction is commonly used to place parameters on the stack 
before calling a procedure. It can also be used to reserve space on the stack for temporary variables.

The PUSHA instruction saves the contents of the eight general-purpose registers on the stack (see Figure 7-2). 
This instruction simplifies procedure calls by reducing the number of instructions required to save the contents of 
the general-purpose registers. The registers are pushed on the stack in the following order: EAX, ECX, EDX, EBX, 
the initial value of ESP before EAX was pushed, EBP, ESI, and EDI. 

Figure 7-1.  Operation of the PUSH Instruction
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The POP instruction copies the word or doubleword at the current top of stack (indicated by the ESP register) to the 
location specified with the destination operand. It then increments the ESP register to point to the new top of stack 
(see Figure 7-3). The destination operand may specify a general-purpose register, a segment register, or a memory 
location. 

The POPA instruction reverses the effect of the PUSHA instruction. It pops the top eight words or doublewords from 
the top of the stack into the general-purpose registers, except for the ESP register (see Figure 7-4). If the operand-
size attribute is 32, the doublewords on the stack are transferred to the registers in the following order: EDI, ESI, 
EBP, ignore doubleword, EBX, EDX, ECX, and EAX. The ESP register is restored by the action of popping the stack. 
If the operand-size attribute is 16, the words on the stack are transferred to the registers in the following order: DI, 
SI, BP, ignore word, BX, DX, CX, and AX.

Figure 7-2.  Operation of the PUSHA Instruction

Figure 7-3.  Operation of the POP Instruction

0Stack 31
Before Pushing Registers

Growth

ESPn - 4
n - 8

n

Stack

031
After Pushing Registers

ESP

EAX

EDI

EBX

EBP

ECX
EDX

Old ESP

ESI
n - 36

n - 20

n - 28

n - 12
n - 16

n - 24

n - 32

031Stack
After Popping Doubleword

Growth

ESPn - 4
n - 8

n

Stack
Before Popping Doubleword

ESPDoubleword Value

031



Vol. 1 7-7

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

7.3.1.5  Stack Manipulation Instructions in 64-Bit Mode

In 64-bit mode, the stack pointer size is 64 bits and cannot be overridden by an instruction prefix. In implicit stack 
references, address-size overrides are ignored. Pushes and pops of 32-bit values on the stack are not possible in 
64-bit mode. 16-bit pushes and pops are supported by using the 66H operand-size prefix. PUSHA, PUSHAD, POPA, 
and POPAD are not supported.

7.3.1.6  Type Conversion Instructions

The type conversion instructions convert bytes into words, words into doublewords, and doublewords into quad-
words. These instructions are especially useful for converting integers to larger integer formats, because they 
perform sign extension (see Figure 7-5).

Two kinds of type conversion instructions are provided: simple conversion and move and convert.

Simple conversion — The CBW (convert byte to word), CWDE (convert word to doubleword extended), CWD 
(convert word to doubleword), and CDQ (convert doubleword to quadword) instructions perform sign extension to 
double the size of the source operand.

The CBW instruction copies the sign (bit 7) of the byte in the AL register into every bit position of the upper byte of 
the AX register. The CWDE instruction copies the sign (bit 15) of the word in the AX register into every bit position 
of the high word of the EAX register.

The CWD instruction copies the sign (bit 15) of the word in the AX register into every bit position in the DX register. 
The CDQ instruction copies the sign (bit 31) of the doubleword in the EAX register into every bit position in the EDX 
register. The CWD instruction can be used to produce a doubleword dividend from a word before a word division, 
and the CDQ instruction can be used to produce a quadword dividend from a doubleword before doubleword divi-
sion.

Figure 7-4.  Operation of the POPA Instruction

Figure 7-5.  Sign Extension

Stack
After Popping Registers

Growth

ESPn - 4
n - 8

n

Stack
Before Popping Registers

ESP

EAX

EDI

EBX

EBP

ECX
EDX

Ignored

ESI
n - 36

n - 20

n - 28

n - 12
n - 16

n - 24

n - 32

0 310 31

31
After Sign

15 0

S N N N N N N N N N NN N N N NSSSSSSSSSSSS SSSS Extension

Before Sign
15 0

S N N N N N N N N N NN N N N N Extension



7-8 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

Move with sign or zero extension — The MOVSX (move with sign extension) and MOVZX (move with zero 
extension) instructions move the source operand into a register then perform the sign extension.

The MOVSX instruction extends an 8-bit value to a 16-bit value or an 8-bit or 16-bit value to a 32-bit value by sign 
extending the source operand, as shown in Figure 7-5. The MOVZX instruction extends an 8-bit value to a 16-bit 
value or an 8-bit or 16-bit value to a 32-bit value by zero extending the source operand.

7.3.1.7  Type Conversion Instructions in 64-Bit Mode

The MOVSXD instruction operates on 64-bit data. It sign-extends a 32-bit value to 64 bits. This instruction is not 
encodable in non-64-bit modes.

7.3.2 Binary Arithmetic Instructions

Binary arithmetic instructions operate on 8-, 16-, and 32-bit numeric data encoded as signed or unsigned binary 
integers. The binary arithmetic instructions may also be used in algorithms that operate on decimal (BCD) values.

For the purpose of this discussion, these instructions are divided subordinate subgroups of instructions that:
• Add and subtract
• Increment and decrement
• Compare and change signs
• Multiply and divide

7.3.2.1  Addition and Subtraction Instructions

The ADD (add integers), ADC (add integers with carry), SUB (subtract integers), and SBB (subtract integers with 
borrow) instructions perform addition and subtraction operations on signed or unsigned integer operands.

The ADD instruction computes the sum of two integer operands. 

The ADC instruction computes the sum of two integer operands, plus 1 if the CF flag is set. This instruction is used 
to propagate a carry when adding numbers in stages. 

The SUB instruction computes the difference of two integer operands. 

The SBB instruction computes the difference of two integer operands, minus 1 if the CF flag is set. This instruction 
is used to propagate a borrow when subtracting numbers in stages.

7.3.2.2  Increment and Decrement Instructions

The INC (increment) and DEC (decrement) instructions add 1 to or subtract 1 from an unsigned integer operand, 
respectively. A primary use of these instructions is for implementing counters.

7.3.2.3  Increment and Decrement Instructions in 64-Bit Mode

The INC and DEC instructions are supported in 64-bit mode. However, some forms of INC and DEC (the register 
operand being encoded using register extension field in the MOD R/M byte) are not encodable in 64-bit mode 
because the opcodes are treated as REX prefixes.

7.3.2.4  Comparison and Sign Change Instruction

The CMP (compare) instruction computes the difference between two integer operands and updates the OF, SF, ZF, 
AF, PF, and CF flags according to the result. The source operands are not modified, nor is the result saved. The CMP 
instruction is commonly used in conjunction with a Jcc (jump) or SETcc (byte set on condition) instruction, with the 
latter instructions performing an action based on the result of a CMP instruction.

The NEG (negate) instruction subtracts a signed integer operand from zero. The effect of the NEG instruction is to 
change the sign of a two's complement operand while keeping its magnitude.
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7.3.2.5  Multiplication and Divide Instructions

The processor provides two multiply instructions, MUL (unsigned multiply) and IMUL signed multiply), and two 
divide instructions, DIV (unsigned divide) and IDIV (signed divide).

The MUL instruction multiplies two unsigned integer operands. The result is computed to twice the size of the 
source operands (for example, if word operands are being multiplied, the result is a doubleword).

The IMUL instruction multiplies two signed integer operands. The result is computed to twice the size of the source 
operands; however, in some cases the result is truncated to the size of the source operands (see “IMUL—Signed 
Multiply” in Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A).

The DIV instruction divides one unsigned operand by another unsigned operand and returns a quotient and a 
remainder.

The IDIV instruction is identical to the DIV instruction, except that IDIV performs a signed division.

7.3.3 Decimal Arithmetic Instructions

Decimal arithmetic can be performed by combining the binary arithmetic instructions ADD, SUB, MUL, and DIV 
(discussed in Section 7.3.2, “Binary Arithmetic Instructions”) with the decimal arithmetic instructions. The decimal 
arithmetic instructions are provided to carry out the following operations:
• To adjust the results of a previous binary arithmetic operation to produce a valid BCD result.
• To adjust the operands of a subsequent binary arithmetic operation so that the operation will produce a valid 

BCD result. 

These instructions operate on both packed and unpacked BCD values. For the purpose of this discussion, the 
decimal arithmetic instructions are divided subordinate subgroups of instructions that provide:
• Packed BCD adjustments
• Unpacked BCD adjustments

7.3.3.1  Packed BCD Adjustment Instructions

The DAA (decimal adjust after addition) and DAS (decimal adjust after subtraction) instructions adjust the results 
of operations performed on packed BCD integers (see Section 4.7, “BCD and Packed BCD Integers”). Adding two 
packed BCD values requires two instructions: an ADD instruction followed by a DAA instruction. The ADD instruc-
tion adds (binary addition) the two values and stores the result in the AL register. The DAA instruction then adjusts 
the value in the AL register to obtain a valid, 2-digit, packed BCD value and sets the CF flag if a decimal carry 
occurred as the result of the addition.

Likewise, subtracting one packed BCD value from another requires a SUB instruction followed by a DAS instruction. 
The SUB instruction subtracts (binary subtraction) one BCD value from another and stores the result in the AL 
register. The DAS instruction then adjusts the value in the AL register to obtain a valid, 2-digit, packed BCD value 
and sets the CF flag if a decimal borrow occurred as the result of the subtraction. 

7.3.3.2  Unpacked BCD Adjustment Instructions

The AAA (ASCII adjust after addition), AAS (ASCII adjust after subtraction), AAM (ASCII adjust after multiplica-
tion), and AAD (ASCII adjust before division) instructions adjust the results of arithmetic operations performed 
in unpacked BCD values (see Section 4.7, “BCD and Packed BCD Integers”). All these instructions assume that the 
value to be adjusted is stored in the AL register or, in one instance, the AL and AH registers. 

The AAA instruction adjusts the contents of the AL register following the addition of two unpacked BCD values. It 
converts the binary value in the AL register into a decimal value and stores the result in the AL register in unpacked 
BCD format (the decimal number is stored in the lower 4 bits of the register and the upper 4 bits are cleared). If a 
decimal carry occurred as a result of the addition, the CF flag is set and the contents of the AH register are incre-
mented by 1.
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The AAS instruction adjusts the contents of the AL register following the subtraction of two unpacked BCD values. 
Here again, a binary value is converted into an unpacked BCD value. If a borrow was required to complete the 
decimal subtract, the CF flag is set and the contents of the AH register are decremented by 1.

The AAM instruction adjusts the contents of the AL register following a multiplication of two unpacked BCD values. 
It converts the binary value in the AL register into a decimal value and stores the least significant digit of the result 
in the AL register (in unpacked BCD format) and the most significant digit, if there is one, in the AH register (also 
in unpacked BCD format).

The AAD instruction adjusts a two-digit BCD value so that when the value is divided with the DIV instruction, a valid 
unpacked BCD result is obtained. The instruction converts the BCD value in registers AH (most significant digit) and 
AL (least significant digit) into a binary value and stores the result in register AL. When the value in AL is divided by 
an unpacked BCD value, the quotient and remainder will be automatically encoded in unpacked BCD format.

7.3.4 Decimal Arithmetic Instructions in 64-Bit Mode

Decimal arithmetic instructions are not supported in 64-bit mode, They are either invalid or not encodable.

7.3.5 Logical Instructions

The logical instructions AND, OR, XOR (exclusive or), and NOT perform the standard Boolean operations for which 
they are named. The AND, OR, and XOR instructions require two operands; the NOT instruction operates on a 
single operand.

7.3.6 Shift and Rotate Instructions

The shift and rotate instructions rearrange the bits within an operand. For the purpose of this discussion, these 
instructions are further divided subordinate subgroups of instructions that:
• Shift bits
• Double-shift bits (move them between operands)
• Rotate bits

7.3.6.1  Shift Instructions

The SAL (shift arithmetic left), SHL (shift logical left), SAR (shift arithmetic right), SHR (shift logical right) instruc-
tions perform an arithmetic or logical shift of the bits in a byte, word, or doubleword. 

The SAL and SHL instructions perform the same operation (see Figure 7-6). They shift the source operand left by 
from 1 to 31 bit positions. Empty bit positions are cleared. The CF flag is loaded with the last bit shifted out of the 
operand.
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The SHR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure 7-7). As with the 
SHL/SAL instruction, the empty bit positions are cleared and the CF flag is loaded with the last bit shifted out of the 
operand.

The SAR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure 7-8). This instruction 
differs from the SHR instruction in that it preserves the sign of the source operand by clearing empty bit positions 
if the operand is positive or setting the empty bits if the operand is negative. Again, the CF flag is loaded with the 
last bit shifted out of the operand.

The SAR and SHR instructions can also be used to perform division by powers of 2 (see “SAL/SAR/SHL/SHR—Shift 
Instructions” in Chapter 4, “Instruction Set Reference, N-Z,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2B).

Figure 7-6.  SHL/SAL Instruction Operation

Figure 7-7.  SHR Instruction Operation

1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  1  1  1X

Initial State
CF

0

0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  1  1  1  01

After 1-bit SHL/SAL Instruction

0

0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  1  1  1  0  0  0  0  0  0  0  0  0  00

After 10-bit SHL/SAL Instruction

Operand

1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  1  1  1 X

Initial State CF

0

0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  1  1 1

After 1-bit SHR Instruction

0

0  0  0  0  0  0  0  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0 0

After 10-bit SHR Instruction

Operand



7-12 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

7.3.6.2  Double-Shift Instructions

The SHLD (shift left double) and SHRD (shift right double) instructions shift a specified number of bits from one 
operand to another (see Figure 7-9). They are provided to facilitate operations on unaligned bit strings. They can 
also be used to implement a variety of bit string move operations. 

The SHLD instruction shifts the bits in the destination operand to the left and fills the empty bit positions (in the 
destination operand) with bits shifted out of the source operand. The destination and source operands must be the 
same length (either words or doublewords). The shift count can range from 0 to 31 bits. The result of this shift 
operation is stored in the destination operand, and the source operand is not modified. The CF flag is loaded with 
the last bit shifted out of the destination operand.

The SHRD instruction operates the same as the SHLD instruction except bits are shifted to the right in the destina-
tion operand, with the empty bit positions filled with bits shifted out of the source operand.

Figure 7-8.  SAR Instruction Operation

Figure 7-9.  SHLD and SHRD Instruction Operations
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7.3.6.3  Rotate Instructions

The ROL (rotate left), ROR (rotate right), RCL (rotate through carry left) and RCR (rotate through carry right) 
instructions rotate the bits in the destination operand out of one end and back through the other end (see 
Figure 7-10). Unlike a shift, no bits are lost during a rotation. The rotate count can range from 0 to 31.

The ROL instruction rotates the bits in the operand to the left (toward more significant bit locations). The ROR 
instruction rotates the operand right (toward less significant bit locations).

The RCL instruction rotates the bits in the operand to the left, through the CF flag. This instruction treats the CF 
flag as a one-bit extension on the upper end of the operand. Each bit that exits from the most significant bit loca-
tion of the operand moves into the CF flag. At the same time, the bit in the CF flag enters the least significant bit 
location of the operand.

The RCR instruction rotates the bits in the operand to the right through the CF flag. 

For all the rotate instructions, the CF flag always contains the value of the last bit rotated out of the operand, even 
if the instruction does not use the CF flag as an extension of the operand. The value of this flag can then be tested 
by a conditional jump instruction (JC or JNC).

7.3.7 Bit and Byte Instructions

These instructions operate on bit or byte strings. For the purpose of this discussion, they are further divided subor-
dinate subgroups that:
• Test and modify a single bit
• Scan a bit string
• Set a byte given conditions
• Test operands and report results

Figure 7-10.  ROL, ROR, RCL, and RCR Instruction Operations
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7.3.7.1  Bit Test and Modify Instructions

The bit test and modify instructions (see Table 7-3) operate on a single bit, which can be in an operand. The loca-
tion of the bit is specified as an offset from the least significant bit of the operand. When the processor identifies 
the bit to be tested and modified, it first loads the CF flag with the current value of the bit. Then it assigns a new 
value to the selected bit, as determined by the modify operation for the instruction. 

7.3.7.2  Bit Scan Instructions

The BSF (bit scan forward) and BSR (bit scan reverse) instructions scan a bit string in a source operand for a set bit 
and store the bit index of the first set bit found in a destination register. The bit index is the offset from the least 
significant bit (bit 0) in the bit string to the first set bit. The BSF instruction scans the source operand low-to-high 
(from bit 0 of the source operand toward the most significant bit); the BSR instruction scans high-to-low (from the 
most significant bit toward the least significant bit).

7.3.7.3  Byte Set on Condition Instructions

The SETcc (set byte on condition) instructions set a destination-operand byte to 0 or 1, depending on the state of 
selected status flags (CF, OF, SF, ZF, and PF) in the EFLAGS register. The suffix (cc) added to the SET mnemonic 
determines the condition being tested for. 

For example, the SETO instruction tests for overflow. If the OF flag is set, the destination byte is set to 1; if OF is 
clear, the destination byte is cleared to 0. Appendix B, “EFLAGS Condition Codes,” lists the conditions it is possible 
to test for with this instruction.

7.3.7.4  Test Instruction

The TEST instruction performs a logical AND of two operands and sets the SF, ZF, and PF flags according to the 
results. The flags can then be tested by the conditional jump or loop instructions or the SETcc instructions. The 
TEST instruction differs from the AND instruction in that it does not alter either of the operands.

7.3.8 Control Transfer Instructions

The processor provides both conditional and unconditional control transfer instructions to direct the flow of 
program execution. Conditional transfers are taken only for specified states of the status flags in the EFLAGS 
register. Unconditional control transfers are always executed.

For the purpose of this discussion, these instructions are further divided subordinate subgroups that process:
• Unconditional transfers
• Conditional transfers
• Software interrupts

7.3.8.1  Unconditional Transfer Instructions

The JMP, CALL, RET, INT, and IRET instructions transfer program control to another location (destination address) 
in the instruction stream. The destination can be within the same code segment (near transfer) or in a different 
code segment (far transfer).

Table 7-3.  Bit Test and Modify Instructions

Instruction Effect on CF Flag Effect on Selected Bit

BT (Bit Test) CF flag ← Selected Bit No effect

BTS (Bit Test and Set) CF flag ← Selected Bit Selected Bit ← 1

BTR (Bit Test and Reset) CF flag ← Selected Bit Selected Bit ← 0

BTC (Bit Test and Complement) CF flag ← Selected Bit Selected Bit ← NOT (Selected Bit)
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Jump instruction — The JMP (jump) instruction unconditionally transfers program control to a destination 
instruction. The transfer is one-way; that is, a return address is not saved. A destination operand specifies the 
address (the instruction pointer) of the destination instruction. The address can be a relative address or an 
absolute address.

A relative address is a displacement (offset) with respect to the address in the EIP register. The destination 
address (a near pointer) is formed by adding the displacement to the address in the EIP register. The displacement 
is specified with a signed integer, allowing jumps either forward or backward in the instruction stream.

An absolute address is a offset from address 0 of a segment. It can be specified in either of the following ways:
• An address in a general-purpose register — This address is treated as a near pointer, which is copied into 

the EIP register. Program execution then continues at the new address within the current code segment.
• An address specified using the standard addressing modes of the processor — Here, the address can 

be a near pointer or a far pointer. If the address is for a near pointer, the address is translated into an offset and 
copied into the EIP register. If the address is for a far pointer, the address is translated into a segment selector 
(which is copied into the CS register) and an offset (which is copied into the EIP register).

In protected mode, the JMP instruction also allows jumps to a call gate, a task gate, and a task-state segment.

Call and return instructions — The CALL (call procedure) and RET (return from procedure) instructions allow a 
jump from one procedure (or subroutine) to another and a subsequent jump back (return) to the calling procedure.

The CALL instruction transfers program control from the current (or calling procedure) to another procedure (the 
called procedure). To allow a subsequent return to the calling procedure, the CALL instruction saves the current 
contents of the EIP register on the stack before jumping to the called procedure. The EIP register (prior to trans-
ferring program control) contains the address of the instruction following the CALL instruction. When this address 
is pushed on the stack, it is referred to as the return instruction pointer or return address.

The address of the called procedure (the address of the first instruction in the procedure being jumped to) is spec-
ified in a CALL instruction the same way as it is in a JMP instruction (see “Jump instruction” on page 7-15). The 
address can be specified as a relative address or an absolute address. If an absolute address is specified, it can be 
either a near or a far pointer.

The RET instruction transfers program control from the procedure currently being executed (the called procedure) 
back to the procedure that called it (the calling procedure). Transfer of control is accomplished by copying the 
return instruction pointer from the stack into the EIP register. Program execution then continues with the instruc-
tion pointed to by the EIP register.

The RET instruction has an optional operand, the value of which is added to the contents of the ESP register as part 
of the return operation. This operand allows the stack pointer to be incremented to remove parameters from the 
stack that were pushed on the stack by the calling procedure.

See Section 6.3, “Calling Procedures Using CALL and RET,” for more information on the mechanics of making proce-
dure calls with the CALL and RET instructions.

Return from interrupt instruction — When the processor services an interrupt, it performs an implicit call to an 
interrupt-handling procedure. The IRET (return from interrupt) instruction returns program control from an inter-
rupt handler to the interrupted procedure (that is, the procedure that was executing when the interrupt occurred). 
The IRET instruction performs a similar operation to the RET instruction (see “Call and return instructions” on page 
7-15) except that it also restores the EFLAGS register from the stack. The contents of the EFLAGS register are 
automatically stored on the stack along with the return instruction pointer when the processor services an inter-
rupt.

7.3.8.2  Conditional Transfer Instructions

The conditional transfer instructions execute jumps or loops that transfer program control to another instruction in 
the instruction stream if specified conditions are met. The conditions for control transfer are specified with a set of 
condition codes that define various states of the status flags (CF, ZF, OF, PF, and SF) in the EFLAGS register.

Conditional jump instructions — The Jcc (conditional) jump instructions transfer program control to a destina-
tion instruction if the conditions specified with the condition code (cc) associated with the instruction are satisfied 
(see Table 7-4). If the condition is not satisfied, execution continues with the instruction following the Jcc instruc-
tion. As with the JMP instruction, the transfer is one-way; that is, a return address is not saved.
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The destination operand specifies a relative address (a signed offset with respect to the address in the EIP register) 
that points to an instruction in the current code segment. The Jcc instructions do not support far transfers; 
however, far transfers can be accomplished with a combination of a Jcc and a JMP instruction (see “Jcc—Jump if 
Condition Is Met” in Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A).

Table 7-4 shows the mnemonics for the Jcc instructions and the conditions being tested for each instruction. The 
condition code mnemonics are appended to the letter “J” to form the mnemonic for a Jcc instruction. The instruc-
tions are divided into two groups: unsigned and signed conditional jumps. These groups correspond to the results 
of operations performed on unsigned and signed integers respectively. Those instructions listed as pairs (for 
example, JA/JNBE) are alternate names for the same instruction. Assemblers provide alternate names to make it 
easier to read program listings.

The JCXZ and JECXZ instructions test the CX and ECX registers, respectively, instead of one or more status flags. 
See “Jump if zero instructions” on page 7-17 for more information about these instructions.

Loop instructions — The LOOP, LOOPE (loop while equal), LOOPZ (loop while zero), LOOPNE (loop while not 
equal), and LOOPNZ (loop while not zero) instructions are conditional jump instructions that use the value of the 
ECX register as a count for the number of times to execute a loop. All the loop instructions decrement the count in 
the ECX register each time they are executed and terminate a loop when zero is reached. The LOOPE, LOOPZ, 
LOOPNE, and LOOPNZ instructions also accept the ZF flag as a condition for terminating the loop before the count 
reaches zero.

The LOOP instruction decrements the contents of the ECX register (or the CX register, if the address-size attribute 
is 16), then tests the register for the loop-termination condition. If the count in the ECX register is non-zero, 
program control is transferred to the instruction address specified by the destination operand. The destination 

Table 7-4.  Conditional Jump Instructions 

Instruction Mnemonic Condition (Flag States) Description

Unsigned Conditional Jumps

  JA/JNBE (CF or ZF) = 0 Above/not below or equal

  JAE/JNB CF = 0 Above or equal/not below

  JB/JNAE CF = 1 Below/not above or equal

  JBE/JNA (CF or ZF) = 1 Below or equal/not above

  JC CF = 1 Carry

  JE/JZ ZF = 1 Equal/zero

  JNC CF = 0 Not carry

  JNE/JNZ ZF = 0 Not equal/not zero

  JNP/JPO PF = 0 Not parity/parity odd

  JP/JPE PF = 1 Parity/parity even

  JCXZ CX = 0 Register CX is zero

  JECXZ ECX = 0 Register ECX is zero

Signed Conditional Jumps

  JG/JNLE ((SF xor OF) or ZF) = 0 Greater/not less or equal

  JGE/JNL (SF xor OF) = 0 Greater or equal/not less

  JL/JNGE (SF xor OF) = 1 Less/not greater or equal

  JLE/JNG ((SF xor OF) or ZF) = 1 Less or equal/not greater

  JNO OF = 0 Not overflow

  JNS SF = 0 Not sign (non-negative)

  JO OF = 1 Overflow

  JS SF = 1 Sign (negative)



Vol. 1 7-17

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

operand is a relative address (that is, an offset relative to the contents of the EIP register), and it generally points 
to the first instruction in the block of code that is to be executed in the loop. When the count in the ECX register 
reaches zero, program control is transferred to the instruction immediately following the LOOP instruction, 
which terminates the loop. If the count in the ECX register is zero when the LOOP instruction is first executed, the 
register is pre-decremented to FFFFFFFFH, causing the loop to be executed 232 times.

The LOOPE and LOOPZ instructions perform the same operation (they are mnemonics for the same instruction). 
These instructions operate the same as the LOOP instruction, except that they also test the ZF flag. 

If the count in the ECX register is not zero and the ZF flag is set, program control is transferred to the destination 
operand. When the count reaches zero or the ZF flag is clear, the loop is terminated by transferring program control 
to the instruction immediately following the LOOPE/LOOPZ instruction.

The LOOPNE and LOOPNZ instructions (mnemonics for the same instruction) operate the same as the 
LOOPE/LOOPPZ instructions, except that they terminate the loop if the ZF flag is set. 

Jump if zero instructions — The JECXZ (jump if ECX zero) instruction jumps to the location specified in the desti-
nation operand if the ECX register contains the value zero. This instruction can be used in combination with a loop 
instruction (LOOP, LOOPE, LOOPZ, LOOPNE, or LOOPNZ) to test the ECX register prior to beginning a loop. As 
described in “Loop instructions on page 7-16, the loop instructions decrement the contents of the ECX register 
before testing for zero. If the value in the ECX register is zero initially, it will be decremented to FFFFFFFFH on the 
first loop instruction, causing the loop to be executed 232 times. To prevent this problem, a JECXZ instruction can 
be inserted at the beginning of the code block for the loop, causing a jump out the loop if the EAX register count is 
initially zero. When used with repeated string scan and compare instructions, the JECXZ instruction can determine 
whether the loop terminated because the count reached zero or because the scan or compare conditions were 
satisfied.

The JCXZ (jump if CX is zero) instruction operates the same as the JECXZ instruction when the 16-bit address-size 
attribute is used. Here, the CX register is tested for zero.

7.3.8.3  Control Transfer Instructions in 64-Bit Mode

In 64-bit mode, the operand size for all near branches (CALL, RET, JCC, JCXZ, JMP, and LOOP) is forced to 64 bits. 
The listed instructions update the 64-bit RIP without need for a REX operand-size prefix. 

Near branches in the following operations are forced to 64-bits (regardless of operand size prefixes):
• Truncation of the size of the instruction pointer
• Size of a stack pop or push, due to CALL or RET
• Size of a stack-pointer increment or decrement, due to CALL or RET
• Indirect-branch operand size

Note that the displacement field for relative branches is still limited to 32 bits and the address size for near 
branches is not forced.

Address size determines the register size (CX/ECX/RCX) used for JCXZ and LOOP. It also impacts the address 
calculation for memory indirect branches. Addresses size is 64 bits by default, although it can be over-ridden to 32 
bits (using a prefix).

7.3.8.4  Software Interrupt Instructions

The INT n (software interrupt), INTO (interrupt on overflow), and BOUND (detect value out of range) instructions 
allow a program to explicitly raise a specified interrupt or exception, which in turn causes the handler routine for 
the interrupt or exception to be called.

The INT n instruction can raise any of the processor’s interrupts or exceptions by encoding the vector number or 
the interrupt or exception in the instruction. This instruction can be used to support software generated interrupts 
or to test the operation of interrupt and exception handlers.

The IRET (return from interrupt) instruction returns program control from an interrupt handler to the interrupted 
procedure. The IRET instruction performs a similar operation to the RET instruction. 
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The CALL (call procedure) and RET (return from procedure) instructions allow a jump from one procedure to 
another and a subsequent return to the calling procedure. EFLAGS register contents are automatically stored on 
the stack along with the return instruction pointer when the processor services an interrupt.

The INTO instruction raises the overflow exception if the OF flag is set. If the flag is clear, execution continues 
without raising the exception. This instruction allows software to access the overflow exception handler explicitly to 
check for overflow conditions.

The BOUND instruction compares a signed value against upper and lower bounds, and raises the “BOUND range 
exceeded” exception if the value is less than the lower bound or greater than the upper bound. This instruction is 
useful for operations such as checking an array index to make sure it falls within the range defined for the array.

7.3.8.5  Software Interrupt Instructions in 64-bit Mode and Compatibility Mode

In 64-bit mode, the stack size is 8 bytes wide. IRET must pop 8-byte items off the stack. SS:RSP pops uncondition-
ally. BOUND is not supported.

In compatibility mode, SS:RSP is popped only if the CPL changes.

7.3.9 String Operations

The GP instructions includes a set of string instructions that are designed to access large data structures; these 
are introduced in Section 7.3.9.1. Section 7.3.9.2 describes how REP prefixes can be used with these instructions 
to perform more complex repeated string operations. Certain processors optimize repeated string operations 
with fast-string operation, as described in Section 7.3.9.3. Section 7.3.9.4 explains how string operations can be 
used in 64-bit mode.

7.3.9.1  String Instructions

The MOVS (Move String), CMPS (Compare string), SCAS (Scan string), LODS (Load string), and STOS (Store 
string) instructions permit large data structures, such as alphanumeric character strings, to be moved and exam-
ined in memory. These instructions operate on individual elements in a string, which can be a byte, word, or 
doubleword. The string elements to be operated on are identified with the ESI (source string element) and EDI 
(destination string element) registers. Both of these registers contain absolute addresses (offsets into a segment) 
that point to a string element. 

By default, the ESI register addresses the segment identified with the DS segment register. A segment-override 
prefix allows the ESI register to be associated with the CS, SS, ES, FS, or GS segment register. The EDI register 
addresses the segment identified with the ES segment register; no segment override is allowed for the EDI register. 
The use of two different segment registers in the string instructions permits operations to be performed on strings 
located in different segments. Or by associating the ESI register with the ES segment register, both the source and 
destination strings can be located in the same segment. (This latter condition can also be achieved by loading the 
DS and ES segment registers with the same segment selector and allowing the ESI register to default to the DS 
register.)

The MOVS instruction moves the string element addressed by the ESI register to the location addressed by the EDI 
register. The assembler recognizes three “short forms” of this instruction, which specify the size of the string to be 
moved: MOVSB (move byte string), MOVSW (move word string), and MOVSD (move doubleword string).

The CMPS instruction subtracts the destination string element from the source string element and updates the 
status flags (CF, ZF, OF, SF, PF, and AF) in the EFLAGS register according to the results. Neither string element is 
written back to memory. The assembler recognizes three “short forms” of the CMPS instruction: CMPSB (compare 
byte strings), CMPSW (compare word strings), and CMPSD (compare doubleword strings).

The SCAS instruction subtracts the destination string element from the contents of the EAX, AX, or AL register 
(depending on operand length) and updates the status flags according to the results. The string element and 
register contents are not modified. The following “short forms” of the SCAS instruction specify the operand length: 
SCASB (scan byte string), SCASW (scan word string), and SCASD (scan doubleword string).

The LODS instruction loads the source string element identified by the ESI register into the EAX register (for a 
doubleword string), the AX register (for a word string), or the AL register (for a byte string). The “short forms” for 
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this instruction are LODSB (load byte string), LODSW (load word string), and LODSD (load doubleword string). This 
instruction is usually used in a loop, where other instructions process each element of the string after they are 
loaded into the target register.

The STOS instruction stores the source string element from the EAX (doubleword string), AX (word string), or AL 
(byte string) register into the memory location identified with the EDI register. The “short forms” for this instruc-
tion are STOSB (store byte string), STOSW (store word string), and STOSD (store doubleword string). This instruc-
tion is also normally used in a loop. Here a string is commonly loaded into the register with a LODS instruction, 
operated on by other instructions, and then stored again in memory with a STOS instruction.

The I/O instructions (see Section 7.3.10, “I/O Instructions”) also perform operations on strings in memory.

7.3.9.2  Repeated String Operations

Each of the string instructions described in Section 7.3.9.1 each perform one iteration of a string operation. To 
operate strings longer than a doubleword, the string instructions can be combined with a repeat prefix (REP) to 
create a repeating instruction or be placed in a loop.

When used in string instructions, the ESI and EDI registers are automatically incremented or decremented after 
each iteration of an instruction to point to the next element (byte, word, or doubleword) in the string. String oper-
ations can thus begin at higher addresses and work toward lower ones, or they can begin at lower addresses and 
work toward higher ones. The DF flag in the EFLAGS register controls whether the registers are incremented (DF = 
0) or decremented (DF = 1). The STD and CLD instructions set and clear this flag, respectively.

The following repeat prefixes can be used in conjunction with a count in the ECX register to cause a string instruc-
tion to repeat:
• REP — Repeat while the ECX register not zero.
• REPE/REPZ — Repeat while the ECX register not zero and the ZF flag is set.
• REPNE/REPNZ — Repeat while the ECX register not zero and the ZF flag is clear.

When a string instruction has a repeat prefix, the operation executes until one of the termination conditions spec-
ified by the prefix is satisfied. The REPE/REPZ and REPNE/REPNZ prefixes are used only with the CMPS and SCAS 
instructions. Also, note that a REP STOS instruction is the fastest way to initialize a large block of memory.

7.3.9.3  Fast-String Operation

To improve performance, more recent processors support modifications to the processor’s operation during the 
string store operations initiated with the MOVS, MOVSB, STOS, and STOSB instructions. This optimized operation, 
called fast-string operation, is used when the execution of one of those instructions meets certain initial condi-
tions (see below). Instructions using fast-string operation effectively operate on the string in groups that may 
include multiple elements of the native data size (byte, word, doubleword, or quadword). With fast-string opera-
tion, the processor recognizes interrupts and data breakpoints only on boundaries between these groups. Fast-
string operation is used only if the source and destination addresses both use either the WB or WC memory types.

The initial conditions for fast-string operation are implementation-specific and may vary with the native string size. 
Examples of parameters that may impact the use of fast-string operation include the following:
• the alignment indicated in the EDI and ESI alignment registers;
• the address order of the string operation;
• the value of the initial operation counter (ECX); and
• the difference between the source and destination addresses.

NOTE

Initial conditions for fast-string operation in future Intel 64 or IA-32 processor families may differ 
from above. The Intel® 64 and IA-32 Architectures Optimization Reference Manual may contain 
model-specific information.

Software can disable fast-string operation by clearing the fast-string-enable bit (bit 0) of IA32_MISC_ENABLE 
MSR. However, Intel recommends that system software always enable fast-string operation. 
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When fast-string operation is enabled (because IA32_MISC_ENABLE[0] = 1), some processors may further 
enhance the operation of the REP MOVSB and REP STOSB instructions. A processors supports these enhancements 
if CPUID.(EAX=07H, ECX=0H):EBX[bit 9] is 1. The Intel® 64 and IA-32 Architectures Optimization Reference 
Manual may include model-specific recommendations for use of these enhancements.

The stores produced by fast-string operation may appear to execute out of order. Software dependent upon 
sequential store ordering should not use string operations for the entire data structure to be stored. Data and 
semaphores should be separated. Order-dependent code should write to a discrete semaphore variable after any 
string operations to allow correctly ordered data to be seen by all processors. Atomicity of load and store operations 
is guaranteed only for native data elements of the string with native data size, and only if they are included in a 
single cache line. See Section 8.2.4, “Fast-String Operation and Out-of-Order Stores” of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A.

7.3.9.4  String Operations in 64-Bit Mode

The behavior of MOVS (Move String), CMPS (Compare string), SCAS (Scan string), LODS (Load string), and STOS 
(Store string) instructions in 64-bit mode is similar to their behavior in non-64-bit modes, with the following differ-
ences:
• The source operand is specified by RSI or DS:ESI, depending on the address size attribute of the operation. 
• The destination operand is specified by RDI or DS:EDI, depending on the address size attribute of the 

operation. 
• Operation on 64-bit data is supported by using the REX.W prefix.

When using REP prefixes for string operations in 64-bit mode, the repeat count is specified by RCX or ECX 
(depending on the address size attribute of the operation). The default address size is 64 bits.

7.3.10 I/O Instructions

The IN (input from port to register), INS (input from port to string), OUT (output from register to port), and OUTS 
(output string to port) instructions move data between the processor’s I/O ports and either a register or memory.

The register I/O instructions (IN and OUT) move data between an I/O port and the EAX register (32-bit I/O), the 
AX register (16-bit I/O), or the AL (8-bit I/O) register. The I/O port being read or written to is specified with an 
immediate operand or an address in the DX register. 

The block I/O instructions (INS and OUTS) instructions move blocks of data (strings) between an I/O port and 
memory. These instructions operate similar to the string instructions (see Section 7.3.9, “String Operations”). The 
ESI and EDI registers are used to specify string elements in memory and the repeat prefixes (REP) are used to 
repeat the instructions to implement block moves. The assembler recognizes the following alternate mnemonics for 
these instructions: INSB (input byte), INSW (input word), and INSD (input doubleword), and OUTB (output byte), 
OUTW (output word), and OUTD (output doubleword).

The INS and OUTS instructions use an address in the DX register to specify the I/O port to be read or written to.

7.3.11 I/O Instructions in 64-Bit Mode

For I/O instructions to and from memory, the differences in 64-bit mode are:
• The source operand is specified by RSI or DS:ESI, depending on the address size attribute of the operation. 
• The destination operand is specified by RDI or DS:EDI, depending on the address size attribute of the 

operation. 
• Operation on 64-bit data is not encodable and REX prefixes are silently ignored.
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7.3.12 Enter and Leave Instructions

The ENTER and LEAVE instructions provide machine-language support for procedure calls in block-structured 
languages, such as C and Pascal. These instructions and the call and return mechanism that they support are 
described in detail in Section 6.5, “Procedure Calls for Block-Structured Languages”.

7.3.13 Flag Control (EFLAG) Instructions

The Flag Control (EFLAG) instructions allow the state of selected flags in the EFLAGS register to be read or modi-
fied. For the purpose of this discussion, these instructions are further divided subordinate subgroups of instructions 
that manipulate:
• Carry and direction flags
• The EFLAGS register
• Interrupt flags

7.3.13.1  Carry and Direction Flag Instructions

The STC (set carry flag), CLC (clear carry flag), and CMC (complement carry flag) instructions allow the CF flags in 
the EFLAGS register to be modified directly. They are typically used to initialize the CF flag to a known state before 
an instruction that uses the flag in an operation is executed. They are also used in conjunction with the rotate-with-
carry instructions (RCL and RCR).

The STD (set direction flag) and CLD (clear direction flag) instructions allow the DF flag in the EFLAGS register to 
be modified directly. The DF flag determines the direction in which index registers ESI and EDI are stepped when 
executing string processing instructions. If the DF flag is clear, the index registers are incremented after each iter-
ation of a string instruction; if the DF flag is set, the registers are decremented.

7.3.13.2  EFLAGS Transfer Instructions

The EFLAGS transfer instructions allow groups of flags in the EFLAGS register to be copied to a register or memory 
or be loaded from a register or memory. 

The LAHF (load AH from flags) and SAHF (store AH into flags) instructions operate on five of the EFLAGS status 
flags (SF, ZF, AF, PF, and CF). The LAHF instruction copies the status flags to bits 7, 6, 4, 2, and 0 of the AH register, 
respectively. The contents of the remaining bits in the register (bits 5, 3, and 1) are unaffected, and the contents 
of the EFLAGS register remain unchanged. The SAHF instruction copies bits 7, 6, 4, 2, and 0 from the AH register 
into the SF, ZF, AF, PF, and CF flags, respectively in the EFLAGS register.

The PUSHF (push flags), PUSHFD (push flags double), POPF (pop flags), and POPFD (pop flags double) instructions 
copy the flags in the EFLAGS register to and from the stack. The PUSHF instruction pushes the lower word of the 
EFLAGS register onto the stack (see Figure 7-11). The PUSHFD instruction pushes the entire EFLAGS register onto 
the stack (with the RF and VM flags read as clear).

The POPF instruction pops a word from the stack into the EFLAGS register. Only bits 11, 10, 8, 7, 6, 4, 2, and 0 of 
the EFLAGS register are affected with all uses of this instruction. If the current privilege level (CPL) of the current 

Figure 7-11.  Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD Instructions
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code segment is 0 (most privileged), the IOPL bits (bits 13 and 12) also are affected. If the I/O privilege level 
(IOPL) is greater than or equal to the CPL, numerically, the IF flag (bit 9) also is affected. 

The POPFD instruction pops a doubleword into the EFLAGS register. This instruction can change the state of the AC 
bit (bit 18) and the ID bit (bit 21), as well as the bits affected by a POPF instruction. The restrictions for changing 
the IOPL bits and the IF flag that were given for the POPF instruction also apply to the POPFD instruction.

7.3.13.3  Interrupt Flag Instructions

The STI (set interrupt flag) and CTI (clear interrupt flag) instructions allow the interrupt IF flag in the EFLAGS 
register to be modified directly. The IF flag controls the servicing of hardware-generated interrupts (those received 
at the processor’s INTR pin). If the IF flag is set, the processor services hardware interrupts; if the IF flag is clear, 
hardware interrupts are masked.

The ability to execute these instructions depends on the operating mode of the processor and the current privilege 
level (CPL) of the program or task attempting to execute these instructions.

7.3.14 Flag Control (RFLAG) Instructions in 64-Bit Mode

In 64-bit mode, the LAHF and SAHF instructions are supported if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

PUSHF and POPF behave the same in 64-bit mode as in non-64-bit mode. PUSHFD always pushes 64-bit RFLAGS 
onto the stack (with the RF and VM flags read as clear). POPFD always pops a 64-bit value from the top of the stack 
and loads the lower 32 bits into RFLAGS. It then zero extends the upper bits of RFLAGS.

7.3.15 Segment Register Instructions

The processor provides a variety of instructions that address the segment registers of the processor directly. These 
instructions are only used when an operating system or executive is using the segmented or the real-address mode 
memory model. 

For the purpose of this discussion, these instructions are divided subordinate subgroups of instructions that allow:
• Segment-register load and store
• Far control transfers
• Software interrupt calls
• Handling of far pointers

7.3.15.1  Segment-Register Load and Store Instructions

The MOV instruction (introduced in Section 7.3.1.1, “General Data Movement Instructions”) and the PUSH and POP 
instructions (introduced in Section 7.3.1.4, “Stack Manipulation Instructions”) can transfer 16-bit segment selec-
tors to and from segment registers (DS, ES, FS, GS, and SS). The transfers are always made to or from a segment 
register and a general-purpose register or memory. Transfers between segment registers are not supported.

The POP and MOV instructions cannot place a value in the CS register. Only the far control-transfer versions of the 
JMP, CALL, and RET instructions (see Section 7.3.15.2, “Far Control Transfer Instructions”) affect the CS register 
directly. 

7.3.15.2  Far Control Transfer Instructions

The JMP and CALL instructions (see Section 7.3.8, “Control Transfer Instructions”) both accept a far pointer as a 
source operand to transfer program control to a segment other than the segment currently being pointed to by the 
CS register. When a far call is made with the CALL instruction, the current values of the EIP and CS registers are 
both pushed on the stack.

The RET instruction (see “Call and return instructions” on page 7-15) can be used to execute a far return. Here, 
program control is transferred from a code segment that contains a called procedure back to the code segment that 
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contained the calling procedure. The RET instruction restores the values of the CS and EIP registers for the calling 
procedure from the stack.

7.3.15.3  Software Interrupt Instructions

The software interrupt instructions INT, INTO, BOUND, and IRET (see Section 7.3.8.4, “Software Interrupt Instruc-
tions”) can also call and return from interrupt and exception handler procedures that are located in a code segment 
other than the current code segment. With these instructions, however, the switching of code segments is handled 
transparently from the application program.

7.3.15.4  Load Far Pointer Instructions

The load far pointer instructions LDS (load far pointer using DS), LES (load far pointer using ES), LFS (load far 
pointer using FS), LGS (load far pointer using GS), and LSS (load far pointer using SS) load a far pointer from 
memory into a segment register and a general-purpose general register. The segment selector part of the far 
pointer is loaded into the selected segment register and the offset is loaded into the selected general-purpose 
register.

7.3.16 Miscellaneous Instructions

The following instructions perform operations that are of interest to applications programmers. For the purpose of 
this discussion, these instructions are further divided into subordinate subgroups of instructions that provide for:
• Address computations
• Table lookup
• Processor identification
• NOP and undefined instruction entry

7.3.16.1  Address Computation Instruction

The LEA (load effective address) instruction computes the effective address in memory (offset within a segment) 
of a source operand and places it in a general-purpose register. This instruction can interpret any of the processor’s 
addressing modes and can perform any indexing or scaling that may be needed. It is especially useful for initial-
izing the ESI or EDI registers before the execution of string instructions or for initializing the EBX register before an 
XLAT instruction. 

7.3.16.2  Table Lookup Instructions

The XLAT and XLATB (table lookup) instructions replace the contents of the AL register with a byte read from a 
translation table in memory. The initial value in the AL register is interpreted as an unsigned index into the trans-
lation table. This index is added to the contents of the EBX register (which contains the base address of the table) 
to calculate the address of the table entry. These instructions are used for applications such as converting character 
codes from one alphabet into another (for example, an ASCII code could be used to look up its EBCDIC equivalent 
in a table).

7.3.16.3  Processor Identification Instruction

The CPUID (processor identification) instruction returns information about the processor on which the instruction 
is executed. 

7.3.16.4  No-Operation and Undefined Instructions

The NOP (no operation) instruction increments the EIP register to point at the next instruction, but affects nothing 
else.



7-24 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

The UD2 (undefined) instruction generates an invalid opcode exception. Intel reserves the opcode for this instruc-
tion for this function. The instruction is provided to allow software to test an invalid opcode exception handler.

7.3.17 Random Number Generator Instruction

The RDRAND instruction returns a random number. All Intel processors that support the RDRAND instruction indi-
cate the availability of the RDRAND instruction via reporting CPUID.01H:ECX.RDRAND[bit 30] = 1.
RDRAND returns random numbers that are supplied by a cryptographically secure, deterministic random bit gener-
ator DRBG. The DRBG is designed to meet the NIST SP 800-90A standard. The DRBG is re-seeded frequently from 
a on-chip non-deterministic entropy source to guarantee data returned by RDRAND is statistically uniform, non-
periodic and non-deterministic.
In order for the hardware design to meet its security goals, the random number generator continuously tests itself 
and the random data it is generating. Runtime failures in the random number generator circuitry or statistically 
anomalous data occurring by chance will be detected by the self test hardware and flag the resulting data as being 
bad. In such extremely rare cases, the RDRAND instruction will return no data instead of bad data.
Under heavy load, with multiple cores executing RDRAND in parallel, it is possible, though unlikely, for the demand 
of random numbers by software processes/threads to exceed the rate at which the random number generator 
hardware can supply them. This will lead to the RDRAND instruction returning no data transitorily. The RDRAND 
instruction indicates the occurrence of this rare situation by clearing the CF flag.
The RDRAND instruction returns with the carry flag set (CF = 1) to indicate valid data is returned. It is recom-
mended that software using the RDRAND instruction to get random numbers retry for a limited number of itera-
tions while RDRAND returns CF=0 and complete when valid data is returned, indicated with CF=1. This will deal 
with transitory underflows. A retry limit should be employed to prevent a hard failure in the RNG (expected to be 
extremely rare) leading to a busy loop in software.
The intrinsic primitive for RDRAND is defined to address software’s need for the common cases (CF = 1) and the 
rare situations (CF = 0). The intrinsic primitive returns a value that reflects the value of the carry flag returned by 
the underlying RDRAND instruction. The example below illustrates the recommended usage of an RDRAND intrinsic 
in a utility function, a loop to fetch a 64 bit random value with a retry count limit of 10. A C implementation might 
be written as follows:

----------------------------------------------------------------------------------------
#define SUCCESS 1
#define RETRY_LIMIT_EXCEEDED 0
#define RETRY_LIMIT 10

int get_random_64( unsigned __int 64 * arand)
{int i ; 

for ( i = 0; i < RETRY_LIMIT; i ++) {
if(_rdrand64_step(arand) ) return SUCCESS;

}
return RETRY_LIMIT_EXCEEDED;

}
-------------------------------------------------------------------------------
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CHAPTER 8
PROGRAMMING WITH THE X87 FPU

The x87 Floating-Point Unit (FPU) provides high-performance floating-point processing capabilities for use in 
graphics processing, scientific, engineering, and business applications. It supports the floating-point, integer, and 
packed BCD integer data types and the floating-point processing algorithms and exception handling architecture 
defined in the IEEE Standard 754 for Binary Floating-Point Arithmetic.

This chapter describes the x87 FPU’s execution environment and instruction set. It also provides exception 
handling information that is specific to the x87 FPU. Refer to the following chapters or sections of chapters for addi-
tional information about x87 FPU instructions and floating-point operations:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B, provide detailed descrip-

tions of x87 FPU instructions.
• Section 4.2.2, “Floating-Point Data Types,” Section 4.2.1.2, “Signed Integers,” and Section 4.7, “BCD and 

Packed BCD Integers,” describe the floating-point, integer, and BCD data types.
• Section 4.9, “Overview of Floating-Point Exceptions,” Section 4.9.1, “Floating-Point Exception Conditions,” and 

Section 4.9.2, “Floating-Point Exception Priority,” give an overview of the floating-point exceptions that the x87 
FPU can detect and report.

8.1 X87 FPU EXECUTION ENVIRONMENT

The x87 FPU represents a separate execution environment within the IA-32 architecture (see Figure 8-1). This 
execution environment consists of eight data registers (called the x87 FPU data registers) and the following 
special-purpose registers: 
• Status register
• Control register
• Tag word register
• Last instruction pointer register
• Last data (operand) pointer register
• Opcode register

These registers are described in the following sections.

The x87 FPU executes instructions from the processor’s normal instruction stream. The state of the x87 FPU is inde-
pendent from the state of the basic execution environment and from the state of SSE/SSE2/SSE3 extensions. 

However, the x87 FPU and Intel MMX technology share state because the MMX registers are aliased to the x87 FPU 
data registers. Therefore, when writing code that uses x87 FPU and MMX instructions, the programmer must 
explicitly manage the x87 FPU and MMX state (see Section 9.5, “Compatibility with x87 FPU Architecture”).

8.1.1 x87 FPU in 64-Bit Mode and Compatibility Mode

In compatibility mode and 64-bit mode, x87 FPU instructions function like they do in protected mode. Memory 
operands are specified using the ModR/M, SIB encoding that is described in Section 3.7.5, “Specifying an Offset.”

8.1.2 x87 FPU Data Registers

The x87 FPU data registers (shown in Figure 8-1) consist of eight 80-bit registers. Values are stored in these regis-
ters in the double extended-precision floating-point format shown in Figure 4-3. When floating-point, integer, or 
packed BCD integer values are loaded from memory into any of the x87 FPU data registers, the values are auto-
matically converted into double extended-precision floating-point format (if they are not already in that format). 
When computation results are subsequently transferred back into memory from any of the x87 FPU registers, the 
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results can be left in the double extended-precision floating-point format or converted back into a shorter floating-
point format, an integer format, or the packed BCD integer format. (See Section 8.2, “x87 FPU Data Types,” for a 
description of the data types operated on by the x87 FPU.)

The x87 FPU instructions treat the eight x87 FPU data registers as a register stack (see Figure 8-2). All addressing of 
the data registers is relative to the register on the top of the stack. The register number of the current top-of-stack 
register is stored in the TOP (stack TOP) field in the x87 FPU status word. Load operations decrement TOP by one 
and load a value into the new top-of-stack register, and store operations store the value from the current TOP 
register in memory and then increment TOP by one. (For the x87 FPU, a load operation is equivalent to a push and 
a store operation is equivalent to a pop.) Note that load and store operations are also available that do not push and 
pop the stack.

If a load operation is performed when TOP is at 0, register wraparound occurs and the new value of TOP is set to 7. 
The floating-point stack-overflow exception indicates when wraparound might cause an unsaved value to be over-
written (see Section 8.5.1.1, “Stack Overflow or Underflow Exception (#IS)”).

Many floating-point instructions have several addressing modes that permit the programmer to implicitly operate 
on the top of the stack, or to explicitly operate on specific registers relative to the TOP. Assemblers support these 

Figure 8-1.  x87 FPU Execution Environment

Figure 8-2.  x87 FPU Data Register Stack
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register addressing modes, using the expression ST(0), or simply ST, to represent the current stack top and ST(i) 
to specify the ith register from TOP in the stack (0 ≤ i ≤ 7). For example, if TOP contains 011B (register 3 is the top 
of the stack), the following instruction would add the contents of two registers in the stack (registers 3 and 5):

FADD ST, ST(2);

Figure 8-3 shows an example of how the stack structure of the x87 FPU registers and instructions are typically used 
to perform a series of computations. Here, a two-dimensional dot product is computed, as follows:

1. The first instruction (FLD value1) decrements the stack register pointer (TOP) and loads the value 5.6 from 
memory into ST(0). The result of this operation is shown in snap-shot (a). 

2. The second instruction multiplies the value in ST(0) by the value 2.4 from memory and stores the result in 
ST(0), shown in snap-shot (b).

3. The third instruction decrements TOP and loads the value 3.8 in ST(0).

4. The fourth instruction multiplies the value in ST(0) by the value 10.3 from memory and stores the result in 
ST(0), shown in snap-shot (c).

5. The fifth instruction adds the value and the value in ST(1) and stores the result in ST(0), shown in snap-shot 
(d).

The style of programming demonstrated in this example is supported by the floating-point instruction set. In cases 
where the stack structure causes computation bottlenecks, the FXCH (exchange x87 FPU register contents) 
instruction can be used to streamline a computation.

8.1.2.1  Parameter Passing With the x87 FPU Register Stack

Like the general-purpose registers, the contents of the x87 FPU data registers are unaffected by procedure calls, or 
in other words, the values are maintained across procedure boundaries. A calling procedure can thus use the x87 
FPU data registers (as well as the procedure stack) for passing parameter between procedures. The called proce-
dure can reference parameters passed through the register stack using the current stack register pointer (TOP) 
and the ST(0) and ST(i) nomenclature. It is also common practice for a called procedure to leave a return value or 
result in register ST(0) when returning execution to the calling procedure or program.

Figure 8-3.  Example x87 FPU Dot Product Computation
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Dot Product = (5.6 x 2.4) + (3.8 x 10.3)

Code:
FLD  value1 ;(a) value1 = 5.6
FMUL value2 ;(b) value2 = 2.4
FLD  value3 ; value3 = 3.8
FMUL value4 ;(c)value4 = 10.3
FADD ST(1)  ;(d)
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When mixing MMX and x87 FPU instructions in the procedures or code sequences, the programmer is responsible 
for maintaining the integrity of parameters being passed in the x87 FPU data registers. If an MMX instruction is 
executed before the parameters in the x87 FPU data registers have been passed to another procedure, the param-
eters may be lost (see Section 9.5, “Compatibility with x87 FPU Architecture”).

8.1.3 x87 FPU Status Register

The 16-bit x87 FPU status register (see Figure 8-4) indicates the current state of the x87 FPU. The flags in the x87 
FPU status register include the FPU busy flag, top-of-stack (TOP) pointer, condition code flags, error summary 
status flag, stack fault flag, and exception flags. The x87 FPU sets the flags in this register to show the results of 
operations. 
 

The contents of the x87 FPU status register (referred to as the x87 FPU status word) can be stored in memory using 
the FSTSW/FNSTSW, FSTENV/FNSTENV, FSAVE/FNSAVE, and FXSAVE instructions. It can also be stored in the AX 
register of the integer unit, using the FSTSW/FNSTSW instructions.

8.1.3.1  Top of Stack (TOP) Pointer

A pointer to the x87 FPU data register that is currently at the top of the x87 FPU register stack is contained in bits 
11 through 13 of the x87 FPU status word. This pointer, which is commonly referred to as TOP (for top-of-stack), 
is a binary value from 0 to 7. See Section 8.1.2, “x87 FPU Data Registers,” for more information about the TOP 
pointer.

8.1.3.2  Condition Code Flags

The four condition code flags (C0 through C3) indicate the results of floating-point comparison and arithmetic oper-
ations. Table 8-1 summarizes the manner in which the floating-point instructions set the condition code flags. 
These condition code bits are used principally for conditional branching and for storage of information used in 
exception handling (see Section 8.1.4, “Branching and Conditional Moves on Condition Codes”).

As shown in Table 8-1, the C1 condition code flag is used for a variety of functions. When both the IE and SF flags 
in the x87 FPU status word are set, indicating a stack overflow or underflow exception (#IS), the C1 flag distin-
guishes between overflow (C1 = 1) and underflow (C1 = 0). When the PE flag in the status word is set, indicating 
an inexact (rounded) result, the C1 flag is set to 1 if the last rounding by the instruction was upward. The FXAM 
instruction sets C1 to the sign of the value being examined.

Figure 8-4.  x87 FPU Status Word

FPU Busy

15 1314 11 10 9 8 7 6 5 4 3 2 1 0

B I
E

P
E

O
E

U
E

Z
E

D
ETOP

Top of Stack Pointer

Exception Flags
   Precision
   Underflow
   Overflow
   Zero Divide
   Denormalized Operand
   Invalid Operation

Stack Fault
Error Summary Status

Condition
   Code

C
2

C
1

C
0

E
S

S
F

C
3



Vol. 1 8-5

PROGRAMMING WITH THE X87 FPU

The C2 condition code flag is used by the FPREM and FPREM1 instructions to indicate an incomplete reduction (or 
partial remainder). When a successful reduction has been completed, the C0, C3, and C1 condition code flags are 
set to the three least-significant bits of the quotient (Q2, Q1, and Q0, respectively). See “FPREM1—Partial 
Remainder” in Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A, for more information on how these instructions use the condition code flags.

The FPTAN, FSIN, FCOS, and FSINCOS instructions set the C2 flag to 1 to indicate that the source operand is 
beyond the allowable range of ±263 and clear the C2 flag if the source operand is within the allowable range.

Where the state of the condition code flags are listed as undefined in Table 8-1, do not rely on any specific value in 
these flags.

8.1.3.3  x87 FPU Floating-Point Exception Flags

The six x87 FPU floating-point exception flags (bits 0 through 5) of the x87 FPU status word indicate that one or 
more floating-point exceptions have been detected since the bits were last cleared. The individual exception flags 
(IE, DE, ZE, OE, UE, and PE) are described in detail in Section 8.4, “x87 FPU Floating-Point Exception Handling.” 
Each of the exception flags can be masked by an exception mask bit in the x87 FPU control word (see Section 8.1.5, 
“x87 FPU Control Word”). The exception summary status flag (ES, bit 7) is set when any of the unmasked exception 
flags are set. When the ES flag is set, the x87 FPU exception handler is invoked, using one of the techniques 
described in Section 8.7, “Handling x87 FPU Exceptions in Software.” (Note that if an exception flag is masked, the 
x87 FPU will still set the appropriate flag if the associated exception occurs, but it will not set the ES flag.) 

The exception flags are “sticky” bits (once set, they remain set until explicitly cleared). They can be cleared by 
executing the FCLEX/FNCLEX (clear exceptions) instructions, by reinitializing the x87 FPU with the FINIT/FNINIT or 
FSAVE/FNSAVE instructions, or by overwriting the flags with an FRSTOR or FLDENV instruction.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of the ES flag.

Table 8-1.  Condition Code Interpretation

Instruction C0 C3 C2 C1

FCOM, FCOMP, FCOMPP, FICOM, FICOMP, FTST, 
FUCOM, FUCOMP, FUCOMPP 

Result of Comparison Operands 
are not 
Comparable

0 or #IS

FCOMI, FCOMIP, FUCOMI, FUCOMIP Undefined. (These instructions set the 
status flags in the EFLAGS register.)

#IS

FXAM  Operand class Sign

FPREM, FPREM1 Q2 Q1 0 = reduction 
complete

1 = reduction 
incomplete

Q0 or #IS

F2XM1, FADD, FADDP, FBSTP, FCMOVcc, 
FIADD, FDIV, FDIVP, FDIVR, FDIVRP, FIDIV, 
FIDIVR, FIMUL, FIST, FISTP, FISUB, 
FISUBR,FMUL, FMULP, FPATAN, FRNDINT, 
FSCALE, FST, FSTP, FSUB, FSUBP, FSUBR, 
FSUBRP,FSQRT, FYL2X, FYL2XP1

Undefined Roundup or #IS

FCOS, FSIN, FSINCOS, FPTAN Undefined 0 = source 
operand within 
range
1 = source 
operand out of 
range

Roundup or #IS 
(Undefined if C2 = 
1)

FABS, FBLD, FCHS, FDECSTP, FILD, FINCSTP, 
FLD, Load Constants, FSTP (ext. prec.), FXCH, 
FXTRACT 

Undefined 0 or #IS
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8.1.3.4  Stack Fault Flag

The stack fault flag (bit 6 of the x87 FPU status word) indicates that stack overflow or stack underflow has occurred 
with data in the x87 FPU data register stack. The x87 FPU explicitly sets the SF flag when it detects a stack overflow 
or underflow condition, but it does not explicitly clear the flag when it detects an invalid-arithmetic-operand condi-
tion. 

When this flag is set, the condition code flag C1 indicates the nature of the fault: overflow (C1 = 1) and under-
flow (C1 = 0). The SF flag is a “sticky” flag, meaning that after it is set, the processor does not clear it until it is 
explicitly instructed to do so (for example, by an FINIT/FNINIT, FCLEX/FNCLEX, or FSAVE/FNSAVE instruction). 

See Section 8.1.7, “x87 FPU Tag Word,” for more information on x87 FPU stack faults.

8.1.4 Branching and Conditional Moves on Condition Codes

The x87 FPU (beginning with the P6 family processors) supports two mechanisms for branching and performing 
conditional moves according to comparisons of two floating-point values. These mechanism are referred to here as 
the “old mechanism” and the “new mechanism.” 

The old mechanism is available in x87 FPU’s prior to the P6 family processors and in P6 family processors. This 
mechanism uses the floating-point compare instructions (FCOM, FCOMP, FCOMPP, FTST, FUCOMPP, FICOM, and 
FICOMP) to compare two floating-point values and set the condition code flags (C0 through C3) according to the 
results. The contents of the condition code flags are then copied into the status flags of the EFLAGS register using 
a two step process (see Figure 8-5):

1. The FSTSW AX instruction moves the x87 FPU status word into the AX register.

2. The SAHF instruction copies the upper 8 bits of the AX register, which includes the condition code flags, into the 
lower 8 bits of the EFLAGS register.

When the condition code flags have been loaded into the EFLAGS register, conditional jumps or conditional moves 
can be performed based on the new settings of the status flags in the EFLAGS register.

FLDENV, FRSTOR Each bit loaded from memory

FFREE, FLDCW, FCLEX/FNCLEX, FNOP, 
FSTCW/FNSTCW, FSTENV/FNSTENV, 
FSTSW/FNSTSW, 

Undefined

FINIT/FNINIT, FSAVE/FNSAVE 0 0 0 0

Figure 8-5.  Moving the Condition Codes to the EFLAGS Register
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The new mechanism is available beginning with the P6 family processors. Using this mechanism, the new floating-
point compare and set EFLAGS instructions (FCOMI, FCOMIP, FUCOMI, and FUCOMIP) compare two floating-point 
values and set the ZF, PF, and CF flags in the EFLAGS register directly. A single instruction thus replaces the three 
instructions required by the old mechanism.

Note also that the FCMOVcc instructions (also new in the P6 family processors) allow conditional moves of floating-
point values (values in the x87 FPU data registers) based on the setting of the status flags (ZF, PF, and CF) in the 
EFLAGS register. These instructions eliminate the need for an IF statement to perform conditional moves of 
floating-point values.

8.1.5 x87 FPU Control Word

The 16-bit x87 FPU control word (see Figure 8-6) controls the precision of the x87 FPU and rounding method used. 
It also contains the x87 FPU floating-point exception mask bits. The control word is cached in the x87 FPU control 
register. The contents of this register can be loaded with the FLDCW instruction and stored in memory with the 
FSTCW/FNSTCW instructions.

When the x87 FPU is initialized with either an FINIT/FNINIT or FSAVE/FNSAVE instruction, the x87 FPU control 
word is set to 037FH, which masks all floating-point exceptions, sets rounding to nearest, and sets the x87 FPU 
precision to 64 bits.

8.1.5.1  x87 FPU Floating-Point Exception Mask Bits

The exception-flag mask bits (bits 0 through 5 of the x87 FPU control word) mask the 6 floating-point exception 
flags in the x87 FPU status word. When one of these mask bits is set, its corresponding x87 FPU floating-point 
exception is blocked from being generated.

8.1.5.2  Precision Control Field

The precision-control (PC) field (bits 8 and 9 of the x87 FPU control word) determines the precision (64, 53, or 24 
bits) of floating-point calculations made by the x87 FPU (see Table 8-2). The default precision is double extended 
precision, which uses the full 64-bit significand available with the double extended-precision floating-point format 
of the x87 FPU data registers. This setting is best suited for most applications, because it allows applications to take 
full advantage of the maximum precision available with the x87 FPU data registers.

Figure 8-6.  x87 FPU Control Word
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The double precision and single precision settings reduce the size of the significand to 53 bits and 24 bits, respec-
tively. These settings are provided to support IEEE Standard 754 and to provide compatibility with the specifica-
tions of certain existing programming languages. Using these settings nullifies the advantages of the double 
extended-precision floating-point format's 64-bit significand length. When reduced precision is specified, the 
rounding of the significand value clears the unused bits on the right to zeros. 

The precision-control bits only affect the results of the following floating-point instructions: FADD, FADDP, FIADD, 
FSUB, FSUBP, FISUB, FSUBR, FSUBRP, FISUBR, FMUL, FMULP, FIMUL, FDIV, FDIVP, FIDIV, FDIVR, FDIVRP, FIDIVR, 
and FSQRT.

8.1.5.3  Rounding Control Field

The rounding-control (RC) field of the x87 FPU control register (bits 10 and 11) controls how the results of x87 FPU 
floating-point instructions are rounded. See Section 4.8.4, “Rounding,” for a discussion of rounding of floating-
point values; See Section 4.8.4.1, “Rounding Control (RC) Fields”, for the encodings of the RC field.

8.1.6 Infinity Control Flag

The infinity control flag (bit 12 of the x87 FPU control word) is provided for compatibility with the Intel 287 Math 
Coprocessor; it is not meaningful for later version x87 FPU coprocessors or IA-32 processors. See Section 4.8.3.3, 
“Signed Infinities,” for information on how the x87 FPUs handle infinity values.

8.1.7 x87 FPU Tag Word

The 16-bit tag word (see Figure 8-7) indicates the contents of each the 8 registers in the x87 FPU data-register 
stack (one 2-bit tag per register). The tag codes indicate whether a register contains a valid number, zero, or a 
special floating-point number (NaN, infinity, denormal, or unsupported format), or whether it is empty. The x87 
FPU tag word is cached in the x87 FPU in the x87 FPU tag word register. When the x87 FPU is initialized with either 
an FINIT/FNINIT or FSAVE/FNSAVE instruction, the x87 FPU tag word is set to FFFFH, which marks all the x87 FPU 
data registers as empty.
.

Each tag in the x87 FPU tag word corresponds to a physical register (numbers 0 through 7). The current top-of-
stack (TOP) pointer stored in the x87 FPU status word can be used to associate tags with registers relative to ST(0).

Table 8-2.  Precision Control Field (PC)

Precision PC Field

Single Precision (24 bits) 00B

Reserved 01B

Double Precision (53 bits) 10B

Double Extended Precision (64 bits) 11B

Figure 8-7.  x87 FPU Tag Word
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TAG Values

TAG(7) TAG(5)TAG(6) TAG(4) TAG(3) TAG(2) TAG(1) TAG(0)

00 — Valid
01 — Zero
10 — Special: invalid (NaN, unsupported), infinity, or denormal
11 — Empty
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The x87 FPU uses the tag values to detect stack overflow and underflow conditions (see Section 8.5.1.1, “Stack 
Overflow or Underflow Exception (#IS)”).

Application programs and exception handlers can use this tag information to check the contents of an x87 FPU data 
register without performing complex decoding of the actual data in the register. To read the tag register, it must be 
stored in memory using either the FSTENV/FNSTENV or FSAVE/FNSAVE instructions. The location of the tag word 
in memory after being saved with one of these instructions is shown in Figures 8-9 through 8-12.

Software cannot directly load or modify the tags in the tag register. The FLDENV and FRSTOR instructions load an 
image of the tag register into the x87 FPU; however, the x87 FPU uses those tag values only to determine if the 
data registers are empty (11B) or non-empty (00B, 01B, or 10B). 

If the tag register image indicates that a data register is empty, the tag in the tag register for that data register is 
marked empty (11B); if the tag register image indicates that the data register is non-empty, the x87 FPU reads the 
actual value in the data register and sets the tag for the register accordingly. This action prevents a program from 
setting the values in the tag register to incorrectly represent the actual contents of non-empty data registers.

8.1.8 x87 FPU Instruction and Data (Operand) Pointers

The x87 FPU stores pointers to the instruction and data (operand) for the last non-control instruction executed. 
These are the x87 FPU instruction pointer and x87 FPU data (operand) pointers; software can save these pointers 
to provide state information for exception handlers. The pointers are illustrated in Figure 8-1 (the figure illustrates 
the pointers as used outside 64-bit mode; see below).

Note that the value in the x87 FPU data pointer register is always a pointer to a memory operand, If the last non-
control instruction that was executed did not have a memory operand, the value in the data pointer register is 
undefined (reserved).

The contents of the x87 FPU instruction and data pointer registers remain unchanged when any of the control 
instructions (FCLEX/FNCLEX, FLDCW, FSTCW/FNSTCW, FSTSW/FNSTSW, FSTENV/FNSTENV, FLDENV, and 
WAIT/FWAIT) are executed.

For all the x87 FPUs and NPXs except the 8087, the x87 FPU instruction pointer points to any prefixes that preceded 
the instruction. For the 8087, the x87 FPU instruction pointer points only to the actual opcode.

The x87 FPU instruction and data pointers each consists of an offset and a segment selector. On processors that 
support IA-32e mode, each offset comprises 64 bits; on other processors, each offset comprises 32 bits. Each 
segment selector comprises 16 bits.

The pointers are accessed by the FINIT/FNINIT, FLDENV, FRSTOR, FSAVE/FNSAVE, FSTENV/FNSTENV, FXRSTOR, 
FXSAVE, XRSTOR, XSAVE, and XSAVEOPT instructions as follows:
• FINIT/FNINIT. Each instruction clears each 64-bit offset and 16-bit segment selector.
• FLDENV, FRSTOR. These instructions use the memory formats given in Figures 8-9 through 8-12:

— For each 64-bit offset, each instruction loads the lower 32 bits from memory and clears the upper 32 bits.

— If CR0.PE = 1, each instruction loads each 16-bit segment selector from memory; otherwise, it clears each 
16-bit segment selector.

• FSAVE/FNSAVE, FSTENV/FNSTENV. These instructions use the memory formats given in Figures 8-9 through 
8-12.

— Each instruction saves the lower 32 bits of each 64-bit offset into memory. the upper 32 bits are not saved.

— If CR0.PE = 1, each instruction saves each 16-bit segment selector into memory. If 
CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the processor deprecates the segment selectors of the x87 
FPU instruction and data pointers; it saves each segment selector as 0000H.

— After saving these data into memory, FSAVE/FNSAVE clears each 64-bit offset and 16-bit segment selector.
• FXRSTOR, XRSTOR. These instructions load data from a memory image whose format depend on operating 

mode and the REX prefix. The memory formats are given in Tables 3-53, 3-56, and 3-57 in Chapter 3, 
“Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A.

— Outside of 64-bit mode or if REX.W = 0, the instructions operate as follows:
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• For each 64-bit offset, each instruction loads the lower 32 bits from memory and clears the upper 32 
bits.

• Each instruction loads each 16-bit segment selector from memory.

— In 64-bit mode with REX.W = 1, the instructions operate as follows:

• Each instruction loads each 64-bit offset from memory.

• Each instruction clears each 16-bit segment selector.
• FXSAVE, XSAVE, and XSAVEOPT. These instructions store data into a memory image whose format depend on 

operating mode and the REX prefix. The memory formats are given in Tables 3-53, 3-56, and 3-57 in Chapter 
3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A.

— Outside of 64-bit mode or if REX.W = 0, the instructions operate as follows:

• Each instruction saves the lower 32 bits of each 64-bit offset into memory. The upper 32 bits are not 
saved.

• Each instruction saves each 16-bit segment selector into memory. If 
CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the processor deprecates the segment selectors of the 
x87 FPU instruction and data pointers; it saves each segment selector as 0000H.

— In 64-bit mode with REX.W = 1, each instruction saves each 64-bit offset into memory. The 16-bit segment 
selectors are not saved.

8.1.9 Last Instruction Opcode

The x87 FPU stores the opcode of the last non-control instruction executed in an 11-bit x87 FPU opcode register. 
(This information provides state information for exception handlers.) Only the first and second opcode bytes (after 
all prefixes) are stored in the x87 FPU opcode register. Figure 8-8 shows the encoding of these two bytes. Since the 
upper 5 bits of the first opcode byte are the same for all floating-point opcodes (11011B), only the lower 3 bits of 
this byte are stored in the opcode register.

8.1.9.1  Fopcode Compatibility Sub-mode

Beginning with the Pentium 4 and Intel Xeon processors, the IA-32 architecture provides program control over the 
storing of the last instruction opcode (sometimes referred to as the fopcode). Here, bit 2 of the 
IA32_MISC_ENABLE MSR enables (set) or disables (clear) the fopcode compatibility mode. 

If FOP code compatibility mode is enabled, the FOP is defined as it has always been in previous IA32 implementa-
tions (always defined as the FOP of the last non-transparent FP instruction executed before a 
FSAVE/FSTENV/FXSAVE). If FOP code compatibility mode is disabled (default), FOP is only valid if the last non-trans-
parent FP instruction executed before a FSAVE/FSTENV/FXSAVE had an unmasked exception.

Figure 8-8.  Contents of x87 FPU Opcode Registers
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The fopcode compatibility mode should be enabled only when x87 FPU floating-point exception handlers are 
designed to use the fopcode to analyze program performance or restart a program after an exception has been 
handled.

8.1.10 Saving the x87 FPU’s State with FSTENV/FNSTENV and FSAVE/FNSAVE

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions store x87 FPU state information in memory for use by 
exception handlers and other system and application software. The FSTENV/FNSTENV instruction saves the 
contents of the status, control, tag, x87 FPU instruction pointer, x87 FPU data pointer, and opcode registers. The 
FSAVE/FNSAVE instruction stores that information plus the contents of the x87 FPU data registers. Note that the 
FSAVE/FNSAVE instruction also initializes the x87 FPU to default values (just as the FINIT/FNINIT instruction does) 
after it has saved the original state of the x87 FPU.

The manner in which this information is stored in memory depends on the operating mode of the processor 
(protected mode or real-address mode) and on the operand-size attribute in effect (32-bit or 16-bit). See Figures 
8-9 through 8-12. In virtual-8086 mode or SMM, the real-address mode formats shown in Figure 8-12 is used. See 
Chapter 34, “System Management Mode,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3C, for information on using the x87 FPU while in SMM.

The FLDENV and FRSTOR instructions allow x87 FPU state information to be loaded from memory into the x87 FPU. 
Here, the FLDENV instruction loads only the status, control, tag, x87 FPU instruction pointer, x87 FPU data pointer, 
and opcode registers, and the FRSTOR instruction loads all the x87 FPU registers, including the x87 FPU stack 
registers. 

Figure 8-9.  Protected Mode x87 FPU State Image in Memory, 32-Bit Format

Figure 8-10.  Real Mode x87 FPU State Image in Memory, 32-Bit Format
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For instructions that also store x87 FPU data registers, the eight 
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8.1.11 Saving the x87 FPU’s State with FXSAVE

The FXSAVE and FXRSTOR instructions save and restore, respectively, the x87 FPU state along with the state of the 
XMM registers and the MXCSR register. Using the FXSAVE instruction to save the x87 FPU state has two benefits: 
(1) FXSAVE executes faster than FSAVE, and (2) FXSAVE saves the entire x87 FPU, MMX, and XMM state in one 
operation. See Section 10.5, “FXSAVE and FXRSTOR Instructions,” for additional information about these instruc-
tions.

8.2 X87 FPU DATA TYPES

The x87 FPU recognizes and operates on the following seven data types (see Figures 8-13): single-precision 
floating point, double-precision floating point, double extended-precision floating point, signed word integer, 
signed doubleword integer, signed quadword integer, and packed BCD decimal integers. 

For detailed information about these data types, see Section 4.2.2, “Floating-Point Data Types,” Section 4.2.1.2, 
“Signed Integers,” and Section 4.7, “BCD and Packed BCD Integers.”

With the exception of the 80-bit double extended-precision floating-point format, all of these data types exist in 
memory only. When they are loaded into x87 FPU data registers, they are converted into double extended-preci-
sion floating-point format and operated on in that format.

Denormal values are also supported in each of the floating-point types, as required by IEEE Standard 754. When a 
denormal number in single-precision or double-precision floating-point format is used as a source operand and the 
denormal exception is masked, the x87 FPU automatically normalizes the number when it is converted to double 
extended-precision format.

Figure 8-11.  Protected Mode x87 FPU State Image in Memory, 16-Bit Format

Figure 8-12.  Real Mode x87 FPU State Image in Memory, 16-Bit Format
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When stored in memory, the least significant byte of an x87 FPU data-type value is stored at the initial address 
specified for the value. Successive bytes from the value are then stored in successively higher addresses in 
memory. The floating-point instructions load and store memory operands using only the initial address of the 
operand. 

As a general rule, values should be stored in memory in double-precision format. This format provides sufficient 
range and precision to return correct results with a minimum of programmer attention. The single-precision format 
is useful for debugging algorithms, because rounding problems will manifest themselves more quickly in this 
format. The double extended-precision format is normally reserved for holding intermediate results in the x87 FPU 
registers and constants. Its extra length is designed to shield final results from the effects of rounding and over-
flow/underflow in intermediate calculations. However, when an application requires the maximum range and preci-
sion of the x87 FPU (for data storage, computations, and results), values can be stored in memory in double 
extended-precision format.

8.2.1 Indefinites

For each x87 FPU data type, one unique encoding is reserved for representing the special value indefinite. The 
x87 FPU produces indefinite values as responses to some masked floating-point invalid-operation exceptions. See 
Tables 4-1, 4-3, and 4-4 for the encoding of the integer indefinite, QNaN floating-point indefinite, and packed BCD 
integer indefinite, respectively. 

The binary integer encoding 100..00B represents either of two things, depending on the circumstances of its use:
• The largest negative number supported by the format (–215, –231, or –263)
• The integer indefinite value

If this encoding is used as a source operand (as in an integer load or integer arithmetic instruction), the x87 FPU 
interprets it as the largest negative number representable in the format being used. If the x87 FPU detects an 
invalid operation when storing an integer value in memory with an FIST/FISTP instruction and the invalid-operation 

Figure 8-13.  x87 FPU Data Type Formats
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exception is masked, the x87 FPU stores the integer indefinite encoding in the destination operand as a masked 
response to the exception. In situations where the origin of a value with this encoding may be ambiguous, the 
invalid-operation exception flag can be examined to see if the value was produced as a response to an exception.

8.2.2 Unsupported Double Extended-Precision 
Floating-Point Encodings and Pseudo-Denormals

The double extended-precision floating-point format permits many encodings that do not fall into any of the cate-
gories shown in Table 4-3. Table 8-3 shows these unsupported encodings. Some of these encodings were supported 
by the Intel 287 math coprocessor; however, most of them are not supported by the Intel 387 math coprocessor 
and later IA-32 processors. These encodings are no longer supported due to changes made in the final version of 
IEEE Standard 754 that eliminated these encodings.

Specifically, the categories of encodings formerly known as pseudo-NaNs, pseudo-infinities, and un-normal 
numbers are not supported and should not be used as operand values. The Intel 387 math coprocessor and later 
IA-32 processors generate an invalid-operation exception when these encodings are encountered as operands.

Beginning with the Intel 387 math coprocessor, the encodings formerly known as pseudo-denormal numbers are 
not generated by IA-32 processors. When encountered as operands, however, they are handled correctly; that is, 
they are treated as denormals and a denormal exception is generated. Pseudo-denormal numbers should not be 
used as operand values. They are supported by current IA-32 processors (as described here) to support legacy 
code.

Table 8-3.  Unsupported Double Extended-Precision Floating-Point Encodings and Pseudo-Denormals

Class Sign Biased Exponent
Significand

Integer Fraction

Positive 
Pseudo-NaNs Quiet

0
.
0

11..11
.

11..11

0 11..11
.

10..00

Signaling

0
.
0

11..11
.

11..11

0  01..11
.

00..01

Positive Floating Point Pseudo-infinity 0 11..11 0 00..00

Unnormals

0
.
0

11..10
.

00..01

0 11..11
.

00..00

Pseudo-denormals 0
.
0

00..00
.

00..00

1 11..11
.

00..00

Negative Floating Point Pseudo-denormals 1
.
1

00..00
.

00..00

1 11..11
.

00..00

Unnormals

1
.
1

11..10
.

00..01

0 11..01
.

00..00

Pseudo-infinity 1 11..11 0 00..00

Negative Pseudo-NaNs

Signaling

1
.
1

11..11
.

11..11

0 01..11
.

00..01

Quiet

1
.
1

11..11
.

11..11

0 11..11
.

10..00

← 15 bits → ← 63 bits →
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8.3 X86 FPU INSTRUCTION SET

The floating-point instructions that the x87 FPU supports can be grouped into six functional categories:
• Data transfer instructions
• Basic arithmetic instructions
• Comparison instructions
• Transcendental instructions
• Load constant instructions
• x87 FPU control instructions

See Section 5.2, “x87 FPU Instructions,” for a list of the floating-point instructions by category.

The following section briefly describes the instructions in each category. Detailed descriptions of the floating-point 
instructions are given in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A & 3B. 

8.3.1 Escape (ESC) Instructions

All of the instructions in the x87 FPU instruction set fall into a class of instructions known as escape (ESC) instruc-
tions. All of these instructions have a common opcode format, where the first byte of the opcode is one of the 
numbers from D8H through DFH.

8.3.2 x87 FPU Instruction Operands

Most floating-point instructions require one or two operands, located on the x87 FPU data-register stack or in 
memory. (None of the floating-point instructions accept immediate operands.) 

When an operand is located in a data register, it is referenced relative to the ST(0) register (the register at the top 
of the register stack), rather than by a physical register number. Often the ST(0) register is an implied operand.

Operands in memory can be referenced using the same operand addressing methods described in Section 3.7, 
“Operand Addressing.”

8.3.3 Data Transfer Instructions

The data transfer instructions (see Table 8-4) perform the following operations:
• Load a floating-point, integer, or packed BCD operand from memory into the ST(0) register.
• Store the value in an ST(0) register to memory in floating-point, integer, or packed BCD format.
• Move values between registers in the x87 FPU register stack.

The FLD (load floating point) instruction pushes a floating-point operand from memory onto the top of the x87 FPU 
data-register stack. If the operand is in single-precision or double-precision floating-point format, it is automati-
cally converted to double extended-precision floating-point format. This instruction can also be used to push the 
value in a selected x87 FPU data register onto the top of the register stack.

The FILD (load integer) instruction converts an integer operand in memory into double extended-precision 
floating-point format and pushes the value onto the top of the register stack. The FBLD (load packed decimal) 
instruction performs the same load operation for a packed BCD operand in memory.
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The FST (store floating point) and FIST (store integer) instructions store the value in register ST(0) in memory in 
the destination format (floating point or integer, respectively). Again, the format conversion is carried out automat-
ically.

The FSTP (store floating point and pop), FISTP (store integer and pop), and FBSTP (store packed decimal and pop) 
instructions store the value in the ST(0) registers into memory in the destination format (floating point, integer, or 
packed BCD), then performs a pop operation on the register stack. A pop operation causes the ST(0) register to be 
marked empty and the stack pointer (TOP) in the x87 FPU control work to be incremented by 1. The FSTP instruc-
tion can also be used to copy the value in the ST(0) register to another x87 FPU register [ST(i)].

The FXCH (exchange register contents) instruction exchanges the value in a selected register in the stack [ST(i)] 
with the value in ST(0).

The FCMOVcc (conditional move) instructions move the value in a selected register in the stack [ST(i)] to register 
ST(0) if a condition specified with a condition code (cc) is satisfied (see Table 8-5). The condition being tested for 
is represented by the status flags in the EFLAGS register. The condition code mnemonics are appended to the 
letters “FCMOV” to form the mnemonic for a FCMOVcc instruction.

Like the CMOVcc instructions, the FCMOVcc instructions are useful for optimizing small IF constructions. They also 
help eliminate branching overhead for IF operations and the possibility of branch mispredictions by the processor. 

Software can check if the FCMOVcc instructions are supported by checking the processor’s feature information with 
the CPUID instruction.

Table 8-4.  Data Transfer Instructions

Floating Point Integer Packed Decimal

FLD Load Floating Point FILD Load Integer FBLD Load Packed
Decimal

FST Store Floating Point FIST Store Integer

FSTP Store Floating Point and 
Pop

FISTP Store Integer
and Pop

FBSTP Store Packed
Decimal and Pop

FXCH Exchange Register 
Contents

FCMOVcc Conditional Move

Table 8-5.  Floating-Point Conditional Move Instructions

Instruction Mnemonic Status Flag States Condition Description

FCMOVB CF=1 Below

FCMOVNB CF=0 Not below

FCMOVE ZF=1 Equal

FCMOVNE ZF=0 Not equal

Instruction Mnemonic Status Flag States Condition Description

FCMOVBE CF=1 or ZF=1 Below or equal

FCMOVNBE CF=0 or ZF=0 Not below nor equal

FCMOVU PF=1 Unordered

FCMOVNU PF=0 Not unordered
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8.3.4 Load Constant Instructions

The following instructions push commonly used constants onto the top [ST(0)] of the x87 FPU register stack:

FLDZ Load +0.0
FLD1 Load +1.0
FLDPI Load π
FLDL2T Load log2 10
FLDL2E Load log2e
FLDLG2 Load log102
FLDLN2 Load loge2

The constant values have full double extended-precision floating-point precision (64 bits) and are accurate to 
approximately 19 decimal digits. They are stored internally in a format more precise than double extended-preci-
sion floating point. When loading the constant, the x87 FPU rounds the more precise internal constant according 
to the RC (rounding control) field of the x87 FPU control word. The inexact-result exception (#P) is not generated 
as a result of this rounding, nor is the C1 flag set in the x87 FPU status word if the value is rounded up. See 
Section 8.3.8, “Pi,” for information on the π constant.

8.3.5 Basic Arithmetic Instructions

The following floating-point instructions perform basic arithmetic operations on floating-point numbers. Where 
applicable, these instructions match IEEE Standard 754:
FADD/FADDP Add floating point
FIADD Add integer to floating point
FSUB/FSUBP Subtract floating point
FISUB Subtract integer from floating point
FSUBR/FSUBRP Reverse subtract floating point
FISUBR Reverse subtract floating point from integer
FMUL/FMULP Multiply floating point
FIMUL Multiply integer by floating point
FDIV/FDIVP Divide floating point
FIDIV Divide floating point by integer
FDIVR/FDIVRP Reverse divide
FIDIVR Reverse divide integer by floating point
FABS Absolute value
FCHS Change sign
FSQRT Square root
FPREM Partial remainder
FPREM1 IEEE partial remainder
FRNDINT Round to integral value
FXTRACT Extract exponent and significand

The add, subtract, multiply and divide instructions operate on the following types of operands:
• Two x87 FPU data registers
• An x87 FPU data register and a floating-point or integer value in memory

See Section 8.1.2, “x87 FPU Data Registers,” for a description of how operands are referenced on the data register 
stack.

Operands in memory can be in single-precision floating-point, double-precision floating-point, word-integer, or 
doubleword-integer format. They are converted to double extended-precision floating-point format automatically.
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Reverse versions of the subtract (FSUBR) and divide (FDIVR) instructions enable efficient coding. For example, the 
following options are available with the FSUB and FSUBR instructions for operating on values in a specified x87 FPU 
data register ST(i) and the ST(0) register:

FSUB:
ST(0) ← ST(0) − ST(i)

ST(i) ← ST(i) − ST(0)

FSUBR:
ST(0) ← ST(i) − ST(0)

ST(i) ← ST(0) − ST(i)

These instructions eliminate the need to exchange values between the ST(0) register and another x87 FPU register 
to perform a subtraction or division.

The pop versions of the add, subtract, multiply, and divide instructions offer the option of popping the x87 FPU 
register stack following the arithmetic operation. These instructions operate on values in the ST(i) and ST(0) regis-
ters, store the result in the ST(i) register, and pop the ST(0) register.

The FPREM instruction computes the remainder from the division of two operands in the manner used by the Intel 
8087 and Intel 287 math coprocessors; the FPREM1 instruction computes the remainder in the manner specified in 
IEEE Standard 754.

The FSQRT instruction computes the square root of the source operand.

The FRNDINT instruction returns a floating-point value that is the integral value closest to the source value in the 
direction of the rounding mode specified in the RC field of the x87 FPU control word.

The FABS, FCHS, and FXTRACT instructions perform convenient arithmetic operations. The FABS instruction 
produces the absolute value of the source operand. The FCHS instruction changes the sign of the source operand. 
The FXTRACT instruction separates the source operand into its exponent and fraction and stores each value in a 
register in floating-point format.

8.3.6 Comparison and Classification Instructions

The following instructions compare or classify floating-point values:

FCOM/FCOMP/FCOMPPCompare floating point and set x87 FPU
condition code flags.

FUCOM/FUCOMP/FUCOMPPUnordered compare floating point and set 
x87 FPU condition code flags.

FICOM/FICOMPCompare integer and set x87 FPU 
condition code flags.

FCOMI/FCOMIPCompare floating point and set EFLAGS 
status flags.

FUCOMI/FUCOMIPUnordered compare floating point and 
set EFLAGS status flags.

FTST Test (compare floating point with 0.0).
FXAMExamine.

Comparison of floating-point values differ from comparison of integers because floating-point values have four 
(rather than three) mutually exclusive relationships: less than, equal, greater than, and unordered.

The unordered relationship is true when at least one of the two values being compared is a NaN or in an unsup-
ported format. This additional relationship is required because, by definition, NaNs are not numbers, so they 
cannot have less than, equal, or greater than relationships with other floating-point values.

The FCOM, FCOMP, and FCOMPP instructions compare the value in register ST(0) with a floating-point source 
operand and set the condition code flags (C0, C2, and C3) in the x87 FPU status word according to the results (see 
Table 8-6). 
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If an unordered condition is detected (one or both of the values are NaNs or in an undefined format), a floating-
point invalid-operation exception is generated.

The pop versions of the instruction pop the x87 FPU register stack once or twice after the comparison operation is 
complete.

The FUCOM, FUCOMP, and FUCOMPP instructions operate the same as the FCOM, FCOMP, and FCOMPP instructions. 
The only difference is that with the FUCOM, FUCOMP, and FUCOMPP instructions, if an unordered condition is 
detected because one or both of the operands are QNaNs, the floating-point invalid-operation exception is not 
generated.

The FICOM and FICOMP instructions also operate the same as the FCOM and FCOMP instructions, except that the 
source operand is an integer value in memory. The integer value is automatically converted into an double 
extended-precision floating-point value prior to making the comparison. The FICOMP instruction pops the x87 FPU 
register stack following the comparison operation.

The FTST instruction performs the same operation as the FCOM instruction, except that the value in register ST(0) 
is always compared with the value 0.0.

The FCOMI and FCOMIP instructions were introduced into the IA-32 architecture in the P6 family processors. They 
perform the same comparison as the FCOM and FCOMP instructions, except that they set the status flags (ZF, PF, 
and CF) in the EFLAGS register to indicate the results of the comparison (see Table 8-7) instead of the x87 FPU 
condition code flags. The FCOMI and FCOMIP instructions allow condition branch instructions (Jcc) to be executed 
directly from the results of their comparison.

Software can check if the FCOMI and FCOMIP instructions are supported by checking the processor’s feature infor-
mation with the CPUID instruction.

The FUCOMI and FUCOMIP instructions operate the same as the FCOMI and FCOMIP instructions, except that they 
do not generate a floating-point invalid-operation exception if the unordered condition is the result of one or both 
of the operands being a QNaN. The FCOMIP and FUCOMIP instructions pop the x87 FPU register stack following the 
comparison operation.

The FXAM instruction determines the classification of the floating-point value in the ST(0) register (that is, whether 
the value is zero, a denormal number, a normal finite number, ∞, a NaN, or an unsupported format) or that the 
register is empty. It sets the x87 FPU condition code flags to indicate the classification (see “FXAM—Examine” in 
Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A). It also sets the C1 flag to indicate the sign of the value.

8.3.6.1  Branching on the x87 FPU Condition Codes

The processor does not offer any control-flow instructions that branch on the setting of the condition code flags 
(C0, C2, and C3) in the x87 FPU status word. To branch on the state of these flags, the x87 FPU status word must 

Table 8-6.  Setting of x87 FPU Condition Code Flags for Floating-Point Number Comparisons

Condition C3 C2 C0

ST(0) > Source Operand 0 0 0

ST(0) < Source Operand 0 0 1

ST(0) = Source Operand 1 0 0

Unordered 1 1 1

Table 8-7.  Setting of EFLAGS Status Flags for Floating-Point Number Comparisons

Comparison Results ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered 1 1 1



8-20 Vol. 1

PROGRAMMING WITH THE X87 FPU

first be moved to the AX register in the integer unit. The FSTSW AX (store status word) instruction can be used for 
this purpose. When these flags are in the AX register, the TEST instruction can be used to control conditional 
branching as follows:

1. Check for an unordered result. Use the TEST instruction to compare the contents of the AX register with the 
constant 0400H (see Table 8-8). This operation will clear the ZF flag in the EFLAGS register if the condition code 
flags indicate an unordered result; otherwise, the ZF flag will be set. The JNZ instruction can then be used to 
transfer control (if necessary) to a procedure for handling unordered operands.

2. Check ordered comparison result. Use the constants given in Table 8-8 in the TEST instruction to test for a less 
than, equal to, or greater than result, then use the corresponding conditional branch instruction to transfer 
program control to the appropriate procedure or section of code.

If a program or procedure has been thoroughly tested and it incorporates periodic checks for QNaN results, then it 
is not necessary to check for the unordered result every time a comparison is made.

See Section 8.1.4, “Branching and Conditional Moves on Condition Codes,” for another technique for branching on 
x87 FPU condition codes.

Some non-comparison x87 FPU instructions update the condition code flags in the x87 FPU status word. To ensure 
that the status word is not altered inadvertently, store it immediately following a comparison operation.

8.3.7 Trigonometric Instructions

The following instructions perform four common trigonometric functions:

FSIN Sine
FCOS Cosine
FSINCOS Sine and cosine
FPTAN Tangent
FPATAN Arctangent

These instructions operate on the top one or two registers of the x87 FPU register stack and they return their 
results to the stack. The source operands for the FSIN, FCOS, FSINCOS, and FPTAN instructions must be given in 
radians; the source operand for the FPATAN instruction is given in rectangular coordinate units.

The FSINCOS instruction returns both the sine and the cosine of a source operand value. It operates faster than 
executing the FSIN and FCOS instructions in succession.

The FPATAN instruction computes the arctangent of ST(1) divided by ST(0), returning a result in radians. It is 
useful for converting rectangular coordinates to polar coordinates.

8.3.8 Pi

When the argument (source operand) of a trigonometric function is within the range of the function, the argument 
is automatically reduced by the appropriate multiple of 2π through the same reduction mechanism used by the 
FPREM and FPREM1 instructions. The internal value of π that the x87 FPU uses for argument reduction and other 
computations is as follows:

π = 0.f ∗ 22

Table 8-8.  TEST Instruction Constants for Conditional Branching

Order Constant Branch

ST(0) > Source Operand 4500H JZ

ST(0) < Source Operand 0100H JNZ

ST(0) = Source Operand 4000H JNZ

Unordered 0400H JNZ
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where:
f = C90FDAA2  2168C234  C

(The spaces in the fraction above indicate 32-bit boundaries.)

This internal π value has a 66-bit mantissa, which is 2 bits more than is allowed in the significand of an double 
extended-precision floating-point value. (Since 66 bits is not an even number of hexadecimal digits, two additional 
zeros have been added to the value so that it can be represented in hexadecimal format. The least-significant 
hexadecimal digit (C) is thus 1100B, where the two least-significant bits represent bits 67 and 68 of the 
mantissa.)

This value of π has been chosen to guarantee no loss of significance in a source operand, provided the operand is 
within the specified range for the instruction.

If the results of computations that explicitly use π are to be used in the FSIN, FCOS, FSINCOS, or FPTAN instruc-
tions, the full 66-bit fraction of π should be used. This insures that the results are consistent with the argument-
reduction algorithms that these instructions use. Using a rounded version of π can cause inaccuracies in result 
values, which if propagated through several calculations, might result in meaningless results.

A common method of representing the full 66-bit fraction of π is to separate the value into two numbers (highπ and 
lowπ) that when added together give the value for π shown earlier in this section with the full 66-bit fraction:

π = highπ + lowπ

For example, the following two values (given in scientific notation with the fraction in hexadecimal and the expo-
nent in decimal) represent the 33 most-significant and the 33 least-significant bits of the fraction:

highπ (unnormalized) = 0.C90FDAA20 * 2+2 

lowπ (unnormalized) = 0.42D184698 * 2− 31

These values encoded in the IEEE double-precision floating-point format are as follows:
highπ = 400921FB  54400000

lowπ = 3DE0B461  1A600000

(Note that in the IEEE double-precision floating-point format, the exponents are biased (by 1023) and the fractions 
are normalized.)

Similar versions of π can also be written in double extended-precision floating-point format.

When using this two-part π value in an algorithm, parallel computations should be performed on each part, with the 
results kept separate. When all the computations are complete, the two results can be added together to form the 
final result.

The complications of maintaining a consistent value of π for argument reduction can be avoided, either by applying 
the trigonometric functions only to arguments within the range of the automatic reduction mechanism, or by 
performing all argument reductions (down to a magnitude less than π/4) explicitly in software.

8.3.9 Logarithmic, Exponential, and Scale

The following instructions provide two different logarithmic functions, an exponential function and a scale function:

FYL2X Logarithm
FYL2XP1 Logarithm epsilon
F2XM1 Exponential
FSCALE Scale

The FYL2X and FYL2XP1 instructions perform two different base 2 logarithmic operations. The FYL2X instruction 
computes (y ∗ log2x). This operation permits the calculation of the log of any base using the following equation:

logb x = (1/log2 b) ∗ log2 x

The FYL2XP1 instruction computes (y ∗ log2(x + 1)). This operation provides optimum accuracy for values of x that 
are close to 0.

The F2XM1 instruction computes (2x − 1). This instruction only operates on source values in the range −1.0 to +1.0.
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The FSCALE instruction multiplies the source operand by a power of 2.

8.3.10 Transcendental Instruction Accuracy

New transcendental instruction algorithms were incorporated into the IA-32 architecture beginning with the 
Pentium processors. These new algorithms (used in transcendental instructions FSIN, FCOS, FSINCOS, FPTAN, 
FPATAN, F2XM1, FYL2X, and FYL2XP1) allow a higher level of accuracy than was possible in earlier IA-32 processors 
and x87 math coprocessors. The accuracy of these instructions is measured in terms of units in the last place 
(ulp). For a given argument x, let f(x) and F(x) be the correct and computed (approximate) function values, 
respectively. The error in ulps is defined to be:

where k is an integer such that:

With the Pentium processor and later IA-32 processors, the worst case error on transcendental functions is less 
than 1 ulp when rounding to the nearest (even) and less than 1.5 ulps when rounding in other modes. The func-
tions are guaranteed to be monotonic, with respect to the input operands, throughout the domain supported by the 
instruction.

The instructions FYL2X and FYL2XP1 are two operand instructions and are guaranteed to be within 1 ulp only when 
y equals 1. When y is not equal to 1, the maximum ulp error is always within 1.35 ulps in round to nearest mode. 
(For the two operand functions, monotonicity was proved by holding one of the operands constant.)

8.3.11 x87 FPU Control Instructions

The following instructions control the state and modes of operation of the x87 FPU. They also allow the status of the 
x87 FPU to be examined:

FINIT/FNINIT Initialize x87 FPU

FLDCW Load x87 FPU control word

FSTCW/FNSTCW Store x87 FPU control word

FSTSW/FNSTSW Store x87 FPU status word

FCLEX/FNCLEX Clear x87 FPU exception flags

FLDENV Load x87 FPU environment

FSTENV/FNSTENV Store x87 FPU environment

FRSTOR Restore x87 FPU state

FSAVE/FNSAVE Save x87 FPU state

FINCSTP Increment x87 FPU register stack pointer

FDECSTP Decrement x87 FPU register stack pointer

FFREE Free x87 FPU register

FNOP No operation

WAIT/FWAIT Check for and handle pending unmasked x87 FPU exceptions

The FINIT/FNINIT instructions initialize the x87 FPU and its internal registers to default values.

The FLDCW instructions loads the x87 FPU control word register with a value from memory. The FSTCW/FNSTCW 
and FSTSW/FNSTSW instructions store the x87 FPU control and status words, respectively, in memory (or for an 
FSTSW/FNSTSW instruction in a general-purpose register).

error f x( ) F x( )–
2k 63–

---------------------------=

1 2 k– f x( ) 2.<≤
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The FSTENV/FNSTENV and FSAVE/FNSAVE instructions save the x87 FPU environment and state, respectively, in 
memory. The x87 FPU environment includes all the x87 FPU’s control and status registers; the x87 FPU state 
includes the x87 FPU environment and the data registers in the x87 FPU register stack. (The FSAVE/FNSAVE 
instruction also initializes the x87 FPU to default values, like the FINIT/FNINIT instruction, after it saves the original 
state of the x87 FPU.) 

The FLDENV and FRSTOR instructions load the x87 FPU environment and state, respectively, from memory into the 
x87 FPU. These instructions are commonly used when switching tasks or contexts.

The WAIT/FWAIT instructions are synchronization instructions. (They are actually mnemonics for the same 
opcode.) These instructions check the x87 FPU status word for pending unmasked x87 FPU exceptions. If any 
pending unmasked x87 FPU exceptions are found, they are handled before the processor resumes execution of the 
instructions (integer, floating-point, or system instruction) in the instruction stream. The WAIT/FWAIT instructions 
are provided to allow synchronization of instruction execution between the x87 FPU and the processor’s integer 
unit. See Section 8.6, “x87 FPU Exception Synchronization,” for more information on the use of the WAIT/FWAIT 
instructions.

8.3.12 Waiting vs. Non-waiting Instructions

All of the x87 FPU instructions except a few special control instructions perform a wait operation (similar to the 
WAIT/FWAIT instructions), to check for and handle pending unmasked x87 FPU floating-point exceptions, before 
they perform their primary operation (such as adding two floating-point numbers). These instructions are called 
waiting instructions. Some of the x87 FPU control instructions, such as FSTSW/FNSTSW, have both a waiting and 
a non-waiting version. The waiting version (with the “F” prefix) executes a wait operation before it performs its 
primary operation; whereas, the non-waiting version (with the “FN” prefix) ignores pending unmasked exceptions. 

Non-waiting instructions allow software to save the current x87 FPU state without first handling pending exceptions 
or to reset or reinitialize the x87 FPU without regard for pending exceptions.

NOTES

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible 
(under unusual circumstances) for a non-waiting instruction to be interrupted prior to being 
executed to handle a pending x87 FPU exception. The circumstances where this can happen and 
the resulting action of the processor are described in Section D.2.1.3, “No-Wait x87 FPU Instruc-
tions Can Get x87 FPU Interrupt in Window.” 
When operating a P6 family, Pentium 4, or Intel Xeon processor in MS-DOS compatibility mode, 
non-waiting instructions can not be interrupted in this way (see Section D.2.2, “MS-DOS* Compat-
ibility Sub-mode in the P6 Family and Pentium® 4 Processors”).

8.3.13 Unsupported x87 FPU Instructions

The Intel 8087 instructions FENI and FDISI and the Intel 287 math coprocessor instruction FSETPM perform no 
function in the Intel 387 math coprocessor and later IA-32 processors. If these opcodes are detected in the instruc-
tion stream, the x87 FPU performs no specific operation and no internal x87 FPU states are affected.

8.4 X87 FPU FLOATING-POINT EXCEPTION HANDLING

The x87 FPU detects the six classes of exception conditions described in Section 4.9, “Overview of Floating-Point 
Exceptions”:
• Invalid operation (#I), with two subclasses:

— Stack overflow or underflow (#IS)

— Invalid arithmetic operation (#IA)
• Denormalized operand (#D)
• Divide-by-zero (#Z)
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• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (precision) (#P)

Each of the six exception classes has a corresponding flag bit in the x87 FPU status word and a mask bit in the x87 
FPU control word (see Section 8.1.3, “x87 FPU Status Register,” and Section 8.1.5, “x87 FPU Control Word,” respec-
tively). In addition, the exception summary (ES) flag in the status word indicates when one or more unmasked 
exceptions has been detected. The stack fault (SF) flag (also in the status word) distinguishes between the two 
types of invalid-operation exceptions.

The mask bits can be set with FLDCW, FRSTOR, or FXRSTOR; they can be read with either FSTCW/FNSTCW, 
FSAVE/FNSAVE, or FXSAVE. The flag bits can be read with the FSTSW/FNSTSW, FSAVE/FNSAVE, or FXSAVE 
instruction.

NOTE

Section 4.9.1, “Floating-Point Exception Conditions,” provides a general overview of how the IA-32 
processor detects and handles the various classes of floating-point exceptions. This information 
pertains to x87 FPU as well as SSE/SSE2/SSE3 extensions. 

The following sections give specific information about how the x87 FPU handles floating-point exceptions that are 
unique to the x87 FPU.

8.4.1 Arithmetic vs. Non-arithmetic Instructions

When dealing with floating-point exceptions, it is useful to distinguish between arithmetic instructions and non-
arithmetic instructions. Non-arithmetic instructions have no operands or do not make substantial changes to 
their operands. Arithmetic instructions do make significant changes to their operands; in particular, they make 
changes that could result in floating-point exceptions being signaled. Table 8-9 lists the non-arithmetic and arith-
metic instructions. It should be noted that some non-arithmetic instructions can signal a floating-point stack (fault) 
exception, but this exception is not the result of an operation on an operand.

Table 8-9.  Arithmetic and Non-arithmetic Instructions

Non-arithmetic Instructions Arithmetic Instructions

FABS F2XM1

FCHS FADD/FADDP

FCLEX FBLD

FDECSTP FBSTP

FFREE FCOM/FCOMP/FCOMPP

FINCSTP FCOS

FINIT/FNINIT FDIV/FDIVP/FDIVR/FDIVRP

FLD (register-to-register) FIADD

FLD (extended format from memory) FICOM/FICOMP

FLD constant FIDIV/FIDIVR

FLDCW FILD

FLDENV FIMUL

FNOP FIST/FISTP1

FRSTOR FISUB/FISUBR

FSAVE/FNSAVE FLD (single and double)

FST/FSTP (register-to-register) FMUL/FMULP

FSTP (extended format to memory) FPATAN
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8.5 X87 FPU FLOATING-POINT EXCEPTION CONDITIONS

The following sections describe the various conditions that cause a floating-point exception to be generated by the 
x87 FPU and the masked response of the x87 FPU when these conditions are detected. Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volumes 2A & 2B, list the floating-point exceptions that can be signaled for 
each floating-point instruction.

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for exception precedence when 
more than one floating-point exception condition is detected for an instruction.

8.5.1 Invalid Operation Exception

The floating-point invalid-operation exception occurs in response to two sub-classes of operations:
• Stack overflow or underflow (#IS)
• Invalid arithmetic operand (#IA)

The flag for this exception (IE) is bit 0 of the x87 FPU status word, and the mask bit (IM) is bit 0 of the x87 FPU 
control word. The stack fault flag (SF) of the x87 FPU status word indicates the type of operation that caused the 
exception. When the SF flag is set to 1, a stack operation has resulted in stack overflow or underflow; when the flag 
is cleared to 0, an arithmetic instruction has encountered an invalid operand. Note that the x87 FPU explicitly sets 
the SF flag when it detects a stack overflow or underflow condition, but it does not explicitly clear the flag when it 
detects an invalid-arithmetic-operand condition. As a result, the state of the SF flag can be 1 following an invalid-
arithmetic-operation exception, if it was not cleared from the last time a stack overflow or underflow condition 
occurred. See Section 8.1.3.4, “Stack Fault Flag,” for more information about the SF flag.

8.5.1.1  Stack Overflow or Underflow Exception (#IS)

The x87 FPU tag word keeps track of the contents of the registers in the x87 FPU register stack (see Section 8.1.7, 
“x87 FPU Tag Word”). It then uses this information to detect two different types of stack faults:

FSTCW/FNSTCW FPREM/FPREM1

FSTENV/FNSTENV FPTAN

FSTSW/FNSTSW FRNDINT

WAIT/FWAIT FSCALE

FXAM FSIN

FXCH FSINCOS

FSQRT

FST/FSTP (single and double)

FSUB/FSUBP/FSUBR/FSUBRP

FTST

FUCOM/FUCOMP/FUCOMPP

FXTRACT

FYL2X/FYL2XP1

NOTE:

1. The FISTTP instruction in SSE3 is an arithmetic x87 FPU instruction.

Table 8-9.  Arithmetic and Non-arithmetic Instructions (Contd.)

Non-arithmetic Instructions Arithmetic Instructions
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• Stack overflow — An instruction attempts to load a non-empty x87 FPU register from memory. A non-empty 
register is defined as a register containing a zero (tag value of 01), a valid value (tag value of 00), or a special 
value (tag value of 10).

• Stack underflow — An instruction references an empty x87 FPU register as a source operand, including 
attempting to write the contents of an empty register to memory. An empty register has a tag value of 11.

NOTES

The term stack overflow originates from the situation where the program has loaded (pushed) eight 
values from memory onto the x87 FPU register stack and the next value pushed on the stack causes 
a stack wraparound to a register that already contains a value.
The term stack underflow originates from the opposite situation. Here, a program has stored 
(popped) eight values from the x87 FPU register stack to memory and the next value popped from 
the stack causes stack wraparound to an empty register.

When the x87 FPU detects stack overflow or underflow, it sets the IE flag (bit 0) and the SF flag (bit 6) in the x87 
FPU status word to 1. It then sets condition-code flag C1 (bit 9) in the x87 FPU status word to 1 if stack overflow 
occurred or to 0 if stack underflow occurred. 

If the invalid-operation exception is masked, the x87 FPU returns the floating point, integer, or packed decimal 
integer indefinite value to the destination operand, depending on the instruction being executed. This value over-
writes the destination register or memory location specified by the instruction.

If the invalid-operation exception is not masked, a software exception handler is invoked (see Section 8.7, 
“Handling x87 FPU Exceptions in Software”) and the top-of-stack pointer (TOP) and source operands remain 
unchanged.

8.5.1.2  Invalid Arithmetic Operand Exception (#IA)

The x87 FPU is able to detect a variety of invalid arithmetic operations that can be coded in a program. These oper-
ations are listed in Table 8-10. (This list includes the invalid operations defined in IEEE Standard 754.)

When the x87 FPU detects an invalid arithmetic operand, it sets the IE flag (bit 0) in the x87 FPU status word to 1. 
If the invalid-operation exception is masked, the x87 FPU then returns an indefinite value or QNaN to the destina-
tion operand and/or sets the floating-point condition codes as shown in Table 8-10. If the invalid-operation excep-
tion is not masked, a software exception handler is invoked (see Section 8.7, “Handling x87 FPU Exceptions in 
Software”) and the top-of-stack pointer (TOP) and source operands remain unchanged.

Table 8-10.  Invalid Arithmetic Operations and the 
Masked Responses to Them

Condition Masked Response

Any arithmetic operation on an operand that is in an unsupported 
format.

Return the QNaN floating-point indefinite value to the 
destination operand.

Any arithmetic operation on a SNaN. Return a QNaN to the destination operand (see Table 4-7).

Ordered compare and test operations: one or both operands are 
NaNs.

Set the condition code flags (C0, C2, and C3) in the x87 FPU 
status word or the CF, PF, and ZF flags in the EFLAGS register to 
111B (not comparable).

Addition: operands are opposite-signed infinities.
Subtraction: operands are like-signed infinities.

Return the QNaN floating-point indefinite value to the 
destination operand.

Multiplication: ∞  by 0; 0 by ∞ . Return the QNaN floating-point indefinite value to the 
destination operand.

Division: ∞  by  ∞ ; 0 by 0. Return the QNaN floating-point indefinite value to the 
destination operand.

Remainder instructions FPREM, FPREM1: modulus (divisor) is 0 or 
dividend is ∞ .

Return the QNaN floating-point indefinite; clear condition code 
flag C2 to 0.
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Normally, when one or both of the source operands is a QNaN (and neither is an SNaN or in an unsupported 
format), an invalid-operand exception is not generated. An exception to this rule is most of the compare instruc-
tions (such as the FCOM and FCOMI instructions) and the floating-point to integer conversion instructions 
(FIST/FISTP and FBSTP). With these instructions, a QNaN source operand will generate an invalid-operand excep-
tion.

8.5.2 Denormal Operand Exception (#D)

The x87 FPU signals the denormal-operand exception under the following conditions:
• If an arithmetic instruction attempts to operate on a denormal operand (see Section 4.8.3.2, “Normalized and 

Denormalized Finite Numbers”).
• If an attempt is made to load a denormal single-precision or double-precision floating-point value into an x87 

FPU register. (If the denormal value being loaded is a double extended-precision floating-point value, the 
denormal-operand exception is not reported.)

The flag (DE) for this exception is bit 1 of the x87 FPU status word, and the mask bit (DM) is bit 1 of the x87 FPU 
control word.

When a denormal-operand exception occurs and the exception is masked, the x87 FPU sets the DE flag, then 
proceeds with the instruction. The denormal operand in single- or double-precision floating-point format is auto-
matically normalized when converted to the double extended-precision floating-point format. Subsequent opera-
tions will benefit from the additional precision of the internal double extended-precision floating-point format.

When a denormal-operand exception occurs and the exception is not masked, the DE flag is set and a software 
exception handler is invoked (see Section 8.7, “Handling x87 FPU Exceptions in Software”). The top-of-stack 
pointer (TOP) and source operands remain unchanged.

For additional information about the denormal-operation exception, see Section 4.9.1.2, “Denormal Operand 
Exception (#D).”

8.5.3 Divide-By-Zero Exception (#Z)

The x87 FPU reports a floating-point divide-by-zero exception whenever an instruction attempts to divide a finite 
non-zero operand by 0. The flag (ZE) for this exception is bit 2 of the x87 FPU status word, and the mask bit (ZM) 
is bit 2 of the x87 FPU control word. The FDIV, FDIVP, FDIVR, FDIVRP, FIDIV, and FIDIVR instructions and the other 
instructions that perform division internally (FYL2X and FXTRACT) can report the divide-by-zero exception. 

When a divide-by-zero exception occurs and the exception is masked, the x87 FPU sets the ZE flag and returns the 
values shown in Table 8-10. If the divide-by-zero exception is not masked, the ZE flag is set, a software exception 

Trigonometric instructions FCOS, FPTAN, FSIN, FSINCOS: source 
operand is ∞ .

Return the QNaN floating-point indefinite; clear condition code 
flag C2 to 0.

FSQRT: negative operand (except FSQRT (–0) = –0); FYL2X: negative 
operand (except FYL2X (–0) = –∞); FYL2XP1: operand more 
negative than –1.

Return the QNaN floating-point indefinite value to the 
destination operand.

FBSTP: Converted value cannot be represented in 18 decimal digits, 
or source value is an SNaN, QNaN, ± ∞ , or in an unsupported 
format.

Store packed BCD integer indefinite value in the destination 
operand.

FIST/FISTP: Converted value exceeds representable integer range 
of the destination operand, or source value is an SNaN, QNaN, ±∞, 
or in an unsupported format.

Store integer indefinite value in the destination operand.

FXCH: one or both registers are tagged empty. Load empty registers with the QNaN floating-point indefinite 
value, then perform the exchange.

Table 8-10.  Invalid Arithmetic Operations and the 
Masked Responses to Them (Contd.)
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handler is invoked (see Section 8.7, “Handling x87 FPU Exceptions in Software”), and the top-of-stack pointer 
(TOP) and source operands remain unchanged.

8.5.4 Numeric Overflow Exception (#O)

The x87 FPU reports a floating-point numeric overflow exception (#O) whenever the rounded result of an arith-
metic instruction exceeds the largest allowable finite value that will fit into the floating-point format of the destina-
tion operand. (See Section 4.9.1.4, “Numeric Overflow Exception (#O),” for additional information about the 
numeric overflow exception.)

When using the x87 FPU, numeric overflow can occur on arithmetic operations where the result is stored in an x87 
FPU data register. It can also occur on store floating-point operations (using the FST and FSTP instructions), where 
a within-range value in a data register is stored in memory in a single-precision or double-precision floating-point 
format. The numeric overflow exception cannot occur when storing values in an integer or BCD integer format. 
Instead, the invalid-arithmetic-operand exception is signaled.

The flag (OE) for the numeric-overflow exception is bit 3 of the x87 FPU status word, and the mask bit (OM) is bit 
3 of the x87 FPU control word. 

When a numeric-overflow exception occurs and the exception is masked, the x87 FPU sets the OE flag and returns 
one of the values shown in Table 4-10. The value returned depends on the current rounding mode of the x87 FPU 
(see Section 8.1.5.3, “Rounding Control Field”).

The action that the x87 FPU takes when numeric overflow occurs and the numeric-overflow exception is not 
masked, depends on whether the instruction is supposed to store the result in memory or on the register stack.
• Destination is a memory location — The OE flag is set and a software exception handler is invoked (see 

Section 8.7, “Handling x87 FPU Exceptions in Software”). The top-of-stack pointer (TOP) and source and 
destination operands remain unchanged. Because the data in the stack is in double extended-precision format, 
the exception handler has the option either of re-executing the store instruction after proper adjustment of the 
operand or of rounding the significand on the stack to the destination's precision as the standard requires. The 
exception handler should ultimately store a value into the destination location in memory if the program is to 
continue.

• Destination is the register stack — The significand of the result is rounded according to current settings of 
the precision and rounding control bits in the x87 FPU control word and the exponent of the result is adjusted 
by dividing it by 224576. (For instructions not affected by the precision field, the significand is rounded to 
double-extended precision.) The resulting value is stored in the destination operand. Condition code bit C1 in 
the x87 FPU status word (called in this situation the “round-up bit”) is set if the significand was rounded upward 
and cleared if the result was rounded toward 0. After the result is stored, the OE flag is set and a software 
exception handler is invoked. The scaling bias value 24,576 is equal to 3 ∗ 213. Biasing the exponent by 24,576 
normally translates the number as nearly as possible to the middle of the double extended-precision floating-
point exponent range so that, if desired, it can be used in subsequent scaled operations with less risk of causing 
further exceptions.
When using the FSCALE instruction, massive overflow can occur, where the result is too large to be repre-
sented, even with a bias-adjusted exponent. Here, if overflow occurs again, after the result has been biased, a 
properly signed ∞ is stored in the destination operand.

Table 8-11.  Divide-By-Zero Conditions and the Masked Responses to Them

Condition Masked Response

Divide or reverse divide operation with a 
0 divisor.

Returns an ∞ signed with the exclusive OR of the sign of the two operands to the 
destination operand.

FYL2X instruction. Returns an ∞ signed with the opposite sign of the non-zero operand to the destination 
operand.

FXTRACT instruction. ST(1) is set to –∞; ST(0) is set to 0 with the same sign as the source operand.
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8.5.5 Numeric Underflow Exception (#U)

The x87 FPU detects a floating-point numeric underflow condition whenever the rounded result of an arithmetic 
instruction is tiny; that is, less than the smallest possible normalized, finite value that will fit into the floating-point 
format of the destination operand. (See Section 4.9.1.5, “Numeric Underflow Exception (#U),” for additional infor-
mation about the numeric underflow exception.)

Like numeric overflow, numeric underflow can occur on arithmetic operations where the result is stored in an x87 
FPU data register. It can also occur on store floating-point operations (with the FST and FSTP instructions), where 
a within-range value in a data register is stored in memory in the smaller single-precision or double-precision 
floating-point formats. A numeric underflow exception cannot occur when storing values in an integer or BCD 
integer format, because a tiny value is always rounded to an integral value of 0 or 1, depending on the rounding 
mode in effect.

The flag (UE) for the numeric-underflow exception is bit 4 of the x87 FPU status word, and the mask bit (UM) is bit 
4 of the x87 FPU control word.

When a numeric-underflow condition occurs and the exception is masked, the x87 FPU performs the operation 
described in Section 4.9.1.5, “Numeric Underflow Exception (#U).”

When the exception is not masked, the action of the x87 FPU depends on whether the instruction is supposed to 
store the result in a memory location or on the x87 FPU resister stack.
• Destination is a memory location — (Can occur only with a store instruction.) The UE flag is set and a 

software exception handler is invoked (see Section 8.7, “Handling x87 FPU Exceptions in Software”). The top-
of-stack pointer (TOP) and source and destination operands remain unchanged, and no result is stored in 
memory. 
Because the data in the stack is in double extended-precision format, the exception handler has the option 
either of re-exchanges the store instruction after proper adjustment of the operand or of rounding the 
significand on the stack to the destination's precision as the standard requires. The exception handler should 
ultimately store a value into the destination location in memory if the program is to continue.

• Destination is the register stack — The significand of the result is rounded according to current settings of 
the precision and rounding control bits in the x87 FPU control word and the exponent of the result is adjusted 
by multiplying it by 224576. (For instructions not affected by the precision field, the significand is rounded to 
double extended precision.) The resulting value is stored in the destination operand. Condition code bit C1 in 
the x87 FPU status register (acting here as a “round-up bit”) is set if the significand was rounded upward and 
cleared if the result was rounded toward 0. After the result is stored, the UE flag is set and a software exception 
handler is invoked. The scaling bias value 24,576 is the same as is used for the overflow exception and has the 
same effect, which is to translate the result as nearly as possible to the middle of the double extended-
precision floating-point exponent range.
When using the FSCALE instruction, massive underflow can occur, where the result is too tiny to be repre-
sented, even with a bias-adjusted exponent. Here, if underflow occurs again after the result has been biased, 
a properly signed 0 is stored in the destination operand.

8.5.6 Inexact-Result (Precision) Exception (#P)

The inexact-result exception (also called the precision exception) occurs if the result of an operation is not exactly 
representable in the destination format. (See Section 4.9.1.6, “Inexact-Result (Precision) Exception (#P),” for 
additional information about the numeric overflow exception.) Note that the transcendental instructions (FSIN, 
FCOS, FSINCOS, FPTAN, FPATAN, F2XM1, FYL2X, and FYL2XP1) by nature produce inexact results.

The inexact-result exception flag (PE) is bit 5 of the x87 FPU status word, and the mask bit (PM) is bit 5 of the x87 
FPU control word. 

If the inexact-result exception is masked when an inexact-result condition occurs and a numeric overflow or under-
flow condition has not occurred, the x87 FPU handles the exception as describe in Section 4.9.1.6, “Inexact-Result 
(Precision) Exception (#P),” with one additional action. The C1 (round-up) bit in the x87 FPU status word is set to 
indicate whether the inexact result was rounded up (C1 is set) or “not rounded up” (C1 is cleared). In the “not 
rounded up” case, the least-significant bits of the inexact result are truncated so that the result fits in the destina-
tion format.
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If the inexact-result exception is not masked when an inexact result occurs and numeric overflow or underflow has 
not occurred, the x87 FPU handles the exception as described in the previous paragraph and, in addition, invokes 
a software exception handler.

If an inexact result occurs in conjunction with numeric overflow or underflow, the x87 FPU carries out one of the 
following operations:
• If an inexact result occurs in conjunction with masked overflow or underflow, the OE or UE flag and the PE flag 

are set and the result is stored as described for the overflow or underflow exceptions (see Section 8.5.4, 
“Numeric Overflow Exception (#O),” or Section 8.5.5, “Numeric Underflow Exception (#U)”). If the inexact 
result exception is unmasked, the x87 FPU also invokes a software exception handler.

• If an inexact result occurs in conjunction with unmasked overflow or underflow and the destination operand is 
a register, the OE or UE flag and the PE flag are set, the result is stored as described for the overflow or 
underflow exceptions (see Section 8.5.4, “Numeric Overflow Exception (#O),” or Section 8.5.5, “Numeric 
Underflow Exception (#U)”) and a software exception handler is invoked.

If an unmasked numeric overflow or underflow exception occurs and the destination operand is a memory location 
(which can happen only for a floating-point store), the inexact-result condition is not reported and the C1 flag is 
cleared.

8.6 X87 FPU EXCEPTION SYNCHRONIZATION

Because the integer unit and x87 FPU are separate execution units, it is possible for the processor to execute 
floating-point, integer, and system instructions concurrently. No special programming techniques are required to 
gain the advantages of concurrent execution. (Floating-point instructions are placed in the instruction stream along 
with the integer and system instructions.) However, concurrent execution can cause problems for floating-point 
exception handlers. 

This problem is related to the way the x87 FPU signals the existence of unmasked floating-point exceptions. 
(Special exception synchronization is not required for masked floating-point exceptions, because the x87 FPU 
always returns a masked result to the destination operand.) 

When a floating-point exception is unmasked and the exception condition occurs, the x87 FPU stops further execu-
tion of the floating-point instruction and signals the exception event. On the next occurrence of a floating-point 
instruction or a WAIT/FWAIT instruction in the instruction stream, the processor checks the ES flag in the x87 FPU 
status word for pending floating-point exceptions. If floating-point exceptions are pending, the x87 FPU makes an 
implicit call (traps) to the floating-point software exception handler. The exception handler can then execute 
recovery procedures for selected or all floating-point exceptions.

Synchronization problems occur in the time between the moment when the exception is signaled and when it is 
actually handled. Because of concurrent execution, integer or system instructions can be executed during this 
time. It is thus possible for the source or destination operands for a floating-point instruction that faulted to be 
overwritten in memory, making it impossible for the exception handler to analyze or recover from the exception.

To solve this problem, an exception synchronizing instruction (either a floating-point instruction or a WAIT/FWAIT 
instruction) can be placed immediately after any floating-point instruction that might present a situation where 
state information pertaining to a floating-point exception might be lost or corrupted. Floating-point instructions 
that store data in memory are prime candidates for synchronization. For example, the following three lines of code 
have the potential for exception synchronization problems:

FILD COUNT ;Floating-point instruction

INC COUNT ;Integer instruction

FSQRT ;Subsequent floating-point instruction

In this example, the INC instruction modifies the source operand of the floating-point instruction, FILD. If an 
exception is signaled during the execution of the FILD instruction, the INC instruction would be allowed to overwrite 
the value stored in the COUNT memory location before the floating-point exception handler is called. With the 
COUNT variable modified, the floating-point exception handler would not be able to recover from the error.

Rearranging the instructions, as follows, so that the FSQRT instruction follows the FILD instruction, synchronizes 
floating-point exception handling and eliminates the possibility of the COUNT variable being overwritten before the 
floating-point exception handler is invoked.
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FILD COUNT ;Floating-point instruction

FSQRT      ;Subsequent floating-point instruction synchronizes

           ;any exceptions generated by the FILD instruction.

INC COUNT  ;Integer instruction

The FSQRT instruction does not require any synchronization, because the results of this instruction are stored in 
the x87 FPU data registers and will remain there, undisturbed, until the next floating-point or WAIT/FWAIT instruc-
tion is executed. To absolutely insure that any exceptions emanating from the FSQRT instruction are handled (for 
example, prior to a procedure call), a WAIT instruction can be placed directly after the FSQRT instruction.

Note that some floating-point instructions (non-waiting instructions) do not check for pending unmasked excep-
tions (see Section 8.3.11, “x87 FPU Control Instructions”). They include the FNINIT, FNSTENV, FNSAVE, FNSTSW, 
FNSTCW, and FNCLEX instructions. When an FNINIT, FNSTENV, FNSAVE, or FNCLEX instruction is executed, all 
pending exceptions are essentially lost (either the x87 FPU status register is cleared or all exceptions are masked). 
The FNSTSW and FNSTCW instructions do not check for pending interrupts, but they do not modify the x87 FPU 
status and control registers. A subsequent “waiting” floating-point instruction can then handle any pending excep-
tions.

8.7 HANDLING X87 FPU EXCEPTIONS IN SOFTWARE

The x87 FPU in Pentium and later IA-32 processors provides two different modes of operation for invoking a soft-
ware exception handler for floating-point exceptions: native mode and MS-DOS compatibility mode. The mode of 
operation is selected by CR0.NE[bit 5]. (See Chapter 2, “System Architecture Overview,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information about the NE flag.)

8.7.1 Native Mode

The native mode for handling floating-point exceptions is selected by setting CR0.NE[bit 5] to 1. In this mode, if 
the x87 FPU detects an exception condition while executing a floating-point instruction and the exception is 
unmasked (the mask bit for the exception is cleared), the x87 FPU sets the flag for the exception and the ES flag in 
the x87 FPU status word. It then invokes the software exception handler through the floating-point-error exception 
(#MF, vector 16), immediately before execution of any of the following instructions in the processor’s instruction 
stream:
• The next floating-point instruction, unless it is one of the non-waiting instructions (FNINIT, FNCLEX, FNSTSW, 

FNSTCW, FNSTENV, and FNSAVE). 
• The next WAIT/FWAIT instruction.
• The next MMX instruction.

If the next floating-point instruction in the instruction stream is a non-waiting instruction, the x87 FPU executes the 
instruction without invoking the software exception handler.

8.7.2 MS-DOS* Compatibility Sub-mode

If CR0.NE[bit 5] is 0, the MS-DOS compatibility mode for handling floating-point exceptions is selected. In this 
mode, the software exception handler for floating-point exceptions is invoked externally using the processor’s 
FERR#, INTR, and IGNNE# pins. This method of reporting floating-point errors and invoking an exception handler 
is provided to support the floating-point exception handling mechanism used in PC systems that are running the 
MS-DOS or Windows* 95 operating system.

Using FERR# and IGNNE# to handle floating-point exception is deprecated by modern operating systems, this 
approach also limits newer processors to operate with one logical processor active.

The MS-DOS compatibility mode is typically used as follows to invoke the floating-point exception handler:

1. If the x87 FPU detects an unmasked floating-point exception, it sets the flag for the exception and the ES flag 
in the x87 FPU status word.
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2. If the IGNNE# pin is deasserted, the x87 FPU then asserts the FERR# pin either immediately, or else delayed 
(deferred) until just before the execution of the next waiting floating-point instruction or MMX instruction. 
Whether the FERR# pin is asserted immediately or delayed depends on the type of processor, the instruction, 
and the type of exception.

3. If a preceding floating-point instruction has set the exception flag for an unmasked x87 FPU exception, the 
processor freezes just before executing the next WAIT instruction, waiting floating-point instruction, or MMX 
instruction. Whether the FERR# pin was asserted at the preceding floating-point instruction or is just now being 
asserted, the freezing of the processor assures that the x87 FPU exception handler will be invoked before the 
new floating-point (or MMX) instruction gets executed.

4. The FERR# pin is connected through external hardware to IRQ13 of a cascaded, programmable interrupt 
controller (PIC). When the FERR# pin is asserted, the PIC is programmed to generate an interrupt 75H.

5. The PIC asserts the INTR pin on the processor to signal the interrupt 75H.

6. The BIOS for the PC system handles the interrupt 75H by branching to the interrupt 02H (NMI) interrupt 
handler.

7. The interrupt 02H handler determines if the interrupt is the result of an NMI interrupt or a floating-point 
exception.

8. If a floating-point exception is detected, the interrupt 02H handler branches to the floating-point exception 
handler.

If the IGNNE# pin is asserted, the processor ignores floating-point error conditions. This pin is provided to inhibit 
floating-point exceptions from being generated while the floating-point exception handler is servicing a previously 
signaled floating-point exception.

Appendix D, “Guidelines for Writing x87 FPU Exception Handlers,” describes the MS-DOS compatibility mode in 
much greater detail. This mode is somewhat more complicated in the Intel486 and Pentium processor implemen-
tations, as described in Appendix D.

8.7.3 Handling x87 FPU Exceptions in Software

Section 4.9.3, “Typical Actions of a Floating-Point Exception Handler,” shows actions that may be carried out by a 
floating-point exception handler. The state of the x87 FPU can be saved with the FSTENV/FNSTENV or 
FSAVE/FNSAVE instructions (see Section 8.1.10, “Saving the x87 FPU’s State with FSTENV/FNSTENV and 
FSAVE/FNSAVE”). 

If the faulting floating-point instruction is followed by one or more non-floating-point instructions, it may not be 
useful to re-execute the faulting instruction. See Section 8.6, “x87 FPU Exception Synchronization,” for more infor-
mation on synchronizing floating-point exceptions.

In cases where the handler needs to restart program execution with the faulting instruction, the IRET instruction 
cannot be used directly. The reason for this is that because the exception is not generated until the next floating-
point or WAIT/FWAIT instruction following the faulting floating-point instruction, the return instruction pointer on 
the stack may not point to the faulting instruction. To restart program execution at the faulting instruction, the 
exception handler must obtain a pointer to the instruction from the saved x87 FPU state information, load it into the 
return instruction pointer location on the stack, and then execute the IRET instruction.

See Section D.3.4, “x87 FPU Exception Handling Examples,” for general examples of floating-point exception 
handlers and for specific examples of how to write a floating-point exception handler when using the MS-DOS 
compatibility mode.
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CHAPTER 9
PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY

The Intel MMX technology was introduced into the IA-32 architecture in the Pentium II processor family and 
Pentium processor with MMX technology. The extensions introduced in MMX technology support a single-instruc-
tion, multiple-data (SIMD) execution model that is designed to accelerate the performance of advanced media and 
communications applications.

This chapter describes MMX technology.

9.1 OVERVIEW OF MMX TECHNOLOGY

MMX technology defines a simple and flexible SIMD execution model to handle 64-bit packed integer data. This 
model adds the following features to the IA-32 architecture, while maintaining backwards compatibility with all IA-
32 applications and operating-system code:
• Eight new 64-bit data registers, called MMX registers
• Three new packed data types:

— 64-bit packed byte integers (signed and unsigned)

— 64-bit packed word integers (signed and unsigned)

— 64-bit packed doubleword integers (signed and unsigned)
• Instructions that support the new data types and to handle MMX state management
• Extensions to the CPUID instruction

MMX technology is accessible from all the IA32-architecture execution modes (protected mode, real address mode, 
and virtual 8086 mode). It does not add any new modes to the architecture.

The following sections of this chapter describe MMX technology’s programming environment, including MMX 
register set, data types, and instruction set. Additional instructions that operate on MMX registers have been added 
to the IA-32 architecture by the SSE/SSE2 extensions.

For more information, see:
• Section 10.4.4, “SSE 64-Bit SIMD Integer Instructions,” describes MMX instructions added to the IA-32 archi-

tecture with the SSE extensions.
• Section 11.4.2, “SSE2 64-Bit and 128-Bit SIMD Integer Instructions,” describes MMX instructions added to the 

IA-32 architecture with SSE2 extensions.
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B, give detailed descriptions 

of MMX instructions.
• Chapter 12, “Intel® MMX™ Technology System Programming,” in the Intel® 64 and IA-32 Architectures 

Software Developer’s Manual, Volume 3B, describes the manner in which MMX technology is integrated into the 
IA-32 system programming model.

9.2 THE MMX TECHNOLOGY PROGRAMMING ENVIRONMENT 

Figure 9-1 shows the execution environment for MMX technology. All MMX instructions operate on MMX registers, 
the general-purpose registers, and/or memory as follows: 
• MMX registers — These eight registers (see Figure 9-1) are used to perform operations on 64-bit packed 

integer data. They are named MM0 through MM7.
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• General-purpose registers — The eight general-purpose registers (see Figure 3-5) are used with existing 
IA-32 addressing modes to address operands in memory. (MMX registers cannot be used to address memory). 
General-purpose registers are also used to hold operands for some MMX technology operations. They are EAX, 
EBX, ECX, EDX, EBP, ESI, EDI, and ESP.

9.2.1 MMX Technology in 64-Bit Mode and Compatibility Mode

In compatibility mode and 64-bit mode, MMX instructions function like they do in protected mode. Memory oper-
ands are specified using the ModR/M, SIB encoding described in Section 3.7.5.

9.2.2 MMX Registers

The MMX register set consists of eight 64-bit registers (see Figure 9-2), that are used to perform calculations on 
the MMX packed integer data types. Values in MMX registers have the same format as a 64-bit quantity in memory. 

The MMX registers have two data access modes: 64-bit access mode and 32-bit access mode. The 64-bit access 
mode is used for:
• 64-bit memory accesses
• 64-bit transfers between MMX registers
• All pack, logical, and arithmetic instructions
• Some unpack instructions

The 32-bit access mode is used for:
• 32-bit memory accesses
• 32-bit transfer between general-purpose registers and MMX registers
• Some unpack instructions

Figure 9-1.  MMX Technology Execution Environment
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Although MMX registers are defined in the IA-32 architecture as separate registers, they are aliased to the registers 
in the FPU data register stack (R0 through R7). 

See also Section 9.5, “Compatibility with x87 FPU Architecture.”

9.2.3 MMX Data Types

MMX technology introduced the following 64-bit data types to the IA-32 architecture (see Figure 9-3):
• 64-bit packed byte integers — eight packed bytes
• 64-bit packed word integers — four packed words
• 64-bit packed doubleword integers — two packed doublewords

MMX instructions move 64-bit packed data types (packed bytes, packed words, or packed doublewords) and the 
quadword data type between MMX registers and memory or between MMX registers in 64-bit blocks. However, 
when performing arithmetic or logical operations on the packed data types, MMX instructions operate in parallel on 
the individual bytes, words, or doublewords contained in MMX registers (see Section 9.2.5, “Single Instruction, 
Multiple Data (SIMD) Execution Model”).

9.2.4 Memory Data Formats

When stored in memory: bytes, words and doublewords in the packed data types are stored in consecutive 
addresses. The least significant byte, word, or doubleword is stored at the lowest address and the most significant 
byte, word, or doubleword is stored at the high address. The ordering of bytes, words, or doublewords in memory 
is always little endian. That is, the bytes with the low addresses are less significant than the bytes with high 
addresses.

Figure 9-2.  MMX Register Set

Figure 9-3.  Data Types Introduced with the MMX Technology
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9.2.5 Single Instruction, Multiple Data (SIMD) Execution Model

MMX technology uses the single instruction, multiple data (SIMD) technique for performing arithmetic and logical 
operations on bytes, words, or doublewords packed into MMX registers (see Figure 9-4). For example, the PADDSW 
instruction adds 4 signed word integers from one source operand to 4 signed word integers in a second source 
operand and stores 4 word integer results in a destination operand. This SIMD technique speeds up software 
performance by allowing the same operation to be carried out on multiple data elements in parallel. MMX tech-
nology supports parallel operations on byte, word, and doubleword data elements when contained in MMX regis-
ters.

The SIMD execution model supported in the MMX technology directly addresses the needs of modern media, 
communications, and graphics applications, which often use sophisticated algorithms that perform the same oper-
ations on a large number of small data types (bytes, words, and doublewords). For example, most audio data is 
represented in 16-bit (word) quantities. The MMX instructions can operate on 4 words simultaneously with one 
instruction. Video and graphics information is commonly represented as palletized 8-bit (byte) quantities. In 
Figure 9-4, one MMX instruction operates on 8 bytes simultaneously.

9.3 SATURATION AND WRAPAROUND MODES

When performing integer arithmetic, an operation may result in an out-of-range condition, where the true result 
cannot be represented in the destination format. For example, when performing arithmetic on signed word inte-
gers, positive overflow can occur when the true signed result is larger than 16 bits.

The MMX technology provides three ways of handling out-of-range conditions:
• Wraparound arithmetic — With wraparound arithmetic, a true out-of-range result is truncated (that is, the 

carry or overflow bit is ignored and only the least significant bits of the result are returned to the destination). 
Wraparound arithmetic is suitable for applications that control the range of operands to prevent out-of-range 
results. If the range of operands is not controlled, however, wraparound arithmetic can lead to large errors. For 
example, adding two large signed numbers can cause positive overflow and produce a negative result.

• Signed saturation arithmetic — With signed saturation arithmetic, out-of-range results are limited to the 
representable range of signed integers for the integer size being operated on (see Table 9-1). For example, if 
positive overflow occurs when operating on signed word integers, the result is “saturated” to 7FFFH, which is 
the largest positive integer that can be represented in 16 bits; if negative overflow occurs, the result is 
saturated to 8000H.

• Unsigned saturation arithmetic — With unsigned saturation arithmetic, out-of-range results are limited to 
the representable range of unsigned integers for the integer size. So, positive overflow when operating on 
unsigned byte integers results in FFH being returned and negative overflow results in 00H being returned.

.

Figure 9-4.  SIMD Execution Model
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Saturation arithmetic provides an answer for many overflow situations. For example, in color calculations, satura-
tion causes a color to remain pure black or pure white without allowing inversion. It also prevents wraparound arti-
facts from entering into computations when range checking of source operands it not used.

MMX instructions do not indicate overflow or underflow occurrence by generating exceptions or setting flags in the 
EFLAGS register.

9.4 MMX INSTRUCTIONS

The MMX instruction set consists of 47 instructions, grouped into the following categories:
• Data transfer
• Arithmetic
• Comparison
• Conversion
• Unpacking
• Logical
• Shift
• Empty MMX state instruction (EMMS)

Table 9-2 gives a summary of the instructions in the MMX instruction set. The following sections give a brief over-
view of the instructions within each group.

NOTES

The MMX instructions described in this chapter are those instructions that are available in an IA-32 
processor when CPUID.01H:EDX.MMX[bit 23] = 1. 
Section 10.4.4, “SSE 64-Bit SIMD Integer Instructions,” and Section 11.4.2, “SSE2 64-Bit and 128-
Bit SIMD Integer Instructions,” list additional instructions included with SSE/SSE2 extensions that 
operate on the MMX registers but are not considered part of the MMX instruction set.

Table 9-1.  Data Range Limits for Saturation

Data Type Lower Limit Upper Limit

Hexadecimal Decimal Hexadecimal Decimal

Signed Byte     80H     -128     7FH      127

Signed Word 8000H -32,768 7FFFH 32,767

Unsigned Byte     00H           0     FFH      255

Unsigned Word 0000H           0 FFFFH 65,535
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9.4.1 Data Transfer Instructions

The MOVD (Move 32 Bits) instruction transfers 32 bits of packed data from memory to an MMX register and vice 
versa; or from a general-purpose register to an MMX register and vice versa.

The MOVQ (Move 64 Bits) instruction transfers 64 bits of packed data from memory to an MMX register and vice 
versa; or transfers data between MMX registers.

9.4.2 Arithmetic Instructions

The arithmetic instructions perform addition, subtraction, multiplication, and multiply/add operations on packed 
data types.

The PADDB/PADDW/PADDD (add packed integers) instructions and the PSUBB/PSUBW/ PSUBD (subtract packed 
integers) instructions add or subtract the corresponding signed or unsigned data elements of the source and desti-

Table 9-2.  MMX Instruction Set Summary

Category Wraparound Signed Saturation Unsigned Saturation

Arithmetic Addition

Subtraction

Multiplication

Multiply and Add

PADDB, PADDW, PADDD

PSUBB, PSUBW, PSUBD

PMULL, PMULH

PMADD

PADDSB, PADDSW

PSUBSB, PSUBSW

PADDUSB, PADDUSW

PSUBUSB, PSUBUSW

Comparison Compare for Equal

Compare for Greater 
Than

PCMPEQB, PCMPEQW, 
PCMPEQD

PCMPGTPB, PCMPGTPW, 
PCMPGTPD

Conversion Pack PACKSSWB,
PACKSSDW

PACKUSWB

Unpack Unpack High

Unpack Low

PUNPCKHBW, 
PUNPCKHWD, 
PUNPCKHDQ

PUNPCKLBW, 
PUNPCKLWD, 
PUNPCKLDQ

Packed Full Quadword

Logical And

And Not

Or

Exclusive OR

PAND

PANDN

POR

PXOR

Shift Shift Left Logical

Shift Right Logical

Shift Right Arithmetic

PSLLW, PSLLD

PSRLW, PSRLD

PSRAW, PSRAD

PSLLQ

PSRLQ

Doubleword Transfers Quadword Transfers

Data Transfer Register to Register

Load from Memory

Store to Memory

MOVD

MOVD

MOVD

MOVQ

MOVQ

MOVQ

Empty MMX State EMMS
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nation operands in wraparound mode. These instructions operate on packed byte, word, and doubleword data 
types.

The PADDSB/PADDSW (add packed signed integers with signed saturation) instructions and the PSUBSB/PSUBSW 
(subtract packed signed integers with signed saturation) instructions add or subtract the corresponding signed 
data elements of the source and destination operands and saturate the result to the limits of the signed data-type 
range. These instructions operate on packed byte and word data types.

The PADDUSB/PADDUSW (add packed unsigned integers with unsigned saturation) instructions and the 
PSUBUSB/PSUBUSW (subtract packed unsigned integers with unsigned saturation) instructions add or subtract the 
corresponding unsigned data elements of the source and destination operands and saturate the result to the limits 
of the unsigned data-type range. These instructions operate on packed byte and word data types.

The PMULHW (multiply packed signed integers and store high result) and PMULLW (multiply packed signed inte-
gers and store low result) instructions perform a signed multiply of the corresponding words of the source and 
destination operands and write the high-order or low-order 16 bits of each of the results, respectively, to the desti-
nation operand.

The PMADDWD (multiply and add packed integers) instruction computes the products of the corresponding signed 
words of the source and destination operands. The four intermediate 32-bit doubleword products are summed in 
pairs (high-order pair and low-order pair) to produce two 32-bit doubleword results. 

9.4.3 Comparison Instructions

The PCMPEQB/PCMPEQW/PCMPEQD (compare packed data for equal) instructions and the 
PCMPGTB/PCMPGTW/PCMPGTD (compare packed signed integers for greater than) instructions compare the corre-
sponding signed data elements (bytes, words, or doublewords) in the source and destination operands for equal to 
or greater than, respectively. 

These instructions generate a mask of ones or zeros which are written to the destination operand. Logical opera-
tions can use the mask to select packed elements. This can be used to implement a packed conditional move oper-
ation without a branch or a set of branch instructions. No flags in the EFLAGS register are affected. 

9.4.4 Conversion Instructions

The PACKSSWB (pack words into bytes with signed saturation) and PACKSSDW (pack doublewords into words with 
signed saturation) instructions convert signed words into signed bytes and signed doublewords into signed words, 
respectively, using signed saturation.

PACKUSWB (pack words into bytes with unsigned saturation) converts signed words into unsigned bytes, using 
unsigned saturation.

9.4.5 Unpack Instructions

The PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ (unpack high-order data elements) instructions and the 
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ (unpack low-order data elements) instructions unpack bytes, words, or 
doublewords from the high- or low-order data elements of the source and destination operands and interleave 
them in the destination operand. By placing all 0s in the source operand, these instructions can be used to convert 
byte integers to word integers, word integers to doubleword integers, or doubleword integers to quadword inte-
gers. 

9.4.6 Logical Instructions

PAND (bitwise logical AND), PANDN (bitwise logical AND NOT), POR (bitwise logical OR), and PXOR (bitwise logical 
exclusive OR) perform bitwise logical operations on the quadword source and destination operands.
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9.4.7 Shift Instructions

The logical shift left, logical shift right and arithmetic shift right instructions shift each element by a specified 
number of bit positions.

The PSLLW/PSLLD/PSLLQ (shift packed data left logical) instructions and the PSRLW/PSRLD/PSRLQ (shift packed 
data right logical) instructions perform a logical left or right shift of the data elements and fill the empty high or low 
order bit positions with zeros. These instructions operate on packed words, doublewords, and quadwords.

The PSRAW/PSRAD (shift packed data right arithmetic) instructions perform an arithmetic right shift, copying the 
sign bit for each data element into empty bit positions on the upper end of each data element. This instruction 
operates on packed words and doublewords. 

9.4.8 EMMS Instruction

The EMMS instruction empties the MMX state by setting the tags in x87 FPU tag word to 11B, indicating empty 
registers. This instruction must be executed at the end of an MMX routine before calling other routines that can 
execute floating-point instructions. See Section 9.6.3, “Using the EMMS Instruction,” for more information on the 
use of this instruction.

9.5 COMPATIBILITY WITH X87 FPU ARCHITECTURE

The MMX state is aliased to the x87 FPU state. No new states or modes have been added to IA-32 architecture to 
support the MMX technology. The same floating-point instructions that save and restore the x87 FPU state also 
handle the MMX state (for example, during context switching).

MMX technology uses the same interface techniques between the x87 FPU and the operating system (primarily for 
task switching purposes). For more details, see Chapter 12, “Intel® MMX™ Technology System Programming,” in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

9.5.1 MMX Instructions and the x87 FPU Tag Word

After each MMX instruction, the entire x87 FPU tag word is set to valid (00B). The EMMS instruction (empty MMX 
state) sets the entire x87 FPU tag word to empty (11B). 

Chapter 12, “Intel® MMX™ Technology System Programming,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A, provides additional information about the effects of x87 FPU and MMX instructions 
on the x87 FPU tag word. For a description of the tag word, see Section 8.1.7, “x87 FPU Tag Word.”

9.6 WRITING APPLICATIONS WITH MMX CODE

The following sections give guidelines for writing application code that uses MMX technology.

9.6.1 Checking for MMX Technology Support

Before an application attempts to use the MMX technology, it should check that it is present on the processor. Check 
by following these steps:

1. Check that the processor supports the CPUID instruction by attempting to execute the CPUID instruction. If the 
processor does not support the CPUID instruction, this will generate an invalid-opcode exception (#UD).

2. Check that the processor supports the MMX technology 
(if CPUID.01H:EDX.MMX[bit 23] = 1).

3. Check that emulation of the x87 FPU is disabled (if CR0.EM[bit 2] = 0).

If the processor attempts to execute an unsupported MMX instruction or attempts to execute an MMX instruction 
with CR0.EM[bit 2] set, this generates an invalid-opcode exception (#UD).
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Example 9-1 illustrates how to use the CPUID instruction to detect the MMX technology. This example does not 
represent the entire CPUID sequence, but shows the portion used for detection of MMX technology.

Example 9-1.  Partial Routine for Detecting MMX Technology with the CPUID Instruction

... ; identify existence of CPUID instruction

... ; identify Intel processor

mov EAX, 1 ; request for feature flags

CPUID ; 0FH, 0A2H CPUID instruction

test EDX, 00800000H ; Is IA MMX technology bit (Bit 23 of EDX) set?

jnz ; MMX_Technology_Found

9.6.2 Transitions Between x87 FPU and MMX Code

Applications can contain both x87 FPU floating-point and MMX instructions. However, because the MMX registers 
are aliased to the x87 FPU register stack, care must be taken when making transitions between x87 FPU instruc-
tions and MMX instructions to prevent incoherent or unexpected results.

When an MMX instruction (other than the EMMS instruction) is executed, the processor changes the x87 FPU state 
as follows:
• The TOS (top of stack) value of the x87 FPU status word is set to 0.
• The entire x87 FPU tag word is set to the valid state (00B in all tag fields). 
• When an MMX instruction writes to an MMX register, it writes ones (11B) to the exponent part of the corre-

sponding floating-point register (bits 64 through 79).

The net result of these actions is that any x87 FPU state prior to the execution of the MMX instruction is essentially 
lost.

When an x87 FPU instruction is executed, the processor assumes that the current state of the x87 FPU register 
stack and control registers is valid and executes the instruction without any preparatory modifications to the x87 
FPU state.

If the application contains both x87 FPU floating-point and MMX instructions, the following guidelines are recom-
mended:
• When transitioning between x87 FPU and MMX code, save the state of any x87 FPU data or control registers 

that need to be preserved for future use. The FSAVE and FXSAVE instructions save the entire x87 FPU state.
• When transitioning between MMX and x87 FPU code, do the following:

— Save any data in the MMX registers that needs to be preserved for future use. FSAVE and FXSAVE also save 
the state of MMX registers.

— Execute the EMMS instruction to clear the MMX state from the x87 data and control registers.

The following sections describe the use of the EMMS instruction and give additional guidelines for mixing x87 FPU 
and MMX code.

9.6.3 Using the EMMS Instruction

As described in Section 9.6.2, “Transitions Between x87 FPU and MMX Code,” when an MMX instruction executes, 
the x87 FPU tag word is marked valid (00B). In this state, the execution of subsequent x87 FPU instructions may 
produce unexpected x87 FPU floating-point exceptions and/or incorrect results because the x87 FPU register stack 
appears to contain valid data. The EMMS instruction is provided to prevent this problem by marking the x87 FPU 
tag word as empty.

The EMMS instruction should be used in each of the following cases: 
• When an application using the x87 FPU instructions calls an MMX technology library/DLL (use the EMMS 

instruction at the end of the MMX code).
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• When an application using MMX instructions calls a x87 FPU floating-point library/DLL (use the EMMS 
instruction before calling the x87 FPU code).

• When a switch is made between MMX code in a task or thread and other tasks or threads in cooperative 
operating systems, unless it is certain that more MMX instructions will be executed before any x87 FPU code.

EMMS is not required when mixing MMX technology instructions with SSE/SSE2/SSE3 instructions (see Section 
11.6.7, “Interaction of SSE/SSE2 Instructions with x87 FPU and MMX Instructions”).

9.6.4 Mixing MMX and x87 FPU Instructions

An application can contain both x87 FPU floating-point and MMX instructions. However, frequent transitions 
between MMX and x87 FPU instructions are not recommended, because they can degrade performance in some 
processor implementations. When mixing MMX code with x87 FPU code, follow these guidelines:
• Keep the code in separate modules, procedures, or routines.
• Do not rely on register contents across transitions between x87 FPU and MMX code modules.
• When transitioning between MMX code and x87 FPU code, save the MMX register state (if it will be needed in 

the future) and execute an EMMS instruction to empty the MMX state.
• When transitioning between x87 FPU code and MMX code, save the x87 FPU state if it will be needed in the 

future.

9.6.5 Interfacing with MMX Code

MMX technology enables direct access to all the MMX registers. This means that all existing interface conventions 
that apply to the use of the processor’s general-purpose registers (EAX, EBX, etc.) also apply to the use of MMX 
registers.

An efficient interface to MMX routines might pass parameters and return values through the MMX registers or 
through a combination of memory locations (via the stack) and MMX registers. Do not use the EMMS instruction or 
mix MMX and x87 FPU code when using to the MMX registers to pass parameters.

If a high-level language that does not support the MMX data types directly is used, the MMX data types can be 
defined as a 64-bit structure containing packed data types.

When implementing MMX instructions in high-level languages, other approaches can be taken, such as: 
• Passing parameters to an MMX routine by passing a pointer to a structure via the stack.
• Returning a value from a function by returning a pointer to a structure.

9.6.6 Using MMX Code in a Multitasking Operating System Environment

An application needs to identify the nature of the multitasking operating system on which it runs. Each task retains 
its own state which must be saved when a task switch occurs. The processor state (context) consists of the 
general-purpose registers and the floating-point and MMX registers.

Operating systems can be classified into two types:
• Cooperative multitasking operating system
• Preemptive multitasking operating system

Cooperative multitasking operating systems do not save the FPU or MMX state when performing a context switch. 
Therefore, the application needs to save the relevant state before relinquishing direct or indirect control to the 
operating system.

Preemptive multitasking operating systems are responsible for saving and restoring the FPU and MMX state when 
performing a context switch. Therefore, the application does not have to save or restore the FPU and MMX state.
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9.6.7 Exception Handling in MMX Code

MMX instructions generate the same type of memory-access exceptions as other IA-32 instructions (page fault, 
segment not present, and limit violations). Existing exception handlers do not have to be modified to handle these 
types of exceptions for MMX code.

Unless there is a pending floating-point exception, MMX instructions do not generate numeric exceptions. There-
fore, there is no need to modify existing exception handlers or add new ones to handle numeric exceptions. 

If a floating-point exception is pending, the subsequent MMX instruction generates a numeric error exception 
(interrupt 16 and/or assertion of the FERR# pin). The MMX instruction resumes execution upon return from the 
exception handler.

9.6.8 Register Mapping

MMX registers and their tags are mapped to physical locations of the floating-point registers and their tags. 
Register aliasing and mapping is described in more detail in Chapter 12, “Intel® MMX™ Technology System 
Programming,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

9.6.9 Effect of Instruction Prefixes on MMX Instructions

Table 9-3 describes the effect of instruction prefixes on MMX instructions. Unpredictable behavior can range from 
being treated as a reserved operation on one generation of IA-32 processors to generating an invalid opcode 
exception on another generation of processors.

See “Instruction Prefixes” in Chapter 2, “Instruction Format,” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A, for a description of the instruction prefixes.

Table 9-3.  Effect of Prefixes on MMX Instructions 

Prefix Type Effect on MMX Instructions 

Address Size Prefix (67H) Affects instructions with a memory operand.

Reserved for instructions without a memory operand and may result in 
unpredictable behavior.

Operand Size (66H) Reserved and may result in unpredictable behavior.

Segment Override (2EH, 36H, 3EH, 26H, 64H, 
65H)

Affects instructions with a memory operand.

Reserved for instructions without a memory operand and may result in 
unpredictable behavior.

Repeat Prefix (F3H) Reserved and may result in unpredictable behavior.

Repeat NE Prefix(F2H) Reserved and may result in unpredictable behavior.

Lock Prefix (F0H) Reserved; generates invalid opcode exception (#UD).

Branch Hint Prefixes (2EH and 3EH) Reserved and may result in unpredictable behavior.
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CHAPTER 10
PROGRAMMING WITH

STREAMING SIMD EXTENSIONS (SSE)

The streaming SIMD extensions (SSE) were introduced into the IA-32 architecture in the Pentium III processor 
family. These extensions enhance the performance of IA-32 processors for advanced 2-D and 3-D graphics, motion 
video, image processing, speech recognition, audio synthesis, telephony, and video conferencing. 

This chapter describes SSE. Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2),” provides infor-
mation to assist in writing application programs that use SSE2 extensions. Chapter 12, “Programming with SSE3, 
SSSE3, SSE4 and AESNI,” provides this information for SSE3 extensions.

10.1 OVERVIEW OF SSE EXTENSIONS

Intel MMX technology introduced single-instruction multiple-data (SIMD) capability into the IA-32 architecture, 
with the 64-bit MMX registers, 64-bit packed integer data types, and instructions that allowed SIMD operations to 
be performed on packed integers. SSE extensions expand the SIMD execution model by adding facilities for 
handling packed and scalar single-precision floating-point values contained in 128-bit registers.

If CPUID.01H:EDX.SSE[bit 25] = 1, SSE extensions are present.

SSE extensions add the following features to the IA-32 architecture, while maintaining backward compatibility with 
all existing IA-32 processors, applications and operating systems.
• Eight 128-bit data registers (called XMM registers) in non-64-bit modes; sixteen XMM registers are available in 

64-bit mode.
• The 32-bit MXCSR register, which provides control and status bits for operations performed on XMM registers.
• The 128-bit packed single-precision floating-point data type (four IEEE single-precision floating-point values 

packed into a double quadword).
• Instructions that perform SIMD operations on single-precision floating-point values and that extend SIMD 

operations that can be performed on integers:

— 128-bit Packed and scalar single-precision floating-point instructions that operate on data located in MMX 
registers

— 64-bit SIMD integer instructions that support additional operations on packed integer operands located in 
MMX registers

• Instructions that save and restore the state of the MXCSR register.
• Instructions that support explicit prefetching of data, control of the cacheability of data, and control the 

ordering of store operations.
• Extensions to the CPUID instruction. 

These features extend the IA-32 architecture’s SIMD programming model in four important ways: 
• The ability to perform SIMD operations on four packed single-precision floating-point values enhances the 

performance of IA-32 processors for advanced media and communications applications that use computation-
intensive algorithms to perform repetitive operations on large arrays of simple, native data elements. 

• The ability to perform SIMD single-precision floating-point operations in XMM registers and SIMD integer 
operations in MMX registers provides greater flexibility and throughput for executing applications that operate 
on large arrays of floating-point and integer data.

• Cache control instructions provide the ability to stream data in and out of XMM registers without polluting the 
caches and the ability to prefetch data to selected cache levels before it is actually used. Applications that 
require regular access to large amounts of data benefit from these prefetching and streaming store capabilities. 

• The SFENCE (store fence) instruction provides greater control over the ordering of store operations when using 
weakly-ordered memory types.
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SSE extensions are fully compatible with all software written for IA-32 processors. All existing software continues 
to run correctly, without modification, on processors that incorporate SSE extensions. Enhancements to CPUID 
permit detection of SSE extensions. SSE extensions are accessible from all IA-32 execution modes: protected 
mode, real address mode, and virtual-8086 mode.

The following sections of this chapter describe the programming environment for SSE extensions, including: XMM 
registers, the packed single-precision floating-point data type, and SSE instructions. For additional information, 
see:
• Section 11.6, “Writing Applications with SSE/SSE2 Extensions”.
• Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” describes the exceptions that can be generated with 

SSE/SSE2/SSE3 instructions.
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B, provide a detailed 

description of these instructions.
• Chapter 13, “System Programming for Instruction Set Extensions and Processor Extended States,” in the 

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, gives guidelines for integrating 
these extensions into an operating-system environment.

10.2 SSE PROGRAMMING ENVIRONMENT

Figure 10-1 shows the execution environment for the SSE extensions. All SSE instructions operate on the XMM 
registers, MMX registers, and/or memory as follows: 
• XMM registers — These eight registers (see Figure 10-2 and Section 10.2.2, “XMM Registers”) are used to 

operate on packed or scalar single-precision floating-point data. Scalar operations are operations performed on 
individual (unpacked) single-precision floating-point values stored in the low doubleword of an XMM register. 
XMM registers are referenced by the names XMM0 through XMM7.

• MXCSR register — This 32-bit register (see Figure 10-3 and Section 10.2.3, “MXCSR Control and Status 
Register”) provides status and control bits used in SIMD floating-point operations.

• MMX registers — These eight registers (see Figure 9-2) are used to perform operations on 64-bit packed 
integer data. They are also used to hold operands for some operations performed between the MMX and XMM 
registers. MMX registers are referenced by the names MM0 through MM7.

• General-purpose registers — The eight general-purpose registers (see Figure 3-5) are used along with the 
existing IA-32 addressing modes to address operands in memory. (MMX and XMM registers cannot be used to 

Figure 10-1.  SSE Execution Environment
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address memory). The general-purpose registers are also used to hold operands for some SSE instructions and 
are referenced as EAX, EBX, ECX, EDX, EBP, ESI, EDI, and ESP.

• EFLAGS register — This 32-bit register (see Figure 3-8) is used to record result of some compare operations.

10.2.1 SSE in 64-Bit Mode and Compatibility Mode

In compatibility mode, SSE extensions function like they do in protected mode. In 64-bit mode, eight additional 
XMM registers are accessible. Registers XMM8-XMM15 are accessed by using REX prefixes. Memory operands are 
specified using the ModR/M, SIB encoding described in Section 3.7.5.

Some SSE instructions may be used to operate on general-purpose registers. Use the REX.W prefix to access 64-
bit general-purpose registers. Note that if a REX prefix is used when it has no meaning, the prefix is ignored.

10.2.2 XMM Registers

Eight 128-bit XMM data registers were introduced into the IA-32 architecture with SSE extensions (see 
Figure 10-2). These registers can be accessed directly using the names XMM0 to XMM7; and they can be accessed 
independently from the x87 FPU and MMX registers and the general-purpose registers (that is, they are not aliased 
to any other of the processor’s registers). 

SSE instructions use the XMM registers only to operate on packed single-precision floating-point operands. SSE2 
extensions expand the functions of the XMM registers to operand on packed or scalar double-precision floating-
point operands and packed integer operands (see Section 11.2, “SSE2 Programming Environment,” and Section 
12.1, “Programming Environment and Data types”).

XMM registers can only be used to perform calculations on data; they cannot be used to address memory. 
Addressing memory is accomplished by using the general-purpose registers.

Data can be loaded into XMM registers or written from the registers to memory in 32-bit, 64-bit, and 128-bit incre-
ments. When storing the entire contents of an XMM register in memory (128-bit store), the data is stored in 16 
consecutive bytes, with the low-order byte of the register being stored in the first byte in memory.

10.2.3 MXCSR Control and Status Register

The 32-bit MXCSR register (see Figure 10-3) contains control and status information for SSE, SSE2, and SSE3 
SIMD floating-point operations. This register contains: 
• flag and mask bits for SIMD floating-point exceptions
• rounding control field for SIMD floating-point operations

Figure 10-2.  XMM Registers
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• flush-to-zero flag that provides a means of controlling underflow conditions on SIMD floating-point operations
• denormals-are-zeros flag that controls how SIMD floating-point instructions handle denormal source operands

The contents of this register can be loaded from memory with the LDMXCSR and FXRSTOR instructions and stored 
in memory with STMXCSR and FXSAVE.

Bits 16 through 31 of the MXCSR register are reserved and are cleared on a power-up or reset of the processor; 
attempting to write a non-zero value to these bits, using either the FXRSTOR or LDMXCSR instructions, will result 
in a general-protection exception (#GP) being generated.

10.2.3.1  SIMD Floating-Point Mask and Flag Bits

Bits 0 through 5 of the MXCSR register indicate whether a SIMD floating-point exception has been detected. They 
are “sticky” flags. That is, after a flag is set, it remains set until explicitly cleared. To clear these flags, use the 
LDMXCSR or the FXRSTOR instruction to write zeroes to them.

Bits 7 through 12 provide individual mask bits for the SIMD floating-point exceptions. An exception type is masked 
if the corresponding mask bit is set, and it is unmasked if the bit is clear. These mask bits are set upon a power-up 
or reset. This causes all SIMD floating-point exceptions to be initially masked.

If LDMXCSR or FXRSTOR clears a mask bit and sets the corresponding exception flag bit, a SIMD floating-point 
exception will not be generated as a result of this change. The unmasked exception will be generated only upon the 
execution of the next SSE/SSE2/SSE3 instruction that detects the unmasked exception condition. 

For more information about the use of the SIMD floating-point exception mask and flag bits, see Section 11.5, 
“SSE, SSE2, and SSE3 Exceptions,” and Section 12.8, “SSE3/SSSE3 and SSE4 Exceptions.”

10.2.3.2  SIMD Floating-Point Rounding Control Field

Bits 13 and 14 of the MXCSR register (the rounding control [RC] field) control how the results of SIMD floating-point 
instructions are rounded. See Section 4.8.4, “Rounding,” for a description of the function and encoding of the 
rounding control bits.

10.2.3.3  Flush-To-Zero

Bit 15 (FZ) of the MXCSR register enables the flush-to-zero mode, which controls the masked response to a SIMD 
floating-point underflow condition. When the underflow exception is masked and the flush-to-zero mode is 
enabled, the processor performs the following operations when it detects a floating-point underflow condition:

Figure 10-3.  MXCSR Control/Status Register 
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• Returns a zero result with the sign of the true result
• Sets the precision and underflow exception flags

If the underflow exception is not masked, the flush-to-zero bit is ignored.

The flush-to-zero mode is not compatible with IEEE Standard 754. The IEEE-mandated masked response to under-
flow is to deliver the denormalized result (see Section 4.8.3.2, “Normalized and Denormalized Finite Numbers”). 
The flush-to-zero mode is provided primarily for performance reasons. At the cost of a slight precision loss, faster 
execution can be achieved for applications where underflows are common and rounding the underflow result to 
zero can be tolerated.

The flush-to-zero bit is cleared upon a power-up or reset of the processor, disabling the flush-to-zero mode.

10.2.3.4  Denormals-Are-Zeros

Bit 6 (DAZ) of the MXCSR register enables the denormals-are-zeros mode, which controls the processor’s response 
to a SIMD floating-point denormal operand condition. When the denormals-are-zeros flag is set, the processor 
converts all denormal source operands to a zero with the sign of the original operand before performing any 
computations on them. The processor does not set the denormal-operand exception flag (DE), regardless of the 
setting of the denormal-operand exception mask bit (DM); and it does not generate a denormal-operand exception 
if the exception is unmasked.

The denormals-are-zeros mode is not compatible with IEEE Standard 754 (see Section 4.8.3.2, “Normalized and 
Denormalized Finite Numbers”). The denormals-are-zeros mode is provided to improve processor performance for 
applications such as streaming media processing, where rounding a denormal operand to zero does not appre-
ciably affect the quality of the processed data.

The denormals-are-zeros flag is cleared upon a power-up or reset of the processor, disabling the denormals-are-
zeros mode.

The denormals-are-zeros mode was introduced in the Pentium 4 and Intel Xeon processor with the SSE2 exten-
sions; however, it is fully compatible with the SSE SIMD floating-point instructions (that is, the denormals-are-
zeros flag affects the operation of the SSE SIMD floating-point instructions). In earlier IA-32 processors and in 
some models of the Pentium 4 processor, this flag (bit 6) is reserved. See Section 11.6.3, “Checking for the DAZ 
Flag in the MXCSR Register,” for instructions for detecting the availability of this feature.

Attempting to set bit 6 of the MXCSR register on processors that do not support the DAZ flag will cause a general-
protection exception (#GP). See Section 11.6.6, “Guidelines for Writing to the MXCSR Register,” for instructions for 
preventing such general-protection exceptions by using the MXCSR_MASK value returned by the FXSAVE instruc-
tion.

10.2.4 Compatibility of SSE Extensions with SSE2/SSE3/MMX and the x87 FPU

The state (XMM registers and MXCSR register) introduced into the IA-32 execution environment with the SSE 
extensions is shared with SSE2 and SSE3 extensions. SSE/SSE2/SSE3 instructions are fully compatible; they can 
be executed together in the same instruction stream with no need to save state when switching between instruc-
tion sets.

XMM registers are independent of the x87 FPU and MMX registers, so SSE/SSE2/SSE3 operations performed on the 
XMM registers can be performed in parallel with operations on the x87 FPU and MMX registers (see Section 11.6.7, 
“Interaction of SSE/SSE2 Instructions with x87 FPU and MMX Instructions”).

The FXSAVE and FXRSTOR instructions save and restore the SSE/SSE2/SSE3 states along with the x87 FPU and 
MMX state.

10.3 SSE DATA TYPES

SSE extensions introduced one data type, the 128-bit packed single-precision floating-point data type, to the IA-
32 architecture (see Figure 10-4). This data type consists of four IEEE 32-bit single-precision floating-point values 
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packed into a double quadword. (See Figure 4-3 for the layout of a single-precision floating-point value; refer to 
Section 4.2.2, “Floating-Point Data Types,” for a detailed description of the single-precision floating-point format.)

This 128-bit packed single-precision floating-point data type is operated on in the XMM registers or in memory. 
Conversion instructions are provided to convert two packed single-precision floating-point values into two packed 
doubleword integers or a scalar single-precision floating-point value into a doubleword integer (see Figure 11-8).

SSE extensions provide conversion instructions between XMM registers and MMX registers, and between XMM 
registers and general-purpose bit registers. See Figure 11-8.

The address of a 128-bit packed memory operand must be aligned on a 16-byte boundary, except in the following 
cases: 
• The MOVUPS instruction supports unaligned accesses.
• Scalar instructions that use a 4-byte memory operand that is not subject to alignment requirements.

Figure 4-2 shows the byte order of 128-bit (double quadword) data types in memory.

10.4 SSE INSTRUCTION SET

SSE instructions are divided into four functional groups
• Packed and scalar single-precision floating-point instructions
• 64-bit SIMD integer instructions
• State management instructions
• Cacheability control, prefetch, and memory ordering instructions

The following sections give an overview of each of the instructions in these groups.

10.4.1 SSE Packed and Scalar Floating-Point Instructions

The packed and scalar single-precision floating-point instructions are divided into the following subgroups:
• Data movement instructions
• Arithmetic instructions
• Logical instructions
• Comparison instructions
• Shuffle instructions
• Conversion instructions

The packed single-precision floating-point instructions perform SIMD operations on packed single-precision 
floating-point operands (see Figure 10-5). Each source operand contains four single-precision floating-point 
values, and the destination operand contains the results of the operation (OP) performed in parallel on the corre-
sponding values (X0 and Y0, X1 and Y1, X2 and Y2, and X3 and Y3) in each operand.

Figure 10-4.  128-Bit Packed Single-Precision Floating-Point Data Type
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The scalar single-precision floating-point instructions operate on the low (least significant) doublewords of the two 
source operands (X0 and Y0); see Figure 10-6. The three most significant doublewords (X1, X2, and X3) of the first 
source operand are passed through to the destination. The scalar operations are similar to the floating-point oper-
ations performed in the x87 FPU data registers with the precision control field in the x87 FPU control word set for 
single precision (24-bit significand), except that x87 stack operations use a 15-bit exponent range for the result, 
while SSE operations use an 8-bit exponent range.

10.4.1.1  SSE Data Movement Instructions

SSE data movement instructions move single-precision floating-point data between XMM registers and between an 
XMM register and memory.

The MOVAPS (move aligned packed single-precision floating-point values) instruction transfers a double quadword 
operand containing four packed single-precision floating-point values from memory to an XMM register and vice 
versa, or between XMM registers. The memory address must be aligned to a 16-byte boundary; otherwise, a 
general-protection exception (#GP) is generated.

The MOVUPS (move unaligned packed single-precision, floating-point) instruction performs the same operations as 
the MOVAPS instruction, except that 16-byte alignment of a memory address is not required.

The MOVSS (move scalar single-precision floating-point) instruction transfers a 32-bit single-precision floating-
point operand from memory to the low doubleword of an XMM register and vice versa, or between XMM registers.

The MOVLPS (move low packed single-precision floating-point) instruction moves two packed single-precision 
floating-point values from memory to the low quadword of an XMM register and vice versa. The high quadword of 
the register is left unchanged.

Figure 10-5.  Packed Single-Precision Floating-Point Operation

Figure 10-6.  Scalar Single-Precision Floating-Point Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

X3 OP Y3 X2 OP Y2 X1 OP Y1 X0 OP Y0

OPOPOPOP

X3 X2 X1 X0

Y3 Y2 Y1 Y0

X3 X2 X1 X0 OP Y0

OP



10-8 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)

The MOVHPS (move high packed single-precision floating-point) instruction moves two packed single-precision 
floating-point values from memory to the high quadword of an XMM register and vice versa. The low quadword of 
the register is left unchanged.

The MOVLHPS (move packed single-precision floating-point low to high) instruction moves two packed single-
precision floating-point values from the low quadword of the source XMM register into the high quadword of the 
destination XMM register. The low quadword of the destination register is left unchanged.

The MOVHLPS (move packed single-precision floating-point high to low) instruction moves two packed single-
precision floating-point values from the high quadword of the source XMM register into the low quadword of the 
destination XMM register. The high quadword of the destination register is left unchanged.

The MOVMSKPS (move packed single-precision floating-point mask) instruction transfers the most significant bit of 
each of the four packed single-precision floating-point numbers in an XMM register to a general-purpose register. 
This 4-bit value can then be used as a condition to perform branching.

10.4.1.2  SSE Arithmetic Instructions

SSE arithmetic instructions perform addition, subtraction, multiply, divide, reciprocal, square root, reciprocal of 
square root, and maximum/minimum operations on packed and scalar single-precision floating-point values.

The ADDPS (add packed single-precision floating-point values) and SUBPS (subtract packed single-precision 
floating-point values) instructions add and subtract, respectively, two packed single-precision floating-point oper-
ands.

The ADDSS (add scalar single-precision floating-point values) and SUBSS (subtract scalar single-precision floating-
point values) instructions add and subtract, respectively, the low single-precision floating-point values of two oper-
ands and store the result in the low doubleword of the destination operand.

The MULPS (multiply packed single-precision floating-point values) instruction multiplies two packed single-preci-
sion floating-point operands.

The MULSS (multiply scalar single-precision floating-point values) instruction multiplies the low single-precision 
floating-point values of two operands and stores the result in the low doubleword of the destination operand.

The DIVPS (divide packed, single-precision floating-point values) instruction divides two packed single-precision 
floating-point operands.

The DIVSS (divide scalar single-precision floating-point values) instruction divides the low single-precision 
floating-point values of two operands and stores the result in the low doubleword of the destination operand.

The RCPPS (compute reciprocals of packed single-precision floating-point values) instruction computes the approx-
imate reciprocals of values in a packed single-precision floating-point operand.

The RCPSS (compute reciprocal of scalar single-precision floating-point values) instruction computes the approxi-
mate reciprocal of the low single-precision floating-point value in the source operand and stores the result in the 
low doubleword of the destination operand.

The SQRTPS (compute square roots of packed single-precision floating-point values) instruction computes the 
square roots of the values in a packed single-precision floating-point operand.

The SQRTSS (compute square root of scalar single-precision floating-point values) instruction computes the square 
root of the low single-precision floating-point value in the source operand and stores the result in the low double-
word of the destination operand.

The RSQRTPS (compute reciprocals of square roots of packed single-precision floating-point values) instruction 
computes the approximate reciprocals of the square roots of the values in a packed single-precision floating-point 
operand.

The RSQRTSS (reciprocal of square root of scalar single-precision floating-point value) instruction computes the 
approximate reciprocal of the square root of the low single-precision floating-point value in the source operand and 
stores the result in the low doubleword of the destination operand.

The MAXPS (return maximum of packed single-precision floating-point values) instruction compares the corre-
sponding values from two packed single-precision floating-point operands and returns the numerically greater 
value from each comparison to the destination operand.
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The MAXSS (return maximum of scalar single-precision floating-point values) instruction compares the low values 
from two packed single-precision floating-point operands and returns the numerically greater value from the 
comparison to the low doubleword of the destination operand.

The MINPS (return minimum of packed single-precision floating-point values) instruction compares the corre-
sponding values from two packed single-precision floating-point operands and returns the numerically lesser value 
from each comparison to the destination operand.

The MINSS (return minimum of scalar single-precision floating-point values) instruction compares the low values 
from two packed single-precision floating-point operands and returns the numerically lesser value from the 
comparison to the low doubleword of the destination operand.

10.4.2 SSE Logical Instructions

SSE logical instructions perform AND, AND NOT, OR, and XOR operations on packed single-precision floating-point 
values. 

The ANDPS (bitwise logical AND of packed single-precision floating-point values) instruction returns the logical 
AND of two packed single-precision floating-point operands.

The ANDNPS (bitwise logical AND NOT of packed single-precision, floating-point values) instruction returns the 
logical AND NOT of two packed single-precision floating-point operands.

The ORPS (bitwise logical OR of packed single-precision, floating-point values) instruction returns the logical OR of 
two packed single-precision floating-point operands.

The XORPS (bitwise logical XOR of packed single-precision, floating-point values) instruction returns the logical 
XOR of two packed single-precision floating-point operands.

10.4.2.1  SSE Comparison Instructions

The compare instructions compare packed and scalar single-precision floating-point values and return the results 
of the comparison either to the destination operand or to the EFLAGS register.

The CMPPS (compare packed single-precision floating-point values) instruction compares the corresponding values 
from two packed single-precision floating-point operands, using an immediate operand as a predicate, and returns 
a 32-bit mask result of all 1s or all 0s for each comparison to the destination operand. The value of the immediate 
operand allows the selection of any of 8 compare conditions: equal, less than, less than equal, unordered, not 
equal, not less than, not less than or equal, or ordered.

The CMPSS (compare scalar single-precision, floating-point values) instruction compares the low values from two 
packed single-precision floating-point operands, using an immediate operand as a predicate, and returns a 32-bit 
mask result of all 1s or all 0s for the comparison to the low doubleword of the destination operand. The immediate 
operand selects the compare conditions as with the CMPPS instruction.

The COMISS (compare scalar single-precision floating-point values and set EFLAGS) and UCOMISS (unordered 
compare scalar single-precision floating-point values and set EFLAGS) instructions compare the low values of two 
packed single-precision floating-point operands and set the ZF, PF, and CF flags in the EFLAGS register to show the 
result (greater than, less than, equal, or unordered). These two instructions differ as follows: the COMISS instruc-
tion signals a floating-point invalid-operation (#I) exception when a source operand is either a QNaN or an SNaN; 
the UCOMISS instruction only signals an invalid-operation exception when a source operand is an SNaN.

10.4.2.2  SSE Shuffle and Unpack Instructions

SSE shuffle and unpack instructions shuffle or interleave the contents of two packed single-precision floating-point 
values and store the results in the destination operand.

The SHUFPS (shuffle packed single-precision floating-point values) instruction places any two of the four packed 
single-precision floating-point values from the destination operand into the two low-order doublewords of the 
destination operand, and places any two of the four packed single-precision floating-point values from the source 
operand in the two high-order doublewords of the destination operand (see Figure 10-7). By using the same 
register for the source and destination operands, the SHUFPS instruction can shuffle four single-precision floating-
point values into any order. 



10-10 Vol. 1

PROGRAMMING WITH STREAMING SIMD EXTENSIONS (SSE)

The UNPCKHPS (unpack and interleave high packed single-precision floating-point values) instruction performs an 
interleaved unpack of the high-order single-precision floating-point values from the source and destination oper-
ands and stores the result in the destination operand (see Figure 10-8).

The UNPCKLPS (unpack and interleave low packed single-precision floating-point values) instruction performs an 
interleaved unpack of the low-order single-precision floating-point values from the source and destination oper-
ands and stores the result in the destination operand (see Figure 10-9).

Figure 10-7.  SHUFPS Instruction, Packed Shuffle Operation

Figure 10-8.  UNPCKHPS Instruction, High Unpack and Interleave Operation

Figure 10-9.  UNPCKLPS Instruction, Low Unpack and Interleave Operation
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10.4.3 SSE Conversion Instructions

SSE conversion instructions (see Figure 11-8) support packed and scalar conversions between single-precision 
floating-point and doubleword integer formats.

The CVTPI2PS (convert packed doubleword integers to packed single-precision floating-point values) instruction 
converts two packed signed doubleword integers into two packed single-precision floating-point values. When the 
conversion is inexact, the result is rounded according to the rounding mode selected in the MXCSR register. 

The CVTSI2SS (convert doubleword integer to scalar single-precision floating-point value) instruction converts a 
signed doubleword integer into a single-precision floating-point value. When the conversion is inexact, the result is 
rounded according to the rounding mode selected in the MXCSR register. 

The CVTPS2PI (convert packed single-precision floating-point values to packed doubleword integers) instruction 
converts two packed single-precision floating-point values into two packed signed doubleword integers. When the 
conversion is inexact, the result is rounded according to the rounding mode selected in the MXCSR register. The 
CVTTPS2PI (convert with truncation packed single-precision floating-point values to packed doubleword integers) 
instruction is similar to the CVTPS2PI instruction, except that truncation is used to round a source value to an 
integer value (see Section 4.8.4.2, “Truncation with SSE and SSE2 Conversion Instructions”).

The CVTSS2SI (convert scalar single-precision floating-point value to doubleword integer) instruction converts a 
single-precision floating-point value into a signed doubleword integer. When the conversion is inexact, the result is 
rounded according to the rounding mode selected in the MXCSR register. The CVTTSS2SI (convert with truncation 
scalar single-precision floating-point value to doubleword integer) instruction is similar to the CVTSS2SI instruc-
tion, except that truncation is used to round the source value to an integer value (see Section 4.8.4.2, “Truncation 
with SSE and SSE2 Conversion Instructions”).

10.4.4 SSE 64-Bit SIMD Integer Instructions

SSE extensions add the following 64-bit packed integer instructions to the IA-32 architecture. These instructions 
operate on data in MMX registers and 64-bit memory locations. 

NOTE

When SSE2 extensions are present in an IA-32 processor, these instructions are extended to 
operate on 128-bit operands in XMM registers and 128-bit memory locations.

The PAVGB (compute average of packed unsigned byte integers) and PAVGW (compute average of packed 
unsigned word integers) instructions compute a SIMD average of two packed unsigned byte or word integer oper-
ands, respectively. For each corresponding pair of data elements in the packed source operands, the elements are 
added together, a 1 is added to the temporary sum, and that result is shifted right one bit position.

The PEXTRW (extract word) instruction copies a selected word from an MMX register into a general-purpose 
register.

The PINSRW (insert word) instruction copies a word from a general-purpose register or from memory into a 
selected word location in an MMX register.

The PMAXUB (maximum of packed unsigned byte integers) instruction compares the corresponding unsigned byte 
integers in two packed operands and returns the greater of each comparison to the destination operand.

The PMINUB (minimum of packed unsigned byte integers) instruction compares the corresponding unsigned byte 
integers in two packed operands and returns the lesser of each comparison to the destination operand.

The PMAXSW (maximum of packed signed word integers) instruction compares the corresponding signed word 
integers in two packed operands and returns the greater of each comparison to the destination operand.

The PMINSW (minimum of packed signed word integers) instruction compares the corresponding signed word inte-
gers in two packed operands and returns the lesser of each comparison to the destination operand.

The PMOVMSKB (move byte mask) instruction creates an 8-bit mask from the packed byte integers in an MMX 
register and stores the result in the low byte of a general-purpose register. The mask contains the most significant 
bit of each byte in the MMX register. (When operating on 128-bit operands, a 16-bit mask is created.)
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The PMULHUW (multiply packed unsigned word integers and store high result) instruction performs a SIMD 
unsigned multiply of the words in the two source operands and returns the high word of each result to an MMX 
register.

The PSADBW (compute sum of absolute differences) instruction computes the SIMD absolute differences of the 
corresponding unsigned byte integers in two source operands, sums the differences, and stores the sum in the low 
word of the destination operand.

The PSHUFW (shuffle packed word integers) instruction shuffles the words in the source operand according to the 
order specified by an 8-bit immediate operand and returns the result to the destination operand.

10.4.5 MXCSR State Management Instructions

The MXCSR state management instructions (LDMXCSR and STMXCSR) load and save the state of the MXCSR 
register, respectively. The LDMXCSR instruction loads the MXCSR register from memory, while the STMXCSR 
instruction stores the contents of the register to memory.

10.4.6 Cacheability Control, Prefetch, and Memory Ordering Instructions

SSE extensions introduce several new instructions to give programs more control over the caching of data. They 
also introduces the PREFETCHh instructions, which provide the ability to prefetch data to a specified cache level, 
and the SFENCE instruction, which enforces program ordering on stores. These instructions are described in the 
following sections.

10.4.6.1  Cacheability Control Instructions

The following three instructions enable data from the MMX and XMM registers to be stored to memory using a non-
temporal hint. The non-temporal hint directs the processor to store the data to memory without writing the data 
into the cache hierarchy. See Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data,” for information 
about non-temporal stores and hints.

The MOVNTQ (store quadword using non-temporal hint) instruction stores packed integer data from an MMX 
register to memory, using a non-temporal hint.

The MOVNTPS (store packed single-precision floating-point values using non-temporal hint) instruction stores 
packed floating-point data from an XMM register to memory, using a non-temporal hint.

The MASKMOVQ (store selected bytes of quadword) instruction stores selected byte integers from an MMX register 
to memory, using a byte mask to selectively write the individual bytes. This instruction also uses a non-temporal 
hint.

10.4.6.2  Caching of Temporal vs. Non-Temporal Data

Data referenced by a program can be temporal (data will be used again) or non-temporal (data will be referenced 
once and not reused in the immediate future). For example, program code is generally temporal, whereas, multi-
media data, such as the display list in a 3-D graphics application, is often non-temporal. To make efficient use of 
the processor’s caches, it is generally desirable to cache temporal data and not cache non-temporal data. Over-
loading the processor’s caches with non-temporal data is sometimes referred to as “polluting the caches.” The SSE 
and SSE2 cacheability control instructions enable a program to write non-temporal data to memory in a manner 
that minimizes pollution of caches. 

These SSE and SSE2 non-temporal store instructions minimize cache pollutions by treating the memory being 
accessed as the write combining (WC) type. If a program specifies a non-temporal store with one of these instruc-
tions and the destination region is mapped as cacheable memory (write back [WB], write through [WT] or WC 
memory type), the processor will do the following:
• If the memory location being written to is present in the cache hierarchy, the data in the caches is evicted.1

1. Some older CPU implementations (e.g., Pentium M) allowed addresses being written with a non-temporal store instruction to be 
updated in-place if the memory type was not WC and line was already in the cache.
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• The non-temporal data is written to memory with WC semantics.

See also: Chapter 11, “Memory Cache Control,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

Using the WC semantics, the store transaction will be weakly ordered, meaning that the data may not be written to 
memory in program order, and the store will not write allocate (that is, the processor will not fetch the corre-
sponding cache line into the cache hierarchy, prior to performing the store). Also, different processor implementa-
tions may choose to collapse and combine these stores.

The memory type of the region being written to can override the non-temporal hint, if the memory address speci-
fied for the non-temporal store is in uncacheable memory. Uncacheable as referred to here means that the region 
being written to has been mapped with either an uncacheable (UC) or write protected (WP) memory type.

In general, WC semantics require software to ensure coherence, with respect to other processors and other system 
agents (such as graphics cards). Appropriate use of synchronization and fencing must be performed for producer-
consumer usage models. Fencing ensures that all system agents have global visibility of the stored data; for 
instance, failure to fence may result in a written cache line staying within a processor and not being visible to other 
agents. 

The memory type visible on the bus in the presence of memory type aliasing is implementation specific. As one 
possible example, the memory type written to the bus may reflect the memory type for the first store to this line, 
as seen in program order; other alternatives are possible. This behavior should be considered reserved, and 
dependence on the behavior of any particular implementation risks future incompatibility.

NOTE

Some older CPU implementations (e.g., Pentium M) may implement non-temporal stores by 
updating in place data that already reside in the cache hierarchy. For such processors, the 
destination region should also be mapped as WC. If mapped as WB or WT, there is the potential for 
speculative processor reads to bring the data into the caches; in this case, non-temporal stores 
would then update in place, and data would not be flushed from the processor by a subsequent 
fencing operation.

10.4.6.3  PREFETCHh Instructions

The PREFETCHh instructions permit programs to load data into the processor at a suggested cache level, so that 
the data is closer to the processor’s load and store unit when it is needed. These instructions fetch 32 aligned bytes 
(or more, depending on the implementation) containing the addressed byte to a location in the cache hierarchy 
specified by the temporal locality hint (see Table 10-1). In this table, the first-level cache is closest to the processor 
and second-level cache is farther away from the processor than the first-level cache. The hints specify a prefetch 
of either temporal or non-temporal data (see Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data”). 
Subsequent accesses to temporal data are treated like normal accesses, while those to non-temporal data will 
continue to minimize cache pollution. If the data is already present at a level of the cache hierarchy that is closer 
to the processor, the PREFETCHh instruction will not result in any data movement. The PREFETCHh instructions do 
not affect functional behavior of the program.

See Section 11.6.13, “Cacheability Hint Instructions,” for additional information about the PREFETCHh instructions.

Table 10-1.  PREFETCHh Instructions Caching Hints

PREFETCHh Instruction 
Mnemonic Actions

PREFETCHT0 Temporal data—fetch data into all levels of cache hierarchy:

• Pentium III processor—1st-level cache or 2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHT1 Temporal data—fetch data into level 2 cache and higher

• Pentium III processor—2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache
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10.4.6.4  SFENCE Instruction

The SFENCE (Store Fence) instruction controls write ordering by creating a fence for memory store operations. This 
instruction guarantees that the result of every store instruction that precedes the store fence in program order is 
globally visible before any store instruction that follows the fence. The SFENCE instruction provides an efficient way 
of ensuring ordering between procedures that produce weakly-ordered data and procedures that consume that 
data.

10.5 FXSAVE AND FXRSTOR INSTRUCTIONS

The FXSAVE and FXRSTOR instructions were introduced into the IA-32 architecture in the Pentium II processor 
family (prior to the introduction of the SSE extensions). The original versions of these instructions performed a fast 
save and restore, respectively, of the x87 execution environment (x87 state). (By saving the state of the x87 FPU 
data registers, the FXSAVE and FXRSTOR instructions implicitly save and restore the state of the MMX registers.) 

The SSE extensions expanded the scope of these instructions to save and restore the states of the XMM registers 
and the MXCSR register (SSE state), along with x87 state. 

The FXSAVE and FXRSTOR instructions can be used in place of the FSAVE/FNSAVE and FRSTOR instructions; 
however, the operation of the FXSAVE and FXRSTOR instructions are not identical to the operation of 
FSAVE/FNSAVE and FRSTOR.

NOTE

The FXSAVE and FXRSTOR instructions are not considered part of the SSE instruction group. They 
have a separate CPUID feature bit to indicate whether they are present (if 
CPUID.01H:EDX.FXSR[bit 24] = 1). 

The CPUID feature bit for SSE extensions does not indicate the presence of FXSAVE and FXRSTOR.

The FXSAVE and FXRSTOR instructions organize x87 state and SSE state in a region of memory called the FXSAVE 
area. Section 10.5.1 provides details of the FXSAVE area and its format. Section 10.5.2 describes operation of 
FXSAVE, and Section 10.5.3 describes the operation of FXRSTOR.

10.5.1 FXSAVE Area

The FXSAVE and FXRSTOR instructions organize x87 state and SSE state in a region of memory called the FXSAVE 
area. Each of the instructions takes a memory operand that specifies the 16-byte aligned base address of the 
FXSAVE area on which it operates.

PREFETCHT2 Temporal data—fetch data into level 2 cache and higher

• Pentium III processor—2nd-level cache

• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHNTA Non-temporal data—fetch data into location close to the processor, minimizing cache pollution 

• Pentium III processor—1st-level cache 

• Pentium 4 and Intel Xeon processor—2nd-level cache

Table 10-1.  PREFETCHh Instructions Caching Hints (Contd.)

PREFETCHh Instruction 
Mnemonic Actions
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Every FXSAVE area comprises the 512 bytes starting at the area’s base address. Table 10-2 illustrates the format 
of the first 416 bytes of the legacy region of an FXSAVE area.

The x87 state component comprises bytes 23:0 and bytes 159:32. The SSE state component comprises 
bytes 31:24 and bytes 415:160. FXSAVE and FXRSTOR do not use bytes 511:416; bytes 463:416 are reserved.

Section 10.5.2 and Section 10.5.3 provide details of how FXSAVE and FXRSTOR use an FXSAVE area.

10.5.1.1  x87 State

Table 10-2 illustrates how FXSAVE and FXRSTOR organize x87 state and SSE state; the x87 state is listed below, 
along with details of its interactions with FXSAVE and FXRSTOR:
• Bytes 1:0, 3:2, and 7:6 are used for x87 FPU Control Word (FCW), x87 FPU Status Word (FSW), and x87 FPU 

Opcode (FOP), respectively.

Table 10-2.  Format of an FXSAVE Area

15 14 13  12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
 CS or FPU 
IP bits 63:32 FPU IP bits 31:0 FOP Rsvd. FTW FSW FCW 0

MXCSR_MASK MXCSR Reserved
 DS or

FPU DP 
bits 63:32

 FPU DP bits 31:0 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400
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• Byte 4 is used for an abridged version of the x87 FPU Tag Word (FTW). The following items describe its usage:

— For each j, 0 ≤ j ≤ 7, FXSAVE saves a 0 into bit j of byte 4 if x87 FPU data register STj has a empty tag; 
otherwise, FXSAVE saves a 1 into bit j of byte 4.

— For each j, 0 ≤ j ≤ 7, FXRSTOR establishes the tag value for x87 FPU data register STj as follows. If bit j of 
byte 4 is 0, the tag for STj in the tag register for that data register is marked empty (11B); otherwise, the 
x87 FPU sets the tag for STj based on the value being loaded into that register (see below).

• Bytes 15:8 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 11:8 are used for bits 31:0 of the x87 FPU Instruction Pointer Offset (FIP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 13:12 are used for x87 FPU Instruction Pointer 
Selector (FPU CS). Otherwise, the processor deprecates the FPU CS value: FXSAVE saves it as 0000H.

• Bytes 15:14 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 15:8 are used for the full 64 bits of FIP.
• Bytes 23:16 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 19:16 are used for bits 31:0 of the x87 FPU Data Pointer Offset (FDP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 21:20 are used for x87 FPU Data Pointer Selector 
(FPU DS). Otherwise, the processor deprecates the FPU DS value: FXSAVE saves it as 0000H.

• Bytes 23:22 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 23:16 are used for the full 64 bits of FDP.
• Bytes 31:24 are used for SSE state (see Section 10.5.1.2).
• Bytes 159:32 are used for the registers ST0–ST7 (MM0–MM7). Each of the 8 register is allocated a 128-bit 

region, with the low 80 bits used for the register and the upper 48 bits unused.

10.5.1.2  SSE State

Table 10-2 illustrates how FXSAVE and FXRSTOR organize x87 state and SSE state; the SSE state is listed below, 
along with details of its interactions with FXSAVE and FXRSTOR:
• Bytes 23:0 are used for x87 state (see Section 10.5.1.1).
• Bytes 27:24 are used for the MXCSR register. FXRSTOR generates a general-protection fault (#GP) in response 

to an attempt to set any of the reserved bits in the MXCSR register.
• Bytes 31:28 are used for the MXCSR_MASK value. FXRSTOR ignores this field.
• Bytes 159:32 are used for x87 state.
• Bytes 287:160 are used for the registers XMM0–XMM7. 
• Bytes 415:288 are used for the registers XMM8–XMM15. These fields are used only in 64-bit mode. Executions 

of FXSAVE outside 64-bit mode do not write to these bytes; executions of FXRSTOR outside 64-bit mode do not 
read these bytes and do not update XMM8–XMM15.

If CR4.OSFXSR = 0, FXSAVE and FXRSTOR may or may not operate on SSE state; this behavior is implementation 
dependent. Moreover, SSE instructions cannot be used unless CR4.OSFXSR = 1.

10.5.2 Operation of FXSAVE

The FXSAVE instruction takes a single memory operand, which is an FXSAVE area. The instruction stores x87 state 
and SSE state to the FXSAVE area. See Section 10.5.1.1 and Section 10.5.1.2 for details regarding mode-specific 
operation and operation determined by instruction prefixes.
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10.5.3 Operation of FXRSTOR

The FXRSTOR instruction takes a single memory operand, which is an FXSAVE area. If the value at bytes 27:24 of 
the FXSAVE area is not a legal value for the MXCSR register (e.g., the value sets reserved bits). Otherwise, the 
instruction loads x87 state and SSE state rom the FXSAVE area. See Section 10.5.1.1 and Section 10.5.1.2 for 
details regarding mode-specific operation and operation determined by instruction prefixes.

10.6 HANDLING SSE INSTRUCTION EXCEPTIONS

See Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” for a detailed discussion of the general and SIMD floating-
point exceptions that can be generated with the SSE instructions and for guidelines for handling these exceptions 
when they occur.

10.7 WRITING APPLICATIONS WITH THE SSE EXTENSIONS

See Section 11.6, “Writing Applications with SSE/SSE2 Extensions,” for additional information about writing appli-
cations and operating-system code using the SSE extensions.
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CHAPTER 11
PROGRAMMING WITH

STREAMING SIMD EXTENSIONS 2 (SSE2)

The streaming SIMD extensions 2 (SSE2) were introduced into the IA-32 architecture in the Pentium 4 and Intel 
Xeon processors. These extensions enhance the performance of IA-32 processors for advanced 3-D graphics, video 
decoding/encoding, speech recognition, E-commerce, Internet, scientific, and engineering applications. 

This chapter describes the SSE2 extensions and provides information to assist in writing application programs that 
use these and the SSE extensions. 

11.1 OVERVIEW OF SSE2 EXTENSIONS

SSE2 extensions use the single instruction multiple data (SIMD) execution model that is used with MMX technology 
and SSE extensions. They extend this model with support for packed double-precision floating-point values and for 
128-bit packed integers.

If CPUID.01H:EDX.SSE2[bit 26] = 1, SSE2 extensions are present.

SSE2 extensions add the following features to the IA-32 architecture, while maintaining backward compatibility 
with all existing IA-32 processors, applications and operating systems.
• Six data types: 

— 128-bit packed double-precision floating-point (two IEEE Standard 754 double-precision floating-point 
values packed into a double quadword)

— 128-bit packed byte integers
— 128-bit packed word integers
— 128-bit packed doubleword integers
— 128-bit packed quadword integers

• Instructions to support the additional data types and extend existing SIMD integer operations:
— Packed and scalar double-precision floating-point instructions
— Additional 64-bit and 128-bit SIMD integer instructions
— 128-bit versions of SIMD integer instructions introduced with the MMX technology and the SSE extensions
— Additional cacheability-control and instruction-ordering instructions

• Modifications to existing IA-32 instructions to support SSE2 features:
— Extensions and modifications to the CPUID instruction
— Modifications to the RDPMC instruction

These new features extend the IA-32 architecture’s SIMD programming model in three important ways:
• They provide the ability to perform SIMD operations on pairs of packed double-precision floating-point values. 

This permits higher precision computations to be carried out in XMM registers, which enhances processor 
performance in scientific and engineering applications and in applications that use advanced 3-D geometry 
techniques (such as ray tracing). Additional flexibility is provided with instructions that operate on single 
(scalar) double-precision floating-point values located in the low quadword of an XMM register. 

• They provide the ability to operate on 128-bit packed integers (bytes, words, doublewords, and quadwords) in 
XMM registers. This provides greater flexibility and greater throughput when performing SIMD operations on 
packed integers. The capability is particularly useful for applications such as RSA authentication and RC5 
encryption. Using the full set of SIMD registers, data types, and instructions provided with the MMX technology 
and SSE/SSE2 extensions, programmers can develop algorithms that finely mix packed single- and double-
precision floating-point data and 64- and 128-bit packed integer data. 

• SSE2 extensions enhance the support introduced with SSE extensions for controlling the cacheability of SIMD 
data. SSE2 cache control instructions provide the ability to stream data in and out of the XMM registers without 
polluting the caches and the ability to prefetch data before it is actually used.
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SSE2 extensions are fully compatible with all software written for IA-32 processors. All existing software continues 
to run correctly, without modification, on processors that incorporate SSE2 extensions, as well as in the presence 
of applications that incorporate these extensions. Enhancements to the CPUID instruction permit detection of the 
SSE2 extensions. Also, because the SSE2 extensions use the same registers as the SSE extensions, no new oper-
ating-system support is required for saving and restoring program state during a context switch beyond that 
provided for the SSE extensions.

SSE2 extensions are accessible from all IA-32 execution modes: protected mode, real address mode, virtual 8086 
mode.

The following sections in this chapter describe the programming environment for SSE2 extensions including: the 
128-bit XMM floating-point register set, data types, and SSE2 instructions. It also describes exceptions that can be 
generated with the SSE and SSE2 instructions and gives guidelines for writing applications with SSE and SSE2 
extensions.

For additional information about SSE2 extensions, see:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B, provide a detailed 

description of individual SSE3 instructions.
• Chapter 13, “System Programming for Instruction Set Extensions and Processor Extended States,” in the 

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, gives guidelines for integrating 
the SSE and SSE2 extensions into an operating-system environment.

11.2 SSE2 PROGRAMMING ENVIRONMENT

Figure 11-1 shows the programming environment for SSE2 extensions. No new registers or other instruction 
execution state are defined with SSE2 extensions. SSE2 instructions use the XMM registers, the MMX registers, 
and/or IA-32 general-purpose registers, as follows: 
• XMM registers — These eight registers (see Figure 10-2) are used to operate on packed or scalar double-

precision floating-point data. Scalar operations are operations performed on individual (unpacked) double-
precision floating-point values stored in the low quadword of an XMM register. XMM registers are also used to 
perform operations on 128-bit packed integer data. They are referenced by the names XMM0 through XMM7.

• MXCSR register — This 32-bit register (see Figure 10-3) provides status and control bits used in floating-point 
operations. The denormals-are-zeros and flush-to-zero flags in this register provide a higher performance 
alternative for the handling of denormal source operands and denormal (underflow) results. For more 

Figure 11-1.  Steaming SIMD Extensions 2 Execution Environment
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information on the functions of these flags see Section 10.2.3.4, “Denormals-Are-Zeros,” and Section 10.2.3.3, 
“Flush-To-Zero.”

• MMX registers — These eight registers (see Figure 9-2) are used to perform operations on 64-bit packed 
integer data. They are also used to hold operands for some operations performed between MMX and XMM 
registers. MMX registers are referenced by the names MM0 through MM7.

• General-purpose registers — The eight general-purpose registers (see Figure 3-5) are used along with the 
existing IA-32 addressing modes to address operands in memory. MMX and XMM registers cannot be used to 
address memory. The general-purpose registers are also used to hold operands for some SSE2 instructions. 
These registers are referenced by the names EAX, EBX, ECX, EDX, EBP, ESI, EDI, and ESP.

• EFLAGS register — This 32-bit register (see Figure 3-8) is used to record the results of some compare 
operations.

11.2.1 SSE2 in 64-Bit Mode and Compatibility Mode

In compatibility mode, SSE2 extensions function like they do in protected mode. In 64-bit mode, eight additional 
XMM registers are accessible. Registers XMM8-XMM15 are accessed by using REX prefixes. 

Memory operands are specified using the ModR/M, SIB encoding described in Section 3.7.5.

Some SSE2 instructions may be used to operate on general-purpose registers. Use the REX.W prefix to access 64-
bit general-purpose registers. Note that if a REX prefix is used when it has no meaning, the prefix is ignored.

11.2.2 Compatibility of SSE2 Extensions with SSE, MMX
Technology and x87 FPU Programming Environment

SSE2 extensions do not introduce any new state to the IA-32 execution environment beyond that of SSE. SSE2 
extensions represent an enhancement of SSE extensions; they are fully compatible and share the same state infor-
mation. SSE and SSE2 instructions can be executed together in the same instruction stream without the need to 
save state when switching between instruction sets.

XMM registers are independent of the x87 FPU and MMX registers; so SSE and SSE2 operations performed on XMM 
registers can be performed in parallel with x87 FPU or MMX technology operations (see Section 11.6.7, “Interaction 
of SSE/SSE2 Instructions with x87 FPU and MMX Instructions”).

The FXSAVE and FXRSTOR instructions save and restore the SSE and SSE2 states along with the x87 FPU and MMX 
states.

11.2.3 Denormals-Are-Zeros Flag

The denormals-are-zeros flag (bit 6 in the MXCSR register) was introduced into the IA-32 architecture with the 
SSE2 extensions. See Section 10.2.3.4, “Denormals-Are-Zeros,” for a description of this flag.

11.3 SSE2 DATA TYPES

SSE2 extensions introduced one 128-bit packed floating-point data type and four 128-bit SIMD integer data types 
to the IA-32 architecture (see Figure 11-2). 
• Packed double-precision floating-point — This 128-bit data type consists of two IEEE 64-bit double-

precision floating-point values packed into a double quadword. (See Figure 4-3 for the layout of a 64-bit 
double-precision floating-point value; refer to Section 4.2.2, “Floating-Point Data Types,” for a detailed 
description of double-precision floating-point values.)

• 128-bit packed integers — The four 128-bit packed integer data types can contain 16 byte integers, 8 word 
integers, 4 doubleword integers, or 2 quadword integers. (Refer to Section 4.6.2, “128-Bit Packed SIMD Data 
Types,” for a detailed description of the 128-bit packed integers.)
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All of these data types are operated on in XMM registers or memory. Instructions are provided to convert between 
these 128-bit data types and the 64-bit and 32-bit data types.

The address of a 128-bit packed memory operand must be aligned on a 16-byte boundary, except in the following 
cases: 
• a MOVUPD instruction which supports unaligned accesses
• scalar instructions that use an 8-byte memory operand that is not subject to alignment requirements

Figure 4-2 shows the byte order of 128-bit (double quadword) and 64-bit (quadword) data types in memory.

11.4 SSE2 INSTRUCTIONS

The SSE2 instructions are divided into four functional groups:
• Packed and scalar double-precision floating-point instructions
• 64-bit and 128-bit SIMD integer instructions
• 128-bit extensions of SIMD integer instructions introduced with the MMX technology and the SSE extensions
• Cacheability-control and instruction-ordering instructions

The following sections provide more information about each group.

11.4.1 Packed and Scalar Double-Precision Floating-Point Instructions

The packed and scalar double-precision floating-point instructions are divided into the following sub-groups:
• Data movement instructions
• Arithmetic instructions
• Comparison instructions
• Conversion instructions
• Logical instructions
• Shuffle instructions

The packed double-precision floating-point instructions perform SIMD operations similarly to the packed single-
precision floating-point instructions (see Figure 11-3). Each source operand contains two double-precision 

Figure 11-2.  Data Types Introduced with the SSE2 Extensions
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floating-point values, and the destination operand contains the results of the operation (OP) performed in parallel 
on the corresponding values (X0 and Y0, and X1 and Y1) in each operand.

The scalar double-precision floating-point instructions operate on the low (least significant) quadwords of two 
source operands (X0 and Y0), as shown in Figure 11-4. The high quadword (X1) of the first source operand is 
passed through to the destination. The scalar operations are similar to the floating-point operations performed in 
x87 FPU data registers with the precision control field in the x87 FPU control word set for double precision (53-bit 
significand), except that x87 stack operations use a 15-bit exponent range for the result while SSE2 operations use 
an 11-bit exponent range. 

See Section 11.6.8, “Compatibility of SIMD and x87 FPU Floating-Point Data Types,” for more information about 
obtaining compatible results when performing both scalar double-precision floating-point operations in XMM regis-
ters and in x87 FPU data registers.

11.4.1.1  Data Movement Instructions

Data movement instructions move double-precision floating-point data between XMM registers and between XMM 
registers and memory.

The MOVAPD (move aligned packed double-precision floating-point) instruction transfers a 128-bit packed double-
precision floating-point operand from memory to an XMM register or vice versa, or between XMM registers. The 
memory address must be aligned to a 16-byte boundary; if not, a general-protection exception (GP#) is gener-
ated.

Figure 11-3.  Packed Double-Precision Floating-Point Operations

Figure 11-4.  Scalar Double-Precision Floating-Point Operations
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The MOVUPD (move unaligned packed double-precision floating-point) instruction transfers a 128-bit packed 
double-precision floating-point operand from memory to an XMM register or vice versa, or between XMM registers. 
Alignment of the memory address is not required.

The MOVSD (move scalar double-precision floating-point) instruction transfers a 64-bit double-precision floating-
point operand from memory to the low quadword of an XMM register or vice versa, or between XMM registers. 
Alignment of the memory address is not required, unless alignment checking is enabled.

The MOVHPD (move high packed double-precision floating-point) instruction transfers a 64-bit double-precision 
floating-point operand from memory to the high quadword of an XMM register or vice versa. The low quadword of 
the register is left unchanged. Alignment of the memory address is not required, unless alignment checking is 
enabled.

The MOVLPD (move low packed double-precision floating-point) instruction transfers a 64-bit double-precision 
floating-point operand from memory to the low quadword of an XMM register or vice versa. The high quadword of 
the register is left unchanged. Alignment of the memory address is not required, unless alignment checking is 
enabled.

The MOVMSKPD (move packed double-precision floating-point mask) instruction extracts the sign bit of each of the 
two packed double-precision floating-point numbers in an XMM register and saves them in a general-purpose 
register. This 2-bit value can then be used as a condition to perform branching.

11.4.1.2  SSE2 Arithmetic Instructions

SSE2 arithmetic instructions perform addition, subtraction, multiply, divide, square root, and maximum/minimum 
operations on packed and scalar double-precision floating-point values.

The ADDPD (add packed double-precision floating-point values) and SUBPD (subtract packed double-precision 
floating-point values) instructions add and subtract, respectively, two packed double-precision floating-point oper-
ands.

The ADDSD (add scalar double-precision floating-point values) and SUBSD (subtract scalar double-precision 
floating-point values) instructions add and subtract, respectively, the low double-precision floating-point values of 
two operands and stores the result in the low quadword of the destination operand.

The MULPD (multiply packed double-precision floating-point values) instruction multiplies two packed double-
precision floating-point operands.

The MULSD (multiply scalar double-precision floating-point values) instruction multiplies the low double-precision 
floating-point values of two operands and stores the result in the low quadword of the destination operand.

The DIVPD (divide packed double-precision floating-point values) instruction divides two packed double-precision 
floating-point operands.

The DIVSD (divide scalar double-precision floating-point values) instruction divides the low double-precision 
floating-point values of two operands and stores the result in the low quadword of the destination operand.

The SQRTPD (compute square roots of packed double-precision floating-point values) instruction computes the 
square roots of the values in a packed double-precision floating-point operand.

The SQRTSD (compute square root of scalar double-precision floating-point values) instruction computes the 
square root of the low double-precision floating-point value in the source operand and stores the result in the low 
quadword of the destination operand.

The MAXPD (return maximum of packed double-precision floating-point values) instruction compares the corre-
sponding values in two packed double-precision floating-point operands and returns the numerically greater value 
from each comparison to the destination operand.

The MAXSD (return maximum of scalar double-precision floating-point values) instruction compares the low 
double-precision floating-point values from two packed double-precision floating-point operands and returns the 
numerically higher value from the comparison to the low quadword of the destination operand.

The MINPD (return minimum of packed double-precision floating-point values) instruction compares the corre-
sponding values from two packed double-precision floating-point operands and returns the numerically lesser 
value from each comparison to the destination operand.
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The MINSD (return minimum of scalar double-precision floating-point values) instruction compares the low values 
from two packed double-precision floating-point operands and returns the numerically lesser value from the 
comparison to the low quadword of the destination operand.

11.4.1.3  SSE2 Logical Instructions

SSE2 logical instructions perform AND, AND NOT, OR, and XOR operations on packed double-precision floating-
point values. 

The ANDPD (bitwise logical AND of packed double-precision floating-point values) instruction returns the logical 
AND of two packed double-precision floating-point operands.

The ANDNPD (bitwise logical AND NOT of packed double-precision floating-point values) instruction returns the 
logical AND NOT of two packed double-precision floating-point operands.

The ORPD (bitwise logical OR of packed double-precision floating-point values) instruction returns the logical OR of 
two packed double-precision floating-point operands.

The XORPD (bitwise logical XOR of packed double-precision floating-point values) instruction returns the logical 
XOR of two packed double-precision floating-point operands.

11.4.1.4  SSE2 Comparison Instructions

SSE2 compare instructions compare packed and scalar double-precision floating-point values and return the 
results of the comparison either to the destination operand or to the EFLAGS register.

The CMPPD (compare packed double-precision floating-point values) instruction compares the corresponding 
values from two packed double-precision floating-point operands, using an immediate operand as a predicate, and 
returns a 64-bit mask result of all 1s or all 0s for each comparison to the destination operand. The value of the 
immediate operand allows the selection of any of eight compare conditions: equal, less than, less than equal, unor-
dered, not equal, not less than, not less than or equal, or ordered.

The CMPSD (compare scalar double-precision floating-point values) instruction compares the low values from two 
packed double-precision floating-point operands, using an immediate operand as a predicate, and returns a 64-bit 
mask result of all 1s or all 0s for the comparison to the low quadword of the destination operand. The immediate 
operand selects the compare condition as with the CMPPD instruction.

The COMISD (compare scalar double-precision floating-point values and set EFLAGS) and UCOMISD (unordered 
compare scalar double-precision floating-point values and set EFLAGS) instructions compare the low values of two 
packed double-precision floating-point operands and set the ZF, PF, and CF flags in the EFLAGS register to show the 
result (greater than, less than, equal, or unordered). These two instructions differ as follows: the COMISD instruc-
tion signals a floating-point invalid-operation (#I) exception when a source operand is either a QNaN or an SNaN; 
the UCOMISD instruction only signals an invalid-operation exception when a source operand is an SNaN.

11.4.1.5  SSE2 Shuffle and Unpack Instructions

SSE2 shuffle instructions shuffle the contents of two packed double-precision floating-point values and store the 
results in the destination operand.

The SHUFPD (shuffle packed double-precision floating-point values) instruction places either of the two packed 
double-precision floating-point values from the destination operand in the low quadword of the destination 
operand, and places either of the two packed double-precision floating-point values from source operand in the 
high quadword of the destination operand (see Figure 11-5). By using the same register for the source and desti-
nation operands, the SHUFPD instruction can swap two packed double-precision floating-point values. 
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The UNPCKHPD (unpack and interleave high packed double-precision floating-point values) instruction performs an 
interleaved unpack of the high values from the source and destination operands and stores the result in the desti-
nation operand (see Figure 11-6).

The UNPCKLPD (unpack and interleave low packed double-precision floating-point values) instruction performs an 
interleaved unpack of the low values from the source and destination operands and stores the result in the desti-
nation operand (see Figure 11-7).

Figure 11-5.  SHUFPD Instruction, Packed Shuffle Operation

Figure 11-6.  UNPCKHPD Instruction, High Unpack and Interleave Operation

Figure 11-7.  UNPCKLPD Instruction, Low Unpack and Interleave Operation
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11.4.1.6  SSE2 Conversion Instructions

SSE2 conversion instructions (see Figure 11-8) support packed and scalar conversions between:
• Double-precision and single-precision floating-point formats
• Double-precision floating-point and doubleword integer formats
• Single-precision floating-point and doubleword integer formats

Conversion between double-precision and single-precision floating-points values — The following 
instructions convert operands between double-precision and single-precision floating-point formats. The operands 
being operated on are contained in XMM registers or memory (at most, one operand can reside in memory; the 
destination is always an MMX register).

The CVTPS2PD (convert packed single-precision floating-point values to packed double-precision floating-point 
values) instruction converts two packed single-
precision floating-point values to two double-precision floating-point values.

The CVTPD2PS (convert packed double-precision floating-point values to packed single-precision floating-point 
values) instruction converts two packed double-
precision floating-point values to two single-precision floating-point values. When a conversion is inexact, the 
result is rounded according to the rounding mode selected in the MXCSR register.

The CVTSS2SD (convert scalar single-precision floating-point value to scalar double-precision floating-point value) 
instruction converts a single-precision floating-point value to a double-precision floating-point value.

The CVTSD2SS (convert scalar double-precision floating-point value to scalar single-precision floating-point value) 
instruction converts a double-precision floating-point value to a single-precision floating-point value. When the 
conversion is inexact, the result is rounded according to the rounding mode selected in the MXCSR register.

Conversion between double-precision floating-point values and doubleword integers — The following 
instructions convert operands between double-precision floating-point and doubleword integer formats. Operands 

Figure 11-8.  SSE and SSE2 Conversion Instructions
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are housed in XMM registers, MMX registers, general registers or memory (at most one operand can reside in 
memory; the destination is always an XMM, MMX, or general register).

The CVTPD2PI (convert packed double-precision floating-point values to packed doubleword integers) instruction 
converts two packed double-precision floating-point numbers to two packed signed doubleword integers, with the 
result stored in an MMX register. When rounding to an integer value, the source value is rounded according to the 
rounding mode in the MXCSR register. The CVTTPD2PI (convert with truncation packed double-precision floating-
point values to packed doubleword integers) instruction is similar to the CVTPD2PI instruction except that trunca-
tion is used to round a source value to an integer value (see Section 4.8.4.2, “Truncation with SSE and SSE2 
Conversion Instructions”).

The CVTPI2PD (convert packed doubleword integers to packed double-precision floating-point values) instruction 
converts two packed signed doubleword integers to two double-precision floating-point values. 

The CVTPD2DQ (convert packed double-precision floating-point values to packed doubleword integers) instruction 
converts two packed double-precision floating-point numbers to two packed signed doubleword integers, with the 
result stored in the low quadword of an XMM register. When rounding an integer value, the source value is rounded 
according to the rounding mode selected in the MXCSR register. The CVTTPD2DQ (convert with truncation packed 
double-precision floating-point values to packed doubleword integers) instruction is similar to the CVTPD2DQ 
instruction except that truncation is used to round a source value to an integer value (see Section 4.8.4.2, “Trun-
cation with SSE and SSE2 Conversion Instructions”).

The CVTDQ2PD (convert packed doubleword integers to packed double-precision floating-point values) instruction 
converts two packed signed doubleword integers located in the low-order doublewords of an XMM register to two 
double-precision floating-point values. 

The CVTSD2SI (convert scalar double-precision floating-point value to doubleword integer) instruction converts a 
double-precision floating-point value to a doubleword integer, and stores the result in a general-purpose register. 
When rounding an integer value, the source value is rounded according to the rounding mode selected in the 
MXCSR register. The CVTTSD2SI (convert with truncation scalar double-precision floating-point value to double-
word integer) instruction is similar to the CVTSD2SI instruction except that truncation is used to round the source 
value to an integer value (see Section 4.8.4.2, “Truncation with SSE and SSE2 Conversion Instructions”).

The CVTSI2SD (convert doubleword integer to scalar double-precision floating-point value) instruction converts a 
signed doubleword integer in a general-purpose register to a double-precision floating-point number, and stores 
the result in an XMM register. 

Conversion between single-precision floating-point and doubleword integer formats — These instruc-
tions convert between packed single-precision floating-point and packed doubleword integer formats. Operands 
are housed in XMM registers, MMX registers, general registers, or memory (the latter for at most one source 
operand). The destination is always an XMM, MMX, or general register. These SSE2 instructions supplement 
conversion instructions (CVTPI2PS, CVTPS2PI, CVTTPS2PI, CVTSI2SS, CVTSS2SI, and CVTTSS2SI) introduced 
with SSE extensions.

The CVTPS2DQ (convert packed single-precision floating-point values to packed doubleword integers) instruction 
converts four packed single-precision floating-point values to four packed signed doubleword integers, with the 
source and destination operands in XMM registers or memory (the latter for at most one source operand). When 
the conversion is inexact, the rounded value according to the rounding mode selected in the MXCSR register is 
returned. The CVTTPS2DQ (convert with truncation packed single-precision floating-point values to packed double-
word integers) instruction is similar to the CVTPS2DQ instruction except that truncation is used to round a source 
value to an integer value (see Section 4.8.4.2, “Truncation with SSE and SSE2 Conversion Instructions”).

The CVTDQ2PS (convert packed doubleword integers to packed single-precision floating-point values) instruction 
converts four packed signed doubleword integers to four packed single-precision floating-point numbers, with the 
source and destination operands in XMM registers or memory (the latter for at most one source operand). When 
the conversion is inexact, the rounded value according to the rounding mode selected in the MXCSR register is 
returned. 

11.4.2 SSE2 64-Bit and 128-Bit SIMD Integer Instructions

SSE2 extensions add several 128-bit packed integer instructions to the IA-32 architecture. Where appropriate, a 
64-bit version of each of these instructions is also provided. The 128-bit versions of instructions operate on data in 
XMM registers; 64-bit versions operate on data in MMX registers. The instructions follow.
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The MOVDQA (move aligned double quadword) instruction transfers a double quadword operand from memory to 
an XMM register or vice versa; or between XMM registers. The memory address must be aligned to a 16-byte 
boundary; otherwise, a general-protection exception (#GP) is generated.

The MOVDQU (move unaligned double quadword) instruction performs the same operations as the MOVDQA 
instruction, except that 16-byte alignment of a memory address is not required.

The PADDQ (packed quadword add) instruction adds two packed quadword integer operands or two single quad-
word integer operands, and stores the results in an XMM or MMX register, respectively. This instruction can operate 
on either unsigned or signed (two’s complement notation) integer operands.

The PSUBQ (packed quadword subtract) instruction subtracts two packed quadword integer operands or two single 
quadword integer operands, and stores the results in an XMM or MMX register, respectively. Like the PADDQ 
instruction, PSUBQ can operate on either unsigned or signed (two’s complement notation) integer operands.

The PMULUDQ (multiply packed unsigned doubleword integers) instruction performs an unsigned multiply of 
unsigned doubleword integers and returns a quadword result. Both 64-bit and 128-bit versions of this instruction 
are available. The 64-bit version operates on two doubleword integers stored in the low doubleword of each source 
operand, and the quadword result is returned to an MMX register. The 128-bit version performs a packed multiply 
of two pairs of doubleword integers. Here, the doublewords are packed in the first and third doublewords of the 
source operands, and the quadword results are stored in the low and high quadwords of an XMM register.

The PSHUFLW (shuffle packed low words) instruction shuffles the word integers packed into the low quadword of 
the source operand and stores the shuffled result in the low quadword of the destination operand. An 8-bit imme-
diate operand specifies the shuffle order.

The PSHUFHW (shuffle packed high words) instruction shuffles the word integers packed into the high quadword of 
the source operand and stores the shuffled result in the high quadword of the destination operand. An 8-bit imme-
diate operand specifies the shuffle order.

The PSHUFD (shuffle packed doubleword integers) instruction shuffles the doubleword integers packed into the 
source operand and stores the shuffled result in the destination operand. An 8-bit immediate operand specifies the 
shuffle order.

The PSLLDQ (shift double quadword left logical) instruction shifts the contents of the source operand to the left by 
the amount of bytes specified by an immediate operand. The empty low-order bytes are cleared (set to 0).

The PSRLDQ (shift double quadword right logical) instruction shifts the contents of the source operand to the right 
by the amount of bytes specified by an immediate operand. The empty high-order bytes are cleared (set to 0).

The PUNPCKHQDQ (Unpack high quadwords) instruction interleaves the high quadword of the source operand and 
the high quadword of the destination operand and writes them to the destination register.

The PUNPCKLQDQ (Unpack low quadwords) instruction interleaves the low quadwords of the source operand and 
the low quadwords of the destination operand and writes them to the destination register.

Two additional SSE instructions enable data movement from the MMX registers to the XMM registers. 

The MOVQ2DQ (move quadword integer from MMX to XMM registers) instruction moves the quadword integer from 
an MMX source register to an XMM destination register.

The MOVDQ2Q (move quadword integer from XMM to MMX registers) instruction moves the low quadword integer 
from an XMM source register to an MMX destination register. 

11.4.3 128-Bit SIMD Integer Instruction Extensions

All of 64-bit SIMD integer instructions introduced with MMX technology and SSE extensions (with the exception of 
the PSHUFW instruction) have been extended by SSE2 extensions to operate on 128-bit packed integer operands 
located in XMM registers. The 128-bit versions of these instructions follow the same SIMD conventions regarding 
packed operands as the 64-bit versions. For example, where the 64-bit version of the PADDB instruction operates 
on 8 packed bytes, the 128-bit version operates on 16 packed bytes. 
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11.4.4 Cacheability Control and Memory Ordering Instructions

SSE2 extensions that give programs more control over the caching, loading, and storing of data. are described 
below.

11.4.4.1  FLUSH Cache Line

The CLFLUSH (flush cache line) instruction writes and invalidates the cache line associated with a specified linear 
address. The invalidation is for all levels of the processor’s cache hierarchy, and it is broadcast throughout the 
cache coherency domain.

NOTE

CLFLUSH was introduced with the SSE2 extensions. However, the instruction can be implemented 
in IA-32 processors that do not implement the SSE2 extensions. Detect CLFLUSH using the feature 
bit (if CPUID.01H:EDX.CLFSH[bit 19] = 1).

11.4.4.2  Cacheability Control Instructions

The following four instructions enable data from XMM and general-purpose registers to be stored to memory using 
a non-temporal hint. The non-temporal hint directs the processor to store data to memory without writing the data 
into the cache hierarchy. See Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data,” for more information 
about non-temporal stores and hints.

The MOVNTDQ (store double quadword using non-temporal hint) instruction stores packed integer data from an 
XMM register to memory, using a non-temporal hint.

The MOVNTPD (store packed double-precision floating-point values using non-temporal hint) instruction stores 
packed double-precision floating-point data from an XMM register to memory, using a non-temporal hint.

The MOVNTI (store doubleword using non-temporal hint) instruction stores integer data from a general-purpose 
register to memory, using a non-temporal hint.

The MASKMOVDQU (store selected bytes of double quadword) instruction stores selected byte integers from an 
XMM register to memory, using a byte mask to selectively write the individual bytes. The memory location does not 
need to be aligned on a natural boundary. This instruction also uses a non-temporal hint. 

11.4.4.3  Memory Ordering Instructions

SSE2 extensions introduce two new fence instructions (LFENCE and MFENCE) as companions to the SFENCE 
instruction introduced with SSE extensions. 

The LFENCE instruction establishes a memory fence for loads. It guarantees ordering between two loads and 
prevents speculative loads from passing the load fence (that is, no speculative loads are allowed until all loads 
specified before the load fence have been carried out).

The MFENCE instruction combines the functions of LFENCE and SFENCE by establishing a memory fence for both 
loads and stores. It guarantees that all loads and stores specified before the fence are globally observable prior to 
any loads or stores being carried out after the fence.

11.4.4.4  Pause

The PAUSE instruction is provided to improve the performance of “spin-wait loops” executed on a Pentium 4 or Intel 
Xeon processor. On a Pentium 4 processor, it also provides the added benefit of reducing processor power 
consumption while executing a spin-wait loop. It is recommended that a PAUSE instruction always be included in 
the code sequence for a spin-wait loop.



Vol. 1 11-13

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SSE2)

11.4.5 Branch Hints

SSE2 extensions designate two instruction prefixes (2EH and 3EH) to provide branch hints to the processor (see 
“Instruction Prefixes” in Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A). These prefixes can only be used with the Jcc instruction and only at the machine code level (that is, there are 
no mnemonics for the branch hints).

11.5 SSE, SSE2, AND SSE3 EXCEPTIONS

SSE/SSE2/SSE3 extensions generate two general types of exceptions:
• Non-numeric exceptions
• SIMD floating-point exceptions1

SSE/SSE2/SSE3 instructions can generate the same type of memory-access and non-numeric exceptions as other 
IA-32 architecture instructions. Existing exception handlers can generally handle these exceptions without any 
code modification. See “Providing Non-Numeric Exception Handlers for Exceptions Generated by the SSE, SSE2 
and SSE3 Instructions” in Chapter 13 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A, for a list of the non-numeric exceptions that can be generated by SSE/SSE2/SSE3 instructions and for 
guidelines for handling these exceptions.

SSE/SSE2/SSE3 instructions do not generate numeric exceptions on packed integer operations; however, they can 
generate numeric (SIMD floating-point) exceptions on packed single-precision and double-precision floating-point 
operations. These SIMD floating-point exceptions are defined in the IEEE Standard 754 for Binary Floating-Point 
Arithmetic and are the same exceptions that are generated for x87 FPU instructions. See Section 11.5.1, “SIMD 
Floating-Point Exceptions,” for a description of these exceptions.

11.5.1 SIMD Floating-Point Exceptions

SIMD floating-point exceptions are those exceptions that can be generated by SSE/SSE2/SSE3 instructions that 
operate on packed or scalar floating-point operands.

Six classes of SIMD floating-point exceptions can be generated:
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

All of these exceptions (except the denormal operand exception) are defined in IEEE Standard 754, and they are 
the same exceptions that are generated with the x87 floating-point instructions. Section 4.9, “Overview of 
Floating-Point Exceptions,” gives a detailed description of these exceptions and of how and when they are gener-
ated. The following sections discuss the implementation of these exceptions in SSE/SSE2/SSE3 extensions.

All SIMD floating-point exceptions are precise and occur as soon as the instruction completes execution.

Each of the six exception conditions has a corresponding flag (IE, DE, ZE, OE, UE, and PE) and mask bit (IM, DM, 
ZM, OM, UM, and PM) in the MXCSR register (see Figure 10-3). The mask bits can be set with the LDMXCSR or 
FXRSTOR instruction; the mask and flag bits can be read with the STMXCSR or FXSAVE instruction.

The OSXMMEXCEPT flag (bit 10) of control register CR4 provides additional control over generation of SIMD 
floating-point exceptions by allowing the operating system to indicate whether or not it supports software excep-
tion handlers for SIMD floating-point exceptions. If an unmasked SIMD floating-point exception is generated and 
the OSXMMEXCEPT flag is set, the processor invokes a software exception handler by generating a SIMD floating-

1. The FISTTP instruction in SSE3 does not generate SIMD floating-point exceptions, but it can generate x87 FPU floating-point excep-
tions.
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point exception (#XM). If the OSXMMEXCEPT bit is clear, the processor generates an invalid-opcode exception 
(#UD) on the first SSE or SSE2 instruction that detects a SIMD floating-point exception condition. See Section 
11.6.2, “Checking for SSE/SSE2 Support.”

11.5.2 SIMD Floating-Point Exception Conditions

The following sections describe the conditions that cause a SIMD floating-point exception to be generated and the 
masked response of the processor when these conditions are detected. 

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for exception precedence when 
more than one floating-point exception condition is detected for an instruction.

11.5.2.1  Invalid Operation Exception (#I)

The floating-point invalid-operation exception (#I) occurs in response to an invalid arithmetic operand. The flag 
(IE) and mask (IM) bits for the invalid operation exception are bits 0 and 7, respectively, in the MXCSR register.

If the invalid-operation exception is masked, the processor returns a QNaN, QNaN floating-point indefinite, integer 
indefinite, one of the source operands to the destination operand, or it sets the EFLAGS, depending on the operation 
being performed. When a value is returned to the destination operand, it overwrites the destination register specified 
by the instruction. Table 11-1 lists the invalid-arithmetic operations that the processor detects for instructions and 
the masked responses to these operations.

If the invalid operation exception is not masked, a software exception handler is invoked and the operands remain 
unchanged. See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software.”

Table 11-1.  Masked Responses of SSE/SSE2/SSE3 Instructions to Invalid Arithmetic Operations

Condition Masked Response

ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, SUBSS, SUBPD, SUBSD, 
MULPS, MULSS, MULPD, MULSD, DIVPS, DIVSS, DIVPD, DIVSD, 
ADDSUBPD, ADDSUBPD, HADDPD, HADDPS, HSUBPD or HSUBPS 
instruction with an SNaN operand

Return the SNaN converted to a QNaN; Refer to Table 4-7 for 
more details

SQRTPS, SQRTSS, SQRTPD, or SQRTSD with SNaN operands Return the SNaN converted to a QNaN

SQRTPS, SQRTSS, SQRTPD, or SQRTSD with negative operands 
(except zero)

Return the QNaN floating-point Indefinite

MAXPS, MAXSS, MAXPD, MAXSD, MINPS, MINSS, MINPD, or 
MINSD instruction with QNaN or SNaN operands

Return the source 2 operand value

CMPPS, CMPSS, CMPPD or CMPSD instruction with QNaN or SNaN 
operands

Return a mask of all 0s (except for the predicates “not-equal,” 
“unordered,” “not-less-than,” or “not-less-than-or-equal,” which 
returns a mask of all 1s)

CVTPD2PS, CVTSD2SS, CVTPS2PD, CVTSS2SD with SNaN 
operands

Return the SNaN converted to a QNaN

COMISS or COMISD with QNaN or SNaN operand(s) Set EFLAGS values to “not comparable”

Addition of opposite signed infinities or subtraction of like-signed 
infinities

Return the QNaN floating-point Indefinite

Multiplication of infinity by zero Return the QNaN floating-point Indefinite

Divide of (0/0) or ( ∞ / ∞ ) Return the QNaN floating-point Indefinite

Conversion to integer when the value in the source register is a 
NaN, ∞, or exceeds the representable range for CVTPS2PI, 
CVTTPS2PI, CVTSS2SI, CVTTSS2SI, CVTPD2PI, CVTSD2SI, 
CVTPD2DQ, CVTTPD2PI, CVTTSD2SI, CVTTPD2DQ, CVTPS2DQ, 
or CVTTPS2DQ

Return the integer Indefinite
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Normally, when one or more of the source operands are QNaNs (and neither is an SNaN or in an unsupported 
format), an invalid-operation exception is not generated. The following instructions are exceptions to this rule: the 
COMISS and COMISD instructions; and the CMPPS, CMPSS, CMPPD, and CMPSD instructions (when the predicate 
is less than, less-than or equal, not less-than, or not less-than or equal). With these instructions, a QNaN source 
operand will generate an invalid-operation exception.

The invalid-operation exception is not affected by the flush-to-zero mode or by the denormals-are-zeros mode.

11.5.2.2  Denormal-Operand Exception (#D)

The processor signals the denormal-operand exception if an arithmetic instruction attempts to operate on a 
denormal operand. The flag (DE) and mask (DM) bits for the denormal-operand exception are bits 1 and 8, respec-
tively, in the MXCSR register.

The CVTPI2PD, CVTPD2PI, CVTTPD2PI, CVTDQ2PD, CVTPD2DQ, CVTTPD2DQ, CVTSI2SD, CVTSD2SI, CVTTSD2SI, 
CVTPI2PS, CVTPS2PI, CVTTPS2PI, CVTSS2SI, CVTTSS2SI, CVTSI2SS, CVTDQ2PS, CVTPS2DQ, and CVTTPS2DQ 
conversion instructions do not signal denormal exceptions. The RCPSS, RCPPS, RSQRTSS, and RSQRTPS instruc-
tions do not signal any kind of floating-point exception.

The denormals-are-zero flag (bit 6) of the MXCSR register provides an additional option for handling denormal-
operand exceptions. When this flag is set, denormal source operands are automatically converted to zeros with the 
sign of the source operand (see Section 10.2.3.4, “Denormals-Are-Zeros”). The denormal operand exception is not 
affected by the flush-to-zero mode.

See Section 4.9.1.2, “Denormal Operand Exception (#D),” for more information about the denormal exception. 
See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling unmasked 
exceptions.

11.5.2.3  Divide-By-Zero Exception (#Z)

The processor reports a divide-by-zero exception when a DIVPS, DIVSS, DIVPD or DIVSD instruction attempts to 
divide a finite non-zero operand by 0. The flag (ZE) and mask (ZM) bits for the divide-by-zero exception are bits 2 
and 9, respectively, in the MXCSR register.

See Section 4.9.1.3, “Divide-By-Zero Exception (#Z),” for more information about the divide-by-zero exception. 
See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling unmasked 
exceptions.

The divide-by-zero exception is not affected by the flush-to-zero mode at a single-instruction boundary.

While DAZ does not affect the rules for signaling IEEE exceptions, operations on denormal inputs might have 
different results when DAZ=1. As a consequence, DAZ can have an effect on the floating-point exceptions - 
including the divide-by-zero exception - when observed for a given operation involving denormal inputs.

11.5.2.4  Numeric Overflow Exception (#O)

The processor reports a numeric overflow exception whenever the rounded result of an arithmetic instruction 
exceeds the largest allowable finite value that fits in the destination operand. This exception can be generated with 
the ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, SUBSS, SUBPD, SUBSD, MULPS, MULSS, MULPD, MULSD, DIVPS, 
DIVSS, DIVPD, DIVSD, CVTPD2PS, CVTSD2SS, ADDSUBPD, ADDSUBPS, HADDPD, HADDPS, HSUBPD and HSUBPS 
instructions. The flag (OE) and mask (OM) bits for the numeric overflow exception are bits 3 and 10, respectively, 
in the MXCSR register.

See Section 4.9.1.4, “Numeric Overflow Exception (#O),” for more information about the numeric-overflow excep-
tion. See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling 
unmasked exceptions.

The numeric overflow exception is not affected by the flush-to-zero mode or by the denormals-are-zeros mode.
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11.5.2.5  Numeric Underflow Exception (#U)

The processor reports a numeric underflow exception whenever the rounded result of an arithmetic instruction is 
less than the smallest possible normalized, finite value that will fit in the destination operand and the numeric-
underflow exception is not masked. If the numeric underflow exception is masked, both underflow and the inexact-
result condition must be detected before numeric underflow is reported. This exception can be generated with the 
ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, SUBSS, SUBPD, SUBSD, MULPS, MULSS, MULPD, MULSD, DIVPS, DIVSS, 
DIVPD, DIVSD, CVTPD2PS, CVTSD2SS, ADDSUBPD, ADDSUBPS, HADDPD, HADDPS, HSUBPD, and HSUBPS 
instructions. The flag (UE) and mask (UM) bits for the numeric underflow exception are bits 4 and 11, respectively, 
in the MXCSR register.

The flush-to-zero flag (bit 15) of the MXCSR register provides an additional option for handling numeric underflow 
exceptions. When this flag is set and the numeric underflow exception is masked, tiny results (results that trigger 
the underflow exception) are returned as a zero with the sign of the true result (see Section 10.2.3.3, “Flush-To-
Zero”). 

Underflow will occur when a tiny non-zero result is detected, as described in the IEEE Standard 754-2008. While 
DAZ does not affect the rules for signaling IEEE exceptions, operations on denormal inputs might have different 
results when DAZ=1. As a consequence, DAZ can have an effect on the floating-point exceptions - including the 
underflow exception - when observed for a given operation involving denormal inputs.

See Section 4.9.1.5, “Numeric Underflow Exception (#U),” for more information about the numeric underflow 
exception. See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling 
unmasked exceptions.

11.5.2.6  Inexact-Result (Precision) Exception (#P)

The inexact-result exception (also called the precision exception) occurs if the result of an operation is not exactly 
representable in the destination format. For example, the fraction 1/3 cannot be precisely represented in binary 
form. This exception occurs frequently and indicates that some (normally acceptable) accuracy has been lost. The 
exception is supported for applications that need to perform exact arithmetic only. Because the rounded result is 
generally satisfactory for most applications, this exception is commonly masked.

The flag (PE) and mask (PM) bits for the inexact-result exception are bits 2 and 12, respectively, in the MXCSR 
register.

See Section 4.9.1.6, “Inexact-Result (Precision) Exception (#P),” for more information about the inexact-result 
exception. See Section 11.5.4, “Handling SIMD Floating-Point Exceptions in Software,” for information on handling 
unmasked exceptions.

In flush-to-zero mode, the inexact result exception is reported. 

11.5.3 Generating SIMD Floating-Point Exceptions

When the processor executes a packed or scalar floating-point instruction, it looks for and reports on SIMD 
floating-point exception conditions using two sequential steps:

1. Looks for, reports on, and handles pre-computation exception conditions (invalid-operand, divide-by-zero, and 
denormal operand)

2. Looks for, reports on, and handles post-computation exception conditions (numeric overflow, numeric 
underflow, and inexact result)

If both pre- and post-computational exceptions are unmasked, it is possible for the processor to generate a SIMD 
floating-point exception (#XM) twice during the execution of an SSE, SSE2 or SSE3 instruction: once when it 
detects and handles a pre-computational exception and when it detects a post-computational exception.

11.5.3.1  Handling Masked Exceptions

If all exceptions are masked, the processor handles the exceptions it detects by placing the masked result (or 
results for packed operands) in a destination operand and continuing program execution. The masked result may 
be a rounded normalized value, signed infinity, a denormal finite number, zero, a QNaN floating-point indefinite, or 
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a QNaN depending on the exception condition detected. In most cases, the corresponding exception flag bit in 
MXCSR is also set. The one situation where an exception flag is not set is when an underflow condition is detected 
and it is not accompanied by an inexact result.

When operating on packed floating-point operands, the processor returns a masked result for each of the sub-
operand computations and sets a separate set of internal exception flags for each computation. It then performs a 
logical-OR on the internal exception flag settings and sets the exception flags in the MXCSR register according to 
the results of OR operations.

For example, Figure 11-9 shows the results of an MULPS instruction. In the example, all SIMD floating-point excep-
tions are masked. Assume that a denormal exception condition is detected prior to the multiplication of sub-oper-
ands X0 and Y0, no exception condition is detected for the multiplication of X1 and Y1, a numeric overflow 
exception condition is detected for the multiplication of X2 and Y2, and another denormal exception is detected 
prior to the multiplication of sub-operands X3 and Y3. Because denormal exceptions are masked, the processor 
uses the denormal source values in the multiplications of (X0 and Y0) and of (X3 and Y3) passing the results of the 
multiplications through to the destination operand. With the denormal operand, the result of the X0 and Y0 compu-
tation is a normalized finite value, with no exceptions detected. However, the X3 and Y3 computation produces a 
tiny and inexact result. This causes the corresponding internal numeric underflow and inexact-result exception 
flags to be set.

For the multiplication of X2 and Y2, the processor stores the floating-point ∞ in the destination operand, and sets 
the corresponding internal sub-operand numeric overflow flag. The result of the X1 and Y1 multiplication is passed 
through to the destination operand, with no internal sub-operand exception flags being set. Following the compu-
tations, the individual sub-operand exceptions flags for denormal operand, numeric underflow, inexact result, and 
numeric overflow are OR’d and the corresponding flags are set in the MXCSR register.

The net result of this computation is that:
• Multiplication of X0 and Y0 produces a normalized finite result
• Multiplication of X1 and Y1 produces a normalized finite result
• Multiplication of X2 and Y2 produces a floating-point ∞ result
• Multiplication of X3 and Y3 produces a tiny, inexact, finite result
• Denormal operand, numeric underflow, numeric underflow, and inexact result flags are set in the MXCSR 

register

11.5.3.2  Handling Unmasked Exceptions

If all exceptions are unmasked, the processor:

1. First detects any pre-computation exceptions: it ORs those exceptions, sets the appropriate exception flags, 
leaves the source and destination operands unaltered, and goes to step 2. If it does not detect any pre-
computation exceptions, it goes to step 5.

Figure 11-9.  Example Masked Response for Packed Operations

X3 X2 X1 X0 (Denormal)

Y3 (Denormal) Y2 Y1 Y0 

Tiny, Inexact, Finite Normalized Finite

MULPS MULPS MULPS MULPS

∞ Normalized Finite
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2. Checks CR4.OSXMMEXCPT[bit 10]. If this flag is set, the processor goes to step 3; if the flag is clear, it 
generates an invalid-opcode exception (#UD) and makes an implicit call to the invalid-opcode exception 
handler.

3. Generates a SIMD floating-point exception (#XM) and makes an implicit call to the SIMD floating-point 
exception handler.

4. If the exception handler is able to fix the source operands that generated the pre-computation exceptions or 
mask the condition in such a way as to allow the processor to continue executing the instruction, the processor 
resumes instruction execution as described in step 5.

5. Upon returning from the exception handler (or if no pre-computation exceptions were detected), the processor 
checks for post-computation exceptions. If the processor detects any post-computation exceptions: it ORs 
those exceptions, sets the appropriate exception flags, leaves the source and destination operands unaltered, 
and repeats steps 2, 3, and 4.

6. Upon returning from the exceptions handler in step 4 (or if no post-computation exceptions were detected), the 
processor completes the execution of the instruction.

The implication of this procedure is that for unmasked exceptions, the processor can generate a SIMD floating-
point exception (#XM) twice: once if it detects pre-computation exception conditions and a second time if it detects 
post-computation exception conditions. For example, if SIMD floating-point exceptions are unmasked for the 
computation shown in Figure 11-9, the processor would generate one SIMD floating-point exception for denormal 
operand conditions and a second SIMD floating-point exception for overflow and underflow (no inexact result 
exception would be generated because the multiplications of X0 and Y0 and of X1 and Y1 are exact).

11.5.3.3  Handling Combinations of Masked and Unmasked Exceptions

In situations where both masked and unmasked exceptions are detected, the processor will set exception flags for 
the masked and the unmasked exceptions. However, it will not return masked results until after the processor has 
detected and handled unmasked post-computation exceptions and returned from the exception handler (as in step 
6 above) to finish executing the instruction.

11.5.4 Handling SIMD Floating-Point Exceptions in Software

Section 4.9.3, “Typical Actions of a Floating-Point Exception Handler,” shows actions that may be carried out by a 
SIMD floating-point exception handler. The SSE/SSE2/SSE3 state is saved with the FXSAVE instruction (see Section 
11.6.5, “Saving and Restoring the SSE/SSE2 State”). 

11.5.5 Interaction of SIMD and x87 FPU Floating-Point Exceptions

SIMD floating-point exceptions are generated independently from x87 FPU floating-point exceptions. SIMD 
floating-point exceptions do not cause assertion of the FERR# pin (independent of the value of CR0.NE[bit 5]). 
They ignore the assertion and deassertion of the IGNNE# pin.

If applications use SSE/SSE2/SSE3 instructions along with x87 FPU instructions (in the same task or program), 
consider the following:
• SIMD floating-point exceptions are reported independently from the x87 FPU floating-point exceptions. SIMD 

and x87 FPU floating-point exceptions can be unmasked independently. Separate x87 FPU and SIMD floating-
point exception handlers must be provided if the same exception is unmasked for x87 FPU and for 
SSE/SSE2/SSE3 operations.

• The rounding mode specified in the MXCSR register does not affect x87 FPU instructions. Likewise, the rounding 
mode specified in the x87 FPU control word does not affect the SSE/SSE2/SSE3 instructions. To use the same 
rounding mode, the rounding control bits in the MXCSR register and in the x87 FPU control word must be set 
explicitly to the same value.

• The flush-to-zero mode set in the MXCSR register for SSE/SSE2/SSE3 instructions has no counterpart in the 
x87 FPU. For compatibility with the x87 FPU, set the flush-to-zero bit to 0.
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• The denormals-are-zeros mode set in the MXCSR register for SSE/SSE2/SSE3 instructions has no counterpart 
in the x87 FPU. For compatibility with the x87 FPU, set the denormals-are-zeros bit to 0.

• An application that expects to detect x87 FPU exceptions that occur during the execution of x87 FPU instruc-
tions will not be notified if exceptions occurs during the execution of corresponding SSE/SSE2/SSE31 instruc-
tions, unless the exception masks that are enabled in the x87 FPU control word have also been enabled in the 
MXCSR register and the application is capable of handling SIMD floating-point exceptions (#XM).

— Masked exceptions that occur during an SSE/SSE2/SSE3 library call cannot be detected by unmasking the 
exceptions after the call (in an attempt to generate the fault based on the fact that an exception flag is set). 
A SIMD floating-point exception flag that is set when the corresponding exception is unmasked will not 
generate a fault; only the next occurrence of that unmasked exception will generate a fault.

— An application which checks the x87 FPU status word to determine if any masked exception flags were set 
during an x87 FPU library call will also need to check the MXCSR register to detect a similar occurrence of a 
masked exception flag being set during an SSE/SSE2/SSE3 library call.

11.6 WRITING APPLICATIONS WITH SSE/SSE2 EXTENSIONS

The following sections give some guidelines for writing application programs and operating-system code that uses 
the SSE and SSE2 extensions. Because SSE and SSE2 extensions share the same state and perform companion 
operations, these guidelines apply to both sets of extensions.

Chapter 13 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, discusses the inter-
face to the processor for context switching as well as other operating system considerations when writing code that 
uses SSE/SSE2/SSE3 extensions.

11.6.1 General Guidelines for Using SSE/SSE2 Extensions

The following guidelines describe how to take full advantage of the performance gains available with the SSE and 
SSE2 extensions:
• Ensure that the processor supports the SSE and SSE2 extensions.
• Ensure that your operating system supports the SSE and SSE2 extensions. (Operating system support for the 

SSE extensions implies support for SSE2 extension and vice versa.)
• Use stack and data alignment techniques to keep data properly aligned for efficient memory use.
• Use the non-temporal store instructions offered with the SSE and SSE2 extensions.
• Employ the optimization and scheduling techniques described in the Intel Pentium 4 Optimization Reference 

Manual (see Section 1.4, “Related Literature,” for the order number for this manual).

11.6.2 Checking for SSE/SSE2 Support

Before an application attempts to use the SSE and/or SSE2 extensions, it should check that they are present on the 
processor:

1. Check that the processor supports the CPUID instruction. Bit 21 of the EFLAGS register can be used to check 
processor’s support the CPUID instruction. 

2. Check that the processor supports the SSE and/or SSE2 extensions (true if CPUID.01H:EDX.SSE[bit 25] = 1 
and/or CPUID.01H:EDX.SSE2[bit 26] = 1).

Operating system must provide system level support for handling SSE state, exceptions before an application can 
use the SSE and/or SSE2 extensions (see Chapter 13 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A).

1. SSE3 refers to ADDSUBPD, ADDSUBPS, HADDPD, HADDPS, HSUBPD and HSUBPS; the only other SSE3 instruction that can raise 
floating-point exceptions is FISTTP: it can generate x87 FPU invalid operation and inexact result exceptions.
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If the processor attempts to execute an unsupported SSE or SSE2 instruction, the processor will generate an 
invalid-opcode exception (#UD). If an operating system did not provide adequate system level support for SSE, 
executing an SSE or SSE2 instructions can also generate #UD.

11.6.3 Checking for the DAZ Flag in the MXCSR Register

The denormals-are-zero flag in the MXCSR register is available in most of the Pentium 4 processors and in the Intel 
Xeon processor, with the exception of some early steppings. To check for the presence of the DAZ flag in the MXCSR 
register, do the following:

1. Establish a 512-byte FXSAVE area in memory.

2. Clear the FXSAVE area to all 0s.

3. Execute the FXSAVE instruction, using the address of the first byte of the cleared FXSAVE area as a source 
operand. See “FXSAVE—Save x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A, for a description of the FXSAVE instruction and the 
layout of the FXSAVE image.

4. Check the value in the MXCSR_MASK field in the FXSAVE image (bytes 28 through 31).

— If the value of the MXCSR_MASK field is 00000000H, the DAZ flag and denormals-are-zero mode are not 
supported.

— If the value of the MXCSR_MASK field is non-zero and bit 6 is set, the DAZ flag and denormals-are-zero 
mode are supported.

If the DAZ flag is not supported, then it is a reserved bit and attempting to write a 1 to it will cause a general-
protection exception (#GP). See Section 11.6.6, “Guidelines for Writing to the MXCSR Register,” for general guide-
lines for preventing general-protection exceptions when writing to the MXCSR register.

11.6.4 Initialization of SSE/SSE2 Extensions

The SSE and SSE2 state is contained in the XMM and MXCSR registers. Upon a hardware reset of the processor, this 
state is initialized as follows (see Table 11-2):
• All SIMD floating-point exceptions are masked (bits 7 through 12 of the MXCSR register is set to 1).
• All SIMD floating-point exception flags are cleared (bits 0 through 5 of the MXCSR register is set to 0).
• The rounding control is set to round-nearest (bits 13 and 14 of the MXCSR register are set to 00B).
• The flush-to-zero mode is disabled (bit 15 of the MXCSR register is set to 0).
• The denormals-are-zeros mode is disabled (bit 6 of the MXCSR register is set to 0). If the denormals-are-zeros 

mode is not supported, this bit is reserved and will be set to 0 on initialization.
• Each of the XMM registers is cleared (set to all zeros).

If the processor is reset by asserting the INIT# pin, the SSE and SSE2 state is not changed.

11.6.5 Saving and Restoring the SSE/SSE2 State

The FXSAVE instruction saves the x87 FPU, MMX, SSE and SSE2 states (which includes the contents of eight XMM 
registers and the MXCSR registers) in a 512-byte block of memory. The FXRSTOR instruction restores the saved 
SSE and SSE2 state from memory. See the FXSAVE instruction in Chapter 3 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A, for the layout of the 512-byte state block.

Table 11-2.  SSE and SSE2 State Following a Power-up/Reset or INIT

Registers Power-Up or Reset INIT

XMM0 through XMM7 +0.0 Unchanged

MXCSR 1F80H Unchanged
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In addition to saving and restoring the SSE and SSE2 state, FXSAVE and FXRSTOR also save and restore the x87 
FPU state (because MMX registers are aliased to the x87 FPU data registers this includes saving and restoring the 
MMX state). For greater code efficiency, it is suggested that FXSAVE and FXRSTOR be substituted for the FSAVE, 
FNSAVE and FRSTOR instructions in the following situations:
• When a context switch is being made in a multitasking environment
• During calls and returns from interrupt and exception handlers

In situations where the code is switching between x87 FPU and MMX technology computations (without a context 
switch or a call to an interrupt or exception), the FSAVE/FNSAVE and FRSTOR instructions are more efficient than 
the FXSAVE and FXRSTOR instructions.

11.6.6 Guidelines for Writing to the MXCSR Register

The MXCSR has several reserved bits, and attempting to write a 1 to any of these bits will cause a general-protec-
tion exception (#GP) to be generated. To allow software to identify these reserved bits, the MXCSR_MASK value is 
provided. Software can determine this mask value as follows:

1. Establish a 512-byte FXSAVE area in memory.

2. Clear the FXSAVE area to all 0s.

3. Execute the FXSAVE instruction, using the address of the first byte of the cleared FXSAVE area as a source 
operand. See “FXSAVE—Save x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2A, for a description of FXSAVE and the layout of the 
FXSAVE image.

4. Check the value in the MXCSR_MASK field in the FXSAVE image (bytes 28 through 31).

— If the value of the MXCSR_MASK field is 00000000H, then the MXCSR_MASK value is the default value of 
0000FFBFH. Note that this value indicates that bit 6 of the MXCSR register is reserved; this setting indicates 
that the denormals-are-zero mode is not supported on the processor.

— If the value of the MXCSR_MASK field is non-zero, the MXCSR_MASK value should be used as the 
MXCSR_MASK.

All bits set to 0 in the MXCSR_MASK value indicate reserved bits in the MXCSR register. Thus, if the MXCSR_MASK 
value is AND’d with a value to be written into the MXCSR register, the resulting value will be assured of having all 
its reserved bits set to 0, preventing the possibility of a general-protection exception being generated when the 
value is written to the MXCSR register. 

For example, the default MXCSR_MASK value when 00000000H is returned in the FXSAVE image is 0000FFBFH. If 
software AND’s a value to be written to MXCSR register with 0000FFBFH, bit 6 of the result (the DAZ flag) will be 
ensured of being set to 0, which is the required setting to prevent general-protection exceptions on processors that 
do not support the denormals-are-zero mode.

To prevent general-protection exceptions, the MXCSR_MASK value should be AND’d with the value to be written 
into the MXCSR register in the following situations:
• Operating system routines that receive a parameter from an application program and then write that value to 

the MXCSR register (either with an FXRSTOR or LDMXCSR instruction)
• Any application program that writes to the MXCSR register and that needs to run robustly on several different 

IA-32 processors

Note that all bits in the MXCSR_MASK value that are set to 1 indicate features that are supported by the MXCSR 
register; they can be treated as feature flags for identifying processor capabilities.

11.6.7 Interaction of SSE/SSE2 Instructions with x87 FPU and MMX Instructions

The XMM registers and the x87 FPU and MMX registers represent separate execution environments, which has 
certain ramifications when executing SSE, SSE2, MMX, and x87 FPU instructions in the same code module or when 
mixing code modules that contain these instructions:
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• Those SSE and SSE2 instructions that operate only on XMM registers (such as the packed and scalar floating-
point instructions and the 128-bit SIMD integer instructions) in the same instruction stream with 64-bit SIMD 
integer or x87 FPU instructions without any restrictions. For example, an application can perform the majority 
of its floating-point computations in the XMM registers, using the packed and scalar floating-point instructions, 
and at the same time use the x87 FPU to perform trigonometric and other transcendental computations. 
Likewise, an application can perform packed 64-bit and 128-bit SIMD integer operations together without 
restrictions.

• Those SSE and SSE2 instructions that operate on MMX registers (such as the CVTPS2PI, CVTTPS2PI, CVTPI2PS, 
CVTPD2PI, CVTTPD2PI, CVTPI2PD, MOVDQ2Q, MOVQ2DQ, PADDQ, and PSUBQ instructions) can also be 
executed in the same instruction stream as 64-bit SIMD integer or x87 FPU instructions, however, here they are 
subject to the restrictions on the simultaneous use of MMX technology and x87 FPU instructions, which include:

— Transition from x87 FPU to MMX technology instructions or to SSE or SSE2 instructions that operate on MMX 
registers should be preceded by saving the state of the x87 FPU.

— Transition from MMX technology instructions or from SSE or SSE2 instructions that operate on MMX 
registers to x87 FPU instructions should be preceded by execution of the EMMS instruction.

11.6.8 Compatibility of SIMD and x87 FPU Floating-Point Data Types

SSE and SSE2 extensions operate on the same single-precision and double-precision floating-point data types that 
the x87 FPU operates on. However, when operating on these data types, the SSE and SSE2 extensions operate on 
them in their native format (single-precision or double-precision), in contrast to the x87 FPU which extends them 
to double extended-precision floating-point format to perform computations and then rounds the result back to a 
single-precision or double-precision format before writing results to memory. Because the x87 FPU operates on a 
higher precision format and then rounds the result to a lower precision format, it may return a slightly different 
result when performing the same operation on the same single-precision or double-precision floating-point values 
than is returned by the SSE and SSE2 extensions. The difference occurs only in the least-significant bits of the 
significand.

11.6.9 Mixing Packed and Scalar Floating-Point and 128-Bit SIMD Integer Instructions and 
Data

SSE and SSE2 extensions define typed operations on packed and scalar floating-point data types and on 128-bit 
SIMD integer data types, but IA-32 processors do not enforce this typing at the architectural level. They only 
enforce it at the microarchitectural level. Therefore, when a Pentium 4 or Intel Xeon processor loads a packed or 
scalar floating-point operand or a 128-bit packed integer operand from memory into an XMM register, it does not 
check that the actual data being loaded matches the data type specified in the instruction. Likewise, when the 
processor performs an arithmetic operation on the data in an XMM register, it does not check that the data being 
operated on matches the data type specified in the instruction.

As a general rule, because data typing of SIMD floating-point and integer data types is not enforced at the archi-
tectural level, it is the responsibility of the programmer, assembler, or compiler to insure that code enforces data 
typing. Failure to enforce correct data typing can lead to computations that return unexpected results.

For example, in the following code sample, two packed single-precision floating-point operands are moved from 
memory into XMM registers (using MOVAPS instructions); then a double-precision packed add operation (using the 
ADDPD instruction) is performed on the operands:

movaps xmm0, [eax] ; EAX register contains pointer to packed 

; single-precision floating-point operand

movaps xmm1, [ebx]

addpd xmm0, xmm1

Pentium 4 and Intel Xeon processors execute these instructions without generating an invalid-operand exception 
(#UD) and will produce the expected results in register XMM0 (that is, the high and low 64-bits of each register will 
be treated as a double-precision floating-point value and the processor will operate on them accordingly). Because 
the data types operated on and the data type expected by the ADDPD instruction were inconsistent, the instruction 
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may result in a SIMD floating-point exception (such as numeric overflow [#O] or invalid operation [#I]) being 
generated, but the actual source of the problem (inconsistent data types) is not detected.

The ability to operate on an operand that contains a data type that is inconsistent with the typing of the instruction 
being executed, permits some valid operations to be performed. For example, the following instructions load a 
packed double-precision floating-point operand from memory to register XMM0, and a mask to register XMM1; 
then they use XORPD to toggle the sign bits of the two packed values in register XMM0.

movapd xmm0, [eax] ; EAX register contains pointer to packed 

; double-precision floating-point operand

movaps xmm1, [ebx] ; EBX register contains pointer to packed

; double-precision floating-point mask

xorpd xmm0, xmm1 ; XOR operation toggles sign bits using 

; the mask in xmm1

In this example: XORPS or PXOR can be used in place of XORPD and yield the same correct result. However, 
because of the type mismatch between the operand data type and the instruction data type, a latency penalty will 
be incurred due to implementations of the instructions at the microarchitecture level. 

Latency penalties can also be incurred by using move instructions of the wrong type. For example, MOVAPS and 
MOVAPD can both be used to move a packed single-precision operand from memory to an XMM register. However, 
if MOVAPD is used, a latency penalty will be incurred when a correctly typed instruction attempts to use the data in 
the register.

Note that these latency penalties are not incurred when moving data from XMM registers to memory.

11.6.10 Interfacing with SSE/SSE2 Procedures and Functions

SSE and SSE2 extensions allow direct access to XMM registers. This means that all existing interface conventions 
between procedures and functions that apply to the use of the general-purpose registers (EAX, EBX, etc.) also 
apply to XMM register usage.

11.6.10.1  Passing Parameters in XMM Registers

The state of XMM registers is preserved across procedure (or function) boundaries. Parameters can be passed from 
one procedure to another using XMM registers.

11.6.10.2  Saving XMM Register State on a Procedure or Function Call

The state of XMM registers can be saved in two ways: using an FXSAVE instruction or a move instruction. FXSAVE 
saves the state of all XMM registers (along with the state of MXCSR and the x87 FPU registers). This instruction is 
typically used for major changes in the context of the execution environment, such as a task switch. FXRSTOR 
restores the XMM, MXCSR, and x87 FPU registers stored with FXSAVE.

In cases where only XMM registers must be saved, or where selected XMM registers need to be saved, move 
instructions (MOVAPS, MOVUPS, MOVSS, MOVAPD, MOVUPD, MOVSD, MOVDQA, and MOVDQU) can be used. 
These instructions can also be used to restore the contents of XMM registers. To avoid performance degradation 
when saving XMM registers to memory or when loading XMM registers from memory, be sure to use the appropri-
ately typed move instructions.

The move instructions can also be used to save the contents of XMM registers on the stack. Here, the stack pointer 
(in the ESP register) can be used as the memory address to the next available byte in the stack. Note that the stack 
pointer is not automatically incremented when using a move instruction (as it is with PUSH). 

A move-instruction procedure that saves the contents of an XMM register to the stack is responsible for decre-
menting the value in the ESP register by 16. Likewise, a move-instruction procedure that loads an XMM register 
from the stack needs also to increment the ESP register by 16. To avoid performance degradation when moving the 
contents of XMM registers, use the appropriately typed move instructions.
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Use the LDMXCSR and STMXCSR instructions to save and restore, respectively, the contents of the MXCSR register 
on a procedure call and return.

11.6.10.3  Caller-Save Recommendation for Procedure and Function Calls

When making procedure (or function) calls from SSE or SSE2 code, a caller-save convention is recommended for 
saving the state of the calling procedure. Using this convention, any register whose content must survive intact 
across a procedure call must be stored in memory by the calling procedure prior to executing the call. 

The primary reason for using the caller-save convention is to prevent performance degradation. XMM registers can 
contain packed or scalar double-precision floating-point, packed single-precision floating-point, and 128-bit 
packed integer data types. The called procedure has no way of knowing the data types in XMM registers following 
a call; so it is unlikely to use the correctly typed move instruction to store the contents of XMM registers in memory 
or to restore the contents of XMM registers from memory. 

As described in Section 11.6.9, “Mixing Packed and Scalar Floating-Point and 128-Bit SIMD Integer Instructions 
and Data,” executing a move instruction that does not match the type for the data being moved to/from XMM regis-
ters will be carried out correctly, but can lead to a greater instruction latency.

11.6.11 Updating Existing MMX Technology Routines Using 128-Bit SIMD Integer Instructions

SSE2 extensions extend all 64-bit MMX SIMD integer instructions to operate on 128-bit SIMD integers using XMM 
registers. The extended 128-bit SIMD integer instructions operate like the 64-bit SIMD integer instructions; this 
simplifies the porting of MMX technology applications. However, there are considerations:
• To take advantage of wider 128-bit SIMD integer instructions, MMX technology code must be recompiled to 

reference the XMM registers instead of MMX registers.
• Computation instructions that reference memory operands that are not aligned on 16-byte boundaries should 

be replaced with an unaligned 128-bit load (MOVUDQ instruction) followed by a version of the same 
computation operation that uses register instead of memory operands. Use of 128-bit packed integer 
computation instructions with memory operands that are not 16-byte aligned results in a general protection 
exception (#GP).

• Extension of the PSHUFW instruction (shuffle word across 64-bit integer operand) across a full 128-bit operand 
is emulated by a combination of the following instructions: PSHUFHW, PSHUFLW, and PSHUFD.

• Use of the 64-bit shift by bit instructions (PSRLQ, PSLLQ) can be extended to 128 bits in either of two ways:

— Use of PSRLQ and PSLLQ, along with masking logic operations. 

— Rewriting the code sequence to use PSRLDQ and PSLLDQ (shift double quadword operand by bytes)
• Loop counters need to be updated, since each 128-bit SIMD integer instruction operates on twice the amount 

of data as its 64-bit SIMD integer counterpart.

11.6.12 Branching on Arithmetic Operations

There are no condition codes in SSE or SSE2 states. A packed-data comparison instruction generates a mask which 
can then be transferred to an integer register. The following code sequence provides an example of how to perform 
a conditional branch, based on the result of an SSE2 arithmetic operation. 

cmppd XMM0, XMM1 ; generates a mask in XMM0

movmskpd EAX, XMM0 ; moves a 2 bit mask to eax

test EAX, 0 ; compare with desired result

jne BRANCH TARGET

The COMISD and UCOMISD instructions update the EFLAGS as the result of a scalar comparison. A conditional 
branch can then be scheduled immediately following COMISD/UCOMISD.
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11.6.13 Cacheability Hint Instructions

SSE and SSE2 cacheability control instructions enable the programmer to control prefetching, caching, loading and 
storing of data. When correctly used, these instructions improve application performance. 

To make efficient use of the processor’s super-scalar microarchitecture, a program needs to provide a steady 
stream of data to the executing program to avoid stalling the processor. PREFETCHh instructions minimize the 
latency of data accesses in performance-critical sections of application code by allowing data to be fetched into the 
processor cache hierarchy in advance of actual usage. 

PREFETCHh instructions do not change the user-visible semantics of a program, although they may affect perfor-
mance. The operation of these instructions is implementation-dependent. Programmers may need to tune code for 
each IA-32 processor implementation. Excessive usage of PREFETCHh instructions may waste memory bandwidth 
and reduce performance. For more detailed information on the use of prefetch hints, refer to Chapter 7, “Opti-
mizing Cache Usage,”, in the Intel® 64 and IA-32 Architectures Optimization Reference Manual.

The non-temporal store instructions (MOVNTI, MOVNTPD, MOVNTPS, MOVNTDQ, MOVNTQ, MASKMOVQ, and 
MASKMOVDQU) minimize cache pollution when writing non-temporal data to memory (see Section 10.4.6.1, 
“Cacheability Control Instructions” and Section 10.4.6.2, “Caching of Temporal vs. Non-Temporal Data”). They 
prevent non-temporal data from being written into processor caches on a store operation.

Besides reducing cache pollution, the use of weakly-ordered memory types can be important under certain data 
sharing relationships, such as a producer-consumer relationship. The use of weakly ordered memory can make the 
assembling of data more efficient; but care must be taken to ensure that the consumer obtains the data that the 
producer intended. Some common usage models that may be affected in this way by weakly-ordered stores are: 
• Library functions that use weakly ordered memory to write results
• Compiler-generated code that writes weakly-ordered results
• Hand-crafted code

The degree to which a consumer of data knows that the data is weakly ordered can vary for these cases. As a 
result, the SFENCE or MFENCE instruction should be used to ensure ordering between routines that produce 
weakly-ordered data and routines that consume the data. SFENCE and MFENCE provide a performance-efficient 
way to ensure ordering by guaranteeing that every store instruction that precedes SFENCE/MFENCE in program 
order is globally visible before a store instruction that follows the fence. 

11.6.14 Effect of Instruction Prefixes on the SSE/SSE2 Instructions

Table 11-3 describes the effects of instruction prefixes on SSE and SSE2 instructions. (Table 11-3 also applies to 
SIMD integer and SIMD floating-point instructions in SSE3.) Unpredictable behavior can range from prefixes being 
treated as a reserved operation on one generation of IA-32 processors to generating an invalid opcode exception 
on another generation of processors.

See also “Instruction Prefixes” in Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A, for complete description of instruction prefixes.

NOTE

Some SSE/SSE2/SSE3 instructions have two-byte opcodes that are either 2 bytes or 3 bytes in 
length. Two-byte opcodes that are 3 bytes in length consist of: a mandatory prefix (F2H, F3H, or 
66H), 0FH, and an opcode byte. See Table 11-3.
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Table 11-3.  Effect of Prefixes on SSE, SSE2, and SSE3 Instructions

Prefix Type Effect on SSE, SSE2 and SSE3 Instructions 

Address Size Prefix (67H) Affects instructions with a memory operand.

Reserved for instructions without a memory operand and may result in unpredictable 
behavior.

Operand Size (66H) Reserved and may result in unpredictable behavior.

Segment Override 
(2EH,36H,3EH,26H,64H,65H)

Affects instructions with a memory operand.

Reserved for instructions without a memory operand and may result in unpredictable 
behavior.

Repeat Prefixes (F2H and F3H) Reserved and may result in unpredictable behavior.

Lock Prefix (F0H) Reserved; generates invalid opcode exception (#UD).

Branch Hint Prefixes(E2H and E3H) Reserved and may result in unpredictable behavior.
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CHAPTER 12
PROGRAMMING WITH SSE3, SSSE3, SSE4 AND AESNI

The Pentium 4 processor supporting Hyper-Threading Technology (HT Technology) introduces Streaming SIMD 
Extensions 3 (SSE3). The Intel Xeon processor 5100 series, Intel Core 2 processor families introduced Supple-
mental Streaming SIMD Extensions 3 (SSSE3). SSE4 are introduced in Intel processor generations built from 45nm 
process technology. This chapter describes SSE3, SSSE3, SSE4, and provides information to assist in writing appli-
cation programs that use these extensions. 

AESNI and PCLMLQDQ are instruction extensions targeted to accelerate high-speed block encryption and crypto-
graphic processing. Section 12.13 covers these instructions and their relationship to the Advanced Encryption 
Standard (AES).

12.1 PROGRAMMING ENVIRONMENT AND DATA TYPES

The programming environment for using SSE3, SSSE3, and SSE4 is unchanged from those shown in Figure 3-1 and 
Figure 3-2. SSE3, SSSE3, and SSE4 do not introduce new data types. XMM registers are used to operate on packed 
integer data, single-precision floating-point data, or double-precision floating-point data. 

One SSE3 instruction uses the x87 FPU for x87-style programming. There are two SSE3 instructions that use the 
general registers for thread synchronization. The MXCSR register governs SIMD floating-point operations. Note, 
however, that the x87FPU control word does not affect the SSE3 instruction that is executed by the x87 FPU 
(FISTTP), other than by unmasking an invalid operand or inexact result exception.

SSE4 instructions do not use MMX registers. Two of the SSE4.2 instructions operate on general-purpose registers; 
the rest of SSE4.2 instruction and SSE4.1 instructions operate on XMM registers.

12.1.1 SSE3, SSSE3, SSE4 in 64-Bit Mode and Compatibility Mode

In compatibility mode, SSE3, SSSE3, and SSE4 function like they do in protected mode. In 64-bit mode, eight addi-
tional XMM registers are accessible. Registers XMM8-XMM15 are accessed by using REX prefixes. 

Memory operands are specified using the ModR/M, SIB encoding described in Section 3.7.5.

Some SSE3, SSSE3, and SSE4 instructions may be used to operate on general-purpose registers. Use the REX.W 
prefix to access 64-bit general-purpose registers. Note that if a REX prefix is used when it has no meaning, the 
prefix is ignored.

12.1.2 Compatibility of SSE3/SSSE3 with MMX Technology, the x87 FPU Environment, and 
SSE/SSE2 Extensions

SSE3, SSSE3, and SSE4 do not introduce any new state to the Intel 64 and IA-32 execution environments. 

For SIMD and x87 programming, the FXSAVE and FXRSTOR instructions save and restore the architectural states 
of XMM, MXCSR, x87 FPU, and MMX registers. The MONITOR and MWAIT instructions use general purpose registers 
on input, they do not modify the content of those registers.

12.1.3 Horizontal and Asymmetric Processing

Many SSE/SSE2/SSE3/SSSE3 instructions accelerate SIMD data processing using a model referred to as vertical 
computation. Using this model, data flow is vertical between the data elements of the inputs and the output. 

Figure 12-1 illustrates the asymmetric processing of the SSE3 instruction ADDSUBPD. Figure 12-2 illustrates the 
horizontal data movement of the SSE3 instruction HADDPD. 
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12.2 OVERVIEW OF SSE3 INSTRUCTIONS

SSE3 extensions include 13 instructions. See:
• Section 12.3, “SSE3 Instructions,” provides an introduction to individual SSE3 instructions. 
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B, provide detailed 

information on individual instructions.
• Chapter 13, “System Programming for Instruction Set Extensions and Processor Extended States,” in the 

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, gives guidelines for integrating 
SSE/SSE2/SSE3 extensions into an operating-system environment.

12.3 SSE3 INSTRUCTIONS

SSE3 instructions are grouped as follows:
• x87 FPU instruction

— One instruction that improves x87 FPU floating-point to integer conversion
• SIMD integer instruction

Figure 12-1.  Asymmetric Processing in ADDSUBPD 

Figure 12-2.  Horizontal Data Movement in HADDPD
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— One instruction that provides a specialized 128-bit unaligned data load
• SIMD floating-point instructions

— Three instructions that enhance LOAD/MOVE/DUPLICATE performance

— Two instructions that provide packed addition/subtraction

— Four instructions that provide horizontal addition/subtraction
• Thread synchronization instructions

— Two instructions that improve synchronization between multi-threaded agents

The instructions are discussed in more detail in the following paragraphs.

12.3.1 x87 FPU Instruction for Integer Conversion

The FISTTP instruction (x87 FPU Store Integer and Pop with Truncation) behaves like FISTP, but uses truncation 
regardless of what rounding mode is specified in the x87 FPU control word. The instruction converts the top of stack 
(ST0) to integer with rounding to and pops the stack. 

The FISTTP instruction is available in three precisions: short integer (word or 16-bit), integer (double word or 32-
bit), and long integer (64-bit). With FISTTP, applications no longer need to change the FCW when truncation is 
required.

12.3.2 SIMD Integer Instruction for Specialized 128-bit Unaligned Data Load

The LDDQU instruction is a special 128-bit unaligned load designed to avoid cache line splits. If the address of a 16-
byte load is on a 16-byte boundary, LDQQU loads the bytes requested. If the address of the load is not aligned on 
a 16-byte boundary, LDDQU loads a 32-byte block starting at the 16-byte aligned address immediately below the 
load request. It then extracts the requested 16 bytes.

The instruction provides significant performance improvement on 128-bit unaligned memory accesses at the cost 
of some usage model restrictions.

12.3.3 SIMD Floating-Point Instructions That Enhance LOAD/MOVE/DUPLICATE Performance

The MOVSHDUP instruction loads/moves 128-bits, duplicating the second and fourth 32-bit data elements.
• MOVSHDUP OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (stored in OperandA): 3b, 3b, 1b, 1b

The MOVSLDUP instruction loads/moves 128-bits, duplicating the first and third 32-bit data elements.
• MOVSLDUP OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (stored in OperandA): 2b, 2b, 0b, 0b

The MOVDDUP instruction loads/moves 64-bits; duplicating the 64 bits from the source.
• MOVDDUP OperandA, OperandB

— OperandA (128 bits, two data elements): 1a, 0a

— OperandB (64 bits, one data element): 0b

— Result (stored in OperandA): 0b, 0b
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12.3.4 SIMD Floating-Point Instructions Provide Packed Addition/Subtraction

The ADDSUBPS instruction has two 128-bit operands. The instruction performs single-precision addition on the 
second and fourth pairs of 32-bit data elements within the operands; and single-precision subtraction on the first 
and third pairs.
• ADDSUBPS OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (stored in OperandA): 3a+3b, 2a-2b, 1a+1b, 0a-0b

The ADDSUBPD instruction has two 128-bit operands. The instruction performs double-precision addition on the 
second pair of quadwords, and double-precision subtraction on the first pair.
• ADDSUBPD OperandA, OperandB

— OperandA (128 bits, two data elements): 1a, 0a

— OperandB (128 bits, two data elements): 1b, 0b

— Result (stored in OperandA): 1a+1b, 0a-0b

12.3.5 SIMD Floating-Point Instructions Provide Horizontal Addition/Subtraction

Most SIMD instructions operate vertically. This means that the result in position i is a function of the elements in 
position i of both operands. Horizontal addition/subtraction operates horizontally. This means that contiguous data 
elements in the same source operand are used to produce a result.

The HADDPS instruction performs a single-precision addition on contiguous data elements. The first data element 
of the result is obtained by adding the first and second elements of the first operand; the second element by adding 
the third and fourth elements of the first operand; the third by adding the first and second elements of the second 
operand; and the fourth by adding the third and fourth elements of the second operand.
• HADDPS OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (Stored in OperandA): 3b+2b, 1b+0b, 3a+2a, 1a+0a

The HSUBPS instruction performs a single-precision subtraction on contiguous data elements. The first data 
element of the result is obtained by subtracting the second element of the first operand from the first element of 
the first operand; the second element by subtracting the fourth element of the first operand from the third element 
of the first operand; the third by subtracting the second element of the second operand from the first element of 
the second operand; and the fourth by subtracting the fourth element of the second operand from the third 
element of the second operand.
• HSUBPS OperandA, OperandB

— OperandA (128 bits, four data elements): 3a, 2a, 1a, 0a

— OperandB (128 bits, four data elements): 3b, 2b, 1b, 0b

— Result (Stored in OperandA): 2b-3b, 0b-1b, 2a-3a, 0a-1a

The HADDPD instruction performs a double-precision addition on contiguous data elements. The first data element 
of the result is obtained by adding the first and second elements of the first operand; the second element by adding 
the first and second elements of the second operand.
• HADDPD OperandA, OperandB

— OperandA (128 bits, two data elements): 1a, 0a

— OperandB (128 bits, two data elements): 1b, 0b

— Result (Stored in OperandA): 1b+0b, 1a+0a
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The HSUBPD instruction performs a double-precision subtraction on contiguous data elements. The first data 
element of the result is obtained by subtracting the second element of the first operand from the first element of 
the first operand; the second element by subtracting the second element of the second operand from the first 
element of the second operand.
• HSUBPD OperandA OperandB

— OperandA (128 bits, two data elements): 1a, 0a

— OperandB (128 bits, two data elements): 1b, 0b

— Result (Stored in OperandA): 0b-1b, 0a-1a

12.3.6 Two Thread Synchronization Instructions

The MONITOR instruction sets up an address range that is used to monitor write-back-stores. 

MWAIT enables a logical processor to enter into an optimized state while waiting for a write-back-store to the 
address range set up by MONITOR. MONITOR and MWAIT require the use of general purpose registers for its input. 
The registers used by MONITOR and MWAIT must be initialized properly; register content is not modified by these 
instructions.

12.4 WRITING APPLICATIONS WITH SSE3 EXTENSIONS

The following sections give guidelines for writing application programs and operating-system code that use SSE3 
instructions. 

12.4.1 Guidelines for Using SSE3 Extensions

The following guidelines describe how to maximize the benefits of using SSE3 extensions:
• Check that the processor supports SSE3 extensions.

— Application may need to ensure that the target operating system supports SSE3. (Operating system 
support for the SSE extensions implies sufficient support for SSE2 extensions and SSE3 extensions.) 

• Ensure your operating system supports MONITOR and MWAIT.
• Employ the optimization and scheduling techniques described in the Intel® 64 and IA-32 Architectures Optimi-

zation Reference Manual (see Section 1.4, “Related Literature”).

12.4.2 Checking for SSE3 Support

Before an application attempts to use the SIMD subset of SSE3 extensions, the application should follow the steps 
illustrated in Section 11.6.2, “Checking for SSE/SSE2 Support.” Next, use the additional step provided below:
• Check that the processor supports the SIMD and x87 SSE3 extensions (if CPUID.01H:ECX.SSE3[bit 0] = 1). 

An operating systems that provides application support for SSE, SSE2 also provides sufficient application support 
for SSE3. To use FISTTP, software only needs to check support for SSE3.

In the initial implementation of MONITOR and MWAIT, these two instructions are available to ring 0 and condition-
ally available at ring level greater than 0. Before an application attempts to use the MONITOR and MWAIT instruc-
tions, the application should use the following steps:

1. Check that the processor supports MONITOR and MWAIT. If CPUID.01H:ECX.MONITOR[bit 3] = 1, MONITOR 
and MWAIT are available at ring 0. 

2. Query the smallest and largest line size that MONITOR uses. Use CPUID.05H:EAX.smallest[bits 
15:0];EBX.largest[bits15:0]. Values are returned in bytes in EAX and EBX.

3. Ensure the memory address range(s) that will be supplied to MONITOR meets memory type requirements.
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MONITOR and MWAIT are targeted for system software that supports efficient thread synchronization, See Chapter 
13 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A for details.

12.4.3 Enable FTZ and DAZ for SIMD Floating-Point Computation

Enabling the FTZ and DAZ flags in the MXCSR register is likely to accelerate SIMD floating-point computation where 
strict compliance to the IEEE standard 754-1985 is not required. The FTZ flag is available to Intel 64 and IA-32 
processors that support the SSE; DAZ is available to Intel 64 processors and to most IA-32 processors that support 
SSE/SSE2/SSE3. 

Software can detect the presence of DAZ, modify the MXCSR register, and save and restore state information by 
following the techniques discussed in Section 11.6.3 through Section 11.6.6.

12.4.4 Programming SSE3 with SSE/SSE2 Extensions

SIMD instructions in SSE3 extensions are intended to complement the use of SSE/SSE2 in programming SIMD 
applications. Application software that intends to use SSE3 instructions should also check for the availability of 
SSE/SSE2 instructions.

The FISTTP instruction in SSE3 is intended to accelerate x87 style programming where performance is limited by 
frequent floating-point conversion to integers; this happens when the x87 FPU control word is modified frequently. 
Use of FISTTP can eliminate the need to access the x87 FPU control word.

12.5 OVERVIEW OF SSSE3 INSTRUCTIONS

SSSE3 provides 32 instructions to accelerate a variety of multimedia and signal processing applications employing 
SIMD integer data. See:
• Section 12.6, “SSSE3 Instructions,” provides an introduction to individual SSSE3 instructions. 
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B, provide detailed 

information on individual instructions.
• Chapter 13, “System Programming for Instruction Set Extensions and Processor Extended States,” in the 

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, gives guidelines for integrating 
SSE/SSE2/SSE3/SSSE3 extensions into an operating-system environment.

12.6 SSSE3 INSTRUCTIONS

SSSE3 instructions include:
• Twelve instructions that perform horizontal addition or subtraction operations.
• Six instructions that evaluate the absolute values.
• Two instructions that perform multiply and add operations and speed up the evaluation of dot products.
• Two instructions that accelerate packed-integer multiply operations and produce integer values with scaling.
• Two instructions that perform a byte-wise, in-place shuffle according to the second shuffle control operand.
• Six instructions that negate packed integers in the destination operand if the signs of the corresponding 

element in the source operand is less than zero.
• Two instructions that align data from the composite of two operands.

The operands of these instructions are packed integers of byte, word, or double word sizes. The operands are 
stored as 64 or 128 bit data in MMX registers, XMM registers, or memory.

The instructions are discussed in more detail in the following paragraphs.
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12.6.1 Horizontal Addition/Subtraction

In analogy to the packed, floating-point horizontal add and subtract instructions in SSE3, SSSE3 offers similar 
capabilities on packed integer data. Data elements of signed words, doublewords are supported. Saturated version 
for horizontal add and subtract on signed words are also supported. The horizontal data movement of PHADD is 
shown in Figure 12-3. 

There are six horizontal add instructions (represented by three mnemonics); three operate on 128-bit operands 
and three operate on 64-bit operands. The width of each data element is either 16 bits or 32 bits. The mnemonics 
are listed below.
• PHADDW adds two adjacent, signed 16-bit integers horizontally from the source and destination operands and 

packs the signed 16-bit results to the destination operand.
• PHADDSW adds two adjacent, signed 16-bit integers horizontally from the source and destination operands 

and packs the signed, saturated 16-bit results to the destination operand.
• PHADDD adds two adjacent, signed 32-bit integers horizontally from the source and destination operands and 

packs the signed 32-bit results to the destination operand.

There are six horizontal subtract instructions (represented by three mnemonics); three operate on 128-bit oper-
ands and three operate on 64-bit operands. The width of each data element is either 16 bits or 32 bits. These are 
listed below.
• PHSUBW performs horizontal subtraction on each adjacent pair of 16-bit signed integers by subtracting the 

most significant word from the least significant word of each pair in the source and destination operands. The 
signed 16-bit results are packed and written to the destination operand.

• PHSUBSW performs horizontal subtraction on each adjacent pair of 16-bit signed integers by subtracting the 
most significant word from the least significant word of each pair in the source and destination operands. The 
signed, saturated 16-bit results are packed and written to the destination operand.

• PHSUBD performs horizontal subtraction on each adjacent pair of 32-bit signed integers by subtracting the 
most significant doubleword from the least significant double word of each pair in the source and destination 
operands. The signed 32-bit results are packed and written to the destination operand.

12.6.2 Packed Absolute Values

There are six packed-absolute-value instructions (represented by three mnemonics). Three operate on 128-bit 
operands and three operate on 64-bit operands. The widths of data elements are 8 bits, 16 bits or 32 bits. The 
absolute value of each data element of the source operand is stored as an UNSIGNED result in the destination 
operand.
• PABSB computes the absolute value of each signed byte data element.

Figure 12-3.  Horizontal Data Movement in PHADDD
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• PABSW computes the absolute value of each signed 16-bit data element.
• PABSD computes the absolute value of each signed 32-bit data element. 

12.6.3 Multiply and Add Packed Signed and Unsigned Bytes

There are two multiply-and-add-packed-signed-unsigned-byte instructions (represented by one mnemonic). One 
operates on 128-bit operands and the other operates on 64-bit operands. Multiplications are performed on each 
vertical pair of data elements. The data elements in the source operand are signed byte values, the input data 
elements of the destination operand are unsigned byte values.
• PMADDUBSW multiplies each unsigned byte value with the corresponding signed byte value to produce an 

intermediate, 16-bit signed integer. Each adjacent pair of 16-bit signed values are added horizontally. The 
signed, saturated 16-bit results are packed to the destination operand.

12.6.4 Packed Multiply High with Round and Scale

There are two packed-multiply-high-with-round-and-scale instructions (represented by one mnemonic). One oper-
ates on 128-bit operands and the other operates on 64-bit operands.
• PMULHRSW multiplies vertically each signed 16-bit integer from the destination operand with the corre-

sponding signed 16-bit integer of the source operand, producing intermediate, signed 32-bit integers. Each 
intermediate 32-bit integer is truncated to the 18 most significant bits. Rounding is always performed by adding 
1 to the least significant bit of the 18-bit intermediate result. The final result is obtained by selecting the 16 bits 
immediately to the right of the most significant bit of each 18-bit intermediate result and packed to the 
destination operand.

12.6.5 Packed Shuffle Bytes

There are two packed-shuffle-bytes instructions (represented by one mnemonic). One operates on 128-bit oper-
ands and the other operates on 64-bit operands. The shuffle operations are performed bytewise on the destination 
operand using the source operand as a control mask.
• PSHUFB permutes each byte in place, according to a shuffle control mask. The least significant three or four bits 

of each shuffle control byte of the control mask form the shuffle index. The shuffle mask is unaffected. If the 
most significant bit (bit 7) of a shuffle control byte is set, the constant zero is written in the result byte.

12.6.6 Packed Sign

There are six packed-sign instructions (represented by three mnemonics). Three operate on 128-bit operands and 
three operate on 64-bit operands. The widths of each data element for these instructions are 8 bit, 16 bit or 32 bit 
signed integers.
• PSIGNB/W/D negates each signed integer element of the destination operand if the sign of the corresponding 

data element in the source operand is less than zero.

12.6.7 Packed Align Right

There are two packed-align-right instructions (represented by one mnemonic). One operates on 128-bit operands 
and the other operates on 64-bit operands. These instructions concatenate the destination and source operand into 
a composite, and extract the result from the composite according to an immediate constant.
• PALIGNR’s source operand is appended after the destination operand forming an intermediate value of twice 

the width of an operand. The result is extracted from the intermediate value into the destination operand by 
selecting the 128-bit or 64-bit value that are right-aligned to the byte offset specified by the immediate value. 
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12.7 WRITING APPLICATIONS WITH SSSE3 EXTENSIONS

The following sections give guidelines for writing application programs and operating-system code that use SSSE3 
instructions. 

12.7.1 Guidelines for Using SSSE3 Extensions

The following guidelines describe how to maximize the benefits of using SSSE3 extensions:
• Check that the processor supports SSSE3 extensions.
• Ensure that your operating system supports SSE/SSE2/SSE3/SSSE3 extensions. (Operating system support 

for the SSE extensions implies sufficient support for SSE2, SSE3, and SSSE3.) 
• Employ the optimization and scheduling techniques described in the Intel® 64 and IA-32 Architectures Optimi-

zation Reference Manual (see Section 1.4, “Related Literature”).

12.7.2 Checking for SSSE3 Support

Before an application attempts to use the SSSE3 extensions, the application should follow the steps illustrated in 
Section 11.6.2, “Checking for SSE/SSE2 Support.” Next, use the additional step provided below:
• Check that the processor supports SSSE3 (if CPUID.01H:ECX.SSSE3[bit 9] = 1). 

12.8 SSE3/SSSE3 AND SSE4 EXCEPTIONS

SSE3, SSSE3, and SSE4 instructions can generate the same type of memory-access and non-numeric exceptions 
as other Intel 64 or IA-32 instructions. Existing exception handlers generally handle these exceptions without code 
modification. 

FISTTP can generate floating-point exceptions. Some SSE3 instructions can also generate SIMD floating-point 
exceptions. 

SSE3 additions and changes are noted in the following sections. See also: Section 11.5, “SSE, SSE2, and SSE3 
Exceptions”.

12.8.1 Device Not Available (DNA) Exceptions

SSE3, SSSE3, and SSE4 will cause a DNA Exception (#NM) if the processor attempts to execute an SSE3 instruc-
tion while CR0.TS[bit 3] = 1. If CPUID.01H:ECX.SSE3[bit 0] = 0, execution of an SSE3 extension will cause an 
invalid opcode fault regardless of the state of CR0.TS[bit 3].

Similarly, an attempt to execute an SSSE3 instruction on a processor that reports CPUID.01H:ECX.SSSE3[bit 9] = 
0 will cause an invalid opcode fault regardless of the state of CR0.TS[bit 3]. An attempt to execute an SSE4.1 
instruction on a processor that reports CPUID.01H:ECX.SSE4_1[bit 19] = 0 will cause an invalid opcode fault 
regardless of the state of CR0.TS[bit 3].

An attempt to execute PCMPGTQ or any one of the four string processing instructions in SSE4.2 on a processor that 
reports CPUID.01H:ECX.SSSE3[bit 20] = 0 will cause an invalid opcode fault regardless of the state of 
CR0.TS[bit 3]. CRC32 and POPCNT do not cause #NM.

12.8.2 Numeric Error flag and IGNNE#

Most SSE3 instructions ignore CR0.NE[bit 5] (treats it as if it were always set) and the IGNNE# pin. With one 
exception, all use the vector 19 software exception for error reporting. The exception is FISTTP; it behaves like 
other x87-FP instructions.

SSSE3 instructions ignore CR0.NE[bit 5] (treats it as if it were always set) and the IGNNE# pin. 
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SSSE3 instructions do not cause floating-point errors. Floating-point numeric errors for SSE4.1 are described in 
Section 12.8.4. SSE4.2 instructions do not cause floating-point errors.

12.8.3 Emulation

CR0.EM is used by some software to emulate x87 floating-point instructions, CR0.EM[bit 2] cannot be used for 
emulation of SSE, SSE2, SSE3, SSSE3, and SSE4. If an SSE3, SSSE3, and SSE4 instruction executes with 
CR0.EM[bit 2] set, an invalid opcode exception (INT 6) is generated instead of a device not available exception (INT 
7).

12.8.4 IEEE 754 Compliance of SSE4.1 Floating-Point Instructions

The six SSE4.1 instructions that perform floating-point arithmetic are:
• DPPS
• DPPD
• ROUNDPS
• ROUNDPD
• ROUNDSS
• ROUNDSD

Dot Product operations are not specified in IEEE-754.  When neither FTZ nor DAZ are enabled, the dot product 
instructions resemble sequences of IEEE-754 multiplies and adds (with rounding at each stage), except that the 
treatment of input NaN’s is implementation specific (there will be at least one NaN in the output).  The input select 
fields (bits imm8[4:7]) force input elements to +0.0f prior to the first multiply and will suppress input exceptions 
that would otherwise have been be generated.

As a convenience to the exception handler, any exceptions signaled from DPPS or DPPD leave the destination 
unmodified. 

Round operations signal invalid and precision only.  

The other SSE4.1 instructions with floating-point arguments (BLENDPS, BLENDPD, BLENDVPS, BLENDVPD, 
INSERTPS, EXTRACTPS) do not signal any SIMD numeric exceptions.

12.9 SSE4 OVERVIEW

SSE4 comprises of two sets of extensions: SSE4.1 and SSE4.2. SSE4.1 is targeted to improve the performance of 
media, imaging, and 3D workloads. SSE4.1 adds instructions that improve compiler vectorization and significantly 

Table 12-1.  SIMD numeric exceptions signaled by SSE4.1

DPPS DPPD ROUNDPS
ROUNDSS

ROUNDPD
ROUNDSD

Overflow X X

Underflow X X

Invalid X X X (1) X (1)

Inexact Precision X X X (2) X (2)

Denormal X X

NOTE:

1. Invalid is signaled only if Src = SNaN.

2. Precision is ignored (regardless of the MXCSR precision mask) if if imm8[3] = ‘1’.
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increase support for packed dword computation. The technology also provides a hint that can improve memory 
throughput when reading from uncacheable WC memory type.

The 47 SSE4.1 instructions include:
• Two instructions perform packed dword multiplies.
• Two instructions perform floating-point dot products with input/output selects.
• One instruction performs a load with a streaming hint.
• Six instructions simplify packed blending.
• Eight instructions expand support for packed integer MIN/MAX.
• Four instructions support floating-point round with selectable rounding mode and precision exception override.
• Seven instructions improve data insertion and extractions from XMM registers
• Twelve instructions improve packed integer format conversions (sign and zero extensions).
• One instruction improves SAD (sum absolute difference) generation for small block sizes.
• One instruction aids horizontal searching operations.
• One instruction improves masked comparisons.
• One instruction adds qword packed equality comparisons.
• One instruction adds dword packing with unsigned saturation.

The seven SSE4.2 instructions improve performance in the following areas:
• String and text processing that can take advantage of single-instruction multiple-data programming 

techniques.
• Application-targeted accelerator (ATA) instructions.
• A SIMD integer instruction that enhances the capability of the 128-bit integer SIMD capability in SSE4.1.

12.10 SSE4.1 INSTRUCTION SET

12.10.1 Dword Multiply Instructions 

SSE4.1 adds two dword multiply instructions that aid vectorization. They allow four simultaneous 32 bit by 32 bit 
multiplies. PMULLD returns a low 32-bits of the result and PMULDQ returns a 64-bit signed result. These represent 
the most common integer multiply operation. See Table 12-2.

12.10.2 Floating-Point Dot Product Instructions

SSE4.1 adds two instructions for double-precision (for up to 2 elements; DPPD) and single-precision dot products 
(for up to 4 elements; DPPS).

These dot-product instructions include source select and destination broadcast which generally improves the flex-
ibility. For example, a single DPPS instruction can be used for a 2, 3, or 4 element dot product.

Table 12-2.  Enhanced 32-bit SIMD Multiply Supported by SSE4.1

32 bit Integer Operation

unsigned x unsigned signed x signed

R
e

su
lt

Low 32-bit (not available) PMULLD

High 32-bit (not available) (not available)

64-bit PMULUDQ* PMULDQ

NOTE:

* Available prior to SSE4.1.
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12.10.3 Streaming Load Hint Instruction

Historically, CPU read accesses of WC memory type regions have significantly lower throughput than accesses to 
cacheable memory. 

The streaming load instruction in SSE4.1, MOVNTDQA, provides a non-temporal hint that can cause adjacent 16-
byte items within an aligned 64-byte region of WC memory type (a streaming line) to be fetched and held in a small 
set of temporary buffers (“streaming load buffers”). Subsequent streaming loads to other aligned 16-byte items in 
the same streaming line may be satisfied from the streaming load buffer and can improve throughput.

Programmers are advised to use the following practices to improve the efficiency of MOVNTDQA streaming loads 
from WC memory:
• Streaming loads must be 16-byte aligned.
• Temporally group streaming loads of the same streaming cache line for effective use of the small number of 

streaming load buffers. If loads to the same streaming line are excessively spaced apart, it may cause the 
streaming line to be re-fetched from memory.

• Temporally group streaming loads from at most a few streaming lines together. The number of streaming load 
buffers is small; grouping a modest number of streams will avoid running out of streaming load buffers and the 
resultant re-fetching of streaming lines from memory.

• Avoid writing to a streaming line until all 16-byte-aligned reads from the streaming line have occurred. Reading 
a 16-byte item from a streaming line that has been written, may cause the streaming line to be re-fetched.

• Avoid reading a given 16-byte item within a streaming line more than once; repeated loads of a particular 16-
byte item are likely to cause the streaming line to be re-fetched.

• The streaming load buffers, reflecting the WC memory type characteristics, are not required to be snooped by 
operations from other agents. Software should not rely upon such coherency actions to provide any data 
coherency with respect to other logical processors or bus agents. Rather, software must insure the consistency 
of WC memory accesses between producers and consumers.

• Streaming loads may be weakly ordered and may appear to software to execute out of order with respect to 
other memory operations. Software must explicitly use fences (e.g. MFENCE) if it needs to preserve order 
among streaming loads or between streaming loads and other memory operations.

• Streaming loads must not be used to reference memory addresses that are mapped to I/O devices having side 
effects or when reads to these devices are destructive. This is because MOVNTDQA is speculative in nature.

Example 12-1 and Example 12-2 give two sketches of the basic assembly sequences that illustrate the principles of 
using MOVNTDQA in a situation of a pair of producer-consumer accessing a WC memory region.
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Example 12-1.  Sketch of MOVNTDQA Usage of a Consumer and a PCI Producer 

// P0: producer is a PCI device writing into the WC space

# the PCI device updates status through a UC flag, "u_dev_status" . 

# the protocol for "u_dev_status" : 0: produce; 1: consume; 2: all done

mov eax, $0

mov [u_dev_status], eax

producerStart:

mov eax, [u_dev_status]     # poll status flag to see if consumer is requestion data

cmp eax, $0                           # 

jne done                                # I no longer need to produce                       

commence PCI writes to WC region..

mov eax, $1  # producer ready to notify the consumer via status flag

mov  [u_dev_status], eax     

# now wait for consumer to signal its status

spinloop:

cmp [u_dev_status], $1      # did I get a signal from the consumer ?

jne producerStart                  # yes I did 

jmp spinloop                         # check again

done:

// producer is finished at this point 

// P1: consumer check PCI status flag to consume WC data

mov eax, $0  # request to the producer 

mov [u_dev_status], eax

consumerStart:

mov; eax, [u_dev_status]  # reads the value of the PCI status 

cmp eax, $1                                 # has producer written

jne consumerStart                       # tight loop; make it more efficient with pause, etc. 

mfence # producer finished device writes to WC, ensure WC region is coherent

ntread:

movntdqa xmm0, [addr]

movntdqa xmm1, [addr + 16]

movntdqa xmm2, [addr + 32]

movntdqa xmm3, [addr + 48]

…  # do any more NT reads as needed

mfence  # ensure PCI device reads the correct value of [u_dev_status]  

# now decide whether we are done or we need the producer to produce more data

# if we are done write a 2 into the variable, otherwise write a 0 into the variable

mov eax, $0/$2            # end or continue producing

mov [u_dev_status], eax

# if I want to consume again I will jump back to consumerStart after storing a 0 into eax

# otherwise I am done
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Example 12-2.  Sketch of MOVNTDQA Usage of Producer-Consumer Threads 

// P0: producer writes into the WC space

# xchg is an implicitly locked operation. 

producerStart:

# We use a locked operation to prevent any races between the producer and the consumer 

# updating this variable. Assume initial value is 0

mov eax, $0

xchg eax, [signalVariable]    # signalVariable is used for communicating

cmp eax, $0                           # am I supposed to be writing for the consumer

jne done                                # I no longer need to produce                       

movntdq [addr1], xmm0       # producer writes the data

movntdq [addr2], xmm1       # ..

.

# We will again use a locked instruction. Serves 2 purposes. Updated value signals to the consumer and 

# the serialization of the lock flushes all the WC stores to memory 

mov eax, $1

xchg [signalVariable], eax     # signal to the consumer

# For simplicity, we show a spin loop, more efficient spin loop can be done using PAUSE

spinloop:

cmp [signalVariable], $1      # did I get a signal from the consumer ?

jne producerStart                  # yes I did 

jmp spinloop                         # check again

done:

// producer is finished at this point

// P1: consumer reads from write combining space

mov eax, $0

consumerStart:

lock; xadd [signalVariable], eax # reads the value of the signal variable in 

cmp eax, $1                                 # has producer written to signal its state?

jne consumerStart                       # simple loop; replace with PAUSE to make it more efficient. 

# read the data from the WC memory space with MOVNTDQA to achieve higher throughput

ntread: # keep reads from the same cache line as close together as possible

movntdqa xmm0, [addr]

movntdqa xmm1, [addr + 16]

movntdqa xmm2, [addr + 32]

movntdqa xmm3, [addr + 48]

# since a lock prevents younger MOVNTDQA from passing it, the

# above non temporal loads will happen only after the producer has signaled

…  # do any more NT reads as needed

# now decide whether we are done or we need the producer to produce more data

# if we are done write a 2 into the variable, otherwise write a 0 into the variable

mov eax, $0/$2            # end or continue producing

xchg [signalVariable], eax

# if I want to consume again I will jump back to consumerStart after storing a 0 into eax

# otherwise I am done
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12.10.4 Packed Blending Instructions

SSE4.1 adds 6 instructions used for blending (BLENDPS, BLENDPD, BLENDVPS, BLENDVPD, PBLENDVB, 
PBLENDW).

Blending conditionally copies a data element in a source operand to the same element in the destination. SSE4.1 
instructions improve blending operations for most field sizes. A single new SSE4.1 instruction can generally replace 
a sequence of 2 to 4 operations using previous architectures.

The variable blend instructions (BLENDVPS, BLENDVPD, PBLENDW) introduce the use of control bits stored in an 
implicit XMM register (XMM0). The most significant bit in each field (the sign bit, for 2’s complement integer or 
floating-point) is used as a selector. See Table 12-3.

12.10.5 Packed Integer MIN/MAX Instructions 

SSE4.1 adds 8 packed integer MIN and MAX instructions (PMINUW, PMINUD, PMINSB, PMINSD; PMAXUW, 
PMAXUD, PMAXSB, PMAXSD). 

Four 32-bit integer packed MIN and MAX instructions operate on unsigned and signed dwords. Two instructions 
operate on signed bytes. Two instructions operate on unsigned words. See Table 12-4.

12.10.6 Floating-Point Round Instructions with Selectable Rounding Mode

High level languages and libraries often expose rounding operations having a variety of numeric rounding and 
exception behaviors. Using SSE/SSE2/SSE3 instructions to mitigate the rounding-mode-related problem is some-
times not straight forward.

SSE4.1 introduces four rounding instructions (ROUNDPS, ROUNDPD, ROUNDSS, ROUNDSD) that cover scalar and 
packed single- and double-precision floating-point operands. The rounding mode can be selected using an imme-
diate from one of the IEEE-754 modes (Nearest, -Inf, +Inf, and Truncate) without changing the current rounding 

Table 12-3.  Blend Field Size and Control Modes Supported by SSE4.1 

Instructions
Packed 
Double FP

Packed 
Single FP

Packed 
QWord

Packed 
DWord

Packed 
Word Packed Byte Blend Control

BLENDPS X Imm8

BLENDPD X Imm8

BLENDVPS X X(1) XMM0

BLENDVPD X X(1) XMM0

PBLENDVB (2) (2) (2) X XMM0

PBLENDW X X X Imm8

NOTE:

1. Use of floating-point SIMD instructions on integer data types may incur performance penalties. 

2. Byte variable blend can be used for larger sized fields by reformatting (or shuffling) the blend control.

Table 12-4.  Enhanced SIMD Integer MIN/MAX Instructions Supported by SSE4.1

Integer Width

Byte Word DWord

Integer 
Format Unsigned

PMINUB*
PMAXUB*

PMINUW
PMAXUW

PMINUD
PMAXUD

Signed
PMINSB
PMAXSB

PMINSW*
PMAXSW*

PMINSD
PMAXSD

NOTE:

* Available prior to SSE4.1.
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mode; or the the instruction can be forced to use the current rounding mode. Another bit in the immediate is used 
to suppress inexact precision exceptions.

Rounding instructions in SSE4.1 generally permit single-instruction solutions to C99 functions ceil(), floor(), 
trunc(), rint(), nearbyint(). These instructions simplify the implementations of half-way-away-from-zero rounding 
modes as used by C99 round() and F90’s nint().

12.10.7 Insertion and Extractions from XMM Registers

SSE4.1 adds 7 instructions (corresponding to 9 assembly instruction mnemonics) that simplify data insertion and 
extraction between general-purpose register (GPR) and XMM registers (EXTRACTPS, INSERTPS, PINSRB, PINSRD, 
PINSRQ, PEXTRB, PEXTRW, PEXTRD, and PEXTRQ). When accessing memory, no alignment is required for any of 
these instructions (unless alignment checking is enabled).

EXTRACTPS extracts a single-precision floating-point value from any dword offset in an XMM register and stores 
the result to memory or a general-purpose register. INSERTPS inserts a single floating-point value from either a 32-
bit memory location or from specified element in an XMM register to a selected element in the destination XMM 
register. In addition, INSERTPS allows the insertion of +0.0f into any destination elements using a mask.

PINSRB, PINSRD, and PINSRQ insert byte, dword, or qword integer values from a register or memory into an XMM 
register. Insertion of integer word values were already supported by SSE2 (PINSRW). 

PEXTRB, PEXTRW, PEXTRD, and PEXTRQ extract byte, word, dword, and qword from an XMM register and insert the 
values into a general-purpose register or memory.

12.10.8 Packed Integer Format Conversions

A common type of operation on packed integers is the conversion by zero- or sign-extension of packed integers into 
wider data types. SSE4.1 adds 12 instructions that convert from a smaller packed integer type to a larger integer 
type (PMOVSXBW, PMOVZXBW, PMOVSXBD, PMOVZXBD, PMOVSXWD, PMOVZXWD, PMOVSXBQ, PMOVZXBQ, 
PMOVSXWQ, PMOVZXWQ, PMOVSXDQ, PMOVZXDQ).

The source operand is from either an XMM register or memory; the destination is an XMM register. See Table 12-5.

When accessing memory, no alignment is required for any of the instructions unless alignment checking is enabled. 
In which case, all conversions must be aligned to the width of the memory reference. The number of elements 
converted (and width of memory reference) is illustrated in Table 12-6. The alignment requirement is shown in 
parenthesis.

Table 12-5.  New SIMD Integer conversions supported by SSE4.1 

Source Type

Byte Word Dword

D
e

st
in

a
ti

o
n

T
y

p
e

Signed Word
Unsigned Word

PMOVSXBW
PMOVZXBW

Signed Dword
Unsigned Dword

PMOVSXBD
PMOVZXBD

PMOVSXWD
PMOVZXWD

Signed Qword
Unsigned Qword

PMOVSXBQ
PMOVZXBQ

PMOVSXWQ
PMOVZXWQ

PMOVSXDQ
PMOVZXDQ
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12.10.9 Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks

SSE4.1 adds an instruction (MPSADBW) that performs eight 4-byte wide SAD operations per instruction to produce 
eight results. Compared to PSADBW, MPSADBW operates on smaller chunks (4-byte instead of 8-byte chunks); this 
makes the instruction better suited to video coding standards such as VC.1 and H.264.  MPSADBW performs four 
times the number of absolute difference operations than that of PSADBW (per instruction). This can improve 
performance for dense motion searches.

MPSADBW uses a 4-byte wide field from a source operand; the offset of the 4-byte field within the 128-bit source 
operand is specified by two immediate control bits. MPSADBW produces eight 16-bit SAD results. Each 16-bit SAD 
result is formed from overlapping pairs of 4 bytes in the destination with the 4-byte field from the source operand. 
MPSADBW uses eleven consecutive bytes in the destination operand, its offset is specified by a control bit in the 
immediate byte (i.e. the offset can be from byte 0 or from byte 4). Figure 12-4 illustrates the operation of 
MPSADBW. MPSADBW can simplify coding of dense motion estimation by providing source and destination offset 
control, higher throughput of SAD operations, and the smaller chunk size.

12.10.10 Horizontal Search

SSE4.1 adds a search instruction (PHMINPOSUW) that finds the value and location of the minimum unsigned word 
from one of 8 horizontally packed unsigned words.  The resulting value and location (offset within the source) are 
packed into the low dword of the destination XMM register.

Rapid search is often a significant component of motion estimation. MPSADBW and PHMINPOSUW can be used 
together to improve video encode.

Table 12-6.  New SIMD Integer Conversions Supported by SSE4.1 

Source Type

Byte Word Dword

D
e

st
in

a
ti

o
n

T
y

p
e

Word 8 (64 bits)

Dword 4 (32 bits) 4 (64 bits)

Qword 2 (16 bits) 2 (32 bits) 2 (64 bits)

Figure 12-4.  MPSADBW Operation

Abs. Diff.

Sum

Imm[1:0]*32

Imm[2]*32
Source

Destination

0127 16

0127 96 64
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12.10.11 Packed Test

The packed test instruction PTEST is similar to a 128-bit equivalent to the legacy instruction TEST.  With PTEST, the 
source argument is typically used like a bit mask. 

PTEST performs a logical AND between the destination with this mask and sets the ZF flag if the result is zero. The 
CF flag (zero for TEST) is set if the inverted mask AND’d with the destination is all zero.  Because the destination is 
not modified, PTEST simplifies branching operations (such as branching on signs of packed floating-point numbers, 
or branching on zero fields).

12.10.12 Packed Qword Equality Comparisons

SSE4.1 adds a 128-bit packed qword equality test. The new instruction (PCMPEQQ) is identical to PCMPEQD, but 
has qword granularity.

12.10.13 Dword Packing With Unsigned Saturation

SSE4.1 adds a new instruction PACKUSDW to complete the set of small integer pack instructions in the family of 
SIMD instruction extensions. PACKUSDW packs dword to word with unsigned saturation. See Table 12-7 for the 
complete set of packing instructions for small integers.

12.11 SSE4.2 INSTRUCTION SET

Five of the seven SSE4.2 instructions can use an XMM register as a source or destination. These include four 
text/string processing instructions and one packed quadword compare SIMD instruction. Programming these five 
SSE4.2 instructions is similar to programming 128-bit Integer SIMD in SSE2/SSSE3. SSE4.2 does not provide any 
64-bit integer SIMD instructions. 

The remaining two SSE4.2 instructions uses general-purpose registers to perform accelerated processing functions 
in specific application areas.

12.11.1 String and Text Processing Instructions

String and text processing instructions in SSE4.2 allocates 4 opcodes to provide a rich set of string and text 
processing capabilities that traditionally required many more opcodes. These 4 instructions use XMM registers to 
process string or text elements of up to 128-bits (16 bytes or 8 words). Each instruction uses an immediate byte to 
support a rich set of programmable controls. A string-processing SSE4.2 instruction returns the result of 
processing each pair of string elements using either an index or a mask. 

The capabilities of the string/text processing instructions include:
• Handling string/text fragments consisting of bytes or words, either signed or unsigned
• Support for partial string or fragments less than 16 bytes in length, using either explicit length or implicit null-

termination
• Four types of string compare operations on word/byte elements

Table 12-7.  Enhanced SIMD Pack support by SSE4.1

Pack Type

DWord -> word Word -> Byte

S
a

tu
ra
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o

n
 

T
y

p
e

Unsigned PACKUSDW (new!) PACKUSWB

Signed PACKSSDW PACKSSWB
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• Up to 256 compare operations performed in a single instruction on all string/text element pairs 
• Built-in aggregation of intermediate results from comparisons
• Programmable control of processing on intermediate results
• Programmable control of output formats in terms of an index or mask
• Bi-directional support for the index format
• Support for two mask formats: bit or natural element width
• Not requiring 16-byte alignment for memory operand

The four SSE4.2 instructions that process text/string fragments are:
• PCMPESTRI — Packed compare explicit-length strings, return index in ECX/RCX
• PCMPESTRM — Packed compare explicit-length strings, return mask in XMM0
• PCMPISTRI — Packed compare implicit-length strings, return index in ECX/RCX
• PCMPISTRM — Packed compare implicit-length strings, return mask in XMM0

All four require the use of an immediate byte to control operation. The two source operands can be XMM registers 
or a combination of XMM register and memory address. The immediate byte provides programmable control with 
the following attributes:
• Input data format
• Compare operation mode
• Intermediate result processing
• Output selection

Depending on the output format associated with the instruction, the text/string processing instructions implicitly 
uses either a general-purpose register (ECX/RCX) or an XMM register (XMM0) to return the final result.

Two of the four text-string processing instructions specify string length explicitly. They use two general-purpose 
registers (EDX, EAX) to specify the number of valid data elements (either word or byte) in the source operands. 
The other two instructions specify valid string elements using null termination. A data element is considered valid 
only if it has a lower index than the least significant null data element.

12.11.1.1  Memory Operand Alignment

The text and string processing instructions in SSE4.2 do not perform alignment checking on memory operands. 
This is different from most other 128-bit SIMD instructions accessing the XMM registers. The absence of an align-
ment check for these four instructions does not imply any modification to the existing definitions of other instruc-
tions.

12.11.2 Packed Comparison SIMD Integer Instruction

SSE4.2 also provides a 128-bit integer SIMD instruction PCMPGTQ that performs logical compare of greater-than 
on packed integer quadwords.

12.11.3 Application-Targeted Accelerator Instructions

There are two application-targeted accelerator instructions in SSE4.2:
• CRC32 — Provides hardware acceleration to calculate cyclic redundancy checks for fast and efficient implemen-

tation of data integrity protocols.
• POPCNT — Accelerates software performance in the searching of bit patterns.
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12.12 WRITING APPLICATIONS WITH SSE4 EXTENSIONS

12.12.1 Guidelines for Using SSE4 Extensions

The following guidelines describe how to maximize the benefits of using SSE4 extensions:
• Check that the processor supports SSE4 extensions.
• Ensure that your operating system supports SSE/SSE2/SSE3/SSSE3 extensions. (Operating system support 

for the SSE extensions implies sufficient support for SSE2, SSE3, SSSE3, and SSE4.) 
• Employ the optimization and scheduling techniques described in the Intel® 64 and IA-32 Architectures Optimi-

zation Reference Manual (see Section 1.4, “Related Literature”).

12.12.2 Checking for SSE4.1 Support

Before an application attempts to use SSE4.1 instructions, the application should follow the steps illustrated in 
Section 11.6.2, “Checking for SSE/SSE2 Support.” Next, use the additional step provided below:

Check that the processor supports SSE4.1 (if CPUID.01H:ECX.SSE4_1[bit 19] = 1), SSE3 (if 
CPUID.01H:ECX.SSE3[bit 0] = 1), and SSSE3 (if CPUID.01H:ECX.SSSE3[bit 9] = 1). 

12.12.3 Checking for SSE4.2 Support

Before an application attempts to use the following SSE4.2 instructions: PCMPESTRI/PCMPESTRM/PCMP-
ISTRI/PCMPISTRM, PCMPGTQ;the application should follow the steps illustrated in Section 11.6.2, “Checking for 
SSE/SSE2 Support.” Next, use the additional step provided below:

Check that the processor supports SSE4.2 (if CPUID.01H:ECX.SSE4_2[bit 20] = 1), SSE4.1 (if 
CPUID.01H:ECX.SSE4_1[bit 19] = 1), and SSSE3 (if CPUID.01H:ECX.SSSE3[bit 9] = 1). 

Before an application attempts to use the CRC32 instruction, it must check that the processor supports SSE4.2 (if 
CPUID.01H:ECX.SSE4_2[bit 20] = 1).

Before an application attempts to use the POPCNT instruction, it must check that the processor supports SSE4.2 (if 
CPUID.01H:ECX.SSE4_2[bit 20] = 1) and POPCNT (if CPUID.01H:ECX.POPCNT[bit 23] = 1).

12.13 AESNI OVERVIEW

The AESNI extension provides six instructions to accelerate symmetric block encryption/decryption of 128-bit data 
blocks using the Advanced Encryption Standard (AES) specified by the NIST publication FIPS 197. Specifically, two 
instructions (AESENC, AESENCLAST) target the AES encryption rounds, two instructions (AESDEC, AESDECLAST) 
target AES decryption rounds using the Equivalent Inverse Cipher. One instruction (AESIMC) targets the Inverse 
MixColumn transformation primitive and one instruction (AESKEYGEN) targets generation of round keys from the 
cipher key for the AES encryption/decryption rounds.

AES supports encryption/decryption using cipher key lengths of 128, 192, and 256 bits by processing the data 
block in 10, 12, 14 rounds of predefined transformations. Figure 12-5 depicts the cryptographic processing of a 
block of 128-bit plain text into cipher text. 
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The predefined AES transformation primitives are described in the next few sections, they are also referenced in 
the operation flow of instruction reference page of these instructions.

12.13.1 Little-Endian Architecture and Big-Endian Specification (FIPS 197)

FIPS 197 document defines the Advanced Encryption Standard (AES) and includes a set of test vectors for testing 
all of the steps in the algorithm, and can be used for testing and debugging. 
The following observation is important for using the AES instructions offered in Intel 64 Architecture: FIPS 197 text 
convention is to write hex strings with the low-memory byte on the left and the high-memory byte on the right. 
Intel’s convention is the reverse. It is similar to the difference between Big Endian and Little Endian notations. 
In other words, a 128 bits vector in the FIPS document, when read from left to right, is encoded as [7:0, 15:8, 
23:16, 31:24, …127:120]. Note that inside the byte, the encoding is [7:0], so the first bit from the left is the most 
significant bit. In practice, the test vectors are written in hexadecimal notation, where pairs of hexadecimal digits 
define the different bytes. To translate the FIPS 197 notation to an Intel 64 architecture compatible (“Little 
Endian”) format, each test vector needs to be byte-reflected to [127:120,… 31:24, 23:16, 15:8, 7:0]. 
Example A: 
FIPS Test vector:         0x000102030405060708090a0b0c0d0e0f
Intel AES Hardware:    0x0f0e0d0c0b0a09080706050403020100

It should be pointed out that the only thing at issue is a textual convention, and programmers do not need to 
perform byte-reversal in their code, when using the AES instructions.

12.13.1.1  AES Data Structure in Intel 64 Architecture

The AES instructions that are defined in this document operate on one or on two 128 bits source operands: State 
and Round Key. From the architectural point of view, the state is input in an xmm register and the Round key is 
input either in an xmm register or a 128-bit memory location. 
In AES algorithm, the state (128 bits) can be viewed as 4 32-bit doublewords (“Word”s in AES terminology): X3, 
X2, X1, X0. 
The state may also be viewed as a set of 16 bytes. The 16 bytes can also be viewed as a 4x4 matrix of bytes where 
S(i, j) with i, j = 0, 1, 2, 3 compose the 32-bit “word”s as follows:
X0 = S (3, 0) S (2, 0) S (1, 0) S (0, 0)
X1 = S (3, 1) S (2, 1) S (1, 1) S (0, 1)
X2 = S (3, 2) S (2, 2) S (1, 2) S (0, 2)
X3 = S (3, 3) S (2, 3) S (1, 3) S (0, 3)
The following tables, Table 12-8 through Table 12-11, illustrate various representations of a 128-bit state.

Figure 12-5.  AES State Flow

Plain text AES State

RK(0)

XOR Rounds 2.. n-2

Round 1 Last 

RK(1) RK(n-1)

AES State AES State Cipher text

AES-128: n = 10
AES-192: n = 12
AES-256: n = 14

Round 
n-1
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Example: 
FIPS vector: d4 bf 5d 30 e0 b4 52 ae b8 41 11 f1 1e 27 98 e5
This vector has the “least significant” byte d4 and the significant byte e5 (written in Big Endian format in the FIPS 
document). When it is translated to IA notations, the encoding is:

12.13.2 AES Transformations and Functions

The following functions and transformations are used in the algorithmic descriptions of AES instruction extensions 
AESDEC, AESDECLAST, AESENC, AESENCLAST, AESIMC, AESKEYGENASSIST.
Note that these transformations are expressed here in a Little Endian format (and not as in the FIPS 197 docu-
ment).
• MixColumns(): A byte-oriented 4x4 matrix transformation on the matrix representation of a 128-bit AES state. 

A FIPS-197 defined 4x4 matrix is multiplied to each 4x1 column vector of the AES state. The columns are 
considered polynomials with coefficients in the Finite Field that is used in the definition of FIPS 197, the 
operations (“multiplication” and “addition”) are in that Finite Field, and the polynomials are reduced modulo 
x4+1. 
The MixColumns() transformation defines the relationship between each byte of the result state, represented
as S’(i, j) of a 4x4 matrix (see Section 12.13.1), as a function of input state bytes, S(i, j), as follows
S’(0, j) Å FF_MUL( 02H, S(0, j) ) XOR FF_MUL(03H, S(1, j) ) XOR S(2, j) XOR S(3, j)

Table 12-8.  Byte and 32-bit Word Representation of a 128-bit State

Byte # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit Position 127-
120

119-
112

111-
103

103-
96

95-
88

87-
80

79-
72

71-
64

63-
56

55-
48

47-
40

39-
32

31-
24

23-
16

15-
8

7- 
0

127 - 96 95 - 64 64 - 32 31 - 0

State Word X3 X2 X1 X0

State Byte P O N M L K J I H G F E D C B A

Table 12-9.  Matrix Representation of a 128-bit State

A E I M S(0, 0) S(0, 1) S(0, 2) S(0, 3)

B F J N S(1, 0) S(1, 1) S(1, 2) S(1, 3)

C G K O S(2, 0) S(2, 1) S(2, 2) S(2, 3)

D H L P S(3, 0) S(3, 1) S(3, 2) S(3, 3)

Table 12-10.  Little Endian Representation of a 128-bit State

Byte # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

State Byte P O N M L K J I H G F E D C B A

State Value e5 98 27 1e f1 11 41 b8 ae 52 b4 e0 30 5d bf d4

Table 12-11.  Little Endian Representation of a 4x4 Byte Matrix

A E I M d4 e0 b8 1e

B F J N bf b4 41 27

C G K O 5d 52 11 98

D H L P 30 ae f1 e5
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S’(1, j) Å S(0, j) XOR FF_MUL( 02H, S(1, j) ) XOR FF_MUL(03H, S(2, j) ) XOR S(3, j) 
S’(2, j) Å S(0, j) XOR S(1, j) XOR FF_MUL( 02H, S(2, j) ) XOR FF_MUL(03H, S(3, j) ) 
S’(3, j) Å FF_MUL(03H, S(0, j) ) XOR S(1, j) XOR S(2, j) XOR FF_MUL( 02H, S(3, j) ) 
where j = 0, 1, 2, 3. FF_MUL(Byte1, Byte2) denotes the result of multiplying two elements (represented by
Byte1 and byte2) in the Finite Field representation that defines AES. The result of produced bye
FF_MUL(Byte1, Byte2) is an element in the Finite Field (represented as a byte). A Finite Field is a field with a
finite number of elements, and when this number can be represented as a power of 2 (2n), its elements can
be represented as the set of 2n binary strings of length n. AES uses a finite field with n=8 (having 256
elements). With this representation, “addition” of two elements in that field is a bit-wise XOR of their binary-
string representation, producing another element in the field. Multiplication of two elements in that field is
defined using an irreducible polynomial (for AES, this polynomial is m(x) = x8 + x4 + x3 + x + 1). In this
Finite Field representation, the bit value of bit position k of a byte represents the coefficient of a polynomial of
order k, e.g., 1010_1101B (ADH) is represented by the polynomial (x7 + x5 + x3 + x2 + 1). The byte value
result of multiplication of two elements is obtained by a carry-less multiplication of the two corresponding
polynomials, followed by reduction modulo the polynomial, where the remainder is calculated using
operations defined in the field. For example, FF_MUL(57H, 83H) = C1H, because the carry-less polynomial
multiplication of the polynomials represented by 57H and 83H produces (x13 + x11 + x9 + x8 + x6 + x5 + x4

+ x3 + 1), and the remainder modulo m(x) is (x7 + x6 + 1).
• RotWord(): performs a byte-wise cyclic permutation (rotate right in little-endian byte order) on a 32-bit AES 

word.
The output word X’[j] of RotWord(X[j]) where X[j] represent the four bytes of column j, S(i, j), in descending
order X[j] = ( S(3, j), S(2, j), S(1, j), S(0, j) ); X’[j] = ( S’(3, j), S’(2, j), S’(1, j), S’(0, j) ) Å ( S(0, j), S(3,
j), S(2, j), S(1, j) )

• ShiftRows(): A byte-oriented matrix transformation that processes the matrix representation of a 16-byte AES 
state by cyclically shifting the last three rows of the state by different offset to the left, see Table 12-12.

• SubBytes(): A byte-oriented transformation that processes the 128-bit AES state by applying a non-linear 
substitution table (S-BOX) on each byte of the state.
The SubBytes() function defines the relationship between each byte of the result state S’(i, j) as a function of
input state byte S(i, j), by 

S’(i, j) Å S-Box (S(i, j)[7:4], S(i, j)[3:0])

where S-BOX( S[7:4], S[3:0]) represents a look-up operation on a 16x16 table to return a byte value, see 
Table 12-13. 

Table 12-12.  The ShiftRows Transformation

Matrix Representation of Input State Output of ShiftRows

A E I M A E I M

B F J N F J N B

C G K O K O C G

D H L P P D H L
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• SubWord(): produces an output AES word (four bytes) from the four bytes of an input word using a non-linear 
substitution table (S-BOX).
X’[j] = ( S’(3, j), S’(2, j), S’(1, j), S’(0, j) ) Å ( S-Box (S(3, j)), S-Box( S(2, j) ), S-Box( S(1, j) ), S-Box( S(0,
j) ))

• InvMixColumns(): The inverse transformation of MixColumns().
The InvMixColumns() transformation defines the relationship between each byte of the result state S’(i, j) as
a function of input state bytes, S(i, j), by 
S’(0, j) Å FF_MUL( 0eH, S(0, j) ) XOR FF_MUL(0bH, S(1, j) ) XOR FF_MUL(0dH, S(2, j) ) XOR FF_MUL( 09H,
S(3, j) )
S’(1, j) Å FF_MUL(09H, S(0, j) ) XOR FF_MUL( 0eH, S(1, j) ) XOR FF_MUL(0bH, S(2, j) ) XOR FF_MUL( 0dH,
S(3, j) )
S’(2, j) Å FF_MUL(0dH, S(0, j) ) XOR FF_MUL( 09H, S(1, j) ) XOR FF_MUL( 0eH, S(2, j) ) XOR FF_MUL(0bH,
S(3, j) ) 
S’(3, j) Å FF_MUL(0bH, S(0, j) ) XOR FF_MUL(0dH, S(1, j) ) XOR FF_MUL( 09H, S(2, j) ) XOR FF_MUL( 0eH,
S(3, j) ), where j = 0, 1, 2, 3.

• InvShiftRows(): The inverse transformation of InvShiftRows(). The InvShiftRows() transforms the matrix 
representation of a 16-byte AES state by cyclically shifting the last three rows of the state by different offset to 
the right, see Table 12-14.

Table 12-13.  Look-up Table Associated with S-Box Transformation

S[3:0]

0 1 2 3 4 5 6 7 8 9 a b c d e f

S[7:4]

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16
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• InvSubBytes(): The inverse transformation of SubBytes().
The InvSubBytes() transformation defines the relationship between each byte of the result state S’(i, j) as a
function of input state byte S(i, j), by 

S’(i, j) Å InvS-Box (S(i, j)[7:4], S(i, j)[3:0])

where InvS-BOX( S[7:4], S[3:0]) represents a look-up operation on a 16x16 table to return a byte value, see 
Table 12-15. 

12.13.3 PCLMULQDQ

The PCLMULQDQ instruction performs carry-less multiplication of two 64-bit data into a 128-bit result. Carry-less 
multiplication of two 128-bit data into a 256-bit result can use PCLMULQDQ as building blocks.

Carry-less multiplication is a component of many cryptographic systems. It is an important piece of implementing 
Galois Counter Mode (GCM) operation of block ciphers. GCM operation can be used in conjunction with AES algo-
rithms to add authentication capability. GCM usage models also include IPsec, storage standard, and security 
protocols over fiber channel. Additionally, PCLMULQDQ can be used in calculations of hash functions and CRC using 
arbitrary polynomials.

Table 12-14.  The InvShiftRows Transformation

Matrix Representation of Input State Output of ShiftRows

A E I M A E I M

B F J N N B F J

C G K O K O C G

D H L P H L P D

Table 12-15.  Look-up Table Associated with InvS-Box Transformation

S[3:0]

0 1 2 3 4 5 6 7 8 9 a b c d e f

S[7:4]

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb

2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4

c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f

d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef

e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d
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12.13.4 Checking for AESNI Support

Before an application attempts to use AESNI instructions or PCLMULQDQ, the application should follow the steps 
illustrated in Section 11.6.2, “Checking for SSE/SSE2 Support.” Next, use the additional step provided below:

Check that the processor supports AESNI (if CPUID.01H:ECX.AESNI[bit 25] = 1); check that the processor 
supports PCLMULQDQ (if CPUID.01H:ECX.PCLMULQDQ[bit 1] = 1).
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CHAPTER 13
MANAGING STATE USING THE XSAVE FEATURE SET

The XSAVE feature set extends the functionality of the FXSAVE and FXRSTOR instructions (see Section 10.5, 
“FXSAVE and FXRSTOR Instructions”) by supporting the saving and restoring of processor state in addition to the 
x87 execution environment (x87 state) and the registers used by the streaming SIMD extensions (SSE state). 

The XSAVE feature set comprises eight instructions. XGETBV and XSETBV allow software to read and write the 
extended control register XCR0, which controls the operation of the XSAVE feature set. XSAVE, XSAVEOPT, 
XSAVEC, and XSAVES are four instructions that save processor state to memory; XRSTOR and XRSTORS are corre-
sponding instructions that load processor state from memory. XGETBV, XSAVE, XSAVEOPT, XSAVEC, and XRSTOR 
can be executed at any privilege level; XSETBV, XSAVES, and XRSTORS can be executed only if CPL = 0.

The XSAVE feature set organizes the state that manages into state components. Operation of the instructions is 
based on state-component bitmaps that have the same format as XCR0: each bit corresponds to a state compo-
nent. Section 13.1 discusses these state components and bitmaps in more detail.

Section 13.2 describes how the processor enumerates support for the XSAVE feature set and for XSAVE-enabled 
features (those features that require use of the XSAVE feature set for their enabling). Section 13.3 explains how 
software can enable the XSAVE feature set and XSAVE-enabled features.

The XSAVE feature set allows saving and loading processor state from a region of memory called an XSAVE area. 
Section 13.4 presents details of the XSAVE area and its organization. Each XSAVE-supported state component is 
associated with a section of the XSAVE area. Section 13.5 describes in detail each of the XSAVE-supported state 
components.

Section 13.6 through Section 13.11 describe the operation of XSAVE, XRSTOR, XSAVEOPT, XSAVEC, XSAVES, and 
XRSTORS, respectively.

13.1 XSAVE-MANAGED FEATURES AND STATE-COMPONENT BITMAPS

The XSAVE feature set supports the saving and restoring of state components, each of which is a discrete set of 
processor registers (or parts of registers). In general, each such state component corresponds to a particular CPU 
feature. Such a feature is XSAVE-managed. Some XSAVE-managed features use registers in multiple state 
components.

The XSAVE feature set organizes the state components of the XSAVE-managed features using state-component 
bitmaps. A state-component bitmap comprises 64 bits; each bit in such a bitmap corresponds to a single state 
component. The following bits are currently defined in state-component bitmaps:
• Bit 0 corresponds to the state component used for the x87 FPU execution environment (x87 state). See 

Section 13.5.1.
• Bit 1 corresponds to the state component used for registers used by the streaming SIMD extensions (SSE 

state). See Section 13.5.2.
• Bit 2 corresponds to the state component used for the additional register state used by the Intel® Advanced 

Vector Extensions (AVX state). See Section 13.5.3.

Bits 62:3 are not currently defined in state-component bitmaps and are reserved for future expansion. Bit 63 is 
used for special functionality in some bitmaps and does not correspond to any state component.

The state component corresponding to bit i of state-component bitmaps is called state component i. Thus, x87 
state is state component 0; SSE state is state component 1; and AVX state is state component 2.

The XSAVE feature set uses state-component bitmaps in multiple ways. Most of the instructions use an implicit 
operand (in EDX:EAX), called the instruction mask, which is the state-component bitmap that specifies the state 
components on which the instruction operates.

Extended control register XCR0 contains a state-component bitmap that specifies the state components that soft-
ware has enabled the full XSAVE feature set to manage. If the bit corresponding to a state component is clear in 
XCR0, the following instructions in the XSAVE feature set will not operate on that state component, regardless of 
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the value of the instruction mask: XSAVE, XRSTOR, XSAVEOPT, and XSAVEC. Details of the operation of these 
instructions are given in Section 13.6 through Section 13.9.

The IA32_XSS MSR (index DA0H) contains a state-component bitmap that specifies the state components that 
software has enabled XSAVES and XRSTORS to manage. If the bit corresponding to a state component is clear in 
the logical-OR of XCR0 and IA32_XSS (XCR0 | IA32_XSS), XSAVES and XRSTORS will not operate on that state 
component, regardless of the value of the instruction mask. Details of the operation of these instructions are given 
in Section 13.10 and Section 13.11.

Some XSAVE-managed features can be used only if XCR0 has been configured so that the features’ state compo-
nents can be managed by the XSAVE feature set. Such state components and features are XSAVE-enabled. In 
general, the processor will not modify (or allow modification of) the registers of any XSAVE-enabled state compo-
nent if the bit corresponding to that state component is clear in XCR0. If an XSAVE-managed feature has not been 
fully enabled in XCR0, execution of any instruction defined for that feature causes an invalid-opcode exception 
(#UD).

As will be explained in Section 13.3, the XSAVE feature set is enabled only if CR4.OSXSAVE[bit 18] = 1. If 
CR4.OSXSAVE = 0, the processor treats XSAVE-enabled state components and features as if all bits in XCR0 were 
clear; the state components cannot be modified and the features’ instructions cannot be executed.

The state components for x87 state and for SSE state are XSAVE-managed but not XSAVE-enabled. The processors 
allows modification to this state, and it allows execution of the x87 FPU instructions and the SSE instructions, 
regardless of the value of CR4.OSXSAVE and XCR0.

13.2 ENUMERATION OF CPU SUPPORT FOR XSAVE INSTRUCTIONS AND XSAVE-
SUPPORTED FEATURES

A processor enumerates support for the XSAVE feature set and for features supported by that feature set using the 
CPUID instruction. The following items provide specific details:
• CPUID.1:ECX.XSAVE[bit 26] enumerates general support for the XSAVE feature set:

— If this bit is 0, the processor does not support any of the following instructions: XGETBV, XRSTOR, 
XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and XSETBV; the processor provides no further 
enumeration through CPUID function 0DH (see below).

— If this bit is 1, the processor supports the following instructions: XGETBV, XRSTOR, XSAVE, and XSETBV.1 
Further enumeration is provided through CPUID function 0DH.

CR4.OSXSAVE can be set to 1 if and only if CPUID.1:ECX.XSAVE[bit 26] is enumerated as 1.
• CPUID function 0DH enumerates details of CPU support through a set of sub-functions. Software selects a 

specific sub-function by the value placed in the ECX register. The following items provide specific details:

— CPUID function 0DH, sub-function 0.

• EDX:EAX is a bitmap of all the state components that can be managed using the full XSAVE feature set. 
A bit can be set in XCR0 if and only if the corresponding bit is set in this bitmap. Every processor that 
supports the XSAVE feature set will set EAX[0] (x87 state) and EAX[1] (SSE state).

If EAX[i] = 1 (for 1 < i < 32) or EDX[i–32] = 1 (for 32 � i < 63), sub-function i enumerates details for 
state component i (see below).

• ECX enumerates the size (in bytes) required by the XSAVE instruction for an XSAVE area containing all 
the state components supported by this processor.

• EBX enumerates the size (in bytes) required by the XSAVE instruction for an XSAVE area containing all 
the state components corresponding to bits currently set in XCR0.

— CPUID function 0DH, sub-function 1.

1. If CPUID.1:ECX.XSAVE[bit 26] = 1, XGETBV and XSETBV may be executed with ECX = 0 (to read and write XCR0). Any support for 
execution of these instructions with other values of ECX is enumerated separately.
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• EAX[0] enumerates support for the XSAVEOPT instruction. The instruction is supported if and only if 
this bit is 1. If EAX[0] = 0, execution of XSAVEOPT causes an invalid-opcode exception (#UD).

• EAX[1] enumerates support for compaction extensions to the XSAVE feature set. The following are 
supported if this bit is 1:

— The compacted format of the extended region of XSAVE areas (see Section 13.4.3). 

— The XSAVEC instruction. If EAX[1] = 0, execution of XSAVEC causes a #UD.

— Execution of the compacted form of XRSTOR (see Section 13.7).

• EAX[2] enumerates support for execution of XGETBV with ECX = 1. This allows software to determine 
the state of the init optimization. See Section 13.5.4.

• EAX[3] enumerates support for XSAVES, XRSTORS, and the IA32_XSS MSR. If EAX[3] = 0, execution 
of XSAVES or XRSTORS causes a #UD; an attempt to access the IA32_XSS MSR using RDMSR or 
WRMSR causes a general-protection exception (#GP). Every processor that sets EAX[3] (XSAVES, 
XRSTORS, IA32_XSS) will also set EAX[1] (the compaction extensions).

• EAX[31:4] are reserved.

• EBX enumerates the size (in bytes) required by the XSAVES instruction for an XSAVE area containing all 
the state components corresponding to bits currently set in XCR0 | IA32_XSS.

• EDX:ECX is a bitmap of all the state components that can be managed by XSAVES and XRSTORS but 
not by the rest of the XSAVE feature set. A bit can be set in the IA32_XSS MSR if and only if the corre-
sponding bit is set in this bitmap.

NOTE

In summary, the XSAVE feature set supports state component i (0 � i < 63) if one of the following 
is true: (1) i < 32 and CPUID.(EAX=0DH,ECX=0):EAX[i] = 1; (2) i � 32 and 
CPUID.(EAX=0DH,ECX=0):EAX[i–32] = 1; (3) i < 32 and CPUID.(EAX=0DH,ECX=1):ECX[i] = 1; 
or (4) i � 32 and CPUID.(EAX=0DH,ECX=1):EDX[i–32] = 1. The full XSAVE feature set supports 
state component i if (1) or (2) holds; if (3) or (4) holds, support is limited to XSAVES and XRSTORS.

— CPUID function 0DH, sub-function i (i > 1). This sub-function enumerates details for state component i. If 
the XSAVE feature set supports state component i (see note above), the following items provide specific 
details:

• EAX enumerates the size (in bytes) required for state component i.

• If the full XSAVE feature set supports state component i, EBX enumerates the offset (in bytes, from the 
base of the XSAVE area) of the section used for state component i. (This offset applies only when the 
standard format for the extended region of the XSAVE area is being used; see Section 13.4.3.)

• If support for state component i is limited to XSAVES and XRSTORS, EBX returns 0.

• If the full XSAVE feature set supports state component i, ECX[0] return 0; if support is limited to 
XSAVES and XRSTORS, ECX[0] returns 1.

• ECX[31:1] and EDX return 0.

If the XSAVE feature set does not support state component i, sub-function i returns 0 in EAX, EBX, ECX, and 
EDX.

13.3 ENABLING THE XSAVE FEATURE SET AND XSAVE-SUPPORTED FEATURES

Software enables the XSAVE feature set by setting CR4.OSXSAVE[bit 18] to 1 (e.g., with the MOV to CR4 instruc-
tion). If this bit is 0, execution of any of XGETBV, XRSTOR, XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and 
XSETBV causes an invalid-opcode exception (#UD).

When CR4.OSXSAVE = 1 and CPL = 0, executing the XSETBV instruction with ECX = 0 writes the 64-bit value in 
EDX:EAX to XCR0 (EAX is written to XCR0[31:0] and EDX to XCR0[63:32]). (Execution of the XSETBV instruction 
causes a general-protection fault — #GP — if CPL > 0.) The following items provide details regarding individual bits 
in XCR0:
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• XCR0[0] is associated with x87 state. (See Section 13.5.1.) XCR0[0] is always 1. It has that value coming out 
of RESET. Executing the XSETBV instruction causes a general-protection fault (#GP) if ECX = 0 and EAX[0] is 0.

• XCR0[1] is associated with SSE state. (See Section 13.5.2.) Software can use the XSAVE feature set to manage 
SSE state only if XCR0[1] = 1. The value of XCR0[1] in no way determines whether software can execute SSE 
instructions (these instructions can be executed even if XCR0[1] = 0).
XCR0[1] is 0 coming out of RESET. As noted in Section 13.2, every processor that supports the XSAVE feature 
set allows software to set XCR0[1].

• XCR0[2] is associated with AVX state. (See Section 13.5.3.) Software can use the XSAVE feature set to manage 
AVX state only if XCR0[2] = 1. In addition, software can execute AVX instructions only if CR4.OSXSAVE = 
XCR0[1] = XCR0[2] = 1. Otherwise, any execution of an AVX instruction causes an invalid-opcode exception 
(#UD).
XCR0[2] is 0 coming out of RESET. As noted in Section 13.2, a processor allows software to set XCR0[2] if and 
only if CPUID.(EAX=0DH,ECX=0):EAX[2] = 1. In addition, executing the XSETBV instruction causes a general-
protection fault (#GP) if ECX = 0 and EAX[2:1] has the value 10b; that is, software cannot enable the XSAVE 
feature set for AVX state but not for SSE state.

• XCR0[63:3] are reserved. Executing the XSETBV instruction causes a general-protection fault (#GP) if ECX = 
0 and any bit in EDX or EAX[31:3] is not 0. Bits 63:3 of XCR0 are all 0 coming out of RESET.

Software operating with CPL > 0 may need to determine whether the XSAVE feature set and certain XSAVE-
supported features have been enabled. If CPL > 0, execution of the MOV from CR4 instruction causes a general-
protection fault (#GP). The following alternative mechanisms allow software to discover the enabling of the XSAVE 
feature set regardless of CPL:
• The value of CR4.OSXSAVE is returned in CPUID.1:ECX.OSXSAVE[bit 27]. If software determines that 

CPUID.1:ECX.OSXSAVE = 1, the processor supports the XSAVE feature set and the feature set has been 
enabled in CR4.

• Executing the XGETBV instruction with ECX = 0 returns the value of XCR0 in EDX:EAX. XGETBV can be 
executed if CR4.OSXSAVE = 1 (if CPUID.1:ECX.OSXSAVE = 1), regardless of CPL.

Thus, software can use the following algorithm to determine the support and enabling for the XSAVE feature set:

1. Use CPUID to discover the value of CPUID.1:ECX.OSXSAVE.

— If the bit is 0, either the XSAVE feature set is not supported by the processor or has not been enabled by 
software. Either way, the XSAVE feature set is not available, nor are XSAVE-enabled features such as AVX.

— If the bit is 1, the processor supports the XSAVE feature set — including the XGETBV instruction — and it 
has been enabled by software. The XSAVE feature set can be used to manage x87 state (because XCR0[0] 
is always 1). Software requiring more detailed information can go on to the next step.

2. Execute XGETBV with ECX = 0 to discover the value of XCR0. If XCR0[1] = 1, the XSAVE feature set can be 
used to manage SSE state. If XCR0[2] = 1, the XSAVE feature set can be used to manage AVX state and 
software can execute AVX instructions.

The IA32_XSS MSR is zero coming out of RESET. If CR4.OSXSAVE = 1, CPUID.(EAX=0DH,ECX=1):EAX[3] = 1, and 
CPL = 0, executing the WRMSR instruction with ECX = DA0H writes the 64-bit value in EDX:EAX to the IA32_XSS 
MSR (EAX is written to IA32_XSS[31:0] and EDX to IA32_XSS[63:32]). There is no mechanism by which software 
operating with CPL > 0 can discover the value of the IA32_XSS MSR.

13.4 XSAVE AREA

The XSAVE feature set includes instructions that save and restore the XSAVE-managed state components to and 
from memory: XSAVE, XSAVEOPT, XSAVEC, and XSAVES (for saving); and XRSTOR and XRSTORS (for restoring). 
The processor organizes the state components in a region of memory called an XSAVE area. Each of the save and 
restore instructions takes a memory operand that specifies the 64-byte aligned base address of the XSAVE area on 
which it operates.

Every XSAVE area has the following format:
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• The legacy region. The legacy region of an XSAVE area comprises the 512 bytes starting at the area’s base 
address. It is used to manage the state components for x87 state and SSE state. The legacy region is described 
in more detail in Section 13.4.1.

• The XSAVE header. The XSAVE header of an XSAVE area comprises the 64 bytes starting at an offset of 512 
bytes from the area’s base address. The XSAVE header is described in more detail in Section 13.4.2.

• The extended region. The extended region of an XSAVE area starts at an offset of 576 bytes from the area’s 
base address. It is used to manage the state components other than those for x87 state and SSE state. The 
extended region is described in more detail in Section 13.4.3. The size of the extended region is determined by 
which state components the processor supports and which bits have been set in XCR0 and IA32_XSS (see 
Section 13.3).

13.4.1 Legacy Region of an XSAVE Area

The legacy region of an XSAVE area comprises the 512 bytes starting at the area’s base address. It has the same 
format as the FXSAVE area (see Section 10.5.1). The XSAVE feature set uses the legacy area for x87 state (state 
component 0) and SSE state (state component 1). Table 13-1 illustrates the format of the first 416 bytes of the 
legacy region of an XSAVE area.

Table 13-1.  Format of the Legacy Region of an XSAVE Area

15 14 13  12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
 CS or FPU 
IP bits 63:32  FPU IP bits 31:0 FOP Rsvd. FTW FSW FCW 0

MXCSR_MASK MXCSR Reserved
 DS or

 FPU DP 
bits 63:32

 FPU DP bits 31:0 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352
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The x87 state component comprises bytes 23:0 and bytes 159:32. The SSE state component comprises 
bytes 31:24 and bytes 415:160. The XSAVE feature set does not use bytes 511:416; bytes 463:416 are reserved.

Section 13.6 through Section 13.8 provide details of how instructions in the XSAVE feature set use the legacy 
region of an XSAVE area.

13.4.2 XSAVE Header

The XSAVE header of an XSAVE area comprises the 64 bytes starting at offset 512 from the area’s base address:
• Bytes 7:0 of the XSAVE header is a state-component bitmap (see Section 13.1) called XSTATE_BV. It 

identifies the state components in the XSAVE area.
• Bytes 15:8 of the XSAVE header is a state-component bitmap called XCOMP_BV. It is used as follows:

— XCOMP_BV[63] indicates the format of the extended region of the XSAVE area (see Section 13.4.3). If it is 
clear, the standard format is used. If it is set, the compacted format is used; XCOMP_BV[62:0] provide 
format specifics as specified in Section 13.4.3.

— XCOMP_BV[63] determines which form of the XRSTOR instruction is used. If the bit is set, the compacted 
form is used; otherwise, the standard form is used. See Section 13.7.

— All bits in XCOMP_BV should be 0 if the processor does not support the compaction extensions to the XSAVE 
feature set.

• Bytes 63:16 of the XSAVE header are reserved.

Section 13.6 through Section 13.8 provide details of how instructions in the XSAVE feature set use the XSAVE 
header of an XSAVE area.

13.4.3 Extended Region of an XSAVE Area

The extended region of an XSAVE area starts at byte offset 576 from the area’s base address. The size of the 
extended region is determined by which state components the processor supports and which bits have been set in 
XCR0 | IA32_XSS (see Section 13.3).

The XSAVE feature set uses the extended area for each state component i, where i ≥ 2. (Currently, the extended 
region is used only for AVX state, which is state component 2.)

The extended region of the an XSAVE area may have one of two formats. The standard format is supported by all 
processors that support the XSAVE feature set; the compacted format is supported by those processors that 
support the compaction extensions to the XSAVE feature set (see Section 13.2). Bit 63 of the XCOMP_BV field in 
the XSAVE header (see Section 13.4.2) indicates which format is used.

The following items describe the two possible formats of the extended region:
• Standard format. Each state component i (i ≥ 2) is located at the byte offset from the base address of the 

XSAVE area enumerated in CPUID.(EAX=0DH,ECX=i):EBX. (CPUID.(EAX=0DH,ECX=i):EAX enumerates the 
number of bytes required for state component i.

• Compacted format. Each state component i (i ≥ 2) is located at a byte offset from the base address of the 
XSAVE area based on the XCOMP_BV field in the XSAVE header:

— If XCOMP_BV[i] = 0, state component i is not in the XSAVE area.

— If XCOMP_BV[i] = 1, the following items apply:

XMM13 368

XMM14 384

XMM15 400

Table 13-1.  Format of the Legacy Region of an XSAVE Area (Contd.) (Contd.)

15 14 13  12 11 10 9 8 7 6 5 4 3 2 1 0
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• If XCOMP_BV[j] = 0 for every j, 2 ≤ j < i, state component i is located at a byte offset 576 from the base 
address of the XSAVE area. (This item applies if i is the first bit set in bits 62:2 of the XCOMP_BV; it 
implies that state component i is located at the beginning of the extended region.) 

• Otherwise, let j, 2 ≤ j < i, be the greatest value such that XCOMP_BV[j] = 1. Then state component i is 
located at a byte offset X from the location of state component j, where X is the number of bytes 
required for state component j as enumerated in CPUID.(EAX=0DH,ECX=j):EAX. (This item implies 
that state component i immediately follows the preceding state component whose bit is set in 
XCOMP_BV.)

13.5 XSAVE-MANAGED STATE

The section provides details regarding how the XSAVE feature set interacts with the various XSAVE-managed state 
components.

13.5.1 x87 State

Instructions in the XSAVE feature set can manage the same state of the x87 FPU execution environment (x87 
state) that can be managed using the FXSAVE and FXRSTOR instructions. They organize all x87 state in the legacy 
region of the XSAVE area (see Section 13.4.1). This region is illustrated in Table 13-1; the x87 state is listed below, 
along with details of its interactions with the XSAVE feature set:
• Bytes 1:0, 3:2, 7:6. These are used for the x87 FPU Control Word (FCW), the x87 FPU Status Word (FSW), and 

the x87 FPU Opcode (FOP), respectively.
• Byte 4 is used for an abridged version of the x87 FPU Tag Word (FTW). The following items describe its usage:

— For each j, 0 ≤ j ≤ 7, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save a 0 into bit j of byte 4 if x87 FPU data 
register STj has a empty tag; otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save a 1 into bit j of 
byte 4.

— For each j, 0 ≤ j ≤ 7, XRSTOR and XRSTORS establish the tag value for x87 FPU data register STj as follows. 
If bit j of byte 4 is 0, the tag for STj in the tag register for that data register is marked empty (11B); 
otherwise, the x87 FPU sets the tag for STj based on the value being loaded into that register (see below).

• Bytes 15:8 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 11:8 are used for bits 31:0 of the x87 FPU Instruction Pointer Offset (FIP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 13:12 are used for x87 FPU Instruction Pointer 
Selector (FPU CS). Otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save these bytes as 0000H, 
and XRSTOR and XRSTORS ignore them.

• Bytes 15:14 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 15:8 are used for the full 64 bits of FIP.
• Bytes 23:16 are used as follows:

— If the instruction has no REX prefix, or if REX.W = 0:

• Bytes 19:16 are used for bits 31:0 of the x87 FPU Data Pointer Offset (FDP).

• If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 21:20 are used for x87 FPU Data Pointer Selector 
(FPU DS). Otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save these bytes as 0000H; and 
XRSTOR and XRSTORS ignore them.

• Bytes 23:22 are not used.

— If the instruction has a REX prefix with REX.W = 1, bytes 23:16 are used for the full 64 bits of FDP.
• Bytes 31:24 are used for SSE state (see Section 13.5.2).
• Bytes 159:32 are used for the registers ST0–ST7 (MM0–MM7). Each of the 8 register is allocated a 128-bit 

region, with the low 80 bits used for the register and the upper 48 bits unused.
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x87 state is XSAVE-managed but not XSAVE-enabled. The XSAVE feature set can operate on x87 state only if the 
feature set is enabled (CR4.OSXSAVE = 1).1 Software can otherwise use x87 state even if the XSAVE feature set is 
not enabled.

13.5.2 SSE State

Instructions in the XSAVE feature set can manage the registers used by the streaming SIMD extensions (SSE 
state) just as the FXSAVE and FXRSTOR instructions do. They organize all SSE state in the legacy region of the 
XSAVE area (see Section 13.4.1). This region is illustrated in Table 13-1; the SSE state is listed below, along with 
details of its interactions with the XSAVE feature set:
• Bytes 23:0 are used for x87 state (see Section 13.5.1).
• Bytes 27:24 are used for the MXCSR register. XRSTOR and XRSTORS generate general-protection faults (#GP) 

in response to attempts to set any of the reserved bits of the MXCSR register.2

• Bytes 31:28 are used for the MXCSR_MASK value. XRSTOR and XRSTORS ignore this field.
• Bytes 159:32 are used for x87 state.
• Bytes 287:160 are used for the registers XMM0–XMM7. 
• Bytes 415:288 are used for the registers XMM8–XMM15. These fields are used only in 64-bit mode. Executions 

of XSAVE, XSAVEOPT, XSAVEC, and XSAVES outside 64-bit mode do not write to these bytes; executions of 
XRSTOR and XRSTORS outside 64-bit mode do not read these bytes and do not update XMM8–XMM15.

SSE state is XSAVE-managed but not XSAVE-enabled. The XSAVE feature set can operate on SSE state only if the 
feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage SSE state (XCR0[1] = 1). Software 
can otherwise use SSE state even if the XSAVE feature set is not enabled or has not been configured to manage 
SSE state.

13.5.3 AVX State

The register state used by the Intel® Advanced Vector Extensions (AVX) comprises the MXCSR register and 16 256-
bit vector registers called YMM0–YMM15. The low 128 bits of each register YMMi is identical to the SSE register 
XMMi. Thus, the new state register state added by AVX comprises the upper 128 bits of the registers YMM0–
YMM15. These 16 128-bit values are denoted YMM0_H–YMM15_H and are collectively called AVX state.

As noted in Section 13.1, the XSAVE feature set manages AVX state as state component 2. Thus, AVX state is 
located in the extended region of the XSAVE area (see Section 13.4.3).

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=2):EBX enumerates the offset (in bytes, from the base of the 
XSAVE area) of the section of the extended region of the XSAVE area used for AVX state (when the standard format 
of the extended region is used). CPUID returns this value as 576. CPUID.(EAX=0DH,ECX=2):EAX enumerates the 
size (in bytes) required for AVX state. CPUID returns this value as 256.

The XSAVE feature set partitions YMM0_H–YMM15_H in a manner similar to that used for the XMM registers (see 
Section 13.5.2). Bytes 127:0 of the AVX-state section are used YMM0_H–YMM7_H. Bytes 255:128 are used for 
YMM8_H–YMM15_H, but they are used only in 64-bit mode. (Executions of XSAVE, XSAVEOPT, XSAVEC, and 
XSAVES outside 64-bit mode do not write to bytes 255:128; executions of XRSTOR and XRSTORS outside 64-bit 
mode do not read these bytes and do not update YMM8_H–YMM15_H.)

AVX state is XSAVE-managed and XSAVE-enabled. The XSAVE feature set can operate on AVX state only if the 
feature set is enabled (CR4.OSXSAVE = 1) and has been configured to manage AVX state (XCR0[1] = XCR0[2] = 
1).3 AVX instructions cannot be used unless the XSAVE feature set is enabled and has been configured to manage 
AVX state.

1. The processor ensures that XCR0[0] is always 1.

2. While MXCSR and MXCSR_MASK are part of SSE state, their treatment by the XSAVE feature set is not the same as that of the XMM 
registers. See Section 13.6 through Section 13.10 for details.

3. The XSETBV instruction can set XCR0[2] to 1 only if it is also setting XCR0[1] to 1. XSETBV generates a general-protection excep-
tion (#GP) in response to attempts to set XCR0[2] while clearing XCR0[1].
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13.5.4 Processor Tracking of XSAVE-Managed State

The XSAVEOPT, XSAVEC, and XSAVES instructions use two optimization to reduce the amount of data that they 
write to memory. They avoid writing data for any state component known to be in its initial configuration (the init 
optimization). In addition, if either XSAVEOPT or XSAVES is using the same XSAVE area as that used by the most 
recent execution of XRSTOR or XRSTORS, it may avoid writing data for any state component whose configuration 
is known not to have been modified since then (the modified optimization). (XSAVE does not use these optimi-
zations, and XSAVEC does not use the modified optimization.) The operation of XSAVEOPT, XSAVEC, and XSAVES 
are described in more detail in Section 13.8 through Section 13.10.

A processor can support the init and modified optimizations with special hardware that tracks the state components 
that might benefit from those optimizations. Other implementations might not include such hardware; such a 
processor would always consider each such state component as not in its initial configuration and as modified since 
the last execution of XRSTOR or XRSTORS.

The following notation describes the state of the init and modified optimizations:
• XINUSE denotes the state-component bitmap corresponding to the init optimization. If XINUSE[i] = 0, state 

component i is known to be in its initial configuration; otherwise XINUSE[i] = 1. On a processor that does not 
support the init optimization, XINUSE[i] is always 1 for every value of i.
Although MXCSR is part of SSE state (state component 1), a processor may maintain XINUSE[1] as 0 
(indicating that SSE state is in its initial configuration) even if MXCSR does not have its RESET value of 1F80H; 
XINUSE[1] = 0 implies only that the XMM registers are all 0. See Section 13.6 through Section 13.9 for details 
of how the various instructions treat XINUSE[1] and MXCSR.
Executing XGETBV with ECX = 1 returns in EDX:EAX the logical-AND of XCR0 and the current value of the 
XINUSE state-component bitmap. Such an execution of XGETBV always sets EAX[1] to 1 if XCR0[1] = 1 and 
MXCSR does not have its RESET value of 1F80H. Section 13.2 explains how software can determine whether a 
processor supports this use of XGETBV.

• XMODIFIED denotes the state-component bitmap corresponding to the modified optimization. If 
XMODIFIED[i] = 0, state component i is known not to have been modified since the most recent execution of 
XRSTOR or XRSTORS; otherwise XMODIFIED[i] = 1. On a processor that does not support the modified optimi-
zation, XMODIFIED[i] is always 1 for every value of i.

A processor that implements the modified optimization saves information about the most recent execution of 
XRSTOR or XRSTORS in a quantity called XRSTOR_INFO, a 4-tuple containing the following: (1) the CPL; 
(2) whether the logical processor was in VMX non-root operation; (3) the linear address of the XSAVE area; and 
(4) the XCOMP_BV field in the XSAVE area. An execution of XSAVEOPT or XSAVES uses the modified optimization 
only if that execution corresponds to XRSTOR_INFO on these four parameters.

This mechanism implies that, depending on details of the operating system, the processor might determine that an 
execution of XSAVEOPT by one user application corresponds to an earlier execution of XRSTOR by a different appli-
cation. For this reason, Intel recommends the application software not use the XSAVEOPT instruction.

13.6 OPERATION OF XSAVE

The XSAVE instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair 
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction 
mask. The logical-AND of XCR0 and the instruction mask is the requested-feature bitmap (RFBM) of the state 
components to be saved.

The following conditions cause execution of the XSAVE instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

If none of these conditions cause a fault, execution of XSAVE reads the XSTATE_BV field of the XSAVE header (see 
Section 13.4.2) and writes it back to memory, setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.
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• If RFBM[i] = 0, XSTATE_BV[i] is not changed.
• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i]. Section 13.5.4 defines XINUSE to describe the 

processor init optimization. The nature of that optimization implies the following:

— If state component i is in its initial configuration, XSTATE_BV[i] may be written with either 0 or 1.

— If state component i is not in its initial configuration, XSTATE_BV[i] is written with 1.
The following items specify the initial configuration each state component (for the purposes of defining the 
values saved to XSTATE_BV):

— x87 state. x87 state is in its initial configuration if the following all hold: FCW is 037FH; FSW is 0000H; 
FTW is FFFFH; FPU CS and FPU DS are each 0000H; FPU IP and FPU DP are each 00000000_00000000H; 
each of ST0–ST7 is 0000_00000000_00000000H.

— SSE state. In 64-bit mode, SSE state is in its initial configuration if each of XMM0–XMM15 is 0. Outside 64-
bit mode, SSE state is in its initial configuration if each of XMM0–XMM7 is 0. The value of the MXCSR 
register considered; XSTATE_BV[1] may be written with 0 even if MXCSR does not have its RESET value of 
1F80H.

— AVX state. In 64-bit mode, AVX state is in its initial configuration if each of YMM0_H–YMM15_H is 0. 
Outside 64-bit mode, AVX state is in its initial configuration if each of YMM0_H–YMM7_H is 0.

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and 
operation determined by instruction prefixes.

The XSAVE instruction does not write any part of the XSAVE header other than the XSTATE_BV field; in particular, 
it does not write to the XCOMP_BV field.

Execution of XSAVE saves into the XSAVE area those state components corresponding to bits that are set in RFBM. 
State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state 
component i, 2 ≤ i ≤ 62, is located in the extended region; the XSAVE instruction always uses the standard format 
for the extended region (see Section 13.4.3).

The MXCSR register and MXCSR_MASK are part of SSE state (see Section 13.5.2) and are thus associated with 
RFBM[1]. However, the XSAVE instruction also saves these values when RFBM[2] = 1 (even if RFBM[1] = 0).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and 
operation determined by instruction prefixes.

13.7 OPERATION OF XRSTOR

The XRSTOR instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair 
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction 
mask. The logical-AND of XCR0 and the instruction mask is the requested-feature bitmap (RFBM) of the state 
components to be restored.

The following conditions cause execution of the XRSTOR instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

After checking for these faults, the XRSTOR instruction reads the XCOMP_BV field in the XSAVE area’s XSAVE 
header (see Section 13.4.2). If XCOMP_BV[63] = 0, the standard form of XRSTOR is executed (see Section 
13.7.1); otherwise, the compacted form of XRSTOR is executed (see Section 13.7.2).

See Section 13.2 for details of how to determine whether the compacted form of XRSTOR is supported.

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.
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13.7.1 Standard Form of XRSTOR

The standard from of XRSTOR performs additional fault checking. Either of the following conditions causes a 
general-protection exception (#GP):
• The XSTATE_BV field of the XSAVE header sets a bit that is not set in XCR0.
• Bytes 23:8 of the XSAVE header are not all 0 (this implies that all bits in XCOMP_BV are 0).1

If none of these conditions cause a fault, the processor updates each state component i for which RFBM[i] = 1. 
XRSTOR updates state component i based on the value of bit i in the XSTATE_BV field of the XSAVE header:
• If XSTATE_BV[i] = 0, the state component is set to its initial configuration. The following items specify the 

initial configuration that XRSTOR establishes for each state component:

— If XSTATE_BV[0] = 0, XRSTOR initializes x87 state by establishing the following: FCW is set to 037FH; FSW 
is set to 0000H; FTW is set to FFFFH; FPU CS and FPU DS are each set to 0000H; FPU IP and FPU DP are 
each set to 00000000_00000000H; each of ST0–ST7 is set to 0000_00000000_00000000H.

— If XSTATE_BV[1] = 0, behavior is mode-dependent. In 64-bit mode, XRSTOR initializes SSE state by 
setting each of XMM0–XMM15 to 0. Outside 64-bit mode, XRSTOR initializes SSE state by setting each of 
XMM0–XMM7 to 0. In either case, XRSTOR loads MXCSR from the XSAVE area whenever RFBM[1] = 1, even 
when XSTATE_BV[1] = 0.

— If XSTATE_BV[2] = 0, behavior is mode-dependent. In 64-bit mode, XRSTOR initializes AVX state by 
setting each of YMM0_H–YMM15_H to 0. Outside 64-bit mode, XRSTOR initializes AVX state by setting each 
of YMM0_H–YMM7_H to 0. In either case, XRSTOR loads MXCSR from the XSAVE area whenever RFBM[2] = 
1, even when XSTATE_BV[2] = 0.

• If XSTATE_BV[i] = 1, the state component is loaded with data from the XSAVE area. See Section 13.5 for 
specifics for each state component and for details regarding mode-specific operation and operation determined 
by instruction prefixes.
State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state 
component i, 2 ≤ i ≤ 62, is located in the extended region; the standard form of the XRSTOR instruction uses 
the standard format for the extended region (see Section 13.4.3).

The MXCSR register is part of state component 1, SSE state (see Section 13.5.2). However, the standard form of 
XRSTOR loads the MXCSR register from memory whenever the RFBM[1] (SSE) or RFBM[2] (AVX) is set. The stan-
dard form of XRSTOR causes a general-protection exception (#GP) if it would load MXCSR with an illegal value.

13.7.2 Compacted Form of XRSTOR

The compacted from of XRSTOR performs additional fault checking. Any of the following conditions causes a #GP:
• The XCOMP_BV field of the XSAVE header sets a bit in the range 62:0 that is not set in XCR0.
• The XSTATE_BV field of the XSAVE header sets a bit (including bit 63) that is not set in XCOMP_BV.
• Bytes 63:16 of the XSAVE header are not all 0.

If none of these conditions cause a fault, the processor updates each state component i for which RFBM[i] = 1. 
XRSTOR updates state component i based on the value of bit i in the XSTATE_BV field of the XSAVE header:
• If XSTATE_BV[i] = 0, the state component is set to its initial configuration. The following items specify the 

initial configuration that XRSTOR establishes for each state component:

— If XSTATE_BV[0] = 0, XRSTOR initializes x87 state by establishing the following: FCW is set to 037FH; FSW 
is set to 0000H; FTW is set to FFFFH; FPU CS and FPU DS are each set to 0000H; FPU IP and FPU DP are 
each set to 00000000_00000000H; each of ST0–ST7 is set to 0000_00000000_00000000H.

— If XSTATE_BV[1] = 0, behavior is mode-dependent. In 64-bit mode, XRSTOR initializes SSE state by 
setting each of XMM0–XMM15 to 0. Outside 64-bit mode, XRSTOR initializes SSE state by setting each of 

1. Bytes 63:24 of the XSAVE header are also reserved. Software should ensure that bytes 63:16 of the XSAVE header are all 0 in any 
XSAVE area. (Bytes 15:8 should also be 0 if the XSAVE area is to be used on a processor that does not support the compaction 
extensions to the XSAVE feature set.)
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XMM0–XMM7 to 0. In either case, XRSTOR initializes MXCSR to the 1F80H. (This differs from the standard 
from of XRSTOR, which loads MXCSR from the XSAVE area whenever either RFBM[1] or RFBM[2] is set.)

— If XSTATE_BV[2] = 0, behavior is mode-dependent. In 64-bit mode, XRSTOR initializes AVX state by setting 
each of YMM0_H–YMM15_H to 0. Outside 64-bit mode, XRSTOR initializes AVX state by setting each of 
YMM0_H–YMM7_H to 0.

State component i is set to its initial configuration if RFBM[i] = 1 and XSTATE_BV[i] = 0 — even if 
XCOMP_BV[i] = 0. This is true for all values of i, including 0 (x87 state) and 1 (SSE state).

• If XSTATE_BV[i] = 1, the state component is loaded with data from the XSAVE area.1 See Section 13.5 for 
specifics for each state component and for details regarding mode-specific operation and operation determined 
by instruction prefixes.
State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state 
component i, 2 ≤ i ≤ 62, is located in the extended region; the compacted form of the XRSTOR instruction uses 
the compacted format for the extended region (see Section 13.4.3).
The MXCSR register is part of SSE state (see Section 13.5.2) and is thus loaded from memory if RFBM[1] = 
XSTATE_BV[i] = 1. The compacted form of XRSTOR does not consider RFBM[2] (AVX) when determining 
whether to update MXCSR. (This is a difference from the standard form of XRSTOR.) The compacted form of 
XRSTOR causes a general-protection exception (#GP) if it would load MXCSR with an illegal value.

13.7.3 XRSTOR and the Init and Modified Optimizations

Execution of the XRSTOR instruction causes the processor to update is tracking for the init and modified optimiza-
tions (see Section 13.5.4). The following items provide details:
• The processor updates its tracking for the init optimization as follows:

— If RFBM[i] = 0, XINUSE[i] is not changed.

— If RFBM[i] = 1 and XSTATE_BV[i] = 0, state component i may be tracked as init; XINUSE[i] may be set to 
0 or 1. (As noted in Section 13.5.4, a processor need not implement the init optimization for state 
component i; a processor that does not implicitly maintains XINUSE[i] = 1 at all times.)

— If RFBM[i] = 1 and XSTATE_BV[i] = 1, state component i is tracked as not init; XINUSE[i] is set to 1.
• The processor updates its tracking for the modified optimization and records information about the XRSTOR 

execution for future interaction with the XSAVEOPT and XSAVES instructions (see Section 13.8 and Section 
13.10) as follows:

— If RFBM[i] = 0, state component i is tracked as modified; XMODIFIED[i] is set to 1.

— If RFBM[i] = 1, state component i may be tracked as unmodified; XMODIFIED[i] may be set to 0 or 1. (As 
noted in Section 13.5.4, a processor need not implement the modified optimization for state component i; 
a processor that does not implicitly maintains XMODIFIED[i] = 1 at all times.)

— XRSTOR_INFO is set to the 4-tuple ¢w,x,y,z², where w is the CPL (0); x is 1 if the logical processor is in VMX 
non-root operation and 0 otherwise; y is the linear address of the XSAVE area; and z is XCOMP_BV. In 
particular, the standard form of XRSTOR always sets z to all zeroes, while the compacted form of XRSTORS 
never does so (because it sets at least bit 63 to 1).

13.8 OPERATION OF XSAVEOPT

The operation of XSAVEOPT is similar to that of XSAVE. Unlike XSAVE, XSAVEOPT uses the init optimization (by 
which it may omit saving state components that are in their initial configuration) and the modified optimization (by 
which it may omit saving state components that have not been modified since the last execution of XRSTOR); see 
Section 13.5.4. See Section 13.2 for details of how to determine whether XSAVEOPT is supported.

The XSAVEOPT instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair 
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction 

1. Earlier fault checking ensured that, if XSTATE_BV[i] = 1 at this point, XCOMP_BV[i] = 1.
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mask. The logical (bitwise) AND of XCR0 and the instruction mask is the requested-feature bitmap (RFBM) of 
the state components to be saved.

The following conditions cause execution of the XSAVEOPT instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

If none of these conditions cause a fault, execution of XSAVEOPT reads the XSTATE_BV field of the XSAVE header 
(see Section 13.4.2) and writes it back to memory, setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:
• If RFBM[i] = 0, XSTATE_BV[i] is not changed.
• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i]. Section 13.5.4 defines XINUSE to describe the 

processor init optimization. The nature of that optimization implies the following:

— If the state component is in its initial configuration, XSTATE_BV[i] may be written with either 0 or 1.

— If the state component is not in its initial configuration, XSTATE_BV[i] is written with 1.
Section 13.6 specifies the initial configuration of each state component.

The XSAVEOPT instruction does not write any part of the XSAVE header other than the XSTATE_BV field; in partic-
ular, it does not write to the XCOMP_BV field.

Execution of XSAVEOPT saves into the XSAVE area those state components corresponding to bits that are set in 
RFBM (subject to the optimizations below). State components 0 and 1 are located in the legacy region of the XSAVE 
area (see Section 13.4.1). Each state component i, 2 ≤ i ≤ 62, is located in the extended region; the XSAVEOPT 
instruction always uses the standard format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and 
operation determined by instruction prefixes.

Execution of XSAVEOPT performs two optimizations that reduce the amount of data written to memory:
• Init optimization.

If XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). (See below for 
exceptions made for MXCSR.)

• Modified optimization.
Each execution of XRSTOR and XRSTORS establishes XRSTOR_INFO as a 4-tuple ¢w,x,y,z² (see Section 13.7.3 
and Section 13.11). Execution of XSAVEOPT uses the modified optimization only if the following all hold for the 
current value of XRSTOR_INFO:

— w = CPL;

— x = 1 if and only if the logical processor is in VMX non-root operation;

— y is the linear address of the XSAVE area being used by XSAVEOPT; and

— z is 00000000_00000000H. (This last item implies that XSAVEOPT does not use the modified optimization 
if the last execution of XRSTOR used the compacted form, or if an execution of XRSTORS followed the last 
execution of XRSTOR.)

If XSAVEOPT uses the modified optimization and XMODIFIED[i] = 0 (see Section 13.5.4), state component i is 
not saved to the XSAVE area.
(In practice, the benefit of the modified optimization for state component i depends on how the processor is 
tracking state component i; see Section 13.5.4. Limitations on the tracking ability may result in state 
component i being saved even though is in the same configuration that was loaded by the previous execution 
of XRSTOR.)
Depending on details of the operating system, an execution of XSAVEOPT by a user application might use the 
modified optimization when the most recent execution of XRSTOR was by a different application. Because of 
this, Intel recommends the application software not use the XSAVEOPT instruction.

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.
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The MXCSR register and MXCSR_MASK are part of SSE state (see Section 13.5.2) and are thus associated with 
bit 1 of RFBM. However, the XSAVEOPT instruction also saves these values when RFBM[2] = 1 (even if RFBM[1] = 
0). The init and modified optimizations do not apply to the MXCSR register and MXCSR_MASK.

13.9 OPERATION OF XSAVEC

The operation of XSAVEC is similar to that of XSAVE. Two main differences are (1) XSAVEC uses the compacted 
format for the extended region of the XSAVE area; and (2) XSAVEC uses the init optimization (see Section 13.5.4). 
Unlike XSAVEOPT, XSAVEC does not use the modified optimization. See Section 13.2 for details of how to determine 
whether XSAVEC is supported.

The XSAVEC instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair 
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction 
mask. The logical (bitwise) AND of XCR0 and the instruction mask is the requested-feature bitmap (RFBM) of 
the state components to be saved.

The following conditions cause execution of the XSAVEC instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.1

If none of these conditions cause a fault, execution of XSAVEC writes the XSTATE_BV field of the XSAVE header 
(see Section 13.4.2), setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:2

• If RFBM[i] = 0, XSTATE_BV[i] is written as 0.
• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i] (see below for an exception made for 

XSTATE_BV[1]). Section 13.5.4 defines XINUSE to describe the processor init optimization. The nature of that 
optimization implies the following:

— If state component i is in its initial configuration, XSTATE_BV[i] may be written with either 0 or 1.

— If state component i is not in its initial configuration, XSTATE_BV[i] is written with 1.
Section 13.6 specifies the initial configuration of each state component. However, if RFBM[1] = 1 and MXCSR 
does not have the value 1F80H, XSAVEC writes XSTATE_BV[1] as 1 even if XINUSE[1] = 0.

The XSAVEC instructions sets bit 63 of the XCOMP_BV field of the XSAVE header while writing RFBM[62:0] to 
XCOMP_BV[62:0]. The XSAVEC instruction does not write any part of the XSAVE header other than the XSTATE_BV 
and XCOMP_BV fields.

Execution of XSAVEC saves into the XSAVE area those state components corresponding to bits that are set in RFBM. 
State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state 
component i, 2 ≤ i ≤ 62, is located in the extended region; the XSAVEC instruction always uses the compacted 
format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and 
operation determined by instruction prefixes.

Execution of XSAVEC performs the init optimization to reduce the amount of data written to memory. If 
XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). However, if RFBM[1] = 1 
and MXCSR does not have the value 1F80H, XSAVEC writes saves all of state component 1 (SSE — including the 
XMM registers) even if XINUSE[1] = 0. Unlike the XSAVE instruction, RFBM[2] does not determine whether XSAVEC 
saves MXCSR and MXCSR_MASK.

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

2. Unlike the XSAVE and XSAVEOPT instructions, the XSAVEC instruction does not read the XSTATE_BV field of the XSAVE header.
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13.10 OPERATION OF XSAVES

The operation of XSAVES is similar to that of XSAVEC. The main differences are (1) XSAVES can be executed only 
if CPL = 0; (2) XSAVES can operate on the state components whose bits are set in XCR0 | IA32_XSS; and 
(3) XSAVES uses the modified optimization (see Section 13.5.4). See Section 13.2 for details of how to determine 
whether XSAVES is supported.

The XSAVES instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair 
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction 
mask. EDX:EAX & (XCR0 | IA32_XSS) (the logical AND the instruction mask with the logical OR of XCR0 and 
IA32_XSS) is the requested-feature bitmap (RFBM) of the state components to be saved.

The following conditions cause execution of the XSAVES instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If CPL > 0 or if the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) 

occurs.1

If none of these conditions cause a fault, execution of XSAVES writes the XSTATE_BV field of the XSAVE header 
(see Section 13.4.2), setting XSTATE_BV[i] (0 ≤ i ≤ 63) as follows:
• If RFBM[i] = 0, XSTATE_BV[i] is written as 0.
• If RFBM[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i] (see below for an exception made for 

XSTATE_BV[1]). Section 13.5.4 defines XINUSE to describe the processor init optimization. The nature of that 
optimization implies the following:

— If state component i is in its initial configuration, XSTATE_BV[i] may be written with either 0 or 1.

— If state component i is not in its initial configuration, XSTATE_BV[i] is written with 1.
Section 13.6 specifies the initial configuration of each state component. However, if RFBM[1] = 1 and MXCSR 
does not have the value 1F80H, XSAVEC writes XSTATE_BV[1] as 1 even if XINUSE[1] = 0.

The XSAVES instructions sets bit 63 of the XCOMP_BV field of the XSAVE header while writing RFBM[62:0] to 
XCOMP_BV[62:0]. The XSAVEC instruction does not write any part of the XSAVE header other than the XSTATE_BV 
and XCOMP_BV fields.

Execution of XSAVES saves into the XSAVE area those state components corresponding to bits that are set in 
RFBM. State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each 
state component i, 2 ≤ i ≤ 62, is located in the extended region; the XSAVES instruction always uses the compacted 
format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and 
operation determined by instruction prefixes.

Execution of XSAVES performs the init optimization to reduce the amount of data written to memory. If 
XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). However, if RFBM[1] = 1 
and MXCSR does not have the value 1F80H, XSAVES writes saves all of state component 1 (SSE — including the 
XMM registers) even if XINUSE[1] = 0.

Like XSAVEOPT, XSAVES may perform the modified optimization. Each execution of XRSTOR and XRSTORS estab-
lishes XRSTOR_INFO as a 4-tuple ¢w,x,y,z² (see Section 13.7.3 and Section 13.11). Execution of XSAVES uses the 
modified optimization only if the following all hold:
• w = CPL;
• x = 1 if and only if the logical processor is in VMX non-root operation;
• y is the linear address of the XSAVE area being used by XSAVEOPT; and
• z[63] is 1 and z[62:0] = RFBM[62:0]. (This last item implies that XSAVES does not use the modified optimi-

zation if the last execution of XRSTOR used the standard form and followed the last execution of XRSTORS.)

If XSAVES uses the modified optimization and XMODIFIED[i] = 0 (see Section 13.5.4), state component i is not 
saved to the XSAVE area.

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.
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13.11 OPERATION OF XRSTORS

The operation of XRSTORS is similar to that of XRSTOR. Two main differences are (1) XRSTORS can be executed 
only if CPL = 0; (2) XRSTORS can operate on the state components whose bits are set in XCR0 | IA32_XSS; and 
(3) XRSTORS has only a compacted form (no standard form; see Section 13.7). See Section 13.2 for details of how 
to determine whether XRSTORS is supported.

The XRSTORS instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair 
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction 
mask. EDX:EAX & (XCR0 | IA32_XSS) (the logical AND the instruction mask with the logical OR of XCR0 and 
IA32_XSS) is the requested-feature bitmap (RFBM) of the state components to be restored.

The following conditions cause execution of the XRSTOR instruction to generate a fault:
• If the XSAVE feature set is not enabled (CR4.OSXSAVE = 0), an invalid-opcode exception (#UD) occurs.
• If CR0.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.
• If CPL > 0 or if the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) 

occurs.1

After checking for these faults, the XRSTORS instruction reads the first 64 bytes of the XSAVE header, including the 
XSTATE_BV and XCOMP_BV fields (see Section 13.4.2). A #GP occurs if any of the following conditions hold for the 
values read:
• XCOMP_BV[63] = 0.
• XCOMP_BV sets a bit in the range 62:0 that is not set in XCR0 | IA32_XSS.
• XSTATE_BV sets a bit (including bit 63) that is not set in XCOMP_BV.
• Bytes 63:16 of the XSAVE header are not all 0.

If none of these conditions cause a fault, the processor updates each state component i for which RFBM[i] = 1. 
XRSTORS updates state component i based on the value of bit i in the XSTATE_BV field of the XSAVE header:
• If XSTATE_BV[i] = 0, the state component is set to its initial configuration. The following items specify the 

initial configuration that XRSTORS establishes for each state component:

— If XSTATE_BV[0] = 0, XRSTORS initializes x87 state by establishing the following: FCW is set to 037FH; 
FSW is set to 0000H; FTW is set to FFFFH; FPU CS and FPU DS are each set to 0000H; FPU IP and FPU DP 
are each set to 00000000_00000000H; each of ST0–ST7 is set to 0000_00000000_00000000H.

— If XSTATE_BV[1] = 0, behavior is mode-dependent. In 64-bit mode, XRSTORS initializes SSE state by 
setting each of XMM0–XMM15 to 0. Outside 64-bit mode, XRSTORS initializes SSE state by setting each of 
XMM0–XMM7 to 0. In either case, XRSTORS initializes MXCSR to the 1F80H.

— If XSTATE_BV[2] = 0, behavior is mode-dependent. In 64-bit mode, XRSTORS initializes AVX state by 
setting each of YMM0_H–YMM15_H to 0. Outside 64-bit mode, XRSTORS initializes AVX state by setting 
each of YMM0_H–YMM7_H to 0.

State component i is set to its initial configuration if RFBM[i] = 1 and XSTATE_BV[i] = 0 — even if 
XCOMP_BV[i] = 0. This is true for all values of i, including 0 (x87 state) and 1 (SSE state).

• If XSTATE_BV[i] = 1, the state component is loaded with data from the XSAVE area.2 See Section 13.5 for 
specifics for each state component and for details regarding mode-specific operation and operation determined 
by instruction prefixes.
State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state 
component i, 2 ≤ i ≤ 62, is located in the extended region; XRSTORS uses the compacted format for the 
extended region (see Section 13.4.3).
The MXCSR register is part of SSE state (see Section 13.5.2) and is thus loaded from memory if RFBM[1] = 
XSTATE_BV[i] = 1. XRSTORS causes a general-protection exception (#GP) if it would load MXCSR with an 
illegal value.

1. If CR0.AM = 1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

2. Earlier fault checking ensured that, if XSTATE_BV[i] = 1 at this point, XCOMP_BV[i] = 1.
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Like XRSTOR, execution of XRSTORS causes the processor to update is tracking for the init and modified optimiza-
tions (see Section 13.5.4 and Section 13.7.3). The following items provide details:
• The processor updates its tracking for the init optimization as follows:

— If RFBM[i] = 0, XINUSE[i] is not changed.

— If RFBM[i] = 1 and XSTATE_BV[i] = 0, state component i may be tracked as init; XINUSE[i] may be set to 
0 or 1.

— If RFBM[i] = 1 and XSTATE_BV[i] = 1, state component i is tracked as not init; XINUSE[i] is set to 1.
• The processor updates its tracking for the modified optimization and records information about the XRSTORS 

execution for future interaction with the XSAVEOPT and XSAVES instructions as follows:

— If RFBM[i] = 0, state component i is tracked as modified; XMODIFIED[i] is set to 1.

— If RFBM[i] = 1, state component i may be tracked as unmodified; XMODIFIED[i] may be set to 0 or 1.

— XRSTOR_INFO is set to the 4-tuple ¢w,x,y,z², where w is the CPL; x is 1 if the logical processor is in VMX 
non-root operation and 0 otherwise; y is the linear address of the XSAVE area; and z is XCOMP_BV (this 
implies that z[63] = 1).
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CHAPTER 14
PROGRAMMING WITH AVX, FMA AND AVX2

Intel® Advanced Vector Extensions (AVX) introduces 256-bit vector processing capability. The Intel AVX instruction 
set extends 128-bit SIMD instruction sets by employing a new instruction encoding scheme via a vector extension 
prefix (VEX). Intel AVX also offers several enhanced features beyond those available in prior generations of 128-bit 
SIMD extensions. 
FMA (Fused Multiply Add) extensions enhances Intel AVX further in floating-point numeric computations. FMA 
provides high-throughput, arithmetic operations cover fused multiply-add, fused multiply-subtract, fused multiply 
add/subtract interleave, signed-reversed multiply on fused multiply-add and multiply-subtract. 

Intel AVX2 provides 256-bit integer SIMD extensions that accelerate computation across integer and floating-point 
domains using 256-bit vector registers.

This chapter summarizes the key features of Intel AVX, FMA and AVX2.

14.1 INTEL AVX OVERVIEW

Intel AVX introduces the following architectural enhancements:
• Support for 256-bit wide vectors with the YMM vector register set. 
• 256-bit floating-point instruction set enhancement with up to 2X performance gain relative to 128-bit 

Streaming SIMD extensions.
• Enhancement of legacy 128-bit SIMD instruction extensions to support three-operand syntax and to simplify 

compiler vectorization of high-level language expressions.
• VEX prefix-encoded instruction syntax support for generalized three-operand syntax to improve instruction 

programming flexibility and efficient encoding of new instruction extensions.
• Most VEX-encoded 128-bit and 256-bit AVX instructions (with both load and computational operation 

semantics) are not restricted to 16-byte or 32-byte memory alignment. 
• Support flexible deployment of 256-bit AVX code, 128-bit AVX code, legacy 128-bit code and scalar code.

With the exception of SIMD instructions operating on MMX registers, almost all legacy 128-bit SIMD instructions 
have AVX equivalents that support three operand syntax. 256-bit AVX instructions employ three-operand syntax 
and some with 4-operand syntax. 

14.1.1 256-Bit Wide SIMD Register Support

Intel AVX introduces support for 256-bit wide SIMD registers (YMM0-YMM7 in operating modes that are 32-bit or 
less, YMM0-YMM15 in 64-bit mode). The lower 128-bits of the YMM registers are aliased to the respective 128-bit 
XMM registers. 
Legacy SSE instructions (i.e. SIMD instructions operating on XMM state but not using the VEX prefix, also referred 
to non-VEX encoded SIMD instructions) will not access the upper bits beyond bit 128 of the YMM registers. AVX 
instructions with a VEX prefix and vector length of 128-bits zeroes the upper bits (above bit 128) of the YMM 
register. 
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14.1.2 Instruction Syntax Enhancements

Intel AVX employs an instruction encoding scheme using a new prefix (known as “VEX” prefix). Instruction 
encoding using the VEX prefix can directly encode a register operand within the VEX prefix. This support two new 
instruction syntax in Intel 64 architecture: 
• A non-destructive operand (in a three-operand instruction syntax): The non-destructive source reduces the 

number of registers, register-register copies and explicit load operations required in typical SSE loops, reduces 
code size, and improves micro-fusion opportunities. 

• A third source operand (in a four-operand instruction syntax) via the upper 4 bits in an 8-bit immediate field. 
Support for the third source operand is defined for selected instructions (e.g. VBLENDVPD, VBLENDVPS, 
PBLENDVB).

Two-operand instruction syntax previously expressed in legacy SSE instruction as

ADDPS xmm1, xmm2/m128

128-bit AVX equivalent can be expressed in three-operand syntax as

VADDPS xmm1, xmm2, xmm3/m128

In four-operand syntax, the extra register operand is encoded in the immediate byte.
Note SIMD instructions supporting three-operand syntax but processing only 128-bits of data are considered part 
of the 256-bit SIMD instruction set extensions of AVX, because bits 255:128 of the destination register are zeroed 
by the processor. 

14.1.3 VEX Prefix Instruction Encoding Support

Intel AVX introduces a new prefix, referred to as VEX, in the Intel 64 and IA-32 instruction encoding format. 
Instruction encoding using the VEX prefix provides the following capabilities:
• Direct encoding of a register operand within VEX. This provides instruction syntax support for non-destructive 

source operand. 
• Efficient encoding of instruction syntax operating on 128-bit and 256-bit register sets.

Figure 14-1.  256-Bit Wide SIMD Register

XMM0YMM0

XMM1YMM1

. . .
XMM15YMM15

Bit#
0127128255
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• Compaction of REX prefix functionality: The equivalent functionality of the REX prefix is encoded within VEX. 
• Compaction of SIMD prefix functionality and escape byte encoding: The functionality of SIMD prefix (66H, F2H, 

F3H) on opcode is equivalent to an opcode extension field to introduce new processing primitives. This 
functionality is replaced by a more compact representation of opcode extension within the VEX prefix. 
Similarly, the functionality of the escape opcode byte (0FH) and two-byte escape (0F38H, 0F3AH) are also 
compacted within the VEX prefix encoding. 

• Most VEX-encoded SIMD numeric and data processing instruction semantics with memory operand have 
relaxed memory alignment requirements than instructions encoded using SIMD prefixes (see Section 14.9).

VEX prefix encoding applies to SIMD instructions operating on YMM registers, XMM registers, and in some cases 
with a general-purpose register as one of the operand. VEX prefix is not supported for instructions operating on 
MMX or x87 registers. Details of VEX prefix and instruction encoding are discussed in Chapter 2, “Instruction 
Format,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

14.2 FUNCTIONAL OVERVIEW

Intel AVX provide comprehensive functional improvements over previous generations of SIMD instruction exten-
sions. The functional improvements include:
• 256-bit floating-point arithmetic primitives: AVX enhances existing 128-bit floating-point arithmetic instruc-

tions with 256-bit capabilities for floating-point processing. Table 14-1 lists SIMD instructions promoted to AVX.
• Enhancements for flexible SIMD data movements: AVX provides a number of new data movement primitives to 

enable efficient SIMD programming in relation to loading non-unit-strided data into SIMD registers, intra-
register SIMD data manipulation, conditional expression and branch handling, etc. Enhancements for SIMD 
data movement primitives cover 256-bit and 128-bit vector floating-point data, and across 128-bit integer 
SIMD data processing using VEX-encoded instructions.

Table 14-1.  Promoted SSE/SSE2/SSE3/SSSE3/SSE4 Instructions

VEX.256 
Encoding

VEX.128 
Encoding

Group Instruction If No, Reason?

yes yes YY 0F 1X MOVUPS

no yes MOVSS scalar

yes yes MOVUPD

no yes MOVSD scalar

no yes MOVLPS Note 1

no yes MOVLPD Note 1

no yes MOVLHPS Redundant with VPERMILPS

yes yes MOVDDUP

yes yes MOVSLDUP

yes yes UNPCKLPS

yes yes UNPCKLPD

yes yes UNPCKHPS

yes yes UNPCKHPD

no yes MOVHPS Note 1

no yes MOVHPD Note 1

no yes MOVHLPS Redundant with VPERMILPS

yes yes MOVAPS

yes yes MOVSHDUP

yes yes MOVAPD

no no CVTPI2PS MMX
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no yes CVTSI2SS scalar

no no CVTPI2PD MMX

no yes CVTSI2SD scalar

no yes MOVNTPS

no yes MOVNTPD

no no CVTTPS2PI MMX

no yes CVTTSS2SI scalar

no no CVTTPD2PI MMX

no yes CVTTSD2SI scalar

no no CVTPS2PI MMX

no yes CVTSS2SI scalar

no no CVTPD2PI MMX

no yes CVTSD2SI scalar

no yes UCOMISS scalar

no yes UCOMISD scalar

no yes COMISS scalar

no yes COMISD scalar

yes yes YY 0F 5X MOVMSKPS

yes yes MOVMSKPD

yes yes SQRTPS

no yes SQRTSS scalar

yes yes SQRTPD

no yes SQRTSD scalar

yes yes RSQRTPS

no yes RSQRTSS scalar

yes yes RCPPS

no yes RCPSS scalar

yes yes ANDPS

yes yes ANDPD

yes yes ANDNPS

yes yes ANDNPD

yes yes ORPS

yes yes ORPD

yes yes XORPS

yes yes XORPD

yes yes ADDPS

no yes ADDSS scalar

yes yes ADDPD

no yes ADDSD scalar

yes yes MULPS

no yes MULSS scalar

yes yes MULPD

no yes MULSD scalar

yes yes CVTPS2PD

VEX.256 
Encoding

VEX.128 
Encoding

Group Instruction If No, Reason?
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no yes CVTSS2SD scalar

yes yes CVTPD2PS

no yes CVTSD2SS scalar

yes yes CVTDQ2PS

yes yes CVTPS2DQ

yes yes CVTTPS2DQ

yes yes SUBPS

no yes SUBSS scalar

yes yes SUBPD

no yes SUBSD scalar

yes yes MINPS

no yes MINSS scalar

yes yes MINPD

no yes MINSD scalar

yes yes DIVPS

no yes DIVSS scalar

yes yes DIVPD

no yes DIVSD scalar

yes yes MAXPS

no yes MAXSS scalar

yes yes MAXPD

no yes MAXSD scalar

no yes YY 0F 6X PUNPCKLBW VI

no yes PUNPCKLWD VI

no yes PUNPCKLDQ VI

no yes PACKSSWB VI

no yes PCMPGTB VI

no yes PCMPGTW VI

no yes PCMPGTD VI

no yes PACKUSWB VI

no yes PUNPCKHBW VI

no yes PUNPCKHWD VI

no yes PUNPCKHDQ VI

no yes PACKSSDW VI

no yes PUNPCKLQDQ VI

no yes PUNPCKHQDQ VI

no yes MOVD scalar

no yes MOVQ scalar

yes yes MOVDQA

yes yes MOVDQU

no yes YY 0F 7X PSHUFD VI

no yes PSHUFHW VI

no yes PSHUFLW VI

no yes PCMPEQB VI

VEX.256 
Encoding

VEX.128 
Encoding

Group Instruction If No, Reason?
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no yes PCMPEQW VI

no yes PCMPEQD VI

yes yes HADDPD

yes yes HADDPS

yes yes HSUBPD

yes yes HSUBPS

no yes MOVD VI

no yes MOVQ VI

yes yes MOVDQA

yes yes MOVDQU

no yes YY 0F AX LDMXCSR

no yes STMXCSR

yes yes YY 0F CX CMPPS

no yes CMPSS scalar

yes yes CMPPD

no yes CMPSD scalar

no yes PINSRW VI

no yes PEXTRW VI

yes yes SHUFPS

yes yes SHUFPD

yes yes YY 0F DX ADDSUBPD

yes yes ADDSUBPS

no yes PSRLW VI

no yes PSRLD VI

no yes PSRLQ VI

no yes PADDQ VI

no yes PMULLW VI

no no MOVQ2DQ MMX

no no MOVDQ2Q MMX

no yes PMOVMSKB VI

no yes PSUBUSB VI

no yes PSUBUSW VI

no yes PMINUB VI

no yes PAND VI

no yes PADDUSB VI

no yes PADDUSW VI

no yes PMAXUB VI

no yes PANDN VI

no yes YY 0F EX PAVGB VI

no yes PSRAW VI

no yes PSRAD VI

no yes PAVGW VI

no yes PMULHUW VI

no yes PMULHW VI

VEX.256 
Encoding

VEX.128 
Encoding

Group Instruction If No, Reason?
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yes yes CVTPD2DQ

yes yes CVTTPD2DQ

yes yes CVTDQ2PD

no yes MOVNTDQ VI

no yes PSUBSB VI

no yes PSUBSW VI

no yes PMINSW VI

no yes POR VI

no yes PADDSB VI

no yes PADDSW VI

no yes PMAXSW VI

no yes PXOR VI

yes yes YY 0F FX LDDQU VI

no yes PSLLW VI

no yes PSLLD VI

no yes PSLLQ VI

no yes PMULUDQ VI

no yes PMADDWD VI

no yes PSADBW VI

no yes MASKMOVDQU

no yes PSUBB VI

no yes PSUBW VI

no yes PSUBD VI

no yes PSUBQ VI

no yes PADDB VI

no yes PADDW VI

no yes PADDD VI

no yes SSSE3 PHADDW VI

no yes PHADDSW VI

no yes PHADDD VI

no yes PHSUBW VI

no yes PHSUBSW VI

no yes PHSUBD VI

no yes PMADDUBSW VI

no yes PALIGNR VI

no yes PSHUFB VI

no yes PMULHRSW VI

no yes PSIGNB VI

no yes PSIGNW VI

no yes PSIGND VI

no yes PABSB VI

no yes PABSW VI

no yes PABSD VI

yes yes SSE4.1 BLENDPS

VEX.256 
Encoding

VEX.128 
Encoding

Group Instruction If No, Reason?
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yes yes BLENDPD

yes yes BLENDVPS Note 2

yes yes BLENDVPD Note 2

no yes DPPD

yes yes DPPS

no yes EXTRACTPS Note 3

no yes INSERTPS Note 3

no yes MOVNTDQA

no yes MPSADBW VI

no yes PACKUSDW VI

no yes PBLENDVB VI

no yes PBLENDW VI

no yes PCMPEQQ VI

no yes PEXTRD VI

no yes PEXTRQ VI

no yes PEXTRB VI

no yes PEXTRW VI

no yes PHMINPOSUW VI

no yes PINSRB VI

no yes PINSRD VI

no yes PINSRQ VI

no yes PMAXSB VI

no yes PMAXSD VI

no yes PMAXUD VI

no yes PMAXUW VI

no yes PMINSB VI

no yes PMINSD VI

no yes PMINUD VI

no yes PMINUW VI

no yes PMOVSXxx VI 

no yes PMOVZXxx VI 

no yes PMULDQ VI

no yes PMULLD VI

yes yes PTEST

yes yes ROUNDPD

yes yes ROUNDPS

no yes ROUNDSD scalar

no yes ROUNDSS scalar

no yes SSE4.2 PCMPGTQ VI

no no SSE4.2 CRC32c integer

no yes PCMPESTRI VI

no yes PCMPESTRM VI

VEX.256 
Encoding

VEX.128 
Encoding

Group Instruction If No, Reason?
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14.2.1 256-bit Floating-Point Arithmetic Processing Enhancements

Intel AVX provides 35 256-bit floating-point arithmetic instructions, see Table 14-2. The arithmetic operations 
cover add, subtract, multiply, divide, square-root, compare, max, min, round, etc., on single-precision and double-
precision floating-point data. 
The enhancement in AVX on floating-point compare operation provides 32 conditional predicates to improve 
programming flexibility in evaluating conditional expressions.

14.2.2 256-bit Non-Arithmetic Instruction Enhancements

Intel AVX provides new primitives for handling data movement within 256-bit floating-point vectors and promotes 
many 128-bit floating data processing instructions to handle 256-bit floating-point vectors. 
AVX includes 39 256-bit data movement and processing instructions that are promoted from previous generations 
of SIMD instruction extensions, ranging from logical, blend, convert, test, unpacking, shuffling, load and stores 
(see Table 14-3). 

no yes PCMPISTRI VI

no yes PCMPISTRM VI

no no SSE4.2 POPCNT integer

Table 14-2.  Promoted 256-Bit and 128-bit Arithmetic AVX Instructions

VEX.256 Encoding VEX.128 Encoding Legacy Instruction Mnemonic

yes yes SQRTPS, SQRTPD, RSQRTPS, RCPPS

yes yes ADDPS, ADDPD, SUBPS, SUBPD

yes yes MULPS, MULPD, DIVPS, DIVPD

yes yes CVTPS2PD, CVTPD2PS

yes yes CVTDQ2PS, CVTPS2DQ

yes yes CVTTPS2DQ, CVTTPD2DQ

yes yes CVTPD2DQ, CVTDQ2PD

yes yes MINPS, MINPD, MAXPS, MAXPD

yes yes HADDPD, HADDPS, HSUBPD, HSUBPS

yes yes CMPPS, CMPPD

yes yes ADDSUBPD, ADDSUBPS, DPPS

yes yes ROUNDPD, ROUNDPS

Table 14-3.  Promoted 256-bit and 128-bit Data Movement AVX Instructions

VEX.256 Encoding VEX.128 Encoding Legacy Instruction Mnemonic

yes yes MOVAPS, MOVAPD, MOVDQA

yes yes MOVUPS, MOVUPD, MOVDQU

yes yes MOVMSKPS, MOVMSKPD

yes yes LDDQU, MOVNTPS, MOVNTPD, MOVNTDQ, MOVNTDQA

yes yes MOVSHDUP, MOVSLDUP, MOVDDUP

VEX.256 
Encoding

VEX.128 
Encoding

Group Instruction If No, Reason?
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AVX introduces 18 new data processing instructions that operate on 256-bit vectors, Table 14-4. These new primi-
tives cover the following operations:
• Non-unit-strided fetching of SIMD data. AVX provides several flexible SIMD floating-point data fetching 

primitives: 

— broadcast of single or multiple data elements into a 256-bit destination,

— masked move primitives to load or store SIMD data elements conditionally,
• Intra-register manipulation of SIMD data elements. AVX provides several flexible SIMD floating-point data 

manipulation primitives: 

— insert/extract multiple SIMD floating-point data elements to/from 256-bit SIMD registers

— permute primitives to facilitate efficient manipulation of floating-point data elements in 256-bit SIMD 
registers

• Branch handling. AVX provides several primitives to enable handling of branches in SIMD programming:

— new variable blend instructions supports four-operand syntax with non-destructive source syntax. This is 
more flexible than the equivalent SSE4 instruction syntax which uses the XMM0 register as the implied 
mask for blend selection. 

— Packed TEST instructions for floating-point data.

yes yes UNPCKHPD, UNPCKHPS, UNPCKLPD

yes yes BLENDPS, BLENDPD

yes yes SHUFPD, SHUFPS, UNPCKLPS

yes yes BLENDVPS, BLENDVPD

yes yes PTEST, MOVMSKPD, MOVMSKPS

yes yes XORPS, XORPD, ORPS, ORPD

yes yes ANDNPD, ANDNPS, ANDPD, ANDPS

Table 14-4.  256-bit AVX Instruction Enhancement

Instruction Description

VBROADCASTF128 ymm1, m128 Broadcast 128-bit floating-point values in mem to low and high 128-bits in ymm1.

VBROADCASTSD ymm1, m64 Broadcast double-precision floating-point element in mem to four locations in ymm1.

VBROADCASTSS ymm1, m32 Broadcast single-precision floating-point element in mem to eight locations in ymm1.

VEXTRACTF128 xmm1/m128, ymm2, 
imm8

Extracts 128-bits of packed floating-point values from ymm2 and store results in 
xmm1/mem.

VINSERTF128 ymm1, ymm2, 
xmm3/m128, imm8

Insert 128-bits of packed floating-point values from xmm3/mem and the remaining val-
ues from ymm2 into ymm1

VMASKMOVPS ymm1, ymm2, m256 Load packed single-precision values from mem using mask in ymm2 and store in ymm1

VMASKMOVPD ymm1, ymm2, m256 Load packed double-precision values from mem using mask in ymm2 and store in ymm1

VMASKMOVPS m256, ymm1, ymm2 Store packed single-precision values from ymm2 mask in ymm1

VMASKMOVPD m256, ymm1, ymm2 Store packed double-precision values from ymm2 using mask in ymm1

VPERMILPD ymm1, ymm2, ymm3/m256 Permute Double-Precision Floating-Point values in ymm2 using controls from xmm3/mem 
and store result in ymm1

Table 14-3.  Promoted 256-bit and 128-bit Data Movement AVX Instructions

VEX.256 Encoding VEX.128 Encoding Legacy Instruction Mnemonic
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14.2.3 Arithmetic Primitives for 128-bit Vector and Scalar processing

Intel AVX provides a full complement of 128-bit numeric processing instructions that employ VEX-prefix encoding. 
These VEX-encoded instructions generally provide the same functionality over instructions operating on XMM 
register that are encoded using SIMD prefixes. The 128-bit numeric processing instructions in AVX cover floating-
point and integer data processing; across 128-bit vector and scalar processing. Table 14-5 lists the state of promo-
tion of legacy SIMD arithmetic ISA to VEX-128 encoding. Legacy SIMD floating-point arithmetic ISA promoted to 
VEX-256 encoding also support VEX-128 encoding (see Table 14-2).
The enhancement in AVX on 128-bit floating-point compare operation provides 32 conditional predicates to 
improve programming flexibility in evaluating conditional expressions. This contrasts with floating-point SIMD 
compare instructions in SSE and SSE2 supporting only 8 conditional predicates. 

VPERMILPD ymm1, ymm2/m256 imm8 Permute Double-Precision Floating-Point values in ymm2/mem using controls from imm8 
and store result in ymm1

VPERMILPS ymm1, ymm2, ymm/m256 Permute Single-Precision Floating-Point values in ymm2 using controls from ymm3/mem 
and store result in ymm1

VPERMILPS ymm1, ymm2/m256, imm8 Permute Single-Precision Floating-Point values in ymm2/mem using controls from imm8 
and store result in ymm1

VPERM2F128 ymm1, ymm2, 
ymm3/m256, imm8

Permute 128-bit floating-point fields in ymm2 and ymm3/mem using controls from imm8 
and store result in ymm1

VTESTPS ymm1, ymm2/m256 Set ZF if ymm2/mem AND ymm1 result is all 0s in packed single-precision sign bits. Set CF 
if ymm2/mem AND NOT ymm1 result is all 0s in packed single-precision sign bits.

VTESTPD ymm1, ymm2/m256 Set ZF if ymm2/mem AND ymm1 result is all 0s in packed double-precision sign bits. Set 
CF if ymm2/mem AND NOT ymm1 result is all 0s in packed double-precision sign bits.

VZEROALL Zero all YMM registers

VZEROUPPER Zero upper 128 bits of all YMM registers

Table 14-5.  Promotion of Legacy SIMD ISA to 128-bit Arithmetic AVX instruction 

VEX.256 
Encoding

VEX.128 
Encoding

Instruction Reason Not Promoted

no no CVTPI2PS, CVTPI2PD, CVTPD2PI MMX

no no CVTTPS2PI, CVTTPD2PI, CVTPS2PI MMX

no yes CVTSI2SS, CVTSI2SD, CVTSD2SI scalar

no yes CVTTSS2SI, CVTTSD2SI, CVTSS2SI scalar

no yes COMISD, RSQRTSS, RCPSS scalar

no yes UCOMISS, UCOMISD, COMISS, scalar

no yes ADDSS, ADDSD, SUBSS, SUBSD scalar

no yes MULSS, MULSD, DIVSS, DIVSD scalar

no yes SQRTSS, SQRTSD scalar

no yes CVTSS2SD, CVTSD2SS scalar

no yes MINSS, MINSD, MAXSS, MAXSD scalar

no yes PAND, PANDN, POR, PXOR VI

no yes PCMPGTB, PCMPGTW, PCMPGTD VI

Table 14-4.  256-bit AVX Instruction Enhancement

Instruction Description
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no yes PMADDWD, PMADDUBSW VI

no yes PAVGB, PAVGW, PMULUDQ VI

no yes PCMPEQB, PCMPEQW, PCMPEQD VI

no yes PMULLW, PMULHUW, PMULHW VI

no yes PSUBSW, PADDSW, PSADBW VI

no yes PADDUSB, PADDUSW, PADDSB VI

no yes PSUBUSB, PSUBUSW, PSUBSB VI

no yes PMINUB, PMINSW VI

no yes PMAXUB, PMAXSW VI

no yes PADDB, PADDW, PADDD, PADDQ VI

no yes PSUBB, PSUBW, PSUBD, PSUBQ VI

no yes PSLLW, PSLLD, PSLLQ, PSRAW VI

no yes PSRLW, PSRLD, PSRLQ, PSRAD VI

CPUID.SSSE3

no yes PHSUBW, PHSUBD, PHSUBSW VI

no yes PHADDW, PHADDD, PHADDSW VI

no yes PMULHRSW VI

no yes PSIGNB, PSIGNW, PSIGND VI

no yes PABSB, PABSW, PABSD VI

CPUID.SSE4_1

no yes DPPD

no yes PHMINPOSUW, MPSADBW VI

no yes PMAXSB, PMAXSD, PMAXUD VI

no yes PMINSB, PMINSD, PMINUD VI

no yes PMAXUW, PMINUW VI

no yes PMOVSXxx, PMOVZXxx VI

no yes PMULDQ, PMULLD VI

no yes ROUNDSD, ROUNDSS scalar

CPUID.POPCNT

no yes POPCNT integer

CPUID.SSE4_2

no yes PCMPGTQ VI

no no CRC32 integer

no yes PCMPESTRI, PCMPESTRM VI

no yes PCMPISTRI, PCMPISTRM VI

CPUID.CLMUL

no yes PCLMULQDQ VI

CPUID.AESNI

Table 14-5.  Promotion of Legacy SIMD ISA to 128-bit Arithmetic AVX instruction 

VEX.256 
Encoding

VEX.128 
Encoding

Instruction Reason Not Promoted



Vol. 1 14-13

PROGRAMMING WITH AVX, FMA AND AVX2

Description of Column “Reason not promoted?”
MMX: Instructions referencing MMX registers do not support VEX
Scalar: Scalar instructions are not promoted to 256-bit
integer: integer instructions are not promoted.
VI: “Vector Integer” instructions are not promoted to 256-bit

14.2.4 Non-Arithmetic Primitives for 128-bit Vector and Scalar Processing

Intel AVX provides a full complement of data processing instructions that employ VEX-prefix encoding. These VEX-
encoded instructions generally provide the same functionality over instructions operating on XMM register that are 
encoded using SIMD prefixes. 

A subset of new functionalities listed in Table 14-4 is also extended via VEX.128 encoding. These enhancements in 
AVX on 128-bit data processing primitives include 11 new instructions (see Table 14-6) with the following capabil-
ities:
• Non-unit-strided fetching of SIMD data. AVX provides several flexible SIMD floating-point data fetching 

primitives: 

— broadcast of single data element into a 128-bit destination,

— masked move primitives to load or store SIMD data elements conditionally,
• Intra-register manipulation of SIMD data elements. AVX provides several flexible SIMD floating-point data 

manipulation primitives: 

— permute primitives to facilitate efficient manipulation of floating-point data elements in 128-bit SIMD 
registers

• Branch handling. AVX provides several primitives to enable handling of branches in SIMD programming:

— new variable blend instructions supports four-operand syntax with non-destructive source syntax. 
Branching conditions dependent on floating-point data or integer data can benefit from Intel AVX. This is 
more flexible than non-VEX encoded instruction syntax that uses the XMM0 register as implied mask for 
blend selection. While variable blend with implied XMM0 syntax is supported in SSE4 using SIMD prefix 
encoding, VEX-encoded 128-bit variable blend instructions only support the more flexible four-operand 
syntax.

— Packed TEST instructions for floating-point data.

no yes AESDEC, AESDECLAST VI

no yes AESENC, AESENCLAST VI

no yes AESIMX, AESKEYGENASSIST VI

Table 14-6.  128-bit AVX Instruction Enhancement

Instruction Description

VBROADCASTSS xmm1, m32 Broadcast single-precision floating-point element in mem to four locations in xmm1.

VMASKMOVPS xmm1, xmm2, m128 Load packed single-precision values from mem using mask in xmm2 and store in xmm1

VMASKMOVPD xmm1, xmm2, m128 Load packed double-precision values from mem using mask in xmm2 and store in xmm1

VMASKMOVPS m128, xmm1, xmm2 Store packed single-precision values from xmm2 using mask in xmm1

VMASKMOVPD m128, xmm1, xmm2 Store packed double-precision values from xmm2 using mask in xmm1

Table 14-5.  Promotion of Legacy SIMD ISA to 128-bit Arithmetic AVX instruction 

VEX.256 
Encoding

VEX.128 
Encoding

Instruction Reason Not Promoted
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The 128-bit data processing instructions in AVX cover floating-point and integer data movement primitives. Legacy 
SIMD non-arithmetic ISA promoted to VEX-256 encoding also support VEX-128 encoding (see Table 14-3). Table 
14-7 lists the state of promotion of the remaining legacy SIMD non-arithmetic ISA to VEX-128 encoding. 

VPERMILPD xmm1, xmm2, xmm3/m128 Permute Double-Precision Floating-Point values in xmm2 using controls from xmm3/mem 
and store result in xmm1

VPERMILPD xmm1, xmm2/m128, imm8 Permute Double-Precision Floating-Point values in xmm2/mem using controls from imm8 
and store result in xmm1

VPERMILPS xmm1, xmm2, xmm3/m128 Permute Single-Precision Floating-Point values in xmm2 using controls from xmm3/mem 
and store result in xmm1

VPERMILPS xmm1, xmm2/m128, imm8 Permute Single-Precision Floating-Point values in xmm2/mem using controls from imm8 
and store result in xmm1

VTESTPS xmm1, xmm2/m128 Set ZF if xmm2/mem AND xmm1 result is all 0s in packed single-precision sign bits. Set 
CF if xmm2/mem AND NOT xmm1 result is all 0s in packed single-precision sign bits.

VTESTPD xmm1, xmm2/m128 Set ZF if xmm2/mem AND xmm1 result is all 0s in packed single precision sign bits. Set CF 
if xmm2/mem AND NOT xmm1 result is all 0s in packed double-precision sign bits.

Table 14-7.  Promotion of Legacy SIMD ISA to 128-bit Non-Arithmetic AVX instruction

VEX.256 
Encoding

VEX.128 
Encoding

Instruction Reason Not Promoted

no no MOVQ2DQ, MOVDQ2Q MMX

no yes LDMXCSR, STMXCSR

no yes MOVSS, MOVSD, CMPSS, CMPSD scalar

no yes MOVHPS, MOVHPD Note 1

no yes MOVLPS, MOVLPD Note 1

no yes MOVLHPS, MOVHLPS Redundant with VPERMILPS

no yes MOVQ, MOVD scalar

no yes PACKUSWB, PACKSSDW, PACKSSWB VI

no yes PUNPCKHBW, PUNPCKHWD VI

no yes PUNPCKLBW, PUNPCKLWD VI

no yes PUNPCKHDQ, PUNPCKLDQ VI

no yes PUNPCKLQDQ, PUNPCKHQDQ VI

no yes PSHUFHW, PSHUFLW, PSHUFD VI

no yes PMOVMSKB, MASKMOVDQU VI

no yes PAND, PANDN, POR, PXOR VI

no yes PINSRW, PEXTRW, VI

CPUID.SSSE3

no yes PALIGNR, PSHUFB VI

CPUID.SSE4_1

no yes EXTRACTPS, INSERTPS Note 3

no yes PACKUSDW, PCMPEQQ VI

Table 14-6.  128-bit AVX Instruction Enhancement

Instruction Description
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Description of Column “Reason not promoted?”
MMX: Instructions referencing MMX registers do not support VEX
Scalar: Scalar instructions are not promoted to 256-bit
VI: “Vector Integer” instructions are not promoted to 256-bit
Note 1: MOVLPD/PS and MOVHPD/PS are not promoted to 256-bit. The equivalent functionality are provided by 
VINSERTF128 and VEXTRACTF128 instructions as the existing instructions have no natural 256b extension
Note 3: It is expected that using 128-bit INSERTPS followed by a VINSERTF128 would be better than promoting 
INSERTPS to 256-bit (for example).

14.3 DETECTION OF AVX INSTRUCTIONS

Intel AVX instructions operate on the 256-bit YMM register state. Application detection of new instruction exten-
sions operating on the YMM state follows the general procedural flow in Figure 14-2.
Prior to using AVX, the application must identify that the operating system supports the XGETBV instruction, the 
YMM register state, in addition to processor’s support for YMM state management using XSAVE/XRSTOR and AVX 
instructions. The following simplified sequence accomplishes both and is strongly recommended.
1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use1)
2) Issue XGETBV and verify that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by OS).
3) detect CPUID.1:ECX.AVX[bit 28] = 1 (AVX instructions supported).
(Step 3 can be done in any order relative to 1 and 2)

no yes PBLENDVB, PBLENDW VI

no yes PEXTRW, PEXTRB, PEXTRD, PEXTRQ VI

no yes PINSRB, PINSRD, PINSRQ VI

1. If CPUID.01H:ECX.OSXSAVE reports 1, it also indirectly implies the processor supports XSAVE, XRSTOR, XGETBV, processor 
extended state bit vector XCR0. Thus an application may streamline the checking of CPUID feature flags for XSAVE and OSXSAVE. 
XSETBV is a privileged instruction.

Figure 14-2.  General Procedural Flow of Application Detection of AVX

Table 14-7.  Promotion of Legacy SIMD ISA to 128-bit Non-Arithmetic AVX instruction

VEX.256 
Encoding

VEX.128 
Encoding

Instruction Reason Not Promoted

Implied HW support for

Check enabled state in

XCR0 via XGETBV
Check feature flag 

for Instruction set

Check feature flag

CPUID.1H:ECX.OXSAVE = 1? 

OS provides processor
extended state management

State ok to use

XSAVE, XRSTOR, XGETBV, XCR0

enabled Instructions

Yes 
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The following pseudocode illustrates this recommended application AVX detection process: 

Note: It is unwise for an application to rely exclusively on CPUID.1:ECX.AVX[bit 28] or at all on 
CPUID.1:ECX.XSAVE[bit 26]: These indicate hardware support but not operating system support. If YMM state 
management is not enabled by an operating systems, AVX instructions will #UD regardless of 
CPUID.1:ECX.AVX[bit 28]. “CPUID.1:ECX.XSAVE[bit 26] = 1” does not guarantee the OS actually uses the XSAVE 
process for state management.

These steps above also apply to enhanced 128-bit SIMD floating-pointing instructions in AVX (using VEX prefix-
encoding) that operate on the YMM states. 

Example 14-1.  Detection of AVX Instruction 

INT supports_AVX()

{ mov eax, 1

cpuid

and ecx, 018000000H

cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags

 jne not_supported

; processor supports AVX instructions and XGETBV is enabled by OS

mov ecx, 0; specify 0 for XCR0 register

XGETBV ; result in EDX:EAX

and eax, 06H

cmp eax, 06H; check OS has enabled both XMM and YMM state support

jne not_supported

mov eax, 1

jmp done

NOT_SUPPORTED:

mov eax, 0

done:

}
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14.3.1 Detection of VEX-Encoded AES and VPCLMULQDQ

VAESDEC/VAESDECLAST/VAESENC/VAESENCLAST/VAESIMC/VAESKEYGENASSIST instructions operate on YMM 
states. The detection sequence must combine checking for CPUID.1:ECX.AES[bit 25] = 1 and the sequence for 
detection application support for AVX. 

Similarly, the detection sequence for VPCLMULQDQ must combine checking for CPUID.1:ECX.PCLMULQDQ[bit 1] = 
1 and the sequence for detection application support for AVX. 
This is shown in the pseudocode: 

Example 14-2.  Detection of VEX-Encoded AESNI Instructions 

INT supports_VAESNI()

{ mov eax, 1

cpuid

and ecx, 01A000000H

cmp ecx, 01A000000H; check OSXSAVE AVX and AESNI feature flags

 jne not_supported

; processor supports AVX and VEX-encoded AESNI and XGETBV is enabled by OS

mov ecx, 0; specify 0 for XCR0 register

XGETBV ; result in EDX:EAX

and eax, 06H

cmp eax, 06H; check OS has enabled both XMM and YMM state support

jne not_supported

mov eax, 1

jmp done

NOT_SUPPORTED:

mov eax, 0

done:

Example 14-3.  Detection of VEX-Encoded AESNI Instructions 

INT supports_VPCLMULQDQ)

{ mov eax, 1

cpuid

and ecx, 018000002H

cmp ecx, 018000002H; check OSXSAVE AVX and PCLMULQDQ feature flags

 jne not_supported

; processor supports AVX and VEX-encoded PCLMULQDQ and XGETBV is enabled by OS

mov ecx, 0; specify 0 for XCR0 register

XGETBV ; result in EDX:EAX

and eax, 06H

cmp eax, 06H; check OS has enabled both XMM and YMM state support

jne not_supported

mov eax, 1

jmp done

NOT_SUPPORTED:

mov eax, 0

done:
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14.4 HALF-PRECISION FLOATING-POINT CONVERSION

VCVTPH2PS and VCVTPS2PH are two instructions supporting half-precision floating-point data type conversion to 
and from single-precision floating-point data types. 
Half-precision floating-point values are not used by the processor directly for arithmetic operations. But the 
conversion operation are subject to SIMD floating-point exceptions. 

Additionally, The conversion operations of VCVTPS2PH allow programmer to specify rounding control using control 
fields in an immediate byte. The effects of the immediate byte are listed in Table 14-8.
Rounding control can use Imm[2] to select an override RC field specified in Imm[1:0] or use MXCSR setting. 

Specific SIMD floating-point exceptions that can occur in conversion operations are shown in Table 14-9 and 
Table 14-10.

VCVTPS2PH can cause denormal exceptions if the value of the source operand is denormal relative to the numer-
ical range represented by the source format (see Table 14-11).

Table 14-8.  Immediate Byte Encoding for 16-bit Floating-Point Conversion Instructions

Bits Field Name/value Description Comment

Imm[1:0] RC=00B Round to nearest even If Imm[2] = 0

RC=01B Round down

RC=10B Round up

RC=11B Truncate

Imm[2] MS1=0 Use imm[1:0] for rounding Ignore MXCSR.RC 

MS1=1 Use MXCSR.RC for rounding

Imm[7:3] Ignored Ignored by processor

Table 14-9.  Non-Numerical Behavior for VCVTPH2PS, VCVTPS2PH

Source Operands Masked Result Unmasked Result

QNaN QNaN11

NOTES:

1. The half precision output QNaN1 is created from the single precision input QNaN as follows: the sign bit is preserved, the 8-bit expo-
nent FFH is replaced by the 5-bit exponent 1FH, and the 24-bit significand is truncated to an 11-bit significand by removing its 14
least significant bits.

QNaN11 (not an exception)

SNaN QNaN12

2. The half precision output QNaN1 is created from the single precision input SNaN as follows: the sign bit is preserved, the 8-bit expo-
nent FFH is replaced by the 5-bit exponent 1FH, and the 24-bit significand is truncated to an 11-bit significand by removing its 14
least significant bits. The second most significant bit of the significand is changed from 0 to 1 to convert the signaling NaN into a quiet
NaN.

None

Table 14-10.  Invalid Operation for VCVTPH2PS, VCVTPS2PH 

Instruction  Condition Masked Result Unmasked Result

VCVTPH2PS SRC = NaN See Table 14-9 #I=1

VCVTPS2PH SRC = NaN See Table 14-9 #I=1
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VCVTPS2PH can cause an underflow exception if the result of the conversion is less than the underflow threshold
for half-precision floating-point data type , i.e. | x | < 1.0 ∗ 2−14. 

VCVTPS2PH can cause an overflow exception if the result of the conversion is greater than the maximum repre-
sentable value for half-precision floating-point data type, i.e. | x | ≥ 1.0 ∗ 216. 

VCVTPS2PH can cause an inexact exception if the result of the conversion is not exactly representable in the
destination format. 

Table 14-11.  Denormal Condition Summary

Instruction  Condition Masked Result Unmasked Result

VCVTPH2PS SRC is denormal relative to 
input format

res = Result rounded to the destination precision and 
using the bounded exponent, but only if no unmasked 
post-computation exception occurs.

#DE unchanged

Same as masked result. 

VCVTPS2PH SRC is denormal relative to 
input format

res = Result rounded to the destination precision and 
using the bounded exponent, but only if no unmasked 
post-computation exception occurs.

#DE=1

#DE=1

Table 14-12.  Underflow Condition for VCVTPS2PH 

Instruction  Condition Masked Result1

NOTES:

1. Masked and unmasked results are shown in Table 14-11.

Unmasked Result

VCVTPS2PH Result < smallest destination 
precision final normal value2

2.  MXCSR.FTZ is ignored, the processor behaves as if MXCSR.FTZ = 0.

Result = +0 or -0, denormal, normal.

#UE =1. 
#PE = 1 if the result is inexact.

#UE=1,
#PE = 1 if the result is 
inexact.

Table 14-13.  Overflow Condition for VCVTPS2PH 

Instruction  Condition Masked Result Unmasked Result

VCVTPS2PH Result ≥ largest destination 
precision finial normal value1

Result = +Inf or -Inf.

#OE=1.

#OE=1.

Table 14-14.  Inexact Condition for VCVTPS2PH 

Instruction  Condition Masked Result1

NOTES:

1. If a source is denormal relative to input format with DM masked and at least one of PM or UM unmasked, then an exception will be
raised with DE, UE and PE set.

Unmasked Result

VCVTPS2PH The result is not 
representable in 
the destination 
format

res = Result rounded to the destination 
precision and using the bounded 
exponent, but only if no unmasked 
underflow or overflow conditions occur 
(this exception can occur in the presence 
of a masked underflow or overflow).

#PE=1.

Only if no underflow/overflow condition occurred, 
or if the corresponding exceptions are masked:
• Set #OE if masked overflow and set result as 

described above for masked overflow.

• Set #UE if masked underflow and set result as 
described above for masked underflow.

If neither underflow nor overflow, result equals 
the result rounded to the destination precision and 
using the bounded exponent set #PE = 1.
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14.4.1 Detection of F16C Instructions 

Application using float 16 instruction must follow a detection sequence similar to AVX to ensure:
• The OS has enabled YMM state management support,
• The processor support AVX as indicated by the CPUID feature flag, i.e. CPUID.01H:ECX.AVX[bit 28] = 1.
• The processor support 16-bit floating-point conversion instructions via a CPUID feature flag 

(CPUID.01H:ECX.F16C[bit 29] = 1).
Application detection of Float-16 conversion instructions follow the general procedural flow in Figure 14-3.

----------------------------------------------------------------------------------------
INT supports_f16c()
{ ; result in eax

mov eax, 1
cpuid
and ecx, 038000000H
cmp ecx, 038000000H; check OSXSAVE, AVX, F16C feature flags
 jne not_supported
; processor supports AVX,F16C instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0
done:

}
-------------------------------------------------------------------------------

Figure 14-3.  General Procedural Flow of Application Detection of Float-16 

Implied HW support for

Check enabled YMM state in
XCR0 via XGETBV

Check feature flags 
for AVX and F16C

Check feature flag

CPUID.1H:ECX.OXSAVE = 1? 

OS provides processor
extended state management

State ok to use

XSAVE, XRSTOR, XGETBV, XFEATURE_ENABLED_MASK

enabled Instructions

Yes 
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14.5 FUSED-MULTIPLY-ADD (FMA) EXTENSIONS

FMA extensions enhances Intel AVX with high-throughput, arithmetic capabilities covering fused multiply-add, 
fused multiply-subtract, fused multiply add/subtract interleave, signed-reversed multiply on fused multiply-add 
and multiply-subtract. FMA extensions provide 36 256-bit floating-point instructions to perform computation on 
256-bit vectors and additional 128-bit and scalar FMA instructions.
FMA extensions also provide 60 128-bit floating-point instructions to process 128-bit vector and scalar data. The 
arithmetic operations cover fused multiply-add, fused multiply-subtract, signed-reversed multiply on fused 
multiply-add and multiply-subtract. 

Table 14-15.  FMA Instructions

Instruction Description

VFMADD132PD/VFMADD213PD/VFMADD231PD
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Add of Packed Double-Precision Floating-Point 
Values

VFMADD132PS/VFMADD213PS/VFMADD231PS
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Add of Packed Single-Precision Floating-Point 
Values

VFMADD132SD/VFMADD213SD/VFMADD231SD
xmm0, xmm1, xmm2/m64

Fused Multiply-Add of Scalar Double-Precision Floating-Point 
Values

VFMADD132SS/VFMADD213SS/VFMADD231SS
xmm0, xmm1, xmm2/m32

Fused Multiply-Add of Scalar Single-Precision Floating-Point 
Values

VFMADDSUB132PD/VFMADDSUB213PD/VFMADDSUB231PD
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Alternating Add/Subtract of Packed Double-
Precision Floating-Point Values

VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Alternating Add/Subtract of Packed Single-Pre-
cision Floating-Point Values

VFMSUBADD132PD/VFMSUBADD213PD/VFMSUBADD231PD
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Alternating Subtract/Add of Packed Double-
Precision Floating-Point Values

VFMSUBADD132PS/VFMSUBADD213PS/VFMSUBADD231PS
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Alternating Subtract/Add of Packed Single-Pre-
cision Floating-Point Values

VFMSUB132PD/VFMSUB213PD/VFMSUB231PD
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Subtract of Packed Double-Precision Floating-
Point Values

VFMSUB132PS/VFMSUB213PS/VFMSUB231PS
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Multiply-Subtract of Packed Single-Precision Floating-
Point Values

VFMSUB132SD/VFMSUB213SD/VFMSUB231SD
xmm0, xmm1, xmm2/m64

Fused Multiply-Subtract of Scalar Double-Precision Floating-
Point Values

VFMSUB132SS/VFMSUB213SS/VFMSUB231SS
xmm0, xmm1, xmm2/m32

Fused Multiply-Subtract of Scalar Single-Precision Floating-
Point Values

VFNMADD132PD/VFNMADD213PD/VFNMADD231PD
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Negative Multiply-Add of Packed Double-Precision Float-
ing-Point Values

VFNMADD132PS/VFNMADD213PS/VFNMADD231PS
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Negative Multiply-Add of Packed Single-Precision Float-
ing-Point Values

VFNMADD132SD/VFNMADD213SD/VFNMADD231SD
xmm0, xmm1, xmm2/m64

Fused Negative Multiply-Add of Scalar Double-Precision Float-
ing-Point Values

VFNMADD132SS/VFNMADD213SS/VFNMADD231SS
xmm0, xmm1, xmm2/m32

Fused Negative Multiply-Add of Scalar Single-Precision Float-
ing-Point Values

VFNMSUB132PD/VFNMSUB213PD/VFNMSUB231PD
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Negative Multiply-Subtract of Packed Double-Precision 
Floating-Point Values

VFNMSUB132PS/VFNMSUB213PS/VFNMSUB231PS
xmm0, xmm1, xmm2/m128; ymm0, ymm1, ymm2/m256

Fused Negative Multiply-Subtract of Packed Single-Precision 
Floating-Point Values
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14.5.1 FMA Instruction Operand Order and Arithmetic Behavior

FMA instruction mnemonics are defined explicitly with an ordered three digits, e.g. VFMADD132PD. The value of 
each digit refers to the ordering of the three source operand as defined by instruction encoding specification:
• ‘1’: The first source operand (also the destination operand) in the syntactical order listed in this specification.
• ‘2’: The second source operand in the syntactical order. This is a YMM/XMM register, encoded using VEX prefix.
• ‘3’: The third source operand in the syntactical order. The first and third operand are encoded following ModR/M 

encoding rules. 
The ordering of each digit within the mnemonic refers to the floating-point data listed on the right-hand side of the 
arithmetic equation of each FMA operation (see Table 14-17):
• The first position in the three digits of a FMA mnemonic refers to the operand position of the first FP data 

expressed in the arithmetic equation of FMA operation, the multiplicand.
• The second position in the three digits of a FMA mnemonic refers to the operand position of the second FP data 

expressed in the arithmetic equation of FMA operation, the multiplier.
• The third position in the three digits of a FMA mnemonic refers to the operand position of the FP data being 

added/subtracted to the multiplication result. 
Note the non-numerical result of an FMA operation does not resemble the mathematically-defined commutative 
property between the multiplicand and the multiplier values (see Table 14-17). Consequently, software tools (such 
as an assembler) may support a complementary set of FMA mnemonics for each FMA instruction for ease of 
programming to take advantage of the mathematical property of commutative multiplications. For example, an 
assembler may optionally support the complementary mnemonic “VFMADD312PD” in addition to the true 
mnemonic “VFMADD132PD“. The assembler will generate the same instruction opcode sequence corresponding to 
VFMADD132PD. The processor executes VFMADD132PD and report any NAN conditions based on the definition of 
VFMADD132PD. Similarly, if the complementary mnemonic VFMADD123PD is supported by an assembler at source 
level, it must generate the opcode sequence corresponding to VFMADD213PD; the complementary mnemonic 
VFMADD321PD must produce the opcode sequence defined by VFMADD231PD. In the absence of FMA operations 
reporting a NAN result, the numerical results of using either mnemonic with an assembler supporting both 
mnemonics will match the behavior defined in Table 14-17. Support for the complementary FMA mnemonics by 
software tools is optional. 

14.5.2 Fused-Multiply-ADD (FMA) Numeric Behavior

FMA instructions can perform fused-multiply-add operations (including fused-multiply-subtract, and other vari-
eties) on packed and scalar data elements in the instruction operands. Separate FMA instructions are provided to 
handle different types of arithmetic operations on the three source operands.
FMA instruction syntax is defined using three source operands and the first source operand is updated based on the 
result of the arithmetic operations of the data elements of 128-bit or 256-bit operands, i.e. The first source operand 
is also the destination operand.
The arithmetic FMA operation performed in an FMA instruction takes one of several forms, r=(x*y)+z, r=(x*y)-z, 
r=-(x*y)+z, or r=-(x*y)-z. Packed FMA instructions can perform eight single-precision FMA operations or four 
double-precision FMA operations with 256-bit vectors. 
Scalar FMA instructions only perform one arithmetic operation on the low order data element. The content of the 
rest of the data elements in the lower 128-bits of the destination operand is preserved. the upper 128bits of the 
destination operand are filled with zero. 

VFNMSUB132SD/VFNMSUB213SD/VFNMSUB231SD
xmm0, xmm1, xmm2/m64

Fused Negative Multiply-Subtract of Scalar Double-Precision 
Floating-Point Values

VFNMSUB132SS/VFNMSUB213SS/VFNMSUB231SS
xmm0, xmm1, xmm2/m32

Fused Negative Multiply-Subtract of Scalar Single-Precision 
Floating-Point Values

Table 14-15.  FMA Instructions

Instruction Description
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An arithmetic FMA operation of the form, r=(x*y)+z, takes two IEEE-754-2008 single (double) precision values 
and multiplies them to form an infinite precision intermediate value. This intermediate value is added to a third 
single (double) precision value (also at infinite precision) and rounded to produce a single (double) precision result. 
The rounding and exception behavior are controlled by the MXCSR and control bits specified in lower 4-bits of the 
8-bit immediate field (imm8). See Figure 14-4.

Figure 14-4.  Immediate Byte for FMA instructions

Note: The imm8[7:4] specify one of the source register and is explained in detail in later sections.
If imm8[2] = 1 then rounding control mode is selected from imm8[1:0] otherwise rounding control mode is 
selected from MXCSR. The imm8[3] bit controls the suppression of SIMD floating-point exception signaling and 
reporting. When imm8[3]=1 no SIMD FP exceptions are raised and no flags are updated in MXCSR as a result of 
executing the instruction.  The numerical result is computed as if all SIMD FP exceptions were masked.
Table 14-17 describes the numerical behavior of the FMA operation, r=(x*y)+z, r=(x*y)-z, r=-(x*y)+z, r=-(x*y)-
z for various input values. The input values can be 0, finite non-zero (F in Table 14-17), infinity of either sign (INF 
in Table 14-17), positive infinity (+INF in Table 14-17), negative infinity (-INF in Table 14-17), or NaN (including 
QNaN or SNaN). If any one of the input values is a NAN, the result of FMA operation, r, may be a quietized NAN. The 
result can be either Q(x), Q(y), or Q(z), see Table 14-17. If x is a NaN, then:

• Q(x) = x if x is QNaN or

• Q(x) = the quietized NaN obtained from x if x is SNaN
The notation for the output value in Table 14-17 are:
• “+INF”: positive infinity, “-INF”: negative infinity. When the result depends on a conditional expression, both 

values are listed in the result column and the condition is described in the comment column.
• QNaNIndefinite represents the QNaN which has the sign bit equal to 1, the most significand field equal to 1, and 

the remaining significand field bits equal to 0. 
• The summation or subtraction of 0s or identical values in FMA operation can lead to the following situations 

shown in Table 14-16
• If the FMA computation represents an invalid operation (e.g. when adding two INF with opposite signs)), the 

invalid exception is signaled, and the MXCSR.IE flag is set.

47 3 2 1 0

O RC 00: Nearest
01: Down / toward -INF
10: Up / toward +INF
11: truncate

0 : use MXCSR:RC
1 : use IMM8[1:0]

Suppress all FMA exceptions
1: Suppress FMA exception signaling and reporting
0: Honor MXCSR for FMA Exceptions

source register 
specifier

S
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Table 14-16.  Rounding Behavior of Zero Result in FMA Operation

Table 14-17.  FMA Numeric Behavior 

x*y z (x*y) + z (x*y) - z - (x*y) + z - (x*y) - z

(+0) (+0)
+0 in all rounding modes - 0 when rounding down, 

and +0 otherwise
- 0 when rounding down, 
and +0 otherwise

- 0 in all rounding modes

(+0) (-0)
- 0 when rounding down, 
and +0 otherwise

+0 in all rounding modes - 0 in all rounding modes - 0 when rounding down, 
and +0 otherwise

(-0) (+0)
- 0 when rounding down, 
and +0 otherwise

- 0 in all rounding modes + 0 in all rounding modes - 0 when rounding down, 
and +0 otherwise

(-0) (-0)
- 0 in all rounding modes - 0 when rounding down, 

and +0 otherwise
- 0 when rounding down, 
and +0 otherwise

+ 0 in all rounding modes

F -F
- 0 when rounding down, 
and +0 otherwise

2*F -2*F - 0 when rounding down, 
and +0 otherwise

F F
2*F - 0 when rounding down, 

and +0 otherwise
- 0 when rounding down, 
and +0 otherwise

-2*F

x 
(multiplicand)

y 
(multiplier)

z
r=(x*y)

+z
r=(x*y) 

-z
r = 

-(x*y)+z
r=

-(x*y)-z
Comment

NaN 0, F, INF, 
NaN

0, F, 
INF, 
NaN

Q(x) Q(x) Q(x) Q(x) Signal invalid exception if x or y or z is SNaN

0, F, INF NaN 0, F, 
INF, 
NaN

Q(y) Q(y) Q(y) Q(y) Signal invalid exception if y or z is SNaN

0, F, INF 0, F, INF NaN Q(z) Q(z) Q(z) Q(z) Signal invalid exception if z is SNaN

INF F, INF +IN
F

+INF QNaNIn
definite

QNaNInd
efinite

-INF if x*y and z have the same sign

QNaNIn
definite

 -INF +INF QNaNInd
efinite

if x*y and z have opposite signs

INF F, INF -INF -INF QNaNIn
definite

QNaNInd
efinite

+INF if x*y and z have the same sign

QNaNIn
definite

 +INF -INF QNaNInd
efinite

if x*y and z have opposite signs

INF F, INF 0, F +INF +INF -INF -INF if x and y have the same sign

-INF -INF +INF +INF if x and y have opposite signs

INF 0 0, F, 
INF

QNaNIn
definite

QNaNIn
definite

QNaNInd
efinite

QNaNInd
efinite

Signal invalid exception

0 INF 0, F, 
INF

QNaNIn
definite

QNaNIn
definite

QNaNInd
efinite

QNaNInd
efinite

Signal invalid exception

F INF +IN
F

+INF QNaNIn
definite

QNaNInd
efinite

-INF if x*y and z have the same sign

QNaNIn
definite

-INF +INF  
QNaNInd
efinite

if x*y and z have opposite signs

F INF -INF -INF QNaNIn
definite

QNaNInd
efinite

+INF if x*y and z have the same sign

QNaNIn
definite

+INF -INF QNaNInd
efinite

if x*y and z have opposite signs

F INF 0,F  +INF +INF -INF  -INF if x * y > 0

-INF -INF +INF +INF if x * y < 0
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If unmasked floating-point exceptions are signaled (invalid operation, denormal operand, overflow, underflow, or 
inexact result) the result register is left unchanged and a floating-point exception handler is invoked.

14.5.3 Detection of FMA 

Hardware support for FMA is indicated by CPUID.1:ECX.FMA[bit 12]=1. 
Application Software must identify that hardware supports AVX, after that it must also detect support for FMA by 
CPUID.1:ECX.FMA[bit 12]. The recommended pseudocode sequence for detection of FMA is: 
----------------------------------------------------------------------------------------
INT supports_fma()
{ ; result in eax

mov eax, 1
cpuid
and ecx, 018001000H
cmp ecx, 018001000H; check OSXSAVE, AVX, FMA feature flags
 jne not_supported
; processor supports AVX,FMA instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0

0,F 0,F INF  +INF -INF  +INF -INF if z > 0

-INF +INF -INF +INF if z < 0

0 0 0 0 0 0 0 The sign of the result depends on the sign of 
the operands and on the rounding mode. The 
product x*y is +0 or -0, depending on the signs 
of x and y. The summation/subtraction of the 
zero representing (x*y) and the zero represent-
ing z can lead to one of the four cases shown in 
Table 14-16.

0 F 0 0 0 0 0

F 0 0 0 0 0 0

0 0 F z -z z -z

0 F F z -z z -z

F 0 F z -z z -z

F F 0 x*y x*y -x*y -x*y Rounded to the destination precision, with 
bounded exponent

F F F (x*y)+z (x*y)-z -(x*y)+z -(x*y)-z Rounded to the destination precision, with 
bounded exponent; however, if the exact values 
of x*y and z are equal in magnitude with signs 
resulting in the FMA operation producing 0, the 
rounding behavior described in Table 14-16.

x 
(multiplicand)

y 
(multiplier)

z
r=(x*y)

+z
r=(x*y) 

-z
r = 

-(x*y)+z
r=

-(x*y)-z
Comment
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done:
}
-------------------------------------------------------------------------------
Note that FMA comprises 256-bit and 128-bit SIMD instructions operating on YMM states.

14.6 OVERVIEW OF AVX2

AVX2 extends Intel AVX by promoting most of the 128-bit SIMD integer instructions with 256-bit numeric 
processing capabilities. AVX2 instructions follow the same programming model as AVX instructions. 
In addition, AVX2 provide enhanced functionalities for broadcast/permute operations on data elements, vector 
shift instructions with variable-shift count per data element, and instructions to fetch non-contiguous data 
elements from memory.

14.6.1 AVX2 and 256-bit Vector Integer Processing

AVX2 promotes the vast majority of 128-bit integer SIMD instruction sets to operate with 256-bit wide YMM regis-
ters. AVX2 instructions are encoded using the VEX prefix and require the same operating system support as AVX. 
Generally, most of the promoted 256-bit vector integer instructions follow the 128-bit lane operation, similar to the 
promoted 256-bit floating-point SIMD instructions in AVX.
Newer functionalities in AVX2 generally fall into the following categories:
• Fetching non-contiguous data elements from memory using vector-index memory addressing. These “gather” 

instructions introduce a new memory-addressing form, consisting of a base register and multiple indices 
specified by a vector register (either XMM or YMM). Data elements sizes of 32 and 64-bits are supported, and 
data types for floating-point and integer elements are also supported.

• Cross-lane functionalities are provided with several new instructions for broadcast and permute operations. 
Some of the 256-bit vector integer instructions promoted from legacy SSE instruction sets also exhibit cross-
lane behavior, e.g. VPMOVZ/VPMOVS family.

• AVX2 complements the AVX instructions that are typed for floating-point operation with a full compliment of 
equivalent set for operating with 32/64-bit integer data elements.

• Vector shift instructions with per-element shift count. Data elements sizes of 32 and 64-bits are supported.

14.7 PROMOTED VECTOR INTEGER INSTRUCTIONS IN AVX2 

In AVX2, most SSE/SSE2/SSE3/SSSE3/SSE4 vector integer instructions have been promoted to support VEX.256 
encodings. Table 14-18 summarizes the promotion status for existing instructions. The column “VEX.128” indicates 
whether the instruction using VEX.128 prefix encoding is supported. 
The column “VEX.256” indicates whether 256-bit vector form of the instruction using the VEX.256 prefix encoding 
is supported, and under which feature flag. 



Vol. 1 14-27

PROGRAMMING WITH AVX, FMA AND AVX2

Table 14-18.  Promoted Vector Integer SIMD Instructions in AVX2

VEX.256 Encoding VEX.128 Encoding Group Instruction

AVX2 AVX YY 0F 6X PUNPCKLBW

AVX2 AVX PUNPCKLWD

AVX2 AVX PUNPCKLDQ

AVX2 AVX PACKSSWB

AVX2 AVX PCMPGTB

AVX2 AVX PCMPGTW

AVX2 AVX PCMPGTD

AVX2 AVX PACKUSWB

AVX2 AVX PUNPCKHBW

AVX2 AVX PUNPCKHWD

AVX2 AVX PUNPCKHDQ

AVX2 AVX PACKSSDW

AVX2 AVX PUNPCKLQDQ

AVX2 AVX PUNPCKHQDQ

no AVX MOVD

no AVX MOVQ

AVX AVX MOVDQA

AVX AVX MOVDQU

AVX2 AVX YY 0F 7X PSHUFD

AVX2 AVX PSHUFHW

AVX2 AVX PSHUFLW

AVX2 AVX PCMPEQB

AVX2 AVX PCMPEQW

AVX2 AVX PCMPEQD

AVX AVX MOVDQA

AVX AVX MOVDQU

no AVX PINSRW

no AVX PEXTRW

AVX2 AVX PSRLW

AVX2 AVX PSRLD

AVX2 AVX PSRLQ

AVX2 AVX PADDQ

AVX2 AVX PMULLW

AVX2 AVX PMOVMSKB

AVX2 AVX PSUBUSB

AVX2 AVX PSUBUSW

AVX2 AVX PMINUB

AVX2 AVX PAND
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AVX2 AVX PADDUSB

AVX2 AVX PADDUSW

AVX2 AVX PMAXUB

AVX2 AVX PANDN

AVX2 AVX YY 0F EX PAVGB

AVX2 AVX PSRAW

AVX2 AVX PSRAD

AVX2 AVX PAVGW

AVX2 AVX PMULHUW

AVX2 AVX PMULHW

AVX AVX MOVNTDQ

AVX2 AVX PSUBSB

AVX2 AVX PSUBSW

AVX2 AVX PMINSW

AVX2 AVX POR

AVX2 AVX PADDSB

AVX2 AVX PADDSW

AVX2 AVX PMAXSW

AVX2 AVX PXOR

AVX AVX YY 0F FX LDDQU

AVX2 AVX PSLLW

AVX2 AVX PSLLD

AVX2 AVX PSLLQ

AVX2 AVX PMULUDQ

AVX2 AVX PMADDWD

AVX2 AVX PSADBW

AVX2 AVX PSUBB

AVX2 AVX PSUBW

AVX2 AVX PSUBD

AVX2 AVX PSUBQ

AVX2 AVX PADDB

AVX2 AVX PADDW

AVX2 AVX PADDD

AVX2 AVX SSSE3 PHADDW

AVX2 AVX PHADDSW

AVX2 AVX PHADDD

AVX2 AVX PHSUBW

AVX2 AVX PHSUBSW

Table 14-18.  Promoted Vector Integer SIMD Instructions in AVX2

VEX.256 Encoding VEX.128 Encoding Group Instruction
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AVX2 AVX PHSUBD

AVX2 AVX PMADDUBSW

AVX2 AVX PALIGNR

AVX2 AVX PSHUFB

AVX2 AVX PMULHRSW

AVX2 AVX PSIGNB

AVX2 AVX PSIGNW

AVX2 AVX PSIGND

AVX2 AVX PABSB

AVX2 AVX PABSW

AVX2 AVX PABSD

AVX2 AVX MOVNTDQA

AVX2 AVX MPSADBW

AVX2 AVX PACKUSDW

AVX2 AVX PBLENDVB

AVX2 AVX PBLENDW

AVX2 AVX PCMPEQQ

no AVX PEXTRD

no AVX PEXTRQ

no AVX PEXTRB

no AVX PEXTRW

no AVX PHMINPOSUW

no AVX PINSRB

no AVX PINSRD

no AVX PINSRQ

AVX2 AVX PMAXSB

AVX2 AVX PMAXSD

AVX2 AVX PMAXUD

AVX2 AVX PMAXUW

AVX2 AVX PMINSB

AVX2 AVX PMINSD

AVX2 AVX PMINUD

AVX2 AVX PMINUW

AVX2 AVX PMOVSXxx

AVX2 AVX PMOVZXxx

AVX2 AVX PMULDQ

AVX2 AVX PMULLD

AVX AVX PTEST

Table 14-18.  Promoted Vector Integer SIMD Instructions in AVX2

VEX.256 Encoding VEX.128 Encoding Group Instruction
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Table 14-19 compares complementary SIMD functionalities introduced in AVX and AVX2. instructions. 

AVX2 AVX SSE4.2 PCMPGTQ

no AVX PCMPESTRI

no AVX PCMPESTRM

no AVX PCMPISTRI

no AVX PCMPISTRM

no AVX AESNI AESDEC

no AVX AESDECLAST

no AVX AESENC

no AVX AESECNLAST

no AVX AESIMC

no AVX AESKEYGENASSIST

no AVX CLMUL PCLMULQDQ

Table 14-19.   VEX-Only SIMD Instructions in AVX and AVX2

AVX2 AVX Comment

VBROADCASTI128 VBROADCASTF128 256-bit only

VBROADCASTSD ymm1, xmm VBROADCASTSD ymm1, m64 256-bit only

VBROADCASTSS (from xmm) VBROADCASTSS (from m32)

VEXTRACTI128 VEXTRACTF128 256-bit only

VINSERTI128 VINSERTF128 256-bit only

VPMASKMOVD VMASKMOVPS

VPMASKMOVQ! VMASKMOVPD

VPERMILPD in-lane

VPERMILPS in-lane

VPERM2I128 VPERM2F128 256-bit only

VPERMD cross-lane

VPERMPS cross-lane

VPERMQ cross-lane

VPERMPD cross-lane

VTESTPD

VTESTPS

Table 14-18.  Promoted Vector Integer SIMD Instructions in AVX2

VEX.256 Encoding VEX.128 Encoding Group Instruction
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VPBLENDD

VPSLLVD/Q

VPSRAVD

VPSRLVD/Q

VGATHERDPD/QPD

VGATHERDPS/QPS

VPGATHERDD/QD

VPGATHERDQ/QQ

Table 14-19.   VEX-Only SIMD Instructions in AVX and AVX2

AVX2 AVX Comment



14-32 Vol. 1

PROGRAMMING WITH AVX, FMA AND AVX2

Table 14-20.  New Primitive in AVX2 Instructions  
Instruction Description

VPERMD ymm1, ymm2, ymm3/m256 Permute doublewords in ymm3/m256 using indexes in ymm2 and store the result in ymm1.

VPERMPD ymm1, ymm2/m256, imm8 Permute double-precision FP elements in ymm2/m256 using indexes in imm8 and store the 
result in ymm1.

VPERMPS ymm1, ymm2, ymm3/m256 Permute single-precision FP elements in ymm3/m256 using indexes in ymm2 and store the 
result in ymm1.

VPERMQ ymm1, ymm2/m256, imm8 Permute quadwords in ymm2/m256 using indexes in imm8 and store the result in ymm1.

VPSLLVD xmm1, xmm2, xmm3/m128 Shift doublewords in xmm2 left by amount specified in the corresponding element of 
xmm3/m128 while shifting in 0s.

VPSLLVQ xmm1, xmm2, xmm3/m128 Shift quadwords in xmm2 left by amount specified in the corresponding element of 
xmm3/m128 while shifting in 0s.

VPSLLVD ymm1, ymm2, ymm3/m256 Shift doublewords in ymm2 left by amount specified in the corresponding element of 
ymm3/m256 while shifting in 0s.

VPSLLVQ ymm1, ymm2, ymm3/m256 Shift quadwords in ymm2 left by amount specified in the corresponding element of 
ymm3/m256 while shifting in 0s.

VPSRAVD xmm1, xmm2, xmm3/m128 Shift doublewords in xmm2 right by amount specified in the corresponding element of 
xmm3/m128 while shifting in the sign bits.

VPSRLVD xmm1, xmm2, xmm3/m128 Shift doublewords in xmm2 right by amount specified in the corresponding element of 
xmm3/m128 while shifting in 0s.

VPSRLVQ xmm1, xmm2, xmm3/m128 Shift quadwords in xmm2 right by amount specified in the corresponding element of 
xmm3/m128 while shifting in 0s.

VPSRLVD ymm1, ymm2, ymm3/m256 Shift doublewords in ymm2 right by amount specified in the corresponding element of 
ymm3/m256 while shifting in 0s.

VPSRLVQ ymm1, ymm2, ymm3/m256 Shift quadwords in ymm2 right by amount specified in the corresponding element of 
ymm3/m256 while shifting in 0s.

VGATHERDD xmm1, vm32x, xmm2 Using dword indices specified in vm32x, gather dword values from memory conditioned on 
mask specified by xmm2. Conditionally gathered elements are merged into xmm1.

VGATHERQD xmm1, vm64x, xmm2 Using qword indices specified in vm64x, gather dword values from memory conditioned on 
mask specified by xmm2. Conditionally gathered elements are merged into xmm1.

VGATHERDD ymm1, vm32y, ymm2 Using dword indices specified in vm32y, gather dword values from memory conditioned on 
mask specified by ymm2. Conditionally gathered elements are merged into ymm1.

VGATHERQD ymm1, vm64y, ymm2 Using qword indices specified in vm64y, gather dword values from memory conditioned on 
mask specified by ymm2. Conditionally gathered elements are merged into ymm1.

VGATHERDPD xmm1, vm32x, xmm2 Using dword indices specified in vm32x, gather double-precision FP values from memory 
conditioned on mask specified by xmm2. Conditionally gathered elements are merged into 
xmm1.

VGATHERQPD xmm1, vm64x, xmm2 Using qword indices specified in vm64x, gather double-precision FP values from memory 
conditioned on mask specified by xmm2. Conditionally gathered elements are merged into 
xmm1.

VGATHERDPD ymm1, vm32x, ymm2 Using dword indices specified in vm32x, gather double-precision FP values from memory 
conditioned on mask specified by ymm2. Conditionally gathered elements are merged into 
ymm1.

VGATHERQPD ymm1, vm64y ymm2 Using qword indices specified in vm64y, gather double-precision FP values from memory 
conditioned on mask specified by ymm2. Conditionally gathered elements are merged into 
ymm1.

VGATHERDPS xmm1, vm32x, xmm2 Using dword indices specified in vm32x, gather single-precision FP values from memory 
conditioned on mask specified by xmm2. Conditionally gathered elements are merged into 
xmm1.

VGATHERQPS xmm1, vm64x, xmm2 Using qword indices specified in vm64x, gather single-precision FP values from memory 
conditioned on mask specified by xmm2. Conditionally gathered elements are merged into 
xmm1.



Vol. 1 14-33

PROGRAMMING WITH AVX, FMA AND AVX2

14.7.1 Detection of AVX2 

Hardware support for AVX2 is indicated by CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]=1. 
Application Software must identify that hardware supports AVX, after that it must also detect support for AVX2 by 
checking CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]. The recommended pseudocode sequence for detection of 
AVX2 is: 
----------------------------------------------------------------------------------------
INT supports_avx2()
{ ; result in eax

mov eax, 1
cpuid
and ecx, 018000000H
cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags
 jne not_supported
; processor supports AVX instructions and XGETBV is enabled by OS
mov eax, 7
mov ecx, 0
cpuid
and ebx, 20H
cmp ebx, 20H; check AVX2 feature flags
 jne not_supported
mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0
done:

VGATHERDPS ymm1, vm32y, ymm2 Using dword indices specified in vm32y, gather single-precision FP values from memory 
conditioned on mask specified by ymm2. Conditionally gathered elements are merged into 
ymm1.

VGATHERQPS ymm1, vm64y, ymm2 Using qword indices specified in vm64y, gather single-precision FP values from memory 
conditioned on mask specified by ymm2. Conditionally gathered elements are merged into 
ymm1.

VGATHERDQ xmm1, vm32x, xmm2 Using dword indices specified in vm32x, gather qword values from memory conditioned on 
mask specified by xmm2. Conditionally gathered elements are merged into xmm1.

VGATHERQQ xmm1, vm64x, xmm2 Using qword indices specified in vm64x, gather qword values from memory conditioned on 
mask specified by xmm2. Conditionally gathered elements are merged into xmm1.

VGATHERDQ ymm1, vm32x, ymm2 Using dword indices specified in vm32x, gather qword values from memory conditioned on 
mask specified by ymm2. Conditionally gathered elements are merged into ymm1.

VGATHERQQ ymm1, vm64y, ymm2 Using qword indices specified in vm64y, gather qword values from memory conditioned on 
mask specified by ymm2. Conditionally gathered elements are merged into ymm1.

Instruction Description
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}
-------------------------------------------------------------------------------

14.8 ACCESSING YMM REGISTERS

The lower 128 bits of a YMM register is aliased to the corresponding XMM register. Legacy SSE instructions (i.e. 
SIMD instructions operating on XMM state but not using the VEX prefix, also referred to non-VEX encoded SIMD 
instructions) will not access the upper bits (255:128) of the YMM registers. AVX and FMA instructions with a VEX 
prefix and vector length of 128-bits zeroes the upper 128 bits of the YMM register.
Upper bits of YMM registers (255:128) can be read and written by many instructions with a VEX.256 prefix. 

XSAVE and XRSTOR may be used to save and restore the upper bits of the YMM registers.

14.9 MEMORY ALIGNMENT 

Memory alignment requirements on VEX-encoded instruction differs from non-VEX-encoded instructions. Memory 
alignment applies to non-VEX-encoded SIMD instructions in three categories:
• Explicitly-aligned SIMD load and store instructions accessing 16 bytes of memory (e.g. MOVAPD, MOVAPS, 

MOVDQA, etc.). These instructions always require memory address to be aligned on 16-byte boundary.
• Explicitly-unaligned SIMD load and store instructions accessing 16 bytes or less of data from memory (e.g. 

MOVUPD, MOVUPS, MOVDQU, MOVQ, MOVD, etc.). These instructions do not require memory address to be 
aligned on 16-byte boundary.

• The vast majority of arithmetic and data processing instructions in legacy SSE instructions (non-VEX-encoded 
SIMD instructions) support memory access semantics. When these instructions access 16 bytes of data from 
memory, the memory address must be aligned on 16-byte boundary.

Most arithmetic and data processing instructions encoded using the VEX prefix and performing memory accesses 
have more flexible memory alignment requirements than instructions that are encoded without the VEX prefix. 
Specifically, 
• With the exception of explicitly aligned 16 or 32 byte SIMD load/store instructions, most VEX-encoded, 

arithmetic and data processing instructions operate in a flexible environment regarding memory address 
alignment, i.e. VEX-encoded instruction with 32-byte or 16-byte load semantics will support unaligned load 
operation by default. Memory arguments for most instructions with VEX prefix operate normally without 
causing #GP(0) on any byte-granularity alignment (unlike Legacy SSE instructions). The instructions that 
require explicit memory alignment requirements are listed in Table 14-22.

Software may see performance penalties when unaligned accesses cross cacheline boundaries, so reasonable 
attempts to align commonly used data sets should continue to be pursued.
Atomic memory operation in Intel 64 and IA-32 architecture is guaranteed only for a subset of memory operand 
sizes and alignment scenarios. The list of guaranteed atomic operations are described in Section 8.1.1 of IA-32 
Intel® Architecture Software Developer’s Manual, Volumes 3A. AVX and FMA instructions do not introduce any new 
guaranteed atomic memory operations.
AVX instructions can generate an #AC(0) fault on misaligned 4 or 8-byte memory references in Ring-3 when 
CR0.AM=1. 16 and 32-byte memory references will not generate #AC(0) fault. See Table 14-21 for details.
Certain AVX instructions always require 16- or 32-byte alignment (see the complete list of such instructions in 
Table 14-22). These instructions will #GP(0) if not aligned to 16-byte boundaries (for 16-byte granularity loads and 
stores) or 32-byte boundaries (for 32-byte loads and stores).
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Table 14-21.  Alignment Faulting Conditions when Memory Access is Not Aligned 
EFLAGS.AC==1 && Ring-3 && CR0.AM == 1 0 1

In
st

ru
ct

io
n

 T
y

p
e

A
V

X
, F

M
A

,
16- or 32-byte “explicitly unaligned” loads and stores (see Table 
14-23)

no fault no fault

VEX op YMM, m256 no fault no fault

VEX op XMM, m128 no fault no fault

“explicitly aligned” loads and stores (see Table 14-22) #GP(0) #GP(0)

2, 4, or 8-byte loads and stores no fault #AC(0)

S
S

E

16 byte “explicitly unaligned” loads and stores (see Table 14-23) no fault no fault

op XMM, m128 #GP(0) #GP(0)

“explicitly aligned” loads and stores (see Table 14-22) #GP(0) #GP(0)

2, 4, or 8-byte loads and stores no fault #AC(0)

Table 14-22.  Instructions Requiring Explicitly Aligned Memory

Require 16-byte alignment Require 32-byte alignment

(V)MOVDQA xmm, m128 VMOVDQA ymm, m256

(V)MOVDQA m128, xmm VMOVDQA m256, ymm

(V)MOVAPS xmm, m128 VMOVAPS ymm, m256

(V)MOVAPS m128, xmm VMOVAPS m256, ymm

(V)MOVAPD xmm, m128 VMOVAPD ymm, m256

(V)MOVAPD m128, xmm VMOVAPD m256, ymm

(V)MOVNTPS m128, xmm VMOVNTPS m256, ymm

(V)MOVNTPD m128, xmm VMOVNTPD m256, ymm

(V)MOVNTDQ m128, xmm VMOVNTDQ m256, ymm

(V)MOVNTDQA xmm, m128

Table 14-23.  Instructions Not Requiring Explicit Memory Alignment

(V)MOVDQU xmm, m128

(V)MOVDQU m128, m128

(V)MOVUPS xmm, m128

(V)MOVUPS m128, xmm

(V)MOVUPD xmm, m128

(V)MOVUPD m128, xmm

VMOVDQU ymm, m256

VMOVDQU m256, ymm

VMOVUPS ymm, m256

VMOVUPS m256, ymm

VMOVUPD ymm, m256

VMOVUPD m256, ymm
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14.10 SIMD FLOATING-POINT EXCEPTIONS

AVX instructions can generate SIMD floating-point exceptions (#XM) and respond to exception masks in the same 
way as Legacy SSE instructions. When CR4.OSXMMEXCPT=0 any unmasked FP exceptions generate an Undefined 
Opcode exception (#UD).
AVX FP exceptions are created in a similar fashion (differing only in number of elements) to Legacy SSE and SSE2
instructions capable of generating SIMD floating-point exceptions.
AVX introduces no new arithmetic operations (AVX floating-point are analogues of existing Legacy SSE instruc-
tions). 
F16C, FMA instructions can generate SIMD floating-point exceptions (#XM). The requirement that apply to AVX
also apply to F16C and FMA.
The subset of AVX2 instructions that operate on floating-point data do not generate #XM.
The detailed exception conditions for AVX instructions and legacy SIMD instructions (excluding instructions that 
operates on MMX registers) are described in a number of exception class types, depending on the operand syntax 
and memory operation characteristics. The complete list of SIMD instruction exception class types are defined in 
Chapter 2, “Instruction Format,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

14.11 EMULATION

Setting the CR0.EMbit to 1 provides a technique to emulate Legacy SSE floating-point instruction sets in software. 
This technique is not supported with AVX instructions. 
If an operating system wishes to emulate AVX instructions, set XFEATURE_ENABLED_MASK[2:1] to zero. This will 
cause AVX instructions to #UD. Emulation of F16C, AVX2, and FMA by operating system can be done similarly as 
with emulating AVX instructions.

14.12 WRITING AVX FLOATING-POINT EXCEPTION HANDLERS

AVX and FMA floating-point exceptions are handled in an entirely analogous way to Legacy SSE floating-point 
exceptions. To handle unmasked SIMD floating-point exceptions, the operating system or executive must provide 
an exception handler. The section titled “SSE and SSE2 SIMD Floating-Point Exceptions” in Chapter 11, “Program-
ming with Streaming SIMD Extensions 2 (SSE2),” describes the SIMD floating-point exception classes and gives 
suggestions for writing an exception handler to handle them.
To indicate that the operating system provides a handler for SIMD floating-point exceptions (#XM), the CR4.OSXM-
MEXCPT flag (bit 10) must be set.

The guidelines for writing AVX floating-point exception handlers also apply to F16C and FMA.

14.13 GENERAL PURPOSE INSTRUCTION SET ENHANCEMENTS

Enhancements in the general-purpose instruction set consist of several categories:
• A rich collection of instructions to manipulate integer data at bit-granularity. Most of the bit-manipulation 

instructions employ VEX-prefix encoding to support three-operand syntax with non-destructive source 
operands. Two of the bit-manipulating instructions (LZCNT, TZCNT) are not encoded using VEX. The VEX-
encoded bit-manipulation instructions include: ANDN, BEXTR, BLSI, BLSMSK, BLSR, BZHI, PEXT, PDEP, SARX, 
SHLX, SHRX, and RORX. 

• Enhanced integer multiply instruction (MULX) in conjunctions with some of the bit-manipulation instructions 
allow software to accelerate calculation of large integer numerics (wider than 128-bits).

• INVPCID instruction targets system software that manages processor context IDs.
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CHAPTER 15
PROGRAMMING WITH INTEL® TRANSACTIONAL SYNCHRONIZATION

EXTENSIONS

15.1 OVERVIEW

This chapter describes the software programming interface to the Intel® Transactional Synchronization Extensions 
of the Intel 64 architecture.
Multithreaded applications take advantage of increasing number of cores to achieve high performance. However, 
writing multi-threaded applications requires programmers to reason about data sharing among multiple threads. 
Access to shared data typically requires synchronization mechanisms. These mechanisms ensure multiple threads 
update shared data by serializing operations on the shared data, often through the use of a critical section 
protected by a lock. Since serialization limits concurrency, programmers try to limit synchronization overheads. 
They do this either through minimizing the use of synchronization or through the use of fine-grain locks; where 
multiple locks each protect different shared data. Unfortunately, this process is difficult and error prone; a missed 
or incorrect synchronization can cause an application to fail. Conservatively adding synchronization and using 
coarser granularity locks, where a few locks each protect many items of shared data, helps avoid correctness prob-
lems but limits performance due to excessive serialization. While programmers must use static information to 
determine when to serialize, the determination as to whether actually to serialize is best done dynamically. 
Intel® Transactional Synchronization Extensions aim to improve the performance of lock-protected critical sections 
while maintaining the lock-based programming model.

15.2 INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

Intel® Transactional Synchronization Extensions (Intel® TSX) allow the processor to determine dynamically 
whether threads need to serialize through lock-protected critical sections, and to perform serialization only when 
required. This lets the hardware expose and exploit concurrency hidden in an application due to dynamically 
unnecessary synchronization through a technique known as lock elision. 
With lock elision, the hardware executes the programmer-specified critical sections (also referred to as transac-
tional regions) transactionally. In such an execution, the lock variable is only read within the transactional region; 
it is not written to (and therefore not acquired) with the expectation that the lock variable remains unchanged after 
the transactional region, thus exposing concurrency.
If the transactional execution completes successfully, then the hardware ensures that all memory operations 
performed within the transactional region will appear to have occurred instantaneously when viewed from other 
logical processors, a process referred to as an atomic commit. Any updates performed within the transactional 
region are made visible to other processors only on an atomic commit.
Since a successful transactional execution ensures an atomic commit, the processor can execute the programmer-
specified code section optimistically without synchronization. If synchronization was unnecessary for that specific 
execution, execution can commit without any cross-thread serialization. 

If the transactional execution is unsuccessful, the processor cannot commit the updates atomically. When this 
happens, the processor will roll back the execution, a process referred to as a transactional abort. On a transac-
tional abort, the processor will discard all updates performed in the region, restore architectural state to appear as 
if the optimistic execution never occurred, and resume execution non-transactionally. Depending on the policy in 
place, lock elision may be retried or the lock may be explicitly acquired to ensure forward progress.
Intel TSX provides two software interfaces for programmers.
• Hardware Lock Elision (HLE) is a legacy compatible instruction set extension (comprising the XACQUIRE and 

XRELEASE prefixes).
• Restricted Transactional Memory (RTM) is a new instruction set interface (comprising the XBEGIN and XEND 

instructions). 
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Programmers who would like to run Intel TSX-enabled software on legacy hardware would use the HLE interface to 
implement lock elision. On the other hand, programmers who do not have legacy hardware requirements and who 
deal with more complex locking primitives would use the RTM software interface of Intel TSX to implement lock 
elision. In the latter case when using new instructions, the programmer must always provide a non-transactional 
path (which would have code to eventually acquire the lock being elided) to execute following a transactional abort 
and must not rely on the transactional execution alone.
In addition, Intel TSX also provides the XTEST instruction to test whether a logical processor is executing transac-
tionally, and the XABORT instruction to abort a transactional region.
A processor can perform a transactional abort for numerous reasons. A primary cause is due to conflicting accesses 
between the transactionally executing logical processor and another logical processor. Such conflicting accesses 
may prevent a successful transactional execution. Memory addresses read from within a transactional region 
constitute the read-set of the transactional region and addresses written to within the transactional region consti-
tute the write-set of the transactional region. Intel TSX maintains the read- and write-sets at the granularity of a 
cache line. 
A conflicting data access occurs if another logical processor either reads a location that is part of the transactional 
region’s write-set or writes a location that is a part of either the read- or write-set of the transactional region. We 
refer to this as a data conflict. Since Intel TSX detects data conflicts at the granularity of a cache line, unrelated 
data locations placed in the same cache line will be detected as conflicts. Transactional aborts may also occur due 
to limited transactional resources. For example, the amount of data accessed in the region may exceed an imple-
mentation-specific capacity. Additionally, some instructions and system events may cause transactional aborts. 

15.2.1 HLE Software Interface

HLE provides two new instruction prefix hints: XACQUIRE and XRELEASE. 
The programmer uses the XACQUIRE prefix in front of the instruction that is used to acquire the lock that is 
protecting the critical section. The processor treats the indication as a hint to elide the write associated with the 
lock acquire operation. Even though the lock acquire has an associated write operation to the lock, the processor 
does not add the address of the lock to the transactional region’s write-set nor does it issue any write requests to 
the lock. Instead, the address of the lock is added to the read-set. The logical processor enters transactional execu-
tion. If the lock was available before the XACQUIRE prefixed instruction, all other processors will continue to see it 
as available afterwards. Since the transactionally executing logical processor neither added the address of the lock 
to its write-set nor performed externally visible write operations to it, other logical processors can read the lock 
without causing a data conflict. This allows other logical processors to also enter and concurrently execute the crit-
ical section protected by the lock. The processor automatically detects any data conflicts that occur during the 
transactional execution and will perform a transactional abort if necessary.
Even though the eliding processor did not perform any external write operations to the lock, the hardware ensures 
program order of operations on the lock. If the eliding processor itself reads the value of the lock in the critical 
section, it will appear as if the processor had acquired the lock, i.e. the read will return the non-elided value. This 
behavior makes an HLE execution functionally equivalent to an execution without the HLE prefixes.
The programmer uses the XRELEASE prefix in front of the instruction that is used to release the lock protecting the 
critical section. This involves a write to the lock. If the instruction is restoring the value of the lock to the value it 
had prior to the XACQUIRE prefixed lock acquire operation on the same lock, then the processor elides the external 
write request associated with the release of the lock and does not add the address of the lock to the write-set. The 
processor then attempts to commit the transactional execution. 
With HLE, if multiple threads execute critical sections protected by the same lock but they do not perform any 
conflicting operations on each other’s data, then the threads can execute concurrently and without serialization. 
Even though the software uses lock acquisition operations on a common lock, the hardware recognizes this, elides 
the lock, and executes the critical sections on the two threads without requiring any communication through the 
lock — if such communication was dynamically unnecessary.
If the processor is unable to execute the region transactionally, it will execute the region non-transactionally and 
without elision. HLE enabled software has the same forward progress guarantees as the underlying non-HLE lock-
based execution. For successful HLE execution, the lock and the critical section code must follow certain guidelines 
(discussed in Section 15.3.3 and Section 15.3.8). These guidelines only affect performance; not following these 
guidelines will not cause a functional failure.
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Hardware without HLE support will ignore the XACQUIRE and XRELEASE prefix hints and will not perform any 
elision since these prefixes correspond to the REPNE/REPE IA-32 prefixes which are ignored on the instructions 
where XACQUIRE and XRELEASE are valid. Importantly, HLE is compatible with the existing lock-based program-
ming model. Improper use of hints will not cause functional bugs though it may expose latent bugs already in the 
code. 

15.2.2 RTM Software Interface

RTM provides three new instructions: XBEGIN, XEND, and XABORT. 
Software uses the XBEGIN instruction to specify the start of the transactional region and the XEND instruction to 
specify the end of the transactional region. The XBEGIN instruction takes an operand that provides a relative offset 
to the fallback instruction address if the transactional region could not be successfully executed transactionally. 
Software using these instructions to implement lock elision must test the lock within the transactional region, and 
only if free should try to commit. Further, the software may also define a policy to retry if the lock is not free.
A processor may abort transactional execution for many reasons. The hardware automatically detects transactional 
abort conditions and restarts execution from the fallback instruction address with the architectural state corre-
sponding to that at the start of the XBEGIN instruction and the EAX register updated to describe the abort status. 
The XABORT instruction allows programmers to abort the execution of a transactional region explicitly. The 
XABORT instruction takes an 8 bit immediate argument that is loaded into the EAX register and will thus be avail-
able to software following a transactional abort.
Hardware provides no guarantees as to whether a transactional execution will ever successfully commit. Program-
mers must always provide an alternative code sequence in the fallback path to guarantee forward progress. When 
using the instructions for lock elision, this may be as simple as acquiring a lock and executing the specified code 
region non-transactionally. Further, a transactional region that always aborts on a given implementation may 
complete transactionally on a future implementation. Therefore, programmers must ensure the code paths for the 
transactional region and the alternative code sequence are functionally tested.

If the RTM software interface is used for anything other than lock elision, the programmer must similarly ensure 
that the fallback path is inter-operable with the transactionally executing path.

15.3 INTEL® TSX APPLICATION PROGRAMMING MODEL

15.3.1 Detection of Transactional Synchronization Support

15.3.1.1  Detection of HLE Support

A processor supports HLE execution if CPUID.07H.EBX.HLE [bit 4] = 1. However, an application can use the HLE 
prefixes (XACQUIRE and XRELEASE) without checking whether the processor supports HLE. Processors without 
HLE support ignore these prefixes and will execute the code without entering transactional execution.

15.3.1.2  Detection of RTM Support

A processor supports RTM execution if CPUID.07H.EBX.RTM [bit 11] = 1. An application must check if the processor 
supports RTM before it uses the RTM instructions (XBEGIN, XEND, XABORT). These instructions will generate a 
#UD exception when used on a processor that does not support RTM.

15.3.1.3  Detection of XTEST Instruction

A processor supports the XTEST instruction if it supports either HLE or RTM. An application must check either of 
these feature flags before using the XTEST instruction. This instruction will generate a #UD exception when used 
on a processor that does not support either HLE or RTM.
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15.3.2 Querying Transactional Execution Status

The XTEST instruction can be used to determine the transactional status of a transactional region specified by HLE 
or RTM. Note, while the HLE prefixes are ignored on processors that do not support HLE, the XTEST instruction will 
generate a #UD exception when used on processors that do not support either HLE or RTM.

15.3.3 Requirements for HLE Locks

For HLE execution to successfully commit transactionally, the lock must satisfy certain properties and access to the 
lock must follow certain guidelines. 
• An XRELEASE prefixed instruction must restore the value of the elided lock to the value it had before the lock 

acquisition. This allows hardware to safely elide locks by not adding them to the write-set. The data size and 
data address of the lock release (XRELEASE prefixed) instruction must match that of the lock acquire 
(XACQUIRE prefixed) and the lock must not cross a cache line boundary.

• Software should not write to the elided lock inside a transactional HLE region with any instruction other than an 
XRELEASE prefixed instruction, otherwise it may cause a transactional abort. In addition, recursive locks 
(where a thread acquires the same lock multiple times without first releasing the lock) may also cause a trans-
actional abort. Note that software can observe the result of the elided lock acquire inside the critical section. 
Such a read operation will return the value of the write to the lock.

The processor automatically detects violations to these guidelines, and safely transitions to a non-transactional 
execution without elision. Since Intel TSX detects conflicts at the granularity of a cache line, writes to data collo-
cated on the same cache line as the elided lock may be detected as data conflicts by other logical processors eliding 
the same lock.

15.3.4 Transactional Nesting

Both HLE- and RTM-based transactional executions support nested transactional regions. However, a transactional 
abort restores state to the operation that started transactional execution: either the outermost XACQUIRE prefixed 
HLE eligible instruction or the outermost XBEGIN instruction. The processor treats all nested transactional regions 
as one monolithic transactional region.

15.3.4.1  HLE Nesting and Elision

Programmers can nest HLE regions up to an implementation specific depth of MAX_HLE_NEST_COUNT. Each logical 
processor tracks the nesting count internally but this count is not available to software. An XACQUIRE prefixed HLE-
eligible instruction increments the nesting count, and an XRELEASE prefixed HLE-eligible instruction decrements it. 
The logical processor enters transactional execution when the nesting count goes from zero to one. The logical 
processor attempts to commit only when the nesting count becomes zero. A transactional abort may occur if the 
nesting count exceeds MAX_HLE_NEST_COUNT.
In addition to supporting nested HLE regions, the processor can also elide multiple nested locks. The processor 
tracks a lock for elision beginning with the XACQUIRE prefixed HLE eligible instruction for that lock and ending with 
the XRELEASE prefixed HLE eligible instruction for that same lock. The processor can, at any one time, track up to 
a MAX_HLE_ELIDED_LOCKS number of locks. For example, if the implementation supports a 
MAX_HLE_ELIDED_LOCKS value of two and if the programmer nests three HLE identified critical sections (by 
performing XACQUIRE prefixed HLE eligible instructions on three distinct locks without performing an intervening 
XRELEASE prefixed HLE eligible instruction on any one of the locks), then the first two locks will be elided, but the 
third won't be elided (but will be added to the transaction’s write-set). However, the execution will still continue 
transactionally. Once an XRELEASE for one of the two elided locks is encountered, a subsequent lock acquired 
through the XACQUIRE prefixed HLE eligible instruction will be elided.
The processor attempts to commit the HLE execution when all elided XACQUIRE and XRELEASE pairs have been 
matched, the nesting count goes to zero, and the locks have satisfied the requirements described earlier. If execu-
tion cannot commit atomically, then execution transitions to a non-transactional execution without elision as if the 
first instruction did not have an XACQUIRE prefix.
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15.3.4.2  RTM Nesting

Programmers can nest RTM-based transactional regions up to an implementation specific 
MAX_RTM_NEST_COUNT. The logical processor tracks the nesting count internally but this count is not available to 
software. An XBEGIN instruction increments the nesting count, and an XEND instruction decrements it. The logical 
processor attempts to commit only if the nesting count becomes zero. A transactional abort occurs if the nesting 
count exceeds MAX_RTM_NEST_COUNT.

15.3.4.3  Nesting HLE and RTM

HLE and RTM provide two alternative software interfaces to a common transactional execution capability. The 
behavior when HLE and RTM are nested together—HLE inside RTM or RTM inside HLE—is implementation specific. 
However, in all cases, the implementation will maintain HLE and RTM semantics. An implementation may choose to 
ignore HLE hints when used inside RTM regions, and may cause a transactional abort when RTM instructions are 
used inside HLE regions. In the latter case, the transition from transactional to non-transactional execution occurs 
seamlessly since the processor will re-execute the HLE region without actually doing elision, and then execute the 
RTM instructions. 

15.3.5 RTM Abort Status Definition

RTM uses the EAX register to communicate abort status to software. Following an RTM abort the EAX register has 
the following definition.

The EAX abort status for RTM only provides causes for aborts. It does not by itself encode whether an abort or 
commit occurred for the RTM region. The value of EAX can be 0 following an RTM abort. For example, a CPUID 
instruction when used inside an RTM region causes a transactional abort and may not satisfy the requirements for 
setting any of the EAX bits. This may result in an EAX value of 0.

15.3.6 RTM Memory Ordering

A successful RTM commit causes all memory operations in the RTM region to appear to execute atomically. A 
successfully committed RTM region consisting of an XBEGIN followed by an XEND, even with no memory operations 
in the RTM region, has the same ordering semantics as a LOCK prefixed instruction.
The XBEGIN instruction does not have fencing semantics. However, if an RTM execution aborts, all memory 
updates from within the RTM region are discarded and never made visible to any other logical processor.

Table 15-1.  RTM Abort Status Definition

EAX Register Bit 
Position

Meaning

0 Set if abort caused by XABORT instruction.

1 If set, the transactional execution may succeed on a retry. This bit is always clear if bit 0 is set.

2 Set if another logical processor conflicted with a memory address that was part of the transactional execution 
that aborted. 

3 Set if an internal buffer to track transactional state overflowed. 

4 Set if a debug breakpoint was hit.

5 Set if an abort occurred during execution of a nested transactional execution.

23:6 Reserved.

31:24 XABORT argument (only valid if bit 0 set, otherwise reserved).
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15.3.7 RTM-Enabled Debugger Support

By default, any debug exception inside an RTM region will cause a transactional abort and will redirect control flow 
to the fallback instruction address with architectural state recovered and bit 4 in EAX set. However, to allow soft-
ware debuggers to intercept execution on debug exceptions, the RTM architecture provides additional capability. 
If bit 11 of DR7 and bit 15 of the IA32_DEBUGCTL_MSR are both 1, any RTM abort due to a debug exception (#DB) 
or breakpoint exception (#BP) causes execution to roll back to just before the XBEGIN instruction (EAX is restored 
to the value it had before XBEGIN) and then delivers a #DB. DR6[16] is cleared to indicate that the exception 
resulted from a debug or breakpoint exception inside an RTM region.

15.3.8 Programming Considerations

Typical programmer-identified regions are expected to transactionally execute and commit successfully. However, 
Intel TSX does not provide any such guarantee. A transactional execution may abort for many reasons. To take full 
advantage of the transactional capabilities, programmers should follow certain guidelines to increase the proba-
bility of their transactional execution committing successfully.
This section discusses various events that may cause transactional aborts. The architecture ensures that updates 
performed within a transactional region that subsequently aborts execution will never become visible. Only a 
committed transactional execution updates architectural state. Transactional aborts never cause functional failures 
and only affect performance.

15.3.8.1  Instruction Based Considerations

Programmers can use any instruction safely inside a transactional region. Further, programmers can use the Intel 
TSX instructions and prefixes at any privilege level. However, some instructions will always abort the transactional 
execution and cause execution to seamlessly and safely transition to a non-transactional path. 
Intel TSX allows for most common instructions to be used inside transactional regions without causing aborts. The 
following operations inside a transactional region do not typically cause an abort.
• Operations on the instruction pointer register, general purpose registers (GPRs) and the status flags (CF, OF, SF, 

PF, AF, and ZF).
• Operations on XMM and YMM registers and the MXCSR register
However, programmers must be careful when intermixing SSE and AVX operations inside a transactional region. 
Intermixing SSE instructions accessing XMM registers and AVX instructions accessing YMM registers may cause 
transactional regions to abort. 
CLD and STD instructions when used inside transactional regions may cause aborts if they change the value of the 
DF flag. However, if DF is 1, the STD instruction will not cause an abort. Similarly, if DF is 0, the CLD instruction will 
not cause an abort.
Instructions not enumerated here as causing abort when used inside a transactional region will typically not cause 
the execution to abort (examples include but are not limited to MFENCE, LFENCE, SFENCE, RDTSC, RDTSCP, etc.).
The following instructions will abort transactional execution on any implementation:
• XABORT
• CPUID
• PAUSE
In addition, in some implementations, the following instructions may always cause transactional aborts. These 
instructions are not expected to be commonly used inside typical transactional regions. However, programmers 
must not rely on these instructions to force a transactional abort, since whether they cause transactional aborts is 
implementation dependent.
• Operations on X87 and MMX architecture state. This includes all MMX and X87 instructions, including the 

FXRSTOR and FXSAVE instructions.
• Update to non-status portion of EFLAGS: CLI, STI, POPFD, POPFQ.
• Instructions that update segment registers, debug registers and/or control registers: MOV to 

DS/ES/FS/GS/SS, POP DS/ES/FS/GS/SS, LDS, LES, LFS, LGS, LSS, SWAPGS, WRFSBASE, WRGSBASE, LGDT, 
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SGDT, LIDT, SIDT, LLDT, SLDT, LTR, STR, Far CALL, Far JMP, Far RET, IRET, MOV to DRx, MOV to 
CR0/CR2/CR3/CR4/CR8, CLTS and LMSW.

• Ring transitions: SYSENTER, SYSCALL, SYSEXIT, and SYSRET.
• TLB and Cacheability control: CLFLUSH, INVD, WBINVD, INVLPG, INVPCID, and memory instructions with a 

non-temporal hint (V/MOVNTDQA, V/MOVNTDQ, V/MOVNTI, V/MOVNTPD, V/MOVNTPS, V/MOVNTQ, 
V/MASKMOVQ, and V/MASKMOVDQU).

• Processor state save: XSAVE, XSAVEOPT, and XRSTOR.
• Interrupts: INTn, INTO.
• IO: IN, INS, REP INS, OUT, OUTS, REP OUTS and their variants.
• VMX: VMPTRLD, VMPTRST, VMCLEAR, VMREAD, VMWRITE, VMCALL, VMLAUNCH, VMRESUME, VMXOFF, 

VMXON, INVEPT, INVVPID, and VMFUNC.
• SMX: GETSEC.
• UD2, RSM, RDMSR, WRMSR, HLT, MONITOR, MWAIT, XSETBV, VZEROUPPER, MASKMOVQ, and 

V/MASKMOVDQU.

15.3.8.2  Runtime Considerations

In addition to the instruction-based considerations, runtime events may cause transactional execution to abort. 
These may be due to data access patterns or micro-architectural implementation causes. Keep in mind that the 
following list is not a comprehensive discussion of all abort causes. 
Any fault or trap in a transactional region that must be exposed to software will be suppressed. Transactional 
execution will abort and execution will transition to a non-transactional execution, as if the fault or trap had never 
occurred. If any exception is not masked, that will result in a transactional abort and it will be as if the exception 
had never occurred.
When executed in VMX non-root operation, certain instructions may result in a VM exit. When such instructions are 
executed inside a transactional region, then instead of causing a VM exit, they will cause a transactional abort and 
the execution will appear as if instruction that would have caused a VM exit never executed.
Synchronous exception events (#DE, #OF, #NP, #SS, #GP, #BR, #UD, #AC, #XF, #PF, #NM, #TS, #MF, #DB, 
#BP/INT3) that occur during transactional execution may cause an execution not to commit transactionally, and 
require a non-transactional execution. These events are suppressed as if they had never occurred. With HLE, since 
the non-transactional code path is identical to the transactional code path, these events will typically re-appear 
when the instruction that caused the exception is re-executed non-transactionally, causing the associated synchro-
nous events to be delivered appropriately in the non-transactional execution. The same behavior also applies to 
synchronous events (EPT violations, EPT misconfigurations, and accesses to the APIC-access page) that occur in 
VMX non-root operation.
Asynchronous events (NMI, SMI, INTR, IPI, PMI, etc.) occurring during transactional execution may cause the 
transactional execution to abort and transition to a non-transactional execution. The asynchronous events will be 
pended and handled after the transactional abort is processed. The same behavior also applies to asynchronous 
events (VMX-preemption timer expiry, virtual-interrupt delivery, and interrupt-window exiting) that occur in VMX 
non-root operation.
Transactional execution only supports write-back cacheable memory type operations. A transactional region may 
always abort if it includes operations on any other memory type. This includes instruction fetches to UC memory 
type.
Memory accesses within a transactional region may require the processor to set the Accessed and Dirty flags of the 
referenced page table entry. The behavior of how the processor handles this is implementation specific. Some 
implementations may allow the updates to these flags to become externally visible even if the transactional region 
subsequently aborts. Some Intel TSX implementations may choose to abort the transactional execution if these 
flags need to be updated. Further, a processor's page-table walk may generate accesses to its own transactionally 
written but uncommitted state. Some Intel TSX implementations may choose to abort the execution of a transac-
tional region in such situations. Regardless, the architecture ensures that, if the transactional region aborts, then 
the transactionally written state will not be made architecturally visible through the behavior of structures such as 
TLBs.
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Executing self-modifying code transactionally may also cause transactional aborts. Programmers must continue to 
follow the Intel recommended guidelines for writing self-modifying and cross-modifying code even when employing 
Intel TSX.
While an Intel TSX implementation will typically provide sufficient resources for executing common transactional 
regions, implementation constraints and excessive sizes for transactional regions may cause a transactional execu-
tion to abort and transition to a non-transactional execution. The architecture provides no guarantee of the amount 
of resources available to do transactional execution and does not guarantee that a transactional execution will ever 
succeed.
Conflicting requests to a cache line accessed within a transactional region may prevent the transactional region 
from executing successfully. For example, if logical processor P0 reads line A in a transactional region and another 
logical processor P1 writes A (either inside or outside a transactional region) then logical processor P0 may abort if 
logical processor P1’s write interferes with processor P0's ability to execute transactionally. Similarly, if P0 writes 
line A in a transactional region and P1reads or writes A (either inside or outside a transactional region), then P0 
may abort if P1's access to A interferes with P0's ability to execute transactionally. In addition, other coherence 
traffic may at times appear as conflicting requests and may cause aborts. While these false conflicts may happen, 
they are expected to be uncommon. The conflict resolution policy to determine whether P0 or P1 aborts in the 
above scenarios is implementation specific.
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CHAPTER 16
INPUT/OUTPUT

In addition to transferring data to and from external memory, IA-32 processors can also transfer data to and from 
input/output ports (I/O ports). I/O ports are created in system hardware by circuity that decodes the control, data, 
and address pins on the processor. These I/O ports are then configured to communicate with peripheral devices. An 
I/O port can be an input port, an output port, or a bidirectional port. Some I/O ports are used for transmitting data, 
such as to and from the transmit and receive registers, respectively, of a serial interface device. Other I/O ports are 
used to control peripheral devices, such as the control registers of a disk controller.

This chapter describes the processor’s I/O architecture. The topics discussed include:
• I/O port addressing
• I/O instructions
• I/O protection mechanism

16.1 I/O PORT ADDRESSING

The processor permits applications to access I/O ports in either of two ways:
• Through a separate I/O address space
• Through memory-mapped I/O

Accessing I/O ports through the I/O address space is handled through a set of I/O instructions and a special I/O 
protection mechanism. Accessing I/O ports through memory-mapped I/O is handled with the processors general-
purpose move and string instructions, with protection provided through segmentation or paging. I/O ports can be 
mapped so that they appear in the I/O address space or the physical-memory address space (memory mapped 
I/O) or both.

One benefit of using the I/O address space is that writes to I/O ports are guaranteed to be completed before the 
next instruction in the instruction stream is executed. Thus, I/O writes to control system hardware cause the hard-
ware to be set to its new state before any other instructions are executed. See Section 16.6, “Ordering I/O,” for 
more information on serializing of I/O operations.

16.2 I/O PORT HARDWARE

From a hardware point of view, I/O addressing is handled through the processor’s address lines. For the P6 family, 
Pentium 4, and Intel Xeon processors, the request command lines signal whether the address lines are being driven 
with a memory address or an I/O address; for Pentium processors and earlier IA-32 processors, the M/IO# pin indi-
cates a memory address (1) or an I/O address (0). When the separate I/O address space is selected, it is the 
responsibility of the hardware to decode the memory-I/O bus transaction to select I/O ports rather than memory. 
Data is transmitted between the processor and an I/O device through the data lines.

16.3 I/O ADDRESS SPACE

The processor’s I/O address space is separate and distinct from the physical-memory address space. The I/O 
address space consists of 216 (64K) individually addressable 8-bit I/O ports, numbered 0 through FFFFH. I/O port 
addresses 0F8H through 0FFH are reserved. Do not assign I/O ports to these addresses. The result of an attempt 
to address beyond the I/O address space limit of FFFFH is implementation-specific; see the Developer’s Manuals for 
specific processors for more details.

Any two consecutive 8-bit ports can be treated as a 16-bit port, and any four consecutive ports can be a 32-bit port. 
In this manner, the processor can transfer 8, 16, or 32 bits to or from a device in the I/O address space. Like words 
in memory, 16-bit ports should be aligned to even addresses (0, 2, 4, ...) so that all 16 bits can be transferred in a 
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single bus cycle. Likewise, 32-bit ports should be aligned to addresses that are multiples of four (0, 4, 8, ...). The 
processor supports data transfers to unaligned ports, but there is a performance penalty because one or more 
extra bus cycle must be used.

The exact order of bus cycles used to access unaligned ports is undefined and is not guaranteed to remain the same 
in future IA-32 processors. If hardware or software requires that I/O ports be written to in a particular order, that 
order must be specified explicitly. For example, to load a word-length I/O port at address 2H and then another word 
port at 4H, two word-length writes must be used, rather than a single doubleword write at 2H.

Note that the processor does not mask parity errors for bus cycles to the I/O address space. Accessing I/O ports 
through the I/O address space is thus a possible source of parity errors.

16.3.1 Memory-Mapped I/O

I/O devices that respond like memory components can be accessed through the processor’s physical-memory 
address space (see Figure 16-1). When using memory-mapped I/O, any of the processor’s instructions that refer-
ence memory can be used to access an I/O port located at a physical-memory address. For example, the MOV 
instruction can transfer data between any register and a memory-mapped I/O port. The AND, OR, and TEST 
instructions may be used to manipulate bits in the control and status registers of a memory-mapped peripheral 
devices.

When using memory-mapped I/O, caching of the address space mapped for I/O operations must be prevented. 
With the Pentium 4, Intel Xeon, and P6 family processors, caching of I/O accesses can be prevented by using 
memory type range registers (MTRRs) to map the address space used for the memory-mapped I/O as uncacheable 
(UC). See Chapter 11, “Memory Cache Control” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A, for a complete discussion of the MTRRs.

The Pentium and Intel486 processors do not support MTRRs. Instead, they provide the KEN# pin, which when held 
inactive (high) prevents caching of all addresses sent out on the system bus. To use this pin, external address 
decoding logic is required to block caching in specific address spaces.

All the IA-32 processors that have on-chip caches also provide the PCD (page-level cache disable) flag in page table 
and page directory entries. This flag allows caching to be disabled on a page-by-page basis. See “Page-Directory 
and Page-Table Entries” in Chapter 4 of in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A.

Figure 16-1.  Memory-Mapped I/O
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16.4 I/O INSTRUCTIONS

The processor’s I/O instructions provide access to I/O ports through the I/O address space. (These instructions 
cannot be used to access memory-mapped I/O ports.) There are two groups of I/O instructions:
• Those that transfer a single item (byte, word, or doubleword) between an I/O port and a general-purpose 

register
• Those that transfer strings of items (strings of bytes, words, or doublewords) between an I/O port and memory

The register I/O instructions IN (input from I/O port) and OUT (output to I/O port) move data between I/O ports 
and the EAX register (32-bit I/O), the AX register (16-bit I/O), or the AL (8-bit I/O) register. The address of the I/O 
port can be given with an immediate value or a value in the DX register. 

The string I/O instructions INS (input string from I/O port) and OUTS (output string to I/O port) move data 
between an I/O port and a memory location. The address of the I/O port being accessed is given in the DX register; 
the source or destination memory address is given in the DS:ESI or ES:EDI register, respectively.

When used with one of the repeat prefixes (such as REP), the INS and OUTS instructions perform string (or block) 
input or output operations. The repeat prefix REP modifies the INS and OUTS instructions to transfer blocks of data 
between an I/O port and memory. Here, the ESI or EDI register is incremented or decremented (according to the 
setting of the DF flag in the EFLAGS register) after each byte, word, or doubleword is transferred between the 
selected I/O port and memory.

See the references for IN, INS, OUT, and OUTS in Chapter 3 and Chapter 4 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volumes 2A & 2B, for more information on these instructions.

16.5 PROTECTED-MODE I/O

When the processor is running in protected mode, the following protection mechanisms regulate access to I/O 
ports:
• When accessing I/O ports through the I/O address space, two protection devices control access:

— The I/O privilege level (IOPL) field in the EFLAGS register

— The I/O permission bit map of a task state segment (TSS)
• When accessing memory-mapped I/O ports, the normal segmentation and paging protection and the MTRRs 

(in processors that support them) also affect access to I/O ports. See Chapter 5, “Protection” and Chapter 11, 
“Memory Cache Control” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, 
for a complete discussion of memory protection. 

The following sections describe the protection mechanisms available when accessing I/O ports in the I/O address 
space with the I/O instructions.

16.5.1 I/O Privilege Level

In systems where I/O protection is used, the IOPL field in the EFLAGS register controls access to the I/O address 
space by restricting use of selected instructions. This protection mechanism permits the operating system or exec-
utive to set the privilege level needed to perform I/O. In a typical protection ring model, access to the I/O address 
space is restricted to privilege levels 0 and 1. Here, kernel and the device drivers are allowed to perform I/O, while 
less privileged device drivers and application programs are denied access to the I/O address space. Application 
programs must then make calls to the operating system to perform I/O.

The following instructions can be executed only if the current privilege level (CPL) of the program or task currently 
executing is less than or equal to the IOPL: IN, INS, OUT, OUTS, CLI (clear interrupt-enable flag), and STI (set 
interrupt-enable flag). These instructions are called I/O sensitive instructions, because they are sensitive to the 
IOPL field. Any attempt by a less privileged program or task to use an I/O sensitive instruction results in a general-
protection exception (#GP) being signaled. Because each task has its own copy of the EFLAGS register, each task 
can have a different IOPL.
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The I/O permission bit map in the TSS can be used to modify the effect of the IOPL on I/O sensitive instructions, 
allowing access to some I/O ports by less privileged programs or tasks (see Section 16.5.2, “I/O Permission Bit 
Map”).

A program or task can change its IOPL only with the POPF and IRET instructions; however, such changes are privi-
leged. No procedure may change the current IOPL unless it is running at privilege level 0. An attempt by a less priv-
ileged procedure to change the IOPL does not result in an exception; the IOPL simply remains unchanged.

The POPF instruction also may be used to change the state of the IF flag (as can the CLI and STI instructions); 
however, the POPF instruction in this case is also I/O sensitive. A procedure may use the POPF instruction to change 
the setting of the IF flag only if the CPL is less than or equal to the current IOPL. An attempt by a less privileged 
procedure to change the IF flag does not result in an exception; the IF flag simply remains unchanged.

16.5.2 I/O Permission Bit Map

The I/O permission bit map is a device for permitting limited access to I/O ports by less privileged programs or 
tasks and for tasks operating in virtual-8086 mode. The I/O permission bit map is located in the TSS (see 
Figure 16-2) for the currently running task or program. The address of the first byte of the I/O permission bit map 
is given in the I/O map base address field of the TSS. The size of the I/O permission bit map and its location in the 
TSS are variable. 

Because each task has its own TSS, each task has its own I/O permission bit map. Access to individual I/O ports 
can thus be granted to individual tasks.

If in protected mode and the CPL is less than or equal to the current IOPL, the processor allows all I/O operations 
to proceed. If the CPL is greater than the IOPL or if the processor is operating in virtual-8086 mode, the processor 
checks the I/O permission bit map to determine if access to a particular I/O port is allowed. Each bit in the map 
corresponds to an I/O port byte address. For example, the control bit for I/O port address 29H in the I/O address 
space is found at bit position 1 of the sixth byte in the bit map. Before granting I/O access, the processor tests all 
the bits corresponding to the I/O port being addressed. For a doubleword access, for example, the processors tests 
the four bits corresponding to the four adjacent 8-bit port addresses. If any tested bit is set, a general-protection 
exception (#GP) is signaled. If all tested bits are clear, the I/O operation is allowed to proceed.

Because I/O port addresses are not necessarily aligned to word and doubleword boundaries, the processor reads 
two bytes from the I/O permission bit map for every access to an I/O port. To prevent exceptions from being gener-
ated when the ports with the highest addresses are accessed, an extra byte needs to included in the TSS immedi-
ately after the table. This byte must have all of its bits set, and it must be within the segment limit.

It is not necessary for the I/O permission bit map to represent all the I/O addresses. I/O addresses not spanned by 
the map are treated as if they had set bits in the map. For example, if the TSS segment limit is 10 bytes past the 

Figure 16-2.  I/O Permission Bit Map
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bit-map base address, the map has 11 bytes and the first 80 I/O ports are mapped. Higher addresses in the I/O 
address space generate exceptions.

If the I/O bit map base address is greater than or equal to the TSS segment limit, there is no I/O permission map, 
and all I/O instructions generate exceptions when the CPL is greater than the current IOPL.

16.6 ORDERING I/O

When controlling I/O devices it is often important that memory and I/O operations be carried out in precisely the 
order programmed. For example, a program may write a command to an I/O port, then read the status of the I/O 
device from another I/O port. It is important that the status returned be the status of the device after it receives 
the command, not before. 

When using memory-mapped I/O, caution should be taken to avoid situations in which the programmed order is 
not preserved by the processor. To optimize performance, the processor allows cacheable memory reads to be 
reordered ahead of buffered writes in most situations. Internally, processor reads (cache hits) can be reordered 
around buffered writes. When using memory-mapped I/O, therefore, is possible that an I/O read might be 
performed before the memory write of a previous instruction. The recommended method of enforcing program 
ordering of memory-mapped I/O accesses with the Pentium 4, Intel Xeon, and P6 family processors is to use the 
MTRRs to make the memory mapped I/O address space uncacheable; for the Pentium and Intel486 processors, 
either the #KEN pin or the PCD flags can be used for this purpose (see Section 16.3.1, “Memory-Mapped I/O”). 

When the target of a read or write is in an uncacheable region of memory, memory reordering does not occur 
externally at the processor’s pins (that is, reads and writes appear in-order). Designating a memory mapped I/O 
region of the address space as uncacheable insures that reads and writes of I/O devices are carried out in program 
order. See Chapter 11, “Memory Cache Control” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A, for more information on using MTRRs.

Another method of enforcing program order is to insert one of the serializing instructions, such as the CPUID 
instruction, between operations. See Chapter 8, “Multiple-Processor Management” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A, for more information on serialization of instructions.

It should be noted that the chip set being used to support the processor (bus controller, memory controller, and/or 
I/O controller) may post writes to uncacheable memory which can lead to out-of-order execution of memory 
accesses. In situations where out-of-order processing of memory accesses by the chip set can potentially cause 
faulty memory-mapped I/O processing, code must be written to force synchronization and ordering of I/O opera-
tions. Serializing instructions can often be used for this purpose.

When the I/O address space is used instead of memory-mapped I/O, the situation is different in two respects:
• The processor never buffers I/O writes. Therefore, strict ordering of I/O operations is enforced by the 

processor. (As with memory-mapped I/O, it is possible for a chip set to post writes in certain I/O ranges.)
• The processor synchronizes I/O instruction execution with external bus activity (see Table 16-1). 

Table 16-1.  I/O Instruction Serialization

Instruction Being 
Executed

Processor Delays Execution of … Until Completion of …

Current Instruction? Next Instruction? Pending Stores? Current Store?

IN Yes Yes

INS Yes Yes

REP INS Yes Yes

OUT Yes Yes Yes

OUTS Yes Yes Yes

REP OUTS Yes Yes Yes
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CHAPTER 17
PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION

When writing software intended to run on IA-32 processors, it is necessary to identify the type of processor present 
in a system and the processor features that are available to an application.

17.1 USING THE CPUID INSTRUCTION

Use the CPUID instruction for processor identification in the Pentium M processor family, Pentium 4 processor 
family, Intel Xeon processor family, P6 family, Pentium processor, and later Intel486 processors. This instruction 
returns the family, model and (for some processors) a brand string for the processor that executes the instruction. 
It also indicates the features that are present in the processor and give information about the processors caches 
and TLB.

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can 
set and clear this flag, the processor executing the procedure supports the CPUID instruction. The CPUID instruc-
tion will cause the invalid opcode exception (#UD) if executed on a processor that does not support it.

To obtain processor identification information, a source operand value is placed in the EAX register to select the 
type of information to be returned. When the CPUID instruction is executed, selected information is returned in the 
EAX, EBX, ECX, and EDX registers. For a complete description of the CPUID instruction, tables indicating values 
returned, and example code, see “CPUID—CPUID Identification” in Chapter 3 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A.

17.1.1 Notes on Where to Start

For detailed application notes on the instruction, see AP-485, Intel Processor Identification and the CPUID Instruc-
tion (Order Number 241618). This publication provides additional information and example source code for use in 
identifying IA-32 processors. It also contains guidelines for using the CPUID instruction to help maintain the widest 
range of software compatibility. The following guidelines are among the most important, and should always be 
followed when using the CPUID instruction to determine available features:
• Always begin by testing for the “GenuineIntel,” message in the EBX, EDX, and ECX registers when the CPUID 

instruction is executed with EAX equal to 0. If the processor is not genuine Intel, the feature identification flags 
may have different meanings than are described in Intel documentation.

• Test feature identification flags individually and do not make assumptions about undefined bits.

17.1.2 Identification of Earlier IA-32 Processors
The CPUID instruction is not available in earlier IA-32 processors up through the earlier Intel486 processors. For 
these processors, several other architectural features can be exploited to identify the processor.
The settings of bits 12 and 13 (IOPL), 14 (NT), and 15 (reserved) in the EFLAGS register are different for Intel’s 32-
bit processors than for the Intel 8086 and Intel 286 processors. By examining the settings of these bits (with the 
PUSHF/PUSHFD and POP/POPFD instructions), an application program can determine whether the processor is an 
8086, Intel 286, or one of the Intel 32-bit processors:
• 8086 processor — Bits 12 through 15 of the EFLAGS register are always set.
• Intel 286 processor — Bits 12 through 15 are always clear in real-address mode.
• 32-bit processors — In real-address mode, bit 15 is always clear and bits 12 through 14 have the last value 

loaded into them. In protected mode, bit 15 is always clear, bit 14 has the last value loaded into it, and the IOPL 
bits depends on the current privilege level (CPL). The IOPL field can be changed only if the CPL is 0.

Other EFLAG register bits that can be used to differentiate between the 32-bit processors:
• Bit 18 (AC) — Implemented only on the Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors. 

The inability to set or clear this bit distinguishes an Intel386 processor from the later IA-32 processors.
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• Bit 21 (ID) — Determines if the processor is able to execute the CPUID instruction. The ability to set and clear 
this bit indicates that it is a Pentium 4, Intel Xeon, P6 family, Pentium, or later-version Intel486 processor.

To determine whether an x87 FPU or NPX is present in a system, applications can write to the x87 FPU status and 
control registers using the FNINIT instruction and then verify that the correct values are read back using the 
FNSTENV instruction. 
After determining that an x87 FPU or NPX is present, its type can then be determined. In most cases, the processor 
type will determine the type of FPU or NPX; however, an Intel386 processor is compatible with either an Intel 287 
or Intel 387 math coprocessor. 
The method the coprocessor uses to represent ∞ (after the execution of the FINIT, FNINIT, or RESET instruction) 
indicates which coprocessor is present. The Intel 287 math coprocessor uses the same bit representation for +∞ 
and −∞; whereas, the Intel 387 math coprocessor uses different representations for +∞ and −∞.
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APPENDIX A
EFLAGS CROSS-REFERENCE

A.1 EFLAGS AND INSTRUCTIONS

Table A-2 summarizes how the instructions affect the flags in the EFLAGS register. The following codes describe 
how the flags are affected.

Table A-1.  Codes Describing Flags

T Instruction tests flag.

M Instruction modifies flag (either sets or resets depending on operands).

0 Instruction resets flag.

1 Instruction sets flag.

— Instruction's effect on flag is undefined.

R Instruction restores prior value of flag.

Blank Instruction does not affect flag.

Table A-2.  EFLAGS Cross-Reference

Instruction OF SF ZF AF PF CF TF IF DF NT RF

AAA — — — TM — M

AAD — M M — M —

AAM — M M — M —

AAS — — — TM — M

ADC M M M M M TM

ADD M M M M M M

AND 0 M M — M 0

ARPL M

BOUND

BSF/BSR — — M — — —

BSWAP

BT/BTS/BTR/BTC — — — — M

CALL

CBW

CLC 0

CLD 0

CLI 0

CLTS

CMC M

CMOVcc T T T T T

CMP M M M M M M
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CMPS M M M M M M T

CMPXCHG M M M M M M

CMPXCHG8B M

COMSID 0 0 M 0 M M

COMISS 0 0 M 0 M M

CPUID

CWD

DAA — M M TM M TM

DAS — M M TM M TM

DEC M M M M M

DIV — — — — — —

ENTER

ESC

FCMOVcc T T T

FCOMI, FCOMIP, FUCOMI, FUCOMIP 0 0 M 0 M M

HLT

IDIV — — — — — —

IMUL M — — — — M

IN

INC M M M M M

INS T

INT 0 0

INTO T 0 0

INVD

INVLPG

UCOMSID 0 0 M 0 M M

UCOMISS 0 0 M 0 M M

IRET R R R R R R R R R T

Jcc T T T T T

JCXZ

JMP

LAHF

LAR M

LDS/LES/LSS/LFS/LGS

LEA

LEAVE

LGDT/LIDT/LLDT/LMSW

LOCK

Table A-2.  EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF
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LODS T

LOOP

LOOPE/LOOPNE T

LSL M

LTR

MONITOR

MWAIT

MOV

MOV control, debug, test — — — — — —

MOVS T

MOVSX/MOVZX

MUL M — — — — M

NEG M M M M M M

NOP

NOT

OR 0 M M — M 0

OUT

OUTS T

POP/POPA

POPF R R R R R R R R R R

PUSH/PUSHA/PUSHF

RCL/RCR 1 M TM

RCL/RCR count — TM

RDMSR

RDPMC

RDTSC

REP/REPE/REPNE

RET

ROL/ROR 1 M M

ROL/ROR count — M

RSM M M M M M M M M M M M

SAHF R R R R R

SAL/SAR/SHL/SHR 1 M M M — M M

SAL/SAR/SHL/SHR count — M M — M M

SBB M M M M M TM

SCAS M M M M M M T

SETcc T T T T T

SGDT/SIDT/SLDT/SMSW

Table A-2.  EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF
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SHLD/SHRD — M M — M M

STC 1

STD 1

STI 1

STOS T

STR

SUB M M M M M M

TEST 0 M M — M 0

UD2

VERR/VERRW M

WAIT

WBINVD

WRMSR

XADD M M M M M M

XCHG

XLAT 

XOR 0 M M — M 0

Table A-2.  EFLAGS Cross-Reference (Contd.)

Instruction OF SF ZF AF PF CF TF IF DF NT RF
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APPENDIX B
EFLAGS CONDITION CODES

B.1 CONDITION CODES

Table B-1 lists condition codes that can be queried using CMOVcc, FCMOVcc, Jcc, and SETcc. Condition codes refer 
to the setting of one or more status flags (CF, OF, SF, ZF, and PF) in the EFLAGS register. In the table below:
• The “Mnemonic” column provides the suffix (cc) added to the instruction to specify a test condition. 
• “Condition Tested For” describes the targeted condition. 
• “Instruction Subcode” provides the opcode suffix added to the main opcode to specify the test condition. 
• “Status Flags Setting” describes the flag setting. 

Many of the test conditions are described in two different ways. For example, LE (less or equal) and NG (not 
greater) describe the same test condition. Alternate mnemonics are provided to make code more intelligible.

Table B-1.  EFLAGS Condition Codes 

Mnemonic (cc) Condition Tested For
Instruction
Subcode Status Flags Setting

O Overflow 0000 OF = 1

NO No overflow 0001 OF = 0

B
NAE

Below
Neither above nor equal

0010 CF = 1

NB
AE

Not below
Above or equal

0011 CF = 0

E
Z

Equal
Zero

0100 ZF = 1

NE
NZ

Not equal
Not zero

0101 ZF = 0

BE
NA

Below or equal
Not above

0110 (CF OR ZF) = 1

NBE
A

Neither below nor equal
Above

0111 (CF OR ZF) = 0

S Sign 1000 SF = 1

NS No sign 1001 SF = 0

P
PE

Parity
Parity even

1010 PF = 1

NP
PO

No parity
Parity odd

1011 PF = 0

L
NGE

Less
Neither greater nor equal

1100 (SF XOR OF) = 1

NL
GE

Not less
Greater or equal

1101 (SF XOR OF) = 0

LE
NG

Less or equal
Not greater

1110 ((SF XOR OF) OR ZF) = 1

NLE
G

Neither less nor equal
Greater

1111 ((SF XOR OF) OR ZF) = 0
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The terms “above” and “below” are associated with the CF flag and refer to the relation between two unsigned 
integer values. The terms “greater” and “less” are associated with the SF and OF flags and refer to the relation 
between two signed integer values.



Vol. 1 C-1

APPENDIX C
FLOATING-POINT EXCEPTIONS SUMMARY

C.1 OVERVIEW

This appendix shows which of the floating-point exceptions can be generated for: 
• x87 FPU instructions  —  see Table C-2
• SSE instructions  —  see Table C-3
• SSE2 instructions  —  see Table C-4
• SSE3 instructions  —  see Table C-5
• SSE4 instructions  —  see Table C-6

Table C-1 lists types of floating-point exceptions that potentially can be generated by the x87 FPU and by 
SSE/SSE2/SSE3 instructions.

The floating point exceptions shown in Table C-1 (except for #D and #IS) are defined in IEEE Standard 754-1985 
for Binary Floating-Point Arithmetic. See Section 4.9.1, “Floating-Point Exception Conditions,” for a detailed discus-
sion of floating-point exceptions.

C.2 X87 FPU INSTRUCTIONS

Table C-2 lists the x87 FPU instructions in alphabetical order. For each instruction, it summarizes the floating-point 
exceptions that the instruction can generate.

Table C-1.  x87 FPU and SIMD Floating-Point Exceptions

Floating-
point 
Exception Description

#IS Invalid-operation exception for stack underflow or stack overflow (can only be generated for x87 FPU instructions)*

#IA or #I Invalid-operation exception for invalid arithmetic operands and unsupported formats*

#D Denormal-operand exception

#Z Divide-by-zero exception

#O Numeric-overflow exception

#U Numeric-underflow exception

#P Inexact-result (precision) exception

NOTE:

* The x87 FPU instruction set generates two types of invalid-operation exceptions: #IS (stack underflow or stack overflow) and #IA
(invalid arithmetic operation due to invalid arithmetic operands or unsupported formats). SSE/SSE2/SSE3 instructions potentially
generate #I (invalid operation exceptions due to invalid arithmetic operands or unsupported formats).

Table C-2.  Exceptions Generated with x87 FPU Floating-Point Instructions

Mnemonic Instruction #IS #IA #D #Z #O #U #P

F2XM1 Exponential Y Y Y Y Y

FABS Absolute value Y

FADD(P) Add floating-point Y Y Y Y Y Y

FBLD BCD load Y
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FBSTP BCD store and pop Y Y Y

FCHS Change sign Y

FCLEX Clear exceptions

FCMOVcc Floating-point conditional move Y

FCOM, FCOMP, FCOMPP Compare floating-point Y Y Y

FCOMI, FCOMIP, FUCOMI, 
FUCOMIP

Compare floating-point and set EFLAGS Y Y Y

FCOS Cosine Y Y Y Y

FDECSTP Decrement stack pointer

FDIV(R)(P) Divide floating-point Y Y Y Y Y Y Y

FFREE Free register

FIADD Integer add Y Y Y Y Y Y

FICOM(P) Integer compare Y Y Y

FIDIV Integer divide Y Y Y Y Y Y

FIDIVR Integer divide reversed Y Y Y Y Y Y Y

FILD Integer load Y

FIMUL Integer multiply Y Y Y Y Y Y

FINCSTP Increment stack pointer

FINIT Initialize processor

FIST(P) Integer store Y Y Y

FISTTP Truncate to integer 
(SSE3 instruction)

Y Y Y

FISUB(R) Integer subtract Y Y Y Y Y Y

FLD extended or stack Load floating-point Y

FLD single or double Load floating-point Y Y Y

FLD1 Load + 1.0 Y

FLDCW Load Control word Y Y Y Y Y Y Y

FLDENV Load environment Y Y Y Y Y Y Y

FLDL2E Load log2e Y

FLDL2T Load log210 Y

FLDLG2 Load log102 Y

FLDLN2 Load loge2 Y

FLDPI Load π Y

FLDZ Load + 0.0 Y

FMUL(P) Multiply floating-point Y Y Y Y Y Y

FNOP No operation

FPATAN Partial arctangent Y Y Y Y Y

FPREM Partial remainder Y Y Y Y

FPREM1 IEEE partial remainder Y Y Y Y

Table C-2.  Exceptions Generated with x87 FPU Floating-Point Instructions (Contd.)

Mnemonic Instruction #IS #IA #D #Z #O #U #P
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C.3 SSE INSTRUCTIONS

Table C-3 lists SSE instructions with at least one of the following characteristics:
• have floating-point operands
• generate floating-point results
• read or write floating-point status and control information

The table also summarizes the floating-point exceptions that each instruction can generate.

FPTAN Partial tangent Y Y Y Y Y

FRNDINT Round to integer Y Y Y Y

FRSTOR Restore state Y Y Y Y Y Y Y

FSAVE Save state

FSCALE Scale Y Y Y Y Y Y

FSIN Sine Y Y Y Y Y

FSINCOS Sine and cosine Y Y Y Y Y

FSQRT Square root Y Y Y Y

FST(P) stack or extended Store floating-point Y

FST(P) single or double Store floating-point Y Y Y Y Y

FSTCW Store control word

FSTENV Store environment

FSTSW (AX) Store status word

FSUB(R)(P) Subtract floating-point Y Y Y Y Y Y

FTST Test Y Y Y

FUCOM(P)(P) Unordered compare floating-point Y Y Y

FWAIT CPU Wait

FXAM Examine

FXCH Exchange registers Y

FXTRACT Extract Y Y Y Y

FYL2X Logarithm Y Y Y Y Y Y Y

FYL2XP1 Logarithm epsilon Y Y Y Y Y Y

Table C-3.  Exceptions Generated with SSE Instructions

Mnemonic Instruction #I #D #Z #O #U #P

ADDPS Packed add. Y Y Y Y Y

ADDSS Scalar add. Y Y Y Y Y

ANDNPS Packed logical INVERT and AND.

ANDPS Packed logical AND.

CMPPS Packed compare. Y Y

CMPSS Scalar compare. Y Y

Table C-2.  Exceptions Generated with x87 FPU Floating-Point Instructions (Contd.)

Mnemonic Instruction #IS #IA #D #Z #O #U #P
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COMISS Scalar ordered compare lower SP FP numbers and set the status 
flags.

Y Y

CVTPI2PS Convert two 32-bit signed integers from MM2/Mem to two SP FP. Y

CVTPS2PI Convert lower two SP FP from XMM/Mem to two 32-bit signed 
integers in MM using rounding specified by MXCSR.

Y Y

CVTSI2SS Convert one 32-bit signed integer from Integer Reg/Mem to one 
SP FP.

Y

CVTSS2SI Convert one SP FP from XMM/Mem to one 32-bit signed integer 
using rounding mode specified by MXCSR, and move the result to 
an integer register. 

Y Y

CVTTPS2PI Convert two SP FP from XMM2/Mem to two 32-bit signed 
integers in MM1 using truncate.

Y Y

CVTTSS2SI Convert lowest SP FP from XMM/Mem to one 32-bit signed 
integer using truncate, and move the result to an integer register. 

Y Y

DIVPS Packed divide. Y Y Y Y Y Y

DIVSS Scalar divide. Y Y Y Y Y Y

LDMXCSR Load control/status word.

MAXPS Packed maximum. Y Y

MAXSS Scalar maximum. Y Y

MINPS Packed minimum. Y Y

MINSS Scalar minimum. Y Y

MOVAPS Move four packed SP values.

MOVHLPS Move packed SP high to low.

MOVHPS Move two packed SP values between memory and the high half of 
an XMM register.

MOVLHPS Move packed SP low to high.

MOVLPS Move two packed SP values between memory and the low half of 
an XMM register.

MOVMSKPS Move sign mask to r32.

MOVSS Move scalar SP number between an XMM register and memory or 
a second XMM register.

MOVUPS Move unaligned packed data.

MULPS Packed multiply. Y Y Y Y Y

MULSS Scalar multiply. Y Y Y Y Y

ORPS Packed OR.

RCPPS Packed reciprocal.

RCPSS Scalar reciprocal.

RSQRTPS Packed reciprocal square root.

RSQRTSS Scalar reciprocal square root.

SHUFPS Shuffle.

SQRTPS Square Root of the packed SP FP numbers. Y Y Y

SQRTSS Scalar square root. Y Y Y

Table C-3.  Exceptions Generated with SSE Instructions (Contd.)

Mnemonic Instruction #I #D #Z #O #U #P
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C.4 SSE2 INSTRUCTIONS

Table C-4 lists SSE2 instructions with at least one of the following characteristics:
• floating-point operands
• floating point results

For each instruction, the table summarizes the floating-point exceptions that the instruction can generate.

STMXCSR Store control/status word.

SUBPS Packed subtract. Y Y Y Y Y

SUBSS Scalar subtract. Y Y Y Y Y

UCOMISS Unordered compare lower SP FP numbers and set the status flags. Y Y

UNPCKHPS Interleave SP FP numbers.

UNPCKLPS Interleave SP FP numbers.

XORPS Packed XOR.

Table C-4.  Exceptions Generated with SSE2 Instructions

Instruction Description #I #D #Z #O #U #P

ADDPD Add two packed DP FP numbers from XMM2/Mem to XMM1. Y Y Y Y Y

ADDSD Add the lower DP FP number from XMM2/Mem to XMM1. Y Y Y Y Y

ANDNPD Invert the 128 bits in XMM1and then AND the result with 128 bits 
from XMM2/Mem.

ANDPD Logical And of 128 bits from XMM2/Mem to XMM1 register.

CMPPD Compare packed DP FP numbers from XMM2/Mem to packed DP 
FP numbers in XMM1 register using imm8 as predicate.

Y Y

CMPSD Compare lowest DP FP number from XMM2/Mem to lowest DP FP 
number in XMM1 register using imm8 as predicate.

Y Y

COMISD Compare lower DP FP number in XMM1 register with lower DP FP 
number in XMM2/Mem and set the status flags accordingly

Y Y

CVTDQ2PS Convert four 32-bit signed integers from XMM/Mem to four SP FP. Y

CVTPS2DQ Convert four SP FP from XMM/Mem to four 32-bit signed integers 
in XMM using rounding specified by MXCSR.

Y Y

CVTTPS2DQ Convert four SP FP from XMM/Mem to four 32-bit signed integers 
in XMM using truncate.

Y Y

CVTDQ2PD Convert two 32-bit signed integers in XMM2/Mem to 2 DP FP in 
xmm1 using rounding specified by MXCSR.

CVTPD2DQ Convert two DP FP from XMM2/Mem to two 32-bit signed 
integers in xmm1 using rounding specified by MXCSR.

Y Y

CVTPD2PI Convert lower two DP FP from XMM/Mem to two 32-bit signed 
integers in MM using rounding specified by MXCSR.

Y Y

CVTPD2PS Convert two DP FP to two SP FP. Y Y Y Y Y

CVTPI2PD Convert two 32-bit signed integers from MM2/Mem to two DP FP.  

CVTPS2PD Convert two SP FP to two DP FP. Y Y

Table C-3.  Exceptions Generated with SSE Instructions (Contd.)

Mnemonic Instruction #I #D #Z #O #U #P
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CVTSD2SI Convert one DP FP from XMM/Mem to one 32 bit signed integer 
using rounding mode specified by MXCSR, and move the result to 
an integer register. 

Y Y

CVTSD2SS Convert scalar DP FP to scalar SP FP. Y Y Y Y Y

CVTSI2SD Convert one 32-bit signed integer from Integer Reg/Mem to one 
DP FP.

 

CVTSS2SD Convert scalar SP FP to scalar DP FP. Y Y

CVTTPD2DQ Convert two DP FP from XMM2/Mem to two 32-bit signed 
integers in XMM1 using truncate.

Y Y

CVTTPD2PI Convert two DP FP from XMM2/Mem to two 32-bit signed 
integers in MM1 using truncate.

Y Y

CVTTSD2SI Convert lowest DP FP from XMM/Mem to one 32 bit signed 
integer using truncate, and move the result to an integer register. 

Y Y

DIVPD Divide packed DP FP numbers in XMM1 by XMM2/Mem Y Y Y Y Y Y

DIVSD Divide lower DP FP numbers in XMM1 by XMM2/Mem Y Y Y Y Y Y

MAXPD Return the maximum DP FP numbers between XMM2/Mem and 
XMM1.

Y Y

MAXSD Return the maximum DP FP number between the lower DP FP 
numbers from XMM2/Mem and XMM1.

Y Y

MINPD Return the minimum DP numbers between XMM2/Mem and 
XMM1.

Y Y

MINSD Return the minimum DP FP number between the lowest DP FP 
numbers from XMM2/Mem and XMM1.

Y Y

MOVAPD Move 128 bits representing 2 packed DP data from XMM2/Mem to 
XMM1 register.

Or Move 128 bits representing 2 packed DP from XMM1 register 
to XMM2/Mem.

MOVHPD Move 64 bits representing one DP operand from Mem to upper 
field of XMM register.

Or move 64 bits representing one DP operand from upper field of 
XMM register to Mem.

MOVLPD Move 64 bits representing one DP operand from Mem to lower 
field of XMM register.

Or move 64 bits representing one DP operand from lower field of 
XMM register to Mem.

MOVMSKPD Move the sign mask to r32. 

MOVSD Move 64 bits representing one scalar DP operand from 
XMM2/Mem to XMM1 register.

Or move 64 bits representing one scalar DP operand from XMM1 
register to XMM2/Mem.

MOVUPD Move 128 bits representing 2 DP data from XMM2/Mem to XMM1 
register.

Or move 128 bits representing 2 DP data from XMM1 register to 
XMM2/Mem.

MULPD  Multiply packed DP FP numbers in XMM2/Mem to XMM1. Y Y Y Y Y

Table C-4.  Exceptions Generated with SSE2 Instructions (Contd.)

Instruction Description #I #D #Z #O #U #P
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C.5 SSE3 INSTRUCTIONS 

Table C-5 lists the SSE3 instructions that have at least one of the following characteristics:
• have floating-point operands
• generate floating-point results

For each instruction, the table summarizes the floating-point exceptions that the instruction can generate.

Other SSE3 instructions do not generate floating-point exceptions.

C.6 SSSE3 INSTRUCTIONS 

SSSE3 instructions operate on integer data elements. They do not generate floating-point exceptions.

C.7 SSE4 INSTRUCTIONS 

Table C-6 lists the SSE4.1 instructions that generate floating-point results.

For each instruction, the table summarizes the floating-point exceptions that the instruction can generate.

MULSD Multiply the lowest DP FP number in XMM2/Mem to XMM1. Y Y Y Y Y

ORPD OR 128 bits from XMM2/Mem to XMM1 register.

SHUFPD Shuffle Double.

SQRTPD Square Root Packed Double-Precision Y Y Y

SQRTSD Square Root Scaler Double-Precision Y Y Y

SUBPD Subtract Packed Double-Precision. Y Y Y Y Y

SUBSD Subtract Scaler Double-Precision. Y Y Y Y Y

UCOMISD Compare lower DP FP number in XMM1 register with lower DP FP 
number in XMM2/Mem and set the status flags accordingly.

Y Y

UNPCKHPD Interleaves DP FP numbers from the high halves of XMM1 and 
XMM2/Mem into XMM1 register.

UNPCKLPD Interleaves DP FP numbers from the low halves of XMM1 and 
XMM2/Mem into XMM1 register.

XORPD XOR 128 bits from XMM2/Mem to XMM1 register.

Table C-5.  Exceptions Generated with SSE3 Instructions 

Instruction Description #I #D #Z #O #U #P

ADDSUBPD Add /Sub packed DP FP numbers from XMM2/Mem to XMM1. Y Y Y Y Y

ADDSUBPS Add /Sub packed SP FP numbers from XMM2/Mem to XMM1. Y Y Y Y Y

FISTTP See Table C-2. Y Y

HADDPD Add horizontally packed DP FP numbers XMM2/Mem to XMM1. Y Y Y Y Y

HADDPS Add horizontally packed SP FP numbers XMM2/Mem to XMM1 Y Y Y Y Y

HSUBPD Sub horizontally packed DP FP numbers XMM2/Mem to XMM1 Y Y Y Y Y

HSUBPS Sub horizontally packed SP FP numbers XMM2/Mem to XMM1 Y Y Y Y Y

Table C-4.  Exceptions Generated with SSE2 Instructions (Contd.)

Instruction Description #I #D #Z #O #U #P
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Other SSE4.1 instructions and SSE4.2 instructions do not generate floating-point exceptions.

Table C-6.  Exceptions Generated with SSE4 Instructions 

Instruction Description #I #D #Z #O #U #P

DPPD DP FP dot product. Y Y Y Y Y

DPPS SP FP dot product. Y Y Y Y Y

ROUNDPD Round packed DP FP values to integer FP values. Y Y1

NOTES:

1. If bit 3 of immediate operand is 0

ROUNDPS Round packed SP FP values to integer FP values. Y Y1

ROUNDSD Round scalar DP FP value to integer FP value. Y Y1

ROUNDSS Round scalar SP FP value to integer FP value. Y Y1
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APPENDIX D
GUIDELINES FOR WRITING X87 FPU

EXCEPTION HANDLERS

As described in Chapter 8, “Programming with the x87 FPU,” the IA-32 Architecture supports two mechanisms for 
accessing exception handlers to handle unmasked x87 FPU exceptions: native mode and MS-DOS compatibility 
mode. The primary purpose of this appendix is to provide detailed information to help software engineers design 
and write x87 FPU exception-handling facilities to run on PC systems that use the MS-DOS compatibility mode1 for 
handling x87 FPU exceptions. Some of the information in this appendix will also be of interest to engineers who are 
writing native-mode x87 FPU exception handlers. The information provided is as follows:
• Discussion of the origin of the MS-DOS x87 FPU exception handling mechanism and its relationship to the x87 

FPU’s native exception handling mechanism.
• Description of the IA-32 flags and processor pins that control the MS-DOS x87 FPU exception handling 

mechanism.
• Description of the external hardware typically required to support MS-DOS exception handling mechanism.
• Description of the x87 FPU’s exception handling mechanism and the typical protocol for x87 FPU exception 

handlers.
• Code examples that demonstrate various levels of x87 FPU exception handlers.
• Discussion of x87 FPU considerations in multitasking environments.
• Discussion of native mode x87 FPU exception handling.

The information given is oriented toward the most recent generations of IA-32 processors, starting with the 
Intel486. It is intended to augment the reference information given in Chapter 8, “Programming with the x87 FPU.”

A more extensive version of this appendix is available in the application note AP-578, Software and Hardware 
Considerations for x87 FPU Exception Handlers for Intel Architecture Processors (Order Number 243291), which is 
available from Intel.

D.1 MS-DOS COMPATIBILITY SUB-MODE FOR HANDLING X87 FPU EXCEPTIONS

The first generations of IA-32 processors (starting with the Intel 8086 and 8088 processors and going through the 
Intel 286 and Intel386 processors) did not have an on-chip floating-point unit. Instead, floating-point capability 
was provided on a separate numeric coprocessor chip. The first of these numeric coprocessors was the Intel 8087, 
which was followed by the Intel 287 and Intel 387 numeric coprocessors. 

To allow the 8087 to signal floating-point exceptions to its companion 8086 or 8088, the 8087 has an output pin, 
INT, which it asserts when an unmasked floating-point exception occurs. The designers of the 8087 recommended 
that the output from this pin be routed through a programmable interrupt controller (PIC) such as the Intel 8259A 
to the INTR pin of the 8086 or 8088. The accompanying interrupt vector number could then be used to access the 
floating-point exception handler.

However, the original IBM* PC design and MS-DOS operating system used a different mechanism for handling the 
INT output from the 8087. It connected the INT pin directly to the NMI input pin of the 8086 or 8088. The NMI inter-
rupt handler then had to determine if the interrupt was caused by a floating-point exception or another NMI event. 
This mechanism is the origin of what is now called the “MS-DOS compatibility mode.” The decision to use this latter 
floating-point exception handling mechanism came about because when the IBM PC was first designed, the 8087 
was not available. When the 8087 did become available, other functions had already been assigned to the eight 
inputs to the PIC. One of these functions was a BIOS video interrupt, which was assigned to interrupt number 16 
for the 8086 and 8088.

1 Microsoft Windows* 95 and Windows 3.1 (and earlier versions) operating systems use almost the same x87 FPU exception handling 
interface as MS-DOS. The recommendations in this appendix for a MS-DOS compatible exception handler thus apply to all three oper-
ating systems.
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The Intel 286 processor created the “native mode” for handling floating-point exceptions by providing a dedicated 
input pin (ERROR#) for receiving floating-point exception signals and a dedicated interrupt number, 16. Interrupt 
16 was used to signal floating-point errors (also called math faults). It was intended that the ERROR# pin on the 
Intel 286 be connected to a corresponding ERROR# pin on the Intel 287 numeric coprocessor. When the Intel 287 
signals a floating-point exception using this mechanism, the Intel 286 generates an interrupt 16, to invoke the 
floating-point exception handler. 

To maintain compatibility with existing PC software, the native floating-point exception handling mode of the Intel 
286 and 287 was not used in the IBM PC AT system design. Instead, the ERROR# pin on the Intel 286 was tied 
permanently high, and the ERROR# pin from the Intel 287 was routed to a second (cascaded) PIC. The resulting 
output of this PIC was routed through an exception handler and eventually caused an interrupt 2 (NMI interrupt). 
Here the NMI interrupt was shared with IBM PC AT’s new parity checking feature. Interrupt 16 remained assigned 
to the BIOS video interrupt handler. The external hardware for the MS-DOS compatibility mode must prevent the 
Intel 286 processor from executing past the next x87 FPU instruction when an unmasked exception has been gener-
ated. To do this, it asserts the BUSY# signal into the Intel 286 when the ERROR# signal is asserted by the Intel 287.

The Intel386 processor and its companion Intel 387 numeric coprocessor provided the same hardware mechanism 
for signaling and handling floating-point exceptions as the Intel 286 and 287 processors. And again, to maintain 
compatibility with existing MS-DOS software, basically the same MS-DOS compatibility floating-point exception 
handling mechanism that was used in the IBM PC AT was used in PCs based on the Intel386 processor.

D.2 IMPLEMENTATION OF THE MS-DOS* COMPATIBILITY SUB-MODE IN THE 
INTEL486™, PENTIUM®, AND P6 PROCESSOR FAMILY, AND PENTIUM® 4 
PROCESSORS

Beginning with the Intel486™ processor, the IA-32 architecture provided a dedicated mechanism for enabling the 
MS-DOS compatibility mode for x87 FPU exceptions and for generating external x87 FPU-exception signals while 
operating in this mode. The following sections describe the implementation of the MS-DOS compatibility mode in 
the Intel486 and Pentium processors and in the P6 family and Pentium 4 processors. Also described is the recom-
mended external hardware to support this mode of operation. 

D.2.1  MS-DOS* Compatibility Sub-mode in the Intel486™ and Pentium® Processors

In the Intel486 processor, several things were done to enhance and speed up the numeric coprocessor, now called 
the floating-point unit (x87 FPU). The most important enhancement was that the x87 FPU was included in the same 
chip as the processor, for increased speed in x87 FPU computations and reduced latency for x87 FPU exception 
handling. Also, for the first time, the MS-DOS compatibility mode was built into the chip design, with the addition 
of the NE bit in control register CR0 and the addition of the FERR# (Floating-point ERRor) and IGNNE# (IGNore 
Numeric Error) pins. 

The NE bit selects the native x87 FPU exception handling mode (NE = 1) or the MS-DOS compatibility mode (NE = 
0). When native mode is selected, all signaling of floating-point exceptions is handled internally in the Intel486 
chip, resulting in the generation of an interrupt 16.

When MS-DOS compatibility mode is selected, the FERRR# and IGNNE# pins are used to signal floating-point 
exceptions. The FERR# output pin, which replaces the ERROR# pin from the previous generations of IA-32 numeric 
coprocessors, is connected to a PIC. A new input signal, IGNNE#, is provided to allow the x87 FPU exception 
handler to execute x87 FPU instructions, if desired, without first clearing the error condition and without triggering 
the interrupt a second time. This IGNNE# feature is needed to replicate the capability that was provided on MS-
DOS compatible Intel 286 and Intel 287 and Intel386 and Intel 387 systems by turning off the BUSY# signal, when 
inside the x87 FPU exception handler, before clearing the error condition.

Note that Intel, in order to provide Intel486 processors for market segments that had no need for an x87 FPU, 
created the “SX” versions. These Intel486 SX processors did not contain the floating-point unit. Intel also produced 
Intel 487 SX processors for end users who later decided to upgrade to a system with an x87 FPU. These Intel 487 
SX processors are similar to standard Intel486 processors with a working x87 FPU on board. 

Thus, the external circuitry necessary to support the MS-DOS compatibility mode for Intel 487 SX processors is the 
same as for standard Intel486 DX processors.
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The Pentium, P6 family, and Pentium 4 processors offer the same mechanism (the NE bit and the FERR# and 
IGNNE# pins) as the Intel486 processors for generating x87 FPU exceptions in MS-DOS compatibility mode. The 
actions of these mechanisms are slightly different and more straightforward for the P6 family and Pentium 4 
processors, as described in Section D.2.2, “MS-DOS* Compatibility Sub-mode in the P6 Family and Pentium® 4 
Processors.”

For Pentium, P6 family, and Pentium 4 processors, it is important to note that the special DP (Dual Processing) 
mode for Pentium processors and also the more general Intel MultiProcessor Specification for systems with 
multiple Pentium, P6 family, or Pentium 4 processors support x87 FPU exception handling only in the native mode. 
Intel does not recommend using the MS-DOS compatibility x87 FPU mode for systems using more than one 
processor.

D.2.1.1  Basic Rules: When FERR# Is Generated

When MS-DOS compatibility mode is enabled for the Intel486 or Pentium processors (NE bit is set to 0) and the 
IGNNE# input pin is de-asserted, the FERR# signal is generated as follows:

1. When an x87 FPU instruction causes an unmasked x87 FPU exception, the processor (in most cases) uses a 
“deferred” method of reporting the error. This means that the processor does not respond immediately, but 
rather freezes just before executing the next WAIT or x87 FPU instruction (except for “no-wait” instructions, 
which the x87 FPU executes regardless of an error condition). 

2. When the processor freezes, it also asserts the FERR# output.

3. The frozen processor waits for an external interrupt, which must be supplied by external hardware in response 
to the FERR# assertion. 

4. In MS-DOS compatibility systems, FERR# is fed to the IRQ13 input in the cascaded PIC. The PIC generates 
interrupt 75H, which then branches to interrupt 2, as described earlier in this appendix for systems using the 
Intel 286 and Intel 287 or Intel386 and Intel 387 processors. 

The deferred method of error reporting is used for all exceptions caused by the basic arithmetic instructions 
(including FADD, FSUB, FMUL, FDIV, FSQRT, FCOM and FUCOM), for precision exceptions caused by all types of x87 
FPU instructions, and for numeric underflow and overflow exceptions caused by all types of x87 FPU instructions 
except stores to memory. 

Some x87 FPU instructions with some x87 FPU exceptions use an “immediate” method of reporting errors. Here, 
the FERR# is asserted immediately, at the time that the exception occurs. The immediate method of error 
reporting is used for x87 FPU stack fault, invalid operation and denormal exceptions caused by all transcendental 
instructions, FSCALE, FXTRACT, FPREM and others, and all exceptions (except precision) when caused by x87 FPU 
store instructions. Like deferred error reporting, immediate error reporting will cause the processor to freeze just 
before executing the next WAIT or x87 FPU instruction if the error condition has not been cleared by that time.

Note that in general, whether deferred or immediate error reporting is used for an x87 FPU exception depends both 
on which exception occurred and which instruction caused that exception. A complete specification of these cases, 
which applies to both the Pentium and the Intel486 processors, is given in Section 5.1.21 in the Pentium Processor 
Family Developer’s Manual: Volume 1. 

If NE = 0 but the IGNNE# input is active while an unmasked x87 FPU exception is in effect, the processor disre-
gards the exception, does not assert FERR#, and continues. If IGNNE# is then de-asserted and the x87 FPU excep-
tion has not been cleared, the processor will respond as described above. (That is, an immediate exception case 
will assert FERR# immediately. A deferred exception case will assert FERR# and freeze just before the next x87 
FPU or WAIT instruction.) The assertion of IGNNE# is intended for use only inside the x87 FPU exception handler, 
where it is needed if one wants to execute non-control x87 FPU instructions for diagnosis, before clearing the 
exception condition. When IGNNE# is asserted inside the exception handler, a preceding x87 FPU exception has 
already caused FERR# to be asserted, and the external interrupt hardware has responded, but IGNNE# assertion 
still prevents the freeze at x87 FPU instructions. Note that if IGNNE# is left active outside of the x87 FPU exception 
handler, additional x87 FPU instructions may be executed after a given instruction has caused an x87 FPU excep-
tion. In this case, if the x87 FPU exception handler ever did get invoked, it could not determine which instruction 
caused the exception. 

To properly manage the interface between the processor’s FERR# output, its IGNNE# input, and the IRQ13 input 
of the PIC, additional external hardware is needed. A recommended configuration is described in the following 
section.
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D.2.1.2  Recommended External Hardware to Support the MS-DOS* Compatibility Sub-mode

Figure D-1 provides an external circuit that will assure proper handling of FERR# and IGNNE# when an x87 FPU 
exception occurs. In particular, it assures that IGNNE# will be active only inside the x87 FPU exception handler 
without depending on the order of actions by the exception handler. Some hardware implementations have been 
less robust because they have depended on the exception handler to clear the x87 FPU exception interrupt request 
to the PIC (FP_IRQ signal) before the handler causes FERR# to be de-asserted by clearing the exception from the 
x87 FPU itself. Figure D-2 shows the details of how IGNNE# will behave when the circuit in Figure D-1 is imple-
mented. The temporal regions within the x87 FPU exception handler activity are described as follows:

1. The FERR# signal is activated by an x87 FPU exception and sends an interrupt request through the PIC to the 
processor’s INTR pin.

2. During the x87 FPU interrupt service routine (exception handler) the processor will need to clear the interrupt 
request latch (Flip Flop #1). It may also want to execute non-control x87 FPU instructions before the exception 
is cleared from the x87 FPU. For this purpose the IGNNE# must be driven low. Typically in the PC environment 
an I/O access to Port 0F0H clears the external x87 FPU exception interrupt request (FP_IRQ). In the 
recommended circuit, this access also is used to activate IGNNE#. With IGNNE# active, the x87 FPU exception 
handler may execute any x87 FPU instruction without being blocked by an active x87 FPU exception.

3. Clearing the exception within the x87 FPU will cause the FERR# signal to be deactivated and then there is no 
further need for IGNNE# to be active. In the recommended circuit, the deactivation of FERR# is used to 
deactivate IGNNE#. If another circuit is used, the software and circuit together must assure that IGNNE# is 
deactivated no later than the exit from the x87 FPU exception handler.

Figure D-1.  Recommended Circuit for MS-DOS Compatibility x87 FPU
Exception Handling
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In the circuit in Figure D-1, when the x87 FPU exception handler accesses I/O port 0F0H it clears the IRQ13 inter-
rupt request output from Flip Flop #1 and also clocks out the IGNNE# signal (active) from Flip Flop #2. So the 
handler can activate IGNNE#, if needed, by doing this 0F0H access before clearing the x87 FPU exception condition 
(which de-asserts FERR#). 

However, the circuit does not depend on the order of actions by the x87 FPU exception handler to guarantee the 
correct hardware state upon exit from the handler. Flip Flop #2, which drives IGNNE# to the processor, has its 
CLEAR input attached to the inverted FERR#. This ensures that IGNNE# can never be active when FERR# is inac-
tive. So if the handler clears the x87 FPU exception condition before the 0F0H access, IGNNE# does not get acti-
vated and left on after exit from the handler.

D.2.1.3  No-Wait x87 FPU Instructions Can Get x87 FPU Interrupt in Window

The Pentium and Intel486 processors implement the “no-wait” floating-point instructions (FNINIT, FNCLEX, 
FNSTENV, FNSAVE, FNSTSW, FNSTCW, FNENI, FNDISI or FNSETPM) in the MS-DOS compatibility mode in the 
following manner. (See Section 8.3.11, “x87 FPU Control Instructions,” and Section 8.3.12, “Waiting vs. Non-
waiting Instructions,” for a discussion of the no-wait instructions.)

If an unmasked numeric exception is pending from a preceding x87 FPU instruction, a member of the no-wait class 
of instructions will, at the beginning of its execution, assert the FERR# pin in response to that exception just like 
other x87 FPU instructions, but then, unlike the other x87 FPU instructions, FERR# will be de-asserted. This de-
assertion was implemented to allow the no-wait class of instructions to proceed without an interrupt due to any 
pending numeric exception. However, the brief assertion of FERR# is sufficient to latch the x87 FPU exception 
request into most hardware interface implementations (including Intel’s recommended circuit). 

All the x87 FPU instructions are implemented such that during their execution, there is a window in which the 
processor will sample and accept external interrupts. If there is a pending interrupt, the processor services the 
interrupt first before resuming the execution of the instruction. Consequently, it is possible that the no-wait 
floating-point instruction may accept the external interrupt caused by it’s own assertion of the FERR# pin in the 
event of a pending unmasked numeric exception, which is not an explicitly documented behavior of a no-wait 
instruction. This process is illustrated in Figure D-3.

Figure D-2.  Behavior of Signals During x87 FPU Exception Handling

0F0H Address
   Decode
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Figure D-3 assumes that a floating-point instruction that generates a “deferred” error (as defined in the Section 
D.2.1.1, “Basic Rules: When FERR# Is Generated”), which asserts the FERR# pin only on encountering the next 
floating-point instruction, causes an unmasked numeric exception. Assume that the next floating-point instruction 
following this instruction is one of the no-wait floating-point instructions. The FERR# pin is asserted by the 
processor to indicate the pending exception on encountering the no-wait floating-point instruction. After the asser-
tion of the FERR# pin the no-wait floating-point instruction opens a window where the pending external interrupts 
are sampled.

Then there are two cases possible depending on the timing of the receipt of the interrupt via the INTR pin (asserted 
by the system in response to the FERR# pin) by the processor.

Case 1 If the system responds to the assertion of FERR# pin by the no-wait floating-point instruction via 
the INTR pin during this window then the interrupt is serviced first, before resuming the execu-
tion of the no-wait floating-point instruction. 

Case 2 If the system responds via the INTR pin after the window has closed then the interrupt is recognized 
only at the next instruction boundary.

There are two other ways, in addition to Case 1 above, in which a no-wait floating-point instruction can service a 
numeric exception inside its interrupt window. First, the first floating-point error condition could be of the “imme-
diate” category (as defined in Section D.2.1.1, “Basic Rules: When FERR# Is Generated”) that asserts FERR# 
immediately. If the system delay before asserting INTR is long enough, relative to the time elapsed before the no-
wait floating-point instruction, INTR can be asserted inside the interrupt window for the latter. Second, consider 
two no-wait x87 FPU instructions in close sequence, and assume that a previous x87 FPU instruction has caused an 
unmasked numeric exception. Then if the INTR timing is too long for an FERR# signal triggered by the first no-wait 
instruction to hit the first instruction’s interrupt window, it could catch the interrupt window of the second.

The possible malfunction of a no-wait x87 FPU instruction explained above cannot happen if the instruction is being 
used in the manner for which Intel originally designed it. The no-wait instructions were intended to be used inside 
the x87 FPU exception handler, to allow manipulation of the x87 FPU before the error condition is cleared, without 
hanging the processor because of the x87 FPU error condition, and without the need to assert IGNNE#. They will 
perform this function correctly, since before the error condition is cleared, the assertion of FERR# that caused the 
x87 FPU error handler to be invoked is still active. Thus the logic that would assert FERR# briefly at a no-wait 
instruction causes no change since FERR# is already asserted. The no-wait instructions may also be used without 
problem in the handler after the error condition is cleared, since now they will not cause FERR# to be asserted at 
all.

Figure D-3.  Timing of Receipt of External Interrupt
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If a no-wait instruction is used outside of the x87 FPU exception handler, it may malfunction as explained above, 
depending on the details of the hardware interface implementation and which particular processor is involved. The 
actual interrupt inside the window in the no-wait instruction may be blocked by surrounding it with the instruc-
tions: PUSHFD, CLI, no-wait, then POPFD. (CLI blocks interrupts, and the push and pop of flags preserves and 
restores the original value of the interrupt flag.) However, if FERR# was triggered by the no-wait, its latched value 
and the PIC response will still be in effect. Further code can be used to check for and correct such a condition, if 
needed. Section D.3.6, “Considerations When x87 FPU Shared Between Tasks,” discusses an important example of 
this type of problem and gives a solution.

D.2.2  MS-DOS* Compatibility Sub-mode in the P6 Family 
and Pentium® 4 Processors

When bit NE = 0 in CR0, the MS-DOS compatibility mode of the P6 family and Pentium 4 processors provides 
FERR# and IGNNE# functionality that is almost identical to the Intel486 and Pentium processors. The same 
external hardware described in Section D.2.1.2, “Recommended External Hardware to Support the MS-DOS* 
Compatibility Sub-mode,” is recommended for the P6 family and Pentium 4 processors as well as the two previous 
generations. The only change to MS-DOS compatibility x87 FPU exception handling with the P6 family and Pentium 
4 processors is that all exceptions for all x87 FPU instructions cause immediate error reporting. That is, FERR# is 
asserted as soon as the x87 FPU detects an unmasked exception; there are no cases in which error reporting is 
deferred to the next x87 FPU or WAIT instruction. 

(As is discussed in Section D.2.1.1, “Basic Rules: When FERR# Is Generated,” most exception cases in the Intel486 
and Pentium processors are of the deferred type.)

Although FERR# is asserted immediately upon detection of an unmasked x87 FPU error, this certainly does not 
mean that the requested interrupt will always be serviced before the next instruction in the code sequence is 
executed. To begin with, the P6 family and Pentium 4 processors execute several instructions simultaneously. 
There also will be a delay, which depends on the external hardware implementation, between the FERR# assertion 
from the processor and the responding INTR assertion to the processor. Further, the interrupt request to the PICs 
(IRQ13) may be temporarily blocked by the operating system, or delayed by higher priority interrupts, and 
processor response to INTR itself is blocked if the operating system has cleared the IF bit in EFLAGS. Note that 
Streaming SIMD Extensions numeric exceptions will not cause assertion of FERR# (independent of the value of 
CR0.NE). In addition, they ignore the assertion/deassertion of IGNNE#).

However, just as with the Intel486 and Pentium processors, if the IGNNE# input is inactive, a floating-point excep-
tion which occurred in the previous x87 FPU instruction and is unmasked causes the processor to freeze immedi-
ately when encountering the next WAIT or x87 FPU instruction (except for no-wait instructions). This means that if 
the x87 FPU exception handler has not already been invoked due to the earlier exception (and therefore, the 
handler not has cleared that exception state from the x87 FPU), the processor is forced to wait for the handler to 
be invoked and handle the exception, before the processor can execute another WAIT or x87 FPU instruction. 

As explained in Section D.2.1.3, “No-Wait x87 FPU Instructions Can Get x87 FPU Interrupt in Window,” if a no-wait 
instruction is used outside of the x87 FPU exception handler, in the Intel486 and Pentium processors, it may accept 
an unmasked exception from a previous x87 FPU instruction which happens to fall within the external interrupt 
sampling window that is opened near the beginning of execution of all x87 FPU instructions. This will not happen in 
the P6 family and Pentium 4 processors, because this sampling window has been removed from the no-wait group 
of x87 FPU instructions.

D.3 RECOMMENDED PROTOCOL FOR MS-DOS* COMPATIBILITY HANDLERS

The activities of numeric programs can be split into two major areas: program control and arithmetic. The program 
control part performs activities such as deciding what functions to perform, calculating addresses of numeric oper-
ands, and loop control. The arithmetic part simply adds, subtracts, multiplies, and performs other operations on 
the numeric operands. The processor is designed to handle these two parts separately and efficiently. An x87 FPU 
exception handler, if a system chooses to implement one, is often one of the most complicated parts of the program 
control code.
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D.3.1  Floating-Point Exceptions and Their Defaults

The x87 FPU can recognize six classes of floating-point exception conditions while executing floating-point instruc-
tions:

1. #I — Invalid operation
    #IS — Stack fault
    #IA — IEEE standard invalid operation

2. #Z — Divide-by-zero

3. #D — Denormalized operand

4. #O — Numeric overflow

5. #U — Numeric underflow

6. #P — Inexact result (precision)

For complete details on these exceptions and their defaults, see Section 8.4, “x87 FPU Floating-Point Exception 
Handling,” and Section 8.5, “x87 FPU Floating-Point Exception Conditions.”

D.3.2  Two Options for Handling Numeric Exceptions

Depending on options determined by the software system designer, the processor takes one of two possible 
courses of action when a numeric exception occurs:

1. The x87 FPU can handle selected exceptions itself, producing a default fix-up that is reasonable in most 
situations. This allows the numeric program execution to continue undisturbed. Programs can mask individual 
exception types to indicate that the x87 FPU should generate this safe, reasonable result whenever the 
exception occurs. The default exception fix-up activity is treated by the x87 FPU as part of the instruction 
causing the exception; no external indication of the exception is given (except that the instruction takes longer 
to execute when it handles a masked exception.) When masked exceptions are detected, a flag is set in the 
numeric status register, but no information is preserved regarding where or when it was set.

2. A software exception handler can be invoked to handle the exception. When a numeric exception is unmasked 
and the exception occurs, the x87 FPU stops further execution of the numeric instruction and causes a branch 
to a software exception handler. The exception handler can then implement any sort of recovery procedures 
desired for any numeric exception detectable by the x87 FPU.

D.3.2.1  Automatic Exception Handling: Using Masked Exceptions

Each of the six exception conditions described above has a corresponding flag bit in the x87 FPU status word and a 
mask bit in the x87 FPU control word. If an exception is masked (the corresponding mask bit in the control word = 
1), the processor takes an appropriate default action and continues with the computation. 

The processor has a default fix-up activity for every possible exception condition it may encounter. These masked-
exception responses are designed to be safe and are generally acceptable for most numeric applications.

For example, if the Inexact result (Precision) exception is masked, the system can specify whether the x87 FPU 
should handle a result that cannot be represented exactly by one of four modes of rounding: rounding it normally, 
chopping it toward zero, always rounding it up, or always down. If the Underflow exception is masked, the x87 FPU 
will store a number that is too small to be represented in normalized form as a denormal (or zero if it’s smaller than 
the smallest denormal). Note that when exceptions are masked, the x87 FPU may detect multiple exceptions in a 
single instruction, because it continues executing the instruction after performing its masked response. For 
example, the x87 FPU could detect a denormalized operand, perform its masked response to this exception, and 
then detect an underflow.

As an example of how even severe exceptions can be handled safely and automatically using the default exception 
responses, consider a calculation of the parallel resistance of several values using only the standard formula (see 
Figure D-4). If R1 becomes zero, the circuit resistance becomes zero. With the divide-by-zero and precision excep-
tions masked, the processor will produce the correct result. FDIV of R1 into 1 gives infinity, and then FDIV of 
(infinity +R2 +R3) into 1 gives zero.
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By masking or unmasking specific numeric exceptions in the x87 FPU control word, programmers can delegate 
responsibility for most exceptions to the processor, reserving the most severe exceptions for programmed excep-
tion handlers. Exception-handling software is often difficult to write, and the masked responses have been tailored 
to deliver the most reasonable result for each condition. For the majority of applications, masking all exceptions 
yields satisfactory results with the least programming effort. Certain exceptions can usefully be left unmasked 
during the debugging phase of software development, and then masked when the clean software is actually run. 
An invalid-operation exception for example, typically indicates a program error that must be corrected.

The exception flags in the x87 FPU status word provide a cumulative record of exceptions that have occurred since 
these flags were last cleared. Once set, these flags can be cleared only by executing the FCLEX/FNCLEX (clear 
exceptions) instruction, by reinitializing the x87 FPU with FINIT/FNINIT or FSAVE/FNSAVE, or by overwriting the 
flags with an FRSTOR or FLDENV instruction. This allows a programmer to mask all exceptions, run a calculation, 
and then inspect the status word to see if any exceptions were detected at any point in the calculation.

D.3.2.2  Software Exception Handling

If the x87 FPU in or with an IA-32 processor (Intel 286 and onwards) encounters an unmasked exception condition, 
with the system operated in the MS-DOS compatibility mode and with IGNNE# not asserted, a software exception 
handler is invoked through a PIC and the processor’s INTR pin. The FERR# (or ERROR#) output from the x87 FPU 
that begins the process of invoking the exception handler may occur when the error condition is first detected, or 
when the processor encounters the next WAIT or x87 FPU instruction. Which of these two cases occurs depends on 
the processor generation and also on which exception and which x87 FPU instruction triggered it, as discussed 
earlier in Section D.1, “MS-DOS Compatibility Sub-mode for Handling x87 FPU Exceptions,” and Section D.2, 
“Implementation of the MS-DOS* Compatibility Sub-mode in the Intel486™, Pentium®, and P6 Processor Family, 
and Pentium® 4 Processors.” The elapsed time between the initial error signal and the invocation of the x87 FPU 
exception handler depends of course on the external hardware interface, and also on whether the external inter-
rupt for x87 FPU errors is enabled. But the architecture ensures that the handler will be invoked before execution 
of the next WAIT or floating-point instruction since an unmasked floating-point exception causes the processor to 
freeze just before executing such an instruction (unless the IGNNE# input is active, or it is a no-wait x87 FPU 
instruction). 

The frozen processor waits for an external interrupt, which must be supplied by external hardware in response to 
the FERR# (or ERROR#) output of the processor (or coprocessor), usually through IRQ13 on the “slave” PIC, and 
then through INTR. Then the external interrupt invokes the exception handling routine. Note that if the external 
interrupt for x87 FPU errors is disabled when the processor executes an x87 FPU instruction, the processor will 
freeze until some other (enabled) interrupt occurs if an unmasked x87 FPU exception condition is in effect. If NE = 
0 but the IGNNE# input is active, the processor disregards the exception and continues. Error reporting via an 
external interrupt is supported for MS-DOS compatibility. Chapter 22, “IA-32 Architecture Compatibility,” of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, contains further discussion of compat-
ibility issues.

Figure D-4.  Arithmetic Example Using Infinity
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The references above to the ERROR# output from the x87 FPU apply to the Intel 387 and Intel 287 math coproces-
sors (NPX chips). If one of these coprocessors encounters an unmasked exception condition, it signals the excep-
tion to the Intel 286 or Intel386 processor using the ERROR# status line between the processor and the 
coprocessor. See Section D.1, “MS-DOS Compatibility Sub-mode for Handling x87 FPU Exceptions,” in this 
appendix, and Chapter 22, “IA-32 Architecture Compatibility,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3B, for differences in x87 FPU exception handling.

The exception-handling routine is normally a part of the systems software. The routine must clear (or disable) the 
active exception flags in the x87 FPU status word before executing any floating-point instructions that cannot 
complete execution when there is a pending floating-point exception. Otherwise, the floating-point instruction will 
trigger the x87 FPU interrupt again, and the system will be caught in an endless loop of nested floating-point 
exceptions, and hang. In any event, the routine must clear (or disable) the active exception flags in the x87 FPU 
status word after handling them, and before IRET(D). Typical exception responses may include:
• Incrementing an exception counter for later display or printing.
• Printing or displaying diagnostic information (e.g., the x87 FPU environment and registers).
• Aborting further execution, or using the exception pointers to build an instruction that will run without 

exception and executing it.

Applications programmers should consult their operating system's reference manuals for the appropriate system 
response to numerical exceptions. For systems programmers, some details on writing software exception handlers 
are provided in Chapter 6, “Interrupt and Exception Handling,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A, as well as in Section D.3.4, “x87 FPU Exception Handling Examples,” in this 
appendix.

As discussed in Section D.2.1.2, “Recommended External Hardware to Support the MS-DOS* Compatibility Sub-
mode,” some early FERR# to INTR hardware interface implementations are less robust than the recommended 
circuit. This is because they depended on the exception handler to clear the x87 FPU exception interrupt request to 
the PIC (by accessing port 0F0H) before the handler causes FERR# to be de-asserted by clearing the exception 
from the x87 FPU itself. To eliminate the chance of a problem with this early hardware, Intel recommends that x87 
FPU exception handlers always access port 0F0H before clearing the error condition from the x87 FPU.

D.3.3  Synchronization Required for Use of x87 FPU Exception Handlers

Concurrency or synchronization management requires a check for exceptions before letting the processor change 
a value just used by the x87 FPU. It is important to remember that almost any numeric instruction can, under the 
wrong circumstances, produce a numeric exception. 

D.3.3.1  Exception Synchronization: What, Why, and When

Exception synchronization means that the exception handler inspects and deals with the exception in the context 
in which it occurred. If concurrent execution is allowed, the state of the processor when it recognizes the exception 
is often not in the context in which it occurred. The processor may have changed many of its internal registers and 
be executing a totally different program by the time the exception occurs. If the exception handler cannot recap-
ture the original context, it cannot reliably determine the cause of the exception or recover successfully from the 
exception. To handle this situation, the x87 FPU has special registers updated at the start of each numeric instruc-
tion to describe the state of the numeric program when the failed instruction was attempted. 

This provides tools to help the exception handler recapture the original context, but the application code must also 
be written with synchronization in mind. Overall, exception synchronization must ensure that the x87 FPU and 
other relevant parts of the context are in a well defined state when the handler is invoked after an unmasked 
numeric exception occurs. 

When the x87 FPU signals an unmasked exception condition, it is requesting help. The fact that the exception was 
unmasked indicates that further numeric program execution under the arithmetic and programming rules of the 
x87 FPU will probably yield invalid results. Thus the exception must be handled, and with proper synchronization, 
or the program will not operate reliably.

For programmers using higher-level languages, all required synchronization is automatically provided by the 
appropriate compiler. However, for assembly language programmers exception synchronization remains the 
responsibility of the programmer. It is not uncommon for a programmer to expect that their numeric program will 
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not cause numeric exceptions after it has been tested and debugged, but in a different system or numeric environ-
ment, exceptions may occur regularly nonetheless. An obvious example would be use of the program with some 
numbers beyond the range for which it was designed and tested. Example D-1 and Example D-2 in Section D.3.3.2, 
“Exception Synchronization Examples,” show a subtle way in which unexpected exceptions can occur.

As described in Section D.3.1, “Floating-Point Exceptions and Their Defaults,” depending on options determined by 
the software system designer, the processor can perform one of two possible courses of action when a numeric 
exception occurs.
• The x87 FPU can provide a default fix-up for selected numeric exceptions. If the x87 FPU performs its default 

action for all exceptions, then the need for exception synchronization is not manifest. However, code is often 
ported to contexts and operating systems for which it was not originally designed. Example D-1 and Example 
D-2, below, illustrate that it is safest to always consider exception synchronization when designing code that 
uses the x87 FPU.

• Alternatively, a software exception handler can be invoked to handle the exception. When a numeric exception 
is unmasked and the exception occurs, the x87 FPU stops further execution of the numeric instruction and 
causes a branch to a software exception handler. When an x87 FPU exception handler will be invoked, synchro-
nization must always be considered to assure reliable performance.

Example D-1 and Example D-2, below, illustrate the need to always consider exception synchronization when 
writing numeric code, even when the code is initially intended for execution with exceptions masked.

D.3.3.2  Exception Synchronization Examples

In the following examples, three instructions are shown to load an integer, calculate its square root, then increment 
the integer. The synchronous execution of the x87 FPU will allow both of these programs to execute correctly, with 
INC COUNT being executed in parallel in the processor, as long as no exceptions occur on the FILD instruction. 
However, if the code is later moved to an environment where exceptions are unmasked, the code in Example D-1 
will not work correctly:

Example D-1.  Incorrect Error Synchronization

FILD COUNT ;x87 FPU instruction

INC COUNT ;integer instruction alters operand

FSQRT ;subsequent x87 FPU instruction -- error 

;from previous x87 FPU instruction detected here

Example D-2.  Proper Error Synchronization

FILD COUNT ;x87 FPU instruction

FSQRT ;subsequent x87 FPU instruction -- error from 

;previous x87 FPU instruction detected here

INC COUNT ;integer instruction alters operand

In some operating systems supporting the x87 FPU, the numeric register stack is extended to memory. To extend 
the x87 FPU stack to memory, the invalid exception is unmasked. A push to a full register or pop from an empty 
register sets SF (Stack Fault flag) and causes an invalid operation exception. The recovery routine for the exception 
must recognize this situation, fix up the stack, then perform the original operation. The recovery routine will not 
work correctly in Example D-1. The problem is that the value of COUNT increments before the exception handler is 
invoked, so that the recovery routine will load an incorrect value of COUNT, causing the program to fail or behave 
unreliably.

D.3.3.3  Proper Exception Synchronization

As explained in Section D.2.1.2, “Recommended External Hardware to Support the MS-DOS* Compatibility Sub-
mode,” if the x87 FPU encounters an unmasked exception condition a software exception handler is invoked before 
execution of the next WAIT or floating-point instruction. This is because an unmasked floating-point exception 
causes the processor to freeze immediately before executing such an instruction (unless the IGNNE# input is 
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active, or it is a no-wait x87 FPU instruction). Exactly when the exception handler will be invoked (in the interval 
between when the exception is detected and the next WAIT or x87 FPU instruction) is dependent on the processor 
generation, the system, and which x87 FPU instruction and exception is involved. 

To be safe in exception synchronization, one should assume the handler will be invoked at the end of the interval. 
Thus the program should not change any value that might be needed by the handler (such as COUNT in Example 
D-1 and Example D-2) until after the next x87 FPU instruction following an x87 FPU instruction that could cause 
an error. If the program needs to modify such a value before the next x87 FPU instruction (or if the next x87 FPU 
instruction could also cause an error), then a WAIT instruction should be inserted before the value is modified. This 
will force the handling of any exception before the value is modified. A WAIT instruction should also be placed after 
the last floating-point instruction in an application so that any unmasked exceptions will be serviced before the task 
completes.

D.3.4  x87 FPU Exception Handling Examples

There are many approaches to writing exception handlers. One useful technique is to consider the exception 
handler procedure as consisting of “prologue,” “body,” and “epilogue” sections of code. 

In the transfer of control to the exception handler due to an INTR, NMI, or SMI, external interrupts have been 
disabled by hardware. The prologue performs all functions that must be protected from possible interruption by 
higher-priority sources. Typically, this involves saving registers and transferring diagnostic information from the 
x87 FPU to memory. When the critical processing has been completed, the prologue may re-enable interrupts to 
allow higher-priority interrupt handlers to preempt the exception handler. The standard “prologue” not only saves 
the registers and transfers diagnostic information from the x87 FPU to memory but also clears the floating-point 
exception flags in the status word. Alternatively, when it is not necessary for the handler to be re-entrant, another 
technique may also be used. In this technique, the exception flags are not cleared in the “prologue” and the body 
of the handler must not contain any floating-point instructions that cannot complete execution when there is a 
pending floating-point exception. (The no-wait instructions are discussed in Section 8.3.12, “Waiting vs. Non-
waiting Instructions.”) Note that the handler must still clear the exception flag(s) before executing the IRET. If the 
exception handler uses neither of these techniques, the system will be caught in an endless loop of nested floating-
point exceptions, and hang.

The body of the exception handler examines the diagnostic information and makes a response that is necessarily 
application-dependent. This response may range from halting execution, to displaying a message, to attempting to 
repair the problem and proceed with normal execution. The epilogue essentially reverses the actions of the 
prologue, restoring the processor so that normal execution can be resumed. The epilogue must not load an 
unmasked exception flag into the x87 FPU or another exception will be requested immediately.

The following code examples show the ASM386/486 coding of three skeleton exception handlers, with the save 
spaces given as correct for 32-bit protected mode. They show how prologues and epilogues can be written for 
various situations, but the application-dependent exception handling body is just indicated by comments showing 
where it should be placed.

The first two are very similar; their only substantial difference is their choice of instructions to save and restore the 
x87 FPU. The trade-off here is between the increased diagnostic information provided by FNSAVE and the faster 
execution of FNSTENV. (Also, after saving the original contents, FNSAVE re-initializes the x87 FPU, while FNSTENV 
only masks all x87 FPU exceptions.) For applications that are sensitive to interrupt latency or that do not need to 
examine register contents, FNSTENV reduces the duration of the “critical region,” during which the processor does 
not recognize another interrupt request. (See the Section 8.1.10, “Saving the x87 FPU’s State with 
FSTENV/FNSTENV and FSAVE/FNSAVE,” for a complete description of the x87 FPU save image.) If the processor 
supports Streaming SIMD Extensions and the operating system supports it, the FXSAVE instruction should be used 
instead of FNSAVE. If the FXSAVE instruction is used, the save area should be increased to 512 bytes and aligned 
to 16 bytes to save the entire state. These steps will ensure that the complete context is saved.

After the exception handler body, the epilogues prepare the processor to resume execution from the point of inter-
ruption (for example, the instruction following the one that generated the unmasked exception). Notice that the 
exception flags in the memory image that is loaded into the x87 FPU are cleared to zero prior to reloading (in fact, 
in these examples, the entire status word image is cleared).

Example D-3 and Example D-4 assume that the exception handler itself will not cause an unmasked exception. 
Where this is a possibility, the general approach shown in Example D-5 can be employed. The basic technique is to 
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save the full x87 FPU state and then to load a new control word in the prologue. Note that considerable care should 
be taken when designing an exception handler of this type to prevent the handler from being reentered endlessly.

Example D-3.  Full-State Exception Handler

SAVE_ALL PROC

;

;SAVE REGISTERS, ALLOCATE STACK SPACE FOR x87 FPU STATE IMAGE

PUSH EBP

.

.

MOV EBP, ESP

SUB ESP, 108 ; ALLOCATES 108 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE FULL x87 FPU STATE, RESTORE INTERRUPT ENABLE FLAG (IF)

FNSAVE [EBP-108]

PUSH [EBP + OFFSET_TO_EFLAGS] ; COPY OLD EFLAGS TO STACK TOP

POPFD ;RESTORE IF TO VALUE BEFORE x87 FPU EXCEPTION

;

;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE

;

;CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)

;RESTORE MODIFIED STATE IMAGE

MOV BYTE PTR [EBP-104], 0H

FRSTOR [EBP-108]

;DE-ALLOCATE STACK SPACE, RESTORE REGISTERS

MOV ESP, EBP

.

.

POP EBP

;

;RETURN TO INTERRUPTED CALCULATION

IRETD

SAVE_ALL ENDP

Example D-4.  Reduced-Latency Exception Handler

SAVE_ENVIRONMENTPROC

;

;SAVE REGISTERS, ALLOCATE STACK SPACE FOR x87 FPU ENVIRONMENT 

PUSH EBP

.

.

MOV EBP, ESP

SUB ESP, 28  ;ALLOCATES 28 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE ENVIRONMENT, RESTORE INTERRUPT ENABLE FLAG (IF)

FNSTENV [EBP - 28]

PUSH [EBP + OFFSET_TO_EFLAGS]  ; COPY OLD EFLAGS TO STACK TOP

POPFD ;RESTORE IF TO VALUE BEFORE x87 FPU EXCEPTION

;

;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE

;

;CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)

;RESTORE MODIFIED ENVIRONMENT IMAGE

MOV BYTE PTR [EBP-24], 0H
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FLDENV [EBP-28]

;DE-ALLOCATE STACK SPACE, RESTORE REGISTERS

MOV ESP, EBP

.

.

POP EBP

;

;RETURN TO INTERRUPTED CALCULATION

IRETD

SAVE_ENVIRONMENT ENDP

Example D-5.  Reentrant Exception Handler

.

.

LOCAL_CONTROL DW ?; ASSUME INITIALIZED

.

.

REENTRANTPROC

;

;SAVE REGISTERS, ALLOCATE STACK SPACE FOR x87 FPU STATE IMAGE

PUSH EBP

.

.

MOV EBP, ESP

SUB ESP, 108  ;ALLOCATES 108 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE STATE, LOAD NEW CONTROL WORD, RESTORE INTERRUPT ENABLE FLAG (IF)

FNSAVE [EBP-108]

FLDCW LOCAL_CONTROL

PUSH [EBP + OFFSET_TO_EFLAGS]  ;COPY OLD EFLAGS TO STACK TOP

POPFD ;RESTORE IF TO VALUE BEFORE x87 FPU EXCEPTION

.

.

;

;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE  
;GOES HERE - AN UNMASKED EXCEPTION
;GENERATED HERE WILL CAUSE THE EXCEPTION HANDLER TO BE REENTERED

;IF LOCAL STORAGE IS NEEDED, IT MUST BE ALLOCATED ON THE STACK

.

;CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)

;RESTORE MODIFIED STATE IMAGE

MOV  BYTE PTR [EBP-104], 0H

FRSTOR  [EBP-108]

;DE-ALLOCATE STACK SPACE, RESTORE REGISTERS

MOV ESP, EBP

.

.

POP EBP

;

;RETURN TO POINT OF INTERRUPTION

IRETD

REENTRANT ENDP



Vol. 1 D-15

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS

D.3.5  Need for Storing State of IGNNE# Circuit If Using x87 FPU and SMM

The recommended circuit (see Figure D-1) for MS-DOS compatibility x87 FPU exception handling for Intel486 
processors and beyond contains two flip flops. When the x87 FPU exception handler accesses I/O port 0F0H it 
clears the IRQ13 interrupt request output from Flip Flop #1 and also clocks out the IGNNE# signal (active) from 
Flip Flop #2. 

The assertion of IGNNE# may be used by the handler if needed to execute any x87 FPU instruction while ignoring 
the pending x87 FPU errors. The problem here is that the state of Flip Flop #2 is effectively an additional (but 
hidden) status bit that can affect processor behavior, and so ideally should be saved upon entering SMM, and 
restored before resuming to normal operation. If this is not done, and also the SMM code saves the x87 FPU state, 
AND an x87 FPU error handler is being used which relies on IGNNE# assertion, then (very rarely) the x87 FPU 
handler will nest inside itself and malfunction. The following example shows how this can happen.

Suppose that the x87 FPU exception handler includes the following sequence:

FNSTSW save_sw ; save the x87 FPU status word 

; using a no-wait x87 FPU instruction

OUT 0F0H, AL ; clears IRQ13 & activates IGNNE#

 . . . .

FLDCW new_cw ; loads new CW ignoring x87 FPU errors, 

 ; since IGNNE# is assumed active; or any 

; other x87 FPU instruction that is not a no-wait 

; type will cause the same problem

 . . . .

FCLEX ; clear the x87 FPU error conditions & thus 

; turn off FERR# & reset the IGNNE# FF

The problem will only occur if the processor enters SMM between the OUT and the FLDCW instructions. But if that 
happens, AND the SMM code saves the x87 FPU state using FNSAVE, then the IGNNE# Flip Flop will be cleared 
(because FNSAVE clears the x87 FPU errors and thus de-asserts FERR#). When the processor returns from SMM it 
will restore the x87 FPU state with FRSTOR, which will re-assert FERR#, but the IGNNE# Flip Flop will not get set. 
Then when the x87 FPU error handler executes the FLDCW instruction, the active error condition will cause the 
processor to re-enter the x87 FPU error handler from the beginning. This may cause the handler to malfunction.

To avoid this problem, Intel recommends two measures:

1. Do not use the x87 FPU for calculations inside SMM code. (The normal power management, and sometimes 
security, functions provided by SMM have no need for x87 FPU calculations; if they are needed for some special 
case, use scaling or emulation instead.) This eliminates the need to do FNSAVE/FRSTOR inside SMM code, 
except when going into a 0 V suspend state (in which, in order to save power, the CPU is turned off completely, 
requiring its complete state to be saved).

2. The system should not call upon SMM code to put the processor into 0 V suspend while the processor is running 
x87 FPU calculations, or just after an interrupt has occurred. Normal power management protocol avoids this 
by going into power down states only after timed intervals in which no system activity occurs.

D.3.6  Considerations When x87 FPU Shared Between Tasks

The IA-32 architecture allows speculative deferral of floating-point state swaps on task switches. This feature 
allows postponing an x87 FPU state swap until an x87 FPU instruction is actually encountered in another task. Since 
kernel tasks rarely use floating-point, and some applications do not use floating-point or use it infrequently, the 
amount of time saved by avoiding unnecessary stores of the floating-point state is significant. Speculative deferral 
of x87 FPU saves does, however, place an extra burden on the kernel in three key ways:

1. The kernel must keep track of which thread owns the x87 FPU, which may be different from the currently 
executing thread.

2. The kernel must associate any floating-point exceptions with the generating task. This requires special 
handling since floating-point exceptions are delivered asynchronous with other system activity.
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3. There are conditions under which spurious floating-point exception interrupts are generated, which the kernel 
must recognize and discard.

D.3.6.1  Speculatively Deferring x87 FPU Saves, General Overview

In order to support multitasking, each thread in the system needs a save area for the general-purpose registers, 
and each task that is allowed to use floating-point needs an x87 FPU save area large enough to hold the entire x87 
FPU stack and associated x87 FPU state such as the control word and status word. (See Section 8.1.10, “Saving the 
x87 FPU’s State with FSTENV/FNSTENV and FSAVE/FNSAVE,” for a complete description of the x87 FPU save 
image.) If the processor and the operating system support Streaming SIMD Extensions, the save area should be 
large enough and aligned correctly to hold x87 FPU and Streaming SIMD Extensions state.

On a task switch, the general-purpose registers are swapped out to their save area for the suspending thread, and 
the registers of the resuming thread are loaded. The x87 FPU state does not need to be saved at this point. If the 
resuming thread does not use the x87 FPU before it is itself suspended, then both a save and a load of the x87 FPU 
state has been avoided. It is often the case that several threads may be executed without any usage of the x87 
FPU.

The processor supports speculative deferral of x87 FPU saves via interrupt 7 “Device Not Available” (DNA), used in 
conjunction with CR0 bit 3, the “Task Switched” bit (TS). (See “Control Registers” in Chapter 2 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.) Every task switch via the hardware supported task 
switching mechanism (see “Task Switching” in Chapter 7 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A) sets TS. Multi-threaded kernels that use software task switching1 can set the TS bit by 
reading CR0, ORing a “1” into2 bit 3, and writing back CR0. Any subsequent floating-point instructions (now being 
executed in a new thread context) will fault via interrupt 7 before execution. 

This allows a DNA handler to save the old floating-point context and reload the x87 FPU state for the current 
thread. The handler should clear the TS bit before exit using the CLTS instruction. On return from the handler the 
faulting thread will proceed with its floating-point computation.

Some operating systems save the x87 FPU context on every task switch, typically because they also change the 
linear address space between tasks. The problem and solution discussed in the following sections apply to these 
operating systems also.

D.3.6.2  Tracking x87 FPU Ownership

Since the contents of the x87 FPU may not belong to the currently executing thread, the thread identifier for the 
last x87 FPU user needs to be tracked separately. This is not complicated; the kernel should simply provide a vari-
able to store the thread identifier of the x87 FPU owner, separate from the variable that stores the identifier for the 
currently executing thread. This variable is updated in the DNA exception handler, and is used by the DNA excep-
tion handler to find the x87 FPU save areas of the old and new threads. A simplified flow for a DNA exception 
handler is then:

1. Use the “x87 FPU Owner” variable to find the x87 FPU save area of the last thread to use the x87 FPU.

2. Save the x87 FPU contents to the old thread’s save area, typically using an FNSAVE or FXSAVE instruction.

3. Set the x87 FPU Owner variable to the identify the currently executing thread.

4. Reload the x87 FPU contents from the new thread’s save area, typically using an FRSTOR or FXSTOR 
instruction.

5. Clear TS using the CLTS instruction and exit the DNA exception handler.

While this flow covers the basic requirements for speculatively deferred x87 FPU state swaps, there are some addi-
tional subtleties that need to be handled in a robust implementation.

1 In a software task switch, the operating system uses a sequence of instructions to save the suspending thread’s state and restore
the resuming thread’s state, instead of the single long non-interruptible task switch operation provided by the IA-32 architecture.

2 Although CR0, bit 2, the emulation flag (EM), also causes a DNA exception, do not use the EM bit as a surrogate for TS. EM means that
no x87 FPU is available and that floating-point instructions must be emulated. Using EM to trap on task switches is not compatible
with the MMX technology. If the EM flag is set, MMX instructions raise the invalid opcode exception.
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D.3.6.3  Interaction of x87 FPU State Saves and Floating-Point Exception Association

Recall these key points from earlier in this document: When considering floating-point exceptions across all imple-
mentations of the IA-32 architecture, and across all floating-point instructions, a floating-point exception can be 
initiated from any time during the excepting floating-point instruction, up to just before the next floating-point 
instruction. The “next” floating-point instruction may be the FNSAVE used to save the x87 FPU state for a task 
switch. In the case of “no-wait:” instructions such as FNSAVE, the interrupt from a previously excepting instruc-
tion (NE = 0 case) may arrive just before the no-wait instruction, during, or shortly thereafter with a system 
dependent delay. 

Note that this implies that an floating-point exception might be registered during the state swap process itself, and 
the kernel and floating-point exception interrupt handler must be prepared for this case.

A simple way to handle the case of exceptions arriving during x87 FPU state swaps is to allow the kernel to be one 
of the x87 FPU owning threads. A reserved thread identifier is used to indicate kernel ownership of the x87 FPU. 
During an floating-point state swap, the “x87 FPU owner” variable should be set to indicate the kernel as the 
current owner. At the completion of the state swap, the variable should be set to indicate the new owning thread. 
The numeric exception handler needs to check the x87 FPU owner and discard any numeric exceptions that occur 
while the kernel is the x87 FPU owner. A more general flow for a DNA exception handler that handles this case is 
shown in Figure D-5.

Numeric exceptions received while the kernel owns the x87 FPU for a state swap must be discarded in the kernel 
without being dispatched to a handler. A flow for a numeric exception dispatch routine is shown in Figure D-6.

It may at first glance seem that there is a possibility of floating-point exceptions being lost because of exceptions 
that are discarded during state swaps. This is not the case, as the exception will be re-issued when the floating-
point state is reloaded. Walking through state swaps both with and without pending numeric exceptions will clarify 
the operation of these two handlers.

Figure D-5.  General Program Flow for DNA Exception Handler
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Case #1: x87 FPU State Swap Without Numeric Exception

Assume two threads A and B, both using the floating-point unit. Let A be the thread to have most recently executed 
a floating-point instruction, with no pending numeric exceptions. Let B be the currently executing thread. CR0.TS 
was set when thread A was suspended. 

When B starts to execute a floating-point instruction the instruction will fault with the DNA exception because TS is 
set.

At this point the handler is entered, and eventually it finds that the current x87 FPU Owner is not the currently 
executing thread. To guard the x87 FPU state swap from extraneous numeric exceptions, the x87 FPU Owner is set 
to be the kernel. The old owner’s x87 FPU state is saved with FNSAVE, and the current thread’s x87 FPU state is 
restored with FRSTOR. Before exiting, the x87 FPU owner is set to thread B, and the TS bit is cleared.

On exit, thread B resumes execution of the faulting floating-point instruction and continues.

Case #2: x87 FPU State Swap with Discarded Numeric Exception

Again, assume two threads A and B, both using the floating-point unit. Let A be the thread to have most recently 
executed a floating-point instruction, but this time let there be a pending numeric exception. Let B be the currently 
executing thread. When B starts to execute a floating-point instruction the instruction will fault with the DNA 
exception and enter the DNA handler. (If both numeric and DNA exceptions are pending, the DNA exception takes 
precedence, in order to support handling the numeric exception in its own context.)

When the FNSAVE starts, it will trigger an interrupt via FERR# because of the pending numeric exception. After 
some system dependent delay, the numeric exception handler is entered. It may be entered before the FNSAVE 
starts to execute, or it may be entered shortly after execution of the FNSAVE. Since the x87 FPU Owner is the 
kernel, the numeric exception handler simply exits, discarding the exception. The DNA handler resumes execution, 
completing the FNSAVE of the old floating-point context of thread A and the FRSTOR of the floating-point context 
for thread B.

Thread A eventually gets an opportunity to handle the exception that was discarded during the task switch. After 
some time, thread B is suspended, and thread A resumes execution. When thread A starts to execute an floating-
point instruction, once again the DNA exception handler is entered. B’s x87 FPU state is saved with FNSAVE, and 
A’s x87 FPU state is restored with FRSTOR. Note that in restoring the x87 FPU state from A’s save area, the pending 
numeric exception flags are reloaded into the floating-point status word. Now when the DNA exception handler 
returns, thread A resumes execution of the faulting floating-point instruction just long enough to immediately 
generate a numeric exception, which now gets handled in the normal way. The net result is that the task switch and 
resulting x87 FPU state swap via the DNA exception handler causes an extra numeric exception which can be safely 
discarded.

D.3.6.4  Interrupt Routing From the Kernel

In MS-DOS, an application that wishes to handle numeric exceptions hooks interrupt 16 by placing its handler 
address in the interrupt vector table, and exiting via a jump to the previous interrupt 16 handler. Protected mode 
systems that run MS-DOS programs under a subsystem can emulate this exception delivery mechanism. For 
example, assume a protected mode OS. that runs with CR0.NE[bit 5] = 1, and that runs MS-DOS programs in a 

Figure D-6.  Program Flow for a Numeric Exception Dispatch Routine
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virtual machine subsystem. The MS-DOS program is set up in a virtual machine that provides a virtualized inter-
rupt table. The MS-DOS application hooks interrupt 16 in the virtual machine in the normal way. A numeric excep-
tion will trap to the kernel via the real INT 16 residing in the kernel at ring 0. 

The INT 16 handler in the kernel then locates the correct MS-DOS virtual machine, and reflects the interrupt to the 
virtual machine monitor. The virtual machine monitor then emulates an interrupt by jumping through the address 
in the virtualized interrupt table, eventually reaching the application’s numeric exception handler.

D.3.6.5  Special Considerations for Operating Systems that Support Streaming SIMD Extensions

Operating systems that support Streaming SIMD Extensions instructions introduced with the Pentium III processor 
should use the FXSAVE and FXRSTOR instructions to save and restore the new SIMD floating-point instruction 
register state as well as the floating-point state. Such operating systems must consider the following issues:

1. Enlarged state save area — FNSAVE/FRSTOR instructions operate on a 94-byte or 108-byte memory region, 
depending on whether they are executed in 16-bit or 32-bit mode. The FXSAVE/FXRSTOR instructions operate 
on a 512-byte memory region.

2. Alignment requirements — FXSAVE/FXRSTOR instructions require the memory region on which they 
operate to be 16-byte aligned (refer to the individual instruction instructions descriptions in Chapter 3 of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for information about exceptions 
generated if the memory region is not aligned).

3. Maintaining compatibility with legacy applications/libraries — The operating system changes to 
support Streaming SIMD Extensions must be invisible to legacy applications or libraries that deal only with 
floating-point instructions. The layout of the memory region operated on by the FXSAVE/FXRSTOR instructions 
is different from the layout for the FNSAVE/FRSTOR instructions. Specifically, the format of the x87 FPU tag 
word and the length of the various fields in the memory region is different. Care must be taken to return the 
x87 FPU state to a legacy application (e.g., when reporting FP exceptions) in the format it expects.

4. Instruction semantic differences — There are some semantic differences between the way the FXSAVE and 
FSAVE/FNSAVE instructions operate. The FSAVE/FNSAVE instructions clear the x87 FPU after they save the 
state while the FXSAVE instruction saves the x87 FPU/Streaming SIMD Extensions state but does not clear it. 
Operating systems that use FXSAVE to save the x87 FPU state before making it available for another thread 
(e.g., during thread switch time) should take precautions not to pass a “dirty” x87 FPU to another application.

D.4 DIFFERENCES FOR HANDLERS USING NATIVE MODE

The 8087 has an INT pin which it asserts when an unmasked exception occurs. But there is no interrupt input pin 
in the 8086 or 8088 dedicated to its attachment, nor an interrupt vector number in the 8086 or 8088 specific for an 
x87 FPU error assertion. Beginning with the Intel 286 and Intel 287 hardware, a connection was dedicated to 
support the x87 FPU exception and interrupt vector 16 was assigned to it.

D.4.1  Origin with the Intel 286 and Intel 287, and Intel386 and Intel 387 Processors

The Intel 286 and Intel 287, and Intel386 and Intel 387 processor/coprocessor pairs are each provided with 
ERROR# pins that are recommended to be connected between the processor and x87 FPU. If this is done, when an 
unmasked x87 FPU exception occurs, the x87 FPU records the exception, and asserts its ERROR# pin. The 
processor recognizes this active condition of the ERROR# status line immediately before execution of the next 
WAIT or x87 FPU instruction (except for the no-wait type) in its instruction stream, and branches to the routine at 
interrupt vector 16. Thus an x87 FPU exception will be handled before any other x87 FPU instruction (after the one 
causing the error) is executed (except for no-wait instructions, which will be executed without triggering the x87 
FPU exception interrupt, but it will remain pending).

Using the dedicated INT 16 for x87 FPU exception handling is referred to as the native mode. It is the simplest 
approach, and the one recommended most highly by Intel.
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D.4.2  Changes with Intel486, Pentium and Pentium Pro Processors with CR0.NE[bit 5] = 1

With these three generations of the IA-32 architecture, more enhancements and speedup features have been 
added to the corresponding x87 FPUs. Also, the x87 FPU is now built into the same chip as the processor, which 
allows further increases in the speed at which the x87 FPU can operate as part of the integrated system. This also 
means that the native mode of x87 FPU exception handling, selected by setting bit NE of register CR0 to 1, is now 
entirely internal.

If an unmasked exception occurs during an x87 FPU instruction, the x87 FPU records the exception internally, and 
triggers the exception handler through interrupt 16 immediately before execution of the next WAIT or x87 FPU 
instruction (except for no-wait instructions, which will be executed as described in Section D.4.1, “Origin with the 
Intel 286 and Intel 287, and Intel386 and Intel 387 Processors”).

An unmasked numerical exception causes the FERR# output to be activated even with NE = 1, and at exactly the 
same point in the program flow as it would have been asserted if NE were zero. However, the system would not 
connect FERR# to a PIC to generate INTR when operating in the native, internal mode. (If the hardware of a system 
has FERR# connected to trigger IRQ13 in order to support MS-DOS, but an operating system using the native mode 
is actually running the system, it is the operating system’s responsibility to make sure that IRQ13 is not enabled in 
the slave PIC.) With this configuration a system is immune to the problem discussed in Section D.2.1.3, “No-Wait 
x87 FPU Instructions Can Get x87 FPU Interrupt in Window,” where for Intel486 and Pentium processors a no-wait 
x87 FPU instruction can get an x87 FPU exception.

D.4.3  Considerations When x87 FPU Shared Between Tasks Using Native Mode

The protocols recommended in Section D.3.6, “Considerations When x87 FPU Shared Between Tasks,” for MS-DOS 
compatibility x87 FPU exception handlers that are shared between tasks may be used without change with the 
native mode. However, the protocols for a handler written specifically for native mode can be simplified, because 
the problem of a spurious floating-point exception interrupt occurring while the kernel is executing cannot happen 
in native mode. 

The problem as actually found in practical code in a MS-DOS compatibility system happens when the DNA handler 
uses FNSAVE to switch x87 FPU contexts. If an x87 FPU exception is active, then FNSAVE triggers FERR# briefly, 
which usually will cause the x87 FPU exception handler to be invoked inside the DNA handler. In native mode, 
neither FNSAVE nor any other no-wait instructions can trigger interrupt 16. (As discussed above, FERR# gets 
asserted independent of the value of the NE bit, but when NE = 1, the operating system should not enable its path 
through the PIC.) Another possible (very rare) way a floating-point exception interrupt could occur while the kernel 
is executing is by an x87 FPU immediate exception case having its interrupt delayed by the external hardware until 
execution has switched to the kernel. This also cannot happen in native mode because there is no delay through 
external hardware.

Thus the native mode x87 FPU exception handler can omit the test to see if the kernel is the x87 FPU owner, and 
the DNA handler for a native mode system can omit the step of setting the kernel as the x87 FPU owner at the 
handler’s beginning. Since however these simplifications are minor and save little code, it would be a reasonable 
and conservative habit (as long as the MS-DOS compatibility mode is widely used) to include these steps in all 
systems.

Note that the special DP (Dual Processing) mode for Pentium processors, and also the more general Intel MultiPro-
cessor Specification for systems with multiple Pentium, P6 family, or Pentium 4 processors, support x87 FPU 
exception handling only in the native mode. Intel does not recommend using the MS-DOS compatibility mode for 
systems using more than one processor.
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See Section 11.5, “SSE, SSE2, and SSE3 Exceptions,” for a detailed discussion of SIMD floating-point exceptions.

This appendix considers only SSE/SSE2/SSE3 instructions that can generate numeric (SIMD floating-point) excep-
tions, and gives an overview of the necessary support for handling such exceptions. This appendix does not 
address instructions that do not generate floating-point exceptions (such as RSQRTSS, RSQRTPS, RCPSS, or 
RCPPS), any x87 instructions, or any unlisted instruction. 

For detailed information on which instructions generate numeric exceptions, and a listing of those exceptions, refer 
to Appendix C, “Floating-Point Exceptions Summary.” Non-numeric exceptions are handled in a way similar to that 
for the standard IA-32 instructions.

E.1 TWO OPTIONS FOR HANDLING FLOATING-POINT EXCEPTIONS

Just as for x87 FPU floating-point exceptions, the processor takes one of two possible courses of action when an 
SSE/SSE2/SSE3 instruction raises a floating-point exception: 
• If the exception being raised is masked (by setting the corresponding mask bit in the MXCSR to 1), then a 

default result is produced which is acceptable in most situations. No external indication of the exception is 
given, but the corresponding exception flags in the MXCSR are set and may be examined later. Note though 
that for packed operations, an exception flag that is set in the MXCSR will not tell which of the sub-operands 
caused the event to occur.

• If the exception being raised is not masked (by setting the corresponding mask bit in the MXCSR to 0), a 
software exception handler previously registered by the user with operating system support will be invoked 
through the SIMD floating-point exception (#XM, vector 19). This case is discussed below in Section E.2, 
“Software Exception Handling.”

E.2 SOFTWARE EXCEPTION HANDLING

The exception handling routine reached via interrupt vector 19 is usually part of the system software (the operating 
system kernel). Note that an interrupt descriptor table (IDT) entry must have been previously set up for this vector 
(refer to Chapter 6, “Interrupt and Exception Handling,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A). Some compilers use specific run-time libraries to assist in floating-point exception 
handling. If any x87 FPU floating-point operations are going to be performed that might raise floating-point excep-
tions, then the exception handling routine must either disable all floating-point exceptions (for example, loading a 
local control word with FLDCW), or it must be implemented as re-entrant (for the case of x87 FPU exceptions, refer 
to Example D-1 in Appendix D, “Guidelines for Writing x87 FPU Exception Handlers”). If this is not the case, the 
routine has to clear the status flags for x87 FPU exceptions or to mask all x87 FPU floating-point exceptions. For 
SIMD floating-point exceptions though, the exception flags in MXCSR do not have to be cleared, even if they remain 
unmasked (but they may still be cleared). Exceptions are in this case precise and occur immediately, and a SIMD 
floating-point exception status flag that is set when the corresponding exception is unmasked will not generate an 
exception.

Typical actions performed by this low-level exception handling routine are:
• Incrementing an exception counter for later display or printing
• Printing or displaying diagnostic information (e.g. the MXCSR and XMM registers)
• Aborting further execution, or using the exception pointers to build an instruction that will run without 

exception and executing it
• Storing information about the exception in a data structure that will be passed to a higher level user exception 

handler
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In most cases (and this applies also to SSE/SSE2/SSE3 instructions), there will be three main components of a low-
level floating-point exception handler: a prologue, a body, and an epilogue.

The prologue performs functions that must be protected from possible interruption by higher-priority sources - 
typically saving registers and transferring diagnostic information from the processor to memory. When the critical 
processing has been completed, the prologue may re-enable interrupts to allow higher-priority interrupt handlers 
to preempt the exception handler (assuming that the interrupt handler was called through an interrupt gate, 
meaning that the processor cleared the interrupt enable (IF) flag in the EFLAGS register - refer to Section 6.4.1, 
“Call and Return Operation for Interrupt or Exception Handling Procedures”).

The body of the exception handler examines the diagnostic information and makes a response that is application-
dependent. It may range from halting execution, to displaying a message, to attempting to fix the problem and 
then proceeding with normal execution, to setting up a data structure, calling a higher-level user exception handler 
and continuing execution upon return from it. This latter case will be assumed in Section E.4, “SIMD Floating-Point 
Exceptions and the IEEE Standard 754” below.

Finally, the epilogue essentially reverses the actions of the prologue, restoring the processor state so that normal 
execution can be resumed.

The following example represents a typical exception handler. To link it with Example E-2 that will follow in Section 
E.4.3, “Example SIMD Floating-Point Emulation Implementation,” assume that the body of the handler (not shown 
here in detail) passes the saved state to a routine that will examine in turn all the sub-operands of the excepting 
instruction, invoking a user floating-point exception handler if a particular set of sub-operands raises an unmasked 
(enabled) exception, or emulating the instruction otherwise.

Example E-1.  SIMD Floating-Point Exception Handler

SIMD_FP_EXC_HANDLER PROC

;PROLOGUE

;SAVE REGISTERS THAT MIGHT BE USED BY THE EXCEPTION HANDLER

    PUSH EBP ;SAVE EBP

    PUSH EAX ;SAVE EAX

    ...

    MOV EBP, ESP ;SAVE ESP in EBP

    SUB ESP, 512 ;ALLOCATE 512 BYTES

    AND ESP, 0fffffff0h ;MAKE THE ADDRESS 16-BYTE ALIGNED

    FXSAVE [ESP] ;SAVE FP, MMX, AND SIMD FP STATE

    PUSH [EBP+EFLAGS_OFFSET] ;COPY OLD EFLAGS TO STACK TOP

    POPFD ;RESTORE THE INTERRUPT ENABLE FLAG IF

;TO VALUE BEFORE SIMD FP EXCEPTION

;BODY

;APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE

    LDMXCSR LOCAL_MXCSR ;LOAD LOCAL MXCSR VALUE IF NEEDED

    ...

    ...

;EPILOGUE

    FXRSTOR [ESP] ;RESTORE MODIFIED STATE IMAGE

    MOV ESP, EBP ;DE-ALLOCATE STACK SPACE

    ...

    POP EAX ;RESTORE EAX

    POP EBP ;RESTORE EBP

    IRET ;RETURN TO INTERRUPTED CALCULATION

SIMD_FP_EXC_HANDLER ENDP
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E.3 EXCEPTION SYNCHRONIZATION

An SSE/SSE2/SSE3 instruction can execute in parallel with other similar instructions, with integer instructions, and 
with floating-point or MMX instructions. Unlike for x87 instructions, special precaution for exception synchroniza-
tion is not necessary in this case. This is because floating-point exceptions for SSE/SSE2/SSE3 instructions occur 
immediately and are not delayed until a subsequent floating-point instruction is executed. However, floating-
point emulation may be necessary when unmasked floating-point exceptions are generated.

E.4 SIMD FLOATING-POINT EXCEPTIONS AND THE IEEE STANDARD 754

SSE/SSE2/SSE3 extensions are 100% compatible with the IEEE Standard 754 for Binary Floating-Point Arithmetic, 
satisfying all of its mandatory requirements (when the flush-to-zero or denormals-are-zeros modes are not 
enabled). But a programming environment that includes SSE/SSE2/SSE3 instructions will comply with both the 
obligatory and the strongly recommended requirements of the IEEE Standard 754 regarding floating-point excep-
tion handling, only as a combination of hardware and software (which is acceptable). The standard states that a 
user should be able to request a trap on any of the five floating-point exceptions (note that the denormal exception 
is an IA-32 addition), and it also specifies the values (operands or result) to be delivered to the exception handler. 

The main issue is that for SSE/SSE2/SSE3 instructions that raise post-computation exceptions (traps: overflow, 
underflow, or inexact), unlike for x87 FPU instructions, the processor does not provide the result recommended by 
IEEE Standard 754 to the user handler. If a user program needs the result of an instruction that generated a post-
computation exception, it is the responsibility of the software to produce this result by emulating the faulting 
SSE/SSE2/SSE3 instruction. Another issue is that the standard does not specify explicitly how to handle multiple 
floating-point exceptions that occur simultaneously. For packed operations, a logical OR of the flags that would be 
set by each sub-operation is used to set the exception flags in the MXCSR. The following subsections present one 
possible way to solve these problems.

E.4.1  Floating-Point Emulation

Every operating system must provide a kernel level floating-point exception handler (a template was presented in 
Section E.2, “Software Exception Handling” above). In the following discussion, assume that a user mode floating-
point exception filter is supplied for SIMD floating-point exceptions (for example as part of a library of C functions), 
that a user program can invoke in order to handle unmasked exceptions. The user mode floating-point exception 
filter (not shown here) has to be able to emulate the subset of SSE/SSE2/SSE3 instructions that can generate 
numeric exceptions, and has to be able to invoke a user provided floating-point exception handler for floating-point 
exceptions. When a floating-point exception that is not masked is raised by an SSE/SSE2/SSE3 instruction, the 
low-level floating-point exception handler will be called. This low-level handler may in turn call the user mode 
floating-point exception filter. The filter function receives the original operands of the excepting instruction as no 
results are provided by the hardware, whether a pre-computation or a post-computation exception has occurred. 
The filter will unpack the operands into up to four sets of sub-operands, and will submit them one set at a time to 
an emulation function (See Example E-2 in Section E.4.3, “Example SIMD Floating-Point Emulation Implementa-
tion”). The emulation function will examine the sub-operands, and will possibly redo the necessary calculation. 

Two cases are possible:
• If an unmasked (enabled) exception would occur in this process, the emulation function will return to its caller 

(the filter function) with the appropriate information. The filter will invoke a (previously registered) user 
floating-point exception handler for this set of sub-operands, and will record the result upon return from the 
user handler (provided the user handler allows continuation of the execution). 

• If no unmasked (enabled) exception would occur, the emulation function will determine and will return to its 
caller the result of the operation for the current set of sub-operands (it has to be IEEE Standard 754 
compliant). The filter function will record the result (plus any new flag settings).

The user level filter function will then call the emulation function for the next set of sub-operands (if any). When 
done with all the operand sets, the partial results will be packed (if the excepting instruction has a packed floating-
point result, which is true for most SSE/SSE2/SSE3 numeric instructions) and the filter will return to the low-level 
exception handler, which in turn will return from the interruption, allowing execution to continue. Note that the 
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instruction pointer (EIP) has to be altered to point to the instruction following the excepting instruction, in order to 
continue execution correctly.

If a user mode floating-point exception filter is not provided, then all the work for decoding the excepting instruc-
tion, reading its operands, emulating the instruction for the components of the result that do not correspond to 
unmasked floating-point exceptions, and providing the compounded result will have to be performed by the user-
provided floating-point exception handler.

Actual emulation might have to take place for one operand or pair of operands for scalar operations, and for all sub-
operands or pairs of sub-operands for packed operations. The steps to perform are the following:
• The excepting instruction has to be decoded and the operands have to be read from the saved context.
• The instruction has to be emulated for each (pair of) sub-operand(s); if no floating-point exception occurs, the 

partial result has to be saved; if a masked floating-point exception occurs, the masked result has to be 
produced through emulation and saved, and the appropriate status flags have to be set; if an unmasked 
floating-point exception occurs, the result has to be generated by the user provided floating-point exception 
handler, and the appropriate status flags have to be set.

• The partial results have to be combined and written to the context that will be restored upon application 
program resumption.

A diagram of the control flow in handling an unmasked floating-point exception is presented below.

From the user-level floating-point filter, Example E-2 in Section E.4.3, “Example SIMD Floating-Point Emulation 
Implementation,” will present only the floating-point emulation part. In order to understand the actions involved, 
the expected response to exceptions has to be known for all SSE/SSE2/SSE3 numeric instructions in two situa-
tions: with exceptions enabled (unmasked result), and with exceptions disabled (masked result). The latter can be 
found in Section 6.4, “Interrupts and Exceptions.” The response to NaN operands that do not raise an exception is 
specified in Section 4.8.3.4, “NaNs.” Operations on NaNs are explained in the same source. This response is also 
discussed in more detail in the next subsection, along with the unmasked and masked responses to floating-point 
exceptions.

E.4.2  SSE/SSE2/SSE3 Response To Floating-Point Exceptions

This subsection specifies the unmasked response expected from the SSE/SSE2/SSE3 instructions that raise 
floating-point exceptions. The masked response is given in parallel, as it is necessary in the emulation process of 

Figure E-1.  Control Flow for Handling Unmasked Floating-Point Exceptions

User Application

User Level Floating-Point Exception Filter 

Low-Level Floating-Point Exception Handler

User Floating-Point Exception Handler
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the instructions that raise unmasked floating-point exceptions. The response to NaN operands is also included in 
more detail than in Section 4.8.3.4, “NaNs.” For floating-point exception priority, refer to “Priority Among Simulta-
neous Exceptions and Interrupts” in Chapter 6, “Interrupt and Exception Handling,” of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A.

E.4.2.1  Numeric Exceptions

There are six classes of numeric (floating-point) exception conditions that can occur: Invalid operation (#I), 
Divide-by-Zero (#Z), Denormal Operand (#D), Numeric Overflow (#O), Numeric Underflow (#U), and Inexact 
Result (precision) (#P). #I, #Z, #D are pre-computation exceptions (floating-point faults), detected before the 
arithmetic operation. #O, #U, #P are post-computation exceptions (floating-point traps). 

Users can control how the SSE/SSE2/SSE3 floating-point exceptions are handled by setting the mask/unmask bits 
in MXCSR. Masked exceptions are handled by the processor, or by software if they are combined with unmasked 
exceptions occurring in the same instruction. Unmasked exceptions are usually handled by the low-level exception 
handler, in conjunction with user-level software.

E.4.2.2  Results of Operations with NaN Operands or a NaN Result for SSE/SSE2/SSE3 Numeric 
Instructions

The tables below (E-1 through E-10) specify the response of SSE/SSE2/SSE3 instructions to NaN inputs, or to 
other inputs that lead to NaN results.

These results will be referenced by subsequent tables (e.g., E-10). Most operations do not raise an invalid excep-
tion for quiet NaN operands, but even so, they will have higher precedence over raising floating-point exceptions 
other than invalid operation. 

Note that the single precision QNaN Indefinite value is 0xffc00000, the double precision QNaN Indefinite value is 
0xfff8000000000000, and the Integer Indefinite value is 0x80000000 (not a floating-point number, but it can be 
the result of a conversion instruction from floating-point to integer).

For an unmasked exception, no result will be provided by the hardware to the user handler. If a user registered 
floating-point exception handler is invoked, it may provide a result for the excepting instruction, that will be used 
if execution of the application code is continued after returning from the interruption.

In Tables E-1 through Table E-12, the specified operands cause an invalid exception, unless the unmasked result is 
marked with “not an exception”. In this latter case, the unmasked and masked results are the same. 

Table E-1.  ADDPS, ADDSS, SUBPS, SUBSS, MULPS, MULSS, DIVPS, DIVSS, ADDPD, ADDSD, SUBPD, SUBSD, MULPD, 
MULSD, DIVPD, DIVSD, ADDSUBPS, ADDSUBPD, HADDPS, HADDPD, HSUBPS, HSUBPD

Source Operands Masked Result Unmasked Result

SNaN1 op1 SNaN2 SNaN1 | 00400000H or 
SNaN1 | 0008000000000000H2

None

SNaN1 op QNaN2 SNaN1 | 00400000H or
SNaN1 | 0008000000000000H2

None

QNaN1 op SNaN2 QNaN1 None

QNaN1 op QNaN2 QNaN1 QNaN1 (not an exception)

SNaN op real value SNaN | 00400000H or
SNaN1 | 0008000000000000H2

None

Real value op SNaN SNaN | 00400000H or
SNaN1 | 0008000000000000H2

None

QNaN op real value QNaN QNaN (not an exception)

Real value op QNaN QNaN QNaN (not an exception)
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Neither source operand is SNaN,
but #I is signaled (e.g. for Inf - Inf, 
Inf ∗ 0, Inf / Inf, 0/0) 

Single precision or double precision QNaN 
Indefinite

None

NOTES:

1. For Tables E-1 to E-12: op denotes the operation to be performed.

2. SNaN | 0x00400000 is a quiet NaN in single precision format (if SNaN is in single precision) and SNaN | 0008000000000000H is
a quiet NaN in double precision format (if SNaN is in double precision), obtained from the signaling NaN given as input.

3. Operations involving only quiet NaNs do not raise floating-point exceptions.

Table E-2.  CMPPS.EQ, CMPSS.EQ, CMPPS.ORD, CMPSS.ORD, 
CMPPD.EQ, CMPSD.EQ, CMPPD.ORD, CMPSD.ORD

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) 00000000H or 0000000000000000H1 00000000H or 0000000000000000H1 
(not an exception)

Opd1 op NaN (any Opd1) 00000000H or 0000000000000000H1 00000000H or 0000000000000000H1 
(not an exception)

NOTE:

1. 32-bit results are for single, and 64-bit results for double precision operations.

Table E-3.  CMPPS.NEQ, CMPSS.NEQ, CMPPS.UNORD, CMPSS.UNORD, CMPPD.NEQ, CMPSD.NEQ, 
CMPPD.UNORD, CMPSD.UNORD

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) FFFFFFFFH or FFFFFFFFFFFFFFFFH1 FFFFFFFFH or FFFFFFFFFFFFFFFFH1 (not 
an exception)

Opd1 op NaN (any Opd1) FFFFFFFFH or FFFFFFFFFFFFFFFFH1 FFFFFFFFH or FFFFFFFFFFFFFFFFH1 (not 
an exception)

NOTE: 

1. 32-bit results are for single, and 64-bit results for double precision operations.

Table E-4.  CMPPS.LT, CMPSS.LT, CMPPS.LE, CMPSS.LE, CMPPD.LT, CMPSD.LT, CMPPD.LE, CMPSD.LE

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) 00000000H or 0000000000000000H1 None

Opd1 op NaN (any Opd1) 00000000H or 0000000000000000H1 None

NOTE:

1. 32-bit results are for single, and 64-bit results for double precision operations.

Table E-1.  ADDPS, ADDSS, SUBPS, SUBSS, MULPS, MULSS, DIVPS, DIVSS, ADDPD, ADDSD, SUBPD, SUBSD, MULPD, 
MULSD, DIVPD, DIVSD, ADDSUBPS, ADDSUBPD, HADDPS, HADDPD, HSUBPS, HSUBPD (Contd.)

Source Operands Masked Result Unmasked Result
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Table E-5.  CMPPS.NLT, CMPSS.NLT, CMPPS.NLE, CMPSS.NLE, CMPPD.NLT, CMPSD.NLT, CMPPD.NLE, CMPSD.NLE

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) FFFFFFFFH or FFFFFFFFFFFFFFFFH1 None

Opd1 op NaN (any Opd1) FFFFFFFFH or FFFFFFFFFFFFFFFFH1 None

NOTE:

1. 32-bit results are for single, and 64-bit results for double precision operations.

Table E-6.  COMISS, COMISD

Source Operands Masked Result Unmasked Result

SNaN op Opd2 (any Opd2) OF, SF, AF = 000  
ZF, PF, CF = 111

None

Opd1 op SNaN (any Opd1) OF, SF, AF = 000  
ZF, PF, CF = 111

None

QNaN op Opd2 (any Opd2) OF, SF, AF = 000 
ZF, PF, CF = 111

None

Opd1 op QNaN (any Opd1) OF, SF, AF = 000 
ZF, PF, CF = 111

None

Table E-7.  UCOMISS, UCOMISD

Source Operands Masked Result Unmasked Result

SNaN op Opd2 (any Opd2) OF, SF, AF = 000  
ZF, PF, CF = 111

None

Opd1 op SNaN (any Opd1) OF, SF, AF = 000  
ZF, PF, CF = 111

None

QNaN op Opd2 
(any Opd2 ≠ SNaN)

OF, SF, AF = 000  
ZF, PF, CF = 111

OF, SF, AF = 000  
ZF, PF, CF = 111 (not an exception)

Opd1 op QNaN 
(any Opd1 ≠ SNaN)

OF, SF, AF = 000  
ZF, PF, CF = 111

OF, SF, AF = 000  
ZF, PF, CF = 111 (not an exception)

Table E-8.  CVTPS2PI, CVTSS2SI, CVTTPS2PI, CVTTSS2SI, CVTPD2PI, CVTSD2SI, CVTTPD2PI, CVTTSD2SI, 
CVTPS2DQ, CVTTPS2DQ, CVTPD2DQ, CVTTPD2DQ

Source Operand Masked Result Unmasked Result

SNaN 80000000H or 80000000000000001 
(Integer Indefinite)

None

QNaN 80000000H or 80000000000000001 
(Integer Indefinite)

None

NOTE: 

1. 32-bit results are for single, and 64-bit results for double precision operations.
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Table E-9.  MAXPS, MAXSS, MINPS, MINSS, MAXPD, MAXSD, MINPD, MINSD

Source Operands Masked Result Unmasked Result

Opd1 op NaN2 (any Opd1) NaN2 None

NaN1 op Opd2 (any Opd2) Opd2 None

NOTE:

1. SNaN and QNaN operands raise an Invalid Operation fault.

Table E-10.  SQRTPS, SQRTSS, SQRTPD, SQRTSD

Source Operand Masked Result Unmasked Result

QNaN QNaN QNaN (not an exception)

SNaN SNaN | 00400000H or
SNaN | 0008000000000000H1

None

Source operand is not SNaN;
but #I is signaled (e.g. for 
sqrt (-1.0))

Single precision or 
double precision QNaN Indefinite

None

NOTE:

1. SNaN | 00400000H is a quiet NaN in single precision format (if SNaN is in single precision) and SNaN | 0008000000000000H is a 
quiet NaN in double precision format (if SNaN is in double precision), obtained from the signaling NaN given as input.

Table E-11.  CVTPS2PD, CVTSS2SD

Source Operands Masked Result Unmasked Result

QNaN QNaN11 QNaN11 (not an exception)

SNaN QNaN12 None

NOTES:

1. The double precision output QNaN1 is created from the single precision input QNaN as follows: the sign bit is preserved, the 8-bit 
exponent FFH is replaced by the 11-bit exponent 7FFH, and the 24-bit significand is extended to a 53-bit significand by appending 
29 bits equal to 0.

2. The double precision output QNaN1 is created from the single precision input SNaN as follows: the sign bit is preserved, the 8-bit
exponent FFH is replaced by the 11-bit exponent 7FFH, and the 24-bit significand is extended to a 53-bit significand by pending
29 bits equal to 0. The second most significant bit of the significand is changed from 0 to 1 to convert the signaling NaN into a
quiet NaN.

Table E-12.  CVTPD2PS, CVTSD2SS

Source Operands Masked Result Unmasked Result

QNaN QNaN11 QNaN11 (not an exception)

SNaN QNaN12 None

NOTES:

1. The single precision output QNaN1 is created from the double precision input QNaN as follows: the sign bit is preserved, the 11-bit 
exponent 7FFH is replaced by the 8-bit exponent FFH, and the 53-bit significand is truncated to a 24-bit significand by removing its 
29 least significant bits.

2. The single precision output QNaN1 is created from the double precision input SNaN as follows: the sign bit is preserved, the 11-bit
exponent 7FFH is replaced by the 8-bit exponent FFH, and the 53-bit significand is truncated to a 24-bit significand by removing its
29 least significant bits. The second most significant bit of the significand is changed from 0 to 1 to convert the signaling NaN into
a quiet NaN.



Vol. 1 E-9

GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS

E.4.2.3  Condition Codes, Exception Flags, and Response for Masked and Unmasked Numeric 
Exceptions

In the following, the masked response is what the processor provides when a masked exception is raised by an 
SSE/SSE2/SSE3 numeric instruction. The same response is provided by the floating-point emulator for 
SSE/SSE2/SSE3 numeric instructions, when certain components of the quadruple input operands generate excep-
tions that are masked (the emulator also generates the correct answer, as specified by IEEE Standard 754 wher-
ever applicable, in the case when no floating-point exception occurs). The unmasked response is what the 
emulator provides to the user handler for those components of the packed operands of SSE/SSE2/SSE3 instruc-
tions that raise unmasked exceptions. Note that for pre-computation exceptions (floating-point faults), no result is 
provided to the user handler. For post-computation exceptions (floating-point traps), a result is provided to the 
user handler, as specified below.

In the following tables, the result is denoted by 'res', with the understanding that for the actual instruction, the 
destination coincides with the first source operand (except for COMISS, UCOMISS, COMISD, and UCOMISD, whose 
destination is the EFLAGS register).

Table E-13.  #I - Invalid Operations 

Instruction Condition Masked Response
Unmasked Response 
and Exception Code

ADDPS
ADDPD
ADDSS 
ADDSD
HADDPS
HADDPD

src1 or src21 = SNaN Refer to Table E-1 for 
NaN operands, #IA = 1

src1, src2 unchanged; #IA 
= 1

ADDSUBPS (the 
addition component)
ADDSUBPD (the 
addition component)

src1 = +Inf, src2 = -Inf or
src1 = -Inf, src2 = +Inf

res1 = QNaN Indefinite,
#IA = 1

SUBPS
SUBPD
SUBSS 
SUBSD
HSUBPS
HSUBPD

src1 or src2 = SNaN Refer to Table E-1 for NaN 
operands, #IA = 1

src1, src2 unchanged; #IA 
= 1

ADDSUBPS (the 
subtraction 
component)
ADDSUBPD (the 
subtraction 
component)

src1 = +Inf, src2 = +Inf or
src1 = -Inf, src2 = -Inf

res = QNaN Indefinite, 
#IA = 1

MULPS
MULPD

src1 or src2 = SNaN Refer to Table E-1 for 
NaN operands, #IA = 1

src1, src2 unchanged; 
#IA = 1

MULSS 
MULSD

src1 = ±Inf, src2 = ±0 or
src1 = ±0, src2 = ±Inf

res = QNaN Indefinite,
#IA = 1

DIVPS
DIVPD

src1 or src2 = SNaN Refer to Table E-1 for 
NaN operands, #IA = 1

src1, src2 unchanged; 
#IA = 1

DIVSS 
DIVSD

src1 = ±Inf, src2 = ±Inf or
src1 = ±0, src2 = ±0

res = QNaN Indefinite, 
#IA = 1

SQRTPS
SQRTPD
SQRTSS 
SQRTSD

src = SNaN Refer to Table E-10 for 
NaN operands, #IA = 1

src unchanged, 
#IA = 1

src < 0 
(note that -0 < 0 is false)

res = QNaN Indefinite, 
#IA = 1
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MAXPS
MAXSS
MAXPD
MAXSD

src1 = NaN or src2 = NaN res = src2, #IA = 1 src1, src2 unchanged; #IA 
= 1

MINPS
MINSS 
MINPD
MINSD

src1 = NaN or src2 = NaN res = src2, #IA = 1 src1, src2 unchanged; #IA 
= 1

CMPPS.LT
CMPPS.LE
CMPPS.NLT
CMPPS.NLE
CMPSS.LT
CMPSS.LE
CMPSS.NLT
CMPSS.NLE
CMPPD.LT
CMPPD.LE
CMPPD.NLT
CMPPD.NLE
CMPSD.LT
CMPSD.LE
CMPSD.NLT
CMPSD.NLE

src1 = NaN or src2 = NaN Refer to Table E-4 and Table E-5 for 
NaN operands; #IA = 1

src1, src2 unchanged; #IA 
= 1

COMISS     
COMISD

src1 = NaN or src2 = NaN Refer to Table E-6 for NaN operands src1, src2, EFLAGS 
unchanged; #IA = 1

UCOMISS   
UCOMISD

src1 = SNaN or src2 = SNaN Refer to Table E-7 for NaN operands src1, src2, EFLAGS 
unchanged; #IA = 1

CVTPS2PI
CVTSS2SI 
CVTPD2PI
CVTSD2SI
CVTPS2DQ
CVTPD2DQ

src = NaN, ±Inf, or
|(src)rnd | > 7FFFFFFFH and (src)rnd ≠ 
80000000H

See Note2 for information 
on rnd.

res = Integer Indefinite, 
#IA = 1

src unchanged, 
#IA = 1

CVTTPS2PI
CVTTSS2SI 
CVTTPD2PI
CVTTSD2SI
CVTTPS2DQ
CVTTPD2DQ

src = NaN, ±Inf, or
|(src)rz | > 7FFFFFFFH and (src)rz ≠ 
80000000H

See Note2 for information
on rz.

res = Integer Indefinite, 
#IA = 1

src unchanged,
#IA = 1

Table E-13.  #I - Invalid Operations  (Contd.)

Instruction Condition Masked Response
Unmasked Response 
and Exception Code
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CVTPS2PD
CVTSS2SD

src = NAN Refer to Table E-11 for 
NaN operands

src unchanged, 
#IA = 1

CVTPD2PS
CVTSD2SS

src = NAN Refer to Table E-12 for 
NaN operands

src unchanged, 
#IA = 1

NOTES:

1. For Tables E-13 to E-18:
- src denotes the single source operand of a unary operation.
- src1, src2 denote the first and second source operand of a binary operation.
- res denotes the numerical result of an operation.

2. rnd signifies the user rounding mode from MXCSR, and rz signifies the rounding mode toward zero. (truncate), when rounding a
floating-point value to an integer. For more information, refer to Table 4-8.

3. For NAN encodings, see Table 4-3.

Table E-14.  #Z - Divide-by-Zero

Instruction Condition Masked Response
Unmasked Response 
and Exception Code

DIVPS
DIVSS
DIVPD
DIVPS

src1 = finite non-zero (normal, or 
denormal)
src2 = ±0

res = ±Inf,
#ZE = 1

src1, src2 unchanged; 
#ZE = 1

Table E-13.  #I - Invalid Operations  (Contd.)

Instruction Condition Masked Response
Unmasked Response 
and Exception Code
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Table E-15.  #D - Denormal Operand

Instruction Condition Masked Response
Unmasked Response and 
Exception Code

ADDPS
ADDPD
ADDSUBPS
ADDSUBPD
HADDPS
HADDPD
SUBPS
SUBPD
HSUBPS
HSUBPD
MULPS
MULPD
DIVPS
DIVPD
SQRTPS
SQRTPD
MAXPS
MAXPD
MINPS
MINPD
ADDSS
ADDSD
SUBSS
SUBSD
MULSS
MULSD
DIVSS
DIVSD
SQRTSS
SQRTSD
MAXSS
MAXSD
MINSS
MINSD
CVTPS2PD
CVTSS2SD
CVTPD2PS
CVTSD2SS

src1 = denormal1 or 
src2 = denormal (and 
the DAZ bit in MXCSR 
is 0)

res = Result rounded to the 
destination precision and using the 
bounded exponent, but only if no 
unmasked post-computation 
exception occurs; 
#DE = 1.

src1, src2 unchanged; 
#DE = 1

Note that SQRT, CVTPS2PD, 
CVTSS2SD, CVTPD2PS, CVTSD2SS 
have only 1 src.

CMPPS
CMPPD
CMPSS
CMPSD

src1 = denormal1 or
src2 = denormal (and
the DAZ bit in MXCSR
is 0)

Comparison result, stored in the 
destination register;
#DE = 1

src1, src2 unchanged;
#DE = 1

COMISS
COMISD
UCOMISS
UCOMISD

src1 = denormal1 or
src2 = denormal (and
the DAZ bit in MXCSR
is 0)

Comparison result, stored in the 
EFLAGS register;
#DE = 1

src1, src2 unchanged;
#DE = 1

NOTE: 

1. For denormal encodings, see Section 4.8.3.2, “Normalized and Denormalized Finite Numbers.”
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Table E-16.  #O - Numeric Overflow

Instruction Condition Masked Response
Unmasked Response and 
Exception Code

ADDPS
ADDSUBPS
HADDPS
SUBPS
HSUBPS
MULPS
DIVPS
ADDSS
SUBSS
MULSS
DIVSS
CVTPD2PS
CVTSD2SS

Rounded result > 
largest single 
precision finite 
normal value 

Rounding Sign Result & Status Flags res = (result calculated with 
unbounded exponent and rounded 
to the destination precision) / 2192

#OE = 1
#PE = 1 if the result is inexact

To 
nearest +

-

#OE = 1, #PE = 1
res = 
res = 

Toward 
+
-

#OE = 1, #PE = 1
res = 1.11…1 * 2127

res = 

Toward 
+
-

#OE = 1, #PE = 1
res = 
res = -1.11…1 * 2127

Toward 
0 +

-

#OE = 1, #PE = 1
res = 1.11…1 * 2127

res = -1.11…1 * 2127

ADDPD
ADDSUBPD
HADDPD
SUBPD
HSUBPD
MULPD
DIVPD
ADDSD
SUBSD
MULSD
DIVSD

Rounded result > 
largest double 
precision finite 
normal value 

Rounding Sign Result & Status Flags res = (result calculated with 
unbounded exponent and rounded 
to the destination precision) / 21536

• #OE = 1
• #PE = 1 if the result is inexact

To 
nearest +

-

#OE = 1, #PE = 1
res = 
res = 

Toward 
+
-

#OE = 1, #PE = 1
res = 1.11…1 * 21023

res = 

Toward 
+
-

#OE = 1, #PE = 1
res = 
res = -1.11…1 * 21023

Toward 
0 +

-

#OE = 1, #PE = 1
res = 1.11…1 * 21023

res = -1.11…1 * 21023

∞+
∞–

∞–

∞–

∞+
∞+

∞+
∞–

∞–

∞–

∞+
∞+
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Table E-17.  #U - Numeric Underflow

Instruction Condition Masked Response
Unmasked Response and 
Exception Code

ADDPS
ADDSUBPS
HADDPS
SUBPS
HSUBPS
MULPS
DIVPS
ADDSS
SUBSS
MULSS
DIVSS
CVTPD2PS
CVTSD2SS

Result calculated with unbounded 
exponent and rounded to the 
destination precision < smallest 
single precision finite normal value.

res = ±0, denormal, or normal

#UE = 1 and #PE = 1,
but only if the result is
inexact

res = (result calculated with 
unbounded exponent and rounded 
to the destination precision) * 2192

• #UE = 1
• #PE = 1 if the result is inexact

ADDPD
ADDSUBPD
HADDPD
SUBPD
HSUBPD
MULPD
DIVPD
ADDSD
SUBSD
MULSD
DIVSD

Result calculated with unbounded 
exponent and rounded to the 
destination precision < smallest 
double precision finite normal value.

res = ±0, denormal or normal

#UE = 1 and #PE = 1,
but only if the result is
inexact

res = (result calculated with 
unbounded exponent and rounded 
to the destination precision) * 21536

• #UE = 1
• #PE = 1 if the result is inexact
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E.4.3  Example SIMD Floating-Point Emulation Implementation

The sample code listed below may be considered as being part of a user-level floating-point exception filter for the 
SSE/SSE2/SSE3 numeric instructions. It is assumed that the filter function is invoked by a low-level exception 
handler (reached via interrupt vector 19 when an unmasked floating-point exception occurs), and that it operates 
as explained in Section E.4.1, “Floating-Point Emulation.” The sample code does the emulation only for the SSE 
instructions for addition, subtraction, multiplication, and division. For this, it uses C code and x87 FPU operations. 
Operations corresponding to other SSE/SSE2/SSE3 numeric instructions can be emulated similarly. The example 
assumes that the emulation function receives a pointer to a data structure specifying a number of input parame-
ters: the operation that caused the exception, a set of sub-operands (unpacked, of type float), the rounding mode 

Table E-18.  #P - Inexact Result (Precision)

Instruction Condition Masked Response Unmasked Response and Exception Code

ADDPS
ADDPD
ADDSUBPS
ADDSUBPD
HADDPS
HADDPD
SUBPS
SUBPD
HSUBPS
HSUBPD
MULPS
MULPD
DIVPS
DIVPD
SQRTPS
SQRTPD
CVTDQ2PS
CVTPI2PS
CVTPS2PI
CVTPS2DQ
CVTPD2PI
CVTPD2DQ
CVTPD2PS
CVTTPS2PI
CVTTPD2PI
CVTTPD2DQ
CVTTPS2DQ
ADDSS
ADDSD
SUBSS
SUBSD
MULSS
MULSD
DIVSS
DIVSD
SQRTSS
SQRTSD
CVTSI2SS
CVTSS2SI
CVTSD2SI
CVTSD2SS
CVTTSS2SI
CVTTSD2SI

The result is not exactly 
representable in the 
destination format.

res = Result rounded to the 
destination precision and 
using the bounded 
exponent, but only if no 
unmasked underflow or 
overflow conditions occur 
(this exception can occur in 
the presence of a masked 
underflow or overflow); #PE 
= 1.

Only if no underflow/overflow condition occurred, or 
if the corresponding exceptions are masked:
• Set #OE if masked overflow and set result as 

described above for masked overflow. 
• Set #UE if masked underflow and set result as 

described above for masked underflow.
If neither underflow nor overflow, res equals the 
result rounded to the destination precision and using 
the bounded exponent set #PE = 1.
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(the precision is always single), exception masks (having the same relative bit positions as in the MXCSR but 
starting from bit 0 in an unsigned integer), and flush-to-zero and denormals-are-zeros indicators. 

The output parameters are a floating-point result (of type float), the cause of the exception (identified by constants 
not explicitly defined below), and the exception status flags. The corresponding C definition is:

typedef struct {

unsigned int operation; //SSE or SSE2 operation: ADDPS, ADDSS, ...

  unsigned int operand1_uint32; //first operand value

unsigned int operand2_uint32; //second operand value (if any)

  float result_fval; // result value (if any)

  unsigned int rounding_mode; //rounding mode

  unsigned int exc_masks; //exception masks, in the order P,U,O,Z,D,I

  unsigned int exception_cause; //exception cause

  unsigned int status_flag_inexact; //inexact status flag

  unsigned int status_flag_underflow; //underflow status flag

  unsigned int status_flag_overflow; //overflow status flag

  unsigned int status_flag_divide_by_zero; 

//divide by zero status flag

  unsigned int status_flag_denormal_operand; 
//denormal operand status flag

  unsigned int status_flag_invalid_operation; 
//invalid operation status flag

  unsigned int ftz; // flush-to-zero flag

unsigned int daz; // denormals-are-zeros flag

} EXC_ENV;

The arithmetic operations exemplified are emulated as follows:

1. If the denormals-are-zeros mode is enabled (the DAZ bit in MXCSR is set to 1), replace all the denormal inputs 
with zeroes of the same sign (the denormal flag is not affected by this change).

2. Perform the operation using x87 FPU instructions, with exceptions disabled, the original user rounding mode, 
and single precision. This reveals invalid, denormal, or divide-by-zero exceptions (if there are any) and stores 
the result in memory as a double precision value (whose exponent range is large enough to look like 
“unbounded” to the result of the single precision computation).

3. If no unmasked exceptions were detected, determine if the result is less than the smallest normal number 
(tiny) that can be represented in single precision format, or greater than the largest normal number that can 
be represented in single precision format (huge). If an unmasked overflow or underflow occurs, calculate the 
scaled result that will be handed to the user exception handler, as specified by IEEE Standard 754.

4. If no exception was raised, calculate the result with a “bounded” exponent. If the result is tiny, it requires 
denormalization (shifting the significand right while incrementing the exponent to bring it into the admissible 
range of [-126,+127] for single precision floating-point numbers).

The result obtained in step 2 cannot be used because it might incur a double rounding error (it was rounded to 
24 bits in step 2, and might have to be rounded again in the denormalization process). To overcome this is, 
calculate the result as a double precision value, and store it to memory in single precision format. 

Rounding first to 53 bits in the significand, and then to 24 never causes a double rounding error (exact 
properties exist that state when double-rounding error occurs, but for the elementary arithmetic operations, 
the rule of thumb is that if an infinitely precise result is rounded to 2p+1 bits and then again to p bits, the result 
is the same as when rounding directly to p bits, which means that no double-rounding error occurs).

5. If the result is inexact and the inexact exceptions are unmasked, the calculated result will be delivered to the 
user floating-point exception handler.

6. The flush-to-zero case is dealt with if the result is tiny.
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7. The emulation function returns RAISE_EXCEPTION to the filter function if an exception has to be raised (the 
exception_cause field indicates the cause). Otherwise, the emulation function returns DO_NOT_ 
RAISE_EXCEPTION. In the first case, the result is provided by the user exception handler called by the filter 
function. In the second case, it is provided by the emulation function. The filter function has to collect all the 
partial results, and to assemble the scalar or packed result that is used if execution is to continue.

Example E-2.  SIMD Floating-Point Emulation

// masks for individual status word bits
#define PRECISION_MASK 0x20
#define UNDERFLOW_MASK 0x10
#define OVERFLOW_MASK 0x08
#define ZERODIVIDE_MASK 0x04
#define DENORMAL_MASK 0x02
#define INVALID_MASK 0x01

// 32-bit constants
static unsigned ZEROF_ARRAY[] = {0x00000000};
#define  ZEROF *(float *) ZEROF_ARRAY
    // +0.0
static unsigned NZEROF_ARRAY[] = {0x80000000};
#define  NZEROF *(float *) NZEROF_ARRAY
    // -0.0
static unsigned POSINFF_ARRAY[] = {0x7f800000};
#define POSINFF *(float *)POSINFF_ARRAY
    // +Inf
static unsigned NEGINFF_ARRAY[] = {0xff800000};
#define NEGINFF *(float *)NEGINFF_ARRAY
    // -Inf

// 64-bit constants
static unsigned MIN_SINGLE_NORMAL_ARRAY [] = {0x00000000, 0x38100000}; 
#define MIN_SINGLE_NORMAL *(double *)MIN_SINGLE_NORMAL_ARRAY
    // +1.0 * 2^-126
static unsigned MAX_SINGLE_NORMAL_ARRAY [] = {0x70000000, 0x47efffff}; 
#define MAX_SINGLE_NORMAL *(double *)MAX_SINGLE_NORMAL_ARRAY
    // +1.1...1*2^127
static unsigned TWO_TO_192_ARRAY[] = {0x00000000, 0x4bf00000};
#define TWO_TO_192 *(double *)TWO_TO_192_ARRAY
    // +1.0 * 2^192
static unsigned TWO_TO_M192_ARRAY[] = {0x00000000, 0x33f00000};
#define TWO_TO_M192 *(double *)TWO_TO_M192_ARRAY
    // +1.0 * 2^-192

// auxiliary functions
static int isnanf (unsigned int ); // returns 1 if f is a NaN, and 0 otherwise
static float quietf (unsigned int ); // converts a signaling NaN to a quiet 

// NaN, and leaves a quiet NaN unchanged
static unsigned int check_for_daz (unsigned int ); // converts denormals 

// to zeros of the same sign; 
// does not affect any status flags

// emulation of SSE and SSE2 instructions using
// C code and x87 FPU instructions

unsigned int
simd_fp_emulate (EXC_ENV *exc_env)

{

  int uiopd1; // first operand of the add, subtract, multiply, or divide
  int uiopd2; // second operand of the add, subtract, multiply, or divide
  float res; // result of the add, subtract, multiply, or divide
  double dbl_res24; // result with 24-bit significand, but "unbounded" exponent
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      // (needed to check tininess, to provide a scaled result to
      // an underflow/overflow trap handler, and in flush-to-zero mode)
  double dbl_res;  // result in double precision format (needed to avoid a
     // double rounding error when denormalizing)
  unsigned int result_tiny;
  unsigned int result_huge;
  unsigned short int sw; // 16 bits
  unsigned short int cw; // 16 bits

  // have to check first for faults (V, D, Z), and then for traps (O, U, I)

  // initialize x87 FPU (floating-point exceptions are masked)
  _asm {
    fninit;
  }

  result_tiny = 0;
  result_huge = 0;

  switch (exc_env->operation) {

    case ADDPS:
    case ADDSS:
    case SUBPS:
    case SUBSS:
    case MULPS:
    case MULSS:
    case DIVPS:
    case DIVSS:

      uiopd1 = exc_env->operand1_uint32; // copy as unsigned int
// do not copy as float to avoid conversion 
// of SNaN to QNaN by compiled code

      uiopd2 = exc_env->operand2_uint32;
// do not copy as float to avoid conversion of SNaN 
// to QNaN by compiled code

uiopd1 = check_for_daz (uiopd1); // operand1 = +0.0 * operand1 if it is 
// denormal and DAZ=1

      uiopd2 = check_for_daz (uiopd2); // operand2 = +0.0 * operand2 if it is 
// denormal and DAZ=1

      // execute the operation and check whether the invalid, denormal, or 
      // divide by zero flags are set and the respective exceptions enabled

      // set control word with rounding mode set to exc_env->rounding_mode, 
      // single precision, and all exceptions disabled
      switch (exc_env->rounding_mode) {
        case ROUND_TO_NEAREST:
          cw = 0x003f; // round to nearest, single precision, exceptions masked
          break;
        case ROUND_DOWN:
          cw = 0x043f; // round down, single precision, exceptions masked
          break;
        case ROUND_UP:
          cw = 0x083f; // round up, single precision, exceptions masked
          break;
        case ROUND_TO_ZERO:
          cw = 0x0c3f; // round to zero, single precision, exceptions masked
          break;
        default:
          ; 
      }
      __asm {
        fldcw WORD PTR cw;
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      }

      // compute result and round to the destination precision, with
      // "unbounded" exponent (first IEEE rounding)
      switch (exc_env->operation) {

        case ADDPS:
        case ADDSS:
          // perform the addition
          __asm {
            fnclex; 
            // load input operands
            fld DWORD PTR uiopd1; // may set denormal or invalid status flags
            fld DWORD PTR uiopd2; // may set denormal or invalid status flags
            faddp st(1), st(0); // may set inexact or invalid status flags
            // store result
            fstp  QWORD PTR dbl_res24; // exact
          }
          break;

        case SUBPS:
        case SUBSS:
          // perform the subtraction
          __asm {
            fnclex; 
            // load input operands
            fld DWORD PTR uiopd1; // may set denormal or invalid status flags
            fld DWORD PTR uiopd2; // may set denormal or invalid status flags
            fsubp st(1), st(0); // may set the inexact or invalid status flags
            

// store result
            fstp  QWORD PTR dbl_res24; // exact
          }
          break;

        case MULPS:
        case MULSS:
          // perform the multiplication
          __asm {
            fnclex; 
            // load input operands
            fld DWORD PTR uiopd1; // may set denormal or invalid status flags
            fld DWORD PTR uiopd2; // may set denormal or invalid status flags
            fmulp st(1), st(0); // may set inexact or invalid status flags
            

// store result
            fstp  QWORD PTR dbl_res24; // exact
          }
          break;

        case DIVPS:
        case DIVSS:
          // perform the division
          __asm {
            fnclex; 
            // load input operands
            fld DWORD PTR uiopd1; // may set denormal or invalid status flags
            fld DWORD PTR uiopd2; // may set denormal or invalid status flags
            fdivp st(1), st(0); // may set the inexact, divide by zero, or 
                                // invalid status flags
            // store result
            fstp  QWORD PTR dbl_res24; // exact
          }
          break;
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        default:
          ; // will never occur

      }

      // read status word
      __asm {
        fstsw WORD PTR sw;
}

if (sw & ZERODIVIDE_MASK)
sw = sw & ~DENORMAL_MASK; // clear D flag for (denormal / 0)

      // if invalid flag is set, and invalid exceptions are enabled, take trap
      if (!(exc_env->exc_masks & INVALID_MASK) && (sw & INVALID_MASK)) {
        exc_env->status_flag_invalid_operation = 1;
        exc_env->exception_cause = INVALID_OPERATION;
        return (RAISE_EXCEPTION);
      }

// checking for NaN operands has priority over denormal exceptions; 
// also fix for the SSE and SSE2 
// differences in treating two NaN inputs between the
// instructions and other IA-32 instructions
if (isnanf (uiopd1) || isnanf (uiopd2)) {

        if (isnanf (uiopd1) && isnanf (uiopd2))
            exc_env->result_fval = quietf (uiopd1);
        else
            exc_env->result_fval = (float)dbl_res24; // exact
 
        if (sw & INVALID_MASK) exc_env->status_flag_invalid_operation = 1;
        return (DO_NOT_RAISE_EXCEPTION);
      }

      // if denormal flag set, and denormal exceptions are enabled, take trap
      if (!(exc_env->exc_masks & DENORMAL_MASK) && (sw & DENORMAL_MASK)) {
        exc_env->status_flag_denormal_operand = 1;
        exc_env->exception_cause = DENORMAL_OPERAND;
        return (RAISE_EXCEPTION);
      }

      // if divide by zero flag set, and divide by zero exceptions are 
      // enabled, take trap (for divide only)
      if (!(exc_env->exc_masks & ZERODIVIDE_MASK) && (sw & ZERODIVIDE_MASK)) {
        exc_env->status_flag_divide_by_zero = 1;
        exc_env->exception_cause = DIVIDE_BY_ZERO;
        return (RAISE_EXCEPTION);
      }

      // done if the result is a NaN (QNaN Indefinite)
      res = (float)dbl_res24;
      if (isnanf (*(unsigned int *)&res)) {
        exc_env->result_fval = res; // exact
        exc_env->status_flag_invalid_operation = 1;
        return (DO_NOT_RAISE_EXCEPTION);
      }

      // dbl_res24 is not a NaN at this point

      if (sw & DENORMAL_MASK) exc_env->status_flag_denormal_operand = 1;

      // Note: (dbl_res24 == 0.0 && sw & PRECISION_MASK) cannot occur
      if (-MIN_SINGLE_NORMAL < dbl_res24 && dbl_res24 < 0.0 ||
            0.0 < dbl_res24 && dbl_res24 < MIN_SINGLE_NORMAL) {
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        result_tiny = 1;
      }

      // check if the result is huge
      if (NEGINFF < dbl_res24 && dbl_res24 < -MAX_SINGLE_NORMAL || 
          MAX_SINGLE_NORMAL < dbl_res24 && dbl_res24 < POSINFF) { 
        result_huge = 1;
      }

      // at this point, there are no enabled I,D, or Z exceptions 
 // to take; the instr.

      // might lead to an enabled underflow, enabled underflow and inexact, 
      // enabled overflow, enabled overflow and inexact, enabled inexact, or
      // none of these; if there are no U or O enabled exceptions, re-execute
      // the instruction using IA-32 double precision format, and the 
      // user's rounding mode; exceptions must have 

// been disabled before calling
      // this function; an inexact exception may be reported on the 53-bit
      // fsubp, fmulp, or on both the 53-bit and 24-bit conversions, while an 
      // overflow or underflow (with traps disabled) may be reported on the 
      // conversion from dbl_res to res

// check whether there is an underflow, overflow,
 // or inexact trap to be taken

// if the underflow traps are enabled and the result is 
// tiny, take underflow trap

      if (!(exc_env->exc_masks & UNDERFLOW_MASK) && result_tiny) {
        dbl_res24 = TWO_TO_192 * dbl_res24; // exact
        exc_env->status_flag_underflow = 1;
        exc_env->exception_cause = UNDERFLOW;
        exc_env->result_fval = (float)dbl_res24; // exact
        if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;
        return (RAISE_EXCEPTION);
      } 

      // if overflow traps are enabled and the result is huge, take
      // overflow trap
      if (!(exc_env->exc_masks & OVERFLOW_MASK) &&  result_huge) {
        dbl_res24 = TWO_TO_M192 * dbl_res24; // exact
        exc_env->status_flag_overflow = 1;
        exc_env->exception_cause = OVERFLOW;
        exc_env->result_fval = (float)dbl_res24; // exact 
        if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;
        return (RAISE_EXCEPTION);
      } 

      // set control word with rounding mode set to exc_env->rounding_mode, 
      // double precision, and all exceptions disabled
      cw = cw | 0x0200; // set precision to double
      __asm {
        fldcw WORD PTR cw;
      }

      switch (exc_env->operation) {

        case ADDPS:
        case ADDSS:
          // perform the addition
          __asm {
            // load input operands
            fld DWORD PTR uiopd1; // may set the denormal status flag
            fld DWORD PTR uiopd2; // may set the denormal status flag
            faddp st(1), st(0); // rounded to 53 bits, may set the inexact 
                                // status flag
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            // store result
            fstp  QWORD PTR dbl_res; // exact, will not set any flag
          }
          break;

        case SUBPS:
        case SUBSS:
          // perform the subtraction
          __asm {
            // load input operands
            fld DWORD PTR uiopd1; // may set the denormal status flag
            fld DWORD PTR uiopd2; // may set the denormal status flag
            fsubp st(1), st(0); // rounded to 53 bits, may set the inexact
                                // status flag
            // store result
            fstp  QWORD PTR dbl_res; // exact, will not set any flag
          }
          break;

        case MULPS:
        case MULSS:
          // perform the multiplication
          __asm {
            // load input operands
            fld DWORD PTR uiopd1; // may set the denormal status flag
            fld DWORD PTR uiopd2; // may set the denormal status flag
            fmulp st(1), st(0); // rounded to 53 bits, exact

// store result
            fstp  QWORD PTR dbl_res; // exact, will not set any flag
          }
          break;

        case DIVPS:
        case DIVSS:
          // perform the division
          __asm {
            // load input operands
            fld DWORD PTR uiopd1; // may set the denormal status flag
            fld DWORD PTR uiopd2; // may set the denormal status flag
            fdivp st(1), st(0); // rounded to 53 bits, may set the inexact

// status flag
            // store result
            fstp  QWORD PTR dbl_res; // exact, will not set any flag
          }
          break;

        default:
          ; // will never occur

      }

      // calculate result for the case an inexact trap has to be taken, or
      // when no trap occurs (second IEEE rounding)
      res = (float)dbl_res; 
          // may set P, U or O; may also involve denormalizing the result

      // read status word
      __asm {
        fstsw WORD PTR sw;
      }

      // if inexact traps are enabled and result is inexact, take inexact trap
      if (!(exc_env->exc_masks & PRECISION_MASK) && 
          ((sw & PRECISION_MASK) || (exc_env->ftz && result_tiny))) {
        exc_env->status_flag_inexact = 1;
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        exc_env->exception_cause = INEXACT;
        if (result_tiny) {
          exc_env->status_flag_underflow = 1;

          // if ftz = 1 and result is tiny, result = 0.0
          // (no need to check for underflow traps disabled: result tiny and
          // underflow traps enabled would have caused taking an underflow
          // trap above)
          if (exc_env->ftz) {
            if (res > 0.0)
              res = ZEROF;
            else if (res < 0.0)
              res = NZEROF;
            // else leave res unchanged
          }
        }
        if (result_huge) exc_env->status_flag_overflow = 1;
        exc_env->result_fval = res; 
        return (RAISE_EXCEPTION);
      } 

      // if it got here, then there is no trap to be taken; the following must
      // hold: ((the MXCSR U exceptions are disabled  or
      //
      // the MXCSR underflow exceptions are enabled and the underflow flag is
      // clear and (the inexact flag is set or the inexact flag is clear and
      // the 24-bit result with unbounded exponent is not tiny)))
      // and (the MXCSR overflow traps are disabled or the overflow flag is
      // clear) and (the MXCSR inexact traps are disabled or the inexact flag
      // is clear)
      //
      // in this case, the result has to be delivered (the status flags are 
      // sticky, so they are all set correctly already)

      // read status word to see if result is inexact
      __asm {
        fstsw WORD PTR sw;
      }
 
      if (sw & UNDERFLOW_MASK) exc_env->status_flag_underflow = 1;
      if (sw & OVERFLOW_MASK) exc_env->status_flag_overflow = 1;
      if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;

      // if ftz = 1, and result is tiny (underflow traps must be disabled),
      // result = 0.0
      if (exc_env->ftz && result_tiny) {
        if (res > 0.0)
          res = ZEROF;
        else if (res < 0.0)
          res = NZEROF;
        // else leave res unchanged

        exc_env->status_flag_inexact = 1;
        exc_env->status_flag_underflow = 1;
      }

      exc_env->result_fval = res; 
      if (sw & ZERODIVIDE_MASK) exc_env->status_flag_divide_by_zero = 1;
      if (sw & DENORMAL_MASK) exc_env->status_flag_denormal= 1;
      if (sw & INVALID_MASK) exc_env->status_flag_invalid_operation = 1;
      return (DO_NOT_RAISE_EXCEPTION);

      break;

    case CMPPS:
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    case CMPSS:

      ...

      break;

    case COMISS:
    case UCOMISS:

      ...

      break;

    case CVTPI2PS:
    case CVTSI2SS:

      ...

      break;

    case CVTPS2PI:
    case CVTSS2SI:
    case CVTTPS2PI:
    case CVTTSS2SI:

      ...

      break;

    case MAXPS:
    case MAXSS:
    case MINPS:
    case MINSS:

      ...

      break;

    case SQRTPS:
    case SQRTSS:

      ...

      break;

...

case UNSPEC:

      ...

      break;

    default:
      ...

  }

}
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CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B & 2C: Instruction Set Refer-
ence (order numbers 253666, 253667 and 326018) are part of a set that describes the architecture and program-
ming environment of all Intel 64 and IA-32 architecture processors. Other volumes in this set are:
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (Order 

Number 253665).
• The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B & 3C: System 

Programming Guide (order numbers 253668, 253669 and 326019).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture 
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volumes 2A, 2B & 2C, describe the instruction set of the processor and the opcode structure. 
These volumes apply to application programmers and to programmers who write operating systems or executives. 
The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B & 3C, describe the oper-
ating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-system and 
BIOS designers. In addition, the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, 
addresses the programming environment for classes of software that host operating systems.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which 
include: 
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme processor QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Xeon® processor 5200, 5400, 7400 series
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• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families 
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v3 product family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium® 
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors. 

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon 
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved 
Pentium® M processor microarchitecture. 

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel® 
Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel® Core™ microarchi-
tecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel® 
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced 
Intel® Core™ microarchitecture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture and supports Intel 64 archi-
tecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel® 
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32nm version of Intel® 
microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and various 
Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These processors 
support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, 
Intel® CoreTM i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code name 
Sandy Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 product 
family and 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code name Ivy 
Bridge and support Intel 64 architecture.
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The Intel® Xeon® processor E5-4600/2600/1600 v2 product families and Intel® Xeon® processor E5-2400/1400 
v2 product families are based on the Intel® microarchitecture code name Ivy Bridge-EP and support Intel 64 archi-
tecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based on 
the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV, 
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® AtomTM 
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel® 
Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microproces-
sors. Intel® 64 architecture is the instruction set architecture and programming environment which is the superset 
of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 2A, 2B AND 2C: INSTRUCTION SET REFERENCE

A description of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B & 2C, content 
follows:

Chapter 1 — About This Manual. Gives an overview of all seven volumes of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related 
Intel® manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — Instruction Format. Describes the machine-level instruction format used for all IA-32 instructions 
and gives the allowable encodings of prefixes, the operand-identifier byte (ModR/M byte), the addressing-mode 
specifier byte (SIB byte), and the displacement and immediate bytes.

Chapter 3 — Instruction Set Reference, A-L. Describes Intel 64 and IA-32 instructions in detail, including an 
algorithmic description of operations, the effect on flags, the effect of operand- and address-size attributes, and 
the exceptions that may be generated. The instructions are arranged in alphabetical order. General-purpose, x87 
FPU, Intel MMX™ technology, SSE/SSE2/SSE3/SSSE3/SSE4 extensions, and system instructions are included.

Chapter 4 — Instruction Set Reference, M-Z. Continues the description of Intel 64 and IA-32 instructions 
started in Chapter 3. It provides the balance of the alphabetized list of instructions and starts Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2B.

Chapter 5— Safer Mode Extensions Reference. Describes the safer mode extensions (SMX). SMX is intended 
for a system executive to support launching a measured environment in a platform where the identity of the soft-
ware controlling the platform hardware can be measured for the purpose of making trust decisions. This chapter 
starts Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C.

Appendix A — Opcode Map. Gives an opcode map for the IA-32 instruction set.

Appendix B — Instruction Formats and Encodings. Gives the binary encoding of each form of each IA-32 
instruction.

Appendix C — Intel® C/C++ Compiler Intrinsics and Functional Equivalents. Lists the Intel® C/C++ compiler 
intrinsics and their assembly code equivalents for each of the IA-32 MMX and SSE/SSE2/SSE3 instructions.

1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for 
hexadecimal and binary numbers. A review of this notation makes the manual easier to read.
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1.3.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses 
increase toward the top. Bit positions are numbered from right to left. The numerical value of a set bit is equal to 
two raised to the power of the bit position. IA-32 processors are “little endian” machines; this means the bytes of 
a word are numbered starting from the least significant byte. Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as 
reserved, it is essential for compatibility with future processors that software treat these bits as having a future, 
though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredict-
able. Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of registers which contain such bits. 

Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated in the documentation, if any, or 

reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved bits in IA-32 registers. Depending upon 
the values of reserved register bits will make software dependent upon the unspecified manner in 
which the processor handles these bits. Programs that depend upon reserved values risk incompat-
ibility with future processors.

1.3.3 Instruction Operands

When instructions are represented symbolically, a subset of the IA-32 assembly language is used. In this subset, 
an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have the same function.
• The operands argument1, argument2, and argument3 are optional. There may be from zero to three operands, 

depending on the opcode. When present, they take the form of either literals or identifiers for data items. 

Figure 1-1.  Bit and Byte Order
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Operand identifiers are either reserved names of registers or are assumed to be assigned to data items 
declared in another part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left 
operand is the destination. 

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand, 
and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for 
example, F82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, 
E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the character B (for 
example, 1010B). The “B” designation is only used in situations where confusion as to the type of number might 
arise.

1.3.5 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes. 
Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes in memory. The 
range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing where a program may have many 
independent address spaces, called segments. For example, a program can keep its code (instructions) and stack 
in separate segments. Code addresses would always refer to the code space, and stack addresses would always 
refer to the stack space. The following notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS 
register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS register points to the 
code segment and the EIP register contains the address of the instruction.

CS:EIP

1.3.6 Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to 
divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other condi-
tions. Some types of exceptions may provide error codes. An error code reports additional information about the 
error. An example of the notation used to show an exception and error code is shown below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type of fault is 
reported. Under some conditions, exceptions which produce error codes may not be able to report an accurate 
code. In this case, the error code is zero, as shown below for a general-protection exception:

#GP(0)
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1.3.7 A New Syntax for CPUID, CR, and MSR Values

Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register 
bits, and by reading model-specific registers. We are moving toward a new syntax to represent this information. 
See Figure 1-2.

1.4 RELATED LITERATURE

Literature related to Intel 64 and IA-32 processors is listed on-line at: 
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html.html

Some of the documents listed at this web site can be viewed on-line; others can be ordered. The literature available 
is listed by Intel processor and then by the following literature types: applications notes, data sheets, manuals, 
papers, and specification updates. 

See also: 
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor

Figure 1-2.  Syntax for CPUID, CR, and MSR Data Presentation

Control Register Values

Model-Specific Register Values

CPUID.01H:ECX.SSE [bit 25] = 1

Value (or range) of output

CPUID Input and Output

Output register and feature flag or field 
name with bit position(s)

CR4.OSFXSR[bit 9] = 1

Feature flag or field name 
with bit position(s)
Value (or range) of output

Example CR name

Feature flag or field name with bit position(s)

IA32_MISC_ENABLES.ENABLEFOPCODE[bit 2] = 1

Value (or range) of output

Example MSR name

OM17732

Some inputs require values in EAX and ECX.
This is represented as CPUID.(EAX=n, ECX=n).
If only one value is present, EAX is implied.

http://developer.intel.com/products/processor/manuals/index.htm
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• Intel® C++ Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

• Intel® Fortran Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

• Intel® VTune™ Performance Analyzer documentation and online help:
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm 

• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in three or five volumes):
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html.html

• Intel® 64 and IA-32 Architectures Optimization Reference Manual: 
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-
manual.html

• Intel® Processor Identification with the CPUID Instruction, AP-485:
http://www.intel.com/Assets/PDF/appnote/241618.pdf

• Intel 64 Architecture x2APIC Specification:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specifi-
cation.html

• Intel 64 Architecture Processor Topology Enumeration:
http://softwarecommunity.intel.com/articles/eng/3887.htm

• Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
• Intel® SSE4 Programming Reference: http://edc.intel.com/Link.aspx?id=1630&wapkw=intel® sse4 

programming reference
• Developing Multi-threaded Applications: A Platform Consistent Approach:

http://cache-www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.pdf
• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:

http://software.intel.com/en-us/articles/ap949-using-spin-loops-on-intel-pentiumr-4-processor-and-intel-
xeonr-processor/

• Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

More relevant links are:
• Software network link:

http://softwarecommunity.intel.com/isn/home/
• Developer centers:

http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
• Processor support general link:

http://www.intel.com/support/processors/
• Software products and packages:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel 64 and IA-32 processor manuals (printed or PDF downloads):

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html.html
• Intel® Multi-Core Technology:

http://software.intel.com/partner/multicore
• Intel® Hyper-Threading Technology (Intel® HT Technology):

http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://softwarecommunity.intel.com/isn/home/
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/support/processors/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/technology/hyperthread/
http://softwarecommunity.intel.com/articles/eng/3887.htm
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CHAPTER 2
INSTRUCTION FORMAT

This chapter describes the instruction format for all Intel 64 and IA-32 processors. The instruction format for 
protected mode, real-address mode and virtual-8086 mode is described in Section 2.1. Increments provided for IA-
32e mode and its sub-modes are described in Section 2.2.

2.1 INSTRUCTION FORMAT FOR PROTECTED MODE, REAL-ADDRESS MODE, 
AND VIRTUAL-8086 MODE

The Intel 64 and IA-32 architectures instruction encodings are subsets of the format shown in Figure 2-1. Instruc-
tions consist of optional instruction prefixes (in any order), primary opcode bytes (up to three bytes), an 
addressing-form specifier (if required) consisting of the ModR/M byte and sometimes the SIB (Scale-Index-Base) 
byte, a displacement (if required), and an immediate data field (if required).

2.1.1 Instruction Prefixes

Instruction prefixes are divided into four groups, each with a set of allowable prefix codes. For each instruction, it 
is only useful to include up to one prefix code from each of the four groups (Groups 1, 2, 3, 4). Groups 1 through 4 
may be placed in any order relative to each other.
• Group 1

— Lock and repeat prefixes:

• LOCK prefix is encoded using F0H

• REPNE/REPNZ prefix is encoded using F2H. Repeat-Not-Zero prefix applies only to string and 
input/output instructions. (F2H is also used as a mandatory prefix for some instructions)

• REP or REPE/REPZ is encoded using F3H. Repeat prefix applies only to string and input/output instruc-
tions.(F3H is also used as a mandatory prefix for some instructions)

• Group 2

— Segment override prefixes:

• 2EH—CS segment override (use with any branch instruction is reserved)

• 36H—SS segment override prefix (use with any branch instruction is reserved)

• 3EH—DS segment override prefix (use with any branch instruction is reserved)

• 26H—ES segment override prefix (use with any branch instruction is reserved)

Figure 2-1.  Intel 64 and IA-32 Architectures Instruction Format

Instruction
Prefixes

Opcode ModR/M SIB Displacement Immediate

Mod R/M
Reg/

Opcode

027 6 5 3

Scale Base

027 6 5 3

Index

Immediate
data of
1, 2, or 4
bytes or none

Address
displacement
of 1, 2, or 4
bytes or none

1 byte
(if required)

1 byte
(if required)

1-, 2-, or 3-byte
opcode

Up to four
prefixes of
1 byte each
(optional)
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• 64H—FS segment override prefix (use with any branch instruction is reserved)

• 65H—GS segment override prefix (use with any branch instruction is reserved)

— Branch hints:

• 2EH—Branch not taken (used only with Jcc instructions)

• 3EH—Branch taken (used only with Jcc instructions)
• Group 3

• Operand-size override prefix is encoded using 66H (66H is also used as a mandatory prefix for some 
instructions).

• Group 4

• 67H—Address-size override prefix

The LOCK prefix (F0H) forces an operation that ensures exclusive use of shared memory in a multiprocessor envi-
ronment. See “LOCK—Assert LOCK# Signal Prefix” in Chapter 3, “Instruction Set Reference, A-M,” for a description 
of this prefix. 

Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a string. Use these prefixes only 
with string and I/O instructions (MOVS, CMPS, SCAS, LODS, STOS, INS, and OUTS). Use of repeat prefixes and/or 
undefined opcodes with other Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable 
behavior.

Some instructions may use F2H,F3H as a mandatory prefix to express distinct functionality. A mandatory prefix 
generally should be placed after other optional prefixes (exception to this is discussed in Section 2.2.1, “REX 
Prefixes”)

Branch hint prefixes (2EH, 3EH) allow a program to give a hint to the processor about the most likely code path for 
a branch. Use these prefixes only with conditional branch instructions (Jcc). Other use of branch hint prefixes 
and/or other undefined opcodes with Intel 64 or IA-32 instructions is reserved; such use may cause unpredictable 
behavior.

The operand-size override prefix allows a program to switch between 16- and 32-bit operand sizes. Either size can 
be the default; use of the prefix selects the non-default size. 

Some SSE2/SSE3/SSSE3/SSE4 instructions and instructions using a three-byte sequence of primary opcode bytes 
may use 66H as a mandatory prefix to express distinct functionality. A mandatory prefix generally should be placed 
after other optional prefixes (exception to this is discussed in Section 2.2.1, “REX Prefixes”)

Other use of the 66H prefix is reserved; such use may cause unpredictable behavior.

The address-size override prefix (67H) allows programs to switch between 16- and 32-bit addressing. Either size 
can be the default; the prefix selects the non-default size. Using this prefix and/or other undefined opcodes when 
operands for the instruction do not reside in memory is reserved; such use may cause unpredictable behavior.

2.1.2 Opcodes

A primary opcode can be 1, 2, or 3 bytes in length. An additional 3-bit opcode field is sometimes encoded in the 
ModR/M byte. Smaller fields can be defined within the primary opcode. Such fields define the direction of operation, 
size of displacements, register encoding, condition codes, or sign extension. Encoding fields used by an opcode 
vary depending on the class of operation.

Two-byte opcode formats for general-purpose and SIMD instructions consist of: 
• An escape opcode byte 0FH as the primary opcode and a second opcode byte, or
• A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, and a second opcode byte (same as previous 

bullet)

For example, CVTDQ2PD consists of the following sequence: F3 0F E6. The first byte is a mandatory prefix (it is not 
considered as a repeat prefix). 

Three-byte opcode formats for general-purpose and SIMD instructions consist of: 
• An escape opcode byte 0FH as the primary opcode, plus two additional opcode bytes, or
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• A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, plus two additional opcode bytes (same as 
previous bullet)

For example, PHADDW for XMM registers consists of the following sequence: 66 0F 38 01. The first byte is the 
mandatory prefix.

Valid opcode expressions are defined in Appendix A and Appendix B.

2.1.3 ModR/M and SIB Bytes

Many instructions that refer to an operand in memory have an addressing-form specifier byte (called the ModR/M 
byte) following the primary opcode. The ModR/M byte contains three fields of information:
• The mod field combines with the r/m field to form 32 possible values: eight registers and 24 addressing modes.
• The reg/opcode field specifies either a register number or three more bits of opcode information. The purpose 

of the reg/opcode field is specified in the primary opcode.
• The r/m field can specify a register as an operand or it can be combined with the mod field to encode an 

addressing mode. Sometimes, certain combinations of the mod field and the r/m field is used to express 
opcode information for some instructions.

Certain encodings of the ModR/M byte require a second addressing byte (the SIB byte). The base-plus-index and 
scale-plus-index forms of 32-bit addressing require the SIB byte. The SIB byte includes the following fields:
• The scale field specifies the scale factor.
• The index field specifies the register number of the index register.
• The base field specifies the register number of the base register.

See Section 2.1.5 for the encodings of the ModR/M and SIB bytes.

2.1.4 Displacement and Immediate Bytes

Some addressing forms include a displacement immediately following the ModR/M byte (or the SIB byte if one is 
present). If a displacement is required; it be 1, 2, or 4 bytes.

If an instruction specifies an immediate operand, the operand always follows any displacement bytes. An imme-
diate operand can be 1, 2 or 4 bytes.

2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes

The values and corresponding addressing forms of the ModR/M and SIB bytes are shown in Table 2-1 through Table 
2-3: 16-bit addressing forms specified by the ModR/M byte are in Table 2-1 and 32-bit addressing forms are in 
Table 2-2. Table 2-3 shows 32-bit addressing forms specified by the SIB byte. In cases where the reg/opcode field 
in the ModR/M byte represents an extended opcode, valid encodings are shown in Appendix B.

In Table 2-1 and Table 2-2, the Effective Address column lists 32 effective addresses that can be assigned to the 
first operand of an instruction by using the Mod and R/M fields of the ModR/M byte. The first 24 options provide 
ways of specifying a memory location; the last eight (Mod = 11B) provide ways of specifying general-purpose, MMX 
technology and XMM registers. 

The Mod and R/M columns in Table 2-1 and Table 2-2 give the binary encodings of the Mod and R/M fields required 
to obtain the effective address listed in the first column. For example: see the row indicated by Mod = 11B, R/M = 
000B. The row identifies the general-purpose registers EAX, AX or AL; MMX technology register MM0; or XMM 
register XMM0. The register used is determined by the opcode byte and the operand-size attribute.

Now look at the seventh row in either table (labeled “REG =”). This row specifies the use of the 3-bit Reg/Opcode 
field when the field is used to give the location of a second operand. The second operand must be a general-
purpose, MMX technology, or XMM register. Rows one through five list the registers that may correspond to the 
value in the table. Again, the register used is determined by the opcode byte along with the operand-size attribute. 
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If the instruction does not require a second operand, then the Reg/Opcode field may be used as an opcode exten-
sion. This use is represented by the sixth row in the tables (labeled “/digit (Opcode)”). Note that values in row six 
are represented in decimal form.

The body of Table 2-1 and Table 2-2 (under the label “Value of ModR/M Byte (in Hexadecimal)”) contains a 32 by 8 
array that presents all of 256 values of the ModR/M byte (in hexadecimal). Bits 3, 4 and 5 are specified by the 
column of the table in which a byte resides. The row specifies bits 0, 1 and 2; and bits 6 and 7. The figure below 
demonstrates interpretation of one table value.

Figure 2-2.  Table Interpretation of ModR/M Byte (C8H)

Table 2-1.  16-Bit Addressing Forms with the ModR/M Byte

r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
(In decimal) /digit (Opcode)
(In binary) REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP1
EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[BX+SI]
[BX+DI]
[BP+SI]
[BP+DI]
[SI]
[DI]
disp162

[BX]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[BX+SI]+disp83

[BX+DI]+disp8
[BP+SI]+disp8
[BP+DI]+disp8
[SI]+disp8
[DI]+disp8
[BP]+disp8
[BX]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[BX+SI]+disp16
[BX+DI]+disp16
[BP+SI]+disp16
[BP+DI]+disp16
[SI]+disp16
[DI]+disp16
[BP]+disp16
[BX]+disp16

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM1/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AHMM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
EQ
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF

Mod 11
RM 000
REG = 001
C8H 11001000

/digit (Opcode);
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NOTES:

1. The default segment register is SS for the effective addresses containing a BP index, DS for other effective addresses.

2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is added to the index. 

3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is sign-extended and added to the
index. 

NOTES:

1. The [--][--] nomenclature means a SIB follows the ModR/M byte.

2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB byte if one is present) and that is
added to the index.

3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB byte if one is present) and that is
sign-extended and added to the index.

Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal). General purpose registers used 
as a base are indicated across the top of the table, along with corresponding values for the SIB byte’s base field. 
Table rows in the body of the table indicate the register used as the index (SIB byte bits 3, 4 and 5) and the scaling 
factor (determined by SIB byte bits 6 and 7).

Table 2-2.  32-Bit Addressing Forms with the ModR/M Byte

r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
(In decimal) /digit (Opcode)
(In binary) REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP
EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
[--][--]1

disp322

[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[EAX]+disp83

[ECX]+disp8
[EDX]+disp8
[EBX]+disp8
[--][--]+disp8
[EBP]+disp8
[ESI]+disp8
[EDI]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[EAX]+disp32
[ECX]+disp32
[EDX]+disp32
[EBX]+disp32
[--][--]+disp32
[EBP]+disp32
[ESI]+disp32
[EDI]+disp32

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AH/MM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
E1
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF
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NOTES:

1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8 or disp32 + [EBP]. This provides the
following address modes:

MOD bits Effective Address

00 [scaled index] + disp32 

01 [scaled index] + disp8 + [EBP]

10  [scaled index] + disp32 + [EBP]

2.2 IA-32E MODE

IA-32e mode has two sub-modes. These are: 
• Compatibility Mode. Enables a 64-bit operating system to run most legacy protected mode software 

unmodified. 
• 64-Bit Mode. Enables a 64-bit operating system to run applications written to access 64-bit address space. 

Table 2-3.  32-Bit Addressing Forms with the SIB Byte

r32
(In decimal) Base =
(In binary) Base =

EAX
0
000

ECX
1
001

EDX
2
010

EBX
3
011

ESP
4
100

[*]
5
101

ESI
6
110

EDI
7
111

Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
none
[EBP]
[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

[EAX*2]
[ECX*2]
[EDX*2]
[EBX*2]
none
[EBP*2]
[ESI*2]
[EDI*2]

01 000
001
010
011
100
101
110
111

40
48
50
58
60
68
70
78

41
49
51
59
61
69
71
79

42
4A
52
5A
62
6A
72
7A

43
4B
53
5B
63
6B
73
7B

44
4C
54
5C
64
6C
74
7C

45
4D
55
5D
65
6D
75
7D

46
4E
56
5E
66
6E
76
7E

47
4F
57
5F
67
6F
77
7F

[EAX*4]
[ECX*4]
[EDX*4]
[EBX*4]
none
[EBP*4]
[ESI*4]
[EDI*4]

10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
99
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

[EAX*8]
[ECX*8]
[EDX*8]
[EBX*8]
none
[EBP*8]
[ESI*8]
[EDI*8]

11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF
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2.2.1 REX Prefixes

REX prefixes are instruction-prefix bytes used in 64-bit mode. They do the following:
• Specify GPRs and SSE registers.
• Specify 64-bit operand size.
• Specify extended control registers.

Not all instructions require a REX prefix in 64-bit mode. A prefix is necessary only if an instruction references one 
of the extended registers or uses a 64-bit operand. If a REX prefix is used when it has no meaning, it is ignored.

Only one REX prefix is allowed per instruction. If used, the REX prefix byte must immediately precede the opcode 
byte or the escape opcode byte (0FH). When a REX prefix is used in conjunction with an instruction containing a 
mandatory prefix, the mandatory prefix must come before the REX so the REX prefix can be immediately preceding 
the opcode or the escape byte. For example, CVTDQ2PD with a REX prefix should have REX placed between F3 and 
0F E6. Other placements are ignored. The instruction-size limit of 15 bytes still applies to instructions with a REX 
prefix. See Figure 2-3.

2.2.1.1  Encoding

Intel 64 and IA-32 instruction formats specify up to three registers by using 3-bit fields in the encoding, depending 
on the format:
• ModR/M: the reg and r/m fields of the ModR/M byte
• ModR/M with SIB: the reg field of the ModR/M byte, the base and index fields of the SIB (scale, index, base) 

byte
• Instructions without ModR/M: the reg field of the opcode

In 64-bit mode, these formats do not change. Bits needed to define fields in the 64-bit context are provided by the 
addition of REX prefixes.

2.2.1.2  More on REX Prefix Fields 

REX prefixes are a set of 16 opcodes that span one row of the opcode map and occupy entries 40H to 4FH. These 
opcodes represent valid instructions (INC or DEC) in IA-32 operating modes and in compatibility mode. In 64-bit 
mode, the same opcodes represent the instruction prefix REX and are not treated as individual instructions. 

The single-byte-opcode form of INC/DEC instruction not available in 64-bit mode. INC/DEC functionality is still 
available using ModR/M forms of the same instructions (opcodes FF/0 and FF/1). 

See Table 2-4 for a summary of the REX prefix format. Figure 2-4 though Figure 2-7 show examples of REX prefix 
fields in use. Some combinations of REX prefix fields are invalid. In such cases, the prefix is ignored. Some addi-
tional information follows:
• Setting REX.W can be used to determine the operand size but does not solely determine operand width. Like 

the 66H size prefix, 64-bit operand size override has no effect on byte-specific operations. 
• For non-byte operations: if a 66H prefix is used with prefix (REX.W = 1), 66H is ignored. 
• If a 66H override is used with REX and REX.W = 0, the operand size is 16 bits.

Figure 2-3.  Prefix Ordering in 64-bit Mode

REX

Immediate data 

of 1, 2, or 4 

bytes or none

Address 

displacement of 

1, 2, or 4 bytes 

1 byte

(if required)
1 byte

(if required)

1-, 2-, or 

3-byte 

opcode

(optional)Grp 1, Grp 

2, Grp 3, 

Grp 4

(optional)

Legacy
Prefix Opcode ModR/M SIB Displacement Immediate

Prefixes
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• REX.R modifies the ModR/M reg field when that field encodes a GPR, SSE, control or debug register. REX.R is 
ignored when ModR/M specifies other registers or defines an extended opcode.

• REX.X bit modifies the SIB index field.
• REX.B either modifies the base in the ModR/M r/m field or SIB base field; or it modifies the opcode reg field 

used for accessing GPRs.

Table 2-4.  REX Prefix Fields [BITS: 0100WRXB]

Field Name Bit Position Definition

- 7:4 0100

W 3 0 = Operand size determined by CS.D

1 = 64 Bit Operand Size

R 2 Extension of the ModR/M reg field

X 1 Extension of the SIB index field

B 0 Extension of the ModR/M r/m field, SIB base field, or Opcode reg field

Figure 2-4.  Memory Addressing Without an SIB Byte; REX.X Not Used

Figure 2-5.  Register-Register Addressing (No Memory Operand); REX.X Not Used

REX PREFIX  
0100WR0B

Opcode mod
≠11

reg r/m

Rrrr Bbbb

ModRM Byte

rrr bbb

OM17Xfig1-3

REX PREFIX  
0100WR0B

Opcode mod
11

reg r/m

Rrrr Bbbb

ModRM Byte

rrr bbb

OM17Xfig1-4
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In the IA-32 architecture, byte registers (AH, AL, BH, BL, CH, CL, DH, and DL) are encoded in the ModR/M byte’s 
reg field, the r/m field or the opcode reg field as registers 0 through 7. REX prefixes provide an additional 
addressing capability for byte-registers that makes the least-significant byte of GPRs available for byte operations.

Certain combinations of the fields of the ModR/M byte and the SIB byte have special meaning for register encod-
ings. For some combinations, fields expanded by the REX prefix are not decoded. Table 2-5 describes how each 
case behaves.

Figure 2-6.  Memory Addressing With a SIB Byte

Figure 2-7.  Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used

mod
≠ 11

ModRM Byte

r/m
100

reg
rrr

scale
ss

SIB Byte

REX PREFIX  
0100WRXB

Opcode

Rrrr

base

Bbbb

bbb

Xxxx

index
xxx

OM17Xfig1-5

REX PREFIX  
0100W00B

Opcode

Bbbb

reg
bbb

OM17Xfig1-6
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2.2.1.3  Displacement 

Addressing in 64-bit mode uses existing 32-bit ModR/M and SIB encodings. The ModR/M and SIB displacement 
sizes do not change. They remain 8 bits or 32 bits and are sign-extended to 64 bits.

2.2.1.4  Direct Memory-Offset MOVs

In 64-bit mode, direct memory-offset forms of the MOV instruction are extended to specify a 64-bit immediate 
absolute address. This address is called a moffset. No prefix is needed to specify this 64-bit memory offset. For 
these MOV instructions, the size of the memory offset follows the address-size default (64 bits in 64-bit mode). See 
Table 2-6.

2.2.1.5  Immediates 

In 64-bit mode, the typical size of immediate operands remains 32 bits. When the operand size is 64 bits, the 
processor sign-extends all immediates to 64 bits prior to their use. 

Support for 64-bit immediate operands is accomplished by expanding the semantics of the existing move (MOV 
reg, imm16/32) instructions. These instructions (opcodes B8H – BFH) move 16-bits or 32-bits of immediate data 
(depending on the effective operand size) into a GPR. When the effective operand size is 64 bits, these instructions 
can be used to load an immediate into a GPR. A REX prefix is needed to override the 32-bit default operand size to 
a 64-bit operand size. 

For example:

48 B8 8877665544332211 MOV RAX,1122334455667788H

Table 2-5.  Special Cases of REX Encodings 

ModR/M or 
SIB 

Sub-field
Encodings

Compatibility Mode 
Operation

Compatibility Mode 
Implications Additional Implications

ModR/M Byte mod != 11 SIB byte present. SIB byte required for 
ESP-based addressing.

REX prefix adds a fourth bit (b) which is not decoded 
(don't care).

SIB byte also required for R12-based addressing.
r/m = 
b*100(ESP)

ModR/M Byte mod = 0 Base register not 
used.

EBP without a 
displacement must be 
done using 

mod = 01 with 
displacement of 0.

REX prefix adds a fourth bit (b) which is not decoded 
(don't care).

Using RBP or R13 without displacement must be done 
using mod = 01 with a displacement of 0.

r/m = 
b*101(EBP)

SIB Byte index = 
0100(ESP)

Index register not 
used.

ESP cannot be used as 
an index register.

REX prefix adds a fourth bit (b) which is decoded.

There are no additional implications. The expanded 
index field allows distinguishing RSP from R12, 
therefore R12 can be used as an index.

SIB Byte base = 
0101(EBP)

Base register is 
unused if mod = 0.

Base register depends 
on mod encoding.

REX prefix adds a fourth bit (b) which is not decoded.

This requires explicit displacement to be used with 
EBP/RBP or R13.

NOTES:

* Don’t care about value of REX.B

Table 2-6.  Direct Memory Offset Form of MOV

Opcode Instruction

A0 MOV AL, moffset

A1 MOV EAX, moffset

A2 MOV moffset, AL

A3 MOV moffset, EAX
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2.2.1.6  RIP-Relative Addressing

A new addressing form, RIP-relative (relative instruction-pointer) addressing, is implemented in 64-bit mode. An 
effective address is formed by adding displacement to the 64-bit RIP of the next instruction.

In IA-32 architecture and compatibility mode, addressing relative to the instruction pointer is available only with 
control-transfer instructions. In 64-bit mode, instructions that use ModR/M addressing can use RIP-relative 
addressing. Without RIP-relative addressing, all ModR/M instruction modes address memory relative to zero. 

RIP-relative addressing allows specific ModR/M modes to address memory relative to the 64-bit RIP using a signed 
32-bit displacement. This provides an offset range of ±2GB from the RIP. Table 2-7 shows the ModR/M and SIB 
encodings for RIP-relative addressing. Redundant forms of 32-bit displacement-addressing exist in the current 
ModR/M and SIB encodings. There is one ModR/M encoding and there are several SIB encodings. RIP-relative 
addressing is encoded using a redundant form. 

In 64-bit mode, the ModR/M Disp32 (32-bit displacement) encoding is re-defined to be RIP+Disp32 rather than 
displacement-only. See Table 2-7.

The ModR/M encoding for RIP-relative addressing does not depend on using prefix. Specifically, the r/m bit field 
encoding of 101B (used to select RIP-relative addressing) is not affected by the REX prefix. For example, selecting 
R13 (REX.B = 1, r/m = 101B) with mod = 00B still results in RIP-relative addressing. The 4-bit r/m field of REX.B 
combined with ModR/M is not fully decoded. In order to address R13 with no displacement, software must encode 
R13 + 0 using a 1-byte displacement of zero. 

RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. The use of the address-size prefix 
does not disable RIP-relative addressing. The effect of the address-size prefix is to truncate and zero-extend the 
computed effective address to 32 bits. 

2.2.1.7  Default 64-Bit Operand Size

In 64-bit mode, two groups of instructions have a default operand size of 64 bits (do not need a REX prefix for this 
operand size). These are:
• Near branches
• All instructions, except far branches, that implicitly reference the RSP

2.2.2 Additional Encodings for Control and Debug Registers

In 64-bit mode, more encodings for control and debug registers are available. The REX.R bit is used to modify the 
ModR/M reg field when that field encodes a control or debug register (see Table 2-4). These encodings enable the 
processor to address CR8-CR15 and DR8- DR15. An additional control register (CR8) is defined in 64-bit mode. 
CR8 becomes the Task Priority Register (TPR). 

In the first implementation of IA-32e mode, CR9-CR15 and DR8-DR15 are not implemented. Any attempt to access 
unimplemented registers results in an invalid-opcode exception (#UD).

Table 2-7.  RIP-Relative Addressing

ModR/M and SIB Sub-field Encodings Compatibility Mode 
Operation

64-bit Mode 
Operation

Additional Implications in 64-bit mode

ModR/M Byte mod = 00 Disp32 RIP + Disp32 Must use SIB form with normal (zero-based) 
displacement addressing 

r/m = 101 (none)

SIB Byte base = 101 (none) if mod = 00, Disp32 Same as legacy None

index = 100 (none)

scale = 0, 1, 2, 4
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2.3 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX)

Intel AVX instructions are encoded using an encoding scheme that combines prefix bytes, opcode extension field, 
operand encoding fields, and vector length encoding capability into a new prefix, referred to as VEX. In the VEX 
encoding scheme, the VEX prefix may be two or three bytes long, depending on the instruction semantics. Despite 
the two-byte or three-byte length of the VEX prefix, the VEX encoding format provides a more compact represen-
tation/packing of the components of encoding an instruction in Intel 64 architecture. The VEX encoding scheme 
also allows more headroom for future growth of Intel 64 architecture.

2.3.1 Instruction Format

Instruction encoding using VEX prefix provides several advantages:
• Instruction syntax support for three operands and up-to four operands when necessary. For example, the third 

source register used by VBLENDVPD is encoded using bits 7:4 of the immediate byte.
• Encoding support for vector length of 128 bits (using XMM registers) and 256 bits (using YMM registers)
• Encoding support for instruction syntax of non-destructive source operands.
• Elimination of escape opcode byte (0FH), SIMD prefix byte (66H, F2H, F3H) via a compact bit field represen-

tation within the VEX prefix.
• Elimination of the need to use REX prefix to encode the extended half of general-purpose register sets (R8-R15) 

for direct register access, memory addressing, or accessing XMM8-XMM15 (including YMM8-YMM15).
• Flexible and more compact bit fields are provided in the VEX prefix to retain the full functionality provided by 

REX prefix. REX.W, REX.X, REX.B functionalities are provided in the three-byte VEX prefix only because only a 
subset of SIMD instructions need them. 

• Extensibility for future instruction extensions without significant instruction length increase.
Figure 2-8 shows the Intel 64 instruction encoding format with VEX prefix support. Legacy instruction without a 
VEX prefix is fully supported and unchanged. The use of VEX prefix in an Intel 64 instruction is optional, but a VEX 
prefix is required for Intel 64 instructions that operate on YMM registers or support three and four operand syntax. 
VEX prefix is not a constant-valued, “single-purpose” byte like 0FH, 66H, F2H, F3H in legacy SSE instructions. VEX 
prefix provides substantially richer capability than the REX prefix. 

Figure 2-8.  Instruction Encoding Format with VEX Prefix

2.3.2 VEX and the LOCK prefix

Any VEX-encoded instruction with a LOCK prefix preceding VEX will #UD.

2.3.3 VEX and the 66H, F2H, and F3H prefixes

Any VEX-encoded instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD.

2.3.4 VEX and the REX prefix

Any VEX-encoded instruction with a REX prefix proceeding VEX will #UD. 

ModR/M

1

[Prefixes] [VEX] OPCODE [SIB] [DISP] [IMM]

2,3 1 0,1 0,1,2,4 0,1# Bytes
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2.3.5 The VEX Prefix 

The VEX prefix is encoded in either the two-byte form (the first byte must be C5H) or in the three-byte form (the 
first byte must be C4H). The two-byte VEX is used mainly for 128-bit, scalar, and the most common 256-bit AVX 
instructions; while the three-byte VEX provides a compact replacement of REX and 3-byte opcode instructions 
(including AVX and FMA instructions). Beyond the first byte of the VEX prefix, it consists of a number of bit fields 
providing specific capability, they are shown in Figure 2-9. 
The bit fields of the VEX prefix can be summarized by its functional purposes:
• Non-destructive source register encoding (applicable to three and four operand syntax): This is the first source 

operand in the instruction syntax. It is represented by the notation, VEX.vvvv. This field is encoded using 1’s 
complement form (inverted form), i.e. XMM0/YMM0/R0 is encoded as 1111B, XMM15/YMM15/R15 is encoded 
as 0000B.

• Vector length encoding: This 1-bit field represented by the notation VEX.L. L= 0 means vector length is 128 bits 
wide, L=1 means 256 bit vector. The value of this field is written as VEX.128 or VEX.256 in this document to 
distinguish encoded values of other VEX bit fields. 

• REX prefix functionality: Full REX prefix functionality is provided in the three-byte form of VEX prefix. However 
the VEX bit fields providing REX functionality are encoded using 1’s complement form, i.e. XMM0/YMM0/R0 is 
encoded as 1111B, XMM15/YMM15/R15 is encoded as 0000B. 

— Two-byte form of the VEX prefix only provides the equivalent functionality of REX.R, using 1’s complement 
encoding. This is represented as VEX.R.

— Three-byte form of the VEX prefix provides REX.R, REX.X, REX.B functionality using 1’s complement 
encoding and three dedicated bit fields represented as VEX.R, VEX.X, VEX.B.

— Three-byte form of the VEX prefix provides the functionality of REX.W only to specific instructions that need 
to override default 32-bit operand size for a general purpose register to 64-bit size in 64-bit mode. For 
those applicable instructions, VEX.W field provides the same functionality as REX.W. VEX.W field can 
provide completely different functionality for other instructions.

Consequently, the use of REX prefix with VEX encoded instructions is not allowed. However, the intent of the
REX prefix for expanding register set is reserved for future instruction set extensions using VEX prefix
encoding format.

• Compaction of SIMD prefix: Legacy SSE instructions effectively use SIMD prefixes (66H, F2H, F3H) as an 
opcode extension field. VEX prefix encoding allows the functional capability of such legacy SSE instructions 
(operating on XMM registers, bits 255:128 of corresponding YMM unmodified) to be encoded using the VEX.pp 
field without the presence of any SIMD prefix. The VEX-encoded 128-bit instruction will zero-out bits 255:128 
of the destination register. VEX-encoded instruction may have 128 bit vector length or 256 bits length.

• Compaction of two-byte and three-byte opcode: More recently introduced legacy SSE instructions employ two 
and three-byte opcode. The one or two leading bytes are: 0FH, and 0FH 3AH/0FH 38H. The one-byte escape 
(0FH) and two-byte escape (0FH 3AH, 0FH 38H) can also be interpreted as an opcode extension field. The 
VEX.mmmmm field provides compaction to allow many legacy instruction to be encoded without the constant 
byte sequence, 0FH, 0FH 3AH, 0FH 38H. These VEX-encoded instruction may have 128 bit vector length or 256 
bits length.

The VEX prefix is required to be the last prefix and immediately precedes the opcode bytes. It must follow any 
other prefixes. If VEX prefix is present a REX prefix is not supported. 
The 3-byte VEX leaves room for future expansion with 3 reserved bits. REX and the 66h/F2h/F3h prefixes are 
reclaimed for future use.
VEX prefix has a two-byte form and a three byte form. If an instruction syntax can be encoded using the two-byte 
form, it can also be encoded using the three byte form of VEX. The latter increases the length of the instruction by 
one byte. This may be helpful in some situations for code alignment. 
The VEX prefix supports 256-bit versions of floating-point SSE, SSE2, SSE3, and SSE4 instructions. Note, certain 
new instruction functionality can only be encoded with the VEX prefix.
The VEX prefix will #UD on any instruction containing MMX register sources or destinations. 
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Figure 2-9.  VEX bitfields

The following subsections describe the various fields in two or three-byte VEX prefix:

2.3.5.1  VEX Byte 0, bits[7:0] 

VEX Byte 0, bits [7:0] must contain the value 11000101b (C5h) or 11000100b (C4h). The 3-byte VEX uses the C4h 
first byte, while the 2-byte VEX uses the C5h first byte.

2.3.5.2  VEX Byte 1, bit [7] - ‘R’

VEX Byte 1, bit [7] contains a bit analogous to a bit inverted REX.R. In protected and compatibility modes the bit 
must be set to ‘1’ otherwise the instruction is LES or LDS.

11000100 1

670

 

vvvv

1 03 2

L  

7

R: REX.R in 1’s complement (inverted) form

00000: Reserved for future use (will #UD)
00001: implied 0F leading opcode byte
00010: implied 0F 38 leading opcode bytes
00011: implied 0F 3A leading opcode bytes
00100-11111: Reserved for future use (will #UD)

Byte 0 Byte 2
(Bit Position)

vvvv: a register specifier (in 1’s complement form) or 1111 if unused.

67 0

R X B

Byte 1

pp: opcode extension providing equivalent functionality of a SIMD prefix

W: opcode specific (use like REX.W, or used for opcode

m-mmmm

5

m-mmmm: 

W

L: Vector Length

0: Same as REX.R=1 (64-bit mode only)
1: Same as REX.R=0 (must be 1 in 32-bit mode)

4

pp 3-byte VEX

11000101 1

670

vvvv

1 03 2

L 

7

R pp 2-byte VEX

B: REX.B in 1’s complement (inverted) form

0: Same as REX.B=1 (64-bit mode only)
1: Same as REX.B=0 (Ignored in 32-bit mode).

 extension, or ignored, depending on the opcode byte)

0: scalar or 128-bit vector
1: 256-bit vector

00: None
01: 66
10: F3
11: F2

0: Same as REX.X=1 (64-bit mode only)
1: Same as REX.X=0 (must be 1 in 32-bit mode)

X: REX.X in 1’s complement (inverted) form
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This bit is present in both 2- and 3-byte VEX prefixes.
The usage of WRXB bits for legacy instructions is explained in detail section 2.2.1.2 of Intel 64 and IA-32 Architec-
tures Software developer’s manual, Volume 2A.
This bit is stored in bit inverted format.

2.3.5.3  3-byte VEX byte 1, bit[6] - ‘X’ 

Bit[6] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.X. It is an extension of the SIB Index 
field in 64-bit modes. In 32-bit modes, this bit must be set to ‘1’ otherwise the instruction is LES or LDS.
This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

2.3.5.4  3-byte VEX byte 1, bit[5] - ‘B’ 

Bit[5] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.B. In 64-bit modes, it is an extension 
of the ModR/M r/m field, or the SIB base field. In 32-bit modes, this bit is ignored.
This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

2.3.5.5  3-byte VEX byte 2, bit[7] - ‘W’ 

Bit[7] of the 3-byte VEX byte 2 is represented by the notation VEX.W. It can provide following functions, depending 
on the specific opcode. 
• For AVX instructions that have equivalent legacy SSE instructions (typically these SSE instructions have a 

general-purpose register operand with its operand size attribute promotable by REX.W), if REX.W promotes 
the operand size attribute of the general-purpose register operand in legacy SSE instruction, VEX.W has 
same meaning in the corresponding AVX equivalent form. In 32-bit modes, VEX.W is silently ignored.

• For AVX instructions that have equivalent legacy SSE instructions (typically these SSE instructions have oper-
ands with their operand size attribute fixed and not promotable by REX.W), if REX.W is don’t care in legacy 
SSE instruction, VEX.W is ignored in the corresponding AVX equivalent form irrespective of mode.

• For new AVX instructions where VEX.W has no defined function (typically these meant the combination of the 
opcode byte and VEX.mmmmm did not have any equivalent SSE functions), VEX.W is reserved as zero and 
setting to other than zero will cause instruction to #UD.

2.3.5.6  2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- ‘vvvv’ the Source or dest 
Register Specifier

In 32-bit mode the VEX first byte C4 and C5 alias onto the LES and LDS instructions. To maintain compatibility with 
existing programs the VEX 2nd byte, bits [7:6] must be 11b. To achieve this, the VEX payload bits are selected to 
place only inverted, 64-bit valid fields (extended register selectors) in these upper bits. 
The 2-byte VEX Byte 1, bits [6:3] and the 3-byte VEX, Byte 2, bits [6:3] encode a field (shorthand VEX.vvvv) that 
for instructions with 2 or more source registers and an XMM or YMM or memory destination encodes the first source 
register specifier stored in inverted (1’s complement) form. 
VEX.vvvv is not used by the instructions with one source (except certain shifts, see below) or on instructions with 
no XMM or YMM or memory destination. If an instruction does not use VEX.vvvv then it should be set to 1111b 
otherwise instruction will #UD.
In 64-bit mode all 4 bits may be used. See Table 2-8 for the encoding of the XMM or YMM registers. In 32-bit and 
16-bit modes bit 6 must be 1 (if bit 6 is not 1, the 2-byte VEX version will generate LDS instruction and the 3-byte 
VEX version will ignore this bit).
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Table 2-8.  VEX.vvvv to register name mapping

The VEX.vvvv field is encoded in bit inverted format for accessing a register operand.

2.3.6 Instruction Operand Encoding and VEX.vvvv, ModR/M

VEX-encoded instructions support three-operand and four-operand instruction syntax. Some VEX-encoded instruc-
tions have syntax with less than three operands, e.g. VEX-encoded pack shift instructions support one source 
operand and one destination operand). 
The roles of VEX.vvvv, reg field of ModR/M byte (ModR/M.reg), r/m field of ModR/M byte (ModR/M.r/m) with 
respect to encoding destination and source operands vary with different type of instruction syntax.
The role of VEX.vvvv can be summarized to three situations:
• VEX.vvvv encodes the first source register operand, specified in inverted (1’s complement) form and is valid for 

instructions with 2 or more source operands. 
• VEX.vvvv encodes the destination register operand, specified in 1’s complement form for certain vector shifts. 

The instructions where VEX.vvvv is used as a destination are listed in Table 2-9. The notation in the “Opcode” 
column in Table 2-9 is described in detail in section 3.1.1.

• VEX.vvvv does not encode any operand, the field is reserved and should contain 1111b. 

Table 2-9.  Instructions with a VEX.vvvv destination 

VEX.vvvv Dest Register Valid in Legacy/Compatibility 32-bit modes?

1111B XMM0/YMM0 Valid

1110B XMM1/YMM1 Valid

1101B XMM2/YMM2 Valid

1100B XMM3/YMM3 Valid

1011B XMM4/YMM4 Valid

1010B XMM5/YMM5 Valid

1001B XMM6/YMM6 Valid

1000B XMM7/YMM7 Valid

0111B XMM8/YMM8 Invalid

0110B XMM9/YMM9 Invalid

0101B XMM10/YMM10 Invalid

0100B XMM11/YMM11 Invalid

0011B XMM12/YMM12 Invalid

0010B XMM13/YMM13 Invalid

0001B XMM14/YMM14 Invalid

0000B XMM15/YMM15 Invalid

Opcode Instruction mnemonic

VEX.NDD.128.66.0F 73 /7 ib VPSLLDQ xmm1, xmm2, imm8

VEX.NDD.128.66.0F 73 /3 ib VPSRLDQ xmm1, xmm2, imm8

VEX.NDD.128.66.0F 71 /2 ib VPSRLW xmm1, xmm2, imm8

VEX.NDD.128.66.0F 72 /2 ib VPSRLD xmm1, xmm2, imm8

VEX.NDD.128.66.0F 73 /2 ib VPSRLQ xmm1, xmm2, imm8

VEX.NDD.128.66.0F 71 /4 ib VPSRAW xmm1, xmm2, imm8

VEX.NDD.128.66.0F 72 /4 ib VPSRAD xmm1, xmm2, imm8

VEX.NDD.128.66.0F 71 /6 ib VPSLLW xmm1, xmm2, imm8

VEX.NDD.128.66.0F 72 /6 ib VPSLLD xmm1, xmm2, imm8

VEX.NDD.128.66.0F 73 /6 ib VPSLLQ xmm1, xmm2, imm8
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The role of ModR/M.r/m field can be summarized to two situations:
• ModR/M.r/m encodes the instruction operand that references a memory address.
• For some instructions that do not support memory addressing semantics, ModR/M.r/m encodes either the 

destination register operand or a source register operand.
The role of ModR/M.reg field can be summarized to two situations:
• ModR/M.reg encodes either the destination register operand or a source register operand.
• For some instructions, ModR/M.reg is treated as an opcode extension and not used to encode any instruction 

operand.
For instruction syntax that support four operands, VEX.vvvv, ModR/M.r/m, ModR/M.reg encodes three of the four 
operands. The role of bits 7:4 of the immediate byte serves the following situation:
• Imm8[7:4] encodes the third source register operand.

2.3.6.1  3-byte VEX byte 1, bits[4:0] - “m-mmmm” 

Bits[4:0] of the 3-byte VEX byte 1 encode an implied leading opcode byte (0F, 0F 38, or 0F 3A). Several bits are 
reserved for future use and will #UD unless 0. 

Table 2-10.   VEX.m-mmmm interpretation

VEX.m-mmmm is only available on the 3-byte VEX. The 2-byte VEX implies a leading 0Fh opcode byte.

2.3.6.2  2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L”

The vector length field, VEX.L, is encoded in bit[2] of either the second byte of 2-byte VEX, or the third byte of 3-
byte VEX. If “VEX.L = 1”, it indicates 256-bit vector operation. “VEX.L = 0” indicates scalar and 128-bit vector oper-
ations.
The instruction VZEROUPPER is a special case that is encoded with VEX.L = 0, although its operation zero’s bits 
255:128 of all YMM registers accessible in the current operating mode.
See the following table.

Table 2-11.  VEX.L interpretation

2.3.6.3  2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- “pp”

Up to one implied prefix is encoded by bits[1:0] of either the 2-byte VEX byte 1 or the 3-byte VEX byte 2. The prefix 
behaves as if it was encoded prior to VEX, but after all other encoded prefixes.
See the following table.

VEX.m-mmmm Implied Leading Opcode Bytes

00000B Reserved

00001B 0F

00010B 0F 38

00011B 0F 3A

00100-11111B Reserved

(2-byte VEX) 0F

VEX.L Vector Length

0 128-bit (or 32/64-bit scalar)

1 256-bit
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Table 2-12.  VEX.pp interpretation

2.3.7 The Opcode Byte

One (and only one) opcode byte follows the 2 or 3 byte VEX. Legal opcodes are specified in Appendix B, in color. 
Any instruction that uses illegal opcode will #UD.

2.3.8 The MODRM, SIB, and Displacement Bytes

The encodings are unchanged but the interpretation of reg_field or rm_field differs (see above).

2.3.9 The Third Source Operand (Immediate Byte)

VEX-encoded instructions can support instruction with a four operand syntax. VBLENDVPD, VBLENDVPS, and 
PBLENDVB use imm8[7:4] to encode one of the source registers. 

2.3.10 AVX Instructions and the Upper 128-bits of YMM registers

If an instruction with a destination XMM register is encoded with a VEX prefix, the processor zeroes the upper bits 
(above bit 128) of the equivalent YMM register . Legacy SSE instructions without VEX preserve the upper bits.

2.3.10.1  Vector Length Transition and Programming Considerations 

An instruction encoded with a VEX.128 prefix that loads a YMM register operand operates as follows:
• Data is loaded into bits 127:0 of the register
• Bits above bit 127 in the register are cleared.
Thus, such an instruction clears bits 255:128 of a destination YMM register on processors with a maximum vector-
register width of 256 bits. In the event that future processors extend the vector registers to greater widths, an 
instruction encoded with a VEX.128 or VEX.256 prefix will also clear any bits beyond bit 255. (This is in contrast 
with legacy SSE instructions, which have no VEX prefix; these modify only bits 127:0 of any destination register 
operand.)
Programmers should bear in mind that instructions encoded with VEX.128 and VEX.256 prefixes will clear any 
future extensions to the vector registers. A calling function that uses such extensions should save their state before 
calling legacy functions. This is not possible for involuntary calls (e.g., into an interrupt-service routine). It is 
recommended that software handling involuntary calls accommodate this by not executing instructions encoded 
with VEX.128 and VEX.256 prefixes. In the event that it is not possible or desirable to restrict these instructions, 
then software must take special care to avoid actions that would, on future processors, zero the upper bits of vector 
registers. 
Processors that support further vector-register extensions (defining bits beyond bit 255) will also extend the XSAVE 
and XRSTOR instructions to save and restore these extensions. To ensure forward compatibility, software that 
handles involuntary calls and that uses instructions encoded with VEX.128 and VEX.256 prefixes should first save 
and then restore the vector registers (with any extensions) using the XSAVE and XRSTOR instructions with 
save/restore masks that set bits that correspond to all vector-register extensions.  Ideally, software should rely on 
a mechanism that is cognizant of which bits to set.  (E.g., an OS mechanism that sets the save/restore mask bits 
for all vector-register extensions that are enabled in XCR0.)  Saving and restoring state with instructions other than 
XSAVE and XRSTOR will, on future processors with wider vector registers, corrupt the extended state of the vector 

pp Implies this prefix after other prefixes but before VEX

00B None

01B 66

10B F3

11B F2
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registers - even if doing so functions correctly on processors supporting 256-bit vector registers.  (The same is true 
if XSAVE and XRSTOR are used with a save/restore mask that does not set bits corresponding to all supported 
extensions to the vector registers.)

2.3.11 AVX Instruction Length

The AVX instructions described in this document (including VEX and ignoring other prefixes) do not exceed 11 
bytes in length, but may increase in the future. The maximum length of an Intel 64 and IA-32 instruction remains 
15 bytes.

2.3.12 Vector SIB (VSIB) Memory Addressing 

In AVX2, an SIB byte that follows the ModR/M byte can support VSIB memory addressing to an array of linear 
addresses. VSIB addressing is only supported in a subset of AVX2 instructions. VSIB memory addressing requires 
32-bit or 64-bit effective address. In 32-bit mode, VSIB addressing is not supported when address size attribute is 
overridden to 16 bits. In 16-bit protected mode, VSIB memory addressing is permitted if address size attribute is 
overridden to 32 bits. Additionally, VSIB memory addressing is supported only with VEX prefix.
In VSIB memory addressing, the SIB byte consists of:
• The scale field (bit 7:6) specifies the scale factor.
• The index field (bits 5:3) specifies the register number of the vector index register, each element in the vector 

register specifies an index.
• The base field (bits 2:0) specifies the register number of the base register.

Table 2-3 shows the 32-bit VSIB addressing form. It is organized to give 256 possible values of the SIB byte (in 
hexadecimal). General purpose registers used as a base are indicated across the top of the table, along with corre-
sponding values for the SIB byte’s base field. The register names also include R8L-R15L applicable only in 64-bit 
mode (when address size override prefix is used, but the value of VEX.B is not shown in Table 2-3). In 32-bit mode, 
R8L-R15L does not apply.
Table rows in the body of the table indicate the vector index register used as the index field and each supported 
scaling factor shown separately. Vector registers used in the index field can be XMM or YMM registers. The left-most 
column includes vector registers VR8-VR15 (i.e. XMM8/YMM8-XMM15/YMM15), which are only available in 64-bit 
mode and does not apply if encoding in 32-bit mode. 

Table 2-13.  32-Bit VSIB Addressing Forms of the SIB Byte

r32

(In decimal) Base =
(In binary) Base =

EAX/
R8L
0
000

ECX/
R9L
1
001

EDX/
R10L
2
010

EBX/
R11L
3
011

ESP/
R12L
4
100

EBP/
R13L1

5
101

ESI/
R14L
6
110

EDI/
R15L
7
111

Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*1 00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*2 01 000
001
010
011
100
101
110
111

40
48
50
58
60
68
70
78

41
49
51
59
61
69
71
79

42
4A
52
5A
62
6A
72
7A

43
4B
53
5B
63
6B
73
7B

44
4C
54
5C
64
6C
74
7C

45
4D
55
5D
65
6D
75
7D

46
4E
56
5E
66
6E
76
7E

47
4F
57
5F
67
6F
77
7F
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2.3.12.1  64-bit Mode VSIB Memory Addressing 

In 64-bit mode VSIB memory addressing uses the VEX.B field and the base field of the SIB byte to encode one of 
the 16 general-purpose register as the base register. The VEX.X field and the index field of the SIB byte encode one 
of the 16 vector registers as the vector index register. 
In 64-bit mode the top row of Table 2-13 base register should be interpreted as the full 64-bit of each register. 

2.4 INSTRUCTION EXCEPTION SPECIFICATION

To look up the exceptions of legacy 128-bit SIMD instruction, 128-bit VEX-encoded instructions, and 256-bit VEX-
encoded instruction, Table 2-14 summarizes the exception behavior into separate classes, with detailed exception 
conditions defined in sub-sections 2.4.1 through 2.5.1. For example, ADDPS contains the entry:
“See Exceptions Type 2”

In this entry, “Type2” can be looked up in Table 2-14. 
The instruction’s corresponding CPUID feature flag can be identified in the fourth column of the Instruction 
summary table. 
Note: #UD on CPUID feature flags=0 is not guaranteed in a virtualized environment if the hardware supports the 
feature flag.

NOTE

Instructions that operate only with MMX, X87, or general-purpose registers are not covered by the 
exception classes defined in this section. For instructions that operate on MMX registers, see 
Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*4 10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
89
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

VR0/VR8
VR1/VR9
VR2/VR10
VR3/VR11
VR4/VR12
VR5/VR13
VR6/VR14
VR7/VR15

*8 11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF

NOTES:

1. If ModR/M.mod = 00b, the base address is zero, then effective address is computed as [scaled vector index] + disp32. Otherwise the
base address is computed as [EBP/R13]+ disp, the displacement is either 8 bit or 32 bit depending on the value of ModR/M.mod:

MOD Effective Address
00b [Scaled Vector Register] + Disp32
01b [Scaled Vector Register] + Disp8 + [EBP/R13]
10b [Scaled Vector Register] + Disp32 + [EBP/R13]

Table 2-13.  32-Bit VSIB Addressing Forms of the SIB Byte
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Table 2-14.  Exception class description

See Table 2-15 for lists of instructions in each exception class.

Exception Class Instruction set Mem arg
Floating-Point 

Exceptions (#XM)

Type 1
AVX,

Legacy SSE
16/32 byte explicitly 

aligned
none

Type 2
AVX,

Legacy SSE
16/32 byte not explicitly 

aligned
yes

Type 3
AVX,

Legacy SSE
< 16 byte yes

Type 4
AVX,

Legacy SSE
16/32 byte not explicitly 

aligned
no

Type 5
AVX, 

Legacy SSE
< 16 byte no

Type 6 AVX (no Legacy SSE) Varies (At present, none do)

Type 7
AVX, 

Legacy SSE
none none

Type 8 AVX none none

Type 11
F16C 8 or 16 byte, Not explicitly 

aligned, no AC#
yes

Type 12
AVX2 Not explicitly aligned, no 

AC#
no
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Table 2-15.  Instructions in each Exception Class

(*) - Additional exception restrictions are present - see the Instruction description for details
(**) - Instruction behavior on alignment check reporting with mask bits of less than all 1s are the same as with

mask bits of all 1s, i.e. no alignment checks are performed.

Exception Class Instruction

Type 1 (V)MOVAPD, (V)MOVAPS, (V)MOVDQA, (V)MOVNTDQ, (V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTPS

Type 2

(V)ADDPD, (V)ADDPS, (V)ADDSUBPD, (V)ADDSUBPS, (V)CMPPD, (V)CMPPS, (V)CVTDQ2PS, (V)CVTPD2DQ, 
(V)CVTPD2PS, (V)CVTPS2DQ, (V)CVTTPD2DQ, (V)CVTTPS2DQ, (V)DIVPD, (V)DIVPS, (V)DPPD*, (V)DPPS*, 
VFMADD132PD, VFMADD213PD, VFMADD231PD, VFMADD132PS, VFMADD213PS, VFMADD231PS, 
VFMADDSUB132PD, VFMADDSUB213PD, VFMADDSUB231PD, VFMADDSUB132PS, VFMADDSUB213PS, 
VFMADDSUB231PS, VFMSUBADD132PD, VFMSUBADD213PD, VFMSUBADD231PD, VFMSUBADD132PS, 
VFMSUBADD213PS, VFMSUBADD231PS, VFMSUB132PD, VFMSUB213PD, VFMSUB231PD, VFMSUB132PS, 
VFMSUB213PS, VFMSUB231PS, VFNMADD132PD, VFNMADD213PD, VFNMADD231PD, VFNMADD132PS, 
VFNMADD213PS, VFNMADD231PS, VFNMSUB132PD, VFNMSUB213PD, VFNMSUB231PD, VFNMSUB132PS, 
VFNMSUB213PS, VFNMSUB231PS, (V)HADDPD, (V)HADDPS, (V)HSUBPD, (V)HSUBPS, (V)MAXPD, (V)MAXPS, 
(V)MINPD, (V)MINPS, (V)MULPD, (V)MULPS, (V)ROUNDPS, (V)SQRTPD, (V)SQRTPS, (V)SUBPD, (V)SUBPS

Type 3

(V)ADDSD, (V)ADDSS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)CVTPS2PD, (V)CVTSD2SI, (V)CVTSD2SS, 
(V)CVTSI2SD, (V)CVTSI2SS, (V)CVTSS2SD, (V)CVTSS2SI, (V)CVTTSD2SI, (V)CVTTSS2SI, (V)DIVSD, (V)DIVSS, 
VFMADD132SD, VFMADD213SD, VFMADD231SD, VFMADD132SS, VFMADD213SS, VFMADD231SS, 
VFMSUB132SD, VFMSUB213SD, VFMSUB231SD, VFMSUB132SS, VFMSUB213SS, VFMSUB231SS, 
VFNMADD132SD, VFNMADD213SD, VFNMADD231SD, VFNMADD132SS, VFNMADD213SS, VFNMADD231SS, 
VFNMSUB132SD, VFNMSUB213SD, VFNMSUB231SD, VFNMSUB132SS, VFNMSUB213SS, VFNMSUB231SS, 
(V)MAXSD, (V)MAXSS, (V)MINSD, (V)MINSS, (V)MULSD, (V)MULSS, (V)ROUNDSD, (V)ROUNDSS, (V)SQRTSD, 
(V)SQRTSS, (V)SUBSD, (V)SUBSS, (V)UCOMISD, (V)UCOMISS

Type 4

(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST, (V)ANDPD, 
(V)ANDPS, (V)ANDNPD, (V)ANDNPS, (V)BLENDPD, (V)BLENDPS, VBLENDVPD, VBLENDVPS, (V)LDDQU, 
(V)MASKMOVDQU, (V)PTEST, VTESTPS, VTESTPD, (V)MOVDQU*, (V)MOVSHDUP, (V)MOVSLDUP, (V)MOVUPD*, 
(V)MOVUPS*, (V)MPSADBW, (V)ORPD, (V)ORPS, (V)PABSB, (V)PABSW, (V)PABSD, (V)PACKSSWB, (V)PACKSSDW, 
(V)PACKUSWB, (V)PACKUSDW, (V)PADDB, (V)PADDW, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, 
(V)PADDUSB, (V)PADDUSW, (V)PALIGNR, (V)PAND, (V)PANDN, (V)PAVGB, (V)PAVGW, (V)PBLENDVB, 
(V)PBLENDW, (V)PCMP(E/I)STRI/M***, (V)PCMPEQB, (V)PCMPEQW, (V)PCMPEQD, (V)PCMPEQQ, (V)PCMPGTB, 
(V)PCMPGTW, (V)PCMPGTD, (V)PCMPGTQ, (V)PCLMULQDQ, (V)PHADDW, (V)PHADDD, (V)PHADDSW, 
(V)PHMINPOSUW, (V)PHSUBD, (V)PHSUBW, (V)PHSUBSW, (V)PMADDWD, (V)PMADDUBSW, (V)PMAXSB, 
(V)PMAXSW, (V)PMAXSD, (V)PMAXUB, (V)PMAXUW, (V)PMAXUD, (V)PMINSB, (V)PMINSW, (V)PMINSD, 
(V)PMINUB, (V)PMINUW, (V)PMINUD, (V)PMULHUW, (V)PMULHRSW, (V)PMULHW, (V)PMULLW, (V)PMULLD, 
(V)PMULUDQ, (V)PMULDQ, (V)POR, (V)PSADBW, (V)PSHUFB, (V)PSHUFD, (V)PSHUFHW, (V)PSHUFLW, 
(V)PSIGNB, (V)PSIGNW, (V)PSIGND, (V)PSLLW, (V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, 
(V)PSRLQ, (V)PSUBB, (V)PSUBW, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PUNPCKHBW, 
(V)PUNPCKHWD, (V)PUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKLBW, (V)PUNPCKLWD, (V)PUNPCKLDQ, 
(V)PUNPCKLQDQ, (V)PXOR, (V)RCPPS, (V)RSQRTPS, (V)SHUFPD, (V)SHUFPS, (V)UNPCKHPD, (V)UNPCKHPS, 
(V)UNPCKLPD, (V)UNPCKLPS, (V)XORPD, (V)XORPS, VPBLENDD, VPERMD, VPERMPS, VPERMPD, VPERMQ, 
VPSLLVD, VPSLLVQ, VPSRAVD, VPSRLVD, VPSRLVQ, VPERMILPD, VPERMILPS, VPERM2F128

Type 5
(V)CVTDQ2PD, (V)EXTRACTPS, (V)INSERTPS, (V)MOVD, (V)MOVQ, (V)MOVDDUP, (V)MOVLPD, (V)MOVLPS, 
(V)MOVHPD, (V)MOVHPS, (V)MOVSD, (V)MOVSS, (V)PEXTRB, (V)PEXTRD, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB, 
(V)PINSRD, (V)PINSRW, (V)PINSRQ, (V)RCPSS, (V)RSQRTSS, (V)PMOVSX/ZX, VLDMXCSR*, VSTMXCSR

Type 6
VEXTRACTF128, VBROADCASTSS, VBROADCASTSD, VBROADCASTF128, VINSERTF128, VMASKMOVPS**, 
VMASKMOVPD**, VPMASKMOVD, VPMASKMOVQ, VBROADCASTI128, VPBROADCASTB, VPBROADCASTD, 
VPBROADCASTW, VPBROADCASTQ, VEXTRACTI128, VINSERTI128, VPERM2I128

Type 7
(V)MOVLHPS, (V)MOVHLPS, (V)MOVMSKPD, (V)MOVMSKPS, (V)PMOVMSKB, (V)PSLLDQ, (V)PSRLDQ, (V)PSLLW, 
(V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ

Type 8 VZEROALL, VZEROUPPER

Type 11 VCVTPH2PS, VCVTPS2PH

Type 12
VGATHERDPS, VGATHERDPD, VGATHERQPS, VGATHERQPD, VPGATHERDD, VPGATHERDQ, VPGATHERQD, 
VPGATHERQQ
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(***) - PCMPESTRI, PCMPESTRM, PCMPISTRI, and PCMPISTRM instructions do not cause #GP if the memory
operand is not aligned to 16-Byte boundary.

Table 2-15 classifies exception behaviors for AVX instructions. Within each class of exception conditions that are 
listed in Table 2-18 through Table 2-27, certain subsets of AVX instructions may be subject to #UD exception 
depending on the encoded value of the VEX.L field. Table 2-17 provides supplemental information of AVX instruc-
tions that may be subject to #UD exception if encoded with incorrect values in the VEX.W or VEX.L field.

Table 2-16.  #UD Exception and VEX.W=1 Encoding

Exception Class #UD If VEX.W = 1 in all modes
#UD If VEX.W = 1 in 
non-64-bit modes

Type 1

Type 2

Type 3

Type 4
VBLENDVPD, VBLENDVPS, VPBLENDVB, VTESTPD, VTESTPS, VPBLENDD, VPERMD, 
VPERMPS, VPERM2I128, VPSRAVD, VPERMILPD, VPERMILPS, VPERM2F128

Type 5 VPEXTRQ, VPINSRQ,

Type 6
VEXTRACTF128, VBROADCASTSS, VBROADCASTSD, VBROADCASTF128, 
VINSERTF128, VMASKMOVPS, VMASKMOVPD, VBROADCASTI128, 
VPBROADCASTB/W/D, VEXTRACTI128, VINSERTI128

Type 7

Type 8

Type 11 VCVTPH2PS, VCVTPS2PH

Type 12
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Table 2-17.  #UD Exception and VEX.L Field Encoding
Exception 

Class
#UD If VEX.L = 0

#UD If (VEX.L = 1 && AVX2 not present && AVX 
present)

#UD If (VEX.L = 1 && AVX2 
present)

Type 1 VMOVNTDQA

Type 2
VDPPD VDPPD

Type 3

Type 4

VMASKMOVDQU, VMPSADBW, VPABSB/W/D, 
VPACKSSWB/DW, VPACKUSWB/DW, VPADDB/W/D, 
VPADDQ, VPADDSB/W, VPADDUSB/W, VPALIGNR, VPAND, 
VPANDN, VPAVGB/W, VPBLENDVB, VPBLENDW, 
VPCMP(E/I)STRI/M, VPCMPEQB/W/D/Q, VPCMPGTB/W/D/Q, 
VPHADDW/D, VPHADDSW, VPHMINPOSUW, VPHSUBD/W, 
VPHSUBSW, VPMADDWD, VPMADDUBSW, VPMAXSB/W/D, 
VPMAXUB/W/D, VPMINSB/W/D, VPMINUB/W/D, 
VPMULHUW, VPMULHRSW, VPMULHW/LW, VPMULLD, 
VPMULUDQ, VPMULDQ, VPOR, VPSADBW, VPSHUFB/D, 
VPSHUFHW/LW, VPSIGNB/W/D, VPSLLW/D/Q, VPSRAW/D, 
VPSRLW/D/Q, VPSUBB/W/D/Q, VPSUBSB/W, 
VPUNPCKHBW/WD/DQ, VPUNPCKHQDQ, 
VPUNPCKLBW/WD/DQ, VPUNPCKLQDQ, VPXOR

VPCMP(E/I)STRI/M, 
PHMINPOSUW

Type 5

VEXTRACTPS, VINSERTPS, VMOVD, VMOVQ, VMOVLPD, 
VMOVLPS, VMOVHPD, VMOVHPS, VPEXTRB, VPEXTRD, 
VPEXTRW, VPEXTRQ, VPINSRB, VPINSRD, VPINSRW, 
VPINSRQ, VPMOVSX/ZX, VLDMXCSR, VSTMXCSR

Same as column 3

Type 6

VEXTRACTF128, 
VPERM2F128, 
VBROADCASTSD, 
VBROADCASTF128, 
VINSERTF128, 

Type 7
VMOVLHPS, VMOVHLPS, VPMOVMSKB, VPSLLDQ, 
VPSRLDQ, VPSLLW, VPSLLD, VPSLLQ, VPSRAW, VPSRAD, 
VPSRLW, VPSRLD, VPSRLQ

VMOVLHPS, VMOVHLPS

Type 8

Type 11

Type 12
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2.4.1 Exceptions Type 1 (Aligned memory reference) 

Table 2-18.  Type 1 Class Exception Conditions
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Cause of Exception

Invalid Opcode, 
#UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protec-
tion, #GP(0)

X X
VEX.256: Memory operand is not 32-byte aligned.
VEX.128: Memory operand is not 16-byte aligned.

X X X X Legacy SSE: Memory operand is not 16-byte aligned.

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.
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2.4.2 Exceptions Type 2 (>=16 Byte Memory Reference, Unaligned) 

Table 2-19.  Type 2 Class Exception Conditions
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Cause of Exception

Invalid Opcode, 
#UD

X X VEX prefix.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. 

X X
VEX prefix:
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protec-
tion, #GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned.

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.

SIMD Floating-
point Exception, 
#XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1.
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2.4.3 Exceptions Type 3 (<16 Byte memory argument) 

Table 2-20.  Type 3 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. 

X X
VEX prefix:
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.

Alignment Check 
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made 
while the current privilege level is 3.

SIMD Floating-point 
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1.
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2.4.4 Exceptions Type 4 (>=16 Byte mem arg no alignment, no floating-point exceptions)

Table 2-21.  Type 4 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned.1

NOTES:

1. PCMPESTRI, PCMPESTRM, PCMPISTRI, and PCMPISTRM instructions do not cause #GP if the memory operand is not aligned to 16-
Byte boundary.

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.
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2.4.5 Exceptions Type 5 (<16 Byte mem arg and no FP exceptions)

Table 2-22.  Type 5 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH.

Page Fault 
#PF(fault-code)

X X X For a page fault.

Alignment Check 
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made 
while the current privilege level is 3.
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2.4.6 Exceptions Type 6 (VEX-Encoded Instructions Without Legacy SSE Analogues)

Note: At present, the AVX instructions in this category do not generate floating-point exceptions.

Table 2-23.  Type 6 Class Exception Conditions

2.4.7 Exceptions Type 7 (No FP exceptions, no memory arg)

Table 2-24.  Type 7 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X If CR0.TS[bit 3]=1.

Stack, SS(0)
X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

Page Fault 
#PF(fault-code)

X X For a page fault.

Alignment Check 
#AC(0)

X X
For 4 or 8 byte memory references if alignment checking is enabled and an 
unaligned memory reference is made while the current privilege level is 3.
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Cause of Exception

Invalid Opcode, #UD

X X VEX prefix.

X X
VEX prefix:
If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X
Legacy SSE instruction:
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H).

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

X X X X If any corresponding CPUID feature flag is ‘0’.

Device Not Available, 
#NM

X X If CR0.TS[bit 3]=1.



Vol. 2A 2-31

INSTRUCTION FORMAT

2.4.8 Exceptions Type 8 (AVX and no memory argument)

Table 2-25.  Type 8 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD X X Always in Real or Virtual 80x86 mode.

X X If XCR0[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.
If CPUID.01H.ECX.AVX[bit 28]=0.
If VEX.vvvv != 1111B.

X X X X If proceeded by a LOCK prefix (F0H).

Device Not Available, 
#NM

X X If CR0.TS[bit 3]=1.
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2.4.9 Exception Type 11 (VEX-only, mem arg no AC, floating-point exceptions)

Table 2-26.  Type 11 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD X X VEX prefix

X X VEX prefix:
If XFEATURE_ENABLED_MASK[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X If preceded by a LOCK prefix (F0H)

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix

X X X X If any corresponding CPUID feature flag is ‘0’

Device Not Avail-
able, #NM

X X X X If CR0.TS[bit 3]=1

Stack, SS(0) X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection, 
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to 
FFFFH

Page Fault #PF 
(fault-code)

X X X For a page fault

SIMD Floating-Point 
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1
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2.4.10 Exception Type 12 (VEX-only, VSIB mem arg, no AC, no floating-point exceptions)

2.5 VEX ENCODING SUPPORT FOR GPR INSTRUCTIONS 

VEX prefix may be used to encode instructions that operate on neither YMM nor XMM registers. VEX-encoded 
general-purpose-register instructions have the following properties:
• Instruction syntax support for three encodable operands.
• Encoding support for instruction syntax of non-destructive source operand, destination operand encoded via 

VEX.vvvv, and destructive three-operand syntax.
• Elimination of escape opcode byte (0FH), two-byte escape via a compact bit field representation within the VEX 

prefix.
• Elimination of the need to use REX prefix to encode the extended half of general-purpose register sets (R8-

R15) for direct register access or memory addressing.
• Flexible and more compact bit fields are provided in the VEX prefix to retain the full functionality provided by 

REX prefix. REX.W, REX.X, REX.B functionalities are provided in the three-byte VEX prefix only. 
• VEX-encoded GPR instructions are encoded with VEX.L=0.

Table 2-27.  Type 12 Class Exception Conditions
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Cause of Exception

Invalid Opcode, #UD X X VEX prefix

X X VEX prefix:
If XFEATURE_ENABLED_MASK[2:1] != ‘11b’.
If CR4.OSXSAVE[bit 18]=0.

X X X X If preceded by a LOCK prefix (F0H)

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix

X X X NA If address size attribute is 16 bit

X X X X If ModR/M.mod = ‘11b’

X X X X If ModR/M.rm != ‘100b’

X X X X If any corresponding CPUID feature flag is ‘0’

X X X X If any vector register is used more than once between the destination register, 
mask register and the index register in VSIB addressing.

Device Not Available, 
#NM

X X X X If CR0.TS[bit 3]=1

Stack, SS(0) X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection, 
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to 
FFFFH

Page Fault #PF (fault-
code)

X X X For a page fault
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Any VEX-encoded GPR instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD.
Any VEX-encoded GPR instruction with a REX prefix proceeding VEX will #UD. 
VEX-encoded GPR instructions are not supported in real and virtual 8086 modes.

2.5.1 Exception Conditions for VEX-Encoded GPR Instructions

The exception conditions applicable to VEX-encoded GPR instruction differs from those of legacy GPR instructions. 
Table 2-28 lists VEX-encoded GPR instructions. The exception conditions for VEX-encoded GRP instructions are 
found in Table 2-29 for those instructions which have a default operand size of 32 bits and 16-bit operand size is 
not encodable.

(*) - Additional exception restrictions are present - see the Instruction description for details

Table 2-28.  VEX-Encoded GPR Instructions

Exception Class Instruction

See Table 2-29 ANDN, BLSI, BLSMSK, BLSR, BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX

Table 2-29.  Exception Definition (VEX-Encoded GPR Instructions)
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Cause of Exception

Invalid Opcode, #UD X X X X If BMI1/BMI2 CPUID feature flag is ‘0’

X X If a VEX prefix is present

X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix

Stack, SS(0) X X X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection, 
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments. 
If the DS, ES, FS, or GS register is used to access memory and it contains a null 
segment selector.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to 
FFFFH

Page Fault #PF(fault-
code)

X X X For a page fault

Alignment Check 
#AC(0)

X X X If alignment checking is enabled and an unaligned memory reference is made 
while the current privilege level is 3.
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CHAPTER 3
INSTRUCTION SET REFERENCE, A-M

This chapter describes the instruction set for the Intel 64 and IA-32 architectures (A-M) in IA-32e, protected, 
virtual-8086, and real-address modes of operation. The set includes general-purpose, x87 FPU, MMX, 
SSE/SSE2/SSE3/SSSE3/SSE4, AESNI/PCLMULQDQ, AVX and system instructions. See also Chapter 4, “Instruction 
Set Reference, N-Z,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.

For each instruction, each operand combination is described. A description of the instruction and its operand, an 
operational description, a description of the effect of the instructions on flags in the EFLAGS register, and a 
summary of exceptions that can be generated are also provided.

3.1 INTERPRETING THE INSTRUCTION REFERENCE PAGES

This section describes the format of information contained in the instruction reference pages in this chapter. It 
explains notational conventions and abbreviations used in these sections.

3.1.1 Instruction Format

The following is an example of the format used for each instruction description in this chapter. The heading below 
introduces the example. The table below provides an example summary table.

CMC—Complement Carry Flag [this is an example]

Instruction Operand Encoding

Opcode Instruction Op/En 64/32-bit 
Mode

CPUID 
Feature Flag

Description

F5 CMC A V/V NP Complement carry flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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3.1.1.1  Opcode Column in the Instruction Summary Table (Instructions without VEX prefix)

The “Opcode” column in the table above shows the object code produced for each form of the instruction. When 
possible, codes are given as hexadecimal bytes in the same order in which they appear in memory. Definitions of 
entries other than hexadecimal bytes are as follows:
• REX.W — Indicates the use of a REX prefix that affects operand size or instruction semantics. The ordering of 

the REX prefix and other optional/mandatory instruction prefixes are discussed Chapter 2. Note that REX 
prefixes that promote legacy instructions to 64-bit behavior are not listed explicitly in the opcode column.

• /digit — A digit between 0 and 7 indicates that the ModR/M byte of the instruction uses only the r/m (register 
or memory) operand. The reg field contains the digit that provides an extension to the instruction's opcode.

• /r — Indicates that the ModR/M byte of the instruction contains a register operand and an r/m operand.
• cb, cw, cd, cp, co, ct — A 1-byte (cb), 2-byte (cw), 4-byte (cd), 6-byte (cp), 8-byte (co) or 10-byte (ct) value 

following the opcode. This value is used to specify a code offset and possibly a new value for the code segment 
register.

• ib, iw, id, io — A 1-byte (ib), 2-byte (iw), 4-byte (id) or 8-byte (io) immediate operand to the instruction that 
follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines if the operand is a signed 
value. All words, doublewords and quadwords are given with the low-order byte first.

• +rb, +rw, +rd, +ro — A register code, from 0 through 7, added to the hexadecimal byte given at the left of 
the plus sign to form a single opcode byte. See Table 3-1 for the codes. The +ro columns in the table are 
applicable only in 64-bit mode.

• +i — A number used in floating-point instructions when one of the operands is ST(i) from the FPU register stack. 
The number i (which can range from 0 to 7) is added to the hexadecimal byte given at the left of the plus sign 
to form a single opcode byte.

Table 3-1.  Register Codes Associated With +rb, +rw, +rd, +ro

byte register word register dword register quadword register 
(64-Bit Mode only)
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AL None 0 AX None 0 EAX None 0 RAX None 0

CL None 1 CX None 1 ECX None 1 RCX None 1

DL None 2 DX None 2 EDX None 2 RDX None 2

BL None 3 BX None 3 EBX None 3 RBX None 3

AH Not 
encodab
le (N.E.)

4 SP None 4 ESP None 4 N/A N/A N/A

CH N.E. 5 BP None 5 EBP None 5 N/A N/A N/A

DH N.E. 6 SI None 6 ESI None 6 N/A N/A N/A

BH N.E. 7 DI None 7 EDI None 7 N/A N/A N/A

SPL Yes 4 SP None 4 ESP None 4 RSP None 4

BPL Yes 5 BP None 5 EBP None 5 RBP None 5

SIL Yes 6 SI None 6 ESI None 6 RSI None 6

DIL Yes 7 DI None 7 EDI None 7 RDI None 7

Registers R8 - R15 (see below): Available in 64-Bit Mode Only

R8L Yes 0 R8W Yes 0 R8D Yes 0 R8 Yes 0

R9L Yes 1 R9W Yes 1 R9D Yes 1 R9 Yes 1

R10L Yes 2 R10W Yes 2 R10D Yes 2 R10 Yes 2

R11L Yes 3 R11W Yes 3 R11D Yes 3 R11 Yes 3
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3.1.1.2  Opcode Column in the Instruction Summary Table (Instructions with VEX prefix)

In the Instruction Summary Table, the Opcode column presents each instruction encoded using the VEX prefix in 
following form (including the modR/M byte if applicable, the immediate byte if applicable):
VEX.[NDS].[128,256].[66,F2,F3].0F/0F3A/0F38.[W0,W1] opcode [/r] [/ib,/is4]

• VEX: indicates the presence of the VEX prefix is required. The VEX prefix can be encoded using the three-byte 
form (the first byte is C4H), or using the two-byte form (the first byte is C5H). The two-byte form of VEX only 
applies to those instructions that do not require the following fields to be encoded: VEX.mmmmm, VEX.W, 
VEX.X, VEX.B. Refer to Section 2.3 for more detail on the VEX prefix.
The encoding of various sub-fields of the VEX prefix is described using the following notations:

— NDS, NDD, DDS: specifies that VEX.vvvv field is valid for the encoding of a register operand: 

• VEX.NDS: VEX.vvvv encodes the first source register in an instruction syntax where the content of 
source registers will be preserved.

• VEX.NDD: VEX.vvvv encodes the destination register that cannot be encoded by ModR/M:reg field.

• VEX.DDS: VEX.vvvv encodes the second source register in a three-operand instruction syntax where 
the content of first source register will be overwritten by the result. 

• If none of NDS, NDD, and DDS is present, VEX.vvvv must be 1111b (i.e. VEX.vvvv does not encode an 
operand). The VEX.vvvv field can be encoded using either the 2-byte or 3-byte form of the VEX prefix.

— 128,256: VEX.L field can be 0 (denoted by VEX.128 or VEX.LZ) or 1 (denoted by VEX.256). The VEX.L field 
can be encoded using either the 2-byte or 3-byte form of the VEX prefix. The presence of the notation 
VEX.256 or VEX.128 in the opcode column should be interpreted as follows:

• If VEX.256 is present in the opcode column: The semantics of the instruction must be encoded with 
VEX.L = 1. An attempt to encode this instruction with VEX.L= 0 can result in one of two situations: (a) 
if VEX.128 version is defined, the processor will behave according to the defined VEX.128 behavior; (b) 
an #UD occurs if there is no VEX.128 version defined.

• If VEX.128 is present in the opcode column but there is no VEX.256 version defined for the same 
opcode byte: Two situations apply: (a) For VEX-encoded, 128-bit SIMD integer instructions, software 
must encode the instruction with VEX.L = 0. The processor will treat the opcode byte encoded with 
VEX.L= 1 by causing an #UD exception; (b) For VEX-encoded, 128-bit packed floating-point instruc-
tions, software must encode the instruction with VEX.L = 0. The processor will treat the opcode byte 
encoded with VEX.L= 1 by causing an #UD exception (e.g. VMOVLPS).

• If VEX.LIG is present in the opcode column: The VEX.L value is ignored. This generally applies to VEX-
encoded scalar SIMD floating-point instructions. Scalar SIMD floating-point instruction can be distin-
guished from the mnemonic of the instruction. Generally, the last two letters of the instruction 
mnemonic would be either “SS“, “SD“, or “SI“ for SIMD floating-point conversion instructions.

• If VEX.LZ is present in the opcode column: The VEX.L must be encoded to be 0B, an #UD occurs if 
VEX.L is not zero.

R12L Yes 4 R12W Yes 4 R12D Yes 4 R12 Yes 4

R13L Yes 5 R13W Yes 5 R13D Yes 5 R13 Yes 5

R14L Yes 6 R14W Yes 6 R14D Yes 6 R14 Yes 6

R15L Yes 7 R15W Yes 7 R15D Yes 7 R15 Yes 7

Table 3-1.  Register Codes Associated With +rb, +rw, +rd, +ro (Contd.)

byte register word register dword register quadword register 
(64-Bit Mode only)
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— 66,F2,F3: The presence or absence of these values map to the VEX.pp field encodings. If absent, this 
corresponds to VEX.pp=00B. If present, the corresponding VEX.pp value affects the “opcode” byte in the 
same way as if a SIMD prefix (66H, F2H or F3H) does to the ensuing opcode byte. Thus a non-zero encoding 
of VEX.pp may be considered as an implied 66H/F2H/F3H prefix. The VEX.pp field may be encoded using 
either the 2-byte or 3-byte form of the VEX prefix.

— 0F,0F3A,0F38: The presence maps to a valid encoding of the VEX.mmmmm field. Only three encoded 
values of VEX.mmmmm are defined as valid, corresponding to the escape byte sequence of 0FH, 0F3AH 
and 0F38H. The effect of a valid VEX.mmmmm encoding on the ensuing opcode byte is same as if the corre-
sponding escape byte sequence on the ensuing opcode byte for non-VEX encoded instructions. Thus a valid 
encoding of VEX.mmmmm may be consider as an implies escape byte sequence of either 0FH, 0F3AH or 
0F38H. The VEX.mmmmm field must be encoded using the 3-byte form of VEX prefix. 

— 0F,0F3A,0F38 and 2-byte/3-byte VEX. The presence of 0F3A and 0F38 in the opcode column implies 
that opcode can only be encoded by the three-byte form of VEX. The presence of 0F in the opcode column 
does not preclude the opcode to be encoded by the two-byte of VEX if the semantics of the opcode does not 
require any subfield of VEX not present in the two-byte form of the VEX prefix.

— W0: VEX.W=0. 

— W1: VEX.W=1.

— The presence of W0/W1 in the opcode column applies to two situations: (a) it is treated as an extended 
opcode bit, (b) the instruction semantics support an operand size promotion to 64-bit of a general-purpose 
register operand or a 32-bit memory operand. The presence of W1 in the opcode column implies the opcode 
must be encoded using the 3-byte form of the VEX prefix. The presence of W0 in the opcode column does 
not preclude the opcode to be encoded using the C5H form of the VEX prefix, if the semantics of the opcode 
does not require other VEX subfields not present in the two-byte form of the VEX prefix. Please see Section 
2.3 on the subfield definitions within VEX.

— WIG: can use C5H form (if not requiring VEX.mmmmm) or VEX.W value is ignored in the C4H form of VEX 
prefix.

— If WIG is present, the instruction may be encoded using either the two-byte form or the three-byte form of 
VEX. When encoding the instruction using the three-byte form of VEX, the value of VEX.W is ignored. 

• opcode: Instruction opcode.
• /is4: An 8-bit immediate byte is present containing a source register specifier in imm[7:4] and instruction-

specific payload in imm[3:0].
• In general, the encoding o f VEX.R, VEX.X, VEX.B field are not shown explicitly in the opcode column. The 

encoding scheme of VEX.R, VEX.X, VEX.B fields must follow the rules defined in Section 2.3.

3.1.1.3  Instruction Column in the Opcode Summary Table

The “Instruction” column gives the syntax of the instruction statement as it would appear in an ASM386 program. 
The following is a list of the symbols used to represent operands in the instruction statements:
• rel8 — A relative address in the range from 128 bytes before the end of the instruction to 127 bytes after the 

end of the instruction.
• rel16, rel32 — A relative address within the same code segment as the instruction assembled. The rel16 

symbol applies to instructions with an operand-size attribute of 16 bits; the rel32 symbol applies to instructions 
with an operand-size attribute of 32 bits.

• ptr16:16, ptr16:32 — A far pointer, typically to a code segment different from that of the instruction. The 
notation 16:16 indicates that the value of the pointer has two parts. The value to the left of the colon is a 16-
bit selector or value destined for the code segment register. The value to the right corresponds to the offset 
within the destination segment. The ptr16:16 symbol is used when the instruction's operand-size attribute is 
16 bits; the ptr16:32 symbol is used when the operand-size attribute is 32 bits.

• r8 — One of the byte general-purpose registers: AL, CL, DL, BL, AH, CH, DH, BH, BPL, SPL, DIL and SIL; or one 
of the byte registers (R8L - R15L) available when using REX.R and 64-bit mode. 

• r16 — One of the word general-purpose registers: AX, CX, DX, BX, SP, BP, SI, DI; or one of the word registers 
(R8-R15) available when using REX.R and 64-bit mode.
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• r32 — One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI; or one of 
the doubleword registers (R8D - R15D) available when using REX.R in 64-bit mode.

• r64 — One of the quadword general-purpose registers: RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8–R15. 
These are available when using REX.R and 64-bit mode.

• imm8 — An immediate byte value. The imm8 symbol is a signed number between –128 and +127 inclusive. 
For instructions in which imm8 is combined with a word or doubleword operand, the immediate value is sign-
extended to form a word or doubleword. The upper byte of the word is filled with the topmost bit of the 
immediate value.

• imm16 — An immediate word value used for instructions whose operand-size attribute is 16 bits. This is a 
number between –32,768 and +32,767 inclusive.

• imm32 — An immediate doubleword value used for instructions whose operand-size attribute is 32 
bits. It allows the use of a number between +2,147,483,647 and –2,147,483,648 inclusive.

• imm64 — An immediate quadword value used for instructions whose operand-size attribute is 64 bits. 
The value allows the use of a number between +9,223,372,036,854,775,807 and –
9,223,372,036,854,775,808 inclusive.

• r/m8 — A byte operand that is either the contents of a byte general-purpose register (AL, CL, DL, BL, AH, CH, 
DH, BH, BPL, SPL, DIL and SIL) or a byte from memory. Byte registers R8L - R15L are available using REX.R in 
64-bit mode.

• r/m16 — A word general-purpose register or memory operand used for instructions whose operand-size 
attribute is 16 bits. The word general-purpose registers are: AX, CX, DX, BX, SP, BP, SI, DI. The contents of 
memory are found at the address provided by the effective address computation. Word registers R8W - R15W 
are available using REX.R in 64-bit mode.

• r/m32 — A doubleword general-purpose register or memory operand used for instructions whose operand-
size attribute is 32 bits. The doubleword general-purpose registers are: EAX, ECX, EDX, EBX, ESP, EBP, ESI, 
EDI. The contents of memory are found at the address provided by the effective address computation. 
Doubleword registers R8D - R15D are available when using REX.R in 64-bit mode.

• r/m64 — A quadword general-purpose register or memory operand used for instructions whose operand-size 
attribute is 64 bits when using REX.W. Quadword general-purpose registers are: RAX, RBX, RCX, RDX, RDI, 
RSI, RBP, RSP, R8–R15; these are available only in 64-bit mode. The contents of memory are found at the 
address provided by the effective address computation.

• m — A 16-, 32- or 64-bit operand in memory.
• m8 — A byte operand in memory, usually expressed as a variable or array name, but pointed to by the 

DS:(E)SI or ES:(E)DI registers. In 64-bit mode, it is pointed to by the RSI or RDI registers.
• m16 — A word operand in memory, usually expressed as a variable or array name, but pointed to by the 

DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string instructions.
• m32 — A doubleword operand in memory, usually expressed as a variable or array name, but pointed to by the 

DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string instructions.
• m64 — A memory quadword operand in memory. 
• m128 — A memory double quadword operand in memory. 
• m16:16, m16:32 & m16:64 — A memory operand containing a far pointer composed of two numbers. The 

number to the left of the colon corresponds to the pointer's segment selector. The number to the right 
corresponds to its offset.

• m16&32, m16&16, m32&32, m16&64 — A memory operand consisting of data item pairs whose sizes are 
indicated on the left and the right side of the ampersand. All memory addressing modes are allowed. The 
m16&16 and m32&32 operands are used by the BOUND instruction to provide an operand containing an upper 
and lower bounds for array indices. The m16&32 operand is used by LIDT and LGDT to provide a word with 
which to load the limit field, and a doubleword with which to load the base field of the corresponding GDTR and 
IDTR registers. The m16&64 operand is used by LIDT and LGDT in 64-bit mode to provide a word with which to 
load the limit field, and a quadword with which to load the base field of the corresponding GDTR and IDTR 
registers.

• moffs8, moffs16, moffs32, moffs64 — A simple memory variable (memory offset) of type byte, word, or 
doubleword used by some variants of the MOV instruction. The actual address is given by a simple offset 
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relative to the segment base. No ModR/M byte is used in the instruction. The number shown with moffs 
indicates its size, which is determined by the address-size attribute of the instruction. 

• Sreg — A segment register. The segment register bit assignments are ES = 0, CS = 1, SS = 2, DS = 3, FS = 4, 
and GS = 5.

• m32fp, m64fp, m80fp — A single-precision, double-precision, and double extended-precision (respectively) 
floating-point operand in memory. These symbols designate floating-point values that are used as operands for 
x87 FPU floating-point instructions.

• m16int, m32int, m64int — A word, doubleword, and quadword integer (respectively) operand in memory. 
These symbols designate integers that are used as operands for x87 FPU integer instructions.

• ST or ST(0) — The top element of the FPU register stack.
• ST(i) — The ith element from the top of the FPU register stack (i ← 0 through 7).
• mm — An MMX register. The 64-bit MMX registers are: MM0 through MM7.
• mm/m32 — The low order 32 bits of an MMX register or a 32-bit memory operand. The 64-bit MMX registers 

are: MM0 through MM7. The contents of memory are found at the address provided by the effective address 
computation.

• mm/m64 — An MMX register or a 64-bit memory operand. The 64-bit MMX registers are: MM0 through MM7. 
The contents of memory are found at the address provided by the effective address computation.

• xmm — An XMM register. The 128-bit XMM registers are: XMM0 through XMM7; XMM8 through XMM15 are 
available using REX.R in 64-bit mode.

• xmm/m32— An XMM register or a 32-bit memory operand. The 128-bit XMM registers are XMM0 through 
XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at 
the address provided by the effective address computation.

• xmm/m64 — An XMM register or a 64-bit memory operand. The 128-bit SIMD floating-point registers are 
XMM0 through XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of 
memory are found at the address provided by the effective address computation.

• xmm/m128 — An XMM register or a 128-bit memory operand. The 128-bit XMM registers are XMM0 through 
XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode. The contents of memory are found at 
the address provided by the effective address computation.

• <XMM0>— indicates implied use of the XMM0 register.
When there is ambiguity, xmm1 indicates the first source operand using an XMM register and xmm2 the second 
source operand using an XMM register. 
Some instructions use the XMM0 register as the third source operand, indicated by <XMM0>. The use of the 
third XMM register operand is implicit in the instruction encoding and does not affect the ModR/M encoding.

• ymm — a YMM register. The 256-bit YMM registers are: YMM0 through YMM7; YMM8 through YMM15 are 
available in 64-bit mode. 

• m256 — A 32-byte operand in memory. This nomenclature is used only with AVX instructions.
• ymm/m256 — a YMM register or 256-bit memory operand. 
• <YMM0>— indicates use of the YMM0 register as an implicit argument.
• SRC1 — Denotes the first source operand in the instruction syntax of an instruction encoded with the VEX 

prefix and having two or more source operands.
• SRC2 — Denotes the second source operand in the instruction syntax of an instruction encoded with the VEX 

prefix and having two or more source operands.
• SRC3 — Denotes the third source operand in the instruction syntax of an instruction encoded with the VEX 

prefix and having three source operands.
• SRC — The source in a AVX single-source instruction or the source in a Legacy SSE instruction.
• DST — the destination in a AVX instruction. In Legacy SSE instructions can be either the destination, first 

source, or both. This field is encoded by reg_field.
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3.1.1.4  Operand Encoding Column in the Instruction Summary Table

The “operand encoding” column is abbreviated as Op/En in the Instruction Summary table heading. Instruction 
operand encoding information is provided for each assembly instruction syntax using a letter to cross reference to 
a row entry in the operand encoding definition table that follows the instruction summary table. The operand 
encoding table in each instruction reference page lists each instruction operand (according to each instruction 
syntax and operand ordering shown in the instruction column) relative to the ModRM byte, VEX.vvvv field or addi-
tional operand encoding placement. 

NOTES
• The letters in the Op/En column of an instruction apply ONLY to the encoding definition table 

immediately following the instruction summary table.
• In the encoding definition table, the letter ‘r’ within a pair of parenthesis denotes the content of 

the operand will be read by the processor. The letter ‘w’ within a pair of parenthesis denotes the 
content of the operand will be updated by the processor.

3.1.1.5  64/32-bit Mode Column in the Instruction Summary Table

The “64/32-bit Mode” column indicates whether the opcode sequence is supported in (a) 64-bit mode or (b) the 
Compatibility mode and other IA-32 modes that apply in conjunction with the CPUID feature flag associated 
specific instruction extensions. 

The 64-bit mode support is to the left of the ‘slash’ and has the following notation:
• V — Supported.
• I — Not supported.
• N.E. — Indicates an instruction syntax is not encodable in 64-bit mode (it may represent part of a sequence of 

valid instructions in other modes).
• N.P. — Indicates the REX prefix does not affect the legacy instruction in 64-bit mode.
• N.I. — Indicates the opcode is treated as a new instruction in 64-bit mode.
• N.S. — Indicates an instruction syntax that requires an address override prefix in 64-bit mode and is not 

supported. Using an address override prefix in 64-bit mode may result in model-specific execution behavior.

The Compatibility/Legacy Mode support is to the right of the ‘slash’ and has the following notation:
• V — Supported.
• I — Not supported.
• N.E. — Indicates an Intel 64 instruction mnemonics/syntax that is not encodable; the opcode sequence is not
applicable as an individual instruction in compatibility mode or IA-32 mode. The opcode may represent a valid
sequence of legacy IA-32 instructions.

3.1.1.6  CPUID Support Column in the Instruction Summary Table
The fourth column holds abbreviated CPUID feature flags (e.g. appropriate bit in CPUID.1.ECX, CPUID.1.EDX for
SSE/SSE2/SSE3/SSSE3/SSE4.1/SSE4.2/AESNI/PCLMULQDQ/AVX/RDRAND support) that indicate processor
support for the instruction. If the corresponding flag is ‘0’, the instruction will #UD.

3.1.1.7  Description Column in the Instruction Summary Table

The “Description” column briefly explains forms of the instruction. 

3.1.1.8  Description Section 

Each instruction is then described by number of information sections. The “Description” section describes the 
purpose of the instructions and required operands in more detail.

Summary of terms that may be used in the description section:
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• Legacy SSE: Refers to SSE, SSE2, SSE3, SSSE3, SSE4, AESNI, PCLMULQDQ and any future instruction sets 
referencing XMM registers and encoded without a VEX prefix.

• VEX.vvvv. The VEX bitfield specifying a source or destination register (in 1’s complement form).
• rm_field: shorthand for the ModR/M r/m field and any REX.B
• reg_field: shorthand for the ModR/M reg field and any REX.R

3.1.1.9  Operation Section

The “Operation” section contains an algorithm description (frequently written in pseudo-code) for the instruction. 
Algorithms are composed of the following elements:
• Comments are enclosed within the symbol pairs “(*” and “*)”. 
• Compound statements are enclosed in keywords, such as: IF, THEN, ELSE and FI for an if statement; DO and 

OD for a do statement; or CASE... OF for a case statement.
• A register name implies the contents of the register. A register name enclosed in brackets implies the contents 

of the location whose address is contained in that register. For example, ES:[DI] indicates the contents of the 
location whose ES segment relative address is in register DI. [SI] indicates the contents of the address 
contained in register SI relative to the SI register’s default segment (DS) or the overridden segment.

• Parentheses around the “E” in a general-purpose register name, such as (E)SI, indicates that the offset is read 
from the SI register if the address-size attribute is 16, from the ESI register if the address-size attribute is 32. 
Parentheses around the “R” in a general-purpose register name, (R)SI, in the presence of a 64-bit register 
definition such as (R)SI, indicates that the offset is read from the 64-bit RSI register if the address-size 
attribute is 64.

• Brackets are used for memory operands where they mean that the contents of the memory location is a 
segment-relative offset. For example, [SRC] indicates that the content of the source operand is a segment-
relative offset.

• A ← B indicates that the value of B is assigned to A.
• The symbols =, ≠, >, <, ≥, and ≤ are relational operators used to compare two values: meaning equal, not 

equal, greater or equal, less or equal, respectively. A relational expression such as A ← B is TRUE if the value of 
A is equal to B; otherwise it is FALSE.

• The expression “« COUNT” and “» COUNT” indicates that the destination operand should be shifted left or right 
by the number of bits indicated by the count operand.

The following identifiers are used in the algorithmic descriptions:
• OperandSize and AddressSize — The OperandSize identifier represents the operand-size attribute of the 

instruction, which is 16, 32 or 64-bits. The AddressSize identifier represents the address-size attribute, which 
is 16, 32 or 64-bits. For example, the following pseudo-code indicates that the operand-size attribute depends 
on the form of the MOV instruction used.

IF Instruction ← MOVW

THEN OperandSize = 16;

ELSE

IF Instruction ← MOVD

THEN OperandSize = 32;

ELSE

IF Instruction ← MOVQ

THEN OperandSize = 64; 

FI;

FI;

FI;

See “Operand-Size and Address-Size Attributes” in Chapter 3 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for guidelines on how these attributes are determined.
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• StackAddrSize — Represents the stack address-size attribute associated with the instruction, which has a 
value of 16, 32 or 64-bits. See “Address-Size Attribute for Stack” in Chapter 6, “Procedure Calls, Interrupts, and 
Exceptions,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

• SRC — Represents the source operand.
• DEST — Represents the destination operand.
• VLMAX — The maximum vector register width pertaining to the instruction. This is not the vector-length 

encoding in the instruction's prefix but is instead determined by the current value of XCR0. For existing 
processors, VLMAX is 256 whenever XCR0.YMM[bit 2] is 1.  Future processors may defined new bits in XCR0 
whose setting may imply other values for VLMAX.

VLMAX Definition

The following functions are used in the algorithmic descriptions:
• ZeroExtend(value) — Returns a value zero-extended to the operand-size attribute of the instruction. For 

example, if the operand-size attribute is 32, zero extending a byte value of –10 converts the byte from F6H to 
a doubleword value of 000000F6H. If the value passed to the ZeroExtend function and the operand-size 
attribute are the same size, ZeroExtend returns the value unaltered.

• SignExtend(value) — Returns a value sign-extended to the operand-size attribute of the instruction. For 
example, if the operand-size attribute is 32, sign extending a byte containing the value –10 converts the byte 
from F6H to a doubleword value of FFFFFFF6H. If the value passed to the SignExtend function and the operand-
size attribute are the same size, SignExtend returns the value unaltered.

• SaturateSignedWordToSignedByte — Converts a signed 16-bit value to a signed 8-bit value. If the signed 
16-bit value is less than –128, it is represented by the saturated value -128 (80H); if it is greater than 127, it 
is represented by the saturated value 127 (7FH).

• SaturateSignedDwordToSignedWord — Converts a signed 32-bit value to a signed 16-bit value. If the 
signed 32-bit value is less than –32768, it is represented by the saturated value –32768 (8000H); if it is 
greater than 32767, it is represented by the saturated value 32767 (7FFFH).

• SaturateSignedWordToUnsignedByte — Converts a signed 16-bit value to an unsigned 8-bit value. If the 
signed 16-bit value is less than zero, it is represented by the saturated value zero (00H); if it is greater than 
255, it is represented by the saturated value 255 (FFH).

• SaturateToSignedByte — Represents the result of an operation as a signed 8-bit value. If the result is less 
than –128, it is represented by the saturated value –128 (80H); if it is greater than 127, it is represented by 
the saturated value 127 (7FH).

• SaturateToSignedWord — Represents the result of an operation as a signed 16-bit value. If the result is less 
than –32768, it is represented by the saturated value –32768 (8000H); if it is greater than 32767, it is 
represented by the saturated value 32767 (7FFFH).

• SaturateToUnsignedByte — Represents the result of an operation as a signed 8-bit value. If the result is less 
than zero it is represented by the saturated value zero (00H); if it is greater than 255, it is represented by the 
saturated value 255 (FFH).

• SaturateToUnsignedWord — Represents the result of an operation as a signed 16-bit value. If the result is 
less than zero it is represented by the saturated value zero (00H); if it is greater than 65535, it is represented 
by the saturated value 65535 (FFFFH).

• LowOrderWord(DEST * SRC) — Multiplies a word operand by a word operand and stores the least significant 
word of the doubleword result in the destination operand.

• HighOrderWord(DEST * SRC) — Multiplies a word operand by a word operand and stores the most 
significant word of the doubleword result in the destination operand.

• Push(value) — Pushes a value onto the stack. The number of bytes pushed is determined by the operand-size 
attribute of the instruction. See the “Operation” subsection of the “PUSH—Push Word, Doubleword or 

XCR0 Component VLMAX

XCR0.YMM 256
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Quadword Onto the Stack” section in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2B.

• Pop() removes the value from the top of the stack and returns it. The statement EAX ← Pop(); assigns to EAX 
the 32-bit value from the top of the stack. Pop will return either a word, a doubleword or a quadword depending 
on the operand-size attribute. See the “Operation” subsection in the “POP—Pop a Value from the Stack” section 
of Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.

• PopRegisterStack — Marks the FPU ST(0) register as empty and increments the FPU register stack pointer 
(TOP) by 1.

• Switch-Tasks — Performs a task switch.
• Bit(BitBase, BitOffset) — Returns the value of a bit within a bit string. The bit string is a sequence of bits in 

memory or a register. Bits are numbered from low-order to high-order within registers and within memory 
bytes. If the BitBase is a register, the BitOffset can be in the range 0 to [15, 31, 63] depending on the mode and 
register size. See Figure 3-1: the function Bit[RAX, 21] is illustrated.

If BitBase is a memory address, the BitOffset can range has different ranges depending on the operand size 
(see Table 3-2). 

The addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase + (BitOffset DIV 8)) where 
DIV is signed division with rounding towards negative infinity and MOD returns a positive number (see 
Figure 3-2).

Figure 3-1.  Bit Offset for BIT[RAX, 21]

Table 3-2.  Range of Bit Positions Specified by Bit Offset Operands

Operand Size Immediate BitOffset Register BitOffset

16 0 to 15 − 215 to 215 − 1 

32 0 to 31 − 231 to 231 − 1 

64 0 to 63 − 263 to 263 − 1 

02131

Bit Offset ← 21

63
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3.1.1.10  Intel® C/C++ Compiler Intrinsics Equivalents Section

The Intel C/C++ compiler intrinsics equivalents are special C/C++ coding extensions that allow using the syntax of 
C function calls and C variables instead of hardware registers. Using these intrinsics frees programmers from 
having to manage registers and assembly programming. Further, the compiler optimizes the instruction scheduling 
so that executable run faster.

The following sections discuss the intrinsics API and the MMX technology and SIMD floating-point intrinsics. Each 
intrinsic equivalent is listed with the instruction description. There may be additional intrinsics that do not have an 
instruction equivalent. It is strongly recommended that the reader reference the compiler documentation for the 
complete list of supported intrinsics. 

See Appendix C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2C, for more information on using intrinsics.

Intrinsics API

The benefit of coding with MMX technology intrinsics and the SSE/SSE2/SSE3 intrinsics is that you can use the 
syntax of C function calls and C variables instead of hardware registers. This frees you from managing registers 
and programming assembly. Further, the compiler optimizes the instruction scheduling so that your executable 
runs faster. For each computational and data manipulation instruction in the new instruction set, there is a corre-
sponding C intrinsic that implements it directly. The intrinsics allow you to specify the underlying implementation 
(instruction selection) of an algorithm yet leave instruction scheduling and register allocation to the compiler.

MMX™ Technology Intrinsics

The MMX technology intrinsics are based on a __m64 data type that represents the specific contents of an MMX 
technology register. You can specify values in bytes, short integers, 32-bit values, or a 64-bit object. The __m64 
data type, however, is not a basic ANSI C data type, and therefore you must observe the following usage restric-
tions: 
• Use __m64 data only on the left-hand side of an assignment, as a return value, or as a parameter. You cannot 

use it with other arithmetic expressions (“+”, “>>”, and so on).
• Use __m64 objects in aggregates, such as unions to access the byte elements and structures; the address of 

an __m64 object may be taken.
• Use __m64 data only with the MMX technology intrinsics described in this manual and Intel® C/C++ compiler 

documentation. 
• See: 

— http://www.intel.com/support/performancetools/

Figure 3-2.  Memory Bit Indexing

BitBase + 

0777 5 0 0

BitBase − 

0777 50 0

BitBase BitBase − 

BitOffset ← +13

BitOffset ← −

BitBase − BitBase
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— Appendix C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2C, for more information on using intrinsics.

— SSE/SSE2/SSE3 Intrinsics

— SSE/SSE2/SSE3 intrinsics all make use of the XMM registers of the Pentium III, Pentium 4, and Intel Xeon 
processors. There are three data types supported by these intrinsics: __m128, __m128d, and __m128i.

• The __m128 data type is used to represent the contents of an XMM register used by an SSE intrinsic. This is 
either four packed single-precision floating-point values or a scalar single-precision floating-point value.

• The __m128d data type holds two packed double-precision floating-point values or a scalar double-precision 
floating-point value.

• The __m128i data type can hold sixteen byte, eight word, or four doubleword, or two quadword integer values.

The compiler aligns __m128, __m128d, and __m128i local and global data to 16-byte boundaries on the stack. To 
align integer, float, or double arrays, use the declspec statement as described in Intel C/C++ compiler documenta-
tion. See http://www.intel.com/support/performancetools/.

The __m128, __m128d, and __m128i data types are not basic ANSI C data types and therefore some restrictions 
are placed on its usage:
• Use __m128, __m128d, and __m128i only on the left-hand side of an assignment, as a return value, or as a 

parameter. Do not use it in other arithmetic expressions such as “+” and “>>.”
• Do not initialize __m128, __m128d, and __m128i with literals; there is no way to express 128-bit constants.
• Use __m128, __m128d, and __m128i objects in aggregates, such as unions (for example, to access the float 

elements) and structures. The address of these objects may be taken.
• Use __m128, __m128d, and __m128i data only with the intrinsics described in this user’s guide. See Appendix 

C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2C, for more information on using intrinsics.

The compiler aligns __m128, __m128d, and __m128i local data to 16-byte boundaries on the stack. Global 
__m128 data is also aligned on 16-byte boundaries. (To align float arrays, you can use the alignment declspec 
described in the following section.) Because the new instruction set treats the SIMD floating-point registers in the 
same way whether you are using packed or scalar data, there is no __m32 data type to represent scalar data as 
you might expect. For scalar operations, you should use the __m128 objects and the “scalar” forms of the intrin-
sics; the compiler and the processor implement these operations with 32-bit memory references.

The suffixes ps and ss are used to denote “packed single” and “scalar single” precision operations. The packed 
floats are represented in right-to-left order, with the lowest word (right-most) being used for scalar operations: [z, 
y, x, w]. To explain how memory storage reflects this, consider the following example. 

The operation:

float a[4] ← { 1.0, 2.0, 3.0, 4.0 };

__m128 t ← _mm_load_ps(a);

Produces the same result as follows:

__m128 t ← _mm_set_ps(4.0, 3.0, 2.0, 1.0);

In other words:

t ← [ 4.0, 3.0, 2.0, 1.0 ]

Where the “scalar” element is 1.0.

Some intrinsics are “composites” because they require more than one instruction to implement them. You should 
be familiar with the hardware features provided by the SSE, SSE2, SSE3, and MMX technology when writing 
programs with the intrinsics. 

Keep the following important issues in mind:
• Certain intrinsics, such as _mm_loadr_ps and _mm_cmpgt_ss, are not directly supported by the instruction 

set. While these intrinsics are convenient programming aids, be mindful of their implementation cost.
• Data loaded or stored as __m128 objects must generally be 16-byte-aligned.
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• Some intrinsics require that their argument be immediates, that is, constant integers (literals), due to the 
nature of the instruction.

• The result of arithmetic operations acting on two NaN (Not a Number) arguments is undefined. Therefore, 
floating-point operations using NaN arguments may not match the expected behavior of the corresponding 
assembly instructions.

For a more detailed description of each intrinsic and additional information related to its usage, refer to Intel 
C/C++ compiler documentation. See:

— http://www.intel.com/support/performancetools/

— Appendix C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2C, for more information on using intrinsics.

3.1.1.11  Flags Affected Section 

The “Flags Affected” section lists the flags in the EFLAGS register that are affected by the instruction. When a flag 
is cleared, it is equal to 0; when it is set, it is equal to 1. The arithmetic and logical instructions usually assign 
values to the status flags in a uniform manner (see Appendix A, “EFLAGS Cross-Reference,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1). Non-conventional assignments are described in the 
“Operation” section. The values of flags listed as undefined may be changed by the instruction in an indeterminate 
manner. Flags that are not listed are unchanged by the instruction.

3.1.1.12  FPU Flags Affected Section 

The floating-point instructions have an “FPU Flags Affected” section that describes how each instruction can affect 
the four condition code flags of the FPU status word.

3.1.1.13  Protected Mode Exceptions Section

The “Protected Mode Exceptions” section lists the exceptions that can occur when the instruction is executed in 
protected mode and the reasons for the exceptions. Each exception is given a mnemonic that consists of a pound 
sign (#) followed by two letters and an optional error code in parentheses. For example, #GP(0) denotes a general 
protection exception with an error code of 0. Table 3-3 associates each two-letter mnemonic with the corre-
sponding interrupt vector number and exception name. See Chapter 6, “Procedure Calls, Interrupts, and Excep-
tions,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for a detailed 
description of the exceptions. 

Application programmers should consult the documentation provided with their operating systems to determine 
the actions taken when exceptions occur.

Table 3-3.  Intel 64 and IA-32 General Exceptions 

Vector 
No.

Name Source Protected 
Mode1

Real 
Address 
Mode

Virtual 
8086 
Mode

 0 #DE—Divide Error DIV and IDIV instructions. Yes Yes Yes

 1 #DB—Debug Any code or data reference. Yes Yes Yes

 3 #BP—Breakpoint INT 3 instruction. Yes Yes Yes

 4 #OF—Overflow INTO instruction. Yes Yes Yes

 5 #BR—BOUND Range Exceeded BOUND instruction. Yes Yes Yes

 6 #UD—Invalid Opcode (Undefined 
Opcode)

UD2 instruction or reserved opcode. Yes Yes Yes

 7 #NM—Device Not Available (No 
Math Coprocessor)

Floating-point or WAIT/FWAIT instruction. Yes Yes Yes
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3.1.1.14  Real-Address Mode Exceptions Section

The “Real-Address Mode Exceptions” section lists the exceptions that can occur when the instruction is executed in 
real-address mode (see Table 3-3).

3.1.1.15  Virtual-8086 Mode Exceptions Section

The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when the instruction is executed in 
virtual-8086 mode (see Table 3-3).

3.1.1.16  Floating-Point Exceptions Section

The “Floating-Point Exceptions” section lists exceptions that can occur when an x87 FPU floating-point instruction 
is executed. All of these exception conditions result in a floating-point error exception (#MF, vector number 16) 
being generated. Table 3-4 associates a one- or two-letter mnemonic with the corresponding exception name. See 
“Floating-Point Exception Conditions” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 1, for a detailed description of these exceptions.

 8 #DF—Double Fault Any instruction that can generate an exception, 
an NMI, or an INTR.

Yes Yes Yes

10 #TS—Invalid TSS Task switch or TSS access. Yes Reserved Yes

11 #NP—Segment Not Present Loading segment registers or accessing system 
segments.

Yes Reserved Yes

12 #SS—Stack Segment Fault Stack operations and SS register loads. Yes Yes Yes

13 #GP—General Protection2 Any memory reference and other protection 
checks.

Yes Yes Yes

14 #PF—Page Fault Any memory reference. Yes Reserved Yes

16 #MF—Floating-Point Error (Math 
Fault)

Floating-point or WAIT/FWAIT instruction. Yes Yes Yes

17 #AC—Alignment Check Any data reference in memory. Yes Reserved Yes

18 #MC—Machine Check Model dependent machine check errors. Yes Yes Yes

19 #XM—SIMD Floating-Point 
Numeric Error

SSE/SSE2/SSE3 floating-point instructions. Yes Yes Yes

NOTES:

1. Apply to protected mode, compatibility mode, and 64-bit mode.

2. In the real-address mode, vector 13 is the segment overrun exception.

Table 3-3.  Intel 64 and IA-32 General Exceptions  (Contd.)

Vector 
No.

Name Source Protected 
Mode1

Real 
Address 
Mode

Virtual 
8086 
Mode
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3.1.1.17  SIMD Floating-Point Exceptions Section

The “SIMD Floating-Point Exceptions” section lists exceptions that can occur when an SSE/SSE2/SSE3 floating-
point instruction is executed. All of these exception conditions result in a SIMD floating-point error exception (#XM, 
vector number 19) being generated. Table 3-5 associates a one-letter mnemonic with the corresponding exception 
name. For a detailed description of these exceptions, refer to ”SSE and SSE2 Exceptions”, in Chapter 11 of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

3.1.1.18  Compatibility Mode Exceptions Section

This section lists exceptions that occur within compatibility mode.

3.1.1.19  64-Bit Mode Exceptions Section

This section lists exceptions that occur within 64-bit mode.

3.2 INSTRUCTIONS (A-M)

The remainder of this chapter provides descriptions of Intel 64 and IA-32 instructions (A-M). See also: Chapter 4, 
“Instruction Set Reference, N-Z,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2B.

Table 3-4.  x87 FPU Floating-Point Exceptions

Mnemonic Name Source

#IS
#IA

Floating-point invalid operation:

- Stack overflow or underflow

- Invalid arithmetic operation

- x87 FPU stack overflow or underflow

- Invalid FPU arithmetic operation

#Z Floating-point divide-by-zero Divide-by-zero

#D Floating-point denormal operand Source operand that is a denormal number

#O Floating-point numeric overflow Overflow in result

#U Floating-point numeric underflow Underflow in result

#P Floating-point inexact result (precision) Inexact result (precision)

Table 3-5.  SIMD Floating-Point Exceptions

Mnemonic Name Source

#I Floating-point invalid operation Invalid arithmetic operation or source operand

#Z Floating-point divide-by-zero Divide-by-zero

#D Floating-point denormal operand Source operand that is a denormal number

#O Floating-point numeric overflow Overflow in result

#U Floating-point numeric underflow Underflow in result

#P Floating-point inexact result Inexact result (precision)
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AAA—ASCII Adjust After Addition

Instruction Operand Encoding

Description

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The AL register is the implied 
source and destination operand for this instruction. The AAA instruction is only useful when it follows an ADD 
instruction that adds (binary addition) two unpacked BCD values and stores a byte result in the AL register. The 
AAA instruction then adjusts the contents of the AL register to contain the correct 1-digit unpacked BCD result. 

If the addition produces a decimal carry, the AH register increments by 1, and the CF and AF flags are set. If there 
was no decimal carry, the CF and AF flags are cleared and the AH register is unchanged. In either case, bits 4 
through 7 of the AL register are set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

IF ((AL AND 0FH) > 9) or (AF = 1)

THEN

AL ← AL + 6;

AH ← AH + 1;

AF ← 1;

CF ← 1;

AL ← AL AND 0FH;

ELSE

AF ← 0;

CF ← 0;
AL ← AL AND 0FH;

FI;

FI;

Flags Affected

The AF and CF flags are set to 1 if the adjustment results in a decimal carry; otherwise they are set to 0. The OF, 
SF, ZF, and PF flags are undefined.

Protected Mode Exceptions

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as protected mode.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

37 AAA NP Invalid Valid ASCII adjust AL after addition.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Virtual-8086 Mode Exceptions

Same exceptions as protected mode.

Compatibility Mode Exceptions

Same exceptions as protected mode.

64-Bit Mode Exceptions

#UD If in 64-bit mode.
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AAD—ASCII Adjust AX Before Division

Instruction Operand Encoding

Description

Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the most-significant digit in the 
AH register) so that a division operation performed on the result will yield a correct unpacked BCD value. The AAD 
instruction is only useful when it precedes a DIV instruction that divides (binary division) the adjusted value in the 
AX register by an unpacked BCD value.

The AAD instruction sets the value in the AL register to (AL + (10 * AH)), and then clears the AH register to 00H. 
The value in the AX register is then equal to the binary equivalent of the original unpacked two-digit (base 10) 
number in registers AH and AL.

The generalized version of this instruction allows adjustment of two unpacked digits of any number base (see the 
“Operation” section below), by setting the imm8 byte to the selected number base (for example, 08H for octal, 0AH 
for decimal, or 0CH for base 12 numbers). The AAD mnemonic is interpreted by all assemblers to mean adjust 
ASCII (base 10) values. To adjust values in another number base, the instruction must be hand coded in machine 
code (D5 imm8).

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

tempAL ← AL;

tempAH ← AH;

AL ← (tempAL + (tempAH ∗ imm8)) AND FFH; 
(* imm8 is set to 0AH for the AAD mnemonic.*)

AH ← 0;

FI;

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL register; the OF, AF, and CF flags 
are undefined.

Protected Mode Exceptions

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as protected mode.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

D5 0A AAD NP Invalid Valid ASCII adjust AX before division.

D5 ib AAD imm8 NP Invalid Valid Adjust AX before division to number base 
imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Virtual-8086 Mode Exceptions

Same exceptions as protected mode.

Compatibility Mode Exceptions

Same exceptions as protected mode.

64-Bit Mode Exceptions

#UD If in 64-bit mode.
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AAM—ASCII Adjust AX After Multiply

Instruction Operand Encoding

Description

Adjusts the result of the multiplication of two unpacked BCD values to create a pair of unpacked (base 10) BCD 
values. The AX register is the implied source and destination operand for this instruction. The AAM instruction is 
only useful when it follows an MUL instruction that multiplies (binary multiplication) two unpacked BCD values and 
stores a word result in the AX register. The AAM instruction then adjusts the contents of the AX register to contain 
the correct 2-digit unpacked (base 10) BCD result. 

The generalized version of this instruction allows adjustment of the contents of the AX to create two unpacked 
digits of any number base (see the “Operation” section below). Here, the imm8 byte is set to the selected number 
base (for example, 08H for octal, 0AH for decimal, or 0CH for base 12 numbers). The AAM mnemonic is interpreted 
by all assemblers to mean adjust to ASCII (base 10) values. To adjust to values in another number base, the 
instruction must be hand coded in machine code (D4 imm8).

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

tempAL ← AL;

AH ← tempAL / imm8; (* imm8 is set to 0AH for the AAM mnemonic *)

AL ← tempAL MOD imm8;

FI;

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL register. The OF, AF, and CF flags 
are undefined.

Protected Mode Exceptions

#DE If an immediate value of 0 is used.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as protected mode.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

D4 0A AAM NP Invalid Valid ASCII adjust AX after multiply.

D4 ib AAM imm8 NP Invalid Valid Adjust AX after multiply to number base 
imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Compatibility Mode Exceptions

Same exceptions as protected mode.

64-Bit Mode Exceptions

#UD If in 64-bit mode.
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AAS—ASCII Adjust AL After Subtraction

Instruction Operand Encoding

Description

Adjusts the result of the subtraction of two unpacked BCD values to create a unpacked BCD result. The AL register 
is the implied source and destination operand for this instruction. The AAS instruction is only useful when it follows 
a SUB instruction that subtracts (binary subtraction) one unpacked BCD value from another and stores a byte 
result in the AL register. The AAA instruction then adjusts the contents of the AL register to contain the correct 1-
digit unpacked BCD result. 

If the subtraction produced a decimal carry, the AH register decrements by 1, and the CF and AF flags are set. If no 
decimal carry occurred, the CF and AF flags are cleared, and the AH register is unchanged. In either case, the AL 
register is left with its top four bits set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-bit mode
THEN

#UD;
ELSE

IF ((AL AND 0FH) > 9) or (AF = 1)

THEN

AX ← AX – 6;

AH ← AH – 1;

AF ← 1;

CF ← 1;

AL ← AL AND 0FH;

ELSE

CF ← 0;

AF ← 0;

AL ← AL AND 0FH;

FI;

FI;

Flags Affected

The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are cleared to 0. The OF, SF, ZF, and 
PF flags are undefined.

Protected Mode Exceptions

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as protected mode.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

3F AAS NP Invalid Valid ASCII adjust AL after subtraction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Virtual-8086 Mode Exceptions

Same exceptions as protected mode.

Compatibility Mode Exceptions

Same exceptions as protected mode.

64-Bit Mode Exceptions

#UD If in 64-bit mode.
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ADC—Add with Carry

Instruction Operand Encoding

Description

Adds the destination operand (first operand), the source operand (second operand), and the carry (CF) flag and 
stores the result in the destination operand. The destination operand can be a register or a memory location; the 
source operand can be an immediate, a register, or a memory location. (However, two memory operands cannot be 
used in one instruction.) The state of the CF flag represents a carry from a previous addition. When an immediate 
value is used as an operand, it is sign-extended to the length of the destination operand format.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

14 ib ADC AL, imm8 I Valid Valid Add with carry imm8 to AL.

15 iw ADC AX, imm16 I Valid Valid Add with carry imm16 to AX.

15 id ADC EAX, imm32 I Valid Valid Add with carry imm32 to EAX.

REX.W + 15 id ADC RAX, imm32 I Valid N.E. Add with carry imm32 sign extended to 64-

bits to RAX.

80 /2 ib ADC r/m8, imm8 MI Valid Valid Add with carry imm8 to r/m8.

REX + 80 /2 ib ADC r/m8
*, imm8 MI Valid N.E. Add with carry imm8 to r/m8.

81 /2 iw ADC r/m16, imm16 MI Valid Valid Add with carry imm16 to r/m16.

81 /2 id ADC r/m32, imm32 MI Valid Valid Add with CF imm32 to r/m32.

REX.W + 81 /2 id ADC r/m64, imm32 MI Valid N.E. Add with CF imm32 sign extended to 64-bits 
to r/m64.

83 /2 ib ADC r/m16, imm8 MI Valid Valid Add with CF sign-extended imm8 to r/m16.

83 /2 ib ADC r/m32, imm8 MI Valid Valid Add with CF sign-extended imm8 into r/m32.

REX.W + 83 /2 ib ADC r/m64, imm8 MI Valid N.E. Add with CF sign-extended imm8 into r/m64.

10 /r ADC r/m8, r8 MR Valid Valid Add with carry byte register to r/m8.

REX + 10 /r ADC r/m8
*
, r8

* MR Valid N.E. Add with carry byte register to r/m64.

11 /r ADC r/m16, r16 MR Valid Valid Add with carry r16 to r/m16.

11 /r ADC r/m32, r32 MR Valid Valid Add with CF r32 to r/m32.

REX.W + 11 /r ADC r/m64, r64 MR Valid N.E. Add with CF r64 to r/m64.

12 /r ADC r8, r/m8 RM Valid Valid Add with carry r/m8 to byte register.

REX + 12 /r ADC r8*
, r/m8

* RM Valid N.E. Add with carry r/m64 to byte register.

13 /r ADC r16, r/m16 RM Valid Valid Add with carry r/m16 to r16.

13 /r ADC r32, r/m32 RM Valid Valid Add with CF r/m32 to r32.

REX.W + 13 /r ADC r64, r/m64 RM Valid N.E. Add with CF r/m64 to r64.

NOTES:
*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA
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The ADC instruction does not distinguish between signed or unsigned operands. Instead, the processor evaluates 
the result for both data types and sets the OF and CF flags to indicate a carry in the signed or unsigned result, 
respectively. The SF flag indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition in which an ADD instruction is 
followed by an ADC instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST ← DEST + SRC + CF;

Intel C/C++ Compiler Intrinsic Equivalent

ADC: extern unsigned char _addcarry_u8(unsigned char c_in, unsigned char src1, unsigned char src2, unsigned char *sum_out);

ADC: extern unsigned char _addcarry_u16(unsigned char c_in, unsigned short src1, unsigned short src2, unsigned short 
*sum_out);

ADC: extern unsigned char _addcarry_u32(unsigned char c_in, unsigned int src1, unsigned char int, unsigned int *sum_out);

ADC: extern unsigned char _addcarry_u64(unsigned char c_in, unsigned __int64 src1, unsigned __int64 src2, unsigned __int64 
*sum_out);

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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ADD—Add

Instruction Operand Encoding

Description

Adds the destination operand (first operand) and the source operand (second operand) and then stores the result 
in the destination operand. The destination operand can be a register or a memory location; the source operand 
can be an immediate, a register, or a memory location. (However, two memory operands cannot be used in one 
instruction.) When an immediate value is used as an operand, it is sign-extended to the length of the destination 
operand format.

The ADD instruction performs integer addition. It evaluates the result for both signed and unsigned integer oper-
ands and sets the OF and CF flags to indicate a carry (overflow) in the signed or unsigned result, respectively. The 
SF flag indicates the sign of the signed result.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

04 ib ADD AL, imm8 I Valid Valid Add imm8 to AL.

05 iw ADD AX, imm16 I Valid Valid Add imm16 to AX.

05 id ADD EAX, imm32 I Valid Valid Add imm32 to EAX.

REX.W + 05 id ADD RAX, imm32 I Valid N.E. Add imm32 sign-extended to 64-bits to RAX.

80 /0 ib ADD r/m8, imm8 MI Valid Valid Add imm8 to r/m8.

REX + 80 /0 ib ADD r/m8
*
, imm8 MI Valid N.E. Add sign-extended imm8 to r/m64.

81 /0 iw ADD r/m16, imm16 MI Valid Valid Add imm16 to r/m16.

81 /0 id ADD r/m32, imm32 MI Valid Valid Add imm32 to r/m32.

REX.W + 81 /0 id ADD r/m64, imm32 MI Valid N.E. Add imm32 sign-extended to 64-bits to 
r/m64.

83 /0 ib ADD r/m16, imm8 MI Valid Valid Add sign-extended imm8 to r/m16.

83 /0 ib ADD r/m32, imm8 MI Valid Valid Add sign-extended imm8 to r/m32.

REX.W + 83 /0 ib ADD r/m64, imm8 MI Valid N.E. Add sign-extended imm8 to r/m64.

00 /r ADD r/m8, r8 MR Valid Valid Add r8 to r/m8.

REX + 00 /r ADD r/m8
*
, r8

* MR Valid N.E. Add r8 to r/m8.

01 /r ADD r/m16, r16 MR Valid Valid Add r16 to r/m16.

01 /r ADD r/m32, r32 MR Valid Valid Add r32 to r/m32.

REX.W + 01 /r ADD r/m64, r64 MR Valid N.E. Add r64 to r/m64.

02 /r ADD r8, r/m8 RM Valid Valid Add r/m8 to r8.

REX + 02 /r ADD r8*
, r/m8

* RM Valid N.E. Add r/m8 to r8.

03 /r ADD r16, r/m16 RM Valid Valid Add r/m16 to r16.

03 /r ADD r32, r/m32 RM Valid Valid Add r/m32 to r32.

REX.W + 03 /r ADD r64, r/m64 RM Valid N.E. Add r/m64 to r64.

NOTES:
*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA
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This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX a REX prefix in the form of REX.W promotes operation to 64 
bits. See the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST ← DEST + SRC;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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ADDPD—Add Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD add of the two packed double-precision floating-point values from the source operand (second 
operand) and the destination operand (first operand), and stores the packed double-precision floating-point results 
in the destination operand. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified. See Chapter 11 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for an overview of SIMD double-precision floating-point operation.

VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

ADDPD (128-bit Legacy SSE version)

DEST[63:0] ← DEST[63:0] + SRC[63:0];

DEST[127:64] ← DEST[127:64] + SRC[127:64];

DEST[VLMAX-1:128] (Unmodified)

VADDPD (VEX.128 encoded version)

DEST[63:0] Å SRC1[63:0] + SRC2[63:0]

DEST[127:64] Å SRC1[127:64] + SRC2[127:64]

DEST[VLMAX-1:128] Å 0

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 58 /r

ADDPD xmm1, xmm2/m128

RM V/V SSE2 Add packed double-precision floating-point 
values from xmm2/m128 to xmm1.

VEX.NDS.128.66.0F.WIG 58 /r

VADDPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Add packed double-precision floating-point 
values from xmm3/mem to xmm2 and stores 
result in xmm1.

VEX.NDS.256.66.0F.WIG 58 /r

VADDPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Add packed double-precision floating-point 
values from ymm3/mem to ymm2 and stores 
result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VADDPD (VEX.256 encoded version)

DEST[63:0] Å SRC1[63:0] + SRC2[63:0]

DEST[127:64] Å SRC1[127:64] + SRC2[127:64]

DEST[191:128] Å SRC1[191:128] + SRC2[191:128]

DEST[255:192] Å SRC1[255:192] + SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

ADDPD:  __m128d _mm_add_pd (__m128d a, __m128d b)

VADDPD:  __m256d _mm256_add_pd (__m256d a, __m256d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 2.
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ADDPS—Add Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD add of the four packed single-precision floating-point values from the source operand (second 
operand) and the destination operand (first operand), and stores the packed single-precision floating-point results 
in the destination operand. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified. See Chapter 10 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for an overview of SIMD single-precision floating-point operation.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

ADDPS (128-bit Legacy SSE version)

DEST[31:0] ← DEST[31:0] + SRC[31:0];

DEST[63:32] ← DEST[63:32] + SRC[63:32];

DEST[95:64] ← DEST[95:64] + SRC[95:64];

DEST[127:96] ← DEST[127:96] + SRC[127:96];

DEST[VLMAX-1:128] (Unmodified)

VADDPS (VEX.128 encoded version)

DEST[31:0] Å SRC1[31:0] + SRC2[31:0]

DEST[63:32] Å SRC1[63:32] + SRC2[63:32]

DEST[95:64] Å SRC1[95:64] + SRC2[95:64]

DEST[127:96] Å SRC1[127:96] + SRC2[127:96]

DEST[VLMAX-1:128] Å 0

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 58 /r

ADDPS xmm1, xmm2/m128

RM V/V SSE Add packed single-precision floating-point 
values from xmm2/m128 to xmm1 and stores 
result in xmm1.

VEX.NDS.128.0F.WIG 58 /r

VADDPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Add packed single-precision floating-point 
values from xmm3/mem to xmm2 and stores 
result in xmm1.

VEX.NDS.256.0F.WIG 58 /r

VADDPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Add packed single-precision floating-point 
values from ymm3/mem to ymm2 and stores 
result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r)) NA
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VADDPS (VEX.256 encoded version)

DEST[31:0] Å SRC1[31:0] + SRC2[31:0]

DEST[63:32] Å SRC1[63:32] + SRC2[63:32]

DEST[95:64] Å SRC1[95:64] + SRC2[95:64]

DEST[127:96] Å SRC1[127:96] + SRC2[127:96]

DEST[159:128] Å SRC1[159:128] + SRC2[159:128]

DEST[191:160]Å SRC1[191:160] + SRC2[191:160]

DEST[223:192] Å SRC1[223:192] + SRC2[223:192]

DEST[255:224] Å SRC1[255:224] + SRC2[255:224]

Intel C/C++ Compiler Intrinsic Equivalent

ADDPS: __m128 _mm_add_ps(__m128 a, __m128 b)

VADDPS: __m256 _mm256_add_ps (__m256 a, __m256 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 2.
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ADDSD—Add Scalar Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Adds the low double-precision floating-point values from the source operand (second operand) and the destination 
operand (first operand), and stores the double-precision floating-point result in the destination operand. 

The source operand can be an XMM register or a 64-bit memory location. The destination operand is an XMM 
register. See Chapter 11 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an 
overview of a scalar double-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:64) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied from corresponding bits in the 
first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed. 

Operation

ADDSD (128-bit Legacy SSE version)

DEST[63:0] Å DEST[63:0] + SRC[63:0]

DEST[VLMAX-1:64] (Unmodified)

VADDSD (VEX.128 encoded version)

DEST[63:0] Å SRC1[63:0] + SRC2[63:0]

DEST[127:64] Å SRC1[127:64]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

ADDSD: __m128d _mm_add_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 3.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 58 /r

ADDSD xmm1, xmm2/m64

RM V/V SSE2 Add the low double-precision floating-point 
value from xmm2/m64 to xmm1.

VEX.NDS.LIG.F2.0F.WIG 58 /r

VADDSD xmm1, xmm2, xmm3/m64

RVM V/V AVX Add the low double-precision floating-point 
value from xmm3/mem to xmm2 and store 
the result in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r)) NA
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ADDSS—Add Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Adds the low single-precision floating-point values from the source operand (second operand) and the destination 
operand (first operand), and stores the single-precision floating-point result in the destination operand. 

The source operand can be an XMM register or a 32-bit memory location. The destination operand is an XMM 
register. See Chapter 10 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an 
overview of a scalar single-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied from corresponding bits in the 
first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

ADDSS DEST, SRC (128-bit Legacy SSE version)

DEST[31:0] Å DEST[31:0] + SRC[31:0];

DEST[VLMAX-1:32] (Unmodified)

VADDSS DEST, SRC1, SRC2 (VEX.128 encoded version)

DEST[31:0] Å SRC1[31:0] + SRC2[31:0]

DEST[127:32] Å SRC1[127:32]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

ADDSS: __m128 _mm_add_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 3.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 58 /r

ADDSS xmm1, xmm2/m32

RM V/V SSE Add the low single-precision floating-point 
value from xmm2/m32 to xmm1.

VEX.NDS.LIG.F3.0F.WIG 58 /r

VADDSS xmm1,xmm2, xmm3/m32

RVM V/V AVX Add the low single-precision floating-point 
value from xmm3/mem to xmm2 and store 
the result in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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ADDSUBPD—Packed Double-FP Add/Subtract

Instruction Operand Encoding

Description

Adds odd-numbered double-precision floating-point values of the first source operand (second operand) with the 
corresponding double-precision floating-point values from the second source operand (third operand); stores the 
result in the odd-numbered values of the destination operand (first operand). Subtracts the even-numbered 
double-precision floating-point values from the second source operand from the corresponding double-precision 
floating values in the first source operand; stores the result into the even-numbered values of the destination 
operand. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified. See Figure 3-3.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F D0 /r

ADDSUBPD xmm1, xmm2/m128

RM V/V SSE3 Add/subtract double-precision floating-point 
values from xmm2/m128 to xmm1.

VEX.NDS.128.66.0F.WIG D0 /r

VADDSUBPD xmm1, xmm2, xmm3/m128

RVM V/V AVX Add/subtract packed double-precision 
floating-point values from xmm3/mem to 
xmm2 and stores result in xmm1.

VEX.NDS.256.66.0F.WIG D0 /r

VADDSUBPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Add / subtract packed double-precision 
floating-point values from ymm3/mem to 
ymm2 and stores result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

ADDSUBPD (128-bit Legacy SSE version)

DEST[63:0] Å DEST[63:0] - SRC[63:0]

DEST[127:64] Å DEST[127:64] + SRC[127:64]

DEST[VLMAX-1:128] (Unmodified)

VADDSUBPD (VEX.128 encoded version)

DEST[63:0] Å SRC1[63:0] - SRC2[63:0]

DEST[127:64] Å SRC1[127:64] + SRC2[127:64]

DEST[VLMAX-1:128] Å 0

VADDSUBPD (VEX.256 encoded version)

DEST[63:0] Å SRC1[63:0] - SRC2[63:0]

DEST[127:64] Å SRC1[127:64] + SRC2[127:64]

DEST[191:128] Å SRC1[191:128] - SRC2[191:128]

DEST[255:192] Å SRC1[255:192] + SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

ADDSUBPD: __m128d _mm_addsub_pd(__m128d a, __m128d b)

VADDSUBPD: __m256d _mm256_addsub_pd (__m256d a, __m256d b)

Exceptions

When the source operand is a memory operand, it must be aligned on a 16-byte boundary or a general-protection 
exception (#GP) will be generated.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 2.

Figure 3-3.  ADDSUBPD—Packed Double-FP Add/Subtract

[127:64]

xmm1[127:64] + xmm2/m128[127:64] xmm1[63:0] - xmm2/m128[63:0]

[63:0]

[127:64] [63:0]

ADDSUBPD xmm1, xmm2/m128

RESULT:
xmm1

xmm2/m128
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ADDSUBPS—Packed Single-FP Add/Subtract

Instruction Operand Encoding

Description

Adds odd-numbered single-precision floating-point values of the first source operand (second operand) with the 
corresponding single-precision floating-point values from the second source operand (third operand); stores the 
result in the odd-numbered values of the destination operand (first operand). Subtracts the even-numbered 
single-precision floating-point values from the second source operand from the corresponding single-precision 
floating values in the first source operand; stores the result into the even-numbered values of the destination 
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified. See Figure 3-4.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F D0 /r

ADDSUBPS xmm1, xmm2/m128

RM V/V SSE3 Add/subtract single-precision floating-point 
values from xmm2/m128 to xmm1.

VEX.NDS.128.F2.0F.WIG D0 /r

VADDSUBPS xmm1, xmm2, xmm3/m128

RVM V/V AVX Add/subtract single-precision floating-point 
values from xmm3/mem to xmm2 and stores 
result in xmm1.

VEX.NDS.256.F2.0F.WIG D0 /r

VADDSUBPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Add / subtract single-precision floating-point 
values from ymm3/mem to ymm2 and stores 
result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

ADDSUBPS (128-bit Legacy SSE version)

DEST[31:0] Å DEST[31:0] - SRC[31:0]

DEST[63:32] Å DEST[63:32] + SRC[63:32]

DEST[95:64] Å DEST[95:64] - SRC[95:64]

DEST[127:96] Å DEST[127:96] + SRC[127:96]

DEST[VLMAX-1:128] (Unmodified)

VADDSUBPS (VEX.128 encoded version)

DEST[31:0] Å SRC1[31:0] - SRC2[31:0]

DEST[63:32] Å SRC1[63:32] + SRC2[63:32]

DEST[95:64] Å SRC1[95:64] - SRC2[95:64]

DEST[127:96] Å SRC1[127:96] + SRC2[127:96]

DEST[VLMAX-1:128] Å 0

VADDSUBPS (VEX.256 encoded version)

DEST[31:0] Å SRC1[31:0] - SRC2[31:0]

DEST[63:32] Å SRC1[63:32] + SRC2[63:32]

DEST[95:64] Å SRC1[95:64] - SRC2[95:64]

DEST[127:96] Å SRC1[127:96] + SRC2[127:96]

DEST[159:128] Å SRC1[159:128] - SRC2[159:128]

DEST[191:160]Å SRC1[191:160] + SRC2[191:160]

DEST[223:192] Å SRC1[223:192] - SRC2[223:192]

DEST[255:224] Å SRC1[255:224] + SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

ADDSUBPS: __m128 _mm_addsub_ps(__m128 a, __m128 b)

VADDSUBPS: __m256 _mm256_addsub_ps (__m256 a, __m256 b)

Exceptions

When the source operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-
protection exception (#GP) will be generated.

Figure 3-4.  ADDSUBPS—Packed Single-FP Add/Subtract

OM15992

ADDSUBPS xmm1, xmm2/m128

RESULT:
xmm1

xmm2/
m128

xmm1[31:0] - 
xmm2/m128[31:0]

[31:0]

xmm1[63:32] + 
xmm2/m128[63:32]

[63:32]

xmm1[95:64] - xmm2/
m128[95:64]

[95:64]

xmm1[127:96] + 
xmm2/m128[127:96]

[127:96]

[127:96] [95:64] [63:32] [31:0]
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SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 2.
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AESDEC—Perform One Round of an AES Decryption Flow

Instruction Operand Encoding

Description

This instruction performs a single round of the AES decryption flow using the Equivalent Inverse Cipher, with the 
round key from the second source operand, operating on a 128-bit data (state) from the first source operand, and 
store the result in the destination operand. 
Use the AESDEC instruction for all but the last decryption round. For the last decryption round, use the AESDEC-
CLAST instruction.
128-bit Legacy SSE version: The first source operand and the destination operand are the same and must be an 
XMM register. The second source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-
1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second 
source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM 
register are zeroed.

Operation

AESDEC 

STATE ← SRC1;

RoundKey ← SRC2;

STATE ← InvShiftRows( STATE );

STATE ← InvSubBytes( STATE );

STATE ← InvMixColumns( STATE );

DEST[127:0] ← STATE XOR RoundKey;

DEST[VLMAX-1:128] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 DE /r 
AESDEC xmm1, xmm2/m128

RM V/V AES Perform one round of an AES decryption flow, 
using the Equivalent Inverse Cipher, operating 
on a 128-bit data (state) from xmm1 with a 
128-bit round key from xmm2/m128.

VEX.NDS.128.66.0F38.WIG DE /r
VAESDEC xmm1, xmm2, xmm3/m128

RVM V/V Both AES 
and
AVX flags

Perform one round of an AES decryption flow, 
using the Equivalent Inverse Cipher, operating 
on a 128-bit data (state) from xmm2 with a 
128-bit round key from xmm3/m128; store 
the result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VAESDEC 

STATE ← SRC1;

RoundKey ← SRC2;

STATE ← InvShiftRows( STATE );

STATE ← InvSubBytes( STATE );

STATE ← InvMixColumns( STATE );

DEST[127:0] ← STATE XOR RoundKey;

DEST[VLMAX-1:128] ← 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESDEC: __m128i _mm_aesdec (__m128i, __m128i)

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4.
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AESDECLAST—Perform Last Round of an AES Decryption Flow

Instruction Operand Encoding

Description

This instruction performs the last round of the AES decryption flow using the Equivalent Inverse Cipher, with the 
round key from the second source operand, operating on a 128-bit data (state) from the first source operand, and 
store the result in the destination operand. 
128-bit Legacy SSE version: The first source operand and the destination operand are the same and must be an 
XMM register. The second source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-
1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second 
source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM 
register are zeroed.

Operation

AESDECLAST 

STATE ← SRC1;

RoundKey ← SRC2;

STATE ← InvShiftRows( STATE );

STATE ← InvSubBytes( STATE );

DEST[127:0] ← STATE XOR RoundKey;

DEST[VLMAX-1:128] (Unmodified)

VAESDECLAST 

STATE ← SRC1;

RoundKey ← SRC2;

STATE ← InvShiftRows( STATE );

STATE ← InvSubBytes( STATE );

DEST[127:0] ← STATE XOR RoundKey;

DEST[VLMAX-1:128] ← 0

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 DF /r
AESDECLAST xmm1, xmm2/m128

RM V/V AES Perform the last round of an AES decryption 
flow, using the Equivalent Inverse Cipher, 
operating on a 128-bit data (state) from 
xmm1 with a 128-bit round key from 
xmm2/m128.

VEX.NDS.128.66.0F38.WIG DF /r
VAESDECLAST xmm1, xmm2, xmm3/m128

RVM V/V Both AES 
and
AVX flags

Perform the last round of an AES decryption 
flow, using the Equivalent Inverse Cipher, 
operating on a 128-bit data (state) from 
xmm2 with a 128-bit round key from 
xmm3/m128; store the result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Intel C/C++ Compiler Intrinsic Equivalent

(V)AESDECLAST: __m128i _mm_aesdeclast (__m128i, __m128i)

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4.
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AESENC—Perform One Round of an AES Encryption Flow

Instruction Operand Encoding

Description

This instruction performs a single round of an AES encryption flow using a round key from the second source 
operand, operating on 128-bit data (state) from the first source operand, and store the result in the destination 
operand. 
Use the AESENC instruction for all but the last encryption rounds. For the last encryption round, use the AESENC-
CLAST instruction.
128-bit Legacy SSE version: The first source operand and the destination operand are the same and must be an 
XMM register. The second source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-
1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second 
source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM 
register are zeroed.

Operation

AESENC 

STATE ← SRC1;

RoundKey ← SRC2;

STATE ← ShiftRows( STATE );

STATE ← SubBytes( STATE );

STATE ← MixColumns( STATE );

DEST[127:0] ← STATE XOR RoundKey;

DEST[VLMAX-1:128] (Unmodified)

VAESENC 

STATE Å SRC1;

RoundKey Å SRC2;

STATE Å ShiftRows( STATE );

STATE Å SubBytes( STATE );

STATE Å MixColumns( STATE );

DEST[127:0] Å STATE XOR RoundKey;

DEST[VLMAX-1:128] Å 0

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 DC /r 
AESENC xmm1, xmm2/m128

RM V/V AES Perform one round of an AES encryption flow, 
operating on a 128-bit data (state) from 
xmm1 with a 128-bit round key from 
xmm2/m128.

VEX.NDS.128.66.0F38.WIG DC /r
VAESENC xmm1, xmm2, xmm3/m128

RVM V/V Both AES 
and
AVX flags

Perform one round of an AES encryption flow, 
operating on a 128-bit data (state) from 
xmm2 with a 128-bit round key from the 
xmm3/m128; store the result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Intel C/C++ Compiler Intrinsic Equivalent

(V)AESENC: __m128i _mm_aesenc (__m128i, __m128i)

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4.
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AESENCLAST—Perform Last Round of an AES Encryption Flow

Instruction Operand Encoding

Description

This instruction performs the last round of an AES encryption flow using a round key from the second source 
operand, operating on 128-bit data (state) from the first source operand, and store the result in the destination 
operand. 
128-bit Legacy SSE version: The first source operand and the destination operand are the same and must be an 
XMM register. The second source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-
1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second 
source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM 
register are zeroed.

Operation

AESENCLAST 

STATE ← SRC1;

RoundKey ← SRC2;

STATE ← ShiftRows( STATE );

STATE ← SubBytes( STATE );

DEST[127:0] ← STATE XOR RoundKey;

DEST[VLMAX-1:128] (Unmodified)

VAESENCLAST 

STATE Å SRC1;

RoundKey Å SRC2;

STATE Å ShiftRows( STATE );

STATE Å SubBytes( STATE );

DEST[127:0] Å STATE XOR RoundKey;

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESENCLAST: __m128i _mm_aesenclast (__m128i, __m128i)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 DD /r
AESENCLAST xmm1, xmm2/m128

RM V/V AES Perform the last round of an AES encryption 
flow, operating on a 128-bit data (state) from 
xmm1 with a 128-bit round key from 
xmm2/m128.

VEX.NDS.128.66.0F38.WIG DD /r
VAESENCLAST xmm1, xmm2, xmm3/m128

RVM V/V Both AES 
and
AVX flags

Perform the last round of an AES encryption 
flow, operating on a 128-bit data (state) from 
xmm2 with a 128 bit round key from 
xmm3/m128; store the result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4.
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AESIMC—Perform the AES InvMixColumn Transformation

Instruction Operand Encoding

Description

Perform the InvMixColumns transformation on the source operand and store the result in the destination operand. 
The destination operand is an XMM register. The source operand can be an XMM register or a 128-bit memory loca-
tion. 
Note: the AESIMC instruction should be applied to the expanded AES round keys (except for the first and last round 
key) in order to prepare them for decryption using the “Equivalent Inverse Cipher” (defined in FIPS 197). 

128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

AESIMC

DEST[127:0] ← InvMixColumns( SRC );

DEST[VLMAX-1:128] (Unmodified)

VAESIMC 

DEST[127:0] Å InvMixColumns( SRC );

DEST[VLMAX-1:128] Å 0;

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESIMC: __m128i _mm_aesimc (__m128i)

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 DB /r
AESIMC xmm1, xmm2/m128

RM V/V AES Perform the InvMixColumn transformation on 
a 128-bit round key from xmm2/m128 and 
store the result in xmm1.

VEX.128.66.0F38.WIG DB /r
VAESIMC xmm1, xmm2/m128

RM V/V Both AES 
and
AVX flags

Perform the InvMixColumn transformation on 
a 128-bit round key from xmm2/m128 and 
store the result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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AESKEYGENASSIST—AES Round Key Generation Assist

Instruction Operand Encoding

Description

Assist in expanding the AES cipher key, by computing steps towards generating a round key for encryption, using 
128-bit data specified in the source operand and an 8-bit round constant specified as an immediate, store the 
result in the destination operand.
The destination operand is an XMM register. The source operand can be an XMM register or a 128-bit memory loca-
tion.

128-bit Legacy SSE version:Bits (VLMAX-1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

AESKEYGENASSIST

X3[31:0] ← SRC [127: 96];

X2[31:0] ← SRC [95: 64];

X1[31:0] ← SRC [63: 32];

X0[31:0] ← SRC [31: 0];

RCON[31:0] ← ZeroExtend(Imm8[7:0]);

DEST[31:0] ← SubWord(X1);

DEST[63:32 ] ← RotWord( SubWord(X1) ) XOR RCON;

DEST[95:64] ← SubWord(X3);

DEST[127:96] ← RotWord( SubWord(X3) ) XOR RCON;

DEST[VLMAX-1:128] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A DF /r ib
AESKEYGENASSIST xmm1, xmm2/m128, imm8

RMI V/V AES Assist in AES round key generation using an 8 
bits Round Constant (RCON) specified in the 
immediate byte, operating on 128 bits of data 
specified in xmm2/m128 and stores the 
result in xmm1.

VEX.128.66.0F3A.WIG DF /r ib
VAESKEYGENASSIST xmm1, xmm2/m128, imm8

RMI V/V Both AES 
and
AVX flags

Assist in AES round key generation using 8 
bits Round Constant (RCON) specified in the 
immediate byte, operating on 128 bits of data 
specified in xmm2/m128 and stores the 
result in xmm1.

Op/En Operand 1 Operand2 Operand3 Operand4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
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VAESKEYGENASSIST 

X3[31:0] Å SRC [127: 96];

X2[31:0] Å SRC [95: 64];

X1[31:0] Å SRC [63: 32];

X0[31:0] Å SRC [31: 0];

RCON[31:0] Å ZeroExtend(Imm8[7:0]);

DEST[31:0] Å SubWord(X1);

DEST[63:32 ] Å RotWord( SubWord(X1) ) XOR RCON;

DEST[95:64] Å SubWord(X3);

DEST[127:96] Å RotWord( SubWord(X3) ) XOR RCON;

DEST[VLMAX-1:128] Å 0;

Intel C/C++ Compiler Intrinsic Equivalent

(V)AESKEYGENASSIST: __m128i _mm_aesimc (__m128i, const int)

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
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AND—Logical AND

Instruction Operand Encoding

Description

Performs a bitwise AND operation on the destination (first) and source (second) operands and stores the result in 
the destination operand location. The source operand can be an immediate, a register, or a memory location; the 
destination operand can be a register or a memory location. (However, two memory operands cannot be used in 
one instruction.) Each bit of the result is set to 1 if both corresponding bits of the first and second operands are 1; 
otherwise, it is set to 0.

This instruction can be used with a LOCK prefix to allow the it to be executed atomically.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

24 ib AND AL, imm8 I Valid Valid AL AND imm8.

25 iw AND AX, imm16 I Valid Valid AX AND imm16.

25 id AND EAX, imm32 I Valid Valid EAX AND imm32.

REX.W + 25 id AND RAX, imm32 I Valid N.E. RAX AND imm32 sign-extended to 64-bits.

80 /4 ib AND r/m8, imm8 MI Valid Valid r/m8 AND imm8.

REX + 80 /4 ib AND r/m8
*
, imm8 MI Valid N.E. r/m8 AND imm8.

81 /4 iw AND r/m16, imm16 MI Valid Valid r/m16 AND imm16.

81 /4 id AND r/m32, imm32 MI Valid Valid r/m32 AND imm32.

REX.W + 81 /4 id AND r/m64, imm32 MI Valid N.E. r/m64 AND imm32 sign extended to 64-bits.

83 /4 ib AND r/m16, imm8 MI Valid Valid r/m16 AND imm8 (sign-extended).

83 /4 ib AND r/m32, imm8 MI Valid Valid r/m32 AND imm8 (sign-extended).

REX.W + 83 /4 ib AND r/m64, imm8 MI Valid N.E. r/m64 AND imm8 (sign-extended).

20 /r AND r/m8, r8 MR Valid Valid r/m8 AND r8.

REX + 20 /r AND r/m8
*
, r8

* MR Valid N.E. r/m64 AND r8 (sign-extended).

21 /r AND r/m16, r16 MR Valid Valid r/m16 AND r16.

21 /r AND r/m32, r32 MR Valid Valid r/m32 AND r32.

REX.W + 21 /r AND r/m64, r64 MR Valid N.E. r/m64 AND r32.

22 /r AND r8, r/m8 RM Valid Valid r8 AND r/m8.

REX + 22 /r AND r8*
, r/m8

* RM Valid N.E. r/m64 AND r8 (sign-extended).

23 /r AND r16, r/m16 RM Valid Valid r16 AND r/m16.

23 /r AND r32, r/m32 RM Valid Valid r32 AND r/m32.

REX.W + 23 /r AND r64, r/m64 RM Valid N.E. r64 AND r/m64.

NOTES:

*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA
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In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST ← DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The state of the AF flag is 
undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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ANDN — Logical AND NOT

Instruction Operand Encoding

Description

Performs a bitwise logical AND of inverted second operand (the first source operand) with the third operand (the 
second source operand). The result is stored in the first operand (destination operand).
This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

DEST ← (NOT SRC1) bitwiseAND SRC2;

SF ← DEST[OperandSize -1];

ZF ← (DEST = 0);

Flags Affected

SF and ZF are updated based on result. OF and CF flags are cleared. AF and PF flags are undefined.

Intel C/C++ Compiler Intrinsic Equivalent

Auto-generated from high-level language.

SIMD Floating-Point Exceptions

None

Other Exceptions

See Section 2.5.1, “Exception Conditions for VEX-Encoded GPR Instructions”, Table 2-29; additionally
#UD If VEX.W = 1.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDS.LZ.0F38.W0 F2 /r RVM V/V BMI1 Bitwise AND of inverted r32b with r/m32, store result in r32a.

ANDN r32a, r32b, r/m32

VEX.NDS.LZ. 0F38.W1 F2 /r RVM V/NE BMI1 Bitwise AND of inverted r64b with r/m64, store result in r64a.

ANDN r64a, r64b, r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical AND of the two packed double-precision floating-point values from the source operand 
(second operand) and the destination operand (first operand), and stores the result in the destination operand. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

ANDPD (128-bit Legacy SSE version)

DEST[63:0] Å DEST[63:0] BITWISE AND SRC[63:0]

DEST[127:64] Å DEST[127:64] BITWISE AND SRC[127:64]

DEST[VLMAX-1:128] (Unmodified)

VANDPD (VEX.128 encoded version)

DEST[63:0] Å SRC1[63:0] BITWISE AND SRC2[63:0]

DEST[127:64] Å SRC1[127:64] BITWISE AND SRC2[127:64]

DEST[VLMAX-1:128] Å 0

VANDPD (VEX.256 encoded version)

DEST[63:0] Å SRC1[63:0] BITWISE AND SRC2[63:0]

DEST[127:64] Å SRC1[127:64] BITWISE AND SRC2[127:64]

DEST[191:128] Å SRC1[191:128] BITWISE AND SRC2[191:128]

DEST[255:192] Å SRC1[255:192] BITWISE AND SRC2[255:192]

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 54 /r

ANDPD xmm1, xmm2/m128

RM V/V SSE2 Return the bitwise logical AND of packed 
double-precision floating-point values in 
xmm1 and xmm2/m128.

VEX.NDS.128.66.0F.WIG 54 /r

VANDPD xmm1, xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical AND of packed 
double-precision floating-point values in 
xmm2 and xmm3/mem.

VEX.NDS.256.66.0F.WIG 54 /r

VANDPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the bitwise logical AND of packed 
double-precision floating-point values in 
ymm2 and ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Intel C/C++ Compiler Intrinsic Equivalent

ANDPD: __m128d _mm_and_pd(__m128d a, __m128d b)

VANDPD: __m256d _mm256_and_pd (__m256d a, __m256d b)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.
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ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical AND of the four or eight packed single-precision floating-point values from the first 
source operand and the second source operand, and stores the result in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

ANDPS (128-bit Legacy SSE version)

DEST[31:0] Å DEST[31:0] BITWISE AND SRC[31:0]

DEST[63:32] Å DEST[63:32] BITWISE AND SRC[63:32]

DEST[95:64] Å DEST[95:64] BITWISE AND SRC[95:64]

DEST[127:96] Å DEST[127:96] BITWISE AND SRC[127:96]

DEST[VLMAX-1:128] (Unmodified)

VANDPS (VEX.128 encoded version)

DEST[31:0] Å SRC1[31:0] BITWISE AND SRC2[31:0]

DEST[63:32] Å SRC1[63:32] BITWISE AND SRC2[63:32]

DEST[95:64] Å SRC1[95:64] BITWISE AND SRC2[95:64]

DEST[127:96] Å SRC1[127:96] BITWISE AND SRC2[127:96]

DEST[VLMAX-1:128] Å 0

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 54 /r

ANDPS xmm1, xmm2/m128

RM V/V SSE Bitwise logical AND of xmm2/m128 and 
xmm1.

VEX.NDS.128.0F.WIG 54 /r

VANDPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical AND of packed 
single-precision floating-point values in xmm2 
and xmm3/mem.

VEX.NDS.256.0F.WIG 54 /r

VANDPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the bitwise logical AND of packed 
single-precision floating-point values in ymm2 
and ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VANDPS (VEX.256 encoded version)

DEST[31:0] Å SRC1[31:0] BITWISE AND SRC2[31:0]

DEST[63:32] Å SRC1[63:32] BITWISE AND SRC2[63:32]

DEST[95:64] Å SRC1[95:64] BITWISE AND SRC2[95:64]

DEST[127:96] Å SRC1[127:96] BITWISE AND SRC2[127:96]

DEST[159:128] Å SRC1[159:128] BITWISE AND SRC2[159:128]

DEST[191:160]Å SRC1[191:160] BITWISE AND SRC2[191:160]

DEST[223:192] Å SRC1[223:192] BITWISE AND SRC2[223:192]

DEST[255:224] Å SRC1[255:224] BITWISE AND SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

ANDPS: __m128 _mm_and_ps(__m128 a, __m128 b)

VANDPS: __m256 _mm256_and_ps (__m256 a, __m256 b)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.
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ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical AND NOT of the two or four packed double-precision floating-point values from the first 
source operand and the second source operand, and stores the result in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

ANDNPD (128-bit Legacy SSE version)

DEST[63:0] Å (NOT(DEST[63:0])) BITWISE AND SRC[63:0]

DEST[127:64] Å (NOT(DEST[127:64])) BITWISE AND SRC[127:64]

DEST[VLMAX-1:128] (Unmodified)

VANDNPD (VEX.128 encoded version)

DEST[63:0] Å (NOT(SRC1[63:0])) BITWISE AND SRC2[63:0]

DEST[127:64] Å (NOT(SRC1[127:64])) BITWISE AND SRC2[127:64]

DEST[VLMAX-1:128] Å 0

VANDNPD (VEX.256 encoded version)

DEST[63:0] Å (NOT(SRC1[63:0])) BITWISE AND SRC2[63:0]

DEST[127:64] Å (NOT(SRC1[127:64])) BITWISE AND SRC2[127:64]

DEST[191:128] Å (NOT(SRC1[191:128])) BITWISE AND SRC2[191:128]

DEST[255:192] Å (NOT(SRC1[255:192])) BITWISE AND SRC2[255:192]

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 55 /r

ANDNPD xmm1, xmm2/m128

RM V/V SSE2 Bitwise logical AND NOT of xmm2/m128 and 
xmm1.

VEX.NDS.128.66.0F.WIG 55 /r

VANDNPD xmm1, xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical AND NOT of packed 
double-precision floating-point values in 
xmm2 and xmm3/mem.

VEX.NDS.256.66.0F.WIG 55/r

VANDNPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the bitwise logical AND NOT of packed 
double-precision floating-point values in 
ymm2 and ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Intel C/C++ Compiler Intrinsic Equivalent

ANDNPD: __m128d _mm_andnot_pd(__m128d a, __m128d b)

VANDNPD: __m256d _mm256_andnot_pd (__m256d a, __m256d b)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.
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ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Inverts the bits of the four packed single-precision floating-point values in the destination operand (first operand), 
performs a bitwise logical AND of the four packed single-precision floating-point values in the source operand 
(second operand) and the temporary inverted result, and stores the result in the destination operand. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

ANDNPS (128-bit Legacy SSE version)

DEST[31:0] Å (NOT(DEST[31:0])) BITWISE AND SRC[31:0]

DEST[63:32] Å (NOT(DEST[63:32])) BITWISE AND SRC[63:32]

DEST[95:64] Å (NOT(DEST[95:64])) BITWISE AND SRC[95:64]

DEST[127:96] Å (NOT(DEST[127:96])) BITWISE AND SRC[127:96]

DEST[VLMAX-1:128] (Unmodified)

VANDNPS (VEX.128 encoded version)

DEST[31:0] Å (NOT(SRC1[31:0])) BITWISE AND SRC2[31:0]

DEST[63:32] Å (NOT(SRC1[63:32])) BITWISE AND SRC2[63:32]

DEST[95:64] Å (NOT(SRC1[95:64])) BITWISE AND SRC2[95:64]

DEST[127:96] Å (NOT(SRC1[127:96])) BITWISE AND SRC2[127:96]

DEST[VLMAX-1:128] Å 0

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 55 /r

ANDNPS xmm1, xmm2/m128

RM V/V SSE Bitwise logical AND NOT of xmm2/m128 and 
xmm1.

VEX.NDS.128.0F.WIG 55 /r

VANDNPS xmm1, xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical AND NOT of packed 
single-precision floating-point values in xmm2 
and xmm3/mem.

VEX.NDS.256.0F.WIG 55 /r

VANDNPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the bitwise logical AND NOT of packed 
single-precision floating-point values in ymm2 
and ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VANDNPS (VEX.256 encoded version)

DEST[31:0] Å (NOT(SRC1[31:0])) BITWISE AND SRC2[31:0]

DEST[63:32] Å (NOT(SRC1[63:32])) BITWISE AND SRC2[63:32]

DEST[95:64] Å (NOT(SRC1[95:64])) BITWISE AND SRC2[95:64]

DEST[127:96] Å (NOT(SRC1[127:96])) BITWISE AND SRC2[127:96]

DEST[159:128] Å (NOT(SRC1[159:128])) BITWISE AND SRC2[159:128]

DEST[191:160]Å (NOT(SRC1[191:160])) BITWISE AND SRC2[191:160]

DEST[223:192] Å (NOT(SRC1[223:192])) BITWISE AND SRC2[223:192]

DEST[255:224] Å (NOT(SRC1[255:224])) BITWISE AND SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

ANDNPS: __m128 _mm_andnot_ps(__m128 a, __m128 b)

VANDNPS: __m256 _mm256_andnot_ps (__m256 a, __m256 b)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.
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ARPL—Adjust RPL Field of Segment Selector

Instruction Operand Encoding

Description

Compares the RPL fields of two segment selectors. The first operand (the destination operand) contains one 
segment selector and the second operand (source operand) contains the other. (The RPL field is located in bits 0 
and 1 of each operand.) If the RPL field of the destination operand is less than the RPL field of the source operand, 
the ZF flag is set and the RPL field of the destination operand is increased to match that of the source operand. 
Otherwise, the ZF flag is cleared and no change is made to the destination operand. (The destination operand can 
be a word register or a memory location; the source operand must be a word register.)

The ARPL instruction is provided for use by operating-system procedures (however, it can also be used by applica-
tions). It is generally used to adjust the RPL of a segment selector that has been passed to the operating system 
by an application program to match the privilege level of the application program. Here the segment selector 
passed to the operating system is placed in the destination operand and segment selector for the application 
program’s code segment is placed in the source operand. (The RPL field in the source operand represents the priv-
ilege level of the application program.) Execution of the ARPL instruction then ensures that the RPL of the segment 
selector received by the operating system is no lower (does not have a higher privilege) than the privilege level of 
the application program (the segment selector for the application program’s code segment can be read from the 
stack following a procedure call).

This instruction executes as described in compatibility mode and legacy mode. It is not encodable in 64-bit mode. 

See “Checking Caller Access Privileges” in Chapter 3, “Protected-Mode Memory Management,” of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information about the use of this instruc-
tion.

Operation

IF 64-BIT MODE
THEN

See MOVSXD;
ELSE

IF DEST[RPL) < SRC[RPL)

THEN

ZF ← 1;

DEST[RPL) ← SRC[RPL);

ELSE

ZF ← 0;

FI;

FI;

Flags Affected

The ZF flag is set to 1 if the RPL field of the destination operand is less than that of the source operand; otherwise, 
it is set to 0.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

63 /r ARPL r/m16, r16 NP N. E. Valid Adjust RPL of r/m16 to not less than RPL of 
r16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP ModRM:r/m (w) ModRM:reg (r) NA NA
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Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD The ARPL instruction is not recognized in real-address mode.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#UD The ARPL instruction is not recognized in virtual-8086 mode.
If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Not applicable.
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BLENDPD — Blend Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Double-precision floating-point values from the second source operand (third operand) are conditionally merged 
with values from the first source operand (second operand) and written to the destination operand (first operand). 
The immediate bits [3:0] determine whether the corresponding double-precision floating-point value in the desti-
nation is copied from the second source or first source. If a bit in the mask, corresponding to a word, is “1", then 
the double-precision floating-point value in the second source operand is copied, else the value in the first source 
operand is copied.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of 
the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

BLENDPD (128-bit Legacy SSE version)

IF (IMM8[0] = 0)THEN DEST[63:0] Å DEST[63:0]

ELSE DEST [63:0] Å SRC[63:0] FI

IF (IMM8[1] = 0) THEN DEST[127:64] Å DEST[127:64]

ELSE DEST [127:64] Å SRC[127:64] FI

DEST[VLMAX-1:128] (Unmodified)

VBLENDPD (VEX.128 encoded version)

IF (IMM8[0] = 0)THEN DEST[63:0] Å SRC1[63:0]

ELSE DEST [63:0] Å SRC2[63:0] FI

IF (IMM8[1] = 0) THEN DEST[127:64] Å SRC1[127:64]

ELSE DEST [127:64] Å SRC2[127:64] FI

DEST[VLMAX-1:128] Å 0

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 0D /r ib

BLENDPD xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Select packed DP-FP values from xmm1 and 
xmm2/m128 from mask specified in imm8 
and store the values into xmm1.

VEX.NDS.128.66.0F3A.WIG 0D /r ib

VBLENDPD xmm1, xmm2, xmm3/m128, imm8

RVMI V/V AVX Select packed double-precision floating-point 
Values from xmm2 and xmm3/m128 from 
mask in imm8 and store the values in xmm1.

VEX.NDS.256.66.0F3A.WIG 0D /r ib

VBLENDPD ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX Select packed double-precision floating-point 
Values from ymm2 and ymm3/m256 from 
mask in imm8 and store the values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[3:0]
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VBLENDPD (VEX.256 encoded version)

IF (IMM8[0] = 0)THEN DEST[63:0] Å SRC1[63:0]

ELSE DEST [63:0] Å SRC2[63:0] FI

IF (IMM8[1] = 0) THEN DEST[127:64] Å SRC1[127:64]

ELSE DEST [127:64] Å SRC2[127:64] FI

IF (IMM8[2] = 0) THEN DEST[191:128] Å SRC1[191:128]

ELSE DEST [191:128] Å SRC2[191:128] FI

IF (IMM8[3] = 0) THEN DEST[255:192] Å SRC1[255:192]

ELSE DEST [255:192] Å SRC2[255:192] FI

Intel C/C++ Compiler Intrinsic Equivalent

BLENDPD: __m128d _mm_blend_pd (__m128d v1, __m128d v2, const int mask);

VBLENDPD: __m256d _mm256_blend_pd (__m256d a, __m256d b, const int mask);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4.
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BEXTR — Bit Field Extract

Instruction Operand Encoding

Description

Extracts contiguous bits from the first source operand (the second operand) using an index value and length value 
specified in the second source operand (the third operand). Bit 7:0 of the second source operand specifies the 
starting bit position of bit extraction. A START value exceeding the operand size will not extract any bits from the 
second source operand. Bit 15:8 of the second source operand specifies the maximum number of bits (LENGTH) 
beginning at the START position to extract. Only bit positions up to (OperandSize -1) of the first source operand are 
extracted. The extracted bits are written to the destination register, starting from the least significant bit. All higher 
order bits in the destination operand (starting at bit position LENGTH) are zeroed. The destination register is 
cleared if no bits are extracted.
This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

START ← SRC2[7:0];

LEN ← SRC2[15:8];

TEMP ← ZERO_EXTEND_TO_512 (SRC1 );

DEST ← ZERO_EXTEND(TEMP[START+LEN -1: START]);

ZF ← (DEST = 0);

Flags Affected
ZF is updated based on the result. AF, SF, and PF are undefined. All other flags are cleared. 

Intel C/C++ Compiler Intrinsic Equivalent

BEXTR: unsigned __int32 _bextr_u32(unsigned __int32 src, unsigned __int32 start. unsigned __int32 len);

BEXTR: unsigned __int64 _bextr_u64(unsigned __int64 src, unsigned __int32 start. unsigned __int32 len);

SIMD Floating-Point Exceptions

None

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDS1.LZ.0F38.W0 F7 /r

NOTES:

1. ModRM:r/m is used to encode the first source operand (second operand) and VEX.vvvv encodes the second source operand (third oper-
and).

RMV V/V BMI1 Contiguous bitwise extract from r/m32 using r32b as control; store 
result in r32a.

BEXTR r32a, r/m32, r32b

VEX.NDS1.LZ.0F38.W1 F7 /r RMV V/N.E. BMI1 Contiguous bitwise extract from r/m64 using r64b as control; store 
result in r64aBEXTR r64a, r/m64, r64b

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMV ModRM:reg (w) ModRM:r/m (r) VEX.vvvv (r) NA
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Other Exceptions

See Section 2.5.1, “Exception Conditions for VEX-Encoded GPR Instructions”, Table 2-29; additionally
#UD If VEX.W = 1.
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BLENDPS — Blend Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Packed single-precision floating-point values from the second source operand (third operand) are conditionally 
merged with values from the first source operand (second operand) and written to the destination operand (first 
operand). The immediate bits [7:0] determine whether the corresponding single precision floating-point value in 
the destination is copied from the second source or first source. If a bit in the mask, corresponding to a word, is “1", 
then the single-precision floating-point value in the second source operand is copied, else the value in the first 
source operand is copied.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: The first source operand an XMM register. The second source operand is an XMM register 
or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of the 
corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

BLENDPS (128-bit Legacy SSE version)

IF (IMM8[0] = 0) THEN DEST[31:0] ÅDEST[31:0]

ELSE DEST [31:0] Å SRC[31:0] FI

IF (IMM8[1] = 0) THEN DEST[63:32] Å DEST[63:32]

ELSE DEST [63:32] Å SRC[63:32] FI

IF (IMM8[2] = 0) THEN DEST[95:64] Å DEST[95:64]

ELSE DEST [95:64] Å SRC[95:64] FI

IF (IMM8[3] = 0) THEN DEST[127:96] Å DEST[127:96]

ELSE DEST [127:96] Å SRC[127:96] FI

DEST[VLMAX-1:128] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 0C /r ib

BLENDPS xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Select packed single precision floating-point 
values from xmm1 and xmm2/m128 from 
mask specified in imm8 and store the values 
into xmm1.

VEX.NDS.128.66.0F3A.WIG 0C /r ib

VBLENDPS xmm1, xmm2, xmm3/m128, imm8

RVMI V/V AVX Select packed single-precision floating-point 
values from xmm2 and xmm3/m128 from 
mask in imm8 and store the values in xmm1.

VEX.NDS.256.66.0F3A.WIG 0C /r ib

VBLENDPS ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX Select packed single-precision floating-point 
values from ymm2 and ymm3/m256 from 
mask in imm8 and store the values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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VBLENDPS (VEX.128 encoded version)

IF (IMM8[0] = 0) THEN DEST[31:0] ÅSRC1[31:0]

ELSE DEST [31:0] Å SRC2[31:0] FI

IF (IMM8[1] = 0) THEN DEST[63:32] Å SRC1[63:32]

ELSE DEST [63:32] Å SRC2[63:32] FI

IF (IMM8[2] = 0) THEN DEST[95:64] Å SRC1[95:64]

ELSE DEST [95:64] Å SRC2[95:64] FI

IF (IMM8[3] = 0) THEN DEST[127:96] Å SRC1[127:96]

ELSE DEST [127:96] Å SRC2[127:96] FI

DEST[VLMAX-1:128] Å 0

VBLENDPS (VEX.256 encoded version)

IF (IMM8[0] = 0) THEN DEST[31:0] ÅSRC1[31:0]

ELSE DEST [31:0] Å SRC2[31:0] FI

IF (IMM8[1] = 0) THEN DEST[63:32] Å SRC1[63:32]

ELSE DEST [63:32] Å SRC2[63:32] FI

IF (IMM8[2] = 0) THEN DEST[95:64] Å SRC1[95:64]

ELSE DEST [95:64] Å SRC2[95:64] FI

IF (IMM8[3] = 0) THEN DEST[127:96] Å SRC1[127:96]

ELSE DEST [127:96] Å SRC2[127:96] FI

IF (IMM8[4] = 0) THEN DEST[159:128] Å SRC1[159:128]

ELSE DEST [159:128] Å SRC2[159:128] FI

IF (IMM8[5] = 0) THEN DEST[191:160] Å SRC1[191:160]

ELSE DEST [191:160] Å SRC2[191:160] FI

IF (IMM8[6] = 0) THEN DEST[223:192] Å SRC1[223:192]

ELSE DEST [223:192] Å SRC2[223:192] FI

IF (IMM8[7] = 0) THEN DEST[255:224] Å SRC1[255:224]

ELSE DEST [255:224] Å SRC2[255:224] FI.

Intel C/C++ Compiler Intrinsic Equivalent

BLENDPS: __m128 _mm_blend_ps (__m128 v1, __m128 v2, const int mask);

VBLENDPS: __m256 _mm256_blend_ps (__m256 a, __m256 b, const int mask);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4.
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BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Conditionally copy each quadword data element of double-precision floating-point value from the second source 
operand and the first source operand depending on mask bits defined in the mask register operand. The mask bits 
are the most significant bit in each quadword element of the mask register.
Each quadword element of the destination operand is copied from:
• the corresponding quadword element in the second source operand, If a mask bit is “1"; or
• the corresponding quadword element in the first source operand, If a mask bit is “0"
The register assignment of the implicit mask operand for BLENDVPD is defined to be the architectural register 
XMM0.
128-bit Legacy SSE version: The first source operand and the destination operand is the same. Bits (VLMAX-1:128) 
of the corresponding YMM destination register remain unchanged. The mask register operand is implicitly defined 
to be the architectural register XMM0. An attempt to execute BLENDVPD with a VEX prefix will cause #UD.
VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second 
source operand is an XMM register or 128-bit memory location. The mask operand is the third source register, and 
encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is 
ignored. The upper bits (VLMAX-1:128) of the corresponding YMM register (destination register) are zeroed. 
VEX.W must be 0, otherwise, the instruction will #UD.
VEX.256 encoded version: The first source operand and destination operand are YMM registers. The second source 
operand can be a YMM register or a 256-bit memory location. The mask operand is the third source register, and 
encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is 
ignored. VEX.W must be 0, otherwise, the instruction will #UD.
VBLENDVPD permits the mask to be any XMM or YMM register. In contrast, BLENDVPD treats XMM0 implicitly as the 
mask and do not support non-destructive destination operation. 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 15 /r

BLENDVPD xmm1, xmm2/m128 , <XMM0>

RM0 V/V SSE4_1 Select packed DP FP values from xmm1 and 
xmm2 from mask specified in XMM0 and 
store the values in xmm1.

VEX.NDS.128.66.0F3A.W0 4B /r /is4

VBLENDVPD xmm1, xmm2, xmm3/m128, xmm4

RVMR V/V AVX Conditionally copy double-precision floating-
point values from xmm2 or xmm3/m128 to 
xmm1, based on mask bits in the mask 
operand, xmm4.

VEX.NDS.256.66.0F3A.W0 4B /r /is4

VBLENDVPD ymm1, ymm2, ymm3/m256, ymm4

RVMR V/V AVX Conditionally copy double-precision floating-
point values from ymm2 or ymm3/m256 to 
ymm1, based on mask bits in the mask 
operand, ymm4.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM0 ModRM:reg (r, w) ModRM:r/m (r) implicit XMM0 NA

RVMR ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[7:4]
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Operation

BLENDVPD (128-bit Legacy SSE version)

MASK Å XMM0

IF (MASK[63] = 0) THEN DEST[63:0] Å DEST[63:0]

ELSE DEST [63:0] Å SRC[63:0] FI

IF (MASK[127] = 0) THEN DEST[127:64] Å DEST[127:64]

ELSE DEST [127:64] Å SRC[127:64] FI

DEST[VLMAX-1:128] (Unmodified)

VBLENDVPD (VEX.128 encoded version)

MASK Å SRC3

IF (MASK[63] = 0) THEN DEST[63:0] Å SRC1[63:0]

ELSE DEST [63:0] Å SRC2[63:0] FI

IF (MASK[127] = 0) THEN DEST[127:64] Å SRC1[127:64]

ELSE DEST [127:64] Å SRC2[127:64] FI

DEST[VLMAX-1:128] Å 0

VBLENDVPD (VEX.256 encoded version)

MASK Å SRC3

IF (MASK[63] = 0) THEN DEST[63:0] Å SRC1[63:0]

ELSE DEST [63:0] Å SRC2[63:0] FI

IF (MASK[127] = 0) THEN DEST[127:64] Å SRC1[127:64]

ELSE DEST [127:64] Å SRC2[127:64] FI

IF (MASK[191] = 0) THEN DEST[191:128] Å SRC1[191:128]

ELSE DEST [191:128] Å SRC2[191:128] FI

IF (MASK[255] = 0) THEN DEST[255:192] Å SRC1[255:192]

ELSE DEST [255:192] Å SRC2[255:192] FI

Intel C/C++ Compiler Intrinsic Equivalent

BLENDVPD: __m128d _mm_blendv_pd(__m128d v1, __m128d v2, __m128d v3);

VBLENDVPD: __m128 _mm_blendv_pd (__m128d a, __m128d b, __m128d mask);

VBLENDVPD: __m256 _mm256_blendv_pd (__m256d a, __m256d b, __m256d mask);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.W = 1.
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BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Conditionally copy each dword data element of single-precision floating-point value from the second source 
operand and the first source operand depending on mask bits defined in the mask register operand. The mask bits 
are the most significant bit in each dword element of the mask register.
Each quadword element of the destination operand is copied from:
• the corresponding dword element in the second source operand, If a mask bit is “1"; or
• the corresponding dword element in the first source operand, If a mask bit is “0"
The register assignment of the implicit mask operand for BLENDVPS is defined to be the architectural register 
XMM0.
128-bit Legacy SSE version: The first source operand and the destination operand is the same. Bits (VLMAX-1:128) 
of the corresponding YMM destination register remain unchanged. The mask register operand is implicitly defined 
to be the architectural register XMM0. An attempt to execute BLENDVPS with a VEX prefix will cause #UD.
VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second 
source operand is an XMM register or 128-bit memory location. The mask operand is the third source register, and 
encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is 
ignored. The upper bits (VLMAX-1:128) of the corresponding YMM register (destination register) are zeroed. 
VEX.W must be 0, otherwise, the instruction will #UD.
VEX.256 encoded version: The first source operand and destination operand are YMM registers. The second source 
operand can be a YMM register or a 256-bit memory location. The mask operand is the third source register, and 
encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is 
ignored. VEX.W must be 0, otherwise, the instruction will #UD.
VBLENDVPS permits the mask to be any XMM or YMM register. In contrast, BLENDVPS treats XMM0 implicitly as the 
mask and do not support non-destructive destination operation. 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 14 /r

BLENDVPS xmm1, xmm2/m128, <XMM0>

RM0 V/V SSE4_1 Select packed single precision floating-point 
values from xmm1 and xmm2/m128 from 
mask specified in XMM0 and store the values 
into xmm1.

VEX.NDS.128.66.0F3A.W0 4A /r /is4

VBLENDVPS xmm1, xmm2, xmm3/m128, xmm4

RVMR V/V AVX Conditionally copy single-precision floating-
point values from xmm2 or xmm3/m128 to 
xmm1, based on mask bits in the specified 
mask operand, xmm4.

VEX.NDS.256.66.0F3A.W0 4A /r /is4

VBLENDVPS ymm1, ymm2, ymm3/m256, ymm4

RVMR V/V AVX Conditionally copy single-precision floating-
point values from ymm2 or ymm3/m256 to 
ymm1, based on mask bits in the specified 
mask register, ymm4.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM0 ModRM:reg (r, w) ModRM:r/m (r) implicit XMM0 NA

RVMR ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[7:4]
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Operation

BLENDVPS (128-bit Legacy SSE version)

MASK Å XMM0

IF (MASK[31] = 0) THEN DEST[31:0] Å DEST[31:0]

ELSE DEST [31:0] Å SRC[31:0] FI

IF (MASK[63] = 0) THEN DEST[63:32] Å DEST[63:32]

ELSE DEST [63:32] Å SRC[63:32] FI

IF (MASK[95] = 0) THEN DEST[95:64] Å DEST[95:64]

ELSE DEST [95:64] Å SRC[95:64] FI

IF (MASK[127] = 0) THEN DEST[127:96] Å DEST[127:96]

ELSE DEST [127:96] Å SRC[127:96] FI

DEST[VLMAX-1:128] (Unmodified)

VBLENDVPS (VEX.128 encoded version)

MASK Å SRC3

IF (MASK[31] = 0) THEN DEST[31:0] Å SRC1[31:0]

ELSE DEST [31:0] Å SRC2[31:0] FI

IF (MASK[63] = 0) THEN DEST[63:32] Å SRC1[63:32]

ELSE DEST [63:32] Å SRC2[63:32] FI

IF (MASK[95] = 0) THEN DEST[95:64] Å SRC1[95:64]

ELSE DEST [95:64] Å SRC2[95:64] FI

IF (MASK[127] = 0) THEN DEST[127:96] Å SRC1[127:96]

ELSE DEST [127:96] Å SRC2[127:96] FI

DEST[VLMAX-1:128] Å 0

VBLENDVPS (VEX.256 encoded version)

MASK Å SRC3

IF (MASK[31] = 0) THEN DEST[31:0] Å SRC1[31:0]

ELSE DEST [31:0] Å SRC2[31:0] FI

IF (MASK[63] = 0) THEN DEST[63:32] Å SRC1[63:32]

ELSE DEST [63:32] Å SRC2[63:32] FI

IF (MASK[95] = 0) THEN DEST[95:64] Å SRC1[95:64]

ELSE DEST [95:64] Å SRC2[95:64] FI

IF (MASK[127] = 0) THEN DEST[127:96] Å SRC1[127:96]

ELSE DEST [127:96] Å SRC2[127:96] FI

IF (MASK[159] = 0) THEN DEST[159:128] Å SRC1[159:128]

ELSE DEST [159:128] Å SRC2[159:128] FI

IF (MASK[191] = 0) THEN DEST[191:160] Å SRC1[191:160]

ELSE DEST [191:160] Å SRC2[191:160] FI

IF (MASK[223] = 0) THEN DEST[223:192] Å SRC1[223:192]

ELSE DEST [223:192] Å SRC2[223:192] FI

IF (MASK[255] = 0) THEN DEST[255:224] Å SRC1[255:224]

ELSE DEST [255:224] Å SRC2[255:224] FI

Intel C/C++ Compiler Intrinsic Equivalent

BLENDVPS: __m128 _mm_blendv_ps(__m128 v1, __m128 v2, __m128 v3);

VBLENDVPS: __m128 _mm_blendv_ps (__m128 a, __m128 b, __m128 mask);

VBLENDVPS: __m256 _mm256_blendv_ps (__m256 a, __m256 b, __m256 mask);
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SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.W = 1.
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BLSI — Extract Lowest Set Isolated Bit

Instruction Operand Encoding

Description

Extracts the lowest set bit from the source operand and set the corresponding bit in the destination register. All 
other bits in the destination operand are zeroed. If no bits are set in the source operand, BLSI sets all the bits in 
the destination to 0 and sets ZF and CF.
This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

temp ← (-SRC) bitwiseAND (SRC); 

SF ← temp[OperandSize -1];

ZF ← (temp = 0);

IF SRC = 0

CF ← 0;

ELSE

CF ← 1;

FI

DEST ← temp;

Flags Affected
ZF and SF are updated based on the result. CF is set if the source is not zero. OF flags are cleared. AF and PF 
flags are undefined.

Intel C/C++ Compiler Intrinsic Equivalent

BLSI: unsigned __int32 _blsi_u32(unsigned __int32 src);

BLSI: unsigned __int64 _blsi_u64(unsigned __int64 src);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Section 2.5.1, “Exception Conditions for VEX-Encoded GPR Instructions”, Table 2-29; additionally
#UD If VEX.W = 1.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDD.LZ.0F38.W0 F3 /3 VM V/V BMI1 Extract lowest set bit from r/m32 and set that bit in r32.

BLSI r32, r/m32

VEX.NDD.LZ.0F38.W1 F3 /3 VM V/N.E. BMI1 Extract lowest set bit from r/m64, and set that bit in r64.

BLSI r64, r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

VM VEX.vvvv (w) ModRM:r/m (r) NA NA
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BLSMSK — Get Mask Up to Lowest Set Bit

Instruction Operand Encoding

Description

Sets all the lower bits of the destination operand to “1” up to and including lowest set bit (=1) in the source 
operand. If source operand is zero, BLSMSK sets all bits of the destination operand to 1 and also sets CF to 1.
This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

temp ← (SRC-1) XOR (SRC) ;

SF ← temp[OperandSize -1];

ZF ← 0;

IF SRC = 0

CF ← 1;

ELSE

CF ← 0;

FI

DEST ← temp;

Flags Affected

SF is updated based on the result. CF is set if the source if zero. ZF and OF flags are cleared. AF and PF flag are 
undefined.

Intel C/C++ Compiler Intrinsic Equivalent

BLSMSK: unsigned __int32 _blsmsk_u32(unsigned __int32 src);

BLSMSK: unsigned __int64 _blsmsk_u64(unsigned __int64 src);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Section 2.5.1, “Exception Conditions for VEX-Encoded GPR Instructions”, Table 2-29; additionally
#UD If VEX.W = 1.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDD.LZ.0F38.W0 F3 /2 VM V/V BMI1 Set all lower bits in r32 to “1” starting from bit 0 to lowest set bit in 
r/m32.BLSMSK r32, r/m32

VEX.NDD.LZ.0F38.W1 F3 /2 VM V/N.E. BMI1 Set all lower bits in r64 to “1” starting from bit 0 to lowest set bit in 
r/m64.BLSMSK r64, r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

VM VEX.vvvv (w) ModRM:r/m (r) NA NA



BLSR — Reset Lowest Set Bit

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-77

BLSR — Reset Lowest Set Bit

Instruction Operand Encoding

Description

Copies all bits from the source operand to the destination operand and resets (=0) the bit position in the destina-
tion operand that corresponds to the lowest set bit of the source operand. If the source operand is zero BLSR sets 
CF.
This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

temp ← (SRC-1) bitwiseAND ( SRC );

SF ← temp[OperandSize -1];

ZF ← (temp = 0);

IF SRC = 0

CF ← 1;

ELSE

CF ← 0;

FI

DEST ← temp;

Flags Affected

ZF and SF flags are updated based on the result. CF is set if the source is zero. OF flag is cleared. AF and PF flags 
are undefined.

Intel C/C++ Compiler Intrinsic Equivalent

BLSR: unsigned __int32 _blsr_u32(unsigned __int32 src);

BLSR: unsigned __int64 _blsr_u64(unsigned __int64 src);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Section 2.5.1, “Exception Conditions for VEX-Encoded GPR Instructions”, Table 2-29; additionally
#UD If VEX.W = 1.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDD.LZ.0F38.W0 F3 /1 VM V/V BMI1 Reset lowest set bit of r/m32, keep all other bits of r/m32 and write 
result to r32.BLSR r32, r/m32

VEX.NDD.LZ.0F38.W1 F3 /1 VM V/N.E. BMI1 Reset lowest set bit of r/m64, keep all other bits of r/m64 and write 
result to r64.BLSR r64, r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

VM VEX.vvvv (w) ModRM:r/m (r) NA NA
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BOUND—Check Array Index Against Bounds

Instruction Operand Encoding

Description

BOUND determines if the first operand (array index) is within the bounds of an array specified the second operand 
(bounds operand). The array index is a signed integer located in a register. The bounds operand is a memory loca-
tion that contains a pair of signed doubleword-integers (when the operand-size attribute is 32) or a pair of signed 
word-integers (when the operand-size attribute is 16). The first doubleword (or word) is the lower bound of the 
array and the second doubleword (or word) is the upper bound of the array. The array index must be greater than 
or equal to the lower bound and less than or equal to the upper bound plus the operand size in bytes. If the index 
is not within bounds, a BOUND range exceeded exception (#BR) is signaled. When this exception is generated, the 
saved return instruction pointer points to the BOUND instruction.

The bounds limit data structure (two words or doublewords containing the lower and upper limits of the array) is 
usually placed just before the array itself, making the limits addressable via a constant offset from the beginning of 
the array. Because the address of the array already will be present in a register, this practice avoids extra bus cycles 
to obtain the effective address of the array bounds.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64bit Mode
THEN

#UD;
ELSE

IF (ArrayIndex < LowerBound OR ArrayIndex > UpperBound)

(* Below lower bound or above upper bound *)

THEN #BR; FI;

FI;

Flags Affected

None.

Protected Mode Exceptions

#BR If the bounds test fails.
#UD If second operand is not a memory location.

If the LOCK prefix is used.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

62 /r BOUND r16, m16&16 RM Invalid Valid Check if r16 (array index) is within bounds 
specified by m16&16.

62 /r BOUND r32, m32&32 RM Invalid Valid Check if r32 (array index) is within bounds 
specified by m16&16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 
current privilege level is 3.

Real-Address Mode Exceptions

#BR If the bounds test fails.
#UD If second operand is not a memory location.

If the LOCK prefix is used.
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#BR If the bounds test fails.
#UD If second operand is not a memory location.

If the LOCK prefix is used.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If in 64-bit mode.



BSF—Bit Scan Forward

INSTRUCTION SET REFERENCE, A-M

3-80 Vol. 2A

BSF—Bit Scan Forward

Instruction Operand Encoding

Description

Searches the source operand (second operand) for the least significant set bit (1 bit). If a least significant 1 bit is 
found, its bit index is stored in the destination operand (first operand). The source operand can be a register or a 
memory location; the destination operand is a register. The bit index is an unsigned offset from bit 0 of the source 
operand. If the content of the source operand is 0, the content of the destination operand is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

IF SRC = 0
THEN

ZF ← 1;

DEST is undefined;

ELSE

ZF ← 0;

temp ← 0;

WHILE Bit(SRC, temp) = 0

DO

temp ← temp + 1;

OD;

DEST ← temp;

FI;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF, OF, SF, AF, and PF, flags 
are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F BC /r BSF r16, r/m16 RM Valid Valid Bit scan forward on r/m16.

0F BC /r BSF r32, r/m32 RM Valid Valid Bit scan forward on r/m32.

REX.W + 0F BC /r BSF r64, r/m64 RM Valid N.E. Bit scan forward on r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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BSR—Bit Scan Reverse

Instruction Operand Encoding

Description

Searches the source operand (second operand) for the most significant set bit (1 bit). If a most significant 1 bit is 
found, its bit index is stored in the destination operand (first operand). The source operand can be a register or a 
memory location; the destination operand is a register. The bit index is an unsigned offset from bit 0 of the source 
operand. If the content source operand is 0, the content of the destination operand is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

IF SRC = 0

THEN

ZF ← 1;

DEST is undefined;

ELSE

ZF ← 0;

temp ← OperandSize – 1;

WHILE Bit(SRC, temp) = 0
DO

temp ← temp - 1;

OD;

DEST ← temp;

FI;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF, OF, SF, AF, and PF, flags 
are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F BD /r BSR r16, r/m16 RM Valid Valid Bit scan reverse on r/m16.

0F BD /r BSR r32, r/m32 RM Valid Valid Bit scan reverse on r/m32.

REX.W + 0F BD /r BSR r64, r/m64 RM Valid N.E. Bit scan reverse on r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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BSWAP—Byte Swap

Instruction Operand Encoding

Description

Reverses the byte order of a 32-bit or 64-bit (destination) register. This instruction is provided for converting little-
endian values to big-endian format and vice versa. To swap bytes in a word value (16-bit register), use the XCHG 
instruction. When the BSWAP instruction references a 16-bit register, the result is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

IA-32 Architecture Legacy Compatibility

The BSWAP instruction is not supported on IA-32 processors earlier than the Intel486™ processor family. For 
compatibility with this instruction, software should include functionally equivalent code for execution on Intel 
processors earlier than the Intel486 processor family.

Operation

TEMP ← DEST

IF 64-bit mode AND OperandSize = 64

THEN
DEST[7:0] ← TEMP[63:56];

DEST[15:8] ← TEMP[55:48];

DEST[23:16] ← TEMP[47:40];

DEST[31:24] ← TEMP[39:32];

DEST[39:32] ← TEMP[31:24];

DEST[47:40] ← TEMP[23:16];

DEST[55:48] ← TEMP[15:8];

DEST[63:56] ← TEMP[7:0];

ELSE
DEST[7:0] ← TEMP[31:24];

DEST[15:8] ← TEMP[23:16];

DEST[23:16] ← TEMP[15:8];

DEST[31:24] ← TEMP[7:0];

FI;

Flags Affected

None.

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F C8+rd BSWAP r32 O Valid* Valid Reverses the byte order of a 32-bit register.

REX.W + 0F C8+rd BSWAP r64 O Valid N.E. Reverses the byte order of a 64-bit register.

NOTES:

* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

O opcode + rd (r, w) NA NA NA
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BT—Bit Test

Instruction Operand Encoding

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by 
the bit offset (specified by the second operand) and stores the value of the bit in the CF flag. The bit base operand 
can be a register or a memory location; the bit offset operand can be a register or an immediate value:
• If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset 

operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit 
mode). 

• If the bit base operand specifies a memory location, the operand represents the address of the byte in memory 
that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position that can be 
referenced by the offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-10. 

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset field in combina-
tion with the displacement field of the memory operand. In this case, the low-order 3 or 5 bits (3 for 16-bit oper-
ands, 5 for 32-bit operands) of the immediate bit offset are stored in the immediate bit offset field, and the high-
order bits are shifted and combined with the byte displacement in the addressing mode by the assembler. The 
processor will ignore the high order bits if they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the memory address for a 32-bit 
operand size, using by the following relationship:

Effective Address + (4 ∗ (BitOffset DIV 32))

Or, it may access 2 bytes starting from the memory address for a 16-bit operand, using this relationship:

Effective Address + (2 ∗ (BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given bit. When using this bit 
addressing mechanism, software should avoid referencing areas of memory close to address space holes. In partic-
ular, it should avoid references to memory-mapped I/O registers. Instead, software should use the MOV instruc-
tions to load from or store to these addresses, and use the register form of these instructions to manipulate the 
data.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bit oper-
ands. See the summary chart at the beginning of this section for encoding data and limits.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F A3 /r BT r/m16, r16 MR Valid Valid Store selected bit in CF flag.

0F A3 /r BT r/m32, r32 MR Valid Valid Store selected bit in CF flag.

REX.W + 0F A3 /r BT r/m64, r64 MR Valid N.E. Store selected bit in CF flag.

0F BA /4 ib BT r/m16, imm8 MI Valid Valid Store selected bit in CF flag.

0F BA /4 ib BT r/m32, imm8 MI Valid Valid Store selected bit in CF flag.

REX.W + 0F BA /4 ib BT r/m64, imm8 MI Valid N.E. Store selected bit in CF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r) ModRM:reg (r) NA NA

MI ModRM:r/m (r) imm8 NA NA
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Operation

CF ← Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit. The ZF flag is unaffected. The OF, SF, AF, and PF flags are 
undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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BTC—Bit Test and Complement

Instruction Operand Encoding

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by 
the bit offset operand (second operand), stores the value of the bit in the CF flag, and complements the selected 
bit in the bit string. The bit base operand can be a register or a memory location; the bit offset operand can be a 
register or an immediate value:
• If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset 

operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit 
mode). This allows any bit position to be selected. 

• If the bit base operand specifies a memory location, the operand represents the address of the byte in memory 
that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position that can be 
referenced by the offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-10. 

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset field in combina-
tion with the displacement field of the memory operand. See “BT—Bit Test” in this chapter for more information on 
this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

CF ← Bit(BitBase, BitOffset);

Bit(BitBase, BitOffset) ← NOT Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The ZF flag is unaffected. The OF, SF, 
AF, and PF flags are undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F BB /r BTC r/m16, r16 MR Valid Valid Store selected bit in CF flag and complement.

0F BB /r BTC r/m32, r32 MR Valid Valid Store selected bit in CF flag and complement.

REX.W + 0F BB /r BTC r/m64, r64 MR Valid N.E. Store selected bit in CF flag and complement.

0F BA /7 ib BTC r/m16, imm8 MI Valid Valid Store selected bit in CF flag and complement.

0F BA /7 ib BTC r/m32, imm8 MI Valid Valid Store selected bit in CF flag and complement.

REX.W + 0F BA /7 ib BTC r/m64, imm8 MI Valid N.E. Store selected bit in CF flag and complement.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA
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#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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BTR—Bit Test and Reset

Instruction Operand Encoding

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by 
the bit offset operand (second operand), stores the value of the bit in the CF flag, and clears the selected bit in the 
bit string to 0. The bit base operand can be a register or a memory location; the bit offset operand can be a register 
or an immediate value:
• If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset 

operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit 
mode). This allows any bit position to be selected. 

• If the bit base operand specifies a memory location, the operand represents the address of the byte in memory 
that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position that can be 
referenced by the offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-10. 

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset field in combina-
tion with the displacement field of the memory operand. See “BT—Bit Test” in this chapter for more information on 
this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

CF ← Bit(BitBase, BitOffset);

Bit(BitBase, BitOffset) ← 0;

Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The ZF flag is unaffected. The OF, SF, AF, and 
PF flags are undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F B3 /r BTR r/m16, r16 MR Valid Valid Store selected bit in CF flag and clear.

0F B3 /r BTR r/m32, r32 MR Valid Valid Store selected bit in CF flag and clear.

REX.W + 0F B3 /r BTR r/m64, r64 MR Valid N.E. Store selected bit in CF flag and clear.

0F BA /6 ib BTR r/m16, imm8 MI Valid Valid Store selected bit in CF flag and clear.

0F BA /6 ib BTR r/m32, imm8 MI Valid Valid Store selected bit in CF flag and clear.

REX.W + 0F BA /6 ib BTR r/m64, imm8 MI Valid N.E. Store selected bit in CF flag and clear.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA
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#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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BTS—Bit Test and Set

Instruction Operand Encoding

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by 
the bit offset operand (second operand), stores the value of the bit in the CF flag, and sets the selected bit in the 
bit string to 1. The bit base operand can be a register or a memory location; the bit offset operand can be a register 
or an immediate value: 
• If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset 

operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit 
mode). This allows any bit position to be selected.

• If the bit base operand specifies a memory location, the operand represents the address of the byte in memory 
that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position that can be 
referenced by the offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-10. 

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset field in combina-
tion with the displacement field of the memory operand. See “BT—Bit Test” in this chapter for more information on 
this addressing mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

CF ← Bit(BitBase, BitOffset);

Bit(BitBase, BitOffset) ← 1;

Flags Affected

The CF flag contains the value of the selected bit before it is set. The ZF flag is unaffected. The OF, SF, AF, and PF 
flags are undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F AB /r BTS r/m16, r16 MR Valid Valid Store selected bit in CF flag and set.

0F AB /r BTS r/m32, r32 MR Valid Valid Store selected bit in CF flag and set.

REX.W + 0F AB /r BTS r/m64, r64 MR Valid N.E. Store selected bit in CF flag and set.

0F BA /5 ib BTS r/m16, imm8 MI Valid Valid Store selected bit in CF flag and set.

0F BA /5 ib BTS r/m32, imm8 MI Valid Valid Store selected bit in CF flag and set.

REX.W + 0F BA /5 ib BTS r/m64, imm8 MI Valid N.E. Store selected bit in CF flag and set.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA
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#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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BZHI — Zero High Bits Starting with Specified Bit Position

Instruction Operand Encoding

Description

BZHI copies the bits of the first source operand (the second operand) into the destination operand (the first 
operand) and clears the higher bits in the destination according to the INDEX value specified by the second source 
operand (the third operand). The INDEX is specified by bits 7:0 of the second source operand. The INDEX value is 
saturated at the value of OperandSize -1. CF is set, if the number contained in the 8 low bits of the third operand 
is greater than OperandSize -1.
This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

N ← SRC2[7:0]

DEST ← SRC1

IF (N < OperandSize)

DEST[OperandSize-1:N] ← 0

FI

IF (N > OperandSize - 1)

CF ← 1

ELSE

CF ← 0

FI

Flags Affected

ZF, CF and SF flags are updated based on the result. OF flag is cleared. AF and PF flags are undefined.

Intel C/C++ Compiler Intrinsic Equivalent

BZHI: unsigned __int32 _bzhi_u32(unsigned __int32 src, unsigned __int32 index);

BZHI: unsigned __int64 _bzhi_u64(unsigned __int64 src, unsigned __int32 index);

SIMD Floating-Point Exceptions

None

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDS1.LZ.0F38.W0 F5 /r

NOTES:

1. ModRM:r/m is used to encode the first source operand (second operand) and VEX.vvvv encodes the second source operand (third oper-
and).

RMV V/V BMI2 Zero bits in r/m32 starting with the position in r32b, write result to 
r32a.

BZHI r32a, r/m32, r32b

VEX.NDS1.LZ.0F38.W1 F5 /r RMV V/N.E. BMI2 Zero bits in r/m64 starting with the position in r64b, write result to 
r64a.BZHI r64a, r/m64, r64b

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMV ModRM:reg (w) ModRM:r/m (r) VEX.vvvv (r) NA
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Other Exceptions

See Section 2.5.1, “Exception Conditions for VEX-Encoded GPR Instructions”, Table 2-29; additionally
#UD If VEX.W = 1.



CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-95

CALL—Call Procedure

Instruction Operand Encoding

Description

Saves procedure linking information on the stack and branches to the called procedure specified using the target 
operand. The target operand specifies the address of the first instruction in the called procedure. The operand can 
be an immediate value, a general-purpose register, or a memory location.

This instruction can be used to execute four types of calls:
• Near Call —  A call to a procedure in the current code segment (the segment currently pointed to by the CS 

register), sometimes referred to as an intra-segment call.
• Far Call — A call to a procedure located in a different segment than the current code segment, sometimes 

referred to as an inter-segment call.
• Inter-privilege-level far call — A far call to a procedure in a segment at a different privilege level than that 

of the currently executing program or procedure.
• Task switch — A call to a procedure located in a different task.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

E8 cw CALL rel16 M N.S. Valid Call near, relative, displacement relative to 
next instruction.

E8 cd CALL rel32 M Valid Valid Call near, relative, displacement relative to 
next instruction. 32-bit displacement sign 
extended to 64-bits in 64-bit mode.

FF /2 CALL r/m16 M N.E. Valid Call near, absolute indirect, address given in 
r/m16. 

FF /2 CALL r/m32 M N.E. Valid Call near, absolute indirect, address given in 
r/m32. 

FF /2 CALL r/m64 M Valid N.E. Call near, absolute indirect, address given in 
r/m64.

9A cd CALL ptr16:16 D Invalid Valid Call far, absolute, address given in operand.

9A cp CALL ptr16:32 D Invalid Valid Call far, absolute, address given in operand.

FF /3 CALL m16:16 M Valid Valid Call far, absolute indirect address given in 
m16:16.

In 32-bit mode: if selector points to a gate, 
then RIP = 32-bit zero extended displacement 
taken from gate; else RIP = zero extended 16-
bit offset from far pointer referenced in the 
instruction.

FF /3 CALL m16:32 M Valid Valid In 64-bit mode: If selector points to a gate, 
then RIP = 64-bit displacement taken from 
gate; else RIP = zero extended 32-bit offset 
from far pointer referenced in the instruction. 

REX.W + FF /3 CALL m16:64 M Valid N.E. In 64-bit mode: If selector points to a gate, 
then RIP = 64-bit displacement taken from 
gate; else RIP = 64-bit offset from far pointer 
referenced in the instruction. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset NA NA NA

M ModRM:r/m (r) NA NA NA
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The latter two call types (inter-privilege-level call and task switch) can only be executed in protected mode. See 
“Calling Procedures Using Call and RET” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for additional information on near, far, and inter-privilege-level calls. See Chapter 7, 
“Task Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for infor-
mation on performing task switches with the CALL instruction.

Near Call. When executing a near call, the processor pushes the value of the EIP register (which contains the offset 
of the instruction following the CALL instruction) on the stack (for use later as a return-instruction pointer). The 
processor then branches to the address in the current code segment specified by the target operand. The target 
operand specifies either an absolute offset in the code segment (an offset from the base of the code segment) or a 
relative offset (a signed displacement relative to the current value of the instruction pointer in the EIP register; this 
value points to the instruction following the CALL instruction). The CS register is not changed on near calls.

For a near call absolute, an absolute offset is specified indirectly in a general-purpose register or a memory location 
(r/m16, r/m32, or r/m64). The operand-size attribute determines the size of the target operand (16, 32 or 64 bits). 
When in 64-bit mode, the operand size for near call (and all near branches) is forced to 64-bits. Absolute offsets 
are loaded directly into the EIP(RIP) register. If the operand size attribute is 16, the upper two bytes of the EIP 
register are cleared, resulting in a maximum instruction pointer size of 16 bits. When accessing an absolute offset 
indirectly using the stack pointer [ESP] as the base register, the base value used is the value of the ESP before the 
instruction executes.

A relative offset (rel16 or rel32) is generally specified as a label in assembly code. But at the machine code level, it 
is encoded as a signed, 16- or 32-bit immediate value. This value is added to the value in the EIP(RIP) register. In 
64-bit mode the relative offset is always a 32-bit immediate value which is sign extended to 64-bits before it is 
added to the value in the RIP register for the target calculation. As with absolute offsets, the operand-size attribute 
determines the size of the target operand (16, 32, or 64 bits). In 64-bit mode the target operand will always be 64-
bits because the operand size is forced to 64-bits for near branches.

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real- address or virtual-8086 mode, the 
processor pushes the current value of both the CS and EIP registers on the stack for use as a return-instruction 
pointer. The processor then performs a “far branch” to the code segment and offset specified with the target 
operand for the called procedure. The target operand specifies an absolute far address either directly with a pointer 
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). With the pointer method, the 
segment and offset of the called procedure is encoded in the instruction using a 4-byte (16-bit operand size) or 6-
byte (32-bit operand size) far address immediate. With the indirect method, the target operand specifies a memory 
location that contains a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address. The operand-size 
attribute determines the size of the offset (16 or 32 bits) in the far address. The far address is loaded directly into 
the CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register are cleared.

Far Calls in Protected Mode. When the processor is operating in protected mode, the CALL instruction can be used to 
perform the following types of far calls:
• Far call to the same privilege level
• Far call to a different privilege level (inter-privilege level call)
• Task switch (far call to another task)

In protected mode, the processor always uses the segment selector part of the far address to access the corre-
sponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate, task gate, or TSS) and access 
rights determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is 
performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming, 
a general-protection exception is generated.) A far call to the same privilege level in protected mode is very similar 
to one carried out in real-address or virtual-8086 mode. The target operand specifies an absolute far address either 
directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The 
operand- size attribute determines the size of the offset (16 or 32 bits) in the far address. The new code segment 
selector and its descriptor are loaded into CS register; the offset from the instruction is loaded into the EIP register. 

A call gate (described in the next paragraph) can also be used to perform a far call to a code segment at the same 
privilege level. Using this mechanism provides an extra level of indirection and is the preferred method of making 
calls between 16-bit and 32-bit code segments.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed 
through a call gate. The segment selector specified by the target operand identifies the call gate. The target 
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operand can specify the call gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or indirectly 
with a memory location (m16:16 or m16:32). The processor obtains the segment selector for the new code 
segment and the new instruction pointer (offset) from the call gate descriptor. (The offset from the target operand 
is ignored when a call gate is used.) 

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The 
segment selector for the new stack segment is specified in the TSS for the currently running task. The branch to 
the new code segment occurs after the stack switch. (Note that when using a call gate to perform a far call to a 
segment at the same privilege level, no stack switch occurs.) On the new stack, the processor pushes the segment 
selector and stack pointer for the calling procedure’s stack, an optional set of parameters from the calling proce-
dures stack, and the segment selector and instruction pointer for the calling procedure’s code segment. (A value in 
the call gate descriptor determines how many parameters to copy to the new stack.) Finally, the processor 
branches to the address of the procedure being called within the new code segment.

Executing a task switch with the CALL instruction is similar to executing a call through a call gate. The target 
operand specifies the segment selector of the task gate for the new task activated by the switch (the offset in the 
target operand is ignored). The task gate in turn points to the TSS for the new task, which contains the segment 
selectors for the task’s code and stack segments. Note that the TSS also contains the EIP value for the next instruc-
tion that was to be executed before the calling task was suspended. This instruction pointer value is loaded into the 
EIP register to re-start the calling task. 

The CALL instruction can also specify the segment selector of the TSS directly, which eliminates the indirection of 
the task gate. See Chapter 7, “Task Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A, for information on the mechanics of a task switch.

When you execute at task switch with a CALL instruction, the nested task flag (NT) is set in the EFLAGS register 
and the new TSS’s previous task link field is loaded with the old task’s TSS selector. Code is expected to suspend 
this nested task by executing an IRET instruction which, because the NT flag is set, automatically uses the previous 
task link to return to the calling task. (See “Task Linking” in Chapter 7 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A, for information on nested tasks.) Switching tasks with the CALL instruc-
tion differs in this regard from JMP instruction. JMP does not set the NT flag and therefore does not expect an IRET 
instruction to suspend the task.

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code segments, use a call gate. If 
the far call is from a 32-bit code segment to a 16-bit code segment, the call should be made from the first 64 
KBytes of the 32-bit code segment. This is because the operand-size attribute of the instruction is set to 16, so only 
a 16-bit return address offset can be saved. Also, the call should be made using a 16-bit call gate so that 16-bit 
values can be pushed on the stack. See Chapter 21, “Mixing 16-Bit and 32-Bit Code,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3B, for more information.

Far Calls in Compatibility Mode. When the processor is operating in compatibility mode, the CALL instruction can be 
used to perform the following types of far calls:
• Far call to the same privilege level, remaining in compatibility mode
• Far call to the same privilege level, transitioning to 64-bit mode
• Far call to a different privilege level (inter-privilege level call), transitioning to 64-bit mode

Note that a CALL instruction can not be used to cause a task switch in compatibility mode since task switches are 
not supported in IA-32e mode.

In compatibility mode, the processor always uses the segment selector part of the far address to access the corre-
sponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate) and access rights determine 
the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is 
performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming, 
a general-protection exception is generated.) A far call to the same privilege level in compatibility mode is very 
similar to one carried out in protected mode. The target operand specifies an absolute far address either directly 
with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The operand-size 
attribute determines the size of the offset (16 or 32 bits) in the far address. The new code segment selector and its 
descriptor are loaded into CS register and the offset from the instruction is loaded into the EIP register. The differ-
ence is that 64-bit mode may be entered. This specified by the L bit in the new code segment descriptor.
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Note that a 64-bit call gate (described in the next paragraph) can also be used to perform a far call to a code 
segment at the same privilege level. However, using this mechanism requires that the target code segment 
descriptor have the L bit set, causing an entry to 64-bit mode.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed 
through a 64-bit call gate. The segment selector specified by the target operand identifies the call gate. The target 
operand can specify the call gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or indirectly 
with a memory location (m16:16 or m16:32). The processor obtains the segment selector for the new code 
segment and the new instruction pointer (offset) from the 16-byte call gate descriptor. (The offset from the target 
operand is ignored when a call gate is used.) 

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The 
segment selector for the new stack segment is set to NULL. The new stack pointer is specified in the TSS for the 
currently running task. The branch to the new code segment occurs after the stack switch. (Note that when using 
a call gate to perform a far call to a segment at the same privilege level, an implicit stack switch occurs as a result 
of entering 64-bit mode. The SS selector is unchanged, but stack segment accesses use a segment base of 0x0, the 
limit is ignored, and the default stack size is 64-bits. The full value of RSP is used for the offset, of which the upper 
32-bits are undefined.) On the new stack, the processor pushes the segment selector and stack pointer for the 
calling procedure’s stack and the segment selector and instruction pointer for the calling procedure’s code 
segment. (Parameter copy is not supported in IA-32e mode.) Finally, the processor branches to the address of the 
procedure being called within the new code segment.

Near/(Far) Calls in 64-bit Mode. When the processor is operating in 64-bit mode, the CALL instruction can be used to 
perform the following types of far calls:
• Far call to the same privilege level, transitioning to compatibility mode
• Far call to the same privilege level, remaining in 64-bit mode
• Far call to a different privilege level (inter-privilege level call), remaining in 64-bit mode

Note that in this mode the CALL instruction can not be used to cause a task switch in 64-bit mode since task 
switches are not supported in IA-32e mode.

In 64-bit mode, the processor always uses the segment selector part of the far address to access the corresponding 
descriptor in the GDT or LDT. The descriptor type (code segment, call gate) and access rights determine the type of 
call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is 
performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming, 
a general-protection exception is generated.) A far call to the same privilege level in 64-bit mode is very similar to 
one carried out in compatibility mode. The target operand specifies an absolute far address indirectly with a 
memory location (m16:16, m16:32 or m16:64). The form of CALL with a direct specification of absolute far 
address is not defined in 64-bit mode. The operand-size attribute determines the size of the offset (16, 32, or 64 
bits) in the far address. The new code segment selector and its descriptor are loaded into the CS register; the offset 
from the instruction is loaded into the EIP register. The new code segment may specify entry either into compati-
bility or 64-bit mode, based on the L bit value.

A 64-bit call gate (described in the next paragraph) can also be used to perform a far call to a code segment at the 
same privilege level. However, using this mechanism requires that the target code segment descriptor have the L 
bit set.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be accessed 
through a 64-bit call gate. The segment selector specified by the target operand identifies the call gate. The target 
operand can only specify the call gate segment selector indirectly with a memory location (m16:16, m16:32 or 
m16:64). The processor obtains the segment selector for the new code segment and the new instruction pointer 
(offset) from the 16-byte call gate descriptor. (The offset from the target operand is ignored when a call gate is 
used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called procedure. The 
segment selector for the new stack segment is set to NULL. The new stack pointer is specified in the TSS for the 
currently running task. The branch to the new code segment occurs after the stack switch. 

Note that when using a call gate to perform a far call to a segment at the same privilege level, an implicit stack 
switch occurs as a result of entering 64-bit mode. The SS selector is unchanged, but stack segment accesses use a 
segment base of 0x0, the limit is ignored, and the default stack size is 64-bits. (The full value of RSP is used for the 
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offset.) On the new stack, the processor pushes the segment selector and stack pointer for the calling procedure’s 
stack and the segment selector and instruction pointer for the calling procedure’s code segment. (Parameter copy 
is not supported in IA-32e mode.) Finally, the processor branches to the address of the procedure being called 
within the new code segment.

Operation

IF near call

THEN IF near relative call

THEN 

IF OperandSize = 64

THEN

tempDEST ← SignExtend(DEST); (* DEST is rel32 *) 

tempRIP ← RIP + tempDEST;

IF stack not large enough for a 8-byte return address

THEN #SS(0); FI;

Push(RIP);

RIP ← tempRIP;

FI;

IF OperandSize = 32

THEN

tempEIP ← EIP + DEST; (* DEST is rel32 *)

IF tempEIP is not within code segment limit THEN #GP(0); FI;

IF stack not large enough for a 4-byte return address

THEN #SS(0); FI;

Push(EIP);

EIP ← tempEIP;

FI;

IF OperandSize = 16

THEN

tempEIP ← (EIP + DEST) AND 0000FFFFH; (* DEST is rel16 *)

IF tempEIP is not within code segment limit THEN #GP(0); FI;

IF stack not large enough for a 2-byte return address 

THEN #SS(0); FI;

Push(IP);

EIP ← tempEIP;

FI;

ELSE (* Near absolute call *)

IF OperandSize = 64

THEN

tempRIP ← DEST; (* DEST is r/m64 *)

IF stack not large enough for a 8-byte return address 

THEN #SS(0); FI;

Push(RIP); 

RIP ← tempRIP;

FI;

IF OperandSize = 32

THEN

tempEIP ← DEST; (* DEST is r/m32 *)

IF tempEIP is not within code segment limit THEN #GP(0); FI;

IF stack not large enough for a 4-byte return address 

THEN #SS(0); FI;

Push(EIP); 

EIP ← tempEIP;
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FI;

IF OperandSize = 16

THEN

tempEIP ← DEST AND 0000FFFFH; (* DEST is r/m16 *)

IF tempEIP is not within code segment limit THEN #GP(0); FI;

IF stack not large enough for a 2-byte return address 

THEN #SS(0); FI;

Push(IP);

EIP ← tempEIP;

FI;

FI;rel/abs

FI; near

IF far call and (PE = 0 or (PE = 1 and VM = 1)) (* Real-address or virtual-8086 mode *)

THEN

IF OperandSize = 32

THEN

IF stack not large enough for a 6-byte return address 

THEN #SS(0); FI;

IF DEST[31:16] is not zero THEN #GP(0); FI;

Push(CS); (* Padded with 16 high-order bits *)

Push(EIP);

CS ← DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)

EIP ← DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)

ELSE (* OperandSize = 16 *)

IF stack not large enough for a 4-byte return address 

THEN #SS(0); FI;

Push(CS);

Push(IP);

CS ← DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)

EIP ← DEST[15:0]; (* DEST is ptr16:16 or [m16:16]; clear upper 16 bits *)

FI;

FI;

IF far call and (PE = 1 and VM = 0) (* Protected mode or IA-32e Mode, not virtual-8086 mode*)

THEN

IF segment selector in target operand NULL 

THEN #GP(0); FI;

IF segment selector index not within descriptor table limits

THEN #GP(new code segment selector); FI;

Read type and access rights of selected segment descriptor;

IF IA32_EFER.LMA = 0

THEN

IF segment type is not a conforming or nonconforming code segment, call 

gate, task gate, or TSS 

THEN #GP(segment selector); FI;

ELSE 

IF segment type is not a conforming or nonconforming code segment or 

64-bit call gate, 

THEN #GP(segment selector); FI;

FI;

Depending on type and access rights:

GO TO CONFORMING-CODE-SEGMENT;

GO TO NONCONFORMING-CODE-SEGMENT;
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GO TO CALL-GATE;

GO TO TASK-GATE;

GO TO TASK-STATE-SEGMENT;

FI;

CONFORMING-CODE-SEGMENT:

IF L bit = 1 and D bit = 1 and IA32_EFER.LMA = 1 

THEN GP(new code segment selector); FI;

IF DPL > CPL 

THEN #GP(new code segment selector); FI;

IF segment not present 

THEN #NP(new code segment selector); FI;

IF stack not large enough for return address

THEN #SS(0); FI;

tempEIP ← DEST(Offset);

IF OperandSize = 16

THEN

tempEIP ← tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)

IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code

segment limit) 

THEN #GP(0); FI;

IF tempEIP is non-canonical 

THEN #GP(0); FI;

IF OperandSize = 32

THEN

Push(CS); (* Padded with 16 high-order bits *)

Push(EIP);

CS ← DEST(CodeSegmentSelector); 

(* Segment descriptor information also loaded *)

CS(RPL) ← CPL;

EIP ← tempEIP;

ELSE

IF OperandSize = 16

THEN

Push(CS);

Push(IP);

CS ← DEST(CodeSegmentSelector); 

(* Segment descriptor information also loaded *)

CS(RPL) ← CPL;

EIP ← tempEIP;

ELSE (* OperandSize = 64 *)

Push(CS); (* Padded with 48 high-order bits *)

Push(RIP);

CS ← DEST(CodeSegmentSelector); 

(* Segment descriptor information also loaded *)

CS(RPL) ← CPL;

RIP ← tempEIP;

FI;

FI;

END;

NONCONFORMING-CODE-SEGMENT:

IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1 

THEN GP(new code segment selector); FI;
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IF (RPL > CPL) or (DPL ≠ CPL) 

THEN #GP(new code segment selector); FI;

IF segment not present 

THEN #NP(new code segment selector); FI;

IF stack not large enough for return address 

THEN #SS(0); FI;

tempEIP ← DEST(Offset);

IF OperandSize = 16

THEN tempEIP ← tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)

IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit)

THEN #GP(0); FI;

IF tempEIP is non-canonical 

THEN #GP(0); FI;

IF OperandSize = 32

THEN

Push(CS); (* Padded with 16 high-order bits *)

Push(EIP);

CS ← DEST(CodeSegmentSelector); 

(* Segment descriptor information also loaded *)

CS(RPL) ← CPL;

EIP ← tempEIP;

ELSE

IF OperandSize = 16

THEN

Push(CS);

Push(IP);

CS ← DEST(CodeSegmentSelector); 

(* Segment descriptor information also loaded *)

CS(RPL) ← CPL;

EIP ← tempEIP;

ELSE (* OperandSize = 64 *)

Push(CS); (* Padded with 48 high-order bits *)

Push(RIP);

CS ← DEST(CodeSegmentSelector); 

(* Segment descriptor information also loaded *)

CS(RPL) ← CPL;

RIP ← tempEIP;

FI;

FI;

END;

CALL-GATE:

IF call gate (DPL < CPL) or (RPL > DPL)

THEN #GP(call-gate selector); FI;

IF call gate not present 

THEN #NP(call-gate selector); FI;

IF call-gate code-segment selector is NULL

THEN #GP(0); FI;

IF call-gate code-segment selector index is outside descriptor table limits

THEN #GP(call-gate code-segment selector); FI;

Read call-gate code-segment descriptor;

IF call-gate code-segment descriptor does not indicate a code segment

or call-gate code-segment descriptor DPL > CPL 



CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-103

THEN #GP(call-gate code-segment selector); FI;

IF IA32_EFER.LMA = 1 AND (call-gate code-segment descriptor is 
not a 64-bit code segment or call-gate code-segment descriptor has both L-bit and D-bit set)

THEN #GP(call-gate code-segment selector); FI;

IF call-gate code segment not present 

THEN #NP(call-gate code-segment selector); FI;

IF call-gate code segment is non-conforming and DPL < CPL

THEN go to MORE-PRIVILEGE;

ELSE go to SAME-PRIVILEGE;

FI;

END;

MORE-PRIVILEGE:

IF current TSS is 32-bit

THEN 

TSSstackAddress ← (new code-segment DPL ∗ 8) + 4;

IF (TSSstackAddress + 5) > current TSS limit

THEN #TS(current TSS selector); FI;

NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 4);

NewESP ← 4 bytes loaded from (TSS base + TSSstackAddress);

ELSE 

IF current TSS is 16-bit

THEN

TSSstackAddress ← (new code-segment DPL ∗ 4) + 2

IF (TSSstackAddress + 3) > current TSS limit

THEN #TS(current TSS selector); FI;

NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 2);

NewESP ← 2 bytes loaded from (TSS base + TSSstackAddress);

ELSE (* current TSS is 64-bit *)

TSSstackAddress ← (new code-segment DPL ∗ 8) + 4;

IF (TSSstackAddress + 7) > current TSS limit

THEN #TS(current TSS selector); FI;

NewSS ← new code-segment DPL; (* NULL selector with RPL = new CPL *)

NewRSP ← 8 bytes loaded from (current TSS base + TSSstackAddress);

FI;

FI;

IF IA32_EFER.LMA = 0 and NewSS is NULL

THEN #TS(NewSS); FI;

Read new code-segment descriptor and new stack-segment descriptor; 

IF IA32_EFER.LMA = 0 and (NewSS RPL ≠ new code-segment DPL

or new stack-segment DPL ≠ new code-segment DPL or new stack segment is not a
writable data segment)

THEN #TS(NewSS); FI

IF IA32_EFER.LMA = 0 and new stack segment not present 

THEN #SS(NewSS); FI;

IF CallGateSize = 32

THEN

IF new stack does not have room for parameters plus 16 bytes

THEN #SS(NewSS); FI;

IF CallGate(InstructionPointer) not within new code-segment limit 

THEN #GP(0); FI;

SS ← newSS; (* Segment descriptor information also loaded *)

ESP ← newESP; 

CS:EIP ← CallGate(CS:InstructionPointer); 
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(* Segment descriptor information also loaded *)

Push(oldSS:oldESP); (* From calling procedure *)

temp ← parameter count from call gate, masked to 5 bits;

Push(parameters from calling procedure’s stack, temp)

Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE 

IF CallGateSize = 16

THEN

IF new stack does not have room for parameters plus 8 bytes

THEN #SS(NewSS); FI;

IF (CallGate(InstructionPointer) AND FFFFH) not in new code-segment limit

THEN #GP(0); FI;

SS ← newSS; (* Segment descriptor information also loaded *)

ESP ← newESP; 

CS:IP ← CallGate(CS:InstructionPointer);

(* Segment descriptor information also loaded *)

Push(oldSS:oldESP); (* From calling procedure *)

temp ← parameter count from call gate, masked to 5 bits;

Push(parameters from calling procedure’s stack, temp)

Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE (* CallGateSize = 64 *)

IF pushing 32 bytes on the stack would use a non-canonical address

THEN #SS(NewSS); FI;

IF (CallGate(InstructionPointer) is non-canonical) 

THEN #GP(0); FI;

SS ← NewSS; (* NewSS is NULL)

RSP ← NewESP; 

CS:IP ← CallGate(CS:InstructionPointer);

(* Segment descriptor information also loaded *)

Push(oldSS:oldESP); (* From calling procedure *)

Push(oldCS:oldEIP); (* Return address to calling procedure *)

FI;

FI;

CPL ← CodeSegment(DPL)

CS(RPL) ← CPL

END;

SAME-PRIVILEGE:

IF CallGateSize = 32

THEN

IF stack does not have room for 8 bytes

THEN #SS(0); FI;

IF CallGate(InstructionPointer) not within code segment limit 

THEN #GP(0); FI;

CS:EIP ← CallGate(CS:EIP) (* Segment descriptor information also loaded *)

Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE 

If CallGateSize = 16

THEN

IF stack does not have room for 4 bytes

THEN #SS(0); FI;

IF CallGate(InstructionPointer) not within code segment limit 

THEN #GP(0); FI;

CS:IP ← CallGate(CS:instruction pointer); 
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(* Segment descriptor information also loaded *)

Push(oldCS:oldIP); (* Return address to calling procedure *)

ELSE (* CallGateSize = 64)

IF pushing 16 bytes on the stack touches non-canonical addresses

THEN #SS(0); FI;

IF RIP non-canonical 

THEN #GP(0); FI;

CS:IP ← CallGate(CS:instruction pointer); 

(* Segment descriptor information also loaded *)

Push(oldCS:oldIP); (* Return address to calling procedure *)

FI;

FI;

CS(RPL) ← CPL

END;

TASK-GATE:

IF task gate DPL < CPL or RPL 

THEN #GP(task gate selector); FI;

IF task gate not present 

THEN #NP(task gate selector); FI;

Read the TSS segment selector in the task-gate descriptor;

IF TSS segment selector local/global bit is set to local

or index not within GDT limits

THEN #GP(TSS selector); FI;

Access TSS descriptor in GDT;

IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

THEN #GP(TSS selector); FI;

IF TSS not present 

THEN #NP(TSS selector); FI;

SWITCH-TASKS (with nesting) to TSS;

IF EIP not within code segment limit 

THEN #GP(0); FI;

END;

TASK-STATE-SEGMENT:

IF TSS DPL < CPL or RPL

or TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;

IF TSS is not present 

THEN #NP(TSS selector); FI;

SWITCH-TASKS (with nesting) to TSS;

IF EIP not within code segment limit 

THEN #GP(0); FI;

END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

Protected Mode Exceptions

#GP(0) If the target offset in destination operand is beyond the new code segment limit.
If the segment selector in the destination operand is NULL.
If the code segment selector in the gate is NULL.
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If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#GP(selector) If a code segment or gate or TSS selector index is outside descriptor table limits. 
If the segment descriptor pointed to by the segment selector in the destination operand is not 
for a conforming-code segment, nonconforming-code segment, call gate, task gate, or task 
state segment.
If the DPL for a nonconforming-code segment is not equal to the CPL or the RPL for the 
segment’s segment selector is greater than the CPL.
If the DPL for a conforming-code segment is greater than the CPL.
If the DPL from a call-gate, task-gate, or TSS segment descriptor is less than the CPL or than 
the RPL of the call-gate, task-gate, or TSS’s segment selector.
If the segment descriptor for a segment selector from a call gate does not indicate it is a code 
segment.
If the segment selector from a call gate is beyond the descriptor table limits.
If the DPL for a code-segment obtained from a call gate is greater than the CPL.
If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If pushing the return address, parameters, or stack segment pointer onto the stack exceeds 
the bounds of the stack segment, when no stack switch occurs.
If a memory operand effective address is outside the SS segment limit.

#SS(selector) If pushing the return address, parameters, or stack segment pointer onto the stack exceeds 
the bounds of the stack segment, when a stack switch occurs.
If the SS register is being loaded as part of a stack switch and the segment pointed to is 
marked not present.
If stack segment does not have room for the return address, parameters, or stack segment 
pointer, when stack switch occurs.

#NP(selector) If a code segment, data segment, stack segment, call gate, task gate, or TSS is not present.
#TS(selector) If the new stack segment selector and ESP are beyond the end of the TSS.

If the new stack segment selector is NULL.
If the RPL of the new stack segment selector in the TSS is not equal to the DPL of the code 
segment being accessed.
If DPL of the stack segment descriptor for the new stack segment is not equal to the DPL of the 
code segment descriptor.
If the new stack segment is not a writable data segment.
If segment-selector index for stack segment is outside descriptor table limits. 

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the target offset is beyond the code segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the target offset is beyond the code segment limit.
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#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.
#GP(selector) If a memory address accessed by the selector is in non-canonical space.
#GP(0) If the target offset in the destination operand is non-canonical.

64-Bit Mode Exceptions

#GP(0) If a memory address is non-canonical.
If target offset in destination operand is non-canonical.
If the segment selector in the destination operand is NULL.
If the code segment selector in the 64-bit gate is NULL.

#GP(selector) If code segment or 64-bit call gate is outside descriptor table limits. 
If code segment or 64-bit call gate overlaps non-canonical space. 
If the segment descriptor pointed to by the segment selector in the destination operand is not 
for a conforming-code segment, nonconforming-code segment, or 64-bit call gate.
If the segment descriptor pointed to by the segment selector in the destination operand is a 
code segment and has both the D-bit and the L- bit set.
If the DPL for a nonconforming-code segment is not equal to the CPL, or the RPL for the 
segment’s segment selector is greater than the CPL.
If the DPL for a conforming-code segment is greater than the CPL.
If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-gate.
If the upper type field of a 64-bit call gate is not 0x0.
If the segment selector from a 64-bit call gate is beyond the descriptor table limits.
If the DPL for a code-segment obtained from a 64-bit call gate is greater than the CPL.
If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the 
L-bit set and the D-bit clear.
If the segment descriptor for a segment selector from the 64-bit call gate does not indicate it 
is a code segment. 

#SS(0) If pushing the return offset or CS selector onto the stack exceeds the bounds of the stack 
segment when no stack switch occurs.
If a memory operand effective address is outside the SS segment limit.
If the stack address is in a non-canonical form.

#SS(selector) If pushing the old values of SS selector, stack pointer, EFLAGS, CS selector, offset, or error 
code onto the stack violates the canonical boundary when a stack switch occurs.

#NP(selector) If a code segment or 64-bit call gate is not present.
#TS(selector) If the load of the new RSP exceeds the limit of the TSS.
#UD (64-bit mode only) If a far call is direct to an absolute address in memory.

If the LOCK prefix is used.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert Doubleword to 
Quadword

Instruction Operand Encoding

Description

Double the size of the source operand by means of sign extension. The CBW (convert byte to word) instruction 
copies the sign (bit 7) in the source operand into every bit in the AH register. The CWDE (convert word to double-
word) instruction copies the sign (bit 15) of the word in the AX register into the high 16 bits of the EAX register. 

CBW and CWDE reference the same opcode. The CBW instruction is intended for use when the operand-size attri-
bute is 16; CWDE is intended for use when the operand-size attribute is 32. Some assemblers may force the 
operand size. Others may treat these two mnemonics as synonyms (CBW/CWDE) and use the setting of the 
operand-size attribute to determine the size of values to be converted.

In 64-bit mode, the default operation size is the size of the destination register. Use of the REX.W prefix promotes 
this instruction (CDQE when promoted) to operate on 64-bit operands. In which case, CDQE copies the sign (bit 31) 
of the doubleword in the EAX register into the high 32 bits of RAX.

Operation

IF OperandSize = 16 (* Instruction = CBW *)

THEN 

AX ← SignExtend(AL);

ELSE IF (OperandSize = 32, Instruction = CWDE)

EAX ← SignExtend(AX); FI;

ELSE (* 64-Bit Mode, OperandSize = 64, Instruction = CDQE*)

RAX ← SignExtend(EAX);

FI;

Flags Affected

None.

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

98 CBW NP Valid Valid AX ← sign-extend of AL.

98 CWDE NP Valid Valid EAX ← sign-extend of AX.

REX.W + 98 CDQE NP Valid N.E. RAX ← sign-extend of EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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CLC—Clear Carry Flag

Instruction Operand Encoding

Description

Clears the CF flag in the EFLAGS register. Operation is the same in all non-64-bit modes and 64-bit mode.

Operation

CF ← 0;

Flags Affected

The CF flag is set to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

F8 CLC NP Valid Valid Clear CF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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CLD—Clear Direction Flag

Instruction Operand Encoding

Description

Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string operations increment the index regis-
ters (ESI and/or EDI). Operation is the same in all non-64-bit modes and 64-bit mode.

Operation

DF ← 0;

Flags Affected

The DF flag is set to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

FC CLD NP Valid Valid Clear DF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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CLFLUSH—Flush Cache Line

Instruction Operand Encoding

Description

Invalidates the cache line that contains the linear address specified with the source operand from all levels of the 
processor cache hierarchy (data and instruction). The invalidation is broadcast throughout the cache coherence 
domain. If, at any level of the cache hierarchy, the line is inconsistent with memory (dirty) it is written to memory 
before invalidation. The source operand is a byte memory location.

The availability of CLFLUSH is indicated by the presence of the CPUID feature flag CLFSH (bit 19 of the EDX register, 
see “CPUID—CPU Identification” in this chapter). The aligned cache line size affected is also indicated with the 
CPUID instruction (bits 8 through 15 of the EBX register when the initial value in the EAX register is 1).

The memory attribute of the page containing the affected line has no effect on the behavior of this instruction. It 
should be noted that processors are free to speculatively fetch and cache data from system memory regions 
assigned a memory-type allowing for speculative reads (such as, the WB, WC, and WT memory types). PREFETCHh 
instructions can be used to provide the processor with hints for this speculative behavior. Because this speculative 
fetching can occur at any time and is not tied to instruction execution, the CLFLUSH instruction is not ordered with 
respect to PREFETCHh instructions or any of the speculative fetching mechanisms (that is, data can be specula-
tively loaded into a cache line just before, during, or after the execution of a CLFLUSH instruction that references 
the cache line).

CLFLUSH is only ordered by the MFENCE instruction. It is not guaranteed to be ordered by any other fencing or 
serializing instructions or by another CLFLUSH instruction. For example, software can use an MFENCE instruction 
to ensure that previous stores are included in the write-back.

The CLFLUSH instruction can be used at all privilege levels and is subject to all permission checking and faults asso-
ciated with a byte load (and in addition, a CLFLUSH instruction is allowed to flush a linear address in an execute-
only segment). Like a load, the CLFLUSH instruction sets the A bit but not the D bit in the page tables.
The CLFLUSH instruction was introduced with the SSE2 extensions; however, because it has its own CPUID feature 
flag, it can be implemented in IA-32 processors that do not include the SSE2 extensions. Also, detecting the pres-
ence of the SSE2 extensions with the CPUID instruction does not guarantee that the CLFLUSH instruction is imple-
mented in the processor.

CLFLUSH operation is the same in non-64-bit modes and 64-bit mode.

Operation

Flush_Cache_Line(SRC);

Intel C/C++ Compiler Intrinsic Equivalents

CLFLUSH: void _mm_clflush(void const *p)

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment. 
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F AE /7 CLFLUSH m8 M Valid Valid Flushes cache line containing m8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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If instruction prefix is 66H, F2H or F3H.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.
If instruction prefix is 66H, F2H or F3H.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.
If instruction prefix is 66H, F2H or F3H.
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CLI — Clear Interrupt Flag

Instruction Operand Encoding

Description

If protected-mode virtual interrupts are not enabled, CLI clears the IF flag in the EFLAGS register. No other flags 
are affected. Clearing the IF flag causes the processor to ignore maskable external interrupts. The IF flag and the 
CLI and STI instruction have no affect on the generation of exceptions and NMI interrupts.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than 3; CLI clears the VIF flag in the 
EFLAGS register, leaving IF unaffected. Table 3-6 indicates the action of the CLI instruction depending on the 
processor operating mode and the CPL/IOPL of the running program or procedure. 

CLI operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF PE = 0

THEN

IF ← 0; (* Reset Interrupt Flag *)

ELSE

IF VM = 0;

THEN

IF IOPL ≥ CPL

THEN

IF ← 0; (* Reset Interrupt Flag *)

ELSE

IF ((IOPL < CPL) and (CPL = 3) and (PVI = 1))

THEN

VIF ← 0; (* Reset Virtual Interrupt Flag *)

ELSE

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

FA CLI NP Valid Valid Clear interrupt flag; interrupts disabled when 
interrupt flag cleared.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Table 3-6.  Decision Table for CLI Results

PE VM IOPL CPL PVI VIP VME CLI Result

0 X X X X X X IF = 0
1 0 ≥ CPL X X X X IF = 0

1 0 < CPL 3 1 X X VIF = 0

1 0 < CPL < 3 X X X GP Fault

1 0 < CPL X 0 X X GP Fault

1 1 3 X X X X IF = 0

1 1 < 3 X X X 1 VIF = 0
1 1 < 3 X X X 0 GP Fault

NOTES:

* X = This setting has no impact.
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#GP(0);

FI;

FI;

ELSE (* VM = 1 *)

IF IOPL = 3

THEN

IF ← 0; (* Reset Interrupt Flag *)

ELSE 

IF (IOPL < 3) AND (VME = 1)

THEN

VIF ← 0; (* Reset Virtual Interrupt Flag *)

ELSE

#GP(0);

FI;

FI;

FI;

FI;

Flags Affected

If protected-mode virtual interrupts are not enabled, IF is set to 0 if the CPL is equal to or less than the IOPL; other-
wise, it is not affected. The other flags in the EFLAGS register are unaffected.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than 3; CLI clears the VIF flag in the 
EFLAGS register, leaving IF unaffected.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current program or procedure. 
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current program or procedure. 
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current program or procedure. 
#UD If the LOCK prefix is used.
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CLTS—Clear Task-Switched Flag in CR0

Instruction Operand Encoding

Description

Clears the task-switched (TS) flag in the CR0 register. This instruction is intended for use in operating-system 
procedures. It is a privileged instruction that can only be executed at a CPL of 0. It is allowed to be executed in real-
address mode to allow initialization for protected mode.

The processor sets the TS flag every time a task switch occurs. The flag is used to synchronize the saving of FPU 
context in multitasking applications. See the description of the TS flag in the section titled “Control Registers” in 
Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information 
about this flag. 

CLTS operation is the same in non-64-bit modes and 64-bit mode.

See Chapter 25, “VMX Non-Root Operation,” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3C, for more information about the behavior of this instruction in VMX non-root operation.

Operation

CR0.TS[bit 3] ← 0;

Flags Affected

The TS flag in CR0 register is cleared.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) CLTS is not recognized in virtual-8086 mode.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the CPL is greater than 0.
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

0F 06 CLTS NP Valid Valid Clears TS flag in CR0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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CMC—Complement Carry Flag

Instruction Operand Encoding

Description

Complements the CF flag in the EFLAGS register. CMC operation is the same in non-64-bit modes and 64-bit mode.

Operation

EFLAGS.CF[bit 0]← NOT EFLAGS.CF[bit 0];

Flags Affected

The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-bit 
Mode

Compat/
Leg Mode

Description

F5 CMC NP Valid Valid Complement CF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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CMOVcc—Conditional Move

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 47 /r CMOVA r16, r/m16 RM Valid Valid Move if above (CF=0 and ZF=0).

0F 47 /r CMOVA r32, r/m32 RM Valid Valid Move if above (CF=0 and ZF=0).

REX.W + 0F 47 /r CMOVA r64, r/m64 RM Valid N.E. Move if above (CF=0 and ZF=0).

0F 43 /r CMOVAE r16, r/m16 RM Valid Valid Move if above or equal (CF=0).

0F 43 /r CMOVAE r32, r/m32 RM Valid Valid Move if above or equal (CF=0).

REX.W + 0F 43 /r CMOVAE r64, r/m64 RM Valid N.E. Move if above or equal (CF=0).

0F 42 /r CMOVB r16, r/m16 RM Valid Valid Move if below (CF=1).

0F 42 /r CMOVB r32, r/m32 RM Valid Valid Move if below (CF=1).

REX.W + 0F 42 /r CMOVB r64, r/m64 RM Valid N.E. Move if below (CF=1).

0F 46 /r CMOVBE r16, r/m16 RM Valid Valid Move if below or equal (CF=1 or ZF=1).

0F 46 /r CMOVBE r32, r/m32 RM Valid Valid Move if below or equal (CF=1 or ZF=1).

REX.W + 0F 46 /r CMOVBE r64, r/m64 RM Valid N.E. Move if below or equal (CF=1 or ZF=1).

0F 42 /r CMOVC r16, r/m16 RM Valid Valid Move if carry (CF=1).

0F 42 /r CMOVC r32, r/m32 RM Valid Valid Move if carry (CF=1).

REX.W + 0F 42 /r CMOVC r64, r/m64 RM Valid N.E. Move if carry (CF=1).

0F 44 /r CMOVE r16, r/m16 RM Valid Valid Move if equal (ZF=1).

0F 44 /r CMOVE r32, r/m32 RM Valid Valid Move if equal (ZF=1).

REX.W + 0F 44 /r CMOVE r64, r/m64 RM Valid N.E. Move if equal (ZF=1).

0F 4F /r CMOVG r16, r/m16 RM Valid Valid Move if greater (ZF=0 and SF=OF).

0F 4F /r CMOVG r32, r/m32 RM Valid Valid Move if greater (ZF=0 and SF=OF).

REX.W + 0F 4F /r CMOVG r64, r/m64 RM V/N.E. NA Move if greater (ZF=0 and SF=OF).

0F 4D /r CMOVGE r16, r/m16 RM Valid Valid Move if greater or equal (SF=OF).

0F 4D /r CMOVGE r32, r/m32 RM Valid Valid Move if greater or equal (SF=OF).

REX.W + 0F 4D /r CMOVGE r64, r/m64 RM Valid N.E. Move if greater or equal (SF=OF).

0F 4C /r CMOVL r16, r/m16 RM Valid Valid Move if less (SF≠ OF).

0F 4C /r CMOVL r32, r/m32 RM Valid Valid Move if less (SF≠ OF).

REX.W + 0F 4C /r CMOVL r64, r/m64 RM Valid N.E. Move if less (SF≠ OF).

0F 4E /r CMOVLE r16, r/m16 RM Valid Valid Move if less or equal (ZF=1 or SF≠ OF).

0F 4E /r CMOVLE r32, r/m32 RM Valid Valid Move if less or equal (ZF=1 or SF≠ OF).

REX.W + 0F 4E /r CMOVLE r64, r/m64 RM Valid N.E. Move if less or equal (ZF=1 or SF≠ OF).

0F 46 /r CMOVNA r16, r/m16 RM Valid Valid Move if not above (CF=1 or ZF=1).

0F 46 /r CMOVNA r32, r/m32 RM Valid Valid Move if not above (CF=1 or ZF=1).

REX.W + 0F 46 /r CMOVNA r64, r/m64 RM Valid N.E. Move if not above (CF=1 or ZF=1).

0F 42 /r CMOVNAE r16, r/m16 RM Valid Valid Move if not above or equal (CF=1).

0F 42 /r CMOVNAE r32, r/m32 RM Valid Valid Move if not above or equal (CF=1).

REX.W + 0F 42 /r CMOVNAE r64, r/m64 RM Valid N.E. Move if not above or equal (CF=1).

0F 43 /r CMOVNB r16, r/m16 RM Valid Valid Move if not below (CF=0).

0F 43 /r CMOVNB r32, r/m32 RM Valid Valid Move if not below (CF=0).

REX.W + 0F 43 /r CMOVNB r64, r/m64 RM Valid N.E. Move if not below (CF=0).

0F 47 /r CMOVNBE r16, r/m16 RM Valid Valid Move if not below or equal (CF=0 and ZF=0).
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Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 47 /r CMOVNBE r32, r/m32 RM Valid Valid Move if not below or equal (CF=0 and ZF=0).

REX.W + 0F 47 /r CMOVNBE r64, r/m64 RM Valid N.E. Move if not below or equal (CF=0 and ZF=0).

0F 43 /r CMOVNC r16, r/m16 RM Valid Valid Move if not carry (CF=0).

0F 43 /r CMOVNC r32, r/m32 RM Valid Valid Move if not carry (CF=0).

REX.W + 0F 43 /r CMOVNC r64, r/m64 RM Valid N.E. Move if not carry (CF=0).

0F 45 /r CMOVNE r16, r/m16 RM Valid Valid Move if not equal (ZF=0).

0F 45 /r CMOVNE r32, r/m32 RM Valid Valid Move if not equal (ZF=0).

REX.W + 0F 45 /r CMOVNE r64, r/m64 RM Valid N.E. Move if not equal (ZF=0).

0F 4E /r CMOVNG r16, r/m16 RM Valid Valid Move if not greater (ZF=1 or SF≠ OF).

0F 4E /r CMOVNG r32, r/m32 RM Valid Valid Move if not greater (ZF=1 or SF≠ OF).

REX.W + 0F 4E /r CMOVNG r64, r/m64 RM Valid N.E. Move if not greater (ZF=1 or SF≠ OF).

0F 4C /r CMOVNGE r16, r/m16 RM Valid Valid Move if not greater or equal (SF≠ OF).

0F 4C /r CMOVNGE r32, r/m32 RM Valid Valid Move if not greater or equal (SF≠ OF).

REX.W + 0F 4C /r CMOVNGE r64, r/m64 RM Valid N.E. Move if not greater or equal (SF≠ OF).

0F 4D /r CMOVNL r16, r/m16 RM Valid Valid Move if not less (SF=OF).

0F 4D /r CMOVNL r32, r/m32 RM Valid Valid Move if not less (SF=OF).

REX.W + 0F 4D /r CMOVNL r64, r/m64 RM Valid N.E. Move if not less (SF=OF).

0F 4F /r CMOVNLE r16, r/m16 RM Valid Valid Move if not less or equal (ZF=0 and SF=OF).

0F 4F /r CMOVNLE r32, r/m32 RM Valid Valid Move if not less or equal (ZF=0 and SF=OF).

REX.W + 0F 4F /r CMOVNLE r64, r/m64 RM Valid N.E. Move if not less or equal (ZF=0 and SF=OF).

0F 41 /r CMOVNO r16, r/m16 RM Valid Valid Move if not overflow (OF=0).

0F 41 /r CMOVNO r32, r/m32 RM Valid Valid Move if not overflow (OF=0).

REX.W + 0F 41 /r CMOVNO r64, r/m64 RM Valid N.E. Move if not overflow (OF=0).

0F 4B /r CMOVNP r16, r/m16 RM Valid Valid Move if not parity (PF=0).

0F 4B /r CMOVNP r32, r/m32 RM Valid Valid Move if not parity (PF=0).

REX.W + 0F 4B /r CMOVNP r64, r/m64 RM Valid N.E. Move if not parity (PF=0).

0F 49 /r CMOVNS r16, r/m16 RM Valid Valid Move if not sign (SF=0).

0F 49 /r CMOVNS r32, r/m32 RM Valid Valid Move if not sign (SF=0).

REX.W + 0F 49 /r CMOVNS r64, r/m64 RM Valid N.E. Move if not sign (SF=0).

0F 45 /r CMOVNZ r16, r/m16 RM Valid Valid Move if not zero (ZF=0).

0F 45 /r CMOVNZ r32, r/m32 RM Valid Valid Move if not zero (ZF=0).

REX.W + 0F 45 /r CMOVNZ r64, r/m64 RM Valid N.E. Move if not zero (ZF=0).

0F 40 /r CMOVO r16, r/m16 RM Valid Valid Move if overflow (OF=1).

0F 40 /r CMOVO r32, r/m32 RM Valid Valid Move if overflow (OF=1).

REX.W + 0F 40 /r CMOVO r64, r/m64 RM Valid N.E. Move if overflow (OF=1).

0F 4A /r CMOVP r16, r/m16 RM Valid Valid Move if parity (PF=1).

0F 4A /r CMOVP r32, r/m32 RM Valid Valid Move if parity (PF=1).

REX.W + 0F 4A /r CMOVP r64, r/m64 RM Valid N.E. Move if parity (PF=1).

0F 4A /r CMOVPE r16, r/m16 RM Valid Valid Move if parity even (PF=1).

0F 4A /r CMOVPE r32, r/m32 RM Valid Valid Move if parity even (PF=1).

REX.W + 0F 4A /r CMOVPE r64, r/m64 RM Valid N.E. Move if parity even (PF=1).
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Instruction Operand Encoding

Description

The CMOVcc instructions check the state of one or more of the status flags in the EFLAGS register (CF, OF, PF, SF, 
and ZF) and perform a move operation if the flags are in a specified state (or condition). A condition code (cc) is 
associated with each instruction to indicate the condition being tested for. If the condition is not satisfied, a move 
is not performed and execution continues with the instruction following the CMOVcc instruction.

These instructions can move 16-bit, 32-bit or 64-bit values from memory to a general-purpose register or from one 
general-purpose register to another. Conditional moves of 8-bit register operands are not supported.

The condition for each CMOVcc mnemonic is given in the description column of the above table. The terms “less” 
and “greater” are used for comparisons of signed integers and the terms “above” and “below” are used for 
unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two ways, two mnemonics are 
defined for some opcodes. For example, the CMOVA (conditional move if above) instruction and the CMOVNBE 
(conditional move if not below or equal) instruction are alternate mnemonics for the opcode 0F 47H. 

The CMOVcc instructions were introduced in P6 family processors; however, these instructions may not be 
supported by all IA-32 processors. Software can determine if the CMOVcc instructions are supported by checking 
the processor’s feature information with the CPUID instruction (see “CPUID—CPU Identification” in this chapter).

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the 
beginning of this section for encoding data and limits.

Operation

temp ← SRC

IF condition TRUE

THEN 

DEST ← temp;

FI;

ELSE
IF (OperandSize = 32 and IA-32e mode active)

THEN
DEST[63:32] ← 0;

FI;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 4B /r CMOVPO r16, r/m16 RM Valid Valid Move if parity odd (PF=0).

0F 4B /r CMOVPO r32, r/m32 RM Valid Valid Move if parity odd (PF=0).

REX.W + 0F 4B /r CMOVPO r64, r/m64 RM Valid N.E. Move if parity odd (PF=0).

0F 48 /r CMOVS r16, r/m16 RM Valid Valid Move if sign (SF=1).

0F 48 /r CMOVS r32, r/m32 RM Valid Valid Move if sign (SF=1).

REX.W + 0F 48 /r CMOVS r64, r/m64 RM Valid N.E. Move if sign (SF=1).

0F 44 /r CMOVZ r16, r/m16 RM Valid Valid Move if zero (ZF=1).

0F 44 /r CMOVZ r32, r/m32 RM Valid Valid Move if zero (ZF=1).

REX.W + 0F 44 /r CMOVZ r64, r/m64 RM Valid N.E. Move if zero (ZF=1).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
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FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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CMP—Compare Two Operands

Instruction Operand Encoding

Description

Compares the first source operand with the second source operand and sets the status flags in the EFLAGS register 
according to the results. The comparison is performed by subtracting the second operand from the first operand 
and then setting the status flags in the same manner as the SUB instruction. When an immediate value is used as 
an operand, it is sign-extended to the length of the first operand.

The condition codes used by the Jcc, CMOVcc, and SETcc instructions are based on the results of a CMP instruction. 
Appendix B, “EFLAGS Condition Codes,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, shows the relationship of the status flags and the condition codes.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

3C ib CMP AL, imm8 I Valid Valid Compare imm8 with AL.

3D iw CMP AX, imm16 I Valid Valid Compare imm16 with AX.

3D id CMP EAX, imm32 I Valid Valid Compare imm32 with EAX.

REX.W + 3D id CMP RAX, imm32 I Valid N.E. Compare imm32 sign-extended to 64-bits 
with RAX.

80 /7 ib CMP r/m8, imm8 MI Valid Valid Compare imm8 with r/m8.

REX + 80 /7 ib CMP r/m8
*
, imm8 MI Valid N.E. Compare imm8 with r/m8.

81 /7 iw CMP r/m16, imm16 MI Valid Valid Compare imm16 with r/m16.

81 /7 id CMP r/m32, imm32 MI Valid Valid Compare imm32 with r/m32.

REX.W + 81 /7 id CMP r/m64, imm32 MI Valid N.E. Compare imm32 sign-extended to 64-bits 

with r/m64.

83 /7 ib CMP r/m16, imm8 MI Valid Valid Compare imm8 with r/m16.

83 /7 ib CMP r/m32, imm8 MI Valid Valid Compare imm8 with r/m32.

REX.W + 83 /7 ib CMP r/m64, imm8 MI Valid N.E. Compare imm8 with r/m64.

38 /r CMP r/m8, r8 MR Valid Valid Compare r8 with r/m8.

REX + 38 /r CMP r/m8
*
, r8

* MR Valid N.E. Compare r8 with r/m8.

39 /r CMP r/m16, r16 MR Valid Valid Compare r16 with r/m16.

39 /r CMP r/m32, r32 MR Valid Valid Compare r32 with r/m32.

REX.W + 39 /r CMP r/m64,r64 MR Valid N.E. Compare r64 with r/m64.

3A /r CMP r8, r/m8 RM Valid Valid Compare r/m8 with r8.

REX + 3A /r CMP r8*
, r/m8

* RM Valid N.E. Compare r/m8 with r8.

3B /r CMP r16, r/m16 RM Valid Valid Compare r/m16 with r16.

3B /r CMP r32, r/m32 RM Valid Valid Compare r/m32 with r32.

REX.W + 3B /r CMP r64, r/m64 RM Valid N.E. Compare r/m64 with r64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (r, w) ModRM:reg (w) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

I AL/AX/EAX/RAX imm8 NA NA
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In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the 
beginning of this section for encoding data and limits.

Operation

temp ← SRC1 − SignExtend(SRC2); 

ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.



CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-123

CMPPD—Compare Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed double-precision floating-point values in the source operand (second 
operand) and the destination operand (first operand) and returns the results of the comparison to the destination 
operand. The comparison predicate operand (third operand) specifies the type of comparison performed on each of 
the pairs of packed values. The result of each comparison is a quadword mask of all 1s (comparison true) or all 0s 
(comparison false). The sign of zero is ignored for comparisons, so that –0.0 is equal to +0.0.
128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The 
second source operand (second operand) can be an XMM register or 128-bit memory location. The comparison 
predicate operand is an 8-bit immediate, bits 2:0 of the immediate define the type of comparison to be performed 
(see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:128) of the corresponding YMM destination 
register remain unchanged. Two comparisons are performed with results written to bits 127:0 of the destination 
operand.

Opcode/
Instruction

Op/ 
En

64/32-
bit Mode

CPUID 
Feature 
Flag

Description

66 0F C2 /r ib

CMPPD xmm1, xmm2/m128, imm8

RMI V/V SSE2 Compare packed double-precision floating-
point values in xmm2/m128 and xmm1 using 
imm8 as comparison predicate.

VEX.NDS.128.66.0F.WIG C2 /r ib

VCMPPD xmm1, xmm2, xmm3/m128, imm8

RVMI V/V AVX Compare packed double-precision floating-
point values in xmm3/m128 and xmm2 using 
bits 4:0 of imm8 as a comparison predicate.

VEX.NDS.256.66.0F.WIG C2 /r ib

VCMPPD ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX Compare packed double-precision floating-
point values in ymm3/m256 and ymm2 using 
bits 4:0 of imm8 as a comparison predicate.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

Table 3-7.  Comparison Predicate for CMPPD and CMPPS Instructions 

Predi-
cate

imm8 
Encoding

Description Relation where:
A Is 1st Operand
B Is 2nd Operand

Emulation Result if 
NaN 
Operand

QNaN Oper-and 
Signals Invalid

EQ 000B Equal A = B False No

LT 001B Less-than A < B False Yes

LE 010B Less-than-or-equal A ≤ B False Yes

Greater than A > B Swap 
Operands, Use 
LT

False Yes

Greater-than-or-equal A ≥ B Swap 
Operands, Use 
LE

False Yes

UNORD 011B Unordered A, B = Unordered True No

NEQ 100B Not-equal A ≠ B True No

NLT 101B Not-less-than NOT(A < B) True Yes
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The unordered relationship is true when at least one of the two source operands being compared is a NaN; the 
ordered relationship is true when neither source operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination operand as an input operand 
will not generate an exception, because a mask of all 0s corresponds to a floating-point value of +0.0 and a mask 
of all 1s corresponds to a QNaN.

Note that the processors with “CPUID.1H:ECX.AVX =0” do not implement the greater-than, greater-than-or-equal, 
not-greater-than, and not-greater-than-or-equal relations. These comparisons can be made either by using the 
inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison) or by using 
software emulation. When using software emulation, the program must swap the operands (copying registers 
when necessary to protect the data that will now be in the destination), and then perform the compare using a 
different predicate. The predicate to be used for these emulations is listed in Table 3-7 under the heading Emula-
tion. 

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand 
CMPPD instruction, for processors with “CPUID.1H:ECX.AVX =0”. See Table 3-8. Compiler should treat reserved 
Imm8 values as illegal syntax.
:

The greater-than relations that the processor does not implement, require more than one instruction to emulate in 
software and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the 
operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to 
the correct destination register and that the source operand is left intact.)

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Enhanced Comparison Predicate for VEX-Encoded VCMPPD

VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source 
operand (third operand) can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destina-
tion YMM register are zeroed. Two comparisons are performed with results written to bits 127:0 of the destination 
operand.

NLE 110B Not-less-than-or-equal NOT(A ≤ B) True Yes

Not-greater-than NOT(A > B) Swap 
Operands, Use 
NLT

True Yes

Not-greater-than-or-equal NOT(A ≥ B) Swap 
Operands, Use 
NLE

True Yes

ORD 111B Ordered A , B = Ordered False No

Table 3-8.  Pseudo-Op and CMPPD Implementation

Pseudo-Op CMPPD Implementation

CMPEQPD xmm1, xmm2 CMPPD xmm1, xmm2, 0

CMPLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 1

CMPLEPD xmm1, xmm2 CMPPD xmm1, xmm2, 2

CMPUNORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 3

CMPNEQPD xmm1, xmm2 CMPPD xmm1, xmm2, 4

CMPNLTPD xmm1, xmm2 CMPPD xmm1, xmm2, 5

CMPNLEPD xmm1, xmm2 CMPPD xmm1, xmm2, 6

CMPORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 7

Table 3-7.  Comparison Predicate for CMPPD and CMPPS Instructions  (Contd.)

Predi-
cate

imm8 
Encoding

Description Relation where:
A Is 1st Operand
B Is 2nd Operand

Emulation Result if 
NaN 
Operand

QNaN Oper-and 
Signals Invalid



CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-125

VEX.256 encoded version: The first source operand (second operand) is a YMM register. The second source 
operand (third operand) can be a YMM register or a 256-bit memory location. The destination operand (first 
operand) is a YMM register. Four comparisons are performed with results written to the destination operand.
The comparison predicate operand is an 8-bit immediate:
• For instructions encoded using the VEX prefix, bits 4:0 define the type of comparison to be performed (see 

Table 3-9). Bits 5 through 7 of the immediate are reserved. 

Table 3-9.  Comparison Predicate for VCMPPD and VCMPPS Instructions 

Predicate imm8 
Value

Description Result: A Is 1st Operand, B Is 2nd Operand Signals #IA 
on QNAN

A >B A < B A = B Unordered1

EQ_OQ (EQ) 0H Equal (ordered, non-signaling) False False True False No

LT_OS (LT) 1H Less-than (ordered, signaling) False True False False Yes

LE_OS (LE) 2H Less-than-or-equal (ordered, 
signaling)

False True True False Yes

UNORD_Q 
(UNORD)

3H Unordered (non-signaling) False False False True No

NEQ_UQ (NEQ) 4H Not-equal (unordered, non-
signaling)

True True False True No

NLT_US (NLT) 5H Not-less-than (unordered, signaling) True False True True Yes

NLE_US (NLE) 6H Not-less-than-or-equal (unordered, 
signaling)

True False False True Yes

ORD_Q (ORD) 7H Ordered (non-signaling) True True True False No

EQ_UQ 8H Equal (unordered, non-signaling) False False True True No

NGE_US (NGE) 9H Not-greater-than-or-equal 
(unordered, signaling)

False True False True Yes

NGT_US (NGT) AH Not-greater-than (unordered, sig-
naling)

False True True True Yes

FALSE_OQ(FALSE) BH False (ordered, non-signaling) False False False False No

NEQ_OQ CH Not-equal (ordered, non-signaling) True True False False No

GE_OS (GE) DH Greater-than-or-equal (ordered, sig-
naling)

True False True False Yes

GT_OS (GT) EH Greater-than (ordered, signaling) True False False False Yes

TRUE_UQ(TRUE) FH True (unordered, non-signaling) True True True True No

EQ_OS 10H Equal (ordered, signaling) False False True False Yes

LT_OQ 11H Less-than (ordered, nonsignaling) False True False False No

LE_OQ 12H Less-than-or-equal (ordered, non-
signaling)

False True True False No

UNORD_S 13H Unordered (signaling) False False False True Yes

NEQ_US 14H Not-equal (unordered, signaling) True True False True Yes

NLT_UQ 15H Not-less-than (unordered, nonsig-
naling)

True False True True No

NLE_UQ 16H Not-less-than-or-equal (unordered, 
nonsignaling)

True False False True No

ORD_S 17H Ordered (signaling) True True True False Yes

EQ_US 18H Equal (unordered, signaling) False False True True Yes
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Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 predicates shown in Table 3-9, soft-
ware emulation is no longer needed. Compilers and assemblers may implement the following three-operand 
pseudo-ops in addition to the four-operand VCMPPD instruction. See Table 3-10, where the notations of reg1 reg2, 
and reg3 represent either XMM registers or YMM registers. Compiler should treat reserved Imm8 values as illegal 
syntax. Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic inter-
face.
:

NGE_UQ 19H Not-greater-than-or-equal (unor-
dered, nonsignaling)

False True False True No

NGT_UQ 1AH Not-greater-than (unordered, non-
signaling)

False True True True No

FALSE_OS 1BH False (ordered, signaling) False False False False Yes

NEQ_OS 1CH Not-equal (ordered, signaling) True True False False Yes

GE_OQ 1DH Greater-than-or-equal (ordered, 
nonsignaling)

True False True False No

GT_OQ 1EH Greater-than (ordered, nonsignal-
ing)

True False False False No

TRUE_US 1FH True (unordered, signaling) True True True True Yes

NOTES:

1. If either operand A or B is a NAN.

Table 3-10.  Pseudo-Op and VCMPPD Implementation

Pseudo-Op CMPPD Implementation

VCMPEQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0

VCMPLTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1

VCMPLEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 2

VCMPUNORDPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 3

VCMPNEQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 4

VCMPNLTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 5

VCMPNLEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 6

VCMPORDPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 7

VCMPEQ_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 8

VCMPNGEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 9

VCMPNGTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0AH

VCMPFALSEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0BH

VCMPNEQ_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0CH

VCMPGEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0DH

VCMPGTPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0EH

VCMPTRUEPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 0FH

VCMPEQ_OSPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 10H

VCMPLT_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 11H

VCMPLE_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 12H

Table 3-9.  Comparison Predicate for VCMPPD and VCMPPS Instructions  (Contd.)

Predicate imm8 
Value

Description Result: A Is 1st Operand, B Is 2nd Operand Signals #IA 
on QNAN

A >B A < B A = B Unordered1
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Operation

CASE (COMPARISON PREDICATE) OF

0: OP3 Å EQ_OQ; OP5 Å EQ_OQ;
1: OP3 Å LT_OS; OP5 Å LT_OS;
2: OP3 Å LE_OS; OP5 Å LE_OS;
3: OP3 Å UNORD_Q; OP5 Å UNORD_Q;
4: OP3 Å NEQ_UQ; OP5 Å NEQ_UQ;
5: OP3 Å NLT_US; OP5 Å NLT_US;
6: OP3 Å NLE_US; OP5 Å NLE_US;
7: OP3 Å ORD_Q; OP5 Å ORD_Q;
8: OP5 Å EQ_UQ;
9: OP5 Å NGE_US;
10: OP5 Å NGT_US;
11: OP5 Å FALSE_OQ;
12: OP5 Å NEQ_OQ;
13: OP5 Å GE_OS;
14: OP5 Å GT_OS;
15: OP5 Å TRUE_UQ;
16: OP5 Å EQ_OS;
17: OP5 Å LT_OQ;
18: OP5 Å LE_OQ;
19: OP5 Å UNORD_S;
20: OP5 Å NEQ_US;
21: OP5 Å NLT_UQ;
22: OP5 Å NLE_UQ;
23: OP5 Å ORD_S;
24: OP5 Å EQ_US;
25: OP5 Å NGE_UQ;
26: OP5 Å NGT_UQ;
27: OP5 Å FALSE_OS;
28: OP5 Å NEQ_OS;
29: OP5 Å GE_OQ;

VCMPUNORD_SPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 13H

VCMPNEQ_USPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 14H

VCMPNLT_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 15H

VCMPNLE_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 16H

VCMPORD_SPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 17H

VCMPEQ_USPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 18H

VCMPNGE_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 19H

VCMPNGT_UQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1AH

VCMPFALSE_OSPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1BH

VCMPNEQ_OSPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1CH

VCMPGE_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1DH

VCMPGT_OQPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1EH

VCMPTRUE_USPD reg1, reg2, reg3 VCMPPD reg1, reg2, reg3, 1FH

Table 3-10.  Pseudo-Op and VCMPPD Implementation

Pseudo-Op CMPPD Implementation
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30: OP5 Å GT_OQ;
31: OP5 Å TRUE_US;
DEFAULT: Reserved;

CMPPD (128-bit Legacy SSE version)

CMP0 Å SRC1[63:0] OP3 SRC2[63:0];

CMP1 Å SRC1[127:64] OP3 SRC2[127:64];

IF CMP0 = TRUE

THEN DEST[63:0] Å FFFFFFFFFFFFFFFFH;

ELSE DEST[63:0] Å 0000000000000000H; FI;

IF CMP1 = TRUE

THEN DEST[127:64] Å FFFFFFFFFFFFFFFFH;

ELSE DEST[127:64] Å 0000000000000000H; FI;

DEST[VLMAX-1:128] (Unmodified)

VCMPPD (VEX.128 encoded version)

CMP0 Å SRC1[63:0] OP5 SRC2[63:0];

CMP1 Å SRC1[127:64] OP5 SRC2[127:64];

IF CMP0 = TRUE

THEN DEST[63:0] Å FFFFFFFFFFFFFFFFH;

ELSE DEST[63:0] Å 0000000000000000H; FI;

IF CMP1 = TRUE

THEN DEST[127:64] Å FFFFFFFFFFFFFFFFH;

ELSE DEST[127:64] Å 0000000000000000H; FI;

DEST[VLMAX-1:128] Å 0

VCMPPD (VEX.256 encoded version)

CMP0 Å SRC1[63:0] OP5 SRC2[63:0];

CMP1 Å SRC1[127:64] OP5 SRC2[127:64];

CMP2 Å SRC1[191:128] OP5 SRC2[191:128];

CMP3 Å SRC1[255:192] OP5 SRC2[255:192];

IF CMP0 = TRUE

THEN DEST[63:0] Å FFFFFFFFFFFFFFFFH;

ELSE DEST[63:0] Å 0000000000000000H; FI;

IF CMP1 = TRUE

THEN DEST[127:64] Å FFFFFFFFFFFFFFFFH;

ELSE DEST[127:64] Å 0000000000000000H; FI;

IF CMP2 = TRUE

THEN DEST[191:128] Å FFFFFFFFFFFFFFFFH;

ELSE DEST[191:128] Å 0000000000000000H; FI;

IF CMP3 = TRUE

THEN DEST[255:192] Å FFFFFFFFFFFFFFFFH;

ELSE DEST[255:192] Å 0000000000000000H; FI;

Intel C/C++ Compiler Intrinsic Equivalents

CMPPD for equality: __m128d _mm_cmpeq_pd(__m128d a, __m128d b)

CMPPD for less-than: __m128d _mm_cmplt_pd(__m128d a, __m128d b) 

CMPPD for less-than-or-equal: __m128d _mm_cmple_pd(__m128d a, __m128d b) 

CMPPD for greater-than: __m128d _mm_cmpgt_pd(__m128d a, __m128d b) 

CMPPD for greater-than-or-equal: __m128d _mm_cmpge_pd(__m128d a, __m128d b) 

CMPPD for inequality:  __m128d _mm_cmpneq_pd(__m128d a, __m128d b) 

CMPPD for not-less-than:  __m128d _mm_cmpnlt_pd(__m128d a, __m128d b) 
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CMPPD for not-greater-than: __m128d _mm_cmpngt_pd(__m128d a, __m128d b) 

CMPPD for not-greater-than-or-equal: __m128d _mm_cmpnge_pd(__m128d a, __m128d b) 

CMPPD for ordered: __m128d _mm_cmpord_pd(__m128d a, __m128d b) 

CMPPD for unordered: __m128d _mm_cmpunord_pd(__m128d a, __m128d b) 

CMPPD for not-less-than-or-equal: __m128d _mm_cmpnle_pd(__m128d a, __m128d b) 

VCMPPD: __m256 _mm256_cmp_pd(__m256 a, __m256 b, const int imm)

VCMPPD: __m128 _mm_cmp_pd(__m128 a, __m128 b, const int imm)

SIMD Floating-Point Exceptions

Invalid if SNaN operand and invalid if QNaN and predicate as listed in above table, Denormal.

Other Exceptions

See Exceptions Type 2.
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CMPPS—Compare Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed single-precision floating-point values in the source operand (second 
operand) and the destination operand (first operand) and returns the results of the comparison to the destination 
operand. The comparison predicate operand (third operand) specifies the type of comparison performed on each of 
the pairs of packed values. The result of each comparison is a doubleword mask of all 1s (comparison true) or all 
0s (comparison false). The sign of zero is ignored for comparisons, so that –0.0 is equal to +0.0.
128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The 
second source operand (second operand) can be an XMM register or 128-bit memory location. The comparison 
predicate operand is an 8-bit immediate, bits 2:0 of the immediate define the type of comparison to be performed 
(see Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:128) of the corresponding YMM destination 
register remain unchanged. Four comparisons are performed with results written to bits 127:0 of the destination 
operand.

The unordered relationship is true when at least one of the two source operands being compared is a NaN; the 
ordered relationship is true when neither source operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination operand as an input operand 
will not generate a fault, because a mask of all 0s corresponds to a floating-point value of +0.0 and a mask of all 1s 
corresponds to a QNaN.

Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-than”, “greater-than-or-equal”, 
“not-greater than”, and “not-greater-than-or-equal relations” predicates. These comparisons can be made either 
by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison) 
or by using software emulation. When using software emulation, the program must swap the operands (copying 
registers when necessary to protect the data that will now be in the destination), and then perform the compare 
using a different predicate. The predicate to be used for these emulations is listed in Table 3-7 under the heading 
Emulation. 

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand 
CMPPS instruction, for processors with “CPUID.1H:ECX.AVX =0”. See Table 3-11. Compiler should treat reserved 
Imm8 values as illegal syntax.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/ 
En

64/32-
bit Mode

CPUID 
Feature 
Flag

Description

0F C2 /r ib

CMPPS xmm1, xmm2/m128, imm8

RMI V/V SSE Compare packed single-precision floating-
point values in xmm2/mem and xmm1 using 

imm8 as comparison predicate.

VEX.NDS.128.0F.WIG C2 /r ib

VCMPPS xmm1, xmm2, xmm3/m128, imm8

RVMI V/V AVX Compare packed single-precision floating-
point values in xmm3/m128 and xmm2 using 
bits 4:0 of imm8 as a comparison predicate.

VEX.NDS.256.0F.WIG C2 /r ib

VCMPPS ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX Compare packed single-precision floating-
point values in ymm3/m256 and ymm2 using 
bits 4:0 of imm8 as a comparison predicate.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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The greater-than relations not implemented by processor require more than one instruction to emulate in software 
and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the operands 
of the corresponding less than relations and use move instructions to ensure that the mask is moved to the correct 
destination register and that the source operand is left intact.)

Enhanced Comparison Predicate for VEX-Encoded VCMPPS

VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source 
operand (third operand) can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destina-
tion YMM register are zeroed. Four comparisons are performed with results written to bits 127:0 of the destination 
operand.
VEX.256 encoded version: The first source operand (second operand) is a YMM register. The second source 
operand (third operand) can be a YMM register or a 256-bit memory location. The destination operand (first 
operand) is a YMM register. Eight comparisons are performed with results written to the destination operand.
The comparison predicate operand is an 8-bit immediate:
• For instructions encoded using the VEX prefix, bits 4:0 define the type of comparison to be performed (see 

Table 3-9). Bits 5 through 7 of the immediate are reserved. 

Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 predicates shown in Table 3-9, soft-
ware emulation is no longer needed. Compilers and assemblers may implement the following three-operand 
pseudo-ops in addition to the four-operand VCMPPS instruction. See Table 3-12, where the notation of reg1 and 
reg2 represent either XMM registers or YMM registers. Compiler should treat reserved Imm8 values as illegal 
syntax. Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic inter-
face.
:

Table 3-11.  Pseudo-Ops and CMPPS

Pseudo-Op Implementation

CMPEQPS xmm1, xmm2 CMPPS xmm1, xmm2, 0

CMPLTPS xmm1, xmm2 CMPPS xmm1, xmm2, 1

CMPLEPS xmm1, xmm2 CMPPS xmm1, xmm2, 2

CMPUNORDPS xmm1, xmm2 CMPPS xmm1, xmm2, 3

CMPNEQPS xmm1, xmm2 CMPPS xmm1, xmm2, 4

CMPNLTPS xmm1, xmm2 CMPPS xmm1, xmm2, 5

CMPNLEPS xmm1, xmm2 CMPPS xmm1, xmm2, 6

CMPORDPS xmm1, xmm2 CMPPS xmm1, xmm2, 7

Table 3-12.  Pseudo-Op and VCMPPS Implementation

Pseudo-Op CMPPS Implementation

VCMPEQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0

VCMPLTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1

VCMPLEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 2

VCMPUNORDPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 3

VCMPNEQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 4

VCMPNLTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 5

VCMPNLEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 6

VCMPORDPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 7

VCMPEQ_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 8

VCMPNGEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 9

VCMPNGTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0AH

VCMPFALSEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0BH
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Operation

CASE (COMPARISON PREDICATE) OF

0: OP3 Å EQ_OQ; OP5 Å EQ_OQ;
1: OP3 Å LT_OS; OP5 Å LT_OS;
2: OP3 Å LE_OS; OP5 Å LE_OS;
3: OP3 Å UNORD_Q; OP5 Å UNORD_Q;
4: OP3 Å NEQ_UQ; OP5 Å NEQ_UQ;
5: OP3 Å NLT_US; OP5 Å NLT_US;
6: OP3 Å NLE_US; OP5 Å NLE_US;
7: OP3 Å ORD_Q; OP5 Å ORD_Q;
8: OP5 Å EQ_UQ;
9: OP5 Å NGE_US;
10: OP5 Å NGT_US;
11: OP5 Å FALSE_OQ;
12: OP5 Å NEQ_OQ;
13: OP5 Å GE_OS;
14: OP5 Å GT_OS;
15: OP5 Å TRUE_UQ;
16: OP5 Å EQ_OS;
17: OP5 Å LT_OQ;
18: OP5 Å LE_OQ;
19: OP5 Å UNORD_S;
20: OP5 Å NEQ_US;

VCMPNEQ_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0CH

VCMPGEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0DH

VCMPGTPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0EH

VCMPTRUEPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 0FH

VCMPEQ_OSPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 10H

VCMPLT_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 11H

VCMPLE_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 12H

VCMPUNORD_SPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 13H

VCMPNEQ_USPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 14H

VCMPNLT_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 15H

VCMPNLE_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 16H

VCMPORD_SPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 17H

VCMPEQ_USPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 18H

VCMPNGE_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 19H

VCMPNGT_UQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1AH

VCMPFALSE_OSPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1BH

VCMPNEQ_OSPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1CH

VCMPGE_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1DH

VCMPGT_OQPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1EH

VCMPTRUE_USPS reg1, reg2, reg3 VCMPPS reg1, reg2, reg3, 1FH

Table 3-12.  Pseudo-Op and VCMPPS Implementation

Pseudo-Op CMPPS Implementation
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21: OP5 Å NLT_UQ;
22: OP5 Å NLE_UQ;
23: OP5 Å ORD_S;
24: OP5 Å EQ_US;
25: OP5 Å NGE_UQ;
26: OP5 Å NGT_UQ;
27: OP5 Å FALSE_OS;
28: OP5 Å NEQ_OS;
29: OP5 Å GE_OQ;
30: OP5 Å GT_OQ;
31: OP5 Å TRUE_US;
DEFAULT: Reserved

EASC;

CMPPS (128-bit Legacy SSE version)

CMP0 Å SRC1[31:0] OP3 SRC2[31:0];

CMP1 Å SRC1[63:32] OP3 SRC2[63:32];

CMP2 Å SRC1[95:64] OP3 SRC2[95:64];

CMP3 Å SRC1[127:96] OP3 SRC2[127:96];

IF CMP0 = TRUE

THEN DEST[31:0] ÅFFFFFFFFH;

ELSE DEST[31:0] Å 000000000H; FI;

IF CMP1 = TRUE

THEN DEST[63:32] Å FFFFFFFFH;

ELSE DEST[63:32] Å 000000000H; FI;

IF CMP2 = TRUE

THEN DEST[95:64] Å FFFFFFFFH;

ELSE DEST[95:64] Å 000000000H; FI;

IF CMP3 = TRUE

THEN DEST[127:96] Å FFFFFFFFH;

ELSE DEST[127:96] Å000000000H; FI;

DEST[VLMAX-1:128] (Unmodified)

VCMPPS (VEX.128 encoded version)

CMP0 Å SRC1[31:0] OP5 SRC2[31:0];

CMP1 Å SRC1[63:32] OP5 SRC2[63:32];

CMP2 Å SRC1[95:64] OP5 SRC2[95:64];

CMP3 Å SRC1[127:96] OP5 SRC2[127:96];

IF CMP0 = TRUE

THEN DEST[31:0] ÅFFFFFFFFH;

ELSE DEST[31:0] Å 000000000H; FI;

IF CMP1 = TRUE

THEN DEST[63:32] Å FFFFFFFFH;

ELSE DEST[63:32] Å 000000000H; FI;

IF CMP2 = TRUE

THEN DEST[95:64] Å FFFFFFFFH;

ELSE DEST[95:64] Å 000000000H; FI;

IF CMP3 = TRUE

THEN DEST[127:96] Å FFFFFFFFH;

ELSE DEST[127:96] Å000000000H; FI;

DEST[VLMAX-1:128] Å 0
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VCMPPS (VEX.256 encoded version)

CMP0 Å SRC1[31:0] OP5 SRC2[31:0];

CMP1 Å SRC1[63:32] OP5 SRC2[63:32];

CMP2 Å SRC1[95:64] OP5 SRC2[95:64];

CMP3 Å SRC1[127:96] OP5 SRC2[127:96];

CMP4 Å SRC1[159:128] OP5 SRC2[159:128];

CMP5 Å SRC1[191:160] OP5 SRC2[191:160];

CMP6 Å SRC1[223:192] OP5 SRC2[223:192];

CMP7 Å SRC1[255:224] OP5 SRC2[255:224];

IF CMP0 = TRUE

THEN DEST[31:0] ÅFFFFFFFFH;

ELSE DEST[31:0] Å 000000000H; FI;

IF CMP1 = TRUE

THEN DEST[63:32] Å FFFFFFFFH;

ELSE DEST[63:32] Å000000000H; FI;

IF CMP2 = TRUE

THEN DEST[95:64] Å FFFFFFFFH;

ELSE DEST[95:64] Å 000000000H; FI;

IF CMP3 = TRUE

THEN DEST[127:96] Å FFFFFFFFH;

ELSE DEST[127:96] Å 000000000H; FI;

IF CMP4 = TRUE

THEN DEST[159:128] Å FFFFFFFFH;

ELSE DEST[159:128] Å 000000000H; FI;

IF CMP5 = TRUE

THEN DEST[191:160] Å FFFFFFFFH;

ELSE DEST[191:160] Å 000000000H; FI;

IF CMP6 = TRUE

THEN DEST[223:192] Å FFFFFFFFH;

ELSE DEST[223:192] Å000000000H; FI;

IF CMP7 = TRUE

THEN DEST[255:224] Å FFFFFFFFH;

ELSE DEST[255:224] Å 000000000H; FI;

Intel C/C++ Compiler Intrinsic Equivalents

CMPPS for equality:  __m128 _mm_cmpeq_ps(__m128 a, __m128 b)

CMPPS for less-than: __m128 _mm_cmplt_ps(__m128 a, __m128 b) 

CMPPS for less-than-or-equal: __m128 _mm_cmple_ps(__m128 a, __m128 b) 

CMPPS for greater-than: __m128 _mm_cmpgt_ps(__m128 a, __m128 b) 

CMPPS for greater-than-or-equal: __m128 _mm_cmpge_ps(__m128 a, __m128 b) 

CMPPS for inequality: __m128 _mm_cmpneq_ps(__m128 a, __m128 b) 

CMPPS for not-less-than: __m128 _mm_cmpnlt_ps(__m128 a, __m128 b) 

CMPPS for not-greater-than: __m128 _mm_cmpngt_ps(__m128 a, __m128 b) 

CMPPS for not-greater-than-or-equal: __m128 _mm_cmpnge_ps(__m128 a, __m128 b) 

CMPPS for ordered: __m128 _mm_cmpord_ps(__m128 a, __m128 b) 

CMPPS for unordered: __m128 _mm_cmpunord_ps(__m128 a, __m128 b) 

CMPPS for not-less-than-or-equal: __m128 _mm_cmpnle_ps(__m128 a, __m128 b) 

VCMPPS: __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int imm)

VCMPPS: __m128 _mm_cmp_ps(__m128 a, __m128 b, const int imm)
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SIMD Floating-Point Exceptions

Invalid if SNaN operand and invalid if QNaN and predicate as listed in above table, Denormal.

Other Exceptions

See Exceptions Type 2.
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CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

Instruction Operand Encoding

Description

Compares the byte, word, doubleword, or quadword specified with the first source operand with the byte, word, 
doubleword, or quadword specified with the second source operand and sets the status flags in the EFLAGS register 
according to the results.

Both source operands are located in memory. The address of the first source operand is read from DS:SI, DS:ESI 
or RSI (depending on the address-size attribute of the instruction is 16, 32, or 64, respectively). The address of the 
second source operand is read from ES:DI, ES:EDI or RDI (again depending on the address-size attribute of the 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

A6 CMPS m8, m8 NP Valid Valid For legacy mode, compare byte at address 
DS:(E)SI with byte at address ES:(E)DI; For 64-
bit mode compare byte at address (R|E)SI to 
byte at address (R|E)DI. The status flags are 
set accordingly.

A7 CMPS m16, m16 NP Valid Valid For legacy mode, compare word at address 
DS:(E)SI with word at address ES:(E)DI; For 64-
bit mode compare word at address (R|E)SI with 
word at address (R|E)DI. The status flags are 
set accordingly.

A7 CMPS m32, m32 NP Valid Valid For legacy mode, compare dword at address 
DS:(E)SI at dword at address ES:(E)DI; For 64-
bit mode compare dword at address (R|E)SI at 
dword at address (R|E)DI. The status flags are 
set accordingly.

REX.W + A7 CMPS m64, m64 NP Valid N.E. Compares quadword at address (R|E)SI with 
quadword at address (R|E)DI and sets the 
status flags accordingly.

A6 CMPSB NP Valid Valid For legacy mode, compare byte at address 
DS:(E)SI with byte at address ES:(E)DI; For 64-
bit mode compare byte at address (R|E)SI with 
byte at address (R|E)DI. The status flags are 
set accordingly.

A7 CMPSW NP Valid Valid For legacy mode, compare word at address 
DS:(E)SI with word at address ES:(E)DI; For 64-
bit mode compare word at address (R|E)SI with 
word at address (R|E)DI. The status flags are 
set accordingly.

A7 CMPSD NP Valid Valid For legacy mode, compare dword at address 
DS:(E)SI with dword at address ES:(E)DI; For 
64-bit mode compare dword at address (R|E)SI 
with dword at address (R|E)DI. The status flags 
are set accordingly.

REX.W + A7 CMPSQ NP Valid N.E. Compares quadword at address (R|E)SI with 
quadword at address (R|E)DI and sets the 
status flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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instruction is 16, 32, or 64). The DS segment may be overridden with a segment override prefix, but the ES 
segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands” form and the “no-
operands” form. The explicit-operands form (specified with the CMPS mnemonic) allows the two source operands 
to be specified explicitly. Here, the source operands should be symbols that indicate the size and location of the 
source values. This explicit-operand form is provided to allow documentation. However, note that the documenta-
tion provided by this form can be misleading. That is, the source operand symbols must specify the correct type 
(size) of the operands (bytes, words, or doublewords, quadwords), but they do not have to specify the correct loca-
tion. Locations of the source operands are always specified by the DS:(E)SI (or RSI) and ES:(E)DI (or RDI) regis-
ters, which must be loaded correctly before the compare string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the CMPS instructions. 
Here also the DS:(E)SI (or RSI) and ES:(E)DI (or RDI) registers are assumed by the processor to specify the loca-
tion of the source operands. The size of the source operands is selected with the mnemonic: CMPSB (byte compar-
ison), CMPSW (word comparison), CMPSD (doubleword comparison), or CMPSQ (quadword comparison using 
REX.W).

After the comparison, the (E/R)SI and (E/R)DI registers increment or decrement automatically according to the 
setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E/R)SI and (E/R)DI register increment; if the 
DF flag is 1, the registers decrement.) The registers increment or decrement by 1 for byte operations, by 2 for word 
operations, 4 for doubleword operations. If operand size is 64, RSI and RDI registers increment by 8 for quadword 
operations.

The CMPS, CMPSB, CMPSW, CMPSD, and CMPSQ instructions can be preceded by the REP prefix for block compar-
isons. More often, however, these instructions will be used in a LOOP construct that takes some action based on the 
setting of the status flags before the next comparison is made. See “REP/REPE/REPZ /REPNE/REPNZ—Repeat 
String Operation Prefix” in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2B, for a description of the REP prefix.

In 64-bit mode, the instruction’s default address size is 64 bits, 32 bit address size is supported using the prefix 
67H. Use of the REX.W prefix promotes doubleword operation to 64 bits (see CMPSQ). See the summary chart at 
the beginning of this section for encoding data and limits.

Operation

temp ← SRC1 - SRC2;

SetStatusFlags(temp);

IF (64-Bit Mode)
THEN

IF (Byte comparison)

THEN IF DF = 0
THEN 

(R|E)SI ← (R|E)SI + 1; 

(R|E)DI ← (R|E)DI + 1; 

ELSE 

(R|E)SI ← (R|E)SI – 1; 

(R|E)DI ← (R|E)DI – 1; 

FI;

ELSE IF (Word comparison)

THEN IF DF = 0

THEN 

(R|E)SI ← (R|E)SI + 2; 

(R|E)DI ← (R|E)DI + 2; 

ELSE 

(R|E)SI ← (R|E)SI – 2; 

(R|E)DI ← (R|E)DI – 2; 

FI;

ELSE IF (Doubleword comparison)
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THEN IF DF = 0
THEN 

(R|E)SI ← (R|E)SI + 4; 

(R|E)DI ← (R|E)DI + 4; 

ELSE 

(R|E)SI ← (R|E)SI – 4; 

(R|E)DI ← (R|E)DI – 4; 

FI;

ELSE (* Quadword comparison *)

THEN IF DF = 0

(R|E)SI ← (R|E)SI + 8; 

(R|E)DI ← (R|E)DI + 8; 

ELSE 

(R|E)SI ← (R|E)SI – 8; 

(R|E)DI ← (R|E)DI – 8; 

FI;

FI;

ELSE (* Non-64-bit Mode *)

IF (byte comparison)

THEN IF DF = 0

THEN 

(E)SI ← (E)SI + 1; 

(E)DI ← (E)DI + 1; 

ELSE 

(E)SI ← (E)SI – 1; 

(E)DI ← (E)DI – 1; 

FI;

ELSE IF (Word comparison)

THEN IF DF = 0

(E)SI ← (E)SI + 2; 

(E)DI ← (E)DI + 2; 

ELSE 

(E)SI ← (E)SI – 2; 

(E)DI ← (E)DI – 2; 

FI;

ELSE (* Doubleword comparison *)

THEN IF DF = 0
(E)SI ← (E)SI + 4; 

(E)DI ← (E)DI + 4; 

ELSE 

(E)SI ← (E)SI – 4; 

(E)DI ← (E)DI – 4; 

FI;

FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the comparison.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
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#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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CMPSD—Compare Scalar Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Compares the low double-precision floating-point values in the source operand (second operand) and the destina-
tion operand (first operand) and returns the results of the comparison to the destination operand. The comparison 
predicate operand (third operand) specifies the type of comparison performed. The comparison result is a quad-
word mask of all 1s (comparison true) or all 0s (comparison false). The sign of zero is ignored for comparisons, so 
that –0.0 is equal to +0.0.
128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The 
second source operand (second operand) can be an XMM register or 64-bit memory location. The comparison pred-
icate operand is an 8-bit immediate, bits 2:0 of the immediate define the type of comparison to be performed (see 
Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:64) of the corresponding YMM destination register 
remain unchanged. 

The unordered relationship is true when at least one of the two source operands being compared is a NaN; the 
ordered relationship is true when neither source operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination operand as an input operand 
will not generate a fault, because a mask of all 0s corresponds to a floating-point value of +0.0 and a mask of all 1s 
corresponds to a QNaN.

Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-than”, “greater-than-or-equal”, 
“not-greater than”, and “not-greater-than-or-equal relations” predicates. These comparisons can be made either 
by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison) 
or by using software emulation. When using software emulation, the program must swap the operands (copying 
registers when necessary to protect the data that will now be in the destination operand), and then perform the 
compare using a different predicate. The predicate to be used for these emulations is listed in Table 3-7 under the 
heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand 
CMPSD instruction, for processors with “CPUID.1H:ECX.AVX =0”. See Table 3-13. Compiler should treat reserved 
Imm8 values as illegal syntax.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F C2 /r ib

CMPSD xmm1, xmm2/m64, imm8

RMI V/V SSE2 Compare low double-precision floating-point 
value in xmm2/m64 and xmm1 using imm8 as 
comparison predicate.

VEX.NDS.LIG.F2.0F.WIG C2 /r ib

VCMPSD xmm1, xmm2, xmm3/m64, imm8

RVMI V/V AVX Compare low double precision floating-point 
value in xmm3/m64 and xmm2 using bits 4:0 
of imm8 as comparison predicate.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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The greater-than relations not implemented in the processor require more than one instruction to emulate in soft-
ware and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the 
operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to 
the correct destination register and that the source operand is left intact.)

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Enhanced Comparison Predicate for VEX-Encoded VCMPSD

VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source 
operand (third operand) can be an XMM register or a 64-bit memory location. Bits (VLMAX-1:128) of the destina-
tion YMM register are zeroed. The comparison predicate operand is an 8-bit immediate: 
• For instructions encoded using the VEX prefix, bits 4:0 define the type of comparison to be performed (see 

Table 3-9). Bits 5 through 7 of the immediate are reserved. 

Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 predicates shown in Table 3-9, soft-
ware emulation is no longer needed. Compilers and assemblers may implement the following three-operand 
pseudo-ops in addition to the four-operand VCMPSD instruction. See Table 3-14, where the notations of reg1 reg2, 
and reg3 represent either XMM registers or YMM registers. Compiler should treat reserved Imm8 values as illegal 
syntax. Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic inter-
face.
:

Table 3-13.  Pseudo-Ops and CMPSD 

Pseudo-Op Implementation

CMPEQSD xmm1, xmm2 CMPSD xmm1,xmm2, 0

CMPLTSD xmm1, xmm2 CMPSD xmm1,xmm2, 1

CMPLESD xmm1, xmm2 CMPSD xmm1,xmm2, 2

CMPUNORDSD xmm1, xmm2 CMPSD xmm1,xmm2, 3

CMPNEQSD xmm1, xmm2 CMPSD xmm1,xmm2, 4

CMPNLTSD xmm1, xmm2 CMPSD xmm1,xmm2, 5

CMPNLESD xmm1, xmm2 CMPSD xmm1,xmm2, 6

CMPORDSD xmm1, xmm2 CMPSD xmm1,xmm2, 7

Table 3-14.  Pseudo-Op and VCMPSD Implementation

Pseudo-Op CMPSD Implementation

VCMPEQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0

VCMPLTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1

VCMPLESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 2

VCMPUNORDSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 3

VCMPNEQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 4

VCMPNLTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 5

VCMPNLESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 6

VCMPORDSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 7

VCMPEQ_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 8

VCMPNGESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 9

VCMPNGTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0AH

VCMPFALSESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0BH

VCMPNEQ_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0CH

VCMPGESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0DH

VCMPGTSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0EH
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Operation

CASE (COMPARISON PREDICATE) OF

0: OP3 Å EQ_OQ; OP5 Å EQ_OQ;
1: OP3 Å LT_OS; OP5 Å LT_OS;
2: OP3 Å LE_OS; OP5 Å LE_OS;
3: OP3 Å UNORD_Q; OP5 Å UNORD_Q;
4: OP3 Å NEQ_UQ; OP5 Å NEQ_UQ;
5: OP3 Å NLT_US; OP5 Å NLT_US;
6: OP3 Å NLE_US; OP5 Å NLE_US;
7: OP3 Å ORD_Q; OP5 Å ORD_Q;
8: OP5 Å EQ_UQ;
9: OP5 Å NGE_US;
10: OP5 Å NGT_US;
11: OP5 Å FALSE_OQ;
12: OP5 Å NEQ_OQ;
13: OP5 Å GE_OS;
14: OP5 Å GT_OS;
15: OP5 Å TRUE_UQ;
16: OP5 Å EQ_OS;
17: OP5 Å LT_OQ;
18: OP5 Å LE_OQ;
19: OP5 Å UNORD_S;
20: OP5 Å NEQ_US;
21: OP5 Å NLT_UQ;
22: OP5 Å NLE_UQ;
23: OP5 Å ORD_S;
24: OP5 Å EQ_US;

VCMPTRUESD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 0FH

VCMPEQ_OSSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 10H

VCMPLT_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 11H

VCMPLE_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 12H

VCMPUNORD_SSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 13H

VCMPNEQ_USSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 14H

VCMPNLT_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 15H

VCMPNLE_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 16H

VCMPORD_SSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 17H

VCMPEQ_USSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 18H

VCMPNGE_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 19H

VCMPNGT_UQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1AH

VCMPFALSE_OSSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1BH

VCMPNEQ_OSSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1CH

VCMPGE_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1DH

VCMPGT_OQSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1EH

VCMPTRUE_USSD reg1, reg2, reg3 VCMPSD reg1, reg2, reg3, 1FH

Table 3-14.  Pseudo-Op and VCMPSD Implementation (Contd.)

Pseudo-Op CMPSD Implementation
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25: OP5 Å NGE_UQ;
26: OP5 Å NGT_UQ;
27: OP5 Å FALSE_OS;
28: OP5 Å NEQ_OS;
29: OP5 Å GE_OQ;
30: OP5 Å GT_OQ;
31: OP5 Å TRUE_US;
DEFAULT: Reserved

ESAC;

CMPSD (128-bit Legacy SSE version)

CMP0 Å DEST[63:0] OP3 SRC[63:0];

IF CMP0 = TRUE

THEN DEST[63:0] Å FFFFFFFFFFFFFFFFH;

ELSE DEST[63:0] Å 0000000000000000H; FI;

DEST[VLMAX-1:64] (Unmodified)

VCMPSD (VEX.128 encoded version)

CMP0 Å SRC1[63:0] OP5 SRC2[63:0];

IF CMP0 = TRUE

THEN DEST[63:0] Å FFFFFFFFFFFFFFFFH;

ELSE DEST[63:0] Å 0000000000000000H; FI;

DEST[127:64] Å SRC1[127:64]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalents

CMPSD for equality: __m128d _mm_cmpeq_sd(__m128d a, __m128d b)

CMPSD for less-than: __m128d _mm_cmplt_sd(__m128d a, __m128d b) 

CMPSD for less-than-or-equal: __m128d _mm_cmple_sd(__m128d a, __m128d b) 

CMPSD for greater-than: __m128d _mm_cmpgt_sd(__m128d a, __m128d b) 

CMPSD for greater-than-or-equal: __m128d _mm_cmpge_sd(__m128d a, __m128d b) 

CMPSD for inequality: __m128d _mm_cmpneq_sd(__m128d a, __m128d b) 

CMPSD for not-less-than: __m128d _mm_cmpnlt_sd(__m128d a, __m128d b) 

CMPSD for not-greater-than: __m128d _mm_cmpngt_sd(__m128d a, __m128d b) 

CMPSD for not-greater-than-or-equal: __m128d _mm_cmpnge_sd(__m128d a, __m128d b) 

CMPSD for ordered: __m128d _mm_cmpord_sd(__m128d a, __m128d b) 

CMPSD for unordered: __m128d _mm_cmpunord_sd(__m128d a, __m128d b) 

CMPSD for not-less-than-or-equal: __m128d _mm_cmpnle_sd(__m128d a, __m128d b) 

VCMPSD: __m128 _mm_cmp_sd(__m128 a, __m128 b, const int imm)

SIMD Floating-Point Exceptions

Invalid if SNaN operand, Invalid if QNaN and predicate as listed in above table, Denormal.

Other Exceptions

See Exceptions Type 3.
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CMPSS—Compare Scalar Single-Precision Floating-Point Values 

Instruction Operand Encoding

Description

Compares the low single-precision floating-point values in the source operand (second operand) and the destina-
tion operand (first operand) and returns the results of the comparison to the destination operand. The comparison 
predicate operand (third operand) specifies the type of comparison performed. The comparison result is a double-
word mask of all 1s (comparison true) or all 0s (comparison false). The sign of zero is ignored for comparisons, so 
that –0.0 is equal to +0.0.
128-bit Legacy SSE version: The first source and destination operand (first operand) is an XMM register. The 
second source operand (second operand) can be an XMM register or 64-bit memory location. The comparison pred-
icate operand is an 8-bit immediate, bits 2:0 of the immediate define the type of comparison to be performed (see 
Table 3-7). Bits 7:3 of the immediate is reserved. Bits (VLMAX-1:32) of the corresponding YMM destination register 
remain unchanged. 

The unordered relationship is true when at least one of the two source operands being compared is a NaN; the 
ordered relationship is true when neither source operand is a NaN

A subsequent computational instruction that uses the mask result in the destination operand as an input operand 
will not generate a fault, since a mask of all 0s corresponds to a floating-point value of +0.0 and a mask of all 1s 
corresponds to a QNaN.

Note that processors with “CPUID.1H:ECX.AVX =0” do not implement the “greater-than”, “greater-than-or-equal”, 
“not-greater than”, and “not-greater-than-or-equal relations” predicates. These comparisons can be made either 
by using the inverse relationship (that is, use the “not-less-than-or-equal” to make a “greater-than” comparison) 
or by using software emulation. When using software emulation, the program must swap the operands (copying 
registers when necessary to protect the data that will now be in the destination operand), and then perform the 
compare using a different predicate. The predicate to be used for these emulations is listed in Table 3-7 under the 
heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in addition to the three-operand 
CMPSS instruction, for processors with “CPUID.1H:ECX.AVX =0”. See Table 3-15. Compiler should treat reserved 
Imm8 values as illegal syntax.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F C2 /r ib

CMPSS xmm1, xmm2/m32, imm8

RMI V/V SSE Compare low single-precision floating-point 
value in xmm2/m32 and xmm1 using imm8 as 
comparison predicate.

VEX.NDS.LIG.F3.0F.WIG C2 /r ib

VCMPSS xmm1, xmm2, xmm3/m32, imm8

RVMI V/V AVX Compare low single precision floating-point 
value in xmm3/m32 and xmm2 using bits 4:0 
of imm8 as comparison predicate.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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The greater-than relations not implemented in the processor require more than one instruction to emulate in soft-
ware and therefore should not be implemented as pseudo-ops. (For these, the programmer should reverse the 
operands of the corresponding less than relations and use move instructions to ensure that the mask is moved to 
the correct destination register and that the source operand is left intact.)

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Enhanced Comparison Predicate for VEX-Encoded VCMPSD

VEX.128 encoded version: The first source operand (second operand) is an XMM register. The second source 
operand (third operand) can be an XMM register or a 32-bit memory location. Bits (VLMAX-1:128) of the destina-
tion YMM register are zeroed. The comparison predicate operand is an 8-bit immediate: 
• For instructions encoded using the VEX prefix, bits 4:0 define the type of comparison to be performed (see 

Table 3-9). Bits 5 through 7 of the immediate are reserved. 

Processors with “CPUID.1H:ECX.AVX =1” implement the full complement of 32 predicates shown in Table 3-9, soft-
ware emulation is no longer needed. Compilers and assemblers may implement the following three-operand 
pseudo-ops in addition to the four-operand VCMPSS instruction. See Table 3-16, where the notations of reg1 reg2, 
and reg3 represent either XMM registers or YMM registers. Compiler should treat reserved Imm8 values as illegal 
syntax. Alternately, intrinsics can map the pseudo-ops to pre-defined constants to support a simpler intrinsic inter-
face.
:

Table 3-15.  Pseudo-Ops and CMPSS 

Pseudo-Op CMPSS Implementation

CMPEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 0

CMPLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 1

CMPLESS xmm1, xmm2 CMPSS xmm1, xmm2, 2

CMPUNORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 3

CMPNEQSS xmm1, xmm2 CMPSS xmm1, xmm2, 4

CMPNLTSS xmm1, xmm2 CMPSS xmm1, xmm2, 5

CMPNLESS xmm1, xmm2 CMPSS xmm1, xmm2, 6

CMPORDSS xmm1, xmm2 CMPSS xmm1, xmm2, 7

Table 3-16.  Pseudo-Op and VCMPSS Implementation

Pseudo-Op CMPSS Implementation

VCMPEQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0

VCMPLTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1

VCMPLESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 2

VCMPUNORDSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 3

VCMPNEQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 4

VCMPNLTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 5

VCMPNLESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 6

VCMPORDSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 7

VCMPEQ_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 8

VCMPNGESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 9

VCMPNGTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0AH

VCMPFALSESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0BH

VCMPNEQ_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0CH

VCMPGESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0DH

VCMPGTSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0EH
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Operation

CASE (COMPARISON PREDICATE) OF

0: OP3 Å EQ_OQ; OP5 Å EQ_OQ;
1: OP3 Å LT_OS; OP5 Å LT_OS;
2: OP3 Å LE_OS; OP5 Å LE_OS;
3: OP3 Å UNORD_Q; OP5 Å UNORD_Q;
4: OP3 Å NEQ_UQ; OP5 Å NEQ_UQ;
5: OP3 Å NLT_US; OP5 Å NLT_US;
6: OP3 Å NLE_US; OP5 Å NLE_US;
7: OP3 Å ORD_Q; OP5 Å ORD_Q;
8: OP5 Å EQ_UQ;
9: OP5 Å NGE_US;
10: OP5 Å NGT_US;
11: OP5 Å FALSE_OQ;
12: OP5 Å NEQ_OQ;
13: OP5 Å GE_OS;
14: OP5 Å GT_OS;
15: OP5 Å TRUE_UQ;
16: OP5 Å EQ_OS;
17: OP5 Å LT_OQ;
18: OP5 Å LE_OQ;
19: OP5 Å UNORD_S;
20: OP5 Å NEQ_US;
21: OP5 Å NLT_UQ;
22: OP5 Å NLE_UQ;
23: OP5 Å ORD_S;
24: OP5 Å EQ_US;

VCMPTRUESS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 0FH

VCMPEQ_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 10H

VCMPLT_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 11H

VCMPLE_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 12H

VCMPUNORD_SSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 13H

VCMPNEQ_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 14H

VCMPNLT_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 15H

VCMPNLE_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 16H

VCMPORD_SSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 17H

VCMPEQ_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 18H

VCMPNGE_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 19H

VCMPNGT_UQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1AH

VCMPFALSE_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1BH

VCMPNEQ_OSSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1CH

VCMPGE_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1DH

VCMPGT_OQSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1EH

VCMPTRUE_USSS reg1, reg2, reg3 VCMPSS reg1, reg2, reg3, 1FH

Table 3-16.  Pseudo-Op and VCMPSS Implementation (Contd.)

Pseudo-Op CMPSS Implementation
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25: OP5 Å NGE_UQ;
26: OP5 Å NGT_UQ;
27: OP5 Å FALSE_OS;
28: OP5 Å NEQ_OS;
29: OP5 Å GE_OQ;
30: OP5 Å GT_OQ;
31: OP5 Å TRUE_US;
DEFAULT: Reserved

ESAC;

CMPSS (128-bit Legacy SSE version)

CMP0 Å DEST[31:0] OP3 SRC[31:0];

IF CMP0 = TRUE

THEN DEST[31:0] Å FFFFFFFFH;

ELSE DEST[31:0] Å 00000000H; FI;

DEST[VLMAX-1:32] (Unmodified)

VCMPSS (VEX.128 encoded version)

CMP0 Å SRC1[31:0] OP5 SRC2[31:0];

IF CMP0 = TRUE

THEN DEST[31:0] Å FFFFFFFFH;

ELSE DEST[31:0] Å 00000000H; FI;

DEST[127:32] Å SRC1[127:32]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalents

CMPSS for equality: __m128 _mm_cmpeq_ss(__m128 a, __m128 b)

CMPSS for less-than: __m128 _mm_cmplt_ss(__m128 a, __m128 b) 

CMPSS for less-than-or-equal: __m128 _mm_cmple_ss(__m128 a, __m128 b) 

CMPSS for greater-than: __m128 _mm_cmpgt_ss(__m128 a, __m128 b) 

CMPSS for greater-than-or-equal: __m128 _mm_cmpge_ss(__m128 a, __m128 b) 

CMPSS for inequality: __m128 _mm_cmpneq_ss(__m128 a, __m128 b) 

CMPSS for not-less-than: __m128 _mm_cmpnlt_ss(__m128 a, __m128 b) 

CMPSS for not-greater-than: __m128 _mm_cmpngt_ss(__m128 a, __m128 b) 

CMPSS for not-greater-than-or-equal: __m128 _mm_cmpnge_ss(__m128 a, __m128 b) 

CMPSS for ordered: __m128 _mm_cmpord_ss(__m128 a, __m128 b) 

CMPSS for unordered: __m128 _mm_cmpunord_ss(__m128 a, __m128 b) 

CMPSS for not-less-than-or-equal: __m128 _mm_cmpnle_ss(__m128 a, __m128 b) 

VCMPSS: __m128 _mm_cmp_ss(__m128 a, __m128 b, const int imm)

SIMD Floating-Point Exceptions

Invalid if SNaN operand, Invalid if QNaN and predicate as listed in above table, Denormal.

Other Exceptions

See Exceptions Type 3.
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CMPXCHG—Compare and Exchange

Instruction Operand Encoding

Description

Compares the value in the AL, AX, EAX, or RAX register with the first operand (destination operand). If the two 
values are equal, the second operand (source operand) is loaded into the destination operand. Otherwise, the 
destination operand is loaded into the AL, AX, EAX or RAX register. RAX register is available only in 64-bit mode.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically. To simplify the 
interface to the processor’s bus, the destination operand receives a write cycle without regard to the result of the 
comparison. The destination operand is written back if the comparison fails; otherwise, the source operand is 
written into the destination. (The processor never produces a locked read without also producing a locked write.)

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the 
beginning of this section for encoding data and limits.

IA-32 Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Intel486 processors.

Operation

(* Accumulator = AL, AX, EAX, or RAX depending on whether a byte, word, doubleword, or quadword comparison is being performed *)

TEMP ← DEST

IF accumulator = TEMP

THEN

ZF ← 1;

DEST ← SRC;

ELSE

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F B0/r

CMPXCHG r/m8, r8

MR Valid Valid* Compare AL with r/m8. If equal, ZF is set and 
r8 is loaded into r/m8. Else, clear ZF and load 
r/m8 into AL.

REX + 0F B0/r

CMPXCHG r/m8**,r8

MR Valid N.E. Compare AL with r/m8. If equal, ZF is set and 
r8 is loaded into r/m8. Else, clear ZF and load 
r/m8 into AL.

0F B1/r

CMPXCHG r/m16, r16

MR Valid Valid* Compare AX with r/m16. If equal, ZF is set and 
r16 is loaded into r/m16. Else, clear ZF and 
load r/m16 into AX.

0F B1/r

CMPXCHG r/m32, r32

MR Valid Valid* Compare EAX with r/m32. If equal, ZF is set 
and r32 is loaded into r/m32. Else, clear ZF 
and load r/m32 into EAX.

REX.W + 0F B1/r

CMPXCHG r/m64, r64

MR Valid N.E. Compare RAX with r/m64. If equal, ZF is set 
and r64 is loaded into r/m64. Else, clear ZF 
and load r/m64 into RAX.

NOTES:

* See the IA-32 Architecture Compatibility section below. 

** In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA
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ZF ← 0;

accumulator ← TEMP;

DEST ← TEMP;

FI;

Flags Affected

The ZF flag is set if the values in the destination operand and register AL, AX, or EAX are equal; otherwise it is 
cleared. The CF, PF, AF, SF, and OF flags are set according to the results of the comparison operation.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes

Instruction Operand Encoding

Description

Compares the 64-bit value in EDX:EAX (or 128-bit value in RDX:RAX if operand size is 128 bits) with the operand 
(destination operand). If the values are equal, the 64-bit value in ECX:EBX (or 128-bit value in RCX:RBX) is stored 
in the destination operand. Otherwise, the value in the destination operand is loaded into EDX:EAX (or RDX:RAX). 
The destination operand is an 8-byte memory location (or 16-byte memory location if operand size is 128 bits). For 
the EDX:EAX and ECX:EBX register pairs, EDX and ECX contain the high-order 32 bits and EAX and EBX contain the 
low-order 32 bits of a 64-bit value. For the RDX:RAX and RCX:RBX register pairs, RDX and RCX contain the high-
order 64 bits and RAX and RBX contain the low-order 64bits of a 128-bit value. 

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically. To simplify the 
interface to the processor’s bus, the destination operand receives a write cycle without regard to the result of the 
comparison. The destination operand is written back if the comparison fails; otherwise, the source operand is 
written into the destination. (The processor never produces a locked read without also producing a locked write.)

In 64-bit mode, default operation size is 64 bits. Use of the REX.W prefix promotes operation to 128 bits. Note that 
CMPXCHG16B requires that the destination (memory) operand be 16-byte aligned. See the summary chart at the 
beginning of this section for encoding data and limits. For information on the CPUID flag that indicates 
CMPXCHG16B, see page 3-170.

IA-32 Architecture Compatibility

This instruction encoding is not supported on Intel processors earlier than the Pentium processors.

Operation

IF (64-Bit Mode and OperandSize = 64)

THEN

TEMP128 ← DEST

IF (RDX:RAX = TEMP128)

THEN

ZF ← 1;

DEST ← RCX:RBX;

ELSE

ZF ← 0;

RDX:RAX ← TEMP128;

DEST ← TEMP128;

FI;

FI

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F C7 /1 m64

CMPXCHG8B m64

M Valid Valid* Compare EDX:EAX with m64. If equal, set ZF 
and load ECX:EBX into m64. Else, clear ZF and 
load m64 into EDX:EAX.

REX.W + 0F C7 /1 m128

CMPXCHG16B m128

M Valid N.E. Compare RDX:RAX with m128. If equal, set ZF 
and load RCX:RBX into m128. Else, clear ZF 
and load m128 into RDX:RAX.

NOTES:
*See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA
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ELSE

TEMP64 ← DEST;

IF (EDX:EAX = TEMP64)

THEN

ZF ← 1;

DEST ← ECX:EBX;

ELSE

ZF ← 0;

EDX:EAX ← TEMP64;

DEST ← TEMP64;

FI;

FI;

FI;

Flags Affected

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is cleared. The CF, PF, AF, SF, and 
OF flags are unaffected.

Protected Mode Exceptions

#UD If the destination is not a memory operand.
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.

Real-Address Mode Exceptions

#UD If the destination operand is not a memory location.
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#UD If the destination operand is not a memory location.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand for CMPXCHG16B is not aligned on a 16-byte boundary.
If CPUID.01H:ECX.CMPXCHG16B[bit 13] = 0.

#UD If the destination operand is not a memory location.
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#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS

Instruction Operand Encoding

Description

Compares the double-precision floating-point values in the low quadwords of operand 1 (first operand) and 
operand 2 (second operand), and sets the ZF, PF, and CF flags in the EFLAGS register according to the result (unor-
dered, greater than, less than, or equal). The OF, SF and AF flags in the EFLAGS register are set to 0. The unor-
dered result is returned if either source operand is a NaN (QNaN or SNaN).The sign of zero is ignored for 
comparisons, so that –0.0 is equal to +0.0.

Operand 1 is an XMM register; operand 2 can be an XMM register or a 64 bit memory location. 

The COMISD instruction differs from the UCOMISD instruction in that it signals a SIMD floating-point invalid oper-
ation exception (#I) when a source operand is either a QNaN or SNaN. The UCOMISD instruction signals an invalid 
numeric exception only if a source operand is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

RESULT ← OrderedCompare(DEST[63:0] <> SRC[63:0]) {

(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;

GREATER_THAN: ZF,PF,CF ← 000;

LESS_THAN: ZF,PF,CF ← 001;

EQUAL: ZF,PF,CF ← 100;

ESAC;

OF, AF, SF ← 0; }

Intel C/C++ Compiler Intrinsic Equivalents

int _mm_comieq_sd (__m128d a, __m128d b)

int _mm_comilt_sd (__m128d a, __m128d b)

int _mm_comile_sd (__m128d a, __m128d b)

int _mm_comigt_sd (__m128d a, __m128d b)

int _mm_comige_sd (__m128d a, __m128d b)

int _mm_comineq_sd (__m128d a, __m128d b)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 2F /r

COMISD xmm1, xmm2/m64

RM V/V SSE2 Compare low double-precision floating-point 
values in xmm1 and xmm2/mem64 and set 
the EFLAGS flags accordingly.

VEX.LIG.66.0F.WIG 2F /r

VCOMISD xmm1, xmm2/m64

RM V/V AVX Compare low double precision floating-point 
values in xmm1 and xmm2/mem64 and set 
the EFLAGS flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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SIMD Floating-Point Exceptions

Invalid (if SNaN or QNaN operands), Denormal.

Other Exceptions

See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
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COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS

Instruction Operand Encoding

Description

Compares the single-precision floating-point values in the low doublewords of operand 1 (first operand) and 
operand 2 (second operand), and sets the ZF, PF, and CF flags in the EFLAGS register according to the result (unor-
dered, greater than, less than, or equal). The OF, SF, and AF flags in the EFLAGS register are set to 0. The unor-
dered result is returned if either source operand is a NaN (QNaN or SNaN). The sign of zero is ignored for 
comparisons, so that –0.0 is equal to +0.0.

Operand 1 is an XMM register; Operand 2 can be an XMM register or a 32 bit memory location.

The COMISS instruction differs from the UCOMISS instruction in that it signals a SIMD floating-point invalid opera-
tion exception (#I) when a source operand is either a QNaN or SNaN. The UCOMISS instruction signals an invalid 
numeric exception only if a source operand is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

RESULT ← OrderedCompare(SRC1[31:0] <> SRC2[31:0]) {

(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;

GREATER_THAN: ZF,PF,CF ← 000;

LESS_THAN: ZF,PF,CF ← 001;

EQUAL: ZF,PF,CF ← 100;

ESAC;

OF,AF,SF ← 0; }

Intel C/C++ Compiler Intrinsic Equivalents

int _mm_comieq_ss (__m128 a, __m128 b)

int _mm_comilt_ss (__m128 a, __m128 b)

int _mm_comile_ss (__m128 a, __m128 b)

int _mm_comigt_ss (__m128 a, __m128 b)

int _mm_comige_ss (__m128 a, __m128 b)

int _mm_comineq_ss (__m128 a, __m128 b)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 2F /r

COMISS xmm1, xmm2/m32

RM V/V SSE Compare low single-precision floating-point 
values in xmm1 and xmm2/mem32 and set 
the EFLAGS flags accordingly.

VEX.LIG.0F.WIG 2F /r

VCOMISS xmm1, xmm2/m32

RM V/V AVX Compare low single precision floating-point 
values in xmm1 and xmm2/mem32 and set 
the EFLAGS flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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SIMD Floating-Point Exceptions

Invalid (if SNaN or QNaN operands), Denormal.

Other Exceptions

See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
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CPUID—CPU Identification

Instruction Operand Encoding

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can 
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction 
operates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.1 The 
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well). 
For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value 
and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H

CPUID

Table 3-17 shows information returned, depending on the initial value loaded into the EAX register. Table 3-18 
shows the maximum CPUID input value recognized for each family of IA-32 processors on which CPUID is imple-
mented. 

Two types of information are returned: basic and extended function information. If a value entered for CPUID.EAX 
is higher than the maximum input value for basic or extended function for that processor then the data for the 
highest basic information leaf is returned. For example, using the Intel Core i7 processor, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *) 

CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *) 

CPUID.EAX = 0BH (* Returns Extended Topology Enumeration leaf. *) 

CPUID.EAX = 0CH (* INVALID: Returns the same information as CPUID.EAX = 0BH. *) 

CPUID.EAX = 80000008H (* Returns linear/physical address size data. *)

CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0BH. *)

If a value entered for CPUID.EAX is less than or equal to the maximum input value and the leaf is not supported on 
that processor then 0 is returned in all the registers. For example, using the Intel Core i7 processor, the following 
is true:

CPUID.EAX = 07H (*Returns EAX=EBX=ECX=EDX=0. *)

When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence 
on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution 
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before 
the next instruction is fetched and executed.

See also: 

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F A2 CPUID NP Valid Valid Returns processor identification and feature 
information to the EAX, EBX, ECX, and EDX 
registers, as determined by input entered in 
EAX (in some cases, ECX as well).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.
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“Caching Translation Information” in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A.

Table 3-17.  Information Returned by CPUID Instruction

Initial EAX 
Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 3-18)
“Genu”
“ntel”
“ineI”

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see Figure 3-5)

Bits 07-00: Brand Index
Bits 15-08: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package*. 
Bits 31-24: Initial APIC ID

Feature Information (see Figure 3-6 and Table 3-20)
Feature Information (see Figure 3-7 and Table 3-21)

NOTES: 

* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the number of unique initial APIC
IDs reserved for addressing different logical processors in a physical package. This field is only valid if
CPUID.1.EDX.HTT[bit 28]= 1.

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 3-22)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX
EBX
ECX

EDX

Reserved.
Reserved.
Bits 00-31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value 
in this register is reserved.)
Bits 32-63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the value 
in this register is reserved.)

NOTES: 

Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models, use
the PSN flag (returned using CPUID) to check for PSN support before accessing the feature. 

See AP-485, Intel Processor Identification and the CPUID Instruction (Order Number 241618) for more 
information on PSN.

CPUID leaves > 3 < 80000000 are visible only when IA32_MISC_ENABLE.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf 

04H NOTES:

Leaf 04H output depends on the initial value in ECX.* 

See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters for each level on page 3-178.

EAX Bits 04-00: Cache Type Field
0 = Null - No more caches
1 = Data Cache 
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved
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Bits 07-05: Cache Level (starts at 1) 
Bit 08: Self Initializing cache level (does not need SW initialization)
Bit 09: Fully Associative cache

Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache**, *** 
Bits 31-26: Maximum number of addressable IDs for processor cores in the physical 
package**, ****, *****

EBX Bits 11-00: L = System Coherency Line Size**
Bits 21-12: P = Physical Line partitions**
Bits 31-22: W = Ways of associativity**

ECX Bits 31-00: S = Number of Sets**

EDX Bit 0: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads sharing this 
cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads sharing 
this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 2: Complex Cache Indexing
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using all address bits.

Bits 31-03: Reserved = 0

NOTES:

* If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Invalid sub-leaves of EAX = 04H: 
ECX = n, n > 3.

** Add one to the return value to get the result. 

***The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique ini-
tial APIC IDs reserved for addressing different logical processors sharing this cache

**** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of unique 
Core_IDs reserved for addressing different processor cores in a physical package. Core ID is a subset of 
bits of the initial APIC ID. 

***** The returned value is constant for valid initial values in ECX. Valid ECX values start from 0. 

MONITOR/MWAIT Leaf 

05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor granularity) 
Bits 31-16: Reserved = 0

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor granularity) 
Bits 31-16: Reserved = 0

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported

Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled

Bits 31 - 02: Reserved 

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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EDX Bits 03 - 00: Number of C0* sub C-states supported using MWAIT
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 23 - 20: Number of C5* sub C-states supported using MWAIT
Bits 27 - 24: Number of C6* sub C-states supported using MWAIT
Bits 31 - 28: Number of C7* sub C-states supported using MWAIT

NOTE:

* The definition of C0 through C7 states for MWAIT extension are processor-specific C-states, not ACPI C-
states.

Thermal and Power Management Leaf 

06H EAX

EBX

Bit 00: Digital temperature sensor is supported if set
Bit 01: Intel Turbo Boost Technology Available (see description of IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved 
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bit 07: HWP. HWP base registers (IA32_PM_ENALBE[bit 0], IA32_HWP_CAPABILITIES, 
IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set.
Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.
Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST[bits 41:32] is supported if set.
Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set.
Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.
Bit 12: Reserved.
Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs are 
supported if set.
Bits 31 - 15: Reserved 
Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved 

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The 
capability to provide a measure of delivered processor performance (since last reset of the counters), as 
a percentage of expected processor performance at frequency specified in CPUID Brand String
Bits 02 - 01: Reserved = 0
Bit 03: The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH[bit 3] is set 
and it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H)
Bits 31 - 04: Reserved = 0

EDX Reserved = 0

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H Sub-leaf 0 (Input ECX = 0). *

EAX Bits 31-00: Reports the maximum input value for supported leaf 7 sub-leaves.

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.
Bit 02: Reserved
Bit 03: BMI1
Bit 04: HLE
Bit 05: AVX2
Bit 06: Reserved
Bit 07: SMEP. Supports Supervisor-Mode Execution Prevention if 1.
Bit 08: BMI2
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID. If 1, supports INVPCID instruction for system software that manages process-context 
identifiers.
Bit 11: RTM
Bit 12: Supports Platform Quality of Service Monitoring (PQM) capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bit 14: Reserved.
Bit 15: Supports Platform Quality of Service Enforcement (PQE) capability if 1.
Bits 31:16: Reserved

ECX Reserved 

EDX Reserved

NOTE:

* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Invalid sub-leaves of EAX = 07H: 
ECX = n, n > 0.

Direct Cache Access Information Leaf 

09H EAX

EBX

ECX

EDX

Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H)

Reserved 

Reserved 

Reserved 

Architectural Performance Monitoring Leaf 

0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring counter 
Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events

EBX Bit 00: Core cycle event not available if 1
Bit 01: Instruction retired event not available if 1
Bit 02: Reference cycles event not available if 1
Bit 03: Last-level cache reference event not available if 1
Bit 04: Last-level cache misses event not available if 1
Bit 05: Branch instruction retired event not available if 1
Bit 06: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

ECX Reserved = 0

EDX Bits 04 - 00: Number of fixed-function performance counters (if Version ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Version ID > 1)
Reserved = 0

Extended Topology Enumeration Leaf 

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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0BH NOTES:

Most of Leaf 0BH output depends on the initial value in ECX. 

The EDX output of leaf 0BH is always valid and does not vary with input value in ECX.

Output value in ECX[7:0] always equals input value in ECX[7:0].

For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.

 If an input value n in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with ECX > 
n also return 0 in ECX[15:8].

EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level type*. 
All logical processors with the same next level ID share current level.
Bits 31-05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as shipped 
by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***.
Bits 31 - 16:: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in this 
field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical processors 
available to BIOS/OS/Applications may be different from the value of EBX[15:0], depending on software 
and platform hardware configurations. 

*** The value of the “level type” field is not related to level numbers in any way, higher “level type” val-
ues do not mean higher levels. Level type field has the following encoding:
0 : invalid
1 : SMT
2 : Core
3-255 : Reserved

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:

Leaf 0DH main leaf (ECX = 0). 

EAX Bits 31-00: Reports the valid bit fields of the lower 32 bits of XCR0. If a bit is 0, the corresponding bit 
field in XCR0 is reserved.
Bit 00: legacy x87 
Bit 01: 128-bit SSE
Bit 02: 256-bit AVX
Bits 31- 03: Reserved

EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by 
enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save area 
are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the 
XSAVE/XRSTOR save area required by all supported features in the processor, i.e all the valid bit fields in 
XCR0. 

EDX Bit 31-00: Reports the valid bit fields of the upper 32 bits of XCR0. If a bit is 0, the corresponding bit field 
in XCR0 is reserved.

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

0DH EAX Bits 31-04: Reserved

Bit 00: XSAVEOPT is available

Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set

Bit 02: Supports XGETBV with ECX = 1 if set

Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set

EBX Bits 31-00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.

ECX Bits 31-00: Reports the valid bit fields of the lower 32 bits of IA32_XSS. If a bit is 0, the corresponding bit 
field in IA32_XSS is reserved.

Bits 07-00: Reserved

Bit 08: IA32_XSS[bit 8] is supported if 1

Bits 31-09: Reserved

EDX Bits 31-00: Reports the valid bit fields of the upper 32 bits of IA32_XSS. If a bit is 0, the corresponding 
bit field in IA32_XSS is reserved.

Bits 31-00: Reserved

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH NOTES:

Leaf 0DH output depends on the initial value in ECX. 

Each valid sub-leaf index maps to a valid bit in either the XCR0 register or the IA32_XSS MSR starting 
at bit position 2.

* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Invalid sub-leaves of EAX = 0DH: 
ECX = n, n > 2.

EAX Bits 31-0: The size in bytes (from the offset specified in EBX) of the save area for an extended state fea-
ture associated with a valid sub-leaf index, n. This field reports 0 if the sub-leaf index, n, does not map to 
a valid bit in the XCR0 register*.

EBX Bits 31-0: The offset in bytes of this extended state component’s save area from the beginning of the 
XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, is invalid*.

ECX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise, bit 0 is set if the sub-leaf index, n, maps 
to a valid bit in the IA32_XSS MSR, and bits 31-1 are reserved.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Platform QoS Monitoring Enumeration Sub-leaf (EAX = 0FH, ECX = 0)

0FH NOTES:

Leaf 0FH output depends on the initial value in ECX. 

Sub-leaf index 0 reports valid resource type starting at bit position 1 of EDX

EAX Reserved.

EBX Bits 31-0: Maximum range (zero-based) of RMID within this physical processor of all types.

ECX Reserved.

EDX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS Monitoring if 1.
Bits 31:02: Reserved

L3 Cache QoS Monitoring Capability Enumeration Sub-leaf (EAX = 0FH, ECX = 1)

Table 3-17.  Information Returned by CPUID Instruction (Contd.)
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0FH NOTES:

Leaf 0FH output depends on the initial value in ECX. 

EAX Reserved.

EBX Bits 31-0: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes).

ECX Maximum range (zero-based) of RMID of this resource type.

EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bits 31:01: Reserved

Platform QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = 0)

10H NOTES:

Leaf 10H output depends on the initial value in ECX. 

Sub-leaf index 0 reports valid resource identification (ResID) starting at bit position 1 of EDX

EAX Reserved.

EBX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS Enforcement if 1.
Bits 31:02: Reserved

ECX Reserved.

EDX Reserved.

L3 Cache QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = ResID =1)

10H NOTES:

Leaf 10H output depends on the initial value in ECX. 

EAX Bits 4:0: Length of the capacity bit mask for the corresponding ResID.
Bits 31:05: Reserved

EBX Bits 31-0: Bit-granular map of isolation/contention of allocation units.

ECX Bit 00: Reserved.
Bit 01: Updates of COS should be infrequent if 1.
Bits 31:02: Reserved

EDX Bits 15:0: Highest COS number supported for this ResID.
Bits 31:16: Reserved

Unimplemented CPUID Leaf Functions

40000000H 
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the initial 
EAX value is in the range 40000000H to 4FFFFFFFH.

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information (see 
Table 3-18).

EBX
ECX
EDX

Reserved
Reserved
Reserved

Table 3-17.  Information Returned by CPUID Instruction (Contd.)
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80000001H EAX

EBX

ECX

Extended Processor Signature and Feature Bits.

Reserved

Bit 00: LAHF/SAHF available in 64-bit mode
Bits 04-01 Reserved
Bit 05: LZCNT
Bits 07-06 Reserved
Bit 08: PREFETCHW
Bits 31-09 Reserved

EDX Bits 10-00: Reserved
Bit 11: SYSCALL/SYSRET available in 64-bit mode
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 25-21: Reserved = 0
Bit 26: 1-GByte pages are available if 1
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0

Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX

Reserved = 0
Reserved = 0

ECX

EDX

Bits 07-00: Cache Line size in bytes
Bits 11-08: Reserved
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
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INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and the Vendor Identification String

When CPUID executes with EAX set to 0, the processor returns the highest value the CPUID recognizes for 
returning basic processor information. The value is returned in the EAX register (see Table 3-18) and is processor 
specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is “Genuin-
eIntel” and is expressed:

EBX ← 756e6547h (* "Genu", with G in the low eight bits of BL *)

EDX ← 49656e69h (* "ineI", with i in the low eight bits of DL *)

ECX ← 6c65746eh (* "ntel", with n in the low eight bits of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Information

When CPUID executes with EAX set to 80000000H, the processor returns the highest value the processor recog-
nizes for returning extended processor information. The value is returned in the EAX register (see Table 3-18) and 
is processor specific.

NOTES:

* L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Bits 07-00: Reserved = 0
Bit 08: Invariant TSC available if 1
Bits 31-09: Reserved = 0

80000008H EAX Linear/Physical Address size 
Bits 07-00: #Physical Address Bits*
Bits 15-8: #Linear Address Bits
Bits 31-16: Reserved = 0

EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0

NOTES:

* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported should 
come from this field.

Table 3-18.  Highest CPUID Source Operand for Intel 64 and IA-32 Processors 

Intel 64 or IA-32 Processors
Highest Value in EAX

Basic Information Extended Function Information

Earlier Intel486 Processors CPUID Not Implemented CPUID Not Implemented

Later Intel486 Processors and Pentium Processors 01H Not Implemented

Table 3-17.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
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IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is loaded with the update 
signature whenever CPUID executes. The signature is returned in the upper DWORD. For details, see Chapter 9 in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. 

INPUT EAX = 1: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 1, version information is returned in EAX (see Figure 3-5). For example: 
model, family, and processor type for the Intel Xeon processor 5100 series is as follows:
• Model — 1111B
• Family — 0101B
• Processor Type — 00B

See Table 3-19 for available processor type values. Stepping IDs are provided as needed.

Pentium Pro and Pentium II Processors, Intel® Celeron® 
Processors

02H Not Implemented

Pentium III Processors 03H Not Implemented

Pentium 4 Processors 02H 80000004H

Intel Xeon Processors 02H 80000004H

Pentium M Processor 02H 80000004H

Pentium 4 Processor supporting Hyper-Threading 
Technology

05H 80000008H

Pentium D Processor (8xx) 05H 80000008H

Pentium D Processor (9xx) 06H 80000008H

Intel Core Duo Processor 0AH 80000008H

Intel Core 2 Duo Processor 0AH 80000008H

Intel Xeon Processor 3000, 5100, 5200, 5300, 5400 
Series

0AH 80000008H

Intel Core 2 Duo Processor 8000 Series 0DH 80000008H

Intel Xeon Processor 5200, 5400 Series 0AH 80000008H

Intel Atom Processor 0AH 80000008H

Intel Core i7 Processor 0BH 80000008H

Table 3-18.  Highest CPUID Source Operand for Intel 64 and IA-32 Processors  (Contd.)

Intel 64 or IA-32 Processors
Highest Value in EAX

Basic Information Extended Function Information
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Figure 3-5.  Version Information Returned by CPUID in EAX
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NOTE
See Chapter 17 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
for information on identifying earlier IA-32 processors.

The Extended Family ID needs to be examined only when the Family ID is 0FH. Integrate the fields into a display 
using the following rule:

IF Family_ID ≠ 0FH

THEN DisplayFamily = Family_ID;

ELSE DisplayFamily = Extended_Family_ID + Family_ID;

(* Right justify and zero-extend 4-bit field. *)

FI;

(* Show DisplayFamily as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH. Integrate the field into a 
display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)

THEN DisplayModel = (Extended_Model_ID « 4) + Model_ID;

(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)

ELSE DisplayModel = Model_ID;

FI;

(* Show DisplayModel as HEX field. *)

INPUT EAX = 1: Returns Additional Information in EBX

When CPUID executes with EAX set to 1, additional information is returned to the EBX register: 
• Brand index (low byte of EBX) — this number provides an entry into a brand string table that contains brand 

strings for IA-32 processors. More information about this field is provided later in this section. 
• CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line 

flushed with CLFLUSH instruction in 8-byte increments. This field was introduced in the Pentium 4 processor.
• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the 

processor during power up. This field was introduced in the Pentium 4 processor.

INPUT EAX = 1: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 1, feature information is returned in ECX and EDX.
• Figure 3-6 and Table 3-20 show encodings for ECX.
• Figure 3-7 and Table 3-21 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags.

NOTE

Software must confirm that a processor feature is present using feature flags returned by CPUID 
prior to using the feature. Software should not depend on future offerings retaining all features.

Table 3-19.  Processor Type Field

Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486 processors) 10B

Intel reserved 11B
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Figure 3-6.  Feature Information Returned in the ECX Register

Table 3-20.  Feature Information Returned in the ECX Register 

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor supports this 
technology.

1 PCLMULQDQ PCLMULQDQ. A value of 1 indicates the processor supports the PCLMULQDQ instruction

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature. 

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the 
Debug Store feature to allow for branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See 
Chapter 5, “Safer Mode Extensions Reference”.

7 EIST Enhanced Intel SpeedStep® technology. A value of 1 indicates that the processor supports this 
technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology. 

9 SSSE3 A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A 
value of 0 indicates the instruction extensions are not present in the processor

OM16524b

CNXT-ID — L1 Context ID
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ECX

TM2 — Thermal Monitor 2
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Reserved
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10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode 
or shared mode. A value of 0 indicates this feature is not supported. See definition of the 
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.

11 SDBG A value of 1 indicates the processor supports IA32_DEBUG_INTERFACE MSR for silicon debug.

12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available. See the 
“CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes” section in this chapter for a 
description.

14 xTPR Update 
Control

xTPR Update Control. A value of 1 indicates that the processor supports changing 
IA32_MISC_ENABLE[bit 23]. 

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the processor supports the performance 
and debug feature indication MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that 
software may set CR4.PCIDE to 1.

18 DCA  A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped 
device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1. 

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2. 

21 x2APIC A value of 1 indicates that the processor supports x2APIC feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer supports one-shot operation using a 
TSC deadline value.

25 AESNI A value of 1 indicates that the processor supports the AESNI instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended states 
feature, the XSETBV/XGETBV instructions, and XCR0.

27 OSXSAVE A value of 1 indicates that the OS has set CR4.OSXSAVE[bit 18] to enable the XSAVE feature set.

28 AVX A value of 1 indicates the processor supports the AVX instruction extensions.

29 F16C A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.

30 RDRAND A value of 1 indicates that processor supports RDRAND instruction.

31 Not Used Always returns 0.

Table 3-20.  Feature Information Returned in the ECX Register  (Contd.)

Bit # Mnemonic Description
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Figure 3-7.  Feature Information Returned in the EDX Register

OM16523

PBE–Pend. Brk. EN.

012345678910111213141516171819202122232425262728293031

EDX

TM–Therm. Monitor
HTT–Multi-threading
SS–Self Snoop
SSE2–SSE2 Extensions
SSE–SSE Extensions
FXSR–FXSAVE/FXRSTOR
MMX–MMX Technology
ACPI–Thermal Monitor and Clock Ctrl
DS–Debug Store
CLFSH–CFLUSH instruction
PSN–Processor Serial Number
PSE-36 – Page Size Extension
PAT–Page Attribute Table
CMOV–Conditional Move/Compare Instruction
MCA–Machine Check Architecture
PGE–PTE Global Bit
MTRR–Memory Type Range Registers
SEP–SYSENTER and SYSEXIT
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Table 3-21.  More on Feature Information Returned in the EDX Register

Bit # Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the 
feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS 
with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags. 

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for controlling the feature, and optional 
trapping of accesses to DR4 and DR5. 

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the 
feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and 
PTEs. 

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are 
supported. Some of the MSRs are implementation dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table 
entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of 
4 Mbyte pages if PAE bit is 1. 

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the 
feature. This feature does not define the model-specific implementations of machine-check error logging, 
reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor 
version to do model specific processing of the exception, or test for the presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly 
locked and atomic). 

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to 
memory mapped commands in the physical address range FFFE0000H to FFFE0FFFH (by default - some 
processors permit the APIC to be relocated). 

10 Reserved Reserved 

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported. 

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe 
what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are 
supported. 

13 PGE Page Global Bit. The global bit is supported in paging-structure entries that map a page, indicating TLB entries 
that are common to different processes and need not be flushed. The CR4.PGE bit controls this feature. 

14 MCA Machine Check Architecture. The Machine Check Architecture, which provides a compatible mechanism for 
error reporting in P6 family, Pentium 4, Intel Xeon processors, and future processors, is supported. The 
MCG_CAP MSR contains feature bits describing how many banks of error reporting MSRs are supported. 

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87 FPU is 
present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported 

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range 
Registers (MTRRs), allowing an operating system to specify attributes of memory accessed through a linear 
address on a 4KB granularity.

17 PSE-36 36-Bit Page Size Extension. 4-MByte pages addressing physical memory beyond 4 GBytes are supported with 
32-bit paging. This feature indicates that upper bits of the physical address of a 4-MByte page are encoded in 
bits 20:13 of the page-directory entry. Such physical addresses are limited by MAXPHYADDR and may be up to 
40 bits in size.

18 PSN Processor Serial Number. The processor supports the 96-bit processor identification number feature and the 
feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved
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INPUT EAX = 2: TLB/Cache/Prefetch Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 2, the processor returns information about the processor’s internal TLBs, 
cache and prefetch hardware in the EAX, EBX, ECX, and EDX registers. The information is reported in encoded form 
and fall into the following categories:
• The least-significant byte in register EAX (register AL) indicates the number of times the CPUID instruction 

must be executed with an input value of 2 to get a complete description of the processor’s TLB/Cache/Prefetch 
hardware. The Intel Xeon processor 7400 series will return a 1.

• The most significant bit (bit 31) of each register indicates whether the register contains valid information (set 
to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte descriptors. There are four types 
of encoding values for the byte descriptor, the encoding type is noted in the second column of Table 3-22. Table 
3-22 lists the encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and EDX 
registers is not defined; that is, specific bytes are not designated to contain descriptors for specific cache, 
prefetch, or TLB types. The descriptors may appear in any order. Note also a processor may report a general 
descriptor type (FFH) and not report any byte descriptor of “cache type” via CPUID leaf 2.

21 DS Debug Store. The processor supports the ability to write debug information into a memory resident buffer. 
This feature is used by the branch trace store (BTS) and precise event-based sampling (PEBS) facilities (see 
Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures Software 

Developer’s Manual, Volume 3C).

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that 
allow processor temperature to be monitored and processor performance to be modulated in predefined duty 
cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and 
restore of the floating point context. Presence of this bit also indicates that CR4.OSFXSR is available for an 
operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting memory types by performing a snoop of its 
own cache structure for transactions issued to the bus.

28 HTT Max APIC IDs reserved field is Valid. A value of 0 for HTT indicates there is only a single logical processor in 
the package and software should assume only a single APIC ID is reserved.  A value of 1 for HTT indicates the 
value in CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical processors in this package) is 
valid for the package.

29 TM Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the 
stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the 
processor should return to normal operation to handle the interrupt. Bit 10 (PBE enable) in the 
IA32_MISC_ENABLE MSR enables this capability.

Table 3-21.  More on Feature Information Returned in the EDX Register (Contd.)

Bit # Mnemonic Description
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Table 3-22.  Encoding of CPUID Leaf 2 Descriptors 

 Value Type Description

00H General Null descriptor, this byte contains no information

01H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries

03H TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H Cache 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H Cache 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

09H Cache 1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size

0AH Cache 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH TLB Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

0DH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size

0EH Cache 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size

1DH Cache 2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size

21H Cache 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size

22H Cache 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector

23H Cache 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

24H Cache 2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size

25H Cache 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

29H Cache 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

2CH Cache 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H Cache 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size

40H Cache No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache

41H Cache 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H Cache 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H Cache 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H Cache 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H Cache 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H Cache 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H Cache 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

48H Cache 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size

49H Cache 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model 
06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH Cache 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH Cache 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH Cache 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

4DH Cache 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4EH Cache 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

4FH TLB Instruction TLB: 4 KByte pages, 32 entries
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50H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

55H TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries

56H TLB Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H TLB Data TLB0: 4 KByte pages, 4-way associative, 16 entries

59H TLB Data TLB0: 4 KByte pages, fully associative, 16 entries

5AH TLB Data TLB0: 2-MByte or 4 MByte pages, 4-way set associative, 32 entries

5BH TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH TLB Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH TLB Data TLB: 4 KByte and 4 MByte pages,256 entries

60H Cache 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

61H TLB Instruction TLB: 4 KByte pages, fully associative, 48 entries

63H TLB Data TLB: 1 GByte pages, 4-way set associative, 4 entries

66H Cache 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H Cache 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H Cache 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Cache Trace cache: 12 K-µop, 8-way set associative

71H Cache Trace cache: 16 K-µop, 8-way set associative

72H Cache Trace cache: 32 K-µop, 8-way set associative

76H TLB Instruction TLB: 2M/4M pages, fully associative, 8 entries 

78H Cache 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H Cache 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7AH Cache 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7BH Cache 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7CH Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector

7DH Cache 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH Cache 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

80H Cache 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size

82H Cache 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H Cache 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H Cache 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H Cache 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H Cache 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

A0H DTLB DTLB: 4k pages, fully associative, 32 entries

B0H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B2H TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries

B3H TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries

Table 3-22.  Encoding of CPUID Leaf 2 Descriptors  (Contd.)

 Value Type Description
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Example 3-1.  Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information about caches and TLBs 
when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:
• The least-significant byte (byte 0) of register EAX is set to 01H. This indicates that CPUID needs to be executed 

once with an input value of 2 to retrieve complete information about caches and TLBs.
• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register 

contains valid 1-byte descriptors.
• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line size.

B5H TLB Instruction TLB: 4KByte pages, 8-way set associative, 64 entries

B6H TLB Instruction TLB: 4KByte pages, 8-way set associative, 128 entries

BAH TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries

C0H TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries

C1H STLB Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries

C2H DTLB DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries

CAH STLB Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries

D0H Cache 3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size

D1H Cache 3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size

D2H Cache 3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size

D6H Cache 3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size

D7H Cache 3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size

D8H Cache 3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size

DCH Cache 3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size

DDH Cache 3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size

DEH Cache 3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size

E2H Cache 3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size

E3H Cache 3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size

E4H Cache 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size

EAH Cache 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size

EBH Cache 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size

ECH Cache 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size

F0H Prefetch 64-Byte prefetching

F1H Prefetch 128-Byte prefetching

FFH General CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters

Table 3-22.  Encoding of CPUID Leaf 2 Descriptors  (Contd.)

 Value Type Description
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• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - Trace cache: 12 K-µop, 8-way set associative.

— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache line size.

— 00H - NULL descriptor.

INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 04H and ECX contains an index value, the processor returns encoded data 
that describe a set of deterministic cache parameters (for the cache level associated with the input in ECX). Valid 
index values start from 0.

Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an 
index value of 0, until the parameters report the value associated with the cache type field is 0. The architecturally 
defined fields reported by deterministic cache parameters are documented in Table 3-17.

This Cache Size in Bytes

= (Ways + 1) * (Partitions + 1) * (Line_Size + 1) * (Sets + 1)

= (EBX[31:22] + 1) * (EBX[21:12] + 1) * (EBX[11:0] + 1) * (ECX + 1)

The CPUID leaf 04H also reports data that can be used to derive the topology of processor cores in a physical 
package. This information is constant for all valid index values. Software can query the raw data reported by 
executing CPUID with EAX=04H and ECX=0 and use it as part of the topology enumeration algorithm described in 
Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

INPUT EAX = 05H: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 05H, the processor returns information about features available to 
MONITOR/MWAIT instructions. The MONITOR instruction is used for address-range monitoring in conjunction with 
MWAIT instruction. The MWAIT instruction optionally provides additional extensions for advanced power manage-
ment. See Table 3-17. 

INPUT EAX = 06H: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 06H, the processor returns information about thermal and power manage-
ment features. See Table 3-17. 

INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 07H and ECX = 0, the processor returns information about the maximum 
input value for sub-leaves that contain extended feature flags. See Table 3-17. 

When CPUID executes with EAX set to 07H and the input value of ECX is invalid (see leaf 07H entry in Table 
3-17), the processor returns 0 in EAX/EBX/ECX/EDX. In subleaf 0, EAX returns the maximum input value of the 
highest leaf 7 sub-leaf, and EBX, ECX & EDX contain information of extended feature flags.

INPUT EAX = 09H: Returns Direct Cache Access Information

When CPUID executes with EAX set to 09H, the processor returns information about Direct Cache Access capabili-
ties. See Table 3-17. 
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INPUT EAX = 0AH: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 0AH, the processor returns information about support for architectural 
performance monitoring capabilities. Architectural performance monitoring is supported if the version ID (see 
Table 3-17) is greater than Pn 0. See Table 3-17.

For each version of architectural performance monitoring capability, software must enumerate this leaf to discover 
the programming facilities and the architectural performance events available in the processor. The details are 
described in Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3C.

INPUT EAX = 0BH: Returns Extended Topology Information

When CPUID executes with EAX set to 0BH, the processor returns information about extended topology enumera-
tion data. Software must detect the presence of CPUID leaf 0BH by verifying (a) the highest leaf index supported 
by CPUID is >= 0BH, and (b) CPUID.0BH:EBX[15:0] reports a non-zero value. See Table 3-17.

INPUT EAX = 0DH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 0DH and ECX = 0, the processor returns information about the bit-vector 
representation of all processor state extensions that are supported in the processor and storage size requirements 
of the XSAVE/XRSTOR area. See Table 3-17. 

When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid sub-leaf index), the processor returns 
information about the size and offset of each processor extended state save area within the XSAVE/XRSTOR area. 
See Table 3-17. Software can use the forward-extendable technique depicted below to query the valid sub-leaves 
and obtain size and offset information for each processor extended state save area:

For i = 2 to 62 // sub-leaf 1 is reserved
IF (CPUID.(EAX=0DH, ECX=0):VECTOR[i] = 1 ) // VECTOR is the 64-bit value of EDX:EAX

Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i; 
FI;

INPUT EAX = 0FH: Returns Platform Quality of Service (PQoS) Monitoring Enumeration Information

When CPUID executes with EAX set to 0FH and ECX = 0, the processor returns information about the bit-vector 
representation of QoS monitoring resource types that are supported in the processor and maximum range of RMID 
values the processor can use to monitor of any supported resource types. Each bit, starting from bit 1, corresponds 
to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or ResID) that soft-
ware must use to query QoS monitoring capability available for that type. See Table 3-17.

When CPUID executes with EAX set to 0FH and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation software can use to program IA32_PQR_ASSOC, IA32_QM_EVTSEL MSRs before reading QoS data from the 
IA32_QM_CTR MSR.

INPUT EAX = 10H: Returns Platform Quality of Service (PQoS) Enforcement Enumeration Information

When CPUID executes with EAX set to 10H and ECX = 0, the processor returns information about the bit-vector 
representation of QoS Enforcement resource types that are supported in the processor. Each bit, starting from bit 
1, corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or 
ResID) that software must use to query QoS enforcement capability available for that type. See Table 3-17.

When CPUID executes with EAX set to 10H and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation about available classes of service and range of QoS mask MSRs that software can use to configure each 
class of services using capability bit masks in the QoS Mask registers, IA32_resourceType_Mask_n.

METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method; this method also returns the processor’s maximum operating frequency

2. Processor brand index; this method uses a software supplied brand string table.
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These two methods are discussed in the following sections. For methods that are available in early processors, see 
Section: “Identification of Earlier IA-32 Processors” in Chapter 17 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

The Processor Brand String Method

Figure 3-8 describes the algorithm used for detection of the brand string. Processor brand identification software 
should execute this algorithm on all Intel 64 and IA-32 processors. 

This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the maximum 
operating frequency of the processor to the EAX, EBX, ECX, and EDX registers.

How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through 80000004H. For each input 
value, CPUID returns 16 ASCII characters using EAX, EBX, ECX, and EDX. The returned string will be NULL-termi-
nated.

Table 3-23 shows the brand string that is returned by the first processor in the Pentium 4 processor family.

Figure 3-8.  Determination of Support for the Processor Brand String

Table 3-23.  Processor Brand String Returned with Pentium 4 Processor 

EAX Input Value Return Values ASCII Equivalent

OM15194

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value 
� 0x80000004)

CPUID 
Function

Supported

True �
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX= 
0x80000000

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True
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Extracting the Maximum Processor Frequency from Brand Strings

Figure 3-9 provides an algorithm which software can use to extract the maximum processor operating frequency 
from the processor brand string.

NOTE

When a frequency is given in a brand string, it is the maximum qualified frequency of the processor, 
not the frequency at which the processor is currently running.

80000002H EAX = 20202020H

EBX = 20202020H

ECX = 20202020H

EDX = 6E492020H

“  ” 

“ ”

“ ”

“nI  ”

80000003H EAX = 286C6574H

EBX = 50202952H

ECX = 69746E65H

EDX = 52286D75H

“(let”

“P )R”

“itne”

“R(mu”

80000004H EAX = 20342029H

EBX = 20555043H

ECX = 30303531H

EDX = 007A484DH

“ 4 )”

“ UPC”

“0051”

“\0zHM”

Table 3-23.  Processor Brand String Returned with Pentium 4 Processor  (Contd.)
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The Processor Brand Index Method

The brand index method (introduced with Pentium® III Xeon® processors) provides an entry point into a brand 
identification table that is maintained in memory by system software and is accessible from system- and user-level 
code. In this table, each brand index is associate with an ASCII brand identification string that identifies the official 
Intel family and model number of a processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the low byte in EBX. Software can 
then use this index to locate the brand identification string for the processor in the brand identification table. The 
first entry (brand index 0) in this table is reserved, allowing for backward compatibility with processors that do not 
support the brand identification feature. Starting with processor signature family ID = 0FH, model = 03H, brand 
index method is no longer supported. Use brand string method instead.

Table 3-24 shows brand indices that have identification strings associated with them.

Figure 3-9.  Algorithm for Extracting Maximum Processor Frequency

Table 3-24.  Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) III processor1
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IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor earlier than the 
Intel486 processor.

Operation

IA32_BIOS_SIGN_ID MSR ← Update with installed microcode revision number;

CASE (EAX) OF

EAX = 0:

EAX ← Highest basic function input value understood by CPUID;

EBX ← Vendor identification string;

EDX ← Vendor identification string;

ECX ← Vendor identification string;

BREAK;

EAX = 1H:

EAX[3:0] ← Stepping ID; 

EAX[7:4] ← Model; 

EAX[11:8] ← Family; 

EAX[13:12] ← Processor type; 

EAX[15:14] ← Reserved;

EAX[19:16] ← Extended Model;

EAX[27:20] ← Extended Family;

03H Intel(R) Pentium(R) III Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R) 
processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor1

0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor MP

0CH Intel(R) Xeon(R) processor MP

0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor

0FH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H – 0FFH RESERVED

NOTES:

1. Indicates versions of these processors that were introduced after the Pentium III 

Table 3-24.  Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings
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EAX[31:28] ← Reserved;

EBX[7:0] ← Brand Index; (* Reserved if the value is zero. *)

EBX[15:8] ← CLFLUSH Line Size;

EBX[16:23] ← Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)

EBX[24:31] ← Initial APIC ID;

ECX ← Feature flags; (* See Figure 3-6. *)

EDX ← Feature flags; (* See Figure 3-7. *)

BREAK;

EAX = 2H:

EAX ← Cache and TLB information; 

 EBX ← Cache and TLB information; 

 ECX ← Cache and TLB information; 

EDX ← Cache and TLB information; 

BREAK;

EAX = 3H:

EAX ← Reserved; 

 EBX ← Reserved; 

 ECX ← ProcessorSerialNumber[31:0]; 

(* Pentium III processors only, otherwise reserved. *)

EDX ← ProcessorSerialNumber[63:32]; 

(* Pentium III processors only, otherwise reserved. *

BREAK

EAX = 4H:

EAX ← Deterministic Cache Parameters Leaf; (* See Table 3-17. *)

EBX ← Deterministic Cache Parameters Leaf; 

 ECX ← Deterministic Cache Parameters Leaf; 

EDX ← Deterministic Cache Parameters Leaf; 

BREAK;

EAX = 5H:

EAX ← MONITOR/MWAIT Leaf; (* See Table 3-17. *)

 EBX ← MONITOR/MWAIT Leaf; 

 ECX ← MONITOR/MWAIT Leaf; 

EDX ← MONITOR/MWAIT Leaf; 

BREAK;

EAX = 6H:

EAX ← Thermal and Power Management Leaf; (* See Table 3-17. *)

 EBX ← Thermal and Power Management Leaf; 

 ECX ← Thermal and Power Management Leaf; 

EDX ← Thermal and Power Management Leaf; 

BREAK;

EAX = 7H:

EAX ← Structured Extended Feature Flags Enumeration Leaf; (* See Table 3-17. *)

EBX ← Structured Extended Feature Flags Enumeration Leaf; 

 ECX ← Structured Extended Feature Flags Enumeration Leaf; 

EDX ← Structured Extended Feature Flags Enumeration Leaf; 

BREAK;

EAX = 8H:

EAX ← Reserved = 0;

 EBX ← Reserved = 0; 

 ECX ← Reserved = 0; 

EDX ← Reserved = 0; 

BREAK;

EAX = 9H:

EAX ← Direct Cache Access Information Leaf; (* See Table 3-17. *)
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 EBX ← Direct Cache Access Information Leaf; 

 ECX ← Direct Cache Access Information Leaf; 

EDX ← Direct Cache Access Information Leaf; 

BREAK;

EAX = AH:

EAX ← Architectural Performance Monitoring Leaf; (* See Table 3-17. *)

 EBX ← Architectural Performance Monitoring Leaf; 

 ECX ← Architectural Performance Monitoring Leaf; 

EDX ← Architectural Performance Monitoring Leaf; 

BREAK

EAX = BH:

EAX ← Extended Topology Enumeration Leaf; (* See Table 3-17. *)

EBX ← Extended Topology Enumeration Leaf; 

 ECX ← Extended Topology Enumeration Leaf; 

EDX ← Extended Topology Enumeration Leaf; 

BREAK;

EAX = CH:

EAX ← Reserved = 0;

 EBX ← Reserved = 0; 

 ECX ← Reserved = 0; 

EDX ← Reserved = 0; 

BREAK;

EAX = DH:

EAX ← Processor Extended State Enumeration Leaf; (* See Table 3-17. *)

 EBX ← Processor Extended State Enumeration Leaf; 

 ECX ← Processor Extended State Enumeration Leaf; 

EDX ← Processor Extended State Enumeration Leaf; 

BREAK;

EAX = EH:

EAX ← Reserved = 0;

 EBX ← Reserved = 0; 

 ECX ← Reserved = 0; 

EDX ← Reserved = 0; 

BREAK;

EAX = FH:

EAX ← Platform Quality of Service Monitoring Enumeration Leaf; (* See Table 3-17. *)

 EBX ← Platform Quality of Service Monitoring Enumeration Leaf; 

 ECX ← Platform Quality of Service Monitoring Enumeration Leaf; 

EDX ← Platform Quality of Service Monitoring Enumeration Leaf; 

BREAK;

EAX = 10H:

EAX ← Platform Quality of Service Enforcement Enumeration Leaf; (* See Table 3-17. *)

 EBX ← Platform Quality of Service Enforcement Enumeration Leaf; 

 ECX ← Platform Quality of Service Enforcement Enumeration Leaf; 

EDX ← Platform Quality of Service Enforcement Enumeration Leaf; 

BREAK;

BREAK;

EAX = 80000000H:

EAX ← Highest extended function input value understood by CPUID;

EBX ← Reserved; 

ECX ← Reserved; 

EDX ← Reserved; 

BREAK;

EAX = 80000001H:
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EAX ← Reserved; 

EBX ← Reserved; 

ECX ← Extended Feature Bits (* See Table 3-17.*); 

EDX ← Extended Feature Bits (* See Table 3-17. *); 

BREAK;

EAX = 80000002H:

EAX ← Processor Brand String; 

EBX ← Processor Brand String, continued;

ECX ← Processor Brand String, continued; 

EDX ← Processor Brand String, continued; 

BREAK;

EAX = 80000003H:

EAX ← Processor Brand String, continued; 

EBX ← Processor Brand String, continued; 

ECX ← Processor Brand String, continued; 

EDX ← Processor Brand String, continued; 

BREAK;

EAX = 80000004H:

EAX ← Processor Brand String, continued; 

EBX ← Processor Brand String, continued; 

ECX ← Processor Brand String, continued; 

EDX ← Processor Brand String, continued;

BREAK;

EAX = 80000005H:

EAX ← Reserved = 0; 

EBX ← Reserved = 0; 

ECX ← Reserved = 0; 

EDX ← Reserved = 0; 

BREAK;

EAX = 80000006H:

EAX ← Reserved = 0; 

EBX ← Reserved = 0; 

ECX ← Cache information; 

EDX ← Reserved = 0; 

BREAK;

EAX = 80000007H:

EAX ← Reserved = 0; 

EBX ← Reserved = 0; 

ECX ← Reserved = 0; 

EDX ← Reserved = Misc Feature Flags; 

BREAK;

EAX = 80000008H:

EAX ← Reserved = Physical Address Size Information; 

EBX ← Reserved = Virtual Address Size Information; 

ECX ← Reserved = 0; 

EDX ← Reserved = 0; 

BREAK;

EAX >= 40000000H and EAX <= 4FFFFFFFH:

DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)

(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)

EAX ← Reserved; (* Information returned for highest basic information leaf. *)

EBX ← Reserved; (* Information returned for highest basic information leaf. *)

ECX ← Reserved; (* Information returned for highest basic information leaf. *)

EDX ← Reserved; (* Information returned for highest basic information leaf. *)
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BREAK;

ESAC;

Flags Affected

None.

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.
In earlier IA-32 processors that do not support the CPUID instruction, execution of the instruc-
tion results in an invalid opcode (#UD) exception being generated.
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CRC32 — Accumulate CRC32 Value

Instruction Operand Encoding

Description

Starting with an initial value in the first operand (destination operand), accumulates a CRC32 (polynomial 
0x11EDC6F41) value for the second operand (source operand) and stores the result in the destination operand. 
The source operand can be a register or a memory location. The destination operand must be an r32 or r64 register. 
If the destination is an r64 register, then the 32-bit result is stored in the least significant double word and 
00000000H is stored in the most significant double word of the r64 register.

The initial value supplied in the destination operand is a double word integer stored in the r32 register or the least 
significant double word of the r64 register. To incrementally accumulate a CRC32 value, software retains the result 
of the previous CRC32 operation in the destination operand, then executes the CRC32 instruction again with new 
input data in the source operand. Data contained in the source operand is processed in reflected bit order. This 
means that the most significant bit of the source operand is treated as the least significant bit of the quotient, and 
so on, for all the bits of the source operand. Likewise, the result of the CRC operation is stored in the destination 
operand in reflected bit order. This means that the most significant bit of the resulting CRC (bit 31) is stored in the 
least significant bit of the destination operand (bit 0), and so on, for all the bits of the CRC.

Operation

Notes:

BIT_REFLECT64: DST[63-0] = SRC[0-63]

BIT_REFLECT32: DST[31-0] = SRC[0-31]

BIT_REFLECT16: DST[15-0] = SRC[0-15]

BIT_REFLECT8: DST[7-0] = SRC[0-7]

MOD2: Remainder from Polynomial division modulus 2

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F2 0F 38 F0 /r

CRC32 r32, r/m8

RM Valid Valid Accumulate CRC32 on r/m8.

F2 REX 0F 38 F0 /r

CRC32 r32, r/m8*

RM Valid N.E. Accumulate CRC32 on r/m8.

F2 0F 38 F1 /r

CRC32 r32, r/m16

RM Valid Valid Accumulate CRC32 on r/m16.

F2 0F 38 F1 /r

CRC32 r32, r/m32

RM Valid Valid Accumulate CRC32 on r/m32.

F2 REX.W 0F 38 F0 /r

CRC32 r64, r/m8

RM Valid N.E. Accumulate CRC32 on r/m8.

F2 REX.W 0F 38 F1 /r

CRC32 r64, r/m64

RM Valid N.E. Accumulate CRC32 on r/m64.

NOTES:
*In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
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CRC32 instruction for 64-bit source operand and 64-bit destination operand:

TEMP1[63-0] Å BIT_REFLECT64 (SRC[63-0])

TEMP2[31-0] Å BIT_REFLECT32 (DEST[31-0])

TEMP3[95-0] Å TEMP1[63-0] « 32

TEMP4[95-0] Å TEMP2[31-0] « 64

TEMP5[95-0] Å TEMP3[95-0] XOR TEMP4[95-0]

TEMP6[31-0] Å TEMP5[95-0] MOD2 11EDC6F41H

DEST[31-0] Å BIT_REFLECT (TEMP6[31-0])

DEST[63-32] Å 00000000H

CRC32 instruction for 32-bit source operand and 32-bit destination operand:

TEMP1[31-0] Å BIT_REFLECT32 (SRC[31-0])

TEMP2[31-0] Å BIT_REFLECT32 (DEST[31-0])

TEMP3[63-0] Å TEMP1[31-0] « 32

TEMP4[63-0] Å TEMP2[31-0] « 32

TEMP5[63-0] Å TEMP3[63-0] XOR TEMP4[63-0]

TEMP6[31-0] Å TEMP5[63-0] MOD2 11EDC6F41H

DEST[31-0] Å BIT_REFLECT (TEMP6[31-0])

CRC32 instruction for 16-bit source operand and 32-bit destination operand:

TEMP1[15-0] Å BIT_REFLECT16 (SRC[15-0])

TEMP2[31-0] Å BIT_REFLECT32 (DEST[31-0])

TEMP3[47-0] Å TEMP1[15-0] « 32

TEMP4[47-0] Å TEMP2[31-0] « 16

TEMP5[47-0] Å TEMP3[47-0] XOR TEMP4[47-0]

TEMP6[31-0] Å TEMP5[47-0] MOD2 11EDC6F41H

DEST[31-0] Å BIT_REFLECT (TEMP6[31-0])

CRC32 instruction for 8-bit source operand and 64-bit destination operand:

TEMP1[7-0] Å BIT_REFLECT8(SRC[7-0])

TEMP2[31-0] Å BIT_REFLECT32 (DEST[31-0])

TEMP3[39-0] Å TEMP1[7-0] « 32

TEMP4[39-0] Å TEMP2[31-0] « 8

TEMP5[39-0] Å TEMP3[39-0] XOR TEMP4[39-0]

TEMP6[31-0] Å TEMP5[39-0] MOD2 11EDC6F41H

DEST[31-0] Å BIT_REFLECT (TEMP6[31-0])

DEST[63-32] Å 00000000H

CRC32 instruction for 8-bit source operand and 32-bit destination operand:

TEMP1[7-0] Å BIT_REFLECT8(SRC[7-0])

TEMP2[31-0] Å BIT_REFLECT32 (DEST[31-0])

TEMP3[39-0] Å TEMP1[7-0] « 32

TEMP4[39-0] Å TEMP2[31-0] « 8

TEMP5[39-0] Å TEMP3[39-0] XOR TEMP4[39-0]

TEMP6[31-0] Å TEMP5[39-0] MOD2 11EDC6F41H

DEST[31-0] Å BIT_REFLECT (TEMP6[31-0])

Flags Affected

None
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Intel C/C++ Compiler Intrinsic Equivalent
unsigned int _mm_crc32_u8( unsigned int crc, unsigned char data )

unsigned int _mm_crc32_u16( unsigned int crc, unsigned short data )

unsigned int _mm_crc32_u32( unsigned int crc, unsigned int data )

unsinged __int64 _mm_crc32_u64( unsinged __int64 crc, unsigned __int64 data )

SIMD Floating Point Exceptions

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS segments.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.
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CVTDQ2PD—Convert Packed Dword Integers to Packed Double-Precision FP Values

Instruction Operand Encoding

Description

Converts two packed signed doubleword integers in the source operand (second operand) to two packed double-
precision floating-point values in the destination operand (first operand). 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 64- bit memory location. The destination 
operation is an XMM register. The upper bits (VLMAX-1:128) of the corresponding XMM register destination are 
unmodified.
VEX.128 encoded version: The source operand is an XMM register or 64- bit memory location. The destination 
operation is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The source operand is a YMM register or 128- bit memory location. The destination 
operation is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Figure 3-10.  CVTDQ2PD (VEX.256 encoded version)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F E6

CVTDQ2PD xmm1, xmm2/m64

RM V/V SSE2 Convert two packed signed doubleword 
integers from xmm2/m128 to two packed 
double-precision floating-point values in 
xmm1.

VEX.128.F3.0F.WIG E6 /r

VCVTDQ2PD xmm1, xmm2/m64

RM V/V AVX Convert two packed signed doubleword 
integers from xmm2/mem to two packed 
double-precision floating-point values in 
xmm1.

VEX.256.F3.0F.WIG E6 /r

VCVTDQ2PD ymm1, xmm2/m128

RM V/V AVX Convert four packed signed doubleword 
integers from xmm2/mem to four packed 
double-precision floating-point values in 
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

DEST

SRC X0X1X2X3

X3 X2 X1 X0
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Operation

CVTDQ2PD (128-bit Legacy SSE version)

DEST[63:0] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])

DEST[127:64] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])

DEST[VLMAX-1:128] (unmodified)

VCVTDQ2PD (VEX.128 encoded version)

DEST[63:0] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])

DEST[127:64] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])

DEST[VLMAX-1:128] Å 0

VCVTDQ2PD (VEX.256 encoded version)

DEST[63:0] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])

DEST[127:64] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])

DEST[191:128] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC[95:64])

DEST[255:192] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC[127:96)

Intel C/C++ Compiler Intrinsic Equivalent

CVTDQ2PD: __m128d _mm_cvtepi32_pd(__m128i a)

VCVTDQ2PD: __m256d _mm256_cvtepi32_pd (__m128i src)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 5; additionally
#UD If VEX.vvvv != 1111B.
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CVTDQ2PS—Convert Packed Dword Integers to Packed Single-Precision FP Values

Instruction Operand Encoding

Description

Converts four packed signed doubleword integers in the source operand (second operand) to four packed single-
precision floating-point values in the destination operand (first operand). 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination 
operation is an XMM register. The upper bits (VLMAX-1:128) of the corresponding XMM register destination are 
unmodified.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination 
operation is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination 
operation is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

CVTDQ2PS (128-bit Legacy SSE version)

DEST[31:0] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])

DEST[63:32] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])

DEST[95:64] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])

DEST[127:96] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96)

DEST[VLMAX-1:128] (unmodified)

VCVTDQ2PS (VEX.128 encoded version)

DEST[31:0] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])

DEST[63:32] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])

DEST[95:64] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])

DEST[127:96] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96)

DEST[VLMAX-1:128] Å 0

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 5B /r

CVTDQ2PS xmm1, xmm2/m128

RM V/V SSE2 Convert four packed signed doubleword 
integers from xmm2/m128 to four packed 
single-precision floating-point values in xmm1.

VEX.128.0F.WIG 5B /r

VCVTDQ2PS xmm1, xmm2/m128

RM V/V AVX Convert four packed signed doubleword 
integers from xmm2/mem to four packed 
single-precision floating-point values in xmm1.

VEX.256.0F.WIG 5B /r

VCVTDQ2PS ymm1, ymm2/m256

RM V/V AVX Convert eight packed signed doubleword 
integers from ymm2/mem to eight packed 
single-precision floating-point values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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VCVTDQ2PS (VEX.256 encoded version)

DEST[31:0] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0])

DEST[63:32] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32])

DEST[95:64] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64])

DEST[127:96] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[127z:96)

DEST[159:128] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[159:128])

DEST[191:160] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[191:160])

DEST[223:192] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[223:192])

DEST[255:224] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[255:224)

Intel C/C++ Compiler Intrinsic Equivalent

CVTDQ2PS: __m128 _mm_cvtepi32_ps(__m128i a)

VCVTDQ2PS: __m256 _mm256_cvtepi32_ps (__m256i src)

SIMD Floating-Point Exceptions

Precision.

Other Exceptions

See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
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CVTPD2DQ—Convert Packed Double-Precision FP Values to Packed Dword Integers

Instruction Operand Encoding

Description

Converts two packed double-precision floating-point values in the source operand (second operand) to two packed 
signed doubleword integers in the destination operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM 
register. The result is stored in the low quadword of the destination operand and the high quadword is cleared to all 
0s. 

When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register. If a converted result is larger than the maximum signed doubleword integer, the floating-point invalid 
exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination 
operation is an XMM register. Bits[127:64] of the destination XMM register are zeroed. However, the upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are unmodified. 
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination 
operation is a YMM register. The upper bits (VLMAX-1:64) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination 
operation is an XMM register. The upper bits (255:128) of the corresponding YMM register destination are zeroed.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F E6 /r

CVTPD2DQ xmm1, xmm2/m128

RM V/V SSE2 Convert two packed double-precision floating-
point values from xmm2/m128 to two packed 
signed doubleword integers in xmm1.

VEX.128.F2.0F.WIG E6 /r

VCVTPD2DQ xmm1, xmm2/m128

RM V/V AVX Convert two packed double-precision floating-
point values in xmm2/mem to two signed 
doubleword integers in xmm1.

VEX.256.F2.0F.WIG E6 /r

VCVTPD2DQ xmm1, ymm2/m256

RM V/V AVX Convert four packed double-precision floating-
point values in ymm2/mem to four signed 
doubleword integers in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Figure 3-11.  VCVTPD2DQ (VEX.256 encoded version)

Operation

CVTPD2DQ (128-bit Legacy SSE version)

DEST[31:0] Å Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])

DEST[63:32] Å Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])

DEST[127:64] Å 0

DEST[VLMAX-1:128] (unmodified)

VCVTPD2DQ (VEX.128 encoded version)

DEST[31:0] Å Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])

DEST[63:32] Å Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])

DEST[VLMAX-1:64] Å 0

VCVTPD2DQ (VEX.256 encoded version)

DEST[31:0] Å Convert_Double_Precision_Floating_Point_To_Integer(SRC[63:0])

DEST[63:32] Å Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64])

DEST[95:64] Å Convert_Double_Precision_Floating_Point_To_Integer(SRC[191:128])

DEST[127:96] Å Convert_Double_Precision_Floating_Point_To_Integer(SRC[255:192)

DEST[255:128]Å 0

Intel C/C++ Compiler Intrinsic Equivalent

CVTPD2DQ: __m128i _mm_cvtpd_epi32 (__m128d src)

CVTPD2DQ: __m128i _mm256_cvtpd_epi32 (__m256d src)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.

DEST

SRC

X0X1X2X3

X3 X2 X1 X0

0
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CVTPD2PI—Convert Packed Double-Precision FP Values to Packed Dword Integers

Instruction Operand Encoding

Description

Converts two packed double-precision floating-point values in the source operand (second operand) to two packed 
signed doubleword integers in the destination operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The destination operand is an MMX tech-
nology register. 

When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register. If a converted result is larger than the maximum signed doubleword integer, the floating-point invalid 
exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack 
pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU 
floating-point exception is pending, the exception is handled before the CVTPD2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Operation

DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_Integer32(SRC[63:0]);

DEST[63:32] ← Convert_Double_Precision_Floating_Point_To_Integer32(SRC[127:64]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTPD1PI: __m64 _mm_cvtpd_pi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

See Table 22-4, “Exception Conditions for Legacy SIMD/MMX Instructions with FP Exception and 16-Byte Align-
ment,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

66 0F 2D /r

CVTPD2PI mm, xmm/m128

RM Valid Valid Convert two packed double-precision floating-
point values from xmm/m128 to two packed 
signed doubleword integers in mm.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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CVTPD2PS—Convert Packed Double-Precision FP Values to Packed Single-Precision FP Values

Instruction Operand Encoding

Description

Converts two packed double-precision floating-point values in the source operand (second operand) to two packed 
single-precision floating-point values in the destination operand (first operand). 
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination 
operation is an XMM register. Bits[127:64] of the destination XMM register are zeroed. However, the upper bits 
(VLMAX-1:128) of the corresponding YMM register destination are unmodified.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination 
operation is a YMM register. The upper bits (VLMAX-1:64) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination 
operation is an XMM register. The upper bits (255:128) of the corresponding YMM register destination are zeroed.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Figure 3-12.  VCVTPD2PS (VEX.256 encoded version)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 5A /r

CVTPD2PS xmm1, xmm2/m128

RM V/V SSE2 Convert two packed double-precision floating-
point values in xmm2/m128 to two packed 
single-precision floating-point values in 
xmm1.

VEX.128.66.0F.WIG 5A /r

VCVTPD2PS xmm1, xmm2/m128

RM V/V AVX Convert two packed double-precision floating-
point values in xmm2/mem to two single-
precision floating-point values in xmm1.

VEX.256.66.0F.WIG 5A /r

VCVTPD2PS xmm1, ymm2/m256

RM V/V AVX Convert four packed double-precision floating-
point values in ymm2/mem to four single-
precision floating-point values in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

DEST

SRC

X0X1X2X3

X3 X2 X1 X0

0



CVTPD2PS—Convert Packed Double-Precision FP Values to Packed Single-Precision FP Values

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-199

Operation

CVTPD2PS (128-bit Legacy SSE version)

DEST[31:0] Å Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0])

DEST[63:32] Å Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64])

DEST[127:64] Å 0

DEST[VLMAX-1:128] (unmodified)

VCVTPD2PS (VEX.128 encoded version)

DEST[31:0] Å Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0])

DEST[63:32] Å Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64])

DEST[VLMAX-1:64] Å 0

VCVTPD2PS (VEX.256 encoded version)

DEST[31:0] Å Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0])

DEST[63:32] Å Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64])

DEST[95:64] Å Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[191:128])

DEST[127:96] Å Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[255:192)

DEST[255:128]Å 0

Intel C/C++ Compiler Intrinsic Equivalent

CVTPD2PS: __m128 _mm_cvtpd_ps(__m128d a)

CVTPD2PS: __m256 _mm256_cvtpd_ps (__m256d a)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
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CVTPI2PD—Convert Packed Dword Integers to Packed Double-Precision FP Values

Instruction Operand Encoding

Description

Converts two packed signed doubleword integers in the source operand (second operand) to two packed double-
precision floating-point values in the destination operand (first operand). 

The source operand can be an MMX technology register or a 64-bit memory location. The destination operand is an 
XMM register. In addition, depending on the operand configuration:
• For operands xmm, mm: the instruction causes a transition from x87 FPU to MMX technology operation (that 

is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this 
instruction is executed while an x87 FPU floating-point exception is pending, the exception is handled before 
the CVTPI2PD instruction is executed.

• For operands xmm, m64: the instruction does not cause a transition to MMX technology and does not take 
x87 FPU exceptions.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Operation

DEST[63:0] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]);

DEST[127:64] ← Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTPI2PD: __m128d _mm_cvtpi32_pd(__m64 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 22-6, “Exception Conditions for Legacy SIMD/MMX Instructions with XMM and without FP Exception,” in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

66 0F 2A /r

CVTPI2PD xmm, mm/m64*

RM Valid Valid Convert two packed signed doubleword 
integers from mm/mem64 to two packed 
double-precision floating-point values in xmm.

NOTES:
*Operation is different for different operand sets; see the Description section.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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CVTPI2PS—Convert Packed Dword Integers to Packed Single-Precision FP Values

Instruction Operand Encoding

Description

Converts two packed signed doubleword integers in the source operand (second operand) to two packed single-
precision floating-point values in the destination operand (first operand). 

The source operand can be an MMX technology register or a 64-bit memory location. The destination operand is an 
XMM register. The results are stored in the low quadword of the destination operand, and the high quadword 
remains unchanged. When a conversion is inexact, the value returned is rounded according to the rounding control 
bits in the MXCSR register. 

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack 
pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU 
floating-point exception is pending, the exception is handled before the CVTPI2PS instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Operation

DEST[31:0] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);

DEST[63:32] ← Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:32]);

(* High quadword of destination unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent

CVTPI2PS: __m128 _mm_cvtpi32_ps(__m128 a, __m64 b)

SIMD Floating-Point Exceptions

Precision.

Other Exceptions

See Table 22-5, “Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP Exception,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 2A /r

CVTPI2PS xmm, mm/m64

RM Valid Valid Convert two signed doubleword integers 
from mm/m64 to two single-precision 
floating-point values in xmm.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA



CVTPS2DQ—Convert Packed Single-Precision FP Values to Packed Dword Integers

INSTRUCTION SET REFERENCE, A-M

3-202 Vol. 2A

CVTPS2DQ—Convert Packed Single-Precision FP Values to Packed Dword Integers

Instruction Operand Encoding

Description

Converts four or eight packed single-precision floating-point values in the source operand to four or eight signed 
doubleword integers in the destination operand.

When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register. If a converted result is larger than the maximum signed doubleword integer, the floating-point invalid 
exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination 
operation is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination 
operation is a YMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination 
operation is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

CVTPS2DQ (128-bit Legacy SSE version)

DEST[31:0] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])

DEST[63:32] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])

DEST[95:64] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])

DEST[127:96] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96])

DEST[VLMAX-1:128] (unmodified)

VCVTPS2DQ (VEX.128 encoded version)

DEST[31:0] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])

DEST[63:32] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])

DEST[95:64] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])

DEST[127:96] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96])

DEST[VLMAX-1:128] Å 0

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 5B /r

CVTPS2DQ xmm1, xmm2/m128

RM V/V SSE2 Convert four packed single-precision floating-
point values from xmm2/m128 to four packed 
signed doubleword integers in xmm1.

VEX.128.66.0F.WIG 5B /r

VCVTPS2DQ xmm1, xmm2/m128

RM V/V AVX Convert four packed single precision floating-
point values from xmm2/mem to four packed 
signed doubleword values in xmm1.

VEX.256.66.0F.WIG 5B /r

VCVTPS2DQ ymm1, ymm2/m256

RM V/V AVX Convert eight packed single precision floating-
point values from ymm2/mem to eight packed 
signed doubleword values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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VCVTPS2DQ (VEX.256 encoded version)

DEST[31:0] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0])

DEST[63:32] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32])

DEST[95:64] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[95:64])

DEST[127:96] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[127:96)

DEST[159:128] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[159:128])

DEST[191:160] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[191:160])

DEST[223:192] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[223:192])

DEST[255:224] Å Convert_Single_Precision_Floating_Point_To_Integer(SRC[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

CVTPS2DQ: __m128i _mm_cvtps_epi32(__m128 a)

VCVTPS2DQ: __ m256i _mm256_cvtps_epi32 (__m256 a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
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CVTPS2PD—Convert Packed Single-Precision FP Values to Packed Double-Precision FP Values

Instruction Operand Encoding

Description

Converts two or four packed single-precision floating-point values in the source operand (second operand) to two 
or four packed double-precision floating-point values in the destination operand (first operand). 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 64- bit memory location. The destination 
operation is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: The source operand is an XMM register or 64- bit memory location. The destination 
operation is a YMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The source operand is an XMM register or 128- bit memory location. The destination 
operation is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Figure 3-13.  CVTPS2PD (VEX.256 encoded version)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 5A /r

CVTPS2PD xmm1, xmm2/m64

RM V/V SSE2 Convert two packed single-precision floating-
point values in xmm2/m64 to two packed 
double-precision floating-point values in 
xmm1.

VEX.128.0F.WIG 5A /r

VCVTPS2PD xmm1, xmm2/m64

RM V/V AVX Convert two packed single-precision floating-
point values in xmm2/mem to two packed 
double-precision floating-point values in 
xmm1.

VEX.256.0F.WIG 5A /r

VCVTPS2PD ymm1, xmm2/m128

RM V/V AVX Convert four packed single-precision floating-
point values in xmm2/mem to four packed 
double-precision floating-point values in 
ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

DEST

SRC X0X1X2X3

X3 X2 X1 X0
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Operation

CVTPS2PD (128-bit Legacy SSE version)

DEST[63:0] Å Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])

DEST[127:64] Å Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])

DEST[VLMAX-1:128] (unmodified)

VCVTPS2PD (VEX.128 encoded version)

DEST[63:0] Å Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])

DEST[127:64] Å Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])

DEST[VLMAX-1:128] Å 0

VCVTPS2PD (VEX.256 encoded version)

DEST[63:0] Å Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0])

DEST[127:64] Å Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32])

DEST[191:128] Å Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[95:64])

DEST[255:192] Å Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[127:96)

Intel C/C++ Compiler Intrinsic Equivalent

CVTPS2PD: __m128d _mm_cvtps_pd(__m128 a)

VCVTPS2PD: __m256d _mm256_cvtps_pd (__m128 a)

SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions

See Exceptions Type 3; additionally

#UDIf VEX.vvvv != 1111B.
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CVTPS2PI—Convert Packed Single-Precision FP Values to Packed Dword Integers

Instruction Operand Encoding

Description

Converts two packed single-precision floating-point values in the source operand (second operand) to two packed 
signed doubleword integers in the destination operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The destination operand is an MMX tech-
nology register. When the source operand is an XMM register, the two single-precision floating-point values are 
contained in the low quadword of the register. When a conversion is inexact, the value returned is rounded 
according to the rounding control bits in the MXCSR register. If a converted result is larger than the maximum 
signed doubleword integer, the floating-point invalid exception is raised, and if this exception is masked, the indef-
inite integer value (80000000H) is returned.

CVTPS2PI causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack pointer 
is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU floating-
point exception is pending, the exception is handled before the CVTPS2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Operation

DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);

DEST[63:32] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[63:32]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTPS2PI: __m64 _mm_cvtps_pi32(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

See Table 22-5, “Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP Exception,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 2D /r

CVTPS2PI mm, xmm/m64

RM Valid Valid Convert two packed single-precision floating-
point values from xmm/m64 to two packed 
signed doubleword integers in mm.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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CVTSD2SI—Convert Scalar Double-Precision FP Value to Integer

Instruction Operand Encoding

Description

Converts a double-precision floating-point value in the source operand (second operand) to a signed doubleword 
integer in the destination operand (first operand). The source operand can be an XMM register or a 64-bit memory 
location. The destination operand is a general-purpose register. When the source operand is an XMM register, the 
double-precision floating-point value is contained in the low quadword of the register.

When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register. If a converted result is larger than the maximum signed doubleword integer, the floating-point invalid 
exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when used with a REX.R 
prefix. Use of the REX.W prefix promotes the instruction to 64-bit operation. See the summary chart at the begin-
ning of this section for encoding data and limits.
Legacy SSE instructions: Use of the REX.W prefix promotes the instruction to 64-bit operation. See the summary 
chart at the beginning of this section for encoding data and limits.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

IF 64-Bit Mode and OperandSize = 64

THEN
DEST[63:0] ← Convert_Double_Precision_Floating_Point_To_Integer64(SRC[63:0]);

ELSE

DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_Integer32(SRC[63:0]);

FI;

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 2D /r 

CVTSD2SI r32, xmm/m64

RM V/V SSE2 Convert one double-precision floating-point 
value from xmm/m64 to one signed 
doubleword integer r32. 

 F2 REX.W 0F 2D /r

CVTSD2SI r64, xmm/m64

RM V/N.E. SSE2 Convert one double-precision floating-point 
value from xmm/m64 to one signed quadword 
integer sign-extended into r64. 

VEX.LIG.F2.0F.W0 2D /r

VCVTSD2SI r32, xmm1/m64

RM V/V AVX Convert one double precision floating-point 
value from xmm1/m64 to one signed 
doubleword integer r32.

VEX.LIG.F2.0F.W1 2D /r

VCVTSD2SI r64, xmm1/m64

RM V/N.E.1

NOTES:

1. Encoding the VEX prefix with VEX.W=1 in non-64-bit mode is ignored.

AVX Convert one double precision floating-point 
value from xmm1/m64 to one signed 
quadword integer sign-extended into r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Intel C/C++ Compiler Intrinsic Equivalent

int _mm_cvtsd_si32(__m128d a)

__int64 _mm_cvtsd_si64(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
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CVTSD2SS—Convert Scalar Double-Precision FP Value to Scalar Single-Precision FP Value

Instruction Operand Encoding

Description

Converts a double-precision floating-point value in the source operand (second operand) to a single-precision 
floating-point value in the destination operand (first operand). 

The source operand can be an XMM register or a 64-bit memory location. The destination operand is an XMM 
register. When the source operand is an XMM register, the double-precision floating-point value is contained in the 
low quadword of the register. The result is stored in the low doubleword of the destination operand, and the upper 
3 doublewords are left unchanged. When the conversion is inexact, the value returned is rounded according to the 
rounding control bits in the MXCSR register.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (VLMAX-1:32) of the 
corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied from corresponding bits in the 
first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

CVTSD2SS (128-bit Legacy SSE version)

DEST[31:0] Å Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0]);

(* DEST[VLMAX-1:32] Unmodified *)

VCVTSD2SS (VEX.128 encoded version)

DEST[31:0] Å Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC2[63:0]);

DEST[127:32] Å SRC1[127:32]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

CVTSD2SS: __m128 _mm_cvtsd_ss(__m128 a, __m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 5A /r

CVTSD2SS xmm1, xmm2/m64

RM V/V SSE2 Convert one double-precision floating-point 
value in xmm2/m64 to one single-precision 
floating-point value in xmm1.

VEX.NDS.LIG.F2.0F.WIG 5A /r

VCVTSD2SS xmm1,xmm2, xmm3/m64

RVM V/V AVX Convert one double-precision floating-point 
value in xmm3/m64 to one single-precision 
floating-point value and merge with high bits 
in xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Other Exceptions

See Exceptions Type 3.
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CVTSI2SD—Convert Dword Integer to Scalar Double-Precision FP Value

Instruction Operand Encoding

Description

Converts a signed doubleword integer (or signed quadword integer if operand size is 64 bits) in the second source 
operand to a double-precision floating-point value in the destination operand. The result is stored in the low quad-
word of the destination operand, and the high quadword left unchanged. When conversion is inexact, the value 
returned is rounded according to the rounding control bits in the MXCSR register.
Legacy SSE instructions: Use of the REX.W prefix promotes the instruction to 64-bit operands. See the summary 
chart at the beginning of this section for encoding data and limits.
The second source operand can be a general-purpose register or a 32/64-bit memory location. The first source and 
destination operands are XMM registers. 
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (VLMAX-1:64) of the 
corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied from corresponding bits in the 
first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

CVTSI2SD 

IF 64-Bit Mode And OperandSize = 64

THEN

DEST[63:0] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:0]);

ELSE

DEST[63:0] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]);

FI;

DEST[VLMAX-1:64] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 2A /r

CVTSI2SD xmm, r/m32

RM V/V SSE2 Convert one signed doubleword integer from 
r/m32 to one double-precision floating-point 
value in xmm.

F2 REX.W 0F 2A /r

CVTSI2SD xmm, r/m64

RM V/N.E. SSE2 Convert one signed quadword integer from 
r/m64 to one double-precision floating-point 
value in xmm.

VEX.NDS.LIG.F2.0F.W0 2A /r

VCVTSI2SD xmm1, xmm2, r/m32

RVM V/V AVX Convert one signed doubleword integer from 
r/m32 to one double-precision floating-point 
value in xmm1.

VEX.NDS.LIG.F2.0F.W1 2A /r

VCVTSI2SD xmm1, xmm2, r/m64

RVM V/N.E.1

NOTES:

1. Encoding the VEX prefix with VEX.W=1 in non-64-bit mode is ignored.

AVX Convert one signed quadword integer from 
r/m64 to one double-precision floating-point 
value in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VCVTSI2SD 

IF 64-Bit Mode And OperandSize = 64

THEN

DEST[63:0] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC2[63:0]);

ELSE

DEST[63:0] Å Convert_Integer_To_Double_Precision_Floating_Point(SRC2[31:0]);

FI;

DEST[127:64] Å SRC1[127:64]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

CVTSI2SD: __m128d _mm_cvtsi32_sd(__m128d a, int b)

CVTSI2SD: __m128d _mm_cvtsi64_sd(__m128d a, __int64 b)

SIMD Floating-Point Exceptions

Precision.

Other Exceptions

See Exceptions Type 3.



CVTSI2SS—Convert Dword Integer to Scalar Single-Precision FP Value

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-213

CVTSI2SS—Convert Dword Integer to Scalar Single-Precision FP Value

Instruction Operand Encoding

Description

Converts a signed doubleword integer (or signed quadword integer if operand size is 64 bits) in the source operand 
(second operand) to a single-precision floating-point value in the destination operand (first operand). The source 
operand can be a general-purpose register or a memory location. The destination operand is an XMM register. The 
result is stored in the low doubleword of the destination operand, and the upper three doublewords are left 
unchanged. When a conversion is inexact, the value returned is rounded according to the rounding control bits in 
the MXCSR register.

Legacy SSE instructions: In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) 
when used with a REX.R prefix. Use of the REX.W prefix promotes the instruction to 64-bit operands. See the 
summary chart at the beginning of this section for encoding data and limits.

128-bit Legacy SSE version: The destination and first source operand are the same. Bits (VLMAX-1:32) of the 
corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied from corresponding bits in the 
first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

CVTSI2SS (128-bit Legacy SSE version)

IF 64-Bit Mode And OperandSize = 64

THEN

DEST[31:0] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:0]);

ELSE

DEST[31:0] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);

FI;

DEST[VLMAX-1:32] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 2A /r

CVTSI2SS xmm, r/m32

RM V/V SSE Convert one signed doubleword integer from 
r/m32 to one single-precision floating-point 
value in xmm.

F3 REX.W 0F 2A /r

CVTSI2SS xmm, r/m64

RM V/N.E. SSE Convert one signed quadword integer from 
r/m64 to one single-precision floating-point 
value in xmm.

VEX.NDS.LIG.F3.0F.W0 2A /r

VCVTSI2SS xmm1, xmm2, r/m32

RVM V/V AVX Convert one signed doubleword integer from 
r/m32 to one single-precision floating-point 
value in xmm1.

VEX.NDS.LIG.F3.0F.W1 2A /r

VCVTSI2SS xmm1, xmm2, r/m64

RVM V/N.E.1

NOTES:

1. Encoding the VEX prefix with VEX.W=1 in non-64-bit mode is ignored.

AVX Convert one signed quadword integer from 
r/m64 to one single-precision floating-point 
value in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VCVTSI2SS (VEX.128 encoded version)

IF 64-Bit Mode And OperandSize = 64

THEN

DEST[31:0] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[63:0]);

ELSE

DEST[31:0] Å Convert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);

FI;

DEST[127:32] Å SRC1[127:32]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

CVTSI2SS: __m128  _mm_cvtsi32_ss(__m128  a, int b)

CVTSI2SS: __m128  _mm_cvtsi64_ss(__m128  a, __int64 b)

SIMD Floating-Point Exceptions

Precision.

Other Exceptions

See Exceptions Type 3.



CVTSS2SD—Convert Scalar Single-Precision FP Value to Scalar Double-Precision FP Value

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-215

CVTSS2SD—Convert Scalar Single-Precision FP Value to Scalar Double-Precision FP Value

Instruction Operand Encoding

Description

Converts a single-precision floating-point value in the source operand (second operand) to a double-precision 
floating-point value in the destination operand (first operand). The source operand can be an XMM register or a 32-
bit memory location. The destination operand is an XMM register. When the source operand is an XMM register, the 
single-precision floating-point value is contained in the low doubleword of the register. The result is stored in the 
low quadword of the destination operand, and the high quadword is left unchanged.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (VLMAX-1:64) of the 
corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied from corresponding bits in the 
first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

CVTSS2SD (128-bit Legacy SSE version)

DEST[63:0] Å Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0]);

DEST[VLMAX-1:64] (Unmodified)

VCVTSS2SD (VEX.128 encoded version)

DEST[63:0] Å Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC2[31:0])

DEST[127:64] Å SRC1[127:64]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

CVTSS2SD: __m128d _mm_cvtss_sd(__m128d a, __m128 b)

SIMD Floating-Point Exceptions

Invalid, Denormal.

Other Exceptions

See Exceptions Type 3.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 5A /r

CVTSS2SD xmm1, xmm2/m32

RM V/V SSE2 Convert one single-precision floating-point 
value in xmm2/m32 to one double-precision 
floating-point value in xmm1.

VEX.NDS.LIG.F3.0F.WIG 5A /r

VCVTSS2SD xmm1, xmm2, xmm3/m32

RVM V/V AVX Convert one single-precision floating-point 
value in xmm3/m32 to one double-precision 
floating-point value and merge with high bits 
of xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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CVTSS2SI—Convert Scalar Single-Precision FP Value to Dword Integer

Instruction Operand Encoding

Description

Converts a single-precision floating-point value in the source operand (second operand) to a signed doubleword 
integer (or signed quadword integer if operand size is 64 bits) in the destination operand (first operand). The 
source operand can be an XMM register or a memory location. The destination operand is a general-purpose 
register. When the source operand is an XMM register, the single-precision floating-point value is contained in the 
low doubleword of the register.

When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR 
register. If a converted result is larger than the maximum signed doubleword integer, the floating-point invalid 
exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when used with a REX.R 
prefix. Use of the REX.W prefix promotes the instruction to 64-bit operands. See the summary chart at the begin-
ning of this section for encoding data and limits.
Legacy SSE instructions: In 64-bit mode, Use of the REX.W prefix promotes the instruction to 64-bit operands. See 
the summary chart at the beginning of this section for encoding data and limits.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

IF 64-bit Mode and OperandSize = 64

THEN

DEST[64:0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);

ELSE

DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);

FI;

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 2D /r

CVTSS2SI r32, xmm/m32

RM V/V SSE Convert one single-precision floating-point 
value from xmm/m32 to one signed 
doubleword integer in r32. 

F3 REX.W 0F 2D /r

CVTSS2SI r64, xmm/m32

RM V/N.E. SSE Convert one single-precision floating-point 
value from xmm/m32 to one signed 
quadword integer in r64. 

VEX.LIG.F3.0F.W0 2D /r

VCVTSS2SI r32, xmm1/m32

RM V/V AVX Convert one single-precision floating-point 
value from xmm1/m32 to one signed 
doubleword integer in r32.

VEX.LIG.F3.0F.W1 2D /r

VCVTSS2SI r64, xmm1/m32

RM V/N.E.1

NOTES:

1. Encoding the VEX prefix with VEX.W=1 in non-64-bit mode is ignored.

AVX Convert one single-precision floating-point 
value from xmm1/m32 to one signed 
quadword integer in r64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Intel C/C++ Compiler Intrinsic Equivalent

int _mm_cvtss_si32(__m128d a)

__int64 _mm_cvtss_si64(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
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CVTTPD2DQ—Convert with Truncation Packed Double-Precision FP Values to Packed Dword 
Integers

Instruction Operand Encoding

Description

Converts two or four packed double-precision floating-point values in the source operand (second operand) to two 
or four packed signed doubleword integers in the destination operand (first operand). 
When a conversion is inexact, a truncated (round toward zero) value is returned.If a converted result is larger than 
the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is 
masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination 
operation is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination 
operation is a YMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination 
operation is an XMM register. The upper bits (255:128) of the corresponding YMM register destination are zeroed.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F E6 /r

CVTTPD2DQ xmm1, xmm2/m128

RM V/V SSE2 Convert two packed double-precision floating-
point values from xmm2/m128 to two packed 
signed doubleword integers in xmm1 using 
truncation.

VEX.128.66.0F.WIG E6 /r

VCVTTPD2DQ xmm1, xmm2/m128

RM V/V AVX Convert two packed double-precision floating-
point values in xmm2/mem to two signed 
doubleword integers in xmm1 using 
truncation.

VEX.256.66.0F.WIG E6 /r

VCVTTPD2DQ xmm1, ymm2/m256

RM V/V AVX Convert four packed double-precision floating-
point values in ymm2/mem to four signed 
doubleword integers in xmm1 using 
truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Figure 3-14.  VCVTTPD2DQ (VEX.256 encoded version)

Operation

CVTTPD2DQ (128-bit Legacy SSE version)

DEST[31:0] Å Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])

DEST[63:32] Å Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])

DEST[127:64] Å 0

DEST[VLMAX-1:128] (unmodified)

VCVTTPD2DQ (VEX.128 encoded version)

DEST[31:0] Å Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])

DEST[63:32] Å Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])

DEST[VLMAX-1:64] Å 0

VCVTTPD2DQ (VEX.256 encoded version)

DEST[31:0] Å Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0])

DEST[63:32] Å Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64])

DEST[95:64] Å Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[191:128])

DEST[127:96] Å Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[255:192)

DEST[255:128]Å 0

Intel C/C++ Compiler Intrinsic Equivalent

CVTTPD2DQ:  __m128i _mm_cvttpd_epi32(__m128d a)

VCVTTPD2DQ: __m128i _mm256_cvttpd_epi32 (__m256d src)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.

DEST

SRC

X0X1X2X3

X3 X2 X1 X0

0
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CVTTPD2PI—Convert with Truncation Packed Double-Precision FP Values to Packed Dword 
Integers

Instruction Operand Encoding

Description

Converts two packed double-precision floating-point values in the source operand (second operand) to two packed 
signed doubleword integers in the destination operand (first operand). The source operand can be an XMM register 
or a 128-bit memory location. The destination operand is an MMX technology register. 

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted result is larger than 
the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is 
masked, the indefinite integer value (80000000H) is returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack 
pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU 
floating-point exception is pending, the exception is handled before the CVTTPD2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Operation

DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_Integer32_Truncate(SRC[63:0]);

DEST[63:32] ← Convert_Double_Precision_Floating_Point_To_Integer32_

Truncate(SRC[127:64]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTTPD1PI:  __m64 _mm_cvttpd_pi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Mode Exceptions

See Table 22-4, “Exception Conditions for Legacy SIMD/MMX Instructions with FP Exception and 16-Byte Align-
ment,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

66 0F 2C /r

CVTTPD2PI mm, xmm/m128

RM Valid Valid Convert two packer double-precision floating-
point values from xmm/m128 to two packed 
signed doubleword integers in mm using 
truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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CVTTPS2DQ—Convert with Truncation Packed Single-Precision FP Values to Packed Dword 
Integers

Instruction Operand Encoding

Description

Converts four or eight packed single-precision floating-point values in the source operand to four or eight signed 
doubleword integers in the destination operand.
When a conversion is inexact, a truncated (round toward zero) value is returned.If a converted result is larger than 
the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is 
masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination 
operation is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
unmodified.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination 
operation is a YMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination 
operation is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

CVTTPS2DQ (128-bit Legacy SSE version)

DEST[31:0] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])

DEST[63:32] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])

DEST[95:64] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])

DEST[127:96] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96])

DEST[VLMAX-1:128] (unmodified)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 5B /r

CVTTPS2DQ xmm1, xmm2/m128

RM V/V SSE2 Convert four single-precision floating-point 
values from xmm2/m128 to four signed 
doubleword integers in xmm1 using 
truncation.

VEX.128.F3.0F.WIG 5B /r

VCVTTPS2DQ xmm1, xmm2/m128

RM V/V AVX Convert four packed single precision floating-
point values from xmm2/mem to four packed 
signed doubleword values in xmm1 using 
truncation.

VEX.256.F3.0F.WIG 5B /r

VCVTTPS2DQ ymm1, ymm2/m256

RM V/V AVX Convert eight packed single precision floating-
point values from ymm2/mem to eight packed 
signed doubleword values in ymm1 using 
truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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VCVTTPS2DQ (VEX.128 encoded version)

DEST[31:0] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])

DEST[63:32] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])

DEST[95:64] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])

DEST[127:96] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96])

DEST[VLMAX-1:128] Å 0

VCVTTPS2DQ (VEX.256 encoded version)

DEST[31:0] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0])

DEST[63:32] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32])

DEST[95:64] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64])

DEST[127:96] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96)

DEST[159:128] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[159:128])

DEST[191:160] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[191:160])

DEST[223:192] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[223:192])

DEST[255:224] Å Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

CVTTPS2DQ: __m128i _mm_cvttps_epi32(__m128 a)

VCVTTPS2DQ: __m256i _mm256_cvttps_epi32 (__m256 a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
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CVTTPS2PI—Convert with Truncation Packed Single-Precision FP Values to Packed Dword 
Integers

Instruction Operand Encoding

Description

Converts two packed single-precision floating-point values in the source operand (second operand) to two packed 
signed doubleword integers in the destination operand (first operand). The source operand can be an XMM register 
or a 64-bit memory location. The destination operand is an MMX technology register. When the source operand is 
an XMM register, the two single-precision floating-point values are contained in the low quadword of the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted result is larger 
than the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is 
masked, the indefinite integer value (80000000H) is returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack 
pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU 
floating-point exception is pending, the exception is handled before the CVTTPS2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Operation

DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]);

DEST[63:32] ← Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32]);

Intel C/C++ Compiler Intrinsic Equivalent

CVTTPS2PI: __m64 _mm_cvttps_pi32(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

See Table 22-5, “Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP Exception,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 2C /r

CVTTPS2PI mm, xmm/m64

RM Valid Valid Convert two single-precision floating-point 
values from xmm/m64 to two signed 
doubleword signed integers in mm using 
truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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CVTTSD2SI—Convert with Truncation Scalar Double-Precision FP Value to Signed Integer

Instruction Operand Encoding

Description

Converts a double-precision floating-point value in the source operand (second operand) to a signed doubleword 
integer (or signed quadword integer if operand size is 64 bits) in the destination operand (first operand). The 
source operand can be an XMM register or a 64-bit memory location. The destination operand is a general purpose 
register. When the source operand is an XMM register, the double-precision floating-point value is contained in the 
low quadword of the register. 
When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted result is larger than 
the maximum signed doubleword integer, the floating point invalid exception is raised. If this exception is masked, 
the indefinite integer value (80000000H) is returned.
Legacy SSE instructions: In 64-bit mode, Use of the REX.W prefix promotes the instruction to 64-bit operation. See 
the summary chart at the beginning of this section for encoding data and limits.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

IF 64-Bit Mode and OperandSize = 64

THEN

DEST[63:0] ← Convert_Double_Precision_Floating_Point_To_

Integer64_Truncate(SRC[63:0]);

ELSE

DEST[31:0] ← Convert_Double_Precision_Floating_Point_To_

Integer32_Truncate(SRC[63:0]);

FI;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_cvttsd_si32(__m128d a)

__int64 _mm_cvttsd_si64(__m128d a)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 2C /r

CVTTSD2SI r32, xmm/m64

RM V/V SSE2 Convert one double-precision floating-point 
value from xmm/m64 to one signed 
doubleword integer in r32 using truncation. 

F2 REX.W 0F 2C /r

CVTTSD2SI r64, xmm/m64

RM V/N.E. SSE2 Convert one double precision floating-point 
value from xmm/m64 to one signedquadword 
integer in r64 using truncation.

VEX.LIG.F2.0F.W0 2C /r

VCVTTSD2SI r32, xmm1/m64

RM V/V AVX Convert one double-precision floating-point 
value from xmm1/m64 to one signed 
doubleword integer in r32 using truncation.

VEX.LIG.F2.0F.W1 2C /r

VCVTTSD2SI r64, xmm1/m64

RM V/N.E.1

NOTES:

1. Encoding the VEX prefix with VEX.W=1 in non-64-bit mode is ignored.

AVX Convert one double precision floating-point 
value from xmm1/m64 to one signed 
quadword integer in r64 using truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.



CVTTSS2SI—Convert with Truncation Scalar Single-Precision FP Value to Dword Integer

INSTRUCTION SET REFERENCE, A-M

3-226 Vol. 2A

CVTTSS2SI—Convert with Truncation Scalar Single-Precision FP Value to Dword Integer

Instruction Operand Encoding

Description

Converts a single-precision floating-point value in the source operand (second operand) to a signed doubleword 
integer (or signed quadword integer if operand size is 64 bits) in the destination operand (first operand). The 
source operand can be an XMM register or a 32-bit memory location. The destination operand is a general-purpose 
register. When the source operand is an XMM register, the single-precision floating-point value is contained in the 
low doubleword of the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a converted result is larger than 
the maximum signed doubleword integer, the floating-point invalid exception is raised. If this exception is masked, 
the indefinite integer value (80000000H) is returned.

Legacy SSE instructions: In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) 
when used with a REX.R prefix. Use of the REX.W prefix promotes the instruction to 64-bit operation. See the 
summary chart at the beginning of this section for encoding data and limits.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

IF 64-Bit Mode and OperandSize = 64

THEN

DEST[63:0] ← Convert_Single_Precision_Floating_Point_To_

 Integer_Truncate(SRC[31:0]);

ELSE

DEST[31:0] ← Convert_Single_Precision_Floating_Point_To_

Integer_Truncate(SRC[31:0]);

FI;

Opcode/
Instruction

Op/ En 64/32-bit 
Mode

CPUID 
Feature Flag

Description

F3 0F 2C /r

CVTTSS2SI r32, xmm/m32

RM V/V SSE Convert one single-precision floating-point 
value from xmm/m32 to one signed 
doubleword integer in r32 using truncation.

F3 REX.W 0F 2C /r

CVTTSS2SI r64, xmm/m32

RM V/N.E. SSE Convert one single-precision floating-point 
value from xmm/m32 to one signed quadword 
integer in r64 using truncation.

VEX.LIG.F3.0F.W0 2C /r

VCVTTSS2SI r32, xmm1/m32

RM V/V AVX Convert one single-precision floating-point 
value from xmm1/m32 to one signed 
doubleword integer in r32 using truncation.

VEX.LIG.F3.0F.W1 2C /r

VCVTTSS2SI r64, xmm1/m32

RM V/N.E.1

NOTES:

1. Encoding the VEX prefix with VEX.W=1 in non-64-bit mode is ignored.

AVX Convert one single-precision floating-point 
value from xmm1/m32 to one signed 
quadword integer in r64 using truncation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Intel C/C++ Compiler Intrinsic Equivalent

int _mm_cvttss_si32(__m128d a)

__int64 _mm_cvttss_si64(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Other Exceptions

See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
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CWD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword to Quadword

Instruction Operand Encoding

Description

Doubles the size of the operand in register AX, EAX, or RAX (depending on the operand size) by means of sign 
extension and stores the result in registers DX:AX, EDX:EAX, or RDX:RAX, respectively. The CWD instruction 
copies the sign (bit 15) of the value in the AX register into every bit position in the DX register. The CDQ instruction 
copies the sign (bit 31) of the value in the EAX register into every bit position in the EDX register. The CQO instruc-
tion (available in 64-bit mode only) copies the sign (bit 63) of the value in the RAX register into every bit position 
in the RDX register.

The CWD instruction can be used to produce a doubleword dividend from a word before word division. The CDQ 
instruction can be used to produce a quadword dividend from a doubleword before doubleword division. The CQO 
instruction can be used to produce a double quadword dividend from a quadword before a quadword division.

The CWD and CDQ mnemonics reference the same opcode. The CWD instruction is intended for use when the 
operand-size attribute is 16 and the CDQ instruction for when the operand-size attribute is 32. Some assemblers 
may force the operand size to 16 when CWD is used and to 32 when CDQ is used. Others may treat these 
mnemonics as synonyms (CWD/CDQ) and use the current setting of the operand-size attribute to determine the 
size of values to be converted, regardless of the mnemonic used.

In 64-bit mode, use of the REX.W prefix promotes operation to 64 bits. The CQO mnemonics reference the same 
opcode as CWD/CDQ. See the summary chart at the beginning of this section for encoding data and limits.

Operation

IF OperandSize = 16 (* CWD instruction *)

THEN 

DX ← SignExtend(AX);

ELSE IF OperandSize = 32 (* CDQ instruction *)

EDX ← SignExtend(EAX); FI;

ELSE IF 64-Bit Mode and OperandSize = 64 (* CQO instruction*)

RDX ← SignExtend(RAX); FI;

FI;

Flags Affected

None.

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

99 CWD NP Valid Valid DX:AX ← sign-extend of AX.

99 CDQ NP Valid Valid EDX:EAX ← sign-extend of EAX.

REX.W + 99 CQO NP Valid N.E. RDX:RAX← sign-extend of RAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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DAA—Decimal Adjust AL after Addition

Instruction Operand Encoding

Description

Adjusts the sum of two packed BCD values to create a packed BCD result. The AL register is the implied source and 
destination operand. The DAA instruction is only useful when it follows an ADD instruction that adds (binary addi-
tion) two 2-digit, packed BCD values and stores a byte result in the AL register. The DAA instruction then adjusts 
the contents of the AL register to contain the correct 2-digit, packed BCD result. If a decimal carry is detected, the 
CF and AF flags are set accordingly.

This instruction executes as described above in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode

THEN
#UD;

ELSE

old_AL ← AL;

old_CF ← CF;

CF ← 0;

IF (((AL AND 0FH) > 9) or AF = 1)

 THEN

 AL ← AL + 6;

 CF ← old_CF or (Carry from AL ← AL + 6);

 AF ← 1;

  ELSE

  AF ← 0;

FI;

IF ((old_AL > 99H) or (old_CF = 1))

 THEN

 AL ← AL + 60H;

  CF ← 1;

ELSE

 CF ← 0;

FI;

FI;

Example

ADD AL, BL Before: AL=79H BL=35H EFLAGS(OSZAPC)=XXXXXX

After: AL=AEH BL=35H EFLAGS(0SZAPC)=110000

DAA Before: AL=AEH BL=35H EFLAGS(OSZAPC)=110000

After: AL=14H BL=35H EFLAGS(0SZAPC)=X00111

DAA Before: AL=2EH BL=35H EFLAGS(OSZAPC)=110000

After: AL=34H BL=35H EFLAGS(0SZAPC)=X00101

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

27 DAA NP Invalid Valid Decimal adjust AL after addition.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal carry in either digit of the result (see 
the “Operation” section above). The SF, ZF, and PF flags are set according to the result. The OF flag is undefined.

Protected Mode Exceptions

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

#UD If the LOCK prefix is used.

64-Bit Mode Exceptions

#UD If in 64-bit mode.
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DAS—Decimal Adjust AL after Subtraction

Instruction Operand Encoding

Description

Adjusts the result of the subtraction of two packed BCD values to create a packed BCD result. The AL register is the 
implied source and destination operand. The DAS instruction is only useful when it follows a SUB instruction that 
subtracts (binary subtraction) one 2-digit, packed BCD value from another and stores a byte result in the AL 
register. The DAS instruction then adjusts the contents of the AL register to contain the correct 2-digit, packed BCD 
result. If a decimal borrow is detected, the CF and AF flags are set accordingly.

This instruction executes as described above in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode

THEN

#UD;

ELSE

old_AL ← AL;

old_CF ← CF;

CF ← 0;

IF (((AL AND 0FH) > 9) or AF = 1)

 THEN

 AL ← AL - 6;

CF ← old_CF or (Borrow from AL ← AL − 6);

AF ← 1;

ELSE

AF ← 0;

FI;

IF ((old_AL > 99H) or (old_CF = 1))

 THEN

AL ← AL − 60H;

CF ← 1;

FI;

FI;

Example

SUB AL, BL Before: AL = 35H, BL = 47H, EFLAGS(OSZAPC) = XXXXXX

After: AL = EEH, BL = 47H, EFLAGS(0SZAPC) = 010111

DAA Before: AL = EEH, BL = 47H, EFLAGS(OSZAPC) = 010111

After: AL = 88H, BL = 47H, EFLAGS(0SZAPC) = X10111

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

2F DAS NP Invalid Valid Decimal adjust AL after subtraction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal borrow in either digit of the result 
(see the “Operation” section above). The SF, ZF, and PF flags are set according to the result. The OF flag is unde-
fined.

Protected Mode Exceptions

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

#UD If the LOCK prefix is used.

64-Bit Mode Exceptions

#UD If in 64-bit mode.
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DEC—Decrement by 1

Instruction Operand Encoding

Description

Subtracts 1 from the destination operand, while preserving the state of the CF flag. The destination operand can be 
a register or a memory location. This instruction allows a loop counter to be updated without disturbing the CF flag. 
(To perform a decrement operation that updates the CF flag, use a SUB instruction with an immediate operand of 
1.)

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, DEC r16 and DEC r32 are not encodable (because opcodes 48H through 4FH are REX prefixes). 
Otherwise, the instruction’s 64-bit mode default operation size is 32 bits. Use of the REX.R prefix permits access to 
additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. 

See the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST ← DEST – 1;

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination operand is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

FE /1 DEC r/m8 M Valid Valid Decrement r/m8 by 1.

REX + FE /1 DEC r/m8
* M Valid N.E. Decrement r/m8 by 1.

FF /1 DEC r/m16 M Valid Valid Decrement r/m16 by 1.

FF /1 DEC r/m32 M Valid Valid Decrement r/m32 by 1.

REX.W + FF /1 DEC r/m64 M Valid N.E. Decrement r/m64 by 1.

48+rw DEC r16 O N.E. Valid Decrement r16 by 1.

48+rd DEC r32 O N.E. Valid Decrement r32 by 1.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA

O opcode + rd (r, w) NA NA NA
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Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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DIV—Unsigned Divide

Instruction Operand Encoding

Description

Divides unsigned the value in the AX, DX:AX, EDX:EAX, or RDX:RAX registers (dividend) by the source operand 
(divisor) and stores the result in the AX (AH:AL), DX:AX, EDX:EAX, or RDX:RAX registers. The source operand can 
be a general-purpose register or a memory location. The action of this instruction depends on the operand size 
(dividend/divisor). Division using 64-bit operand is available only in 64-bit mode.

Non-integral results are truncated (chopped) towards 0. The remainder is always less than the divisor in magni-
tude. Overflow is indicated with the #DE (divide error) exception rather than with the CF flag.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. In 64-bit mode when REX.W is 
applied, the instruction divides the unsigned value in RDX:RAX by the source operand and stores the quotient in 
RAX, the remainder in RDX. 

See the summary chart at the beginning of this section for encoding data and limits. See Table 3-25.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F6 /6 DIV r/m8 M Valid Valid Unsigned divide AX by r/m8, with result 
stored in AL ← Quotient, AH ← Remainder.

REX + F6 /6 DIV r/m8
* M Valid N.E. Unsigned divide AX by r/m8, with result 

stored in AL ← Quotient, AH ← Remainder.

F7 /6 DIV r/m16 M Valid Valid Unsigned divide DX:AX by r/m16, with result 
stored in AX ← Quotient, DX ← Remainder.

F7 /6 DIV r/m32 M Valid Valid Unsigned divide EDX:EAX by r/m32, with 
result stored in EAX ← Quotient, EDX ← 
Remainder.

REX.W + F7 /6 DIV r/m64 M Valid N.E. Unsigned divide RDX:RAX by r/m64, with 
result stored in RAX ← Quotient, RDX ← 
Remainder.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

Table 3-25.  DIV Action 

Operand Size Dividend Divisor Quotient Remainder
Maximum 
Quotient

Word/byte AX r/m8 AL AH 255

Doubleword/word DX:AX r/m16 AX DX 65,535

Quadword/doubleword EDX:EAX r/m32 EAX EDX 232 − 1

Doublequadword/

quadword

RDX:RAX r/m64 RAX RDX 264 − 1
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Operation

IF SRC = 0

THEN #DE; FI; (* Divide Error *) 

IF OperandSize = 8 (* Word/Byte Operation *)

THEN

temp ← AX / SRC;

IF temp > FFH

THEN #DE; (* Divide error *) 

ELSE

AL ← temp;

AH ← AX MOD SRC;

FI;

ELSE IF OperandSize = 16 (* Doubleword/word operation *)

THEN

temp ← DX:AX / SRC;

IF temp > FFFFH

THEN #DE; (* Divide error *) 

ELSE

AX ← temp;

DX ← DX:AX MOD SRC;

FI;

FI;

ELSE IF Operandsize = 32 (* Quadword/doubleword operation *)

THEN

temp ← EDX:EAX / SRC;

IF temp > FFFFFFFFH

THEN #DE; (* Divide error *) 

ELSE

EAX ← temp;

EDX ← EDX:EAX MOD SRC;

FI;

FI;

ELSE IF 64-Bit Mode and Operandsize = 64 (* Doublequadword/quadword operation *)

THEN

temp ← RDX:RAX / SRC;

IF temp > FFFFFFFFFFFFFFFFH

THEN #DE; (* Divide error *) 

ELSE

RAX ← temp;

RDX ← RDX:RAX MOD SRC;

FI;

FI;

FI;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#DE If the source operand (divisor) is 0
If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.
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#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#DE If the source operand (divisor) is 0.
If the quotient is too large for the designated register.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#DE If the source operand (divisor) is 0.
If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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DIVPD—Divide Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs an SIMD divide of the two or four packed double-precision floating-point values in the first source operand 
by the two or four packed double-precision floating-point values in the second source operand. See Chapter 11 in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an overview of a SIMD double-
precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

DIVPD (128-bit Legacy SSE version)

DEST[63:0] Å SRC1[63:0] / SRC2[63:0]

DEST[127:64] Å SRC1[127:64] / SRC2[127:64]

DEST[VLMAX-1:128] (Unmodified)

VDIVPD (VEX.128 encoded version)

DEST[63:0] Å SRC1[63:0] / SRC2[63:0]

DEST[127:64] Å SRC1[127:64] / SRC2[127:64]

DEST[VLMAX-1:128] Å 0

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 5E /r

DIVPD xmm1, xmm2/m128

RM V/V SSE2 Divide packed double-precision floating-point 
values in xmm1 by packed double-precision 
floating-point values xmm2/m128.

VEX.NDS.128.66.0F.WIG 5E /r

VDIVPD xmm1, xmm2, xmm3/m128

RVM V/V AVX Divide packed double-precision floating-point 
values in xmm2 by packed double-precision 
floating-point values in xmm3/mem.

VEX.NDS.256.66.0F.WIG 5E /r

VDIVPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Divide packed double-precision floating-point 
values in ymm2 by packed double-precision 
floating-point values in ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VDIVPD (VEX.256 encoded version)

DEST[63:0] Å SRC1[63:0] / SRC2[63:0]

DEST[127:64] Å SRC1[127:64] / SRC2[127:64]

DEST[191:128] Å SRC1[191:128] / SRC2[191:128]

DEST[255:192] Å SRC1[255:192] / SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

DIVPD: __m128d _mm_div_pd(__m128d a, __m128d b)

VDIVPD: __m256d _mm256_div_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Other Exceptions

See Exceptions Type 2.
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DIVPS—Divide Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs an SIMD divide of the four or eight packed single-precision floating-point values in the first source 
operand by the four or eight packed single-precision floating-point values in the second source operand. See 
Chapter 10 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an overview of a 
SIMD single-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

DIVPS (128-bit Legacy SSE version)

DEST[31:0] Å SRC1[31:0] / SRC2[31:0]

DEST[63:32] Å SRC1[63:32] / SRC2[63:32]

DEST[95:64] Å SRC1[95:64] / SRC2[95:64]

DEST[127:96] Å SRC1[127:96] / SRC2[127:96]

DEST[VLMAX-1:128] (Unmodified)

VDIVPS (VEX.128 encoded version)

DEST[31:0] Å SRC1[31:0] / SRC2[31:0]

DEST[63:32] Å SRC1[63:32] / SRC2[63:32]

DEST[95:64] Å SRC1[95:64] / SRC2[95:64]

DEST[127:96] Å SRC1[127:96] / SRC2[127:96]

DEST[VLMAX-1:128] Å 0

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 5E /r

DIVPS xmm1, xmm2/m128

RM V/V SSE Divide packed single-precision floating-point 
values in xmm1 by packed single-precision 
floating-point values xmm2/m128.

VEX.NDS.128.0F.WIG 5E /r

VDIVPS xmm1, xmm2, xmm3/m128

RVM V/V AVX Divide packed single-precision floating-point 
values in xmm2 by packed double-precision 
floating-point values in xmm3/mem.

VEX.NDS.256.0F.WIG 5E /r

VDIVPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Divide packed single-precision floating-point 
values in ymm2 by packed double-precision 
floating-point values in ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VDIVPS (VEX.256 encoded version)

DEST[31:0] Å SRC1[31:0] / SRC2[31:0]

DEST[63:32] Å SRC1[63:32] / SRC2[63:32]

DEST[95:64] Å SRC1[95:64] / SRC2[95:64]

DEST[127:96] Å SRC1[127:96] / SRC2[127:96]

DEST[159:128] Å SRC1[159:128] / SRC2[159:128]

DEST[191:160]Å SRC1[191:160] / SRC2[191:160]

DEST[223:192] Å SRC1[223:192] / SRC2[223:192]

DEST[255:224] Å SRC1[255:224] / SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

DIVPS: __m128 _mm_div_ps(__m128 a, __m128 b)

VDIVPS: __m256 _mm256_div_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Other Exceptions

See Exceptions Type 2.
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DIVSD—Divide Scalar Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Divides the low double-precision floating-point value in the first source operand by the low double-precision 
floating-point value in the second source operand, and stores the double-precision floating-point result in the desti-
nation operand. The second source operand can be an XMM register or a 64-bit memory location. The first source 
and destination hyperons are XMM registers. The high quadword of the destination operand is copied from the high 
quadword of the first source operand. See Chapter 11 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for an overview of a scalar double-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-
1:64) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

DIVSD (128-bit Legacy SSE version)

DEST[63:0] Å DEST[63:0] / SRC[63:0]

DEST[VLMAX-1:64] (Unmodified)

VDIVSD (VEX.128 encoded version)

DEST[63:0] Å SRC1[63:0] / SRC2[63:0]

DEST[127:64] Å SRC1[127:64]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

DIVSD: __m128d _mm_div_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Other Exceptions

See Exceptions Type 3.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 5E /r

DIVSD xmm1, xmm2/m64

RM V/V SSE2 Divide low double-precision floating-point 
value in xmm1 by low double-precision 
floating-point value in xmm2/mem64.

VEX.NDS.LIG.F2.0F.WIG 5E /r

VDIVSD xmm1, xmm2, xmm3/m64

RVM V/V AVX Divide low double-precision floating point 
values in xmm2 by low double precision 
floating-point value in xmm3/mem64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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DIVSS—Divide Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Divides the low single-precision floating-point value in the first source operand by the low single-precision floating-
point value in the second source operand, and stores the single-precision floating-point result in the destination 
operand. The second source operand can be an XMM register or a 32-bit memory location. The first source and 
destination operands are XMM registers. The three high-order doublewords of the destination are copied from the 
same dwords of the first source operand. See Chapter 10 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for an overview of a scalar single-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-
1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

DIVSS (128-bit Legacy SSE version)

DEST[31:0] Å DEST[31:0] / SRC[31:0]

DEST[VLMAX-1:32] (Unmodified)

VDIVSS (VEX.128 encoded version)

DEST[31:0] Å SRC1[31:0] / SRC2[31:0]

DEST[127:32] Å SRC1[127:32]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

DIVSS: __m128 _mm_div_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Other Exceptions

See Exceptions Type 3.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 5E /r

DIVSS xmm1, xmm2/m32

RM V/V SSE Divide low single-precision floating-point value 
in xmm1 by low single-precision floating-point 
value in xmm2/m32.

VEX.NDS.LIG.F3.0F.WIG 5E /r

VDIVSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Divide low single-precision floating point value 
in xmm2 by low single precision floating-point 
value in xmm3/m32.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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DPPD — Dot Product of Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Conditionally multiplies the packed double-precision floating-point values in the destination operand (first operand) 
with the packed double-precision floating-point values in the source (second operand) depending on a mask 
extracted from bits [5:4] of the immediate operand (third operand). If a condition mask bit is zero, the corre-
sponding multiplication is replaced by a value of 0.0 in the manner described by Section 12.8.4 of Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

The two resulting double-precision values are summed into an intermediate result. The intermediate result is 
conditionally broadcasted to the destination using a broadcast mask specified by bits [1:0] of the immediate byte. 

If a broadcast mask bit is "1", the intermediate result is copied to the corresponding qword element in the destina-
tion operand. If a broadcast mask bit is zero, the corresponding element in the destination is set to zero.
DPPD follows the NaN forwarding rules stated in the Software Developer’s Manual, vol. 1, table 4.7. These rules do 
not cover horizontal prioritization of NaNs. Horizontal propagation of NaNs to the destination and the positioning of 
those NaNs in the destination is implementation dependent. NaNs on the input sources or computationally gener-
ated NaNs will have at least one NaN propagated to the destination.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
If VDPPD is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an 
#UD exception.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 41 /r ib

DPPD xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Selectively multiply packed DP floating-point 
values from xmm1 with packed DP floating-
point values from xmm2, add and selectively 
store the packed DP floating-point values to 
xmm1.

VEX.NDS.128.66.0F3A.WIG 41 /r ib

VDPPD xmm1,xmm2, xmm3/m128, imm8

RVMI V/V AVX Selectively multiply packed DP floating-point 
values from xmm2 with packed DP floating-
point values from xmm3, add and selectively 
store the packed DP floating-point values to 
xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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Operation

DP_primitive (SRC1, SRC2)

IF (imm8[4] = 1) 

THEN Temp1[63:0] Å DEST[63:0] * SRC[63:0]; // update SIMD exception flags

ELSE Temp1[63:0] Å +0.0; FI;

IF (imm8[5] = 1) 

THEN Temp1[127:64] Å DEST[127:64] * SRC[127:64]; // update SIMD exception flags

ELSE Temp1[127:64] Å +0.0; FI;

/* if unmasked exception reported, execute exception handler*/

Temp2[63:0] Å Temp1[63:0] + Temp1[127:64]; // update SIMD exception flags

/* if unmasked exception reported, execute exception handler*/

IF (imm8[0] = 1) 

THEN DEST[63:0] Å Temp2[63:0];

ELSE DEST[63:0] Å +0.0; FI;

IF (imm8[1] = 1) 

THEN DEST[127:64] Å Temp2[63:0];

ELSE DEST[127:64] Å +0.0; FI;

DPPD (128-bit Legacy SSE version)

DEST[127:0]ÅDP_Primitive(SRC1[127:0], SRC2[127:0]);

DEST[VLMAX-1:128] (Unmodified)

VDPPD (VEX.128 encoded version)

DEST[127:0]ÅDP_Primitive(SRC1[127:0], SRC2[127:0]);

DEST[VLMAX-1:128] Å 0

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

DPPD: __m128d _mm_dp_pd ( __m128d a, __m128d b, const int mask);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal
Exceptions are determined separately for each add and multiply operation. Unmasked exceptions will leave the 
destination untouched.

Other Exceptions

See Exceptions Type 2; additionally
#UD If VEX.L= 1.
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DPPS — Dot Product of Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Conditionally multiplies the packed single precision floating-point values in the destination operand (first operand) 
with the packed single-precision floats in the source (second operand) depending on a mask extracted from the 
high 4 bits of the immediate byte (third operand). If a condition mask bit in Imm8[7:4] is zero, the corresponding 
multiplication is replaced by a value of 0.0 in the manner described by Section 12.8.4 of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1.

The four resulting single-precision values are summed into an intermediate result. The intermediate result is condi-
tionally broadcasted to the destination using a broadcast mask specified by bits [3:0] of the immediate byte.

If a broadcast mask bit is "1", the intermediate result is copied to the corresponding dword element in the destina-
tion operand. If a broadcast mask bit is zero, the corresponding element in the destination is set to zero.
DPPS follows the NaN forwarding rules stated in the Software Developer’s Manual, vol. 1, table 4.7. These rules do 
not cover horizontal prioritization of NaNs. Horizontal propagation of NaNs to the destination and the positioning of 
those NaNs in the destination is implementation dependent. NaNs on the input sources or computationally gener-
ated NaNs will have at least one NaN propagated to the destination.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 40 /r ib

DPPS xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Selectively multiply packed SP floating-point 
values from xmm1 with packed SP floating-
point values from xmm2, add and selectively 
store the packed SP floating-point values or 
zero values to xmm1.

VEX.NDS.128.66.0F3A.WIG 40 /r ib

VDPPS xmm1,xmm2, xmm3/m128, imm8

RVMI V/V AVX Multiply packed SP floating point values from 
xmm1 with packed SP floating point values 
from xmm2/mem selectively add and store to 
xmm1.

VEX.NDS.256.66.0F3A.WIG 40 /r ib

VDPPS ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX Multiply packed single-precision floating-point 
values from ymm2 with packed SP floating 
point values from ymm3/mem, selectively add 
pairs of elements and store to ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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Operation

DP_primitive (SRC1, SRC2)

IF (imm8[4] = 1) 

THEN Temp1[31:0] Å DEST[31:0] * SRC[31:0]; // update SIMD exception flags

ELSE Temp1[31:0] Å +0.0; FI;

IF (imm8[5] = 1) 

THEN Temp1[63:32] Å DEST[63:32] * SRC[63:32]; // update SIMD exception flags

ELSE Temp1[63:32] Å +0.0; FI;

IF (imm8[6] = 1) 

THEN Temp1[95:64] Å DEST[95:64] * SRC[95:64]; // update SIMD exception flags

ELSE Temp1[95:64] Å +0.0; FI;

IF (imm8[7] = 1) 

THEN Temp1[127:96] Å DEST[127:96] * SRC[127:96]; // update SIMD exception flags

ELSE Temp1[127:96] Å +0.0; FI;

Temp2[31:0] Å Temp1[31:0] + Temp1[63:32]; // update SIMD exception flags

/* if unmasked exception reported, execute exception handler*/

Temp3[31:0] Å Temp1[95:64] + Temp1[127:96]; // update SIMD exception flags

/* if unmasked exception reported, execute exception handler*/

Temp4[31:0] Å Temp2[31:0] + Temp3[31:0]; // update SIMD exception flags

/* if unmasked exception reported, execute exception handler*/

IF (imm8[0] = 1) 

THEN DEST[31:0] Å Temp4[31:0];

ELSE DEST[31:0] Å +0.0; FI;

IF (imm8[1] = 1) 

THEN DEST[63:32] Å Temp4[31:0];

ELSE DEST[63:32] Å +0.0; FI;

IF (imm8[2] = 1) 

THEN DEST[95:64] Å Temp4[31:0];

ELSE DEST[95:64] Å +0.0; FI;

IF (imm8[3] = 1) 

THEN DEST[127:96] Å Temp4[31:0];

ELSE DEST[127:96] Å +0.0; FI;

DPPS (128-bit Legacy SSE version)

DEST[127:0]ÅDP_Primitive(SRC1[127:0], SRC2[127:0]);

DEST[VLMAX-1:128] (Unmodified)

VDPPS (VEX.128 encoded version)

DEST[127:0]ÅDP_Primitive(SRC1[127:0], SRC2[127:0]);

DEST[VLMAX-1:128] Å 0

VDPPS (VEX.256 encoded version)

DEST[127:0]ÅDP_Primitive(SRC1[127:0], SRC2[127:0]);

DEST[255:128]ÅDP_Primitive(SRC1[255:128], SRC2[255:128]);

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

(V)DPPS: __m128 _mm_dp_ps ( __m128 a, __m128 b, const int mask);
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VDPPS: __m256 _mm256_dp_ps ( __m256 a, __m256 b, const int mask);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal
Exceptions are determined separately for each add and multiply operation, in the order of their execution. 
Unmasked exceptions will leave the destination operands unchanged.

Other Exceptions

See Exceptions Type 2.
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EMMS—Empty MMX Technology State

Instruction Operand Encoding

Description 

Sets the values of all the tags in the x87 FPU tag word to empty (all 1s). This operation marks the x87 FPU data 
registers (which are aliased to the MMX technology registers) as available for use by x87 FPU floating-point instruc-
tions. (See Figure 8-7 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for the 
format of the x87 FPU tag word.) All other MMX instructions (other than the EMMS instruction) set all the tags in 
x87 FPU tag word to valid (all 0s).

The EMMS instruction must be used to clear the MMX technology state at the end of all MMX technology procedures 
or subroutines and before calling other procedures or subroutines that may execute x87 floating-point instructions. 
If a floating-point instruction loads one of the registers in the x87 FPU data register stack before the x87 FPU tag 
word has been reset by the EMMS instruction, an x87 floating-point register stack overflow can occur that will 
result in an x87 floating-point exception or incorrect result.

EMMS operation is the same in non-64-bit modes and 64-bit mode.

Operation

x87FPUTagWord ← FFFFH;

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_empty()

Flags Affected

None.

Protected Mode Exceptions

#UD If CR0.EM[bit 2] = 1.
#NM If CR0.TS[bit 3] = 1.
#MF If there is a pending FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions 

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 77 EMMS NP Valid Valid Set the x87 FPU tag word to empty.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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64-Bit Mode Exceptions

Same exceptions as in protected mode.
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ENTER—Make Stack Frame for Procedure Parameters

Instruction Operand Encoding

Description

Creates a stack frame for a procedure. The first operand (size operand) specifies the size of the stack frame (that 
is, the number of bytes of dynamic storage allocated on the stack for the procedure). The second operand (nesting 
level operand) gives the lexical nesting level (0 to 31) of the procedure. The nesting level determines the number 
of stack frame pointers that are copied into the “display area” of the new stack frame from the preceding frame. 
Both of these operands are immediate values.

The stack-size attribute determines whether the BP (16 bits), EBP (32 bits), or RBP (64 bits) register specifies the 
current frame pointer and whether SP (16 bits), ESP (32 bits), or RSP (64 bits) specifies the stack pointer. In 64-
bit mode, stack-size attribute is always 64-bits.

The ENTER and companion LEAVE instructions are provided to support block structured languages. The ENTER 
instruction (when used) is typically the first instruction in a procedure and is used to set up a new stack frame for 
a procedure. The LEAVE instruction is then used at the end of the procedure (just before the RET instruction) to 
release the stack frame.

If the nesting level is 0, the processor pushes the frame pointer from the BP/EBP/RBP register onto the stack, 
copies the current stack pointer from the SP/ESP/RSP register into the BP/EBP/RBP register, and loads the 
SP/ESP/RSP register with the current stack-pointer value minus the value in the size operand. For nesting levels of 
1 or greater, the processor pushes additional frame pointers on the stack before adjusting the stack pointer. These 
additional frame pointers provide the called procedure with access points to other nested frames on the stack. See 
“Procedure Calls for Block-Structured Languages” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for more information about the actions of the ENTER instruction.

The ENTER instruction causes a page fault whenever a write using the final value of the stack pointer (within the 
current stack segment) would do so.

In 64-bit mode, default operation size is 64 bits; 32-bit operation size cannot be encoded.

Operation

NestingLevel ← NestingLevel MOD 32

IF 64-Bit Mode (StackSize = 64)

THEN 

Push(RBP);

FrameTemp ← RSP; 

ELSE IF StackSize = 32

THEN 

Push(EBP);

FrameTemp ← ESP; FI;

ELSE (* StackSize = 16 *)

Push(BP); 

FrameTemp ← SP; 

FI;

IF NestingLevel = 0

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

C8 iw 00 ENTER imm16, 0 II Valid Valid Create a stack frame for a procedure.

C8 iw 01 ENTER imm16,1 II Valid Valid Create a nested stack frame for a procedure.

C8 iw ib ENTER imm16, imm8 II Valid Valid Create a nested stack frame for a procedure.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

II iw imm8 NA NA
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THEN GOTO CONTINUE;

FI;

IF (NestingLevel > 1) 

THEN FOR i ← 1 to (NestingLevel - 1)

DO 

IF 64-Bit Mode (StackSize = 64)

THEN

RBP ← RBP - 8;

Push([RBP]); (* Quadword push *)

ELSE IF OperandSize = 32

THEN

IF StackSize = 32

EBP ← EBP - 4;

Push([EBP]); (* Doubleword push *)

ELSE (* StackSize = 16 *)

BP ← BP - 4;

Push([BP]); (* Doubleword push *)

FI;

FI;

ELSE (* OperandSize = 16 *)

IF StackSize = 32

THEN

EBP ← EBP - 2;

Push([EBP]); (* Word push *)

ELSE (* StackSize = 16 *)

BP ← BP - 2;

Push([BP]); (* Word push *)

FI;

FI;

OD;

FI;

IF 64-Bit Mode (StackSize = 64)

THEN

Push(FrameTemp); (* Quadword push *)

ELSE IF OperandSize = 32

THEN 

Push(FrameTemp); FI; (* Doubleword push *)

ELSE (* OperandSize = 16 *)

Push(FrameTemp); (* Word push *)

FI;

CONTINUE:

IF 64-Bit Mode (StackSize = 64)

THEN

RBP ← FrameTemp;

RSP ← RSP − Size;

ELSE IF StackSize = 32 

THEN

EBP ← FrameTemp;

ESP ← ESP − Size; FI;

ELSE (* StackSize = 16 *)

BP ← FrameTemp;

SP ← SP − Size;
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FI;

END;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment limit.
#PF(fault-code) If a page fault occurs or if a write using the final value of the stack pointer (within the current 

stack segment) would cause a page fault.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#SS If the new value of the SP or ESP register is outside the stack segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment limit.
#PF(fault-code) If a page fault occurs or if a write using the final value of the stack pointer (within the current 

stack segment) would cause a page fault.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs or if a write using the final value of the stack pointer (within the current 

stack segment) would cause a page fault.
#UD If the LOCK prefix is used.
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EXTRACTPS — Extract Packed Single Precision Floating-Point Value

Instruction Operand Encoding

Description

Extracts a single-precision floating-point value from the source operand (second operand) at the 32-bit offset spec-
ified from imm8. Immediate bits higher than the most significant offset for the vector length are ignored.
The extracted single-precision floating-point value is stored in the low 32-bits of the destination operand
In 64-bit mode, destination register operand has default operand size of 64 bits. The upper 32-bits of the register 
are filled with zero. REX.W is ignored.
128-bit Legacy SSE version: When a REX.W prefix is used in 64-bit mode with a general purpose register (GPR) as 
a destination operand, the packed single quantity is zero extended to 64 bits.
VEX.128 encoded version: When VEX.128.66.0F3A.W1 17 form is used in 64-bit mode with a general purpose 
register (GPR) as a destination operand, the packed single quantity is zero extended to 64 bits. VEX.vvvv is 
reserved and must be 1111b otherwise instructions will #UD.
The source register is an XMM register. Imm8[1:0] determine the starting DWORD offset from which to extract the 
32-bit floating-point value.
If VEXTRACTPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause 
an #UD exception.

Operation

EXTRACTPS (128-bit Legacy SSE version)

SRC_OFFSET Å IMM8[1:0]

IF ( 64-Bit Mode and DEST is register)

DEST[31:0] Å (SRC[127:0] » (SRC_OFFET*32)) AND 0FFFFFFFFh

DEST[63:32] Å 0

ELSE

DEST[31:0] Å (SRC[127:0] » (SRC_OFFET*32)) AND 0FFFFFFFFh

FI

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 17

/r ib

EXTRACTPS reg/m32, xmm2, imm8

MRI V/V SSE4_1 Extract a single-precision floating-point value 
from xmm2 at the source offset specified by 
imm8 and store the result to reg or m32. The 
upper 32 bits of r64 is zeroed if reg is r64.

VEX.128.66.0F3A.WIG 17 /r ib

VEXTRACTPS r/m32, xmm1, imm8

MRI V/V AVX Extract one single-precision floating-point 
value from xmm1 at the offset specified by 
imm8 and store the result in reg or m32. Zero 
extend the results in 64-bit register if 
applicable.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA
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VEXTRACTPS (VEX.128 encoded version)

SRC_OFFSET Å IMM8[1:0]

IF ( 64-Bit Mode and DEST is register)

DEST[31:0] Å (SRC[127:0] » (SRC_OFFET*32)) AND 0FFFFFFFFh

DEST[63:32] Å 0

ELSE

DEST[31:0] Å (SRC[127:0] » (SRC_OFFET*32)) AND 0FFFFFFFFh

FI

Intel C/C++ Compiler Intrinsic Equivalent

EXTRACTPS:  _mm_extractmem_ps (float *dest, __m128 a, const int nidx);

EXTRACTPS:  __m128 _mm_extract_ps (__m128 a, const int nidx);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 5; additionally
#UD If VEX.L= 1.



F2XM1—Compute 2x–1

INSTRUCTION SET REFERENCE, A-M

3-256 Vol. 2A

F2XM1—Compute 2x–1

Description

Computes the exponential value of 2 to the power of the source operand minus 1. The source operand is located in 
register ST(0) and the result is also stored in ST(0). The value of the source operand must lie in the range –1.0 to 
+1.0. If the source value is outside this range, the result is undefined.

The following table shows the results obtained when computing the exponential value of various classes of 
numbers, assuming that neither overflow nor underflow occurs.

Values other than 2 can be exponentiated using the following formula:

xy ← 2(y ∗ log
2
x)

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) ← (2ST(0) − 1);

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#D Source is a denormal value.
#U Result is too small for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F0 F2XM1 Valid Valid Replace ST(0) with (2ST(0) – 1).

Table 3-26.  Results Obtained from F2XM1

ST(0) SRC ST(0) DEST

− 1.0 to −0 − 0.5 to − 0
− 0 − 0
+ 0 + 0

+ 0 to +1.0 + 0 to 1.0 
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Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FABS—Absolute Value

Description

Clears the sign bit of ST(0) to create the absolute value of the operand. The following table shows the results 
obtained when creating the absolute value of various classes of numbers.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) ← |ST(0)|;

FPU Flags Affected

C1 Set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 E1 FABS Valid Valid Replace ST with its absolute value.

Table 3-27.  Results Obtained from FABS 

ST(0) SRC ST(0) DEST

− ∞ + ∞
− F + F

− 0 + 0

+ 0 + 0

+ F + F
+ ∞ + ∞
NaN NaN 

NOTES:

F Means finite floating-point value.
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64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FADD/FADDP/FIADD—Add

Description

Adds the destination and source operands and stores the sum in the destination location. The destination operand 
is always an FPU register; the source operand can be a register or a memory location. Source operands in memory 
can be in single-precision or double-precision floating-point format or in word or doubleword integer format.

The no-operand version of the instruction adds the contents of the ST(0) register to the ST(1) register. The one-
operand version adds the contents of a memory location (either a floating-point or an integer value) to the contents 
of the ST(0) register. The two-operand version, adds the contents of the ST(0) register to the ST(i) register or vice 
versa. The value in ST(0) can be doubled by coding:

FADD ST(0), ST(0);

The FADDP instructions perform the additional operation of popping the FPU register stack after storing the result. 
To pop the register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) 
by 1. (The no-operand version of the floating-point add instructions always results in the register stack being 
popped. In some assemblers, the mnemonic for this instruction is FADD rather than FADDP.)

The FIADD instructions convert an integer source operand to double extended-precision floating-point format 
before performing the addition.

The table on the following page shows the results obtained when adding various classes of numbers, assuming that 
neither overflow nor underflow occurs.

When the sum of two operands with opposite signs is 0, the result is +0, except for the round toward −∞ mode, in 
which case the result is −0. When the source operand is an integer 0, it is treated as a +0.

When both operand are infinities of the same sign, the result is ∞ of the expected sign. If both operands are infini-
ties of opposite signs, an invalid-operation exception is generated. See Table 3-28.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /0 FADD m32fp Valid Valid Add m32fp to ST(0) and store result in ST(0).

DC /0 FADD m64fp Valid Valid Add m64fp to ST(0) and store result in ST(0).

D8 C0+i FADD ST(0), ST(i) Valid Valid Add ST(0) to ST(i) and store result in ST(0).

DC C0+i FADD ST(i), ST(0) Valid Valid Add ST(i) to ST(0) and store result in ST(i).

DE C0+i FADDP ST(i), ST(0) Valid Valid Add ST(0) to ST(i), store result in ST(i), and pop the 
register stack.

DE C1 FADDP Valid Valid Add ST(0) to ST(1), store result in ST(1), and pop the 
register stack.

DA /0 FIADD m32int Valid Valid Add m32int to ST(0) and store result in ST(0).

DE /0 FIADD m16int Valid Valid Add m16int to ST(0) and store result in ST(0).
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This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF Instruction = FIADD

THEN

DEST ← DEST + ConvertToDoubleExtendedPrecisionFP(SRC);

ELSE (* Source operand is floating-point value *)

DEST ← DEST + SRC;

FI;

IF Instruction = FADDP 

THEN 

PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

Operands are infinities of unlike sign.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

Table 3-28.  FADD/FADDP/FIADD Results

DEST

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ − ∞ − ∞ − ∞ − ∞ − ∞ * NaN

− F or − I − ∞ − F SRC SRC ± F or ± 0 + ∞ NaN

SRC −0 − ∞ DEST − 0 ± 0 DEST + ∞ NaN

+ 0 − ∞ DEST ± 0 + 0 DEST + ∞ NaN

+ F or + I − ∞ ± F or ± 0 SRC SRC + F + ∞ NaN

+ ∞ * + ∞ + ∞ + ∞ + ∞ + ∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite floating-point value.

I Means integer.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FBLD—Load Binary Coded Decimal

Description

Converts the BCD source operand into double extended-precision floating-point format and pushes the value onto 
the FPU stack. The source operand is loaded without rounding errors. The sign of the source operand is preserved, 
including that of −0.

The packed BCD digits are assumed to be in the range 0 through 9; the instruction does not check for invalid digits 
(AH through FH). Attempting to load an invalid encoding produces an undefined result.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

TOP ← TOP − 1;

ST(0) ← ConvertToDoubleExtendedPrecisionFP(SRC); 

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack overflow occurred.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DF /4 FBLD m80dec Valid Valid Convert BCD value to floating-point and push onto the 
FPU stack.
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#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FBSTP—Store BCD Integer and Pop

Description

Converts the value in the ST(0) register to an 18-digit packed BCD integer, stores the result in the destination 
operand, and pops the register stack. If the source value is a non-integral value, it is rounded to an integer value, 
according to rounding mode specified by the RC field of the FPU control word. To pop the register stack, the 
processor marks the ST(0) register as empty and increments the stack pointer (TOP) by 1.

The destination operand specifies the address where the first byte destination value is to be stored. The BCD value 
(including its sign bit) requires 10 bytes of space in memory. 

The following table shows the results obtained when storing various classes of numbers in packed BCD format.

If the converted value is too large for the destination format, or if the source operand is an ∞, SNaN, QNAN, or is in 
an unsupported format, an invalid-arithmetic-operand condition is signaled. If the invalid-operation exception is 
not masked, an invalid-arithmetic-operand exception (#IA) is generated and no value is stored in the destination 
operand. If the invalid-operation exception is masked, the packed BCD indefinite value is stored in memory.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST ← BCD(ST(0));

PopRegisterStack;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DF /6 FBSTP m80bcd Valid Valid Store ST(0) in m80bcd and pop ST(0).

Table 3-29.  FBSTP Results

ST(0) DEST

− ∞ or Value Too Large for DEST Format *
F ≤ − 1 − D

−1 < F < -0 **
− 0 − 0
+ 0 + 0

+ 0 < F < +1 **
F ≥ +1 + D

+ ∞ or Value Too Large for DEST Format *
NaN *

NOTES:

F Means finite floating-point value.

D Means packed-BCD number.

* Indicates floating-point invalid-operation (#IA) exception.

** ±0 or ±1, depending on the rounding mode.
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Floating-Point Exceptions

#IS Stack underflow occurred.
#IA Converted value that exceeds 18 BCD digits in length.

Source operand is an SNaN, QNaN, ±∞, or in an unsupported format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a segment register is being loaded with a segment selector that points to a non-writable 
segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.



FCHS—Change Sign

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-267

FCHS—Change Sign

Description

Complements the sign bit of ST(0). This operation changes a positive value into a negative value of equal magni-
tude or vice versa. The following table shows the results obtained when changing the sign of various classes of 
numbers.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

SignBit(ST(0)) ← NOT (SignBit(ST(0)));

FPU Flags Affected

C1 Set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 E0 FCHS Valid Valid Complements sign of ST(0).

Table 3-30.  FCHS Results

ST(0) SRC ST(0) DEST

− ∞ + ∞
− F + F

− 0 + 0
+ 0 − 0
+ F − F
+ ∞ − ∞
NaN NaN 

NOTES:

* F means finite floating-point value.
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64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FCLEX/FNCLEX—Clear Exceptions

Description

Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception summary status flag (ES), the 
stack fault flag (SF), and the busy flag (B) in the FPU status word. The FCLEX instruction checks for and handles 
any pending unmasked floating-point exceptions before clearing the exception flags; the FNCLEX instruction does 
not.

The assembler issues two instructions for the FCLEX instruction (an FWAIT instruction followed by an FNCLEX 
instruction), and the processor executes each of these instructions separately. If an exception is generated for 
either of these instructions, the save EIP points to the instruction that caused the exception.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS* compatibility mode, it is possible (under unusual 
circumstances) for an FNCLEX instruction to be interrupted prior to being executed to handle a pending FPU excep-
tion. See the section titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circumstances. An 
FNCLEX instruction cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family processor.

This instruction affects only the x87 FPU floating-point exception flags. It does not affect the SIMD floating-point 
exception flags in the MXCRS register.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FPUStatusWord[0:7] ← 0;

FPUStatusWord[15] ← 0;

FPU Flags Affected

The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared. The C0, C1, C2, and C3 flags are 
undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Opcode* Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B DB E2 FCLEX Valid Valid Clear floating-point exception flags after checking for 
pending unmasked floating-point exceptions.

DB E2 FNCLEX* Valid Valid Clear floating-point exception flags without checking for 
pending unmasked floating-point exceptions.

NOTES:

* See IA-32 Architecture Compatibility section below.
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Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FCMOVcc—Floating-Point Conditional Move

Description

Tests the status flags in the EFLAGS register and moves the source operand (second operand) to the destination 
operand (first operand) if the given test condition is true. The condition for each mnemonic os given in the Descrip-
tion column above and in Chapter 8 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
1. The source operand is always in the ST(i) register and the destination operand is always ST(0).

The FCMOVcc instructions are useful for optimizing small IF constructions. They also help eliminate branching 
overhead for IF operations and the possibility of branch mispredictions by the processor. 

A processor may not support the FCMOVcc instructions. Software can check if the FCMOVcc instructions are 
supported by checking the processor’s feature information with the CPUID instruction (see “COMISS—Compare 
Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS” in this chapter). If both the CMOV and FPU 
feature bits are set, the FCMOVcc instructions are supported.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The FCMOVcc instructions were introduced to the IA-32 Architecture in the P6 family processors and are not avail-
able in earlier IA-32 processors.

Operation

IF condition TRUE

THEN ST(0) ← ST(i);

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

Integer Flags Affected

None.

Opcode* Instruction 64-Bit 
Mode

Compat/
Leg Mode*

Description

DA C0+i FCMOVB ST(0), ST(i) Valid Valid Move if below (CF=1).

DA C8+i FCMOVE ST(0), ST(i) Valid Valid Move if equal (ZF=1).

DA D0+i FCMOVBE ST(0), ST(i) Valid Valid Move if below or equal (CF=1 or ZF=1).

DA D8+i FCMOVU ST(0), ST(i) Valid Valid Move if unordered (PF=1).

DB C0+i FCMOVNB ST(0), ST(i) Valid Valid Move if not below (CF=0).

DB C8+i FCMOVNE ST(0), ST(i) Valid Valid Move if not equal (ZF=0).

DB D0+i FCMOVNBE ST(0), ST(i) Valid Valid Move if not below or equal (CF=0 and ZF=0).

DB D8+i FCMOVNU ST(0), ST(i) Valid Valid Move if not unordered (PF=0).

NOTES:

* See IA-32 Architecture Compatibility section below.
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Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FCOM/FCOMP/FCOMPP—Compare Floating Point Values

Description

Compares the contents of register ST(0) and source value and sets condition code flags C0, C2, and C3 in the FPU 
status word according to the results (see the table below). The source operand can be a data register or a memory 
location. If no source operand is given, the value in ST(0) is compared with the value in ST(1). The sign of zero is 
ignored, so that –0.0 is equal to +0.0. 

This instruction checks the class of the numbers being compared (see “FXAM—Examine ModR/M” in this chapter). 
If either operand is a NaN or is in an unsupported format, an invalid-arithmetic-operand exception (#IA) is raised 
and, if the exception is masked, the condition flags are set to “unordered.” If the invalid-arithmetic-operand excep-
tion is unmasked, the condition code flags are not set.

The FCOMP instruction pops the register stack following the comparison operation and the FCOMPP instruction 
pops the register stack twice following the comparison operation. To pop the register stack, the processor marks 
the ST(0) register as empty and increments the stack pointer (TOP) by 1.

The FCOM instructions perform the same operation as the FUCOM instructions. The only difference is how they 
handle QNaN operands. The FCOM instructions raise an invalid-arithmetic-operand exception (#IA) when either or 
both of the operands is a NaN value or is in an unsupported format. The FUCOM instructions perform the same 
operation as the FCOM instructions, except that they do not generate an invalid-arithmetic-operand exception for 
QNaNs.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /2 FCOM m32fp Valid Valid Compare ST(0) with m32fp.

DC /2 FCOM m64fp Valid Valid Compare ST(0) with m64fp.

D8 D0+i FCOM ST(i) Valid Valid Compare ST(0) with ST(i).

D8 D1 FCOM Valid Valid Compare ST(0) with ST(1).

D8 /3 FCOMP m32fp Valid Valid Compare ST(0) with m32fp and pop register stack.

DC /3 FCOMP m64fp Valid Valid Compare ST(0) with m64fp and pop register stack.

D8 D8+i FCOMP ST(i) Valid Valid Compare ST(0) with ST(i) and pop register stack.

D8 D9 FCOMP Valid Valid Compare ST(0) with ST(1) and pop register stack.

DE D9 FCOMPP Valid Valid Compare ST(0) with ST(1) and pop register stack 
twice.

Table 3-31.  FCOM/FCOMP/FCOMPP Results

Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered* 1 1 1

NOTES:

* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.
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Operation

CASE (relation of operands) OF

ST > SRC: C3, C2, C0 ← 000;

ST < SRC: C3, C2, C0 ← 001;

ST = SRC: C3, C2, C0 ← 100;

ESAC;

IF ST(0) or SRC = NaN or unsupported format

THEN 

#IA

IF FPUControlWord.IM = 1

THEN 

C3, C2, C0 ← 111;

FI;

FI;

IF Instruction = FCOMP 

THEN 

PopRegisterStack;

FI;

IF Instruction = FCOMPP 

THEN 

PopRegisterStack;

PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0.
C0, C2, C3 See table on previous page.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA One or both operands are NaN values or have unsupported formats.

Register is marked empty.
#D One or both operands are denormal values.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
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#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and Set EFLAGS

Description

Performs an unordered comparison of the contents of registers ST(0) and ST(i) and sets the status flags ZF, PF, and 
CF in the EFLAGS register according to the results (see the table below). The sign of zero is ignored for compari-
sons, so that –0.0 is equal to +0.0. 

An unordered comparison checks the class of the numbers being compared (see “FXAM—Examine ModR/M” in this 
chapter). The FUCOMI/FUCOMIP instructions perform the same operations as the FCOMI/FCOMIP instructions. The 
only difference is that the FUCOMI/FUCOMIP instructions raise the invalid-arithmetic-operand exception (#IA) only 
when either or both operands are an SNaN or are in an unsupported format; QNaNs cause the condition code flags 
to be set to unordered, but do not cause an exception to be generated. The FCOMI/FCOMIP instructions raise an 
invalid-operation exception when either or both of the operands are a NaN value of any kind or are in an unsup-
ported format.

If the operation results in an invalid-arithmetic-operand exception being raised, the status flags in the EFLAGS 
register are set only if the exception is masked. 

The FCOMI/FCOMIP and FUCOMI/FUCOMIP instructions set the OF, SF and AF flags to zero in the EFLAGS register 
(regardless of whether an invalid-operation exception is detected).

The FCOMIP and FUCOMIP instructions also pop the register stack following the comparison operation. To pop the 
register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) by 1.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The FCOMI/FCOMIP/FUCOMI/FUCOMIP instructions were introduced to the IA-32 Architecture in the P6 family 
processors and are not available in earlier IA-32 processors. 

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DB F0+i FCOMI ST, ST(i) Valid Valid Compare ST(0) with ST(i) and set status flags accordingly.

DF F0+i FCOMIP ST, ST(i) Valid Valid Compare ST(0) with ST(i), set status flags accordingly, and 
pop register stack.

DB E8+i FUCOMI ST, ST(i) Valid Valid Compare ST(0) with ST(i), check for ordered values, and set 
status flags accordingly.

DF E8+i FUCOMIP ST, ST(i) Valid Valid Compare ST(0) with ST(i), check for ordered values, set 
status flags accordingly, and pop register stack.

Table 3-32.  FCOMI/FCOMIP/ FUCOMI/FUCOMIP Results

Comparison Results* ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered** 1 1 1

NOTES:

* See the IA-32 Architecture Compatibility section below.

** Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.
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Operation

CASE (relation of operands) OF

ST(0) > ST(i): ZF, PF, CF ← 000;

ST(0) < ST(i): ZF, PF, CF ← 001;

ST(0) = ST(i): ZF, PF, CF ← 100;

ESAC;

IF Instruction is FCOMI or FCOMIP

THEN

IF ST(0) or ST(i) = NaN or unsupported format

THEN 

#IA

IF FPUControlWord.IM = 1
THEN 

ZF, PF, CF ← 111;

FI;

FI;

FI;

IF Instruction is FUCOMI or FUCOMIP

THEN

IF ST(0) or ST(i) = QNaN, but not SNaN or unsupported format

THEN 

ZF, PF, CF ← 111;

ELSE (* ST(0) or ST(i) is SNaN or unsupported format *)

 #IA;

IF FPUControlWord.IM = 1

THEN 

ZF, PF, CF ← 111;

FI;

FI;

FI;

IF Instruction is FCOMIP or FUCOMIP 

THEN 

PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0.
C0, C2, C3 Not affected.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA (FCOMI or FCOMIP instruction) One or both operands are NaN values or have unsupported 

formats.
(FUCOMI or FUCOMIP instruction) One or both operands are SNaN values (but not QNaNs) or 
have undefined formats. Detection of a QNaN value does not raise an invalid-operand excep-
tion.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
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#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FCOS—Cosine

Description

Computes the cosine of the source operand in register ST(0) and stores the result in ST(0). The source operand 
must be given in radians and must be within the range −263 to +263. The following table shows the results obtained 
when taking the cosine of various classes of numbers.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, and the value in 
register ST(0) remains unchanged. The instruction does not raise an exception when the source operand is out of 
range. It is up to the program to check the C2 flag for out-of-range conditions. Source values outside the range −
263 to +263 can be reduced to the range of the instruction by subtracting an appropriate integer multiple of 2π or by 
using the FPREM instruction with a divisor of 2π. See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in 
performing such reductions.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF |ST(0)| < 263

THEN

C2 ← 0;

ST(0) ← cosine(ST(0));

ELSE (* Source operand is out-of-range *)

C2 ← 1;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.
Undefined if C2 is 1.

C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.
C0, C3 Undefined.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 FF FCOS Valid Valid Replace ST(0) with its cosine.

Table 3-33.  FCOS Results

ST(0) SRC ST(0) DEST

− ∞ *
− F −1 to +1

− 0 + 1
+ 0 + 1
+ F − 1 to + 1
+ ∞ *
NaN NaN 

NOTES:

F Means finite floating-point value.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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Floating-Point Exceptions

#IS Stack underflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source is a denormal value.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.



FDECSTP—Decrement Stack-Top Pointer

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-281

FDECSTP—Decrement Stack-Top Pointer

Description

Subtracts one from the TOP field of the FPU status word (decrements the top-of-stack pointer). If the TOP field 
contains a 0, it is set to 7. The effect of this instruction is to rotate the stack by one position. The contents of the 
FPU data registers and tag register are not affected. 

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF TOP = 0

THEN TOP ← 7;

ELSE TOP ← TOP – 1;

FI;

FPU Flags Affected

The C1 flag is set to 0. The C0, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F6 FDECSTP Valid Valid Decrement TOP field in FPU status word.
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FDIV/FDIVP/FIDIV—Divide

Description

Divides the destination operand by the source operand and stores the result in the destination location. The desti-
nation operand (dividend) is always in an FPU register; the source operand (divisor) can be a register or a memory 
location. Source operands in memory can be in single-precision or double-precision floating-point format, word or 
doubleword integer format.

The no-operand version of the instruction divides the contents of the ST(1) register by the contents of the ST(0) 
register. The one-operand version divides the contents of the ST(0) register by the contents of a memory location 
(either a floating-point or an integer value). The two-operand version, divides the contents of the ST(0) register by 
the contents of the ST(i) register or vice versa.

The FDIVP instructions perform the additional operation of popping the FPU register stack after storing the result. 
To pop the register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) 
by 1. The no-operand version of the floating-point divide instructions always results in the register stack being 
popped. In some assemblers, the mnemonic for this instruction is FDIV rather than FDIVP.

The FIDIV instructions convert an integer source operand to double extended-precision floating-point format 
before performing the division. When the source operand is an integer 0, it is treated as a +0.

If an unmasked divide-by-zero exception (#Z) is generated, no result is stored; if the exception is masked, an ∞ of 
the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of numbers, assuming that neither 
overflow nor underflow occurs.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /6 FDIV m32fp Valid Valid Divide ST(0) by m32fp and store result in ST(0).

DC /6 FDIV m64fp Valid Valid Divide ST(0) by m64fp and store result in ST(0).

D8 F0+i FDIV ST(0), ST(i) Valid Valid Divide ST(0) by ST(i) and store result in ST(0).

DC F8+i FDIV ST(i), ST(0) Valid Valid Divide ST(i) by ST(0) and store result in ST(i).

DE F8+i FDIVP ST(i), ST(0) Valid Valid Divide ST(i) by ST(0), store result in ST(i), and pop the 
register stack.

DE F9 FDIVP Valid Valid Divide ST(1) by ST(0), store result in ST(1), and pop 
the register stack.

DA /6 FIDIV m32int Valid Valid Divide ST(0) by m32int and store result in ST(0).

DE /6 FIDIV m16int Valid Valid Divide ST(0) by m16int and store result in ST(0).
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This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF SRC = 0
THEN

#Z;

ELSE

IF Instruction is FIDIV

THEN

DEST ← DEST / ConvertToDoubleExtendedPrecisionFP(SRC);

ELSE (* Source operand is floating-point value *)

DEST ← DEST / SRC;

FI;

FI;

IF Instruction = FDIVP 

THEN 

PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

±∞ / ±∞; ±0 / ±0
#D Source is a denormal value.

Table 3-34.  FDIV/FDIVP/FIDIV Results

DEST

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ * + 0 + 0 − 0 − 0 * NaN

− F + ∞ + F + 0 − 0 − F − ∞ NaN

− I + ∞ + F + 0 − 0 − F − ∞ NaN

SRC − 0 + ∞ ** * * ** − ∞ NaN

+ 0 − ∞ ** * * ** + ∞ NaN

+ I − ∞ − F − 0 + 0 + F + ∞ NaN

+ F − ∞ − F − 0 + 0 + F + ∞ NaN

+ ∞ * − 0 − 0 + 0 + 0 * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite floating-point value.

I Means integer.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

** Indicates floating-point zero-divide (#Z) exception.
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#Z DEST / ±0, where DEST is not equal to ±0.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FDIVR/FDIVRP/FIDIVR—Reverse Divide

Description

Divides the source operand by the destination operand and stores the result in the destination location. The desti-
nation operand (divisor) is always in an FPU register; the source operand (dividend) can be a register or a memory 
location. Source operands in memory can be in single-precision or double-precision floating-point format, word or 
doubleword integer format.

These instructions perform the reverse operations of the FDIV, FDIVP, and FIDIV instructions. They are provided to 
support more efficient coding.

The no-operand version of the instruction divides the contents of the ST(0) register by the contents of the ST(1) 
register. The one-operand version divides the contents of a memory location (either a floating-point or an integer 
value) by the contents of the ST(0) register. The two-operand version, divides the contents of the ST(i) register by 
the contents of the ST(0) register or vice versa.

The FDIVRP instructions perform the additional operation of popping the FPU register stack after storing the result. 
To pop the register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) 
by 1. The no-operand version of the floating-point divide instructions always results in the register stack being 
popped. In some assemblers, the mnemonic for this instruction is FDIVR rather than FDIVRP.

The FIDIVR instructions convert an integer source operand to double extended-precision floating-point format 
before performing the division.

If an unmasked divide-by-zero exception (#Z) is generated, no result is stored; if the exception is masked, an ∞ of 
the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of numbers, assuming that neither 
overflow nor underflow occurs.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /7 FDIVR m32fp Valid Valid Divide m32fp by ST(0) and store result in ST(0).

DC /7 FDIVR m64fp Valid Valid Divide m64fp by ST(0) and store result in ST(0).

D8 F8+i FDIVR ST(0), ST(i) Valid Valid Divide ST(i) by ST(0) and store result in ST(0).

DC F0+i FDIVR ST(i), ST(0) Valid Valid Divide ST(0) by ST(i) and store result in ST(i).

DE F0+i FDIVRP ST(i), ST(0) Valid Valid Divide ST(0) by ST(i), store result in ST(i), and pop the 
register stack.

DE F1 FDIVRP Valid Valid Divide ST(0) by ST(1), store result in ST(1), and pop the 
register stack.

DA /7 FIDIVR m32int Valid Valid Divide m32int by ST(0) and store result in ST(0).

DE /7 FIDIVR m16int Valid Valid Divide m16int by ST(0) and store result in ST(0).
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When the source operand is an integer 0, it is treated as a +0. This instruction’s operation is the same in non-64-bit 
modes and 64-bit mode.

Operation

IF DEST = 0
THEN

#Z;

ELSE

IF Instruction = FIDIVR

THEN

DEST ← ConvertToDoubleExtendedPrecisionFP(SRC) / DEST;

ELSE (* Source operand is floating-point value *)

DEST ← SRC / DEST;

FI;

FI;

IF Instruction = FDIVRP 

THEN 

PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

±∞ / ±∞; ±0 / ±0

Table 3-35.  FDIVR/FDIVRP/FIDIVR Results

DEST

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ * + ∞ + ∞ − ∞ − ∞ * NaN

SRC − F + 0 + F ** ** − F − 0 NaN

− I + 0 + F ** ** − F − 0 NaN

− 0 + 0 + 0 * * − 0 − 0 NaN

+ 0 − 0 − 0 * * + 0 + 0 NaN

+ I − 0 − F ** ** + F + 0 NaN

+ F − 0 − F ** ** + F + 0 NaN

+ ∞ * − ∞ − ∞ + ∞ + ∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite floating-point value.

I Means integer.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

** Indicates floating-point zero-divide (#Z) exception.
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#D Source is a denormal value.
#Z SRC / ±0, where SRC is not equal to ±0.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FFREE—Free Floating-Point Register

Description

Sets the tag in the FPU tag register associated with register ST(i) to empty (11B). The contents of ST(i) and the FPU 
stack-top pointer (TOP) are not affected.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

TAG(i) ← 11B;

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DD C0+i FFREE ST(i) Valid Valid Sets tag for ST(i) to empty.
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FICOM/FICOMP—Compare Integer

Description

Compares the value in ST(0) with an integer source operand and sets the condition code flags C0, C2, and C3 in 
the FPU status word according to the results (see table below). The integer value is converted to double extended-
precision floating-point format before the comparison is made.

These instructions perform an “unordered comparison.” An unordered comparison also checks the class of the 
numbers being compared (see “FXAM—Examine ModR/M” in this chapter). If either operand is a NaN or is in an 
undefined format, the condition flags are set to “unordered.”

The sign of zero is ignored, so that –0.0 ← +0.0.

The FICOMP instructions pop the register stack following the comparison. To pop the register stack, the processor 
marks the ST(0) register empty and increments the stack pointer (TOP) by 1.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CASE (relation of operands) OF

ST(0) > SRC: C3, C2, C0 ← 000;

ST(0) < SRC: C3, C2, C0 ← 001;

ST(0) = SRC: C3, C2, C0 ← 100;

Unordered: C3, C2, C0 ← 111;

ESAC;

IF Instruction = FICOMP 

THEN 

PopRegisterStack; 

FI;

FPU Flags Affected

C1 Set to 0.
C0, C2, C3 See table on previous page.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA One or both operands are NaN values or have unsupported formats.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DE /2 FICOM m16int Valid Valid Compare ST(0) with m16int.

DA /2 FICOM m32int Valid Valid Compare ST(0) with m32int.

DE /3 FICOMP m16int Valid Valid Compare ST(0) with m16int and pop stack register.

DA /3 FICOMP m32int Valid Valid Compare ST(0) with m32int and pop stack register.

Table 3-36.  FICOM/FICOMP Results

Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered 1 1 1



FICOM/FICOMP—Compare Integer

INSTRUCTION SET REFERENCE, A-M

3-290 Vol. 2A

#D One or both operands are denormal values.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FILD—Load Integer

Description

Converts the signed-integer source operand into double extended-precision floating-point format and pushes the 
value onto the FPU register stack. The source operand can be a word, doubleword, or quadword integer. It is loaded 
without rounding errors. The sign of the source operand is preserved.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

TOP ← TOP − 1;

ST(0) ← ConvertToDoubleExtendedPrecisionFP(SRC);

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; set to 0 otherwise.
C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack overflow occurred.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DF /0 FILD m16int Valid Valid Push m16int onto the FPU register stack.

DB /0 FILD m32int Valid Valid Push m32int onto the FPU register stack.

DF /5 FILD m64int Valid Valid Push m64int onto the FPU register stack.
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#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FINCSTP—Increment Stack-Top Pointer

Description

Adds one to the TOP field of the FPU status word (increments the top-of-stack pointer). If the TOP field contains a 
7, it is set to 0. The effect of this instruction is to rotate the stack by one position. The contents of the FPU data 
registers and tag register are not affected. This operation is not equivalent to popping the stack, because the tag 
for the previous top-of-stack register is not marked empty.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF TOP = 7

THEN TOP ← 0;

ELSE TOP ← TOP + 1;

FI;

FPU Flags Affected

The C1 flag is set to 0. The C0, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F7 FINCSTP Valid Valid Increment the TOP field in the FPU status register.
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FINIT/FNINIT—Initialize Floating-Point Unit

Description

Sets the FPU control, status, tag, instruction pointer, and data pointer registers to their default states. The FPU 
control word is set to 037FH (round to nearest, all exceptions masked, 64-bit precision). The status word is cleared 
(no exception flags set, TOP is set to 0). The data registers in the register stack are left unchanged, but they are all 
tagged as empty (11B). Both the instruction and data pointers are cleared.

The FINIT instruction checks for and handles any pending unmasked floating-point exceptions before performing 
the initialization; the FNINIT instruction does not.

The assembler issues two instructions for the FINIT instruction (an FWAIT instruction followed by an FNINIT 
instruction), and the processor executes each of these instructions in separately. If an exception is generated for 
either of these instructions, the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible (under unusual 
circumstances) for an FNINIT instruction to be interrupted prior to being executed to handle a pending FPU excep-
tion. See the section titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circumstances. An 
FNINIT instruction cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family processor.

In the Intel387 math coprocessor, the FINIT/FNINIT instruction does not clear the instruction and data pointers.

This instruction affects only the x87 FPU. It does not affect the XMM and MXCSR registers.

Operation

FPUControlWord ← 037FH;

FPUStatusWord ← 0;

FPUTagWord ← FFFFH;

FPUDataPointer ← 0;

FPUInstructionPointer ← 0;

FPULastInstructionOpcode ← 0;

FPU Flags Affected

C0, C1, C2, C3 set to 0.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B DB E3 FINIT Valid Valid Initialize FPU after checking for pending unmasked 
floating-point exceptions.

DB E3 FNINIT* Valid Valid Initialize FPU without checking for pending unmasked 
floating-point exceptions.

NOTES:

* See IA-32 Architecture Compatibility section below.
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#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FIST/FISTP—Store Integer

Description

The FIST instruction converts the value in the ST(0) register to a signed integer and stores the result in the desti-
nation operand. Values can be stored in word or doubleword integer format. The destination operand specifies the 
address where the first byte of the destination value is to be stored.

The FISTP instruction performs the same operation as the FIST instruction and then pops the register stack. To pop 
the register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) by 1. 
The FISTP instruction also stores values in quadword integer format.

The following table shows the results obtained when storing various classes of numbers in integer format.

If the source value is a non-integral value, it is rounded to an integer value, according to the rounding mode spec-
ified by the RC field of the FPU control word. 

If the converted value is too large for the destination format, or if the source operand is an ∞, SNaN, QNAN, or is in 
an unsupported format, an invalid-arithmetic-operand condition is signaled. If the invalid-operation exception is 
not masked, an invalid-arithmetic-operand exception (#IA) is generated and no value is stored in the destination 
operand. If the invalid-operation exception is masked, the integer indefinite value is stored in memory.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DF /2 FIST m16int Valid Valid Store ST(0) in m16int.

DB /2 FIST m32int Valid Valid Store ST(0) in m32int.

DF /3 FISTP m16int Valid Valid Store ST(0) in m16int and pop register stack.

DB /3 FISTP m32int Valid Valid Store ST(0) in m32int and pop register stack.

DF /7 FISTP m64int Valid Valid Store ST(0) in m64int and pop register stack.

Table 3-37.  FIST/FISTP Results 

ST(0) DEST

− ∞ or Value Too Large for DEST Format *
F ≤ −1 − I

−1 < F < −0 **
− 0 0

+ 0 0

+ 0 < F < + 1 **
F ≥ + 1 + I

+ ∞ or Value Too Large for DEST Format *
NaN *

NOTES:

F Means finite floating-point value.

I Means integer.

* Indicates floating-point invalid-operation (#IA) exception.

** 0 or ±1, depending on the rounding mode.
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Operation

DEST ← Integer(ST(0));

IF Instruction = FISTP 

THEN 

PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Indicates rounding direction of if the inexact exception (#P) is generated: 0 ← not roundup; 1 
← roundup.
Set to 0 otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA Converted value is too large for the destination format.

Source operand is an SNaN, QNaN, ±∞, or unsupported format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.



FIST/FISTP—Store Integer

INSTRUCTION SET REFERENCE, A-M

3-298 Vol. 2A

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FISTTP—Store Integer with Truncation

Description

FISTTP converts the value in ST into a signed integer using truncation (chop) as rounding mode, transfers the 
result to the destination, and pop ST. FISTTP accepts word, short integer, and long integer destinations.

The following table shows the results obtained when storing various classes of numbers in integer format.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST ← ST;

pop ST;

Flags Affected

C1 is cleared; C0, C2, C3 undefined.

Numeric Exceptions

Invalid, Stack Invalid (stack underflow), Precision.

Protected Mode Exceptions

#GP(0) If the destination is in a nonwritable segment.
For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#NM If CR0.EM[bit 2] = 1.

If CR0.TS[bit 3] = 1.

Opcode Instruction 64-Bit Mode Compat/
Leg Mode

Description

DF /1 FISTTP m16int Valid Valid Store ST(0) in m16int with truncation.

DB /1 FISTTP m32int Valid Valid Store ST(0) in m32int with truncation.

DD /1 FISTTP m64int Valid Valid Store ST(0) in m64int with truncation.

Table 3-38.  FISTTP Results

ST(0) DEST

− ∞ or  Value Too Large for DEST Format *
F ≤ − 1 − I
− 1 < F < + 1 0

F Š + 1 + I

+ ∞  or Value Too Large for DEST Format *
NaN *
NOTES:

F Means finite floating-point value.

Ι Means integer.

∗ Indicates floating-point invalid-operation (#IA) exception.
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#UD If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

Real Address Mode Exceptions

GP(0) If any part of the operand would lie outside of the effective address space from 0 to 0FFFFH.
#NM If CR0.EM[bit 2] = 1.

If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.SSE3[bit 0] = 0.

If the LOCK prefix is used.

Virtual 8086 Mode Exceptions

GP(0) If any part of the operand would lie outside of the effective address space from 0 to 0FFFFH.
#NM If CR0.EM[bit 2] = 1.

If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.SSE3[bit 0] = 0.

If the LOCK prefix is used.
#PF(fault-code) For a page fault.
#AC(0) For unaligned memory reference if the current privilege is 3.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
If the LOCK prefix is used.
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FLD—Load Floating Point Value

Description

Pushes the source operand onto the FPU register stack. The source operand can be in single-precision, double-
precision, or double extended-precision floating-point format. If the source operand is in single-precision or 
double-precision floating-point format, it is automatically converted to the double extended-precision floating-
point format before being pushed on the stack.

The FLD instruction can also push the value in a selected FPU register [ST(i)] onto the stack. Here, pushing register 
ST(0) duplicates the stack top.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF SRC is ST(i)

THEN

temp ← ST(i);

FI;

TOP ← TOP − 1;

IF SRC is memory-operand

THEN

ST(0) ← ConvertToDoubleExtendedPrecisionFP(SRC);

ELSE (* SRC is ST(i) *)

ST(0) ← temp;

FI;

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow or overflow occurred.
#IA Source operand is an SNaN. Does not occur if the source operand is in double extended-preci-

sion floating-point format (FLD m80fp or FLD ST(i)).
#D Source operand is a denormal value. Does not occur if the source operand is in double 

extended-precision floating-point format.

Protected Mode Exceptions

#GP(0) If destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 /0 FLD m32fp Valid Valid Push m32fp onto the FPU register stack.

DD /0 FLD m64fp Valid Valid Push m64fp onto the FPU register stack.

DB /5 FLD m80fp Valid Valid Push m80fp onto the FPU register stack.

D9 C0+i FLD ST(i) Valid Valid Push ST(i) onto the FPU register stack.



FLD—Load Floating Point Value

INSTRUCTION SET REFERENCE, A-M

3-302 Vol. 2A

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant

Description

Push one of seven commonly used constants (in double extended-precision floating-point format) onto the FPU 
register stack. The constants that can be loaded with these instructions include +1.0, +0.0, log210, log2e, π, log102, 
and loge2. For each constant, an internal 66-bit constant is rounded (as specified by the RC field in the FPU control 
word) to double extended-precision floating-point format. The inexact-result exception (#P) is not generated as a 
result of the rounding, nor is the C1 flag set in the x87 FPU status word if the value is rounded up. 

See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, for a description of the π constant.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

When the RC field is set to round-to-nearest, the FPU produces the same constants that is produced by the Intel 
8087 and Intel 287 math coprocessors.

Operation

TOP ← TOP − 1;

ST(0) ← CONSTANT;

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, set to 0.
C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack overflow occurred.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Opcode* Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 E8 FLD1 Valid Valid Push +1.0 onto the FPU register stack.

D9 E9 FLDL2T Valid Valid Push log210 onto the FPU register stack.

D9 EA FLDL2E Valid Valid Push log2e onto the FPU register stack.

D9 EB FLDPI Valid Valid Push π onto the FPU register stack.

D9 EC FLDLG2 Valid Valid Push log102 onto the FPU register stack.

D9 ED FLDLN2 Valid Valid Push loge2 onto the FPU register stack.

D9 EE FLDZ Valid Valid Push +0.0 onto the FPU register stack.

NOTES:

* See IA-32 Architecture Compatibility section below.
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Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FLDCW—Load x87 FPU Control Word

Description

Loads the 16-bit source operand into the FPU control word. The source operand is a memory location. This instruc-
tion is typically used to establish or change the FPU’s mode of operation.

If one or more exception flags are set in the FPU status word prior to loading a new FPU control word and the new 
control word unmasks one or more of those exceptions, a floating-point exception will be generated upon execution 
of the next floating-point instruction (except for the no-wait floating-point instructions, see the section titled “Soft-
ware Exception Handling” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1). To avoid raising exceptions when changing FPU operating modes, clear any pending exceptions (using 
the FCLEX or FNCLEX instruction) before loading the new control word.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FPUControlWord ← SRC;

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None; however, this operation might unmask a pending exception in the FPU status word. That exception is then 
generated upon execution of the next “waiting” floating-point instruction.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 /5 FLDCW m2byte Valid Valid Load FPU control word from m2byte.
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#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FLDENV—Load x87 FPU Environment

Description

Loads the complete x87 FPU operating environment from memory into the FPU registers. The source operand spec-
ifies the first byte of the operating-environment data in memory. This data is typically written to the specified 
memory location by a FSTENV or FNSTENV instruction.

The FPU operating environment consists of the FPU control word, status word, tag word, instruction pointer, data 
pointer, and last opcode. Figures 8-9 through 8-12 in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, show the layout in memory of the loaded environment, depending on the operating mode of the 
processor (protected or real) and the current operand-size attribute (16-bit or 32-bit). In virtual-8086 mode, the 
real mode layouts are used.

The FLDENV instruction should be executed in the same operating mode as the corresponding FSTENV/FNSTENV 
instruction.

If one or more unmasked exception flags are set in the new FPU status word, a floating-point exception will be 
generated upon execution of the next floating-point instruction (except for the no-wait floating-point instructions, 
see the section titled “Software Exception Handling” in Chapter 8 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1). To avoid generating exceptions when loading a new environment, clear all 
the exception flags in the FPU status word that is being loaded.

If a page or limit fault occurs during the execution of this instruction, the state of the x87 FPU registers as seen by 
the fault handler may be different than the state being loaded from memory. In such situations, the fault handler 
should ignore the status of the x87 FPU registers, handle the fault, and return. The FLDENV instruction will then 
complete the loading of the x87 FPU registers with no resulting context inconsistency.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FPUControlWord ← SRC[FPUControlWord];

FPUStatusWord ← SRC[FPUStatusWord];

FPUTagWord ← SRC[FPUTagWord];

FPUDataPointer ← SRC[FPUDataPointer];

FPUInstructionPointer ← SRC[FPUInstructionPointer];

FPULastInstructionOpcode ← SRC[FPULastInstructionOpcode];

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Floating-Point Exceptions

None; however, if an unmasked exception is loaded in the status word, it is generated upon execution of the next 
“waiting” floating-point instruction.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 /4 FLDENV m14/28byte Valid Valid Load FPU environment from m14byte or m28byte.
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#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 
current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FMUL/FMULP/FIMUL—Multiply

Description

Multiplies the destination and source operands and stores the product in the destination location. The destination 
operand is always an FPU data register; the source operand can be an FPU data register or a memory location. 
Source operands in memory can be in single-precision or double-precision floating-point format or in word or 
doubleword integer format.

The no-operand version of the instruction multiplies the contents of the ST(1) register by the contents of the ST(0) 
register and stores the product in the ST(1) register. The one-operand version multiplies the contents of the ST(0) 
register by the contents of a memory location (either a floating point or an integer value) and stores the product in 
the ST(0) register. The two-operand version, multiplies the contents of the ST(0) register by the contents of the 
ST(i) register, or vice versa, with the result being stored in the register specified with the first operand (the desti-
nation operand). 

The FMULP instructions perform the additional operation of popping the FPU register stack after storing the 
product. To pop the register stack, the processor marks the ST(0) register as empty and increments the stack 
pointer (TOP) by 1. The no-operand version of the floating-point multiply instructions always results in the register 
stack being popped. In some assemblers, the mnemonic for this instruction is FMUL rather than FMULP.

The FIMUL instructions convert an integer source operand to double extended-
precision floating-point format before performing the multiplication.

The sign of the result is always the exclusive-OR of the source signs, even if one or more of the values being multi-
plied is 0 or ∞. When the source operand is an integer 0, it is treated as a +0.

The following table shows the results obtained when multiplying various classes of numbers, assuming that neither 
overflow nor underflow occurs.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /1 FMUL m32fp Valid Valid Multiply ST(0) by m32fp and store result in ST(0).

DC /1 FMUL m64fp Valid Valid Multiply ST(0) by m64fp and store result in ST(0).

D8 C8+i FMUL ST(0), ST(i) Valid Valid Multiply ST(0) by ST(i) and store result in ST(0).

DC C8+i FMUL ST(i), ST(0) Valid Valid Multiply ST(i) by ST(0) and store result in ST(i).

DE C8+i FMULP ST(i), ST(0) Valid Valid Multiply ST(i) by ST(0), store result in ST(i), and pop the 
register stack.

DE C9 FMULP Valid Valid Multiply ST(1) by ST(0), store result in ST(1), and pop 
the register stack.

DA /1 FIMUL m32int Valid Valid Multiply ST(0) by m32int and store result in ST(0).

DE /1 FIMUL m16int Valid Valid Multiply ST(0) by m16int and store result in ST(0).
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This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF Instruction = FIMUL

THEN

DEST ← DEST ∗ ConvertToDoubleExtendedPrecisionFP(SRC);

ELSE (* Source operand is floating-point value *)

DEST ← DEST ∗ SRC;

FI;

IF Instruction = FMULP 

THEN 

PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

One operand is ±0 and the other is ±∞.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Table 3-39.  FMUL/FMULP/FIMUL Results

DEST

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ + ∞ + ∞ * * − ∞ − ∞ NaN

− F + ∞ + F + 0 − 0 − F − ∞ NaN

− I + ∞ + F + 0 − 0 − F − ∞ NaN

SRC − 0 * + 0 + 0 − 0 − 0 * NaN

+ 0 * − 0 − 0 + 0 + 0 * NaN

+ I − ∞ − F − 0 + 0 + F + ∞ NaN

+ F − ∞ − F − 0 + 0 + F + ∞ NaN

+ ∞ − ∞ − ∞ * * + ∞ + ∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite floating-point value.

I Means Integer.

* Indicates invalid-arithmetic-operand (#IA) exception.
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Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FNOP—No Operation

Description

Performs no FPU operation. This instruction takes up space in the instruction stream but does not affect the FPU or 
machine context, except the EIP register.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 D0 FNOP Valid Valid No operation is performed.
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FPATAN—Partial Arctangent

Description

Computes the arctangent of the source operand in register ST(1) divided by the source operand in register ST(0), 
stores the result in ST(1), and pops the FPU register stack. The result in register ST(0) has the same sign as the 
source operand ST(1) and a magnitude less than +π.

The FPATAN instruction returns the angle between the X axis and the line from the origin to the point (X,Y), where 
Y (the ordinate) is ST(1) and X (the abscissa) is ST(0). The angle depends on the sign of X and Y independently, 
not just on the sign of the ratio Y/X. This is because a point (−X,Y) is in the second quadrant, resulting in an angle 
between π/2 and π, while a point (X,−Y) is in the fourth quadrant, resulting in an angle between 0 and −π/2. A point 
(−X,−Y) is in the third quadrant, giving an angle between −π/2 and −π.

The following table shows the results obtained when computing the arctangent of various classes of numbers, 
assuming that underflow does not occur.

There is no restriction on the range of source operands that FPATAN can accept.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The source operands for this instruction are restricted for the 80287 math coprocessor to the following range:

0 ≤ |ST(1)| < |ST(0)| < +∞

Opcode* Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F3 FPATAN Valid Valid Replace ST(1) with arctan(ST(1)/ST(0)) and pop the register stack.

NOTES:

* See IA-32 Architecture Compatibility section below.

Table 3-40.  FPATAN Results

ST(0)

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ − 3π/4* − π/2 − π/2 − π/2 − π/2 − π/4* NaN

ST(1) − F -p −π to −π/2 −π/2 −π/2 −π/2 to −0 - 0 NaN

− 0 -p -p -p* − 0* − 0 − 0 NaN

+ 0 +p + p + π* + 0* + 0 + 0 NaN

+ F +p +π to +π/2 + π/2 +π/2 +π/2 to +0 + 0 NaN

+ ∞ +3π/4* +π/2 +π/2 +π/2 + π/2 + π/4* NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite floating-point value.

* Table 8-10 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, specifies that the ratios 0/0 and ∞/∞ 
generate the floating-point invalid arithmetic-operation exception and, if this exception is masked, the floating-point QNaN indefi-
nite value is returned. With the FPATAN instruction, the 0/0 or ∞/∞ value is actually not calculated using division. Instead, the arc-
tangent of the two variables is derived from a standard mathematical formulation that is generalized to allow complex numbers as 
arguments. In this complex variable formulation, arctangent(0,0) etc. has well defined values. These values are needed to develop 
a library to compute transcendental functions with complex arguments, based on the FPU functions that only allow floating-point 
values as arguments.
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Operation

ST(1) ← arctan(ST(1) / ST(0));

PopRegisterStack;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FPREM—Partial Remainder

Description

Computes the remainder obtained from dividing the value in the ST(0) register (the dividend) by the value in the 
ST(1) register (the divisor or modulus), and stores the result in ST(0). The remainder represents the following 
value:

Remainder ← ST(0) − (Q ∗ ST(1))

Here, Q is an integer value that is obtained by truncating the floating-point number quotient of [ST(0) / ST(1)] 
toward zero. The sign of the remainder is the same as the sign of the dividend. The magnitude of the remainder is 
less than that of the modulus, unless a partial remainder was computed (as described below).

This instruction produces an exact result; the inexact-result exception does not occur and the rounding control has 
no effect. The following table shows the results obtained when computing the remainder of various classes of 
numbers, assuming that underflow does not occur.

When the result is 0, its sign is the same as that of the dividend. When the modulus is ∞, the result is equal to the 
value in ST(0). 

The FPREM instruction does not compute the remainder specified in IEEE Std 754. The IEEE specified remainder 
can be computed with the FPREM1 instruction. The FPREM instruction is provided for compatibility with the Intel 
8087 and Intel287 math coprocessors.

The FPREM instruction gets its name “partial remainder” because of the way it computes the remainder. This 
instruction arrives at a remainder through iterative subtraction. It can, however, reduce the exponent of ST(0) by 
no more than 63 in one execution of the instruction. If the instruction succeeds in producing a remainder that is 
less than the modulus, the operation is complete and the C2 flag in the FPU status word is cleared. Otherwise, C2 
is set, and the result in ST(0) is called the partial remainder. The exponent of the partial remainder will be less 
than the exponent of the original dividend by at least 32. Software can re-execute the instruction (using the partial 
remainder in ST(0) as the dividend) until C2 is cleared. (Note that while executing such a remainder-computation 
loop, a higher-priority interrupting routine that needs the FPU can force a context switch in-between the instruc-
tions in the loop.)

An important use of the FPREM instruction is to reduce the arguments of periodic functions. When reduction is 
complete, the instruction stores the three least-significant bits of the quotient in the C3, C1, and C0 flags of the FPU 

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F8 FPREM Valid Valid Replace ST(0) with the remainder obtained from dividing 
ST(0) by ST(1).

Table 3-41.  FPREM Results

ST(1)

-∞ -F -0 +0 +F +∞ NaN

-∞ * * * * * * NaN

ST(0) -F ST(0) -F or -0 ** ** -F or -0 ST(0) NaN

-0 -0 -0 * * -0 -0 NaN

+0 +0 +0 * * +0 +0 NaN

+F ST(0) +F or +0 ** ** +F or +0 ST(0) NaN

+∞ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite floating-point value.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

** Indicates floating-point zero-divide (#Z) exception.



FPREM—Partial Remainder

INSTRUCTION SET REFERENCE, A-M

3-316 Vol. 2A

status word. This information is important in argument reduction for the tangent function (using a modulus of π/4), 
because it locates the original angle in the correct one of eight sectors of the unit circle.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

D ← exponent(ST(0)) – exponent(ST(1));

IF D < 64

THEN

Q ← Integer(TruncateTowardZero(ST(0) / ST(1)));

ST(0) ← ST(0) – (ST(1) ∗ Q);

C2 ← 0;

C0, C3, C1 ← LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE

C2 ← 1;

N ← An implementation-dependent number between 32 and 63;

QQ ← Integer(TruncateTowardZero((ST(0)  / ST(1)) / 2(D − N)));

ST(0) ← ST(0) – (ST(1) ∗ QQ ∗ 2(D − N)); 

FI;

FPU Flags Affected

C0 Set to bit 2 (Q2) of the quotient.
C1 Set to 0 if stack underflow occurred; otherwise, set to least significant bit of quotient (Q0).
C2 Set to 0 if reduction complete; set to 1 if incomplete.
C3 Set to bit 1 (Q1) of the quotient.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA Source operand is an SNaN value, modulus is 0, dividend is ∞, or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.



FPREM1—Partial Remainder

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-317

FPREM1—Partial Remainder

Description

Computes the IEEE remainder obtained from dividing the value in the ST(0) register (the dividend) by the value in 
the ST(1) register (the divisor or modulus), and stores the result in ST(0). The remainder represents the following 
value:

Remainder ← ST(0) − (Q ∗ ST(1))

Here, Q is an integer value that is obtained by rounding the floating-point number quotient of [ST(0) / ST(1)] 
toward the nearest integer value. The magnitude of the remainder is less than or equal to half the magnitude of the 
modulus, unless a partial remainder was computed (as described below).

This instruction produces an exact result; the precision (inexact) exception does not occur and the rounding control 
has no effect. The following table shows the results obtained when computing the remainder of various classes of 
numbers, assuming that underflow does not occur.

When the result is 0, its sign is the same as that of the dividend. When the modulus is ∞, the result is equal to the 
value in ST(0). 

The FPREM1 instruction computes the remainder specified in IEEE Standard 754. This instruction operates differ-
ently from the FPREM instruction in the way that it rounds the quotient of ST(0) divided by ST(1) to an integer (see 
the “Operation” section below).

Like the FPREM instruction, FPREM1 computes the remainder through iterative subtraction, but can reduce the 
exponent of ST(0) by no more than 63 in one execution of the instruction. If the instruction succeeds in producing 
a remainder that is less than one half the modulus, the operation is complete and the C2 flag in the FPU status word 
is cleared. Otherwise, C2 is set, and the result in ST(0) is called the partial remainder. The exponent of the partial 
remainder will be less than the exponent of the original dividend by at least 32. Software can re-execute the 
instruction (using the partial remainder in ST(0) as the dividend) until C2 is cleared. (Note that while executing 
such a remainder-computation loop, a higher-priority interrupting routine that needs the FPU can force a context 
switch in-between the instructions in the loop.)

An important use of the FPREM1 instruction is to reduce the arguments of periodic functions. When reduction is 
complete, the instruction stores the three least-significant bits of the quotient in the C3, C1, and C0 flags of the FPU 

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F5 FPREM1 Valid Valid Replace ST(0) with the IEEE remainder obtained from dividing 
ST(0) by ST(1).

Table 3-42.  FPREM1 Results

ST(1)

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ * * * * * * NaN

ST(0) − F ST(0) ±F or −0 ** ** ± F or − 0 ST(0) NaN

− 0 − 0 − 0 * * − 0 -0 NaN

+ 0 + 0 + 0 * * + 0 +0 NaN

+ F ST(0) ± F or + 0 ** ** ± F or + 0 ST(0) NaN

+ ∞ * * * * * * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite floating-point value.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

** Indicates floating-point zero-divide (#Z) exception.
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status word. This information is important in argument reduction for the tangent function (using a modulus of π/4), 
because it locates the original angle in the correct one of eight sectors of the unit circle.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation 

D ← exponent(ST(0)) – exponent(ST(1));

IF D < 64

THEN

Q ← Integer(RoundTowardNearestInteger(ST(0) / ST(1)));

ST(0) ← ST(0) – (ST(1) ∗ Q);

C2 ← 0;

C0, C3, C1 ← LeastSignificantBits(Q); (* Q2, Q1, Q0 *)

ELSE

C2 ← 1;

N ← An implementation-dependent number between 32 and 63;

QQ ← Integer(TruncateTowardZero((ST(0)  / ST(1)) / 2(D − N)));

ST(0) ← ST(0) – (ST(1) ∗ QQ ∗ 2(D − N)); 

FI;

FPU Flags Affected

C0 Set to bit 2 (Q2) of the quotient.
C1 Set to 0 if stack underflow occurred; otherwise, set to least significant bit of quotient (Q0).
C2 Set to 0 if reduction complete; set to 1 if incomplete.
C3 Set to bit 1 (Q1) of the quotient.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA Source operand is an SNaN value, modulus (divisor) is 0, dividend is ∞, or unsupported 

format.
#D Source operand is a denormal value.
#U Result is too small for destination format.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FPTAN—Partial Tangent

Description

Computes the tangent of the source operand in register ST(0), stores the result in ST(0), and pushes a 1.0 onto 
the FPU register stack. The source operand must be given in radians and must be less than ±263. The following 
table shows the unmasked results obtained when computing the partial tangent of various classes of numbers, 
assuming that underflow does not occur.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, and the value in 
register ST(0) remains unchanged. The instruction does not raise an exception when the source operand is out of 
range. It is up to the program to check the C2 flag for out-of-range conditions. Source values outside the range −
263 to +263 can be reduced to the range of the instruction by subtracting an appropriate integer multiple of 2π or by 
using the FPREM instruction with a divisor of 2π. See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in 
performing such reductions.

The value 1.0 is pushed onto the register stack after the tangent has been computed to maintain compatibility with 
the Intel 8087 and Intel287 math coprocessors. This operation also simplifies the calculation of other trigonometric 
functions. For instance, the cotangent (which is the reciprocal of the tangent) can be computed by executing a 
FDIVR instruction after the FPTAN instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF ST(0) < 263

THEN

C2 ← 0;

ST(0) ← tan(ST(0));

TOP ← TOP − 1;

ST(0) ← 1.0;

ELSE (* Source operand is out-of-range *)

C2 ← 1;

FI;

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F2 FPTAN Valid Valid Replace ST(0) with its tangent and push 1 onto the FPU 
stack.

Table 3-43.  FPTAN Results

ST(0) SRC ST(0) DEST

− ∞ *
− F − F to + F
− 0 - 0
+ 0 + 0
+ F − F to + F
+ ∞ *
NaN NaN 

NOTES:

F Means finite floating-point value.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred.
Set if result was rounded up; cleared otherwise.

C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.
C0, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow or overflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FRNDINT—Round to Integer

Description

Rounds the source value in the ST(0) register to the nearest integral value, depending on the current rounding 
mode (setting of the RC field of the FPU control word), and stores the result in ST(0).

If the source value is ∞, the value is not changed. If the source value is not an integral value, the floating-point 
inexact-result exception (#P) is generated.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) ← RoundToIntegralValue(ST(0));

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.
#P Source operand is not an integral value.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 FC FRNDINT Valid Valid Round ST(0) to an integer.
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FRSTOR—Restore x87 FPU State

Description

Loads the FPU state (operating environment and register stack) from the memory area specified with the source 
operand. This state data is typically written to the specified memory location by a previous FSAVE/FNSAVE instruc-
tion.

The FPU operating environment consists of the FPU control word, status word, tag word, instruction pointer, data 
pointer, and last opcode. Figures 8-9 through 8-12 in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, show the layout in memory of the stored environment, depending on the operating mode of the 
processor (protected or real) and the current operand-size attribute (16-bit or 32-bit). In virtual-8086 mode, the 
real mode layouts are used. The contents of the FPU register stack are stored in the 80 bytes immediately following 
the operating environment image.

The FRSTOR instruction should be executed in the same operating mode as the corresponding FSAVE/FNSAVE 
instruction.

If one or more unmasked exception bits are set in the new FPU status word, a floating-point exception will be 
generated. To avoid raising exceptions when loading a new operating environment, clear all the exception flags in 
the FPU status word that is being loaded.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FPUControlWord ← SRC[FPUControlWord];

FPUStatusWord ← SRC[FPUStatusWord];

FPUTagWord ← SRC[FPUTagWord];

FPUDataPointer ← SRC[FPUDataPointer];

FPUInstructionPointer ← SRC[FPUInstructionPointer];

FPULastInstructionOpcode ← SRC[FPULastInstructionOpcode];

ST(0) ← SRC[ST(0)];

ST(1) ← SRC[ST(1)];

ST(2) ← SRC[ST(2)];

ST(3) ← SRC[ST(3)];

ST(4) ← SRC[ST(4)];

ST(5) ← SRC[ST(5)];

ST(6) ← SRC[ST(6)];

ST(7) ← SRC[ST(7)];

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Floating-Point Exceptions

None; however, this operation might unmask an existing exception that has been detected but not generated, 
because it was masked. Here, the exception is generated at the completion of the instruction.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DD /4 FRSTOR m94/108byte Valid Valid Load FPU state from m94byte or m108byte.
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#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FSAVE/FNSAVE—Store x87 FPU State

Description

Stores the current FPU state (operating environment and register stack) at the specified destination in memory, 
and then re-initializes the FPU. The FSAVE instruction checks for and handles pending unmasked floating-point 
exceptions before storing the FPU state; the FNSAVE instruction does not.

The FPU operating environment consists of the FPU control word, status word, tag word, instruction pointer, data 
pointer, and last opcode. Figures 8-9 through 8-12 in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, show the layout in memory of the stored environment, depending on the operating mode of the 
processor (protected or real) and the current operand-size attribute (16-bit or 32-bit). In virtual-8086 mode, the 
real mode layouts are used. The contents of the FPU register stack are stored in the 80 bytes immediately follow 
the operating environment image.

The saved image reflects the state of the FPU after all floating-point instructions preceding the FSAVE/FNSAVE 
instruction in the instruction stream have been executed.

After the FPU state has been saved, the FPU is reset to the same default values it is set to with the FINIT/FNINIT 
instructions (see “FINIT/FNINIT—Initialize Floating-Point Unit” in this chapter).

The FSAVE/FNSAVE instructions are typically used when the operating system needs to perform a context switch, 
an exception handler needs to use the FPU, or an application program needs to pass a “clean” FPU to a procedure.

The assembler issues two instructions for the FSAVE instruction (an FWAIT instruction followed by an FNSAVE 
instruction), and the processor executes each of these instructions separately. If an exception is generated for 
either of these instructions, the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

For Intel math coprocessors and FPUs prior to the Intel Pentium processor, an FWAIT instruction should be 
executed before attempting to read from the memory image stored with a prior FSAVE/FNSAVE instruction. This 
FWAIT instruction helps ensure that the storage operation has been completed.

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible (under unusual 
circumstances) for an FNSAVE instruction to be interrupted prior to being executed to handle a pending FPU excep-
tion. See the section titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circumstances. An 
FNSAVE instruction cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family processor.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B DD /6 FSAVE m94/108byte Valid Valid Store FPU state to m94byte or m108byte after 
checking for pending unmasked floating-point 
exceptions. Then re-initialize the FPU.

DD /6 FNSAVE* 
m94/108byte Valid Valid Store FPU environment to m94byte or m108byte 

without checking for pending unmasked floating-
point exceptions. Then re-initialize the FPU.

NOTES:

* See IA-32 Architecture Compatibility section below.
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Operation

(* Save FPU State and Registers *)

DEST[FPUControlWord] ← FPUControlWord;

DEST[FPUStatusWord] ← FPUStatusWord;

DEST[FPUTagWord] ← FPUTagWord;

DEST[FPUDataPointer] ← FPUDataPointer;

DEST[FPUInstructionPointer] ← FPUInstructionPointer;

DEST[FPULastInstructionOpcode] ← FPULastInstructionOpcode;

DEST[ST(0)] ← ST(0);

DEST[ST(1)] ← ST(1);

DEST[ST(2)] ← ST(2);

DEST[ST(3)] ← ST(3);

DEST[ST(4)]← ST(4);

DEST[ST(5)] ← ST(5);

DEST[ST(6)] ← ST(6);

DEST[ST(7)] ← ST(7);

(* Initialize FPU *)

FPUControlWord ← 037FH;

FPUStatusWord ← 0;

FPUTagWord ← FFFFH;

FPUDataPointer ← 0;

FPUInstructionPointer ← 0;

FPULastInstructionOpcode ← 0;

FPU Flags Affected

The C0, C1, C2, and C3 flags are saved and then cleared.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) If destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.
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Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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FSCALE—Scale

Description

Truncates the value in the source operand (toward 0) to an integral value and adds that value to the exponent of 
the destination operand. The destination and source operands are floating-point values located in registers ST(0) 
and ST(1), respectively. This instruction provides rapid multiplication or division by integral powers of 2. The 
following table shows the results obtained when scaling various classes of numbers, assuming that neither over-
flow nor underflow occurs.

In most cases, only the exponent is changed and the mantissa (significand) remains unchanged. However, when 
the value being scaled in ST(0) is a denormal value, the mantissa is also changed and the result may turn out to be 
a normalized number. Similarly, if overflow or underflow results from a scale operation, the resulting mantissa will 
differ from the source’s mantissa.

The FSCALE instruction can also be used to reverse the action of the FXTRACT instruction, as shown in the following 
example:

FXTRACT;

FSCALE;

FSTP ST(1);

In this example, the FXTRACT instruction extracts the significand and exponent from the value in ST(0) and stores 
them in ST(0) and ST(1) respectively. The FSCALE then scales the significand in ST(0) by the exponent in ST(1), 
recreating the original value before the FXTRACT operation was performed. The FSTP ST(1) instruction overwrites 
the exponent (extracted by the FXTRACT instruction) with the recreated value, which returns the stack to its orig-
inal state with only one register [ST(0)] occupied.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) ← ST(0) ∗ 2RoundTowardZero(ST(1));

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 FD FSCALE Valid Valid Scale ST(0) by ST(1).

Table 3-44.  FSCALE Results

ST(1)

− ∞ − F − 0 + 0 + F + ∞ NaN

− ∞ NaN − ∞ − ∞ − ∞ − ∞ − ∞ NaN

ST(0) − F − 0 − F − F − F − F − ∞ NaN

− 0 − 0 − 0 − 0 − 0 − 0 NaN NaN

+ 0 + 0 + 0 + 0 + 0 + 0 NaN NaN

+ F + 0 + F + F + F + F + ∞ NaN

+ ∞ NaN + ∞ + ∞ + ∞ + ∞ + ∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite floating-point value.
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FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FSIN—Sine

Description

Computes the sine of the source operand in register ST(0) and stores the result in ST(0). The source operand must 
be given in radians and must be within the range −263 to +263. The following table shows the results obtained when 
taking the sine of various classes of numbers, assuming that underflow does not occur.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, and the value in 
register ST(0) remains unchanged. The instruction does not raise an exception when the source operand is out of 
range. It is up to the program to check the C2 flag for out-of-range conditions. Source values outside the range −
263 to +263 can be reduced to the range of the instruction by subtracting an appropriate integer multiple of 2π or by 
using the FPREM instruction with a divisor of 2π. See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in 
performing such reductions.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF -263 < ST(0) < 263

THEN

C2 ← 0;

ST(0) ← sin(ST(0));

ELSE (* Source operand out of range *)

C2 ← 1;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.

C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.
C0, C3 Undefined.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 FE FSIN Valid Valid Replace ST(0) with its sine.

Table 3-45.  FSIN Results

SRC (ST(0)) DEST (ST(0))

− ∞ *
− F − 1 to + 1

− 0 −0
+ 0 + 0
+ F − 1 to +1

+ ∞ *

NaN NaN 

NOTES:

F Means finite floating-point value.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.



FSIN—Sine

INSTRUCTION SET REFERENCE, A-M

3-330 Vol. 2A

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source operand is a denormal value.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FSINCOS—Sine and Cosine

Description

Computes both the sine and the cosine of the source operand in register ST(0), stores the sine in ST(0), and 
pushes the cosine onto the top of the FPU register stack. (This instruction is faster than executing the FSIN and 
FCOS instructions in succession.)

The source operand must be given in radians and must be within the range −263 to +263. The following table shows 
the results obtained when taking the sine and cosine of various classes of numbers, assuming that underflow does 
not occur.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, and the value in 
register ST(0) remains unchanged. The instruction does not raise an exception when the source operand is out of 
range. It is up to the program to check the C2 flag for out-of-range conditions. Source values outside the range −
263 to +263 can be reduced to the range of the instruction by subtracting an appropriate integer multiple of 2π or by 
using the FPREM instruction with a divisor of 2π. See the section titled “Pi” in Chapter 8 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for a discussion of the proper value to use for π in 
performing such reductions.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF ST(0) < 263

THEN

C2 ← 0;

TEMP ← cosine(ST(0));

ST(0) ← sine(ST(0));
TOP ← TOP − 1;

ST(0) ← TEMP;

ELSE (* Source operand out of range *)

C2 ← 1;

FI;

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 FB FSINCOS Valid Valid Compute the sine and cosine of ST(0); replace ST(0) with the 
sine, and push the cosine onto the register stack.

Table 3-46.  FSINCOS Results

SRC DEST

ST(0) ST(1) Cosine ST(0) Sine

− ∞ * *
− F − 1 to + 1 − 1 to + 1

− 0 + 1 − 0
+ 0 + 1 + 0
+ F − 1 to + 1 − 1 to + 1

+ ∞ * *
NaN NaN NaN

NOTES:

F Means finite floating-point value.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 of stack overflow occurs.
Set if result was rounded up; cleared otherwise.

C2 Set to 1 if outside range (−263 < source operand < +263); otherwise, set to 0.
C0, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow or overflow occurred.
#IA Source operand is an SNaN value, ∞, or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FSQRT—Square Root

Description

Computes the square root of the source value in the ST(0) register and stores the result in ST(0).

The following table shows the results obtained when taking the square root of various classes of numbers, 
assuming that neither overflow nor underflow occurs.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) ← SquareRoot(ST(0));

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.

Source operand is a negative value (except for −0).
#D Source operand is a denormal value.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 FA FSQRT Valid Valid Computes square root of ST(0) and stores the result in ST(0).

Table 3-47.  FSQRT Results

SRC (ST(0)) DEST (ST(0))

− ∞ *
− F *
− 0 − 0
+ 0 + 0
+ F + F
+ ∞ + ∞
NaN NaN 

NOTES:

F Means finite floating-point value.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FST/FSTP—Store Floating Point Value

Description

The FST instruction copies the value in the ST(0) register to the destination operand, which can be a memory loca-
tion or another register in the FPU register stack. When storing the value in memory, the value is converted to 
single-precision or double-precision floating-point format. 

The FSTP instruction performs the same operation as the FST instruction and then pops the register stack. To pop 
the register stack, the processor marks the ST(0) register as empty and increments the stack pointer (TOP) by 1. 
The FSTP instruction can also store values in memory in double extended-precision floating-point format.

If the destination operand is a memory location, the operand specifies the address where the first byte of the desti-
nation value is to be stored. If the destination operand is a register, the operand specifies a register in the register 
stack relative to the top of the stack.

If the destination size is single-precision or double-precision, the significand of the value being stored is rounded 
to the width of the destination (according to the rounding mode specified by the RC field of the FPU control word), 
and the exponent is converted to the width and bias of the destination format. If the value being stored is too large 
for the destination format, a numeric overflow exception (#O) is generated and, if the exception is unmasked, no 
value is stored in the destination operand. If the value being stored is a denormal value, the denormal exception 
(#D) is not generated. This condition is simply signaled as a numeric underflow exception (#U) condition.

If the value being stored is ±0, ±∞, or a NaN, the least-significant bits of the significand and the exponent are trun-
cated to fit the destination format. This operation preserves the value’s identity as a 0, ∞, or NaN.

If the destination operand is a non-empty register, the invalid-operation exception is not generated.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST ← ST(0);

IF Instruction = FSTP 

THEN 

PopRegisterStack; 

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Indicates rounding direction of if the floating-point inexact exception (#P) is generated: 0 ← 
not roundup; 1 ← roundup.

C0, C2, C3 Undefined.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 /2 FST m32fp Valid Valid Copy ST(0) to m32fp.

DD /2 FST m64fp Valid Valid Copy ST(0) to m64fp.

DD D0+i FST ST(i) Valid Valid Copy ST(0) to ST(i).

D9 /3 FSTP m32fp Valid Valid Copy ST(0) to m32fp and pop register stack.

DD /3 FSTP m64fp Valid Valid Copy ST(0) to m64fp and pop register stack.

DB /7 FSTP m80fp Valid Valid Copy ST(0) to m80fp and pop register stack.

DD D8+i FSTP ST(i) Valid Valid Copy ST(0) to ST(i) and pop register stack.
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Floating-Point Exceptions

#IS Stack underflow occurred.
#IA If destination result is an SNaN value or unsupported format, except when the destination 

format is in double extended-precision floating-point format.
#U Result is too small for the destination format.
#O Result is too large for the destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FSTCW/FNSTCW—Store x87 FPU Control Word

Description

Stores the current value of the FPU control word at the specified destination in memory. The FSTCW instruction 
checks for and handles pending unmasked floating-point exceptions before storing the control word; the FNSTCW 
instruction does not.

The assembler issues two instructions for the FSTCW instruction (an FWAIT instruction followed by an FNSTCW 
instruction), and the processor executes each of these instructions in separately. If an exception is generated for 
either of these instructions, the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible (under unusual 
circumstances) for an FNSTCW instruction to be interrupted prior to being executed to handle a pending FPU 
exception. See the section titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circum-
stances. An FNSTCW instruction cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family 
processor.

Operation

DEST ← FPUControlWord;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B D9 /7 FSTCW m2byte Valid Valid Store FPU control word to m2byte after checking for 
pending unmasked floating-point exceptions.

D9 /7 FNSTCW* m2byte Valid Valid Store FPU control word to m2byte without checking for 
pending unmasked floating-point exceptions.

NOTES:

* See IA-32 Architecture Compatibility section below.
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Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FSTENV/FNSTENV—Store x87 FPU Environment

Description

Saves the current FPU operating environment at the memory location specified with the destination operand, and 
then masks all floating-point exceptions. The FPU operating environment consists of the FPU control word, status 
word, tag word, instruction pointer, data pointer, and last opcode. Figures 8-9 through 8-12 in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, show the layout in memory of the stored environ-
ment, depending on the operating mode of the processor (protected or real) and the current operand-size attribute 
(16-bit or 32-bit). In virtual-8086 mode, the real mode layouts are used.

The FSTENV instruction checks for and handles any pending unmasked floating-point exceptions before storing 
the FPU environment; the FNSTENV instruction does not. The saved image reflects the state of the FPU after all 
floating-point instructions preceding the FSTENV/FNSTENV instruction in the instruction stream have been 
executed.

These instructions are often used by exception handlers because they provide access to the FPU instruction and 
data pointers. The environment is typically saved in the stack. Masking all exceptions after saving the environment 
prevents floating-point exceptions from interrupting the exception handler.

The assembler issues two instructions for the FSTENV instruction (an FWAIT instruction followed by an FNSTENV 
instruction), and the processor executes each of these instructions separately. If an exception is generated for 
either of these instructions, the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible (under unusual 
circumstances) for an FNSTENV instruction to be interrupted prior to being executed to handle a pending FPU 
exception. See the section titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circum-
stances. An FNSTENV instruction cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family 
processor.

Operation

DEST[FPUControlWord] ← FPUControlWord;

DEST[FPUStatusWord] ← FPUStatusWord;

DEST[FPUTagWord] ← FPUTagWord;

DEST[FPUDataPointer] ← FPUDataPointer;

DEST[FPUInstructionPointer] ← FPUInstructionPointer;

DEST[FPULastInstructionOpcode] ← FPULastInstructionOpcode;

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B D9 /6 FSTENV m14/28byte Valid Valid Store FPU environment to m14byte or m28byte 
after checking for pending unmasked floating-point 
exceptions. Then mask all floating-point exceptions.

D9 /6 FNSTENV* m14/28byte Valid Valid Store FPU environment to m14byte or m28byte 
without checking for pending unmasked floating-
point exceptions. Then mask all floating-
point exceptions.

NOTES:

* See IA-32 Architecture Compatibility section below.
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Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FSTSW/FNSTSW—Store x87 FPU Status Word

Description

Stores the current value of the x87 FPU status word in the destination location. The destination operand can be 
either a two-byte memory location or the AX register. The FSTSW instruction checks for and handles pending 
unmasked floating-point exceptions before storing the status word; the FNSTSW instruction does not.

The FNSTSW AX form of the instruction is used primarily in conditional branching (for instance, after an FPU 
comparison instruction or an FPREM, FPREM1, or FXAM instruction), where the direction of the branch depends on 
the state of the FPU condition code flags. (See the section titled “Branching and Conditional Moves on FPU Condi-
tion Codes” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.) This 
instruction can also be used to invoke exception handlers (by examining the exception flags) in environments that 
do not use interrupts. When the FNSTSW AX instruction is executed, the AX register is updated before the 
processor executes any further instructions. The status stored in the AX register is thus guaranteed to be from the 
completion of the prior FPU instruction. 

The assembler issues two instructions for the FSTSW instruction (an FWAIT instruction followed by an FNSTSW 
instruction), and the processor executes each of these instructions separately. If an exception is generated for 
either of these instructions, the save EIP points to the instruction that caused the exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS compatibility mode, it is possible (under unusual 
circumstances) for an FNSTSW instruction to be interrupted prior to being executed to handle a pending FPU 
exception. See the section titled “No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a description of these circum-
stances. An FNSTSW instruction cannot be interrupted in this way on a Pentium 4, Intel Xeon, or P6 family 
processor.

Operation

DEST ← FPUStatusWord;

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

9B DD /7 FSTSW m2byte Valid Valid Store FPU status word at m2byte after checking 
for pending unmasked floating-point exceptions.

9B DF E0 FSTSW AX Valid Valid Store FPU status word in AX register after 
checking for pending unmasked floating-point 
exceptions.

DD /7 FNSTSW* m2byte Valid Valid Store FPU status word at m2byte without 
checking for pending unmasked floating-point 
exceptions.

DF E0 FNSTSW* AX Valid Valid Store FPU status word in AX register without 
checking for pending unmasked floating-point 
exceptions.

NOTES:

* See IA-32 Architecture Compatibility section below.
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Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FSUB/FSUBP/FISUB—Subtract

Description

Subtracts the source operand from the destination operand and stores the difference in the destination location. 
The destination operand is always an FPU data register; the source operand can be a register or a memory location. 
Source operands in memory can be in single-precision or double-precision floating-point format or in word or 
doubleword integer format.

The no-operand version of the instruction subtracts the contents of the ST(0) register from the ST(1) register and 
stores the result in ST(1). The one-operand version subtracts the contents of a memory location (either a floating-
point or an integer value) from the contents of the ST(0) register and stores the result in ST(0). The two-operand 
version, subtracts the contents of the ST(0) register from the ST(i) register or vice versa.

The FSUBP instructions perform the additional operation of popping the FPU register stack following the subtrac-
tion. To pop the register stack, the processor marks the ST(0) register as empty and increments the stack pointer 
(TOP) by 1. The no-operand version of the floating-point subtract instructions always results in the register stack 
being popped. In some assemblers, the mnemonic for this instruction is FSUB rather than FSUBP.

The FISUB instructions convert an integer source operand to double extended-precision floating-point format 
before performing the subtraction.

Table 3-48 shows the results obtained when subtracting various classes of numbers from one another, assuming 
that neither overflow nor underflow occurs. Here, the SRC value is subtracted from the DEST value (DEST − SRC = 
result).

When the difference between two operands of like sign is 0, the result is +0, except for the round toward −∞ mode, 
in which case the result is −0. This instruction also guarantees that +0 − (−0) = +0, and that −0 − (+0) = −0. When the 
source operand is an integer 0, it is treated as a +0.

When one operand is ∞, the result is ∞ of the expected sign. If both operands are ∞ of the same sign, an invalid-
operation exception is generated.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /4 FSUB m32fp Valid Valid Subtract m32fp from ST(0) and store result in ST(0).

DC /4 FSUB m64fp Valid Valid Subtract m64fp from ST(0) and store result in ST(0).

D8 E0+i FSUB ST(0), ST(i) Valid Valid Subtract ST(i) from ST(0) and store result in ST(0).

DC E8+i FSUB ST(i), ST(0) Valid Valid Subtract ST(0) from ST(i) and store result in ST(i).

DE E8+i FSUBP ST(i), ST(0) Valid Valid Subtract ST(0) from ST(i), store result in ST(i), and 
pop register stack.

DE E9 FSUBP Valid Valid Subtract ST(0) from ST(1), store result in ST(1), and 
pop register stack.

DA /4 FISUB m32int Valid Valid Subtract m32int from ST(0) and store result in ST(0).

DE /4 FISUB m16int Valid Valid Subtract m16int from ST(0) and store result in ST(0).
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This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF Instruction = FISUB

THEN

DEST ← DEST − ConvertToDoubleExtendedPrecisionFP(SRC);

ELSE (* Source operand is floating-point value *)

DEST ← DEST − SRC;

FI;

IF Instruction = FSUBP 

THEN 

PopRegisterStack;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

Table 3-48.  FSUB/FSUBP/FISUB Results

SRC

− ∞ − F or − I − 0 + 0 + F or + I + ∞ NaN

− ∞ * − ∞ − ∞ − ∞ − ∞ − ∞ NaN

− F + ∞ ±F or ±0 DEST DEST − F − ∞ NaN

DEST − 0 + ∞ −SRC ±0 − 0 − SRC − ∞ NaN

+ 0 + ∞ −SRC + 0 ±0 − SRC − ∞ NaN

+ F + ∞ + F DEST DEST ±F or ±0 − ∞ NaN

+ ∞ + ∞ + ∞ + ∞ + ∞ + ∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite floating-point value.

I Means integer.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FSUBR/FSUBRP/FISUBR—Reverse Subtract

Description

Subtracts the destination operand from the source operand and stores the difference in the destination location. 
The destination operand is always an FPU register; the source operand can be a register or a memory location. 
Source operands in memory can be in single-precision or double-precision floating-point format or in word or 
doubleword integer format.

These instructions perform the reverse operations of the FSUB, FSUBP, and FISUB instructions. They are provided 
to support more efficient coding.

The no-operand version of the instruction subtracts the contents of the ST(1) register from the ST(0) register and 
stores the result in ST(1). The one-operand version subtracts the contents of the ST(0) register from the contents 
of a memory location (either a floating-point or an integer value) and stores the result in ST(0). The two-operand 
version, subtracts the contents of the ST(i) register from the ST(0) register or vice versa.

The FSUBRP instructions perform the additional operation of popping the FPU register stack following the subtrac-
tion. To pop the register stack, the processor marks the ST(0) register as empty and increments the stack pointer 
(TOP) by 1. The no-operand version of the floating-point reverse subtract instructions always results in the register 
stack being popped. In some assemblers, the mnemonic for this instruction is FSUBR rather than FSUBRP.

The FISUBR instructions convert an integer source operand to double extended-precision floating-point format 
before performing the subtraction.

The following table shows the results obtained when subtracting various classes of numbers from one another, 
assuming that neither overflow nor underflow occurs. Here, the DEST value is subtracted from the SRC value (SRC 
− DEST = result).

When the difference between two operands of like sign is 0, the result is +0, except for the round toward −∞ mode, 
in which case the result is −0. This instruction also guarantees that +0 − (−0) = +0, and that −0 − (+0) = −0. When the 
source operand is an integer 0, it is treated as a +0.

When one operand is ∞, the result is ∞ of the expected sign. If both operands are ∞ of the same sign, an invalid-
operation exception is generated.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D8 /5 FSUBR m32fp Valid Valid Subtract ST(0) from m32fp and store result in ST(0).

DC /5 FSUBR m64fp Valid Valid Subtract ST(0) from m64fp and store result in ST(0).

D8 E8+i FSUBR ST(0), ST(i) Valid Valid Subtract ST(0) from ST(i) and store result in ST(0).

DC E0+i FSUBR ST(i), ST(0) Valid Valid Subtract ST(i) from ST(0) and store result in ST(i).

DE E0+i FSUBRP ST(i), ST(0) Valid Valid Subtract ST(i) from ST(0), store result in ST(i), and 
pop register stack.

DE E1 FSUBRP Valid Valid Subtract ST(1) from ST(0), store result in ST(1), and 
pop register stack.

DA /5 FISUBR m32int Valid Valid Subtract ST(0) from m32int and store result in ST(0).

DE /5 FISUBR m16int Valid Valid Subtract ST(0) from m16int and store result in ST(0).
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This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF Instruction = FISUBR

THEN

DEST ← ConvertToDoubleExtendedPrecisionFP(SRC) − DEST;

ELSE (* Source operand is floating-point value *)

DEST ← SRC − DEST; FI;

IF Instruction = FSUBRP 

THEN 

PopRegisterStack; FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.

Table 3-49.  FSUBR/FSUBRP/FISUBR Results

SRC

− ∞ −F or −I −0 +0 +F or +I + ∞ NaN

− ∞ * + ∞ + ∞ + ∞ + ∞ + ∞ NaN

− F − ∞ ±F or ±0 −DEST −DEST + F + ∞ NaN

DEST − 0 − ∞ SRC ±0 + 0 SRC + ∞ NaN

+ 0 − ∞ SRC − 0 ±0 SRC + ∞ NaN

+ F − ∞ − F −DEST −DEST ±F or ±0 + ∞ NaN

+ ∞ − ∞ − ∞ − ∞ − ∞ − ∞ * NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite floating-point value.

I Means integer.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
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#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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FTST—TEST

Description

Compares the value in the ST(0) register with 0.0 and sets the condition code flags C0, C2, and C3 in the FPU 
status word according to the results (see table below).

This instruction performs an “unordered comparison.” An unordered comparison also checks the class of the 
numbers being compared (see “FXAM—Examine ModR/M” in this chapter). If the value in register ST(0) is a NaN or 
is in an undefined format, the condition flags are set to “unordered” and the invalid operation exception is gener-
ated.

The sign of zero is ignored, so that (– 0.0 ← +0.0).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CASE (relation of operands) OF

Not comparable: C3, C2, C0 ← 111;

ST(0) > 0.0: C3, C2, C0 ← 000;

ST(0) < 0.0: C3, C2, C0 ← 001;

ST(0) = 0.0: C3, C2, C0 ← 100;

ESAC;

FPU Flags Affected

C1 Set to 0.
C0, C2, C3 See Table 3-50.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA The source operand is a NaN value or is in an unsupported format.
#D The source operand is a denormal value.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 E4 FTST Valid Valid Compare ST(0) with 0.0.

Table 3-50.  FTST Results

Condition C3 C2 C0

ST(0) > 0.0 0 0 0
ST(0) < 0.0 0 0 1
ST(0) = 0.0 1 0 0
Unordered 1 1 1
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Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values

Description

Performs an unordered comparison of the contents of register ST(0) and ST(i) and sets condition code flags C0, C2, 
and C3 in the FPU status word according to the results (see the table below). If no operand is specified, the 
contents of registers ST(0) and ST(1) are compared. The sign of zero is ignored, so that –0.0 is equal to +0.0.

An unordered comparison checks the class of the numbers being compared (see “FXAM—Examine ModR/M” in this 
chapter). The FUCOM/FUCOMP/FUCOMPP instructions perform the same operations as the FCOM/FCOMP/FCOMPP 
instructions. The only difference is that the FUCOM/FUCOMP/FUCOMPP instructions raise the invalid-arithmetic-
operand exception (#IA) only when either or both operands are an SNaN or are in an unsupported format; QNaNs 
cause the condition code flags to be set to unordered, but do not cause an exception to be generated. The 
FCOM/FCOMP/FCOMPP instructions raise an invalid-operation exception when either or both of the operands are a 
NaN value of any kind or are in an unsupported format.

As with the FCOM/FCOMP/FCOMPP instructions, if the operation results in an invalid-arithmetic-operand exception 
being raised, the condition code flags are set only if the exception is masked.

The FUCOMP instruction pops the register stack following the comparison operation and the FUCOMPP instruction 
pops the register stack twice following the comparison operation. To pop the register stack, the processor marks 
the ST(0) register as empty and increments the stack pointer (TOP) by 1.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CASE (relation of operands) OF

ST > SRC: C3, C2, C0 ← 000;

ST < SRC: C3, C2, C0 ← 001;

ST = SRC: C3, C2, C0 ← 100;

ESAC;

IF ST(0) or SRC = QNaN, but not SNaN or unsupported format

THEN 

C3, C2, C0 ← 111;

ELSE (* ST(0) or SRC is SNaN or unsupported format *)

 #IA;

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

DD E0+i FUCOM ST(i) Valid Valid Compare ST(0) with ST(i).

DD E1 FUCOM Valid Valid Compare ST(0) with ST(1).

DD E8+i FUCOMP ST(i) Valid Valid Compare ST(0) with ST(i) and pop register stack.

DD E9 FUCOMP Valid Valid Compare ST(0) with ST(1) and pop register stack.

DA E9 FUCOMPP Valid Valid Compare ST(0) with ST(1) and pop register stack twice.

Table 3-51.  FUCOM/FUCOMP/FUCOMPP Results

Comparison Results* C3 C2 C0

ST0 > ST(i) 0 0 0
ST0 < ST(i) 0 0 1
ST0 = ST(i) 1 0 0
Unordered 1 1 1

NOTES:

* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.
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IF FPUControlWord.IM = 1

THEN 

C3, C2, C0 ← 111;

FI;

FI;

IF Instruction = FUCOMP 

THEN 

PopRegisterStack;

FI;

IF Instruction = FUCOMPP 

THEN 

PopRegisterStack; 

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
C0, C2, C3 See Table 3-51.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA One or both operands are SNaN values or have unsupported formats. Detection of a QNaN 

value in and of itself does not raise an invalid-operand exception.
#D One or both operands are denormal values.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FXAM—Examine ModR/M

Description

Examines the contents of the ST(0) register and sets the condition code flags C0, C2, and C3 in the FPU status word 
to indicate the class of value or number in the register (see the table below).
.

The C1 flag is set to the sign of the value in ST(0), regardless of whether the register is empty or full.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

C1 ← sign bit of ST; (* 0 for positive, 1 for negative *)

CASE (class of value or number in ST(0)) OF

Unsupported:C3, C2, C0 ← 000;

NaN: C3, C2, C0 ← 001;

Normal: C3, C2, C0 ← 010;

Infinity: C3, C2, C0 ← 011;

Zero: C3, C2, C0 ← 100;

Empty: C3, C2, C0 ← 101;

Denormal: C3, C2, C0 ← 110;

ESAC;

FPU Flags Affected

C1 Sign of value in ST(0).
C0, C2, C3 See Table 3-52.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 E5 FXAM Valid Valid Classify value or number in ST(0).

Table 3-52.  FXAM Results

Class C3 C2 C0

Unsupported 0 0 0
NaN 0 0 1
Normal finite number 0 1 0
Infinity 0 1 1
Zero 1 0 0
Empty 1 0 1
Denormal number 1 1 0
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Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FXCH—Exchange Register Contents

Description

Exchanges the contents of registers ST(0) and ST(i). If no source operand is specified, the contents of ST(0) and 
ST(1) are exchanged.

This instruction provides a simple means of moving values in the FPU register stack to the top of the stack [ST(0)], 
so that they can be operated on by those floating-point instructions that can only operate on values in ST(0). For 
example, the following instruction sequence takes the square root of the third register from the top of the register 
stack:

FXCH ST(3);

FSQRT;

FXCH ST(3);

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF (Number-of-operands) is 1

THEN

temp ← ST(0);

ST(0) ← SRC;

SRC ← temp;

ELSE

temp ← ST(0);

ST(0) ← ST(1);

ST(1) ← temp;

FI;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, set to 1.
C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 C8+i FXCH ST(i) Valid Valid Exchange the contents of ST(0) and ST(i).

D9 C9 FXCH Valid Valid Exchange the contents of ST(0) and ST(1).
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Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FXRSTOR—Restore x87 FPU, MMX , XMM, and MXCSR State

Instruction Operand Encoding

Description

Reloads the x87 FPU, MMX technology, XMM, and MXCSR registers from the 512-byte memory image specified in 
the source operand. This data should have been written to memory previously using the FXSAVE instruction, and 
in the same format as required by the operating modes. The first byte of the data should be located on a 16-byte 
boundary. There are three distinct layouts of the FXSAVE state map: one for legacy and compatibility mode, a 
second format for 64-bit mode FXSAVE/FXRSTOR with REX.W=0, and the third format is for 64-bit mode with 
FXSAVE64/FXRSTOR64. Table 3-53 shows the layout of the legacy/compatibility mode state information in 
memory and describes the fields in the memory image for the FXRSTOR and FXSAVE instructions. Table 3-56 
shows the layout of the 64-bit mode state information when REX.W is set (FXSAVE64/FXRSTOR64). Table 3-57 
shows the layout of the 64-bit mode state information when REX.W is clear (FXSAVE/FXRSTOR).

The state image referenced with an FXRSTOR instruction must have been saved using an FXSAVE instruction or be 
in the same format as required by Table 3-53, Table 3-56, or Table 3-57. Referencing a state image saved with an 
FSAVE, FNSAVE instruction or incompatible field layout will result in an incorrect state restoration.

The FXRSTOR instruction does not flush pending x87 FPU exceptions. To check and raise exceptions when loading 
x87 FPU state information with the FXRSTOR instruction, use an FWAIT instruction after the FXRSTOR instruction.

If the OSFXSR bit in control register CR4 is not set, the FXRSTOR instruction may not restore the states of the XMM 
and MXCSR registers. This behavior is implementation dependent.

If the MXCSR state contains an unmasked exception with a corresponding status flag also set, loading the register 
with the FXRSTOR instruction will not result in a SIMD floating-point error condition being generated. Only the next 
occurrence of this unmasked exception will result in the exception being generated.

Bits 16 through 32 of the MXCSR register are defined as reserved and should be set to 0. Attempting to write a 1 
in any of these bits from the saved state image will result in a general protection exception (#GP) being generated.

Bytes 464:511 of an FXSAVE image are available for software use. FXRSTOR ignores the content of bytes 464:511 
in an FXSAVE state image.

Operation

(x87 FPU, MMX, XMM7-XMM0, MXCSR) ← Load(SRC);

x87 FPU and SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary, regardless of segment. (See align-
ment check exception [#AC] below.)
For an attempt to set reserved bits in MXCSR.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AE /1

FXRSTOR m512byte

M Valid Valid Restore the x87 FPU, MMX, XMM, and MXCSR 
register state from m512byte.

REX.W+ 0F AE /1

FXRSTOR64 m512byte

M Valid N.E. Restore the x87 FPU, MMX, XMM, and MXCSR 
register state from m512byte.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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#SS(0) For an illegal address in the SS segment. 
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1. 

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.

If instruction is preceded by a LOCK prefix.
#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 

operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary, regardless of segment.
If any part of the operand lies outside the effective address space from 0 to FFFFH.
For an attempt to set reserved bits in MXCSR.

#NM If CR0.TS[bit 3] = 1. 
If CR0.EM[bit 2] = 1.

#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.
#AC For unaligned memory reference.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.
For an attempt to set reserved bits in MXCSR.

#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1. 

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.

If instruction is preceded by a LOCK prefix.
#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 

operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
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general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).



FXSAVE—Save x87 FPU, MMX Technology, and SSE State

INSTRUCTION SET REFERENCE, A-M

3-360 Vol. 2A

FXSAVE—Save x87 FPU, MMX Technology, and SSE State

Instruction Operand Encoding

Description

Saves the current state of the x87 FPU, MMX technology, XMM, and MXCSR registers to a 512-byte memory loca-
tion specified in the destination operand. The content layout of the 512 byte region depends on whether the 
processor is operating in non-64-bit operating modes or 64-bit sub-mode of IA-32e mode. 

Bytes 464:511 are available to software use. The processor does not write to bytes 464:511 of an FXSAVE area. 

The operation of FXSAVE in non-64-bit modes is described first.

Non-64-Bit Mode Operation

Table 3-53 shows the layout of the state information in memory when the processor is operating in legacy modes.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AE /0

FXSAVE m512byte

M Valid Valid Save the x87 FPU, MMX, XMM, and MXCSR 
register state to m512byte.

REX.W+ 0F AE /0

FXSAVE64 m512byte

M Valid N.E. Save the x87 FPU, MMX, XMM, and MXCSR 
register state to m512byte.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

Table 3-53.  Non-64-bit-Mode Layout of FXSAVE and FXRSTOR 
Memory Region

15 14 13  12 11 10 9  8 7 6 5 4 3 2 1 0

Rsvd FPU CS FPU IP FOP Rsvd FTW FSW FCW 0

MXCSR_MASK MXCSR Rsrvd FPU DS FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272
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The destination operand contains the first byte of the memory image, and it must be aligned on a 16-byte 
boundary. A misaligned destination operand will result in a general-protection (#GP) exception being generated (or 
in some cases, an alignment check exception [#AC]).

The FXSAVE instruction is used when an operating system needs to perform a context switch or when an exception 
handler needs to save and examine the current state of the x87 FPU, MMX technology, and/or XMM and MXCSR 
registers.

The fields in Table 3-53 are defined in Table 3-54.

Reserved 288

Reserved 304

Reserved 320

Reserved 336

Reserved 352

Reserved 368

Reserved 384

Reserved 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496

Table 3-54.  Field Definitions 

Field Definition

FCW x87 FPU Control Word (16 bits). See Figure 8-6 in the Intel® 64 and IA-32 Architectures Software 

Developer’s Manual, Volume 1, for the layout of the x87 FPU control word.

FSW x87 FPU Status Word (16 bits). See Figure 8-4 in the Intel® 64 and IA-32 Architectures Software 

Developer’s Manual, Volume 1, for the layout of the x87 FPU status word.

Abridged FTW x87 FPU Tag Word (8 bits). The tag information saved here is abridged, as described in the following 
paragraphs.

FOP x87 FPU Opcode (16 bits). The lower 11 bits of this field contain the opcode, upper 5 bits are reserved. 
See Figure 8-8 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for 
the layout of the x87 FPU opcode field.

FPU IP x87 FPU Instruction Pointer Offset (32 bits). The contents of this field differ depending on the current 
addressing mode (32-bit or 16-bit) of the processor when the FXSAVE instruction was executed:

32-bit mode — 32-bit IP offset.

16-bit mode — low 16 bits are IP offset; high 16 bits are reserved.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 1, for a description of the x87 FPU instruction 
pointer.

FPU CS x87 FPU Instruction Pointer Selector (16 bits). If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the 
processor deprecates the FPU CS and FPU DS values, and this field is saved as 0000H.

Table 3-53.  Non-64-bit-Mode Layout of FXSAVE and FXRSTOR 
Memory Region (Contd.)

15 14 13  12 11 10 9  8 7 6 5 4 3 2 1 0
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The FXSAVE instruction saves an abridged version of the x87 FPU tag word in the FTW field (unlike the FSAVE 
instruction, which saves the complete tag word). The tag information is saved in physical register order (R0 
through R7), rather than in top-of-stack (TOS) order. With the FXSAVE instruction, however, only a single bit (1 for 
valid or 0 for empty) is saved for each tag. For example, assume that the tag word is currently set as follows:

R7 R6 R5 R4 R3 R2 R1 R0

11 xx xx xx 11 11 11 11

Here, 11B indicates empty stack elements and “xx” indicates valid (00B), zero (01B), or special (10B). 

For this example, the FXSAVE instruction saves only the following 8 bits of information:

R7 R6 R5 R4 R3 R2 R1 R0

0 1 1 1 0 0 0 0

Here, a 1 is saved for any valid, zero, or special tag, and a 0 is saved for any empty tag.

The operation of the FXSAVE instruction differs from that of the FSAVE instruction, the as follows:
• FXSAVE instruction does not check for pending unmasked floating-point exceptions. (The FXSAVE operation in 

this regard is similar to the operation of the FNSAVE instruction). 
• After the FXSAVE instruction has saved the state of the x87 FPU, MMX technology, XMM, and MXCSR registers, 

the processor retains the contents of the registers. Because of this behavior, the FXSAVE instruction cannot be 
used by an application program to pass a “clean” x87 FPU state to a procedure, since it retains the current 
state. To clean the x87 FPU state, an application must explicitly execute an FINIT instruction after an FXSAVE 
instruction to reinitialize the x87 FPU state.

• The format of the memory image saved with the FXSAVE instruction is the same regardless of the current 
addressing mode (32-bit or 16-bit) and operating mode (protected, real address, or system management). 

FPU DP x87 FPU Instruction Operand (Data) Pointer Offset (32 bits). The contents of this field differ 
depending on the current addressing mode (32-bit or 16-bit) of the processor when the FXSAVE 
instruction was executed:

32-bit mode — 32-bit DP offset.

16-bit mode — low 16 bits are DP offset; high 16 bits are reserved.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 1, for a description of the x87 FPU operand 
pointer.

FPU DS x87 FPU Instruction Operand (Data) Pointer Selector (16 bits). If CPUID.(EAX=07H,ECX=0H):EBX[bit 
13] = 1, the processor deprecates the FPU CS and FPU DS values, and this field is saved as 0000H.

MXCSR MXCSR Register State (32 bits). See Figure 10-3 in the Intel® 64 and IA-32 Architectures Software 

Developer’s Manual, Volume 1, for the layout of the MXCSR register. If the OSFXSR bit in control 
register CR4 is not set, the FXSAVE instruction may not save this register. This behavior is 
implementation dependent.

MXCSR_
MASK

MXCSR_MASK (32 bits). This mask can be used to adjust values written to the MXCSR register, 
ensuring that reserved bits are set to 0. Set the mask bits and flags in MXCSR to the mode of 
operation desired for SSE and SSE2 SIMD floating-point instructions. See “Guidelines for Writing to the 
MXCSR Register” in Chapter 11 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 1, for instructions for how to determine and use the MXCSR_MASK value.

ST0/MM0 through 
ST7/MM7

x87 FPU or MMX technology registers. These 80-bit fields contain the x87 FPU data registers or the 
MMX technology registers, depending on the state of the processor prior to the execution of the 
FXSAVE instruction. If the processor had been executing x87 FPU instruction prior to the FXSAVE 
instruction, the x87 FPU data registers are saved; if it had been executing MMX instructions (or SSE or 
SSE2 instructions that operated on the MMX technology registers), the MMX technology registers are 
saved. When the MMX technology registers are saved, the high 16 bits of the field are reserved.

XMM0 through XMM7 XMM registers (128 bits per field). If the OSFXSR bit in control register CR4 is not set, the FXSAVE 
instruction may not save these registers. This behavior is implementation dependent.

Table 3-54.  Field Definitions  (Contd.)

Field Definition
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This behavior differs from the FSAVE instructions, where the memory image format is different depending on 
the addressing mode and operating mode. Because of the different image formats, the memory image saved 
with the FXSAVE instruction cannot be restored correctly with the FRSTOR instruction, and likewise the state 
saved with the FSAVE instruction cannot be restored correctly with the FXRSTOR instruction.

The FSAVE format for FTW can be recreated from the FTW valid bits and the stored 80-bit FP data (assuming the 
stored data was not the contents of MMX technology registers) using Table 3-55.

The J-bit is defined to be the 1-bit binary integer to the left of the decimal place in the significand. The M-bit is 
defined to be the most significant bit of the fractional portion of the significand (i.e., the bit immediately to the right 
of the decimal place).

When the M-bit is the most significant bit of the fractional portion of the significand, it must be 0 if the fraction is 
all 0’s.

IA-32e Mode Operation

In compatibility sub-mode of IA-32e mode, legacy SSE registers, XMM0 through XMM7, are saved according to the 
legacy FXSAVE map. In 64-bit mode, all of the SSE registers, XMM0 through XMM15, are saved. Additionally, there 
are two different layouts of the FXSAVE map in 64-bit mode, corresponding to FXSAVE64 (which requires 
REX.W=1) and FXSAVE (REX.W=0). In the FXSAVE64 map (Table 3-56), the FPU IP and FPU DP pointers are 64-bit 
wide. In the FXSAVE map for 64-bit mode (Table 3-57), the FPU IP and FPU DP pointers are 32-bits.

Table 3-55.  Recreating FSAVE Format 

Exponent
all 1’s

Exponent
all 0’s

Fraction
all 0’s

J and M
bits

FTW valid bit
x87 FTW

0 0 0 0x 1 Special 10
0 0 0 1x 1 Valid 00
0 0 1 00 1 Special 10
0 0 1 10 1 Valid 00
0 1 0 0x 1 Special 10
0 1 0 1x 1 Special 10
0 1 1 00 1 Zero 01
0 1 1 10 1 Special 10
1 0 0 1x 1 Special 10
1 0 0 1x 1 Special 10
1 0 1 00 1 Special 10
1 0 1 10 1 Special 10

For all legal combinations above. 0 Empty 11

Table 3-56.  Layout of the 64-bit-mode FXSAVE64 Map 
(requires REX.W = 1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FPU IP FOP Reserved FTW FSW FCW 0

MXCSR_MASK MXCSR FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112
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Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496

Table 3-57.  Layout of the 64-bit-mode FXSAVE Map (REX.W = 0)

15 14 13  12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved FPU CS FPU IP FOP Reserved FTW FSW FCW 0

MXCSR_MASK MXCSR Reserved FPU DS FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

Table 3-56.  Layout of the 64-bit-mode FXSAVE64 Map 
(requires REX.W = 1) (Contd.)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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Operation

IF 64-Bit Mode

THEN

IF REX.W = 1

THEN

DEST ← Save64BitPromotedFxsave(x87 FPU, MMX, XMM7-XMM0,
MXCSR);

ELSE

DEST ← Save64BitDefaultFxsave(x87 FPU, MMX, XMM7-XMM0, MXCSR);

FI;

ELSE

DEST ← SaveLegacyFxsave(x87 FPU, MMX, XMM7-XMM0, MXCSR);

FI;

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary, regardless of segment. (See the 
description of the alignment check exception [#AC] below.)

#SS(0) For an illegal address in the SS segment. 
#PF(fault-code) For a page fault.

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Reserved 416

Reserved 432

Reserved 448

Available 464

Available 480

Available 496

Table 3-57.  Layout of the 64-bit-mode FXSAVE Map (REX.W = 0) (Contd.) (Contd.)

15 14 13  12 11 10 9 8 7 6 5 4 3 2 1 0
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#NM If CR0.TS[bit 3] = 1. 
If CR0.EM[bit 2] = 1.

#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.
#UD If the LOCK prefix is used.
#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 

operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary, regardless of segment.
If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1. 
If CR0.EM[bit 2] = 1.

#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.
#AC For unaligned memory reference.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1. 

If CR0.EM[bit 2] = 1.
#UD If CPUID.01H:EDX.FXSR[bit 24] = 0.

If the LOCK prefix is used.
#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 

operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).
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Implementation Note

The order in which the processor signals general-protection (#GP) and page-fault (#PF) exceptions when they 
both occur on an instruction boundary is given in Table 5-2 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3B. This order vary for FXSAVE for different processor implementations.
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FXTRACT—Extract Exponent and Significand

Description

Separates the source value in the ST(0) register into its exponent and significand, stores the exponent in ST(0), 
and pushes the significand onto the register stack. Following this operation, the new top-of-stack register ST(0) 
contains the value of the original significand expressed as a floating-point value. The sign and significand of this 
value are the same as those found in the source operand, and the exponent is 3FFFH (biased value for a true expo-
nent of zero). The ST(1) register contains the value of the original operand’s true (unbiased) exponent expressed 
as a floating-point value. (The operation performed by this instruction is a superset of the IEEE-recommended 
logb(x) function.)

This instruction and the F2XM1 instruction are useful for performing power and range scaling operations. The 
FXTRACT instruction is also useful for converting numbers in double extended-precision floating-point format to 
decimal representations (e.g., for printing or displaying).

If the floating-point zero-divide exception (#Z) is masked and the source operand is zero, an exponent value of –
∞ is stored in register ST(1) and 0 with the sign of the source operand is stored in register ST(0).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

TEMP ← Significand(ST(0));

ST(0) ← Exponent(ST(0));

TOP← TOP − 1;

ST(0) ← TEMP;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred.
C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow or overflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#Z ST(0) operand is ±0.
#D Source operand is a denormal value.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Opcode/
Instruction

64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F4

FXTRACT

Valid Valid Separate value in ST(0) into exponent and significand, store 
exponent in ST(0), and push the significand onto the register 
stack.
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Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FYL2X—Compute y ∗ log2x

Description

Computes (ST(1) ∗ log2 (ST(0))), stores the result in resister ST(1), and pops the FPU register stack. The source 
operand in ST(0) must be a non-zero positive number.

The following table shows the results obtained when taking the log of various classes of numbers, assuming that 
neither overflow nor underflow occurs.

If the divide-by-zero exception is masked and register ST(0) contains ±0, the instruction returns ∞ with a sign that 
is the opposite of the sign of the source operand in register ST(1).

The FYL2X instruction is designed with a built-in multiplication to optimize the calculation of logarithms with an 
arbitrary positive base (b):

logbx ← (log2b)–1 ∗ log2x

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(1) ← ST(1) ∗ log2ST(0);

PopRegisterStack;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F1 FYL2X Valid Valid Replace ST(1) with (ST(1) ∗ log2ST(0)) and pop the 
register stack.

Table 3-58.  FYL2X Results

ST(0)

− ∞ − F ±0 +0<+F<+1 + 1 + F > + 1 + ∞ NaN

− ∞ * * + ∞ + ∞ * − ∞ − ∞ NaN

ST(1) − F * * ** + F − 0 − F − ∞ NaN

− 0 * * * + 0 − 0 − 0 * NaN

+ 0 * * * − 0 + 0 + 0 * NaN

+ F * * ** − F + 0 + F + ∞ NaN

+ ∞ * * − ∞ − ∞ * + ∞ + ∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite floating-point value.

* Indicates floating-point invalid-operation (#IA) exception.

** Indicates floating-point zero-divide (#Z) exception.
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#IA Either operand is an SNaN or unsupported format.
Source operand in register ST(0) is a negative finite value 
(not -0).

#Z Source operand in register ST(0) is ±0.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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FYL2XP1—Compute y ∗ log2(x +1)

Description

Computes (ST(1) ∗ log2(ST(0) + 1.0)), stores the result in register ST(1), and pops the FPU register stack. The 
source operand in ST(0) must be in the range:

The source operand in ST(1) can range from −∞ to +∞. If the ST(0) operand is outside of its acceptable range, the 
result is undefined and software should not rely on an exception being generated. Under some circumstances 
exceptions may be generated when ST(0) is out of range, but this behavior is implementation specific and not 
guaranteed.

The following table shows the results obtained when taking the log epsilon of various classes of numbers, assuming 
that underflow does not occur.

This instruction provides optimal accuracy for values of epsilon [the value in register ST(0)] that are close to 0. For 
small epsilon (ε) values, more significant digits can be retained by using the FYL2XP1 instruction than by using 
(ε+1) as an argument to the FYL2X instruction. The (ε+1) expression is commonly found in compound interest and 
annuity calculations. The result can be simply converted into a value in another logarithm base by including a scale 
factor in the ST(1) source operand. The following equation is used to calculate the scale factor for a particular loga-
rithm base, where n is the logarithm base desired for the result of the FYL2XP1 instruction:

scale factor ← logn 2

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(1) ← ST(1) ∗ log2(ST(0) + 1.0);

PopRegisterStack;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.

Opcode Instruction 64-Bit 
Mode

Compat/
Leg Mode

Description

D9 F9 FYL2XP1 Valid Valid Replace ST(1) with ST(1) ∗ log2(ST(0) + 1.0) and pop the 
register stack.

Table 3-59.  FYL2XP1 Results

ST(0)

−(1 − ( )) to −0 -0 +0 +0 to +(1 - ( )) NaN

− ∞ +∞ * * − ∞ NaN

ST(1) − F +F +0 -0 − F NaN

− 0 +0 +0 -0 − 0 NaN

+0 − 0 − 0 +0 +0 NaN

+F − F − 0 +0 +F NaN

+∞ − ∞ * * +∞ NaN

NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite floating-point value.

* Indicates floating-point invalid-operation (#IA) exception.

1 2 2⁄–( ) )to 1 2 2⁄–( )–

2 2⁄ 2 2⁄
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C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA Either operand is an SNaN value or unsupported format.
#D Source operand is a denormal value.
#U Result is too small for destination format.
#O Result is too large for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM CR0.EM[bit 2] or CR0.TS[bit 3] = 1.
#MF If there is a pending x87 FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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HADDPD—Packed Double-FP Horizontal Add

Instruction Operand Encoding

Description

Adds the double-precision floating-point values in the high and low quadwords of the destination operand and 
stores the result in the low quadword of the destination operand. 

Adds the double-precision floating-point values in the high and low quadwords of the source operand and stores the 
result in the high quadword of the destination operand. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

See Figure 3-15 for HADDPD; see Figure 3-16 for VHADDPD.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 7C /r

HADDPD xmm1, xmm2/m128

RM V/V SSE3 Horizontal add packed double-precision 
floating-point values from xmm2/m128 to 
xmm1.

VEX.NDS.128.66.0F.WIG 7C /r

VHADDPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Horizontal add packed double-precision 
floating-point values from xmm2 and 
xmm3/mem.

VEX.NDS.256.66.0F.WIG 7C /r

VHADDPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Horizontal add packed double-precision 
floating-point values from ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Figure 3-15.  HADDPD—Packed Double-FP Horizontal Add

OM15993

HADDPD xmm1, xmm2/m128

xmm1

xmm2
/m128[63:0][127:64]

[127:64] [63:0]

[63:0][127:64]

Result:
xmm1

xmm2/m128[63:0] +
xmm2/m128[127:64] xmm1[63:0] + xmm1[127:64]
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Figure 3-16.  VHADDPD operation

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

HADDPD (128-bit Legacy SSE version)

DEST[63:0] Å SRC1[127:64] + SRC1[63:0]

DEST[127:64] Å SRC2[127:64] + SRC2[63:0]

DEST[VLMAX-1:128] (Unmodified)

VHADDPD (VEX.128 encoded version)

DEST[63:0] Å SRC1[127:64] + SRC1[63:0]

DEST[127:64] Å SRC2[127:64] + SRC2[63:0]

DEST[VLMAX-1:128] Å 0

VHADDPD (VEX.256 encoded version)

DEST[63:0] Å SRC1[127:64] + SRC1[63:0]

DEST[127:64] Å SRC2[127:64] + SRC2[63:0]

DEST[191:128] Å SRC1[255:192] + SRC1[191:128]

DEST[255:192] Å SRC2[255:192] + SRC2[191:128]

Intel C/C++ Compiler Intrinsic Equivalent

VHADDPD: __m256d _mm256_hadd_pd (__m256d a, __m256d b);

HADDPD: __m128d _mm_hadd_pd (__m128d a, __m128d b);

Exceptions

When the source operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-
protection exception (#GP) will be generated. 

Y2 + Y3 X2 + X3 Y0 + Y1 X0 + X1DEST

X3 X2SRC1 X1 X0

Y3 Y2 Y1 Y0SRC2
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Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 2.
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HADDPS—Packed Single-FP Horizontal Add

Instruction Operand Encoding

Description

Adds the single-precision floating-point values in the first and second dwords of the destination operand and stores 
the result in the first dword of the destination operand.

Adds single-precision floating-point values in the third and fourth dword of the destination operand and stores the 
result in the second dword of the destination operand.

Adds single-precision floating-point values in the first and second dword of the source operand and stores the 
result in the third dword of the destination operand.

Adds single-precision floating-point values in the third and fourth dword of the source operand and stores the 
result in the fourth dword of the destination operand. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 7C /r

HADDPS xmm1, xmm2/m128

RM V/V SSE3 Horizontal add packed single-precision 
floating-point values from xmm2/m128 to 
xmm1.

VEX.NDS.128.F2.0F.WIG 7C /r

VHADDPS xmm1, xmm2, xmm3/m128

RVM V/V AVX Horizontal add packed single-precision 
floating-point values from xmm2 and 
xmm3/mem.

VEX.NDS.256.F2.0F.WIG 7C /r

VHADDPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Horizontal add packed single-precision 
floating-point values from ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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See Figure 3-17 for HADDPS; see Figure 3-18 for VHADDPS.

Figure 3-18.  VHADDPS operation

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register.

Figure 3-17.  HADDPS—Packed Single-FP Horizontal Add

OM15994

HADDPS xmm1, xmm2/m128

RESULT:
xmm1

xmm2/
m128

xmm1[31:0] + 
xmm1[63:32]

[31:0]

xmm1[95:64] + 
xmm1[127:96]

[63:32]

[63:32] [31:0]

xmm1[31:0][63:32]

xmm2/m128
[31:0] + xmm2/
m128[63:32]

[95:64]

xmm2/m128
[95:64] + xmm2/
m128[127:96]

[127:96]

[127:96] [95:64]

[95:64][127:96]

Y6+Y7 X6+X7 Y2+Y3 X2+X3DEST

SRC1 X0

SRC2

X1X2X3X4X5X6X7

Y0Y1Y2Y3Y4Y5Y6Y7

X0+X1Y4+Y5 X4+X5 Y0+Y1
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Operation

HADDPS (128-bit Legacy SSE version)

DEST[31:0] Å SRC1[63:32] + SRC1[31:0]

DEST[63:32] Å SRC1[127:96] + SRC1[95:64]

DEST[95:64] Å SRC2[63:32] + SRC2[31:0]

DEST[127:96] Å SRC2[127:96] + SRC2[95:64] 

DEST[VLMAX-1:128] (Unmodified)

VHADDPS (VEX.128 encoded version)

DEST[31:0] Å SRC1[63:32] + SRC1[31:0]

DEST[63:32] Å SRC1[127:96] + SRC1[95:64]

DEST[95:64] Å SRC2[63:32] + SRC2[31:0]

DEST[127:96] Å SRC2[127:96] + SRC2[95:64] 

DEST[VLMAX-1:128] Å 0

VHADDPS (VEX.256 encoded version)

DEST[31:0] Å SRC1[63:32] + SRC1[31:0]

DEST[63:32] Å SRC1[127:96] + SRC1[95:64]

DEST[95:64] Å SRC2[63:32] + SRC2[31:0]

DEST[127:96] Å SRC2[127:96] + SRC2[95:64] 

DEST[159:128] Å SRC1[191:160] + SRC1[159:128]

DEST[191:160] Å SRC1[255:224] + SRC1[223:192]

DEST[223:192] Å SRC2[191:160] + SRC2[159:128]

DEST[255:224] Å SRC2[255:224] + SRC2[223:192]

Intel C/C++ Compiler Intrinsic Equivalent

HADDPS: __m128 _mm_hadd_ps (__m128 a, __m128 b);

VHADDPS: __m256 _mm256_hadd_ps (__m256 a, __m256 b);

Exceptions

When the source operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-
protection exception (#GP) will be generated.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 2.
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HLT—Halt

Instruction Operand Encoding

Description

Stops instruction execution and places the processor in a HALT state. An enabled interrupt (including NMI and 
SMI), a debug exception, the BINIT# signal, the INIT# signal, or the RESET# signal will resume execution. If an 
interrupt (including NMI) is used to resume execution after a HLT instruction, the saved instruction pointer 
(CS:EIP) points to the instruction following the HLT instruction.

When a HLT instruction is executed on an Intel 64 or IA-32 processor supporting Intel Hyper-Threading Technology, 
only the logical processor that executes the instruction is halted. The other logical processors in the physical 
processor remain active, unless they are each individually halted by executing a HLT instruction.

The HLT instruction is a privileged instruction. When the processor is running in protected or virtual-8086 mode, 
the privilege level of a program or procedure must be 0 to execute the HLT instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Enter Halt state;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F4 HLT NP Valid Valid Halt

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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HSUBPD—Packed Double-FP Horizontal Subtract

Instruction Operand Encoding

Description

The HSUBPD instruction subtracts horizontally the packed DP FP numbers of both operands. 

Subtracts the double-precision floating-point value in the high quadword of the destination operand from the low 
quadword of the destination operand and stores the result in the low quadword of the destination operand. 

Subtracts the double-precision floating-point value in the high quadword of the source operand from the low quad-
word of the source operand and stores the result in the high quadword of the destination operand. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

See Figure 3-19 for HSUBPD; see Figure 3-20 for VHSUBPD.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 7D /r

HSUBPD xmm1, xmm2/m128

RM V/V SSE3 Horizontal subtract packed double-precision 
floating-point values from xmm2/m128 to 
xmm1.

VEX.NDS.128.66.0F.WIG 7D /r
VHSUBPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Horizontal subtract packed double-precision 
floating-point values from xmm2 and 
xmm3/mem.

VEX.NDS.256.66.0F.WIG 7D /r
VHSUBPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Horizontal subtract packed double-precision 
floating-point values from ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Figure 3-19.  HSUBPD—Packed Double-FP Horizontal Subtract

OM15995

HSUBPD xmm1, xmm2/m128

xmm1

xmm2
/m128[63:0][127:64]

[127:64] [63:0]

[63:0][127:64]

Result:
xmm1

xmm2/m128[63:0] -
xmm2/m128[127:64] xmm1[63:0] - xmm1[127:64]
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Figure 3-20.  VHSUBPD operation

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

HSUBPD (128-bit Legacy SSE version)

DEST[63:0] Å SRC1[63:0] - SRC1[127:64] 

DEST[127:64] Å SRC2[63:0] - SRC2[127:64] 

DEST[VLMAX-1:128] (Unmodified)

VHSUBPD (VEX.128 encoded version)

DEST[63:0] Å SRC1[63:0] - SRC1[127:64] 

DEST[127:64] Å SRC2[63:0] - SRC2[127:64] 

DEST[VLMAX-1:128] Å 0

VHSUBPD (VEX.256 encoded version)

DEST[63:0] Å SRC1[63:0] - SRC1[127:64] 

DEST[127:64] Å SRC2[63:0] - SRC2[127:64] 

DEST[191:128] Å SRC1[191:128] - SRC1[255:192]

DEST[255:192] Å SRC2[191:128] - SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

HSUBPD: __m128d _mm_hsub_pd(__m128d a, __m128d b)

VHSUBPD: __m256d _mm256_hsub_pd (__m256d a, __m256d b);

Exceptions

When the source operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-
protection exception (#GP) will be generated.

Y2 - Y3 X2 - X3 Y0 - Y1 X0 - X1DEST

X3 X2SRC1 X1 X0

Y3 Y2 Y1 Y0SRC2
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Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 2.
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HSUBPS—Packed Single-FP Horizontal Subtract

Instruction Operand Encoding

Description

Subtracts the single-precision floating-point value in the second dword of the destination operand from the first 
dword of the destination operand and stores the result in the first dword of the destination operand. 

Subtracts the single-precision floating-point value in the fourth dword of the destination operand from the third 
dword of the destination operand and stores the result in the second dword of the destination operand. 

Subtracts the single-precision floating-point value in the second dword of the source operand from the first dword 
of the source operand and stores the result in the third dword of the destination operand. 

Subtracts the single-precision floating-point value in the fourth dword of the source operand from the third dword 
of the source operand and stores the result in the fourth dword of the destination operand. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

See Figure 3-21 for HSUBPS; see Figure 3-22 for VHSUBPS.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 7D /r

HSUBPS xmm1, xmm2/m128

RM V/V SSE3 Horizontal subtract packed single-precision 
floating-point values from xmm2/m128 to 
xmm1.

VEX.NDS.128.F2.0F.WIG 7D /r

VHSUBPS xmm1, xmm2, xmm3/m128

RVM V/V AVX Horizontal subtract packed single-precision 
floating-point values from xmm2 and 
xmm3/mem.

VEX.NDS.256.F2.0F.WIG 7D /r
VHSUBPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Horizontal subtract packed single-precision 
floating-point values from ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Figure 3-22.  VHSUBPS operation

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Figure 3-21.  HSUBPS—Packed Single-FP Horizontal Subtract

OM15996
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xmm1

xmm2/
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Operation

HSUBPS (128-bit Legacy SSE version)

DEST[31:0] Å SRC1[31:0] - SRC1[63:32]

DEST[63:32] Å SRC1[95:64] - SRC1[127:96]

DEST[95:64] Å SRC2[31:0] - SRC2[63:32]

DEST[127:96] Å SRC2[95:64] - SRC2[127:96] 

DEST[VLMAX-1:128] (Unmodified)

VHSUBPS (VEX.128 encoded version)

DEST[31:0] Å SRC1[31:0] - SRC1[63:32]

DEST[63:32] Å SRC1[95:64] - SRC1[127:96]

DEST[95:64] Å SRC2[31:0] - SRC2[63:32]

DEST[127:96] Å SRC2[95:64] - SRC2[127:96] 

DEST[VLMAX-1:128] Å 0

VHSUBPS (VEX.256 encoded version)

DEST[31:0] Å SRC1[31:0] - SRC1[63:32]

DEST[63:32] Å SRC1[95:64] - SRC1[127:96]

DEST[95:64] Å SRC2[31:0] - SRC2[63:32]

DEST[127:96] Å SRC2[95:64] - SRC2[127:96] 

DEST[159:128] Å SRC1[159:128] - SRC1[191:160]

DEST[191:160] Å SRC1[223:192] - SRC1[255:224]

DEST[223:192] Å SRC2[159:128] - SRC2[191:160]

DEST[255:224] Å SRC2[223:192] - SRC2[255:224]

Intel C/C++ Compiler Intrinsic Equivalent

HSUBPS: __m128 _mm_hsub_ps(__m128 a, __m128 b);

VHSUBPS: __m256 _mm256_hsub_ps (__m256 a, __m256 b);

Exceptions

When the source operand is a memory operand, the operand must be aligned on a 16-byte boundary or a general-
protection exception (#GP) will be generated.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 2.
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IDIV—Signed Divide

Instruction Operand Encoding

Description

Divides the (signed) value in the AX, DX:AX, or EDX:EAX (dividend) by the source operand (divisor) and stores the 
result in the AX (AH:AL), DX:AX, or EDX:EAX registers. The source operand can be a general-purpose register or a 
memory location. The action of this instruction depends on the operand size (dividend/divisor).

Non-integral results are truncated (chopped) towards 0. The remainder is always less than the divisor in magni-
tude. Overflow is indicated with the #DE (divide error) exception rather than with the CF flag.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. In 64-bit mode when REX.W is 
applied, the instruction divides the signed value in RDX:RAX by the source operand. RAX contains a 64-bit 
quotient; RDX contains a 64-bit remainder. 

See the summary chart at the beginning of this section for encoding data and limits. See Table 3-60.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F6 /7 IDIV r/m8 M Valid Valid Signed divide AX by r/m8, with result stored in: 
AL ← Quotient, AH ← Remainder.

REX + F6 /7 IDIV r/m8* M Valid N.E. Signed divide AX by r/m8, with result stored in 
AL ← Quotient, AH ← Remainder.

F7 /7 IDIV r/m16 M Valid Valid Signed divide DX:AX by r/m16, with result 
stored in AX ← Quotient, DX ← Remainder.

F7 /7 IDIV r/m32 M Valid Valid Signed divide EDX:EAX by r/m32, with result 
stored in EAX ← Quotient, EDX ← Remainder.

REX.W + F7 /7 IDIV r/m64 M Valid N.E. Signed divide RDX:RAX by r/m64, with result 
stored in RAX ← Quotient, RDX ← Remainder.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

Table 3-60.  IDIV Results

Operand Size Dividend Divisor Quotient Remainder Quotient Range

Word/byte AX r/m8 AL AH −128 to +127

Doubleword/word DX:AX r/m16 AX DX −32,768 to +32,767

Quadword/doubleword EDX:EAX r/m32 EAX EDX −231 to 232 − 1

Doublequadword/ quadword RDX:RAX r/m64 RAX RDX −263 to 264 − 1
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Operation

IF SRC = 0
THEN #DE; (* Divide error *) 

FI;

IF OperandSize = 8 (* Word/byte operation *)

THEN

temp ← AX / SRC; (* Signed division *)

IF (temp > 7FH) or (temp < 80H) 

(* If a positive result is greater than 7FH or a negative result is less than 80H *)

THEN #DE; (* Divide error *) 

ELSE

AL ← temp;

AH ← AX SignedModulus SRC;

FI;

ELSE IF OperandSize = 16 (* Doubleword/word operation *)

THEN

temp ← DX:AX / SRC; (* Signed division *)

IF (temp > 7FFFH) or (temp < 8000H) 

(* If a positive result is greater than 7FFFH 

or a negative result is less than 8000H *)

THEN

#DE; (* Divide error *) 

ELSE

AX ← temp;

DX ← DX:AX SignedModulus SRC;

FI;

FI;

ELSE IF OperandSize = 32 (* Quadword/doubleword operation *)

temp ← EDX:EAX / SRC; (* Signed division *)

IF (temp > 7FFFFFFFH) or (temp < 80000000H) 

(* If a positive result is greater than 7FFFFFFFH 

or a negative result is less than 80000000H *)

THEN 

#DE; (* Divide error *) 

ELSE

EAX ← temp;

EDX ← EDXE:AX SignedModulus SRC;

FI;

FI;

ELSE IF OperandSize = 64 (* Doublequadword/quadword operation *)

temp ← RDX:RAX / SRC; (* Signed division *)

IF (temp > 7FFFFFFFFFFFFFFFH) or (temp < 8000000000000000H) 

(* If a positive result is greater than 7FFFFFFFFFFFFFFFH 

or a negative result is less than 8000000000000000H *)

THEN 

#DE; (* Divide error *) 

ELSE

RAX ← temp;

RDX ← RDE:RAX SignedModulus SRC;

FI;

FI;

FI;
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Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#DE If the source operand (divisor) is 0.
The signed result (quotient) is too large for the destination.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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IMUL—Signed Multiply

Instruction Operand Encoding

Description

Performs a signed multiplication of two operands. This instruction has three forms, depending on the number of 
operands. 
• One-operand form — This form is identical to that used by the MUL instruction. Here, the source operand (in 

a general-purpose register or memory location) is multiplied by the value in the AL, AX, EAX, or RAX register 
(depending on the operand size) and the product is stored in the AX, DX:AX, EDX:EAX, or RDX:RAX registers, 
respectively.

• Two-operand form — With this form the destination operand (the first operand) is multiplied by the source 
operand (second operand). The destination operand is a general-purpose register and the source operand is an 
immediate value, a general-purpose register, or a memory location. The product is then stored in the 
destination operand location.

• Three-operand form — This form requires a destination operand (the first operand) and two source operands 
(the second and the third operands). Here, the first source operand (which can be a general-purpose register 
or a memory location) is multiplied by the second source operand (an immediate value). The product is then 
stored in the destination operand (a general-purpose register).

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F6 /5 IMUL r/m8* M Valid Valid AX← AL ∗ r/m byte.

F7 /5 IMUL r/m16 M Valid Valid DX:AX ← AX ∗ r/m word.

F7 /5 IMUL r/m32 M Valid Valid EDX:EAX ← EAX ∗ r/m32.

REX.W + F7 /5 IMUL r/m64 M Valid N.E. RDX:RAX ← RAX ∗ r/m64.

0F AF /r IMUL r16, r/m16 RM Valid Valid word register ← word register ∗ r/m16.

0F AF /r IMUL r32, r/m32 RM Valid Valid doubleword register ← doubleword register ∗ 
r/m32.

REX.W + 0F AF /r IMUL r64, r/m64 RM Valid N.E. Quadword register ← Quadword register ∗ 
r/m64.

6B /r ib IMUL r16, r/m16, imm8 RMI Valid Valid word register ← r/m16 ∗ sign-extended 
immediate byte.

6B /r ib IMUL r32, r/m32, imm8 RMI Valid Valid doubleword register ← r/m32 ∗ sign-
extended immediate byte.

REX.W + 6B /r ib IMUL r64, r/m64, imm8 RMI Valid N.E. Quadword register ← r/m64 ∗ sign-extended 
immediate byte.

69 /r iw IMUL r16, r/m16, imm16 RMI Valid Valid word register ← r/m16 ∗ immediate word.

69 /r id IMUL r32, r/m32, imm32 RMI Valid Valid doubleword register ← r/m32 ∗ immediate 
doubleword.

REX.W + 69 /r id IMUL r64, r/m64, imm32 RMI Valid N.E. Quadword register ← r/m64 ∗ immediate 
doubleword.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8/16/32 NA
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When an immediate value is used as an operand, it is sign-extended to the length of the destination operand 
format.

The CF and OF flags are set when significant bit (including the sign bit) are carried into the upper half of the result. 
The CF and OF flags are cleared when the result (including the sign bit) fits exactly in the lower half of the result.

The three forms of the IMUL instruction are similar in that the length of the product is calculated to twice the length 
of the operands. With the one-operand form, the product is stored exactly in the destination. With the two- and 
three- operand forms, however, the result is truncated to the length of the destination before it is stored in the 
destination register. Because of this truncation, the CF or OF flag should be tested to ensure that no significant bits 
are lost. 

The two- and three-operand forms may also be used with unsigned operands because the lower half of the product 
is the same regardless if the operands are signed or unsigned. The CF and OF flags, however, cannot be used to 
determine if the upper half of the result is non-zero.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. Use of REX.W modifies the three 
forms of the instruction as follows.
• One-operand form —The source operand (in a 64-bit general-purpose register or memory location) is 

multiplied by the value in the RAX register and the product is stored in the RDX:RAX registers.
• Two-operand form — The source operand is promoted to 64 bits if it is a register or a memory location. The 

destination operand is promoted to 64 bits.
• Three-operand form — The first source operand (either a register or a memory location) and destination 

operand are promoted to 64 bits. If the source operand is an immediate, it is sign extended to 64 bits. 

Operation

IF (NumberOfOperands = 1)

THEN IF (OperandSize = 8)

THEN

AX ← AL ∗ SRC (* Signed multiplication *)

IF AL = AX

THEN CF ← 0; OF ← 0;

ELSE CF ← 1; OF ← 1; FI;

ELSE IF OperandSize = 16

THEN 

DX:AX ← AX ∗ SRC (* Signed multiplication *)

IF sign_extend_to_32 (AX) = DX:AX

THEN CF ← 0; OF ← 0;

ELSE CF ← 1; OF ← 1; FI;

ELSE IF OperandSize = 32 

THEN 

EDX:EAX ← EAX ∗ SRC (* Signed multiplication *)

IF EAX = EDX:EAX

THEN CF ← 0; OF ← 0;

ELSE CF ← 1; OF ← 1; FI;

ELSE (* OperandSize = 64 *)

RDX:RAX ← RAX ∗ SRC (* Signed multiplication *)

IF RAX = RDX:RAX

THEN CF ← 0; OF ← 0;

ELSE CF ← 1; OF ← 1; FI;

FI;

FI;

ELSE IF (NumberOfOperands = 2)

THEN 

temp ← DEST ∗ SRC (* Signed multiplication; temp is double DEST size *)
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DEST ← DEST ∗ SRC (* Signed multiplication *)

IF temp ≠ DEST

THEN CF ← 1; OF ← 1;

ELSE CF ← 0; OF ← 0; FI;

ELSE (* NumberOfOperands = 3 *)

DEST ← SRC1 ∗ SRC2 (* Signed multiplication *)

temp ← SRC1 ∗ SRC2 (* Signed multiplication; temp is double SRC1 size *)

IF temp ≠ DEST

THEN CF ← 1; OF ← 1;

ELSE CF ← 0; OF ← 0; FI;

FI;

FI;

Flags Affected

For the one operand form of the instruction, the CF and OF flags are set when significant bits are carried into the 
upper half of the result and cleared when the result fits exactly in the lower half of the result. For the two- and 
three-operand forms of the instruction, the CF and OF flags are set when the result must be truncated to fit in the 
destination operand size and cleared when the result fits exactly in the destination operand size. The SF, ZF, AF, and 
PF flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL NULL 
segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.
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64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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IN—Input from Port

Instruction Operand Encoding

Description

Copies the value from the I/O port specified with the second operand (source operand) to the destination operand 
(first operand). The source operand can be a byte-immediate or the DX register; the destination operand can be 
register AL, AX, or EAX, depending on the size of the port being accessed (8, 16, or 32 bits, respectively). Using the 
DX register as a source operand allows I/O port addresses from 0 to 65,535 to be accessed; using a byte imme-
diate allows I/O port addresses 0 to 255 to be accessed.

When accessing an 8-bit I/O port, the opcode determines the port size; when accessing a 16- and 32-bit I/O port, 
the operand-size attribute determines the port size. At the machine code level, I/O instructions are shorter when 
accessing 8-bit I/O ports. Here, the upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O address space. See Chapter 16, 
“Input/Output,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more infor-
mation on accessing I/O ports in the I/O address space.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))

THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)

THEN (* I/O operation is not allowed *)

#GP(0);

ELSE ( * I/O operation is allowed *) 

DEST ← SRC; (* Read from selected I/O port *)

FI;

ELSE (Real Mode or Protected Mode with CPL ≤ IOPL *)

DEST ← SRC; (* Read from selected I/O port *)

FI;

Flags Affected

None.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

E4 ib IN AL, imm8 I Valid Valid Input byte from imm8 I/O port address into 
AL.

E5 ib IN AX, imm8 I Valid Valid Input word from imm8 I/O port address into 
AX.

E5 ib IN EAX, imm8 I Valid Valid Input dword from imm8 I/O port address into 
EAX.

EC IN AL,DX NP Valid Valid Input byte from I/O port in DX into AL.

ED IN AX,DX NP Valid Valid Input word from I/O port in DX into AX.

ED IN EAX,DX NP Valid Valid Input doubleword from I/O port in DX into 
EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I imm8 NA NA NA

NP NA NA NA NA
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Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the 
corresponding I/O permission bits in TSS for the I/O port being accessed is 1.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed is 1.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the 
corresponding I/O permission bits in TSS for the I/O port being accessed is 1.

#UD If the LOCK prefix is used.
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INC—Increment by 1

Instruction Operand Encoding

Description

Adds 1 to the destination operand, while preserving the state of the CF flag. The destination operand can be a 
register or a memory location. This instruction allows a loop counter to be updated without disturbing the CF flag. 
(Use a ADD instruction with an immediate operand of 1 to perform an increment operation that does updates the 
CF flag.)

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, INC r16 and INC r32 are not encodable (because opcodes 40H through 47H are REX prefixes). 
Otherwise, the instruction’s 64-bit mode default operation size is 32 bits. Use of the REX.R prefix permits access to 
additional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits.

Operation

DEST ← DEST + 1;

AFlags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination operand is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULLsegment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

FE /0 INC r/m8 M Valid Valid Increment r/m byte by 1.

REX + FE /0 INC r/m8
* M Valid N.E. Increment r/m byte by 1.

FF /0 INC r/m16 M Valid Valid Increment r/m word by 1.

FF /0 INC r/m32 M Valid Valid Increment r/m doubleword by 1.

REX.W + FF /0 INC r/m64 M Valid N.E. Increment r/m quadword by 1.

40+ rw** INC r16 O N.E. Valid Increment word register by 1.

40+ rd INC r32 O N.E. Valid Increment doubleword register by 1.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

** 40H through 47H are REX prefixes in 64-bit mode.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA

O opcode + rd (r, w) NA NA NA
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Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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INS/INSB/INSW/INSD—Input from Port to String

Instruction Operand Encoding

Description

Copies the data from the I/O port specified with the source operand (second operand) to the destination operand 
(first operand). The source operand is an I/O port address (from 0 to 65,535) that is read from the DX register. The 
destination operand is a memory location, the address of which is read from either the ES:DI, ES:EDI or the RDI 
registers (depending on the address-size attribute of the instruction, 16, 32 or 64, respectively). (The ES segment 
cannot be overridden with a segment override prefix.) The size of the I/O port being accessed (that is, the size of 
the source and destination operands) is determined by the opcode for an 8-bit I/O port or by the operand-size attri-
bute of the instruction for a 16- or 32-bit I/O port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands” form and the “no-
operands” form. The explicit-operands form (specified with the INS mnemonic) allows the source and destination 
operands to be specified explicitly. Here, the source operand must be “DX,” and the destination operand should be 
a symbol that indicates the size of the I/O port and the destination address. This explicit-operands form is provided 
to allow documentation; however, note that the documentation provided by this form can be misleading. That is, 
the destination operand symbol must specify the correct type (size) of the operand (byte, word, or doubleword), 
but it does not have to specify the correct location. The location is always specified by the ES:(E)DI registers, 
which must be loaded correctly before the INS instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the INS instructions. 
Here also DX is assumed by the processor to be the source operand and ES:(E)DI is assumed to be the destination 
operand. The size of the I/O port is specified with the choice of mnemonic: INSB (byte), INSW (word), or INSD 
(doubleword).

After the byte, word, or doubleword is transfer from the I/O port to the memory location, the DI/EDI/RDI register 
is incremented or decremented automatically according to the setting of the DF flag in the EFLAGS register. (If the 
DF flag is 0, the (E)DI register is incremented; if the DF flag is 1, the (E)DI register is decremented.) The (E)DI 
register is incremented or decremented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword 
operations.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

6C INS m8, DX NP Valid Valid Input byte from I/O port specified in DX into 
memory location specified in ES:(E)DI or RDI.*

6D INS m16, DX NP Valid Valid Input word from I/O port specified in DX into 
memory location specified in ES:(E)DI or RDI.1

6D INS m32, DX NP Valid Valid Input doubleword from I/O port specified in DX 
into memory location specified in ES:(E)DI or 
RDI.1

6C INSB NP Valid Valid Input byte from I/O port specified in DX into 
memory location specified with ES:(E)DI or 
RDI.1

6D INSW NP Valid Valid Input word from I/O port specified in DX into 
memory location specified in ES:(E)DI or RDI.1

6D INSD NP Valid Valid Input doubleword from I/O port specified in DX 
into memory location specified in ES:(E)DI or 
RDI.1

NOTES:

* In 64-bit mode, only 64-bit (RDI) and 32-bit (EDI) address sizes are supported. In non-64-bit mode, only 32-bit (EDI) and 16-bit (DI) 
address sizes are supported.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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The INS, INSB, INSW, and INSD instructions can be preceded by the REP prefix for block input of ECX bytes, words, 
or doublewords. See “REP/REPE/REPZ /REPNE/REPNZ—Repeat String Operation Prefix” in Chapter 4 of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for a description of the REP prefix.

These instructions are only useful for accessing I/O ports located in the processor’s I/O address space. See Chapter 
16, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more 
information on accessing I/O ports in the I/O address space.

In 64-bit mode, default address size is 64 bits, 32 bit address size is supported using the prefix 67H. The address 
of the memory destination is specified by RDI or EDI. 16-bit address size is not supported in 64-bit mode. The 
operand size is not promoted.

Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))

THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)

THEN (* I/O operation is not allowed *)

#GP(0);

ELSE (* I/O operation is allowed *) 

DEST ← SRC; (* Read from I/O port *)

FI;

ELSE (Real Mode or Protected Mode with CPL IOPL *)

DEST ← SRC; (* Read from I/O port *)

FI;

Non-64-bit Mode:

IF (Byte transfer)

THEN IF DF = 0

THEN (E)DI ← (E)DI + 1; 

ELSE (E)DI ← (E)DI – 1; FI;

ELSE IF (Word transfer)

THEN IF DF = 0
THEN (E)DI ← (E)DI + 2; 

ELSE (E)DI ← (E)DI – 2; FI;

ELSE (* Doubleword transfer *)

THEN IF DF = 0

THEN (E)DI ← (E)DI + 4; 

ELSE (E)DI ← (E)DI – 4; FI;

FI;

FI;

FI64-bit Mode:

IF (Byte transfer)

THEN IF DF = 0

THEN (E|R)DI ← (E|R)DI + 1; 

ELSE (E|R)DI ← (E|R)DI – 1; FI;

ELSE IF (Word transfer)

THEN IF DF = 0
THEN (E)DI ← (E)DI + 2; 

ELSE (E)DI ← (E)DI – 2; FI;

ELSE (* Doubleword transfer *)

THEN IF DF = 0

THEN (E|R)DI ← (E|R)DI + 4; 

ELSE (E|R)DI ← (E|R)DI – 4; FI;
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FI;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the 
corresponding I/O permission bits in TSS for the I/O port being accessed is 1.
If the destination is located in a non-writable segment.
If an illegal memory operand effective address in the ES segments is given.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed is 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the 

corresponding I/O permission bits in TSS for the I/O port being accessed is 1.
If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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INSERTPS — Insert Packed Single Precision Floating-Point Value

Instruction Operand Encoding

Description

(register source form)
Select a single precision floating-point element from second source as indicated by Count_S bits of the immediate 
operand and insert it into the first source at the location indicated by the Count_D bits of the immediate operand. 
Store in the destination and zero out destination elements based on the ZMask bits of the immediate operand. 

(memory source form)
Load a floating-point element from a 32-bit memory location and insert it into the first source at the location indi-
cated by the Count_D bits of the immediate operand. Store in the destination and zero out destination elements 
based on the ZMask bits of the immediate operand. 

128-bit Legacy SSE version: The first source register is an XMM register. The second source operand is either an 
XMM register or a 32-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified.
VEX.128 encoded version. The destination and first source register is an XMM register. The second source operand 
is either an XMM register or a 32-bit memory location. The upper bits (VLMAX-1:128) of the corresponding YMM 
register destination are zeroed.
If VINSERTPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause 
an #UD exception.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 21 /r ib

INSERTPS xmm1, xmm2/m32, imm8

RMI V/V SSE4_1 Insert a single precision floating-point value 
selected by imm8 from xmm2/m32 into 
xmm1 at the specified destination element 
specified by imm8 and zero out destination 
elements in xmm1 as indicated in imm8.

VEX.NDS.128.66.0F3A.WIG 21 /r ib

VINSERTPS xmm1, xmm2, xmm3/m32, imm8

RVMI V/V AVX Insert a single precision floating point value 
selected by imm8 from xmm3/m32 and merge 
into xmm2 at the specified destination 
element specified by imm8 and zero out 
destination elements in xmm1 as indicated in 
imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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Operation

INSERTPS (128-bit Legacy SSE version)

IF (SRC = REG) THEN COUNT_S Å imm8[7:6]

ELSE COUNT_S Å 0

COUNT_D Å imm8[5:4]

ZMASK Å imm8[3:0]

CASE (COUNT_S) OF

0: TMP Å SRC[31:0]

1: TMP Å SRC[63:32]

2: TMP Å SRC[95:64]

3: TMP Å SRC[127:96]

ESAC;

CASE (COUNT_D) OF

0: TMP2[31:0] Å TMP

TMP2[127:32] Å DEST[127:32]

1: TMP2[63:32] Å TMP

TMP2[31:0] Å DEST[31:0]

TMP2[127:64] Å DEST[127:64]

2: TMP2[95:64] Å TMP

TMP2[63:0] Å DEST[63:0]

TMP2[127:96] Å DEST[127:96]

3: TMP2[127:96] Å TMP

TMP2[95:0] Å DEST[95:0]

ESAC;

IF (ZMASK[0] = 1) THEN DEST[31:0] Å 00000000H

ELSE DEST[31:0] Å TMP2[31:0]

IF (ZMASK[1] = 1) THEN DEST[63:32] Å 00000000H

ELSE DEST[63:32] Å TMP2[63:32]

IF (ZMASK[2] = 1) THEN DEST[95:64] Å 00000000H

ELSE DEST[95:64] Å TMP2[95:64]

IF (ZMASK[3] = 1) THEN DEST[127:96] Å 00000000H

ELSE DEST[127:96] Å TMP2[127:96]

DEST[VLMAX-1:128] (Unmodified)

VINSERTPS (VEX.128 encoded version)

IF (SRC = REG) THEN COUNT_S Å imm8[7:6]

ELSE COUNT_S Å 0

COUNT_D Å imm8[5:4]

ZMASK Å imm8[3:0]

CASE (COUNT_S) OF

0: TMP Å SRC2[31:0]

1: TMP Å SRC2[63:32]

2: TMP Å SRC2[95:64]

3: TMP Å SRC2[127:96]

ESAC;

CASE (COUNT_D) OF

0: TMP2[31:0] Å TMP

TMP2[127:32] Å SRC1[127:32]

1: TMP2[63:32] Å TMP

TMP2[31:0] Å SRC1[31:0]

TMP2[127:64] Å SRC1[127:64]
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2: TMP2[95:64] Å TMP

TMP2[63:0] Å SRC1[63:0]

TMP2[127:96] Å SRC1[127:96]

3: TMP2[127:96] Å TMP

TMP2[95:0] Å SRC1[95:0]

ESAC;

IF (ZMASK[0] = 1) THEN DEST[31:0] Å 00000000H

ELSE DEST[31:0] Å TMP2[31:0]

IF (ZMASK[1] = 1) THEN DEST[63:32] Å 00000000H

ELSE DEST[63:32] Å TMP2[63:32]

IF (ZMASK[2] = 1) THEN DEST[95:64] Å 00000000H

ELSE DEST[95:64] Å TMP2[95:64]

IF (ZMASK[3] = 1) THEN DEST[127:96] Å 00000000H

ELSE DEST[127:96] Å TMP2[127:96]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

INSERTPS:  __m128 _mm_insert_ps(__m128 dst, __m128 src, const int ndx);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 5.
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INT n/INTO/INT 3—Call to Interrupt Procedure

Instruction Operand Encoding

Description

The INT n instruction generates a call to the interrupt or exception handler specified with the destination operand 
(see the section titled “Interrupts and Exceptions” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1). The destination operand specifies an interrupt vector number from 0 to 255, 
encoded as an 8-bit unsigned intermediate value. Each interrupt vector number provides an index to a gate 
descriptor in the IDT. The first 32 interrupt vector numbers are reserved by Intel for system use. Some of these 
interrupts are used for internally generated exceptions.

The INT n instruction is the general mnemonic for executing a software-generated call to an interrupt handler. The 
INTO instruction is a special mnemonic for calling overflow exception (#OF), interrupt vector number 4. The over-
flow interrupt checks the OF flag in the EFLAGS register and calls the overflow interrupt handler if the OF flag is set 
to 1. (The INTO instruction cannot be used in 64-bit mode.)

The INT 3 instruction generates a special one byte opcode (CC) that is intended for calling the debug exception 
handler. (This one byte form is valuable because it can be used to replace the first byte of any instruction with a 
breakpoint, including other one byte instructions, without over-writing other code). To further support its function 
as a debug breakpoint, the interrupt generated with the CC opcode also differs from the regular software interrupts 
as follows: 
• Interrupt redirection does not happen when in VME mode; the interrupt is handled by a protected-mode 

handler.
• The virtual-8086 mode IOPL checks do not occur. The interrupt is taken without faulting at any IOPL level.

Note that the “normal” 2-byte opcode for INT 3 (CD03) does not have these special features. Intel and Microsoft 
assemblers will not generate the CD03 opcode from any mnemonic, but this opcode can be created by direct 
numeric code definition or by self-modifying code.

The action of the INT n instruction (including the INTO and INT 3 instructions) is similar to that of a far call made 
with the CALL instruction. The primary difference is that with the INT n instruction, the EFLAGS register is pushed 
onto the stack before the return address. (The return address is a far address consisting of the current values of 
the CS and EIP registers.) Returns from interrupt procedures are handled with the IRET instruction, which pops the 
EFLAGS information and return address from the stack.

The interrupt vector number specifies an interrupt descriptor in the interrupt descriptor table (IDT); that is, it 
provides index into the IDT. The selected interrupt descriptor in turn contains a pointer to an interrupt or exception 
handler procedure. In protected mode, the IDT contains an array of 8-byte descriptors, each of which is an inter-
rupt gate, trap gate, or task gate. In real-address mode, the IDT is an array of 4-byte far pointers (2-byte code 
segment selector and a 2-byte instruction pointer), each of which point directly to a procedure in the selected 
segment. (Note that in real-address mode, the IDT is called the interrupt vector table, and its pointers are called 
interrupt vectors.) 

The following decision table indicates which action in the lower portion of the table is taken given the conditions in 
the upper portion of the table. Each Y in the lower section of the decision table represents a procedure defined in 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

CC INT 3 NP Valid Valid Interrupt 3—trap to debugger.

CD ib INT imm8 I Valid Valid Interrupt vector number specified by 
immediate byte.

CE INTO NP Invalid Valid Interrupt 4—if overflow flag is 1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

I imm8 NA NA NA
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the “Operation” section for this instruction (except #GP).

When the processor is executing in virtual-8086 mode, the IOPL determines the action of the INT n instruction. If 
the IOPL is less than 3, the processor generates a #GP(selector) exception; if the IOPL is 3, the processor executes 
a protected mode interrupt to privilege level 0. The interrupt gate's DPL must be set to 3 and the target CPL of the 
interrupt handler procedure must be 0 to execute the protected mode interrupt to privilege level 0.

The interrupt descriptor table register (IDTR) specifies the base linear address and limit of the IDT. The initial base 
address value of the IDTR after the processor is powered up or reset is 0.

Operation

The following operational description applies not only to the INT n and INTO instructions, but also to external inter-
rupts, nonmaskable interrupts (NMIs), and exceptions. Some of these events push onto the stack an error code.

The operational description specifies numerous checks whose failure may result in delivery of a nested exception. 
In these cases, the original event is not delivered.

The operational description specifies the error code delivered by any nested exception. In some cases, the error 
code is specified with a pseudofunction error_code(num,idt,ext), where idt and ext are bit values. The pseudofunc-
tion produces an error code as follows: (1) if idt is 0, the error code is (num & FCH) | ext; (2) if idt is 1, the error 
code is (num « 3) | 2 | ext.

In many cases, the pseudofunction error_code is invoked with a pseudovariable EXT. The value of EXT depends on 
the nature of the event whose delivery encountered a nested exception: if that event is a software interrupt, EXT 
is 0; otherwise, EXT is 1.

Table 3-61.  Decision Table

PE 0 1 1 1 1 1 1 1

VM – – – – – 0 1 1

IOPL – – – – – – <3 =3

DPL/CPL 
RELATIONSHIP

– DPL<
CPL

– DPL>
CPL

DPL=
CPL or C

DPL<
CPL & NC

– –

INTERRUPT TYPE – S/W – – – – – –

GATE TYPE – – Task Trap or 
Interrupt

Trap or 
Interrupt

Trap or 
Interrupt

Trap or 
Interrupt

Trap or 
Interrupt

REAL-ADDRESS-MODE Y

PROTECTED-MODE Y Y Y Y Y Y Y

TRAP-OR-INTERRUPT-
GATE

Y Y Y Y Y

INTER-PRIVILEGE-LEVEL-
INTERRUPT

Y

INTRA-PRIVILEGE-LEVEL-
INTERRUPT

Y

INTERRUPT-FROM-
VIRTUAL-8086-MODE

Y

TASK-GATE Y

#GP Y Y Y

NOTES:

− Don't Care.

Y Yes, action taken.

Blank Action not taken.
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IF PE = 0
THEN 

GOTO REAL-ADDRESS-MODE;

ELSE (* PE = 1 *)

IF (VM = 1 and IOPL < 3 AND INT n) 

THEN 

 #GP(0); (* Bit 0 of error code is 0 because INT n *)

ELSE (* Protected mode, IA-32e mode, or virtual-8086 mode interrupt *)

IF (IA32_EFER.LMA = 0)

THEN (* Protected mode, or virtual-8086 mode interrupt *)

GOTO PROTECTED-MODE;

ELSE (* IA-32e mode interrupt *)

GOTO IA-32e-MODE;

FI;

FI;

FI;

REAL-ADDRESS-MODE:

IF ((vector_number « 2) + 3) is not within IDT limit 

THEN #GP; FI;

IF stack not large enough for a 6-byte return information 

THEN #SS; FI;

Push (EFLAGS[15:0]);

IF ← 0; (* Clear interrupt flag *)

TF ← 0; (* Clear trap flag *)

AC ← 0; (* Clear AC flag *)

Push(CS);

Push(IP);

(* No error codes are pushed in real-address mode*)

CS ← IDT(Descriptor (vector_number « 2), selector));

EIP ← IDT(Descriptor (vector_number « 2), offset)); (* 16 bit offset AND 0000FFFFH *)

END;

PROTECTED-MODE:

IF ((vector_number « 3) + 7) is not within IDT limits

or selected IDT descriptor is not an interrupt-, trap-, or task-gate type

THEN #GP(error_code(vector_number,1,EXT)); FI;

(* idt operand to error_code set because vector is used *)

IF software interrupt (* Generated by INT n, INT3, or INTO *)

THEN

IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *)

THEN #GP(error_code(vector_number,1,0)); FI;

(* idt operand to error_code set because vector is used *)

(* ext operand to error_code is 0 because INT n, INT3, or INTO*)

FI;

IF gate not present 

THEN #NP(error_code(vector_number,1,EXT)); FI;

(* idt operand to error_code set because vector is used *)

IF task gate (* Specified in the selected interrupt table descriptor *)

THEN GOTO TASK-GATE;

ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE = 1, trap/interrupt gate *)

FI;

END;

IA-32e-MODE:

IF INTO and CS.L = 1 (64-bit mode)

THEN #UD;
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FI;

IF ((vector_number « 4) + 15) is not in IDT limits

or selected IDT descriptor is not an interrupt-, or trap-gate type

THEN #GP(error_code(vector_number,1,EXT));

(* idt operand to error_code set because vector is used *)

FI;

IF software interrupt (* Generated by INT n, INT 3, or INTO *)

THEN

IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *)

THEN #GP(error_code(vector_number,1,0));

(* idt operand to error_code set because vector is used *)

(* ext operand to error_code is 0 because INT n, INT3, or INTO*)

FI;

FI;

IF gate not present 

THEN #NP(error_code(vector_number,1,EXT));

(* idt operand to error_code set because vector is used *)

FI;

GOTO TRAP-OR-INTERRUPT-GATE; (* Trap/interrupt gate *)

END;

TASK-GATE: (* PE = 1, task gate *)

Read TSS selector in task gate (IDT descriptor);

IF local/global bit is set to local or index not within GDT limits

THEN #GP(error_code(TSS selector,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

Access TSS descriptor in GDT;

IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

THEN #GP(TSS selector,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

IF TSS not present 

THEN #NP(TSS selector,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

SWITCH-TASKS (with nesting) to TSS;

IF interrupt caused by fault with error code

THEN

IF stack limit does not allow push of error code

THEN #SS(EXT); FI;

Push(error code);

FI;

IF EIP not within code segment limit 

THEN #GP(EXT); FI;

END;

TRAP-OR-INTERRUPT-GATE:

Read new code-segment selector for trap or interrupt gate (IDT descriptor);

IF new code-segment selector is NULL

THEN #GP(EXT); FI; (* Error code contains NULL selector *)

IF new code-segment selector is not within its descriptor table limits 

THEN #GP(error_code(new code-segment selector,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

Read descriptor referenced by new code-segment selector;

IF descriptor does not indicate a code segment or new code-segment DPL > CPL

THEN #GP(error_code(new code-segment selector,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

IF new code-segment descriptor is not present, 
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THEN #NP(error_code(new code-segment selector,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

IF new code segment is non-conforming with DPL < CPL

THEN 

IF VM = 0

THEN 

GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT; 

(* PE = 1, VM = 0, interrupt or trap gate, nonconforming code segment,

DPL < CPL *)

ELSE (* VM = 1 *)

IF new code-segment DPL ≠ 0 

THEN #GP(error_code(new code-segment selector,0,EXT));

(* idt operand to error_code is 0 because selector is used *)

GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE; FI;

(* PE = 1, interrupt or trap gate, DPL < CPL, VM = 1 *)

FI;

ELSE (* PE = 1, interrupt or trap gate, DPL ≥ CPL *)

IF VM = 1 

THEN #GP(error_code(new code-segment selector,0,EXT));

(* idt operand to error_code is 0 because selector is used *)

IF new code segment is conforming or new code-segment DPL = CPL

THEN 

GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT; 

ELSE (* PE = 1, interrupt or trap gate, nonconforming code segment, DPL > CPL *)

#GP(error_code(new code-segment selector,0,EXT));

(* idt operand to error_code is 0 because selector is used *)

FI;

FI;

END;

INTER-PRIVILEGE-LEVEL-INTERRUPT:

(* PE = 1, interrupt or trap gate, non-conforming code segment, DPL < CPL *)

IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN

(* Identify stack-segment selector for new privilege level in current TSS *)

IF current TSS is 32-bit

THEN 

TSSstackAddress ← (new code-segment DPL « 3) + 4;

IF (TSSstackAddress + 5) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 4);

NewESP ← 4 bytes loaded from (TSS base + TSSstackAddress);

ELSE (* current TSS is 16-bit *)

TSSstackAddress ← (new code-segment DPL « 2) + 2

IF (TSSstackAddress + 3) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 2);

NewESP ← 2 bytes loaded from (TSS base + TSSstackAddress);

FI;

IF NewSS is NULL

THEN #TS(EXT); FI; 

IF NewSS index is not within its descriptor-table limits

or NewSS RPL ≠ new code-segment DPL 
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THEN #TS(error_code(NewSS,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

Read new stack-segment descriptor for NewSS in GDT or LDT;

IF new stack-segment DPL ≠ new code-segment DPL

or new stack-segment Type does not indicate writable data segment

THEN #TS(error_code(NewSS,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

IF NewSS is not present 

THEN #SS(error_code(NewSS,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

ELSE (* IA-32e mode *)

IF IDT-gate IST = 0

THEN TSSstackAddress ← (new code-segment DPL « 3) + 4;

ELSE TSSstackAddress ← (IDT gate IST « 3) + 28;

FI;

IF (TSSstackAddress + 7) > current TSS limit

THEN #TS(error_code(current TSS selector,0,EXT); FI;

(* idt operand to error_code is 0 because selector is used *)

NewRSP ← 8 bytes loaded from (current TSS base + TSSstackAddress);

NewSS ← new code-segment DPL; (* NULL selector with RPL = new CPL *)

FI;

IF IDT gate is 32-bit 

THEN

IF new stack does not have room for 24 bytes (error code pushed) 

or 20 bytes (no error code pushed)

THEN #SS(error_code(NewSS,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

FI

ELSE 

IF IDT gate is 16-bit 

THEN

IF new stack does not have room for 12 bytes (error code pushed) 

or 10 bytes (no error code pushed);

THEN #SS(error_code(NewSS,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

ELSE (* 64-bit IDT gate*)

IF StackAddress is non-canonical

THEN #SS(EXT); FI; (* Error code contains NULL selector *)

FI;

FI;

IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN

IF instruction pointer from IDT gate is not within new code-segment limits 

THEN #GP(EXT); FI; (* Error code contains NULL selector *)

ESP ← NewESP;

SS ← NewSS; (* Segment descriptor information also loaded *)

ELSE (* IA-32e mode *)

IF instruction pointer from IDT gate contains a non-canonical address

THEN #GP(EXT); FI; (* Error code contains NULL selector *)

RSP ← NewRSP & FFFFFFFFFFFFFFF0H;

SS ← NewSS;

FI;

IF IDT gate is 32-bit

THEN 
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CS:EIP ← Gate(CS:EIP); (* Segment descriptor information also loaded *)

ELSE 

IF IDT gate 16-bit

THEN 

CS:IP ← Gate(CS:IP); 

(* Segment descriptor information also loaded *)

ELSE (* 64-bit IDT gate *)

CS:RIP ← Gate(CS:RIP); 

(* Segment descriptor information also loaded *)

FI;

FI;

IF IDT gate is 32-bit

THEN

Push(far pointer to old stack); 

(* Old SS and ESP, 3 words padded to 4 *)

Push(EFLAGS);

Push(far pointer to return instruction); 

(* Old CS and EIP, 3 words padded to 4 *)

Push(ErrorCode); (* If needed, 4 bytes *)

ELSE

IF IDT gate 16-bit

THEN

Push(far pointer to old stack); 

(* Old SS and SP, 2 words *)

Push(EFLAGS(15-0]);

Push(far pointer to return instruction); 

(* Old CS and IP, 2 words *)

Push(ErrorCode); (* If needed, 2 bytes *)

ELSE (* 64-bit IDT gate *)

Push(far pointer to old stack); 

(* Old SS and SP, each an 8-byte push *)

Push(RFLAGS); (* 8-byte push *)

Push(far pointer to return instruction); 

(* Old CS and RIP, each an 8-byte push *)

Push(ErrorCode); (* If needed, 8-bytes *)

FI;

FI;

CPL ← new code-segment DPL;

CS(RPL) ← CPL;

IF IDT gate is interrupt gate

THEN IF ← 0 (* Interrupt flag set to 0, interrupts disabled *); FI;

TF ← 0;

VM ← 0;

RF ← 0;

NT ← 0;

END;

INTERRUPT-FROM-VIRTUAL-8086-MODE:

(* Identify stack-segment selector for privilege level 0 in current TSS *)

IF current TSS is 32-bit

THEN 

IF TSS limit < 9

THEN #TS(error_code(current TSS selector,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

NewSS ← 2 bytes loaded from (current TSS base + 8);
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NewESP ← 4 bytes loaded from (current TSS base + 4);

ELSE (* current TSS is 16-bit *)

IF TSS limit < 5

THEN #TS(error_code(current TSS selector,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

NewSS ← 2 bytes loaded from (current TSS base + 4);

NewESP ← 2 bytes loaded from (current TSS base + 2);

FI;

IF NewSS is NULL

THEN #TS(EXT); FI; (* Error code contains NULL selector *)

IF NewSS index is not within its descriptor table limits

or NewSS RPL ≠ 0

THEN #TS(error_code(NewSS,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

Read new stack-segment descriptor for NewSS in GDT or LDT;

IF new stack-segment DPL ≠ 0 or stack segment does not indicate writable data segment

THEN #TS(error_code(NewSS,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

IF new stack segment not present 

THEN #SS(error_code(NewSS,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

IF IDT gate is 32-bit

THEN

IF new stack does not have room for 40 bytes (error code pushed) 

or 36 bytes (no error code pushed)

THEN #SS(error_code(NewSS,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

ELSE (* IDT gate is 16-bit) 

IF new stack does not have room for 20 bytes (error code pushed) 

or 18 bytes (no error code pushed)

THEN #SS(error_code(NewSS,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

FI;

IF instruction pointer from IDT gate is not within new code-segment limits 

THEN #GP(EXT); FI; (* Error code contains NULL selector *)

tempEFLAGS ← EFLAGS;

VM ← 0;

TF ← 0;

RF ← 0;

NT ← 0;

IF service through interrupt gate 

THEN IF = 0; FI;

TempSS ← SS;

TempESP ← ESP;

SS ← NewSS;

ESP ← NewESP;

(* Following pushes are 16 bits for 16-bit IDT gates and 32 bits for 32-bit IDT gates; 

Segment selector pushes in 32-bit mode are padded to two words *)

Push(GS);

Push(FS);

Push(DS);

Push(ES);

Push(TempSS);

Push(TempESP);
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Push(TempEFlags);

Push(CS);

Push(EIP);

GS ← 0; (* Segment registers made NULL, invalid for use in protected mode *)

FS ← 0;

DS ← 0;

ES ← 0;

CS:IP ← Gate(CS); (* Segment descriptor information also loaded *)

IF OperandSize = 32

THEN

EIP ← Gate(instruction pointer);

ELSE (* OperandSize is 16 *)

EIP ← Gate(instruction pointer) AND 0000FFFFH;

FI;

(* Start execution of new routine in Protected Mode *)

END;

INTRA-PRIVILEGE-LEVEL-INTERRUPT:

(* PE = 1, DPL = CPL or conforming segment *)

IF IA32_EFER.LMA = 1 (* IA-32e mode *)

IF IDT-descriptor IST ≠ 0

THEN

TSSstackAddress ← (IDT-descriptor IST « 3) + 28;

IF (TSSstackAddress + 7) > TSS limit

THEN #TS(error_code(current TSS selector,0,EXT)); FI;

(* idt operand to error_code is 0 because selector is used *)

NewRSP ← 8 bytes loaded from (current TSS base + TSSstackAddress);

FI;

IF 32-bit gate (* implies IA32_EFER.LMA = 0 *)

THEN

IF current stack does not have room for 16 bytes (error code pushed) 

or 12 bytes (no error code pushed)

THEN #SS(EXT); FI; (* Error code contains NULL selector *)

ELSE IF 16-bit gate (* implies IA32_EFER.LMA = 0 *) 

IF current stack does not have room for 8 bytes (error code pushed) 

or 6 bytes (no error code pushed)

THEN #SS(EXT); FI; (* Error code contains NULL selector *)

ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)

IF NewRSP contains a non-canonical address

THEN #SS(EXT); (* Error code contains NULL selector *)

FI;

FI;

IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

THEN

IF instruction pointer from IDT gate is not within new code-segment limit 

THEN #GP(EXT); FI; (* Error code contains NULL selector *)

ELSE

IF instruction pointer from IDT gate contains a non-canonical address

THEN #GP(EXT); FI; (* Error code contains NULL selector *)

RSP ← NewRSP & FFFFFFFFFFFFFFF0H;

FI;

IF IDT gate is 32-bit (* implies IA32_EFER.LMA = 0 *)

THEN

Push (EFLAGS);

Push (far pointer to return instruction); (* 3 words padded to 4 *)



INT n/INTO/INT 3—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-413

CS:EIP ← Gate(CS:EIP); (* Segment descriptor information also loaded *)

Push (ErrorCode); (* If any *)

ELSE

IF IDT gate is 16-bit (* implies IA32_EFER.LMA = 0 *) 

THEN

Push (FLAGS);

Push (far pointer to return location); (* 2 words *)

CS:IP ← Gate(CS:IP); 

(* Segment descriptor information also loaded *)

Push (ErrorCode); (* If any *)

ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)

Push(far pointer to old stack); 

(* Old SS and SP, each an 8-byte push *)

Push(RFLAGS); (* 8-byte push *)

Push(far pointer to return instruction); 

(* Old CS and RIP, each an 8-byte push *)

Push(ErrorCode); (* If needed, 8 bytes *)

CS:RIP ← GATE(CS:RIP); 

(* Segment descriptor information also loaded *)

FI;

FI;

CS(RPL) ← CPL;

IF IDT gate is interrupt gate 

THEN IF ← 0; FI; (* Interrupt flag set to 0; interrupts disabled *)

TF ← 0;

NT ← 0;

VM ← 0;

RF ← 0;

END;

Flags Affected

The EFLAGS register is pushed onto the stack. The IF, TF, NT, AC, RF, and VM flags may be cleared, depending on 
the mode of operation of the processor when the INT instruction is executed (see the “Operation” section). If the 
interrupt uses a task gate, any flags may be set or cleared, controlled by the EFLAGS image in the new task’s TSS.

Protected Mode Exceptions

#GP(error_code) If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate is beyond the code 
segment limits.
If the segment selector in the interrupt-, trap-, or task gate is NULL.
If an interrupt-, trap-, or task gate, code segment, or TSS segment selector index is outside 
its descriptor table limits.
If the interrupt vector number is outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.
If an interrupt is generated by the INT n, INT 3, or INTO instruction and the DPL of an inter-
rupt-, trap-, or task-descriptor is less than the CPL.
If the segment selector in an interrupt- or trap-gate does not point to a segment descriptor for 
a code segment.
If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(error_code) If pushing the return address, flags, or error code onto the stack exceeds the bounds of the 
stack segment and no stack switch occurs.
If the SS register is being loaded and the segment pointed to is marked not present.
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If pushing the return address, flags, error code, or stack segment pointer exceeds the bounds 
of the new stack segment when a stack switch occurs.

#NP(error_code) If code segment, interrupt-, trap-, or task gate, or TSS is not present.
#TS(error_code) If the RPL of the stack segment selector in the TSS is not equal to the DPL of the code segment 

being accessed by the interrupt or trap gate.
If DPL of the stack segment descriptor pointed to by the stack segment selector in the TSS is 
not equal to the DPL of the code segment descriptor for the interrupt or trap gate.
If the stack segment selector in the TSS is NULL.
If the stack segment for the TSS is not a writable data segment.
If segment-selector index for stack segment is outside descriptor table limits. 

#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the interrupt vector number is outside the IDT limits.

#SS If stack limit violation on push.
If pushing the return address, flags, or error code onto the stack exceeds the bounds of the 
stack segment.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(error_code) (For INT n, INTO, or BOUND instruction) If the IOPL is less than 3 or the DPL of the interrupt-
, trap-, or task-gate descriptor is not equal to 3.
If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate is beyond the code 
segment limits.
If the segment selector in the interrupt-, trap-, or task gate is NULL.
If a interrupt-, trap-, or task gate, code segment, or TSS segment selector index is outside its 
descriptor table limits.
If the interrupt vector number is outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.
If an interrupt is generated by the INT n instruction and the DPL of an interrupt-, trap-, or task-
descriptor is less than the CPL.
If the segment selector in an interrupt- or trap-gate does not point to a segment descriptor for 
a code segment.
If the segment selector for a TSS has its local/global bit set for local.

#SS(error_code) If the SS register is being loaded and the segment pointed to is marked not present.
If pushing the return address, flags, error code, stack segment pointer, or data segments 
exceeds the bounds of the stack segment.

#NP(error_code) If code segment, interrupt-, trap-, or task gate, or TSS is not present.
#TS(error_code) If the RPL of the stack segment selector in the TSS is not equal to the DPL of the code segment 

being accessed by the interrupt or trap gate.
If DPL of the stack segment descriptor for the TSS’s stack segment is not equal to the DPL of 
the code segment descriptor for the interrupt or trap gate.
If the stack segment selector in the TSS is NULL.
If the stack segment for the TSS is not a writable data segment.
If segment-selector index for stack segment is outside descriptor table limits. 

#PF(fault-code) If a page fault occurs.
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#BP If the INT 3 instruction is executed.
#OF If the INTO instruction is executed and the OF flag is set.
#UD If the LOCK prefix is used.
#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(error_code) If the instruction pointer in the 64-bit interrupt gate or 64-bit trap gate is non-canonical.
If the segment selector in the 64-bit interrupt or trap gate is NULL.
If the interrupt vector number is outside the IDT limits.
If the interrupt vector number points to a gate which is in non-canonical space.
If the interrupt vector number points to a descriptor which is not a 64-bit interrupt gate or 64-
bit trap gate.
If the descriptor pointed to by the gate selector is outside the descriptor table limit.
If the descriptor pointed to by the gate selector is in non-canonical space.
If the descriptor pointed to by the gate selector is not a code segment.
If the descriptor pointed to by the gate selector doesn’t have the L-bit set, or has both the L-
bit and D-bit set.
If the descriptor pointed to by the gate selector has DPL > CPL.

#SS(error_code) If a push of the old EFLAGS, CS selector, EIP, or error code is in non-canonical space with no 
stack switch.
If a push of the old SS selector, ESP, EFLAGS, CS selector, EIP, or error code is in non-canonical 
space on a stack switch (either CPL change or no-CPL with IST).

#NP(error_code) If the 64-bit interrupt-gate, 64-bit trap-gate, or code segment is not present.
#TS(error_code) If an attempt to load RSP from the TSS causes an access to non-canonical space.

If the RSP from the TSS is outside descriptor table limits. 
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.
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INVD—Invalidate Internal Caches

Instruction Operand Encoding

Description

Invalidates (flushes) the processor’s internal caches and issues a special-function bus cycle that directs external 
caches to also flush themselves. Data held in internal caches is not written back to main memory. 

After executing this instruction, the processor does not wait for the external caches to complete their flushing oper-
ation before proceeding with instruction execution. It is the responsibility of hardware to respond to the cache flush 
signal.

The INVD instruction is a privileged instruction. When the processor is running in protected mode, the CPL of a 
program or procedure must be 0 to execute this instruction.

The INVD instruction may be used when the cache is used as temporary memory and the cache contents need to 
be invalidated rather than written back to memory. When the cache is used as temporary memory, no external 
device should be actively writing data to main memory. 

Use this instruction with care. Data cached internally and not written back to main memory will be lost. Note that 
any data from an external device to main memory (for example, via a PCIWrite) can be temporarily stored in the 
caches; these data can be lost when an INVD instruction is executed. Unless there is a specific requirement or 
benefit to flushing caches without writing back modified cache lines (for example, temporary memory, testing, or 
fault recovery where cache coherency with main memory is not a concern), software should instead use the 
WBINVD instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The INVD instruction is implementation dependent; it may be implemented differently on different families of Intel 
64 or IA-32 processors. This instruction is not supported on IA-32 processors earlier than the Intel486 processor.

Operation

Flush(InternalCaches);

SignalFlush(ExternalCaches);

Continue (* Continue execution *)

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 08 INVD NP Valid Valid Flush internal caches; initiate flushing of 
external caches.

NOTES:

* See the IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Real-Address Mode Exceptions

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) The INVD instruction cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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INVLPG—Invalidate TLB Entry

Instruction Operand Encoding

Description

Invalidates (flushes) the translation lookaside buffer (TLB) entry specified with the source operand. The source 
operand is a memory address. The processor determines the page that contains that address and flushes the TLB 
entry for that page.

The INVLPG instruction is a privileged instruction. When the processor is running in protected mode, the CPL must 
be 0 to execute this instruction.

The INVLPG instruction normally flushes the TLB entry only for the specified page; however, in some cases, it may 
flush more entries, even the entire TLB. The instruction is guaranteed to invalidates only TLB entries associated 
with the current PCID. (If PCIDs are disabled — CR4.PCIDE = 0 — the current PCID is 000H.) The instruction also 
invalidates any global TLB entries for the specified page, regardless of PCID.

For more details on operations that flush the TLB, see “MOV—Move to/from Control Registers” and Section 
4.10.4.1, “Operations that Invalidate TLBs and Paging-Structure Caches,” of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A.

This instruction’s operation is the same in all non-64-bit modes. It also operates the same in 64-bit mode, except 
if the memory address is in non-canonical form. In this case, INVLPG is the same as a NOP.

IA-32 Architecture Compatibility

The INVLPG instruction is implementation dependent, and its function may be implemented differently on different 
families of Intel 64 or IA-32 processors. This instruction is not supported on IA-32 processors earlier than the 
Intel486 processor.

Operation

Flush(RelevantTLBEntries);

Continue; (* Continue execution *)

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
#UD Operand is a register.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD Operand is a register.
If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01/7 INVLPG m M Valid Valid Invalidate TLB Entry for page that contains m.

NOTES:

* See the IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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Virtual-8086 Mode Exceptions

#GP(0) The INVLPG instruction cannot be executed at the virtual-8086 mode.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.
#UD Operand is a register.

If the LOCK prefix is used.
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INVPCID—Invalidate Process-Context Identifier

Instruction Operand Encoding

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-structure caches based on process-
context identifier (PCID). (See Section 4.10, “Caching Translation Information,” in Intel 64 and IA-32 Architecture 
Software Developer’s Manual, Volume 3A.) Invalidation is based on the INVPCID type specified in the register 
operand and the INVPCID descriptor specified in the memory operand.

Outside 64-bit mode, the register operand is always 32 bits, regardless of the value of CS.D. In 64-bit mode the 
register operand has 64 bits.

There are four INVPCID types currently defined:
• Individual-address invalidation: If the INVPCID type is 0, the logical processor invalidates mappings—except 

global translations—for the linear address and PCID specified in the INVPCID descriptor. In some cases, the 
instruction may invalidate global translations or mappings for other linear addresses (or other PCIDs) as well.

• Single-context invalidation: If the INVPCID type is 1, the logical processor invalidates all mappings—except 
global translations—associated with the PCID specified in the INVPCID descriptor. In some cases, the 
instruction may invalidate global translations or mappings for other PCIDs as well.

• All-context invalidation, including global translations: If the INVPCID type is 2, the logical processor invalidates 
all mappings—including global translations—associated with any PCID. 

• All-context invalidation: If the INVPCID type is 3, the logical processor invalidates all mappings—except global 
translations—associated with any PCID. In some case, the instruction may invalidate global translations as 
well. 

The INVPCID descriptor comprises 128 bits and consists of a PCID and a linear address as shown in Figure 3-23. 
For INVPCID type 0, the processor uses the full 64 bits of the linear address even outside 64-bit mode; the linear 
address is not used for other INVPCID types.

If CR4.PCIDE = 0, a logical processor does not cache information for any PCID other than 000H. In this case, 
executions with INVPCID types 0 and 1 are allowed only if the PCID specified in the INVPCID descriptor is 000H; 

Opcode/
Instruction

Op/ 
En

64/32-
bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 82 /r RM NE/V INVPCID Invalidates entries in the TLBs and paging-structure 
caches based on invalidation type in r32 and descrip-
tor in m128.

INVPCID r32, m128

66 0F 38 82 /r RM V/NE INVPCID Invalidates entries in the TLBs and paging-structure 
caches based on invalidation type in r64 and descrip-
tor in m128.

INVPCID r64, m128

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (R) ModRM:r/m (R) NA NA

Figure 3-23.  INVPCID Descriptor

127 64 63 01112

Reserved (must be zero)Linear Address PCID
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executions with INVPCID types 2 and 3 invalidate mappings only for PCID 000H. Note that CR4.PCIDE must be 0 
outside 64-bit mode (see Chapter 4.10.1, “Process-Context Identifiers (PCIDs)‚” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A).

Operation

INVPCID_TYPE ← value of register operand; // must be in the range of 0–3

INVPCID_DESC ← value of memory operand;

CASE INVPCID_TYPE OF

0: // individual-address invalidation

PCID ← INVPCID_DESC[11:0];

L_ADDR ← INVPCID_DESC[127:64];

Invalidate mappings for L_ADDR associated with PCID except global translations;

BREAK;

1: // single PCID invalidation

PCID ← INVPCID_DESC[11:0];

Invalidate all mappings associated with PCID except global translations;

BREAK;

2: // all PCID invalidation including global translations

Invalidate all mappings for all PCIDs, including global translations;

BREAK;

3: // all PCID invalidation retaining global translations

Invalidate all mappings for all PCIDs except global translations;

BREAK;

ESAC;

Intel C/C++ Compiler Intrinsic Equivalent

INVPCID: void _invpcid(unsigned __int32 type, void * descriptor);

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.
If an invalid type is specified in the register operand, i.e., INVPCID_TYPE > 3.
If bits 63:12 of INVPCID_DESC are not all zero.
If INVPCID_TYPE is either 0 or 1 and INVPCID_DESC[11:0] is not zero.
If INVPCID_TYPE is 0 and the linear address in INVPCID_DESC[127:64] is not canonical.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If if CPUID.(EAX=07H, ECX=0H):EBX.INVPCID (bit 10) = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If an invalid type is specified in the register operand, i.e., INVPCID_TYPE > 3.
If bits 63:12 of INVPCID_DESC are not all zero.
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If INVPCID_TYPE is either 0 or 1 and INVPCID_DESC[11:0] is not zero.
If INVPCID_TYPE is 0 and the linear address in INVPCID_DESC[127:64] is not canonical.

#UD If CPUID.(EAX=07H, ECX=0H):EBX.INVPCID (bit 10) = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) The INVPCID instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.
If the memory operand is in the CS, DS, ES, FS, or GS segments and the memory address is 
in a non-canonical form.
If an invalid type is specified in the register operand, i.e., INVPCID_TYPE > 3.
If bits 63:12 of INVPCID_DESC are not all zero.
If CR4.PCIDE=0, INVPCID_TYPE is either 0 or 1, and INVPCID_DESC[11:0] is not zero.
If INVPCID_TYPE is 0 and the linear address in INVPCID_DESC[127:64] is not canonical.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory destination operand is in the SS segment and the memory address is in a non-

canonical form.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=0H):EBX.INVPCID (bit 10) = 0.
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IRET/IRETD—Interrupt Return

Instruction Operand Encoding

Description

Returns program control from an exception or interrupt handler to a program or procedure that was interrupted by 
an exception, an external interrupt, or a software-generated interrupt. These instructions are also used to perform 
a return from a nested task. (A nested task is created when a CALL instruction is used to initiate a task switch or 
when an interrupt or exception causes a task switch to an interrupt or exception handler.) See the section titled 
“Task Linking” in Chapter 7 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (interrupt return double) is intended 
for use when returning from an interrupt when using the 32-bit operand size; however, most assemblers use the 
IRET mnemonic interchangeably for both operand sizes.

In Real-Address Mode, the IRET instruction preforms a far return to the interrupted program or procedure. During 
this operation, the processor pops the return instruction pointer, return code segment selector, and EFLAGS image 
from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes execution of the interrupted 
program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested task) and VM flags 
in the EFLAGS register and the VM flag in the EFLAGS image stored on the current stack. Depending on the setting 
of these flags, the processor performs the following types of interrupt returns:
• Return from virtual-8086 mode.
• Return to virtual-8086 mode.
• Intra-privilege level return.
• Inter-privilege level return.
• Return from nested task (task switch).

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return from the interrupt procedure, 
without a task switch. The code segment being returned to must be equally or less privileged than the interrupt 
handler routine (as indicated by the RPL field of the code segment selector popped from the stack). 

As with a real-address mode interrupt return, the IRET instruction pops the return instruction pointer, return code 
segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers, respectively, and then 
resumes execution of the interrupted program or procedure. If the return is to another privilege level, the IRET 
instruction also pops the stack pointer and SS from the stack, before resuming program execution. If the return is 
to virtual-8086 mode, the processor also pops the data segment registers from the stack.

If the NT flag is set, the IRET instruction performs a task switch (return) from a nested task (a task called with a 
CALL instruction, an interrupt, or an exception) back to the calling or interrupted task. The updated state of the 
task executing the IRET instruction is saved in its TSS. If the task is re-entered later, the code that follows the IRET 
instruction is executed.

If the NT flag is set and the processor is in IA-32e mode, the IRET instruction causes a general protection excep-
tion.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W prefix promotes operation to 64 
bits (IRETQ). See the summary chart at the beginning of this section for encoding data and limits. 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

CF IRET NP Valid Valid Interrupt return (16-bit operand size).

CF IRETD NP Valid Valid Interrupt return (32-bit operand size).

REX.W + CF IRETQ NP Valid N.E. Interrupt return (64-bit operand size).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in 
VMX non-root operation.

Operation

IF PE = 0

THEN 

GOTO REAL-ADDRESS-MODE;

ELSE 

IF (IA32_EFER.LMA = 0)

THEN (* Protected mode *)

GOTO PROTECTED-MODE;

ELSE (* IA-32e mode *)

GOTO IA-32e-MODE;

FI;

FI;

REAL-ADDRESS-MODE;

IF OperandSize = 32

THEN

IF top 12 bytes of stack not within stack limits 

THEN #SS; FI;

tempEIP ← 4 bytes at end of stack

IF tempEIP[31:16] is not zero THEN #GP(0); FI;

EIP ← Pop();

CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

tempEFLAGS ← Pop();

EFLAGS ← (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)

IF top 6 bytes of stack are not within stack limits 

THEN #SS; FI;

EIP ← Pop(); (* 16-bit pop; clear upper 16 bits *)

CS ← Pop(); (* 16-bit pop *)

EFLAGS[15:0] ← Pop();

FI;

END;

PROTECTED-MODE:

IF VM = 1 (* Virtual-8086 mode: PE = 1, VM = 1 *)

THEN 

GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE = 1, VM = 1 *)

FI;

IF NT = 1

THEN 

GOTO TASK-RETURN; (* PE = 1, VM = 0, NT = 1 *)

FI;

IF OperandSize = 32

THEN

IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;

tempEIP ← Pop();

tempCS ← Pop();

tempEFLAGS ← Pop();

ELSE (* OperandSize = 16 *)

IF top 6 bytes of stack are not within stack limits
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THEN #SS(0); FI;

tempEIP ← Pop();

tempCS ← Pop();

tempEFLAGS ← Pop();

tempEIP ← tempEIP AND FFFFH;

tempEFLAGS ← tempEFLAGS AND FFFFH;

FI;

IF tempEFLAGS(VM) = 1 and CPL = 0
THEN 

GOTO RETURN-TO-VIRTUAL-8086-MODE; 

ELSE 

GOTO PROTECTED-MODE-RETURN;

FI;

IA-32e-MODE:

IF NT = 1

THEN #GP(0);

ELSE IF OperandSize = 32

THEN

IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;

tempEIP ← Pop();

tempCS ← Pop();

tempEFLAGS ← Pop();

ELSE IF OperandSize = 16 

THEN

IF top 6 bytes of stack are not within stack limits

THEN #SS(0); FI;

tempEIP ← Pop();

tempCS ← Pop();

tempEFLAGS ← Pop();

tempEIP ← tempEIP AND FFFFH;

tempEFLAGS ← tempEFLAGS AND FFFFH;

FI;

ELSE (* OperandSize = 64 *)

THEN

tempRIP ← Pop();

tempCS ← Pop();

tempEFLAGS ← Pop();

tempRSP ← Pop();

tempSS ← Pop();

FI;

GOTO IA-32e-MODE-RETURN;

RETURN-FROM-VIRTUAL-8086-MODE: 

(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF IOPL = 3 (* Virtual mode: PE = 1, VM = 1, IOPL = 3 *)

THEN IF OperandSize = 32

THEN

IF top 12 bytes of stack not within stack limits 

THEN #SS(0); FI;

IF instruction pointer not within code segment limits 

THEN #GP(0); FI;

EIP ← Pop();

CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
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EFLAGS ← Pop();

(* VM, IOPL,VIP and VIF EFLAG bits not modified by pop *)

ELSE (* OperandSize = 16 *)

IF top 6 bytes of stack are not within stack limits 

THEN #SS(0); FI;

IF instruction pointer not within code segment limits 

THEN #GP(0); FI;

EIP ← Pop();

EIP ← EIP AND 0000FFFFH;

CS ← Pop(); (* 16-bit pop *)

EFLAGS[15:0] ← Pop(); (* IOPL in EFLAGS not modified by pop *)

FI;

ELSE 

#GP(0); (* Trap to virtual-8086 monitor: PE = 1, VM = 1, IOPL < 3 *)

FI;

END;

RETURN-TO-VIRTUAL-8086-MODE: 

(* Interrupted procedure was in virtual-8086 mode: PE = 1, CPL=0, VM = 1 in flag image *)

IF top 24 bytes of stack are not within stack segment limits

THEN #SS(0); FI;

IF instruction pointer not within code segment limits

THEN #GP(0); FI;

CS ← tempCS;

EIP ← tempEIP & FFFFH;

EFLAGS ← tempEFLAGS;

TempESP ← Pop();

TempSS ← Pop();

ES ← Pop(); (* Pop 2 words; throw away high-order word *)

DS ← Pop(); (* Pop 2 words; throw away high-order word *)

FS ← Pop(); (* Pop 2 words; throw away high-order word *)

GS ← Pop(); (* Pop 2 words; throw away high-order word *)

SS:ESP ← TempSS:TempESP;

CPL ← 3;

(* Resume execution in Virtual-8086 mode *)

END;

TASK-RETURN: (* PE = 1, VM = 0, NT = 1 *)

Read segment selector in link field of current TSS;

IF local/global bit is set to local

or index not within GDT limits

THEN #TS (TSS selector); FI;

Access TSS for task specified in link field of current TSS;

IF TSS descriptor type is not TSS or if the TSS is marked not busy

THEN #TS (TSS selector); FI;

IF TSS not present 

THEN #NP(TSS selector); FI;

SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;

Mark the task just abandoned as NOT BUSY;

IF EIP is not within code segment limit 

THEN #GP(0); FI;

END;

PROTECTED-MODE-RETURN: (* PE = 1 *)
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IF return code segment selector is NULL

THEN GP(0); FI;

IF return code segment selector addresses descriptor beyond descriptor table limit 

THEN GP(selector); FI;

Read segment descriptor pointed to by the return code segment selector;

IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;

IF return code segment selector RPL < CPL 

THEN #GP(selector); FI;

IF return code segment descriptor is conforming

and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;

IF return code segment descriptor is not present 

THEN #NP(selector); FI;

IF return code segment selector RPL > CPL 

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;

ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE = 1, RPL = CPL *)

IF new mode ≠ 64-Bit Mode

THEN

IF tempEIP is not within code segment limits 

THEN #GP(0); FI;

EIP ← tempEIP;

ELSE (* new mode = 64-bit mode *)

IF tempRIP is non-canonical

THEN #GP(0); FI;

RIP ← tempRIP;

FI;

CS ← tempCS; (* Segment descriptor information also loaded *)

EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;

IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;

IF CPL ≤ IOPL

THEN EFLAGS(IF) ← tempEFLAGS; FI;

IF CPL = 0 

  THEN (* VM = 0 in flags image *)

 EFLAGS(IOPL) ← tempEFLAGS;

 IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;

 FI;

END;

RETURN-TO-OUTER-PRIVILEGE-LEVEL:

IF OperandSize = 32

THEN

IF top 8 bytes on stack are not within limits 

THEN #SS(0); FI;

ELSE (* OperandSize = 16 *)

IF top 4 bytes on stack are not within limits 

THEN #SS(0); FI;

FI;

Read return segment selector;
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IF stack segment selector is NULL

THEN #GP(0); FI;

IF return stack segment selector index is not within its descriptor table limits

THEN #GP(SSselector); FI;

Read segment descriptor pointed to by return segment selector;

IF stack segment selector RPL ≠ RPL of the return code segment selector

or the stack segment descriptor does not indicate a a writable data segment;

or the stack segment DPL ≠ RPL of the return code segment selector

THEN #GP(SS selector); FI;

IF stack segment is not present 

THEN #SS(SS selector); FI;

IF new mode ≠ 64-Bit Mode

THEN

IF tempEIP is not within code segment limits 

THEN #GP(0); FI;

EIP ← tempEIP;

ELSE (* new mode = 64-bit mode *)

IF tempRIP is non-canonical

THEN #GP(0); FI;

RIP ← tempRIP;

FI;

CS ← tempCS;

EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;

IF OperandSize = 32

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;

IF CPL ≤ IOPL 

THEN EFLAGS(IF) ← tempEFLAGS; FI;

IF CPL = 0
THEN

EFLAGS(IOPL) ← tempEFLAGS;

IF OperandSize = 32

THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS; FI;

IF OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;

FI;

CPL ← RPL of the return code segment selector;

FOR each of segment register (ES, FS, GS, and DS)

DO

IF segment register points to data or non-conforming code segment

and CPL > segment descriptor DPL (* Stored in hidden part of segment register *)

THEN (* Segment register invalid *)

SegmentSelector ← 0; (* NULL segment selector *)

FI;

OD;

END;

IA-32e-MODE-RETURN: (* IA32_EFER.LMA = 1, PE = 1 *)

IF ( (return code segment selector is NULL) or (return RIP is non-canonical) or 

(SS selector is NULL going back to compatibility mode) or

(SS selector is NULL going back to CPL3 64-bit mode) or

(RPL <> CPL going back to non-CPL3 64-bit mode for a NULL SS selector) )

THEN GP(0); FI;

IF return code segment selector addresses descriptor beyond descriptor table limit 

THEN GP(selector); FI;
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Read segment descriptor pointed to by the return code segment selector;

IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;

IF return code segment selector RPL < CPL 

THEN #GP(selector); FI;

IF return code segment descriptor is conforming

and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;

IF return code segment descriptor is not present 

THEN #NP(selector); FI;

IF return code segment selector RPL > CPL 

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;

ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on the mode of operation of the 
processor. If performing a return from a nested task to a previous task, the EFLAGS register will be modified 
according to the EFLAGS image stored in the previous task’s TSS.

Protected Mode Exceptions

#GP(0) If the return code or stack segment selector is NULL.
If the return instruction pointer is not within the return code segment limit.

#GP(selector) If a segment selector index is outside its descriptor table limits.
If the return code segment selector RPL is less than the CPL.
If the DPL of a conforming-code segment is greater than the return code segment selector 
RPL.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment 
selector.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment 
selector.
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.
If the segment descriptor for a code segment does not indicate it is a code segment.
If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is not busy.
If a TSS segment descriptor specifies that the TSS is not available.

#SS(0) If the top bytes of stack are not within stack limits.
#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is 

enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If the return instruction pointer is not within the return code segment limit.
#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions

#GP(0) If the return instruction pointer is not within the return code segment limit.
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IF IOPL not equal to 3.
#PF(fault-code) If a page fault occurs.
#SS(0) If the top bytes of stack are not within stack limits.
#AC(0) If an unaligned memory reference occurs and alignment checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

#GP(0) If EFLAGS.NT[bit 14] = 1.
Other exceptions same as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If EFLAGS.NT[bit 14] = 1.
If the return code segment selector is NULL.
If the stack segment selector is NULL going back to compatibility mode.
If the stack segment selector is NULL going back to CPL3 64-bit mode.
If a NULL stack segment selector RPL is not equal to CPL going back to non-CPL3 64-bit mode.
If the return instruction pointer is not within the return code segment limit.
If the return instruction pointer is non-canonical.

#GP(Selector) If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the segment descriptor for a code segment does not indicate it is a code segment.
If the proposed new code segment descriptor has both the D-bit and L-bit set.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment 
selector.
If CPL is greater than the RPL of the code segment selector.
If the DPL of a conforming-code segment is greater than the return code segment selector 
RPL.
If the stack segment is not a writable data segment.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment 
selector.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.
If an attempt to pop a value off the stack causes a non-canonical address to be referenced.

#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is 

enabled.
#UD If the LOCK prefix is used.



Jcc—Jump if Condition Is Met

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-431

Jcc—Jump if Condition Is Met

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

77 cb JA rel8 D Valid Valid Jump short if above (CF=0 and ZF=0).

73 cb JAE rel8 D Valid Valid Jump short if above or equal (CF=0).

72 cb JB rel8 D Valid Valid Jump short if below (CF=1).

76 cb JBE rel8 D Valid Valid Jump short if below or equal (CF=1 or ZF=1).

72 cb JC rel8 D Valid Valid Jump short if carry (CF=1).

E3 cb JCXZ rel8 D N.E. Valid Jump short if CX register is 0.

E3 cb JECXZ rel8 D Valid Valid Jump short if ECX register is 0.

E3 cb JRCXZ rel8 D Valid N.E. Jump short if RCX register is 0.

74 cb JE rel8 D Valid Valid Jump short if equal (ZF=1).

7F cb JG rel8 D Valid Valid Jump short if greater (ZF=0 and SF=OF).

7D cb JGE rel8 D Valid Valid Jump short if greater or equal (SF=OF).

7C cb JL rel8 D Valid Valid Jump short if less (SF≠ OF).

7E cb JLE rel8 D Valid Valid Jump short if less or equal (ZF=1 or SF≠ OF).

76 cb JNA rel8 D Valid Valid Jump short if not above (CF=1 or ZF=1).

72 cb JNAE rel8 D Valid Valid Jump short if not above or equal (CF=1).

73 cb JNB rel8 D Valid Valid Jump short if not below (CF=0).

77 cb JNBE rel8 D Valid Valid Jump short if not below or equal (CF=0 and 
ZF=0).

73 cb JNC rel8 D Valid Valid Jump short if not carry (CF=0).

75 cb JNE rel8 D Valid Valid Jump short if not equal (ZF=0).

7E cb JNG rel8 D Valid Valid Jump short if not greater (ZF=1 or SF≠ OF).

7C cb JNGE rel8 D Valid Valid Jump short if not greater or equal (SF≠ OF).

7D cb JNL rel8 D Valid Valid Jump short if not less (SF=OF).

7F cb JNLE rel8 D Valid Valid Jump short if not less or equal (ZF=0 and 
SF=OF).

71 cb JNO rel8 D Valid Valid Jump short if not overflow (OF=0).

7B cb JNP rel8 D Valid Valid Jump short if not parity (PF=0).

79 cb JNS rel8 D Valid Valid Jump short if not sign (SF=0).

75 cb JNZ rel8 D Valid Valid Jump short if not zero (ZF=0).

70 cb JO rel8 D Valid Valid Jump short if overflow (OF=1).

7A cb JP rel8 D Valid Valid Jump short if parity (PF=1).

7A cb JPE rel8 D Valid Valid Jump short if parity even (PF=1).

7B cb JPO rel8 D Valid Valid Jump short if parity odd (PF=0).

78 cb JS rel8 D Valid Valid Jump short if sign (SF=1).

74 cb JZ rel8 D Valid Valid Jump short if zero (ZF ← 1).

0F 87 cw JA rel16 D N.S. Valid Jump near if above (CF=0 and ZF=0). Not 
supported in 64-bit mode.

0F 87 cd JA rel32 D Valid Valid Jump near if above (CF=0 and ZF=0).

0F 83 cw JAE rel16 D N.S. Valid Jump near if above or equal (CF=0). Not 
supported in 64-bit mode.
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0F 83 cd JAE rel32 D Valid Valid Jump near if above or equal (CF=0).

0F 82 cw JB rel16 D N.S. Valid Jump near if below (CF=1). Not supported in 
64-bit mode.

0F 82 cd JB rel32 D Valid Valid Jump near if below (CF=1).

0F 86 cw JBE rel16 D N.S. Valid Jump near if below or equal (CF=1 or ZF=1). 
Not supported in 64-bit mode.

0F 86 cd JBE rel32 D Valid Valid Jump near if below or equal (CF=1 or ZF=1).

0F 82 cw JC rel16 D N.S. Valid Jump near if carry (CF=1). Not supported in 
64-bit mode.

0F 82 cd JC rel32 D Valid Valid Jump near if carry (CF=1).

0F 84 cw JE rel16 D N.S. Valid Jump near if equal (ZF=1). Not supported in 
64-bit mode.

0F 84 cd JE rel32 D Valid Valid Jump near if equal (ZF=1).

0F 84 cw JZ rel16 D N.S. Valid Jump near if 0 (ZF=1). Not supported in 64-bit 
mode.

0F 84 cd JZ rel32 D Valid Valid Jump near if 0 (ZF=1).

0F 8F cw JG rel16 D N.S. Valid Jump near if greater (ZF=0 and SF=OF). Not 
supported in 64-bit mode.

0F 8F cd JG rel32 D Valid Valid Jump near if greater (ZF=0 and SF=OF).

0F 8D cw JGE rel16 D N.S. Valid Jump near if greater or equal (SF=OF). Not 
supported in 64-bit mode.

0F 8D cd JGE rel32 D Valid Valid Jump near if greater or equal (SF=OF).

0F 8C cw JL rel16 D N.S. Valid Jump near if less (SF≠ OF). Not supported in 
64-bit mode.

0F 8C cd JL rel32 D Valid Valid Jump near if less (SF≠ OF).

0F 8E cw JLE rel16 D N.S. Valid Jump near if less or equal (ZF=1 or SF≠ OF). 
Not supported in 64-bit mode.

0F 8E cd JLE rel32 D Valid Valid Jump near if less or equal (ZF=1 or SF≠ OF).

0F 86 cw JNA rel16 D N.S. Valid Jump near if not above (CF=1 or ZF=1). Not 
supported in 64-bit mode.

0F 86 cd JNA rel32 D Valid Valid Jump near if not above (CF=1 or ZF=1).

0F 82 cw JNAE rel16 D N.S. Valid Jump near if not above or equal (CF=1). Not 
supported in 64-bit mode.

0F 82 cd JNAE rel32 D Valid Valid Jump near if not above or equal (CF=1).

0F 83 cw JNB rel16 D N.S. Valid Jump near if not below (CF=0). Not supported 
in 64-bit mode.

0F 83 cd JNB rel32 D Valid Valid Jump near if not below (CF=0).

0F 87 cw JNBE rel16 D N.S. Valid Jump near if not below or equal (CF=0 and 
ZF=0). Not supported in 64-bit mode.

0F 87 cd JNBE rel32 D Valid Valid Jump near if not below or equal (CF=0 and 
ZF=0).

0F 83 cw JNC rel16 D N.S. Valid Jump near if not carry (CF=0). Not supported 
in 64-bit mode.

0F 83 cd JNC rel32 D Valid Valid Jump near if not carry (CF=0).

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description
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0F 85 cw JNE rel16 D N.S. Valid Jump near if not equal (ZF=0). Not supported 
in 64-bit mode.

0F 85 cd JNE rel32 D Valid Valid Jump near if not equal (ZF=0).

0F 8E cw JNG rel16 D N.S. Valid Jump near if not greater (ZF=1 or SF≠ OF). 
Not supported in 64-bit mode.

0F 8E cd JNG rel32 D Valid Valid Jump near if not greater (ZF=1 or SF≠ OF).

0F 8C cw JNGE rel16 D N.S. Valid Jump near if not greater or equal (SF≠ OF). 
Not supported in 64-bit mode.

0F 8C cd JNGE rel32 D Valid Valid Jump near if not greater or equal (SF≠ OF).

0F 8D cw JNL rel16 D N.S. Valid Jump near if not less (SF=OF). Not supported 
in 64-bit mode.

0F 8D cd JNL rel32 D Valid Valid Jump near if not less (SF=OF).

0F 8F cw JNLE rel16 D N.S. Valid Jump near if not less or equal (ZF=0 and 
SF=OF). Not supported in 64-bit mode.

0F 8F cd JNLE rel32 D Valid Valid Jump near if not less or equal (ZF=0 and 
SF=OF).

0F 81 cw JNO rel16 D N.S. Valid Jump near if not overflow (OF=0). Not 
supported in 64-bit mode.

0F 81 cd JNO rel32 D Valid Valid Jump near if not overflow (OF=0).

0F 8B cw JNP rel16 D N.S. Valid Jump near if not parity (PF=0). Not supported 
in 64-bit mode.

0F 8B cd JNP rel32 D Valid Valid Jump near if not parity (PF=0).

0F 89 cw JNS rel16 D N.S. Valid Jump near if not sign (SF=0). Not supported in 
64-bit mode.

0F 89 cd JNS rel32 D Valid Valid Jump near if not sign (SF=0).

0F 85 cw JNZ rel16 D N.S. Valid Jump near if not zero (ZF=0). Not supported in 
64-bit mode.

0F 85 cd JNZ rel32 D Valid Valid Jump near if not zero (ZF=0).

0F 80 cw JO rel16 D N.S. Valid Jump near if overflow (OF=1). Not supported 
in 64-bit mode.

0F 80 cd JO rel32 D Valid Valid Jump near if overflow (OF=1).

0F 8A cw JP rel16 D N.S. Valid Jump near if parity (PF=1). Not supported in 
64-bit mode.

0F 8A cd JP rel32 D Valid Valid Jump near if parity (PF=1).

0F 8A cw JPE rel16 D N.S. Valid Jump near if parity even (PF=1). Not 
supported in 64-bit mode.

0F 8A cd JPE rel32 D Valid Valid Jump near if parity even (PF=1).

0F 8B cw JPO rel16 D N.S. Valid Jump near if parity odd (PF=0). Not supported 
in 64-bit mode.

0F 8B cd JPO rel32 D Valid Valid Jump near if parity odd (PF=0).

0F 88 cw JS rel16 D N.S. Valid Jump near if sign (SF=1). Not supported in 64-
bit mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description
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Instruction Operand Encoding

Description

Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF, SF, and ZF) and, if the flags 
are in the specified state (condition), performs a jump to the target instruction specified by the destination 
operand. A condition code (cc) is associated with each instruction to indicate the condition being tested for. If the 
condition is not satisfied, the jump is not performed and execution continues with the instruction following the Jcc 
instruction. 

The target instruction is specified with a relative offset (a signed offset relative to the current value of the instruc-
tion pointer in the EIP register). A relative offset (rel8, rel16, or rel32) is generally specified as a label in assembly 
code, but at the machine code level, it is encoded as a signed, 8-bit or 32-bit immediate value, which is added to 
the instruction pointer. Instruction coding is most efficient for offsets of –128 to +127. If the operand-size attribute 
is 16, the upper two bytes of the EIP register are cleared, resulting in a maximum instruction pointer size of 16 bits. 

The conditions for each Jcc mnemonic are given in the “Description” column of the table on the preceding page. The 
terms “less” and “greater” are used for comparisons of signed integers and the terms “above” and “below” are used 
for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two ways, two mnemonics are 
defined for some opcodes. For example, the JA (jump if above) instruction and the JNBE (jump if not below or 
equal) instruction are alternate mnemonics for the opcode 77H.

The Jcc instruction does not support far jumps (jumps to other code segments). When the target for the conditional 
jump is in a different segment, use the opposite condition from the condition being tested for the Jcc instruction, 
and then access the target with an unconditional far jump (JMP instruction) to the other segment. For example, the 
following conditional far jump is illegal:

JZ FARLABEL;

To accomplish this far jump, use the following two instructions:
JNZ BEYOND;

JMP FARLABEL;

BEYOND:

The JRCXZ, JECXZ and JCXZ instructions differ from other Jcc instructions because they do not check status flags. 
Instead, they check RCX, ECX or CX for 0. The register checked is determined by the address-size attribute. These 
instructions are useful when used at the beginning of a loop that terminates with a conditional loop instruction 
(such as LOOPNE). They can be used to prevent an instruction sequence from entering a loop when RCX, ECX or CX 
is 0. This would cause the loop to execute 264, 232 or 64K times (not zero times).

All conditional jumps are converted to code fetches of one or two cache lines, regardless of jump address or cache-
ability.

In 64-bit mode, operand size is fixed at 64 bits. JMP Short is RIP = RIP + 8-bit offset sign extended to 64 bits. JMP 
Near is RIP = RIP + 32-bit offset sign extended to 64-bits.

0F 88 cd JS rel32 D Valid Valid Jump near if sign (SF=1).

0F 84 cw JZ rel16 D N.S. Valid Jump near if 0 (ZF=1). Not supported in 64-bit 
mode.

0F 84 cd JZ rel32 D Valid Valid Jump near if 0 (ZF=1).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset NA NA NA

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description
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Operation

IF condition

THEN

 tempEIP ← EIP + SignExtend(DEST);

 IF OperandSize = 16

THEN tempEIP ← tempEIP AND 0000FFFFH;

 FI;

IF tempEIP is not within code segment limit

THEN #GP(0);

 ELSE EIP ← tempEIP

 FI;

FI;

Protected Mode Exceptions

#GP(0) If the offset being jumped to is beyond the limits of the CS segment.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If the offset being jumped to is beyond the limits of the CS segment or is outside of the effec-
tive address space from 0 to FFFFH. This condition can occur if a 32-bit address size override 
prefix is used.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
#UD If the LOCK prefix is used.
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JMP—Jump

Instruction Operand Encoding

Description

Transfers program control to a different point in the instruction stream without recording return information. The 
destination (target) operand specifies the address of the instruction being jumped to. This operand can be an 
immediate value, a general-purpose register, or a memory location.

This instruction can be used to execute four different types of jumps:
• Near jump—A jump to an instruction within the current code segment (the segment currently pointed to by the 

CS register), sometimes referred to as an intrasegment jump.
• Short jump—A near jump where the jump range is limited to –128 to +127 from the current EIP value.
• Far jump—A jump to an instruction located in a different segment than the current code segment but at the 

same privilege level, sometimes referred to as an intersegment jump.
• Task switch—A jump to an instruction located in a different task. 

A task switch can only be executed in protected mode (see Chapter 7, in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A, for information on performing task switches with the JMP instruction).

Near and Short Jumps. When executing a near jump, the processor jumps to the address (within the current code 
segment) that is specified with the target operand. The target operand specifies either an absolute offset (that is 
an offset from the base of the code segment) or a relative offset (a signed displacement relative to the current 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

EB cb JMP rel8 D Valid Valid Jump short, RIP = RIP + 8-bit displacement sign 
extended to 64-bits

E9 cw JMP rel16 D N.S. Valid Jump near, relative, displacement relative to 
next instruction. Not supported in 64-bit 
mode.

E9 cd JMP rel32 D Valid Valid Jump near, relative, RIP = RIP + 32-bit 
displacement sign extended to 64-bits

FF /4 JMP r/m16 M N.S. Valid Jump near, absolute indirect, address = zero-
extended r/m16. Not supported in 64-bit 
mode.

FF /4 JMP r/m32 M N.S. Valid Jump near, absolute indirect, address given in 
r/m32. Not supported in 64-bit mode.

FF /4 JMP r/m64 M Valid N.E. Jump near, absolute indirect, RIP = 64-Bit 
offset from register or memory

EA cd JMP ptr16:16 D Inv. Valid Jump far, absolute, address given in operand

EA cp JMP ptr16:32 D Inv. Valid Jump far, absolute, address given in operand

FF /5 JMP m16:16 D Valid Valid Jump far, absolute indirect, address given in 
m16:16

FF /5 JMP m16:32 D Valid Valid Jump far, absolute indirect, address given in 
m16:32.

REX.W + FF /5 JMP m16:64 D Valid N.E. Jump far, absolute indirect, address given in 
m16:64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset NA NA NA

M ModRM:r/m (r) NA NA NA
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value of the instruction pointer in the EIP register). A near jump to a relative offset of 8-bits (rel8) is referred to as 
a short jump. The CS register is not changed on near and short jumps.

An absolute offset is specified indirectly in a general-purpose register or a memory location (r/m16 or r/m32). The 
operand-size attribute determines the size of the target operand (16 or 32 bits). Absolute offsets are loaded 
directly into the EIP register. If the operand-size attribute is 16, the upper two bytes of the EIP register are cleared, 
resulting in a maximum instruction pointer size of 16 bits.

A relative offset (rel8, rel16, or rel32) is generally specified as a label in assembly code, but at the machine code 
level, it is encoded as a signed 8-, 16-, or 32-bit immediate value. This value is added to the value in the EIP 
register. (Here, the EIP register contains the address of the instruction following the JMP instruction). When using 
relative offsets, the opcode (for short vs. near jumps) and the operand-size attribute (for near relative jumps) 
determines the size of the target operand (8, 16, or 32 bits).

Far Jumps in Real-Address or Virtual-8086 Mode. When executing a far jump in real-address or virtual-8086 mode, 
the processor jumps to the code segment and offset specified with the target operand. Here the target operand 
specifies an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory 
location (m16:16 or m16:32). With the pointer method, the segment and address of the called procedure is 
encoded in the instruction, using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address imme-
diate. With the indirect method, the target operand specifies a memory location that contains a 4-byte (16-bit 
operand size) or 6-byte (32-bit operand size) far address. The far address is loaded directly into the CS and EIP 
registers. If the operand-size attribute is 16, the upper two bytes of the EIP register are cleared.

Far Jumps in Protected Mode. When the processor is operating in protected mode, the JMP instruction can be used 
to perform the following three types of far jumps:
• A far jump to a conforming or non-conforming code segment.
• A far jump through a call gate.
• A task switch.

(The JMP instruction cannot be used to perform inter-privilege-level far jumps.)

In protected mode, the processor always uses the segment selector part of the far address to access the corre-
sponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate, task gate, or TSS) and access 
rights determine the type of jump to be performed.

If the selected descriptor is for a code segment, a far jump to a code segment at the same privilege level is 
performed. (If the selected code segment is at a different privilege level and the code segment is non-conforming, 
a general-protection exception is generated.) A far jump to the same privilege level in protected mode is very 
similar to one carried out in real-address or virtual-8086 mode. The target operand specifies an absolute far 
address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or 
m16:32). The operand-size attribute determines the size of the offset (16 or 32 bits) in the far address. The new 
code segment selector and its descriptor are loaded into CS register, and the offset from the instruction is loaded 
into the EIP register. Note that a call gate (described in the next paragraph) can also be used to perform far call to 
a code segment at the same privilege level. Using this mechanism provides an extra level of indirection and is the 
preferred method of making jumps between 16-bit and 32-bit code segments.

When executing a far jump through a call gate, the segment selector specified by the target operand identifies the 
call gate. (The offset part of the target operand is ignored.) The processor then jumps to the code segment speci-
fied in the call gate descriptor and begins executing the instruction at the offset specified in the call gate. No stack 
switch occurs. Here again, the target operand can specify the far address of the call gate either directly with a 
pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32).

Executing a task switch with the JMP instruction is somewhat similar to executing a jump through a call gate. Here 
the target operand specifies the segment selector of the task gate for the task being switched to (and the offset 
part of the target operand is ignored). The task gate in turn points to the TSS for the task, which contains the 
segment selectors for the task’s code and stack segments. The TSS also contains the EIP value for the next instruc-
tion that was to be executed before the task was suspended. This instruction pointer value is loaded into the EIP 
register so that the task begins executing again at this next instruction. 

The JMP instruction can also specify the segment selector of the TSS directly, which eliminates the indirection of the 
task gate. See Chapter 7 in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for 
detailed information on the mechanics of a task switch.
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Note that when you execute at task switch with a JMP instruction, the nested task flag (NT) is not set in the EFLAGS 
register and the new TSS’s previous task link field is not loaded with the old task’s TSS selector. A return to the 
previous task can thus not be carried out by executing the IRET instruction. Switching tasks with the JMP instruc-
tion differs in this regard from the CALL instruction which does set the NT flag and save the previous task link infor-
mation, allowing a return to the calling task with an IRET instruction.

In 64-Bit Mode — The instruction’s operation size is fixed at 64 bits. If a selector points to a gate, then RIP equals 
the 64-bit displacement taken from gate; else RIP equals the zero-extended offset from the far pointer referenced 
in the instruction. 

See the summary chart at the beginning of this section for encoding data and limits. 

Operation

IF near jump

IF 64-bit Mode

 THEN 

IF near relative jump

 THEN

tempRIP ← RIP + DEST; (* RIP is instruction following JMP instruction*)

 ELSE (* Near absolute jump *)

tempRIP ← DEST;

FI;

ELSE

IF near relative jump

 THEN

tempEIP ← EIP + DEST; (* EIP is instruction following JMP instruction*)

 ELSE (* Near absolute jump *)

tempEIP ← DEST;

FI;

FI;

IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) 
and tempEIP outside code segment limit 

THEN #GP(0); FI

IF 64-bit mode and tempRIP is not canonical

THEN #GP(0);

FI;

IF OperandSize = 32

 THEN 

EIP ← tempEIP; 

 ELSE 

IF OperandSize = 16

THEN (* OperandSize = 16 *)

EIP ← tempEIP AND 0000FFFFH;

 ELSE (* OperandSize = 64)

 RIP ← tempRIP;

FI;

 FI;

FI;

IF far jump and (PE = 0 or (PE = 1 AND VM = 1)) (* Real-address or virtual-8086 mode *)

 THEN

 tempEIP ← DEST(Offset); (* DEST is ptr16:32 or [m16:32] *)

 IF tempEIP is beyond code segment limit 

THEN #GP(0); FI;

 CS ← DEST(segment selector); (* DEST is ptr16:32 or [m16:32] *)

 IF OperandSize = 32
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 THEN

EIP ← tempEIP; (* DEST is ptr16:32 or [m16:32] *)

 ELSE (* OperandSize = 16 *)

EIP ← tempEIP AND 0000FFFFH; (* Clear upper 16 bits *)

 FI;

FI;

IF far jump and (PE = 1 and VM = 0) 

(* IA-32e mode or protected mode, not virtual-8086 mode *)

 THEN

 IF effective address in the CS, DS, ES, FS, GS, or SS segment is illegal

or segment selector in target operand NULL

THEN #GP(0); FI;

 IF segment selector index not within descriptor table limits

THEN #GP(new selector); FI;

Read type and access rights of segment descriptor;

IF (EFER.LMA = 0) 

THEN

IF segment type is not a conforming or nonconforming code 
segment, call gate, task gate, or TSS 

THEN #GP(segment selector); FI; 

ELSE

IF segment type is not a conforming or nonconforming code segment
call gate

THEN #GP(segment selector); FI; 

FI;

Depending on type and access rights:

GO TO CONFORMING-CODE-SEGMENT;

GO TO NONCONFORMING-CODE-SEGMENT;

GO TO CALL-GATE;

GO TO TASK-GATE;

GO TO TASK-STATE-SEGMENT;

 ELSE 

 #GP(segment selector);

FI;

CONFORMING-CODE-SEGMENT:

IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1

THEN GP(new code segment selector); FI;

 IF DPL > CPL 

THEN #GP(segment selector); FI;

 IF segment not present

THEN #NP(segment selector); FI;

tempEIP ← DEST(Offset);

IF OperandSize = 16 

 THEN tempEIP ← tempEIP AND 0000FFFFH; 

FI;

IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) and 
tempEIP outside code segment limit 

THEN #GP(0); FI

IF tempEIP is non-canonical

THEN #GP(0); FI;

CS ← DEST[segment selector]; (* Segment descriptor information also loaded *)

CS(RPL) ← CPL

EIP ← tempEIP;

END;
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NONCONFORMING-CODE-SEGMENT:

IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1

THEN GP(new code segment selector); FI;

IF (RPL > CPL) OR (DPL ≠ CPL)

THEN #GP(code segment selector); FI;

IF segment not present 

THEN #NP(segment selector); FI;

tempEIP ← DEST(Offset);

IF OperandSize = 16 

 THEN tempEIP ← tempEIP AND 0000FFFFH; FI;

IF (IA32_EFER.LMA = 0 OR target mode = Compatibility mode) 

and tempEIP outside code segment limit 

THEN #GP(0); FI

IF tempEIP is non-canonical THEN #GP(0); FI;

CS ← DEST[segment selector]; (* Segment descriptor information also loaded *)

CS(RPL) ← CPL;

EIP ← tempEIP;

END;

CALL-GATE:

IF call gate DPL < CPL 

or call gate DPL < call gate segment-selector RPL 

THEN #GP(call gate selector); FI;

IF call gate not present

THEN #NP(call gate selector); FI;

IF call gate code-segment selector is NULL

THEN #GP(0); FI;

IF call gate code-segment selector index outside descriptor table limits

THEN #GP(code segment selector); FI;

Read code segment descriptor;

IF code-segment segment descriptor does not indicate a code segment

or code-segment segment descriptor is conforming and DPL > CPL

or code-segment segment descriptor is non-conforming and DPL ≠ CPL

THEN #GP(code segment selector); FI;

IF IA32_EFER.LMA = 1 and (code-segment descriptor is not a 64-bit code segment 

or code-segment segment descriptor has both L-Bit and D-bit set)

THEN #GP(code segment selector); FI;

IF code segment is not present

THEN #NP(code-segment selector); FI;

 IF instruction pointer is not within code-segment limit 

THEN #GP(0); FI;

 tempEIP ← DEST(Offset);

 IF GateSize = 16 

 THEN tempEIP ← tempEIP AND 0000FFFFH; FI;

IF (IA32_EFER.LMA = 0 OR target mode = Compatibility mode) AND tempEIP 
outside code segment limit 

THEN #GP(0); FI

CS ← DEST[SegmentSelector); (* Segment descriptor information also loaded *)

CS(RPL) ← CPL;

EIP ← tempEIP;

END;

TASK-GATE:

IF task gate DPL < CPL 

or task gate DPL < task gate segment-selector RPL 
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THEN #GP(task gate selector); FI;

IF task gate not present 

THEN #NP(gate selector); FI;

Read the TSS segment selector in the task-gate descriptor;

IF TSS segment selector local/global bit is set to local

or index not within GDT limits

or TSS descriptor specifies that the TSS is busy

THEN #GP(TSS selector); FI;

 IF TSS not present 

THEN #NP(TSS selector); FI;

 SWITCH-TASKS to TSS;

 IF EIP not within code segment limit 

THEN #GP(0); FI;

END;

TASK-STATE-SEGMENT:

IF TSS DPL < CPL

or TSS DPL < TSS segment-selector RPL

or TSS descriptor indicates TSS not available

THEN #GP(TSS selector); FI;

IF TSS is not present

THEN #NP(TSS selector); FI;

SWITCH-TASKS to TSS;

IF EIP not within code segment limit 

THEN #GP(0); FI;

END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

Protected Mode Exceptions

#GP(0) If offset in target operand, call gate, or TSS is beyond the code segment limits.
If the segment selector in the destination operand, call gate, task gate, or TSS is NULL.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#GP(selector) If the segment selector index is outside descriptor table limits. 
If the segment descriptor pointed to by the segment selector in the destination operand is not 
for a conforming-code segment, nonconforming-code segment, call gate, task gate, or task 
state segment.
If the DPL for a nonconforming-code segment is not equal to the CPL
(When not using a call gate.) If the RPL for the segment’s segment selector is greater than the 
CPL.
If the DPL for a conforming-code segment is greater than the CPL.
If the DPL from a call-gate, task-gate, or TSS segment descriptor is less than the CPL or than 
the RPL of the call-gate, task-gate, or TSS’s segment selector.
If the segment descriptor for selector in a call gate does not indicate it is a code segment.
If the segment descriptor for the segment selector in a task gate does not indicate an available 
TSS.
If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If a memory operand effective address is outside the SS segment limit.
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#NP (selector) If the code segment being accessed is not present.
If call gate, task gate, or TSS not present.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3. (Only occurs when fetching target from memory.)
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If the target operand is beyond the code segment limits.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made. (Only occurs 

when fetching target from memory.)
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same as 64-bit mode exceptions.

64-Bit Mode Exceptions

#GP(0) If a memory address is non-canonical.
If target offset in destination operand is non-canonical.
If target offset in destination operand is beyond the new code segment limit.
If the segment selector in the destination operand is NULL.
If the code segment selector in the 64-bit gate is NULL.

#GP(selector) If the code segment or 64-bit call gate is outside descriptor table limits. 
If the code segment or 64-bit call gate overlaps non-canonical space. 
If the segment descriptor from a 64-bit call gate is in non-canonical space. 
If the segment descriptor pointed to by the segment selector in the destination operand is not 
for a conforming-code segment, nonconforming-code segment, 64-bit call gate.
If the segment descriptor pointed to by the segment selector in the destination operand is a 
code segment, and has both the D-bit and the L-bit set.
If the DPL for a nonconforming-code segment is not equal to the CPL, or the RPL for the 
segment’s segment selector is greater than the CPL.
If the DPL for a conforming-code segment is greater than the CPL.
If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-gate.
If the upper type field of a 64-bit call gate is not 0x0.
If the segment selector from a 64-bit call gate is beyond the descriptor table limits.
If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the L-
bit set and the D-bit clear.
If the segment descriptor for a segment selector from the 64-bit call gate does not indicate it 
is a code segment. 
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If the code segment is non-confirming and CPL ≠ DPL.
If the code segment is confirming and CPL < DPL.

#NP(selector) If a code segment or 64-bit call gate is not present.
#UD (64-bit mode only) If a far jump is direct to an absolute address in memory.

If the LOCK prefix is used.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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LAHF—Load Status Flags into AH Register

Instruction Operand Encoding

Description

This instruction executes as described above in compatibility mode and legacy mode. It is valid in 64-bit mode only 
if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1. 

Operation

IF 64-Bit Mode
THEN

IF CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1;
THEN AH ← RFLAGS(SF:ZF:0:AF:0:PF:1:CF);
ELSE #UD; 

FI;
ELSE

AH ← EFLAGS(SF:ZF:0:AF:0:PF:1:CF);
FI;

Flags Affected

None. The state of the flags in the EFLAGS register is not affected.

Protected Mode Exceptions

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 0.
If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

9F LAHF NP Invalid* Valid Load: AH ← EFLAGS(SF:ZF:0:AF:0:PF:1:CF).

NOTES:
*Valid in specific steppings. See Description section.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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LAR—Load Access Rights Byte

Instruction Operand Encoding

Description

Loads the access rights from the segment descriptor specified by the second operand (source operand) into the 
first operand (destination operand) and sets the ZF flag in the flag register. The source operand (which can be a 
register or a memory location) contains the segment selector for the segment descriptor being accessed. If the 
source operand is a memory address, only 16 bits of data are accessed. The destination operand is a general-
purpose register.

The processor performs access checks as part of the loading process. Once loaded in the destination register, soft-
ware can perform additional checks on the access rights information. 

The access rights for a segment descriptor include fields located in the second doubleword (bytes 4–7) of the 
segment descriptor. The following fields are loaded by the LAR instruction:
• Bits 7:0 are returned as 0
• Bits 11:8 return the segment type.
• Bit 12 returns the S flag.
• Bits 14:13 return the DPL.
• Bit 15 returns the P flag.
• The following fields are returned only if the operand size is greater than 16 bits:

— Bits 19:16 are undefined.

— Bit 20 returns the software-available bit in the descriptor.

— Bit 21 returns the L flag.

— Bit 22 returns the D/B flag.

— Bit 23 returns the G flag.

— Bits 31:24 are returned as 0.

This instruction performs the following checks before it loads the access rights in the destination register: 
• Checks that the segment selector is not NULL.
• Checks that the segment selector points to a descriptor that is within the limits of the GDT or LDT being 

accessed
• Checks that the descriptor type is valid for this instruction. All code and data segment descriptors are valid for 

(can be accessed with) the LAR instruction. The valid system segment and gate descriptor types are given in 
Table 3-62. 

• If the segment is not a conforming code segment, it checks that the specified segment descriptor is visible at 
the CPL (that is, if the CPL and the RPL of the segment selector are less than or equal to the DPL of the segment 
selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag is cleared and no 
access rights are loaded in the destination operand.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 02 /r LAR r16, r16/m16 RM Valid Valid r16 ← access rights referenced by r16/m16

0F 02 /r LAR reg, r32/m16
1 RM Valid Valid reg ← access rights referenced by r32/m16

NOTES:
1. For all loads (regardless of source or destination sizing) only bits 16-0 are used. Other bits are ignored.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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The LAR instruction can only be executed in protected mode and IA-32e mode.

Operation

IF Offset(SRC) > descriptor table limit

THEN 

ZF ← 0; 

ELSE

SegmentDescriptor ← descriptor referenced by SRC;

IF SegmentDescriptor(Type) ≠ conforming code segment

and (CPL > DPL) or (RPL > DPL)

or SegmentDescriptor(Type) is not valid for instruction

THEN

ZF ← 0;

ELSE

DEST ← access rights from SegmentDescriptor as given in Description section;

ZF ← 1;

FI;

FI;

Flags Affected

The ZF flag is set to 1 if the access rights are loaded successfully; otherwise, it is cleared to 0.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Table 3-62.  Segment and Gate Types

Type Protected Mode IA-32e Mode

Name Valid Name Valid

0 Reserved No Reserved No

1 Available 16-bit TSS Yes Reserved No

2 LDT Yes LDT No

3 Busy 16-bit TSS Yes Reserved No

4 16-bit call gate Yes Reserved No

5 16-bit/32-bit task gate Yes Reserved No

6 16-bit interrupt gate No Reserved No

7 16-bit trap gate No Reserved No

8 Reserved No Reserved No

9 Available 32-bit TSS Yes Available 64-bit TSS Yes

A Reserved No Reserved No

B Busy 32-bit TSS Yes Busy 64-bit TSS Yes

C 32-bit call gate Yes 64-bit call gate Yes

D Reserved No Reserved No

E 32-bit interrupt gate No 64-bit interrupt gate No

F 32-bit trap gate No 64-bit trap gate No
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#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and the memory operand effective address is unaligned while 

the current privilege level is 3. 
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD The LAR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The LAR instruction cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If the memory operand effective address referencing the SS segment is in a non-canonical 
form.

#GP(0) If the memory operand effective address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and the memory operand effective address is unaligned while 

the current privilege level is 3.
#UD If the LOCK prefix is used.
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LDDQU—Load Unaligned Integer 128 Bits

Instruction Operand Encoding

Description

The instruction is functionally similar to (V)MOVDQU ymm/xmm, m256/m128 for loading from memory. That is: 
32/16 bytes of data starting at an address specified by the source memory operand (second operand) are fetched 
from memory and placed in a destination register (first operand). The source operand need not be aligned on a 
32/16-byte boundary. Up to 64/32 bytes may be loaded from memory; this is implementation dependent.

This instruction may improve performance relative to (V)MOVDQU if the source operand crosses a cache line 
boundary. In situations that require the data loaded by (V)LDDQU be modified and stored to the same location, use 
(V)MOVDQU or (V)MOVDQA instead of (V)LDDQU. To move a double quadword to or from memory locations that 
are known to be aligned on 16-byte boundaries, use the (V)MOVDQA instruction.

Implementation Notes

• If the source is aligned to a 32/16-byte boundary, based on the implementation, the 32/16 bytes may be 
loaded more than once. For that reason, the usage of (V)LDDQU should be avoided when using uncached or 
write-combining (WC) memory regions. For uncached or WC memory regions, keep using (V)MOVDQU.

• This instruction is a replacement for (V)MOVDQU (load) in situations where cache line splits significantly affect 
performance. It should not be used in situations where store-load forwarding is performance critical. If 
performance of store-load forwarding is critical to the application, use (V)MOVDQA store-load pairs when data 
is 256/128-bit aligned or (V)MOVDQU store-load pairs when data is 256/128-bit unaligned.

• If the memory address is not aligned on 32/16-byte boundary, some implementations may load up to 64/32 
bytes and return 32/16 bytes in the destination. Some processor implementations may issue multiple loads to 
access the appropriate 32/16 bytes. Developers of multi-threaded or multi-processor software should be aware 
that on these processors the loads will be performed in a non-atomic way.

• If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check exception 
(#AC) may or may not be generated (depending on processor implementation) when the memory address is 
not aligned on an 8-byte boundary.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

LDDQU (128-bit Legacy SSE version)

DEST[127:0] Å SRC[127:0]

DEST[VLMAX-1:128] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F F0 /r

LDDQU xmm1, mem

RM V/V SSE3 Load unaligned data from mem and return 
double quadword in xmm1.

VEX.128.F2.0F.WIG F0 /r

VLDDQU xmm1, m128

RM V/V AVX Load unaligned packed integer values from 
mem to xmm1.

VEX.256.F2.0F.WIG F0 /r

VLDDQU ymm1, m256

RM V/V AVX Load unaligned packed integer values from 
mem to ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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VLDDQU (VEX.128 encoded version)

DEST[127:0] Å SRC[127:0]

DEST[VLMAX-1:128] Å 0

VLDDQU (VEX.256 encoded version)

DEST[255:0] Å SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

LDDQU: __m128i _mm_lddqu_si128 (__m128i * p);

LDDQU: __m256i _mm256_lddqu_si256 (__m256i * p);

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 4;
Note treatment of #AC varies.
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LDMXCSR—Load MXCSR Register

Instruction Operand Encoding

Description

Loads the source operand into the MXCSR control/status register. The source operand is a 32-bit memory location. 
See “MXCSR Control and Status Register” in Chapter 10, of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for a description of the MXCSR register and its contents.

The LDMXCSR instruction is typically used in conjunction with the (V)STMXCSR instruction, which stores the 
contents of the MXCSR register in memory.

The default MXCSR value at reset is 1F80H.

If a (V)LDMXCSR instruction clears a SIMD floating-point exception mask bit and sets the corresponding exception 
flag bit, a SIMD floating-point exception will not be immediately generated. The exception will be generated only 
upon the execution of the next instruction that meets both conditions below:
• the instruction must operate on an XMM or YMM register operand,
• the instruction causes that particular SIMD floating-point exception to be reported. 

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
If VLDMXCSR is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an 
#UD exception.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

MXCSR ← m32;

C/C++ Compiler Intrinsic Equivalent

_mm_setcsr(unsigned int i)

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 5; additionally
#GP For an attempt to set reserved bits in MXCSR.
#UD If VEX.vvvv != 1111B.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F,AE,/2

LDMXCSR m32

M V/V SSE Load MXCSR register from m32.

VEX.LZ.0F.WIG AE /2

VLDMXCSR m32

M V/V AVX Load MXCSR register from m32.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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LDS/LES/LFS/LGS/LSS—Load Far Pointer

Instruction Operand Encoding

Description

Loads a far pointer (segment selector and offset) from the second operand (source operand) into a segment 
register and the first operand (destination operand). The source operand specifies a 48-bit or a 32-bit pointer in 
memory depending on the current setting of the operand-size attribute (32 bits or 16 bits, respectively). The 
instruction opcode and the destination operand specify a segment register/general-purpose register pair. The 16-
bit segment selector from the source operand is loaded into the segment register specified with the opcode (DS, 
SS, ES, FS, or GS). The 32-bit or 16-bit offset is loaded into the register specified with the destination operand.

If one of these instructions is executed in protected mode, additional information from the segment descriptor 
pointed to by the segment selector in the source operand is loaded in the hidden part of the selected segment 
register.

Also in protected mode, a NULL selector (values 0000 through 0003) can be loaded into DS, ES, FS, or GS registers 
without causing a protection exception. (Any subsequent reference to a segment whose corresponding segment 
register is loaded with a NULL selector, causes a general-protection exception (#GP) and no memory reference to 
the segment occurs.)

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.W promotes 
operation to specify a source operand referencing an 80-bit pointer (16-bit selector, 64-bit offset) in memory. 
Using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). See the summary chart at 
the beginning of this section for encoding data and limits.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

C5 /r LDS r16,m16:16 RM Invalid Valid Load DS:r16 with far pointer from memory.

C5 /r LDS r32,m16:32 RM Invalid Valid Load DS:r32 with far pointer from memory.

0F B2 /r LSS r16,m16:16 RM Valid Valid Load SS:r16 with far pointer from memory.

0F B2 /r LSS r32,m16:32 RM Valid Valid Load SS:r32 with far pointer from memory.

REX + 0F B2 /r LSS r64,m16:64 RM Valid N.E. Load SS:r64 with far pointer from memory.

C4 /r LES r16,m16:16 RM Invalid Valid Load ES:r16 with far pointer from memory.

C4 /r LES r32,m16:32 RM Invalid Valid Load ES:r32 with far pointer from memory.

0F B4 /r LFS r16,m16:16 RM Valid Valid Load FS:r16 with far pointer from memory.

0F B4 /r LFS r32,m16:32 RM Valid Valid Load FS:r32 with far pointer from memory.

REX + 0F B4 /r LFS r64,m16:64 RM Valid N.E. Load FS:r64 with far pointer from memory.

0F B5 /r LGS r16,m16:16 RM Valid Valid Load GS:r16 with far pointer from memory.

0F B5 /r LGS r32,m16:32 RM Valid Valid Load GS:r32 with far pointer from memory.

REX + 0F B5 /r LGS r64,m16:64 RM Valid N.E. Load GS:r64 with far pointer from memory.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Operation

64-BIT_MODE

IF SS is loaded 

THEN 

IF SegmentSelector = NULL and ( (RPL = 3) or 

(RPL ≠ 3 and RPL ≠ CPL) )

THEN #GP(0);

ELSE IF descriptor is in non-canonical space

THEN #GP(0); FI;

ELSE IF Segment selector index is not within descriptor table limits

or segment selector RPL ≠ CPL

or access rights indicate nonwritable data segment

or DPL ≠ CPL

THEN #GP(selector); FI;

ELSE IF Segment marked not present

THEN #SS(selector); FI;

FI;

SS ← SegmentSelector(SRC);

SS ← SegmentDescriptor([SRC]);

ELSE IF attempt to load DS, or ES 

THEN #UD;

ELSE IF FS, or GS is loaded with non-NULL segment selector

THEN IF Segment selector index is not within descriptor table limits

or access rights indicate segment neither data nor readable code segment

or segment is data or nonconforming-code segment 

and ( RPL > DPL or CPL > DPL)

THEN #GP(selector); FI;

ELSE IF Segment marked not present

THEN #NP(selector); FI;

FI;

SegmentRegister ← SegmentSelector(SRC) ;

SegmentRegister ← SegmentDescriptor([SRC]);

FI;

ELSE IF FS, or GS is loaded with a NULL selector:

THEN

SegmentRegister ← NULLSelector;

SegmentRegister(DescriptorValidBit) ← 0; FI; (* Hidden flag; 
not accessible by software *)

FI;

DEST ← Offset(SRC);

PREOTECTED MODE OR COMPATIBILITY MODE;

IF SS is loaded 

THEN 

IF SegementSelector = NULL 

THEN #GP(0);

ELSE IF Segment selector index is not within descriptor table limits

or segment selector RPL ≠ CPL

or access rights indicate nonwritable data segment

or DPL ≠ CPL

THEN #GP(selector); FI;

ELSE IF Segment marked not present

THEN #SS(selector); FI;

FI;
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SS ← SegmentSelector(SRC);

SS ← SegmentDescriptor([SRC]);

ELSE IF DS, ES, FS, or GS is loaded with non-NULL segment selector

THEN IF Segment selector index is not within descriptor table limits

or access rights indicate segment neither data nor readable code segment

or segment is data or nonconforming-code segment 

and (RPL > DPL or CPL > DPL) 

THEN #GP(selector); FI;

ELSE IF Segment marked not present

THEN #NP(selector); FI;

FI;

SegmentRegister ← SegmentSelector(SRC) AND RPL;

SegmentRegister ← SegmentDescriptor([SRC]);

FI;

ELSE IF DS, ES, FS, or GS is loaded with a NULL selector:

THEN

SegmentRegister ← NULLSelector;

SegmentRegister(DescriptorValidBit) ← 0; FI; (* Hidden flag; 
not accessible by software *)

FI;

DEST ← Offset(SRC);

Real-Address or Virtual-8086 Mode

SegmentRegister ← SegmentSelector(SRC); FI;

DEST ← Offset(SRC);

Flags Affected

None.

Protected Mode Exceptions

#UD If source operand is not a memory location.
If the LOCK prefix is used.

#GP(0) If a NULL selector is loaded into the SS register.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#GP(selector) If the SS register is being loaded and any of the following is true: the segment selector index 
is not within the descriptor table limits, the segment selector RPL is not equal to CPL, the 
segment is a non-writable data segment, or DPL is not equal to CPL.
If the DS, ES, FS, or GS register is being loaded with a non-NULL segment selector and any of 
the following is true: the segment selector index is not within descriptor table limits, the 
segment is neither a data nor a readable code segment, or the segment is a data or noncon-
forming-code segment and both RPL and CPL are greater than DPL.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#SS(selector) If the SS register is being loaded and the segment is marked not present.
#NP(selector) If DS, ES, FS, or GS register is being loaded with a non-NULL segment selector and the 

segment is marked not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If source operand is not a memory location.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#UD If source operand is not a memory location.
If the LOCK prefix is used.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
If a NULL selector is attempted to be loaded into the SS register in compatibility mode.
If a NULL selector is attempted to be loaded into the SS register in CPL3 and 64-bit mode.
If a NULL selector is attempted to be loaded into the SS register in non-CPL3 and 64-bit mode 
where its RPL is not equal to CPL.

#GP(Selector) If the FS, or GS register is being loaded with a non-NULL segment selector and any of the 
following is true: the segment selector index is not within descriptor table limits, the memory 
address of the descriptor is non-canonical, the segment is neither a data nor a readable code 
segment, or the segment is a data or nonconforming-code segment and both RPL and CPL are 
greater than DPL.
If the SS register is being loaded and any of the following is true: the segment selector index 
is not within the descriptor table limits, the memory address of the descriptor is non-canonical, 
the segment selector RPL is not equal to CPL, the segment is a nonwritable data segment, or 
DPL is not equal to CPL.

#SS(0) If a memory operand effective address is non-canonical
#SS(Selector) If the SS register is being loaded and the segment is marked not present.
#NP(selector) If FS, or GS register is being loaded with a non-NULL segment selector and the segment is 

marked not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If source operand is not a memory location.

If the LOCK prefix is used.



LEA—Load Effective Address

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-455

LEA—Load Effective Address

Instruction Operand Encoding

Description

Computes the effective address of the second operand (the source operand) and stores it in the first operand 
(destination operand). The source operand is a memory address (offset part) specified with one of the processors 
addressing modes; the destination operand is a general-purpose register. The address-size and operand-size attri-
butes affect the action performed by this instruction, as shown in the following table. The operand-size attribute of 
the instruction is determined by the chosen register; the address-size attribute is determined by the attribute of 
the code segment.

Different assemblers may use different algorithms based on the size attribute and symbolic reference of the source 
operand.

In 64-bit mode, the instruction’s destination operand is governed by operand size attribute, the default operand 
size is 32 bits. Address calculation is governed by address size attribute, the default address size is 64-bits. In 64-
bit mode, address size of 16 bits is not encodable. See Table 3-64.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

8D /r LEA r16,m RM Valid Valid Store effective address for m in register r16.

8D /r LEA r32,m RM Valid Valid Store effective address for m in register r32.

REX.W + 8D /r LEA r64,m RM Valid N.E. Store effective address for m in register r64. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Table 3-63.  Non-64-bit Mode LEA Operation with Address and Operand Size Attributes

Operand Size Address Size Action Performed

16 16 16-bit effective address is calculated and stored in requested 16-bit register destination.

16 32 32-bit effective address is calculated. The lower 16 bits of the address are stored in the 
requested 16-bit register destination.

32 16 16-bit effective address is calculated. The 16-bit address is zero-extended and stored in the 
requested 32-bit register destination.

32 32 32-bit effective address is calculated and stored in the requested 32-bit register destination.

Table 3-64.  64-bit Mode LEA Operation with Address and Operand Size Attributes

Operand Size Address Size Action Performed

16 32 32-bit effective address is calculated (using 67H prefix). The lower 16 bits of the address are 
stored in the requested 16-bit register destination (using 66H prefix).

16 64 64-bit effective address is calculated (default address size). The lower 16 bits of the address 
are stored in the requested 16-bit register destination (using 66H prefix).

32 32 32-bit effective address is calculated (using 67H prefix) and stored in the requested 32-bit 
register destination.

32 64 64-bit effective address is calculated (default address size) and the lower 32 bits of the 
address are stored in the requested 32-bit register destination.

64 32 32-bit effective address is calculated (using 67H prefix), zero-extended to 64-bits, and stored 
in the requested 64-bit register destination (using REX.W).

64 64 64-bit effective address is calculated (default address size) and all 64-bits of the address are 
stored in the requested 64-bit register destination (using REX.W).
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Operation

IF OperandSize = 16 and AddressSize = 16

THEN 

DEST ← EffectiveAddress(SRC); (* 16-bit address *)

ELSE IF OperandSize = 16 and AddressSize = 32

THEN

temp ← EffectiveAddress(SRC); (* 32-bit address *)

DEST ← temp[0:15]; (* 16-bit address *)

FI;

ELSE IF OperandSize = 32 and AddressSize = 16

THEN

temp ← EffectiveAddress(SRC); (* 16-bit address *)

DEST ← ZeroExtend(temp); (* 32-bit address *)

FI;

ELSE IF OperandSize = 32 and AddressSize = 32

THEN 

DEST ← EffectiveAddress(SRC); (* 32-bit address *)

FI;

ELSE IF OperandSize = 16 and AddressSize = 64

THEN 

temp ← EffectiveAddress(SRC); (* 64-bit address *)

DEST ← temp[0:15]; (* 16-bit address *)

FI;

ELSE IF OperandSize = 32 and AddressSize = 64

THEN 

temp ← EffectiveAddress(SRC); (* 64-bit address *)

DEST ← temp[0:31]; (* 16-bit address *)

FI;

ELSE IF OperandSize = 64 and AddressSize = 64

THEN 

DEST ← EffectiveAddress(SRC); (* 64-bit address *)

FI;

FI;

Flags Affected

None.

Protected Mode Exceptions

#UD If source operand is not a memory location.
If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.
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64-Bit Mode Exceptions

Same exceptions as in protected mode.
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LEAVE—High Level Procedure Exit

Instruction Operand Encoding

Description

Releases the stack frame set up by an earlier ENTER instruction. The LEAVE instruction copies the frame pointer (in 
the EBP register) into the stack pointer register (ESP), which releases the stack space allocated to the stack frame. 
The old frame pointer (the frame pointer for the calling procedure that was saved by the ENTER instruction) is then 
popped from the stack into the EBP register, restoring the calling procedure’s stack frame. 

A RET instruction is commonly executed following a LEAVE instruction to return program control to the calling 
procedure.

See “Procedure Calls for Block-Structured Languages” in Chapter 7 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for detailed information on the use of the ENTER and LEAVE instructions.

In 64-bit mode, the instruction’s default operation size is 64 bits; 32-bit operation cannot be encoded. See the 
summary chart at the beginning of this section for encoding data and limits.

Operation

IF StackAddressSize = 32

THEN

ESP ← EBP;

ELSE IF StackAddressSize = 64

THEN RSP ← RBP; FI;

ELSE IF StackAddressSize = 16

THEN SP ← BP; FI;

FI;

IF OperandSize = 32

THEN EBP ← Pop();

ELSE IF OperandSize = 64

THEN RBP ← Pop(); FI;

ELSE IF OperandSize = 16

THEN BP ← Pop(); FI;

FI;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the EBP register points to a location that is not within the limits of the current stack 
segment.

#PF(fault-code) If a page fault occurs.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

C9 LEAVE NP Valid Valid Set SP to BP, then pop BP.

C9 LEAVE NP N.E. Valid Set ESP to EBP, then pop EBP.

C9 LEAVE NP Valid N.E. Set RSP to RBP, then pop RBP.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 
current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If the EBP register points to a location outside of the effective address space from 0 to FFFFH.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If the EBP register points to a location outside of the effective address space from 0 to FFFFH.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If the stack address is in a non-canonical form.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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LFENCE—Load Fence

Instruction Operand Encoding

Description

Performs a serializing operation on all load-from-memory instructions that were issued prior the LFENCE instruc-
tion. Specifically, LFENCE does not execute until all prior instructions have completed locally, and no later instruc-
tion begins execution until LFENCE completes. In particular, an instruction that loads from memory and that 
precedes an LFENCE receives data from memory prior to completion of the LFENCE. (An LFENCE that follows an 
instruction that stores to memory might complete before the data being stored have become globally visible.) 
Instructions following an LFENCE may be fetched from memory before the LFENCE, but they will not execute until 
the LFENCE completes. 

Weakly ordered memory types can be used to achieve higher processor performance through such techniques as 
out-of-order issue and speculative reads. The degree to which a consumer of data recognizes or knows that the 
data is weakly ordered varies among applications and may be unknown to the producer of this data. The LFENCE 
instruction provides a performance-efficient way of ensuring load ordering between routines that produce weakly-
ordered results and routines that consume that data.

Processors are free to fetch and cache data speculatively from regions of system memory that use the WB, WC, and 
WT memory types. This speculative fetching can occur at any time and is not tied to instruction execution. Thus, it 
is not ordered with respect to executions of the LFENCE instruction; data can be brought into the caches specula-
tively just before, during, or after the execution of an LFENCE instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Wait_On_Following_Instructions_Until(preceding_instructions_complete);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_lfence(void)

Exceptions (All Modes of Operation)

#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AE /5 LFENCE NP Valid Valid Serializes load operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

Instruction Operand Encoding

Description

Loads the values in the source operand into the global descriptor table register (GDTR) or the interrupt descriptor 
table register (IDTR). The source operand specifies a 6-byte memory location that contains the base address (a 
linear address) and the limit (size of table in bytes) of the global descriptor table (GDT) or the interrupt descriptor 
table (IDT). If operand-size attribute is 32 bits, a 16-bit limit (lower 2 bytes of the 6-byte data operand) and a 32-
bit base address (upper 4 bytes of the data operand) are loaded into the register. If the operand-size attribute 
is 16 bits, a 16-bit limit (lower 2 bytes) and a 24-bit base address (third, fourth, and fifth byte) are loaded. Here, 
the high-order byte of the operand is not used and the high-order byte of the base address in the GDTR or IDTR is 
filled with zeros.

The LGDT and LIDT instructions are used only in operating-system software; they are not used in application 
programs. They are the only instructions that directly load a linear address (that is, not a segment-relative 
address) and a limit in protected mode. They are commonly executed in real-address mode to allow processor 
initialization prior to switching to protected mode.

In 64-bit mode, the instruction’s operand size is fixed at 8+2 bytes (an 8-byte base and a 2-byte limit). See the 
summary chart at the beginning of this section for encoding data and limits.

See “SGDT—Store Global Descriptor Table Register” in Chapter 4, Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2B, for information on storing the contents of the GDTR and IDTR.

Operation

IF Instruction is LIDT

THEN

IF OperandSize = 16

THEN 

IDTR(Limit) ← SRC[0:15];

IDTR(Base) ← SRC[16:47] AND 00FFFFFFH; 

ELSE IF 32-bit Operand Size

THEN

IDTR(Limit) ← SRC[0:15];

IDTR(Base) ← SRC[16:47]; 

FI;

ELSE IF 64-bit Operand Size (* In 64-Bit Mode *)

THEN

IDTR(Limit) ← SRC[0:15];

IDTR(Base) ← SRC[16:79]; 

FI;

FI;

ELSE (* Instruction is LGDT *)

IF OperandSize = 16

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 /2 LGDT m16&32 M N.E. Valid Load m into GDTR.

0F 01 /3 LIDT m16&32 M N.E. Valid Load m into IDTR.

0F 01 /2 LGDT m16&64 M Valid N.E. Load m into GDTR.

0F 01 /3 LIDT m16&64 M Valid N.E. Load m into IDTR.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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THEN 

GDTR(Limit) ← SRC[0:15];

GDTR(Base) ← SRC[16:47] AND 00FFFFFFH; 

ELSE IF 32-bit Operand Size

THEN

GDTR(Limit) ← SRC[0:15];

GDTR(Base) ← SRC[16:47]; 

FI;

ELSE IF 64-bit Operand Size (* In 64-Bit Mode *)

THEN

GDTR(Limit) ← SRC[0:15];

GDTR(Base) ← SRC[16:79]; 

FI;

FI; 

FI;

Flags Affected

None.

Protected Mode Exceptions

#UD If source operand is not a memory location.
If the LOCK prefix is used.

#GP(0) If the current privilege level is not 0.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#UD If source operand is not a memory location.
If the LOCK prefix is used.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#UD If source operand is not a memory location.
If the LOCK prefix is used.

#GP(0) The LGDT and LIDT instructions are not recognized in virtual-8086 mode.
#GP If the current privilege level is not 0.

Compatibility Mode Exceptions

Same exceptions as in protected mode.
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64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.
#UD If source operand is not a memory location.

If the LOCK prefix is used.
#PF(fault-code) If a page fault occurs.
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LLDT—Load Local Descriptor Table Register

Instruction Operand Encoding

Description

Loads the source operand into the segment selector field of the local descriptor table register (LDTR). The source 
operand (a general-purpose register or a memory location) contains a segment selector that points to a local 
descriptor table (LDT). After the segment selector is loaded in the LDTR, the processor uses the segment selector 
to locate the segment descriptor for the LDT in the global descriptor table (GDT). It then loads the segment limit 
and base address for the LDT from the segment descriptor into the LDTR. The segment registers DS, ES, SS, FS, 
GS, and CS are not affected by this instruction, nor is the LDTR field in the task state segment (TSS) for the current 
task.

If bits 2-15 of the source operand are 0, LDTR is marked invalid and the LLDT instruction completes silently. 
However, all subsequent references to descriptors in the LDT (except by the LAR, VERR, VERW or LSL instructions) 
cause a general protection exception (#GP).

The operand-size attribute has no effect on this instruction. 

The LLDT instruction is provided for use in operating-system software; it should not be used in application 
programs. This instruction can only be executed in protected mode or 64-bit mode.

In 64-bit mode, the operand size is fixed at 16 bits.

Operation

IF SRC(Offset) > descriptor table limit 

THEN #GP(segment selector); FI;

IF segment selector is valid

Read segment descriptor;

IF SegmentDescriptor(Type) ≠ LDT 

THEN #GP(segment selector); FI;

IF segment descriptor is not present 

THEN #NP(segment selector); FI;

LDTR(SegmentSelector) ← SRC;

LDTR(SegmentDescriptor) ← GDTSegmentDescriptor;

ELSE LDTR ← INVALID

FI;

Flags Affected

None.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 00 /2 LLDT r/m16 M Valid Valid Load segment selector r/m16 into LDTR.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#GP(selector) If the selector operand does not point into the Global Descriptor Table or if the entry in the 
GDT is not a Local Descriptor Table.
Segment selector is beyond GDT limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NP(selector) If the LDT descriptor is not present.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD The LLDT instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The LLDT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.
#GP(selector) If the selector operand does not point into the Global Descriptor Table or if the entry in the 

GDT is not a Local Descriptor Table.
Segment selector is beyond GDT limit.

#NP(selector) If the LDT descriptor is not present.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
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LMSW—Load Machine Status Word

Instruction Operand Encoding

Description

Loads the source operand into the machine status word, bits 0 through 15 of register CR0. The source operand can 
be a 16-bit general-purpose register or a memory location. Only the low-order 4 bits of the source operand (which 
contains the PE, MP, EM, and TS flags) are loaded into CR0. The PG, CD, NW, AM, WP, NE, and ET flags of CR0 are 
not affected. The operand-size attribute has no effect on this instruction.

If the PE flag of the source operand (bit 0) is set to 1, the instruction causes the processor to switch to protected 
mode. While in protected mode, the LMSW instruction cannot be used to clear the PE flag and force a switch back 
to real-address mode.

The LMSW instruction is provided for use in operating-system software; it should not be used in application 
programs. In protected or virtual-8086 mode, it can only be executed at CPL 0.

This instruction is provided for compatibility with the Intel 286 processor; programs and procedures intended to 
run on the Pentium 4, Intel Xeon, P6 family, Pentium, Intel486, and Intel386 processors should use the MOV 
(control registers) instruction to load the whole CR0 register. The MOV CR0 instruction can be used to set and clear 
the PE flag in CR0, allowing a procedure or program to switch between protected and real-address modes.

This instruction is a serializing instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode. Note that the operand size is fixed 
at 16 bits.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in 
VMX non-root operation.

Operation

CR0[0:3] ← SRC[0:3];

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 /6 LMSW r/m16 M Valid Valid Loads r/m16 in machine status word of CR0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
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LOCK—Assert LOCK# Signal Prefix

Instruction Operand Encoding

Description

Causes the processor’s LOCK# signal to be asserted during execution of the accompanying instruction (turns the 
instruction into an atomic instruction). In a multiprocessor environment, the LOCK# signal ensures that the 
processor has exclusive use of any shared memory while the signal is asserted.

Note that, in later Intel 64 and IA-32 processors (including the Pentium 4, Intel Xeon, and P6 family processors), 
locking may occur without the LOCK# signal being asserted. See the “IA-32 Architecture Compatibility” section 
below.

The LOCK prefix can be prepended only to the following instructions and only to those forms of the instructions 
where the destination operand is a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B, 
CMPXCHG16B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG. If the LOCK prefix is used with one of 
these instructions and the source operand is a memory operand, an undefined opcode exception (#UD) may be 
generated. An undefined opcode exception will also be generated if the LOCK prefix is used with any instruction not 
in the above list. The XCHG instruction always asserts the LOCK# signal regardless of the presence or absence of 
the LOCK prefix.

The LOCK prefix is typically used with the BTS instruction to perform a read-modify-write operation on a memory 
location in shared memory environment.

The integrity of the LOCK prefix is not affected by the alignment of the memory field. Memory locking is observed 
for arbitrarily misaligned fields.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

Beginning with the P6 family processors, when the LOCK prefix is prefixed to an instruction and the memory area 
being accessed is cached internally in the processor, the LOCK# signal is generally not asserted. Instead, only the 
processor’s cache is locked. Here, the processor’s cache coherency mechanism ensures that the operation is 
carried out atomically with regards to memory. See “Effects of a Locked Operation on Internal Processor Caches” 
in Chapter 8 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, the for more informa-
tion on locking of caches.

Operation

AssertLOCK#(DurationOfAccompaningInstruction);

Flags Affected

None.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F0 LOCK NP Valid Valid Asserts LOCK# signal for duration of the 
accompanying instruction.

NOTES:

* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Protected Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed: ADD, ADC, AND, BTC, BTR, BTS, 
CMPXCHG, CMPXCH8B, CMPXCHG16B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, 
XCHG.
Other exceptions can be generated by the instruction when the LOCK prefix is applied.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.



LODS/LODSB/LODSW/LODSD/LODSQ—Load String

INSTRUCTION SET REFERENCE, A-M

3-470 Vol. 2A

LODS/LODSB/LODSW/LODSD/LODSQ—Load String

Instruction Operand Encoding

Description

Loads a byte, word, or doubleword from the source operand into the AL, AX, or EAX register, respectively. The 
source operand is a memory location, the address of which is read from the DS:ESI or the DS:SI registers 
(depending on the address-size attribute of the instruction, 32 or 16, respectively). The DS segment may be over-
ridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands” form and the “no-
operands” form. The explicit-operands form (specified with the LODS mnemonic) allows the source operand to be 
specified explicitly. Here, the source operand should be a symbol that indicates the size and location of the source 
value. The destination operand is then automatically selected to match the size of the source operand (the AL 
register for byte operands, AX for word operands, and EAX for doubleword operands). This explicit-operands form 
is provided to allow documentation; however, note that the documentation provided by this form can be 
misleading. That is, the source operand symbol must specify the correct type (size) of the operand (byte, word, or 
doubleword), but it does not have to specify the correct location. The location is always specified by the DS:(E)SI 
registers, which must be loaded correctly before the load string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the LODS instructions. 
Here also DS:(E)SI is assumed to be the source operand and the AL, AX, or EAX register is assumed to be the desti-
nation operand. The size of the source and destination operands is selected with the mnemonic: LODSB (byte 
loaded into register AL), LODSW (word loaded into AX), or LODSD (doubleword loaded into EAX).

After the byte, word, or doubleword is transferred from the memory location into the AL, AX, or EAX register, the 
(E)SI register is incremented or decremented automatically according to the setting of the DF flag in the EFLAGS 
register. (If the DF flag is 0, the (E)SI register is incremented; if the DF flag is 1, the ESI register is decremented.) 
The (E)SI register is incremented or decremented by 1 for byte operations, by 2 for word operations, or by 4 for 
doubleword operations.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

AC LODS m8 NP Valid Valid For legacy mode, Load byte at address DS:(E)SI 
into AL. For 64-bit mode load byte at address 
(R)SI into AL.

AD LODS m16 NP Valid Valid For legacy mode, Load word at address 
DS:(E)SI into AX. For 64-bit mode load word at 
address (R)SI into AX.

AD LODS m32 NP Valid Valid For legacy mode, Load dword at address 
DS:(E)SI into EAX. For 64-bit mode load dword 
at address (R)SI into EAX.

REX.W + AD LODS m64 NP Valid N.E. Load qword at address (R)SI into RAX.

AC LODSB NP Valid Valid For legacy mode, Load byte at address DS:(E)SI 
into AL. For 64-bit mode load byte at address 
(R)SI into AL.

AD LODSW NP Valid Valid For legacy mode, Load word at address 
DS:(E)SI into AX. For 64-bit mode load word at 
address (R)SI into AX.

AD LODSD NP Valid Valid For legacy mode, Load dword at address 
DS:(E)SI into EAX. For 64-bit mode load dword 
at address (R)SI into EAX.

REX.W + AD LODSQ NP Valid N.E. Load qword at address (R)SI into RAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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In 64-bit mode, use of the REX.W prefix promotes operation to 64 bits. LODS/LODSQ load the quadword at address 
(R)SI into RAX. The (R)SI register is then incremented or decremented automatically according to the setting of 
the DF flag in the EFLAGS register. 

The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP prefix for block loads of ECX 
bytes, words, or doublewords. More often, however, these instructions are used within a LOOP construct because 
further processing of the data moved into the register is  usually necessary before the next transfer can be made. 
See “REP/REPE/REPZ /REPNE/REPNZ—Repeat String Operation Prefix” in Chapter 4 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2B, for a description of the REP prefix.

Operation

IF AL ← SRC; (* Byte load *)

THEN AL ← SRC; (* Byte load *)

IF DF = 0
THEN (E)SI ← (E)SI + 1; 

ELSE (E)SI ← (E)SI – 1; 

FI;

ELSE IF AX ← SRC; (* Word load *)

THEN IF DF = 0
THEN (E)SI ← (E)SI + 2; 

ELSE (E)SI ← (E)SI – 2; 

IF;

FI;

ELSE IF EAX ← SRC; (* Doubleword load *)

THEN IF DF = 0
THEN (E)SI ← (E)SI + 4; 

ELSE (E)SI ← (E)SI – 4; 

FI;

FI;

ELSE IF RAX ← SRC; (* Quadword load *)

THEN IF DF = 0

THEN (R)SI ← (R)SI + 8; 

ELSE (R)SI ← (R)SI – 8; 

FI;

FI;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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LOOP/LOOPcc—Loop According to ECX Counter

Instruction Operand Encoding

Description

Performs a loop operation using the RCX, ECX or CX register as a counter (depending on whether address size is 64 
bits, 32 bits, or 16 bits). Note that the LOOP instruction ignores REX.W; but 64-bit address size can be over-ridden 
using a 67H prefix.

Each time the LOOP instruction is executed, the count register is decremented, then checked for 0. If the count is 
0, the loop is terminated and program execution continues with the instruction following the LOOP instruction. If 
the count is not zero, a near jump is performed to the destination (target) operand, which is presumably the 
instruction at the beginning of the loop.

The target instruction is specified with a relative offset (a signed offset relative to the current value of the instruc-
tion pointer in the IP/EIP/RIP register). This offset is generally specified as a label in assembly code, but at the 
machine code level, it is encoded as a signed, 8-bit immediate value, which is added to the instruction pointer. 
Offsets of –128 to +127 are allowed with this instruction.

Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for terminating the loop before 
the count reaches zero. With these forms of the instruction, a condition code (cc) is associated with each instruc-
tion to indicate the condition being tested for. Here, the LOOPcc instruction itself does not affect the state of the ZF 
flag; the ZF flag is changed by other instructions in the loop.

Operation

IF (AddressSize = 32)
THEN Count is ECX;

ELSE IF (AddressSize = 64)
Count is RCX;

ELSE Count is CX; 

FI;

Count ← Count – 1;

IF Instruction is not LOOP

THEN

IF (Instruction ← LOOPE) or (Instruction ← LOOPZ)

THEN IF (ZF = 1) and (Count ≠ 0)

THEN BranchCond ← 1;

ELSE BranchCond ← 0;

FI;

ELSE (Instruction = LOOPNE) or (Instruction = LOOPNZ)

IF (ZF = 0 ) and (Count ≠ 0)

THEN BranchCond ← 1;

ELSE BranchCond ← 0;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

E2 cb LOOP rel8 D Valid Valid Decrement count; jump short if count ≠ 0.

E1 cb LOOPE rel8 D Valid Valid Decrement count; jump short if count ≠ 0 and 
ZF = 1.

E0 cb LOOPNE rel8 D Valid Valid Decrement count; jump short if count ≠ 0 and 
ZF = 0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset NA NA NA
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FI;

FI;

ELSE (* Instruction = LOOP *)

IF (Count ≠ 0)

THEN BranchCond ← 1;

ELSE BranchCond ← 0;

FI;

FI;

IF BranchCond = 1

THEN

IF OperandSize = 32

THEN EIP ← EIP + SignExtend(DEST);

ELSE IF OperandSize = 64

THEN RIP ← RIP + SignExtend(DEST);

FI;

ELSE IF OperandSize = 16

THEN EIP ← EIP AND 0000FFFFH;

FI;

FI;

IF OperandSize = (32 or 64)

THEN IF (R/E)IP < CS.Base or (R/E)IP > CS.Limit

#GP; FI;

FI;

FI;

ELSE

Terminate loop and continue program execution at (R/E)IP;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the offset being jumped to is beyond the limits of the CS segment.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If the offset being jumped to is beyond the limits of the CS segment or is outside of the effec-
tive address space from 0 to FFFFH. This condition can occur if a 32-bit address size override 
prefix is used.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the offset being jumped to is in a non-canonical form.
#UD If the LOCK prefix is used.
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LSL—Load Segment Limit

Instruction Operand Encoding

Description

Loads the unscrambled segment limit from the segment descriptor specified with the second operand (source 
operand) into the first operand (destination operand) and sets the ZF flag in the EFLAGS register. The source 
operand (which can be a register or a memory location) contains the segment selector for the segment descriptor 
being accessed. The destination operand is a general-purpose register.

The processor performs access checks as part of the loading process. Once loaded in the destination register, soft-
ware can compare the segment limit with the offset of a pointer. 

The segment limit is a 20-bit value contained in bytes 0 and 1 and in the first 4 bits of byte 6 of the segment 
descriptor. If the descriptor has a byte granular segment limit (the granularity flag is set to 0), the destination 
operand is loaded with a byte granular value (byte limit). If the descriptor has a page granular segment limit (the 
granularity flag is set to 1), the LSL instruction will translate the page granular limit (page limit) into a byte limit 
before loading it into the destination operand. The translation is performed by shifting the 20-bit “raw” limit left 12 
bits and filling the low-order 12 bits with 1s.

When the operand size is 32 bits, the 32-bit byte limit is stored in the destination operand. When the operand size 
is 16 bits, a valid 32-bit limit is computed; however, the upper 16 bits are truncated and only the low-order 16 bits 
are loaded into the destination operand.

This instruction performs the following checks before it loads the segment limit into the destination register: 
• Checks that the segment selector is not NULL.
• Checks that the segment selector points to a descriptor that is within the limits of the GDT or LDT being 

accessed
• Checks that the descriptor type is valid for this instruction. All code and data segment descriptors are valid for 

(can be accessed with) the LSL instruction. The valid special segment and gate descriptor types are given in the 
following table. 

• If the segment is not a conforming code segment, the instruction checks that the specified segment descriptor 
is visible at the CPL (that is, if the CPL and the RPL of the segment selector are less than or equal to the DPL of 
the segment selector).

If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag is cleared and no 
value is loaded in the destination operand.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 03 /r LSL r16, r16/m16 RM Valid Valid Load: r16 ← segment limit, selector r16/m16.

0F 03 /r LSL r32, r32/m16
* RM Valid Valid Load: r32 ← segment limit, selector r32/m16.

REX.W + 0F 03 /r LSL r64, r32/m16
* RM Valid Valid Load: r64 ← segment limit, selector r32/m16

NOTES:

* For all loads (regardless of destination sizing), only bits 16-0 are used. Other bits are ignored.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Operation

IF SRC(Offset) > descriptor table limit

THEN ZF ← 0; FI;

Read segment descriptor;

IF SegmentDescriptor(Type) ≠ conforming code segment

and (CPL > DPL) OR (RPL > DPL)

or Segment type is not valid for instruction

THEN

ZF ← 0;

ELSE

temp ← SegmentLimit([SRC]);

IF (G ← 1)

THEN temp ← ShiftLeft(12, temp) OR 00000FFFH;

ELSE IF OperandSize = 32 

THEN DEST ← temp; FI;

ELSE IF OperandSize = 64 (* REX.W used *)

THEN DEST (* Zero-extended *) ← temp; FI;

ELSE (* OperandSize = 16 *)

DEST ← temp AND FFFFH;

FI;

FI;

Flags Affected

The ZF flag is set to 1 if the segment limit is loaded successfully; otherwise, it is set to 0.

Table 3-65.  Segment and Gate Descriptor Types

Type Protected Mode IA-32e Mode

Name Valid Name Valid

0 Reserved No Upper 8 byte of a 16-Byte 
descriptor

Yes

1 Available 16-bit TSS Yes Reserved No

2 LDT Yes LDT Yes

3 Busy 16-bit TSS Yes Reserved No

4 16-bit call gate No Reserved No

5 16-bit/32-bit task gate No Reserved No

6 16-bit interrupt gate No Reserved No

7 16-bit trap gate No Reserved No

8 Reserved No Reserved No

9 Available 32-bit TSS Yes 64-bit TSS Yes

A Reserved No Reserved No

B Busy 32-bit TSS Yes Busy 64-bit TSS Yes

C 32-bit call gate No 64-bit call gate No

D Reserved No Reserved No

E 32-bit interrupt gate No 64-bit interrupt gate No

F 32-bit trap gate No 64-bit trap gate No
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Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and the memory operand effective address is unaligned while 

the current privilege level is 3. 
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD The LSL instruction cannot be executed in real-address mode.

Virtual-8086 Mode Exceptions

#UD The LSL instruction cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If the memory operand effective address referencing the SS segment is in a non-canonical 
form.

#GP(0) If the memory operand effective address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and the memory operand effective address is unaligned while 

the current privilege level is 3.
#UD If the LOCK prefix is used.
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LTR—Load Task Register

Instruction Operand Encoding

Description

Loads the source operand into the segment selector field of the task register. The source operand (a general-
purpose register or a memory location) contains a segment selector that points to a task state segment (TSS). 
After the segment selector is loaded in the task register, the processor uses the segment selector to locate the 
segment descriptor for the TSS in the global descriptor table (GDT). It then loads the segment limit and base 
address for the TSS from the segment descriptor into the task register. The task pointed to by the task register is 
marked busy, but a switch to the task does not occur.

The LTR instruction is provided for use in operating-system software; it should not be used in application programs. 
It can only be executed in protected mode when the CPL is 0. It is commonly used in initialization code to establish 
the first task to be executed.

The operand-size attribute has no effect on this instruction. 

In 64-bit mode, the operand size is still fixed at 16 bits. The instruction references a 16-byte descriptor to load the 
64-bit base.

Operation

IF SRC is a NULL selector
THEN #GP(0);

IF SRC(Offset) > descriptor table limit OR IF SRC(type) ≠ global

THEN #GP(segment selector); FI;

Read segment descriptor;

IF segment descriptor is not for an available TSS 

THEN #GP(segment selector); FI;

IF segment descriptor is not present 

THEN #NP(segment selector); FI;

TSSsegmentDescriptor(busy) ← 1; 

(* Locked read-modify-write operation on the entire descriptor when setting busy flag *)

TaskRegister(SegmentSelector) ← SRC;

TaskRegister(SegmentDescriptor) ← TSSSegmentDescriptor;

Flags Affected

None.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 00 /3 LTR r/m16 M Valid Valid Load r/m16 into task register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA



LTR—Load Task Register

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-479

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the source operand contains a NULL segment selector.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#GP(selector) If the source selector points to a segment that is not a TSS or to one for a task that is already 
busy.
If the selector points to LDT or is beyond the GDT limit.

#NP(selector) If the TSS is marked not present.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD The LTR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD  The LTR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.
If the source operand contains a NULL segment selector.

#GP(selector) If the source selector points to a segment that is not a TSS or to one for a task that is already 
busy.
If the selector points to LDT or is beyond the GDT limit.
If the descriptor type of the upper 8-byte of the 16-byte descriptor is non-zero.

#NP(selector) If the TSS is marked not present.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
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LZCNT— Count the Number of Leading Zero Bits

Instruction Operand Encoding

Description 

Counts the number of leading most significant zero bits in a source operand (second operand) returning the result 
into a destination (first operand). 
LZCNT differs from BSR. For example, LZCNT will produce the operand size when the input operand is zero. It 
should be noted that on processors that do not support LZCNT, the instruction byte encoding is executed as BSR. 
In 64-bit mode 64-bit operand size requires REX.W=1. 

Operation

temp ← OperandSize - 1

DEST ← 0

WHILE (temp >= 0) AND (Bit(SRC, temp) = 0)

DO

temp ← temp - 1

DEST ← DEST+ 1

OD

IF DEST = OperandSize

CF ← 1

ELSE

CF ← 0

FI

IF DEST = 0

ZF ← 1

ELSE

ZF ← 0

FI

Flags Affected

ZF flag is set to 1 in case of zero output (most significant bit of the source is set), and to 0 otherwise, CF flag is set 
to 1 if input was zero and cleared otherwise. OF, SF, PF and AF flags are undefined.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F BD /r RM V/V LZCNT Count the number of leading zero bits in r/m16, return result in r16.

LZCNT r16, r/m16

F3 0F BD /r RM V/V LZCNT Count the number of leading zero bits in r/m32, return result in r32.

LZCNT r32, r/m32

REX.W + F3 0F BD /r RM V/N.E. LZCNT Count the number of leading zero bits in r/m64, return result in r64.

LZCNT r64, r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Intel C/C++ Compiler Intrinsic Equivalent

LZCNT: unsigned __int32 _lzcnt_u32(unsigned __int32 src);

LZCNT: unsigned __int64 _lzcnt_u64(unsigned __int64 src);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
If the DS, ES, FS, or GS register is used to access memory and it contains a null segment 
selector.

#SS(0) For an illegal address in the SS segment.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) For an illegal address in the SS segment.

Virtual 8086 Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) For an illegal address in the SS segment.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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MASKMOVDQU—Store Selected Bytes of Double Quadword

Instruction Operand Encoding1

Description

Stores selected bytes from the source operand (first operand) into an 128-bit memory location. The mask operand 
(second operand) selects which bytes from the source operand are written to memory. The source and mask oper-
ands are XMM registers. The memory location specified by the effective address in the DI/EDI/RDI register (the 
default segment register is DS, but this may be overridden with a segment-override prefix). The memory location 
does not need to be aligned on a natural boundary. (The size of the store address depends on the address-size 
attribute.)

The most significant bit in each byte of the mask operand determines whether the corresponding byte in the source 
operand is written to the corresponding byte location in memory: 0 indicates no write and 1 indicates write. 

The MASKMOVDQU instruction generates a non-temporal hint to the processor to minimize cache pollution. The 
non-temporal hint is implemented by using a write combining (WC) memory type protocol (see “Caching of 
Temporal vs. Non-Temporal Data” in Chapter 10, of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1). Because the WC protocol uses a weakly-ordered memory consistency model, a fencing opera-
tion implemented with the SFENCE or MFENCE instruction should be used in conjunction with MASKMOVDQU 
instructions if multiple processors might use different memory types to read/write the destination memory loca-
tions.

Behavior with a mask of all 0s is as follows:
• No data will be written to memory. 
• Signaling of breakpoints (code or data) is not guaranteed; different processor implementations may signal or 

not signal these breakpoints.
• Exceptions associated with addressing memory and page faults may still be signaled (implementation 

dependent).
• If the destination memory region is mapped as UC or WP, enforcement of associated semantics for these 

memory types is not guaranteed (that is, is reserved) and is implementation-specific. 

The MASKMOVDQU instruction can be used to improve performance of algorithms that need to merge data on a 
byte-by-byte basis. MASKMOVDQU should not cause a read for ownership; doing so generates unnecessary band-
width since data is to be written directly using the byte-mask without allocating old data prior to the store. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
If VMASKMOVDQU is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will 
cause an #UD exception.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F F7 /r

MASKMOVDQU xmm1, xmm2

RM V/V SSE2 Selectively write bytes from xmm1 to 
memory location using the byte mask in 
xmm2. The default memory location is 
specified by DS:DI/EDI/RDI.

VEX.128.66.0F.WIG F7 /r

VMASKMOVDQU xmm1, xmm2

RM V/V AVX Selectively write bytes from xmm1 to 
memory location using the byte mask in 
xmm2. The default memory location is 
specified by DS:DI/EDI/RDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA

1.ModRM.MOD = 011B required
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Operation

IF (MASK[7] = 1)

THEN DEST[DI/EDI] ← SRC[7:0] ELSE (* Memory location unchanged *); FI;

IF (MASK[15] = 1) 

THEN DEST[DI/EDI +1] ← SRC[15:8] ELSE (* Memory location unchanged *); FI;

(* Repeat operation for 3rd through 14th bytes in source operand *)

IF (MASK[127] = 1) 

THEN DEST[DI/EDI +15] ← SRC[127:120] ELSE (* Memory location unchanged *); FI;

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_maskmoveu_si128(__m128i d, __m128i n, char * p)

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L= 1

If VEX.vvvv != 1111B.
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MASKMOVQ—Store Selected Bytes of Quadword

Instruction Operand Encoding

Description

Stores selected bytes from the source operand (first operand) into a 64-bit memory location. The mask operand 
(second operand) selects which bytes from the source operand are written to memory. The source and mask oper-
ands are MMX technology registers. The memory location specified by the effective address in the DI/EDI/RDI 
register (the default segment register is DS, but this may be overridden with a segment-override prefix). The 
memory location does not need to be aligned on a natural boundary. (The size of the store address depends on the 
address-size attribute.)

The most significant bit in each byte of the mask operand determines whether the corresponding byte in the source 
operand is written to the corresponding byte location in memory: 0 indicates no write and 1 indicates write. 

The MASKMOVQ instruction generates a non-temporal hint to the processor to minimize cache pollution. The non-
temporal hint is implemented by using a write combining (WC) memory type protocol (see “Caching of Temporal 
vs. Non-Temporal Data” in Chapter 10, of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1). Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation imple-
mented with the SFENCE or MFENCE instruction should be used in conjunction with MASKMOVQ instructions if 
multiple processors might use different memory types to read/write the destination memory locations.

This instruction causes a transition from x87 FPU to MMX technology state (that is, the x87 FPU top-of-stack pointer 
is set to 0 and the x87 FPU tag word is set to all 0s [valid]).

The behavior of the MASKMOVQ instruction with a mask of all 0s is as follows:
• No data will be written to memory. 
• Transition from x87 FPU to MMX technology state will occur.
• Exceptions associated with addressing memory and page faults may still be signaled (implementation 

dependent).
• Signaling of breakpoints (code or data) is not guaranteed (implementation dependent).
• If the destination memory region is mapped as UC or WP, enforcement of associated semantics for these 

memory types is not guaranteed (that is, is reserved) and is implementation-specific. 

The MASKMOVQ instruction can be used to improve performance for algorithms that need to merge data on a byte-
by-byte basis. It should not cause a read for ownership; doing so generates unnecessary bandwidth since data is 
to be written directly using the byte-mask without allocating old data prior to the store. 
In 64-bit mode, the memory address is specified by DS:RDI.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F F7 /r

MASKMOVQ mm1, mm2

RM Valid Valid Selectively write bytes from mm1 to memory 
location using the byte mask in mm2. The 
default memory location is specified by 
DS:DI/EDI/RDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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Operation

IF (MASK[7] = 1)

THEN DEST[DI/EDI] ← SRC[7:0] ELSE (* Memory location unchanged *); FI;

IF (MASK[15] = 1) 

THEN DEST[DI/EDI +1] ← SRC[15:8] ELSE (* Memory location unchanged *); FI;

(* Repeat operation for 3rd through 6th bytes in source operand *)

IF (MASK[63] = 1) 

THEN DEST[DI/EDI +15] ← SRC[63:56] ELSE (* Memory location unchanged *); FI;

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_maskmove_si64(__m64d, __m64n, char * p)

Other Exceptions

See Table 22-8, “Exception Conditions for Legacy SIMD/MMX Instructions without FP Exception,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3A.
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MAXPD—Return Maximum Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs an SIMD compare of the packed double-precision floating-point values in the first source operand and the 
second source operand and returns the maximum value for each pair of values to the destination operand. 
If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is 
returned. If a value in the second operand is an SNaN, that SNaN is forwarded unchanged to the destination (that 
is, a QNaN version of the SNaN is not returned). 
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN 
or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source 
operand (from either the first or second operand) be returned, the action of MAXPD can be emulated using a 
sequence of instructions, such as, a comparison followed by AND, ANDN and OR. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

MAX(SRC1, SRC2)

{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST Å SRC2;

ELSE IF (SRC1 = SNaN) THEN DEST Å SRC2; FI;

ELSE IF (SRC2 = SNaN) THEN DEST Å SRC2; FI;

ELSE IF (SRC1 > SRC2) THEN DEST Å SRC1;

ELSE DEST Å SRC2; 

FI; 

}

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 5F /r

MAXPD xmm1, xmm2/m128

RM V/V SSE2 Return the maximum double-precision 
floating-point values between xmm2/m128 
and xmm1.

VEX.NDS.128.66.0F.WIG 5F /r

VMAXPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the maximum double-precision 
floating-point values between xmm2 and 
xmm3/mem.

VEX.NDS.256.66.0F.WIG 5F /r
VMAXPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the maximum packed double-precision 
floating-point values between ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA



MAXPD—Return Maximum Packed Double-Precision Floating-Point Values
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MAXPD (128-bit Legacy SSE version)

DEST[63:0] Å MAX(DEST[63:0], SRC[63:0])

DEST[127:64] Å MAX(DEST[127:64], SRC[127:64])

DEST[VLMAX-1:128] (Unmodified)

VMAXPD (VEX.128 encoded version)

DEST[63:0] Å MAX(SRC1[63:0], SRC2[63:0])

DEST[127:64] Å MAX(SRC1[127:64], SRC2[127:64])

DEST[VLMAX-1:128] Å 0

VMAXPD (VEX.256 encoded version)

DEST[63:0] Å MAX(SRC1[63:0], SRC2[63:0])

DEST[127:64] Å MAX(SRC1[127:64], SRC2[127:64])

DEST[191:128] Å MAX(SRC1[191:128], SRC2[191:128])

DEST[255:192] Å MAX(SRC1[255:192], SRC2[255:192])

Intel C/C++ Compiler Intrinsic Equivalent

MAXPD:  __m128d _mm_max_pd(__m128d a, __m128d b);

VMAXPD:  __m256d _mm256_max_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions

See Exceptions Type 2.



MAXPS—Return Maximum Packed Single-Precision Floating-Point Values
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MAXPS—Return Maximum Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs an SIMD compare of the packed single-precision floating-point values in the first source operand and the 
second source operand and returns the maximum value for each pair of values to the destination operand. 
If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is 
returned. If a value in the second operand is an SNaN, that SNaN is forwarded unchanged to the destination (that 
is, a QNaN version of the SNaN is not returned). 
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN 
or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source 
operand (from either the first or second operand) be returned, the action of MAXPS can be emulated using a 
sequence of instructions, such as, a comparison followed by AND, ANDN and OR. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

MAX(SRC1, SRC2)

{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST Å SRC2;

ELSE IF (SRC1 = SNaN) THEN DEST Å SRC2; FI;

ELSE IF SRC2 = SNaN) THEN DEST Å SRC2; FI;

ELSE IF (SRC1 > SRC2) THEN DEST Å SRC1;

ELSE DEST Å SRC2; 

FI; 

}

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 5F /r

MAXPS xmm1, xmm2/m128

RM V/V SSE Return the maximum single-precision floating-
point values between xmm2/m128 and 
xmm1.

VEX.NDS.128.0F.WIG 5F /r

VMAXPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the maximum single-precision floating-
point values between xmm2 and xmm3/mem.

VEX.NDS.256.0F.WIG 5F /r

VMAXPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the maximum single double-precision 
floating-point values between ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA



MAXPS—Return Maximum Packed Single-Precision Floating-Point Values
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MAXPS (128-bit Legacy SSE version)

DEST[31:0] Å MAX(DEST[31:0], SRC[31:0])

DEST[63:32] Å MAX(DEST[63:32], SRC[63:32])

DEST[95:64] Å MAX(DEST[95:64], SRC[95:64])

DEST[127:96] Å MAX(DEST[127:96], SRC[127:96])

DEST[VLMAX-1:128] (Unmodified)

VMAXPS (VEX.128 encoded version)

DEST[31:0] Å MAX(SRC1[31:0], SRC2[31:0])

DEST[63:32] Å MAX(SRC1[63:32], SRC2[63:32])

DEST[95:64] Å MAX(SRC1[95:64], SRC2[95:64])

DEST[127:96] Å MAX(SRC1[127:96], SRC2[127:96])

DEST[VLMAX-1:128] Å 0

VMAXPS (VEX.256 encoded version)

DEST[31:0] Å MAX(SRC1[31:0], SRC2[31:0])

DEST[63:32] Å MAX(SRC1[63:32], SRC2[63:32])

DEST[95:64] Å MAX(SRC1[95:64], SRC2[95:64])

DEST[127:96] Å MAX(SRC1[127:96], SRC2[127:96])

DEST[159:128] Å MAX(SRC1[159:128], SRC2[159:128])

DEST[191:160] Å MAX(SRC1[191:160], SRC2[191:160])

DEST[223:192] Å MAX(SRC1[223:192], SRC2[223:192])

DEST[255:224] Å MAX(SRC1[255:224], SRC2[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

MAXPS:  __m128 _mm_max_ps (__m128 a, __m128 b);

VMAXPS:  __m256 _mm256_max_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions

See Exceptions Type 2.



MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value
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MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value

Instruction Operand Encoding

Description

Compares the low double-precision floating-point values in the first source operand and second the source 
operand, and returns the maximum value to the low quadword of the destination operand. The second source 
operand can be an XMM register or a 64-bit memory location. The first source and destination operands are XMM 
registers. When the second source operand is a memory operand, only 64 bits are accessed. The high quadword of 
the destination operand is copied from the same bits of first source operand. 
If the values being compared are both 0.0s (of either sign), the value in the second source operand is returned. If 
a value in the second source operand is an SNaN, that SNaN is returned unchanged to the destination (that is, a 
QNaN version of the SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source operand, either a NaN or a valid 
floating-point value, is written to the result. If instead of this behavior, it is required that the NaN of either source 
operand be returned, the action of MAXSD can be emulated using a sequence of instructions, such as, a comparison 
followed by AND, ANDN and OR. 
The second source operand can be an XMM register or a 64-bit memory location. The first source and destination 
operands are XMM registers. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (VLMAX-1:64) of the 
corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied from corresponding bits in the 
first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

MAX(SRC1, SRC2)

{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST Å SRC2;

ELSE IF (SRC1 = SNaN) THEN DEST Å SRC2; FI;

ELSE IF SRC2 = SNaN) THEN DEST Å SRC2; FI;

ELSE IF (SRC1 > SRC2) THEN DEST Å SRC1;

ELSE DEST Å SRC2; 

FI; 

}

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 5F /r

MAXSD xmm1, xmm2/m64

RM V/V SSE2 Return the maximum scalar double-precision 
floating-point value between xmm2/mem64 

and xmm1.

VEX.NDS.LIG.F2.0F.WIG 5F /r

VMAXSD xmm1, xmm2, xmm3/m64

RVM V/V AVX Return the maximum scalar double-precision 
floating-point value between xmm3/mem64 

and xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA



MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value
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MAXSD (128-bit Legacy SSE version)

DEST[63:0] ÅMAX(DEST[63:0], SRC[63:0])

DEST[VLMAX-1:64] (Unmodified)

VMAXSD (VEX.128 encoded version)

DEST[63:0] ÅMAX(SRC1[63:0], SRC2[63:0])

DEST[127:64] ÅSRC1[127:64]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

MAXSD:  __m128d _mm_max_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions

See Exceptions Type 3.



MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value
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MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value 

Instruction Operand Encoding

Description

Compares the low single-precision floating-point values in the first source operand and the second source operand, 
and returns the maximum value to the low doubleword of the destination operand. 
If the values being compared are both 0.0s (of either sign), the value in the second source operand is returned. If 
a value in the second source operand is an SNaN, that SNaN is returned unchanged to the destination (that is, a 
QNaN version of the SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source operand, either a NaN or a valid 
floating-point value, is written to the result. If instead of this behavior, it is required that the NaN from either source 
operand be returned, the action of MAXSS can be emulated using a sequence of instructions, such as, a comparison 
followed by AND, ANDN and OR. 
The second source operand can be an XMM register or a 32-bit memory location. The first source and destination 
operands are XMM registers. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (VLMAX-1:32) of the 
corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied from corresponding bits in the 
first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

MAX(SRC1, SRC2)

{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST Å SRC2;

ELSE IF (SRC1 = SNaN) THEN DEST Å SRC2; FI;

ELSE IF SRC2 = SNaN) THEN DEST Å SRC2; FI;

ELSE IF (SRC1 > SRC2) THEN DEST Å SRC1;

ELSE DEST Å SRC2; 

FI; 

}

MAXSS (128-bit Legacy SSE version)

DEST[31:0] ÅMAX(DEST[31:0], SRC[31:0])

DEST[VLMAX-1:32] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 5F /r

MAXSS xmm1, xmm2/m32

RM V/V SSE Return the maximum scalar single-precision 
floating-point value between xmm2/mem32 

and xmm1.

VEX.NDS.LIG.F3.0F.WIG 5F /r

VMAXSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Return the maximum scalar single-precision 
floating-point value between xmm3/mem32 
and xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA



MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value
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VMAXSS (VEX.128 encoded version)

DEST[31:0] ÅMAX(SRC1[31:0], SRC2[31:0])

DEST[127:32] ÅSRC1[127:32]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

__m128d _mm_max_ss(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions

See Exceptions Type 3.



MFENCE—Memory Fence
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MFENCE—Memory Fence

Instruction Operand Encoding

Description

Performs a serializing operation on all load-from-memory and store-to-memory instructions that were issued prior 
the MFENCE instruction. This serializing operation guarantees that every load and store instruction that precedes 
the MFENCE instruction in program order becomes globally visible before any load or store instruction that follows 
the MFENCE instruction.1 The MFENCE instruction is ordered with respect to all load and store instructions, other 
MFENCE instructions, any LFENCE and SFENCE instructions, and any serializing instructions (such as the CPUID 
instruction). MFENCE does not serialize the instruction stream.

Weakly ordered memory types can be used to achieve higher processor performance through such techniques as 
out-of-order issue, speculative reads, write-combining, and write-collapsing. The degree to which a consumer of 
data recognizes or knows that the data is weakly ordered varies among applications and may be unknown to the 
producer of this data. The MFENCE instruction provides a performance-efficient way of ensuring load and store 
ordering between routines that produce weakly-ordered results and routines that consume that data.

Processors are free to fetch and cache data speculatively from regions of system memory that use the WB, WC, and 
WT memory types. This speculative fetching can occur at any time and is not tied to instruction execution. Thus, it 
is not ordered with respect to executions of the MFENCE instruction; data can be brought into the caches specula-
tively just before, during, or after the execution of an MFENCE instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Wait_On_Following_Loads_And_Stores_Until(preceding_loads_and_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_mfence(void)

Exceptions (All Modes of Operation)

#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AE /6 MFENCE NP Valid Valid Serializes load and store operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. A load instruction is considered to become globally visible when the value to be loaded into its destination register is determined.



MINPD—Return Minimum Packed Double-Precision Floating-Point Values
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MINPD—Return Minimum Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs an SIMD compare of the packed double-precision floating-point values in the first source operand and the 
second source operand and returns the minimum value for each pair of values to the destination operand. 
If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is 
returned. If a value in the second operand is an SNaN, that SNaN is forwarded unchanged to the destination (that 
is, a QNaN version of the SNaN is not returned). 
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN 
or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source 
operand (from either the first or second operand) be returned, the action of MINPD can be emulated using a 
sequence of instructions, such as, a comparison followed by AND, ANDN and OR. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.

Operation

MIN(SRC1, SRC2)

{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST Å SRC2;

ELSE IF (SRC1 = SNaN) THEN DEST Å SRC2; FI;

ELSE IF (SRC2 = SNaN) THEN DEST Å SRC2; FI;

ELSE IF (SRC1 < SRC2) THEN DEST Å SRC1;

ELSE DEST Å SRC2; 

FI; 

}

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 5D /r

MINPD xmm1, xmm2/m128

RM V/V SSE2 Return the minimum double-precision 
floating-point values between xmm2/m128 
and xmm1.

VEX.NDS.128.66.0F.WIG 5D /r

VMINPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the minimum double-precision floating-
point values between xmm2 and xmm3/mem.

VEX.NDS.256.66.0F.WIG 5D /r

VMINPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the minimum packed double-precision 
floating-point values between ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA



MINPD—Return Minimum Packed Double-Precision Floating-Point Values
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MINPD (128-bit Legacy SSE version)

DEST[63:0] Å MIN(SRC1[63:0], SRC2[63:0])

DEST[127:64] Å MIN(SRC1[127:64], SRC2[127:64])

DEST[VLMAX-1:128] (Unmodified)

VMINPD (VEX.128 encoded version)

DEST[63:0] Å MIN(SRC1[63:0], SRC2[63:0])

DEST[127:64] Å MIN(SRC1[127:64], SRC2[127:64])

DEST[VLMAX-1:128] Å 0

VMINPD (VEX.256 encoded version)

DEST[63:0] Å MIN(SRC1[63:0], SRC2[63:0])

DEST[127:64] Å MIN(SRC1[127:64], SRC2[127:64])

DEST[191:128] Å MIN(SRC1[191:128], SRC2[191:128])

DEST[255:192] Å MIN(SRC1[255:192], SRC2[255:192])

Intel C/C++ Compiler Intrinsic Equivalent

MINPD:  __m128d _mm_min_pd(__m128d a, __m128d b);

VMINPD:  __m256d _mm256_min_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions

See Exceptions Type 2.



MINPS—Return Minimum Packed Single-Precision Floating-Point Values
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MINPS—Return Minimum Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs an SIMD compare of the packed single-precision floating-point values in the first source operand and the 
second source operand and returns the minimum value for each pair of values to the destination operand. 
If the values being compared are both 0.0s (of either sign), the value in the second operand (source operand) is 
returned. If a value in the second operand is an SNaN, that SNaN is forwarded unchanged to the destination (that 
is, a QNaN version of the SNaN is not returned). 
If only one value is a NaN (SNaN or QNaN) for this instruction, the second operand (source operand), either a NaN 
or a valid floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source 
operand (from either the first or second operand) be returned, the action of MINPS can be emulated using a 
sequence of instructions, such as, a comparison followed by AND, ANDN and OR. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

MIN(SRC1, SRC2)

{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST Å SRC2;

ELSE IF (SRC1 = SNaN) THEN DEST Å SRC2; FI;

ELSE IF (SRC2 = SNaN) THEN DEST Å SRC2; FI;

ELSE IF (SRC1 < SRC2) THEN DEST Å SRC1;

ELSE DEST Å SRC2; 

FI; 

}

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 5D /r

MINPS xmm1, xmm2/m128

RM V/V SSE Return the minimum single-precision floating-
point values between xmm2/m128 and 
xmm1.

VEX.NDS.128.0F.WIG 5D /r

VMINPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the minimum single-precision floating-
point values between xmm2 and xmm3/mem.

VEX.NDS.256.0F.WIG 5D /r

VMINPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the minimum single double-precision 
floating-point values between ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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MINPS (128-bit Legacy SSE version)

DEST[31:0] Å MIN(SRC1[31:0], SRC2[31:0])

DEST[63:32] Å MIN(SRC1[63:32], SRC2[63:32])

DEST[95:64] Å MIN(SRC1[95:64], SRC2[95:64])

DEST[127:96] Å MIN(SRC1[127:96], SRC2[127:96])

DEST[VLMAX-1:128] (Unmodified)

VMINPS (VEX.128 encoded version)

DEST[31:0] Å MIN(SRC1[31:0], SRC2[31:0])

DEST[63:32] Å MIN(SRC1[63:32], SRC2[63:32])

DEST[95:64] Å MIN(SRC1[95:64], SRC2[95:64])

DEST[127:96] Å MIN(SRC1[127:96], SRC2[127:96])

DEST[VLMAX-1:128] Å 0

VMINPS (VEX.256 encoded version)

DEST[31:0] Å MIN(SRC1[31:0], SRC2[31:0])

DEST[63:32] Å MIN(SRC1[63:32], SRC2[63:32])

DEST[95:64] Å MIN(SRC1[95:64], SRC2[95:64])

DEST[127:96] Å MIN(SRC1[127:96], SRC2[127:96])

DEST[159:128] Å MIN(SRC1[159:128], SRC2[159:128])

DEST[191:160] Å MIN(SRC1[191:160], SRC2[191:160])

DEST[223:192] Å MIN(SRC1[223:192], SRC2[223:192])

DEST[255:224] Å MIN(SRC1[255:224], SRC2[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

MINPS:  __m128d _mm_min_ps(__m128d a, __m128d b);

VMINPS:  __m256 _mm256_min_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions

See Exceptions Type 2.
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MINSD—Return Minimum Scalar Double-Precision Floating-Point Value

Instruction Operand Encoding

Description

Compares the low double-precision floating-point values in the first source operand and the second source 
operand, and returns the minimum value to the low quadword of the destination operand. When the source 
operand is a memory operand, only the 64 bits are accessed. The high quadword of the destination operand is 
copied from the same bits in the first source operand. 
If the values being compared are both 0.0s (of either sign), the value in the second source operand is returned. If 
a value in the second source operand is an SNaN, that SNaN is returned unchanged to the destination (that is, a 
QNaN version of the SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source operand, either a NaN or a valid 
floating-point value, is written to the result. If instead of this behavior, it is required that the NaN source operand 
(from either the first or second source) be returned, the action of MINSD can be emulated using a sequence of 
instructions, such as, a comparison followed by AND, ANDN and OR. 
The second source operand can be an XMM register or a 64-bit memory location. The first source and destination 
operands are XMM registers. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (VLMAX-1:64) of the 
corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied from corresponding bits in the 
first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

MIN(SRC1, SRC2)

{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST Å SRC2;

ELSE IF (SRC1 = SNaN) THEN DEST Å SRC2; FI;

ELSE IF SRC2 = SNaN) THEN DEST Å SRC2; FI;

ELSE IF (SRC1 < SRC2) THEN DEST Å SRC1;

ELSE DEST Å SRC2; 

FI; 

}

MINSD (128-bit Legacy SSE version)

DEST[63:0] Å MIN(SRC1[63:0], SRC2[63:0])

DEST[VLMAX-1:64] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 5D /r

MINSD xmm1, xmm2/m64

RM V/V SSE2 Return the minimum scalar double-precision 
floating-point value between xmm2/mem64 

and xmm1.

VEX.NDS.LIG.F2.0F.WIG 5D /r

VMINSD xmm1, xmm2, xmm3/m64

RVM V/V AVX Return the minimum scalar double precision 
floating-point value between xmm3/mem64 
and xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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MINSD (VEX.128 encoded version)

DEST[63:0] Å MIN(SRC1[63:0], SRC2[63:0])

DEST[127:64] Å SRC1[127:64]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

MINSD:  __m128d _mm_min_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions

See Exceptions Type 3.
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MINSS—Return Minimum Scalar Single-Precision Floating-Point Value 

Instruction Operand Encoding

Description

Compares the low single-precision floating-point values in the first source operand and the second source operand 
and returns the minimum value to the low doubleword of the destination operand.
If the values being compared are both 0.0s (of either sign), the value in the second source operand is returned. If 
a value in the second operand is an SNaN, that SNaN is returned unchanged to the destination (that is, a QNaN 
version of the SNaN is not returned).
If only one value is a NaN (SNaN or QNaN) for this instruction, the second source operand, either a NaN or a valid 
floating-point value, is written to the result. If instead of this behavior, it is required that the NaN in either source 
operand be returned, the action of MINSD can be emulated using a sequence of instructions, such as, a comparison 
followed by AND, ANDN and OR. 
The second source operand can be an XMM register or a 32-bit memory location. The first source and destination 
operands are XMM registers. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (VLMAX-1:32) of the 
corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied from corresponding bits in the 
first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

MIN(SRC1, SRC2)

{

IF ((SRC1 = 0.0) and (SRC2 = 0.0)) THEN DEST Å SRC2;

ELSE IF (SRC1 = SNaN) THEN DEST Å SRC2; FI;

ELSE IF SRC2 = SNaN) THEN DEST Å SRC2; FI;

ELSE IF (SRC1 < SRC2) THEN DEST Å SRC1;

ELSE DEST Å SRC2; 

FI; 

}

MINSS (128-bit Legacy SSE version)

DEST[31:0] Å MIN(SRC1[31:0], SRC2[31:0])

DEST[VLMAX-1:32] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 5D /r

MINSS xmm1, xmm2/m32

RM V/V SSE Return the minimum scalar single-precision 
floating-point value between xmm2/mem32 

and xmm1.

VEX.NDS.LIG.F3.0F.WIG 5D /r

VMINSS xmm1,xmm2, xmm3/m32

RVM V/V AVX Return the minimum scalar single precision 
floating-point value between xmm3/mem32 
and xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VMINSS (VEX.128 encoded version)

DEST[31:0] Å MIN(SRC1[31:0], SRC2[31:0])

DEST[127:32] Å SRC1[127:32]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

MINSS:  __m128d _mm_min_ss(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid (including QNaN source operand), Denormal.

Other Exceptions

See Exceptions Type 3.
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MONITOR—Set Up Monitor Address

Instruction Operand Encoding

Description

The MONITOR instruction arms address monitoring hardware using an address specified in EAX (the address range 
that the monitoring hardware checks for store operations can be determined by using CPUID). A store to an 
address within the specified address range triggers the monitoring hardware. The state of monitor hardware is 
used by MWAIT. 

The content of EAX is an effective address (in 64-bit mode, RAX is used). By default, the DS segment is used to 
create a linear address that is monitored. Segment overrides can be used.

ECX and EDX are also used. They communicate other information to MONITOR. ECX specifies optional extensions. 
EDX specifies optional hints; it does not change the architectural behavior of the instruction. For the Pentium 4 
processor (family 15, model 3), no extensions or hints are defined. Undefined hints in EDX are ignored by the 
processor; undefined extensions in ECX raises a general protection fault.

The address range must use memory of the write-back type. Only write-back memory will correctly trigger the 
monitoring hardware. Additional information on determining what address range to use in order to prevent false 
wake-ups is described in Chapter 8, “Multiple-Processor Management” of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A.

The MONITOR instruction is ordered as a load operation with respect to other memory transactions. The instruction 
is subject to the permission checking and faults associated with a byte load. Like a load, MONITOR sets the A-bit 
but not the D-bit in page tables. 

CPUID.01H:ECX.MONITOR[bit 3] indicates the availability of MONITOR and MWAIT in the processor. When set, 
MONITOR may be executed only at privilege level 0 (use at any other privilege level results in an invalid-opcode 
exception). The operating system or system BIOS may disable this instruction by using the IA32_MISC_ENABLE 
MSR; disabling MONITOR clears the CPUID feature flag and causes execution to generate an invalid-opcode excep-
tion. 

The instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

MONITOR sets up an address range for the monitor hardware using the content of EAX (RAX in 64-bit mode) as an 
effective address and puts the monitor hardware in armed state. Always use memory of the write-back caching 
type. A store to the specified address range will trigger the monitor hardware. The content of ECX and EDX are 
used to communicate other information to the monitor hardware.

Intel C/C++ Compiler Intrinsic Equivalent

MONITOR: void _mm_monitor(void const *p, unsigned extensions,unsigned hints)

Numeric Exceptions

None

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 C8 MONITOR NP Valid Valid Sets up a linear address range to be 
monitored by hardware and activates the 
monitor. The address range should be a write-
back memory caching type. The address is 
DS:EAX (DS:RAX in 64-bit mode).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Protected Mode Exceptions

#GP(0) If the value in EAX is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.
If ECX ≠ 0.

#SS(0) If the value in EAX is outside the SS segment limit.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If current privilege level is not 0.

Real Address Mode Exceptions

#GP If the CS, DS, ES, FS, or GS register is used to access memory and the value in EAX is outside 
of the effective address space from 0 to FFFFH.
If ECX ≠ 0.

#SS If the SS register is used to access memory and the value in EAX is outside of the effective 
address space from 0 to FFFFH.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

Virtual 8086 Mode Exceptions

#UD The MONITOR instruction is not recognized in virtual-8086 mode (even if 
CPUID.01H:ECX.MONITOR[bit 3] = 1).

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the linear address of the operand in the CS, DS, ES, FS, or GS segment is in a non-canonical 
form.
If RCX ≠ 0.

#SS(0) If the SS register is used to access memory and the value in EAX is in a non-canonical form.
#PF(fault-code) For a page fault.
#UD If the current privilege level is not 0.

If CPUID.01H:ECX.MONITOR[bit 3] = 0.
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MOV—Move

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

88 /r MOV r/m8,r8 MR Valid Valid Move r8 to r/m8.

REX + 88 /r MOV r/m8
***,

r8
*** MR Valid N.E. Move r8 to r/m8.

89 /r MOV r/m16,r16 MR Valid Valid Move r16 to r/m16.

89 /r MOV r/m32,r32 MR Valid Valid Move r32 to r/m32.

REX.W + 89 /r MOV r/m64,r64 MR Valid N.E. Move r64 to r/m64.

8A /r MOV r8,r/m8 RM Valid Valid Move r/m8 to r8.

REX + 8A /r MOV r8***,r/m8*** RM Valid N.E. Move r/m8 to r8.

8B /r MOV r16,r/m16 RM Valid Valid Move r/m16 to r16.

8B /r MOV r32,r/m32 RM Valid Valid Move r/m32 to r32.

REX.W + 8B /r MOV r64,r/m64 RM Valid N.E. Move r/m64 to r64.

8C /r MOV r/m16,Sreg** MR Valid Valid Move segment register to r/m16.

REX.W + 8C /r MOV r/m64,Sreg** MR Valid Valid Move zero extended 16-bit segment register 
to r/m64.

8E /r MOV Sreg,r/m16** RM Valid Valid Move r/m16 to segment register.

REX.W + 8E /r MOV Sreg,r/m64** RM Valid Valid Move lower 16 bits of r/m64 to segment 
register.

A0 MOV AL,moffs8* FD Valid Valid Move byte at (seg:offset) to AL.

REX.W + A0 MOV AL,moffs8* FD  Valid N.E. Move byte at (offset) to AL.

A1 MOV AX,moffs16* FD Valid Valid Move word at (seg:offset) to AX.

A1 MOV EAX,moffs32* FD Valid Valid Move doubleword at (seg:offset) to EAX.

REX.W + A1 MOV RAX,moffs64* FD Valid N.E. Move quadword at (offset) to RAX.

A2 MOV moffs8,AL TD  Valid Valid Move AL to (seg:offset).

REX.W + A2 MOV moffs8
***,AL TD Valid N.E. Move AL to (offset).

A3 MOV moffs16*,AX TD Valid Valid Move AX to (seg:offset).

A3 MOV moffs32*,EAX TD Valid Valid Move EAX to (seg:offset).

REX.W + A3 MOV moffs64*,RAX TD Valid N.E. Move RAX to (offset).

B0+ rb ib MOV r8, imm8 OI Valid Valid Move imm8 to r8.

REX + B0+ rb ib MOV r8***
, imm8 OI Valid N.E. Move imm8 to r8.

B8+ rw iw MOV r16, imm16 OI Valid Valid Move imm16 to r16.

B8+ rd id MOV r32, imm32 OI Valid Valid Move imm32 to r32.

REX.W + B8+ rd io MOV r64, imm64 OI Valid N.E. Move imm64 to r64.

C6 /0 ib MOV r/m8, imm8 MI Valid Valid Move imm8 to r/m8.

REX + C6 /0 ib MOV r/m8***, imm8 MI Valid N.E. Move imm8 to r/m8.

C7 /0 iw MOV r/m16, imm16 MI Valid Valid Move imm16 to r/m16.

C7 /0 id MOV r/m32, imm32 MI Valid Valid Move imm32 to r/m32.

REX.W + C7 /0 io MOV r/m64, imm32 MI Valid N.E. Move imm32 sign extended to 64-bits to 
r/m64.
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Instruction Operand Encoding

Description

Copies the second operand (source operand) to the first operand (destination operand). The source operand can be 
an immediate value, general-purpose register, segment register, or memory location; the destination register can 
be a general-purpose register, segment register, or memory location. Both operands must be the same size, which 
can be a byte, a word, a doubleword, or a quadword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results in an invalid opcode excep-
tion (#UD). To load the CS register, use the far JMP, CALL, or RET instruction.

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source operand must be a valid 
segment selector. In protected mode, moving a segment selector into a segment register automatically causes the 
segment descriptor information associated with that segment selector to be loaded into the hidden (shadow) part 
of the segment register. While loading this information, the segment selector and segment descriptor information 
is validated (see the “Operation” algorithm below). The segment descriptor data is obtained from the GDT or LDT 
entry for the specified segment selector. 

A NULL segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS registers without causing 
a protection exception. However, any subsequent attempt to reference a segment whose corresponding segment 
register is loaded with a NULL value causes a general protection exception (#GP) and no memory reference occurs.

Loading the SS register with a MOV instruction inhibits all interrupts until after the execution of the next instruc-
tion. This operation allows a stack pointer to be loaded into the ESP register with the next instruction (MOV ESP, 
stack-pointer value) before an interrupt occurs1. Be aware that the LSS instruction offers a more efficient 
method of loading the SS and ESP registers.

When operating in 32-bit mode and moving data between a segment register and a general-purpose register, the 
32-bit IA-32 processors do not require the use of the 16-bit operand-size prefix (a byte with the value 66H) with 

NOTES:

* The moffs8, moffs16, moffs32 and moffs64 operands specify a simple offset relative to the segment base, where 8, 16, 32 and 64 
refer to the size of the data. The address-size attribute of the instruction determines the size of the offset, either 16, 32 or 64 
bits.

** In 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction (see the following “Description” sec-
tion for further information).

***In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA

FD AL/AX/EAX/RAX Moffs NA NA

TD Moffs (w) AL/AX/EAX/RAX NA NA

OI opcode + rd (w) imm8/16/32/64 NA NA

MI ModRM:r/m (w) imm8/16/32/64 NA NA

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after a MOV SS instruction, the break-
point may not be triggered. However, in a sequence of instructions that load the SS register, only the first instruction in the 
sequence is guaranteed to delay an interrupt.

In the following sequence, interrupts may be recognized before MOV ESP, EBP executes:

MOV SS, EDX
MOV SS, EAX
MOV ESP, EBP
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this instruction, but most assemblers will insert it if the standard form of the instruction is used (for example, MOV 
DS, AX). The processor will execute this instruction correctly, but it will usually require an extra clock. With most 
assemblers, using the instruction form MOV DS, EAX will avoid this unneeded 66H prefix. When the processor 
executes the instruction with a 32-bit general-purpose register, it assumes that the 16 least-significant bits of the 
general-purpose register are the destination or source operand. If the register is a destination operand, the 
resulting value in the two high-order bytes of the register is implementation dependent. For the Pentium 4, Intel 
Xeon, and P6 family processors, the two high-order bytes are filled with zeros; for earlier 32-bit IA-32 processors, 
the two high order bytes are undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the 
beginning of this section for encoding data and limits.

Operation

DEST ← SRC;

Loading a segment register while in protected mode results in special checks and actions, as described in the 
following listing. These checks are performed on the segment selector and the segment descriptor to which it 
points.

IF SS is loaded

THEN

IF segment selector is NULL

THEN #GP(0); FI;

IF segment selector index is outside descriptor table limits 

or segment selector's RPL ≠ CPL

or segment is not a writable data segment
or DPL ≠ CPL

THEN #GP(selector); FI;

IF segment not marked present 

THEN #SS(selector); 

ELSE

SS ← segment selector;

SS ← segment descriptor; FI;

FI;

IF DS, ES, FS, or GS is loaded with non-NULL selector

THEN

IF segment selector index is outside descriptor table limits

or segment is not a data or readable code segment

or ((segment is a data or nonconforming code segment)

or ((RPL > DPL) and (CPL > DPL))

THEN #GP(selector); FI;

IF segment not marked present

THEN #NP(selector);

ELSE

SegmentRegister ← segment selector;

SegmentRegister ← segment descriptor; FI;

FI;

IF DS, ES, FS, or GS is loaded with NULL selector

THEN

SegmentRegister ← segment selector;

SegmentRegister ← segment descriptor;

FI;
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Flags Affected

None.

Protected Mode Exceptions

#GP(0) If attempt is made to load SS register with NULL segment selector.
If the destination operand is in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#GP(selector) If segment selector index is outside descriptor table limits. 
If the SS register is being loaded and the segment selector's RPL and the segment descriptor’s 
DPL are not equal to the CPL. 
If the SS register is being loaded and the segment pointed to is a 
non-writable data segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is not a data or 
readable code segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is a data or 
nonconforming code segment, but both the RPL and the CPL are greater than the DPL.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#SS(selector) If the SS register is being loaded and the segment pointed to is marked not present.
#NP If the DS, ES, FS, or GS register is being loaded and the segment pointed to is marked not 

present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.
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64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
If an attempt is made to load SS register with NULL segment selector when CPL = 3.
If an attempt is made to load SS register with NULL segment selector when CPL < 3 and CPL 
≠ RPL.

#GP(selector) If segment selector index is outside descriptor table limits. 
If the memory access to the descriptor table is non-canonical.
If the SS register is being loaded and the segment selector's RPL and the segment descriptor’s 
DPL are not equal to the CPL.
If the SS register is being loaded and the segment pointed to is a nonwritable data segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is not a data or 
readable code segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is a data or 
nonconforming code segment, but both the RPL and the CPL are greater than the DPL.

#SS(0) If the stack address is in a non-canonical form.
#SS(selector) If the SS register is being loaded and the segment pointed to is marked not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If attempt is made to load the CS register.

If the LOCK prefix is used.
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MOV—Move to/from Control Registers

Instruction Operand Encoding

Description

Moves the contents of a control register (CR0, CR2, CR3, CR4, or CR8) to a general-purpose register or the 
contents of a general purpose register to a control register. The operand size for these instructions is always 32 bits 
in non-64-bit modes, regardless of the operand-size attribute. (See “Control Registers” in Chapter 2 of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for a detailed description of the flags and 
fields in the control registers.) This instruction can be executed only when the current privilege level is 0.

At the opcode level, the reg field within the ModR/M byte specifies which of the control registers is loaded or read. 
The 2 bits in the mod field are ignored. The r/m field specifies the general-purpose register loaded or read. 
Attempts to reference CR1, CR5, CR6, CR7, and CR9–CR15 result in undefined opcode (#UD) exceptions.

When loading control registers, programs should not attempt to change the reserved bits; that is, always set 
reserved bits to the value previously read. An attempt to change CR4's reserved bits will cause a general protection 
fault. Reserved bits in CR0 and CR3 remain clear after any load of those registers; attempts to set them have no 
impact. On Pentium 4, Intel Xeon and P6 family processors, CR0.ET remains set after any load of CR0; attempts to 
clear this bit have no impact.

In certain cases, these instructions have the side effect of invalidating entries in the TLBs and the paging-structure 
caches. See Section 4.10.4.1, “Operations that Invalidate TLBs and Paging-Structure Caches,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A for details.

The following side effects are implementation-specific for the Pentium 4, Intel Xeon, and P6 processor family: when 
modifying PE or PG in register CR0, or PSE or PAE in register CR4, all TLB entries are flushed, including global 
entries. Software should not depend on this functionality in all Intel 64 or IA-32 processors.

In 64-bit mode, the instruction’s default operation size is 64 bits. The REX.R prefix must be used to access CR8. Use 
of REX.B permits access to additional registers (R8-R15). Use of the REX.W prefix or 66H prefix is ignored. Use of 

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 20/r

MOV r32, CR0–CR7

MR N.E. Valid Move control register to r32.

0F 20/r

MOV r64, CR0–CR7

MR Valid N.E. Move extended control register to r64. 

REX.R + 0F 20 /0

MOV r64, CR8

MR Valid N.E. Move extended CR8 to r64.1

0F 22 /r

MOV CR0–CR7, r32

RM N.E. Valid Move r32 to control register.

0F 22 /r

MOV CR0–CR7, r64

RM Valid N.E. Move r64 to extended control register.

REX.R + 0F 22 /0

MOV CR8, r64

RM Valid N.E. Move r64 to extended CR8.1

NOTE:

1. MOV CR* instructions, except for MOV CR8, are serializing instructions. MOV CR8 is not 
architecturally defined as a serializing instruction. For more information, see Chapter 8 in Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA



MOV—Move to/from Control Registers

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-511

the REX.R prefix to specify a register other than CR8 causes an invalid-opcode exception. See the summary chart 
at the beginning of this section for encoding data and limits.

If CR4.PCIDE = 1, bit 63 of the source operand to MOV to CR3 determines whether the instruction invalidates 
entries in the TLBs and the paging-structure caches (see Section 4.10.4.1, “Operations that Invalidate TLBs and 
Paging-Structure Caches,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). The 
instruction does not modify bit 63 of CR3, which is reserved and always 0.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in 
VMX non-root operation.

Operation

DEST ← SRC;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
If an attempt is made to write invalid bit combinations in CR0 (such as setting the PG flag to 1 
when the PE flag is set to 0, or setting the CD flag to 0 when the NW flag is set to 1).
If an attempt is made to write a 1 to any reserved bit in CR4.
If an attempt is made to write 1 to CR4.PCIDE.
If any of the reserved bits are set in the page-directory pointers table (PDPT) and the loading 
of a control register causes the PDPT to be loaded into the processor.

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, or CR7.

Real-Address Mode Exceptions

#GP If an attempt is made to write a 1 to any reserved bit in CR4.
If an attempt is made to write 1 to CR4.PCIDE.
If an attempt is made to write invalid bit combinations in CR0 (such as setting the PG flag to 1 
when the PE flag is set to 0).

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, or CR7.

Virtual-8086 Mode Exceptions

#GP(0) These instructions cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions

#GP(0) If the current privilege level is not 0.
If an attempt is made to write invalid bit combinations in CR0 (such as setting the PG flag to 1 
when the PE flag is set to 0, or setting the CD flag to 0 when the NW flag is set to 1).
If an attempt is made to change CR4.PCIDE from 0 to 1 while CR3[11:0] ≠ 000H.
If an attempt is made to clear CR0.PG[bit 31] while CR4.PCIDE = 1.
If an attempt is made to write a 1 to any reserved bit in CR3.
If an attempt is made to leave IA-32e mode by clearing CR4.PAE[bit 5].

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, or CR7.
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64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.
If an attempt is made to write invalid bit combinations in CR0 (such as setting the PG flag to 1 
when the PE flag is set to 0, or setting the CD flag to 0 when the NW flag is set to 1).
If an attempt is made to change CR4.PCIDE from 0 to 1 while CR3[11:0] ≠ 000H.
If an attempt is made to clear CR0.PG[bit 31].
If an attempt is made to write a 1 to any reserved bit in CR4.
If an attempt is made to write a 1 to any reserved bit in CR8.
If an attempt is made to write a 1 to any reserved bit in CR3.
If an attempt is made to leave IA-32e mode by clearing CR4.PAE[bit 5].

#UD If the LOCK prefix is used.
If an attempt is made to access CR1, CR5, CR6, or CR7.
If the REX.R prefix is used to specify a register other than CR8.
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MOV—Move to/from Debug Registers

Instruction Operand Encoding

Description

Moves the contents of a debug register (DR0, DR1, DR2, DR3, DR4, DR5, DR6, or DR7) to a general-purpose 
register or vice versa. The operand size for these instructions is always 32 bits in non-64-bit modes, regardless of 
the operand-size attribute. (See Section 17.2, “Debug Registers”, of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A, for a detailed description of the flags and fields in the debug registers.)

The instructions must be executed at privilege level 0 or in real-address mode.

When the debug extension (DE) flag in register CR4 is clear, these instructions operate on debug registers in a 
manner that is compatible with Intel386 and Intel486 processors. In this mode, references to DR4 and DR5 refer 
to DR6 and DR7, respectively. When the DE flag in CR4 is set, attempts to reference DR4 and DR5 result in an 
undefined opcode (#UD) exception. (The CR4 register was added to the IA-32 Architecture beginning with the 
Pentium processor.)

At the opcode level, the reg field within the ModR/M byte specifies which of the debug registers is loaded or read. 
The two bits in the mod field are ignored. The r/m field specifies the general-purpose register loaded or read.

In 64-bit mode, the instruction’s default operation size is 64 bits. Use of the REX.B prefix permits access to addi-
tional registers (R8–R15). Use of the REX.W or 66H prefix is ignored. Use of the REX.R prefix causes an invalid-
opcode exception. See the summary chart at the beginning of this section for encoding data and limits. 

Operation

IF ((DE = 1) and (SRC or DEST = DR4 or DR5))
THEN

#UD;
ELSE 

DEST ← SRC;

FI;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 21/r

MOV r32, DR0–DR7

MR N.E. Valid Move debug register to r32.

0F 21/r

MOV r64, DR0–DR7

MR Valid N.E. Move extended debug register to r64. 

0F 23 /r

MOV DR0–DR7, r32

RM N.E. Valid Move r32 to debug register.

0F 23 /r

MOV DR0–DR7, r64

RM Valid N.E. Move r64 to extended debug register. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction is executed involving DR4 or 

DR5.
If the LOCK prefix is used.

#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.

Real-Address Mode Exceptions

#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction is executed involving DR4 or 
DR5. 
If the LOCK prefix is used.

#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.

Virtual-8086 Mode Exceptions

#GP(0) The debug registers cannot be loaded or read when in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.
If an attempt is made to write a 1 to any of bits 63:32 in DR6.
If an attempt is made to write a 1 to any of bits 63:32 in DR7.

#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction is executed involving DR4 or 
DR5.
If the LOCK prefix is used.
If the REX.R prefix is used.

#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.
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MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Moves 2 or 4 double-precision floating-point values from the source operand (second operand) to the destination 
operand (first operand). This instruction can be used to load an XMM or YMM register from an 128-bit or 256-bit 
memory location, to store the contents of an XMM or YMM register into a 128-bit or 256-bit memory location, or to 
move data between two XMM or two YMM registers. When the source or destination operand is a memory operand, 
the operand must be aligned on a 16-byte (128-bit version) or 32-byte (VEX.256 encoded version) boundary or a 
general-protection exception (#GP) will be generated. 

To move double-precision floating-point values to and from unaligned memory locations, use the (V)MOVUPD 
instruction.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit versions: Moves 128 bits of packed double-precision floating-point values from the source operand (second 
operand) to the destination operand (first operand). This instruction can be used to load an XMM register from a 
128-bit memory location, to store the contents of an XMM register into a 128-bit memory location, or to move data 
between two XMM registers. When the source or destination operand is a memory operand, the operand must be 
aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated. To move single-precision 
floating-point values to and from unaligned memory locations, use the VMOVUPD instruction.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged. 
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register destination are zeroed. 
VEX.256 encoded version: Moves 256 bits of packed double-precision floating-point values from the source 
operand (second operand) to the destination operand (first operand). This instruction can be used to load a YMM 
register from a 256-bit memory location, to store the contents of a YMM register into a 256-bit memory location, 
or to move data between two YMM registers. When the source or destination operand is a memory operand, the 
operand must be aligned on a 32-byte boundary or a general-protection exception (#GP) will be generated. To 
move single-precision floating-point values to and from unaligned memory locations, use the VMOVUPD instruc-
tion.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 28 /r

MOVAPD xmm1, xmm2/m128

RM V/V SSE2 Move packed double-precision floating-point 
values from xmm2/m128 to xmm1.

66 0F 29 /r

MOVAPD xmm2/m128, xmm1

MR V/V SSE2 Move packed double-precision floating-point 
values from xmm1 to xmm2/m128.

VEX.128.66.0F.WIG 28 /r

VMOVAPD xmm1, xmm2/m128

RM V/V AVX Move aligned packed double-precision floating-
point values from xmm2/mem to xmm1.

VEX.128.66.0F.WIG 29 /r

VMOVAPD xmm2/m128, xmm1

MR V/V AVX Move aligned packed double-precision floating-
point values from xmm1 to xmm2/mem.

VEX.256.66.0F.WIG 28 /r

VMOVAPD ymm1, ymm2/m256

RM V/V AVX Move aligned packed double-precision floating-
point values from ymm2/mem to ymm1.

VEX.256.66.0F.WIG 29 /r

VMOVAPD ymm2/m256, ymm1

MR V/V AVX Move aligned packed double-precision floating-
point values from ymm1 to ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

MOVAPD (128-bit load- and register-copy- form Legacy SSE version)

DEST[127:0] Å SRC[127:0]

DEST[VLMAX-1:128] (Unmodified)

(V)MOVAPD (128-bit store-form version)

DEST[127:0] Å SRC[127:0]

VMOVAPD (VEX.128 encoded version)

DEST[127:0] Å SRC[127:0]

DEST[VLMAX-1:128] Å 0

VMOVAPD (VEX.256 encoded version)

DEST[255:0] Å SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVAPD:  __m128d _mm_load_pd (double const * p);

MOVAPD:  _mm_store_pd(double * p, __m128d a);

VMOVAPD:  __m256d _mm256_load_pd (double const * p);

VMOVAPD:  _mm256_store_pd(double * p, __m256d a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 1.SSE2; additionally
#UD If VEX.vvvv != 1111B.
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MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Moves 4 or8 single-precision floating-point values from the source operand (second operand) to the destination 
operand (first operand). This instruction can be used to load an XMM or YMM register from an 128-bit or 256-bit 
memory location, to store the contents of an XMM or YMM register into a 128-bit or 256-bit memory location, or to 
move data between two XMM or two YMM registers. When the source or destination operand is a memory operand, 
the operand must be aligned on a 16-byte (128-bit version) or 32-byte (VEX.256 encoded version) boundary or a 
general-protection exception (#GP) will be generated. 

To move single-precision floating-point values to and from unaligned memory locations, use the (V)MOVUPS 
instruction.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
128-bit versions:
Moves 128 bits of packed single-precision floating-point values from the source operand (second operand) to the 
destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory 
location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two 
XMM registers. When the source or destination operand is a memory operand, the operand must be aligned on a 
16-byte boundary or a general-protection exception (#GP) will be generated. To move single-precision floating-
point values to and from unaligned memory locations, use the VMOVUPS instruction.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.
VEX.256 encoded version:
Moves 256 bits of packed single-precision floating-point values from the source operand (second operand) to the 
destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory 
location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM 
registers. 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 28 /r

MOVAPS xmm1, xmm2/m128

RM V/V SSE Move packed single-precision floating-point 
values from xmm2/m128 to xmm1.

0F 29 /r

MOVAPS xmm2/m128, xmm1

MR V/V SSE Move packed single-precision floating-point 
values from xmm1 to xmm2/m128.

VEX.128.0F.WIG 28 /r

VMOVAPS xmm1, xmm2/m128

RM V/V AVX Move aligned packed single-precision floating-
point values from xmm2/mem to xmm1.

VEX.128.0F.WIG 29 /r

VMOVAPS xmm2/m128, xmm1

MR V/V AVX Move aligned packed single-precision floating-
point values from xmm1 to xmm2/mem.

VEX.256.0F.WIG 28 /r

VMOVAPS ymm1, ymm2/m256

RM V/V AVX Move aligned packed single-precision floating-
point values from ymm2/mem to ymm1.

VEX.256.0F.WIG 29 /r

VMOVAPS ymm2/m256, ymm1

MR V/V AVX Move aligned packed single-precision floating-
point values from ymm1 to ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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Operation

MOVAPS (128-bit load- and register-copy- form Legacy SSE version)

DEST[127:0] Å SRC[127:0]

DEST[VLMAX-1:128] (Unmodified)

(V)MOVAPS (128-bit store form)

DEST[127:0] Å SRC[127:0]

VMOVAPS (VEX.128 encoded version)

DEST[127:0] Å SRC[127:0]

DEST[VLMAX-1:128] Å 0

VMOVAPS (VEX.256 encoded version)

DEST[255:0] Å SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVAPS:  __m128 _mm_load_ps (float const * p);

MOVAPS:  _mm_store_ps(float * p, __m128 a);

VMOVAPS:  __m256 _mm256_load_ps (float const * p);

VMOVAPS:  _mm256_store_ps(float * p, __m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 1.SSE; additionally
#UD If VEX.vvvv != 1111B.
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MOVBE—Move Data After Swapping Bytes

Instruction Operand Encoding

Description

Performs a byte swap operation on the data copied from the second operand (source operand) and store the result 
in the first operand (destination operand). The source operand can be a general-purpose register, or memory loca-
tion; the destination register can be a general-purpose register, or a memory location; however, both operands can 
not be registers, and only one operand can be a memory location. Both operands must be the same size, which can 
be a word, a doubleword or quadword. 

The MOVBE instruction is provided for swapping the bytes on a read from memory or on a write to memory; thus 
providing support for converting little-endian values to big-endian format and vice versa.

In 64-bit mode, the instruction's default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the 
beginning of this section for encoding data and limits.

Operation

TEMP ← SRC

IF ( OperandSize = 16)
THEN

DEST[7:0] ← TEMP[15:8];

DEST[15:8] ← TEMP[7:0];

ELES IF ( OperandSize = 32) 

DEST[7:0] ← TEMP[31:24];

DEST[15:8] ← TEMP[23:16];

DEST[23:16] ← TEMP[15:8];

DEST[31:23] ← TEMP[7:0];

ELSE IF ( OperandSize = 64) 

DEST[7:0] ← TEMP[63:56];

DEST[15:8] ← TEMP[55:48];

DEST[23:16] ← TEMP[47:40];

DEST[31:24] ← TEMP[39:32];

DEST[39:32] ← TEMP[31:24];

DEST[47:40] ← TEMP[23:16];

DEST[55:48] ← TEMP[15:8];

DEST[63:56] ← TEMP[7:0];

FI;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 38 F0 /r MOVBE r16, m16 RM Valid Valid Reverse byte order in m16 and move to r16.

0F 38 F0 /r MOVBE r32, m32 RM Valid Valid Reverse byte order in m32 and move to r32.

REX.W + 0F 38 F0 /r MOVBE r64, m64 RM Valid N.E. Reverse byte order in m64 and move to r64. 

0F 38 F1 /r MOVBE m16, r16 MR Valid Valid Reverse byte order in r16 and move to m16.

0F 38 F1 /r MOVBE m32, r32 MR Valid Valid Reverse byte order in r32 and move to m32.

REX.W + 0F 38 F1 /r MOVBE m64, r64 MR Valid N.E. Reverse byte order in r64 and move to m64. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination operand is in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0.

If the LOCK prefix is used.
If REP (F3H) prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0.

If the LOCK prefix is used.
If REP (F3H) prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0.

If the LOCK prefix is used.
If REP (F3H) prefix is used.
If REPNE (F2H) prefix is used and CPUID.01H:ECX.SSE4_2[bit 20] = 0.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If CPUID.01H:ECX.MOVBE[bit 22] = 0.

If the LOCK prefix is used.
If REP (F3H) prefix is used.
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MOVD/MOVQ—Move Doubleword/Move Quadword

Instruction Operand Encoding

Description

Copies a doubleword from the source operand (second operand) to the destination operand (first operand). The 
source and destination operands can be general-purpose registers, MMX technology registers, XMM registers, or 
32-bit memory locations. This instruction can be used to move a doubleword to and from the low doubleword of an 
MMX technology register and a general-purpose register or a 32-bit memory location, or to and from the low 
doubleword of an XMM register and a general-purpose register or a 32-bit memory location. The instruction cannot 
be used to transfer data between MMX technology registers, between XMM registers, between general-purpose 
registers, or between memory locations.

When the destination operand is an MMX technology register, the source operand is written to the low doubleword 
of the register, and the register is zero-extended to 64 bits. When the destination operand is an XMM register, the 
source operand is written to the low doubleword of the register, and the register is zero-extended to 128 bits.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 6E /r

MOVD mm, r/m32

RM V/V MMX Move doubleword from r/m32 to mm.

REX.W + 0F 6E /r

MOVQ mm, r/m64

RM V/N.E. MMX Move quadword from r/m64 to mm.

0F 7E /r

MOVD r/m32, mm

MR V/V MMX Move doubleword from mm to r/m32.

REX.W + 0F 7E /r

MOVQ r/m64, mm

MR V/N.E. MMX Move quadword from mm to r/m64.

VEX.128.66.0F.W0 6E /

VMOVD xmm1, r32/m32

RM V/V AVX Move doubleword from r/m32 to xmm1.

VEX.128.66.0F.W1 6E /r

VMOVQ xmm1, r64/m64

RM V/N.E. AVX Move quadword from r/m64 to xmm1.

66 0F 6E /r

MOVD xmm, r/m32

RM V/V SSE2 Move doubleword from r/m32 to xmm.

66 REX.W 0F 6E /r

MOVQ xmm, r/m64

RM V/N.E. SSE2 Move quadword from r/m64 to xmm.

66 0F 7E /r

MOVD r/m32, xmm

MR V/V SSE2 Move doubleword from xmm register to 
r/m32.

 66 REX.W 0F 7E /r

MOVQ r/m64, xmm

MR V/N.E. SSE2 Move quadword from xmm register to r/m64.

VEX.128.66.0F.W0 7E /r

VMOVD r32/m32, xmm1

MR V/V AVX Move doubleword from xmm1 register to 
r/m32.

VEX.128.66.0F.W1 7E /r

VMOVQ r64/m64, xmm1

MR V/N.E. AVX Move quadword from xmm1 register to r/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the 
beginning of this section for encoding data and limits.

Operation

MOVD (when destination operand is MMX technology register)

DEST[31:0] ← SRC;

DEST[63:32] ← 00000000H;

MOVD (when destination operand is XMM register)

DEST[31:0] ← SRC;

DEST[127:32] ← 000000000000000000000000H;

DEST[VLMAX-1:128] (Unmodified)

MOVD (when source operand is MMX technology or XMM register)

DEST ← SRC[31:0];

VMOVD (VEX-encoded version when destination is an XMM register)

DEST[31:0] Å SRC[31:0]

DEST[VLMAX-1:32] Å 0

MOVQ (when destination operand is XMM register)

DEST[63:0] ← SRC[63:0];

DEST[127:64] ← 0000000000000000H;

DEST[VLMAX-1:128] (Unmodified)

MOVQ (when destination operand is r/m64)

DEST[63:0] ← SRC[63:0];

MOVQ (when source operand is XMM register or r/m64)

DEST ← SRC[63:0];

VMOVQ (VEX-encoded version when destination is an XMM register)

DEST[63:0] Å SRC[63:0]

DEST[VLMAX-1:64] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

MOVD: __m64 _mm_cvtsi32_si64 (int i )

MOVD: int _mm_cvtsi64_si32 ( __m64m ) 

MOVD: __m128i _mm_cvtsi32_si128 (int a) 

MOVD: int _mm_cvtsi128_si32 ( __m128i a)

MOVQ: __int64 _mm_cvtsi128_si64(__m128i); 

MOVQ: __m128i _mm_cvtsi64_si128(__int64);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 5; additionally
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#UD If VEX.L = 1.
If VEX.vvvv != 1111B.
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MOVDDUP—Move One Double-FP and Duplicate

Instruction Operand Encoding

Description

The linear address corresponds to the address of the least-significant byte of the referenced memory data. When a 
memory address is indicated, the 8 bytes of data at memory location m64 are loaded. When the register-register 
form of this operation is used, the lower half of the 128-bit source register is duplicated and copied into the 128-bit 
destination register. See Figure 3-24.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 12 /r

MOVDDUP xmm1, xmm2/m64

RM V/V SSE3 Move one double-precision floating-point 
value from the lower 64-bit operand in 
xmm2/m64 to xmm1 and duplicate.

VEX.128.F2.0F.WIG 12 /r

VMOVDDUP xmm1, xmm2/m64

RM V/V AVX Move double-precision floating-point values 
from xmm2/mem and duplicate into xmm1.

VEX.256.F2.0F.WIG 12 /r

VMOVDDUP ymm1, ymm2/m256

RM V/V AVX Move even index double-precision floating-
point values from ymm2/mem and duplicate 
each element into ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Figure 3-24.  MOVDDUP—Move One Double-FP and Duplicate

OM15997

xmm1[127:64]        xmm2/m64[63:0] xmm1[63:0]        xmm2/m64[63:0]

[63:0]

[127:64] [63:0]

MOVDDUP xmm1, xmm2/m64

RESULT:
xmm1

xmm2/m64
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Operation

IF (Source = m64) 

THEN 

(* Load instruction *)

xmm1[63:0] = m64;

xmm1[127:64] = m64; 

ELSE 

(* Move instruction *)

xmm1[63:0] = xmm2[63:0];

xmm1[127:64] = xmm2[63:0];

FI;

MOVDDUP (128-bit Legacy SSE version)

DEST[63:0] Å SRC[63:0]

DEST[127:64] Å SRC[63:0]

DEST[VLMAX-1:128] (Unmodified)

VMOVDDUP (VEX.128 encoded version)

DEST[63:0] Å SRC[63:0]

DEST[127:64] Å SRC[63:0]

DEST[VLMAX-1:128] Å 0

VMOVDDUP (VEX.256 encoded version)

DEST[63:0] Å SRC[63:0]

DEST[127:64] Å SRC[63:0]

DEST[191:128] Å SRC[191:128]

DEST[255:192] Å SRC[191:128]

Intel C/C++ Compiler Intrinsic Equivalent

MOVDDUP: __m128d _mm_movedup_pd(__m128d a)

MOVDDUP: __m128d _mm_loaddup_pd(double const * dp)

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 5; additionally
#UD If VEX.vvvv != 1111B.
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MOVDQA—Move Aligned Double Quadword

Instruction Operand Encoding

Description

128-bit versions:
Moves 128 bits of packed integer values from the source operand (second operand) to the destination operand 
(first operand). This instruction can be used to load an XMM register from a 128-bit memory location, to store the 
contents of an XMM register into a 128-bit memory location, or to move data between two XMM registers. 
When the source or destination operand is a memory operand, the operand must be aligned on a 16-byte boundary 
or a general-protection exception (#GP) will be generated. To move integer data to and from unaligned memory 
locations, use the VMOVDQU instruction.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.
VEX.256 encoded version:
Moves 256 bits of packed integer values from the source operand (second operand) to the destination operand 
(first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the 
contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers. 
When the source or destination operand is a memory operand, the operand must be aligned on a 32-byte boundary 
or a general-protection exception (#GP) will be generated. To move integer data to and from unaligned memory 
locations, use the VMOVDQU instruction.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 6F /r

MOVDQA xmm1, xmm2/m128

RM V/V SSE2 Move aligned double quadword from 
xmm2/m128 to xmm1.

66 0F 7F /r

MOVDQA xmm2/m128, xmm1

MR V/V SSE2 Move aligned double quadword from xmm1 to 
xmm2/m128.

VEX.128.66.0F.WIG 6F /r

VMOVDQA xmm1, xmm2/m128

RM V/V AVX Move aligned packed integer values from 
xmm2/mem to xmm1.

VEX.128.66.0F.WIG 7F /r

VMOVDQA xmm2/m128, xmm1

MR V/V AVX Move aligned packed integer values from 
xmm1 to xmm2/mem.

VEX.256.66.0F.WIG 6F /r

VMOVDQA ymm1, ymm2/m256

RM V/V AVX Move aligned packed integer values from 
ymm2/mem to ymm1.

VEX.256.66.0F.WIG 7F /r

VMOVDQA ymm2/m256, ymm1

MR V/V AVX Move aligned packed integer values from 
ymm1 to ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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Operation

MOVDQA (128-bit load- and register- form Legacy SSE version)

DEST[127:0] Å SRC[127:0]

DEST[VLMAX-1:128] (Unmodified)

(* #GP if SRC or DEST unaligned memory operand *)

(V)MOVDQA (128-bit store forms)

DEST[127:0] Å SRC[127:0]

VMOVDQA (VEX.128 encoded version)

DEST[127:0] Å SRC[127:0]

DEST[VLMAX-1:128] Å 0

VMOVDQA (VEX.256 encoded version)

DEST[255:0] Å SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVDQA: __m128i _mm_load_si128 ( __m128i *p)

MOVDQA: void _mm_store_si128 ( __m128i *p, __m128i a)

VMOVDQA: __m256i _mm256_load_si256 (__m256i * p);

VMOVDQA:  _mm256_store_si256(_m256i *p, __m256i a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 1.SSE2; additionally
#UD If VEX.vvvv != 1111B.
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MOVDQU—Move Unaligned Double Quadword

Instruction Operand Encoding

Description

128-bit versions:

Moves 128 bits of packed integer values from the source operand (second operand) to the destination operand 
(first operand). This instruction can be used to load an XMM register from a 128-bit memory location, to store the 
contents of an XMM register into a 128-bit memory location, or to move data between two XMM registers. When 
the source or destination operand is a memory operand, the operand may be unaligned on a 16-byte boundary 
without causing a general-protection exception (#GP) to be generated.1

To move a double quadword to or from memory locations that are known to be aligned on 16-byte boundaries, use 
the MOVDQA instruction.

While executing in 16-bit addressing mode, a linear address for a 128-bit data access that overlaps the end of a 16-
bit segment is not allowed and is defined as reserved behavior. A specific processor implementation may or may 
not generate a general-protection exception (#GP) in this situation, and the address that spans the end of the 
segment may or may not wrap around to the beginning of the segment.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
When the source or destination operand is a memory operand, the operand may be unaligned to any alignment 
without causing a general-protection exception (#GP) to be generated
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

VEX.256 encoded version: Moves 256 bits of packed integer values from the source operand (second operand) to 
the destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 6F /r

MOVDQU xmm1, xmm2/m128

RM V/V SSE2 Move unaligned double quadword from 
xmm2/m128 to xmm1.

F3 0F 7F /r

MOVDQU xmm2/m128, xmm1

MR V/V SSE2 Move unaligned double quadword from xmm1 
to xmm2/m128.

VEX.128.F3.0F.WIG 6F /r

VMOVDQU xmm1, xmm2/m128

RM V/V AVX Move unaligned packed integer values from 
xmm2/mem to xmm1.

VEX.128.F3.0F.WIG 7F /r

VMOVDQU xmm2/m128, xmm1

MR V/V AVX Move unaligned packed integer values from 
xmm1 to xmm2/mem.

VEX.256.F3.0F.WIG 6F /r

VMOVDQU ymm1, ymm2/m256

RM V/V AVX Move unaligned packed integer values from 
ymm2/mem to ymm1.

VEX.256.F3.0F.WIG 7F /r

VMOVDQU ymm2/m256, ymm1

MR V/V AVX Move unaligned packed integer values from 
ymm1 to ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

1. If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check exception (#AC) may or may not be 
generated (depending on processor implementation) when the operand is not aligned on an 8-byte boundary.
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location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM 
registers. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

MOVDQU load and register copy (128-bit Legacy SSE version)

DEST[127:0] Å SRC[127:0]

DEST[VLMAX-1:128] (Unmodified)

(V)MOVDQU 128-bit store-form versions

DEST[127:0] Å SRC[127:0]

VMOVDQU (VEX.128 encoded version)

DEST[127:0] Å SRC[127:0]

DEST[VLMAX-1:128] Å 0

VMOVDQU (VEX.256 encoded version)

DEST[255:0] Å SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVDQU: void _mm_storeu_si128 ( __m128i *p, __m128i a)

MOVDQU: __m128i _mm_loadu_si128 ( __m128i *p)

VMOVDQU:  __m256i _mm256_loadu_si256 (__m256i * p);

VMOVDQU:  _mm256_storeu_si256(_m256i *p, __m256i a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
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MOVDQ2Q—Move Quadword from XMM to MMX Technology Register

Instruction Operand Encoding

Description

Moves the low quadword from the source operand (second operand) to the destination operand (first operand). The 
source operand is an XMM register and the destination operand is an MMX technology register.

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack 
pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU 
floating-point exception is pending, the exception is handled before the MOVDQ2Q instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Operation

DEST ← SRC[63:0];

Intel C/C++ Compiler Intrinsic Equivalent

MOVDQ2Q: __m64 _mm_movepi64_pi64 ( __m128i a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM If CR0.TS[bit 3] = 1. 
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F2 0F D6 /r MOVDQ2Q mm, xmm RM Valid Valid Move low quadword from xmm to mmx 
register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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MOVHLPS— Move Packed Single-Precision Floating-Point Values High to Low

Instruction Operand Encoding

Description

This instruction cannot be used for memory to register moves.
128-bit two-argument form:

Moves two packed single-precision floating-point values from the high quadword of the second XMM argument 
(second operand) to the low quadword of the first XMM register (first argument). The high quadword of the desti-
nation operand is left unchanged. Bits (VLMAX-1:64) of the corresponding YMM destination register are unmodi-
fied.
128-bit three-argument form

Moves two packed single-precision floating-point values from the high quadword of the third XMM argument (third 
operand) to the low quadword of the destination (first operand). Copies the high quadword from the second XMM 
argument (second operand) to the high quadword of the destination (first operand). Bits (VLMAX-1:128) of the 
destination YMM register are zeroed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
If VMOVHLPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause 
an #UD exception.

Operation

MOVHLPS (128-bit two-argument form)

DEST[63:0] Å SRC[127:64]

DEST[VLMAX-1:64] (Unmodified)

VMOVHLPS (128-bit three-argument form)

DEST[63:0] Å SRC2[127:64]

DEST[127:64] Å SRC1[127:64]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

MOVHLPS: __m128 _mm_movehl_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

None.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 12 /r

MOVHLPS xmm1, xmm2

RM V/V SSE Move two packed single-precision floating-
point values from high quadword of xmm2 to 
low quadword of xmm1.

VEX.NDS.128.0F.WIG 12 /r

VMOVHLPS xmm1, xmm2, xmm3

RVM V/V AVX Merge two packed single-precision floating-
point values from high quadword of xmm3 
and low quadword of xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA



MOVHLPS— Move Packed Single-Precision Floating-Point Values High to Low

INSTRUCTION SET REFERENCE, A-M

3-532 Vol. 2A

Other Exceptions

See Exceptions Type 7; additionally
#UD If VEX.L= 1.



MOVHPD—Move High Packed Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-533

MOVHPD—Move High Packed Double-Precision Floating-Point Value

Instruction Operand Encoding

Description

This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:

Moves a double-precision floating-point value from the source 64-bit memory operand and stores it in the high 64-
bits of the destination XMM register. The lower 64bits of the XMM register are preserved. The upper 128-bits of the 
corresponding YMM destination register are preserved.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
VEX.128 encoded load:

Loads a double-precision floating-point value from the source 64-bit memory operand (third operand) and stores 
it in the upper 64-bits of the destination XMM register (first operand). The low 64-bits from second XMM register 
(second operand) are stored in the lower 64-bits of the destination. The upper 128-bits of the destination YMM 
register are zeroed.
128-bit store:

Stores a double-precision floating-point value from the high 64-bits of the XMM register source (second operand) 
to the 64-bit memory location (first operand).
Note: VMOVHPD (store) (VEX.128.66.0F 17 /r) is legal and has the same behavior as the existing 66 0F 17 store. 
For VMOVHPD (store) (VEX.128.66.0F 17 /r) instruction version, VEX.vvvv is reserved and must be 1111b other-
wise instruction will #UD.
If VMOVHPD is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an 
#UD exception.

Operation

MOVHPD (128-bit Legacy SSE load)

DEST[63:0] (Unmodified)

DEST[127:64] Å SRC[63:0]

DEST[VLMAX-1:128] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 16 /r

MOVHPD xmm, m64

RM V/V SSE2 Move double-precision floating-point value 
from m64 to high quadword of xmm.

66 0F 17 /r

MOVHPD m64, xmm

MR V/V SSE2 Move double-precision floating-point value 
from high quadword of xmm to m64.

VEX.NDS.128.66.0F.WIG 16 /r

VMOVHPD xmm2, xmm1, m64

RVM V/V AVX Merge double-precision floating-point value 
from m64 and the low quadword of xmm1.

VEX128.66.0F.WIG 17/r

VMOVHPD m64, xmm1

MR V/V AVX Move double-precision floating-point values 
from high quadword of xmm1 to m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VMOVHPD (VEX.128 encoded load)

DEST[63:0] Å SRC1[63:0]

DEST[127:64] Å SRC2[63:0]

DEST[VLMAX-1:128] Å 0

VMOVHPD (store)

DEST[63:0] Å SRC[127:64]

Intel C/C++ Compiler Intrinsic Equivalent

MOVHPD: __m128d _mm_loadh_pd ( __m128d a, double *p)

MOVHPD: void _mm_storeh_pd (double *p, __m128d a) 

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 5; additionally
#UD If VEX.L= 1.
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MOVHPS—Move High Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:

Moves two packed single-precision floating-point values from the source 64-bit memory operand and stores them 
in the high 64-bits of the destination XMM register. The lower 64bits of the XMM register are preserved. The upper 
128-bits of the corresponding YMM destination register are preserved.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
VEX.128 encoded load:

Loads two single-precision floating-point values from the source 64-bit memory operand (third operand) and 
stores it in the upper 64-bits of the destination XMM register (first operand). The low 64-bits from second XMM 
register (second operand) are stored in the lower 64-bits of the destination. The upper 128-bits of the destination 
YMM register are zeroed.
128-bit store:

Stores two packed single-precision floating-point values from the high 64-bits of the XMM register source (second 
operand) to the 64-bit memory location (first operand).
Note: VMOVHPS (store) (VEX.NDS.128.0F 17 /r) is legal and has the same behavior as the existing 0F 17 store. 
For VMOVHPS (store) (VEX.NDS.128.0F 17 /r) instruction version, VEX.vvvv is reserved and must be 1111b other-

wise instruction will #UD.
If VMOVHPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an 
#UD exception.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 16 /r

MOVHPS xmm, m64

RM V/V SSE Move two packed single-precision floating-
point values from m64 to high quadword of 
xmm.

0F 17 /r

MOVHPS m64, xmm

MR V/V SSE Move two packed single-precision floating-
point values from high quadword of xmm to 
m64.

VEX.NDS.128.0F.WIG 16 /r

VMOVHPS xmm2, xmm1, m64

RVM V/V AVX Merge two packed single-precision floating-
point values from m64 and the low quadword 
of xmm1.

VEX.128.0F.WIG 17/r

VMOVHPS m64, xmm1

MR V/V AVX Move two packed single-precision floating-
point values from high quadword of xmm1to 
m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

MOVHPS (128-bit Legacy SSE load)

DEST[63:0] (Unmodified)

DEST[127:64] Å SRC[63:0]

DEST[VLMAX-1:128] (Unmodified)

VMOVHPS (VEX.128 encoded load)

DEST[63:0] Å SRC1[63:0]

DEST[127:64] Å SRC2[63:0]

DEST[VLMAX-1:128] Å 0

VMOVHPS (store)

DEST[63:0] Å SRC[127:64]

Intel C/C++ Compiler Intrinsic Equivalent

MOVHPS: __m128d _mm_loadh_pi ( __m128d a, __m64 *p)

MOVHPS: void _mm_storeh_pi (__m64 *p, __m128d a) 

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 5; additionally
#UD If VEX.L= 1.
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MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High

Instruction Operand Encoding

Description

This instruction cannot be used for memory to register moves.
128-bit two-argument form:

Moves two packed single-precision floating-point values from the low quadword of the second XMM argument 
(second operand) to the high quadword of the first XMM register (first argument). The low quadword of the desti-
nation operand is left unchanged. The upper 128 bits of the corresponding YMM destination register are unmodi-
fied.
128-bit three-argument form

Moves two packed single-precision floating-point values from the low quadword of the third XMM argument (third 
operand) to the high quadword of the destination (first operand). Copies the low quadword from the second XMM 
argument (second operand) to the low quadword of the destination (first operand). The upper 128-bits of the 
destination YMM register are zeroed.
If VMOVLHPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause 
an #UD exception.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Operation

MOVLHPS (128-bit two-argument form)

DEST[63:0] (Unmodified)

DEST[127:64] Å SRC[63:0]

DEST[VLMAX-1:128] (Unmodified)

VMOVLHPS (128-bit three-argument form)

DEST[63:0] Å SRC1[63:0]

DEST[127:64] Å SRC2[63:0]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

MOVHLPS: __m128 _mm_movelh_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

None.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 16 /r

MOVLHPS xmm1, xmm2

RM V/V SSE Move two packed single-precision floating-
point values from low quadword of xmm2 to 
high quadword of xmm1.

VEX.NDS.128.0F.WIG 16 /r

VMOVLHPS xmm1, xmm2, xmm3

RVM V/V AVX Merge two packed single-precision floating-
point values from low quadword of xmm3 and 
low quadword of xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Other Exceptions

See Exceptions Type 7; additionally
#UD If VEX.L= 1.



MOVLPD—Move Low Packed Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-539

MOVLPD—Move Low Packed Double-Precision Floating-Point Value

Instruction Operand Encoding

Description

This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:

Moves a double-precision floating-point value from the source 64-bit memory operand and stores it in the low 64-
bits of the destination XMM register. The upper 64bits of the XMM register are preserved. The upper 128-bits of the 
corresponding YMM destination register are preserved.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
VEX.128 encoded load:

Loads a double-precision floating-point value from the source 64-bit memory operand (third operand), merges it 
with the upper 64-bits of the first source XMM register (second operand), and stores it in the low 128-bits of the 
destination XMM register (first operand). The upper 128-bits of the destination YMM register are zeroed.
128-bit store:

Stores a double-precision floating-point value from the low 64-bits of the XMM register source (second operand) to 
the 64-bit memory location (first operand).
Note: VMOVLPD (store) (VEX.128.66.0F 13 /r) is legal and has the same behavior as the existing 66 0F 13 store. 
For VMOVLPD (store) (VEX.128.66.0F 13 /r) instruction version, VEX.vvvv is reserved and must be 1111b other-
wise instruction will #UD.
If VMOVLPD is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an 
#UD exception.

Operation

MOVLPD (128-bit Legacy SSE load)

DEST[63:0] Å SRC[63:0]

DEST[VLMAX-1:64] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 12 /r

MOVLPD xmm, m64

RM V/V SSE2 Move double-precision floating-point value 
from m64 to low quadword of xmm register.

66 0F 13 /r

MOVLPD m64, xmm

MR V/V SSE2 Move double-precision floating-point nvalue 
from low quadword of xmm register to m64.

VEX.NDS.128.66.0F.WIG 12 /r

VMOVLPD xmm2, xmm1, m64

RVM V/V AVX Merge double-precision floating-point value 
from m64 and the high quadword of xmm1.

VEX.128.66.0F.WIG 13/r

VMOVLPD m64, xmm1

MR V/V AVX Move double-precision floating-point values 
from low quadword of xmm1 to m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VMOVLPD (VEX.128 encoded load)

DEST[63:0] Å SRC2[63:0]

DEST[127:64] Å SRC1[127:64]

DEST[VLMAX-1:128] Å 0

VMOVLPD (store)

DEST[63:0] Å SRC[63:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVLPD: __m128d _mm_loadl_pd ( __m128d a, double *p)

MOVLPD: void _mm_storel_pd (double *p, __m128d a) 

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 5; additionally
#UD If VEX.L= 1.

If VEX.vvvv != 1111B.



MOVLPS—Move Low Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-541

MOVLPS—Move Low Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

This instruction cannot be used for register to register or memory to memory moves.
128-bit Legacy SSE load:

Moves two packed single-precision floating-point values from the source 64-bit memory operand and stores them 
in the low 64-bits of the destination XMM register. The upper 64bits of the XMM register are preserved. The upper 
128-bits of the corresponding YMM destination register are preserved.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
VEX.128 encoded load:

Loads two packed single-precision floating-point values from the source 64-bit memory operand (third operand), 
merges them with the upper 64-bits of the first source XMM register (second operand), and stores them in the low 
128-bits of the destination XMM register (first operand). The upper 128-bits of the destination YMM register are 
zeroed.
128-bit store:

Loads two packed single-precision floating-point values from the low 64-bits of the XMM register source (second 
operand) to the 64-bit memory location (first operand).
Note: VMOVLPS (store) (VEX.128.0F 13 /r) is legal and has the same behavior as the existing 0F 13 store. For 
VMOVLPS (store) (VEX.128.0F 13 /r) instruction version, VEX.vvvv is reserved and must be 1111b otherwise 
instruction will #UD.

If VMOVLPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause an 
#UD exception.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 12 /r

MOVLPS xmm, m64

RM V/V SSE Move two packed single-precision floating-
point values from m64 to low quadword of 
xmm.

0F 13 /r

MOVLPS m64, xmm

MR V/V SSE Move two packed single-precision floating-
point values from low quadword of xmm to 
m64.

VEX.NDS.128.0F.WIG 12 /r

VMOVLPS xmm2, xmm1, m64

RVM V/V AVX Merge two packed single-precision floating-
point values from m64 and the high quadword 
of xmm1.

VEX.128.0F.WIG 13/r

VMOVLPS m64, xmm1

MR V/V AVX Move two packed single-precision floating-
point values from low quadword of xmm1 to 
m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

MOVLPS (128-bit Legacy SSE load)

DEST[63:0] Å SRC[63:0]

DEST[VLMAX-1:64] (Unmodified)

VMOVLPS (VEX.128 encoded load)

DEST[63:0] Å SRC2[63:0]

DEST[127:64] Å SRC1[127:64]

DEST[VLMAX-1:128] Å 0

VMOVLPS (store)

DEST[63:0] Å SRC[63:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVLPS: __m128 _mm_loadl_pi ( __m128 a, __m64 *p)

MOVLPS: void _mm_storel_pi (__m64 *p, __m128 a) 

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 5; additionally
#UD If VEX.L= 1.

If VEX.vvvv != 1111B.
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MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask

Instruction Operand Encoding

Description

Extracts the sign bits from the packed double-precision floating-point values in the source operand (second 
operand), formats them into a 2-bit mask, and stores the mask in the destination operand (first operand). The 
source operand is an XMM register, and the destination operand is a general-purpose register. The mask is stored 
in the 2 low-order bits of the destination operand. Zero-extend the upper bits of the destination.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when used with a REX.R 
prefix. The default operand size is 64-bit in 64-bit mode.
128-bit versions: The source operand is a YMM register. The destination operand is a general purpose register.
VEX.256 encoded version: The source operand is a YMM register. The destination operand is a general purpose 
register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

(V)MOVMSKPD (128-bit versions)

DEST[0] Å SRC[63]

DEST[1] Å SRC[127]

IF DEST = r32

THEN DEST[31:2] Å 0;

ELSE DEST[63:2] Å 0;

FI

VMOVMSKPD (VEX.256 encoded version)

DEST[0] Å SRC[63]

DEST[1] Å SRC[127]

DEST[2] Å SRC[191]

DEST[3] Å SRC[255]

IF DEST = r32

THEN DEST[31:4] Å 0;

ELSE DEST[63:4] Å 0;

FI

Intel C/C++ Compiler Intrinsic Equivalent

MOVMSKPD: int _mm_movemask_pd ( __m128d a)

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 50 /r

MOVMSKPD reg, xmm

RM V/V SSE2 Extract 2-bit sign mask from xmm and store in 
reg. The upper bits of r32 or r64 are filled with 
zeros.

VEX.128.66.0F.WIG 50 /r

VMOVMSKPD reg, xmm2

RM V/V AVX Extract 2-bit sign mask from xmm2 and store 
in reg. The upper bits of r32 or r64 are zeroed.

VEX.256.66.0F.WIG 50 /r

VMOVMSKPD reg, ymm2

RM V/V AVX Extract 4-bit sign mask from ymm2 and store 
in reg. The upper bits of r32 or r64 are zeroed.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 7; additionally
#UD If VEX.vvvv != 1111B.
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MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask

Instruction Operand Encoding1

Description

Extracts the sign bits from the packed single-precision floating-point values in the source operand (second 
operand), formats them into a 4- or 8-bit mask, and stores the mask in the destination operand (first operand). 
The source operand is an XMM or YMM register, and the destination operand is a general-purpose register. The 
mask is stored in the 4 or 8 low-order bits of the destination operand. The upper bits of the destination operand 
beyond the mask are filled with zeros.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when used with a REX.R 
prefix. The default operand size is 64-bit in 64-bit mode.

128-bit versions: The source operand is a YMM register. The destination operand is a general purpose register. 
VEX.256 encoded version: The source operand is a YMM register. The destination operand is a general purpose 
register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

DEST[0] ← SRC[31]; 

DEST[1] ← SRC[63]; 

DEST[2] ← SRC[95]; 

DEST[3] ← SRC[127]; 

IF DEST = r32

THEN DEST[31:4] ← ZeroExtend;

ELSE DEST[63:4] ← ZeroExtend;

FI;

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 50 /r

MOVMSKPS reg, xmm

RM V/V SSE Extract 4-bit sign mask from xmm and store in 
reg. The upper bits of r32 or r64 are filled 
with zeros.

VEX.128.0F.WIG 50 /r

VMOVMSKPS reg, xmm2

RM V/V AVX Extract 4-bit sign mask from xmm2 and store 
in reg. The upper bits of r32 or r64 are zeroed.

VEX.256.0F.WIG 50 /r

VMOVMSKPS reg, ymm2

RM V/V AVX Extract 8-bit sign mask from ymm2 and store 
in reg. The upper bits of r32 or r64 are zeroed.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

1. ModRM.MOD = 011B required
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(V)MOVMSKPS (128-bit version)

DEST[0] Å SRC[31]

DEST[1] Å SRC[63]

DEST[2] Å SRC[95]

DEST[3] Å SRC[127]

IF DEST = r32

THEN DEST[31:4] Å 0;

ELSE DEST[63:4] Å 0;

FI

VMOVMSKPS (VEX.256 encoded version)

DEST[0] Å SRC[31]

DEST[1] Å SRC[63]

DEST[2] Å SRC[95]

DEST[3] Å SRC[127]

DEST[4] Å SRC[159]

DEST[5] Å SRC[191]

DEST[6] Å SRC[223]

DEST[7] Å SRC[255]

IF DEST = r32

THEN DEST[31:8] Å 0;

ELSE DEST[63:8] Å 0;

FI

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_movemask_ps(__m128 a)

int _mm256_movemask_ps(__m256 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 7; additionally
#UD If VEX.vvvv != 1111B.
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MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint

Instruction Operand Encoding

Description

(V)MOVNTDQA loads a double quadword from the source operand (second operand) to the destination operand 
(first operand) using a non-temporal hint. A processor implementation may make use of the non-temporal hint 
associated with this instruction if the memory source is WC (write combining) memory type. An implementation 
may also make use of the non-temporal hint associated with this instruction if the memory source is WB (write 
back) memory type.
A processor’s implementation of the non-temporal hint does not override the effective memory type semantics, but 
the implementation of the hint is processor dependent. For example, a processor implementation may choose to 
ignore the hint and process the instruction as a normal MOVDQA for any memory type. Another implementation of 
the hint for WC memory type may optimize data transfer throughput of WC reads. A third implementation may 
optimize cache reads generated by (V)MOVNTDQA on WB memory type to reduce cache evictions.

WC Streaming Load Hint

For WC memory type in particular, the processor never appears to read the data into the cache hierarchy. Instead, 
the non-temporal hint may be implemented by loading a temporary internal buffer with the equivalent of an 
aligned cache line without filling this data to the cache. Any memory-type aliased lines in the cache will be snooped 
and flushed. Subsequent MOVNTDQA reads to unread portions of the WC cache line will receive data from the 
temporary internal buffer if data is available. The temporary internal buffer may be flushed by the processor at any 
time for any reason, for example:
• A load operation other than a (V)MOVNTDQA which references memory already resident in a temporary 

internal buffer.
• A non-WC reference to memory already resident in a temporary internal buffer.
• Interleaving of reads and writes to memory currently residing in a single temporary internal buffer.
• Repeated (V)MOVNTDQA loads of a particular 16-byte item in a streaming line.
• Certain micro-architectural conditions including resource shortages, detection of a mis-speculation condition, 

and various fault conditions
The memory type of the region being read can override the non-temporal hint, if the memory address specified for 
the non-temporal read is not a WC memory region. Information on non-temporal reads and writes can be found in 
Chapter 11, “Memory Cache Control” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3A. 
Because the WC protocol uses a weakly-ordered memory consistency model, an MFENCE or locked instruction 
should be used in conjunction with MOVNTDQA instructions if multiple processors might reference the same WC 
memory locations or in order to synchronize reads of a processor with writes by other agents in the system. 
Because of the speculative nature of fetching due to MOVNTDQA, Streaming loads must not be used to reference 
memory addresses that are mapped to I/O devices having side effects or when reads to these devices are destruc-

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 38 2A /r

MOVNTDQA xmm1, m128

RM V/V SSE4_1 Move double quadword from m128 to xmm 
using non-temporal hint if WC memory type.

VEX.128.66.0F38.WIG 2A /r

VMOVNTDQA xmm1, m128

RM V/V AVX Move double quadword from m128 to xmm 
using non-temporal hint if WC memory type.

VEX.256.66.0F38.WIG 2A /r

VMOVNTDQA ymm1, m256

RM V/V AVX2 Move 256-bit data from m256 to ymm using 
non-temporal hint if WC memory type.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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tive. For additional information on MOVNTDQA usages, see Section 12.10.3 in Chapter 12, “Programming with 
SSE3, SSSE3 and SSE4” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.
The 128-bit (V)MOVNTDQA addresses must be 16-byte aligned or the instruction will cause a #GP.
The 256-bit VMOVNTDQA addresses must be 32-byte aligned or the instruction will cause a #GP.
Note: In VEX-128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L must be 0; otherwise instruc-
tions will #UD.

Operation

MOVNTDQA (128bit- Legacy SSE form)

DEST Å SRC

DEST[VLMAX-1:128] (Unmodified)

VMOVNTDQA (VEX.128 encoded form)

DEST Å SRC

DEST[VLMAX-1:128] Å 0

VMOVNTDQA (VEX.256 encoded form)

DEST[255:0] Å SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

(V)MOVNTDQA: __m128i _mm_stream_load_si128 (__m128i *p);

VMOVNTDQA:  __m256i _mm256_stream_load_si256 (const __m256i *p);

Flags Affected

None

Other Exceptions

See Exceptions Type 1.SSE4.1; additionally
#UD If VEX.L= 1.

If VEX.vvvv != 1111B.



MOVNTDQ—Store Double Quadword Using Non-Temporal Hint

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-549

MOVNTDQ—Store Double Quadword Using Non-Temporal Hint

Instruction Operand Encoding1

Description

Moves the packed integers in the source operand (second operand) to the destination operand (first operand) using 
a non-temporal hint to prevent caching of the data during the write to memory. The source operand is an XMM 
register or YMM register, which is assumed to contain integer data (packed bytes, words, doublewords, or quad-
words). The destination operand is a 128-bit or 256-bit memory location. The memory operand must be aligned on 
a 16-byte (128-bit version) or 32-byte (VEX.256 encoded version) boundary otherwise a general-protection 
exception (#GP) will be generated. 

The non-temporal hint is implemented by using a write combining (WC) memory type protocol when writing the 
data to memory. Using this protocol, the processor does not write the data into the cache hierarchy, nor does it 
fetch the corresponding cache line from memory into the cache hierarchy. The memory type of the region being 
written to can override the non-temporal hint, if the memory address specified for the non-temporal store is in an 
uncacheable (UC) or write protected (WP) memory region. For more information on non-temporal stores, see 
“Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented 
with the SFENCE or MFENCE instruction should be used in conjunction with MOVNTDQ instructions if multiple 
processors might use different memory types to read/write the destination memory locations.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
Note: In VEX-128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L must be 0; otherwise instruc-
tions will #UD.

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTDQ:  void _mm_stream_si128( __m128i *p, __m128i a);

VMOVNTDQ:  void _mm256_stream_si256 (__m256i * p, __m256i a);

SIMD Floating-Point Exceptions

None.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F E7 /r

MOVNTDQ m128, xmm

MR V/V SSE2 Move double quadword from xmm to m128 
using non-temporal hint.

VEX.128.66.0F.WIG E7 /r

VMOVNTDQ m128, xmm1

MR V/V AVX Move packed integer values in xmm1 to m128 
using non-temporal hint.

VEX.256.66.0F.WIG E7 /r

VMOVNTDQ m256, ymm1

MR V/V AVX Move packed integer values in ymm1 to m256 
using non-temporal hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

1. ModRM.MOD = 011B is not permitted
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Other Exceptions

See Exceptions Type 1.SSE2; additionally
#UD If VEX.vvvv != 1111B.
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MOVNTI—Store Doubleword Using Non-Temporal Hint

Instruction Operand Encoding

Description

Moves the doubleword integer in the source operand (second operand) to the destination operand (first operand) 
using a non-temporal hint to minimize cache pollution during the write to memory. The source operand is a 
general-purpose register. The destination operand is a 32-bit memory location.

The non-temporal hint is implemented by using a write combining (WC) memory type protocol when writing the 
data to memory. Using this protocol, the processor does not write the data into the cache hierarchy, nor does it 
fetch the corresponding cache line from memory into the cache hierarchy. The memory type of the region being 
written to can override the non-temporal hint, if the memory address specified for the non-temporal store is in an 
uncacheable (UC) or write protected (WP) memory region. For more information on non-temporal stores, see 
“Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented 
with the SFENCE or MFENCE instruction should be used in conjunction with MOVNTI instructions if multiple proces-
sors might use different memory types to read/write the destination memory locations.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the 
beginning of this section for encoding data and limits.

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTI: void _mm_stream_si32 (int *p, int a)

MOVNTI: void _mm_stream_si64(__int64 *p, __int64 a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment. 
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F C3 /r MOVNTI m32, r32 MR Valid Valid Move doubleword from r32 to m32 using non-
temporal hint.

REX.W + 0F C3 /r MOVNTI m64, r64 MR Valid N.E. Move quadword from r64 to m64 using non-
temporal hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 16-byte boundary, regardless of segment.
If any part of the operand lies outside the effective address space from 0 to FFFFH.

#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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MOVNTPD—Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint

Instruction Operand Encoding1

Description

Moves the packed double-precision floating-point values in the source operand (second operand) to the destination 
operand (first operand) using a non-temporal hint to prevent caching of the data during the write to memory. The 
source operand is an XMM register or YMM register, which is assumed to contain packed double-precision, floating-
pointing data. The destination operand is a 128-bit or 256-bit memory location. The memory operand must be 
aligned on a 16-byte (128-bit version) or 32-byte (VEX.256 encoded version) boundary otherwise a general-
protection exception (#GP) will be generated. 

The non-temporal hint is implemented by using a write combining (WC) memory type protocol when writing the 
data to memory. Using this protocol, the processor does not write the data into the cache hierarchy, nor does it 
fetch the corresponding cache line from memory into the cache hierarchy. The memory type of the region being 
written to can override the non-temporal hint, if the memory address specified for the non-temporal store is in an 
uncacheable (UC) or write protected (WP) memory region. For more information on non-temporal stores, see 
“Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented 
with the SFENCE or MFENCE instruction should be used in conjunction with MOVNTPD instructions if multiple 
processors might use different memory types to read/write the destination memory locations.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
Note: In VEX-128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L must be 0; otherwise instruc-
tions will #UD.

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTPD:  void _mm_stream_pd(double *p, __m128d a)

VMOVNTPD:  void _mm256_stream_pd (double * p, __m256d a);

SIMD Floating-Point Exceptions

None.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 2B /r

MOVNTPD m128, xmm

MR V/V SSE2 Move packed double-precision floating-point 
values from xmm to m128 using non-
temporal hint.

VEX.128.66.0F.WIG 2B /r

VMOVNTPD m128, xmm1

MR V/V AVX Move packed double-precision values in xmm1 

to m128 using non-temporal hint.

VEX.256.66.0F.WIG 2B /r

VMOVNTPD m256, ymm1

MR V/V AVX Move packed double-precision values in ymm1 
to m256 using non-temporal hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

1. ModRM.MOD = 011B is not permitted
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Other Exceptions

See Exceptions Type 1.SSE2; additionally
#UD If VEX.vvvv != 1111B.
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MOVNTPS—Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint

Instruction Operand Encoding1

Description

Moves the packed single-precision floating-point values in the source operand (second operand) to the destination 
operand (first operand) using a non-temporal hint to prevent caching of the data during the write to memory. The 
source operand is an XMM register or YMM register, which is assumed to contain packed single-precision, floating-
pointing. The destination operand is a 128-bit or 256-bit memory location. The memory operand must be aligned 
on a 16-byte (128-bit version) or 32-byte (VEX.256 encoded version) boundary otherwise a general-protection 
exception (#GP) will be generated. 

The non-temporal hint is implemented by using a write combining (WC) memory type protocol when writing the 
data to memory. Using this protocol, the processor does not write the data into the cache hierarchy, nor does it 
fetch the corresponding cache line from memory into the cache hierarchy. The memory type of the region being 
written to can override the non-temporal hint, if the memory address specified for the non-temporal store is in an 
uncacheable (UC) or write protected (WP) memory region. For more information on non-temporal stores, see 
“Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented 
with the SFENCE or MFENCE instruction should be used in conjunction with MOVNTPS instructions if multiple 
processors might use different memory types to read/write the destination memory locations.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTDQ: void _mm_stream_ps(float * p, __m128 a)

VMOVNTPS:  void _mm256_stream_ps (float * p, __m256 a);

SIMD Floating-Point Exceptions

None.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 2B /r

MOVNTPS m128, xmm

MR V/V SSE Move packed single-precision floating-point 
values from xmm to m128 using non-
temporal hint.

VEX.128.0F.WIG 2B /r

VMOVNTPS m128, xmm1

MR V/V AVX Move packed single-precision values xmm1 to 
mem using non-temporal hint.

VEX.256.0F.WIG 2B /r

VMOVNTPS m256, ymm1

MR V/V AVX Move packed single-precision values ymm1 to 
mem using non-temporal hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

1. ModRM.MOD = 011B is not permitted
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Other Exceptions

See Exceptions Type 1.SSE; additionally
#UD If VEX.vvvv != 1111B.
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MOVNTQ—Store of Quadword Using Non-Temporal Hint

Instruction Operand Encoding

Description

Moves the quadword in the source operand (second operand) to the destination operand (first operand) using a 
non-temporal hint to minimize cache pollution during the write to memory. The source operand is an MMX tech-
nology register, which is assumed to contain packed integer data (packed bytes, words, or doublewords). The 
destination operand is a 64-bit memory location.

The non-temporal hint is implemented by using a write combining (WC) memory type protocol when writing the 
data to memory. Using this protocol, the processor does not write the data into the cache hierarchy, nor does it 
fetch the corresponding cache line from memory into the cache hierarchy. The memory type of the region being 
written to can override the non-temporal hint, if the memory address specified for the non-temporal store is in an 
uncacheable (UC) or write protected (WP) memory region. For more information on non-temporal stores, see 
“Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented 
with the SFENCE or MFENCE instruction should be used in conjunction with MOVNTQ instructions if multiple proces-
sors might use different memory types to read/write the destination memory locations.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVNTQ: void _mm_stream_pi(__m64 * p, __m64 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 22-8, “Exception Conditions for Legacy SIMD/MMX Instructions without FP Exception,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F E7 /r MOVNTQ m64, mm MR Valid Valid Move quadword from mm to m64 using non-
temporal hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA



MOVQ—Move Quadword

INSTRUCTION SET REFERENCE, A-M

3-558 Vol. 2A

MOVQ—Move Quadword

Instruction Operand Encoding

Description

Copies a quadword from the source operand (second operand) to the destination operand (first operand). The 
source and destination operands can be MMX technology registers, XMM registers, or 64-bit memory locations. This 
instruction can be used to move a quadword between two MMX technology registers or between an MMX tech-
nology register and a 64-bit memory location, or to move data between two XMM registers or between an XMM 
register and a 64-bit memory location. The instruction cannot be used to transfer data between memory locations. 

When the source operand is an XMM register, the low quadword is moved; when the destination operand is an XMM 
register, the quadword is stored to the low quadword of the register, and the high quadword is cleared to all 0s.

In 64-bit mode, use of the REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
Note: In VEX.128.66.0F D6 instruction version, VEX.vvvv and VEX.L=1 are reserved and the former must be 1111b 
otherwise instructions will #UD.
Note: In VEX.128.F3.0F 7E version, VEX.vvvv and VEX.L=1 are reserved and the former must be 1111b, otherwise 
instructions will #UD.

Operation

MOVQ instruction when operating on MMX technology registers and memory locations:

DEST ← SRC;

MOVQ instruction when source and destination operands are XMM registers:

DEST[63:0] ← SRC[63:0];

DEST[127:64] ← 0000000000000000H;

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 6F /r

MOVQ mm, mm/m64

RM V/V MMX Move quadword from mm/m64 to mm.

0F 7F /r

MOVQ mm/m64, mm

MR V/V MMX Move quadword from mm to mm/m64.

F3 0F 7E /r

MOVQ xmm1, xmm2/m64

RM V/V SSE2 Move quadword from xmm2/mem64 to 
xmm1.

VEX.128.F3.0F.WIG 7E /r

VMOVQ xmm1, xmm2

RM V/V AVX Move quadword from xmm2 to xmm1.

VEX.128.F3.0F.WIG 7E /r

VMOVQ xmm1, m64

RM V/V AVX Load quadword from m64 to xmm1.

66 0F D6 /r

MOVQ xmm2/m64, xmm1

MR V/V SSE2 Move quadword from xmm1 to 
xmm2/mem64.

VEX.128.66.0F.WIG D6 /r

VMOVQ xmm1/m64, xmm2

MR V/V AVX Move quadword from xmm2 register to 
xmm1/m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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MOVQ instruction when source operand is XMM register and destination

operand is memory location:

DEST ← SRC[63:0];

MOVQ instruction when source operand is memory location and destination

operand is XMM register:

DEST[63:0] ← SRC;

DEST[127:64] ← 0000000000000000H;

VMOVQ (VEX.NDS.128.F3.0F 7E) with XMM register source and destination:

DEST[63:0] ← SRC[63:0]

DEST[VLMAX-1:64] ← 0

VMOVQ (VEX.128.66.0F D6) with XMM register source and destination:

DEST[63:0] ← SRC[63:0]

DEST[VLMAX-1:64] ← 0

VMOVQ (7E) with memory source:

DEST[63:0] ← SRC[63:0]

DEST[VLMAX-1:64] ← 0

VMOVQ (D6) with memory dest:

DEST[63:0] ← SRC2[63:0]

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

MOVQ: m128i _mm_mov_epi64(__m128i a)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Table 22-8, “Exception Conditions for Legacy SIMD/MMX Instructions without FP Exception,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3B.
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MOVQ2DQ—Move Quadword from MMX Technology to XMM Register

Instruction Operand Encoding

Description

Moves the quadword from the source operand (second operand) to the low quadword of the destination operand 
(first operand). The source operand is an MMX technology register and the destination operand is an XMM register. 

This instruction causes a transition from x87 FPU to MMX technology operation (that is, the x87 FPU top-of-stack 
pointer is set to 0 and the x87 FPU tag word is set to all 0s [valid]). If this instruction is executed while an x87 FPU 
floating-point exception is pending, the exception is handled before the MOVQ2DQ instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).

Operation

DEST[63:0] ← SRC[63:0];

DEST[127:64] ← 00000000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent

MOVQ2DQ: __128i _mm_movpi64_pi64 ( __m64 a)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM If CR0.TS[bit 3] = 1. 
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F3 0F D6 /r MOVQ2DQ xmm, mm RM Valid Valid Move quadword from mmx to low quadword 
of xmm.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String
\

Instruction Operand Encoding

Description

Moves the byte, word, or doubleword specified with the second operand (source operand) to the location specified 
with the first operand (destination operand). Both the source and destination operands are located in memory. The 
address of the source operand is read from the DS:ESI or the DS:SI registers (depending on the address-size attri-
bute of the instruction, 32 or 16, respectively). The address of the destination operand is read from the ES:EDI or 
the ES:DI registers (again depending on the address-size attribute of the instruction). The DS segment may be 
overridden with a segment override prefix, but the ES segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands” form and the “no-
operands” form. The explicit-operands form (specified with the MOVS mnemonic) allows the source and destination 
operands to be specified explicitly. Here, the source and destination operands should be symbols that indicate the 
size and location of the source value and the destination, respectively. This explicit-operands form is provided to 
allow documentation; however, note that the documentation provided by this form can be misleading. That is, the 
source and destination operand symbols must specify the correct type (size) of the operands (bytes, words, or 
doublewords), but they do not have to specify the correct location. The locations of the source and destination 
operands are always specified by the DS:(E)SI and ES:(E)DI registers, which must be loaded correctly before the 
move string instruction is executed. 

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the MOVS instruc-
tions. Here also DS:(E)SI and ES:(E)DI are assumed to be the source and destination operands, respectively. The 
size of the source and destination operands is selected with the mnemonic: MOVSB (byte move), MOVSW (word 
move), or MOVSD (doubleword move).

After the move operation, the (E)SI and (E)DI registers are incremented or decremented automatically according 
to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)SI and (E)DI register are incre-

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

A4 MOVS m8, m8 NP Valid Valid For legacy mode, Move byte from address 
DS:(E)SI to ES:(E)DI. For 64-bit mode move 
byte from address (R|E)SI to (R|E)DI.

A5 MOVS m16, m16 NP Valid Valid For legacy mode, move word from address 
DS:(E)SI to ES:(E)DI. For 64-bit mode move 
word at address (R|E)SI to (R|E)DI.

A5 MOVS m32, m32 NP Valid Valid For legacy mode, move dword from address 
DS:(E)SI to ES:(E)DI. For 64-bit mode move 
dword from address (R|E)SI to (R|E)DI.

REX.W + A5 MOVS m64, m64 NP Valid N.E. Move qword from address (R|E)SI to (R|E)DI.

A4 MOVSB NP Valid Valid For legacy mode, Move byte from address 
DS:(E)SI to ES:(E)DI. For 64-bit mode move 
byte from address (R|E)SI to (R|E)DI.

A5 MOVSW NP Valid Valid For legacy mode, move word from address 
DS:(E)SI to ES:(E)DI. For 64-bit mode move 
word at address (R|E)SI to (R|E)DI.

A5 MOVSD NP Valid Valid For legacy mode, move dword from address 
DS:(E)SI to ES:(E)DI. For 64-bit mode move 
dword from address (R|E)SI to (R|E)DI.

REX.W + A5 MOVSQ NP Valid N.E. Move qword from address (R|E)SI to (R|E)DI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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mented; if the DF flag is 1, the (E)SI and (E)DI registers are decremented.) The registers are incremented or 
decremented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword operations.

NOTE

To improve performance, more recent processors support modifications to the processor’s 
operation during the string store operations initiated with MOVS and MOVSB. See Section 7.3.9.3 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 for additional 
information on fast-string operation.

The MOVS, MOVSB, MOVSW, and MOVSD instructions can be preceded by the REP prefix (see “REP/REPE/REPZ 
/REPNE/REPNZ—Repeat String Operation Prefix” in Chapter 4 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2B, for a description of the REP prefix) for block moves of ECX bytes, words, or 
doublewords.

In 64-bit mode, the instruction’s default address size is 64 bits, 32-bit address size is supported using the prefix 
67H. The 64-bit addresses are specified by RSI and RDI; 32-bit address are specified by ESI and EDI. Use of the 
REX.W prefix promotes doubleword operation to 64 bits. See the summary chart at the beginning of this section for 
encoding data and limits.

Operation

DEST ← SRC;

Non-64-bit Mode:

IF (Byte move)

THEN IF DF = 0

THEN 

(E)SI ← (E)SI + 1; 

(E)DI ← (E)DI + 1; 

ELSE 

(E)SI ← (E)SI – 1; 

(E)DI ← (E)DI – 1; 

FI;

ELSE IF (Word move)

THEN IF DF = 0
(E)SI ← (E)SI + 2; 

(E)DI ← (E)DI + 2; 

FI;

ELSE 

(E)SI ← (E)SI – 2; 

(E)DI ← (E)DI – 2; 

FI;

ELSE IF (Doubleword move)

THEN IF DF = 0

(E)SI ← (E)SI + 4; 

(E)DI ← (E)DI + 4; 

FI;

ELSE 

(E)SI ← (E)SI – 4; 

(E)DI ← (E)DI – 4; 

FI;

FI;

64-bit Mode:

IF (Byte move)

THEN IF DF = 0
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THEN 

(R|E)SI ← (R|E)SI + 1; 

(R|E)DI ← (R|E)DI + 1; 

ELSE 

(R|E)SI ← (R|E)SI – 1; 

(R|E)DI ← (R|E)DI – 1; 

FI;

ELSE IF (Word move)

THEN IF DF = 0
(R|E)SI ← (R|E)SI + 2; 

(R|E)DI ← (R|E)DI + 2; 

FI;

ELSE 

(R|E)SI ← (R|E)SI – 2; 

(R|E)DI ← (R|E)DI – 2; 

FI;

ELSE IF (Doubleword move)

THEN IF DF = 0

(R|E)SI ← (R|E)SI + 4; 

(R|E)DI ← (R|E)DI + 4; 

FI;

ELSE 

(R|E)SI ← (R|E)SI – 4; 

(R|E)DI ← (R|E)DI – 4; 

FI;

ELSE IF (Quadword move)

THEN IF DF = 0

(R|E)SI ← (R|E)SI + 8; 

(R|E)DI ← (R|E)DI + 8;

FI;

ELSE 

(R|E)SI ← (R|E)SI – 8; 

(R|E)DI ← (R|E)DI – 8; 

FI;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
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#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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MOVSD—Move Scalar Double-Precision Floating-Point Value

Instruction Operand Encoding

Description

MOVSD moves a scalar double-precision floating-point value from the source operand (second operand) to the 
destination operand (first operand). The source and destination operands can be XMM registers or 64-bit memory 
locations. This instruction can be used to move a double-precision floating-point value to and from the low quad-
word of an XMM register and a 64-bit memory location, or to move a double-precision floating-point value between 
the low quadwords of two XMM registers. The instruction cannot be used to transfer data between memory loca-
tions.
For non-VEX encoded instruction syntax and when the source and destination operands are XMM registers, the 
high quadword of the destination operand remains unchanged. When the source operand is a memory location and 
destination operand is an XMM registers, the high quadword of the destination operand is cleared to all 0s.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
Note: For the “VMOVSD m64, xmm1” (memory store form) instruction version, VEX.vvvv is reserved and must be 
1111b, otherwise instruction will #UD.
Note: For the “VMOVSD xmm1, m64” (memory load form) instruction version, VEX.vvvv is reserved and must be 
1111b otherwise instruction will #UD.
VEX encoded instruction syntax supports two source operands and a destination operand if ModR/M.mod field is 
11B. VEX.vvvv is used to encode the first source operand (the second operand). The low 128 bits of the destination 
operand stores the result of merging the low quadword of the second source operand with the quad word in bits 
127:64 of the first source operand. The upper bits of the destination operand are cleared.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 10 /r

MOVSD xmm1, xmm2/m64

RM V/V SSE2 Move scalar double-precision floating-point 
value from xmm2/m64 to xmm1 register.

VEX.NDS.LIG.F2.0F.WIG 10 /r

VMOVSD xmm1, xmm2, xmm3

RVM V/V AVX Merge scalar double-precision floating-point 
value from xmm2 and xmm3 to xmm1 
register.

VEX.LIG.F2.0F.WIG 10 /r

VMOVSD xmm1, m64

XM V/V AVX Load scalar double-precision floating-point 
value from m64 to xmm1 register.

F2 0F 11 /r

MOVSD xmm2/m64, xmm1

MR V/V SSE2 Move scalar double-precision floating-point 
value from xmm1 register to xmm2/m64.

VEX.NDS.LIG.F2.0F.WIG 11 /r

VMOVSD xmm1, xmm2, xmm3

MVR V/V AVX Merge scalar double-precision floating-point 
value from xmm2 and xmm3 registers to 
xmm1.

VEX.LIG.F2.0F.WIG 11 /r

VMOVSD m64, xmm1

MR V/V AVX Move scalar double-precision floating-point 
value from xmm1 register to m64.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

XM ModRM:reg (w) ModRM:r/m (r) NA NA

MVR ModRM:r/m (w) VEX.vvvv (r) ModRM:reg (r) NA
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Operation

MOVSD (128-bit Legacy SSE version: MOVSD XMM1, XMM2)

DEST[63:0] Å SRC[63:0]

DEST[VLMAX-1:64] (Unmodified)

MOVSD/VMOVSD (128-bit versions: MOVSD m64, xmm1 or VMOVSD m64, xmm1)

DEST[63:0] Å SRC[63:0]

MOVSD (128-bit Legacy SSE version: MOVSD XMM1, m64)

DEST[63:0] Å SRC[63:0]

DEST[127:64] Å 0

DEST[VLMAX-1:128] (Unmodified)

VMOVSD (VEX.NDS.128.F2.0F 11 /r: VMOVSD xmm1, xmm2, xmm3)

DEST[63:0] Å SRC2[63:0]

DEST[127:64] Å SRC1[127:64]

DEST[VLMAX-1:128] Å 0

VMOVSD (VEX.NDS.128.F2.0F 10 /r: VMOVSD xmm1, xmm2, xmm3)

DEST[63:0] Å SRC2[63:0]

DEST[127:64] Å SRC1[127:64]

DEST[VLMAX-1:128] Å 0

VMOVSD (VEX.NDS.128.F2.0F 10 /r: VMOVSD xmm1, m64)

DEST[63:0] Å SRC[63:0]

DEST[VLMAX-1:64] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

MOVSD: __m128d _mm_load_sd (double *p)

MOVSD: void _mm_store_sd (double *p, __m128d a)

MOVSD: __m128d _mm_store_sd (__m128d a, __m128d b) 

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 5; additionally
#UD If VEX.vvvv != 1111B.
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MOVSHDUP—Move Packed Single-FP High and Duplicate

Instruction Operand Encoding

Description

The linear address corresponds to the address of the least-significant byte of the referenced memory data. When 
a memory address is indicated, the 16 bytes of data at memory location m128 are loaded and the single-precision 
elements in positions 1 and 3 are duplicated. When the register-register form of this operation is used, the same 
operation is performed but with data coming from the 128-bit source register. See Figure 3-25.

In 64-bit mode, use of the REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 16 /r

MOVSHDUP xmm1, xmm2/m128

RM V/V SSE3 Move two single-precision floating-point 
values from the higher 32-bit operand of each 
qword in xmm2/m128 to xmm1 and duplicate 
each 32-bit operand to the lower 32-bits of 
each qword.

VEX.128.F3.0F.WIG 16 /r

VMOVSHDUP xmm1, xmm2/m128

RM V/V AVX Move odd index single-precision floating-point 
values from xmm2/mem and duplicate each 
element into xmm1.

VEX.256.F3.0F.WIG 16 /r

VMOVSHDUP ymm1, ymm2/m256

RM V/V AVX Move odd index single-precision floating-point 
values from ymm2/mem and duplicate each 
element into ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Figure 3-25.  MOVSHDUP—Move Packed Single-FP High and Duplicate

OM15998

MOVSHDUP xmm1, xmm2/m128

RESULT:
xmm1

xmm2/
m128

xmm1[31:0]  
       xmm2/

m128[63:32]

[31:0]

xmm1[63:32]  
         xmm2/
m128[63:32]

[63:32]

xmm1[95:64] 
          xmm2/
m128[127:96]

[95:64]

xmm1[127:96] 
           xmm2/
m128[127:96]

[127:96]

[127:96] [95:64] [63:32] [31:0]
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Operation

MOVSHDUP (128-bit Legacy SSE version)

DEST[31:0] Å SRC[63:32]

DEST[63:32] Å SRC[63:32]

DEST[95:64] Å SRC[127:96]

DEST[127:96] Å SRC[127:96]

DEST[VLMAX-1:128] (Unmodified)

VMOVSHDUP (VEX.128 encoded version)

DEST[31:0] Å SRC[63:32]

DEST[63:32] Å SRC[63:32]

DEST[95:64] Å SRC[127:96]

DEST[127:96] Å SRC[127:96]

DEST[VLMAX-1:128] Å 0

VMOVSHDUP (VEX.256 encoded version)

DEST[31:0] Å SRC[63:32]

DEST[63:32] Å SRC[63:32]

DEST[95:64] Å SRC[127:96]

DEST[127:96] Å SRC[127:96]

DEST[159:128] Å SRC[191:160]

DEST[191:160] Å SRC[191:160]

DEST[223:192] Å SRC[255:224]

DEST[255:224] Å SRC[255:224]

Intel C/C++ Compiler Intrinsic Equivalent

(V)MOVSHDUP: __m128 _mm_movehdup_ps(__m128 a)

VMOVSHDUP:  __m256 _mm256_movehdup_ps (__m256 a);

Exceptions

General protection exception if not aligned on 16-byte boundary, regardless of segment.

Numeric Exceptions

None

Other Exceptions

See Exceptions Type 2.
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MOVSLDUP—Move Packed Single-FP Low and Duplicate

Instruction Operand Encoding

Description

The linear address corresponds to the address of the least-significant byte of the referenced memory data. When 
a memory address is indicated, the 16 bytes of data at memory location m128 are loaded and the single-precision 
elements in positions 0 and 2 are duplicated. When the register-register form of this operation is used, the same 
operation is performed but with data coming from the 128-bit source register. 

See Figure 3-26.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 12 /r

MOVSLDUP xmm1, xmm2/m128

RM V/V SSE3 Move two single-precision floating-point 
values from the lower 32-bit operand of each 
qword in xmm2/m128 to xmm1 and duplicate 
each 32-bit operand to the higher 32-bits of 
each qword.

VEX.128.F3.0F.WIG 12 /r

VMOVSLDUP xmm1, xmm2/m128

RM V/V AVX Move even index single-precision floating-
point values from xmm2/mem and duplicate 
each element into xmm1.

VEX.256.F3.0F.WIG 12 /r
VMOVSLDUP ymm1, ymm2/m256

RM V/V AVX Move even index single-precision floating-
point values from ymm2/mem and duplicate 
each element into ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Figure 3-26.  MOVSLDUP—Move Packed Single-FP Low and Duplicate

OM15999

MOVSLDUP xmm1, xmm2/m128

RESULT:
xmm1

xmm2/
m128

xmm1[31:0]  
       xmm2/
m128[31:0]

[31:0]

xmm1[63:32]  
         xmm2/
m128[31:0]

[63:32]

xmm1[95:64] 
          xmm2/
m128[95:64]

[95:64]

xmm1[127:96] 
           xmm2/
m128[95:64]

[127:96]

[127:96] [95:64] [63:32] [31:0]
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Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

MOVSLDUP (128-bit Legacy SSE version)

DEST[31:0] Å SRC[31:0]

DEST[63:32] Å SRC[31:0]

DEST[95:64] Å SRC[95:64]

DEST[127:96] Å SRC[95:64]

DEST[VLMAX-1:128] (Unmodified)

VMOVSLDUP (VEX.128 encoded version)

DEST[31:0] Å SRC[31:0]

DEST[63:32] Å SRC[31:0]

DEST[95:64] Å SRC[95:64]

DEST[127:96] Å SRC[95:64]

DEST[VLMAX-1:128] Å 0

VMOVSLDUP (VEX.256 encoded version)

DEST[31:0] Å SRC[31:0]

DEST[63:32] Å SRC[31:0]

DEST[95:64] Å SRC[95:64]

DEST[127:96] Å SRC[95:64]

DEST[159:128] Å SRC[159:128]

DEST[191:160] Å SRC[159:128]

DEST[223:192] Å SRC[223:192]

DEST[255:224] Å SRC[223:192]

Intel C/C++ Compiler Intrinsic Equivalent

(V)MOVSLDUP: __m128 _mm_moveldup_ps(__m128 a)

VMOVSLDUP:  __m256 _mm256_moveldup_ps (__m256 a);

Exceptions

General protection exception if not aligned on 16-byte boundary, regardless of segment.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
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MOVSS—Move Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Moves a scalar single-precision floating-point value from the source operand (second operand) to the destination 
operand (first operand). The source and destination operands can be XMM registers or 32-bit memory locations. 
This instruction can be used to move a single-precision floating-point value to and from the low doubleword of an 
XMM register and a 32-bit memory location, or to move a single-precision floating-point value between the low 
doublewords of two XMM registers. The instruction cannot be used to transfer data between memory locations. 
For non-VEX encoded syntax and when the source and destination operands are XMM registers, the high double-
words of the destination operand remains unchanged. When the source operand is a memory location and destina-
tion operand is an XMM registers, the high doublewords of the destination operand is cleared to all 0s.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
VEX encoded instruction syntax supports two source operands and a destination operand if ModR/M.mod field is 
11B. VEX.vvvv is used to encode the first source operand (the second operand). The low 128 bits of the destination 
operand stores the result of merging the low dword of the second source operand with three dwords in bits 127:32 
of the first source operand. The upper bits of the destination operand are cleared.
Note: For the “VMOVSS m32, xmm1” (memory store form) instruction version, VEX.vvvv is reserved and must be 
1111b otherwise instruction will #UD.
Note: For the “VMOVSS xmm1, m32” (memory load form) instruction version, VEX.vvvv is reserved and must be 
1111b otherwise instruction will #UD.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 10 /r

MOVSS xmm1, xmm2/m32

RM V/V SSE Move scalar single-precision floating-point 
value from xmm2/m32 to xmm1 register.

VEX.NDS.LIG.F3.0F.WIG 10 /r

VMOVSS xmm1, xmm2, xmm3

RVM V/V AVX Merge scalar single-precision floating-point 
value from xmm2 and xmm3 to xmm1 
register.

VEX.LIG.F3.0F.WIG 10 /r

VMOVSS xmm1, m32

XM V/V AVX Load scalar single-precision floating-point 
value from m32 to xmm1 register.

F3 0F 11 /r

MOVSS xmm2/m32, xmm

MR V/V SSE Move scalar single-precision floating-point 
value from xmm1 register to xmm2/m32.

VEX.NDS.LIG.F3.0F.WIG 11 /r

VMOVSS xmm1, xmm2, xmm3

MVR V/V AVX Move scalar single-precision floating-point 
value from xmm2 and xmm3 to xmm1 regis-
ter.

VEX.LIG.F3.0F.WIG 11 /r

VMOVSS m32, xmm1

MR V/V AVX Move scalar single-precision floating-point 
value from xmm1 register to m32.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

XM ModRM:reg (w) ModRM:r/m (r) NA NA

MVR ModRM:r/m (w) VEX.vvvv (r) ModRM:reg (r) NA
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Operation

MOVSS (Legacy SSE version when the source and destination operands are both XMM registers)

DEST[31:0] Å SRC[31:0]

DEST[VLMAX-1:32] (Unmodified)

MOVSS/VMOVSS (when the source operand is an XMM register and the destination is memory)

DEST[31:0] Å SRC[31:0]

MOVSS (Legacy SSE version when the source operand is memory and the destination is an XMM register)

DEST[31:0] Å SRC[31:0]

DEST[127:32] Å 0

DEST[VLMAX-1:128] (Unmodified)

VMOVSS (VEX.NDS.128.F3.0F 11 /r where the destination is an XMM register)

DEST[31:0] Å SRC2[31:0]

DEST[127:32] Å SRC1[127:32]

DEST[VLMAX-1:128] Å 0

VMOVSS (VEX.NDS.128.F3.0F 10 /r where the source and destination are XMM registers)

DEST[31:0] Å SRC2[31:0]

DEST[127:32] Å SRC1[127:32]

DEST[VLMAX-1:128] Å 0

VMOVSS (VEX.NDS.128.F3.0F 10 /r when the source operand is memory and the destination is an XMM register)

DEST[31:0] Å SRC[31:0]

DEST[VLMAX-1:32] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

MOVSS: __m128 _mm_load_ss(float * p)

MOVSS: void _mm_store_ss(float * p, __m128 a)

MOVSS: __m128 _mm_move_ss(__m128 a, __m128 b) 

SIMD Floating-Point Exceptions 

None.

Other Exceptions

See Exceptions Type 5; additionally
#UD If VEX.vvvv != 1111B.
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MOVSX/MOVSXD—Move with Sign-Extension

Instruction Operand Encoding

Description

Copies the contents of the source operand (register or memory location) to the destination operand (register) and 
sign extends the value to 16 or 32 bits (see Figure 7-6 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1). The size of the converted value depends on the operand-size attribute.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the 
beginning of this section for encoding data and limits.

Operation

DEST ← SignExtend(SRC);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F BE /r MOVSX r16, r/m8 RM Valid Valid Move byte to word with sign-extension.

0F BE /r MOVSX r32, r/m8 RM Valid Valid Move byte to doubleword with sign-
extension.

REX + 0F BE /r MOVSX r64, r/m8* RM Valid N.E. Move byte to quadword with sign-extension.

0F BF /r MOVSX r32, r/m16 RM Valid Valid Move word to doubleword, with sign-
extension.

REX.W + 0F BF /r MOVSX r64, r/m16 RM Valid N.E. Move word to quadword with sign-extension.

REX.W** + 63 /r MOVSXD r64, r/m32 RM Valid N.E. Move doubleword to quadword with sign-
extension.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

** The use of MOVSXD without REX.W in 64-bit mode is discouraged, Regular MOV should be used instead of using MOVSXD without 
REX.W. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

128-bit versions:

Moves a double quadword containing two packed double-precision floating-point values from the source operand 
(second operand) to the destination operand (first operand). This instruction can be used to load an XMM register 
from a 128-bit memory location, store the contents of an XMM register into a 128-bit memory location, or move 
data between two XMM registers. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.

When the source or destination operand is a memory operand, the operand may be unaligned on a 16-byte 
boundary without causing a general-protection exception (#GP) to be generated.1

To move double-precision floating-point values to and from memory locations that are known to be aligned on 16-
byte boundaries, use the MOVAPD instruction.

While executing in 16-bit addressing mode, a linear address for a 128-bit data access that overlaps the end of a 16-
bit segment is not allowed and is defined as reserved behavior. A specific processor implementation may or may 
not generate a general-protection exception (#GP) in this situation, and the address that spans the end of the 
segment may or may not wrap around to the beginning of the segment.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.
VEX.256 encoded version: Moves 256 bits of packed double-precision floating-point values from the source 
operand (second operand) to the destination operand (first operand). This instruction can be used to load a YMM 
register from a 256-bit memory location, to store the contents of a YMM register into a 256-bit memory location, 
or to move data between two YMM registers. 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 10 /r

MOVUPD xmm1, xmm2/m128

RM V/V SSE2 Move packed double-precision floating-point 
values from xmm2/m128 to xmm1.

VEX.128.66.0F.WIG 10 /r

VMOVUPD xmm1, xmm2/m128

RM V/V AVX Move unaligned packed double-precision 
floating-point from xmm2/mem to xmm1.

VEX.256.66.0F.WIG 10 /r

VMOVUPD ymm1, ymm2/m256

RM V/V AVX Move unaligned packed double-precision 
floating-point from ymm2/mem to ymm1.

66 0F 11 /r

MOVUPD xmm2/m128, xmm

MR V/V SSE2 Move packed double-precision floating-point 
values from xmm1 to xmm2/m128.

VEX.128.66.0F.WIG 11 /r

VMOVUPD xmm2/m128, xmm1

MR V/V AVX Move unaligned packed double-precision 
floating-point from xmm1 to xmm2/mem.

VEX.256.66.0F.WIG 11 /r

VMOVUPD ymm2/m256, ymm1

MR V/V AVX Move unaligned packed double-precision 
floating-point from ymm1 to ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

1. If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check exception (#AC) may or may not be 
generated (depending on processor implementation) when the operand is not aligned on an 8-byte boundary.
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Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

MOVUPD (128-bit load and register-copy form Legacy SSE version)

DEST[127:0] Å SRC[127:0]

DEST[VLMAX-1:128] (Unmodified)

(V)MOVUPD (128-bit store form)

DEST[127:0] Å SRC[127:0]

VMOVUPD (VEX.128 encoded version)

DEST[127:0] Å SRC[127:0]

DEST[VLMAX-1:128] Å 0

VMOVUPD (VEX.256 encoded version)

DEST[255:0] Å SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVUPD: __m128 _mm_loadu_pd(double * p)

MOVUPD: void _mm_storeu_pd(double *p, __m128 a)

VMOVUPD:  __m256d _mm256_loadu_pd (__m256d * p);

VMOVUPD:  _mm256_storeu_pd(_m256d *p, __m256d a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4 
Note treatment of #AC varies; additionally
#UD If VEX.vvvv != 1111B.
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MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

128-bit versions: Moves a double quadword containing four packed single-precision floating-point values from the 
source operand (second operand) to the destination operand (first operand). This instruction can be used to load 
an XMM register from a 128-bit memory location, store the contents of an XMM register into a 128-bit memory 
location, or move data between two XMM registers. 

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.

When the source or destination operand is a memory operand, the operand may be unaligned on a 16-byte 
boundary without causing a general-protection exception (#GP) to be generated.1

To move packed single-precision floating-point values to and from memory locations that are known to be aligned 
on 16-byte boundaries, use the MOVAPS instruction.

While executing in 16-bit addressing mode, a linear address for a 128-bit data access that overlaps the end of a 16-
bit segment is not allowed and is defined as reserved behavior. A specific processor implementation may or may 
not generate a general-protection exception (#GP) in this situation, and the address that spans the end of the 
segment may or may not wrap around to the beginning of the segment.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

VEX.256 encoded version: Moves 256 bits of packed single-precision floating-point values from the source operand 
(second operand) to the destination operand (first operand). This instruction can be used to load a YMM register 
from a 256-bit memory location, to store the contents of a YMM register into a 256-bit memory location, or to move 
data between two YMM registers. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 10 /r

MOVUPS xmm1, xmm2/m128

RM V/V SSE Move packed single-precision floating-point 
values from xmm2/m128 to xmm1.

VEX.128.0F.WIG 10 /r

VMOVUPS xmm1, xmm2/m128

RM V/V AVX Move unaligned packed single-precision 
floating-point from xmm2/mem to xmm1.

VEX.256.0F.WIG 10 /r

VMOVUPS ymm1, ymm2/m256

RM V/V AVX Move unaligned packed single-precision 
floating-point from ymm2/mem to ymm1.

0F 11 /r

MOVUPS xmm2/m128, xmm1

MR V/V SSE Move packed single-precision floating-point 
values from xmm1 to xmm2/m128.

VEX.128.0F.WIG 11 /r

VMOVUPS xmm2/m128, xmm1

MR V/V AVX Move unaligned packed single-precision 
floating-point from xmm1 to xmm2/mem.

VEX.256.0F.WIG 11 /r

VMOVUPS ymm2/m256, ymm1

MR V/V AVX Move unaligned packed single-precision 
floating-point from ymm1 to ymm2/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

1. If alignment checking is enabled (CR0.AM = 1, RFLAGS.AC = 1, and CPL = 3), an alignment-check exception (#AC) may or may not be 
generated (depending on processor implementation) when the operand is not aligned on an 8-byte boundary.
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Operation

MOVUPS (128-bit load and register-copy form Legacy SSE version)

DEST[127:0] Å SRC[127:0]

DEST[VLMAX-1:128] (Unmodified)

(V)MOVUPS (128-bit store form)

DEST[127:0] Å SRC[127:0]

VMOVUPS (VEX.128 encoded load-form)

DEST[127:0] Å SRC[127:0]

DEST[VLMAX-1:128] Å 0

VMOVUPS (VEX.256 encoded version)

DEST[255:0] Å SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVUPS: __m128 _mm_loadu_ps(double * p)

MOVUPS: void _mm_storeu_ps(double *p, __m128 a)

VMOVUPS:  __m256 _mm256_loadu_ps (__m256 * p);

VMOVUPS:  _mm256_storeu_ps(_m256 *p, __m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4 
Note treatment of #AC varies; additionally
#UD If VEX.vvvv != 1111B.
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MOVZX—Move with Zero-Extend

Instruction Operand Encoding

Description

Copies the contents of the source operand (register or memory location) to the destination operand (register) and 
zero extends the value. The size of the converted value depends on the operand-size attribute.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bit operands. See the summary chart 
at the beginning of this section for encoding data and limits.

Operation

DEST ← ZeroExtend(SRC);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F B6 /r MOVZX r16, r/m8 RM Valid Valid Move byte to word with zero-extension.

0F B6 /r MOVZX r32, r/m8 RM Valid Valid Move byte to doubleword, zero-extension.

REX.W + 0F B6 /r MOVZX r64, r/m8* RM Valid N.E. Move byte to quadword, zero-extension.

0F B7 /r MOVZX r32, r/m16 RM Valid Valid Move word to doubleword, zero-extension.

REX.W + 0F B7 /r MOVZX r64, r/m16 RM Valid N.E. Move word to quadword, zero-extension.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if the REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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MPSADBW — Compute Multiple Packed Sums of Absolute Difference

Instruction Operand Encoding

Description

(V)MPSADBW sums the absolute difference of 4 unsigned bytes (block_2) in the second source operand with 
sequential groups of 4 unsigned bytes (block_1) in the first source operand. The immediate byte provides bit fields 
that specify the initial offset of block_1 within the first source operand, and the offset of block_2 within the second 
source operand. The offset granularity in both source operands are 32 bits. The sum-absolute-difference (SAD) 
operation is repeated 8 times for (V)MPSADW between the same block_2 (fixed offset within the second source 
operand) and a variable block_1 (offset is shifted by 8 bits for each SAD operation) in the first source operand. 
Each 16-bit result of eight SAD operations is written to the respective word in the destination operand.
128-bit Legacy SSE version: Imm8[1:0]*32 specifies the bit offset of block_2 within the second source operand. 
Imm[2]*32 specifies the initial bit offset of the block_1 within the first source operand. The first source operand 
and destination operand are the same. The first source and destination operands are XMM registers. The second 
source operand is either an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding 
YMM destination register remain unchanged. Bits 7:3 of the immediate byte are ignored.
VEX.128 encoded version: Imm8[1:0]*32 specifies the bit offset of block_2 within the second source operand. 
Imm[2]*32 specifies the initial bit offset of the block_1 within the first source operand. The first source and desti-
nation operands are XMM registers. The second source operand is either an XMM register or a 128-bit memory 
location. Bits (127:128) of the corresponding YMM register are zeroed. Bits 7:3 of the immediate byte are ignored.
VEX.256 encoded version: The sum-absolute-difference (SAD) operation is repeated 8 times for MPSADW between 
the same block_2 (fixed offset within the second source operand) and a variable block_1 (offset is shifted by 8 bits 
for each SAD operation) in the first source operand. Each 16-bit result of eight SAD operations between block_2 
and block_1 is written to the respective word in the lower 128 bits of the destination operand. 
Additionally, VMPSADBW performs another eight SAD operations on block_4 of the second source operand and 
block_3 of the first source operand. (Imm8[4:3]*32 + 128) specifies the bit offset of block_4 within the second 
source operand. (Imm[5]*32+128) specifies the initial bit offset of the block_3 within the first source operand. 
Each 16-bit result of eight SAD operations between block_4 and block_3 is written to the respective word in the 
upper 128 bits of the destination operand. 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 3A 42 /r ib

MPSADBW xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Sums absolute 8-bit integer difference of 
adjacent groups of 4 byte integers in xmm1 
and xmm2/m128 and writes the results in 
xmm1. Starting offsets within xmm1 and 
xmm2/m128 are determined by imm8.

VEX.NDS.128.66.0F3A.WIG 42 /r ib

VMPSADBW xmm1, xmm2, xmm3/m128, imm8

RVMI V/V AVX Sums absolute 8-bit integer difference of 
adjacent groups of 4 byte integers in xmm2 
and xmm3/m128 and writes the results in 
xmm1. Starting offsets within xmm2 and 
xmm3/m128 are determined by imm8.

VEX.NDS.256.66.0F3A.WIG 42 /r ib

VMPSADBW ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX2 Sums absolute 8-bit integer difference of 
adjacent groups of 4 byte integers in xmm2 

and ymm3/m128 and writes the results in 
ymm1. Starting offsets within ymm2 and 
xmm3/m128 are determined by imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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The first source operand is a YMM register. The second source register can be a YMM register or a 256-bit memory 
location. The destination operand is a YMM register. Bits 7:6 of the immediate byte are ignored.
Note: If VMPSADBW is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will 
cause an #UD exception.

Operation

VMPSADBW (VEX.256 encoded version)

SRC2_OFFSET Å imm8[1:0]*32

SRC1_OFFSET Å imm8[2]*32

SRC1_BYTE0 Å SRC1[SRC1_OFFSET+7:SRC1_OFFSET]

SRC1_BYTE1 Å SRC1[SRC1_OFFSET+15:SRC1_OFFSET+8]

SRC1_BYTE2 Å SRC1[SRC1_OFFSET+23:SRC1_OFFSET+16]

SRC1_BYTE3 Å SRC1[SRC1_OFFSET+31:SRC1_OFFSET+24]

SRC1_BYTE4 ÅSRC1[SRC1_OFFSET+39:SRC1_OFFSET+32]

SRC1_BYTE5 Å SRC1[SRC1_OFFSET+47:SRC1_OFFSET+40]

Figure 3-27.  VMPSADBW Operation

Abs. Diff.

Sum

Imm[4:3]*32+128

Imm[5]*32+128
Src2

Src1

128255 144

128255 224 192

Abs. Diff.

Sum

Imm[1:0]*32

Imm[2]*32
Src2

Destination

0127 16

0127 96 64

Destination

Src1



MPSADBW — Compute Multiple Packed Sums of Absolute Difference

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-583

SRC1_BYTE6 Å SRC1[SRC1_OFFSET+55:SRC1_OFFSET+48]

SRC1_BYTE7 Å SRC1[SRC1_OFFSET+63:SRC1_OFFSET+56]

SRC1_BYTE8 Å SRC1[SRC1_OFFSET+71:SRC1_OFFSET+64]

SRC1_BYTE9 Å SRC1[SRC1_OFFSET+79:SRC1_OFFSET+72]

SRC1_BYTE10 Å SRC1[SRC1_OFFSET+87:SRC1_OFFSET+80]

SRC2_BYTE0 ÅSRC2[SRC2_OFFSET+7:SRC2_OFFSET]

SRC2_BYTE1 Å SRC2[SRC2_OFFSET+15:SRC2_OFFSET+8]

SRC2_BYTE2 Å SRC2[SRC2_OFFSET+23:SRC2_OFFSET+16]

SRC2_BYTE3 Å SRC2[SRC2_OFFSET+31:SRC2_OFFSET+24]

TEMP0 Å ABS(SRC1_BYTE0 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE1 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE2 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE3 - SRC2_BYTE3)

DEST[15:0] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS(SRC1_BYTE1 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE2 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE3 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE4 - SRC2_BYTE3)

DEST[31:16] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS(SRC1_BYTE2 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE3 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE4 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE5 - SRC2_BYTE3)

DEST[47:32] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS(SRC1_BYTE3 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE4 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE5 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE6 - SRC2_BYTE3)

DEST[63:48] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS(SRC1_BYTE4 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE5 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE6 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE7 - SRC2_BYTE3)

DEST[79:64] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS(SRC1_BYTE5 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE6 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE7 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE8 - SRC2_BYTE3)

DEST[95:80] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS(SRC1_BYTE6 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE7 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE8 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE9 - SRC2_BYTE3)

DEST[111:96] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS(SRC1_BYTE7 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE8 - SRC2_BYTE1)
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TEMP2 Å ABS(SRC1_BYTE9 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE10 - SRC2_BYTE3)

DEST[127:112] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

SRC2_OFFSET Å imm8[4:3]*32 + 128

SRC1_OFFSET Å imm8[5]*32 + 128

SRC1_BYTE0 Å SRC1[SRC1_OFFSET+7:SRC1_OFFSET]

SRC1_BYTE1 Å SRC1[SRC1_OFFSET+15:SRC1_OFFSET+8]

SRC1_BYTE2 Å SRC1[SRC1_OFFSET+23:SRC1_OFFSET+16]

SRC1_BYTE3 Å SRC1[SRC1_OFFSET+31:SRC1_OFFSET+24]

SRC1_BYTE4 Å SRC1[SRC1_OFFSET+39:SRC1_OFFSET+32]

SRC1_BYTE5 Å SRC1[SRC1_OFFSET+47:SRC1_OFFSET+40]

SRC1_BYTE6 Å SRC1[SRC1_OFFSET+55:SRC1_OFFSET+48]

SRC1_BYTE7 Å SRC1[SRC1_OFFSET+63:SRC1_OFFSET+56]

SRC1_BYTE8 Å SRC1[SRC1_OFFSET+71:SRC1_OFFSET+64]

SRC1_BYTE9 Å SRC1[SRC1_OFFSET+79:SRC1_OFFSET+72]

SRC1_BYTE10 Å SRC1[SRC1_OFFSET+87:SRC1_OFFSET+80]

SRC2_BYTE0 ÅSRC2[SRC2_OFFSET+7:SRC2_OFFSET]

SRC2_BYTE1 Å SRC2[SRC2_OFFSET+15:SRC2_OFFSET+8]

SRC2_BYTE2 Å SRC2[SRC2_OFFSET+23:SRC2_OFFSET+16]

SRC2_BYTE3 Å SRC2[SRC2_OFFSET+31:SRC2_OFFSET+24]

TEMP0 Å ABS(SRC1_BYTE0 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE1 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE2 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE3 - SRC2_BYTE3)

DEST[143:128] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ÅABS(SRC1_BYTE1 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE2 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE3 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE4 - SRC2_BYTE3)

DEST[159:144] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS(SRC1_BYTE2 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE3 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE4 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE5 - SRC2_BYTE3)

DEST[175:160] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 ÅABS(SRC1_BYTE3 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE4 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE5 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE6 - SRC2_BYTE3)

DEST[191:176] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS(SRC1_BYTE4 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE5 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE6 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE7 - SRC2_BYTE3)

DEST[207:192] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS(SRC1_BYTE5 - SRC2_BYTE0)
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TEMP1 Å ABS(SRC1_BYTE6 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE7 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE8 - SRC2_BYTE3)

DEST[223:208] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS(SRC1_BYTE6 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE7 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE8 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE9 - SRC2_BYTE3)

DEST[239:224] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS(SRC1_BYTE7 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE8 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE9 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE10 - SRC2_BYTE3)

DEST[255:240] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

VMPSADBW (VEX.128 encoded version)

SRC2_OFFSET Å imm8[1:0]*32

SRC1_OFFSET Å imm8[2]*32

SRC1_BYTE0 Å SRC1[SRC1_OFFSET+7:SRC1_OFFSET]

SRC1_BYTE1 Å SRC1[SRC1_OFFSET+15:SRC1_OFFSET+8]

SRC1_BYTE2 Å SRC1[SRC1_OFFSET+23:SRC1_OFFSET+16]

SRC1_BYTE3 Å SRC1[SRC1_OFFSET+31:SRC1_OFFSET+24]

SRC1_BYTE4 Å SRC1[SRC1_OFFSET+39:SRC1_OFFSET+32]

SRC1_BYTE5 Å SRC1[SRC1_OFFSET+47:SRC1_OFFSET+40]

SRC1_BYTE6 Å SRC1[SRC1_OFFSET+55:SRC1_OFFSET+48]

SRC1_BYTE7 Å SRC1[SRC1_OFFSET+63:SRC1_OFFSET+56]

SRC1_BYTE8 Å SRC1[SRC1_OFFSET+71:SRC1_OFFSET+64]

SRC1_BYTE9 Å SRC1[SRC1_OFFSET+79:SRC1_OFFSET+72]

SRC1_BYTE10 Å SRC1[SRC1_OFFSET+87:SRC1_OFFSET+80]

SRC2_BYTE0 ÅSRC2[SRC2_OFFSET+7:SRC2_OFFSET]

SRC2_BYTE1 Å SRC2[SRC2_OFFSET+15:SRC2_OFFSET+8]

SRC2_BYTE2 Å SRC2[SRC2_OFFSET+23:SRC2_OFFSET+16]

SRC2_BYTE3 Å SRC2[SRC2_OFFSET+31:SRC2_OFFSET+24]

TEMP0 Å ABS(SRC1_BYTE0 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE1 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE2 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE3 - SRC2_BYTE3)

DEST[15:0] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS(SRC1_BYTE1 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE2 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE3 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE4 - SRC2_BYTE3)

DEST[31:16] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS(SRC1_BYTE2 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE3 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE4 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE5 - SRC2_BYTE3)

DEST[47:32] Å TEMP0 + TEMP1 + TEMP2 + TEMP3
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TEMP0 Å ABS(SRC1_BYTE3 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE4 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE5 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE6 - SRC2_BYTE3)

DEST[63:48] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS(SRC1_BYTE4 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE5 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE6 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE7 - SRC2_BYTE3)

DEST[79:64] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS(SRC1_BYTE5 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE6 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE7 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE8 - SRC2_BYTE3)

DEST[95:80] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS(SRC1_BYTE6 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE7 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE8 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE9 - SRC2_BYTE3)

DEST[111:96] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS(SRC1_BYTE7 - SRC2_BYTE0)

TEMP1 Å ABS(SRC1_BYTE8 - SRC2_BYTE1)

TEMP2 Å ABS(SRC1_BYTE9 - SRC2_BYTE2)

TEMP3 Å ABS(SRC1_BYTE10 - SRC2_BYTE3)

DEST[127:112] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

DEST[VLMAX-1:128] Å 0

MPSADBW (128-bit Legacy SSE version)

SRC_OFFSET Å imm8[1:0]*32

DEST_OFFSET Å imm8[2]*32

DEST_BYTE0 Å DEST[DEST_OFFSET+7:DEST_OFFSET]

DEST_BYTE1 Å DEST[DEST_OFFSET+15:DEST_OFFSET+8]

DEST_BYTE2 Å DEST[DEST_OFFSET+23:DEST_OFFSET+16]

DEST_BYTE3 Å DEST[DEST_OFFSET+31:DEST_OFFSET+24]

DEST_BYTE4 Å DEST[DEST_OFFSET+39:DEST_OFFSET+32]

DEST_BYTE5 Å DEST[DEST_OFFSET+47:DEST_OFFSET+40]

DEST_BYTE6 Å DEST[DEST_OFFSET+55:DEST_OFFSET+48]

DEST_BYTE7 Å DEST[DEST_OFFSET+63:DEST_OFFSET+56]

DEST_BYTE8 Å DEST[DEST_OFFSET+71:DEST_OFFSET+64]

DEST_BYTE9 Å DEST[DEST_OFFSET+79:DEST_OFFSET+72]

DEST_BYTE10 Å DEST[DEST_OFFSET+87:DEST_OFFSET+80]

SRC_BYTE0 Å SRC[SRC_OFFSET+7:SRC_OFFSET]

SRC_BYTE1 Å SRC[SRC_OFFSET+15:SRC_OFFSET+8]

SRC_BYTE2 Å SRC[SRC_OFFSET+23:SRC_OFFSET+16]

SRC_BYTE3 Å SRC[SRC_OFFSET+31:SRC_OFFSET+24]

TEMP0 Å ABS( DEST_BYTE0 - SRC_BYTE0) 

TEMP1 Å ABS( DEST_BYTE1 - SRC_BYTE1) 
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TEMP2 Å ABS( DEST_BYTE2 - SRC_BYTE2) 

TEMP3 Å ABS( DEST_BYTE3 - SRC_BYTE3) 

DEST[15:0] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS( DEST_BYTE1 - SRC_BYTE0) 

TEMP1 Å ABS( DEST_BYTE2 - SRC_BYTE1) 

TEMP2 Å ABS( DEST_BYTE3 - SRC_BYTE2) 

TEMP3 Å ABS( DEST_BYTE4 - SRC_BYTE3) 

DEST[31:16] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS( DEST_BYTE2 - SRC_BYTE0) 

TEMP1 Å ABS( DEST_BYTE3 - SRC_BYTE1) 

TEMP2 Å ABS( DEST_BYTE4 - SRC_BYTE2) 

TEMP3 Å ABS( DEST_BYTE5 - SRC_BYTE3) 

DEST[47:32] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS( DEST_BYTE3 - SRC_BYTE0) 

TEMP1 Å ABS( DEST_BYTE4 - SRC_BYTE1) 

TEMP2 Å ABS( DEST_BYTE5 - SRC_BYTE2) 

TEMP3 Å ABS( DEST_BYTE6 - SRC_BYTE3) 

DEST[63:48] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS( DEST_BYTE4 - SRC_BYTE0) 

TEMP1 Å ABS( DEST_BYTE5 - SRC_BYTE1) 

TEMP2 Å ABS( DEST_BYTE6 - SRC_BYTE2) 

TEMP3 Å ABS( DEST_BYTE7 - SRC_BYTE3) 

DEST[79:64] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS( DEST_BYTE5 - SRC_BYTE0) 

TEMP1 Å ABS( DEST_BYTE6 - SRC_BYTE1) 

TEMP2 Å ABS( DEST_BYTE7 - SRC_BYTE2) 

TEMP3 Å ABS( DEST_BYTE8 - SRC_BYTE3) 

DEST[95:80] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS( DEST_BYTE6 - SRC_BYTE0) 

TEMP1 Å ABS( DEST_BYTE7 - SRC_BYTE1) 

TEMP2 Å ABS( DEST_BYTE8 - SRC_BYTE2) 

TEMP3 Å ABS( DEST_BYTE9 - SRC_BYTE3) 

DEST[111:96] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

TEMP0 Å ABS( DEST_BYTE7 - SRC_BYTE0) 

TEMP1 Å ABS( DEST_BYTE8 - SRC_BYTE1) 

TEMP2 Å ABS( DEST_BYTE9 - SRC_BYTE2) 

TEMP3 Å ABS( DEST_BYTE10 - SRC_BYTE3) 

DEST[127:112] Å TEMP0 + TEMP1 + TEMP2 + TEMP3

DEST[VLMAX-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(V)MPSADBW:  __m128i _mm_mpsadbw_epu8 (__m128i s1, __m128i s2, const int mask);

VMPSADBW:  __m256i _mm256_mpsadbw_epu8 (__m256i s1, __m256i s2, const int mask);

Flags Affected

None
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Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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MUL—Unsigned Multiply

Instruction Operand Encoding

Description

Performs an unsigned multiplication of the first operand (destination operand) and the second operand (source 
operand) and stores the result in the destination operand. The destination operand is an implied operand located 
in register AL, AX or EAX (depending on the size of the operand); the source operand is located in a general-
purpose register or a memory location. The action of this instruction and the location of the result depends on the 
opcode and the operand size as shown in Table 3-66.

The result is stored in register AX, register pair DX:AX, or register pair EDX:EAX (depending on the operand size), 
with the high-order bits of the product contained in register AH, DX, or EDX, respectively. If the high-order bits of 
the product are 0, the CF and OF flags are cleared; otherwise, the flags are set.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. 

See the summary chart at the beginning of this section for encoding data and limits.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F6 /4 MUL r/m8 M Valid Valid Unsigned multiply (AX ← AL ∗ r/m8).

REX + F6 /4 MUL r/m8
* M Valid N.E. Unsigned multiply (AX ← AL ∗ r/m8).

F7 /4 MUL r/m16 M Valid Valid Unsigned multiply (DX:AX ← AX ∗ r/m16).

F7 /4 MUL r/m32 M Valid Valid Unsigned multiply (EDX:EAX ← EAX ∗ r/m32).

REX.W + F7 /4 MUL r/m64 M Valid N.E. Unsigned multiply (RDX:RAX ← RAX ∗ r/m64).

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

Table 3-66.  MUL Results

Operand Size Source 1 Source 2 Destination

Byte AL r/m8 AX

Word AX r/m16 DX:AX

Doubleword EAX r/m32 EDX:EAX

Quadword RAX r/m64 RDX:RAX
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Operation

IF (Byte operation)

THEN 

AX ← AL ∗ SRC;

ELSE (* Word or doubleword operation *)

IF OperandSize = 16

THEN 

DX:AX ← AX ∗ SRC;

ELSE IF OperandSize = 32

THEN EDX:EAX ← EAX ∗ SRC; FI;

ELSE (* OperandSize = 64 *)

RDX:RAX ← RAX ∗ SRC;

FI;

FI;

Flags Affected

The OF and CF flags are set to 0 if the upper half of the result is 0; otherwise, they are set to 1. The SF, ZF, AF, and 
PF flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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MULPD—Multiply Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD multiply of the two or four packed double-precision floating-point values from the source operand 
(second operand) and the destination operand (first operand), and stores the packed double-precision floating-
point results in the destination operand. The source operand can be an XMM register or a 128-bit memory location. 
The destination operand is an XMM register. See Figure 11-3 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for an illustration of a SIMD double-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the destination YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

MULPD (128-bit Legacy SSE version)

DEST[63:0] Å DEST[63:0] * SRC[63:0]

DEST[127:64] Å DEST[127:64] * SRC[127:64]

DEST[VLMAX-1:128] (Unmodified)

VMULPD (VEX.128 encoded version)

DEST[63:0] Å SRC1[63:0] * SRC2[63:0]

DEST[127:64] Å SRC1[127:64] * SRC2[127:64]

DEST[VLMAX-1:128] Å 0

VMULPD (VEX.256 encoded version)

DEST[63:0] Å SRC1[63:0] * SRC2[63:0]

DEST[127:64] Å SRC1[127:64] * SRC2[127:64]

DEST[191:128] Å SRC1[191:128] * SRC2[191:128]

DEST[255:192] Å SRC1[255:192] * SRC2[255:192]

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

66 0F 59 /r

MULPD xmm1, xmm2/m128

RM V/V SSE2 Multiply packed double-precision floating-point 
values in xmm2/m128 by xmm1.

VEX.NDS.128.66.0F.WIG 59 /r

VMULPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Multiply packed double-precision floating-point 
values from xmm3/mem to xmm2 and stores 
result in xmm1.

VEX.NDS.256.66.0F.WIG 59 /r
VMULPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Multiply packed double-precision floating-point 
values from ymm3/mem to ymm2 and stores 
result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Intel C/C++ Compiler Intrinsic Equivalent

MULPD: __m128d _mm_mul_pd (m128d a, m128d b)

VMULPD:  __m256d _mm256_mul_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 2 



MULPS—Multiply Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

Vol. 2A 3-593

MULPS—Multiply Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD multiply of the four packed single-precision floating-point values from the source operand 
(second operand) and the destination operand (first operand), and stores the packed single-precision floating-
point results in the destination operand. See Figure 10-5 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for an illustration of a SIMD single-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the destination YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

MULPS (128-bit Legacy SSE version)

DEST[31:0] Å SRC1[31:0] * SRC2[31:0]

DEST[63:32] Å SRC1[63:32] * SRC2[63:32]

DEST[95:64] Å SRC1[95:64] * SRC2[95:64]

DEST[127:96] Å SRC1[127:96] * SRC2[127:96]

DEST[VLMAX-1:128] (Unmodified)

VMULPS (VEX.128 encoded version)

DEST[31:0] Å SRC1[31:0] * SRC2[31:0]

DEST[63:32] Å SRC1[63:32] * SRC2[63:32]

DEST[95:64] Å SRC1[95:64] * SRC2[95:64]

DEST[127:96] Å SRC1[127:96] * SRC2[127:96]

DEST[VLMAX-1:128] Å 0

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

0F 59 /r

MULPS xmm1, xmm2/m128

RM V/V SSE Multiply packed single-precision floating-point 
values in xmm2/mem by xmm1.

VEX.NDS.128.0F.WIG 59 /r

VMULPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Multiply packed single-precision floating-point 
values from xmm3/mem to xmm2 and stores 
result in xmm1.

VEX.NDS.256.0F.WIG 59 /r

VMULPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Multiply packed single-precision floating-point 
values from ymm3/mem to ymm2 and stores 
result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VMULPS (VEX.256 encoded version)

DEST[31:0] Å SRC1[31:0] * SRC2[31:0]

DEST[63:32] Å SRC1[63:32] * SRC2[63:32]

DEST[95:64] Å SRC1[95:64] * SRC2[95:64]

DEST[127:96] Å SRC1[127:96] * SRC2[127:96]

DEST[159:128] Å SRC1[159:128] * SRC2[159:128]

DEST[191:160]Å SRC1[191:160] * SRC2[191:160]

DEST[223:192] Å SRC1[223:192] * SRC2[223:192]

DEST[255:224] Å SRC1[255:224] * SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

MULPS: __m128 _mm_mul_ps(__m128 a, __m128 b)

VMULPS:  __m256 _mm256_mul_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 2 
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MULSD—Multiply Scalar Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Multiplies the low double-precision floating-point value in the source operand (second operand) by the low double-
precision floating-point value in the destination operand (first operand), and stores the double-precision floating-
point result in the destination operand. The source operand can be an XMM register or a 64-bit memory location. 
The destination operand is an XMM register. The high quadword of the destination operand remains unchanged. 
See Figure 11-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustra-
tion of a scalar double-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-
1:64) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

MULSD (128-bit Legacy SSE version)

DEST[63:0] Å DEST[63:0] * SRC[63:0]

DEST[VLMAX-1:64] (Unmodified)

VMULSD (VEX.128 encoded version)

DEST[63:0] Å SRC1[63:0] * SRC2[63:0]

DEST[127:64] Å SRC1[127:64]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

MULSD: __m128d _mm_mul_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 3 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F2 0F 59 /r

MULSD xmm1, xmm2/m64

RM V/V SSE2 Multiply the low double-precision floating-
point value in xmm2/mem64 by low double-
precision floating-point value in xmm1.

VEX.NDS.LIG.F2.0F.WIG 59/r

VMULSD xmm1,xmm2, xmm3/m64

RVM V/V AVX Multiply the low double-precision floating-
point value in xmm3/mem64 by low double 
precision floating-point value in xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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MULSS—Multiply Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Multiplies the low single-precision floating-point value from the source operand (second operand) by the low 
single-precision floating-point value in the destination operand (first operand), and stores the single-precision 
floating-point result in the destination operand. The source operand can be an XMM register or a 32-bit memory 
location. The destination operand is an XMM register. The three high-order doublewords of the destination operand 
remain unchanged. See Figure 10-6 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, for an illustration of a scalar single-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-
1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

MULSS (128-bit Legacy SSE version)

DEST[31:0] Å DEST[31:0] * SRC[31:0]

DEST[VLMAX-1:32] (Unmodified)

VMULSS (VEX.128 encoded version)

DEST[31:0] Å SRC1[31:0] * SRC2[31:0]

DEST[127:32] Å SRC1[127:32]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

MULSS: __m128 _mm_mul_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 3 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F 59 /r

MULSS xmm1, xmm2/m32

RM V/V SSE Multiply the low single-precision floating-point 
value in xmm2/mem by the low single-
precision floating-point value in xmm1.

VEX.NDS.LIG.F3.0F.WIG 59 /r

VMULSS xmm1,xmm2, xmm3/m32

RVM V/V AVX Multiply the low single-precision floating-point 
value in xmm3/mem by the low single-
precision floating-point value in xmm2.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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MULX — Unsigned Multiply Without Affecting Flags

Instruction Operand Encoding

Description 

Performs an unsigned multiplication of the implicit source operand (EDX/RDX) and the specified source operand 
(the third operand) and stores the low half of the result in the second destination (second operand), the high half 
of the result in the first destination operand (first operand), without reading or writing the arithmetic flags. This 
enables efficient programming where the software can interleave add with carry operations and multiplications. 
If the first and second operand are identical, it will contain the high half of the multiplication result.
This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

// DEST1: ModRM:reg

// DEST2: VEX.vvvv

IF (OperandSize = 32)

SRC1 ← EDX;

DEST2 ← (SRC1*SRC2)[31:0];

DEST1 ← (SRC1*SRC2)[63:32];

ELSE IF (OperandSize = 64)

SRC1 ← RDX;

DEST2 ← (SRC1*SRC2)[63:0];

DEST1 ← (SRC1*SRC2)[127:64];

FI

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent

Auto-generated from high-level language when possible.

unsigned int mulx_u32(unsigned int a, unsigned int b, unsigned int * hi);

unsigned __int64 mulx_u64(unsigned __int64 a, unsigned __int64 b, unsigned __int64 * hi);

SIMD Floating-Point Exceptions

None

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDD.LZ.F2.0F38.W0 F6 /r RVM V/V BMI2 Unsigned multiply of r/m32 with EDX without affecting arithmetic 
flags.MULX r32a, r32b, r/m32

VEX.NDD.LZ.F2.0F38.W1 F6 /r RVM V/N.E. BMI2 Unsigned multiply of r/m64 with RDX without affecting arithmetic 
flags.MULX r64a, r64b, r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (w) ModRM:r/m (r)
RDX/EDX is implied 64/32 bits 

source
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Other Exceptions

See Section 2.5.1, “Exception Conditions for VEX-Encoded GPR Instructions”, Table 2-29; additionally
#UD If VEX.W = 1.
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MWAIT—Monitor Wait

Instruction Operand Encoding

Description

MWAIT instruction provides hints to allow the processor to enter an implementation-dependent optimized state. 
There are two principal targeted usages: address-range monitor and advanced power management. Both usages 
of MWAIT require the use of the MONITOR instruction.

CPUID.01H:ECX.MONITOR[bit 3] indicates the availability of MONITOR and MWAIT in the processor. When set, 
MWAIT may be executed only at privilege level 0 (use at any other privilege level results in an invalid-opcode 
exception). The operating system or system BIOS may disable this instruction by using the IA32_MISC_ENABLE 
MSR; disabling MWAIT clears the CPUID feature flag and causes execution to generate an invalid-opcode excep-
tion. 

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

ECX specifies optional extensions for the MWAIT instruction. EAX may contain hints such as the preferred opti-
mized state the processor should enter. The first processors to implement MWAIT supported only the zero value for 
EAX and ECX. Later processors allowed setting ECX[0] to enable masked interrupts as break events for MWAIT 
(see below). Software can use the CPUID instruction to determine the extensions and hints supported by the 
processor.

MWAIT for Address Range Monitoring

For address-range monitoring, the MWAIT instruction operates with the MONITOR instruction. The two instructions 
allow the definition of an address at which to wait (MONITOR) and a implementation-dependent-optimized opera-
tion to commence at the wait address (MWAIT). The execution of MWAIT is a hint to the processor that it can enter 
an implementation-dependent-optimized state while waiting for an event or a store operation to the address range 
armed by MONITOR.

The following cause the processor to exit the implementation-dependent-optimized state: a store to the address 
range armed by the MONITOR instruction, an NMI or SMI, a debug exception, a machine check exception, the 
BINIT# signal, the INIT# signal, and the RESET# signal. Other implementation-dependent events may also cause 
the processor to exit the implementation-dependent-optimized state.

In addition, an external interrupt causes the processor to exit the implementation-dependent-optimized state 
either (1) if the interrupt would be delivered to software (e.g., as it would be if HLT had been executed instead of 
MWAIT); or (2) if ECX[0] = 1. Software can execute MWAIT with ECX[0] = 1 only if CPUID.05H:ECX[bit 1] = 1. 
(Implementation-specific conditions may result in an interrupt causing the processor to exit the implementation-
dependent-optimized state even if interrupts are masked and ECX[0] = 0.)

Following exit from the implementation-dependent-optimized state, control passes to the instruction following the 
MWAIT instruction. A pending interrupt that is not masked (including an NMI or an SMI) may be delivered before 
execution of that instruction. Unlike the HLT instruction, the MWAIT instruction does not support a restart at the 
MWAIT instruction following the handling of an SMI. 

If the preceding MONITOR instruction did not successfully arm an address range or if the MONITOR instruction has 
not been executed prior to executing MWAIT, then the processor will not enter the implementation-dependent-opti-
mized state. Execution will resume at the instruction following the MWAIT.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 C9 MWAIT NP Valid Valid A hint that allow the processor to stop 
instruction execution and enter an 
implementation-dependent optimized state 
until occurrence of a class of events.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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MWAIT for Power Management

MWAIT accepts a hint and optional extension to the processor that it can enter a specified target C state while 
waiting for an event or a store operation to the address range armed by MONITOR. Support for MWAIT extensions 
for power management is indicated by CPUID.05H:ECX[bit 0] reporting 1. 

EAX and ECX are used to communicate the additional information to the MWAIT instruction, such as the kind of 
optimized state the processor should enter. ECX specifies optional extensions for the MWAIT instruction. EAX may 
contain hints such as the preferred optimized state the processor should enter. Implementation-specific conditions 
may cause a processor to ignore the hint and enter a different optimized state. Future processor implementations 
may implement several optimized “waiting” states and will select among those states based on the hint argument.

Table 3-67 describes the meaning of ECX and EAX registers for MWAIT extensions.

Note that if MWAIT is used to enter any of the C-states that are numerically higher than C1, a store to the address 
range armed by the MONITOR instruction will cause the processor to exit MWAIT only if the store was originated by 
other processor agents. A store from non-processor agent might not cause the processor to exit MWAIT in such 
cases.

For additional details of MWAIT extensions, see Chapter 14, “Power and Thermal Management,” of Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Operation

(* MWAIT takes the argument in EAX as a hint extension and is architected to take the argument in ECX as an instruction extension 
MWAIT EAX, ECX *)

{

WHILE ( (“Monitor Hardware is in armed state”)) {

implementation_dependent_optimized_state(EAX, ECX); }

Set the state of Monitor Hardware as triggered;

}

Intel C/C++ Compiler Intrinsic Equivalent

MWAIT: void _mm_mwait(unsigned extensions, unsigned hints)

Table 3-67.  MWAIT Extension Register (ECX)

Bits Description

0 Treat interrupts as break events even if masked (e.g., even if EFLAGS.IF=0). May be set only if 
CPUID.05H:ECX[bit 1] = 1.

31: 1 Reserved

Table 3-68.  MWAIT Hints Register (EAX)

Bits Description

3 : 0 Sub C-state within a C-state, indicated by bits [7:4]

7 : 4 Target C-state*

Value of 0 means C1; 1 means C2 and so on

Value of 01111B means C0

Note: Target C states for MWAIT extensions are processor-specific C-states, not ACPI C-states

31: 8 Reserved
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Example

MONITOR/MWAIT instruction pair must be coded in the same loop because execution of the MWAIT instruction will 
trigger the monitor hardware. It is not a proper usage to execute MONITOR once and then execute MWAIT in a 
loop. Setting up MONITOR without executing MWAIT has no adverse effects.

Typically the MONITOR/MWAIT pair is used in a sequence, such as:

EAX = Logical Address(Trigger)

ECX = 0 (*Hints *)

EDX = 0 (* Hints *)

IF ( !trigger_store_happened) {

MONITOR EAX, ECX, EDX

IF ( !trigger_store_happened ) {

MWAIT EAX, ECX

}

}

The above code sequence makes sure that a triggering store does not happen between the first check of the trigger 
and the execution of the monitor instruction. Without the second check that triggering store would go un-noticed. 
Typical usage of MONITOR and MWAIT would have the above code sequence within a loop.

Numeric Exceptions

None

Protected Mode Exceptions

#GP(0) If ECX[31:1] ≠ 0.
If ECX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.
If current privilege level is not 0.

Real Address Mode Exceptions

#GP If ECX[31:1] ≠ 0.
If ECX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

Virtual 8086 Mode Exceptions

#UD The MWAIT instruction is not recognized in virtual-8086 mode (even if 
CPUID.01H:ECX.MONITOR[bit 3] = 1).

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If RCX[63:1] ≠ 0.
If RCX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.

#UD If the current privilege level is not 0.
If CPUID.01H:ECX.MONITOR[bit 3] = 0.
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CHAPTER 4
INSTRUCTION SET REFERENCE, N-Z

4.1 IMM8 CONTROL BYTE OPERATION FOR PCMPESTRI / PCMPESTRM / 
PCMPISTRI / PCMPISTRM

The notations introduced in this section are referenced in the reference pages of PCMPESTRI, PCMPESTRM, PCMP-
ISTRI, PCMPISTRM. The operation of the immediate control byte is common to these four string text processing 
instructions of SSE4.2. This section describes the common operations. 

4.1.1 General Description

The operation of PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM is defined by the combination of the respec-
tive opcode and the interpretation of an immediate control byte that is part of the instruction encoding.

The opcode controls the relationship of input bytes/words to each other (determines whether the inputs terminated 
strings or whether lengths are expressed explicitly) as well as the desired output (index or mask).

The Imm8 Control Byte for PCMPESTRM/PCMPESTRI/PCMPISTRM/PCMPISTRI encodes a significant amount of 
programmable control over the functionality of those instructions.  Some functionality is unique to each instruction 
while some is common across some or all of the four instructions. This section describes functionality which is 
common across the four instructions.

The arithmetic flags (ZF, CF, SF, OF, AF, PF) are set as a result of these instructions. However, the meanings of the 
flags have been overloaded from their typical meanings in order to provide additional information regarding the 
relationships of the two inputs.

PCMPxSTRx instructions perform arithmetic comparisons between all possible pairs of bytes or words, one from 
each packed input source operand. The boolean results of those comparisons are then aggregated in order to 
produce meaningful results.  The Imm8 Control Byte is used to affect the interpretation of individual input elements 
as well as control the arithmetic comparisons used and the specific aggregation scheme. 

Specifically, the Imm8 Control Byte consists of bit fields that control the following attributes:
• Source data format — Byte/word data element granularity, signed or unsigned elements
• Aggregation operation — Encodes the mode of per-element comparison operation and the aggregation of 

per-element comparisons into an intermediate result
• Polarity — Specifies intermediate processing to be performed on the intermediate result
• Output selection — Specifies final operation to produce the output (depending on index or mask) from the 

intermediate result

4.1.2 Source Data Format

If the Imm8 Control Byte has bit[0] cleared, each source contains 16 packed bytes.  If the bit is set each source 

Table 4-1.  Source Data Format

Imm8[1:0] Meaning Description

00b Unsigned bytes Both 128-bit sources are treated as packed, unsigned bytes.

01b Unsigned words Both 128-bit sources are treated as packed, unsigned words.

10b Signed bytes Both 128-bit sources are treated as packed, signed bytes.

11b Signed words Both 128-bit sources are treated as packed, signed words.
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contains 8 packed words.  If the Imm8 Control Byte has bit[1] cleared, each input contains unsigned data.  If the 
bit is set each source contains signed data. 

4.1.3 Aggregation Operation

All 256 (64) possible comparisons are always performed.  The individual Boolean results of those comparisons are 
referred by “BoolRes[Reg/Mem element index,  Reg element index].” Comparisons evaluating to “True” are repre-
sented with a 1, False with a 0 (positive logic).  The initial results are then aggregated into a 16-bit (8-bit)  inter-
mediate result (IntRes1) using one of the modes described in the table below, as determined by Imm8 Control Byte 
bit[3:2]. 

See Section 4.1.6 for a description of the overrideIfDataInvalid() function used in Table 4-3.

Table 4-2.  Aggregation Operation

Imm8[3:2] Mode Comparison

00b Equal any The arithmetic comparison is “equal.”

01b Ranges Arithmetic comparison is “greater than or equal” between even indexed bytes/words of reg and 
each byte/word of reg/mem. 

Arithmetic comparison is “less than or equal” between odd indexed bytes/words of reg and each 
byte/word of reg/mem.

(reg/mem[m] >= reg[n] for n = even, reg/mem[m] <= reg[n] for n = odd) 

10b Equal each The arithmetic comparison is “equal.”

11b Equal ordered The arithmetic comparison is “equal.”

Table 4-3.  Aggregation Operation 

Mode Pseudocode

Equal any

(find characters from a set)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For j = 0 to UpperBound, j++

For i = 0 to UpperBound, i++

IntRes1[j] OR= overrideIfDataInvalid(BoolRes[j,i])

Ranges

(find characters from ranges)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For j = 0 to UpperBound, j++

For i = 0 to UpperBound, i+=2

IntRes1[j] OR= (overrideIfDataInvalid(BoolRes[j,i]) AND 
overrideIfDataInvalid(BoolRes[j,i+1]))

Equal each

(string compare)

UpperBound = imm8[0] ? 7 : 15;

IntRes1 = 0;

For i = 0 to UpperBound, i++

IntRes1[i] = overrideIfDataInvalid(BoolRes[i,i])

Equal ordered

(substring search)

UpperBound = imm8[0] ? 7 :15;

IntRes1 = imm8[0] ? 0xFF : 0xFFFF

For j = 0 to UpperBound, j++

For i = 0 to UpperBound-j, k=j to UpperBound, k++, i++

IntRes1[j] AND= overrideIfDataInvalid(BoolRes[k,i])
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4.1.4 Polarity

IntRes1 may then be further modified by performing a 1’s complement, according to the value of the Imm8 Control 
Byte bit[4]. Optionally, a mask may be used such that only those IntRes1 bits which correspond to “valid” reg/mem 
input elements are complemented (note that the definition of a valid input element is dependant on the specific 
opcode and is defined in each opcode’s description). The result of the possible negation is referred to as IntRes2.

4.1.5 Output Selection

For PCMPESTRI/PCMPISTRI, the Imm8 Control Byte bit[6] is used to determine if the index is of the least signifi-
cant or most significant bit of IntRes2.

Specifically for PCMPESTRM/PCMPISTRM, the Imm8 Control Byte bit[6] is used  to determine if the mask is a 16 (8) 
bit mask or a 128 bit byte/word mask.

4.1.6 Valid/Invalid Override of Comparisons

PCMPxSTRx instructions allow for the possibility that an end-of-string (EOS) situation may occur within the 128-bit 
packed data value (see the instruction descriptions below for details). Any data elements on either source that are 
determined to be past the EOS are considered to be invalid, and the treatment of invalid data within a comparison 
pair varies depending on the aggregation function being performed.

In general, the individual comparison result for each element pair BoolRes[i.j] can be forced true or false if one or 
more elements in the pair are invalid. See Table 4-7.

Table 4-4.  Polarity

Imm8[5:4] Operation Description

00b Positive Polarity (+) IntRes2 = IntRes1

01b Negative Polarity (-) IntRes2 = -1 XOR IntRes1

10b Masked (+) IntRes2 = IntRes1

11b Masked (-) IntRes2[i] = IntRes1[i] if reg/mem[i] invalid, else = ~IntRes1[i]

Table 4-5.  Ouput Selection

Imm8[6] Operation Description

0b Least significant index The index returned to ECX is of the least significant set bit in IntRes2.

1b Most significant index The index returned to ECX is of the most significant set bit in IntRes2.

Table 4-6.  Output Selection

Imm8[6] Operation Description

0b Bit mask IntRes2 is returned as the mask to the least significant bits of XMM0 with zero extension to 128 
bits.

1b Byte/word mask IntRes2 is expanded into a byte/word mask (based on imm8[1]) and placed in XMM0.  The 
expansion is performed by replicating each bit into all of the bits of the byte/word of the same 
index.



INSTRUCTION SET REFERENCE, N-Z

4-4 Vol. 2B

4.1.7 Summary of Im8 Control byte

Table 4-7.  Comparison Result for Each Element Pair BoolRes[i.j]

xmm1 
byte/ word

xmm2/ m128 
byte/word

Imm8[3:2] = 00b
(equal any)

Imm8[3:2] = 01b 
(ranges)

Imm8[3:2] = 10b 
(equal each)

Imm8[3:2] = 11b 
(equal ordered)

Invalid Invalid Force false Force false Force true Force true

Invalid Valid Force false Force false Force false Force true

Valid Invalid Force false Force false Force false Force false

Valid Valid Do not force Do not force Do not force Do not force

Table 4-8.  Summary of Imm8 Control Byte 

Imm8 Description

-------0b 128-bit sources treated as 16 packed bytes.

-------1b 128-bit sources treated as 8 packed words.

------0-b Packed bytes/words are unsigned.

------1-b Packed bytes/words are signed.

----00--b Mode is equal any.

----01--b Mode is ranges.

----10--b Mode is equal each.

----11--b Mode is equal ordered.

---0----b IntRes1 is unmodified.

---1----b IntRes1 is negated (1’s complement).

--0-----b Negation of IntRes1 is for all 16 (8) bits.

--1-----b Negation of IntRes1 is masked by reg/mem validity.

-0------b Index of the least significant, set, bit is used (regardless of corresponding input element validity).  

IntRes2 is returned in least significant bits of XMM0.

-1------b Index of the most significant, set, bit is used (regardless of corresponding input element validity).

Each bit of IntRes2 is expanded to byte/word.

0-------b This bit currently has no defined effect, should be 0.

1-------b This bit currently has no defined effect, should be 0.



INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-5

4.1.8 Diagram Comparison and Aggregation Process

4.2 INSTRUCTIONS (N-Z)

Chapter 4 continues an alphabetical discussion of Intel® 64 and IA-32 instructions (N-Z). See also: Chapter 3, 
“Instruction Set Reference, A-M,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A.

Figure 4-1.  Operation of PCMPSTRx and PCMPESTRx
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NEG—Two's Complement Negation

Instruction Operand Encoding

Description

Replaces the value of operand (the destination operand) with its two's complement. (This operation is equivalent to 
subtracting the operand from 0.) The destination operand is located in a general-purpose register or a memory 
location.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

IF DEST = 0 

THEN CF ← 0;

ELSE CF ← 1; 

FI;

DEST ← [– (DEST)]

Flags Affected

The CF flag set to 0 if the source operand is 0; otherwise it is set to 1. The OF, SF, ZF, AF, and PF flags are set 
according to the result. 

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F6 /3 NEG r/m8 M Valid Valid Two's complement negate r/m8.

REX + F6 /3 NEG r/m8* M Valid N.E. Two's complement negate r/m8.

F7 /3 NEG r/m16 M Valid Valid Two's complement negate r/m16.

F7 /3 NEG r/m32 M Valid Valid Two's complement negate r/m32.

REX.W + F7 /3 NEG r/m64 M Valid N.E. Two's complement negate r/m64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA
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Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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NOP—No Operation

Instruction Operand Encoding

Description

This instruction performs no operation. It is a one-byte or multi-byte NOP that takes up space in the instruction 
stream but does not impact machine context, except for the EIP register.

The multi-byte form of NOP is available on processors with model encoding:
• CPUID.01H.EAX[Bytes 11:8] = 0110B or 1111B

The multi-byte NOP instruction does not alter the content of a register and will not issue a memory operation. The 
instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

The one-byte NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX instruction.

The multi-byte NOP instruction performs no operation on supported processors and generates undefined opcode 
exception on processors that do not support the multi-byte NOP instruction.

The memory operand form of the instruction allows software to create a byte sequence of “no operation” as one 
instruction. For situations where multiple-byte NOPs are needed, the recommended operations (32-bit mode and 
64-bit mode) are: 

Flags Affected

None.

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

90 NOP NP Valid Valid One byte no-operation instruction.

0F 1F /0 NOP r/m16 M Valid Valid Multi-byte no-operation instruction.

0F 1F /0 NOP r/m32 M Valid Valid Multi-byte no-operation instruction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

M ModRM:r/m (r) NA NA NA

Table 4-9.  Recommended Multi-Byte Sequence of NOP Instruction

Length Assembly Byte Sequence

2 bytes 66 NOP 66 90H

3 bytes NOP DWORD ptr [EAX] 0F 1F 00H

4 bytes NOP DWORD ptr [EAX + 00H] 0F 1F 40 00H

5 bytes NOP DWORD ptr [EAX + EAX*1 + 00H] 0F 1F 44 00 00H

6 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00H] 66 0F 1F 44 00 00H

7 bytes NOP DWORD ptr [EAX + 00000000H] 0F 1F 80 00 00 00 00H

8 bytes NOP DWORD ptr [EAX + EAX*1 + 00000000H] 0F 1F 84 00 00 00 00 00H

9 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00000000H] 66 0F 1F 84 00 00 00 00 00H
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NOT—One's Complement Negation

Instruction Operand Encoding

Description

Performs a bitwise NOT operation (each 1 is set to 0, and each 0 is set to 1) on the destination operand and stores 
the result in the destination operand location. The destination operand can be a register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST ← NOT DEST;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F6 /2 NOT r/m8 M Valid Valid Reverse each bit of r/m8.

REX + F6 /2 NOT r/m8* M Valid N.E. Reverse each bit of r/m8.

F7 /2 NOT r/m16 M Valid Valid Reverse each bit of r/m16.

F7 /2 NOT r/m32 M Valid Valid Reverse each bit of r/m32.

REX.W + F7 /2 NOT r/m64 M Valid N.E. Reverse each bit of r/m64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r, w) NA NA NA
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Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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OR—Logical Inclusive OR

Instruction Operand Encoding

Description

Performs a bitwise inclusive OR operation between the destination (first) and source (second) operands and stores 
the result in the destination operand location. The source operand can be an immediate, a register, or a memory 
location; the destination operand can be a register or a memory location. (However, two memory operands cannot 
be used in one instruction.) Each bit of the result of the OR instruction is set to 0 if both corresponding bits of the 
first and second operands are 0; otherwise, each bit is set to 1.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0C ib OR AL, imm8 I Valid Valid AL OR imm8.

0D iw OR AX, imm16 I Valid Valid AX OR imm16.

0D id OR EAX, imm32 I Valid Valid EAX OR imm32.

REX.W + 0D id OR RAX, imm32 I Valid N.E. RAX OR imm32 (sign-extended).

80 /1 ib OR r/m8, imm8 MI Valid Valid r/m8 OR imm8.

REX + 80 /1 ib OR r/m8*, imm8 MI Valid N.E. r/m8 OR imm8.

81 /1 iw OR r/m16, imm16 MI Valid Valid  r/m16 OR imm16.

81 /1 id OR r/m32, imm32 MI Valid Valid  r/m32 OR imm32.

REX.W + 81 /1 id OR r/m64, imm32 MI Valid N.E.  r/m64 OR imm32 (sign-extended).

83 /1 ib OR r/m16, imm8 MI Valid Valid r/m16 OR imm8 (sign-extended).

83 /1 ib OR r/m32, imm8 MI Valid Valid r/m32 OR imm8 (sign-extended).

REX.W + 83 /1 ib OR r/m64, imm8 MI Valid N.E. r/m64 OR imm8 (sign-extended).

08 /r OR r/m8, r8 MR Valid Valid r/m8 OR r8.

REX + 08 /r OR r/m8*, r8* MR Valid N.E. r/m8 OR r8.

09 /r OR r/m16, r16 MR Valid Valid r/m16 OR r16.

09 /r OR r/m32, r32 MR Valid Valid r/m32 OR r32.

REX.W + 09 /r OR r/m64, r64 MR Valid N.E. r/m64 OR r64.

0A /r OR r8, r/m8 RM Valid Valid r8 OR r/m8.

REX + 0A /r OR r8*, r/m8* RM Valid N.E. r8 OR r/m8.

0B /r OR r16, r/m16 RM Valid Valid r16 OR r/m16.

0B /r OR r32, r/m32 RM Valid Valid r32 OR r/m32.

REX.W + 0B /r OR r64, r/m64 RM Valid N.E. r64 OR r/m64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 NA NA

MI ModRM:r/m (r, w) imm8/16/32 NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
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In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST ← DEST OR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The state of the AF flag is 
undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical OR of the two or four packed double-precision floating-point values from the first source 
operand and the second source operand, and stores the result in the destination operand

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the destination YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 
Note: If VORPD is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause 
an #UD exception.

Operation

ORPD (128-bit Legacy SSE version)

DEST[63:0] Å DEST[63:0] BITWISE OR SRC[63:0]

DEST[127:64] Å DEST[127:64] BITWISE OR SRC[127:64]

DEST[VLMAX-1:128] (Unmodified)

VORPD (VEX.128 encoded version)

DEST[63:0] Å SRC1[63:0] BITWISE OR SRC2[63:0]

DEST[127:64] Å SRC1[127:64] BITWISE OR SRC2[127:64]

DEST[VLMAX-1:128] Å 0

VORPD (VEX.256 encoded version)

DEST[63:0] Å SRC1[63:0] BITWISE OR SRC2[63:0]

DEST[127:64] Å SRC1[127:64] BITWISE OR SRC2[127:64]

DEST[191:128] Å SRC1[191:128] BITWISE OR SRC2[191:128]

DEST[255:192] Å SRC1[255:192] BITWISE OR SRC2[255:192]

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 56 /r

ORPD xmm1, xmm2/m128

RM V/V SSE2 Bitwise OR of xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG 56 /r
VORPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical OR of packed 
double-precision floating-point values in 
xmm2 and xmm3/mem.

VEX.NDS.256.66.0F.WIG 56 /r

VORPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the bitwise logical OR of packed 
double-precision floating-point values in 
ymm2 and ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Intel® C/C++ Compiler Intrinsic Equivalent

ORPD:  __m128d _mm_or_pd(__m128d a, __m128d b);

VORPD:  __m256d _mm256_or_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical OR of the four or eight packed single-precision floating-point values from the first source 
operand and the second source operand, and stores the result in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the destination YMM register destination are zeroed.
VEX.256 Encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 
Note: If VORPS is encoded with VEX.L= 1, an attempt to execute the instruction encoded with VEX.L= 1 will cause 
an #UD exception.

Operation

ORPS (128-bit Legacy SSE version)

DEST[31:0] Å SRC1[31:0] BITWISE OR SRC2[31:0]

DEST[63:32] Å SRC1[63:32] BITWISE OR SRC2[63:32]

DEST[95:64] Å SRC1[95:64] BITWISE OR SRC2[95:64]

DEST[127:96] Å SRC1[127:96] BITWISE OR SRC2[127:96]

DEST[VLMAX-1:128] (Unmodified)

VORPS (VEX.128 encoded version)

DEST[31:0] Å SRC1[31:0] BITWISE OR SRC2[31:0]

DEST[63:32] Å SRC1[63:32] BITWISE OR SRC2[63:32]

DEST[95:64] Å SRC1[95:64] BITWISE OR SRC2[95:64]

DEST[127:96] Å SRC1[127:96] BITWISE OR SRC2[127:96]

DEST[VLMAX-1:128] Å 0

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 56 /r

ORPS xmm1, xmm2/m128

RM V/V SSE Bitwise OR of xmm1 and xmm2/m128.

VEX.NDS.128.0F.WIG 56 /r

VORPS xmm1, xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical OR of packed single-
precision floating-point values in xmm2 and 
xmm3/mem.

VEX.NDS.256.0F.WIG 56 /r

VORPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the bitwise logical OR of packed single-
precision floating-point values in ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VORPS (VEX.256 encoded version)

DEST[31:0] Å SRC1[31:0] BITWISE OR SRC2[31:0]

DEST[63:32] Å SRC1[63:32] BITWISE OR SRC2[63:32]

DEST[95:64] Å SRC1[95:64] BITWISE OR SRC2[95:64]

DEST[127:96] Å SRC1[127:96] BITWISE OR SRC2[127:96]

DEST[159:128] Å SRC1[159:128] BITWISE OR SRC2[159:128]

DEST[191:160]Å SRC1[191:160] BITWISE OR SRC2[191:160]

DEST[223:192] Å SRC1[223:192] BITWISE OR SRC2[223:192]

DEST[255:224] Å SRC1[255:224] BITWISE OR SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

ORPS:  __m128 _mm_or_ps (__m128 a, __m128 b);

VORPS:  __m256 _mm256_or_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.
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OUT—Output to Port

Instruction Operand Encoding

Description

Copies the value from the second operand (source operand) to the I/O port specified with the destination operand 
(first operand). The source operand can be register AL, AX, or EAX, depending on the size of the port being 
accessed (8, 16, or 32 bits, respectively); the destination operand can be a byte-immediate or the DX register. 
Using a byte immediate allows I/O port addresses 0 to 255 to be accessed; using the DX register as a source 
operand allows I/O ports from 0 to 65,535 to be accessed.

The size of the I/O port being accessed is determined by the opcode for an 8-bit I/O port or by the operand-size 
attribute of the instruction for a 16- or 32-bit I/O port.

At the machine code level, I/O instructions are shorter when accessing 8-bit I/O ports. Here, the upper eight bits 
of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O address space. See Chapter 16, 
“Input/Output,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more infor-
mation on accessing I/O ports in the I/O address space.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUT instruction, the Pentium® processor ensures that the EWBE# pin has been sampled active 
before it begins to execute the next instruction. (Note that the instruction can be prefetched if EWBE# is not active, 
but it will not be executed until the EWBE# pin is sampled active.) Only the Pentium processor family has the 
EWBE# pin.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

E6 ib OUT imm8, AL I Valid Valid Output byte in AL to I/O port address imm8.

E7 ib OUT imm8, AX I Valid Valid Output word in AX to I/O port address imm8. 

E7 ib OUT imm8, EAX I Valid Valid Output doubleword in EAX to I/O port address 
imm8.

EE OUT DX, AL NP Valid Valid Output byte in AL to I/O port address in DX.

EF OUT DX, AX NP Valid Valid Output word in AX to I/O port address in DX.

EF OUT DX, EAX NP Valid Valid Output doubleword in EAX to I/O port address 
in DX.

NOTES:

* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I imm8 NA NA NA

NP NA NA NA NA
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Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))

THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)

THEN (* I/O operation is not allowed *)

#GP(0);

ELSE ( * I/O operation is allowed *) 

DEST ← SRC; (* Writes to selected I/O port *)

FI;

ELSE (Real Mode or Protected Mode with CPL ≤ IOPL *)

DEST ← SRC; (* Writes to selected I/O port *)

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the 
corresponding I/O permission bits in TSS for the I/O port being accessed is 1.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed is 1.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

Same as protected mode exceptions.
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OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

Instruction Operand Encoding

Description

Copies data from the source operand (second operand) to the I/O port specified with the destination operand (first 
operand). The source operand is a memory location, the address of which is read from either the DS:SI, DS:ESI or 
the RSI registers (depending on the address-size attribute of the instruction, 16, 32 or 64, respectively). (The DS 
segment may be overridden with a segment override prefix.) The destination operand is an I/O port address (from 
0 to 65,535) that is read from the DX register. The size of the I/O port being accessed (that is, the size of the source 
and destination operands) is determined by the opcode for an 8-bit I/O port or by the operand-size attribute of the 
instruction for a 16- or 32-bit I/O port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands” form and the “no-
operands” form. The explicit-operands form (specified with the OUTS mnemonic) allows the source and destination 
operands to be specified explicitly. Here, the source operand should be a symbol that indicates the size of the I/O 
port and the source address, and the destination operand must be DX. This explicit-operands form is provided to 
allow documentation; however, note that the documentation provided by this form can be misleading. That is, the 
source operand symbol must specify the correct type (size) of the operand (byte, word, or doubleword), but it 
does not have to specify the correct location. The location is always specified by the DS:(E)SI or RSI registers, 
which must be loaded correctly before the OUTS instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the OUTS instructions. 
Here also DS:(E)SI is assumed to be the source operand and DX is assumed to be the destination operand. The size 
of the I/O port is specified with the choice of mnemonic: OUTSB (byte), OUTSW (word), or OUTSD (doubleword).

After the byte, word, or doubleword is transferred from the memory location to the I/O port, the SI/ESI/RSI 
register is incremented or decremented automatically according to the setting of the DF flag in the EFLAGS register. 
(If the DF flag is 0, the (E)SI register is incremented; if the DF flag is 1, the SI/ESI/RSI register is decremented.) 
The SI/ESI/RSI register is incremented or decremented by 1 for byte operations, by 2 for word operations, and by 
4 for doubleword operations.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

6E OUTS DX, m8 NP Valid Valid Output byte from memory location specified 
in DS:(E)SI or RSI to I/O port specified in DX**.

6F OUTS DX, m16 NP Valid Valid Output word from memory location specified 
in DS:(E)SI or RSI to I/O port specified in DX**.

6F OUTS DX, m32 NP Valid Valid Output doubleword from memory location 
specified in DS:(E)SI or RSI to I/O port specified 
in DX**.

6E OUTSB NP Valid Valid Output byte from memory location specified 
in DS:(E)SI or RSI to I/O port specified in DX**.

6F OUTSW NP Valid Valid Output word from memory location specified 
in DS:(E)SI or RSI to I/O port specified in DX**.

6F OUTSD NP Valid Valid Output doubleword from memory location 
specified in DS:(E)SI or RSI to I/O port specified 
in DX**.

NOTES:

* See IA-32 Architecture Compatibility section below.

** In 64-bit mode, only 64-bit (RSI) and 32-bit (ESI) address sizes are supported. In non-64-bit mode, only 32-bit (ESI) and 16-bit (SI) 
address sizes are supported.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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The OUTS, OUTSB, OUTSW, and OUTSD instructions can be preceded by the REP prefix for block input of ECX bytes, 
words, or doublewords. See “REP/REPE/REPZ /REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for a 
description of the REP prefix. This instruction is only useful for accessing I/O ports located in the processor’s I/O 
address space. See Chapter 16, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, for more information on accessing I/O ports in the I/O address space.

In 64-bit mode, the default operand size is 32 bits; operand size is not promoted by the use of REX.W. In 64-bit 
mode, the default address size is 64 bits, and 64-bit address is specified using RSI by default. 32-bit address using 
ESI is support using the prefix 67H, but 16-bit address is not supported in 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUTS, OUTSB, OUTSW, or OUTSD instruction, the Pentium processor ensures that the EWBE# 
pin has been sampled active before it begins to execute the next instruction. (Note that the instruction can be 
prefetched if EWBE# is not active, but it will not be executed until the EWBE# pin is sampled active.) Only the 
Pentium processor family has the EWBE# pin.

For the Pentium 4, Intel® Xeon®, and P6 processor family, upon execution of an OUTS, OUTSB, OUTSW, or OUTSD 
instruction, the processor will not execute the next instruction until the data phase of the transaction is complete.

Operation

IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))

THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)

IF (Any I/O Permission Bit for I/O port being accessed = 1)

THEN (* I/O operation is not allowed *)

#GP(0);

ELSE (* I/O operation is allowed *) 

DEST ← SRC; (* Writes to I/O port *)

FI;

ELSE (Real Mode or Protected Mode or 64-Bit Mode with CPL ≤ IOPL *)

DEST ← SRC; (* Writes to I/O port *)

FI;

Byte transfer:

IF 64-bit mode

Then

IF 64-Bit Address Size 

THEN 

IF DF = 0
THEN RSI ← RSI RSI + 1; 

ELSE RSI ← RSI or – 1; 

FI;

ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI ← ESI + 1; 

ELSE ESI ← ESI – 1; 

FI;

FI;

ELSE 

IF DF = 0
THEN (E)SI ← (E)SI + 1; 

ELSE (E)SI ← (E)SI – 1; 

FI;

FI;

Word transfer:

IF 64-bit mode
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Then

IF 64-Bit Address Size 

THEN 

IF DF = 0
THEN RSI ← RSI RSI + 2; 

ELSE RSI ← RSI or – 2; 

FI;

ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI ← ESI + 2; 

ELSE ESI ← ESI – 2; 

FI;

FI;

ELSE 

IF DF = 0
THEN (E)SI ← (E)SI + 2; 

ELSE (E)SI ← (E)SI – 2; 

FI;

FI;

Doubleword transfer:

IF 64-bit mode

Then

IF 64-Bit Address Size 

THEN 

IF DF = 0
THEN RSI ← RSI RSI + 4; 

ELSE RSI ← RSI or – 4; 

FI;

ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI ← ESI + 4; 

ELSE ESI ← ESI – 4; 

FI;

FI;

ELSE 

IF DF = 0
THEN (E)SI ← (E)SI + 4; 

ELSE (E)SI ← (E)SI – 4; 

FI;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the 
corresponding I/O permission bits in TSS for the I/O port being accessed is 1.
If a memory operand effective address is outside the limit of the CS, DS, ES, FS, or GS 
segment.
If the segment register contains a NULL segment selector.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed is 1.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the 

corresponding I/O permission bits in TSS for the I/O port being accessed is 1.
If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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PABSB/PABSW/PABSD — Packed Absolute Value 

Instruction Operand Encoding

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 1C /r1

PABSB mm1, mm2/m64 

RM V/V SSSE3 Compute the absolute value of bytes in 
mm2/m64 and store UNSIGNED result in mm1.

66 0F 38 1C /r 

PABSB xmm1, xmm2/m128 

RM V/V SSSE3 Compute the absolute value of bytes in 
xmm2/m128 and store UNSIGNED result in 
xmm1. 

0F 38 1D /r1

PABSW mm1, mm2/m64 

RM V/V SSSE3 Compute the absolute value of 16-bit integers 
in mm2/m64 and store UNSIGNED result in 
mm1.

66 0F 38 1D /r

PABSW xmm1, xmm2/m128

RM V/V SSSE3 Compute the absolute value of 16-bit integers 
in xmm2/m128 and store UNSIGNED result in 
xmm1.

0F 38 1E /r1 

PABSD mm1, mm2/m64 

RM V/V SSSE3 Compute the absolute value of 32-bit integers 
in mm2/m64 and store UNSIGNED result in 
mm1. 

66 0F 38 1E /r 

PABSD xmm1, xmm2/m128 

RM V/V SSSE3 Compute the absolute value of 32-bit integers 
in xmm2/m128 and store UNSIGNED result in 
xmm1. 

VEX.128.66.0F38.WIG 1C /r

VPABSB xmm1, xmm2/m128

RM V/V AVX Compute the absolute value of bytes in 
xmm2/m128 and store UNSIGNED result in 
xmm1.

VEX.128.66.0F38.WIG 1D /r

VPABSW xmm1, xmm2/m128

RM V/V AVX Compute the absolute value of 16- bit 
integers in xmm2/m128 and store UNSIGNED 
result in xmm1.

VEX.128.66.0F38.WIG 1E /r

VPABSD xmm1, xmm2/m128

RM V/V AVX Compute the absolute value of 32- bit 
integers in xmm2/m128 and store UNSIGNED 
result in xmm1.

VEX.256.66.0F38.WIG 1C /r
VPABSB ymm1, ymm2/m256

RM V/V AVX2 Compute the absolute value of bytes in 
ymm2/m256 and store UNSIGNED result in 
ymm1.

VEX.256.66.0F38.WIG 1D /r

VPABSW ymm1, ymm2/m256

RM V/V AVX2 Compute the absolute value of 16-bit integers 
in ymm2/m256 and store UNSIGNED result in 
ymm1.

VEX.256.66.0F38.WIG 1E /r

VPABSD ymm1, ymm2/m256

RM V/V AVX2 Compute the absolute value of 32-bit integers 
in ymm2/m256 and store UNSIGNED result in 
ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Description 

(V)PABSB/W/D computes the absolute value of each data element of the source operand (the second operand) and 
stores the UNSIGNED results in the destination operand (the first operand). (V)PABSB operates on signed bytes, 
(V)PABSW operates on 16-bit words, and (V)PABSD operates on signed 32-bit integers. The source operand can be 
an MMX register or a 64-bit memory location, or it can be an XMM register, a YMM register, a 128-bit memory loca-
tion, or a 256-bit memory location. The destination operand can be an MMX, an XMM or a YMM register. Both oper-
ands can be MMX registers or XMM registers. When the source operand is a 128-bit memory operand, the operand 
must be aligned on a 16byte boundary or a general-protection exception (#GP) will be generated. 

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: The source operand can be an XMM register or a 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: The source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 

Note: VEX.vvvv is reserved and must be 1111b, VEX.L must be 0; otherwise instructions will #UD.

Operation

PABSB (with 64 bit operands)

Unsigned DEST[7:0] ← ABS(SRC[7:0]) 

Repeat operation for 2nd through 7th bytes 

Unsigned DEST[63:56] ← ABS(SRC[63:56]) 

PABSB (with 128 bit operands)

Unsigned DEST[7:0] ← ABS(SRC[7:.0]) 

Repeat operation for 2nd through 15th bytes 

Unsigned DEST[127:120] ← ABS(SRC[127:120]) 

PABSW (with 64 bit operands)

Unsigned DEST[15:0] ← ABS(SRC[15:0]) 

Repeat operation for 2nd through 3rd 16-bit words 

Unsigned DEST[63:48] ← ABS(SRC[63:48]) 

PABSW (with 128 bit operands)

Unsigned DEST[15:0] ← ABS(SRC[15:0]) 

Repeat operation for 2nd through 7th 16-bit words 

Unsigned DEST[127:112] ← ABS(SRC[127:112]) 

PABSD (with 64 bit operands)

Unsigned DEST[31:0] ← ABS(SRC[31:0]) 

Unsigned DEST[63:32] ← ABS(SRC[63:32]) 

PABSD (with 128 bit operands)

Unsigned DEST[31:0] ← ABS(SRC[31:0]) 

Repeat operation for 2nd through 3rd 32-bit double words 

Unsigned DEST[127:96] ← ABS(SRC[127:96]) 

PABSB (128-bit Legacy SSE version)

DEST[127:0] Å BYTE_ABS(SRC)

DEST[VLMAX-1:128] (Unmodified)



PABSB/PABSW/PABSD — Packed Absolute Value

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-25

VPABSB (VEX.128 encoded version)

DEST[127:0] Å BYTE_ABS(SRC)

DEST[VLMAX-1:128] Å 0

VPABSB (VEX.256 encoded version)

Unsigned DEST[7:0]Å ABS(SRC[7:.0]) 

Repeat operation for 2nd through 31st bytes 

Unsigned DEST[255:248] Å ABS(SRC[255:248]) 

PABSW (128-bit Legacy SSE version)

DEST[127:0] Å WORD_ABS(SRC)

DEST[VLMAX-1:128] (Unmodified)

VPABSW (VEX.128 encoded version)

DEST[127:0] Å WORD_ABS(SRC)

DEST[VLMAX-1:128] Å 0

VPABSW (VEX.256 encoded version)

Unsigned DEST[15:0]Å ABS(SRC[15:0]) 

Repeat operation for 2nd through 15th 16-bit words 

Unsigned DEST[255:240] Å ABS(SRC[255:240]) 

PABSD (128-bit Legacy SSE version)

DEST[127:0] Å DWORD_ABS(SRC)

DEST[VLMAX-1:128] (Unmodified)

VPABSD (VEX.128 encoded version)

DEST[127:0] Å DWORD_ABS(SRC)

DEST[VLMAX-1:128] Å 0

VPABSD (VEX.256 encoded version)

Unsigned DEST[31:0] Å ABS(SRC[31:0]) 

Repeat operation for 2nd through 7th 32-bit double words 

Unsigned DEST[255:224] Å ABS(SRC[255:224]) 

Intel C/C++ Compiler Intrinsic Equivalents

PABSB:  __m64 _mm_abs_pi8 (__m64 a)

(V)PABSB:  __m128i _mm_abs_epi8 (__m128i a)

VPABSB: __m256i _mm256_abs_epi8 (__m256i a)

PABSW:  __m64 _mm_abs_pi16 (__m64 a)

(V)PABSW:  __m128i _mm_abs_epi16 (__m128i a)

VPABSW: __m256i _mm256_abs_epi16 (__m256i a)

PABSD:  __m64 _mm_abs_pi32 (__m64 a)

(V)PABSD:  __m128i _mm_abs_epi32 (__m128i a)

VPABSD: __m256i _mm256_abs_epi32 (__m256i a)

SIMD Floating-Point Exceptions 

None.
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Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PACKSSWB/PACKSSDW—Pack with Signed Saturation

Instruction Operand Encoding

Description

Converts packed signed word integers into packed signed byte integers (PACKSSWB) or converts packed signed 
doubleword integers into packed signed word integers (PACKSSDW), using saturation to handle overflow condi-
tions. See Figure 4-2 for an example of the packing operation.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 63 /r1

PACKSSWB mm1, mm2/m64

RM V/V MMX Converts 4 packed signed word integers from 
mm1 and from mm2/m64 into 8 packed 
signed byte integers in mm1 using signed 
saturation.

66 0F 63 /r

PACKSSWB xmm1, xmm2/m128

RM V/V SSE2 Converts 8 packed signed word integers from 
xmm1 and from xxm2/m128 into 16 packed 
signed byte integers in xxm1 using signed 
saturation.

0F 6B /r1

PACKSSDW mm1, mm2/m64

RM V/V MMX Converts 2 packed signed doubleword 
integers from mm1 and from mm2/m64 into 4 
packed signed word integers in mm1 using 

signed saturation.

66 0F 6B /r

PACKSSDW xmm1, xmm2/m128

RM V/V SSE2 Converts 4 packed signed doubleword 
integers from xmm1 and from xxm2/m128 
into 8 packed signed word integers in xxm1 

using signed saturation.

VEX.NDS.128.66.0F.WIG 63 /r

VPACKSSWB xmm1,xmm2, xmm3/m128

RVM V/V AVX Converts 8 packed signed word integers from 
xmm2 and from xmm3/m128 into 16 packed 
signed byte integers in xmm1 using signed 
saturation.

VEX.NDS.128.66.0F.WIG 6B /r

VPACKSSDW xmm1,xmm2, xmm3/m128

RVM V/V AVX Converts 4 packed signed doubleword 
integers from xmm2 and from xmm3/m128 
into 8 packed signed word integers in xmm1 

using signed saturation.

VEX.NDS.256.66.0F.WIG 63 /r

VPACKSSWB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Converts 16 packed signed word integers 
from ymm2 and from ymm3/m256 into 32 
packed signed byte integers in ymm1 using 

signed saturation.

VEX.NDS.256.66.0F.WIG 6B /r

VPACKSSDW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Converts 8 packed signed doubleword 
integers from ymm2 and from ymm3/m256 
into 16 packed signed word integers in 
ymm1using signed saturation.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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The (V)PACKSSWB instruction converts 4, 8 or 16 signed word integers from the destination operand (first 
operand) and 4, 8 or 16 signed word integers from the source operand (second operand) into 8, 16 or 32 signed 
byte integers and stores the result in the destination operand. If a signed word integer value is beyond the range 
of a signed byte integer (that is, greater than 7FH for a positive integer or greater than 80H for a negative integer), 
the saturated signed byte integer value of 7FH or 80H, respectively, is stored in the destination.

The (V)PACKSSDW instruction packs 2, 4 or 8 signed doublewords from the destination operand (first operand) and 
2, 4 or 8 signed doublewords from the source operand (second operand) into 4, 8 or 16 signed words in the desti-
nation operand (see Figure 4-2). If a signed doubleword integer value is beyond the range of a signed word (that 
is, greater than 7FFFH for a positive integer or greater than 8000H for a negative integer), the saturated signed 
word integer value of 7FFFH or 8000H, respectively, is stored into the destination.

The (V)PACKSSWB and (V)PACKSSDW instructions operate on either 64-bit, 128-bit operands or 256-bit operands. 
When operating on 64-bit operands, the destination operand must be an MMX technology register and the source 
operand can be either an MMX technology register or a 64-bit memory location. In 64-bit mode, using a REX prefix 
in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM 
register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of 
the corresponding YMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. 

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

PACKSSWB (with 64-bit operands)

DEST[7:0] ← SaturateSignedWordToSignedByte DEST[15:0]; 

DEST[15:8] ← SaturateSignedWordToSignedByte DEST[31:16];

DEST[23:16] ← SaturateSignedWordToSignedByte DEST[47:32];

DEST[31:24] ← SaturateSignedWordToSignedByte DEST[63:48];

DEST[39:32] ← SaturateSignedWordToSignedByte SRC[15:0];

DEST[47:40] ← SaturateSignedWordToSignedByte SRC[31:16];

DEST[55:48] ← SaturateSignedWordToSignedByte SRC[47:32];

DEST[63:56] ← SaturateSignedWordToSignedByte SRC[63:48];

PACKSSDW (with 64-bit operands)

DEST[15:0] ← SaturateSignedDoublewordToSignedWord DEST[31:0];

DEST[31:16] ← SaturateSignedDoublewordToSignedWord DEST[63:32];

DEST[47:32] ← SaturateSignedDoublewordToSignedWord SRC[31:0];

DEST[63:48] ← SaturateSignedDoublewordToSignedWord SRC[63:32];

Figure 4-2.  Operation of the PACKSSDW Instruction Using 64-bit Operands

D C

64-Bit SRC

64-Bit DEST

D’ C’ B’ A’

64-Bit DEST

B A
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PACKSSWB instruction (128-bit Legacy SSE version)

DEST[7:0]Å SaturateSignedWordToSignedByte (DEST[15:0]);

DEST[15:8] Å SaturateSignedWordToSignedByte (DEST[31:16]); 

DEST[23:16] Å SaturateSignedWordToSignedByte (DEST[47:32]);

DEST[31:24] Å SaturateSignedWordToSignedByte (DEST[63:48]);

DEST[39:32] Å SaturateSignedWordToSignedByte (DEST[79:64]);

DEST[47:40] ÅSaturateSignedWordToSignedByte (DEST[95:80]);

DEST[55:48] Å SaturateSignedWordToSignedByte (DEST[111:96]);

DEST[63:56] Å SaturateSignedWordToSignedByte (DEST[127:112]);

DEST[71:64] Å SaturateSignedWordToSignedByte (SRC[15:0]);

DEST[79:72] Å SaturateSignedWordToSignedByte (SRC[31:16]);

DEST[87:80] Å SaturateSignedWordToSignedByte (SRC[47:32]);

DEST[95:88] Å SaturateSignedWordToSignedByte (SRC[63:48]);

DEST[103:96] Å SaturateSignedWordToSignedByte (SRC[79:64]);

DEST[111:104] Å SaturateSignedWordToSignedByte (SRC[95:80]);

DEST[119:112] Å SaturateSignedWordToSignedByte (SRC[111:96]);

DEST[127:120] Å SaturateSignedWordToSignedByte (SRC[127:112]);

PACKSSDW instruction (128-bit Legacy SSE version)

DEST[15:0] Å SaturateSignedDwordToSignedWord (DEST[31:0]);

DEST[31:16] Å SaturateSignedDwordToSignedWord (DEST[63:32]);

DEST[47:32] Å SaturateSignedDwordToSignedWord (DEST[95:64]);

DEST[63:48] Å SaturateSignedDwordToSignedWord (DEST[127:96]);

DEST[79:64] Å SaturateSignedDwordToSignedWord (SRC[31:0]);

DEST[95:80] Å SaturateSignedDwordToSignedWord (SRC[63:32]);

DEST[111:96] Å SaturateSignedDwordToSignedWord (SRC[95:64]);

DEST[127:112] Å SaturateSignedDwordToSignedWord (SRC[127:96]);

VPACKSSWB instruction (VEX.128 encoded version)

DEST[7:0]Å SaturateSignedWordToSignedByte (SRC1[15:0]);

DEST[15:8] Å SaturateSignedWordToSignedByte (SRC1[31:16]); 

DEST[23:16] Å SaturateSignedWordToSignedByte (SRC1[47:32]);

DEST[31:24] Å SaturateSignedWordToSignedByte (SRC1[63:48]);

DEST[39:32] Å SaturateSignedWordToSignedByte (SRC1[79:64]);

DEST[47:40] Å SaturateSignedWordToSignedByte (SRC1[95:80]);

DEST[55:48] Å SaturateSignedWordToSignedByte (SRC1[111:96]);

DEST[63:56] Å SaturateSignedWordToSignedByte (SRC1[127:112]);

DEST[71:64] Å SaturateSignedWordToSignedByte (SRC2[15:0]);

DEST[79:72] Å SaturateSignedWordToSignedByte (SRC2[31:16]);

DEST[87:80] Å SaturateSignedWordToSignedByte (SRC2[47:32]);

DEST[95:88] Å SaturateSignedWordToSignedByte (SRC2[63:48]);

DEST[103:96] Å SaturateSignedWordToSignedByte (SRC2[79:64]);

DEST[111:104] Å SaturateSignedWordToSignedByte (SRC2[95:80]);

DEST[119:112] Å SaturateSignedWordToSignedByte (SRC2[111:96]);

DEST[127:120] Å SaturateSignedWordToSignedByte (SRC2[127:112]);

DEST[VLMAX-1:128]Å 0;

VPACKSSDW instruction (VEX.128 encoded version)

DEST[15:0] Å SaturateSignedDwordToSignedWord (SRC1[31:0]);

DEST[31:16] Å SaturateSignedDwordToSignedWord (SRC1[63:32]);

DEST[47:32] Å SaturateSignedDwordToSignedWord (SRC1[95:64]);

DEST[63:48] Å SaturateSignedDwordToSignedWord (SRC1[127:96]);

DEST[79:64] Å SaturateSignedDwordToSignedWord (SRC2[31:0]);

DEST[95:80] Å SaturateSignedDwordToSignedWord (SRC2[63:32]);
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DEST[111:96] Å SaturateSignedDwordToSignedWord (SRC2[95:64]);

DEST[127:112] Å SaturateSignedDwordToSignedWord (SRC2[127:96]);

DEST[VLMAX-1:128]Å 0;

VPACKSSWB instruction (VEX.256 encoded version)

DEST[7:0]Å SaturateSignedWordToSignedByte (SRC1[15:0]);

DEST[15:8] Å SaturateSignedWordToSignedByte (SRC1[31:16]); 

DEST[23:16] Å SaturateSignedWordToSignedByte (SRC1[47:32]);

DEST[31:24] Å SaturateSignedWordToSignedByte (SRC1[63:48]);

DEST[39:32] Å SaturateSignedWordToSignedByte (SRC1[79:64]);

DEST[47:40] Å SaturateSignedWordToSignedByte (SRC1[95:80]);

DEST[55:48] Å SaturateSignedWordToSignedByte (SRC1[111:96]);

DEST[63:56] Å SaturateSignedWordToSignedByte (SRC1[127:112]);

DEST[71:64] Å SaturateSignedWordToSignedByte (SRC2[15:0]);

DEST[79:72] Å SaturateSignedWordToSignedByte (SRC2[31:16]);

DEST[87:80] Å SaturateSignedWordToSignedByte (SRC2[47:32]);

DEST[95:88] Å SaturateSignedWordToSignedByte (SRC2[63:48]);

DEST[103:96] Å SaturateSignedWordToSignedByte (SRC2[79:64]);

DEST[111:104] Å SaturateSignedWordToSignedByte (SRC2[95:80]);

DEST[119:112] Å SaturateSignedWordToSignedByte (SRC2[111:96]);

DEST[127:120] Å SaturateSignedWordToSignedByte (SRC2[127:112]);

DEST[135:128]Å SaturateSignedWordToSignedByte (SRC1[143:128]);

DEST[143:136] Å SaturateSignedWordToSignedByte (SRC1[159:144]); 

DEST[151:144] Å SaturateSignedWordToSignedByte (SRC1[175:160]);

DEST[159:152] Å SaturateSignedWordToSignedByte (SRC1[191:176]);

DEST[167:160] Å SaturateSignedWordToSignedByte (SRC1[207:192]);

DEST[175:168] Å SaturateSignedWordToSignedByte (SRC1[223:208]);

DEST[183:176] Å SaturateSignedWordToSignedByte (SRC1[239:224]);

DEST[191:184] Å SaturateSignedWordToSignedByte (SRC1[255:240]);

DEST[199:192] Å SaturateSignedWordToSignedByte (SRC2[143:128]);

DEST[207:200] Å SaturateSignedWordToSignedByte (SRC2[159:144]);

DEST[215:208] Å SaturateSignedWordToSignedByte (SRC2[175:160]);

DEST[223:216] Å SaturateSignedWordToSignedByte (SRC2[191:176]);

DEST[231:224] Å SaturateSignedWordToSignedByte (SRC2[207:192]);

DEST[239:232] Å SaturateSignedWordToSignedByte (SRC2[223:208]);

DEST[247:240] Å SaturateSignedWordToSignedByte (SRC2[239:224]);

DEST[255:248] Å SaturateSignedWordToSignedByte (SRC2[255:240]);

VPACKSSDW instruction (VEX.256 encoded version)

DEST[15:0] Å SaturateSignedDwordToSignedWord (SRC1[31:0]);

DEST[31:16] Å SaturateSignedDwordToSignedWord (SRC1[63:32]);

DEST[47:32] Å SaturateSignedDwordToSignedWord (SRC1[95:64]);

DEST[63:48] Å SaturateSignedDwordToSignedWord (SRC1[127:96]);

DEST[79:64] Å SaturateSignedDwordToSignedWord (SRC2[31:0]);

DEST[95:80] Å SaturateSignedDwordToSignedWord (SRC2[63:32]);

DEST[111:96] Å SaturateSignedDwordToSignedWord (SRC2[95:64]);

DEST[127:112] Å SaturateSignedDwordToSignedWord (SRC2[127:96]);

DEST[143:128] Å SaturateSignedDwordToSignedWord (SRC1[159:128]);

DEST[159:144] Å SaturateSignedDwordToSignedWord (SRC1[191:160]);

DEST[175:160] Å SaturateSignedDwordToSignedWord (SRC1[223:192]);

DEST[191:176] Å SaturateSignedDwordToSignedWord (SRC1[255:224]);

DEST[207:192] Å SaturateSignedDwordToSignedWord (SRC2[159:128]);

DEST[223:208] Å SaturateSignedDwordToSignedWord (SRC2[191:160]);

DEST[239:224] Å SaturateSignedDwordToSignedWord (SRC2[223:192]);
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DEST[255:240] Å SaturateSignedDwordToSignedWord (SRC2[255:224]);

Intel C/C++ Compiler Intrinsic Equivalents

PACKSSWB:  __m64 _mm_packs_pi16(__m64 m1, __m64 m2)

(V)PACKSSWB:  __m128i _mm_packs_epi16(__m128i m1, __m128i m2)

VPACKSSWB: __m256i _mm256_packs_epi16(__m256i m1, __m256i m2)

PACKSSDW: __m64 _mm_packs_pi32 (__m64 m1, __m64 m2)

(V)PACKSSDW:  __m128i _mm_packs_epi32(__m128i m1, __m128i m2)

VPACKSSDW: __m256i _mm256_packs_epi32(__m256i m1, __m256i m2)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PACKUSDW — Pack with Unsigned Saturation

Instruction Operand Encoding

Description

Converts packed signed doubleword integers into packed unsigned word integers using unsigned saturation to 
handle overflow conditions.  If the signed doubleword value is beyond the range of an unsigned word (that is, 
greater than FFFFH or less than 0000H), the saturated unsigned word integer value of FFFFH or 0000H, respec-
tively, is stored in the destination.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM 
register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of 
the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. 

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

PACKUSDW (Legacy SSE instruction)

TMP[15:0] Å (DEST[31:0] < 0) ? 0 : DEST[15:0];

DEST[15:0] Å (DEST[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;

TMP[31:16] Å (DEST[63:32] < 0) ? 0 : DEST[47:32];

DEST[31:16] Å (DEST[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;

TMP[47:32] Å (DEST[95:64] < 0) ? 0 : DEST[79:64];

DEST[47:32] Å (DEST[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;

TMP[63:48] Å (DEST[127:96] < 0) ? 0 : DEST[111:96];

DEST[63:48] Å (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;

TMP[79:64] Å (SRC[31:0] < 0) ? 0 : SRC[15:0];

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 2B /r
PACKUSDW xmm1, xmm2/m128

RM V/V SSE4_1 Convert 4 packed signed doubleword integers 
from xmm1 and 4 packed signed doubleword 
integers from xmm2/m128 into 8 packed 
unsigned word integers in xmm1 using 
unsigned saturation.

VEX.NDS.128.66.0F38.WIG 2B /r
VPACKUSDW xmm1, xmm2, xmm3/m128

RVM V/V AVX Convert 4 packed signed doubleword integers 
from xmm2 and 4 packed signed doubleword 
integers from xmm3/m128 into 8 packed 
unsigned word integers in xmm1 using 
unsigned saturation.

VEX.NDS.256.66.0F38.WIG 2B /r
VPACKUSDW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Convert 8 packed signed doubleword integers 
from ymm2 and 8 packed signed doubleword 
integers from ymm3/m128 into 16 packed 
unsigned word integers in ymm1 using 
unsigned saturation.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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DEST[63:48] Å (SRC[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;

TMP[95:80] Å (SRC[63:32] < 0) ? 0 : SRC[47:32];

DEST[95:80] Å (SRC[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;

TMP[111:96] Å (SRC[95:64] < 0) ? 0 : SRC[79:64];

DEST[111:96] Å (SRC[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;

TMP[127:112] Å (SRC[127:96] < 0) ? 0 : SRC[111:96];

DEST[127:112] Å (SRC[127:96] > FFFFH) ? FFFFH : TMP[127:112] ;

PACKUSDW (VEX.128 encoded version)

TMP[15:0] Å (SRC1[31:0] < 0) ? 0 : SRC1[15:0];

DEST[15:0] Å (SRC1[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;

TMP[31:16] Å (SRC1[63:32] < 0) ? 0 : SRC1[47:32];

DEST[31:16] Å (SRC1[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;

TMP[47:32] Å (SRC1[95:64] < 0) ? 0 : SRC1[79:64];

DEST[47:32] Å (SRC1[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;

TMP[63:48] Å (SRC1[127:96] < 0) ? 0 : SRC1[111:96];

DEST[63:48] Å (SRC1[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;

TMP[79:64] Å (SRC2[31:0] < 0) ? 0 : SRC2[15:0];

DEST[63:48] Å (SRC2[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;

TMP[95:80] Å (SRC2[63:32] < 0) ? 0 : SRC2[47:32];

DEST[95:80] Å (SRC2[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;

TMP[111:96] Å (SRC2[95:64] < 0) ? 0 : SRC2[79:64];

DEST[111:96] Å (SRC2[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;

TMP[127:112] Å (SRC2[127:96] < 0) ? 0 : SRC2[111:96];

DEST[127:112] Å (SRC2[127:96] > FFFFH) ? FFFFH : TMP[127:112];

DEST[VLMAX-1:128] Å 0;

VPACKUSDW (VEX.256 encoded version)

TMP[15:0] Å (SRC1[31:0] < 0) ? 0 : SRC1[15:0];

DEST[15:0] Å (SRC1[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;

TMP[31:16] Å (SRC1[63:32] < 0) ? 0 : SRC1[47:32];

DEST[31:16] Å (SRC1[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;

TMP[47:32] Å (SRC1[95:64] < 0) ? 0 : SRC1[79:64];

DEST[47:32] Å (SRC1[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;

TMP[63:48] Å (SRC1[127:96] < 0) ? 0 : SRC1[111:96];

DEST[63:48] Å (SRC1[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;

TMP[79:64] Å (SRC2[31:0] < 0) ? 0 : SRC2[15:0];

DEST[63:48] Å (SRC2[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;

TMP[95:80] Å (SRC2[63:32] < 0) ? 0 : SRC2[47:32];

DEST[95:80] Å (SRC2[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;

TMP[111:96] Å (SRC2[95:64] < 0) ? 0 : SRC2[79:64];

DEST[111:96] Å (SRC2[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;

TMP[127:112] Å (SRC2[127:96] < 0) ? 0 : SRC2[111:96];

DEST[128:112] Å (SRC2[127:96] > FFFFH) ? FFFFH : TMP[127:112] ;

TMP[143:128] Å (SRC1[159:128] < 0) ? 0 : SRC1[143:128];

DEST[143:128] Å (SRC1[159:128] > FFFFH) ? FFFFH : TMP[143:128] ;

TMP[159:144] Å (SRC1[191:160] < 0) ? 0 : SRC1[175:160];

DEST[159:144] Å (SRC1[191:160] > FFFFH) ? FFFFH : TMP[159:144] ;

TMP[175:160] Å (SRC1[223:192] < 0) ? 0 : SRC1[207:192];

DEST[175:160] Å (SRC1[223:192] > FFFFH) ? FFFFH : TMP[175:160] ;

TMP[191:176] Å (SRC1[255:224] < 0) ? 0 : SRC1[239:224];

DEST[191:176] Å (SRC1[255:224] > FFFFH) ? FFFFH : TMP[191:176] ;

TMP[207:192] Å (SRC2[159:128] < 0) ? 0 : SRC2[143:128];

DEST[207:192] Å (SRC2[159:128] > FFFFH) ? FFFFH : TMP[207:192] ;
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TMP[223:208] Å (SRC2[191:160] < 0) ? 0 : SRC2[175:160];

DEST[223:208] Å (SRC2[191:160] > FFFFH) ? FFFFH : TMP[223:208] ;

TMP[239:224] Å (SRC2[223:192] < 0) ? 0 : SRC2[207:192];

DEST[239:224] Å (SRC2[223:192] > FFFFH) ? FFFFH : TMP[239:224] ;

TMP[255:240] Å (SRC2[255:224] < 0) ? 0 : SRC2[239:224];

DEST[255:240] Å (SRC2[255:224] > FFFFH) ? FFFFH : TMP[255:240] ;

Intel C/C++ Compiler Intrinsic Equivalent

(V)PACKUSDW: __m128i _mm_packus_epi32(__m128i m1, __m128i m2);

VPACKUSDW: __m256i _mm256_packus_epi32(__m256i m1, __m256i m2);

Flags Affected

None.

SIMD Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PACKUSWB—Pack with Unsigned Saturation

Instruction Operand Encoding

Description

Converts 4, 8 or 16 signed word integers from the destination operand (first operand) and 4, 8 or 16 signed word 
integers from the source operand (second operand) into 8, 16 or 32 unsigned byte integers and stores the result in 
the destination operand. (See Figure 4-2 for an example of the packing operation.) If a signed word integer value 
is beyond the range of an unsigned byte integer (that is, greater than FFH or less than 00H), the saturated 
unsigned byte integer value of FFH or 00H, respectively, is stored in the destination.

The PACKUSWB instruction operates on either 64-bit, 128-bit or 256-bit operands. When operating on 64-bit oper-
ands, the destination operand must be an MMX technology register and the source operand can be either an MMX 
technology register or a 64-bit memory location. In 64-bit mode, using a REX prefix in the form of REX.R permits 
this instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM 
register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of 
the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 67 /r1

PACKUSWB mm, mm/m64

RM V/V MMX Converts 4 signed word integers from mm and 
4 signed word integers from mm/m64 into 8 
unsigned byte integers in mm using unsigned 
saturation.

66 0F 67 /r

PACKUSWB xmm1, xmm2/m128

RM V/V SSE2 Converts 8 signed word integers from xmm1 
and 8 signed word integers from xmm2/m128 
into 16 unsigned byte integers in xmm1 using 
unsigned saturation.

VEX.NDS.128.66.0F.WIG 67 /r

VPACKUSWB xmm1, xmm2, xmm3/m128

RVM V/V AVX Converts 8 signed word integers from xmm2 
and 8 signed word integers from xmm3/m128 
into 16 unsigned byte integers in xmm1 using 
unsigned saturation.

VEX.NDS.256.66.0F.WIG 67 /r

VPACKUSWB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Converts 16 signed word integers from ymm2 
and 16signed word integers from 
ymm3/m256 into 32 unsigned byte integers 
in ymm1 using unsigned saturation.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

PACKUSWB (with 64-bit operands)

DEST[7:0] ← SaturateSignedWordToUnsignedByte DEST[15:0]; 

DEST[15:8] ← SaturateSignedWordToUnsignedByte DEST[31:16];

DEST[23:16] ← SaturateSignedWordToUnsignedByte DEST[47:32];

DEST[31:24] ← SaturateSignedWordToUnsignedByte DEST[63:48];

DEST[39:32] ← SaturateSignedWordToUnsignedByte SRC[15:0];

DEST[47:40] ← SaturateSignedWordToUnsignedByte SRC[31:16];

DEST[55:48] ← SaturateSignedWordToUnsignedByte SRC[47:32];

DEST[63:56] ← SaturateSignedWordToUnsignedByte SRC[63:48];

PACKUSWB (Legacy SSE instruction)

DEST[7:0]ÅSaturateSignedWordToUnsignedByte (DEST[15:0]);

DEST[15:8] ÅSaturateSignedWordToUnsignedByte (DEST[31:16]);

DEST[23:16] ÅSaturateSignedWordToUnsignedByte (DEST[47:32]);

DEST[31:24] Å SaturateSignedWordToUnsignedByte (DEST[63:48]);

DEST[39:32] Å SaturateSignedWordToUnsignedByte (DEST[79:64]);

DEST[47:40] Å SaturateSignedWordToUnsignedByte (DEST[95:80]);

DEST[55:48] Å SaturateSignedWordToUnsignedByte (DEST[111:96]);

DEST[63:56] Å SaturateSignedWordToUnsignedByte (DEST[127:112]);

DEST[71:64] Å SaturateSignedWordToUnsignedByte (SRC[15:0]);

DEST[79:72] Å SaturateSignedWordToUnsignedByte (SRC[31:16]);

DEST[87:80] Å SaturateSignedWordToUnsignedByte (SRC[47:32]);

DEST[95:88] Å SaturateSignedWordToUnsignedByte (SRC[63:48]);

DEST[103:96] Å SaturateSignedWordToUnsignedByte (SRC[79:64]);

DEST[111:104] Å SaturateSignedWordToUnsignedByte (SRC[95:80]);

DEST[119:112] Å SaturateSignedWordToUnsignedByte (SRC[111:96]);

DEST[127:120] Å SaturateSignedWordToUnsignedByte (SRC[127:112]);

PACKUSWB (VEX.128 encoded version)

DEST[7:0]Å SaturateSignedWordToUnsignedByte (SRC1[15:0]);

DEST[15:8] ÅSaturateSignedWordToUnsignedByte (SRC1[31:16]);

DEST[23:16] ÅSaturateSignedWordToUnsignedByte (SRC1[47:32]);

DEST[31:24] Å SaturateSignedWordToUnsignedByte (SRC1[63:48]);

DEST[39:32] Å SaturateSignedWordToUnsignedByte (SRC1[79:64]);

DEST[47:40] Å SaturateSignedWordToUnsignedByte (SRC1[95:80]);

DEST[55:48] Å SaturateSignedWordToUnsignedByte (SRC1[111:96]);

DEST[63:56] Å SaturateSignedWordToUnsignedByte (SRC1[127:112]);

DEST[71:64] Å SaturateSignedWordToUnsignedByte (SRC2[15:0]);

DEST[79:72] Å SaturateSignedWordToUnsignedByte (SRC2[31:16]);

DEST[87:80] Å SaturateSignedWordToUnsignedByte (SRC2[47:32]);

DEST[95:88] Å SaturateSignedWordToUnsignedByte (SRC2[63:48]);

DEST[103:96] Å SaturateSignedWordToUnsignedByte (SRC2[79:64]);

DEST[111:104] Å SaturateSignedWordToUnsignedByte (SRC2[95:80]);

DEST[119:112] Å SaturateSignedWordToUnsignedByte (SRC2[111:96]);

DEST[127:120] Å SaturateSignedWordToUnsignedByte (SRC2[127:112]);

DEST[VLMAX-1:128] Å 0;

VPACKUSWB (VEX.256 encoded version)

DEST[7:0]Å SaturateSignedWordToUnsignedByte (SRC1[15:0]);

DEST[15:8] ÅSaturateSignedWordToUnsignedByte (SRC1[31:16]);

DEST[23:16] ÅSaturateSignedWordToUnsignedByte (SRC1[47:32]);

DEST[31:24] Å SaturateSignedWordToUnsignedByte (SRC1[63:48]);

DEST[39:32] ÅSaturateSignedWordToUnsignedByte (SRC1[79:64]);
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DEST[47:40] Å SaturateSignedWordToUnsignedByte (SRC1[95:80]);

DEST[55:48] Å SaturateSignedWordToUnsignedByte (SRC1[111:96]);

DEST[63:56] Å SaturateSignedWordToUnsignedByte (SRC1[127:112]);

DEST[71:64] ÅSaturateSignedWordToUnsignedByte (SRC2[15:0]);

DEST[79:72] Å SaturateSignedWordToUnsignedByte (SRC2[31:16]);

DEST[87:80] Å SaturateSignedWordToUnsignedByte (SRC2[47:32]);

DEST[95:88] Å SaturateSignedWordToUnsignedByte (SRC2[63:48]);

DEST[103:96] Å SaturateSignedWordToUnsignedByte (SRC2[79:64]);

DEST[111:104] Å SaturateSignedWordToUnsignedByte (SRC2[95:80]);

DEST[119:112] Å SaturateSignedWordToUnsignedByte (SRC2[111:96]);

DEST[127:120] Å SaturateSignedWordToUnsignedByte (SRC2[127:112]);

DEST[135:128]Å SaturateSignedWordToUnsignedByte (SRC1[143:128]);

DEST[143:136] ÅSaturateSignedWordToUnsignedByte (SRC1[159:144]);

DEST[151:144] ÅSaturateSignedWordToUnsignedByte (SRC1[175:160]);

DEST[159:152] ÅSaturateSignedWordToUnsignedByte (SRC1[191:176]);

DEST[167:160] Å SaturateSignedWordToUnsignedByte (SRC1[207:192]);

DEST[175:168] Å SaturateSignedWordToUnsignedByte (SRC1[223:208]);

DEST[183:176] Å SaturateSignedWordToUnsignedByte (SRC1[239:224]);

DEST[191:184] Å SaturateSignedWordToUnsignedByte (SRC1[255:240]);

DEST[199:192] Å SaturateSignedWordToUnsignedByte (SRC2[143:128]);

DEST[207:200] Å SaturateSignedWordToUnsignedByte (SRC2[159:144]);

DEST[215:208] Å SaturateSignedWordToUnsignedByte (SRC2[175:160]);

DEST[223:216] Å SaturateSignedWordToUnsignedByte (SRC2[191:176]);

DEST[231:224] Å SaturateSignedWordToUnsignedByte (SRC2[207:192]);

DEST[239:232] Å SaturateSignedWordToUnsignedByte (SRC2[223:208]);

DEST[247:240] Å SaturateSignedWordToUnsignedByte (SRC2[239:224]);

DEST[255:248] Å SaturateSignedWordToUnsignedByte (SRC2[255:240]);

Intel C/C++ Compiler Intrinsic Equivalent

PACKUSWB: __m64 _mm_packs_pu16(__m64 m1, __m64 m2)

(V)PACKUSWB: __m128i _mm_packus_epi16(__m128i m1, __m128i m2)

VPACKUSWB: __m256i _mm256_packus_epi16(__m256i m1, __m256i m2);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PADDB/PADDW/PADDD—Add Packed Integers

Instruction Operand Encoding

Description

Performs a SIMD add of the packed integers from the source operand (second operand) and the destination 
operand (first operand), and stores the packed integer results in the destination operand. See Figure 9-4 in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD operation. 
Overflow is handled with wraparound, as described in the following paragraphs.
Adds the packed byte, word, doubleword, or quadword integers in the first source operand to the second source 
operand and stores the result in the destination operand. When a result is too large to be represented in the 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F FC /r1

PADDB mm, mm/m64

RM V/V MMX Add packed byte integers from mm/m64 and 
mm.

66 0F FC /r

PADDB xmm1, xmm2/m128

RM V/V SSE2 Add packed byte integers from xmm2/m128 
and xmm1.

0F FD /r1

PADDW mm, mm/m64

RM V/V MMX Add packed word integers from mm/m64 and 
mm.

66 0F FD /r

PADDW xmm1, xmm2/m128

RM V/V SSE2 Add packed word integers from xmm2/m128 
and xmm1.

0F FE /r1

PADDD mm, mm/m64

RM V/V MMX Add packed doubleword integers from 
mm/m64 and mm.

66 0F FE /r

PADDD xmm1, xmm2/m128

RM V/V SSE2 Add packed doubleword integers from 
xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG FC /r

VPADDB xmm1, xmm2, xmm3/m128

RVM V/V AVX Add packed byte integers from xmm3/m128 
and xmm2.

VEX.NDS.128.66.0F.WIG FD /r

VPADDW xmm1, xmm2, xmm3/m128

RVM V/V AVX Add packed word integers from xmm3/m128 
and xmm2.

VEX.NDS.128.66.0F.WIG FE /r

VPADDD xmm1, xmm2, xmm3/m128

RVM V/V AVX Add packed doubleword integers from 
xmm3/m128 and xmm2.

VEX.NDS.256.66.0F.WIG FC /r

VPADDB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add packed byte integers from ymm2, and 

ymm3/m256 and store in ymm1.

VEX.NDS.256.66.0F.WIG FD /r

VPADDW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add packed word integers from ymm2, 

ymm3/m256 and store in ymm1.

VEX.NDS.256.66.0F.WIG FE /r

VPADDD ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add packed doubleword integers from ymm2, 

ymm3/m256 and store in ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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8/16/32 integer (overflow), the result is wrapped around and the low bits are written to the destination element 
(that is, the carry is ignored).

Note that these instructions can operate on either unsigned or signed (two’s complement notation) integers; 
however, it does not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent undetected 
overflow conditions, software must control the ranges of the values operated on. 

These instructions can operate on either 64-bit, 128-bit or 256-bit operands. When operating on 64-bit operands, 
the destination operand must be an MMX technology register and the source operand can be either an MMX tech-
nology register or a 64-bit memory location. In 64-bit mode, using a REX prefix in the form of REX.R permits this 
instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM 
register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of 
the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. 

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

PADDB (with 64-bit operands)

DEST[7:0] ← DEST[7:0] + SRC[7:0]; 

(* Repeat add operation for 2nd through 7th byte *)

DEST[63:56] ← DEST[63:56] + SRC[63:56];

PADDB (with 128-bit operands)

DEST[7:0] ← DEST[7:0] + SRC[7:0]; 

(* Repeat add operation for 2nd through 14th byte *)

DEST[127:120] ← DEST[111:120] + SRC[127:120];

VPADDB (VEX.128 encoded version)

DEST[7:0] Å SRC1[7:0]+SRC2[7:0]

DEST[15:8] Å SRC1[15:8]+SRC2[15:8]

DEST[23:16] Å SRC1[23:16]+SRC2[23:16]

DEST[31:24] Å SRC1[31:24]+SRC2[31:24]

DEST[39:32] Å SRC1[39:32]+SRC2[39:32]

DEST[47:40] Å SRC1[47:40]+SRC2[47:40]

DEST[55:48] Å SRC1[55:48]+SRC2[55:48]

DEST[63:56] Å SRC1[63:56]+SRC2[63:56]

DEST[71:64] Å SRC1[71:64]+SRC2[71:64]

DEST[79:72] Å SRC1[79:72]+SRC2[79:72]

DEST[87:80] Å SRC1[87:80]+SRC2[87:80]

DEST[95:88] Å SRC1[95:88]+SRC2[95:88]

DEST[103:96] Å SRC1[103:96]+SRC2[103:96]

DEST[111:104] Å SRC1[111:104]+SRC2[111:104]

DEST[119:112] Å SRC1[119:112]+SRC2[119:112]

DEST[127:120] Å SRC1[127:120]+SRC2[127:120]

DEST[VLMAX-1:128] Å 0

VPADDB (VEX.256 encoded instruction)

DEST[7:0]Å SRC1[7:0] + SRC2[7:0]; 

(* Repeat add operation for 2nd through 31th byte *)

DEST[255:248]Å SRC1[255:248] + SRC2[255:248];
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PADDW (with 64-bit operands)

DEST[15:0] ← DEST[15:0] + SRC[15:0];

(* Repeat add operation for 2nd and 3th word *)

DEST[63:48] ← DEST[63:48] + SRC[63:48];

PADDW (with 128-bit operands)

DEST[15:0]  ← DEST[15:0] + SRC[15:0];

(* Repeat add operation for 2nd through 7th word *)

DEST[127:112] ← DEST[127:112] + SRC[127:112];

VPADDW (VEX.128 encoded version)

DEST[15:0] Å SRC1[15:0]+SRC2[15:0]

DEST[31:16] Å SRC1[31:16]+SRC2[31:16]

DEST[47:32] Å SRC1[47:32]+SRC2[47:32]

DEST[63:48] Å SRC1[63:48]+SRC2[63:48]

DEST[79:64] Å SRC1[79:64]+SRC2[79:64]

DEST[95:80] Å SRC1[95:80]+SRC2[95:80]

DEST[111:96] Å SRC1[111:96]+SRC2[111:96]

DEST[127:112] Å SRC1[127:112]+SRC2[127:112]

DEST[VLMAX-1:128] Å 0

VPADDW (VEX.256 encoded instruction)

DEST[15:0] Å SRC1[15:0] + SRC2[15:0];

(* Repeat add operation for 2nd through 15th word *)

DEST[255:240]Å SRC1[255:240] + SRC2[255:240];

PADDD (with 64-bit operands)

DEST[31:0] ← DEST[31:0] + SRC[31:0];

DEST[63:32] ← DEST[63:32] + SRC[63:32];

PADDD (with 128-bit operands)

DEST[31:0] ← DEST[31:0]  + SRC[31:0];

(* Repeat add operation for 2nd and 3th doubleword *)

DEST[127:96] ← DEST[127:96] + SRC[127:96];

VPADDD (VEX.128 encoded version)

DEST[31:0] Å SRC1[31:0]+SRC2[31:0]

DEST[63:32] Å SRC1[63:32]+SRC2[63:32]

DEST[95:64] Å SRC1[95:64]+SRC2[95:64]

DEST[127:96] Å SRC1[127:96]+SRC2[127:96]

DEST[VLMAX-1:128] Å 0

VPADDD (VEX.256 encoded instruction)

DEST[31:0]Å SRC1[31:0]  + SRC2[31:0];

(* Repeat add operation for 2nd and 7th doubleword *)

DEST[255:224] Å SRC1[255:224] + SRC2[255:224];

Intel C/C++ Compiler Intrinsic Equivalents

PADDB:  __m64 _mm_add_pi8(__m64 m1, __m64 m2)

(V)PADDB:  __m128i _mm_add_epi8 (__m128ia,__m128ib )

VPADDB: __m256i _mm256_add_epi8 (__m256ia,__m256i b )

PADDW:  __m64 _mm_add_pi16(__m64 m1, __m64 m2)

(V)PADDW:  __m128i _mm_add_epi16 ( __m128i a, __m128i b)



PADDB/PADDW/PADDD—Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-41

VPADDW: __m256i _mm256_add_epi16 ( __m256i a, __m256i b)

PADDD:  __m64 _mm_add_pi32(__m64 m1, __m64 m2)

(V)PADDD:  __m128i _mm_add_epi32 ( __m128i a, __m128i b)

VPADDD: __m256i _mm256_add_epi32 ( __m256i a, __m256i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PADDQ—Add Packed Quadword Integers

Instruction Operand Encoding

Description

Adds the first operand (destination operand) to the second operand (source operand) and stores the result in the 
destination operand. The source operand can be a quadword integer stored in an MMX technology register or a 64-
bit memory location, or it can be two packed quadword integers stored in an XMM register or an 128-bit memory 
location. The destination operand can be a quadword integer stored in an MMX technology register or two packed 
quadword integers stored in an XMM register. When packed quadword operands are used, a SIMD add is 
performed. When a quadword result is too large to be represented in 64 bits (overflow), the result is wrapped 
around and the low 64 bits are written to the destination element (that is, the carry is ignored).

Note that the (V)PADDQ instruction can operate on either unsigned or signed (two’s complement notation) inte-
gers; however, it does not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent undetected 
overflow conditions, software must control the ranges of the values operated on.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM 
register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of 
the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. 

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

PADDQ (with 64-Bit operands)

DEST[63:0] ← DEST[63:0] + SRC[63:0];

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F D4 /r1

PADDQ mm1, mm2/m64

RM V/V SSE2 Add quadword integer mm2/m64 to mm1.

66 0F D4 /r

PADDQ xmm1, xmm2/m128

RM V/V SSE2 Add packed quadword integers xmm2/m128 
to xmm1.

VEX.NDS.128.66.0F.WIG D4 /r

VPADDQ xmm1, xmm2, xmm3/m128

RVM V/V AVX Add packed quadword integers xmm3/m128 
and xmm2.

VEX.NDS.256.66.0F.WIG D4 /r

VPADDQ ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add packed quadword integers from ymm2, 

ymm3/m256 and store in ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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PADDQ (with 128-Bit operands)

DEST[63:0] ← DEST[63:0] + SRC[63:0];

DEST[127:64] ← DEST[127:64] + SRC[127:64];

VPADDQ (VEX.128 encoded instruction)

DEST[63:0]Å SRC1[63:0]  + SRC2[63:0];

DEST[127:64] Å SRC1[127:64] + SRC2[127:64];

DEST[VLMAX-1:128] Å 0;

VPADDQ (VEX.256 encoded instruction)

DEST[63:0]Å SRC1[63:0]  + SRC2[63:0];

DEST[127:64] Å SRC1[127:64] + SRC2[127:64];

DEST[191:128]Å SRC1[191:128]  + SRC2[191:128];

DEST[255:192] Å SRC1[255:192] + SRC2[255:192];

Intel C/C++ Compiler Intrinsic Equivalents

PADDQ:  __m64 _mm_add_si64 (__m64 a, __m64 b)

(V)PADDQ:  __m128i _mm_add_epi64 ( __m128i a, __m128i b)

VPADDQ: __m256i _mm256_add_epi64 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation

Instruction Operand Encoding

Description

Performs a SIMD add of the packed signed integers from the source operand (second operand) and the destination 
operand (first operand), and stores the packed integer results in the destination operand. See Figure 9-4 in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD operation. 
Overflow is handled with signed saturation, as described in the following paragraphs.

The PADDSB instruction adds packed signed byte integers. When an individual byte result is beyond the range of a 
signed byte integer (that is, greater than 7FH or less than 80H), the saturated value of 7FH or 80H, respectively, is 
written to the destination operand.

The PADDSW instruction adds packed signed word integers. When an individual word result is beyond the range of 
a signed word integer (that is, greater than 7FFFH or less than 8000H), the saturated value of 7FFFH or 8000H, 
respectively, is written to the destination operand.

These instructions can operate on either 64-bit, 128-bit or 256-bit operands. When operating on 64-bit operands, 
the destination operand must be an MMX technology register and the source operand can be either an MMX tech-
nology register or a 64-bit memory location. In 64-bit mode, using a REX prefix in the form of REX.R permits this 
instruction to access additional registers (XMM8-XMM15).

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F EC /r1

PADDSB mm, mm/m64

RM V/V MMX Add packed signed byte integers from 
mm/m64 and mm and saturate the results.

66 0F EC /r

PADDSB xmm1, xmm2/m128

RM V/V SSE2 Add packed signed byte integers from 
xmm2/m128 and xmm1 saturate the results.

0F ED /r1

PADDSW mm, mm/m64

RM V/V MMX Add packed signed word integers from 
mm/m64 and mm and saturate the results.

66 0F ED /r

PADDSW xmm1, xmm2/m128

RM V/V SSE2 Add packed signed word integers from 

xmm2/m128 and xmm1 and saturate the 
results.

VEX.NDS.128.66.0F.WIG EC /r
VPADDSB xmm1, xmm2, xmm3/m128

RVM V/V AVX Add packed signed byte integers from 
xmm3/m128 and xmm2 saturate the results.

VEX.NDS.128.66.0F.WIG ED /r

VPADDSW xmm1, xmm2, xmm3/m128

RVM V/V AVX Add packed signed word integers from 
xmm3/m128 and xmm2 and saturate the 
results.

VEX.NDS.256.66.0F.WIG EC /r

VPADDSB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add packed signed byte integers from ymm2, 
and ymm3/m256 and store the saturated 
results in ymm1.

VEX.NDS.256.66.0F.WIG ED /r

VPADDSW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add packed signed word integers from ymm2, 
and ymm3/m256 and store the saturated 
results in ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM 
register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of 
the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. 

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

PADDSB (with 64-bit operands)

DEST[7:0] ← SaturateToSignedByte(DEST[7:0] + SRC (7:0]);

(* Repeat add operation for 2nd through 7th bytes *)

DEST[63:56] ← SaturateToSignedByte(DEST[63:56] + SRC[63:56] );

PADDSB (with 128-bit operands)

DEST[7:0] ←SaturateToSignedByte (DEST[7:0] + SRC[7:0]);

(* Repeat add operation for 2nd through 14th bytes *)

DEST[127:120] ← SaturateToSignedByte (DEST[111:120] + SRC[127:120]);

VPADDSB (VEX.128 encoded version)

DEST[7:0] Å SaturateToSignedByte (SRC1[7:0] + SRC2[7:0]);

(* Repeat subtract operation for 2nd through 14th bytes *)

DEST[127:120] Å SaturateToSignedByte (SRC1[111:120] + SRC2[127:120]);

DEST[VLMAX-1:128] Å 0

VPADDSB (VEX.256 encoded version)

DEST[7:0] Å SaturateToSignedByte (SRC1[7:0] + SRC2[7:0]);

(* Repeat add operation for 2nd through 31st bytes *)

DEST[255:248]Å SaturateToSignedByte (SRC1[255:248] + SRC2[255:248]);

PADDSW (with 64-bit operands)

DEST[15:0] ← SaturateToSignedWord(DEST[15:0] + SRC[15:0] );

(* Repeat add operation for 2nd and 7th words *)

DEST[63:48] ← SaturateToSignedWord(DEST[63:48] + SRC[63:48] );

PADDSW (with 128-bit operands)

DEST[15:0]  ← SaturateToSignedWord (DEST[15:0] + SRC[15:0]);

(* Repeat add operation for 2nd through 7th words *)

DEST[127:112] ← SaturateToSignedWord (DEST[127:112] + SRC[127:112]);

VPADDSW (VEX.128 encoded version)

DEST[15:0] Å SaturateToSignedWord (SRC1[15:0] + SRC2[15:0]);

(* Repeat subtract operation for 2nd through 7th words *)

DEST[127:112] Å SaturateToSignedWord (SRC1[127:112] + SRC2[127:112]);

DEST[VLMAX-1:128] Å 0

VPADDSW (VEX.256 encoded version)

DEST[15:0] Å SaturateToSignedWord (SRC1[15:0] + SRC2[15:0]);

(* Repeat add operation for 2nd through 15th words *)

DEST[255:240] Å SaturateToSignedWord (SRC1[255:240] + SRC2[255:240])



PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation

INSTRUCTION SET REFERENCE, N-Z

4-46 Vol. 2B

Intel C/C++ Compiler Intrinsic Equivalents

PADDSB:  __m64 _mm_adds_pi8(__m64 m1, __m64 m2)

(V)PADDSB:  __m128i _mm_adds_epi8 ( __m128i a, __m128i b)

VPADDSB: __m256i _mm256_adds_epi8 ( __m256i a, __m256i b)

PADDSW:  __m64 _mm_adds_pi16(__m64 m1, __m64 m2)

(V)PADDSW:  __m128i _mm_adds_epi16 ( __m128i a, __m128i b)

VPADDSW: __m256i _mm256_adds_epi16 ( __m256i a, __m256i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation

Instruction Operand Encoding

Description

Performs a SIMD add of the packed unsigned integers from the source operand (second operand) and the destina-
tion operand (first operand), and stores the packed integer results in the destination operand. See Figure 9-4 in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD operation. 
Overflow is handled with unsigned saturation, as described in the following paragraphs.

The (V)PADDUSB instruction adds packed unsigned byte integers. When an individual byte result is beyond the 
range of an unsigned byte integer (that is, greater than FFH), the saturated value of FFH is written to the destina-
tion operand.

The (V)PADDUSW instruction adds packed unsigned word integers. When an individual word result is beyond the 
range of an unsigned word integer (that is, greater than FFFFH), the saturated value of FFFFH is written to the 
destination operand.

These instructions can operate on either 64-bit, 128-bit or 256-bit operands. When operating on 64-bit operands, 
the destination operand must be an MMX technology register and the source operand can be either an MMX tech-

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F DC /r1

PADDUSB mm, mm/m64

RM V/V MMX Add packed unsigned byte integers from 
mm/m64 and mm and saturate the results.

66 0F DC /r

PADDUSB xmm1, xmm2/m128

RM V/V SSE2 Add packed unsigned byte integers from 
xmm2/m128 and xmm1 saturate the results.

0F DD /r1

PADDUSW mm, mm/m64

RM V/V MMX Add packed unsigned word integers from 
mm/m64 and mm and saturate the results.

66 0F DD /r

PADDUSW xmm1, xmm2/m128

RM V/V SSE2 Add packed unsigned word integers from 

xmm2/m128 to xmm1 and saturate the 
results.

VEX.NDS.128.660F.WIG DC /r

VPADDUSB xmm1, xmm2, xmm3/m128

RVM V/V AVX Add packed unsigned byte integers from 
xmm3/m128 to xmm2 and saturate the 
results.

VEX.NDS.128.66.0F.WIG DD /r

VPADDUSW xmm1, xmm2, xmm3/m128

RVM V/V AVX Add packed unsigned word integers from 
xmm3/m128 to xmm2 and saturate the 
results.

VEX.NDS.256.66.0F.WIG DC /r
VPADDUSB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add packed unsigned byte integers from 
ymm2, and ymm3/m256 and store the 
saturated results in ymm1.

VEX.NDS.256.66.0F.WIG DD /r
VPADDUSW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add packed unsigned word integers from 
ymm2, and ymm3/m256 and store the 
saturated results in ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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nology register or a 64-bit memory location. In 64-bit mode, using a REX prefix in the form of REX.R permits this 
instruction to access additional registers (XMM8-XMM15).
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM 
register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of 
the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. 
Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

PADDUSB (with 64-bit operands)

DEST[7:0] ← SaturateToUnsignedByte(DEST[7:0] + SRC (7:0] );

(* Repeat add operation for 2nd through 7th bytes *)

DEST[63:56] ← SaturateToUnsignedByte(DEST[63:56] + SRC[63:56] 

PADDUSB (with 128-bit operands)

DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] + SRC[7:0]);

(* Repeat add operation for 2nd through 14th bytes *)

DEST[127:120] ← SaturateToUnSignedByte (DEST[127:120] + SRC[127:120]);

VPADDUSB (VEX.128 encoded version)

DEST[7:0] Å SaturateToUnsignedByte (SRC1[7:0] + SRC2[7:0]);

(* Repeat subtract operation for 2nd through 14th bytes *)

DEST[127:120] Å SaturateToUnsignedByte (SRC1[111:120] + SRC2[127:120]);

DEST[VLMAX-1:128] Å 0

VPADDUSB (VEX.256 encoded version)

DEST[7:0] Å SaturateToUnsignedByte (SRC1[7:0] + SRC2[7:0]);

(* Repeat add operation for 2nd through 31st bytes *)

DEST[255:248]Å SaturateToUnsignedByte (SRC1[255:248] + SRC2[255:248]);

PADDUSW (with 64-bit operands)

DEST[15:0] ← SaturateToUnsignedWord(DEST[15:0] + SRC[15:0] );

(* Repeat add operation for 2nd and 3rd words *)

DEST[63:48] ← SaturateToUnsignedWord(DEST[63:48] + SRC[63:48] );

PADDUSW (with 128-bit operands)

DEST[15:0] ← SaturateToUnsignedWord (DEST[15:0] + SRC[15:0]);

(* Repeat add operation for 2nd through 7th words *)

DEST[127:112] ← SaturateToUnSignedWord (DEST[127:112] + SRC[127:112]);

VPADDUSW (VEX.128 encoded version)

DEST[15:0] Å SaturateToUnsignedWord (SRC1[15:0] + SRC2[15:0]);

(* Repeat subtract operation for 2nd through 7th words *)

DEST[127:112] Å SaturateToUnsignedWord (SRC1[127:112] + SRC2[127:112]);

DEST[VLMAX-1:128] Å 0

VPADDUSW (VEX.256 encoded version)

DEST[15:0] Å SaturateToUnsignedWord (SRC1[15:0] + SRC2[15:0]);

(* Repeat add operation for 2nd through 15th words *)

DEST[255:240] Å SaturateToUnsignedWord (SRC1[255:240] + SRC2[255:240])
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Intel C/C++ Compiler Intrinsic Equivalents

PADDUSB: __m64 _mm_adds_pu8(__m64 m1, __m64 m2)

PADDUSW: __m64 _mm_adds_pu16(__m64 m1, __m64 m2)

(V)PADDUSB: __m128i _mm_adds_epu8 ( __m128i a, __m128i b)

(V)PADDUSW: __m128i _mm_adds_epu16 ( __m128i a, __m128i b)

VPADDUSB: __m256i _mm256_adds_epu8 ( __m256i a, __m256i b)

VPADDUSW: __m256i _mm256_adds_epu16 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PALIGNR — Packed Align Right 

Instruction Operand Encoding

Description 

(V)PALIGNR concatenates the destination operand (the first operand) and the source operand (the second 
operand) into an intermediate composite, shifts the composite at byte granularity to the right by a constant imme-
diate, and extracts the right-aligned result into the destination. The first and the second operands can be an MMX, 
XMM or a YMM register. The immediate value is considered unsigned. Immediate shift counts larger than the 2L 
(i.e. 32 for 128-bit operands, or 16 for 64-bit operands) produce a zero result. Both operands can be MMX regis-
ters, XMM registers or YMM registers. When the source operand is a 128-bit memory operand, the operand must 
be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated. 

In 64-bit mode, use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of 
the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register and contains two 16-byte blocks. The second 
source operand is a YMM register or a 256-bit memory location containing two 16-byte block. The destination 
operand is a YMM register and contain two 16-byte results. The imm8[7:0] is the common shift count used for the 
two lower 16-byte block sources and the two upper 16-byte block sources. The low 16-byte block of the two source 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 3A 0F /r ib1

PALIGNR mm1, mm2/m64, imm8

RMI V/V SSSE3 Concatenate destination and source 
operands, extract byte-aligned result shifted 
to the right by constant value in imm8 into 
mm1. 

66 0F 3A 0F /r ib

PALIGNR xmm1, xmm2/m128, imm8

RMI V/V SSSE3 Concatenate destination and source 
operands, extract byte-aligned result shifted 
to the right by constant value in imm8 into 
xmm1.

VEX.NDS.128.66.0F3A.WIG 0F /r ib

VPALIGNR xmm1, xmm2, xmm3/m128, imm8

RVMI V/V AVX Concatenate xmm2 and xmm3/m128, extract 
byte aligned result shifted to the right by 
constant value in imm8 and result is stored in 
xmm1.

VEX.NDS.256.66.0F3A.WIG 0F /r ib

VPALIGNR ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX2 Concatenate pairs of 16 bytes in ymm2 and 
ymm3/m256 into 32-byte intermediate 
result, extract byte-aligned, 16-byte result 
shifted to the right by constant values in 
imm8 from each intermediate result, and two 
16-byte results are stored in ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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operands produce the low 16-byte result of the destination operand, the high 16-byte block of the two source oper-
ands produce the high 16-byte result of the destination operand.
Concatenation is done with 128-bit data in the first and second source operand for both 128-bit and 256-bit 
instructions. The high 128-bits of the intermediate composite 256-bit result came from the 128-bit data from the 
first source operand; the low 128-bits of the intermediate result came from the 128-bit data of the second source 
operand.
Note: VEX.L must be 0, otherwise the instruction will #UD.

Figure 4-3.  256-bit VPALIGN Instruction Operation

Operation

PALIGNR (with 64-bit operands)

temp1[127:0] = CONCATENATE(DEST,SRC)>>(imm8*8) 

DEST[63:0] = temp1[63:0] 

PALIGNR (with 128-bit operands)

temp1[255:0] Å ((DEST[127:0] << 128) OR SRC[127:0])>>(imm8*8);

DEST[127:0] Å temp1[127:0]

DEST[VLMAX-1:128] (Unmodified)

VPALIGNR (VEX.128 encoded version)

temp1[255:0] Å ((SRC1[127:0] << 128) OR SRC2[127:0])>>(imm8*8);

DEST[127:0] Å temp1[127:0]

DEST[VLMAX-1:128] Å 0

VPALIGNR (VEX.256 encoded version)

temp1[255:0] Å ((SRC1[127:0] << 128) OR SRC2[127:0])>>(imm8[7:0]*8);

DEST[127:0] Å temp1[127:0]

temp1[255:0] Å ((SRC1[255:128] << 128) OR SRC2[255:128])>>(imm8[7:0]*8);

DEST[255:128] Å temp1[127:0]

Intel C/C++ Compiler Intrinsic Equivalents

PALIGNR:  __m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n)

(V)PALIGNR:  __m128i _mm_alignr_epi8 (__m128i a, __m128i b, int n)

VPALIGNR:  __m256i _mm256_alignr_epi8 (__m256i a, __m256i b, const int n)

127 0

SRC1

Imm8[7:0]*8

Imm8[7:0]*8

127 0

SRC2

255 128

SRC1

255 128

SRC2

255 128

DEST

127 0

DEST
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SIMD Floating-Point Exceptions 

None. 

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PAND—Logical AND

Instruction Operand Encoding

Description

Performs a bitwise logical AND operation on the first source operand and second source operand and stores the 
result in the destination operand. Each bit of the result is set to 1 if the corresponding bits of the first and second 
operands are 1, otherwise it is set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

Legacy SSE instructions: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand can be an MMX technology register.

128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM 
register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of 
the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. 

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

PAND (128-bit Legacy SSE version)

DEST Å DEST AND SRC

DEST[VLMAX-1:128] (Unmodified)

VPAND (VEX.128 encoded version)

DEST Å SRC1 AND SRC2

DEST[VLMAX-1:128] Å 0

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F DB /r1

PAND mm, mm/m64

RM V/V MMX Bitwise AND mm/m64 and mm.

66 0F DB /r

PAND xmm1, xmm2/m128

RM V/V SSE2 Bitwise AND of xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG DB /r

VPAND xmm1, xmm2, xmm3/m128

RVM V/V AVX Bitwise AND of xmm3/m128 and xmm.

VEX.NDS.256.66.0F.WIG DB /r

VPAND ymm1, ymm2, ymm3/.m256

RVM V/V AVX2 Bitwise AND of ymm2, and ymm3/m256 and 
store result in ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VPAND (VEX.256 encoded instruction)

DEST[255:0] Å (SRC1[255:0] AND SRC2[255:0])

Intel C/C++ Compiler Intrinsic Equivalent

PAND:  __m64 _mm_and_si64 (__m64 m1, __m64 m2)

(V)PAND: __m128i _mm_and_si128 ( __m128i a, __m128i b)

VPAND: __m256i _mm256_and_si256 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.



PANDN—Logical AND NOT

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-55

PANDN—Logical AND NOT

Instruction Operand Encoding

Description

Performs a bitwise logical NOT operation on the first source operand, then performs bitwise AND with second 
source operand and stores the result in the destination operand. Each bit of the result is set to 1 if the corre-
sponding bit in the first operand is 0 and the corresponding bit in the second operand is 1, otherwise it is set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

Legacy SSE instructions: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand can be an MMX technology register.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM 
register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified.
VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of 
the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. 

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

PANDN(128-bit Legacy SSE version)

DEST Å NOT(DEST) AND SRC

DEST[VLMAX-1:128] (Unmodified)

VPANDN (VEX.128 encoded version)

DEST Å NOT(SRC1) AND SRC2

DEST[VLMAX-1:128] Å 0

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F DF /r1

PANDN mm, mm/m64

RM V/V MMX Bitwise AND NOT of mm/m64 and mm.

66 0F DF /r

PANDN xmm1, xmm2/m128

RM V/V SSE2 Bitwise AND NOT of xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG DF /r

VPANDN xmm1, xmm2, xmm3/m128

RVM V/V AVX Bitwise AND NOT of xmm3/m128 and xmm2.

VEX.NDS.256.66.0F.WIG DF /r

VPANDN ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Bitwise AND NOT of ymm2, and ymm3/m256 

and store result in ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VPANDN (VEX.256 encoded instruction)

DEST[255:0] Å ((NOT SRC1[255:0]) AND SRC2[255:0])

Intel C/C++ Compiler Intrinsic Equivalent

PANDN:  __m64 _mm_andnot_si64 (__m64 m1, __m64 m2)

(V)PANDN: __m128i _mm_andnot_si128 ( __m128i a, __m128i b)

VPANDN: __m256i _mm256_andnot_si256 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PAUSE—Spin Loop Hint

Instruction Operand Encoding

Description

Improves the performance of spin-wait loops. When executing a “spin-wait loop,” processors will suffer a severe 
performance penalty when exiting the loop because it detects a possible memory order violation. The PAUSE 
instruction provides a hint to the processor that the code sequence is a spin-wait loop. The processor uses this hint 
to avoid the memory order violation in most situations, which greatly improves processor performance. For this 
reason, it is recommended that a PAUSE instruction be placed in all spin-wait loops.

An additional function of the PAUSE instruction is to reduce the power consumed by a processor while executing a 
spin loop. A processor can execute a spin-wait loop extremely quickly, causing the processor to consume a lot of 
power while it waits for the resource it is spinning on to become available. Inserting a pause instruction in a spin-
wait loop greatly reduces the processor’s power consumption.

This instruction was introduced in the Pentium 4 processors, but is backward compatible with all IA-32 processors. 
In earlier IA-32 processors, the PAUSE instruction operates like a NOP instruction. The Pentium 4 and Intel Xeon 
processors implement the PAUSE instruction as a delay. The delay is finite and can be zero for some processors. 
This instruction does not change the architectural state of the processor (that is, it performs essentially a delaying 
no-op operation).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Execute_Next_Instruction(DELAY);

Numeric Exceptions

None.

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F3 90 PAUSE NP Valid Valid Gives hint to processor that improves 
performance of spin-wait loops.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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PAVGB/PAVGW—Average Packed Integers

Instruction Operand Encoding

Description

Performs a SIMD average of the packed unsigned integers from the source operand (second operand) and the 
destination operand (first operand), and stores the results in the destination operand. For each corresponding pair 
of data elements in the first and second operands, the elements are added together, a 1 is added to the temporary 
sum, and that result is shifted right one bit position. 

The (V)PAVGB instruction operates on packed unsigned bytes and the (V)PAVGW instruction operates on packed 
unsigned words.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

Legacy SSE instructions: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand can be an MMX technology register.
128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM 
register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the 
upper bits (VLMAX-1:128) of the corresponding YMM register destination are unmodified.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F E0 /r1

PAVGB mm1, mm2/m64

RM V/V SSE Average packed unsigned byte integers from 
mm2/m64 and mm1 with rounding.

66 0F E0, /r

PAVGB xmm1, xmm2/m128

RM V/V SSE2 Average packed unsigned byte integers from 
xmm2/m128 and xmm1 with rounding.

0F E3 /r1

PAVGW mm1, mm2/m64

RM V/V SSE Average packed unsigned word integers from 
mm2/m64 and mm1 with rounding.

66 0F E3 /r

PAVGW xmm1, xmm2/m128

RM V/V SSE2 Average packed unsigned word integers from 
xmm2/m128 and xmm1 with rounding.

VEX.NDS.128.66.0F.WIG E0 /r

VPAVGB xmm1, xmm2, xmm3/m128

RVM V/V AVX Average packed unsigned byte integers from 
xmm3/m128 and xmm2 with rounding.

VEX.NDS.128.66.0F.WIG E3 /r

VPAVGW xmm1, xmm2, xmm3/m128

RVM V/V AVX Average packed unsigned word integers from 
xmm3/m128 and xmm2 with rounding.

VEX.NDS.256.66.0F.WIG E0 /r

VPAVGB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Average packed unsigned byte integers from 
ymm2, and ymm3/m256 with rounding and 
store to ymm1.

VEX.NDS.256.66.0F.WIG E3 /r

VPAVGW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Average packed unsigned word integers from 
ymm2, ymm3/m256 with rounding to ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM 
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (VLMAX-1:128) of 
the corresponding YMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. 

Operation

PAVGB (with 64-bit operands)

DEST[7:0] ← (SRC[7:0] + DEST[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)

(* Repeat operation performed for bytes 2 through 6 *)

DEST[63:56] ← (SRC[63:56] + DEST[63:56] + 1) >> 1;

PAVGW (with 64-bit operands)

DEST[15:0] ← (SRC[15:0] + DEST[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)

(* Repeat operation performed for words 2 and 3 *)

DEST[63:48] ← (SRC[63:48] + DEST[63:48] + 1) >> 1;

PAVGB (with 128-bit operands)

DEST[7:0] ← (SRC[7:0] + DEST[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)

(* Repeat operation performed for bytes 2 through 14 *)

DEST[127:120] ← (SRC[127:120] + DEST[127:120] + 1) >> 1;

PAVGW (with 128-bit operands)

DEST[15:0] ← (SRC[15:0] + DEST[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)

(* Repeat operation performed for words 2 through 6 *)

DEST[127:112] ← (SRC[127:112] + DEST[127:112] + 1) >> 1;

VPAVGB (VEX.128 encoded version)

DEST[7:0] Å (SRC1[7:0] + SRC2[7:0] + 1) >> 1; 

(* Repeat operation performed for bytes 2 through 15 *)

DEST[127:120] Å (SRC1[127:120] + SRC2[127:120] + 1) >> 1

DEST[VLMAX-1:128] Å 0

VPAVGW (VEX.128 encoded version)

DEST[15:0] Å (SRC1[15:0] + SRC2[15:0] + 1) >> 1; 

(* Repeat operation performed for 16-bit words 2 through 7 *)

DEST[127:112] Å (SRC1[127:112] + SRC2[127:112] + 1) >> 1

DEST[VLMAX-1:128] Å 0

VPAVGB (VEX.256 encoded instruction)

DEST[7:0] Å (SRC1[7:0] + SRC2[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)

(* Repeat operation performed for bytes 2 through 31)

DEST[255:248] Å (SRC1[255:248] + SRC2[255:248] + 1) >> 1;

VPAVGW (VEX.256 encoded instruction)

DEST[15:0] Å (SRC1[15:0] + SRC2[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)

(* Repeat operation performed for words 2 through 15)

DEST[255:14]) Å (SRC1[255:240] + SRC2[255:240] + 1) >> 1;

Intel C/C++ Compiler Intrinsic Equivalent

PAVGB:  __m64 _mm_avg_pu8 (__m64 a, __m64 b)

PAVGW:  __m64 _mm_avg_pu16 (__m64 a, __m64 b)

(V)PAVGB:  __m128i _mm_avg_epu8 ( __m128i a, __m128i b)
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(V)PAVGW:  __m128i _mm_avg_epu16 ( __m128i a, __m128i b)

VPAVGB: __m256i _mm256_avg_epu8 ( __m256i a, __m256i b)

VPAVGW: __m256i _mm256_avg_epu16 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PBLENDVB — Variable Blend Packed Bytes

Instruction Operand Encoding

Description

Conditionally copies byte elements from the source operand (second operand) to the destination operand (first 
operand) depending on mask bits defined in the implicit third register argument, XMM0. The mask bits are the 
most significant bit in each byte element of the XMM0 register.
If a mask bit is “1", then the corresponding byte element in the source operand is copied to the destination, else 
the byte element in the destination operand is left unchanged.
The register assignment of the implicit third operand is defined to be the architectural register XMM0.
128-bit Legacy SSE version: The first source operand and the destination operand is the same. Bits (VLMAX-1:128) 
of the corresponding YMM destination register remain unchanged. The mask register operand is implicitly defined 
to be the architectural register XMM0. An attempt to execute PBLENDVB with a VEX prefix will cause #UD.
VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second 
source operand is an XMM register or 128-bit memory location. The mask operand is the third source register, and 
encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is 
ignored. The upper bits (VLMAX-1:128) of the corresponding YMM register (destination register) are zeroed. VEX.L 
must be 0, otherwise the instruction will #UD. VEX.W must be 0, otherwise, the instruction will #UD.
VEX.256 encoded version: The first source operand and the destination operand are YMM registers. The second 
source operand is an YMM register or 256-bit memory location. The third source register is an YMM register and 
encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is 
ignored. 
VPBLENDVB permits the mask to be any XMM or YMM register. In contrast, PBLENDVB treats XMM0 implicitly as the 
mask and do not support non-destructive destination operation. An attempt to execute PBLENDVB encoded with a 
VEX prefix will cause a #UD exception.

Operation

PBLENDVB (128-bit Legacy SSE version)

MASK Å XMM0

IF (MASK[7] = 1) THEN DEST[7:0] Å SRC[7:0];

ELSE DEST[7:0] Å DEST[7:0];

IF (MASK[15] = 1) THEN DEST[15:8] Å SRC[15:8];

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 10 /r
PBLENDVB xmm1, xmm2/m128, <XMM0>

RM V/V SSE4_1 Select byte values from xmm1 and 
xmm2/m128 from mask specified in the high 
bit of each byte in XMM0 and store the 
values into xmm1.

VEX.NDS.128.66.0F3A.W0 4C /r /is4
VPBLENDVB xmm1, xmm2, xmm3/m128, xmm4

RVMR V/V AVX Select byte values from xmm2 and 
xmm3/m128 using mask bits in the specified 
mask register, xmm4, and store the values 
into xmm1.

VEX.NDS.256.66.0F3A.W0 4C /r /is4
VPBLENDVB ymm1, ymm2, ymm3/m256, ymm4

RVMR V/V AVX2 Select byte values from ymm2 and 
ymm3/m256 from mask specified in the high 
bit of each byte in ymm4 and store the 
values into ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) <XMM0> NA

RVMR ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8[7:4]
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ELSE DEST[15:8] Å DEST[15:8];

IF (MASK[23] = 1) THEN DEST[23:16] Å SRC[23:16]

ELSE DEST[23:16] Å DEST[23:16];

IF (MASK[31] = 1) THEN DEST[31:24] Å SRC[31:24]

ELSE DEST[31:24] Å DEST[31:24];

IF (MASK[39] = 1) THEN DEST[39:32] Å SRC[39:32]

ELSE DEST[39:32] Å DEST[39:32];

IF (MASK[47] = 1) THEN DEST[47:40] Å SRC[47:40]

ELSE DEST[47:40] Å DEST[47:40];

IF (MASK[55] = 1) THEN DEST[55:48] Å SRC[55:48]

ELSE DEST[55:48] Å DEST[55:48];

IF (MASK[63] = 1) THEN DEST[63:56] Å SRC[63:56]

ELSE DEST[63:56] Å DEST[63:56];

IF (MASK[71] = 1) THEN DEST[71:64] Å SRC[71:64]

ELSE DEST[71:64] Å DEST[71:64];

IF (MASK[79] = 1) THEN DEST[79:72] Å SRC[79:72]

ELSE DEST[79:72] Å DEST[79:72];

IF (MASK[87] = 1) THEN DEST[87:80] Å SRC[87:80]

ELSE DEST[87:80] Å DEST[87:80];

IF (MASK[95] = 1) THEN DEST[95:88] Å SRC[95:88]

ELSE DEST[95:88] Å�DEST[95:88];

IF (MASK[103] = 1) THEN DEST[103:96] Å SRC[103:96]

ELSE DEST[103:96] Å�DEST[103:96];

IF (MASK[111] = 1) THEN DEST[111:104] Å SRC[111:104]

ELSE DEST[111:104] Å DEST[111:104];

IF (MASK[119] = 1) THEN DEST[119:112] Å SRC[119:112]

ELSE DEST[119:112] Å DEST[119:112];

IF (MASK[127] = 1) THEN DEST[127:120] Å SRC[127:120]

ELSE DEST[127:120] Å DEST[127:120])

DEST[VLMAX-1:128] (Unmodified)

VPBLENDVB (VEX.128 encoded version)

MASK Å SRC3

IF (MASK[7] = 1) THEN DEST[7:0] Å SRC2[7:0];

ELSE DEST[7:0] Å SRC1[7:0];

IF (MASK[15] = 1) THEN DEST[15:8] Å SRC2[15:8];

ELSE DEST[15:8] Å SRC1[15:8];

IF (MASK[23] = 1) THEN DEST[23:16] Å SRC2[23:16]

ELSE DEST[23:16] Å SRC1[23:16];

IF (MASK[31] = 1) THEN DEST[31:24] Å SRC2[31:24]

ELSE DEST[31:24] Å SRC1[31:24];

IF (MASK[39] = 1) THEN DEST[39:32] Å SRC2[39:32]

ELSE DEST[39:32] Å SRC1[39:32];

IF (MASK[47] = 1) THEN DEST[47:40] Å SRC2[47:40]

ELSE DEST[47:40] Å SRC1[47:40];

IF (MASK[55] = 1) THEN DEST[55:48] Å SRC2[55:48]

ELSE DEST[55:48] Å SRC1[55:48];

IF (MASK[63] = 1) THEN DEST[63:56] Å SRC2[63:56]

ELSE DEST[63:56] Å SRC1[63:56];

IF (MASK[71] = 1) THEN DEST[71:64] Å SRC2[71:64]

ELSE DEST[71:64] Å SRC1[71:64];

IF (MASK[79] = 1) THEN DEST[79:72] Å SRC2[79:72]

ELSE DEST[79:72] Å SRC1[79:72];

IF (MASK[87] = 1) THEN DEST[87:80] Å SRC2[87:80]
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ELSE DEST[87:80] Å SRC1[87:80];

IF (MASK[95] = 1) THEN DEST[95:88] Å SRC2[95:88]

ELSE DEST[95:88] Å�SRC1[95:88];

IF (MASK[103] = 1) THEN DEST[103:96] Å SRC2[103:96]

ELSE DEST[103:96] Å�SRC1[103:96];

IF (MASK[111] = 1) THEN DEST[111:104] Å SRC2[111:104]

ELSE DEST[111:104] Å SRC1[111:104];

IF (MASK[119] = 1) THEN DEST[119:112] Å SRC2[119:112]

ELSE DEST[119:112] Å SRC1[119:112];

IF (MASK[127] = 1) THEN DEST[127:120] Å SRC2[127:120]

ELSE DEST[127:120] Å SRC1[127:120])

DEST[VLMAX-1:128] Å 0

VPBLENDVB (VEX.256 encoded version)

MASK Å SRC3

IF (MASK[7] == 1) THEN DEST[7:0] Å SRC2[7:0];

ELSE DEST[7:0] Å SRC1[7:0];

IF (MASK[15] == 1) THEN DEST[15:8] ÅSRC2[15:8];

ELSE DEST[15:8] Å SRC1[15:8];

IF (MASK[23] == 1) THEN DEST[23:16] ÅSRC2[23:16]

ELSE DEST[23:16] Å SRC1[23:16];

IF (MASK[31] == 1) THEN DEST[31:24] Å SRC2[31:24]

ELSE DEST[31:24] Å SRC1[31:24];

IF (MASK[39] == 1) THEN DEST[39:32] Å SRC2[39:32]

ELSE DEST[39:32] Å SRC1[39:32];

IF (MASK[47] == 1) THEN DEST[47:40] Å SRC2[47:40]

ELSE DEST[47:40] Å SRC1[47:40];

IF (MASK[55] == 1) THEN DEST[55:48] Å SRC2[55:48]

ELSE DEST[55:48] Å SRC1[55:48];

IF (MASK[63] == 1) THEN DEST[63:56] ÅSRC2[63:56]

ELSE DEST[63:56] Å SRC1[63:56];

IF (MASK[71] == 1) THEN DEST[71:64] ÅSRC2[71:64]

ELSE DEST[71:64] Å SRC1[71:64];

IF (MASK[79] == 1) THEN DEST[79:72] Å SRC2[79:72]

ELSE DEST[79:72] Å SRC1[79:72];

IF (MASK[87] == 1) THEN DEST[87:80] Å SRC2[87:80]

ELSE DEST[87:80] Å SRC1[87:80];

IF (MASK[95] == 1) THEN DEST[95:88] Å SRC2[95:88]

ELSE DEST[95:88] Å SRC1[95:88];

IF (MASK[103] == 1) THEN DEST[103:96] Å SRC2[103:96]

ELSE DEST[103:96] Å SRC1[103:96];

IF (MASK[111] == 1) THEN DEST[111:104] Å SRC2[111:104]

ELSE DEST[111:104] Å SRC1[111:104];

IF (MASK[119] == 1) THEN DEST[119:112] Å SRC2[119:112]

ELSE DEST[119:112] Å SRC1[119:112];

IF (MASK[127] == 1) THEN DEST[127:120] Å SRC2[127:120]

ELSE DEST[127:120] Å SRC1[127:120])

IF (MASK[135] == 1) THEN DEST[135:128] Å SRC2[135:128];

ELSE DEST[135:128] Å SRC1[135:128];

IF (MASK[143] == 1) THEN DEST[143:136] Å SRC2[143:136];

ELSE DEST[[143:136] Å SRC1[143:136];

IF (MASK[151] == 1) THEN DEST[151:144] Å SRC2[151:144]

ELSE DEST[151:144] Å SRC1[151:144];

IF (MASK[159] == 1) THEN DEST[159:152] Å SRC2[159:152]
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ELSE DEST[159:152] Å SRC1[159:152];

IF (MASK[167] == 1) THEN DEST[167:160] Å SRC2[167:160]

ELSE DEST[167:160] Å SRC1[167:160];

IF (MASK[175] == 1) THEN DEST[175:168] Å SRC2[175:168]

ELSE DEST[175:168] Å SRC1[175:168];

IF (MASK[183] == 1) THEN DEST[183:176] Å SRC2[183:176]

ELSE DEST[183:176] Å SRC1[183:176];

IF (MASK[191] == 1) THEN DEST[191:184] Å SRC2[191:184]

ELSE DEST[191:184] Å SRC1[191:184];

IF (MASK[199] == 1) THEN DEST[199:192] Å SRC2[199:192]

ELSE DEST[199:192] Å SRC1[199:192];

IF (MASK[207] == 1) THEN DEST[207:200] Å SRC2[207:200]

ELSE DEST[207:200] Å SRC1[207:200]

IF (MASK[215] == 1) THEN DEST[215:208] Å SRC2[215:208]

ELSE DEST[215:208] Å SRC1[215:208];

IF (MASK[223] == 1) THEN DEST[223:216] Å SRC2[223:216]

ELSE DEST[223:216] Å SRC1[223:216];

IF (MASK[231] == 1) THEN DEST[231:224] Å SRC2[231:224]

ELSE DEST[231:224] Å SRC1[231:224];

IF (MASK[239] == 1) THEN DEST[239:232] Å SRC2[239:232]

ELSE DEST[239:232] Å SRC1[239:232];

IF (MASK[247] == 1) THEN DEST[247:240] Å SRC2[247:240]

ELSE DEST[247:240] Å SRC1[247:240];

IF (MASK[255] == 1) THEN DEST[255:248] Å SRC2[255:248]

ELSE DEST[255:248] Å SRC1[255:248]

Intel C/C++ Compiler Intrinsic Equivalent

(V)PBLENDVB: __m128i _mm_blendv_epi8 (__m128i v1, __m128i v2, __m128i mask);

VPBLENDVB: __m256i _mm256_blendv_epi8 (__m256i v1, __m256i v2, __m256i mask);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.W = 1.
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PBLENDW — Blend Packed Words

Instruction Operand Encoding

Description

Words from the source operand (second operand) are conditionally written to the destination operand (first 
operand) depending on bits in the immediate operand (third operand). The immediate bits (bits 7:0) form a mask 
that determines whether the corresponding word in the destination is copied from the source. If a bit in the mask, 
corresponding to a word, is “1", then the word is copied, else the word element in the destination operand is 
unchanged.
128-bit Legacy SSE version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source and destination operands are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM destination 
register remain unchanged.
VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source and destination operands are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM register 
are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. 

Operation

PBLENDW (128-bit Legacy SSE version)

IF (imm8[0] = 1) THEN DEST[15:0] Å SRC[15:0]

ELSE DEST[15:0] Å DEST[15:0]

IF (imm8[1] = 1) THEN DEST[31:16] Å SRC[31:16]

ELSE DEST[31:16] Å DEST[31:16]

IF (imm8[2] = 1) THEN DEST[47:32] Å SRC[47:32]

ELSE DEST[47:32] Å DEST[47:32]

IF (imm8[3] = 1) THEN DEST[63:48] Å SRC[63:48]

ELSE DEST[63:48] Å DEST[63:48]

IF (imm8[4] = 1) THEN DEST[79:64] Å SRC[79:64]

ELSE DEST[79:64] Å DEST[79:64]

IF (imm8[5] = 1) THEN DEST[95:80] Å SRC[95:80]

ELSE DEST[95:80] Å DEST[95:80]

IF (imm8[6] = 1) THEN DEST[111:96] Å SRC[111:96]

ELSE DEST[111:96] Å DEST[111:96]

IF (imm8[7] = 1) THEN DEST[127:112] Å SRC[127:112]

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 0E /r ib
PBLENDW xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Select words from xmm1 and xmm2/m128 
from mask specified in imm8 and store the 
values into xmm1.

VEX.NDS.128.66.0F3A.WIG 0E /r ib
VPBLENDW xmm1, xmm2, xmm3/m128, imm8

RVMI V/V AVX Select words from xmm2 and xmm3/m128 
from mask specified in imm8 and store the 
values into xmm1.

VEX.NDS.256.66.0F3A.WIG 0E /r ib
VPBLENDW ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX2 Select words from ymm2 and ymm3/m256 
from mask specified in imm8 and store the 
values into ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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ELSE DEST[127:112] Å DEST[127:112]

VPBLENDW (VEX.128 encoded version)

IF (imm8[0] = 1) THEN DEST[15:0] Å SRC2[15:0]

ELSE DEST[15:0] Å SRC1[15:0]

IF (imm8[1] = 1) THEN DEST[31:16] Å SRC2[31:16]

ELSE DEST[31:16] Å SRC1[31:16]

IF (imm8[2] = 1) THEN DEST[47:32] Å SRC2[47:32]

ELSE DEST[47:32] Å SRC1[47:32]

IF (imm8[3] = 1) THEN DEST[63:48] Å SRC2[63:48]

ELSE DEST[63:48] Å SRC1[63:48]

IF (imm8[4] = 1) THEN DEST[79:64] Å SRC2[79:64]

ELSE DEST[79:64] Å SRC1[79:64]

IF (imm8[5] = 1) THEN DEST[95:80] Å SRC2[95:80]

ELSE DEST[95:80] Å SRC1[95:80]

IF (imm8[6] = 1) THEN DEST[111:96] Å SRC2[111:96]

ELSE DEST[111:96] Å SRC1[111:96]

IF (imm8[7] = 1) THEN DEST[127:112] Å SRC2[127:112]

ELSE DEST[127:112] Å SRC1[127:112]

DEST[VLMAX-1:128] Å 0

VPBLENDW (VEX.256 encoded version)

IF (imm8[0] == 1) THEN DEST[15:0] Å SRC2[15:0]

ELSE DEST[15:0] Å SRC1[15:0]

IF (imm8[1] == 1) THEN DEST[31:16] Å SRC2[31:16]

ELSE DEST[31:16] Å SRC1[31:16]

IF (imm8[2] == 1) THEN DEST[47:32] Å SRC2[47:32]

ELSE DEST[47:32] Å SRC1[47:32]

IF (imm8[3] == 1) THEN DEST[63:48] Å SRC2[63:48]

ELSE DEST[63:48] Å SRC1[63:48]

IF (imm8[4] == 1) THEN DEST[79:64] Å SRC2[79:64]

ELSE DEST[79:64] Å SRC1[79:64]

IF (imm8[5] == 1) THEN DEST[95:80] Å SRC2[95:80]

ELSE DEST[95:80] Å SRC1[95:80]

IF (imm8[6] == 1) THEN DEST[111:96] Å SRC2[111:96]

ELSE DEST[111:96] Å SRC1[111:96]

IF (imm8[7] == 1) THEN DEST[127:112] Å SRC2[127:112]

ELSE DEST[127:112] Å SRC1[127:112]

IF (imm8[0] == 1) THEN DEST[143:128] Å SRC2[143:128]

ELSE DEST[143:128] Å SRC1[143:128]

IF (imm8[1] == 1) THEN DEST[159:144] Å SRC2[159:144]

ELSE DEST[159:144] Å SRC1[159:144]

IF (imm8[2] == 1) THEN DEST[175:160] Å SRC2[175:160]

ELSE DEST[175:160] Å SRC1[175:160]

IF (imm8[3] == 1) THEN DEST[191:176] Å SRC2[191:176]

ELSE DEST[191:176] Å SRC1[191:176]

IF (imm8[4] == 1) THEN DEST[207:192] Å SRC2[207:192]

ELSE DEST[207:192] Å SRC1[207:192]

IF (imm8[5] == 1) THEN DEST[223:208] Å SRC2[223:208]

ELSE DEST[223:208] Å SRC1[223:208]

IF (imm8[6] == 1) THEN DEST[239:224] Å SRC2[239:224]

ELSE DEST[239:224] Å SRC1[239:224]

IF (imm8[7] == 1) THEN DEST[255:240] Å SRC2[255:240]

ELSE DEST[255:240] Å SRC1[255:240]
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Intel C/C++ Compiler Intrinsic Equivalent

(V)PBLENDW:  __m128i _mm_blend_epi16 (__m128i v1, __m128i v2, const int mask);

VPBLENDW: __m256i _mm256_blend_epi16 (__m256i v1, __m256i v2, const int mask)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PCLMULQDQ - Carry-Less Multiplication Quadword

Instruction Operand Encoding

Description

Performs a carry-less multiplication of two quadwords, selected from the first source and second source operand 
according to the value of the immediate byte. Bits 4 and 0 are used to select which 64-bit half of each operand to 
use according to Table 4-10, other bits of the immediate byte are ignored. 

 The first source operand and the destination operand are the same and must be an XMM register. The second 
source operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding 
YMM destination register remain unchanged.

Compilers and assemblers may implement the following pseudo-op syntax to simply programming and emit the 
required encoding for Imm8.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 44 /r ib
PCLMULQDQ xmm1, xmm2/m128, imm8

RMI V/V CLMUL Carry-less multiplication of one quadword of 
xmm1 by one quadword of xmm2/m128, 
stores the 128-bit result in xmm1. The imme-
diate is used to determine which quadwords 
of xmm1 and xmm2/m128 should be used.

VEX.NDS.128.66.0F3A.WIG 44 /r ib
VPCLMULQDQ xmm1, xmm2, xmm3/m128, imm8

RVMI V/V Both 
CLMUL 
and AVX 
flags

Carry-less multiplication of one quadword of 
xmm2 by one quadword of xmm3/m128, 
stores the 128-bit result in xmm1. The imme-
diate is used to determine which quadwords 
of xmm2 and xmm3/m128 should be used.

Op/En Operand 1 Operand2 Operand3 Operand4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

Table 4-10.  PCLMULQDQ Quadword Selection of Immediate Byte

Imm[4] Imm[0] PCLMULQDQ Operation

0 0 CL_MUL( SRC21[63:0], SRC1[63:0] )

NOTES:

1. SRC2 denotes the second source operand, which can be a register or memory; SRC1 denotes the first source and destination oper-
and.

0 1 CL_MUL( SRC2[63:0], SRC1[127:64] )

1 0 CL_MUL( SRC2[127:64], SRC1[63:0] )

1 1 CL_MUL( SRC2[127:64], SRC1[127:64] )

Table 4-11.  Pseudo-Op and PCLMULQDQ Implementation

Pseudo-Op Imm8 Encoding

PCLMULLQLQDQ xmm1, xmm2 0000_0000B

PCLMULHQLQDQ xmm1, xmm2 0000_0001B

PCLMULLQHDQ xmm1, xmm2 0001_0000B

PCLMULHQHDQ xmm1, xmm2 0001_0001B
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Operation

PCLMULQDQ

IF (Imm8[0] = 0 ) 

THEN

TEMP1 Å SRC1 [63:0];

ELSE

TEMP1 Å SRC1 [127:64];

FI

IF (Imm8[4] = 0 ) 

THEN

TEMP2 Å SRC2 [63:0];

ELSE

TEMP2 Å SRC2 [127:64];

FI

For i = 0 to 63 {

TmpB [ i ] Å (TEMP1[ 0 ] and TEMP2[ i ]);
For j = 1 to i {

TmpB [ i ] Å TmpB [ i ] xor (TEMP1[ j ] and TEMP2[ i - j ])
}

DEST[ i ] Å TmpB[ i ];
}

For i = 64 to 126 {

TmpB [ i ] Å 0;

For j = i - 63 to 63 {

TmpB [ i ] Å TmpB [ i ] xor (TEMP1[ j ] and TEMP2[ i - j ])
}

DEST[ i ] Å TmpB[ i ];
}

DEST[127] Å 0;

DEST[VLMAX-1:128] (Unmodified)

VPCLMULQDQ 

IF (Imm8[0] = 0 ) 

THEN

TEMP1 Å SRC1 [63:0];

ELSE

TEMP1 Å SRC1 [127:64];

FI

IF (Imm8[4] = 0 ) 

THEN

TEMP2 Å SRC2 [63:0];

ELSE

TEMP2 Å SRC2 [127:64];

FI

For i = 0 to 63 {

TmpB [ i ] Å (TEMP1[ 0 ] and TEMP2[ i ]);

For j = 1 to i {

TmpB [i] Å TmpB [i] xor (TEMP1[ j ] and TEMP2[ i - j ])

}

DEST[i] Å TmpB[i];

}

For i = 64 to 126 {

TmpB [ i ] Å 0;

For j = i - 63 to 63 {
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TmpB [i] Å TmpB [i] xor (TEMP1[ j ] and TEMP2[ i - j ])

}

DEST[i] Å TmpB[i];

}

DEST[VLMAX-1:127] Å 0;

Intel C/C++ Compiler Intrinsic Equivalent

(V)PCLMULQDQ:  __m128i  _mm_clmulepi64_si128 (__m128i, __m128i, const int)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.
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PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

Instruction Operand Encoding

Description

Performs a SIMD compare for equality of the packed bytes, words, or doublewords in the destination operand (first 
operand) and the source operand (second operand). If a pair of data elements is equal, the corresponding data 
element in the destination operand is set to all 1s; otherwise, it is set to all 0s. 

The (V)PCMPEQB instruction compares the corresponding bytes in the destination and source operands; the 
(V)PCMPEQW instruction compares the corresponding words in the destination and source operands; and the 
(V)PCMPEQD instruction compares the corresponding doublewords in the destination and source operands.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 74 /r1

PCMPEQB mm, mm/m64

RM V/V MMX Compare packed bytes in mm/m64 and mm 
for equality.

66 0F 74 /r

PCMPEQB xmm1, xmm2/m128

RM V/V SSE2 Compare packed bytes in xmm2/m128 and 
xmm1 for equality.

0F 75 /r1

PCMPEQW mm, mm/m64

RM V/V MMX Compare packed words in mm/m64 and mm 
for equality.

66 0F 75 /r

PCMPEQW xmm1, xmm2/m128

RM V/V SSE2 Compare packed words in xmm2/m128 and 
xmm1 for equality.

0F 76 /r1

PCMPEQD mm, mm/m64

RM V/V MMX Compare packed doublewords in mm/m64 and 
mm for equality.

66 0F 76 /r

PCMPEQD xmm1, xmm2/m128

RM V/V SSE2 Compare packed doublewords in xmm2/m128 
and xmm1 for equality.

VEX.NDS.128.66.0F.WIG 74 /r

VPCMPEQB xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed bytes in xmm3/m128 and 
xmm2 for equality.

VEX.NDS.128.66.0F.WIG 75 /r

VPCMPEQW xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed words in xmm3/m128 and 
xmm2 for equality.

VEX.NDS.128.66.0F.WIG 76 /r

VPCMPEQD xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed doublewords in xmm3/m128 
and xmm2 for equality.

VEX.NDS.256.66.0F.WIG 75 /r

VPCMPEQW ymm1, ymm2, ymm3 /m256

RVM V/V AVX2 Compare packed words in ymm3/m256 and 
ymm2 for equality.

VEX.NDS.256.66.0F.WIG 76 /r

VPCMPEQD ymm1, ymm2, ymm3 /m256

RVM V/V AVX2 Compare packed doublewords in ymm3/m256 
and ymm2 for equality.

VEX.NDS.256.66.0F38.WIG 29 /r

VPCMPEQQ ymm1, ymm2, ymm3 /m256

RVM V/V AVX2 Compare packed quadwords in ymm3/m256 
and ymm2 for equality.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

Legacy SSE instructions: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand can be an MMX technology register.
128-bit Legacy SSE version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source and destination operands are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM destination 
register remain unchanged.
VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source and destination operands are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM register 
are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register.
Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

PCMPEQB (with 64-bit operands)

IF DEST[7:0] = SRC[7:0]

THEN DEST[7:0) ← FFH; 

ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)

IF DEST[63:56] = SRC[63:56]

THEN DEST[63:56] ← FFH;

ELSE DEST[63:56] ← 0; FI;

PCMPEQB (with 128-bit operands)

IF DEST[7:0] = SRC[7:0]

THEN DEST[7:0) ← FFH; 

ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)

IF DEST[127:120] = SRC[127:120]

THEN DEST[127:120] ← FFH;

ELSE DEST[127:120] ← 0; FI;

VPCMPEQB (VEX.128 encoded version)

DEST[127:0] ÅCOMPARE_BYTES_EQUAL(SRC1[127:0],SRC2[127:0])

DEST[VLMAX-1:128] Å 0

VPCMPEQB (VEX.256 encoded version)

DEST[127:0] ÅCOMPARE_BYTES_EQUAL(SRC1[127:0],SRC2[127:0])

DEST[255:128] ÅCOMPARE_BYTES_EQUAL(SRC1[255:128],SRC2[255:128])

PCMPEQW (with 64-bit operands)

IF DEST[15:0] = SRC[15:0] 
THEN DEST[15:0] ← FFFFH;

ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd words in DEST and SRC *)

IF DEST[63:48] = SRC[63:48]

THEN DEST[63:48] ← FFFFH;

ELSE DEST[63:48] ← 0; FI;

PCMPEQW (with 128-bit operands)

IF DEST[15:0] = SRC[15:0] 
THEN DEST[15:0] ← FFFFH;

ELSE DEST[15:0] ← 0; FI;
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(* Continue comparison of 2nd through 7th words in DEST and SRC *)

IF DEST[127:112] = SRC[127:112]

THEN DEST[127:112] ← FFFFH;

ELSE DEST[127:112] ← 0; FI;

VPCMPEQW (VEX.128 encoded version)

DEST[127:0] ÅCOMPARE_WORDS_EQUAL(SRC1[127:0],SRC2[127:0])

DEST[VLMAX-1:128] Å 0

VPCMPEQW (VEX.256 encoded version)

DEST[127:0] ÅCOMPARE_WORDS_EQUAL(SRC1[127:0],SRC2[127:0])

DEST[255:128] ÅCOMPARE_WORDS_EQUAL(SRC1[255:128],SRC2[255:128])

PCMPEQD (with 64-bit operands)

IF DEST[31:0] = SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH; 

ELSE DEST[31:0] ← 0; FI;

IF DEST[63:32] = SRC[63:32]

THEN DEST[63:32] ← FFFFFFFFH;

ELSE DEST[63:32] ← 0; FI;

PCMPEQD (with 128-bit operands)

IF DEST[31:0] = SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH; 

ELSE DEST[31:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)

IF DEST[127:96] = SRC[127:96]

THEN DEST[127:96] ← FFFFFFFFH;

ELSE DEST[127:96] ← 0; FI;

VPCMPEQD (VEX.128 encoded version)

DEST[127:0] ÅCOMPARE_DWORDS_EQUAL(SRC1[127:0],SRC2[127:0])

DEST[VLMAX-1:128] Å 0

VPCMPEQD (VEX.256 encoded version)

DEST[127:0] ÅCOMPARE_DWORDS_EQUAL(SRC1[127:0],SRC2[127:0])

DEST[255:128] ÅCOMPARE_DWORDS_EQUAL(SRC1[255:128],SRC2[255:128])

Intel C/C++ Compiler Intrinsic Equivalents

PCMPEQB:  __m64 _mm_cmpeq_pi8 (__m64 m1, __m64 m2)

PCMPEQW:  __m64 _mm_cmpeq_pi16 (__m64 m1, __m64 m2)

PCMPEQD:  __m64 _mm_cmpeq_pi32 (__m64 m1, __m64 m2)

(V)PCMPEQB:  __m128i _mm_cmpeq_epi8 ( __m128i a, __m128i b)

(V)PCMPEQW:  __m128i _mm_cmpeq_epi16 ( __m128i a, __m128i b)

(V)PCMPEQD:  __m128i _mm_cmpeq_epi32 ( __m128i a, __m128i b)

VPCMPEQB: __m256i _mm256_cmpeq_epi8 ( __m256i a, __m256i b)

VPCMPEQW: __m256i _mm256_cmpeq_epi16 ( __m256i a, __m256i b)

VPCMPEQD: __m256i _mm256_cmpeq_epi32 ( __m256i a, __m256i b)
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Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PCMPEQQ — Compare Packed Qword Data for Equal

Instruction Operand Encoding

Description

Performs an SIMD compare for equality of the packed quadwords in the destination operand (first operand) and the 
source operand (second operand).  If a pair of data elements is equal, the corresponding data element in the desti-
nation is set to all 1s; otherwise, it is set to 0s.
128-bit Legacy SSE version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source and destination operands are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM destination 
register remain unchanged.
VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source and destination operands are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM register 
are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[63:0] = SRC[63:0]) 

THEN DEST[63:0] Å FFFFFFFFFFFFFFFFH;

ELSE DEST[63:0] Å 0; FI;

IF (DEST[127:64] = SRC[127:64]) 

THEN DEST[127:64] Å FFFFFFFFFFFFFFFFH;

ELSE DEST[127:64] Å 0; FI;

VPCMPEQQ (VEX.128 encoded version)

DEST[127:0] ÅCOMPARE_QWORDS_EQUAL(SRC1,SRC2)

DEST[VLMAX-1:128] Å 0

VPCMPEQQ (VEX.256 encoded version)

DEST[127:0] ÅCOMPARE_QWORDS_EQUAL(SRC1[127:0],SRC2[127:0])

DEST[255:128] ÅCOMPARE_QWORDS_EQUAL(SRC1[255:128],SRC2[255:128])

Intel C/C++ Compiler Intrinsic Equivalent

(V)PCMPEQQ: __m128i _mm_cmpeq_epi64(__m128i a, __m128i b);

VPCMPEQQ: __m256i _mm256_cmpeq_epi64( __m256i a, __m256i b);

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 29 /r
PCMPEQQ xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed qwords in xmm2/m128 and 
xmm1 for equality.

VEX.NDS.128.66.0F38.WIG 29 /r
VPCMPEQQ xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed quadwords in xmm3/m128 
and xmm2 for equality.

VEX.NDS.256.66.0F38.WIG 29 /r
VPCMPEQQ ymm1, ymm2, ymm3 /m256

RVM V/V AVX2 Compare packed quadwords in ymm3/m256 
and ymm2 for equality.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

Instruction Operand Encoding

Description

The instruction compares and processes data from two string fragments based on the encoded value in the Imm8 
Control Byte (see Section 4.1, “Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMP-
ISTRM”), and generates an index stored to the count register (ECX/RCX).

Each string fragment is represented by two values. The first value is an xmm (or possibly m128 for the second 
operand) which contains the data elements of the string (byte or word data).  The second value is stored in an input 
length register. The input length register is EAX/RAX (for xmm1) or EDX/RDX (for xmm2/m128). The length repre-
sents the number of bytes/words which are valid for the respective xmm/m128 data. 

The length of each input is interpreted as being the absolute-value of the value in the length register. The absolute-
value computation saturates to 16 (for bytes) and 8 (for words), based on the value of imm8[bit3] when the value 
in the length register is greater than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded value of Imm8 bit fields (see 
Section 4.1). The index of the first (or last, according to imm8[6]) set bit of IntRes2 (see Section 4.1.4) is returned 
in ECX. If no bits are set in IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to supply the most relevant informa-
tion:

CFlag – Reset if IntRes2 is equal to zero, set otherwise

ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherwise

SFlag – Set if absolute-value of EAX is < 16 (8), reset otherwise

OFlag – IntRes2[0]

AFlag – Reset

PFlag – Reset

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Index 

int     _mm_cmpestri (__m128i a, int la, __m128i b, int lb, const int mode);

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 61 /r imm8

PCMPESTRI xmm1, xmm2/m128, imm8

RMI V/V SSE4_2 Perform a packed comparison of string data 
with explicit lengths, generating an index, and 
storing the result in ECX.

VEX.128.66.0F3A.WIG 61 /r ib
VPCMPESTRI xmm1, xmm2/m128, imm8

RMI V/V AVX Perform a packed comparison of string data 
with explicit lengths, generating an index, and 
storing the result in ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r) ModRM:r/m (r) imm8 NA

Operating mode/size Operand 1 Operand 2 Length 1 Length 2 Result

16 bit xmm xmm/m128 EAX EDX ECX

32 bit xmm xmm/m128 EAX EDX ECX

64 bit xmm xmm/m128 EAX EDX ECX

64 bit + REX.W xmm xmm/m128 RAX RDX RCX



PCMPESTRI — Packed Compare Explicit Length Strings, Return Index

INSTRUCTION SET REFERENCE, N-Z

4-78 Vol. 2B

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int     _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode);

int     _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode);

int     _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode);

int     _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode);

int     _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally, this instruction does not cause #GP if the memory operand is not aligned to 16 
Byte boundary, and
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PCMPESTRM — Packed Compare Explicit Length Strings, Return Mask

Instruction Operand Encoding

Description

The instruction compares data from two string fragments based on the encoded value in the imm8 contol byte (see 
Section 4.1, “Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and gener-
ates a mask stored to XMM0.

Each string fragment is represented by two values. The first value is an xmm (or possibly m128 for the second 
operand) which contains the data elements of the string (byte or word data). The second value is stored in an input 
length register. The input length register is EAX/RAX (for xmm1) or EDX/RDX (for xmm2/m128). The length repre-
sents the number of bytes/words which are valid for the respective xmm/m128 data.  

The length of each input is interpreted as being the absolute-value of the value in the length register. The absolute-
value computation saturates to 16 (for bytes) and 8 (for words), based on the value of imm8[bit3] when the value 
in the length register is greater than 16 (8) or less than -16 (-8).

The comparison and aggregation operations are performed according to the encoded value of Imm8 bit fields (see 
Section 4.1). As defined by imm8[6], IntRes2 is then either stored to the least significant bits of XMM0 (zero 
extended to 128 bits) or expanded into a byte/word-mask and then stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner in order to supply the most relevant informa-
tion:

CFlag – Reset if IntRes2 is equal to zero, set otherwise

ZFlag – Set if absolute-value of EDX is < 16 (8), reset otherwise

SFlag – Set if absolute-value of EAX is < 16 (8), reset otherwise

OFlag –IntRes2[0]

AFlag – Reset

PFlag – Reset

Note: In VEX.128 encoded versions, bits (VLMAX-1:128) of XMM0 are zeroed. VEX.vvvv is reserved and must be 
1111b, VEX.L must be 0, otherwise the instruction will #UD.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 60 /r imm8
PCMPESTRM xmm1, xmm2/m128, imm8

RMI V/V SSE4_2 Perform a packed comparison of string data 
with explicit lengths, generating a mask, and 
storing the result in XMM0

VEX.128.66.0F3A.WIG 60 /r ib
VPCMPESTRM xmm1, xmm2/m128, imm8

RMI V/V AVX Perform a packed comparison of string data 
with explicit lengths, generating a mask, and 
storing the result in XMM0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r) ModRM:r/m (r) imm8 NA
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Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int     _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode);

int     _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode);

int     _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode);

int     _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode);

int     _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally, this instruction does not cause #GP if the memory operand is not aligned to 16 
Byte boundary, and
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.

Operating mode/size Operand1 Operand 2 Length1 Length2 Result

16 bit xmm xmm/m128 EAX EDX XMM0

32 bit xmm xmm/m128 EAX EDX XMM0

64 bit xmm xmm/m128 EAX EDX XMM0

64 bit + REX.W xmm xmm/m128 RAX RDX XMM0
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PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than

Instruction Operand Encoding

Description

Performs an SIMD signed compare for the greater value of the packed byte, word, or doubleword integers in the 
destination operand (first operand) and the source operand (second operand). If a data element in the destination 
operand is greater than the corresponding date element in the source operand, the corresponding data element in 
the destination operand is set to all 1s; otherwise, it is set to all 0s.

The PCMPGTB instruction compares the corresponding signed byte integers in the destination and source oper-
ands; the PCMPGTW instruction compares the corresponding signed word integers in the destination and source 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 64 /r1

PCMPGTB mm, mm/m64

RM V/V MMX Compare packed signed byte integers in mm 
and mm/m64 for greater than.

66 0F 64 /r

PCMPGTB xmm1, xmm2/m128

RM V/V SSE2 Compare packed signed byte integers in xmm1 
and xmm2/m128 for greater than.

0F 65 /r1

PCMPGTW mm, mm/m64

RM V/V MMX Compare packed signed word integers in mm 
and mm/m64 for greater than.

66 0F 65 /r

PCMPGTW xmm1, xmm2/m128

RM V/V SSE2 Compare packed signed word integers in 
xmm1 and xmm2/m128 for greater than.

0F 66 /r1

PCMPGTD mm, mm/m64

RM V/V MMX Compare packed signed doubleword integers in 
mm and mm/m64 for greater than.

66 0F 66 /r

PCMPGTD xmm1, xmm2/m128

RM V/V SSE2 Compare packed signed doubleword integers in 
xmm1 and xmm2/m128 for greater than.

VEX.NDS.128.66.0F.WIG 64 /r

VPCMPGTB xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed signed byte integers in xmm2 
and xmm3/m128 for greater than.

VEX.NDS.128.66.0F.WIG 65 /r

VPCMPGTW xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed signed word integers in 
xmm2 and xmm3/m128 for greater than.

VEX.NDS.128.66.0F.WIG 66 /r

VPCMPGTD xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed signed doubleword integers in 
xmm2 and xmm3/m128 for greater than.

VEX.NDS.256.66.0F.WIG 64 /r

VPCMPGTB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Compare packed signed byte integers in ymm2 
and ymm3/m256 for greater than.

VEX.NDS.256.66.0F.WIG 65 /r

VPCMPGTW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Compare packed signed word integers in ymm2 
and ymm3/m256 for greater than.

VEX.NDS.256.66.0F.WIG 66 /r

VPCMPGTD ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Compare packed signed doubleword integers in 
ymm2 and ymm3/m256 for greater than.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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operands; and the PCMPGTD instruction compares the corresponding signed doubleword integers in the destina-
tion and source operands.
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

Legacy SSE instructions: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand can be an MMX technology register.
128-bit Legacy SSE version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source operand and destination operand are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM 
destination register remain unchanged. 
VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source operand and destination operand are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM 
register are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

PCMPGTB (with 64-bit operands)

IF DEST[7:0] > SRC[7:0]

THEN DEST[7:0) ← FFH; 

ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)

IF DEST[63:56] > SRC[63:56]

THEN DEST[63:56] ← FFH;

ELSE DEST[63:56] ← 0; FI;

PCMPGTB (with 128-bit operands)

IF DEST[7:0] > SRC[7:0]

THEN DEST[7:0) ← FFH; 

ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)

IF DEST[127:120] > SRC[127:120]

THEN DEST[127:120] ← FFH;

ELSE DEST[127:120] ← 0; FI;

VPCMPGTB (VEX.128 encoded version)

DEST[127:0] ÅCOMPARE_BYTES_GREATER(SRC1,SRC2)

DEST[VLMAX-1:128] Å 0

VPCMPGTB (VEX.256 encoded version)

DEST[127:0] ÅCOMPARE_BYTES_GREATER(SRC1[127:0],SRC2[127:0])

DEST[255:128] ÅCOMPARE_BYTES_GREATER(SRC1[255:128],SRC2[255:128])

PCMPGTW (with 64-bit operands)

IF DEST[15:0] > SRC[15:0] 
THEN DEST[15:0] ← FFFFH;

ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd words in DEST and SRC *)

IF DEST[63:48] > SRC[63:48]

THEN DEST[63:48] ← FFFFH;

ELSE DEST[63:48] ← 0; FI;
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PCMPGTW (with 128-bit operands)

IF DEST[15:0] > SRC[15:0] 
THEN DEST[15:0] ← FFFFH;

ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd through 7th words in DEST and SRC *)

IF DEST[63:48] > SRC[127:112]

THEN DEST[127:112] ← FFFFH;

ELSE DEST[127:112] ← 0; FI;

VPCMPGTW (VEX.128 encoded version)

DEST[127:0] ÅCOMPARE_WORDS_GREATER(SRC1,SRC2)

DEST[VLMAX-1:128] Å 0

VPCMPGTW (VEX.256 encoded version)

DEST[127:0] ÅCOMPARE_WORDS_GREATER(SRC1[127:0],SRC2[127:0])

DEST[255:128] ÅCOMPARE_WORDS_GREATER(SRC1[255:128],SRC2[255:128])

PCMPGTD (with 64-bit operands)

IF DEST[31:0] > SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH; 

ELSE DEST[31:0] ← 0; FI;

IF DEST[63:32] > SRC[63:32]

THEN DEST[63:32] ← FFFFFFFFH;

ELSE DEST[63:32] ← 0; FI;

PCMPGTD (with 128-bit operands)

IF DEST[31:0] > SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH; 

ELSE DEST[31:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)

IF DEST[127:96] > SRC[127:96]

THEN DEST[127:96] ← FFFFFFFFH;

ELSE DEST[127:96] ← 0; FI;

VPCMPGTD (VEX.128 encoded version)

DEST[127:0] ÅCOMPARE_DWORDS_GREATER(SRC1,SRC2)

DEST[VLMAX-1:128] Å 0

VPCMPGTD (VEX.256 encoded version)

DEST[127:0] ÅCOMPARE_DWORDS_GREATER(SRC1[127:0],SRC2[127:0])

DEST[255:128] ÅCOMPARE_DWORDS_GREATER(SRC1[255:128],SRC2[255:128])

Intel C/C++ Compiler Intrinsic Equivalents

PCMPGTB: __m64 _mm_cmpgt_pi8 (__m64 m1, __m64 m2)

PCMPGTW: __m64 _mm_pcmpgt_pi16 (__m64 m1, __m64 m2)

DCMPGTD: __m64 _mm_pcmpgt_pi32 (__m64 m1, __m64 m2)

(V)PCMPGTB: __m128i _mm_cmpgt_epi8 ( __m128i a, __m128i b)

(V)PCMPGTW: __m128i _mm_cmpgt_epi16 ( __m128i a, __m128i b)

(V)DCMPGTD: __m128i _mm_cmpgt_epi32 ( __m128i a, __m128i b)

VPCMPGTB: __m256i _mm256_cmpgt_epi8 ( __m256i a, __m256i b)

VPCMPGTW: __m256i _mm256_cmpgt_epi16 ( __m256i a, __m256i b)

VPCMPGTD: __m256i _mm256_cmpgt_epi32 ( __m256i a, __m256i b)
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Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PCMPGTQ — Compare Packed Data for Greater Than

Instruction Operand Encoding

Description

Performs an SIMD signed compare for the packed quadwords in the destination operand (first operand) and the 
source operand (second operand). If the data element in the first (destination) operand is greater than the 
corresponding element in the second (source) operand, the corresponding data element in the destination is set 
to all 1s; otherwise, it is set to 0s.

128-bit Legacy SSE version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source operand and destination operand are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM 
destination register remain unchanged.
VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source operand and destination operand are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM 
register are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[63-0] > SRC[63-0]) 

THEN DEST[63-0] Å FFFFFFFFFFFFFFFFH;

ELSE DEST[63-0] Å 0; FI

IF (DEST[127-64] > SRC[127-64]) 

THEN DEST[127-64] Å FFFFFFFFFFFFFFFFH;

ELSE DEST[127-64] Å 0; FI

VPCMPGTQ (VEX.128 encoded version)

DEST[127:0] ÅCOMPARE_QWORDS_GREATER(SRC1,SRC2)

DEST[VLMAX-1:128] Å 0

VPCMPGTQ (VEX.256 encoded version)

DEST[127:0] ÅCOMPARE_QWORDS_GREATER(SRC1[127:0],SRC2[127:0])

DEST[255:128] ÅCOMPARE_QWORDS_GREATER(SRC1[255:128],SRC2[255:128])

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 37 /r
PCMPGTQ xmm1,xmm2/m128

RM V/V SSE4_2 Compare packed signed qwords in  
xmm2/m128 and xmm1 for greater than.

VEX.NDS.128.66.0F38.WIG 37 /r
VPCMPGTQ xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed signed qwords in xmm2 and 
xmm3/m128 for greater than.

VEX.NDS.256.66.0F38.WIG 37 /r
VPCMPGTQ ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Compare packed signed qwords in ymm2 and 
ymm3/m256 for greater than.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Intel C/C++ Compiler Intrinsic Equivalent

(V)PCMPGTQ:  __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)

VPCMPGTQ: __m256i _mm256_cmpgt_epi64( __m256i a, __m256i b);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PCMPISTRI — Packed Compare Implicit Length Strings, Return Index 

Instruction Operand Encoding

Description

The instruction compares data from two strings based on the encoded value in the Imm8 Control Byte (see Section 
4.1, “Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”), and generates an 
index stored to ECX.

Each string is represented by a single value.  The value is an xmm (or possibly m128 for the second operand) which 
contains the data elements of the string (byte or word data).  Each input byte/word is augmented with a 
valid/invalid tag.  A byte/word is considered valid only if it has a lower index than the least significant null 
byte/word.  (The least significant null byte/word is also considered invalid.)  

The comparison and aggregation operations are performed according to the encoded value of Imm8 bit fields (see 
Section 4.1). The index of the first (or last, according to imm8[6]) set bit of IntRes2 is returned in ECX. If no bits 
are set in IntRes2, ECX is set to 16 (8).

Note that the Arithmetic Flags are written in a non-standard manner in order to supply the most relevant informa-
tion:

CFlag – Reset if IntRes2 is equal to zero, set otherwise

ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherwise

SFlag – Set if any byte/word of xmm1 is null, reset otherwise

OFlag –IntRes2[0]

AFlag – Reset

PFlag – Reset

Note: In VEX.128 encoded version, VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the 
instruction will #UD.

Effective Operand Size

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 63 /r imm8

PCMPISTRI xmm1, xmm2/m128, imm8

RM V/V SSE4_2 Perform a packed comparison of string data 
with implicit lengths, generating an index, and 
storing the result in ECX.

VEX.128.66.0F3A.WIG 63 /r ib
VPCMPISTRI xmm1, xmm2/m128, imm8

RM V/V AVX Perform a packed comparison of string data 
with implicit lengths, generating an index, and 
storing the result in ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) imm8 NA

Operating mode/size Operand1 Operand 2 Result

16 bit xmm xmm/m128 ECX

32 bit xmm xmm/m128 ECX

64 bit xmm xmm/m128 ECX

64 bit + REX.W xmm xmm/m128 RCX
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Intel C/C++ Compiler Intrinsic Equivalent For Returning Index

int     _mm_cmpistri (__m128i a, __m128i b, const int mode);

Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int     _mm_cmpistra (__m128i a, __m128i b, const int mode);

int     _mm_cmpistrc (__m128i a, __m128i b, const int mode);

int     _mm_cmpistro (__m128i a, __m128i b, const int mode);

int     _mm_cmpistrs (__m128i a, __m128i b, const int mode);

int     _mm_cmpistrz (__m128i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally, this instruction does not cause #GP if the memory operand is not aligned to 16 
Byte boundary, and
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PCMPISTRM — Packed Compare Implicit Length Strings, Return Mask

Instruction Operand Encoding

Description

The instruction compares data from two strings based on the encoded value in the imm8 byte (see Section 4.1, 
“Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM / PCMPISTRI / PCMPISTRM”) generating a mask 
stored to XMM0.

Each string is represented by a single value. The value is an xmm (or possibly m128 for the second operand) which 
contains the data elements of the string (byte or word data).  Each input byte/word is augmented with a 
valid/invalid tag.  A byte/word is considered valid only if it has a lower index than the least significant null 
byte/word.  (The least significant null byte/word is also considered invalid.)  

The comparison and aggregation operation are performed according to the encoded value of Imm8 bit fields (see 
Section 4.1). As defined by imm8[6], IntRes2 is then either stored to the least significant bits of XMM0 (zero 
extended to 128 bits) or expanded into a byte/word-mask and then stored to XMM0.

Note that the Arithmetic Flags are written in a non-standard manner in order to supply the most relevant informa-
tion:

CFlag – Reset if IntRes2 is equal to zero, set otherwise

ZFlag – Set if any byte/word of xmm2/mem128 is null, reset otherwise

SFlag – Set if any byte/word of xmm1 is null, reset otherwise

OFlag – IntRes2[0]

AFlag – Reset

PFlag – Reset

Note: In VEX.128 encoded versions, bits (VLMAX-1:128) of XMM0 are zeroed. VEX.vvvv is reserved and must be 
1111b, VEX.L must be 0, otherwise the instruction will #UD.

Effective Operand Size

Intel C/C++ Compiler Intrinsic Equivalent For Returning Mask

__m128i _mm_cmpistrm (__m128i a, __m128i b, const int mode);

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 62 /r imm8

PCMPISTRM xmm1, xmm2/m128, imm8

RM V/V SSE4_2 Perform a packed comparison of string data 
with implicit lengths, generating a mask, and 
storing the result in XMM0.

VEX.128.66.0F3A.WIG 62 /r ib
VPCMPISTRM xmm1, xmm2/m128, imm8

RM V/V AVX Perform a packed comparison of string data 
with implicit lengths, generating a Mask, and 
storing the result in XMM0.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) imm8 NA

Operating mode/size Operand1 Operand 2 Result

16 bit xmm xmm/m128 XMM0

32 bit xmm xmm/m128 XMM0

64 bit xmm xmm/m128 XMM0

64 bit + REX.W xmm xmm/m128 XMM0
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Intel C/C++ Compiler Intrinsics For Reading EFlag Results

int     _mm_cmpistra (__m128i a, __m128i b, const int mode);

int     _mm_cmpistrc (__m128i a, __m128i b, const int mode);

int     _mm_cmpistro (__m128i a, __m128i b, const int mode);

int     _mm_cmpistrs (__m128i a, __m128i b, const int mode);

int     _mm_cmpistrz (__m128i a, __m128i b, const int mode);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally, this instruction does not cause #GP if the memory operand is not aligned to 16 
Byte boundary, and
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PDEP — Parallel Bits Deposit

Instruction Operand Encoding

Description 

PDEP uses a mask in the second source operand (the third operand) to transfer/scatter contiguous low order bits 
in the first source operand (the second operand) into the destination (the first operand). PDEP takes the low bits 
from the first source operand and deposit them in the destination operand at the corresponding bit locations that 
are set in the second source operand (mask). All other bits (bits not set in mask) in destination are set to zero.

Figure 4-4.  PDEP Example

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

TEMP ← SRC1;

MASK ← SRC2;

DEST ← 0 ;

m← 0, k← 0;

DO WHILE m< OperandSize

IF MASK[ m] = 1 THEN

DEST[ m] ← TEMP[ k];

    k ← k+ 1;

FI

m ← m+ 1;

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDS.LZ.F2.0F38.W0 F5 /r RVM V/V BMI2 Parallel deposit of bits from r32b using mask in r/m32, result is writ-
ten to r32a.PDEP r32a, r32b, r/m32

VEX.NDS.LZ.F2.0F38.W1 F5 /r RVM V/N.E. BMI2 Parallel deposit of bits from r64b using mask in r/m64, result is writ-
ten to r64a.PDEP r64a, r64b, r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

0010010101000

00000000 0DEST

SRC1

SRC2
(mask)

S31 S30 S29 S28 S27 S7 S6 S5 S3S4 S2 S1 S0

S0S1S2S3

bit 0bit 31
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OD

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

PDEP: unsigned __int32 _pdep_u32(unsigned __int32 src, unsigned __int32 mask);

PDEP: unsigned __int64 _pdep_u64(unsigned __int64 src, unsigned __int32 mask);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Section 2.5.1, “Exception Conditions for VEX-Encoded GPR Instructions”, Table 2-29; additionally
#UD If VEX.W = 1.
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PEXT — Parallel Bits Extract

Instruction Operand Encoding

Description 

PEXT uses a mask in the second source operand (the third operand) to transfer either contiguous or non-contig-
uous bits in the first source operand (the second operand) to contiguous low order bit positions in the destination 
(the first operand). For each bit set in the MASK, PEXT extracts the corresponding bits from the first source 
operand and writes them into contiguous lower bits of destination operand. The remaining upper bits of destination 
are zeroed.

Figure 4-5.  PEXT Example

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

TEMP ← SRC1;

MASK ← SRC2;

DEST ← 0 ;

m← 0, k← 0;

DO WHILE m< OperandSize

IF MASK[ m] = 1 THEN

DEST[ k] ← TEMP[ m];

    k ← k+ 1;

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDS.LZ.F3.0F38.W0 F5 /r RVM V/V BMI2 Parallel extract of bits from r32b using mask in r/m32, result is writ-
ten to r32a.PEXT r32a, r32b, r/m32

VEX.NDS.LZ.F3.0F38.W1 F5 /r RVM V/N.E. BMI2 Parallel extract of bits from r64b using mask in r/m64, result is writ-
ten to r64a.PEXT r64a, r64b, r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

DEST

SRC1

SRC2
(mask)

S31 S30 S29 S28 S27 S7 S6 S5 S3S4 S2 S1 S0

001010101000

S2S5S7000000000

0

S28

bit 0bit 31
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FI

m ← m+ 1;

OD

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

PEXT: unsigned __int32 _pext_u32(unsigned __int32 src, unsigned __int32 mask);

PEXT: unsigned __int64 _pext_u64(unsigned __int64 src, unsigned __int32 mask);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Section 2.5.1, “Exception Conditions for VEX-Encoded GPR Instructions”, Table 2-29; additionally
#UD If VEX.W = 1.
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PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword

Instruction Operand Encoding

Description

Extract a byte/dword/qword integer value from the source XMM register at a byte/dword/qword offset determined 
from imm8[3:0]. The destination can be a register or byte/dword/qword memory location. If the destination is a 
register, the upper bits of the register are zero extended.
In legacy non-VEX encoded version and if the destination operand is a register, the default operand size in 64-bit 
mode for PEXTRB/PEXTRD is 64 bits, the bits above the least significant byte/dword data are filled with zeros. 
PEXTRQ is not encodable in non-64-bit modes and requires REX.W in 64-bit mode.
Note: In VEX.128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the 
instruction will #UD. If the destination operand is a register, the default operand size in 64-bit mode for 
VPEXTRB/VPEXTRD is 64 bits, the bits above the least significant byte/word/dword data are filled with zeros. 
Attempt to execute VPEXTRQ in non-64-bit mode will cause #UD.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 14
/r ib
PEXTRB reg/m8, xmm2, imm8

MRI V/V SSE4_1 Extract a byte integer value from xmm2 at the 
source byte offset specified by imm8 into reg 

or m8. The upper bits of r32 or r64 are zeroed.

66 0F 3A 16
/r ib
PEXTRD r/m32, xmm2, imm8

MRI V/V SSE4_1 Extract a dword integer value from xmm2 at 
the source dword offset specified by imm8 

into r/m32.

66 REX.W 0F 3A 16
/r ib
PEXTRQ r/m64, xmm2, imm8

MRI V/N.E. SSE4_1 Extract a qword integer value from xmm2 at 
the source qword offset specified by imm8 

into r/m64.

VEX.128.66.0F3A.W0 14 /r ib
VPEXTRB reg/m8, xmm2, imm8

MRI V1/V AVX Extract a byte integer value from xmm2 at the 
source byte offset specified by imm8 into reg 
or m8. The upper bits of r64/r32 is filled with 
zeros.

VEX.128.66.0F3A.W0 16 /r ib
VPEXTRD r32/m32, xmm2, imm8

MRI V/V AVX Extract a dword integer value from xmm2 at 
the source dword offset specified by imm8 
into r32/m32.

VEX.128.66.0F3A.W1 16 /r ib
VPEXTRQ r64/m64, xmm2, imm8

MRI V/i AVX Extract a qword integer value from xmm2 at 
the source dword offset specified by imm8 

into r64/m64.

NOTES:

1. In 64-bit mode, VEX.W1 is ignored for VPEXTRB (similar to legacy REX.W=1 prefix in PEXTRB).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA
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Operation

CASE of

PEXTRB: SEL Å COUNT[3:0];

TEMP Å (Src >> SEL*8) AND FFH;

IF (DEST = Mem8)

THEN

Mem8 Å TEMP[7:0];

ELSE IF (64-Bit Mode and 64-bit register selected)

THEN

R64[7:0] Å TEMP[7:0];
r64[63:8] ← ZERO_FILL; };

ELSE

R32[7:0] Å TEMP[7:0];
r32[31:8] ← ZERO_FILL; };

FI;

PEXTRD:SEL Å COUNT[1:0];

TEMP Å (Src >> SEL*32) AND FFFF_FFFFH;

DEST Å TEMP;

PEXTRQ: SEL Å COUNT[0];

TEMP Å (Src >> SEL*64);

DEST Å TEMP;

EASC:

(V)PEXTRTD/(V)PEXTRQ

IF (64-Bit Mode and 64-bit dest operand)

THEN

Src_Offset Å Imm8[0]

r64/m64 Å(Src >> Src_Offset * 64)

ELSE

Src_Offset Å Imm8[1:0]

r32/m32 Å ((Src >> Src_Offset *32) AND 0FFFFFFFFh);

FI

(V)PEXTRB ( dest=m8)

SRC_Offset Å Imm8[3:0]

Mem8 Å (Src >> Src_Offset*8)

(V)PEXTRB ( dest=reg)

IF (64-Bit Mode )

THEN

SRC_Offset Å Imm8[3:0] 

DEST[7:0] Å ((Src >> Src_Offset*8) AND 0FFh)

DEST[63:8] Å�ZERO_FILL;

ELSE

SRC_Offset Å. Imm8[3:0];

DEST[7:0] Å ((Src >> Src_Offset*8) AND 0FFh);

DEST[31:8] Å�ZERO_FILL;

FI

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRB: int _mm_extract_epi8 (__m128i src, const int ndx);

PEXTRD: int _mm_extract_epi32 (__m128i src, const int ndx);
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PEXTRQ: __int64 _mm_extract_epi64 (__m128i src, const int ndx);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
If VPEXTRQ in non-64-bit mode, VEX.W=1.
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PEXTRW—Extract Word

Instruction Operand Encoding

Description

Copies the word in the source operand (second operand) specified by the count operand (third operand) to the 
destination operand (first operand). The source operand can be an MMX technology register or an XMM register. 
The destination operand can be the low word of a general-purpose register or a 16-bit memory address. The count 
operand is an 8-bit immediate. When specifying a word location in an MMX technology register, the 2 least-signifi-
cant bits of the count operand specify the location; for an XMM register, the 3 least-significant bits specify the loca-
tion. The content of the destination register above bit 16 is cleared (set to all 0s).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15, R8-15). If the destination operand is a general-purpose register, the default operand size is 64-bits 
in 64-bit mode. 
Note: In VEX.128 encoded versions, VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the 
instruction will #UD. If the destination operand is a register, the default operand size in 64-bit mode for VPEXTRW 
is 64 bits, the bits above the least significant byte/word/dword data are filled with zeros.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F C5 /r ib1

PEXTRW reg, mm, imm8 

RMI V/V SSE Extract the word specified by imm8 from mm 
and move it to reg, bits 15-0. The upper bits of 
r32 or r64 is zeroed.

66 0F C5 /r ib

PEXTRW reg, xmm, imm8 

RMI V/V SSE2 Extract the word specified by imm8 from xmm 
and move it to reg, bits 15-0. The upper bits of 
r32 or r64 is zeroed.

66 0F 3A 15
/r ib
PEXTRW reg/m16, xmm, imm8

MRI V/V SSE4_1 Extract the word specified by imm8 from xmm 
and copy it to lowest 16 bits of reg or m16. 
Zero-extend the result in the destination, r32 
or r64.

VEX.128.66.0F.W0 C5 /r ib
VPEXTRW reg, xmm1, imm8

RMI V2/V AVX Extract the word specified by imm8 from 
xmm1 and move it to reg, bits 15:0. Zero-
extend the result. The upper bits of r64/r32 is 
filled with zeros.

VEX.128.66.0F3A.W0 15 /r ib
VPEXTRW reg/m16, xmm2, imm8

MRI V/V AVX Extract a word integer value from xmm2 at 
the source word offset specified by imm8 into 
reg or m16. The upper bits of r64/r32 is filled 
with zeros.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

2. In 64-bit mode, VEX.W1 is ignored for VPEXTRW (similar to legacy REX.W=1 prefix in PEXTRW).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA
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Operation

IF (DEST = Mem16)

THEN

SEL Å COUNT[2:0];

TEMP Å (Src >> SEL*16) AND FFFFH;

Mem16 Å TEMP[15:0];

ELSE IF (64-Bit Mode and destination is a general-purpose register)
THEN

FOR (PEXTRW instruction with 64-bit source operand)

{ SEL ← COUNT[1:0];

TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;

r64[15:0] ← TEMP[15:0];

r64[63:16] ← ZERO_FILL; };

FOR (PEXTRW instruction with 128-bit source operand)

 { SEL ← COUNT[2:0];

TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;

r64[15:0] ← TEMP[15:0];

r64[63:16] ← ZERO_FILL; }

ELSE
FOR (PEXTRW instruction with 64-bit source operand)

{ SEL ← COUNT[1:0];

TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;

r32[15:0] ← TEMP[15:0];

r32[31:16] ← ZERO_FILL; };
FOR (PEXTRW instruction with 128-bit source operand)

{ SEL ← COUNT[2:0];

TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;

r32[15:0] ← TEMP[15:0];

r32[31:16] ← ZERO_FILL; };

FI;

FI;

(V)PEXTRW ( dest=m16)

SRC_Offset Å Imm8[2:0]

Mem16 Å (Src >> Src_Offset*16)

(V)PEXTRW ( dest=reg)

IF (64-Bit Mode )

THEN

SRC_Offset Å Imm8[2:0]

DEST[15:0] Å ((Src >> Src_Offset*16) AND 0FFFFh)

DEST[63:16] Å�ZERO_FILL;

ELSE

SRC_Offset Å Imm8[2:0]

DEST[15:0] Å ((Src >> Src_Offset*16) AND 0FFFFh)

DEST[31:16] Å�ZERO_FILL;

FI

Intel C/C++ Compiler Intrinsic Equivalent

PEXTRW: int _mm_extract_pi16 (__m64 a, int n)

PEXTRW: int _mm_extract_epi16 ( __m128i a, int imm) 
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Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PHADDW/PHADDD — Packed Horizontal Add

Instruction Operand Encoding

Description 

(V)PHADDW adds two adjacent 16-bit signed integers horizontally from the source and destination operands and 
packs the 16-bit signed results to the destination operand (first operand). (V)PHADDD adds two adjacent 32-bit 
signed integers horizontally from the source and destination operands and packs the 32-bit signed results to the 
destination operand (first operand). When the source operand is a 128-bit memory operand, the operand must be 
aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated.

Note that these instructions can operate on either unsigned or signed (two’s complement notation) integers; 
however, it does not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent undetected 
overflow conditions, software must control the ranges of the values operated on. 

Legacy SSE instructions: Both operands can be MMX registers. The second source operand can be an MMX register 
or a 64-bit memory location.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM 
destination register remain unchanged.

In 64-bit mode, use the REX prefix to access additional registers. 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 01 /r1 

PHADDW mm1, mm2/m64

RM V/V SSSE3 Add 16-bit integers horizontally, pack to mm1. 

66 0F 38 01 /r

PHADDW xmm1, xmm2/m128

RM V/V SSSE3 Add 16-bit integers horizontally, pack to 
xmm1.

0F 38 02 /r 

PHADDD mm1, mm2/m64

RM V/V SSSE3 Add 32-bit integers horizontally, pack to mm1. 

66 0F 38 02 /r

PHADDD xmm1, xmm2/m128

RM V/V SSSE3 Add 32-bit integers horizontally, pack to 
xmm1. 

VEX.NDS.128.66.0F38.WIG 01 /r

VPHADDW xmm1, xmm2, xmm3/m128

RVM V/V AVX Add 16-bit integers horizontally, pack to 
xmm1.

VEX.NDS.128.66.0F38.WIG 02 /r

VPHADDD xmm1, xmm2, xmm3/m128

RVM V/V AVX Add 32-bit integers horizontally, pack to 
xmm1.

VEX.NDS.256.66.0F38.WIG 01 /r

VPHADDW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add 16-bit signed integers horizontally, pack 
to ymm1.

VEX.NDS.256.66.0F38.WIG 02 /r

VPHADDD ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add 32-bit signed integers horizontally, pack 
to ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand can be an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM 
register are zeroed.
VEX.256 encoded version: Horizontal addition of two adjacent data elements of the low 16-bytes of the first and 
second source operands are packed into the low 16-bytes of the destination operand. Horizontal addition of two 
adjacent data elements of the high 16-bytes of the first and second source operands are packed into the high 16-
bytes of the destination operand. The first source and destination operands are YMM registers. The second source 
operand can be an YMM register or a 256-bit memory location. 

Note: VEX.L must be 0, otherwise the instruction will #UD.

Figure 4-6.  256-bit VPHADDD Instruction Operation

Operation 

PHADDW (with 64-bit operands)

mm1[15-0]  = mm1[31-16] + mm1[15-0]; 

mm1[31-16] = mm1[63-48] + mm1[47-32]; 

mm1[47-32] = mm2/m64[31-16] + mm2/m64[15-0]; 

mm1[63-48] = mm2/m64[63-48] + mm2/m64[47-32]; 

PHADDW (with 128-bit operands)

xmm1[15-0] = xmm1[31-16] + xmm1[15-0]; 

xmm1[31-16] = xmm1[63-48] + xmm1[47-32]; 

xmm1[47-32] = xmm1[95-80] + xmm1[79-64]; 

xmm1[63-48] = xmm1[127-112] + xmm1[111-96]; 

xmm1[79-64] = xmm2/m128[31-16] + xmm2/m128[15-0]; 

xmm1[95-80] = xmm2/m128[63-48] + xmm2/m128[47-32]; 

xmm1[111-96] = xmm2/m128[95-80] + xmm2/m128[79-64]; 

xmm1[127-112] = xmm2/m128[127-112] + xmm2/m128[111-96]; 

VPHADDW (VEX.128 encoded version)

DEST[15:0] Å SRC1[31:16] + SRC1[15:0]

DEST[31:16] Å SRC1[63:48] + SRC1[47:32]

DEST[47:32] Å SRC1[95:80] + SRC1[79:64]

DEST[63:48] Å SRC1[127:112] + SRC1[111:96]

DEST[79:64] Å SRC2[31:16] + SRC2[15:0]

DEST[95:80] Å SRC2[63:48] + SRC2[47:32]

DEST[111:96] Å SRC2[95:80] + SRC2[79:64]

DEST[127:112] Å SRC2[127:112] + SRC2[111:96]

DEST[VLMAX-1:128] Å 0

X0X3 X2 X1Y0Y3 Y2 Y1 X4X7 X6 X5Y4Y7 Y6 Y5SRC2

S0

Dest

S3S4

0255

SRC1

S7 S2 S1S3 S3
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VPHADDW (VEX.256 encoded version)

DEST[15:0] Å SRC1[31:16] + SRC1[15:0]

DEST[31:16] Å SRC1[63:48] + SRC1[47:32]

DEST[47:32] Å SRC1[95:80] + SRC1[79:64]

DEST[63:48] Å SRC1[127:112] + SRC1[111:96]

DEST[79:64] Å SRC2[31:16] + SRC2[15:0]

DEST[95:80] Å SRC2[63:48] + SRC2[47:32]

DEST[111:96] Å SRC2[95:80] + SRC2[79:64]

DEST[127:112] Å SRC2[127:112] + SRC2[111:96]

DEST[143:128] Å SRC1[159:144] + SRC1[143:128]

DEST[159:144] Å SRC1[191:176] + SRC1[175:160]

DEST[175:160] Å SRC1[223:208] + SRC1[207:192]

DEST[191:176] Å SRC1[255:240] + SRC1[239:224]

DEST[207:192] Å SRC2[127:112] + SRC2[143:128]

DEST[223:208] Å SRC2[159:144] + SRC2[175:160]

DEST[239:224] Å SRC2[191:176] + SRC2[207:192]

DEST[255:240] Å SRC2[223:208] + SRC2[239:224]

PHADDD (with 64-bit operands)

mm1[31-0]  = mm1[63-32] + mm1[31-0]; 

mm1[63-32] = mm2/m64[63-32] + mm2/m64[31-0]; 

PHADDD (with 128-bit operands)

xmm1[31-0] = xmm1[63-32] + xmm1[31-0]; 

xmm1[63-32] = xmm1[127-96] + xmm1[95-64]; 

xmm1[95-64] = xmm2/m128[63-32] + xmm2/m128[31-0]; 

xmm1[127-96] = xmm2/m128[127-96] + xmm2/m128[95-64]; 

VPHADDD (VEX.128 encoded version)

DEST[31-0] Å SRC1[63-32] + SRC1[31-0]

DEST[63-32] Å SRC1[127-96] + SRC1[95-64]

DEST[95-64] Å SRC2[63-32] + SRC2[31-0]

DEST[127-96] Å SRC2[127-96] + SRC2[95-64]

DEST[VLMAX-1:128] Å 0

VPHADDD (VEX.256 encoded version)

DEST[31-0] Å SRC1[63-32] + SRC1[31-0]

DEST[63-32] Å SRC1[127-96] + SRC1[95-64]

DEST[95-64] Å SRC2[63-32] + SRC2[31-0]

DEST[127-96] Å SRC2[127-96] + SRC2[95-64]

DEST[159-128] Å SRC1[191-160] + SRC1[159-128]

DEST[191-160] Å SRC1[255-224] + SRC1[223-192]

DEST[223-192] Å SRC2[191-160] + SRC2[159-128]

DEST[255-224] Å SRC2[255-224] + SRC2[223-192]

Intel C/C++ Compiler Intrinsic Equivalents

PHADDW: __m64 _mm_hadd_pi16 (__m64 a, __m64 b)

PHADDD: __m64 _mm_hadd_pi32 (__m64 a, __m64 b)

(V)PHADDW: __m128i _mm_hadd_epi16 (__m128i a, __m128i b)

(V)PHADDD: __m128i _mm_hadd_epi32 (__m128i a, __m128i b)

VPHADDW: __m256i _mm256_hadd_epi16 (__m256i a, __m256i b)

VPHADDD: __m256i _mm256_hadd_epi32 (__m256i a, __m256i b)
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SIMD Floating-Point Exceptions 

None. 

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PHADDSW — Packed Horizontal Add and Saturate

Instruction Operand Encoding

Description 

(V)PHADDSW adds two adjacent signed 16-bit integers horizontally from the source and destination operands and 
saturates the signed results; packs the signed, saturated 16-bit results to the destination operand (first operand) 
When the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a 
general-protection exception (#GP) will be generated. 
Legacy SSE version: Both operands can be MMX registers. The second source operand can be an MMX register or 
a 64-bit memory location.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged. 

In 64-bit mode, use the REX prefix to access additional registers.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: The first source and destination operands are YMM registers. The second source 
operand can be an YMM register or a 256-bit memory location.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation 

PHADDSW (with 64-bit operands)

mm1[15-0]  = SaturateToSignedWord((mm1[31-16] + mm1[15-0]); 

mm1[31-16] = SaturateToSignedWord(mm1[63-48] + mm1[47-32]);

mm1[47-32] = SaturateToSignedWord(mm2/m64[31-16] + mm2/m64[15-0]); 

mm1[63-48] = SaturateToSignedWord(mm2/m64[63-48] + mm2/m64[47-32]); 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 03 /r1 

PHADDSW mm1, mm2/m64 

RM V/V SSSE3 Add 16-bit signed integers horizontally, pack 
saturated integers to mm1.

66 0F 38 03 /r

PHADDSW xmm1, xmm2/m128

RM V/V SSSE3 Add 16-bit signed integers horizontally, pack 
saturated integers to xmm1.

VEX.NDS.128.66.0F38.WIG 03 /r

VPHADDSW xmm1, xmm2, xmm3/m128

RVM V/V AVX Add 16-bit signed integers horizontally, pack 
saturated integers to xmm1.

VEX.NDS.256.66.0F38.WIG 03 /r

VPHADDSW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Add 16-bit signed integers horizontally, pack 
saturated integers to ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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PHADDSW (with 128-bit operands)

xmm1[15-0]= SaturateToSignedWord(xmm1[31-16] + xmm1[15-0]);

xmm1[31-16] = SaturateToSignedWord(xmm1[63-48] + xmm1[47-32]);

xmm1[47-32] = SaturateToSignedWord(xmm1[95-80] + xmm1[79-64]);

xmm1[63-48] = SaturateToSignedWord(xmm1[127-112] + xmm1[111-96]); 

xmm1[79-64] = SaturateToSignedWord(xmm2/m128[31-16] + xmm2/m128[15-0]);

xmm1[95-80] = SaturateToSignedWord(xmm2/m128[63-48] + xmm2/m128[47-32]);

xmm1[111-96] = SaturateToSignedWord(xmm2/m128[95-80] + xmm2/m128[79-64]);

xmm1[127-112] = SaturateToSignedWord(xmm2/m128[127-112] + xmm2/m128[111-96]); 

VPHADDSW (VEX.128 encoded version)

DEST[15:0]= SaturateToSignedWord(SRC1[31:16] + SRC1[15:0])

DEST[31:16] = SaturateToSignedWord(SRC1[63:48] + SRC1[47:32])

DEST[47:32] = SaturateToSignedWord(SRC1[95:80] + SRC1[79:64])

DEST[63:48] = SaturateToSignedWord(SRC1[127:112] + SRC1[111:96])

DEST[79:64] = SaturateToSignedWord(SRC2[31:16] + SRC2[15:0])

DEST[95:80] = SaturateToSignedWord(SRC2[63:48] + SRC2[47:32])

DEST[111:96] = SaturateToSignedWord(SRC2[95:80] + SRC2[79:64])

DEST[127:112] = SaturateToSignedWord(SRC2[127:112] + SRC2[111:96])

DEST[VLMAX-1:128] Å 0

VPHADDSW (VEX.256 encoded version)

DEST[15:0]= SaturateToSignedWord(SRC1[31:16] + SRC1[15:0])

DEST[31:16] = SaturateToSignedWord(SRC1[63:48] + SRC1[47:32])

DEST[47:32] = SaturateToSignedWord(SRC1[95:80] + SRC1[79:64])

DEST[63:48] = SaturateToSignedWord(SRC1[127:112] + SRC1[111:96])

DEST[79:64] = SaturateToSignedWord(SRC2[31:16] + SRC2[15:0])

DEST[95:80] = SaturateToSignedWord(SRC2[63:48] + SRC2[47:32])

DEST[111:96] = SaturateToSignedWord(SRC2[95:80] + SRC2[79:64])

DEST[127:112] = SaturateToSignedWord(SRC2[127:112] + SRC2[111:96])

DEST[143:128]= SaturateToSignedWord(SRC1[159:144] + SRC1[143:128])

DEST[159:144] = SaturateToSignedWord(SRC1[191:176] + SRC1[175:160])

DEST[175:160] = SaturateToSignedWord( SRC1[223:208] + SRC1[207:192])

DEST[191:176] = SaturateToSignedWord(SRC1[255:240] + SRC1[239:224])

DEST[207:192] = SaturateToSignedWord(SRC2[127:112] + SRC2[143:128])

DEST[223:208] = SaturateToSignedWord(SRC2[159:144] + SRC2[175:160])

DEST[239:224] = SaturateToSignedWord(SRC2[191-160] + SRC2[159-128])

DEST[255:240] = SaturateToSignedWord(SRC2[255:240] + SRC2[239:224])

Intel C/C++ Compiler Intrinsic Equivalent

PHADDSW:  __m64 _mm_hadds_pi16 (__m64 a, __m64 b)

(V)PHADDSW:  __m128i _mm_hadds_epi16 (__m128i a, __m128i b)

VPHADDSW: __m256i _mm256_hadds_epi16 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions 

None. 

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PHMINPOSUW — Packed Horizontal Word Minimum

Instruction Operand Encoding

Description

Determine the minimum unsigned word value in the source operand (second operand) and place the unsigned 
word in the low word (bits 0-15) of the destination operand (first operand).  The word index of the minimum value 
is stored in bits 16-18 of the destination operand.  The remaining upper bits of the destination are set to zero. 
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.vvvv is reserved 
and must be 1111b, VEX.L must be 0, otherwise the instruction will #UD.

Operation

PHMINPOSUW (128-bit Legacy SSE version)

INDEX Å 0;

MIN Å SRC[15:0]

IF (SRC[31:16] < MIN) 

THEN INDEX Å 1;  MIN Å SRC[31:16]; FI;

IF (SRC[47:32] < MIN) 

THEN INDEX Å 2;  MIN Å SRC[47:32]; FI;

* Repeat operation for words 3 through 6

IF (SRC[127:112] < MIN) 

THEN INDEX Å 7;  MIN Å SRC[127:112]; FI;

DEST[15:0] Å MIN;

DEST[18:16] Å INDEX;

DEST[127:19] Å 0000000000000000000000000000H;

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 41 /r
PHMINPOSUW xmm1, xmm2/m128

RM V/V SSE4_1 Find the minimum unsigned word in 
xmm2/m128 and place its value in the low 
word of xmm1 and its index in the second-
lowest word of xmm1.

VEX.128.66.0F38.WIG 41 /r
VPHMINPOSUW xmm1, xmm2/m128

RM V/V AVX Find the minimum unsigned word in 
xmm2/m128 and place its value in the low 
word of xmm1 and its index in the second-
lowest word of xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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VPHMINPOSUW (VEX.128 encoded version)

INDEX Å 0

MIN Å SRC[15:0]

IF (SRC[31:16] < MIN) THEN INDEX Å 1; MIN Å SRC[31:16]

IF (SRC[47:32] < MIN) THEN INDEX Å 2; MIN Å SRC[47:32]

* Repeat operation for words 3 through 6

IF (SRC[127:112] < MIN) THEN INDEX Å 7; MIN Å SRC[127:112]

DEST[15:0] Å MIN

DEST[18:16] Å INDEX

DEST[127:19] Å 0000000000000000000000000000H

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

PHMINPOSUW: __m128i _mm_minpos_epu16( __m128i packed_words);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.



PHSUBW/PHSUBD — Packed Horizontal Subtract

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-109

PHSUBW/PHSUBD — Packed Horizontal Subtract

Instruction Operand Encoding

Description 

(V)PHSUBW performs horizontal subtraction on each adjacent pair of 16-bit signed integers by subtracting the 
most significant word from the least significant word of each pair in the source and destination operands, and packs 
the signed 16-bit results to the destination operand (first operand). (V)PHSUBD performs horizontal subtraction on 
each adjacent pair of 32-bit signed integers by subtracting the most significant doubleword from the least signifi-
cant doubleword of each pair, and packs the signed 32-bit result to the destination operand. When the source 
operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a general-protection 
exception (#GP) will be generated. 

Legacy SSE version: Both operands can be MMX registers. The second source operand can be an MMX register or 
a 64-bit memory location.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.

In 64-bit mode, use the REX prefix to access additional registers.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 05 /r1

PHSUBW mm1, mm2/m64

RM V/V SSSE3 Subtract 16-bit signed integers horizontally, 
pack to mm1. 

66 0F 38 05 /r 

PHSUBW xmm1, xmm2/m128

RM V/V SSSE3 Subtract 16-bit signed integers horizontally, 
pack to xmm1. 

0F 38 06 /r 

PHSUBD mm1, mm2/m64

RM V/V SSSE3 Subtract 32-bit signed integers horizontally, 
pack to mm1. 

66 0F 38 06 /r

PHSUBD xmm1, xmm2/m128 

RM V/V SSSE3 Subtract 32-bit signed integers horizontally, 
pack to xmm1. 

VEX.NDS.128.66.0F38.WIG 05 /r

VPHSUBW xmm1, xmm2, xmm3/m128

RVM V/V AVX Subtract 16-bit signed integers horizontally, 
pack to xmm1.

VEX.NDS.128.66.0F38.WIG 06 /r

VPHSUBD xmm1, xmm2, xmm3/m128

RVM V/V AVX Subtract 32-bit signed integers horizontally, 
pack to xmm1.

VEX.NDS.256.66.0F38.WIG 05 /r

VPHSUBW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Subtract 16-bit signed integers horizontally, 
pack to ymm1.

VEX.NDS.256.66.0F38.WIG 06 /r

VPHSUBD ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Subtract 32-bit signed integers horizontally, 
pack to ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.256 encoded version: The first source and destination operands are YMM registers. The second source 
operand can be an YMM register or a 256-bit memory location.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

PHSUBW (with 64-bit operands) 

mm1[15-0] = mm1[15-0] - mm1[31-16]; 

mm1[31-16] = mm1[47-32] - mm1[63-48]; 

mm1[47-32] = mm2/m64[15-0] - mm2/m64[31-16];

mm1[63-48] = mm2/m64[47-32] - mm2/m64[63-48]; 

PHSUBW (with 128-bit operands)

xmm1[15-0] = xmm1[15-0] - xmm1[31-16]; 

xmm1[31-16] = xmm1[47-32] - xmm1[63-48]; 

xmm1[47-32] = xmm1[79-64] - xmm1[95-80]; 

xmm1[63-48] = xmm1[111-96] - xmm1[127-112]; 

xmm1[79-64] = xmm2/m128[15-0] - xmm2/m128[31-16]; 

xmm1[95-80] = xmm2/m128[47-32] - xmm2/m128[63-48]; 

xmm1[111-96] = xmm2/m128[79-64] - xmm2/m128[95-80]; 

xmm1[127-112] = xmm2/m128[111-96] - xmm2/m128[127-112];

VPHSUBW (VEX.128 encoded version)

DEST[15:0] Å SRC1[15:0] - SRC1[31:16]

DEST[31:16] Å SRC1[47:32] - SRC1[63:48]

DEST[47:32] Å SRC1[79:64] - SRC1[95:80]

DEST[63:48] Å SRC1[111:96] - SRC1[127:112]

DEST[79:64] Å SRC2[15:0] - SRC2[31:16]

DEST[95:80] Å SRC2[47:32] - SRC2[63:48]

DEST[111:96] Å SRC2[79:64] - SRC2[95:80]

DEST[127:112] Å SRC2[111:96] - SRC2[127:112]

DEST[VLMAX-1:128] Å 0

VPHSUBW (VEX.256 encoded version)

DEST[15:0] Å SRC1[15:0] - SRC1[31:16]

DEST[31:16] Å SRC1[47:32] - SRC1[63:48]

DEST[47:32] Å SRC1[79:64] - SRC1[95:80]

DEST[63:48] Å SRC1[111:96] - SRC1[127:112]

DEST[79:64] Å SRC2[15:0] - SRC2[31:16]

DEST[95:80] Å SRC2[47:32] - SRC2[63:48]

DEST[111:96] Å SRC2[79:64] - SRC2[95:80]

DEST[127:112] Å SRC2[111:96] - SRC2[127:112]

DEST[143:128] Å SRC1[143:128] - SRC1[159:144]

DEST[159:144] Å SRC1[175:160] - SRC1[191:176]

DEST[175:160] Å SRC1[207:192] - SRC1[223:208]

DEST[191:176] Å SRC1[239:224] - SRC1[255:240]

DEST[207:192] Å SRC2[143:128] - SRC2[159:144]

DEST[223:208] Å SRC2[175:160] - SRC2[191:176]

DEST[239:224] Å SRC2[207:192] - SRC2[223:208]

DEST[255:240] Å SRC2[239:224] - SRC2[255:240]

PHSUBD (with 64-bit operands)

mm1[31-0] = mm1[31-0] - mm1[63-32];

mm1[63-32] = mm2/m64[31-0] - mm2/m64[63-32];
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PHSUBD (with 128-bit operands)

xmm1[31-0] = xmm1[31-0] - xmm1[63-32]; 

xmm1[63-32] = xmm1[95-64] - xmm1[127-96]; 

xmm1[95-64] = xmm2/m128[31-0] - xmm2/m128[63-32]; 

xmm1[127-96] = xmm2/m128[95-64] - xmm2/m128[127-96]; 

VPHSUBD (VEX.128 encoded version)

DEST[31-0] Å SRC1[31-0] - SRC1[63-32]

DEST[63-32] Å SRC1[95-64] - SRC1[127-96]

DEST[95-64] Å SRC2[31-0] - SRC2[63-32]

DEST[127-96] Å SRC2[95-64] - SRC2[127-96]

DEST[VLMAX-1:128] Å 0

VPHSUBD (VEX.256 encoded version)

DEST[31:0] Å SRC1[31:0] - SRC1[63:32]

DEST[63:32] Å SRC1[95:64] - SRC1[127:96]

DEST[95:64] Å SRC2[31:0] - SRC2[63:32]

DEST[127:96] Å SRC2[95:64] - SRC2[127:96]

DEST[159:128] Å SRC1[159:128] - SRC1[191:160]

DEST[191:160] Å SRC1[223:192] - SRC1[255:224]

DEST[223:192] Å SRC2[159:128] - SRC2[191:160]

DEST[255:224] Å SRC2[223:192] - SRC2[255:224]

Intel C/C++ Compiler Intrinsic Equivalents

PHSUBW:  __m64 _mm_hsub_pi16 (__m64 a, __m64 b)

PHSUBD:  __m64 _mm_hsub_pi32 (__m64 a, __m64 b)

(V)PHSUBW:  __m128i _mm_hsub_epi16 (__m128i a, __m128i b)

(V)PHSUBD:  __m128i _mm_hsub_epi32 (__m128i a, __m128i b)

VPHSUBW: __m256i _mm256_hsub_epi16 (__m256i a, __m256i b)

VPHSUBD: __m256i _mm256_hsub_epi32 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions 

None. 

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PHSUBSW — Packed Horizontal Subtract and Saturate

Instruction Operand Encoding

Description 

(V)PHSUBSW performs horizontal subtraction on each adjacent pair of 16-bit signed integers by subtracting the 
most significant word from the least significant word of each pair in the source and destination operands. The 
signed, saturated 16-bit results are packed to the destination operand (first operand). When the source operand is 
a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception 
(#GP) will be generated. 
Legacy SSE version: Both operands can be MMX registers. The second source operand can be an MMX register or a 
64-bit memory location.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged. 

In 64-bit mode, use the REX prefix to access additional registers. 
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.
VEX.256 encoded version: The first source and destination operands are YMM registers. The second source 
operand can be an YMM register or a 256-bit memory location.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

PHSUBSW (with 64-bit operands)

mm1[15-0] = SaturateToSignedWord(mm1[15-0] - mm1[31-16]); 

mm1[31-16] = SaturateToSignedWord(mm1[47-32] - mm1[63-48]);

mm1[47-32] = SaturateToSignedWord(mm2/m64[15-0] - mm2/m64[31-16]); 

mm1[63-48] = SaturateToSignedWord(mm2/m64[47-32] - mm2/m64[63-48]);

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 07 /r1 

PHSUBSW mm1, mm2/m64 

RM V/V SSSE3 Subtract 16-bit signed integer horizontally, 
pack saturated integers to mm1.

66 0F 38 07 /r

PHSUBSW xmm1, xmm2/m128 

RM V/V SSSE3 Subtract 16-bit signed integer horizontally, 
pack saturated integers to xmm1.

VEX.NDS.128.66.0F38.WIG 07 /r

VPHSUBSW xmm1, xmm2, xmm3/m128

RVM V/V AVX Subtract 16-bit signed integer horizontally, 
pack saturated integers to xmm1.

VEX.NDS.256.66.0F38.WIG 07 /r

VPHSUBSW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Subtract 16-bit signed integer horizontally, 
pack saturated integers to ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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PHSUBSW (with 128-bit operands)

xmm1[15-0] = SaturateToSignedWord(xmm1[15-0] - xmm1[31-16]); 

xmm1[31-16] = SaturateToSignedWord(xmm1[47-32] - xmm1[63-48]);

xmm1[47-32] = SaturateToSignedWord(xmm1[79-64] - xmm1[95-80]);

xmm1[63-48] = SaturateToSignedWord(xmm1[111-96] - xmm1[127-112]);

xmm1[79-64] = SaturateToSignedWord(xmm2/m128[15-0] - xmm2/m128[31-16]); 

xmm1[95-80] =SaturateToSignedWord(xmm2/m128[47-32] - xmm2/m128[63-48]); 

xmm1[111-96] =SaturateToSignedWord(xmm2/m128[79-64] - xmm2/m128[95-80]);

xmm1[127-112]= SaturateToSignedWord(xmm2/m128[111-96] - xmm2/m128[127-112]);

VPHSUBSW (VEX.128 encoded version)

DEST[15:0]= SaturateToSignedWord(SRC1[15:0] - SRC1[31:16])

DEST[31:16] = SaturateToSignedWord(SRC1[47:32] - SRC1[63:48])

DEST[47:32] = SaturateToSignedWord(SRC1[79:64] - SRC1[95:80])

DEST[63:48] = SaturateToSignedWord(SRC1[111:96] - SRC1[127:112])

DEST[79:64] = SaturateToSignedWord(SRC2[15:0] - SRC2[31:16])

DEST[95:80] = SaturateToSignedWord(SRC2[47:32] - SRC2[63:48])

DEST[111:96] = SaturateToSignedWord(SRC2[79:64] - SRC2[95:80])

DEST[127:112] = SaturateToSignedWord(SRC2[111:96] - SRC2[127:112])

DEST[VLMAX-1:128] Å 0

VPHSUBSW (VEX.256 encoded version)

DEST[15:0]= SaturateToSignedWord(SRC1[15:0] - SRC1[31:16])

DEST[31:16] = SaturateToSignedWord(SRC1[47:32] - SRC1[63:48])

DEST[47:32] = SaturateToSignedWord(SRC1[79:64] - SRC1[95:80])

DEST[63:48] = SaturateToSignedWord(SRC1[111:96] - SRC1[127:112])

DEST[79:64] = SaturateToSignedWord(SRC2[15:0] - SRC2[31:16])

DEST[95:80] = SaturateToSignedWord(SRC2[47:32] - SRC2[63:48])

DEST[111:96] = SaturateToSignedWord(SRC2[79:64] - SRC2[95:80])

DEST[127:112] = SaturateToSignedWord(SRC2[111:96] - SRC2[127:112])

DEST[143:128]= SaturateToSignedWord(SRC1[143:128] - SRC1[159:144])

DEST[159:144] = SaturateToSignedWord(SRC1[175:160] - SRC1[191:176])

DEST[175:160] = SaturateToSignedWord(SRC1[207:192] - SRC1[223:208])

DEST[191:176] = SaturateToSignedWord(SRC1[239:224] - SRC1[255:240])

DEST[207:192] = SaturateToSignedWord(SRC2[143:128] - SRC2[159:144])

DEST[223:208] = SaturateToSignedWord(SRC2[175:160] - SRC2[191:176])

DEST[239:224] = SaturateToSignedWord(SRC2[207:192] - SRC2[223:208])

DEST[255:240] = SaturateToSignedWord(SRC2[239:224] - SRC2[255:240])

Intel C/C++ Compiler Intrinsic Equivalent

PHSUBSW: __m64 _mm_hsubs_pi16 (__m64 a, __m64 b)

(V)PHSUBSW: __m128i _mm_hsubs_epi16 (__m128i a, __m128i b)

VPHSUBSW: __m256i _mm256_hsubs_epi16 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions 

None. 

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qword

Instruction Operand Encoding

Description

Copies a byte/dword/qword from the source operand (second operand) and inserts it in the destination operand 
(first operand) at the location specified with the count operand (third operand). (The other elements in the desti-
nation register are left untouched.) The source operand can be a general-purpose register or a memory location. 
(When the source operand is a general-purpose register, PINSRB copies the low byte of the register.) The destina-
tion operand is an XMM register. The count operand is an 8-bit immediate. When specifying a qword[dword, byte] 
location in an an XMM register, the [2, 4] least-significant bit(s) of the count operand specify the location.
In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15, R8-15). Use of REX.W permits the use of 64 bit general purpose registers.
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.L must be 0, other-
wise the instruction will #UD. Attempt to execute VPINSRQ in non-64-bit mode will cause #UD.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 20 /r ib
PINSRB xmm1, r32/m8, imm8

RMI V/V SSE4_1 Insert a byte integer value from r32/m8 into 
xmm1 at the destination element in xmm1 

specified by imm8.

66 0F 3A 22 /r ib
PINSRD xmm1, r/m32, imm8

RMI V/V SSE4_1 Insert a dword integer value from r/m32 into 
the xmm1 at the destination element 
specified by imm8.

66 REX.W 0F 3A 22 /r ib
PINSRQ xmm1, r/m64, imm8

RMI V/N. E. SSE4_1 Insert a qword integer value from r/m64 into 
the xmm1 at the destination element 
specified by imm8.

VEX.NDS.128.66.0F3A.W0 20 /r ib
VPINSRB xmm1, xmm2, r32/m8, imm8

RVMI V1/V AVX Merge a byte integer value from r32/m8 and 
rest from xmm2 into xmm1 at the byte offset 
in imm8.

VEX.NDS.128.66.0F3A.W0 22 /r ib
VPINSRD xmm1, xmm2, r/m32, imm8

RVMI V/V AVX Insert a dword integer value from r32/m32 
and rest from xmm2 into xmm1 at the dword 
offset in imm8.

VEX.NDS.128.66.0F3A.W1 22 /r ib
VPINSRQ xmm1, xmm2, r/m64, imm8

RVMI V/I AVX Insert a qword integer value from r64/m64 
and rest from xmm2 into xmm1 at the qword 
offset in imm8.

NOTES:

1. In 64-bit mode, VEX.W1 is ignored for VPINSRB (similar to legacy REX.W=1 prefix with PINSRB).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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Operation

CASE OF

PINSRB: SEL Å COUNT[3:0];

MASK Å (0FFH << (SEL * 8)); 

TEMP Å (((SRC[7:0] << (SEL *8)) AND MASK);

PINSRD: SEL Å COUNT[1:0];

MASK Å (0FFFFFFFFH << (SEL * 32)); 

TEMP Å (((SRC << (SEL *32)) AND MASK) ;

PINSRQ: SEL Å COUNT[0]

MASK Å (0FFFFFFFFFFFFFFFFH << (SEL * 64)); 

TEMP Å (((SRC << (SEL *32)) AND MASK) ;

ESAC;

DEST Å ((DEST AND NOT MASK) OR TEMP); 

VPINSRB (VEX.128 encoded version)

SEL Å imm8[3:0]

DEST[127:0] Å write_b_element(SEL, SRC2, SRC1)

DEST[VLMAX-1:128] Å 0

VPINSRD (VEX.128 encoded version)

SEL Å imm8[1:0]

DEST[127:0] Å write_d_element(SEL, SRC2, SRC1)

DEST[VLMAX-1:128] Å 0

VPINSRQ (VEX.128 encoded version)

SEL Å imm8[0]

DEST[127:0] Å write_q_element(SEL, SRC2, SRC1)

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

PINSRB: __m128i _mm_insert_epi8 (__m128i s1, int s2, const int ndx);

PINSRD:  __m128i _mm_insert_epi32 (__m128i s2, int s, const int ndx);

PINSRQ:  __m128i _mm_insert_epi64(__m128i s2, __int64 s, const int ndx);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VPINSRQ in non-64-bit mode with VEX.W=1.
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PINSRW—Insert Word

Instruction Operand Encoding

Description

Copies a word from the source operand (second operand) and inserts it in the destination operand (first operand) 
at the location specified with the count operand (third operand). (The other words in the destination register are 
left untouched.) The source operand can be a general-purpose register or a 16-bit memory location. (When the 
source operand is a general-purpose register, the low word of the register is copied.) The destination operand can 
be an MMX technology register or an XMM register. The count operand is an 8-bit immediate. When specifying a 
word location in an MMX technology register, the 2 least-significant bits of the count operand specify the location; 
for an XMM register, the 3 least-significant bits specify the location.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15, R8-15). 
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.L must be 0, other-
wise the instruction will #UD.

Operation

PINSRW (with 64-bit source operand)

SEL ← COUNT AND 3H;

CASE (Determine word position) OF

SEL ← 0: MASK ← 000000000000FFFFH;

SEL ← 1: MASK ← 00000000FFFF0000H;

SEL ← 2: MASK ← 0000FFFF00000000H;

SEL ← 3: MASK ← FFFF000000000000H;

DEST ← (DEST AND NOT MASK) OR (((SRC << (SEL ∗ 16)) AND MASK);

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F C4 /r ib1

PINSRW mm, r32/m16, imm8

RMI V/V SSE Insert the low word from r32 or from m16 
into mm at the word position specified by 
imm8.

66 0F C4 /r ib

PINSRW xmm, r32/m16, imm8

RMI V/V SSE2 Move the low word of r32 or from m16 into 
xmm at the word position specified by imm8.

VEX.NDS.128.66.0F.W0 C4 /r ib

VPINSRW xmm1, xmm2, r32/m16, imm8

RVMI V2/V AVX Insert a word integer value from r32/m16 
and rest from xmm2 into xmm1 at the word 
offset in imm8.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

2. In 64-bit mode, VEX.W1 is ignored for VPINSRW (similar to legacy REX.W=1 prefix in PINSRW).

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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PINSRW (with 128-bit source operand)

SEL ← COUNT AND 7H;

CASE (Determine word position) OF

SEL ← 0: MASK ← 0000000000000000000000000000FFFFH;

SEL ← 1: MASK ← 000000000000000000000000FFFF0000H;

SEL ← 2: MASK ← 00000000000000000000FFFF00000000H;

SEL ← 3: MASK ← 0000000000000000FFFF000000000000H;

SEL ← 4: MASK ← 000000000000FFFF0000000000000000H;

SEL ← 5: MASK ← 00000000FFFF00000000000000000000H;

SEL ← 6: MASK ← 0000FFFF000000000000000000000000H;

SEL ← 7: MASK ← FFFF0000000000000000000000000000H;

DEST ← (DEST AND NOT MASK) OR (((SRC << (SEL ∗ 16)) AND MASK);

VPINSRW (VEX.128 encoded version)

SEL Å imm8[2:0]

DEST[127:0] Å write_w_element(SEL, SRC2, SRC1)

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

PINSRW:  __m64 _mm_insert_pi16 (__m64 a, int d, int n)

PINSRW:  __m128i _mm_insert_epi16 ( __m128i a, int b, int imm)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VPINSRW in non-64-bit mode with VEX.W=1.
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PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes

Instruction Operand Encoding

Description 

(V)PMADDUBSW multiplies vertically each unsigned byte of the destination operand (first operand) with the corre-
sponding signed byte of the source operand (second operand), producing intermediate signed 16-bit integers. Each 
adjacent pair of signed words is added and the saturated result is packed to the destination operand. For example, 
the lowest-order bytes (bits 7-0) in the source and destination operands are multiplied and the intermediate signed 
word result is added with the corresponding intermediate result from the 2nd lowest-order bytes (bits 15-8) of the 
operands; the sign-saturated result is stored in the lowest word of the destination register (15-0). The same oper-
ation is performed on the other pairs of adjacent bytes. Both operands can be MMX register or XMM registers. When 
the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a 
general-protection exception (#GP) will be generated. 

In 64-bit mode, use the REX prefix to access additional registers. 
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. 
VEX.256 encoded version: The first source and destination operands are YMM registers. The second source 
operand can be an YMM register or a 256-bit memory location.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMADDUBSW (with 64 bit operands)

DEST[15-0] = SaturateToSignedWord(SRC[15-8]*DEST[15-8]+SRC[7-0]*DEST[7-0]);

DEST[31-16] = SaturateToSignedWord(SRC[31-24]*DEST[31-24]+SRC[23-16]*DEST[23-16]);

DEST[47-32] = SaturateToSignedWord(SRC[47-40]*DEST[47-40]+SRC[39-32]*DEST[39-32]);

DEST[63-48] = SaturateToSignedWord(SRC[63-56]*DEST[63-56]+SRC[55-48]*DEST[55-48]);

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 04 /r1 

PMADDUBSW mm1, mm2/m64

RM V/V SSSE3 Multiply signed and unsigned bytes, add 
horizontal pair of signed words, pack 
saturated signed-words to mm1. 

66 0F 38 04 /r 

PMADDUBSW xmm1, xmm2/m128 

RM V/V SSSE3 Multiply signed and unsigned bytes, add 
horizontal pair of signed words, pack 
saturated signed-words to xmm1.

VEX.NDS.128.66.0F38.WIG 04 /r

VPMADDUBSW xmm1, xmm2, xmm3/m128

RVM V/V AVX Multiply signed and unsigned bytes, add 
horizontal pair of signed words, pack 
saturated signed-words to xmm1.

VEX.NDS.256.66.0F38.WIG 04 /r

VPMADDUBSW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Multiply signed and unsigned bytes, add 
horizontal pair of signed words, pack 
saturated signed-words to ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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PMADDUBSW (with 128 bit operands)

DEST[15-0] = SaturateToSignedWord(SRC[15-8]* DEST[15-8]+SRC[7-0]*DEST[7-0]);

// Repeat operation for 2nd through 7th word 

SRC1/DEST[127-112] = SaturateToSignedWord(SRC[127-120]*DEST[127-120]+ SRC[119-112]* DEST[119-112]);

VPMADDUBSW (VEX.128 encoded version)

DEST[15:0] Å SaturateToSignedWord(SRC2[15:8]* SRC1[15:8]+SRC2[7:0]*SRC1[7:0])

// Repeat operation for 2nd through 7th word 

DEST[127:112] Å SaturateToSignedWord(SRC2[127:120]*SRC1[127:120]+ SRC2[119:112]* SRC1[119:112])

DEST[VLMAX-1:128] Å 0

VPMADDUBSW (VEX.256 encoded version)

DEST[15:0] Å SaturateToSignedWord(SRC2[15:8]* SRC1[15:8]+SRC2[7:0]*SRC1[7:0])

// Repeat operation for 2nd through 15th word 

DEST[255:240] Å SaturateToSignedWord(SRC2[255:248]*SRC1[255:248]+ SRC2[247:240]* SRC1[247:240])

Intel C/C++ Compiler Intrinsic Equivalents

PMADDUBSW:  __m64 _mm_maddubs_pi16 (__m64 a, __m64 b)

(V)PMADDUBSW:  __m128i _mm_maddubs_epi16 (__m128i a, __m128i b)

VPMADDUBSW:  __m256i _mm256_maddubs_epi16 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions 

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMADDWD—Multiply and Add Packed Integers

Instruction Operand Encoding

Description

Multiplies the individual signed words of the destination operand (first operand) by the corresponding signed words 
of the source operand (second operand), producing temporary signed, doubleword results. The adjacent double-
word results are then summed and stored in the destination operand. For example, the corresponding low-order 
words (15-0) and (31-16) in the source and destination operands are multiplied by one another and the double-
word results are added together and stored in the low doubleword of the destination register (31-0). The same 
operation is performed on the other pairs of adjacent words. (Figure 4-7 shows this operation when using 64-bit 
operands).

The (V)PMADDWD instruction wraps around only in one situation: when the 2 pairs of words being operated on in 
a group are all 8000H. In this case, the result wraps around to 80000000H.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
Legacy SSE version: The first source and destination operands are MMX registers. The second source operand is an 
MMX register or a 64-bit memory location. 

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F F5 /r1

PMADDWD mm, mm/m64

RM V/V MMX Multiply the packed words in mm by the 
packed words in mm/m64, add adjacent 
doubleword results, and store in mm.

66 0F F5 /r

PMADDWD xmm1, xmm2/m128

RM V/V SSE2 Multiply the packed word integers in xmm1 by 
the packed word integers in xmm2/m128, add 
adjacent doubleword results, and store in 
xmm1.

VEX.NDS.128.66.0F.WIG F5 /r

VPMADDWD xmm1, xmm2, xmm3/m128

RVM V/V AVX Multiply the packed word integers in xmm2 by 
the packed word integers in xmm3/m128, add 
adjacent doubleword results, and store in 
xmm1.

VEX.NDS.256.66.0F.WIG F5 /r

VPMADDWD ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Multiply the packed word integers in ymm2 by 
the packed word integers in ymm3/m256, add 
adjacent doubleword results, and store in 
ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMADDWD (with 64-bit operands)

DEST[31:0] ← (DEST[15:0] ∗ SRC[15:0]) + (DEST[31:16] ∗ SRC[31:16]);

DEST[63:32] ← (DEST[47:32] ∗ SRC[47:32]) + (DEST[63:48] ∗ SRC[63:48]);

PMADDWD (with 128-bit operands)

DEST[31:0] ← (DEST[15:0] ∗ SRC[15:0]) + (DEST[31:16] ∗ SRC[31:16]);

DEST[63:32] ← (DEST[47:32] ∗ SRC[47:32]) + (DEST[63:48] ∗ SRC[63:48]);

DEST[95:64] ← (DEST[79:64] ∗ SRC[79:64]) + (DEST[95:80] ∗ SRC[95:80]);

DEST[127:96] ← (DEST[111:96] ∗ SRC[111:96]) + (DEST[127:112] ∗ SRC[127:112]);

VPMADDWD (VEX.128 encoded version)

DEST[31:0] Å (SRC1[15:0] * SRC2[15:0]) + (SRC1[31:16] * SRC2[31:16])

DEST[63:32] Å (SRC1[47:32] * SRC2[47:32]) + (SRC1[63:48] * SRC2[63:48])

DEST[95:64] Å (SRC1[79:64] * SRC2[79:64]) + (SRC1[95:80] * SRC2[95:80])

DEST[127:96] Å (SRC1[111:96] * SRC2[111:96]) + (SRC1[127:112] * SRC2[127:112])

DEST[VLMAX-1:128] Å 0

VPMADDWD (VEX.256 encoded version)

DEST[31:0] Å (SRC1[15:0] * SRC2[15:0]) + (SRC1[31:16] * SRC2[31:16])

DEST[63:32] Å (SRC1[47:32] * SRC2[47:32]) + (SRC1[63:48] * SRC2[63:48])

DEST[95:64] Å (SRC1[79:64] * SRC2[79:64]) + (SRC1[95:80] * SRC2[95:80])

DEST[127:96] Å (SRC1[111:96] * SRC2[111:96]) + (SRC1[127:112] * SRC2[127:112])

DEST[159:128] Å (SRC1[143:128] * SRC2[143:128]) + (SRC1[159:144] * SRC2[159:144])

DEST[191:160] Å (SRC1[175:160] * SRC2[175:160]) + (SRC1[191:176] * SRC2[191:176])

DEST[223:192] Å (SRC1[207:192] * SRC2[207:192]) + (SRC1[223:208] * SRC2[223:208])

DEST[255:224] Å (SRC1[239:224] * SRC2[239:224]) + (SRC1[255:240] * SRC2[255:240])

Intel C/C++ Compiler Intrinsic Equivalent

PMADDWD: __m64 _mm_madd_pi16(__m64 m1, __m64 m2)

(V)PMADDWD: __m128i _mm_madd_epi16 ( __m128i a, __m128i b)

VPMADDWD: __m256i _mm256_madd_epi16 ( __m256i a, __m256i b)

Flags Affected

None.

Figure 4-7.  PMADDWD Execution Model Using 64-bit Operands

X3 X2 X1 X0

X3 ∗ Y3 X2 ∗ Y2 X1 ∗ Y1 X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

(X1∗Y1) + (X0∗Y0)(X3∗Y3) + (X2∗Y2) 

TEMP
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Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMAXSB — Maximum of Packed Signed Byte Integers

Instruction Operand Encoding

Description

Compares packed signed byte integers in the destination operand (first operand) and the source operand (second 
operand), and returns the maximum for each packed value in the destination operand. 
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[7:0] > SRC[7:0]) 

THEN DEST[7:0] Å DEST[7:0];

ELSE DEST[7:0] Å SRC[7:0]; FI;

IF (DEST[15:8] > SRC[15:8]) 

THEN DEST[15:8] Å DEST[15:8];

ELSE DEST[15:8] Å SRC[15:8]; FI;

IF (DEST[23:16] > SRC[23:16]) 

THEN DEST[23:16] Å DEST[23:16];

ELSE DEST[23:16] Å SRC[23:16]; FI;

IF (DEST[31:24] > SRC[31:24]) 

THEN DEST[31:24] Å DEST[31:24];

ELSE DEST[31:24] Å SRC[31:24]; FI;

IF (DEST[39:32] > SRC[39:32]) 

THEN DEST[39:32] Å DEST[39:32];

ELSE DEST[39:32] Å SRC[39:32]; FI;

IF (DEST[47:40] > SRC[47:40]) 

THEN DEST[47:40] Å DEST[47:40];

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 3C /r
PMAXSB xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed signed byte integers in 
xmm1 and xmm2/m128 and store packed 
maximum values in xmm1.

VEX.NDS.128.66.0F38.WIG 3C /r
VPMAXSB xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed signed byte integers in 
xmm2 and xmm3/m128 and store packed 
maximum values in xmm1.

VEX.NDS.256.66.0F38.WIG 3C /r
VPMAXSB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Compare packed signed byte integers in 
ymm2 and ymm3/m128 and store packed 
maximum values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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ELSE DEST[47:40] Å SRC[47:40]; FI;

IF (DEST[55:48] > SRC[55:48]) 

THEN DEST[55:48] Å DEST[55:48];

ELSE DEST[55:48] Å SRC[55:48]; FI;

IF (DEST[63:56] > SRC[63:56]) 

THEN DEST[63:56] Å DEST[63:56];

ELSE DEST[63:56] Å SRC[63:56]; FI;

IF (DEST[71:64] > SRC[71:64]) 

THEN DEST[71:64] Å DEST[71:64];

ELSE DEST[71:64] Å SRC[71:64]; FI;

IF (DEST[79:72] > SRC[79:72]) 

THEN DEST[79:72] Å DEST[79:72];

ELSE DEST[79:72] Å SRC[79:72]; FI;

IF (DEST[87:80] > SRC[87:80]) 

THEN DEST[87:80] Å DEST[87:80];

ELSE DEST[87:80] Å SRC[87:80]; FI;

IF (DEST[95:88] > SRC[95:88]) 

THEN DEST[95:88] Å DEST[95:88];

ELSE DEST[95:88] Å SRC[95:88]; FI;

IF (DEST[103:96] > SRC[103:96]) 

THEN DEST[103:96] Å DEST[103:96];

ELSE DEST[103:96] Å SRC[103:96]; FI;

IF (DEST[111:104] > SRC[111:104]) 

THEN DEST[111:104] Å DEST[111:104];

ELSE DEST[111:104] Å SRC[111:104]; FI;

IF (DEST[119:112] > SRC[119:112]) 

THEN DEST[119:112] Å DEST[119:112]; 

ELSE DEST[119:112] Å SRC[119:112]; FI;

IF (DEST[127:120] > SRC[127:120]) 

THEN DEST[127:120] Å DEST[127:120];

ELSE DEST[127:120] Å SRC[127:120]; FI;

VPMAXSB (VEX.128 encoded version)

IF SRC1[7:0] >SRC2[7:0] THEN

DEST[7:0] Å SRC1[7:0];

ELSE

DEST[7:0] Å SRC2[7:0]; FI;

(* Repeat operation for 2nd through 15th bytes in source and destination operands *)

IF SRC1[127:120] >SRC2[127:120] THEN

DEST[127:120] Å SRC1[127:120];

ELSE

DEST[127:120] Å SRC2[127:120]; FI;

DEST[VLMAX-1:128] Å 0

VPMAXSB (VEX.256 encoded version)

IF SRC1[7:0] >SRC2[7:0] THEN

DEST[7:0] Å SRC1[7:0];

ELSE

DEST[15:0] Å SRC2[7:0]; FI;

(* Repeat operation for 2nd through 31st bytes in source and destination operands *)

IF SRC1[255:248] >SRC2[255:248] THEN

DEST[255:248] Å SRC1[255:248];

ELSE

DEST[255:248] Å SRC2[255:248]; FI;
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Intel C/C++ Compiler Intrinsic Equivalent

(V)PMAXSB:  __m128i _mm_max_epi8 ( __m128i a, __m128i b);

VPMAXSB: __m256i _mm256_max_epi8 ( __m256i a, __m256i b);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMAXSD — Maximum of Packed Signed Dword Integers

Instruction Operand Encoding

Description

Compares packed signed dword integers in the destination operand (first operand) and the source operand (second 
operand), and returns the maximum for each packed value in the destination operand. 
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[31:0] > SRC[31:0]) 

THEN DEST[31:0] Å DEST[31:0]; 

ELSE DEST[31:0] Å SRC[31:0]; FI;

IF (DEST[63:32] > SRC[63:32]) 

THEN DEST[63:32] Å DEST[63:32]; 

ELSE DEST[63:32] Å SRC[63:32]; FI;

IF (DEST[95:64] > SRC[95:64]) 

THEN DEST[95:64] Å DEST[95:64];

ELSE DEST[95:64] Å SRC[95:64]; FI;

IF (DEST[127:96] > SRC[127:96]) 

THEN DEST[127:96] Å DEST[127:96];

ELSE DEST[127:96] Å SRC[127:96]; FI;

VPMAXSD (VEX.128 encoded version)

IF SRC1[31:0] > SRC2[31:0] THEN

DEST[31:0] Å SRC1[31:0];

ELSE

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 3D /r
PMAXSD xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed signed dword integers in 
xmm1 and xmm2/m128 and store packed 
maximum values in xmm1.

VEX.NDS.128.66.0F38.WIG 3D /r
VPMAXSD xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed signed dword integers in 
xmm2 and xmm3/m128 and store packed 
maximum values in xmm1.

VEX.NDS.256.66.0F38.WIG 3D /r
VPMAXSD ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Compare packed signed dword integers in 
ymm2 and ymm3/m128 and store packed 
maximum values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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DEST[31:0] Å SRC2[31:0]; FI;

(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)

IF SRC1[127:95] > SRC2[127:95] THEN

DEST[127:95] Å SRC1[127:95];

ELSE

DEST[127:95] Å SRC2[127:95]; FI;

DEST[VLMAX-1:128] Å 0

VPMAXSD (VEX.256 encoded version)

IF SRC1[31:0] > SRC2[31:0] THEN

DEST[31:0] Å SRC1[31:0];

ELSE

DEST[31:0] Å SRC2[31:0]; FI;

(* Repeat operation for 2nd through 7th dwords in source and destination operands *)

IF SRC1[255:224] > SRC2[255:224] THEN

DEST[255:224] Å SRC1[255:224];

ELSE

DEST[255:224] Å SRC2[255:224]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSD:  __m128i _mm_max_epi32 ( __m128i a, __m128i b);

VPMAXSD: __m256i _mm256_max_epi32 ( __m256i a, __m256i b);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.



PMAXSW—Maximum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, N-Z

4-128 Vol. 2B

PMAXSW—Maximum of Packed Signed Word Integers 

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed signed word integers in the destination operand (first operand) and the 
source operand (second operand), and returns the maximum value for each pair of word integers to the destination 
operand. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
Legacy SSE version: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand can be an MMX technology register.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMAXSW (64-bit operands)

IF DEST[15:0] > SRC[15:0]) THEN

DEST[15:0] ← DEST[15:0];

ELSE

DEST[15:0] ← SRC[15:0]; FI;

(* Repeat operation for 2nd and 3rd words in source and destination operands *)

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F EE /r1

PMAXSW mm1, mm2/m64

RM V/V SSE Compare signed word integers in mm2/m64 
and mm1 and return maximum values.

66 0F EE /r

PMAXSW xmm1, xmm2/m128

RM V/V SSE2 Compare signed word integers in xmm2/m128 
and xmm1 and return maximum values.

VEX.NDS.128.66.0F.WIG EE /r

VPMAXSW xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed signed word integers in 
xmm3/m128 and xmm2 and store packed 
maximum values in xmm1.

VEX.NDS.256.66.0F.WIG EE /r

VPMAXSW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Compare packed signed word integers in 
ymm3/m128 and ymm2 and store packed 
maximum values in ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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IF DEST[63:48] > SRC[63:48]) THEN

DEST[63:48] ← DEST[63:48];

ELSE

DEST[63:48] ← SRC[63:48]; FI;

PMAXSW (128-bit operands)

IF DEST[15:0] > SRC[15:0]) THEN

DEST[15:0] ← DEST[15:0];

ELSE

DEST[15:0] ← SRC[15:0]; FI;

(* Repeat operation for 2nd through 7th words in source and destination operands *)

IF DEST[127:112] > SRC[127:112]) THEN

DEST[127:112] ← DEST[127:112];

ELSE

DEST[127:112] ← SRC[127:112]; FI;

VPMAXSW (VEX.128 encoded version)

IF SRC1[15:0] > SRC2[15:0] THEN

DEST[15:0] Å SRC1[15:0];

ELSE

DEST[15:0] Å SRC2[15:0]; FI;

(* Repeat operation for 2nd through 7th words in source and destination operands *)

IF SRC1[127:112] >SRC2[127:112] THEN

DEST[127:112] Å SRC1[127:112];

ELSE

DEST[127:112] Å SRC2[127:112]; FI;

DEST[VLMAX-1:128] Å 0

VPMAXSW (VEX.256 encoded version)

IF SRC1[15:0] > SRC2[15:0] THEN

DEST[15:0] Å SRC1[15:0];

ELSE

DEST[15:0] Å SRC2[15:0]; FI;

(* Repeat operation for 2nd through 15th words in source and destination operands *)

IF SRC1[255:240] >SRC2[255:240] THEN

DEST[255:240] Å SRC1[255:240];

ELSE

DEST[255:240] Å SRC2[255:240]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXSW: __m64 _mm_max_pi16(__m64 a, __m64 b)

(V)PMAXSW: __m128i _mm_max_epi16 ( __m128i a, __m128i b)

VPMAXSW: __m256i _mm256_max_epi16 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
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#UD If VEX.L = 1.
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PMAXUB—Maximum of Packed Unsigned Byte Integers

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed unsigned byte integers in the destination operand (first operand) and the 
source operand (second operand), and returns the maximum value for each pair of byte integers to the destination 
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
Legacy SSE version: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand can be an MMX technology register.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMAXUB (64-bit operands)

IF DEST[7:0] > SRC[17:0]) THEN

DEST[7:0] ← DEST[7:0];

ELSE

DEST[7:0] ← SRC[7:0]; FI;

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F DE /r1

PMAXUB mm1, mm2/m64

RM V/V  SSE Compare unsigned byte integers in mm2/m64 
and mm1 and returns maximum values.

66 0F DE /r

PMAXUB xmm1, xmm2/m128

RM V/V SSE2 Compare unsigned byte integers in 
xmm2/m128 and xmm1 and returns 
maximum values.

VEX.NDS.128.66.0F.WIG DE /r

VPMAXUB xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed unsigned byte integers in 
xmm2 and xmm3/m128 and store packed 
maximum values in xmm1.

VEX.NDS.256.66.0F.WIG DE /r

VPMAXUB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Compare packed unsigned byte integers in 
ymm2 and ymm3/m256 and store packed 
maximum values in ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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(* Repeat operation for 2nd through 7th bytes in source and destination operands *)

IF DEST[63:56] > SRC[63:56]) THEN

DEST[63:56] ← DEST[63:56];

ELSE

DEST[63:56] ← SRC[63:56]; FI;

PMAXUB (128-bit operands)

IF DEST[7:0] > SRC[17:0]) THEN

DEST[7:0] ← DEST[7:0];

ELSE

DEST[7:0] ← SRC[7:0]; FI;

(* Repeat operation for 2nd through 15th bytes in source and destination operands *)

IF DEST[127:120] > SRC[127:120]) THEN

DEST[127:120] ← DEST[127:120];

ELSE

DEST[127:120] ← SRC[127:120]; FI;

VPMAXUB (VEX.128 encoded version)

IF SRC1[7:0] >SRC2[7:0] THEN

DEST[7:0] Å SRC1[7:0];

ELSE

DEST[7:0] Å SRC2[7:0]; FI;

(* Repeat operation for 2nd through 15th bytes in source and destination operands *)

IF SRC1[127:120] >SRC2[127:120] THEN

DEST[127:120] Å SRC1[127:120];

ELSE

DEST[127:120] Å SRC2[127:120]; FI;

DEST[VLMAX-1:128] Å 0

VPMAXUB (VEX.256 encoded version)

IF SRC1[7:0] >SRC2[7:0] THEN

DEST[7:0] Å SRC1[7:0];

ELSE

DEST[15:0] Å SRC2[7:0]; FI;

(* Repeat operation for 2nd through 31st bytes in source and destination operands *)

IF SRC1[255:248] >SRC2[255:248] THEN

DEST[255:248] Å SRC1[255:248];

ELSE

DEST[255:248] Å SRC2[255:248]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMAXUB:  __m64 _mm_max_pu8(__m64 a, __m64 b)

(V)PMAXUB:  __m128i _mm_max_epu8 ( __m128i a, __m128i b)

VPMAXUB: __m256i _mm256_max_epu8 ( __m256i a, __m256i b);

Flags Affected

None.

Numeric Exceptions

None.
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Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMAXUD — Maximum of Packed Unsigned Dword Integers

Instruction Operand Encoding

Description

Compares packed unsigned dword integers in the destination operand (first operand) and the source operand 
(second operand), and returns the maximum for each packed value in the destination operand.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[31:0] > SRC[31:0]) 

THEN DEST[31:0] Å DEST[31:0];

ELSE DEST[31:0] Å SRC[31:0]; FI;

IF (DEST[63:32] > SRC[63:32]) 

THEN DEST[63:32] Å DEST[63:32];

ELSE DEST[63:32] Å SRC[63:32]; FI;

IF (DEST[95:64] > SRC[95:64]) 

THEN DEST[95:64] Å DEST[95:64];

ELSE DEST[95:64] Å SRC[95:64]; FI;

IF (DEST[127:96] > SRC[127:96]) 

THEN DEST[127:96] Å DEST[127:96];

ELSE DEST[127:96] Å SRC[127:96]; FI;

VPMAXUD (VEX.128 encoded version)

IF SRC1[31:0] > SRC2[31:0] THEN

DEST[31:0] Å SRC1[31:0];

ELSE

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 3F /r
PMAXUD xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed unsigned dword integers in 
xmm1 and xmm2/m128 and store packed 
maximum values in xmm1.

VEX.NDS.128.66.0F38.WIG 3F /r
VPMAXUD xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed unsigned dword integers in 
xmm2 and xmm3/m128 and store packed 
maximum values in xmm1.

VEX.NDS.256.66.0F38.WIG 3F /r
VPMAXUD ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Compare packed unsigned dword integers in 
ymm2 and ymm3/m256 and store packed 
maximum values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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DEST[31:0] Å SRC2[31:0]; FI;

(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)

IF SRC1[127:95] > SRC2[127:95] THEN

DEST[127:95] Å SRC1[127:95];

ELSE

DEST[127:95] Å SRC2[127:95]; FI;

DEST[VLMAX-1:128] Å 0

VPMAXUD (VEX.256 encoded version)

IF SRC1[31:0] > SRC2[31:0] THEN

DEST[31:0] Å SRC1[31:0];

ELSE

DEST[31:0] Å SRC2[31:0]; FI;

(* Repeat operation for 2nd through 7th dwords in source and destination operands *)

IF SRC1[255:224] > SRC2[255:224] THEN

DEST[255:224] Å SRC1[255:224];

ELSE

DEST[255:224] Å SRC2[255:224]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

(V)PMAXUD:  __m128i _mm_max_epu32 ( __m128i a, __m128i b);

VPMAXUD: __m256i _mm256_max_epu32 ( __m256i a, __m256i b);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMAXUW — Maximum of Packed Word Integers

Instruction Operand Encoding

Description

Compares packed unsigned word integers in the destination operand (first operand) and the source operand 
(second operand), and returns the maximum for each packed value in the destination operand. 
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. 

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[15:0] > SRC[15:0]) 

THEN DEST[15:0] Å DEST[15:0];

ELSE DEST[15:0] Å SRC[15:0]; FI;

IF (DEST[31:16] > SRC[31:16]) 

THEN DEST[31:16] Å DEST[31:16];

ELSE DEST[31:16] Å SRC[31:16]; FI;

IF (DEST[47:32] > SRC[47:32]) 

THEN DEST[47:32] Å DEST[47:32];

ELSE DEST[47:32] Å SRC[47:32]; FI;

IF (DEST[63:48] > SRC[63:48]) 

THEN DEST[63:48] Å DEST[63:48];

ELSE DEST[63:48] Å SRC[63:48]; FI;

IF (DEST[79:64] > SRC[79:64]) 

THEN DEST[79:64] Å DEST[79:64];

ELSE DEST[79:64] Å SRC[79:64]; FI;

IF (DEST[95:80] > SRC[95:80]) 

THEN DEST[95:80] Å DEST[95:80];

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 3E /r
PMAXUW xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed unsigned word integers in 
xmm1 and xmm2/m128 and store packed 
maximum values in xmm1.

VEX.NDS.128.66.0F38.WIG 3E/r
VPMAXUW xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed unsigned word integers in 
xmm3/m128 and xmm2 and store maximum 
packed values in xmm1.

VEX.NDS.256.66.0F38.WIG 3E /r
VPMAXUW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Compare packed unsigned word integers in 
ymm3/m256 and ymm2 and store maximum 
packed values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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ELSE DEST[95:80] Å SRC[95:80]; FI;

IF (DEST[111:96] > SRC[111:96]) 

THEN DEST[111:96] Å DEST[111:96];

ELSE DEST[111:96] Å SRC[111:96]; FI;

IF (DEST[127:112] > SRC[127:112]) 

THEN DEST[127:112] Å DEST[127:112];

ELSE DEST[127:112] Å SRC[127:112]; FI;

VPMAXUW (VEX.128 encoded version)

IF SRC1[15:0] > SRC2[15:0] THEN

DEST[15:0] Å SRC1[15:0];

ELSE

DEST[15:0] Å SRC2[15:0]; FI;

(* Repeat operation for 2nd through 7th words in source and destination operands *)

IF SRC1[127:112] >SRC2[127:112] THEN

DEST[127:112] Å SRC1[127:112];

ELSE

DEST[127:112] Å SRC2[127:112]; FI;

DEST[VLMAX-1:128] Å 0

VPMAXUW (VEX.256 encoded version)

IF SRC1[15:0] > SRC2[15:0] THEN

DEST[15:0] Å SRC1[15:0];

ELSE

DEST[15:0] Å SRC2[15:0]; FI;

(* Repeat operation for 2nd through 15th words in source and destination operands *)

IF SRC1[255:240] >SRC2[255:240] THEN

DEST[255:240] Å SRC1[255:240];

ELSE

DEST[255:240] Å SRC2[255:240]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

(V)PMAXUW: __m128i _mm_max_epu16 ( __m128i a, __m128i b);

VPMAXUW: __m256i _mm256_max_epu16 ( __m256i a, __m256i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMINSB — Minimum of Packed Signed Byte Integers

Instruction Operand Encoding

Description

Compares packed signed byte integers in the destination operand (first operand) and the source operand (second 
operand), and returns the minimum for each packed value in the destination operand.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[7:0] < SRC[7:0]) 

THEN DEST[7:0] Å DEST[7:0];

ELSE DEST[7:0] Å SRC[7:0]; FI;

IF (DEST[15:8] < SRC[15:8]) 

THEN DEST[15:8] Å DEST[15:8];

ELSE DEST[15:8] Å SRC[15:8]; FI;

IF (DEST[23:16] < SRC[23:16]) 

THEN DEST[23:16] Å DEST[23:16];

ELSE DEST[23:16] Å SRC[23:16]; FI;

IF (DEST[31:24] < SRC[31:24]) 

THEN DEST[31:24] Å DEST[31:24];

ELSE DEST[31:24] Å SRC[31:24]; FI;

IF (DEST[39:32] < SRC[39:32]) 

THEN DEST[39:32] Å DEST[39:32];

ELSE DEST[39:32] Å SRC[39:32]; FI;

IF (DEST[47:40] < SRC[47:40]) 

THEN DEST[47:40] Å DEST[47:40];

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 38 /r
PMINSB xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed signed byte integers in 
xmm1 and xmm2/m128 and store packed 
minimum values in xmm1.

VEX.NDS.128.66.0F38.WIG 38 /r
VPMINSB xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed signed byte integers in 
xmm2 and xmm3/m128 and store packed 
minimum values in xmm1.

VEX.NDS.256.66.0F38.WIG 38 /r
VPMINSB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Compare packed signed byte integers in 
ymm2 and ymm3/m256 and store packed 
minimum values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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ELSE DEST[47:40] Å SRC[47:40]; FI;

IF (DEST[55:48] < SRC[55:48]) 

THEN DEST[55:48] Å DEST[55:48];

ELSE DEST[55:48] Å SRC[55:48]; FI;

IF (DEST[63:56] < SRC[63:56]) 

THEN DEST[63:56] Å DEST[63:56];

ELSE DEST[63:56] Å SRC[63:56]; FI;

IF (DEST[71:64] < SRC[71:64]) 

THEN DEST[71:64] Å DEST[71:64];

ELSE DEST[71:64] Å SRC[71:64]; FI;

IF (DEST[79:72] < SRC[79:72]) 

THEN DEST[79:72] Å DEST[79:72];

ELSE DEST[79:72] Å SRC[79:72]; FI;

IF (DEST[87:80] < SRC[87:80]) 

THEN DEST[87:80] Å DEST[87:80];

ELSE DEST[87:80] Å SRC[87:80]; FI;

IF (DEST[95:88] < SRC[95:88]) 

THEN DEST[95:88] Å DEST[95:88];

ELSE DEST[95:88] Å SRC[95:88]; FI;

IF (DEST[103:96] < SRC[103:96]) 

THEN DEST[103:96] Å DEST[103:96];

ELSE DEST[103:96] Å SRC[103:96]; FI;

IF (DEST[111:104] < SRC[111:104]) 

THEN DEST[111:104] Å DEST[111:104];

ELSE DEST[111:104] Å SRC[111:104]; FI;

IF (DEST[119:112] < SRC[119:112]) 

THEN DEST[119:112] Å DEST[119:112];

ELSE DEST[119:112] Å SRC[119:112]; FI;

IF (DEST[127:120] < SRC[127:120]) 

THEN DEST[127:120] Å DEST[127:120];

ELSE DEST[127:120] Å SRC[127:120]; FI;

VPMINSB (VEX.128 encoded version)

IF SRC1[7:0] < SRC2[7:0] THEN

DEST[7:0] Å SRC1[7:0];

ELSE

DEST[7:0] Å SRC2[7:0]; FI;

(* Repeat operation for 2nd through 15th bytes in source and destination operands *)

IF SRC1[127:120] < SRC2[127:120] THEN

DEST[127:120] Å SRC1[127:120];

ELSE

DEST[127:120] Å SRC2[127:120]; FI;

DEST[VLMAX-1:128] Å 0

VPMINSB (VEX.256 encoded version)

IF SRC1[7:0] < SRC2[7:0] THEN

DEST[7:0] Å SRC1[7:0];

ELSE

DEST[15:0] Å SRC2[7:0]; FI;

(* Repeat operation for 2nd through 31st bytes in source and destination operands *)

IF SRC1[255:248] < SRC2[255:248] THEN

DEST[255:248] Å SRC1[255:248];

ELSE

DEST[255:248] Å SRC2[255:248]; FI;
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Intel C/C++ Compiler Intrinsic Equivalent

(V)PMINSB: __m128i _mm_min_epi8 ( __m128i a, __m128i b);

VPMINSB: __m256i _mm256_min_epi8 ( __m256i a, __m256i b);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMINSD — Minimum of Packed Dword Integers

Instruction Operand Encoding

Description

Compares packed signed dword integers in the destination operand (first operand) and the source operand (second 
operand), and returns the minimum for each packed value in the destination operand.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[31:0] < SRC[31:0]) 

THEN DEST[31:0] Å DEST[31:0];

ELSE DEST[31:0] Å SRC[31:0]; FI;

IF (DEST[63:32] < SRC[63:32]) 

THEN DEST[63:32] Å DEST[63:32];

ELSE DEST[63:32] Å SRC[63:32]; FI;

IF (DEST[95:64] < SRC[95:64]) 

THEN DEST[95:64] Å DEST[95:64];

ELSE DEST[95:64] Å SRC[95:64]; FI;

IF (DEST[127:96] < SRC[127:96]) 

THEN DEST[127:96] Å DEST[127:96];

ELSE DEST[127:96] Å SRC[127:96]; FI;

VPMINSD (VEX.128 encoded version)

IF SRC1[31:0] < SRC2[31:0] THEN

DEST[31:0] Å SRC1[31:0];

ELSE

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 39 /r
PMINSD xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed signed dword integers in 
xmm1 and xmm2/m128 and store packed 
minimum values in xmm1.

VEX.NDS.128.66.0F38.WIG 39 /r
VPMINSD xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed signed dword integers in 
xmm2 and xmm3/m128 and store packed 
minimum values in xmm1.

VEX.NDS.256.66.0F38.WIG 39 /r
VPMINSD ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Compare packed signed dword integers in 
ymm2 and ymm3/m128 and store packed 
minimum values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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DEST[31:0] Å SRC2[31:0]; FI;

(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)

IF SRC1[127:95] < SRC2[127:95] THEN

DEST[127:95] Å SRC1[127:95];

ELSE

DEST[127:95] Å SRC2[127:95]; FI;

DEST[VLMAX-1:128] Å 0

VPMINSD (VEX.256 encoded version)

IF SRC1[31:0] < SRC2[31:0] THEN

DEST[31:0] Å SRC1[31:0];

ELSE

DEST[31:0] Å SRC2[31:0]; FI;

(* Repeat operation for 2nd through 7th dwords in source and destination operands *)

IF SRC1[255:224] < SRC2[255:224] THEN

DEST[255:224] Å SRC1[255:224];

ELSE

DEST[255:224] Å SRC2[255:224]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

(V)PMINSD: __m128i _mm_min_epi32 ( __m128i a, __m128i b);

VPMINSD: __m256i _mm256_min_epi32 (__m256i a, __m256i b);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMINSW—Minimum of Packed Signed Word Integers

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed signed word integers in the destination operand (first operand) and the 
source operand (second operand), and returns the minimum value for each pair of word integers to the destination 
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
Legacy SSE version: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand can be an MMX technology register.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMINSW (64-bit operands)

IF DEST[15:0] < SRC[15:0] THEN

DEST[15:0] ← DEST[15:0];

ELSE

DEST[15:0] ← SRC[15:0]; FI;

(* Repeat operation for 2nd and 3rd words in source and destination operands *)

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F EA /r1

PMINSW mm1, mm2/m64

RM V/V SSE Compare signed word integers in mm2/m64 
and mm1 and return minimum values.

66 0F EA /r

PMINSW xmm1, xmm2/m128

RM V/V SSE2 Compare signed word integers in xmm2/m128 
and xmm1 and return minimum values.

VEX.NDS.128.66.0F.WIG EA /r

VPMINSW xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed signed word integers in 
xmm3/m128 and xmm2 and return packed 
minimum values in xmm1.

VEX.NDS.256.66.0F.WIG EA /r

VPMINSW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Compare packed signed word integers in 
ymm3/m256 and ymm2 and return packed 
minimum values in ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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IF DEST[63:48] < SRC[63:48] THEN

DEST[63:48] ← DEST[63:48];

ELSE

DEST[63:48] ← SRC[63:48]; FI;

PMINSW (128-bit operands)

IF DEST[15:0] < SRC[15:0] THEN

DEST[15:0] ← DEST[15:0];

ELSE

DEST[15:0] ← SRC[15:0]; FI;

(* Repeat operation for 2nd through 7th words in source and destination operands *)

IF DEST[127:112] < SRC/m64[127:112] THEN

DEST[127:112] ← DEST[127:112];

ELSE

DEST[127:112] ← SRC[127:112]; FI;

VPMINSW (VEX.128 encoded version)

IF SRC1[15:0] < SRC2[15:0] THEN

DEST[15:0] Å SRC1[15:0];

ELSE

DEST[15:0] Å SRC2[15:0]; FI;

(* Repeat operation for 2nd through 7th words in source and destination operands *)

IF SRC1[127:112] < SRC2[127:112] THEN

DEST[127:112] Å SRC1[127:112];

ELSE

DEST[127:112] Å SRC2[127:112]; FI;

DEST[VLMAX-1:128] Å 0

VPMINSW (VEX.256 encoded version)

IF SRC1[15:0] < SRC2[15:0] THEN

DEST[15:0] Å SRC1[15:0];

ELSE

DEST[15:0] Å SRC2[15:0]; FI;

(* Repeat operation for 2nd through 15th words in source and destination operands *)

IF SRC1[255:240] < SRC2[255:240] THEN

DEST[255:240] Å SRC1[255:240];

ELSE

DEST[255:240] Å SRC2[255:240]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINSW: __m64 _mm_min_pi16 (__m64 a, __m64 b)

(V)PMINSW: __m128i _mm_min_epi16 ( __m128i a, __m128i b)

VPMINSW: __m256i _mm256_min_epi16 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
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#UD If VEX.L = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
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PMINUB—Minimum of Packed Unsigned Byte Integers

Instruction Operand Encoding

Description

Performs a SIMD compare of the packed unsigned byte integers in the destination operand (first operand) and the 
source operand (second operand), and returns the minimum value for each pair of byte integers to the destination 
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
Legacy SSE version: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand can be an MMX technology register.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMINUB (for 64-bit operands)

IF DEST[7:0] < SRC[17:0] THEN

DEST[7:0] ← DEST[7:0];

ELSE

DEST[7:0] ← SRC[7:0]; FI;

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F DA /r1

PMINUB mm1, mm2/m64

RM V/V SSE Compare unsigned byte integers in mm2/m64 
and mm1 and returns minimum values.

66 0F DA /r

PMINUB xmm1, xmm2/m128

RM V/V SSE2 Compare unsigned byte integers in 
xmm2/m128 and xmm1 and returns minimum 
values.

VEX.NDS.128.66.0F.WIG DA /r

VPMINUB xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed unsigned byte integers in 
xmm2 and xmm3/m128 and store packed 
minimum values in xmm1.

VEX.NDS.256.66.0F.WIG DA /r

VPMINUB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Compare packed unsigned byte integers in 
ymm2 and ymm3/m256 and store packed 
minimum values in ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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(* Repeat operation for 2nd through 7th bytes in source and destination operands *)

IF DEST[63:56] < SRC[63:56] THEN

DEST[63:56] ← DEST[63:56];

ELSE

DEST[63:56] ← SRC[63:56]; FI;

PMINUB (for 128-bit operands)

IF DEST[7:0] < SRC[17:0] THEN

DEST[7:0] ← DEST[7:0];

ELSE

DEST[7:0] ← SRC[7:0]; FI;

(* Repeat operation for 2nd through 15th bytes in source and destination operands *)

IF DEST[127:120] < SRC[127:120] THEN

DEST[127:120] ← DEST[127:120];

ELSE

DEST[127:120] ← SRC[127:120]; FI;

VPMINUB (VEX.128 encoded version)

VPMINUB instruction for 128-bit operands:

IF SRC1[7:0] < SRC2[7:0] THEN

DEST[7:0] Å SRC1[7:0];

ELSE

DEST[7:0] Å SRC2[7:0]; FI;

(* Repeat operation for 2nd through 15th bytes in source and destination operands *)

IF SRC1[127:120] < SRC2[127:120] THEN

DEST[127:120] Å SRC1[127:120];

ELSE

DEST[127:120] Å SRC2[127:120]; FI;

DEST[VLMAX-1:128] Å 0

VPMINUB (VEX.256 encoded version)

VPMINUB instruction for 128-bit operands:

IF SRC1[7:0] < SRC2[7:0] THEN

DEST[7:0] Å SRC1[7:0];

ELSE

DEST[15:0] Å SRC2[7:0]; FI;

(* Repeat operation for 2nd through 31st bytes in source and destination operands *)

IF SRC1[255:248] < SRC2[255:248] THEN

DEST[255:248] Å SRC1[255:248];

ELSE

DEST[255:248] Å SRC2[255:248]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

PMINUB:  __m64 _m_min_pu8 (__m64 a, __m64 b)

(V)PMINUB:  __m128i _mm_min_epu8 ( __m128i a, __m128i b)

VPMINUB: __m256i _mm256_min_epu8 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.



PMINUB—Minimum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, N-Z

4-148 Vol. 2B

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMINUD — Minimum of Packed Dword Integers

Instruction Operand Encoding

Description

Compares packed unsigned dword integers in the destination operand (first operand) and the source operand 
(second operand), and returns the minimum for each packed value in the destination operand.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[31:0] < SRC[31:0]) 

THEN DEST[31:0] Å DEST[31:0];

ELSE DEST[31:0] Å SRC[31:0]; FI;

IF (DEST[63:32] < SRC[63:32]) 

THEN DEST[63:32] Å DEST[63:32];

ELSE DEST[63:32] Å SRC[63:32]; FI;

IF (DEST[95:64] < SRC[95:64]) 

THEN DEST[95:64] Å DEST[95:64];

ELSE DEST[95:64] Å SRC[95:64]; FI;

IF (DEST[127:96] < SRC[127:96]) 

THEN DEST[127:96] Å DEST[127:96];

ELSE DEST[127:96] Å SRC[127:96]; FI;

VPMINUD (VEX.128 encoded version)

VPMINUD instruction for 128-bit operands:

IF SRC1[31:0] < SRC2[31:0] THEN

DEST[31:0] Å SRC1[31:0];

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 3B /r 
PMINUD xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed unsigned dword integers in 

xmm1 and xmm2/m128 and store packed 
minimum values in xmm1.

VEX.NDS.128.66.0F38.WIG 3B /r
VPMINUD xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed unsigned dword integers in 
xmm2 and xmm3/m128 and store packed 
minimum values in xmm1.

VEX.NDS.256.66.0F38.WIG 3B /r
VPMINUD ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Compare packed unsigned dword integers in 
ymm2 and ymm3/m256 and store packed 
minimum values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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ELSE

DEST[31:0] Å SRC2[31:0]; FI;

(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)

IF SRC1[127:95] < SRC2[127:95] THEN

DEST[127:95] Å SRC1[127:95];

ELSE

DEST[127:95] Å SRC2[127:95]; FI;

DEST[VLMAX-1:128] Å 0

VPMINUD (VEX.256 encoded version)

VPMINUD instruction for 128-bit operands:

IF SRC1[31:0] < SRC2[31:0] THEN

DEST[31:0] Å SRC1[31:0];

ELSE

DEST[31:0] Å SRC2[31:0]; FI;

(* Repeat operation for 2nd through 7th dwords in source and destination operands *)

IF SRC1[255:224] < SRC2[255:224] THEN

DEST[255:224] Å SRC1[255:224];

ELSE

DEST[255:224] Å SRC2[255:224]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

(V)PMINUD: __m128i _mm_min_epu32 ( __m128i a, __m128i b);

VPMINUD: __m256i _mm256_min_epu32 ( __m256i a, __m256i b);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMINUW — Minimum of Packed Word Integers

Instruction Operand Encoding

Description

Compares packed unsigned word integers in the destination operand (first operand) and the source operand 
(second operand), and returns the minimum for each packed value in the destination operand.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

IF (DEST[15:0] < SRC[15:0]) 

THEN DEST[15:0] Å DEST[15:0];

ELSE DEST[15:0] Å SRC[15:0]; FI;

IF (DEST[31:16] < SRC[31:16]) 

THEN DEST[31:16] Å DEST[31:16];

ELSE DEST[31:16] Å SRC[31:16]; FI;

IF (DEST[47:32] < SRC[47:32]) 

THEN DEST[47:32] Å DEST[47:32];

ELSE DEST[47:32] Å SRC[47:32]; FI;

IF (DEST[63:48] < SRC[63:48]) 

THEN DEST[63:48] Å DEST[63:48];

ELSE DEST[63:48] Å SRC[63:48]; FI;

IF (DEST[79:64] < SRC[79:64]) 

THEN DEST[79:64] Å DEST[79:64];

ELSE DEST[79:64] Å SRC[79:64]; FI;

IF (DEST[95:80] < SRC[95:80]) 

THEN DEST[95:80] Å DEST[95:80];

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 3A /r
PMINUW xmm1, xmm2/m128

RM V/V SSE4_1 Compare packed unsigned word integers in 

xmm1 and xmm2/m128 and store packed 
minimum values in xmm1.

VEX.NDS.128.66.0F38.WIG 3A/r
VPMINUW xmm1, xmm2, xmm3/m128

RVM V/V AVX Compare packed unsigned word integers in 
xmm3/m128 and xmm2 and return packed 
minimum values in xmm1.

VEX.NDS.256.66.0F38.WIG 3A /r
VPMINUW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Compare packed unsigned word integers in 
ymm3/m256 and ymm2 and return packed 
minimum values in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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ELSE DEST[95:80] Å SRC[95:80]; FI;

IF (DEST[111:96] < SRC[111:96]) 

THEN DEST[111:96] Å DEST[111:96];

ELSE DEST[111:96] Å SRC[111:96]; FI;

IF (DEST[127:112] < SRC[127:112]) 

THEN DEST[127:112] Å DEST[127:112];

ELSE DEST[127:112] Å SRC[127:112]; FI;

VPMINUW (VEX.128 encoded version)

VPMINUW instruction for 128-bit operands:

IF SRC1[15:0] < SRC2[15:0] THEN

DEST[15:0] Å SRC1[15:0];

ELSE

DEST[15:0] Å SRC2[15:0]; FI;

(* Repeat operation for 2nd through 7th words in source and destination operands *)

IF SRC1[127:112] < SRC2[127:112] THEN

DEST[127:112] Å SRC1[127:112];

ELSE

DEST[127:112] Å SRC2[127:112]; FI;

DEST[VLMAX-1:128] Å 0

VPMINUW (VEX.256 encoded version)

VPMINUW instruction for 128-bit operands:

IF SRC1[15:0] < SRC2[15:0] THEN

DEST[15:0] Å SRC1[15:0];

ELSE

DEST[15:0] Å SRC2[15:0]; FI;

(* Repeat operation for 2nd through 15th words in source and destination operands *)

IF SRC1[255:240] < SRC2[255:240] THEN

DEST[255:240] Å SRC1[255:240];

ELSE

DEST[255:240] Å SRC2[255:240]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

(V)PMINUW: __m128i _mm_min_epu16 ( __m128i a, __m128i b);

VPMINUW: __m256i _mm256_min_epu16 ( __m256i a, __m256i b);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMOVMSKB—Move Byte Mask

Instruction Operand Encoding

Description

Creates a mask made up of the most significant bit of each byte of the source operand (second operand) and stores 
the result in the low byte or word of the destination operand (first operand).
The byte mask is 8 bits for 64-bit source operand, 16 bits for 128-bit source operand and 32 bits for 256-bit source 
operand. The destination operand is a general-purpose register. 

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15, R8-R15) when used with a REX.R 
prefix. The default operand size is 64-bit in 64-bit mode.
Legacy SSE version: The source operand is an MMX technology register.
128-bit Legacy SSE version: The source operand is an XMM register.

VEX.128 encoded version: The source operand is an XMM register.
VEX.256 encoded version: The source operand is a YMM register.
Note: VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the instruction will #UD. 

Operation

PMOVMSKB (with 64-bit source operand and r32)

r32[0] ← SRC[7];

r32[1] ← SRC[15];

(* Repeat operation for bytes 2 through 6 *)

r32[7] ← SRC[63]; 

r32[31:8] ← ZERO_FILL;

(V)PMOVMSKB (with 128-bit source operand and r32)

r32[0] ← SRC[7];

r32[1] ← SRC[15];

(* Repeat operation for bytes 2 through 14 *)

r32[15] ← SRC[127]; 

r32[31:16] ← ZERO_FILL;

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F D7 /r1

PMOVMSKB reg, mm

RM V/V SSE Move a byte mask of mm to reg. The upper 
bits of r32 or r64 are zeroed

66 0F D7 /r

PMOVMSKB reg, xmm

RM V/V SSE2 Move a byte mask of xmm to reg. The upper 
bits of r32 or r64 are zeroed

VEX.128.66.0F.WIG D7 /r

VPMOVMSKB reg, xmm1

RM V/V AVX Move a byte mask of xmm1 to reg. The upper 
bits of r32 or r64 are filled with zeros.

VEX.256.66.0F.WIG D7 /r

VPMOVMSKB reg, ymm1

RM V/V AVX2 Move a 32-bit mask of ymm1 to reg. The 
upper bits of r64 are filled with zeros.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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VPMOVMSKB (with 256-bit source operand and r32)

r32[0] Å SRC[7];

r32[1] Å SRC[15];

(* Repeat operation for bytes 3rd through 31*)

r32[31] Å SRC[255];

PMOVMSKB (with 64-bit source operand and r64)

r64[0] ← SRC[7];

r64[1] ← SRC[15];

(* Repeat operation for bytes 2 through 6 *)

r64[7] ← SRC[63]; 

r64[63:8] ← ZERO_FILL;

(V)PMOVMSKB (with 128-bit source operand and r64)

r64[0] ← SRC[7];

r64[1] ← SRC[15];

(* Repeat operation for bytes 2 through 14 *)

r64[15] ← SRC[127]; 

r64[63:16] ← ZERO_FILL;

VPMOVMSKB (with 256-bit source operand and r64)

r64[0] Å SRC[7];

r64[1] Å SRC[15];

(* Repeat operation for bytes 2 through 31*)

r64[31] Å SRC[255];

r64[63:32] Å ZERO_FILL;

Intel C/C++ Compiler Intrinsic Equivalent

PMOVMSKB: int _mm_movemask_pi8(__m64 a)

(V)PMOVMSKB: int _mm_movemask_epi8 ( __m128i a)

VPMOVMSKB: int _mm256_movemask_epi8 ( __m256i a)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 7; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PMOVSX — Packed Move with Sign Extend
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0f 38 20 /r
PMOVSXBW xmm1, xmm2/m64

RM V/V SSE4_1 Sign extend 8 packed signed 8-bit integers in 
the low 8 bytes of xmm2/m64 to 8 packed 
signed 16-bit integers in xmm1.

66 0f 38 21 /r
PMOVSXBD xmm1, xmm2/m32

RM V/V SSE4_1 Sign extend 4 packed signed 8-bit integers in 
the low 4 bytes of xmm2/m32 to 4 packed 
signed 32-bit integers in xmm1.

66 0f 38 22 /r

PMOVSXBQ xmm1, xmm2/m16

RM V/V SSE4_1 Sign extend 2 packed signed 8-bit integers in 
the low 2 bytes of xmm2/m16 to 2 packed 
signed 64-bit integers in xmm1.

66 0f 38 23 /r
PMOVSXWD xmm1, xmm2/m64

RM V/V SSE4_1 Sign extend 4 packed signed 16-bit integers in 
the low 8 bytes of xmm2/m64 to 4 packed 
signed 32-bit integers in xmm1.

66 0f 38 24 /r
PMOVSXWQ xmm1, xmm2/m32

RM V/V SSE4_1 Sign extend 2 packed signed 16-bit integers in 
the low 4 bytes of xmm2/m32 to 2 packed 
signed 64-bit integers in xmm1.

66 0f 38 25 /r
PMOVSXDQ xmm1, xmm2/m64

RM V/V SSE4_1 Sign extend 2 packed signed 32-bit integers in 
the low 8 bytes of xmm2/m64 to 2 packed 
signed 64-bit integers in xmm1.

VEX.128.66.0F38.WIG 20 /r
VPMOVSXBW xmm1, xmm2/m64

RM V/V AVX Sign extend 8 packed 8-bit integers in the low 
8 bytes of xmm2/m64 to 8 packed 16-bit 
integers in xmm1.

VEX.128.66.0F38.WIG 21 /r
VPMOVSXBD xmm1, xmm2/m32

RM V/V AVX Sign extend 4 packed 8-bit integers in the low 
4 bytes of xmm2/m32 to 4 packed 32-bit 
integers in xmm1.

VEX.128.66.0F38.WIG 22 /r
VPMOVSXBQ xmm1, xmm2/m16

RM V/V AVX Sign extend 2 packed 8-bit integers in the low 
2 bytes of xmm2/m16 to 2 packed 64-bit 
integers in xmm1.

VEX.128.66.0F38.WIG 23 /r
VPMOVSXWD xmm1, xmm2/m64

RM V/V AVX Sign extend 4 packed 16-bit integers in the 
low 8 bytes of xmm2/m64 to 4 packed 32-bit 
integers in xmm1.

VEX.128.66.0F38.WIG 24 /r
VPMOVSXWQ xmm1, xmm2/m32

RM V/V AVX Sign extend 2 packed 16-bit integers in the 
low 4 bytes of xmm2/m32 to 2 packed 64-bit 
integers in xmm1.

VEX.128.66.0F38.WIG 25 /r
VPMOVSXDQ xmm1, xmm2/m64

RM V/V AVX Sign extend 2 packed 32-bit integers in the 
low 8 bytes of xmm2/m64 to 2 packed 64-bit 
integers in xmm1.

VEX.256.66.0F38.WIG 20 /r
VPMOVSXBW ymm1, xmm2/m128

RM V/V AVX2 Sign extend 16 packed 8-bit integers in 
xmm2/m128 to 16 packed 16-bit integers in 
ymm1.

VEX.256.66.0F38.WIG 21 /r
VPMOVSXBD ymm1, xmm2/m64

RM V/V AVX2 Sign extend 8 packed 8-bit integers in the low 
8 bytes of xmm2/m64 to 8 packed 32-bit 
integers in ymm1.

VEX.256.66.0F38.WIG 22 /r
VPMOVSXBQ ymm1, xmm2/m32

RM V/V AVX2 Sign extend 4 packed 8-bit integers in the low 
4 bytes of xmm2/m32 to 4 packed 64-bit 
integers in ymm1.

VEX.256.66.0F38.WIG 23 /r
VPMOVSXWD ymm1, xmm2/m128

RM V/V AVX2 Sign extend 8 packed 16-bit integers in the 
low 16 bytes of xmm2/m128 to 8 packed 32-
bit integers in ymm1.
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Instruction Operand Encoding

Description

Sign-extend the low byte/word/dword values in each word/dword/qword element of the source operand (second 
operand) to word/dword/qword integers and stored as packed data in the destination operand (first operand). 
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. 
VEX.256 encoded version: The destination register is YMM Register.
Note: VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMOVSXBW

DEST[15:0] Å SignExtend(SRC[7:0]);

DEST[31:16] Å SignExtend(SRC[15:8]);

DEST[47:32] Å SignExtend(SRC[23:16]);

DEST[63:48] Å SignExtend(SRC[31:24]);

DEST[79:64] Å SignExtend(SRC[39:32]);

DEST[95:80] Å SignExtend(SRC[47:40]);

DEST[111:96] Å SignExtend(SRC[55:48]);

DEST[127:112] Å SignExtend(SRC[63:56]);

PMOVSXBD

DEST[31:0] Å SignExtend(SRC[7:0]);

DEST[63:32] Å SignExtend(SRC[15:8]);

DEST[95:64] Å SignExtend(SRC[23:16]);

DEST[127:96] Å SignExtend(SRC[31:24]);

PMOVSXBQ

DEST[63:0] Å SignExtend(SRC[7:0]);

DEST[127:64] Å SignExtend(SRC[15:8]);

PMOVSXWD

DEST[31:0] Å SignExtend(SRC[15:0]);

DEST[63:32] Å SignExtend(SRC[31:16]);

DEST[95:64] Å SignExtend(SRC[47:32]);

DEST[127:96] Å SignExtend(SRC[63:48]);

VEX.256.66.0F38.WIG 24 /r
VPMOVSXWQ ymm1, xmm2/m64

RM V/V AVX2 Sign extend 4 packed 16-bit integers in the 
low 8 bytes of xmm2/m64 to 4 packed 64-bit 
integers in ymm1.

VEX.256.66.0F38.WIG 25 /r
VPMOVSXDQ ymm1, xmm2/m128

RM V/V AVX2 Sign extend 4 packed 32-bit integers in the 
low 16 bytes of xmm2/m128 to 4 packed 64-
bit integers in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description
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PMOVSXWQ

DEST[63:0] Å SignExtend(SRC[15:0]);

DEST[127:64] Å SignExtend(SRC[31:16]);

PMOVSXDQ

DEST[63:0] Å SignExtend(SRC[31:0]);

DEST[127:64] Å SignExtend(SRC[63:32]);

VPMOVSXBW (VEX.128 encoded version)

Packed_Sign_Extend_BYTE_to_WORD()

DEST[VLMAX-1:128] Å 0

VPMOVSXBD (VEX.128 encoded version)

Packed_Sign_Extend_BYTE_to_DWORD()

DEST[VLMAX-1:128] Å 0

VPMOVSXBQ (VEX.128 encoded version)

Packed_Sign_Extend_BYTE_to_QWORD()

DEST[VLMAX-1:128] Å 0

VPMOVSXWD (VEX.128 encoded version)

Packed_Sign_Extend_WORD_to_DWORD()

DEST[VLMAX-1:128] Å 0

VPMOVSXWQ (VEX.128 encoded version)

Packed_Sign_Extend_WORD_to_QWORD()

DEST[VLMAX-1:128] Å 0

VPMOVSXDQ (VEX.128 encoded version)

Packed_Sign_Extend_DWORD_to_QWORD()

DEST[VLMAX-1:128] Å 0

VPMOVSXBW (VEX.256 encoded version)

Packed_Sign_Extend_BYTE_to_WORD(DEST[127:0], SRC[63:0])

Packed_Sign_Extend_BYTE_to_WORD(DEST[255:128], SRC[127:64])

VPMOVSXBD (VEX.256 encoded version)

Packed_Sign_Extend_BYTE_to_DWORD(DEST[127:0], SRC[31:0])

Packed_Sign_Extend_BYTE_to_DWORD(DEST[255:128], SRC[63:32])

VPMOVSXBQ (VEX.256 encoded version)

Packed_Sign_Extend_BYTE_to_QWORD(DEST[127:0], SRC[15:0])

Packed_Sign_Extend_BYTE_to_QWORD(DEST[255:128], SRC[31:16])

VPMOVSXWD (VEX.256 encoded version)

Packed_Sign_Extend_WORD_to_DWORD(DEST[127:0], SRC[63:0])

Packed_Sign_Extend_WORD_to_DWORD(DEST[255:128], SRC[127:64])

VPMOVSXWQ (VEX.256 encoded version)

Packed_Sign_Extend_WORD_to_QWORD(DEST[127:0], SRC[31:0])

Packed_Sign_Extend_WORD_to_QWORD(DEST[255:128], SRC[63:32])
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VPMOVSXDQ (VEX.256 encoded version)

Packed_Sign_Extend_DWORD_to_QWORD(DEST[127:0], SRC[63:0])

Packed_Sign_Extend_DWORD_to_QWORD(DEST[255:128], SRC[127:64])

Intel C/C++ Compiler Intrinsic Equivalent

(V)PMOVSXBW: __m128i _mm_ cvtepi8_epi16 ( __m128i a);

VPMOVSXBW: __m256i _mm256_cvtepi8_epi16 ( __m128i a);

(V)PMOVSXBD: __m128i _mm_ cvtepi8_epi32 ( __m128i a);

VPMOVSXBD: __m256i _mm256_cvtepi8_epi32 ( __m128i a);

(V)PMOVSXBQ: __m128i _mm_ cvtepi8_epi64 ( __m128i a);

VPMOVSXBQ: __m256i _mm256_cvtepi8_epi64 ( __m128i a);

(V)PMOVSXWD: __m128i _mm_ cvtepi16_epi32 ( __m128i a);

VPMOVSXWD: __m256i _mm256_cvtepi16_epi32 ( __m128i a);

(V)PMOVSXWQ: __m128i _mm_ cvtepi16_epi64 ( __m128i a);

VPMOVSXWQ: __m256i _mm256_cvtepi16_epi64 ( __m128i a);

(V)PMOVSXDQ: __m128i _mm_ cvtepi32_epi64 ( __m128i a);

VPMOVSXDQ: __m256i _mm256_cvtepi32_epi64 ( __m128i a);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PMOVZX — Packed Move with Zero Extend
Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0f 38 30 /r
PMOVZXBW xmm1, xmm2/m64

RM V/V SSE4_1 Zero extend 8 packed 8-bit integers in the low 
8 bytes of xmm2/m64 to 8 packed 16-bit 
integers in xmm1.

66 0f 38 31 /r
PMOVZXBD xmm1, xmm2/m32

RM V/V SSE4_1 Zero extend 4 packed 8-bit integers in the low 
4 bytes of xmm2/m32 to 4 packed 32-bit 
integers in xmm1.

66 0f 38 32 /r
PMOVZXBQ xmm1, xmm2/m16

RM V/V SSE4_1 Zero extend 2 packed 8-bit integers in the low 
2 bytes of xmm2/m16 to 2 packed 64-bit 
integers in xmm1.

66 0f 38 33 /r
PMOVZXWD xmm1, xmm2/m64

RM V/V SSE4_1 Zero extend 4 packed 16-bit integers in the 
low 8 bytes of xmm2/m64 to 4 packed 32-bit 
integers in xmm1.

66 0f 38 34 /r
PMOVZXWQ xmm1, xmm2/m32

RM V/V SSE4_1 Zero extend 2 packed 16-bit integers in the 
low 4 bytes of xmm2/m32 to 2 packed 64-bit 
integers in xmm1.

66 0f 38 35 /r
PMOVZXDQ xmm1, xmm2/m64

RM V/V SSE4_1 Zero extend 2 packed 32-bit integers in the 
low 8 bytes of xmm2/m64 to 2 packed 64-bit 
integers in xmm1.

VEX.128.66.0F38.WIG 30 /r
VPMOVZXBW xmm1, xmm2/m64

RM V/V AVX Zero extend 8 packed 8-bit integers in the low 
8 bytes of xmm2/m64 to 8 packed 16-bit 
integers in xmm1.

VEX.128.66.0F38.WIG 31 /r
VPMOVZXBD xmm1, xmm2/m32

RM V/V AVX Zero extend 4 packed 8-bit integers in the low 
4 bytes of xmm2/m32 to 4 packed 32-bit 
integers in xmm1.

VEX.128.66.0F38.WIG 32 /r
VPMOVZXBQ xmm1, xmm2/m16

RM V/V AVX Zero extend 2 packed 8-bit integers in the low 
2 bytes of xmm2/m16 to 2 packed 64-bit 
integers in xmm1.

VEX.128.66.0F38.WIG 33 /r
VPMOVZXWD xmm1, xmm2/m64

RM V/V AVX Zero extend 4 packed 16-bit integers in the 
low 8 bytes of xmm2/m64 to 4 packed 32-bit 
integers in xmm1.

VEX.128.66.0F38.WIG 34 /r
VPMOVZXWQ xmm1, xmm2/m32

RM V/V AVX Zero extend 2 packed 16-bit integers in the 
low 4 bytes of xmm2/m32 to 2 packed 64-bit 
integers in xmm1.

VEX.128.66.0F38.WIG 35 /r
VPMOVZXDQ xmm1, xmm2/m64

RM V/V AVX Zero extend 2 packed 32-bit integers in the 
low 8 bytes of xmm2/m64 to 2 packed 64-bit 
integers in xmm1.

VEX.256.66.0F38.WIG 30 /r
VPMOVZXBW ymm1, xmm2/m128

RM V/V AVX2 Zero extend 16 packed 8-bit integers in the 
low 16 bytes of xmm2/m128 to 16 packed 
16-bit integers in ymm1.

VEX.256.66.0F38.WIG 31 /r
VPMOVZXBD ymm1, xmm2/m64

RM V/V AVX2 Zero extend 8 packed 8-bit integers in the low 
8 bytes of xmm2/m64 to 8 packed 32-bit 
integers in ymm1.

VEX.256.66.0F38.WIG 32 /r
VPMOVZXBQ ymm1, xmm2/m32

RM V/V AVX2 Zero extend 4 packed 8-bit integers in the low 
4 bytes of xmm2/m32 to 4 packed 64-bit 
integers in ymm1.

VEX.256.66.0F38.WIG 33 /r
VPMOVZXWD ymm1, xmm2/m128

RM V/V AVX2 Zero extend 8 packed 16-bit integers in the 
low 16 bytes of xmm2/m128 to 8 packed 32-
bit integers in ymm1.
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Instruction Operand Encoding

Description

Zero-extend the low byte/word/dword values in each word/dword/qword element of the source operand (second 
operand) to word/dword/qword integers and stored as packed data in the destination operand (first operand). 
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. 
VEX.256 encoded version: The destination register is YMM Register.

Note: VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMOVZXBW

DEST[15:0] Å ZeroExtend(SRC[7:0]);

DEST[31:16] Å ZeroExtend(SRC[15:8]);

DEST[47:32] Å ZeroExtend(SRC[23:16]);

DEST[63:48] Å ZeroExtend(SRC[31:24]);

DEST[79:64] Å ZeroExtend(SRC[39:32]);

DEST[95:80] Å ZeroExtend(SRC[47:40]);

DEST[111:96] Å ZeroExtend(SRC[55:48]);

DEST[127:112] Å ZeroExtend(SRC[63:56]);

PMOVZXBD

DEST[31:0] Å ZeroExtend(SRC[7:0]);

DEST[63:32] Å ZeroExtend(SRC[15:8]);

DEST[95:64] Å ZeroExtend(SRC[23:16]);

DEST[127:96] Å ZeroExtend(SRC[31:24]);

PMOVZXQB

DEST[63:0] Å ZeroExtend(SRC[7:0]);

DEST[127:64] Å ZeroExtend(SRC[15:8]);

PMOVZXWD

DEST[31:0] Å ZeroExtend(SRC[15:0]);

DEST[63:32] Å ZeroExtend(SRC[31:16]);

DEST[95:64] Å ZeroExtend(SRC[47:32]);

DEST[127:96] Å ZeroExtend(SRC[63:48]);

VEX.256.66.0F38.WIG 34 /r
VPMOVZXWQ ymm1, xmm2/m64

RM V/V AVX2 Zero extend 4 packed 16-bit integers in the 
low 8 bytes of xmm2/m64 to 4 packed 64-bit 
integers in xmm1.

VEX.256.66.0F38.WIG 35 /r
VPMOVZXDQ ymm1, xmm2/m128

RM V/V AVX2 Zero extend 4 packed 32-bit integers in the 
low 16 bytes of xmm2/m128 to 4 packed 64-
bit integers in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description
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PMOVZXWQ

DEST[63:0] Å ZeroExtend(SRC[15:0]);

DEST[127:64] Å ZeroExtend(SRC[31:16]);

PMOVZXDQ

DEST[63:0] Å ZeroExtend(SRC[31:0]);

DEST[127:64] Å ZeroExtend(SRC[63:32]);

VPMOVZXBW (VEX.128 encoded version)

Packed_Zero_Extend_BYTE_to_WORD()

DEST[VLMAX-1:128] Å 0

VPMOVZXBD (VEX.128 encoded version)

Packed_Zero_Extend_BYTE_to_DWORD()

DEST[VLMAX-1:128] Å 0

VPMOVZXBQ (VEX.128 encoded version)

Packed_Zero_Extend_BYTE_to_QWORD()

DEST[VLMAX-1:128] Å 0

VPMOVZXWD (VEX.128 encoded version)

Packed_Zero_Extend_WORD_to_DWORD()

DEST[VLMAX-1:128] Å 0

VPMOVZXWQ (VEX.128 encoded version)

Packed_Zero_Extend_WORD_to_QWORD()

DEST[VLMAX-1:128] Å 0

VPMOVZXDQ (VEX.128 encoded version)

Packed_Zero_Extend_DWORD_to_QWORD()

DEST[VLMAX-1:128] Å 0

VPMOVZXBW (VEX.256 encoded version)

Packed_Zero_Extend_BYTE_to_WORD(DEST[127:0], SRC[63:0])

Packed_Zero_Extend_BYTE_to_WORD(DEST[255:128], SRC[127:64])

VPMOVZXBD (VEX.256 encoded version)

Packed_Zero_Extend_BYTE_to_DWORD(DEST[127:0], SRC[31:0])

Packed_Zero_Extend_BYTE_to_DWORD(DEST[255:128], SRC[63:32])

VPMOVZXBQ (VEX.256 encoded version)

Packed_Zero_Extend_BYTE_to_QWORD(DEST[127:0], SRC[15:0])

Packed_Zero_Extend_BYTE_to_QWORD(DEST[255:128], SRC[31:16])

VPMOVZXWD (VEX.256 encoded version)

Packed_Zero_Extend_WORD_to_DWORD(DEST[127:0], SRC[63:0])

Packed_Zero_Extend_WORD_to_DWORD(DEST[255:128], SRC[127:64])

VPMOVZXWQ (VEX.256 encoded version)

Packed_Zero_Extend_WORD_to_QWORD(DEST[127:0], SRC[31:0])

Packed_Zero_Extend_WORD_to_QWORD(DEST[255:128], SRC[63:32])
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VPMOVZXDQ (VEX.256 encoded version)

Packed_Zero_Extend_DWORD_to_QWORD(DEST[127:0], SRC[63:0])

Packed_Zero_Extend_DWORD_to_QWORD(DEST[255:128], SRC[127:64])

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

(V)PMOVZXBW: __m128i _mm_ cvtepu8_epi16 ( __m128i a);

VPMOVZXBW: __m256i _mm256_cvtepu8_epi16 ( __m128i a);

(V)PMOVZXBD: __m128i _mm_ cvtepu8_epi32 ( __m128i a);

VPMOVZXBD: __m256i _mm256_cvtepu8_epi32 ( __m128i a);

(V)PMOVZXBQ: __m128i _mm_ cvtepu8_epi64 ( __m128i a);

VPMOVZXBQ: __m256i _mm256_cvtepu8_epi64 ( __m128i a);

(V)PMOVZXWD: __m128i _mm_ cvtepu16_epi32 ( __m128i a);

VPMOVZXWD: __m256i _mm256_cvtepu16_epi32 ( __m128i a);

(V)PMOVZXWQ: __m128i _mm_ cvtepu16_epi64 ( __m128i a);

VPMOVZXWQ: __m256i _mm256_cvtepu16_epi64 ( __m128i a);

(V)PMOVZXDQ: __m128i _mm_ cvtepu32_epi64 ( __m128i a);

VPMOVZXDQ:  __m256i _mm256_cvtepu32_epi64 ( __m128i a);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PMULDQ — Multiply Packed Signed Dword Integers

Instruction Operand Encoding

Description

Multiplies the first source operand by the second source operand and stores the result in the destination operand. 
For PMULDQ and VPMULDQ (VEX.128 encoded version), the second source operand is two packed signed double-
word integers stored in the first (low) and third doublewords of an XMM register or a 128-bit memory location. The 
first source operand is two packed signed doubleword integers stored in the first and third doublewords of an XMM 
register. The destination contains two packed signed quadword integers stored in an XMM register. For 128-bit 
memory operands, 128 bits are fetched from memory, but only the first and third doublewords are used in the 
computation.
For VPMULDQ (VEX.256 encoded version), the second source operand is four packed signed doubleword integers 
stored in the first (low), third, fifth and seventh doublewords of an YMM register or a 256-bit memory location. The 
first source operand is four packed signed doubleword integers stored in the first, third, fifth and seventh double-
words of an XMM register. The destination contains four packed signed quadword integers stored in an YMM 
register. For 256-bit memory operands, 256 bits are fetched from memory, but only the first, third, fifth and 
seventh doublewords are used in the computation.
When a quadword result is too large to be represented in 64 bits (overflow), the result is wrapped around and the 
low 64 bits are written to the destination element (that is, the carry is ignored).
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.

Operation

PMULDQ (128-bit Legacy SSE version)

DEST[63:0] Å DEST[31:0] * SRC[31:0]

DEST[127:64] Å DEST[95:64] * SRC[95:64]

DEST[VLMAX-1:128] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 28 /r
PMULDQ xmm1, xmm2/m128

RM V/V SSE4_1 Multiply the packed signed dword integers in 
xmm1 and xmm2/m128 and store the 
quadword product in xmm1.

VEX.NDS.128.66.0F38.WIG 28 /r
VPMULDQ xmm1, xmm2, xmm3/m128

RVM V/V AVX Multiply packed signed doubleword integers in 
xmm2 by packed signed doubleword integers 
in xmm3/m128, and store the quadword 
results in xmm1.

VEX.NDS.256.66.0F38.WIG 28 /r
VPMULDQ ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Multiply packed signed doubleword integers in 
ymm2 by packed signed doubleword integers 
in ymm3/m256, and store the quadword 
results in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VPMULDQ (VEX.128 encoded version)

DEST[63:0] Å SRC1[31:0] * SRC2[31:0]

DEST[127:64] Å SRC1[95:64] * SRC2[95:64]

DEST[VLMAX-1:128] Å 0

VPMULDQ (VEX.256 encoded version)

DEST[63:0] Å SRC1[31:0] * SRC2[31:0]

DEST[127:64] Å SRC1[95:64] * SRC2[95:64]

DEST[191:128] Å SRC1[159:128] * SRC2[159:128]

DEST[255:192] Å SRC1[223:192] * SRC2[223:192]

Intel C/C++ Compiler Intrinsic Equivalent

(V)PMULDQ:  __m128i _mm_mul_epi32( __m128i a, __m128i b);

VPMULDQ: __m256i _mm256_mul_epi32( __m256i a, __m256i b);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 5; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PMULHRSW — Packed Multiply High with Round and Scale 

Instruction Operand Encoding

Description 

PMULHRSW multiplies vertically each signed 16-bit integer from the destination operand (first operand) with the 
corresponding signed 16-bit integer of the source operand (second operand), producing intermediate, signed 32-
bit integers. Each intermediate 32-bit integer is truncated to the 18 most significant bits. Rounding is always 
performed by adding 1 to the least significant bit of the 18-bit intermediate result. The final result is obtained by 
selecting the 16 bits immediately to the right of the most significant bit of each 18-bit intermediate result and 
packed to the destination operand. 

When the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a 
general-protection exception (#GP) will be generated. 

In 64-bit mode, use the REX prefix to access additional registers. 
Legacy SSE version: Both operands can be MMX registers. The second source operand is an MMX register or a 64-
bit memory location.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 0B /r1 

PMULHRSW mm1, mm2/m64

RM V/V SSSE3 Multiply 16-bit signed words, scale and round 
signed doublewords, pack high 16 bits to 
mm1.

66 0F 38 0B /r

PMULHRSW xmm1, xmm2/m128 

RM V/V SSSE3 Multiply 16-bit signed words, scale and round 
signed doublewords, pack high 16 bits to 
xmm1.

VEX.NDS.128.66.0F38.WIG 0B /r

VPMULHRSW xmm1, xmm2, xmm3/m128

RVM V/V AVX Multiply 16-bit signed words, scale and round 
signed doublewords, pack high 16 bits to 
xmm1.

VEX.NDS.256.66.0F38.WIG 0B /r

VPMULHRSW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Multiply 16-bit signed words, scale and round 
signed doublewords, pack high 16 bits to 
ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

PMULHRSW (with 64-bit operands)

temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;

temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;

temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >> 14) + 1;

temp3[31:0] = INT32 ((DEST[63:48] * SRc[63:48]) >> 14) + 1;

DEST[15:0] = temp0[16:1];

DEST[31:16] = temp1[16:1];

DEST[47:32] = temp2[16:1];

DEST[63:48] = temp3[16:1];

PMULHRSW (with 128-bit operand)

temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;

temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;

temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >>14) + 1;

temp3[31:0] = INT32 ((DEST[63:48] * SRC[63:48]) >>14) + 1;

temp4[31:0] = INT32 ((DEST[79:64] * SRC[79:64]) >>14) + 1;

temp5[31:0] = INT32 ((DEST[95:80] * SRC[95:80]) >>14) + 1;

temp6[31:0] = INT32 ((DEST[111:96] * SRC[111:96]) >>14) + 1;

temp7[31:0] = INT32 ((DEST[127:112] * SRC[127:112) >>14) + 1;

DEST[15:0] = temp0[16:1];

DEST[31:16] = temp1[16:1];

DEST[47:32] = temp2[16:1];

DEST[63:48] = temp3[16:1];

DEST[79:64] = temp4[16:1];

DEST[95:80] = temp5[16:1];

DEST[111:96] = temp6[16:1];

DEST[127:112] = temp7[16:1];

VPMULHRSW (VEX.128 encoded version)

temp0[31:0] Å INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1

temp1[31:0] Å INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1

temp2[31:0] Å INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1

temp3[31:0] Å INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1

temp4[31:0] Å INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1

temp5[31:0] Å INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1

temp6[31:0] Å INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1

temp7[31:0] Å INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1

DEST[15:0] Å temp0[16:1]

DEST[31:16] Å temp1[16:1]

DEST[47:32] Å temp2[16:1]

DEST[63:48] Å temp3[16:1]

DEST[79:64] Å temp4[16:1]

DEST[95:80] Å temp5[16:1]

DEST[111:96] Å temp6[16:1]

DEST[127:112] Å temp7[16:1]

DEST[VLMAX-1:128] Å 0

VPMULHRSW (VEX.256 encoded version)

temp0[31:0] Å INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1

temp1[31:0] Å INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1

temp2[31:0] Å INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1

temp3[31:0] Å INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1

temp4[31:0] Å INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1



PMULHRSW — Packed Multiply High with Round and Scale

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-167

temp5[31:0] Å INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1

temp6[31:0] Å INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1

temp7[31:0] Å INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1

temp8[31:0] Å INT32 ((SRC1[143:128] * SRC2[143:128]) >>14) + 1

temp9[31:0] Å INT32 ((SRC1[159:144] * SRC2[159:144]) >>14) + 1

temp10[31:0] Å INT32 ((SRC1[75:160] * SRC2[175:160]) >>14) + 1

temp11[31:0] Å INT32 ((SRC1[191:176] * SRC2[191:176]) >>14) + 1

temp12[31:0] Å INT32 ((SRC1[207:192] * SRC2[207:192]) >>14) + 1

temp13[31:0] Å INT32 ((SRC1[223:208] * SRC2[223:208]) >>14) + 1

temp14[31:0] Å INT32 ((SRC1[239:224] * SRC2[239:224]) >>14) + 1

temp15[31:0] Å INT32 ((SRC1[255:240] * SRC2[255:240) >>14) + 1

Intel C/C++ Compiler Intrinsic Equivalents

PMULHRSW:  __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)

(V)PMULHRSW:  __m128i _mm_mulhrs_epi16 (__m128i a, __m128i b)

VPMULHRSW: __m256i _mm256_mulhrs_epi16 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMULHUW—Multiply Packed Unsigned Integers and Store High Result

Instruction Operand Encoding

Description

Performs a SIMD unsigned multiply of the packed unsigned word integers in the destination operand (first operand) 
and the source operand (second operand), and stores the high 16 bits of each 32-bit intermediate results in the 
destination operand. (Figure 4-8 shows this operation when using 64-bit operands.)

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
Legacy SSE version: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand is an MMX technology register.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F E4 /r1

PMULHUW mm1, mm2/m64

RM V/V SSE Multiply the packed unsigned word integers in 
mm1 register and mm2/m64, and store the 
high 16 bits of the results in mm1. 

66 0F E4 /r

PMULHUW xmm1, xmm2/m128

RM V/V SSE2 Multiply the packed unsigned word integers in 
xmm1 and xmm2/m128, and store the high 
16 bits of the results in xmm1.

VEX.NDS.128.66.0F.WIG E4 /r

VPMULHUW xmm1, xmm2, xmm3/m128

RVM V/V AVX Multiply the packed unsigned word integers in 
xmm2 and xmm3/m128, and store the high 
16 bits of the results in xmm1.

VEX.NDS.256.66.0F.WIG E4 /r

VPMULHUW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Multiply the packed unsigned word integers in 
ymm2 and ymm3/m256, and store the high 
16 bits of the results in ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

PMULHUW (with 64-bit operands)

TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Unsigned multiplication *)

TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];

TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];

TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];

DEST[15:0] ← TEMP0[31:16];

DEST[31:16] ← TEMP1[31:16];

DEST[47:32] ← TEMP2[31:16];

DEST[63:48] ← TEMP3[31:16];

PMULHUW (with 128-bit operands)

TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Unsigned multiplication *)

TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];

TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];

TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];

TEMP4[31:0] ← DEST[79:64] ∗ SRC[79:64];

TEMP5[31:0] ← DEST[95:80] ∗ SRC[95:80];

TEMP6[31:0] ← DEST[111:96] ∗ SRC[111:96];

TEMP7[31:0] ← DEST[127:112] ∗ SRC[127:112];

DEST[15:0] ← TEMP0[31:16];

DEST[31:16] ← TEMP1[31:16];

DEST[47:32] ← TEMP2[31:16];

DEST[63:48] ← TEMP3[31:16];

DEST[79:64] ← TEMP4[31:16];

DEST[95:80] ← TEMP5[31:16];

DEST[111:96] ← TEMP6[31:16];

DEST[127:112] ← TEMP7[31:16];

VPMULHUW (VEX.128 encoded version)

TEMP0[31:0] Å SRC1[15:0] * SRC2[15:0]

TEMP1[31:0] Å SRC1[31:16] * SRC2[31:16]

TEMP2[31:0] Å SRC1[47:32] * SRC2[47:32]

TEMP3[31:0] Å SRC1[63:48] * SRC2[63:48]

TEMP4[31:0] Å SRC1[79:64] * SRC2[79:64]

TEMP5[31:0] Å SRC1[95:80] * SRC2[95:80]

TEMP6[31:0] Å SRC1[111:96] * SRC2[111:96]

TEMP7[31:0] Å SRC1[127:112] * SRC2[127:112]

DEST[15:0] Å TEMP0[31:16]

DEST[31:16] Å TEMP1[31:16]

DEST[47:32] Å TEMP2[31:16]

Figure 4-8.  PMULHUW and PMULHW Instruction Operation Using 64-bit Operands

X3 X2 X1 X0

Z3 = X3 ∗ Y3 Z2 = X2 ∗ Y2 Z1 = X1 ∗ Y1 Z0 = X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

TEMP

Z3[31:16] Z2[31:16] Z1[31:16] Z0[31:16]
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DEST[63:48] Å TEMP3[31:16]

DEST[79:64] Å TEMP4[31:16]

DEST[95:80] Å TEMP5[31:16]

DEST[111:96] Å TEMP6[31:16]

DEST[127:112] Å TEMP7[31:16]

DEST[VLMAX-1:128] Å 0

PMULHUW (VEX.256 encoded version)

TEMP0[31:0] Å SRC1[15:0] * SRC2[15:0]

TEMP1[31:0] Å SRC1[31:16] * SRC2[31:16]

TEMP2[31:0] Å SRC1[47:32] * SRC2[47:32]

TEMP3[31:0] Å SRC1[63:48] * SRC2[63:48]

TEMP4[31:0] Å SRC1[79:64] * SRC2[79:64]

TEMP5[31:0] Å SRC1[95:80] * SRC2[95:80]

TEMP6[31:0] Å SRC1[111:96] * SRC2[111:96]

TEMP7[31:0] Å SRC1[127:112] * SRC2[127:112]

TEMP8[31:0] Å SRC1[143:128] * SRC2[143:128]

TEMP9[31:0] Å SRC1[159:144] * SRC2[159:144]

TEMP10[31:0] Å SRC1[175:160] * SRC2[175:160]

TEMP11[31:0] Å SRC1[191:176] * SRC2[191:176]

TEMP12[31:0] Å SRC1[207:192] * SRC2[207:192]

TEMP13[31:0] Å SRC1[223:208] * SRC2[223:208]

TEMP14[31:0] Å SRC1[239:224] * SRC2[239:224]

TEMP15[31:0] Å SRC1[255:240] * SRC2[255:240]

DEST[15:0] Å TEMP0[31:16]

DEST[31:16] Å TEMP1[31:16]

DEST[47:32] Å TEMP2[31:16]

DEST[63:48] Å TEMP3[31:16]

DEST[79:64] Å TEMP4[31:16]

DEST[95:80] Å TEMP5[31:16]

DEST[111:96] Å TEMP6[31:16]

DEST[127:112] Å TEMP7[31:16]

DEST[143:128] Å TEMP8[31:16]

DEST[159:144] Å TEMP9[31:16]

DEST[175:160] Å TEMP10[31:16]

DEST[191:176] Å TEMP11[31:16]

DEST[207:192] Å TEMP12[31:16]

DEST[223:208] Å TEMP13[31:16]

DEST[239:224] Å TEMP14[31:16]

DEST[255:240] Å TEMP15[31:16]

Intel C/C++ Compiler Intrinsic Equivalent

PMULHUW: __m64 _mm_mulhi_pu16(__m64 a, __m64 b)

(V)PMULHUW: __m128i _mm_mulhi_epu16 ( __m128i a, __m128i b)

VPMULHUW: __m256i _mm256_mulhi_epu16 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.
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Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMULHW—Multiply Packed Signed Integers and Store High Result

Instruction Operand Encoding

Description

Performs a SIMD signed multiply of the packed signed word integers in the destination operand (first operand) and 
the source operand (second operand), and stores the high 16 bits of each intermediate 32-bit result in the destina-
tion operand. (Figure 4-8 shows this operation when using 64-bit operands.) 

n 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
Legacy SSE version: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand is an MMX technology register.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.

Operation

PMULHW (with 64-bit operands)

TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)

TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];

TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];

TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];

DEST[15:0] ← TEMP0[31:16];

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F E5 /r1

PMULHW mm, mm/m64

RM V/V MMX Multiply the packed signed word integers in 
mm1 register and mm2/m64, and store the 
high 16 bits of the results in mm1. 

66 0F E5 /r

PMULHW xmm1, xmm2/m128

RM V/V SSE2 Multiply the packed signed word integers in 
xmm1 and xmm2/m128, and store the high 
16 bits of the results in xmm1. 

VEX.NDS.128.66.0F.WIG E5 /r

VPMULHW xmm1, xmm2, xmm3/m128

RVM V/V AVX Multiply the packed signed word integers in 
xmm2 and xmm3/m128, and store the high 
16 bits of the results in xmm1.

VEX.NDS.256.66.0F.WIG E5 /r

VPMULHW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Multiply the packed signed word integers in 
ymm2 and ymm3/m256, and store the high 
16 bits of the results in ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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DEST[31:16] ← TEMP1[31:16];

DEST[47:32] ← TEMP2[31:16];

DEST[63:48] ← TEMP3[31:16];

PMULHW (with 128-bit operands)

TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)

TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];

TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];

TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];

TEMP4[31:0] ← DEST[79:64] ∗ SRC[79:64];

TEMP5[31:0] ← DEST[95:80] ∗ SRC[95:80];

TEMP6[31:0] ← DEST[111:96] ∗ SRC[111:96];

TEMP7[31:0] ← DEST[127:112] ∗ SRC[127:112];

DEST[15:0] ← TEMP0[31:16];

DEST[31:16] ← TEMP1[31:16];

DEST[47:32] ← TEMP2[31:16];

DEST[63:48] ← TEMP3[31:16];

DEST[79:64] ← TEMP4[31:16];

DEST[95:80] ← TEMP5[31:16];

DEST[111:96] ← TEMP6[31:16];

DEST[127:112] ← TEMP7[31:16];

VPMULHW (VEX.128 encoded version)

TEMP0[31:0] Å SRC1[15:0] * SRC2[15:0] (*Signed Multiplication*)

TEMP1[31:0] Å SRC1[31:16] * SRC2[31:16]

TEMP2[31:0] Å SRC1[47:32] * SRC2[47:32]

TEMP3[31:0] Å SRC1[63:48] * SRC2[63:48]

TEMP4[31:0] Å SRC1[79:64] * SRC2[79:64]

TEMP5[31:0] Å SRC1[95:80] * SRC2[95:80]

TEMP6[31:0] Å SRC1[111:96] * SRC2[111:96]

TEMP7[31:0] Å SRC1[127:112] * SRC2[127:112]

DEST[15:0] Å TEMP0[31:16]

DEST[31:16] Å TEMP1[31:16]

DEST[47:32] Å TEMP2[31:16]

DEST[63:48] Å TEMP3[31:16]

DEST[79:64] Å TEMP4[31:16]

DEST[95:80] Å TEMP5[31:16]

DEST[111:96] Å TEMP6[31:16]

DEST[127:112] Å TEMP7[31:16]

DEST[VLMAX-1:128] Å 0

PMULHW (VEX.256 encoded version)

TEMP0[31:0] Å SRC1[15:0] * SRC2[15:0] (*Signed Multiplication*)

TEMP1[31:0] Å SRC1[31:16] * SRC2[31:16]

TEMP2[31:0] Å SRC1[47:32] * SRC2[47:32]

TEMP3[31:0] Å SRC1[63:48] * SRC2[63:48]

TEMP4[31:0] Å SRC1[79:64] * SRC2[79:64]

TEMP5[31:0] Å SRC1[95:80] * SRC2[95:80]

TEMP6[31:0] Å SRC1[111:96] * SRC2[111:96]

TEMP7[31:0] Å SRC1[127:112] * SRC2[127:112]

TEMP8[31:0] Å SRC1[143:128] * SRC2[143:128]

TEMP9[31:0] Å SRC1[159:144] * SRC2[159:144]

TEMP10[31:0] Å SRC1[175:160] * SRC2[175:160]

TEMP11[31:0] Å SRC1[191:176] * SRC2[191:176]

TEMP12[31:0] Å SRC1[207:192] * SRC2[207:192]
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TEMP13[31:0] Å SRC1[223:208] * SRC2[223:208]

TEMP14[31:0] Å SRC1[239:224] * SRC2[239:224]

TEMP15[31:0] Å SRC1[255:240] * SRC2[255:240]

DEST[15:0] Å TEMP0[31:16]

DEST[31:16] Å TEMP1[31:16]

DEST[47:32] Å TEMP2[31:16]

DEST[63:48] Å TEMP3[31:16]

DEST[79:64] Å TEMP4[31:16]

DEST[95:80] Å TEMP5[31:16]

DEST[111:96] Å TEMP6[31:16]

DEST[127:112] Å TEMP7[31:16]

DEST[143:128] Å TEMP8[31:16]

DEST[159:144] Å TEMP9[31:16]

DEST[175:160] Å TEMP10[31:16]

DEST[191:176] Å TEMP11[31:16]

DEST[207:192] Å TEMP12[31:16]

DEST[223:208] Å TEMP13[31:16]

DEST[239:224] Å TEMP14[31:16]

DEST[255:240] Å TEMP15[31:16]

Intel C/C++ Compiler Intrinsic Equivalent

PMULHW: __m64 _mm_mulhi_pi16 (__m64 m1, __m64 m2)

(V)PMULHW: __m128i _mm_mulhi_epi16 ( __m128i a, __m128i b)

VPMULHW: __m256i _mm256_mulhi_epi16 ( __m256i a, __m256i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMULLD — Multiply Packed Signed Dword Integers and Store Low Result

Instruction Operand Encoding

Description

Performs four signed multiplications from four pairs of signed dword integers and stores the lower 32 bits of the 
four 64-bit products in the destination operand (first operand). Each dword element in the destination operand is 
multiplied with the corresponding dword element of the source operand (second operand) to obtain a 64-bit inter-
mediate product.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

Temp0[63:0] Å DEST[31:0] * SRC[31:0];

Temp1[63:0] Å DEST[63:32] * SRC[63:32];

Temp2[63:0] Å DEST[95:64] * SRC[95:64];

Temp3[63:0] Å DEST[127:96] * SRC[127:96];

DEST[31:0] Å Temp0[31:0];

DEST[63:32] Å Temp1[31:0];

DEST[95:64] Å Temp2[31:0];

DEST[127:96] Å Temp3[31:0];

VPMULLD (VEX.128 encoded version)

Temp0[63:0] Å SRC1[31:0] * SRC2[31:0]

Temp1[63:0] Å SRC1[63:32] * SRC2[63:32]

Temp2[63:0] Å SRC1[95:64] * SRC2[95:64]

Temp3[63:0] Å SRC1[127:96] * SRC2[127:96]

DEST[31:0] Å Temp0[31:0]

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 40 /r
PMULLD xmm1, xmm2/m128

RM V/V SSE4_1 Multiply the packed dword signed integers in 
xmm1 and xmm2/m128 and store the low 32 
bits of each product in xmm1.

VEX.NDS.128.66.0F38.WIG 40 /r
VPMULLD xmm1, xmm2, xmm3/m128

RVM V/V AVX Multiply the packed dword signed integers in 
xmm2 and xmm3/m128 and store the low 32 
bits of each product in xmm1.

VEX.NDS.256.66.0F38.WIG 40 /r
VPMULLD ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Multiply the packed dword signed integers in 
ymm2 and ymm3/m256 and store the low 32 
bits of each product in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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DEST[63:32] Å Temp1[31:0]

DEST[95:64] Å Temp2[31:0]

DEST[127:96] Å Temp3[31:0]

DEST[VLMAX-1:128] Å 0

VPMULLD (VEX.256 encoded version)

Temp0[63:0] Å SRC1[31:0] * SRC2[31:0]

Temp1[63:0] Å SRC1[63:32] * SRC2[63:32]

Temp2[63:0] Å SRC1[95:64] * SRC2[95:64]

Temp3[63:0] Å SRC1[127:96] * SRC2[127:96]

Temp4[63:0] Å SRC1[159:128] * SRC2[159:128]

Temp5[63:0] Å SRC1[191:160] * SRC2[191:160]

Temp6[63:0] Å SRC1[223:192] * SRC2[223:192]

Temp7[63:0] Å SRC1[255:224] * SRC2[255:224]

Intel C/C++ Compiler Intrinsic Equivalent

(V)PMULLUD:  __m128i _mm_mullo_epi32(__m128i a, __m128i b);

VPMULLD: __m256i _mm256_mullo_epi32(__m256i a, __m256i b);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMULLW—Multiply Packed Signed Integers and Store Low Result

Instruction Operand Encoding

Description

Performs a SIMD signed multiply of the packed signed word integers in the destination operand (first operand) and 
the source operand (second operand), and stores the low 16 bits of each intermediate 32-bit result in the destina-
tion operand. (Figure 4-8 shows this operation when using 64-bit operands.)

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
Legacy SSE version: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand is an MMX technology register.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise the instruction will #UD.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The 
first source and destination operands are YMM registers.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F D5 /r1

PMULLW mm, mm/m64

RM V/V MMX Multiply the packed signed word integers in 
mm1 register and mm2/m64, and store the 
low 16 bits of the results in mm1. 

66 0F D5 /r

PMULLW xmm1, xmm2/m128

RM V/V SSE2 Multiply the packed signed word integers in 
xmm1 and xmm2/m128, and store the low 16 
bits of the results in xmm1. 

VEX.NDS.128.66.0F.WIG D5 /r

VPMULLW xmm1, xmm2, xmm3/m128

RVM V/V AVX Multiply the packed dword signed integers in 
xmm2 and xmm3/m128 and store the low 32 
bits of each product in xmm1.

VEX.NDS.256.66.0F.WIG D5 /r

VPMULLW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Multiply the packed signed word integers in 
ymm2 and ymm3/m256, and store the low 16 
bits of the results in ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Operation

PMULLW (with 64-bit operands)

TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)

TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];

TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];

TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];

DEST[15:0] ← TEMP0[15:0];

DEST[31:16] ← TEMP1[15:0];

DEST[47:32] ← TEMP2[15:0];

DEST[63:48] ← TEMP3[15:0];

PMULLW (with 128-bit operands)

TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)

TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];

TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];

TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];

TEMP4[31:0] ← DEST[79:64] ∗ SRC[79:64];

TEMP5[31:0] ← DEST[95:80] ∗ SRC[95:80];

TEMP6[31:0] ← DEST[111:96] ∗ SRC[111:96];

TEMP7[31:0] ← DEST[127:112] ∗ SRC[127:112];

DEST[15:0] ← TEMP0[15:0];

DEST[31:16] ← TEMP1[15:0];

DEST[47:32] ← TEMP2[15:0];

DEST[63:48] ← TEMP3[15:0];

DEST[79:64] ← TEMP4[15:0];

DEST[95:80] ← TEMP5[15:0];

DEST[111:96] ← TEMP6[15:0];

DEST[127:112] ← TEMP7[15:0];

VPMULLW (VEX.128 encoded version)

Temp0[31:0] Å SRC1[15:0] * SRC2[15:0]

Temp1[31:0] Å SRC1[31:16] * SRC2[31:16]

Temp2[31:0] Å SRC1[47:32] * SRC2[47:32]

Temp3[31:0] Å SRC1[63:48] * SRC2[63:48]

Temp4[31:0] Å SRC1[79:64] * SRC2[79:64]

Temp5[31:0] Å SRC1[95:80] * SRC2[95:80]

Temp6[31:0] Å SRC1[111:96] * SRC2[111:96]

Temp7[31:0] Å SRC1[127:112] * SRC2[127:112]

DEST[15:0] Å Temp0[15:0]

DEST[31:16] Å Temp1[15:0]

DEST[47:32] Å Temp2[15:0]

Figure 4-9.  PMULLU Instruction Operation Using 64-bit Operands

X3 X2 X1 X0

Z3 = X3 ∗ Y3 Z2 = X2 ∗ Y2 Z1 = X1 ∗ Y1 Z0 = X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

TEMP

Z3[15:0] Z2[15:0] Z1[15:0] Z0[15:0]
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DEST[63:48] Å Temp3[15:0]

DEST[79:64] Å Temp4[15:0]

DEST[95:80] Å Temp5[15:0]

DEST[111:96] Å Temp6[15:0]

DEST[127:112] Å Temp7[15:0]

DEST[VLMAX-1:128] Å 0

VPMULLD (VEX.256 encoded version)

Temp0[63:0] Å SRC1[31:0] * SRC2[31:0]

Temp1[63:0] Å SRC1[63:32] * SRC2[63:32]

Temp2[63:0] Å SRC1[95:64] * SRC2[95:64]

Temp3[63:0] Å SRC1[127:96] * SRC2[127:96]

Temp4[63:0] Å SRC1[159:128] * SRC2[159:128]

Temp5[63:0] Å SRC1[191:160] * SRC2[191:160]

Temp6[63:0] Å SRC1[223:192] * SRC2[223:192]

Temp7[63:0] Å SRC1[255:224] * SRC2[255:224]

DEST[31:0] Å Temp0[31:0]

DEST[63:32] Å Temp1[31:0]

DEST[95:64] Å Temp2[31:0]

DEST[127:96] Å Temp3[31:0]

DEST[159:128] Å Temp4[31:0]

DEST[191:160] Å Temp5[31:0]

DEST[223:192] Å Temp6[31:0]

DEST[255:224] Å Temp7[31:0]

Intel C/C++ Compiler Intrinsic Equivalent

PMULLW:  __m64 _mm_mullo_pi16(__m64 m1, __m64 m2)

(V)PMULLW:  __m128i _mm_mullo_epi16 ( __m128i a, __m128i b)

VPMULLW: __m256i _mm256_mullo_epi16 ( __m256i a, __m256i b);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PMULUDQ—Multiply Packed Unsigned Doubleword Integers

Instruction Operand Encoding

Description

Multiplies the first operand (destination operand) by the second operand (source operand) and stores the result in 
the destination operand. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

Legacy SSE version: The source operand can be an unsigned doubleword integer stored in the low doubleword of 
an MMX technology register or a 64-bit memory location. The destination operand can be an unsigned doubleword 
integer stored in the low doubleword an MMX technology register. The result is an unsigned quadword integer 
stored in the destination an MMX technology register. When a quadword result is too large to be represented in 64 
bits (overflow), the result is wrapped around and the low 64 bits are written to the destination element (that is, the 
carry is ignored).

For 64-bit memory operands, 64 bits are fetched from memory, but only the low doubleword is used in the compu-
tation.

128-bit Legacy SSE version: The second source operand is two packed unsigned doubleword integers stored in the 
first (low) and third doublewords of an XMM register or a 128-bit memory location. For 128-bit memory operands, 
128 bits are fetched from memory, but only the first and third doublewords are used in the computation.The first 
source operand is two packed unsigned doubleword integers stored in the first and third doublewords of an XMM 
register. The destination contains two packed unsigned quadword integers stored in an XMM register. Bits (VLMAX-
1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: The second source operand is two packed unsigned doubleword integers stored in the 
first (low) and third doublewords of an XMM register or a 128-bit memory location. For 128-bit memory operands, 
128 bits are fetched from memory, but only the first and third doublewords are used in the computation.The first 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F F4 /r1

PMULUDQ mm1, mm2/m64

RM V/V SSE2 Multiply unsigned doubleword integer in mm1 
by unsigned doubleword integer in mm2/m64, 
and store the quadword result in mm1. 

66 0F F4 /r

PMULUDQ xmm1, xmm2/m128

RM V/V SSE2 Multiply packed unsigned doubleword integers 
in xmm1 by packed unsigned doubleword 
integers in xmm2/m128, and store the 
quadword results in xmm1. 

VEX.NDS.128.66.0F.WIG F4 /r

VPMULUDQ xmm1, xmm2, xmm3/m128

RVM V/V AVX Multiply packed unsigned doubleword integers 
in xmm2 by packed unsigned doubleword 
integers in xmm3/m128, and store the 
quadword results in xmm1.

VEX.NDS.256.66.0F.WIG F4 /r

VPMULUDQ ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Multiply packed unsigned doubleword integers 
in ymm2 by packed unsigned doubleword 
integers in ymm3/m256, and store the 
quadword results in ymm1.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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source operand is two packed unsigned doubleword integers stored in the first and third doublewords of an XMM 
register. The destination contains two packed unsigned quadword integers stored in an XMM register. Bits (VLMAX-
1:128) of the destination YMM register are zeroed. 
VEX.256 encoded version: The second source operand is four packed unsigned doubleword integers stored in the 
first (low), third, fifth and seventh doublewords of a YMM register or a 256-bit memory location. For 256-bit 
memory operands, 256 bits are fetched from memory, but only the first, third, fifth and seventh doublewords are 
used in the computation.The first source operand is four packed unsigned doubleword integers stored in the first, 
third, fifth and seventh doublewords of an YMM register. The destination contains four packed unaligned quadword 
integers stored in an YMM register.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

PMULUDQ (with 64-Bit operands)

DEST[63:0] ← DEST[31:0] ∗ SRC[31:0];

PMULUDQ (with 128-Bit operands)

DEST[63:0] ← DEST[31:0] ∗ SRC[31:0];

DEST[127:64] ← DEST[95:64] ∗ SRC[95:64];

VPMULUDQ (VEX.128 encoded version)

DEST[63:0] Å SRC1[31:0] * SRC2[31:0]

DEST[127:64] Å SRC1[95:64] * SRC2[95:64]

DEST[VLMAX-1:128] Å 0

VPMULUDQ (VEX.256 encoded version)

DEST[63:0] Å SRC1[31:0] * SRC2[31:0]

DEST[127:64] Å SRC1[95:64] * SRC2[95:64

DEST[191:128] Å SRC1[159:128] * SRC2[159:128]

DEST[255:192] Å SRC1[223:192] * SRC2[223:192]

Intel C/C++ Compiler Intrinsic Equivalent

PMULUDQ: __m64 _mm_mul_su32 (__m64 a, __m64 b)

(V)PMULUDQ: __m128i _mm_mul_epu32 ( __m128i a, __m128i b)

VPMULUDQ: __m256i _mm256_mul_epu32( __m256i a, __m256i b);

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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POP—Pop a Value from the Stack

Instruction Operand Encoding

Description

Loads the value from the top of the stack to the location specified with the destination operand (or explicit opcode) 
and then increments the stack pointer. The destination operand can be a general-purpose register, memory loca-
tion, or segment register.

Address and operand sizes are determined and used as follows:
• Address size. The D flag in the current code-segment descriptor determines the default address size; it may be 

overridden by an instruction prefix (67H).

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

8F /0 POP r/m16 M Valid Valid Pop top of stack into m16; increment stack 
pointer.

8F /0 POP r/m32 M N.E. Valid Pop top of stack into m32; increment stack 
pointer.

8F /0 POP r/m64 M Valid N.E. Pop top of stack into m64; increment stack 
pointer. Cannot encode 32-bit operand size.

58+ rw POP r16 O Valid Valid Pop top of stack into r16; increment stack 
pointer.

58+ rd POP r32 O N.E. Valid Pop top of stack into r32; increment stack 
pointer.

58+ rd POP r64 O Valid N.E. Pop top of stack into r64; increment stack 
pointer. Cannot encode 32-bit operand size.

1F POP DS NP Invalid Valid Pop top of stack into DS; increment stack 
pointer.

07 POP ES NP Invalid Valid Pop top of stack into ES; increment stack 
pointer.

17 POP SS NP Invalid Valid Pop top of stack into SS; increment stack 
pointer.

0F A1 POP FS NP Valid Valid Pop top of stack into FS; increment stack 
pointer by 16 bits. 

0F A1 POP FS NP N.E. Valid Pop top of stack into FS; increment stack 
pointer by 32 bits. 

0F A1 POP FS NP Valid N.E. Pop top of stack into FS; increment stack 
pointer by 64 bits. 

0F A9 POP GS NP Valid Valid Pop top of stack into GS; increment stack 
pointer by 16 bits. 

0F A9 POP GS NP N.E. Valid Pop top of stack into GS; increment stack 
pointer by 32 bits. 

0F A9 POP GS NP Valid N.E. Pop top of stack into GS; increment stack 
pointer by 64 bits. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

O opcode + rd (w) NA NA NA

NP NA NA NA NA
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The address size is used only when writing to a destination operand in memory.
• Operand size. The D flag in the current code-segment descriptor determines the default operand size; it may 

be overridden by instruction prefixes (66H or REX.W).
The operand size (16, 32, or 64 bits) determines the amount by which the stack pointer is incremented (2, 4
or 8).

• Stack-address size. Outside of 64-bit mode, the B flag in the current stack-segment descriptor determines the 
size of the stack pointer (16 or 32 bits); in 64-bit mode, the size of the stack pointer is always 64 bits.
The stack-address size determines the width of the stack pointer when reading from the stack in memory and
when incrementing the stack pointer. (As stated above, the amount by which the stack pointer is incremented
is determined by the operand size.)

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the value loaded into the register 
must be a valid segment selector. In protected mode, popping a segment selector into a segment register automat-
ically causes the descriptor information associated with that segment selector to be loaded into the hidden 
(shadow) part of the segment register and causes the selector and the descriptor information to be validated (see 
the “Operation” section below).

A NULL value (0000-0003) may be popped into the DS, ES, FS, or GS register without causing a general protection 
fault. However, any subsequent attempt to reference a segment whose corresponding segment register is loaded 
with a NULL value causes a general protection exception (#GP). In this situation, no memory reference occurs and 
the saved value of the segment register is NULL.

The POP instruction cannot pop a value into the CS register. To load the CS register from the stack, use the RET 
instruction.

If the ESP register is used as a base register for addressing a destination operand in memory, the POP instruction 
computes the effective address of the operand after it increments the ESP register. For the case of a 16-bit stack 
where ESP wraps to 0H as a result of the POP instruction, the resulting location of the memory write is processor-
family-specific.

The POP ESP instruction increments the stack pointer (ESP) before data at the old top of stack is written into the 
destination.

A POP SS instruction inhibits all interrupts, including the NMI interrupt, until after execution of the next instruction. 
This action allows sequential execution of POP SS and MOV ESP, EBP instructions without the danger of having an 
invalid stack during an interrupt1. However, use of the LSS instruction is the preferred method of loading the SS 
and ESP registers.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). When in 
64-bit mode, POPs using 32-bit operands are not encodable and POPs to DS, ES, SS are not valid. See the 
summary chart at the beginning of this section for encoding data and limits.

Operation

IF StackAddrSize = 32

THEN

IF OperandSize = 32

THEN

DEST ← SS:ESP; (* Copy a doubleword *)

ESP ← ESP + 4;

ELSE (* OperandSize = 16*)

DEST ← SS:ESP; (* Copy a word *)

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after a POP SS instruction, the breakpoint 
may not be triggered. However, in a sequence of instructions that POP the SS register, only the first instruction in the sequence is 
guaranteed to delay an interrupt.

In the following sequence, interrupts may be recognized before POP ESP executes:

POP SS
POP SS
POP ESP
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ESP ← ESP + 2;

FI;

ELSE IF StackAddrSize = 64

THEN

IF OperandSize = 64

THEN

DEST ← SS:RSP; (* Copy quadword *)

RSP ← RSP + 8;

ELSE (* OperandSize = 16*)

DEST ← SS:RSP; (* Copy a word *)

RSP ← RSP + 2;

FI;

FI;

ELSE StackAddrSize = 16

THEN

IF OperandSize = 16

THEN

DEST ← SS:SP; (* Copy a word *)

SP ← SP + 2;

ELSE (* OperandSize = 32 *)

DEST ← SS:SP; (* Copy a doubleword *)

SP ← SP + 4;

FI;

FI;

Loading a segment register while in protected mode results in special actions, as described in the following listing. 
These checks are performed on the segment selector and the segment descriptor it points to.

64-BIT_MODE

IF FS, or GS is loaded with non-NULL selector;

THEN

IF segment selector index is outside descriptor table limits

OR segment is not a data or readable code segment

OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL > DPL))

THEN #GP(selector);

IF segment not marked present

THEN #NP(selector);

ELSE

SegmentRegister ← segment selector;

SegmentRegister ← segment descriptor;

FI;

FI;

IF FS, or GS is loaded with a NULL selector;

THEN

SegmentRegister ← segment selector;

SegmentRegister ← segment descriptor;

FI;

PREOTECTED MODE OR COMPATIBILITY MODE;

IF SS is loaded;
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THEN

IF segment selector is NULL

THEN #GP(0); 

FI;

IF segment selector index is outside descriptor table limits 

or segment selector's RPL ≠ CPL

or segment is not a writable data segment

or DPL ≠ CPL

THEN #GP(selector); 

FI;

IF segment not marked present 

THEN #SS(selector); 

ELSE

SS ← segment selector;

SS ← segment descriptor; 

FI;

FI;

IF DS, ES, FS, or GS is loaded with non-NULL selector;

THEN

IF segment selector index is outside descriptor table limits

or segment is not a data or readable code segment

or ((segment is a data or nonconforming code segment)

and (both RPL and CPL > DPL))

THEN #GP(selector); 

FI;

IF segment not marked present

THEN #NP(selector);

ELSE

SegmentRegister ← segment selector;

SegmentRegister ← segment descriptor;

 FI;

FI;

IF DS, ES, FS, or GS is loaded with a NULL selector

THEN

SegmentRegister ← segment selector;

SegmentRegister ← segment descriptor;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If attempt is made to load SS register with NULL segment selector.
If the destination operand is in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#GP(selector) If segment selector index is outside descriptor table limits. 
If the SS register is being loaded and the segment selector's RPL and the segment descriptor’s 
DPL are not equal to the CPL. 
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If the SS register is being loaded and the segment pointed to is a
non-writable data segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is not a data or 
readable code segment.
If the DS, ES, FS, or GS register is being loaded and the segment pointed to is a data or 
nonconforming code segment, but both the RPL and the CPL are greater than the DPL.

#SS(0) If the current top of stack is not within the stack segment.
If a memory operand effective address is outside the SS segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not present.
#NP If the DS, ES, FS, or GS register is being loaded and the segment pointed to is marked not 

present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current privilege level is 3 and alignment 

checking is enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
#SS(U) If the stack address is in a non-canonical form.
#GP(selector) If the descriptor is outside the descriptor table limit.

If the FS or GS register is being loaded and the segment pointed to is not a data or readable 
code segment.
If the FS or GS register is being loaded and the segment pointed to is a data or nonconforming 
code segment, but both the RPL and the CPL are greater than the DPL.

#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#PF(fault-code) If a page fault occurs.
#NP If the FS or GS register is being loaded and the segment pointed to is marked not present.
#UD If the LOCK prefix is used.
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POPA/POPAD—Pop All General-Purpose Registers

Instruction Operand Encoding

Description

Pops doublewords (POPAD) or words (POPA) from the stack into the general-purpose registers. The registers are 
loaded in the following order: EDI, ESI, EBP, EBX, EDX, ECX, and EAX (if the operand-size attribute is 32) and DI, 
SI, BP, BX, DX, CX, and AX (if the operand-size attribute is 16). (These instructions reverse the operation of the 
PUSHA/PUSHAD instructions.) The value on the stack for the ESP or SP register is ignored. Instead, the ESP or SP 
register is incremented after each register is loaded.

The POPA (pop all) and POPAD (pop all double) mnemonics reference the same opcode. The POPA instruction is 
intended for use when the operand-size attribute is 16 and the POPAD instruction for when the operand-size attri-
bute is 32. Some assemblers may force the operand size to 16 when POPA is used and to 32 when POPAD is used 
(using the operand-size override prefix [66H] if necessary). Others may treat these mnemonics as synonyms 
(POPA/POPAD) and use the current setting of the operand-size attribute to determine the size of values to be 
popped from the stack, regardless of the mnemonic used. (The D flag in the current code segment’s segment 
descriptor determines the operand-size attribute.)

This instruction executes as described in non-64-bit modes. It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN

#UD;
ELSE

IF OperandSize = 32 (* Instruction = POPAD *)

THEN

EDI ← Pop();

ESI ← Pop();

EBP ← Pop();

Increment ESP by 4; (* Skip next 4 bytes of stack *)

EBX ← Pop();

EDX ← Pop();

ECX ← Pop();

EAX ← Pop();

ELSE (* OperandSize = 16, instruction = POPA *)

DI ← Pop();

SI ← Pop();

BP ← Pop();

Increment ESP by 2; (* Skip next 2 bytes of stack *)

BX ← Pop();

DX ← Pop();

CX ← Pop();

AX ← Pop();

FI;

FI;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

61 POPA NP Invalid Valid Pop DI, SI, BP, BX, DX, CX, and AX.

61 POPAD NP Invalid Valid Pop EDI, ESI, EBP, EBX, EDX, ECX, and EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is not within the stack segment. 
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current privilege level is 3 and alignment 

checking is enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#SS If the starting or ending stack address is not within the stack segment.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#SS(0) If the starting or ending stack address is not within the stack segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#UD If in 64-bit mode.
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POPCNT — Return the Count of Number of Bits Set to 1

Instruction Operand Encoding

Description

This instruction calculates of number of bits set to 1 in the second operand (source) and returns the count in the 
first operand (a destination register).

Operation

Count = 0;

For (i=0; i < OperandSize; i++) 

{  IF (SRC[ i] = 1) // i’th bit

THEN Count++; FI;

}

DEST Å Count;

Flags Affected

OF, SF, ZF, AF, CF, PF are all cleared. ZF is set if SRC = 0, otherwise ZF is cleared

Intel C/C++ Compiler Intrinsic Equivalent

POPCNT:  int _mm_popcnt_u32(unsigned int a);

POPCNT:  int64_t _mm_popcnt_u64(unsigned __int64 a);

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS or GS segments.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF (fault-code) For a page fault.
#AC(0) If an unaligned memory reference is made while the current privilege level is 3 and alignment 

checking is enabled.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F3  0F B8 /r POPCNT r16, r/m16 RM Valid Valid POPCNT on r/m16

F3  0F B8 /r POPCNT r32, r/m32 RM Valid Valid POPCNT on r/m32

F3 REX.W 0F B8 /r POPCNT r64, r/m64 RM Valid N.E. POPCNT on r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Virtual 8086 Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF (fault-code) For a page fault.
#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If CPUID.01H:ECX.POPCNT [Bit 23] = 0.

If LOCK prefix is used.
Either the prefix REP (F3h) or REPN (F2H) is used.
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POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

Instruction Operand Encoding

Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size attribute is 32) and stores the 
value in the EFLAGS register, or pops a word from the top of the stack (if the operand-size attribute is 16) and 
stores it in the lower 16 bits of the EFLAGS register (that is, the FLAGS register). These instructions reverse the 
operation of the PUSHF/PUSHFD instructions. 

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same opcode. The POPF instruction 
is intended for use when the operand-size attribute is 16; the POPFD instruction is intended for use when the 
operand-size attribute is 32. Some assemblers may force the operand size to 16 for POPF and to 32 for POPFD. 
Others may treat the mnemonics as synonyms (POPF/POPFD) and use the setting of the operand-size attribute to 
determine the size of values to pop from the stack.

The effect of POPF/POPFD on the EFLAGS register changes, depending on the mode of operation. When the 
processor is operating in protected mode at privilege level 0 (or in real-address mode, the equivalent to privilege 
level 0), all non-reserved flags in the EFLAGS register except RF1, VIP, VIF, and VM may be modified. VIP, VIF and 
VM remain unaffected.

When operating in protected mode with a privilege level greater than 0, but less than or equal to IOPL, all flags can 
be modified except the IOPL field and VIP, VIF, and VM. Here, the IOPL flags are unaffected, the VIP and VIF flags 
are cleared, and the VM flag is unaffected. The interrupt flag (IF) is altered only when executing at a level at least 
as privileged as the IOPL. If a POPF/POPFD instruction is executed with insufficient privilege, an exception does not 
occur but privileged bits do not change.

When operating in virtual-8086 mode, the IOPL must be equal to 3 to use POPF/POPFD instructions; VM, RF, IOPL, 
VIP, and VIF are unaffected. If the IOPL is less than 3, POPF/POPFD causes a general-protection exception (#GP).

In 64-bit mode, use REX.W to pop the top of stack to RFLAGS. The mnemonic assigned is POPFQ (note that the 32-
bit operand is not encodable). POPFQ pops 64 bits from the stack, loads the lower 32 bits into RFLAGS, and zero 
extends the upper bits of RFLAGS.

See Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more informa-
tion about the EFLAGS registers.

Operation

IF VM = 0 (* Not in Virtual-8086 Mode *)

THEN IF CPL = 0
THEN

IF OperandSize = 32;

THEN 

EFLAGS ← Pop(); (* 32-bit pop *)

(* All non-reserved flags except RF, VIP, VIF, and VM can be modified; 
VIP and VIF are cleared; RF, VM, and all reserved bits are unaffected. *)

ELSE IF (Operandsize = 64)

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

9D POPF NP Valid Valid Pop top of stack into lower 16 bits of EFLAGS.

9D POPFD NP N.E. Valid Pop top of stack into EFLAGS.

9D POPFQ NP Valid N.E. Pop top of stack and zero-extend into RFLAGS. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. RF is always zero after the execution of POPF. This is because POPF, like all instructions, clears RF as it begins to execute.
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RFLAGS = Pop(); (* 64-bit pop *)

(* All non-reserved flags except RF, VIP, VIF, and VM can be modified; VIP
and VIF are cleared; RF, VM, and all reserved bits are unaffected.*)

ELSE (* OperandSize = 16 *)

EFLAGS[15:0] ← Pop(); (* 16-bit pop *)

(* All non-reserved flags can be modified. *)

FI;

ELSE (* CPL > 0 *)

IF OperandSize = 32

THEN 

IF CPL > IOPL

THEN

EFLAGS ← Pop(); (* 32-bit pop *)

(* All non-reserved bits except IF, IOPL, RF, VIP, and

VIF can be modified; IF, IOPL, RF, VM, and all reserved

bits are unaffected; VIP and VIF are cleared. *)

ELSE

EFLAGS ← Pop(); (* 32-bit pop *)

(* All non-reserved bits except IOPL, RF, VIP, and VIF can be

   modified; IOPL, RF, VM, and all reserved bits are

   unaffected; VIP and VIF are cleared. *)

FI;

ELSE IF (Operandsize = 64)

IF CPL > IOPL

THEN

RFLAGS ← Pop(); (* 64-bit pop *)

(* All non-reserved bits except IF, IOPL, RF, VIP, and

VIF can be modified; IF, IOPL, RF, VM, and all reserved

  bits are unaffected; VIP and VIF are cleared. *)

ELSE

RFLAGS ← Pop(); (* 64-bit pop *)

(* All non-reserved bits except IOPL, RF, VIP, and VIF can be

modified; IOPL, RF, VM, and all reserved bits are

  unaffected; VIP and VIF are cleared. *)

FI;

ELSE (* OperandSize = 16 *)

EFLAGS[15:0] ← Pop(); (* 16-bit pop *)

(* All non-reserved bits except IOPL can be modified; IOPL and all
reserved bits are unaffected. *)

FI;

FI;

ELSE  (* In Virtual-8086 Mode *)

IF IOPL = 3 

THEN IF OperandSize = 32 

THEN 

EFLAGS ← Pop();

(* All non-reserved bits except VM, RF, IOPL, VIP, and VIF can be

modified; VM, RF, IOPL, VIP, VIF, and all reserved bits are unaffected. *)

ELSE 

EFLAGS[15:0] ← Pop(); FI;

(* All non-reserved bits except IOPL can be modified; 
IOPL and all reserved bits are unaffected. *)

ELSE (* IOPL < 3 *)

#GP(0);  (* Trap to virtual-8086 monitor. *)
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FI;

FI;

FI;

Flags Affected

All flags may be affected; see the Operation section for details.

Protected Mode Exceptions

#SS(0) If the top of stack is not within the stack segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current privilege level is 3 and alignment 

checking is enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#SS If the top of stack is not within the stack segment.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If the I/O privilege level is less than 3.
If an attempt is made to execute the POPF/POPFD instruction with an operand-size override 
prefix.

#SS(0) If the top of stack is not within the stack segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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POR—Bitwise Logical OR

Instruction Operand Encoding

Description

Performs a bitwise logical OR operation on the source operand (second operand) and the destination operand (first 
operand) and stores the result in the destination operand. Each bit of the result is set to 1 if either or both of the 
corresponding bits of the first and second operands are 1; otherwise, it is set to 0.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
Legacy SSE version: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand is an MMX technology register.

128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first 
source and destination operands can be XMM registers. Bits (VLMAX-1:128) of the corresponding YMM destination 
register remain unchanged.
VEX.128 encoded version: The second source operand is an XMM register or a 128-bit memory location. The first 
source and destination operands can be XMM registers. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: The second source operand is an YMM register or a 256-bit memory location. The first 
source and destination operands can be YMM registers.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

POR (128-bit Legacy SSE version)

DEST Å DEST OR SRC

DEST[VLMAX-1:128] (Unmodified)

VPOR (VEX.128 encoded version)

DEST Å SRC1 OR SRC2

DEST[VLMAX-1:128] Å 0

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F EB /r1

POR mm, mm/m64

RM V/V MMX Bitwise OR of mm/m64 and mm.

66 0F EB /r

POR xmm1, xmm2/m128

RM V/V SSE2 Bitwise OR of xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG EB /r

VPOR xmm1, xmm2, xmm3/m128

RVM V/V AVX Bitwise OR of xmm2/m128 and xmm3.

VEX.NDS.256.66.0F.WIG EB /r

VPOR ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Bitwise OR of ymm2/m256 and ymm3.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VPOR (VEX.256 encoded version)

DEST Å SRC1 OR SRC2

Intel C/C++ Compiler Intrinsic Equivalent

POR: __m64 _mm_or_si64(__m64 m1, __m64 m2)

(V)POR: __m128i _mm_or_si128(__m128i m1, __m128i m2)

VPOR: __m256i _mm256_or_si256 ( __m256i a, __m256i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PREFETCHh—Prefetch Data Into Caches

Instruction Operand Encoding

Description

Fetches the line of data from memory that contains the byte specified with the source operand to a location in the 
cache hierarchy specified by a locality hint:
• T0 (temporal data)—prefetch data into all levels of the cache hierarchy.

— Pentium III processor—1st- or 2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.
• T1 (temporal data with respect to first level cache)—prefetch data into level 2 cache and higher.

— Pentium III processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.
• T2 (temporal data with respect to second level cache)—prefetch data into level 2 cache and higher.

— Pentium III processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.
• NTA (non-temporal data with respect to all cache levels)—prefetch data into non-temporal cache structure and 

into a location close to the processor, minimizing cache pollution.

— Pentium III processor—1st-level cache 

— Pentium 4 and Intel Xeon processors—2nd-level cache

The source operand is a byte memory location. (The locality hints are encoded into the machine level instruction 
using bits 3 through 5 of the ModR/M byte.)

If the line selected is already present in the cache hierarchy at a level closer to the processor, no data movement 
occurs. Prefetches from uncacheable or WC memory are ignored.

The PREFETCHh instruction is merely a hint and does not affect program behavior. If executed, this instruction 
moves data closer to the processor in anticipation of future use.

The implementation of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by a 
processor implementation. The amount of data prefetched is also processor implementation-dependent. It will, 
however, be a minimum of 32 bytes.

It should be noted that processors are free to speculatively fetch and cache data from system memory regions that 
are assigned a memory-type that permits speculative reads (that is, the WB, WC, and WT memory types). A 
PREFETCHh instruction is considered a hint to this speculative behavior. Because this speculative fetching can occur 
at any time and is not tied to instruction execution, a PREFETCHh instruction is not ordered with respect to the 
fence instructions (MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHh instruction is also 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 18 /1 PREFETCHT0 m8 M Valid Valid Move data from m8 closer to the processor 
using T0 hint.

0F 18 /2 PREFETCHT1 m8 M Valid Valid Move data from m8 closer to the processor 
using T1 hint.

0F 18 /3 PREFETCHT2 m8 M Valid Valid Move data from m8 closer to the processor 
using T2 hint.

0F 18 /0 PREFETCHNTA m8 M Valid Valid Move data from m8 closer to the processor 
using NTA hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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unordered with respect to CLFLUSH instructions, other PREFETCHh instructions, or any other general instruction. 
It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, and MOV CR.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FETCH (m8);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch(char *p, int i)

The argument “*p” gives the address of the byte (and corresponding cache line) to be prefetched. The value “i” 
gives a constant (_MM_HINT_T0, _MM_HINT_T1, _MM_HINT_T2, or _MM_HINT_NTA) that specifies the type of 
prefetch operation to be performed.

Numeric Exceptions

None.

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.
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PREFETCHW—Prefetch Data into Caches in Anticipation of a Write

Instruction Operand Encoding

Description

Fetches the cache line of data from memory that contains the byte specified with the source operand to a location 
in the 1st or 2nd level cache and invalidates all other cached instances of the line.
The source operand is a byte memory location. If the line selected is already present in the lowest level cache and 
is already in an exclusively owned state, no data movement occurs. Prefetches from non-writeback memory are 
ignored.
The PREFETCHW instruction is merely a hint and does not affect program behavior. If executed, this instruction 
moves data closer to the processor and invalidates any other cached copy in anticipation of the line being written 
to in the future.
The characteristic of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by a 
processor implementation. The amount of data prefetched is also processor implementation-dependent. It will, 
however, be a minimum of 32 bytes.
It should be noted that processors are free to speculatively fetch and cache data with exclusive ownership from 
system memory regions that permit such accesses (that is, the WB memory type). A PREFETCHW instruction is 
considered a hint to this speculative behavior. Because this speculative fetching can occur at any time and is not 
tied to instruction execution, a PREFETCHW instruction is not ordered with respect to the fence instructions 
(MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHW instruction is also unordered with 
respect to CLFLUSH instructions, other PREFETCHW instructions, or any other general instruction
It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, and MOV CR.
This instruction's operation is the same in non-64-bit modes and 64-bit mode.

Operation

FETCH_WITH_EXCLUSIVE_OWNERSHIP (m8);

Flags Affected

All flags are affected

C/C++ Compiler Intrinsic Equivalent

void _m_prefetchw( void * );

Protected Mode Exceptions

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#UD If the LOCK prefix is used.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 0D /1
PREFETCHW m8

A V/V PRFCHW Move data from m8 closer to the processor in anticipation of a 
write.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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Compatibility Mode Exceptions

#UD If the LOCK prefix is used.

64-Bit Mode Exceptions

#UD If the LOCK prefix is used.
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PSADBW—Compute Sum of Absolute Differences

Instruction Operand Encoding

Description

Computes the absolute value of the difference of 8 unsigned byte integers from the source operand (second 
operand) and from the destination operand (first operand). These 8 differences are then summed to produce an 
unsigned word integer result that is stored in the destination operand. Figure 4-10 shows the operation of the 
PSADBW instruction when using 64-bit operands.

When operating on 64-bit operands, the word integer result is stored in the low word of the destination operand, 
and the remaining bytes in the destination operand are cleared to all 0s.

When operating on 128-bit operands, two packed results are computed. Here, the 8 low-order bytes of the source 
and destination operands are operated on to produce a word result that is stored in the low word of the destination 
operand, and the 8 high-order bytes are operated on to produce a word result that is stored in bits 64 through 79 
of the destination operand. The remaining bytes of the destination operand are cleared.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
Legacy SSE version: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand is an MMX technology register.

128-bit Legacy SSE version: The first source operand and destination register are XMM registers. The second 
source operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM 
destination register remain unchanged.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F F6 /r1

PSADBW mm1, mm2/m64

RM V/V SSE Computes the absolute differences of the 
packed unsigned byte integers from mm2 

/m64 and mm1; differences are then summed 
to produce an unsigned word integer result.

66 0F F6 /r

PSADBW xmm1, xmm2/m128

RM V/V SSE2 Computes the absolute differences of the 
packed unsigned byte integers from xmm2 

/m128 and xmm1; the 8 low differences and 8 
high differences are then summed separately 
to produce two unsigned word integer results.

VEX.NDS.128.66.0F.WIG F6 /r

VPSADBW xmm1, xmm2, xmm3/m128

RVM V/V AVX Computes the absolute differences of the 
packed unsigned byte integers from xmm3 

/m128 and xmm2; the 8 low differences and 8 
high differences are then summed separately 
to produce two unsigned word integer results.

VEX.NDS.256.66.0F.WIG F6 /r

VPSADBW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Computes the absolute differences of the 
packed unsigned byte integers from ymm3 

/m256 and ymm2; then each consecutive 8 
differences are summed separately to produce 
four unsigned word integer results.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.128 encoded version: The first source operand and destination register are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: The first source operand and destination register are YMM registers. The second source 
operand is an YMM register or a 256-bit memory location. 

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation

PSADBW (when using 64-bit operands)

TEMP0 ← ABS(DEST[7:0] − SRC[7:0]);

(* Repeat operation for bytes 2 through 6 *)

TEMP7 ← ABS(DEST[63:56] − SRC[63:56]);

DEST[15:0] ← SUM(TEMP0:TEMP7);

DEST[63:16] ← 000000000000H;

PSADBW (when using 128-bit operands)

TEMP0 ← ABS(DEST[7:0] − SRC[7:0]);

(* Repeat operation for bytes 2 through 14 *)

TEMP15 ← ABS(DEST[127:120] − SRC[127:120]);

DEST[15:0] ← SUM(TEMP0:TEMP7);

DEST[63:16] ← 000000000000H;

DEST[79:64] ← SUM(TEMP8:TEMP15);

DEST[127:80] ← 000000000000H;

DEST[VLMAX-1:128] (Unmodified)

VPSADBW (VEX.128 encoded version)

TEMP0 Å ABS(SRC1[7:0] - SRC2[7:0])

(* Repeat operation for bytes 2 through 14 *)

TEMP15 Å ABS(SRC1[127:120] - SRC2[127:120])

DEST[15:0] ÅSUM(TEMP0:TEMP7)

DEST[63:16] Å 000000000000H

DEST[79:64] Å SUM(TEMP8:TEMP15)

DEST[127:80] Å 00000000000

DEST[VLMAX-1:128] Å 0

VPSADBW (VEX.256 encoded version)

TEMP0 Å ABS(SRC1[7:0] - SRC2[7:0])

(* Repeat operation for bytes 2 through 30*)

TEMP31 Å ABS(SRC1[255:248] - SRC2[255:248])

DEST[15:0] ÅSUM(TEMP0:TEMP7)

Figure 4-10.  PSADBW Instruction Operation Using 64-bit Operands

X3 X2 X1 X0SRC

DEST

TEMP

X4X5X6X7

Y3 Y2 Y1 Y0Y4Y5Y6Y7

ABS(X0:Y0)ABS(X7:Y7) ABS(X6:Y6) ABS(X5:Y5) ABS(X4:Y4) ABS(X3:Y3) ABS(X2:Y2) ABS(X1:Y1)

DEST 00H 00H00H00H00H00H SUM(TEMP7...TEMP0)
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DEST[63:16] Å 000000000000H

DEST[79:64] Å SUM(TEMP8:TEMP15)

DEST[127:80] Å 00000000000H

DEST[143:128] ÅSUM(TEMP16:TEMP23)

DEST[191:144] Å 000000000000H

DEST[207:192] Å SUM(TEMP24:TEMP31)

DEST[223:208] Å 00000000000H

Intel C/C++ Compiler Intrinsic Equivalent

PSADBW: __m64 _mm_sad_pu8(__m64 a,__m64 b)

(V)PSADBW: __m128i _mm_sad_epu8(__m128i a, __m128i b)

VPSADBW: __m256i _mm256_sad_epu8( __m256i a, __m256i b)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PSHUFB — Packed Shuffle Bytes

Instruction Operand Encoding

Description 

PSHUFB performs in-place shuffles of bytes in the destination operand (the first operand) according to the shuffle 
control mask in the source operand (the second operand). The instruction permutes the data in the destination 
operand, leaving the shuffle mask unaffected. If the most significant bit (bit[7]) of each byte of the shuffle control 
mask is set, then constant zero is written in the result byte. Each byte in the shuffle control mask forms an index 
to permute the corresponding byte in the destination operand. The value of each index is the least significant 4 bits 
(128-bit operation) or 3 bits (64-bit operation) of the shuffle control byte. When the source operand is a 128-bit 
memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will 
be generated. 

In 64-bit mode, use the REX prefix to access additional registers. 
Legacy SSE version: Both operands can be MMX registers.

128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-
1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: The destination operand is the first operand, the first source operand is the second 
operand, the second source operand is the third operand. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. 
VEX.256 encoded version: Bits (255:128) of the destination YMM register stores the 16-byte shuffle result of the 
upper 16 bytes of the first source operand, using the upper 16-bytes of the second source operand as control 
mask. The value of each index is for the high 128-bit lane is the least significant 4 bits of the respective shuffle 
control byte. The index value selects a source data element within each 128-bit lane.

Note: VEX.L must be 0, otherwise the instruction will #UD.

Operation 

PSHUFB (with 64 bit operands)

for i = 0 to 7 { 

if (SRC[(i * 8)+7] = 1 ) then

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 00 /r1 

PSHUFB mm1, mm2/m64

RM V/V SSSE3 Shuffle bytes in mm1 according to contents of 
mm2/m64. 

66 0F 38 00 /r 

PSHUFB xmm1, xmm2/m128

RM V/V SSSE3 Shuffle bytes in xmm1 according to contents 
of xmm2/m128.

VEX.NDS.128.66.0F38.WIG 00 /r

VPSHUFB xmm1, xmm2, xmm3/m128

RVM V/V AVX Shuffle bytes in xmm2 according to contents 
of xmm3/m128.

VEX.NDS.256.66.0F38.WIG 00 /r

VPSHUFB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Shuffle bytes in ymm2 according to contents 
of ymm3/m256.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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DEST[(i*8)+7...(i*8)+0] ← 0;

else 

index[2..0] ← SRC[(i*8)+2 .. (i*8)+0];

DEST[(i*8)+7...(i*8)+0] ← DEST[(index*8+7)..(index*8+0)];

endif;

}

PSHUFB (with 128 bit operands)

for i = 0 to 15 { 

if (SRC[(i * 8)+7] = 1 ) then

DEST[(i*8)+7..(i*8)+0] ← 0;

 else 
index[3..0] ← SRC[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7..(i*8)+0] ← DEST[(index*8+7)..(index*8+0)];

endif

}

DEST[VLMAX-1:128] Å 0

VPSHUFB (VEX.128 encoded version)

for i = 0 to 15 {

if (SRC2[(i * 8)+7] = 1) then

DEST[(i*8)+7..(i*8)+0] Å 0;

else

index[3..0] Å SRC2[(i*8)+3 .. (i*8)+0];

DEST[(i*8)+7..(i*8)+0] Å SRC1[(index*8+7)..(index*8+0)];

endif

}

DEST[VLMAX-1:128] Å 0

VPSHUFB (VEX.256 encoded version)

for i = 0 to 15 {

if (SRC2[(i * 8)+7] == 1 ) then

DEST[(i*8)+7..(i*8)+0] Å 0;

else

index[3..0] Å SRC2[(i*8)+3 .. (i*8)+0];

DEST[(i*8)+7..(i*8)+0] Å SRC1[(index*8+7)..(index*8+0)];

endif

if (SRC2[128 + (i * 8)+7] == 1 ) then

DEST[128 + (i*8)+7..(i*8)+0] Å 0;

else

index[3..0] Å SRC2[128 + (i*8)+3 .. (i*8)+0];

DEST[128 + (i*8)+7..(i*8)+0] Å SRC1[128 + (index*8+7)..(index*8+0)];

endif

}
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Intel C/C++ Compiler Intrinsic Equivalent

PSHUFB:  __m64 _mm_shuffle_pi8 (__m64 a, __m64 b)

(V)PSHUFB:  __m128i _mm_shuffle_epi8 (__m128i a, __m128i b)

VPSHUFB: __m256i _mm256_shuffle_epi8(__m256i a, __m256i b)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.

Figure 4-11.  PSHUB with 64-Bit Operands

07H         07H              FFH               80H               01H           00H               00H            00H

04H         01H              07H               03H               02H           02H               FFH            01H

04H         04H              00H               00H               FFH           01H               01H            01H

MM2

MM1

MM1
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PSHUFD—Shuffle Packed Doublewords

Instruction Operand Encoding

Description

Copies doublewords from source operand (second operand) and inserts them in the destination operand (first 
operand) at the locations selected with the order operand (third operand). Figure 4-12 shows the operation of the 
256-bit VPSHUFD instruction and the encoding of the order operand. Each 2-bit field in the order operand selects 
the contents of one doubleword location within a 128-bit lane and copy to the target element in the destination 
operand. For example, bits 0 and 1 of the order operand targets the first doubleword element in the low and high 
128-bit lane of the destination operand for 256-bit VPSHUFD. The encoded value of bits 1:0 of the order operand 
(see the field encoding in Figure 4-12) determines which doubleword element (from the respective 128-bit lane) of 
the source operand will be copied to doubleword 0 of the destination operand. 
For 128-bit operation, only the low 128-bit lane are operative. The source operand can be an XMM register or a 
128-bit memory location. The destination operand is an XMM register. The order operand is an 8-bit immediate. 
Note that this instruction permits a doubleword in the source operand to be copied to more than one doubleword 
location in the destination operand.

Figure 4-12.  256-bit VPSHUFD Instruction Operation

The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM 
register. The order operand is an 8-bit immediate. Note that this instruction permits a doubleword in the source 
operand to be copied to more than one doubleword location in the destination operand.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 70 /r ib

PSHUFD xmm1, xmm2/m128, imm8

RMI V/V  SSE2 Shuffle the doublewords in xmm2/m128 
based on the encoding in imm8 and store the 
result in xmm1.

VEX.128.66.0F.WIG 70 /r ib

VPSHUFD xmm1, xmm2/m128, imm8

RMI V/V AVX Shuffle the doublewords in xmm2/m128 
based on the encoding in imm8 and store the 
result in xmm1.

VEX.256.66.0F.WIG 70 /r ib

VPSHUFD ymm1, ymm2/m256, imm8

RMI V/V AVX2 Shuffle the doublewords in ymm2/m256 

based on the encoding in imm8 and store the 
result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

X7 X6 X5 X4SRC

DEST Y7 Y6 Y5 Y4

ORDER
00B - X0
01B - X1
10B - X2
11B - X3

Encoding
of Fields in

ORDER
01234567 Operand

Y3 Y2 Y1 Y0

X3 X2 X1 X0

00B - X4
01B - X5
10B - X6
11B - X7

Encoding
of Fields in

ORDER
Operand
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Legacy SSE instructions: In 64-bit mode using a REX prefix in the form of REX.R permits this instruction to access 
additional registers (XMM8-XMM15).
128-bit Legacy SSE version: Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed. 
VEX.256 encoded version: Bits (255:128) of the destination stores the shuffled results of the upper 16 bytes of the 
source operand using the immediate byte as the order operand.

Note: VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise the instruction will #UD.

Operation

PSHUFD (128-bit Legacy SSE version)

DEST[31:0] Å (SRC >> (ORDER[1:0] * 32))[31:0];

DEST[63:32] Å (SRC >> (ORDER[3:2] * 32))[31:0];

DEST[95:64] Å (SRC >> (ORDER[5:4] * 32))[31:0];

DEST[127:96] Å (SRC >> (ORDER[7:6] * 32))[31:0];

DEST[VLMAX-1:128] (Unmodified)

VPSHUFD (VEX.128 encoded version)

DEST[31:0] Å (SRC >> (ORDER[1:0] * 32))[31:0];

DEST[63:32] Å (SRC >> (ORDER[3:2] * 32))[31:0];

DEST[95:64] Å (SRC >> (ORDER[5:4] * 32))[31:0];

DEST[127:96] Å (SRC >> (ORDER[7:6] * 32))[31:0];

DEST[VLMAX-1:128] Å 0

VPSHUFD (VEX.256 encoded version)

DEST[31:0] Å (SRC[127:0] >> (ORDER[1:0] * 32))[31:0];

DEST[63:32] Å (SRC[127:0] >> (ORDER[3:2] * 32))[31:0];

DEST[95:64] Å (SRC[127:0] >> (ORDER[5:4] * 32))[31:0];

DEST[127:96] Å (SRC[127:0] >> (ORDER[7:6] * 32))[31:0];

DEST[159:128] Å (SRC[255:128] >> (ORDER[1:0] * 32))[31:0];

DEST[191:160] Å (SRC[255:128] >> (ORDER[3:2] * 32))[31:0];

DEST[223:192] Å (SRC[255:128] >> (ORDER[5:4] * 32))[31:0];

DEST[255:224] Å (SRC[255:128] >> (ORDER[7:6] * 32))[31:0];

Intel C/C++ Compiler Intrinsic Equivalent

(V)PSHUFD: __m128i _mm_shuffle_epi32(__m128i a, int n)

VPSHUFD: __m256i _mm256_shuffle_epi32(__m256i a, const int n)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PSHUFHW—Shuffle Packed High Words

Instruction Operand Encoding

Description

Copies words from the high quadword of a 128-bit lane of the source operand and inserts them in the high quad-
word of the destination operand at word locations (of the respective lane) selected with the immediate operand. 
This 256-bit operation is similar to the in-lane operation used by the 256-bit VPSHUFD instruction, which is illus-
trated in Figure 4-12. For 128-bit operation, only the low 128-bit lane is operative. Each 2-bit field in the immediate 
operand selects the contents of one word location in the high quadword of the destination operand. The binary 
encodings of the immediate operand fields select words (0, 1, 2 or 3, 4) from the high quadword of the source 
operand to be copied to the destination operand. The low quadword of the source operand is copied to the low 
quadword of the destination operand, for each 128-bit lane.
Note that this instruction permits a word in the high quadword of the source operand to be copied to more than one 
word location in the high quadword of the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The destination operand is an XMM register. The source operand can be an XMM 
register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: The destination operand is an XMM register. The source operand can be an XMM register 
or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed. VEX.vvvv is 
reserved and must be 1111b, VEX.L must be 0, otherwise the instruction will #UD.
VEX.256 encoded version: The destination operand is an YMM register. The source operand can be an YMM register 
or a 256-bit memory location. 
Note: In VEX encoded versions VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

PSHUFHW (128-bit Legacy SSE version)

DEST[63:0] Å SRC[63:0]

DEST[79:64] Å (SRC >> (imm[1:0] *16))[79:64]

DEST[95:80] Å (SRC >> (imm[3:2] * 16))[79:64]

DEST[111:96] Å (SRC >> (imm[5:4] * 16))[79:64]

DEST[127:112] Å (SRC >> (imm[7:6] * 16))[79:64]

DEST[VLMAX-1:128] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 70 /r ib

PSHUFHW xmm1, xmm2/m128, imm8

RMI V/V SSE2 Shuffle the high words in xmm2/m128 based 
on the encoding in imm8 and store the result 
in xmm1.

VEX.128.F3.0F.WIG 70 /r ib

VPSHUFHW xmm1, xmm2/m128, imm8

RMI V/V AVX Shuffle the high words in xmm2/m128 based 
on the encoding in imm8 and store the result 
in xmm1.

VEX.256.F3.0F.WIG 70 /r ib

VPSHUFHW ymm1, ymm2/m256, imm8

RMI V/V AVX2 Shuffle the high words in ymm2/m256 based 
on the encoding in imm8 and store the result 
in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
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VPSHUFHW (VEX.128 encoded version)

DEST[63:0] Å SRC1[63:0]

DEST[79:64] Å (SRC1 >> (imm[1:0] *16))[79:64]

DEST[95:80] Å (SRC1 >> (imm[3:2] * 16))[79:64]

DEST[111:96] Å (SRC1 >> (imm[5:4] * 16))[79:64]

DEST[127:112] Å (SRC1 >> (imm[7:6] * 16))[79:64]

DEST[VLMAX-1:128] Å 0

VPSHUFHW (VEX.256 encoded version)

DEST[63:0] Å SRC1[63:0]

DEST[79:64] Å (SRC1 >> (imm[1:0] *16))[79:64]

DEST[95:80] Å (SRC1 >> (imm[3:2] * 16))[79:64]

DEST[111:96] Å (SRC1 >> (imm[5:4] * 16))[79:64]

DEST[127:112] Å (SRC1 >> (imm[7:6] * 16))[79:64]

DEST[191:128] Å SRC1[191:128]

DEST[207192] Å (SRC1 >> (imm[1:0] *16))[207:192]

DEST[223:208] Å (SRC1 >> (imm[3:2] * 16))[207:192]

DEST[239:224] Å (SRC1 >> (imm[5:4] * 16))[207:192]

DEST[255:240] Å (SRC1 >> (imm[7:6] * 16))[207:192]

Intel C/C++ Compiler Intrinsic Equivalent

(V)PSHUFHW: __m128i _mm_shufflehi_epi16(__m128i a, int n)

VPSHUFHW: __m256i _mm256_shufflehi_epi16(__m256i a, const int n)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PSHUFLW—Shuffle Packed Low Words

Instruction Operand Encoding

Description

Copies words from the low quadword of a 128-bit lane of the source operand and inserts them in the low quadword 
of the destination operand at word locations (of the respective lane) selected with the immediate operand. The 
256-bit operation is similar to the in-lane operation used by the 256-bit VPSHUFD instruction, which is illustrated 
in Figure 4-12. For 128-bit operation, only the low 128-bit lane is operative. Each 2-bit field in the immediate 
operand selects the contents of one word location in the low quadword of the destination operand. The binary 
encodings of the immediate operand fields select words (0, 1, 2 or 3) from the low quadword of the source operand 
to be copied to the destination operand. The high quadword of the source operand is copied to the high quadword 
of the destination operand, for each 128-bit lane.
Note that this instruction permits a word in the low quadword of the source operand to be copied to more than one 
word location in the low quadword of the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The destination operand is an XMM register. The source operand can be an XMM 
register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destination register remain 
unchanged.
VEX.128 encoded version: The destination operand is an XMM register. The source operand can be an XMM register 
or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed. 
VEX.256 encoded version: The destination operand is an YMM register. The source operand can be an YMM register 
or a 256-bit memory location. 

Note: VEX.vvvv is reserved and must be 1111b, VEX.L must be 0, otherwise instructions will #UD.

Operation

PSHUFLW (128-bit Legacy SSE version)

DEST[15:0] Å (SRC >> (imm[1:0] *16))[15:0]

DEST[31:16] Å (SRC >> (imm[3:2] * 16))[15:0]

DEST[47:32] Å (SRC >> (imm[5:4] * 16))[15:0]

DEST[63:48] Å (SRC >> (imm[7:6] * 16))[15:0]

DEST[127:64] Å SRC[127:64]

DEST[VLMAX-1:128] (Unmodified)

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F2 0F 70 /r ib

PSHUFLW xmm1, xmm2/m128, imm8

RMI V/V SSE2 Shuffle the low words in xmm2/m128 based 
on the encoding in imm8 and store the result 
in xmm1.

VEX.128.F2.0F.WIG 70 /r ib

VPSHUFLW xmm1, xmm2/m128, imm8

RMI V/V AVX Shuffle the low words in xmm2/m128 based 
on the encoding in imm8 and store the result 
in xmm1.

VEX.256.F2.0F.WIG 70 /r ib

VPSHUFLW ymm1, ymm2/m256, imm8

RMI V/V AVX2 Shuffle the low words in ymm2/m256 based 
on the encoding in imm8 and store the result 
in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
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VPSHUFLW (VEX.128 encoded version)

DEST[15:0] Å (SRC1 >> (imm[1:0] *16))[15:0]

DEST[31:16] Å (SRC1 >> (imm[3:2] * 16))[15:0]

DEST[47:32] Å (SRC1 >> (imm[5:4] * 16))[15:0]

DEST[63:48] Å (SRC1 >> (imm[7:6] * 16))[15:0]

DEST[127:64] Å SRC[127:64]

DEST[VLMAX-1:128] Å 0

VPSHUFLW (VEX.256 encoded version)

DEST[15:0] Å (SRC1 >> (imm[1:0] *16))[15:0]

DEST[31:16] Å (SRC1 >> (imm[3:2] * 16))[15:0]

DEST[47:32] Å (SRC1 >> (imm[5:4] * 16))[15:0]

DEST[63:48] Å (SRC1 >> (imm[7:6] * 16))[15:0]

DEST[127:64] Å SRC1[127:64]

DEST[143:128] Å (SRC1 >> (imm[1:0] *16))[143:128]

DEST[159:144] Å (SRC1 >> (imm[3:2] * 16))[143:128]

DEST[175:160] Å (SRC1 >> (imm[5:4] * 16))[143:128]

DEST[191:176] Å (SRC1 >> (imm[7:6] * 16))[143:128]

DEST[255:192] Å SRC1[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

(V)PSHUFLW: __m128i _mm_shufflelo_epi16(__m128i a, int n)

VPSHUFLW: __m256i _mm256_shufflelo_epi16(__m256i a, const int n)

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.

If VEX.vvvv != 1111B.
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PSHUFW—Shuffle Packed Words

Instruction Operand Encoding

Description

Copies words from the source operand (second operand) and inserts them in the destination operand (first 
operand) at word locations selected with the order operand (third operand). This operation is similar to the opera-
tion used by the PSHUFD instruction, which is illustrated in Figure 4-12. For the PSHUFW instruction, each 2-bit 
field in the order operand selects the contents of one word location in the destination operand. The encodings of the 
order operand fields select words from the source operand to be copied to the destination operand.

The source operand can be an MMX technology register or a 64-bit memory location. The destination operand is an 
MMX technology register. The order operand is an 8-bit immediate. Note that this instruction permits a word in the 
source operand to be copied to more than one word location in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

Operation

DEST[15:0] ← (SRC >> (ORDER[1:0] * 16))[15:0];

DEST[31:16] ← (SRC >> (ORDER[3:2] * 16))[15:0];

DEST[47:32] ← (SRC >> (ORDER[5:4] * 16))[15:0];

DEST[63:48] ← (SRC >> (ORDER[7:6] * 16))[15:0];

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFW: __m64 _mm_shuffle_pi16(__m64 a, int n)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Table 22-7, “Exception Conditions for SIMD/MMX Instructions with Memory Reference,” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Opcode/
Instruction

Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 70 /r ib

PSHUFW mm1, mm2/m64, imm8

RMI Valid Valid Shuffle the words in mm2/m64 based on the 
encoding in imm8 and store the result in mm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
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PSIGNB/PSIGNW/PSIGND — Packed SIGN 

Instruction Operand Encoding

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 38 08 /r1 

PSIGNB mm1, mm2/m64

RM V/V SSSE3 Negate/zero/preserve packed byte integers in 
mm1 depending on the corresponding sign in 
mm2/m64.

66 0F 38 08 /r 

PSIGNB xmm1, xmm2/m128

RM V/V SSSE3 Negate/zero/preserve packed byte integers in 
xmm1 depending on the corresponding sign in 
xmm2/m128.

0F 38 09 /r1 

PSIGNW mm1, mm2/m64

RM V/V SSSE3 Negate/zero/preserve packed word integers 
in mm1 depending on the corresponding sign 
in mm2/m128.

66 0F 38 09 /r 

PSIGNW xmm1, xmm2/m128

RM V/V SSSE3 Negate/zero/preserve packed word integers 
in xmm1 depending on the corresponding sign 
in xmm2/m128.

0F 38 0A /r1

PSIGND mm1, mm2/m64

RM V/V SSSE3 Negate/zero/preserve packed doubleword 
integers in mm1 depending on the 
corresponding sign in mm2/m128.

66 0F 38 0A /r 

PSIGND xmm1, xmm2/m128 

RM V/V SSSE3 Negate/zero/preserve packed doubleword 
integers in xmm1 depending on the 
corresponding sign in xmm2/m128. 

VEX.NDS.128.66.0F38.WIG 08 /r

VPSIGNB xmm1, xmm2, xmm3/m128

RVM V/V AVX Negate/zero/preserve packed byte integers in 
xmm2 depending on the corresponding sign in 
xmm3/m128.

VEX.NDS.128.66.0F38.WIG 09 /r

VPSIGNW xmm1, xmm2, xmm3/m128

RVM V/V AVX Negate/zero/preserve packed word integers 
in xmm2 depending on the corresponding sign 
in xmm3/m128.

VEX.NDS.128.66.0F38.WIG 0A /r

VPSIGND xmm1, xmm2, xmm3/m128

RVM V/V AVX Negate/zero/preserve packed doubleword 
integers in xmm2 depending on the 
corresponding sign in xmm3/m128.

VEX.NDS.256.66.0F38.WIG 08 /r

VPSIGNB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Negate packed byte integers in ymm2 if the 
corresponding sign in ymm3/m256 is less 
than zero.

VEX.NDS.256.66.0F38.WIG 09 /r

VPSIGNW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Negate packed 16-bit integers in ymm2 if the 
corresponding sign in ymm3/m256 is less 
than zero.

VEX.NDS.256.66.0F38.WIG 0A /r

VPSIGND ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Negate packed doubleword integers in ymm2 
if the corresponding sign in ymm3/m256 is 
less than zero.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Description 

(V)PSIGNB/(V)PSIGNW/(V)PSIGND negates each data element of the destination operand (the first operand) if the 
signed integer value of the corresponding data element in the source operand (the second operand) is less than 
zero. If the signed integer value of a data element in the source operand is positive, the corresponding data 
element in the destination operand is unchanged. If a data element in the source operand is zero, the corre-
sponding data element in the destination operand is set to zero.

(V)PSIGNB operates on signed bytes. (V)PSIGNW operates on 16-bit signed words. (V)PSIGND operates on signed 
32-bit integers. When the source operand is a 128bit memory operand, the operand must be aligned on a 16-byte 
boundary or a general-protection exception (#GP) will be generated. 

Legacy SSE instructions: Both operands can be MMX registers. In 64-bit mode, use the REX prefix to access addi-
tional registers. 
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-
tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source 
operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are 
zeroed. VEX.L must be 0, otherwise instructions will #UD.
VEX.256 encoded version: The first source and destination operands are YMM registers. The second source 
operand is an YMM register or a 256-bit memory location.

Operation 

PSIGNB (with 64 bit operands)

IF (SRC[7:0] < 0 ) 

DEST[7:0] ← Neg(DEST[7:0]) 

ELSEIF (SRC[7:0] = 0 ) 

DEST[7:0] ← 0 

ELSEIF (SRC[7:0] > 0 ) 

DEST[7:0] ← DEST[7:0] 

Repeat operation for 2nd through 7th bytes 

IF (SRC[63:56] < 0 )

DEST[63:56] ← Neg(DEST[63:56]) 

ELSEIF (SRC[63:56] = 0 ) 

DEST[63:56] ← 0 

ELSEIF (SRC[63:56] > 0 ) 

DEST[63:56] ← DEST[63:56] 

PSIGNB (with 128 bit operands)

IF (SRC[7:0] < 0 ) 

DEST[7:0] ← Neg(DEST[7:0]) 

ELSEIF (SRC[7:0] = 0 )

DEST[7:0] ← 0 

ELSEIF (SRC[7:0] > 0 ) 

DEST[7:0] ← DEST[7:0] 

Repeat operation for 2nd through 15th bytes 

IF (SRC[127:120] < 0 ) 

DEST[127:120] ← Neg(DEST[127:120]) 

ELSEIF (SRC[127:120] = 0 ) 

DEST[127:120] ← 0 

ELSEIF (SRC[127:120] > 0 ) 

DEST[127:120] ← DEST[127:120] 
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VPSIGNB (VEX.128 encoded version)

DEST[127:0] ÅBYTE_SIGN(SRC1, SRC2)

DEST[VLMAX-1:128] Å 0

VPSIGNB (VEX.256 encoded version)

DEST[255:0] ÅBYTE_SIGN_256b(SRC1, SRC2)

PSIGNW (with 64 bit operands)

IF (SRC[15:0] < 0 ) 

DEST[15:0] ← Neg(DEST[15:0]) 

ELSEIF (SRC[15:0] = 0 ) 

DEST[15:0] ← 0 

ELSEIF (SRC[15:0] > 0 ) 

DEST[15:0] ← DEST[15:0] 

Repeat operation for 2nd through 3rd words 

IF (SRC[63:48] < 0 ) 

DEST[63:48] ← Neg(DEST[63:48]) 

ELSEIF (SRC[63:48] = 0 ) 

DEST[63:48] ← 0 

ELSEIF (SRC[63:48] > 0 ) 

DEST[63:48] ← DEST[63:48] 

PSIGNW (with 128 bit operands)

IF (SRC[15:0] < 0 ) 

DEST[15:0] ← Neg(DEST[15:0])

ELSEIF (SRC[15:0] = 0 ) 

DEST[15:0] ← 0 

ELSEIF (SRC[15:0] > 0 ) 

DEST[15:0] ← DEST[15:0] 

Repeat operation for 2nd through 7th words 

IF (SRC[127:112] < 0 ) 

DEST[127:112] ← Neg(DEST[127:112]) 

ELSEIF (SRC[127:112] = 0 ) 

DEST[127:112] ← 0 

ELSEIF (SRC[127:112] > 0 ) 

DEST[127:112] ← DEST[127:112] 

VPSIGNW (VEX.128 encoded version)

DEST[127:0] ÅWORD_SIGN(SRC1, SRC2)

DEST[VLMAX-1:128] Å 0

VPSIGNW (VEX.256 encoded version)

DEST[255:0] ÅWORD_SIGN(SRC1, SRC2)

PSIGND (with 64 bit operands)

IF (SRC[31:0] < 0 ) 

DEST[31:0] ← Neg(DEST[31:0]) 

ELSEIF (SRC[31:0] = 0 ) 

DEST[31:0] ← 0 

ELSEIF (SRC[31:0] > 0 ) 

DEST[31:0] ← DEST[31:0]

IF (SRC[63:32] < 0 ) 

DEST[63:32] ← Neg(DEST[63:32]) 

ELSEIF (SRC[63:32] = 0 ) 

DEST[63:32] ← 0 
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ELSEIF (SRC[63:32] > 0 ) 

DEST[63:32] ← DEST[63:32] 

PSIGND (with 128 bit operands)

IF (SRC[31:0] < 0 ) 

DEST[31:0] ← Neg(DEST[31:0]) 

ELSEIF (SRC[31:0] = 0 ) 

DEST[31:0] ← 0 

ELSEIF (SRC[31:0] > 0 ) 

DEST[31:0] ← DEST[31:0] 

Repeat operation for 2nd through 3rd double words 

IF (SRC[127:96] < 0 ) 

DEST[127:96] ← Neg(DEST[127:96]) 

ELSEIF (SRC[127:96] = 0 ) 

DEST[127:96] ← 0 

ELSEIF (SRC[127:96] > 0 ) 

DEST[127:96] ← DEST[127:96] 

VPSIGND (VEX.128 encoded version)

DEST[127:0] ÅDWORD_SIGN(SRC1, SRC2)

DEST[VLMAX-1:128] Å 0

VPSIGND (VEX.256 encoded version)

DEST[255:0] ÅDWORD_SIGN(SRC1, SRC2)

Intel C/C++ Compiler Intrinsic Equivalent

PSIGNB:  __m64 _mm_sign_pi8 (__m64 a, __m64 b)

(V)PSIGNB:  __m128i _mm_sign_epi8 (__m128i a, __m128i b)

VPSIGNB: __m256i _mm256_sign_epi8 (__m256i a, __m256i b)

PSIGNW:  __m64 _mm_sign_pi16 (__m64 a, __m64 b)

(V)PSIGNW:  __m128i _mm_sign_epi16 (__m128i a, __m128i b)

VPSIGNW: __m256i _mm256_sign_epi16 (__m256i a, __m256i b)

PSIGND:  __m64 _mm_sign_pi32 (__m64 a, __m64 b)

(V)PSIGND:  __m128i _mm_sign_epi32 (__m128i a, __m128i b)

VPSIGND: __m256i _mm256_sign_epi32 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PSLLDQ—Shift Double Quadword Left Logical

Instruction Operand Encoding

Description

Shifts the destination operand (first operand) to the left by the number of bytes specified in the count operand 
(second operand). The empty low-order bytes are cleared (set to all 0s). If the value specified by the count 
operand is greater than 15, the destination operand is set to all 0s. The count operand is an 8-bit immediate.
128-bit Legacy SSE version: The source and destination operands are the same. Bits (VLMAX-1:128) of the corre-
sponding YMM destination register remain unchanged.
VEX.128 encoded version: The source and destination operands are XMM registers. Bits (VLMAX-1:128) of the 
destination YMM register are zeroed. 
VEX.256 encoded version: The source operand is a YMM register. The destination operand is a YMM register. The 
count operand applies to both the low and high 128-bit lanes.

Note: VEX.vvvv encodes the destination register, and VEX.B + ModRM.r/m encodes the source register. VEX.L must 
be 0, otherwise instructions will #UD.

Operation

PSLLDQ(128-bit Legacy SSE version)

TEMP Å COUNT

IF (TEMP > 15) THEN TEMP Å 16; FI

DEST Å DEST << (TEMP * 8)

DEST[VLMAX-1:128] (Unmodified)

VPSLLDQ (VEX.128 encoded version)

TEMP Å COUNT

IF (TEMP > 15) THEN TEMP Å 16; FI

DEST Å SRC << (TEMP * 8)

DEST[VLMAX-1:128] Å 0

VPSLLDQ (VEX.256 encoded version)

TEMP Å COUNT

IF (TEMP > 15) THEN TEMP Á 16; FI

DEST[127:0] Å SRC[127:0] << (TEMP * 8)

DEST[255:128] Å SRC[255:128] << (TEMP * 8)

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 73 /7 ib

PSLLDQ xmm1, imm8 

MI V/V SSE2 Shift xmm1 left by imm8 bytes while shifting 
in 0s.

VEX.NDD.128.66.0F.WIG 73 /7 ib

VPSLLDQ xmm1, xmm2, imm8

VMI V/V AVX Shift xmm2 left by imm8 bytes while shifting 
in 0s and store result in xmm1.

VEX.NDD.256.66.0F.WIG 73 /7 ib

VPSLLDQ ymm1, ymm2, imm8

VMI V/V AVX2 Shift ymm2 left by imm8 bytes while shifting 
in 0s and store result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MI ModRM:r/m (r, w) imm8 NA NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA



PSLLDQ—Shift Double Quadword Left Logical

INSTRUCTION SET REFERENCE, N-Z

4-218 Vol. 2B

Intel C/C++ Compiler Intrinsic Equivalent

(V)PSLLDQ: __m128i _mm_slli_si128 ( __m128i a, int imm)

VPSLLDQ: __m256i _mm256_slli_si256 ( __m256i a, const int imm)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 7; additionally
#UD If VEX.L = 1.
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PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F F1 /r1

PSLLW mm, mm/m64

RM V/V MMX Shift words in mm left mm/m64 while shifting 
in 0s.

66 0F F1 /r

PSLLW xmm1, xmm2/m128

RM V/V SSE2 Shift words in xmm1 left by xmm2/m128 
while shifting in 0s.

0F 71 /6 ib

PSLLW mm1, imm8

MI V/V MMX Shift words in mm left by imm8 while shifting 
in 0s.

66 0F 71 /6 ib

PSLLW xmm1, imm8

MI V/V SSE2 Shift words in xmm1 left by imm8 while 
shifting in 0s.

0F F2 /r1

PSLLD mm, mm/m64

RM V/V MMX Shift doublewords in mm left by mm/m64 
while shifting in 0s.

66 0F F2 /r

PSLLD xmm1, xmm2/m128

RM V/V SSE2 Shift doublewords in xmm1 left by 
xmm2/m128 while shifting in 0s.

0F 72 /6 ib1

PSLLD mm, imm8

MI V/V MMX Shift doublewords in mm left by imm8 while 
shifting in 0s.

66 0F 72 /6 ib

PSLLD xmm1, imm8

MI V/V SSE2 Shift doublewords in xmm1 left by imm8 while 
shifting in 0s.

0F F3 /r1

PSLLQ mm, mm/m64

RM V/V MMX Shift quadword in mm left by mm/m64 while 
shifting in 0s.

66 0F F3 /r

PSLLQ xmm1, xmm2/m128

RM V/V SSE2 Shift quadwords in xmm1 left by xmm2/m128 
while shifting in 0s.

0F 73 /6 ib1

PSLLQ mm, imm8

MI V/V MMX Shift quadword in mm left by imm8 while 
shifting in 0s.

66 0F 73 /6 ib

PSLLQ xmm1, imm8

MI V/V SSE2 Shift quadwords in xmm1 left by imm8 while 
shifting in 0s.

VEX.NDS.128.66.0F.WIG F1 /r

VPSLLW xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift words in xmm2 left by amount specified 
in xmm3/m128 while shifting in 0s.

VEX.NDD.128.66.0F.WIG 71 /6 ib

VPSLLW xmm1, xmm2, imm8

VMI V/V AVX Shift words in xmm2 left by imm8 while 
shifting in 0s.

VEX.NDS.128.66.0F.WIG F2 /r

VPSLLD xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift doublewords in xmm2 left by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.NDD.128.66.0F.WIG 72 /6 ib

VPSLLD xmm1, xmm2, imm8

VMI V/V AVX Shift doublewords in xmm2 left by imm8 
while shifting in 0s.

VEX.NDS.128.66.0F.WIG F3 /r

VPSLLQ xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift quadwords in xmm2 left by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.NDD.128.66.0F.WIG 73 /6 ib

VPSLLQ xmm1, xmm2, imm8

VMI V/V AVX Shift quadwords in xmm2 left by imm8 while 
shifting in 0s.

VEX.NDS.256.66.0F.WIG F1 /r

VPSLLW ymm1, ymm2, xmm3/m128

RVM V/V AVX2 Shift words in ymm2 left by amount specified 
in xmm3/m128 while shifting in 0s.

VEX.NDD.256.66.0F.WIG 71 /6 ib

VPSLLW ymm1, ymm2, imm8

VMI V/V AVX2 Shift words in ymm2 left by imm8 while 
shifting in 0s.
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Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in the destination operand (first 
operand) to the left by the number of bits specified in the count operand (second operand). As the bits in the data 
elements are shifted left, the empty low-order bits are cleared (set to 0). If the value specified by the count 
operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quadword), then the destination operand 
is set to all 0s. Figure 4-13 gives an example of shifting words in a 64-bit operand. 

The (V)PSLLW instruction shifts each of the words in the destination operand to the left by the number of bits spec-
ified in the count operand; the (V)PSLLD instruction shifts each of the doublewords in the destination operand; and 
the (V)PSLLQ instruction shifts the quadword (or quadwords) in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

Legacy SSE instructions: The destination operand is an MMX technology register; the count operand can be either 
an MMX technology register or an 64-bit memory location.
128-bit Legacy SSE version: The destination and first source operands are XMM registers. Bits (VLMAX-1:128) of 
the corresponding YMM destination register remain unchanged. The count operand can be either an XMM register 
or a 128-bit memory location or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded 
but the upper 64 bits are ignored.

VEX.NDS.256.66.0F.WIG F2 /r

VPSLLD ymm1, ymm2, xmm3/m128

RVM V/V AVX2 Shift doublewords in ymm2 left by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.NDD.256.66.0F.WIG 72 /6 ib

VPSLLD ymm1, ymm2, imm8

VMI V/V AVX2 Shift doublewords in ymm2 left by imm8 while 
shifting in 0s.

VEX.NDS.256.66.0F.WIG F3 /r

VPSLLQ ymm1, ymm2, xmm3/m128

RVM V/V AVX2 Shift quadwords in ymm2 left by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.NDD.256.66.0F.WIG 73 /6 ib

VPSLLQ ymm1, ymm2, imm8

VMI V/V AVX2 Shift quadwords in ymm2 left by imm8 while 
shifting in 0s.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA

Figure 4-13.  PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand

DEST
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X1 << COUNTX2 << COUNTX3 << COUNT
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Extension
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VEX.128 encoded version: The destination and first source operands are XMM registers. Bits (VLMAX-1:128) of the 
destination YMM register are zeroed. The count operand can be either an XMM register or a 128-bit memory loca-
tion or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded but the upper 64 bits are 
ignored.
VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be 
either an XMM register or a 128-bit memory location or an 8-bit immediate.

Note: For shifts with an immediate count (VEX.128.66.0F 71-73 /6), VEX.vvvv encodes the destination register, 
and VEX.B + ModRM.r/m encodes the source register. VEX.L must be 0, otherwise instructions will #UD. 

Operation

PSLLW (with 64-bit operand)

IF (COUNT > 15)

THEN 

DEST[64:0] ← 0000000000000000H;

ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] << COUNT);

(* Repeat shift operation for 2nd and 3rd words *)

DEST[63:48] ← ZeroExtend(DEST[63:48] << COUNT);

FI;

PSLLD (with 64-bit operand)

IF (COUNT > 31)

THEN 

DEST[64:0] ← 0000000000000000H;

ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] << COUNT);

DEST[63:32] ← ZeroExtend(DEST[63:32] << COUNT);

FI;

PSLLQ (with 64-bit operand)

IF (COUNT > 63)

THEN 

DEST[64:0] ← 0000000000000000H;

ELSE

DEST ← ZeroExtend(DEST << COUNT);

FI;

PSLLW (with 128-bit operand)

COUNT ← COUNT_SOURCE[63:0];

IF (COUNT > 15)

THEN 

DEST[128:0] ← 00000000000000000000000000000000H;

ELSE

DEST[15:0]  ← ZeroExtend(DEST[15:0] << COUNT);

(* Repeat shift operation for 2nd through 7th words *)

DEST[127:112] ← ZeroExtend(DEST[127:112] << COUNT);

FI;

PSLLD (with 128-bit operand)

COUNT ← COUNT_SOURCE[63:0];

IF (COUNT > 31)

THEN 

DEST[128:0] ← 00000000000000000000000000000000H;

ELSE

DEST[31:0]  ← ZeroExtend(DEST[31:0] << COUNT);
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(* Repeat shift operation for 2nd and 3rd doublewords *)

DEST[127:96] ← ZeroExtend(DEST[127:96] << COUNT);

FI;

PSLLQ (with 128-bit operand)

COUNT ← COUNT_SOURCE[63:0];

IF (COUNT > 63)

THEN 

DEST[128:0] ← 00000000000000000000000000000000H;

ELSE

DEST[63:0]  ← ZeroExtend(DEST[63:0] << COUNT);

DEST[127:64] ← ZeroExtend(DEST[127:64] << COUNT);

FI;

PSLLW (xmm, xmm, xmm/m128)

DEST[127:0] Å LOGICAL_LEFT_SHIFT_WORDS(DEST, SRC)

DEST[VLMAX-1:128] (Unmodified)

PSLLW (xmm, imm8)

DEST[127:0] Å LOGICAL_LEFT_SHIFT_WORDS(DEST, imm8)

DEST[VLMAX-1:128] (Unmodified)

VPSLLD (xmm, xmm, xmm/m128)

DEST[127:0] Å LOGICAL_LEFT_SHIFT_DWORDS(SRC1, SRC2)

DEST[VLMAX-1:128] Å 0

VPSLLD (xmm, imm8)

DEST[127:0] Å LOGICAL_LEFT_SHIFT_DWORDS(SRC1, imm8)

DEST[VLMAX-1:128] Å 0

PSLLD (xmm, xmm, xmm/m128)

DEST[127:0] Å LOGICAL_LEFT_SHIFT_DWORDS(DEST, SRC)

DEST[VLMAX-1:128] (Unmodified)

PSLLD (xmm, imm8)

DEST[127:0] Å LOGICAL_LEFT_SHIFT_DWORDS(DEST, imm8)

DEST[VLMAX-1:128] (Unmodified)

VPSLLQ (xmm, xmm, xmm/m128)

DEST[127:0] Å LOGICAL_LEFT_SHIFT_QWORDS(SRC1, SRC2)

DEST[VLMAX-1:128] Å 0

VPSLLQ (xmm, imm8)

DEST[127:0] Å LOGICAL_LEFT_SHIFT_QWORDS(SRC1, imm8)

DEST[VLMAX-1:128] Å 0

PSLLQ (xmm, xmm, xmm/m128)

DEST[127:0] Å LOGICAL_LEFT_SHIFT_QWORDS(DEST, SRC)

DEST[VLMAX-1:128] (Unmodified)

PSLLQ (xmm, imm8)

DEST[127:0] Å LOGICAL_LEFT_SHIFT_QWORDS(DEST, imm8)

DEST[VLMAX-1:128] (Unmodified)
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VPSLLW (xmm, xmm, xmm/m128)

DEST[127:0] Å LOGICAL_LEFT_SHIFT_WORDS(SRC1, SRC2)

DEST[VLMAX-1:128] Å 0

VPSLLW (xmm, imm8)

DEST[127:0] Å LOGICAL_LEFT_SHIFT_WORDS(SRC1, imm8)

DEST[VLMAX-1:128] Å 0

PSLLW (xmm, xmm, xmm/m128)

DEST[127:0] Å LOGICAL_LEFT_SHIFT_WORDS(DEST, SRC)

DEST[VLMAX-1:128] (Unmodified)

PSLLW (xmm, imm8)

DEST[127:0] Å LOGICAL_LEFT_SHIFT_WORDS(DEST, imm8)

DEST[VLMAX-1:128] (Unmodified)

VPSLLD (xmm, xmm, xmm/m128)

DEST[127:0] Å LOGICAL_LEFT_SHIFT_DWORDS(SRC1, SRC2)

DEST[VLMAX-1:128] Å 0

VPSLLD (xmm, imm8)

DEST[127:0] Å LOGICAL_LEFT_SHIFT_DWORDS(SRC1, imm8)

DEST[VLMAX-1:128] Å 0

VPSLLW (ymm, ymm, xmm/m128)

DEST[255:0] Å LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1, SRC2)

VPSLLW (ymm, imm8)

DEST[255:0] Å LOGICAL_LEFT_SHIFT_WORD_256bS(SRC1, imm8)

VPSLLD (ymm, ymm, xmm/m128)

DEST[255:0] Å LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1, SRC2)

VPSLLD (ymm, imm8)

DEST[127:0] Å LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1, imm8)

VPSLLQ (ymm, ymm, xmm/m128)

DEST[255:0] Å LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1, SRC2)

VPSLLQ (ymm, imm8)

DEST[255:0] Å LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1, imm8)

Intel C/C++ Compiler Intrinsic Equivalents

PSLLW: __m64 _mm_slli_pi16 (__m64 m, int count)

PSLLW: __m64 _mm_sll_pi16(__m64 m, __m64 count)

(V)PSLLW: __m128i _mm_slli_pi16(__m64 m, int count)

(V)PSLLW: __m128i _mm_slli_pi16(__m128i m, __m128i count)

VPSLLW: __m256i _mm256_slli_epi16 (__m256i m, int count)

VPSLLW: __m256i _mm256_sll_epi16 (__m256i m, __m128i count)

PSLLD: __m64 _mm_slli_pi32(__m64 m, int  count)

PSLLD: __m64 _mm_sll_pi32(__m64 m, __m64 count)
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(V)PSLLD: __m128i _mm_slli_epi32(__m128i m, int  count)

(V)PSLLD: __m128i _mm_sll_epi32(__m128i m, __m128i count)

VPSLLD: __m256i _mm256_slli_epi32 (__m256i m, int count)

VPSLLD: __m256i _mm256_sll_epi32 (__m256i m, __m128i count)

PSLLQ: __m64 _mm_slli_si64(__m64 m, int  count)

PSLLQ: __m64 _mm_sll_si64(__m64 m, __m64 count)

(V)PSLLQ: __m128i _mm_slli_epi64(__m128i m, int  count)

(V)PSLLQ: __m128i _mm_sll_epi64(__m128i m, __m128i count)

VPSLLQ: __m256i _mm256_slli_epi64 (__m256i m, int count)

VPSLLQ: __m256i _mm256_sll_epi64 (__m256i m, __m128i count)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 4 and 7 for non-VEX-encoded instructions; additionally
#UD If VEX.L = 1.
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PSRAW/PSRAD—Shift Packed Data Right Arithmetic

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F E1 /r1

PSRAW mm, mm/m64

RM V/V MMX Shift words in mm right by mm/m64 while 
shifting in sign bits.

66 0F E1 /r

PSRAW xmm1, xmm2/m128

RM V/V SSE2 Shift words in xmm1 right by xmm2/m128 
while shifting in sign bits.

0F 71 /4 ib1

PSRAW mm, imm8

MI V/V MMX Shift words in mm right by imm8 while shifting 
in sign bits

66 0F 71 /4 ib

PSRAW xmm1, imm8

MI V/V SSE2 Shift words in xmm1 right by imm8 while 
shifting in sign bits

0F E2 /r1

PSRAD mm, mm/m64

RM V/V MMX Shift doublewords in mm right by mm/m64 
while shifting in sign bits.

66 0F E2 /r

PSRAD xmm1, xmm2/m128

RM V/V SSE2 Shift doubleword in xmm1 right by xmm2 

/m128 while shifting in sign bits.

0F 72 /4 ib1

PSRAD mm, imm8

MI V/V MMX Shift doublewords in mm right by imm8 while 
shifting in sign bits.

66 0F 72 /4 ib

PSRAD xmm1, imm8

MI V/V SSE2 Shift doublewords in xmm1 right by imm8 
while shifting in sign bits.

VEX.NDS.128.66.0F.WIG E1 /r

VPSRAW xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift words in xmm2 right by amount specified 
in xmm3/m128 while shifting in sign bits.

VEX.NDD.128.66.0F.WIG 71 /4 ib

VPSRAW xmm1, xmm2, imm8

VMI V/V AVX Shift words in xmm2 right by imm8 while 
shifting in sign bits.

VEX.NDS.128.66.0F.WIG E2 /r

VPSRAD xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift doublewords in xmm2 right by amount 
specified in xmm3/m128 while shifting in sign 
bits.

VEX.NDD.128.66.0F.WIG 72 /4 ib

VPSRAD xmm1, xmm2, imm8

VMI V/V AVX Shift doublewords in xmm2 right by imm8 
while shifting in sign bits.

VEX.NDS.256.66.0F.WIG E1 /r

VPSRAW ymm1, ymm2, xmm3/m128

RVM V/V AVX2 Shift words in ymm2 right by amount specified 
in xmm3/m128 while shifting in sign bits.

VEX.NDD.256.66.0F.WIG 71 /4 ib

VPSRAW ymm1, ymm2, imm8

VMI V/V AVX2 Shift words in ymm2 right by imm8 while 
shifting in sign bits.

VEX.NDS.256.66.0F.WIG E2 /r

VPSRAD ymm1, ymm2, xmm3/m128

RVM V/V AVX2 Shift doublewords in ymm2 right by amount 
specified in xmm3/m128 while shifting in sign 
bits.

VEX.NDD.256.66.0F.WIG 72 /4 ib

VPSRAD ymm1, ymm2, imm8

VMI V/V AVX2 Shift doublewords in ymm2 right by imm8 

while shifting in sign bits.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.
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Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words or doublewords) in the destination operand (first operand) to 
the right by the number of bits specified in the count operand (second operand). As the bits in the data elements 
are shifted right, the empty high-order bits are filled with the initial value of the sign bit of the data element. If the 
value specified by the count operand is greater than 15 (for words) or 31 (for doublewords), each destination data 
element is filled with the initial value of the sign bit of the element. (Figure 4-14 gives an example of shifting words 
in a 64-bit operand.)

Note that only the first 64-bits of a 128-bit count operand are checked to compute the count. If the second source 
operand is a memory address, 128 bits are loaded.

The (V)PSRAW instruction shifts each of the words in the destination operand to the right by the number of bits 
specified in the count operand, and the (V)PSRAD instruction shifts each of the doublewords in the destination 
operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

Legacy SSE instructions: The destination operand is an MMX technology register; the count operand can be either 
an MMX technology register or an 64-bit memory location. 
128-bit Legacy SSE version: The destination and first source operands are XMM registers. Bits (VLMAX-1:128) of 
the corresponding YMM destination register remain unchanged. The count operand can be either an XMM register 
or a 128-bit memory location or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded 
but the upper 64 bits are ignored.
VEX.128 encoded version: The destination and first source operands are XMM registers. Bits (VLMAX-1:128) of the 
destination YMM register are zeroed. The count operand can be either an XMM register or a 128-bit memory loca-
tion or an 8-bit immediate. If the count operand is a memory address, 128 bits are loaded but the upper 64 bits are 
ignored.
VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be 
either an XMM register or a 128-bit memory location or an 8-bit immediate.

Note: For shifts with an immediate count (VEX.128.66.0F 71-73 /4), VEX.vvvv encodes the destination register, 
and VEX.B + ModRM.r/m encodes the source register. VEX.L must be 0, otherwise instructions will #UD.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA

Figure 4-14.  PSRAW and PSRAD Instruction Operation Using a 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Right

X0

X0 >> COUNT

X3 X2 X1

X1 >> COUNTX2 >> COUNTX3 >> COUNT

with Sign
Extension
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Operation

PSRAW (with 64-bit operand)

IF (COUNT > 15)

THEN COUNT ← 16;

FI;

DEST[15:0] ← SignExtend(DEST[15:0] >> COUNT);

(* Repeat shift operation for 2nd and 3rd words *)

DEST[63:48] ← SignExtend(DEST[63:48] >> COUNT);

PSRAD (with 64-bit operand)

IF (COUNT > 31)

THEN COUNT ← 32;

FI;

DEST[31:0] ← SignExtend(DEST[31:0] >> COUNT);

DEST[63:32] ← SignExtend(DEST[63:32] >> COUNT);

PSRAW (with 128-bit operand)

COUNT ← COUNT_SOURCE[63:0];

IF (COUNT > 15)

THEN COUNT ← 16;

FI;

DEST[15:0]  ← SignExtend(DEST[15:0] >> COUNT);

(* Repeat shift operation for 2nd through 7th words *)

DEST[127:112] ← SignExtend(DEST[127:112] >> COUNT);

PSRAD (with 128-bit operand)

COUNT ← COUNT_SOURCE[63:0];

IF (COUNT > 31)

THEN COUNT ← 32;

FI;

DEST[31:0]  ← SignExtend(DEST[31:0] >> COUNT);

(* Repeat shift operation for 2nd and 3rd doublewords *)

DEST[127:96] ← SignExtend(DEST[127:96] >>COUNT);

PSRAW (xmm, xmm, xmm/m128)

DEST[127:0] Å ARITHMETIC_RIGHT_SHIFT_WORDS(DEST, SRC)

DEST[VLMAX-1:128] (Unmodified)

PSRAW (xmm, imm8)

DEST[127:0] Å ARITHMETIC_RIGHT_SHIFT_WORDS(DEST, imm8)

DEST[VLMAX-1:128] (Unmodified)

VPSRAW (xmm, xmm, xmm/m128)

DEST[127:0] Å ARITHMETIC_RIGHT_SHIFT_WORDS(SRC1, SRC2)

DEST[VLMAX-1:128] Å 0

VPSRAW (xmm, imm8)

DEST[127:0] Å ARITHMETIC_RIGHT_SHIFT_WORDS(SRC1, imm8)

DEST[VLMAX-1:128] Å 0



PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, N-Z

4-228 Vol. 2B

PSRAD (xmm, xmm, xmm/m128)

DEST[127:0] Å ARITHMETIC_RIGHT_SHIFT_DWORDS(DEST, SRC)

DEST[VLMAX-1:128] (Unmodified)

PSRAD (xmm, imm8)

DEST[127:0] Å ARITHMETIC_RIGHT_SHIFT_DWORDS(DEST, imm8)

DEST[VLMAX-1:128] (Unmodified)

VPSRAD (xmm, xmm, xmm/m128)

DEST[127:0] Å ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC1, SRC2)

DEST[VLMAX-1:128] Å 0

VPSRAD (xmm, imm8)

DEST[127:0] Å ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC1, imm8)

DEST[VLMAX-1:128] Å 0

VPSRAW (ymm, ymm, xmm/m128)

DEST[255:0] Å ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1, SRC2)

VPSRAW (ymm, imm8)

DEST[255:0] Å ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1, imm8)

VPSRAD (ymm, ymm, xmm/m128)

DEST[255:0] Å ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC1, SRC2)

VPSRAD (ymm, imm8)

DEST[255:0] Å ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC1, imm8)

Intel C/C++ Compiler Intrinsic Equivalents

PSRAW: __m64 _mm_srai_pi16 (__m64 m, int count)

PSRAW: __m64 _mm_sra_pi16 (__m64 m, __m64 count)

(V)PSRAW: __m128i _mm_srai_epi16(__m128i m, int  count)

(V)PSRAW: __m128i _mm_sra_epi16(__m128i m, __m128i count)

VPSRAW: __m256i _mm256_srai_epi16 (__m256i m, int count)

VPSRAW: __m256i _mm256_sra_epi16 (__m256i m, __m128i count)

PSRAD: __m64 _mm_srai_pi32 (__m64 m, int count)

PSRAD: __m64 _mm_sra_pi32 (__m64 m, __m64 count)

(V)PSRAD: __m128i _mm_srai_epi32 (__m128i m, int  count)

(V)PSRAD: __m128i _mm_sra_epi32 (__m128i m, __m128i count)

VPSRAD: __m256i _mm256_srai_epi32 (__m256i m, int count)

VPSRAD: __m256i _mm256_sra_epi32 (__m256i m, __m128i count)

Flags Affected

None.

Numeric Exceptions

None.
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Other Exceptions

See Exceptions Type 4 and 7 for non-VEX-encoded instructions; additionally
#UD If VEX.L = 1.
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PSRLDQ—Shift Double Quadword Right Logical

Instruction Operand Encoding

Description

Shifts the destination operand (first operand) to the right by the number of bytes specified in the count operand 
(second operand). The empty high-order bytes are cleared (set to all 0s). If the value specified by the count 
operand is greater than 15, the destination operand is set to all 0s. The count operand is an 8-bit immediate.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The source and destination operands are the same. Bits (VLMAX-1:128) of the corre-
sponding YMM destination register remain unchanged.
VEX.128 encoded version: The source and destination operands are XMM registers. Bits (VLMAX-1:128) of the 
destination YMM register are zeroed. 
VEX.256 encoded version: The source operand is a YMM register. The destination operand is a YMM register. The 
count operand applies to both the low and high 128-bit lanes.

Note: VEX.vvvv encodes the destination register, and VEX.B + ModRM.r/m encodes the source register. VEX.L must 
be 0, otherwise instructions will #UD.

Operation

PSRLDQ(128-bit Legacy SSE version)

TEMP Å COUNT

IF (TEMP > 15) THEN TEMP Å 16; FI

DEST Å DEST >> (TEMP * 8)

DEST[VLMAX-1:128] (Unmodified)

VPSRLDQ (VEX.128 encoded version)

TEMP Å COUNT

IF (TEMP > 15) THEN TEMP Å 16; FI

DEST Å SRC >> (TEMP * 8)

DEST[VLMAX-1:128] Å 0

VPSRLDQ (VEX.256 encoded version)

TEMP Å COUNT

IF (TEMP > 15) THEN TEMP Å 16; FI

DEST[127:0] Å SRC[127:0] >> (TEMP * 8)

DEST[255:128] Å SRC[255:128] >> (TEMP * 8)

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 73 /3 ib

PSRLDQ xmm1, imm8

MI V/V SSE2 Shift xmm1 right by imm8 while shifting in 0s.

VEX.NDD.128.66.0F.WIG 73 /3 ib

VPSRLDQ xmm1, xmm2, imm8

VMI V/V AVX Shift xmm2 right by imm8 bytes while shifting 
in 0s.

VEX.NDD.256.66.0F.WIG 73 /3 ib

VPSRLDQ ymm1, ymm2, imm8

VMI V/V AVX2 Shift ymm1 right by imm8 bytes while shifting 
in 0s.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MI ModRM:r/m (r, w) imm8 NA NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA
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Intel C/C++ Compiler Intrinsic Equivalents

(V)PSRLDQ: __m128i _mm_srli_si128 ( __m128i a, int imm)

VPSRLDQ: __m256i _mm256_srli_si256 ( __m256i a, const int imm)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 7; additionally
#UD If VEX.L = 1.
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PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F D1 /r1

PSRLW mm, mm/m64

RM V/V MMX Shift words in mm right by amount specified in 
mm/m64 while shifting in 0s.

66 0F D1 /r

PSRLW xmm1, xmm2/m128

RM V/V SSE2 Shift words in xmm1 right by amount 
specified in xmm2/m128 while shifting in 0s.

0F 71 /2 ib1

PSRLW mm, imm8

MI V/V MMX Shift words in mm right by imm8 while shifting 
in 0s.

66 0F 71 /2 ib

PSRLW xmm1, imm8

MI V/V SSE2 Shift words in xmm1 right by imm8 while 
shifting in 0s.

0F D2 /r1

PSRLD mm, mm/m64

RM V/V MMX Shift doublewords in mm right by amount 
specified in mm/m64 while shifting in 0s.

66 0F D2 /r

PSRLD xmm1, xmm2/m128

RM V/V SSE2 Shift doublewords in xmm1 right by amount 
specified in xmm2 /m128 while shifting in 0s.

0F 72 /2 ib1

PSRLD mm, imm8

MI V/V MMX Shift doublewords in mm right by imm8 while 
shifting in 0s.

66 0F 72 /2 ib

PSRLD xmm1, imm8

MI V/V SSE2 Shift doublewords in xmm1 right by imm8 
while shifting in 0s.

0F D3 /r1

PSRLQ mm, mm/m64

RM V/V MMX Shift mm right by amount specified in 
mm/m64 while shifting in 0s.

66 0F D3 /r

PSRLQ xmm1, xmm2/m128

RM V/V SSE2 Shift quadwords in xmm1 right by amount 
specified in xmm2/m128 while shifting in 0s.

0F 73 /2 ib1

PSRLQ mm, imm8

MI V/V MMX Shift mm right by imm8 while shifting in 0s.

66 0F 73 /2 ib

PSRLQ xmm1, imm8

MI V/V SSE2 Shift quadwords in xmm1 right by imm8 while 
shifting in 0s.

VEX.NDS.128.66.0F.WIG D1 /r

VPSRLW xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift words in xmm2 right by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.NDD.128.66.0F.WIG 71 /2 ib

VPSRLW xmm1, xmm2, imm8

VMI V/V AVX Shift words in xmm2 right by imm8 while 
shifting in 0s.

VEX.NDS.128.66.0F.WIG D2 /r

VPSRLD xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift doublewords in xmm2 right by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.NDD.128.66.0F.WIG 72 /2 ib

VPSRLD xmm1, xmm2, imm8

VMI V/V AVX Shift doublewords in xmm2 right by imm8 

while shifting in 0s.

VEX.NDS.128.66.0F.WIG D3 /r

VPSRLQ xmm1, xmm2, xmm3/m128

RVM V/V AVX Shift quadwords in xmm2 right by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.NDD.128.66.0F.WIG 73 /2 ib

VPSRLQ xmm1, xmm2, imm8

VMI V/V AVX Shift quadwords in xmm2 right by imm8 while 
shifting in 0s.

VEX.NDS.256.66.0F.WIG D1 /r

VPSRLW ymm1, ymm2, xmm3/m128

RVM V/V AVX2 Shift words in ymm2 right by amount specified 
in xmm3/m128 while shifting in 0s.

VEX.NDD.256.66.0F.WIG 71 /2 ib

VPSRLW ymm1, ymm2, imm8

VMI V/V AVX2 Shift words in ymm2 right by imm8 while 
shifting in 0s.
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Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in the destination operand (first 
operand) to the right by the number of bits specified in the count operand (second operand). As the bits in the data 
elements are shifted right, the empty high-order bits are cleared (set to 0). If the value specified by the count 
operand is greater than 15 (for words), 31 (for doublewords), or 63 (for a quadword), then the destination operand 
is set to all 0s. Figure 4-15 gives an example of shifting words in a 64-bit operand. 

Note that only the first 64-bits of a 128-bit count operand are checked to compute the count.

The (V)PSRLW instruction shifts each of the words in the destination operand to the right by the number of bits 
specified in the count operand; the (V)PSRLD instruction shifts each of the doublewords in the destination operand; 
and the PSRLQ instruction shifts the quadword (or quadwords) in the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

Legacy SSE instructions: The destination operand is an MMX technology register; the count operand can be either 
an MMX technology register or an 64-bit memory location.
128-bit Legacy SSE version: The destination operand is an XMM register; the count operand can be either an XMM 
register or a 128-bit memory location, or an 8-bit immediate. If the count operand is a memory address, 128 bits 

VEX.NDS.256.66.0F.WIG D2 /r

VPSRLD ymm1, ymm2, xmm3/m128

RVM V/V AVX2 Shift doublewords in ymm2 right by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.NDD.256.66.0F.WIG 72 /2 ib

VPSRLD ymm1, ymm2, imm8

VMI V/V AVX2 Shift doublewords in ymm2 right by imm8 
while shifting in 0s.

VEX.NDS.256.66.0F.WIG D3 /r

VPSRLQ ymm1, ymm2, xmm3/m128

RVM V/V AVX2 Shift quadwords in ymm2 right by amount 
specified in xmm3/m128 while shifting in 0s.

VEX.NDD.256.66.0F.WIG 73 /2 ib

VPSRLQ ymm1, ymm2, imm8

VMI V/V AVX2 Shift quadwords in ymm2 right by imm8 while 
shifting in 0s.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

MI ModRM:r/m (r, w) imm8 NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

VMI VEX.vvvv (w) ModRM:r/m (r) imm8 NA

Figure 4-15.  PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Right

X0

X0 >> COUNT

X3 X2 X1

X1 >> COUNTX2 >> COUNTX3 >> COUNT

with Zero
Extension
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are loaded but the upper 64 bits are ignored. Bits (VLMAX-1:128) of the corresponding YMM destination register 
remain unchanged.
VEX.128 encoded version: The destination operand is an XMM register; the count operand can be either an XMM 
register or a 128-bit memory location, or an 8-bit immediate. If the count operand is a memory address, 128 bits 
are loaded but the upper 64 bits are ignored. Bits (VLMAX-1:128) of the destination YMM register are zeroed.
VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be 
either an YMM register or a 128-bit memory location or an 8-bit immediate.

Note: For shifts with an immediate count (VEX.128.66.0F 71-73 /2), VEX.vvvv encodes the destination register, 
and VEX.B + ModRM.r/m encodes the source register. VEX.L must be 0, otherwise instructions will #UD.

Operation

PSRLW (with 64-bit operand)

IF (COUNT > 15)

THEN 

DEST[64:0] ← 0000000000000000H

ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] >> COUNT);

(* Repeat shift operation for 2nd and 3rd words *)

DEST[63:48] ← ZeroExtend(DEST[63:48] >> COUNT);

FI;

PSRLD (with 64-bit operand)

IF (COUNT > 31)

THEN 

DEST[64:0] ← 0000000000000000H

ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] >> COUNT);

DEST[63:32] ← ZeroExtend(DEST[63:32] >> COUNT);

FI;

PSRLQ (with 64-bit operand)

IF (COUNT > 63)

THEN 

DEST[64:0] ← 0000000000000000H

ELSE

DEST ← ZeroExtend(DEST >> COUNT);

FI;

PSRLW (with 128-bit operand)

COUNT ← COUNT_SOURCE[63:0];

IF (COUNT > 15)

THEN 

DEST[128:0] ← 00000000000000000000000000000000H

ELSE

DEST[15:0]  ← ZeroExtend(DEST[15:0] >> COUNT);

(* Repeat shift operation for 2nd through 7th words *)

DEST[127:112] ← ZeroExtend(DEST[127:112] >> COUNT);

FI;

PSRLD (with 128-bit operand)

COUNT ← COUNT_SOURCE[63:0];

IF (COUNT > 31)

THEN 

DEST[128:0] ← 00000000000000000000000000000000H
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ELSE

DEST[31:0]  ← ZeroExtend(DEST[31:0] >> COUNT);

(* Repeat shift operation for 2nd and 3rd doublewords *)

DEST[127:96] ← ZeroExtend(DEST[127:96] >> COUNT);

FI;

PSRLQ (with 128-bit operand)

COUNT ← COUNT_SOURCE[63:0];

IF (COUNT > 15)

THEN 

DEST[128:0] ← 00000000000000000000000000000000H

ELSE

DEST[63:0]  ← ZeroExtend(DEST[63:0] >> COUNT);

DEST[127:64] ← ZeroExtend(DEST[127:64] >> COUNT);

FI;

PSRLW (xmm, xmm, xmm/m128)

DEST[127:0] Å LOGICAL_RIGHT_SHIFT_WORDS(DEST, SRC)

DEST[VLMAX-1:128] (Unmodified)

PSRLW (xmm, imm8)

DEST[127:0] Å LOGICAL_RIGHT_SHIFT_WORDS(DEST, imm8)

DEST[VLMAX-1:128] (Unmodified)

VPSRLW (xmm, xmm, xmm/m128)

DEST[127:0] Å LOGICAL_RIGHT_SHIFT_WORDS(SRC1, SRC2)

DEST[VLMAX-1:128] Å 0

VPSRLW (xmm, imm8)

DEST[127:0] Å LOGICAL_RIGHT_SHIFT_WORDS(SRC1, imm8)

DEST[VLMAX-1:128] Å 0

PSRLD (xmm, xmm, xmm/m128)

DEST[127:0] Å LOGICAL_RIGHT_SHIFT_DWORDS(DEST, SRC)

DEST[VLMAX-1:128] (Unmodified)

PSRLD (xmm, imm8)

DEST[127:0] Å LOGICAL_RIGHT_SHIFT_DWORDS(DEST, imm8)

DEST[VLMAX-1:128] (Unmodified)

VPSRLD (xmm, xmm, xmm/m128)

DEST[127:0] Å LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, SRC2)

DEST[VLMAX-1:128] Å 0

VPSRLD (xmm, imm8)

DEST[127:0] Å LOGICAL_RIGHT_SHIFT_DWORDS(SRC1, imm8)

DEST[VLMAX-1:128] Å 0

PSRLQ (xmm, xmm, xmm/m128)

DEST[127:0] Å LOGICAL_RIGHT_SHIFT_QWORDS(DEST, SRC)

DEST[VLMAX-1:128] (Unmodified)

PSRLQ (xmm, imm8)

DEST[127:0] Å LOGICAL_RIGHT_SHIFT_QWORDS(DEST, imm8)
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DEST[VLMAX-1:128] (Unmodified)

VPSRLQ (xmm, xmm, xmm/m128)

DEST[127:0] Å LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, SRC2)

DEST[VLMAX-1:128] Å 0

VPSRLQ (xmm, imm8)

DEST[127:0] Å LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, imm8)

DEST[VLMAX-1:128] Å 0

VPSRLW (ymm, ymm, xmm/m128)

DEST[255:0] Å LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1, SRC2)

VPSRLW (ymm, imm8)

DEST[255:0] Å LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1, imm8)

VPSRLD (ymm, ymm, xmm/m128)

DEST[255:0] Å LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1, SRC2)

VPSRLD (ymm, imm8)

DEST[255:0] Å LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1, imm8)

VPSRLQ (ymm, ymm, xmm/m128)

DEST[255:0] Å LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1, SRC2)

VPSRLQ (ymm, imm8)

DEST[255:0] Å LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1, imm8)

Intel C/C++ Compiler Intrinsic Equivalents

PSRLW: __m64 _mm_srli_pi16(__m64 m, int  count)

PSRLW: __m64 _mm_srl_pi16 (__m64 m, __m64 count)

(V)PSRLW: __m128i _mm_srli_epi16 (__m128i m, int count)

(V)PSRLW: __m128i _mm_srl_epi16 (__m128i m, __m128i count)

VPSRLW: __m256i _mm256_srli_epi16 (__m256i m, int count)

VPSRLW: __m256i _mm256_srl_epi16 (__m256i m, __m128i count)

PSRLD: __m64 _mm_srli_pi32 (__m64 m, int  count)

PSRLD: __m64 _mm_srl_pi32 (__m64 m, __m64 count)

(V)PSRLD: __m128i _mm_srli_epi32 (__m128i m, int  count)

(V)PSRLD: __m128i _mm_srl_epi32 (__m128i m, __m128i count)

VPSRLD: __m256i _mm256_srli_epi32 (__m256i m, int count)

VPSRLD: __m256i _mm256_srl_epi32 (__m256i m, __m128i count)

PSRLQ: __m64 _mm_srli_si64 (__m64 m, int  count)

PSRLQ: __m64 _mm_srl_si64 (__m64 m, __m64 count)

(V)PSRLQ: __m128i _mm_srli_epi64 (__m128i m, int  count)

(V)PSRLQ: __m128i _mm_srl_epi64 (__m128i m, __m128i count)

VPSRLQ: __m256i _mm256_srli_epi64 (__m256i m, int count)

VPSRLQ: __m256i _mm256_srl_epi64 (__m256i m, __m128i count)
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Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 4 and 7 for non-VEX-encoded instructions; additionally
#UD If VEX.L = 1.
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PSUBB/PSUBW/PSUBD—Subtract Packed Integers

Instruction Operand Encoding

Description

Performs a SIMD subtract of the packed integers of the source operand (second operand) from the packed integers 
of the destination operand (first operand), and stores the packed integer results in the destination operand. See 
Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of 
a SIMD operation. Overflow is handled with wraparound, as described in the following paragraphs.

The (V)PSUBB instruction subtracts packed byte integers. When an individual result is too large or too small to be 
represented in a byte, the result is wrapped around and the low 8 bits are written to the destination element.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F F8 /r1

PSUBB mm, mm/m64

RM V/V MMX Subtract packed byte integers in mm/m64 
from packed byte integers in mm.

66 0F F8 /r

PSUBB xmm1, xmm2/m128

RM V/V SSE2 Subtract packed byte integers in xmm2/m128 
from packed byte integers in xmm1.

0F F9 /r1

PSUBW mm, mm/m64

RM V/V MMX Subtract packed word integers in mm/m64 
from packed word integers in mm.

66 0F F9 /r

PSUBW xmm1, xmm2/m128

RM V/V SSE2 Subtract packed word integers in 
xmm2/m128 from packed word integers in 
xmm1.

0F FA /r1

PSUBD mm, mm/m64

RM V/V MMX Subtract packed doubleword integers in 
mm/m64 from packed doubleword integers in 
mm.

66 0F FA /r

PSUBD xmm1, xmm2/m128

RM V/V SSE2 Subtract packed doubleword integers in 
xmm2/mem128 from packed doubleword 
integers in xmm1.

VEX.NDS.128.66.0F.WIG F8 /r
VPSUBB xmm1, xmm2, xmm3/m128

RVM V/V AVX Subtract packed byte integers in xmm3/m128 

from xmm2.

VEX.NDS.128.66.0F.WIG F9 /r

VPSUBW xmm1, xmm2, xmm3/m128

RVM V/V AVX Subtract packed word integers in 
xmm3/m128 from xmm2.

VEX.NDS.128.66.0F.WIG FA /r
VPSUBD xmm1, xmm2, xmm3/m128

RVM V/V AVX Subtract packed doubleword integers in 
xmm3/m128 from xmm2.

VEX.NDS.256.66.0F.WIG F8 /r
VPSUBB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Subtract packed byte integers in ymm3/m256 
from ymm2.

VEX.NDS.256.66.0F.WIG F9 /r
VPSUBW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Subtract packed word integers in 
ymm3/m256 from ymm2.

VEX.NDS.256.66.0F.WIG FA /r
VPSUBD ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Subtract packed doubleword integers in 
ymm3/m256 from ymm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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The (V)PSUBW instruction subtracts packed word integers. When an individual result is too large or too small to be 
represented in a word, the result is wrapped around and the low 16 bits are written to the destination element.

The (V)PSUBD instruction subtracts packed doubleword integers. When an individual result is too large or too small 
to be represented in a doubleword, the result is wrapped around and the low 32 bits are written to the destination 
element.

Note that the (V)PSUBB, (V)PSUBW, and (V)PSUBD instructions can operate on either unsigned or signed (two's 
complement notation) packed integers; however, it does not set bits in the EFLAGS register to indicate overflow 
and/or a carry. To prevent undetected overflow conditions, software must control the ranges of values upon which 
it operates.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

Legacy SSE version: When operating on 64-bit operands, the destination operand must be an MMX technology 
register and the source operand can be either an MMX technology register or a 64-bit memory location.
128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (VLMAX-1:128) of the destination YMM register 
are zeroed. 
VEX.256 encoded version: The second source operand is an YMM register or a 256-bit memory location. The first 
source operand and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise instructions will #UD.

Operation

PSUBB (with 64-bit operands)

DEST[7:0] ← DEST[7:0] − SRC[7:0]; 

(* Repeat subtract operation for 2nd through 7th byte *)

DEST[63:56] ← DEST[63:56] − SRC[63:56];

PSUBB (with 128-bit operands)

DEST[7:0] ← DEST[7:0] − SRC[7:0]; 

(* Repeat subtract operation for 2nd through 14th byte *)

DEST[127:120] ← DEST[111:120] − SRC[127:120];

VPSUBB (VEX.128 encoded version)

DEST[7:0] Å SRC1[7:0]-SRC2[7:0]

DEST[15:8] Å SRC1[15:8]-SRC2[15:8]

DEST[23:16] Å SRC1[23:16]-SRC2[23:16]

DEST[31:24] Å SRC1[31:24]-SRC2[31:24]

DEST[39:32] Å SRC1[39:32]-SRC2[39:32]

DEST[47:40] Å SRC1[47:40]-SRC2[47:40]

DEST[55:48] Å SRC1[55:48]-SRC2[55:48]

DEST[63:56] Å SRC1[63:56]-SRC2[63:56]

DEST[71:64] Å SRC1[71:64]-SRC2[71:64]

DEST[79:72] Å SRC1[79:72]-SRC2[79:72]

DEST[87:80] Å SRC1[87:80]-SRC2[87:80]

DEST[95:88] Å SRC1[95:88]-SRC2[95:88]

DEST[103:96] Å SRC1[103:96]-SRC2[103:96]

DEST[111:104] Å SRC1[111:104]-SRC2[111:104]

DEST[119:112] Å SRC1[119:112]-SRC2[119:112]

DEST[127:120] Å SRC1[127:120]-SRC2[127:120]

DEST[VLMAX-1:128] Å 00
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VPSUBB (VEX.256 encoded version)

DEST[7:0] Å SRC1[7:0]-SRC2[7:0]

DEST[15:8] Å SRC1[15:8]-SRC2[15:8]

DEST[23:16] Å SRC1[23:16]-SRC2[23:16]

DEST[31:24] Å SRC1[31:24]-SRC2[31:24]

DEST[39:32] Å SRC1[39:32]-SRC2[39:32]

DEST[47:40] Å SRC1[47:40]-SRC2[47:40]

DEST[55:48] Å SRC1[55:48]-SRC2[55:48]

DEST[63:56] Å SRC1[63:56]-SRC2[63:56]

DEST[71:64] Å SRC1[71:64]-SRC2[71:64]

DEST[79:72] Å SRC1[79:72]-SRC2[79:72]

DEST[87:80] Å SRC1[87:80]-SRC2[87:80]

DEST[95:88] Å SRC1[95:88]-SRC2[95:88]

DEST[103:96] Å SRC1[103:96]-SRC2[103:96]

DEST[111:104] Å SRC1[111:104]-SRC2[111:104]

DEST[119:112] Å SRC1[119:112]-SRC2[119:112]

DEST[127:120] Å SRC1[127:120]-SRC2[127:120]

DEST[135:128] Å SRC1[135:128]-SRC2[135:128]

DEST[143:136] Å SRC1[143:136]-SRC2[143:136]

DEST[151:144] Å SRC1[151:144]-SRC2[151:144]

DEST[159:152] Å SRC1[159:152]-SRC2[159:152]

DEST[167:160] Å SRC1[167:160]-SRC2[167:160]

DEST[175:168] Å SRC1[175:168]-SRC2[175:168]

DEST[183:176] Å SRC1[183:176]-SRC2[183:176]

DEST[191:184] Å SRC1[191:184]-SRC2[191:184]

DEST[199:192] Å SRC1[199:192]-SRC2[199:192]

DEST[207:200] Å SRC1[207:200]-SRC2[207:200]

DEST[215:208] Å SRC1[215:208]-SRC2[215:208]

DEST[223:216] Å SRC1[223:216]-SRC2[223:216]

DEST[231:224] Å SRC1[231:224]-SRC2[231:224]

DEST[239:232] Å SRC1[239:232]-SRC2[239:232]

DEST[247:240] Å SRC1[247:240]-SRC2[247:240]

DEST[255:248] Å SRC1[255:248]-SRC2[255:248]

PSUBW (with 64-bit operands)

DEST[15:0] ← DEST[15:0] − SRC[15:0];

(* Repeat subtract operation for 2nd and 3rd word *)

DEST[63:48] ← DEST[63:48] − SRC[63:48];

PSUBW (with 128-bit operands)

DEST[15:0]  ← DEST[15:0] − SRC[15:0];

(* Repeat subtract operation for 2nd through 7th word *)

DEST[127:112] ← DEST[127:112] − SRC[127:112];

VPSUBW (VEX.128 encoded version)

DEST[15:0] Å SRC1[15:0]-SRC2[15:0]

DEST[31:16] Å SRC1[31:16]-SRC2[31:16]

DEST[47:32] Å SRC1[47:32]-SRC2[47:32]

DEST[63:48] Å SRC1[63:48]-SRC2[63:48]

DEST[79:64] Å SRC1[79:64]-SRC2[79:64]

DEST[95:80] Å SRC1[95:80]-SRC2[95:80]

DEST[111:96] Å SRC1[111:96]-SRC2[111:96]

DEST[127:112] Å SRC1[127:112]-SRC2[127:112]
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DEST[VLMAX-1:128] Å 0

VPSUBW (VEX.256 encoded version)

DEST[15:0] Å SRC1[15:0]-SRC2[15:0]

DEST[31:16] Å SRC1[31:16]-SRC2[31:16]

DEST[47:32] Å SRC1[47:32]-SRC2[47:32]

DEST[63:48] Å SRC1[63:48]-SRC2[63:48]

DEST[79:64] Å SRC1[79:64]-SRC2[79:64]

DEST[95:80] Å SRC1[95:80]-SRC2[95:80]

DEST[111:96] Å SRC1[111:96]-SRC2[111:96]

DEST[127:112] Å SRC1[127:112]-SRC2[127:112]

DEST[143:128] Å SRC1[143:128]-SRC2[143:128]

DEST[159:144] Å SRC1[159:144]-SRC2[159:144]

DEST[175:160] Å SRC1[175:160]-SRC2[175:160]

DEST[191:176] Å SRC1[191:176]-SRC2[191:176]

DEST[207:192] Å SRC1207:192]-SRC2[207:192]

DEST[223:208] Å SRC1[223:208]-SRC2[223:208]

DEST[239:224] Å SRC1[239:224]-SRC2[239:224]

DEST[255:240] Å SRC1[255:240]-SRC2[255:240]

PSUBD (with 64-bit operands)

DEST[31:0] ← DEST[31:0] − SRC[31:0];

DEST[63:32] ← DEST[63:32] − SRC[63:32];

PSUBD (with 128-bit operands)

DEST[31:0]  ← DEST[31:0] − SRC[31:0];

(* Repeat subtract operation for 2nd and 3rd doubleword *)

DEST[127:96] ← DEST[127:96] − SRC[127:96];

VPSUBD (VEX.128 encoded version)

DEST[31:0] Å SRC1[31:0]-SRC2[31:0]

DEST[63:32] Å SRC1[63:32]-SRC2[63:32]

DEST[95:64] Å SRC1[95:64]-SRC2[95:64]

DEST[127:96] Å SRC1[127:96]-SRC2[127:96]

DEST[VLMAX-1:128] Å 0

VPSUBD (VEX.256 encoded version)

DEST[31:0] Å SRC1[31:0]-SRC2[31:0]

DEST[63:32] Å SRC1[63:32]-SRC2[63:32]

DEST[95:64] Å SRC1[95:64]-SRC2[95:64]

DEST[127:96] Å SRC1[127:96]-SRC2[127:96]

DEST[159:128] Å SRC1[159:128]-SRC2[159:128]

DEST[191:160] Å SRC1[191:160]-SRC2[191:160]

DEST[223:192] Å SRC1[223:192]-SRC2[223:192]

DEST[255:224] Å SRC1[255:224]-SRC2[255:224]

Intel C/C++ Compiler Intrinsic Equivalents

PSUBB: __m64 _mm_sub_pi8(__m64 m1, __m64 m2)

(V)PSUBB: __m128i _mm_sub_epi8 ( __m128i a, __m128i b)

VPSUBB: __m256i _mm256_sub_epi8 ( __m256i a, __m256i b)

PSUBW: __m64 _mm_sub_pi16(__m64 m1, __m64 m2)

(V)PSUBW: __m128i _mm_sub_epi16 ( __m128i a, __m128i b)

VPSUBW: __m256i _mm256_sub_epi16 ( __m256i a, __m256i b)
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PSUBD: __m64 _mm_sub_pi32(__m64 m1, __m64 m2)

(V)PSUBD: __m128i _mm_sub_epi32 ( __m128i a, __m128i b)

VPSUBD: __m256i _mm256_sub_epi32 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PSUBQ—Subtract Packed Quadword Integers 

Instruction Operand Encoding

Description

Subtracts the second operand (source operand) from the first operand (destination operand) and stores the result 
in the destination operand. When packed quadword operands are used, a SIMD subtract is performed. When a 
quadword result is too large to be represented in 64 bits (overflow), the result is wrapped around and the low 64 
bits are written to the destination element (that is, the carry is ignored).

Note that the (V)PSUBQ instruction can operate on either unsigned or signed (two’s complement notation) inte-
gers; however, it does not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent undetected 
overflow conditions, software must control the ranges of the values upon which it operates.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

Legacy SSE version: The source operand can be a quadword integer stored in an MMX technology register or a 64-
bit memory location. 
128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (VLMAX-1:128) of the destination YMM register 
are zeroed. 
VEX.256 encoded version: The second source operand is an YMM register or a 256-bit memory location. The first 
source operand and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise instructions will #UD.

Operation

PSUBQ (with 64-Bit operands)

DEST[63:0] ← DEST[63:0] − SRC[63:0];

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F FB /r1

PSUBQ mm1, mm2/m64

RM V/V SSE2 Subtract quadword integer in mm1 from mm2 

/m64.

66 0F FB /r

PSUBQ xmm1, xmm2/m128

RM V/V SSE2 Subtract packed quadword integers in xmm1 
from xmm2 /m128.

VEX.NDS.128.66.0F.WIG FB/r

VPSUBQ xmm1, xmm2, xmm3/m128

RVM V/V AVX Subtract packed quadword integers in 
xmm3/m128 from xmm2.

VEX.NDS.256.66.0F.WIG FB /r

VPSUBQ ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Subtract packed quadword integers in 
ymm3/m256 from ymm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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PSUBQ (with 128-Bit operands)

DEST[63:0] ← DEST[63:0] − SRC[63:0];

DEST[127:64] ← DEST[127:64] − SRC[127:64];

VPSUBQ (VEX.128 encoded version)

DEST[63:0] Å SRC1[63:0]-SRC2[63:0]

DEST[127:64] Å SRC1[127:64]-SRC2[127:64]

DEST[VLMAX-1:128] Å 0

VPSUBQ (VEX.256 encoded version)

DEST[63:0] Å SRC1[63:0]-SRC2[63:0]

DEST[127:64] Å SRC1[127:64]-SRC2[127:64]

DEST[191:128] Å SRC1[191:128]-SRC2[191:128]

DEST[255:192] Å SRC1[255:192]-SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalents

PSUBQ: __m64 _mm_sub_si64(__m64 m1, __m64 m2)

(V)PSUBQ: __m128i _mm_sub_epi64(__m128i m1, __m128i m2)

VPSUBQ: __m256i _mm256_sub_epi64(__m256i m1, __m256i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation

Instruction Operand Encoding

Description

Performs a SIMD subtract of the packed signed integers of the source operand (second operand) from the packed 
signed integers of the destination operand (first operand), and stores the packed integer results in the destination 
operand. See Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an 
illustration of a SIMD operation. Overflow is handled with signed saturation, as described in the following para-
graphs.

The (V)PSUBSB instruction subtracts packed signed byte integers. When an individual byte result is beyond the 
range of a signed byte integer (that is, greater than 7FH or less than 80H), the saturated value of 7FH or 80H, 
respectively, is written to the destination operand.

The (V)PSUBSW instruction subtracts packed signed word integers. When an individual word result is beyond the 
range of a signed word integer (that is, greater than 7FFFH or less than 8000H), the saturated value of 7FFFH or 
8000H, respectively, is written to the destination operand.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F E8 /r1

PSUBSB mm, mm/m64

RM V/V MMX Subtract signed packed bytes in mm/m64 

from signed packed bytes in mm and saturate 
results.

66 0F E8 /r

PSUBSB xmm1, xmm2/m128

RM V/V SSE2 Subtract packed signed byte integers in 
xmm2/m128 from packed signed byte 
integers in xmm1 and saturate results.

0F E9 /r1

PSUBSW mm, mm/m64

RM V/V MMX Subtract signed packed words in mm/m64 

from signed packed words in mm and saturate 
results.

66 0F E9 /r

PSUBSW xmm1, xmm2/m128

RM V/V SSE2 Subtract packed signed word integers in 
xmm2/m128 from packed signed word 
integers in xmm1 and saturate results.

VEX.NDS.128.66.0F.WIG E8 /r

VPSUBSB xmm1, xmm2, xmm3/m128

RVM V/V AVX Subtract packed signed byte integers in 
xmm3/m128 from packed signed byte 
integers in xmm2 and saturate results.

VEX.NDS.128.66.0F.WIG E9 /r

VPSUBSW xmm1, xmm2, xmm3/m128

RVM V/V AVX Subtract packed signed word integers in 
xmm3/m128 from packed signed word 
integers in xmm2 and saturate results.

VEX.NDS.256.66.0F.WIG E8 /r

VPSUBSB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Subtract packed signed byte integers in 
ymm3/m256 from packed signed byte 
integers in ymm2 and saturate results.

VEX.NDS.256.66.0F.WIG E9 /r

VPSUBSW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Subtract packed signed word integers in 
ymm3/m256 from packed signed word 
integers in ymm2 and saturate results.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

Legacy SSE version: When operating on 64-bit operands, the destination operand must be an MMX technology 
register and the source operand can be either an MMX technology register or a 64-bit memory location.
128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (VLMAX-1:128) of the destination YMM register 
are zeroed. 
VEX.256 encoded version: The second source operand is an YMM register or a 256-bit memory location. The first 
source operand and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise instructions will #UD.

Operation

PSUBSB (with 64-bit operands)

DEST[7:0] ← SaturateToSignedByte (DEST[7:0] − SRC (7:0]);

(* Repeat subtract operation for 2nd through 7th bytes *)

DEST[63:56] ← SaturateToSignedByte (DEST[63:56] − SRC[63:56] );

PSUBSB (with 128-bit operands)

DEST[7:0] ← SaturateToSignedByte (DEST[7:0] − SRC[7:0]);

(* Repeat subtract operation for 2nd through 14th bytes *)

DEST[127:120] ← SaturateToSignedByte (DEST[127:120] − SRC[127:120]);

VPSUBSB (VEX.128 encoded version)

DEST[7:0] Å SaturateToSignedByte (SRC1[7:0] - SRC2[7:0]);

(* Repeat subtract operation for 2nd through 14th bytes *)

DEST[127:120] Å SaturateToSignedByte (SRC1[127:120] - SRC2[127:120]);

DEST[VLMAX-1:128] Å 0

VPSUBSB (VEX.256 encoded version)

DEST[7:0] Å SaturateToSignedByte (SRC1[7:0] - SRC2[7:0]);

(* Repeat subtract operation for 2nd through 31th bytes *)

DEST[255:248] Å SaturateToSignedByte (SRC1[255:248] - SRC2[255:248]);

PSUBSW (with 64-bit operands)

DEST[15:0] ← SaturateToSignedWord (DEST[15:0] − SRC[15:0] );

(* Repeat subtract operation for 2nd and 7th words *)

DEST[63:48] ← SaturateToSignedWord (DEST[63:48] − SRC[63:48] );

PSUBSW (with 128-bit operands)

DEST[15:0]  ← SaturateToSignedWord (DEST[15:0] − SRC[15:0]);

(* Repeat subtract operation for 2nd through 7th words *)

DEST[127:112] ← SaturateToSignedWord (DEST[127:112] − SRC[127:112]);

VPSUBSW (VEX.128 encoded version)

DEST[15:0] Å SaturateToSignedWord (SRC1[15:0] - SRC2[15:0]);

(* Repeat subtract operation for 2nd through 7th words *)

DEST[127:112] Å SaturateToSignedWord (SRC1[127:112] - SRC2[127:112]);

DEST[VLMAX-1:128] Å 0
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VPSUBSW (VEX.256 encoded version)

DEST[15:0] Å SaturateToSignedWord (SRC1[15:0] - SRC2[15:0]);

(* Repeat subtract operation for 2nd through 15th words *)

DEST[255:240] Å SaturateToSignedWord (SRC1[255:240] - SRC2[255:240]);

Intel C/C++ Compiler Intrinsic Equivalents

PSUBSB: __m64 _mm_subs_pi8(__m64 m1, __m64 m2)

(V)PSUBSB: __m128i _mm_subs_epi8(__m128i m1, __m128i m2)

VPSUBSB: __m256i _mm256_subs_epi8(__m256i m1, __m256i m2)

PSUBSW: __m64 _mm_subs_pi16(__m64 m1, __m64 m2)

(V)PSUBSW: __m128i _mm_subs_epi16(__m128i m1, __m128i m2)

VPSUBSW: __m256i _mm256_subs_epi16(__m256i m1, __m256i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation

Instruction Operand Encoding

Description

Performs a SIMD subtract of the packed unsigned integers of the source operand (second operand) from the 
packed unsigned integers of the destination operand (first operand), and stores the packed unsigned integer 
results in the destination operand. See Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, for an illustration of a SIMD operation. Overflow is handled with unsigned saturation, as 
described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands.

The (V)PSUBUSB instruction subtracts packed unsigned byte integers. When an individual byte result is less than 
zero, the saturated value of 00H is written to the destination operand.

The (V)PSUBUSW instruction subtracts packed unsigned word integers. When an individual word result is less than 
zero, the saturated value of 0000H is written to the destination operand.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F D8 /r1

PSUBUSB mm, mm/m64

RM V/V MMX Subtract unsigned packed bytes in mm/m64 
from unsigned packed bytes in mm and 
saturate result.

66 0F D8 /r

PSUBUSB xmm1, xmm2/m128

RM V/V SSE2 Subtract packed unsigned byte integers in 
xmm2/m128 from packed unsigned byte 
integers in xmm1 and saturate result.

0F D9 /r1

PSUBUSW mm, mm/m64

RM V/V MMX Subtract unsigned packed words in mm/m64 
from unsigned packed words in mm and 
saturate result.

66 0F D9 /r

PSUBUSW xmm1, xmm2/m128

RM V/V SSE2 Subtract packed unsigned word integers in 
xmm2/m128 from packed unsigned word 
integers in xmm1 and saturate result.

VEX.NDS.128.66.0F.WIG D8 /r

VPSUBUSB xmm1, xmm2, xmm3/m128

RVM V/V AVX Subtract packed unsigned byte integers in 
xmm3/m128 from packed unsigned byte 
integers in xmm2 and saturate result.

VEX.NDS.128.66.0F.WIG D9 /r

VPSUBUSW xmm1, xmm2, xmm3/m128

RVM V/V AVX Subtract packed unsigned word integers in 
xmm3/m128 from packed unsigned word 
integers in xmm2 and saturate result.

VEX.NDS.256.66.0F.WIG D8 /r

VPSUBUSB ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Subtract packed unsigned byte integers in 
ymm3/m256 from packed unsigned byte 
integers in ymm2 and saturate result.

VEX.NDS.256.66.0F.WIG D9 /r

VPSUBUSW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Subtract packed unsigned word integers in 
ymm3/m256 from packed unsigned word 
integers in ymm2 and saturate result.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

Legacy SSE version: When operating on 64-bit operands, the destination operand must be an MMX technology 
register and the source operand can be either an MMX technology register or a 64-bit memory location. 
128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (VLMAX-1:128) of the destination YMM register 
are zeroed. 
VEX.256 encoded version: The second source operand is an YMM register or a 256-bit memory location. The first 
source operand and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise instructions will #UD.

Operation

PSUBUSB (with 64-bit operands)

DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] − SRC (7:0] );

(* Repeat add operation for 2nd through 7th bytes *)

DEST[63:56] ← SaturateToUnsignedByte (DEST[63:56] − SRC[63:56]; 

PSUBUSB (with 128-bit operands)

DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] − SRC[7:0]);

(* Repeat add operation for 2nd through 14th bytes *)

DEST[127:120] ← SaturateToUnSignedByte (DEST[127:120] − SRC[127:120]);

VPSUBUSB (VEX.128 encoded version)

DEST[7:0] Å SaturateToUnsignedByte (SRC1[7:0] - SRC2[7:0]);

(* Repeat subtract operation for 2nd through 14th bytes *)

DEST[127:120] Å SaturateToUnsignedByte (SRC1[127:120] - SRC2[127:120]);

DEST[VLMAX-1:128] Å 0

VPSUBUSB (VEX.256 encoded version)

DEST[7:0] Å SaturateToUnsignedByte (SRC1[7:0] - SRC2[7:0]);

(* Repeat subtract operation for 2nd through 31st bytes *)

DEST[255:148] Å SaturateToUnsignedByte (SRC1[255:248] - SRC2[255:248]);

PSUBUSW (with 64-bit operands)

DEST[15:0] ← SaturateToUnsignedWord (DEST[15:0] − SRC[15:0] );

(* Repeat add operation for 2nd and 3rd words *)

DEST[63:48] ← SaturateToUnsignedWord (DEST[63:48] − SRC[63:48] );

PSUBUSW (with 128-bit operands)

DEST[15:0]  ← SaturateToUnsignedWord (DEST[15:0] − SRC[15:0]);

(* Repeat add operation for 2nd through 7th words *)

DEST[127:112] ← SaturateToUnSignedWord (DEST[127:112] − SRC[127:112]);

VPSUBUSW (VEX.128 encoded version)

DEST[15:0] Å SaturateToUnsignedWord (SRC1[15:0] - SRC2[15:0]);

(* Repeat subtract operation for 2nd through 7th words *)

DEST[127:112] Å SaturateToUnsignedWord (SRC1[127:112] - SRC2[127:112]);

DEST[VLMAX-1:128] Å 0
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VPSUBUSW (VEX.256 encoded version)

DEST[15:0] Å SaturateToUnsignedWord (SRC1[15:0] - SRC2[15:0]);

(* Repeat subtract operation for 2nd through 15th words *)

DEST[255:240] Å SaturateToUnsignedWord (SRC1[255:240] - SRC2[255:240]);

Intel C/C++ Compiler Intrinsic Equivalents

PSUBUSB: __m64 _mm_subs_pu8(__m64 m1, __m64 m2)

(V)PSUBUSB: __m128i _mm_subs_epu8(__m128i m1, __m128i m2)

VPSUBUSB: __m256i _mm256_subs_epu8(__m256i m1, __m256i m2)

PSUBUSW: __m64 _mm_subs_pu16(__m64 m1, __m64 m2)

(V)PSUBUSW: __m128i _mm_subs_epu16(__m128i m1, __m128i m2)

VPSUBUSW: __m256i _mm256_subs_epu16(__m256i m1, __m256i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PTEST- Logical Compare

Instruction Operand Encoding

Description

PTEST and VPTEST set the ZF flag if all bits in the result are 0 of the bitwise AND of the first source operand (first 
operand) and the second source operand (second operand). VPTEST sets the CF flag if all bits in the result are 0 of 
the bitwise AND of the second source operand (second operand) and the logical NOT of the destination operand.
The first source register is specified by the ModR/M reg field.
128-bit versions: The first source register is an XMM register. The second source register can be an XMM register 
or a 128-bit memory location. The destination register is not modified.
VEX.256 encoded version: The first source register is a YMM register. The second source register can be a YMM 
register or a 256-bit memory location. The destination register is not modified.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

(V)PTEST (128-bit version)

IF (SRC[127:0] BITWISE AND DEST[127:0] = 0) 

THEN ZF Å 1;

ELSE ZF Å 0;

IF (SRC[127:0] BITWISE AND NOT DEST[127:0] = 0) 

THEN CF Å 1;

ELSE CF Å 0;

DEST (unmodified)

AF Å OF Å PF Å SF Å 0;

VPTEST (VEX.256 encoded version)

IF (SRC[255:0] BITWISE AND DEST[255:0] = 0) THEN ZF Å 1;

ELSE ZF Å 0;

IF (SRC[255:0] BITWISE AND NOT DEST[255:0] = 0) THEN CF Å 1;

ELSE CF Å 0;

DEST (unmodified)

AF Å OF Å PF Å SF Å 0;

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 38 17 /r
PTEST xmm1, xmm2/m128

RM V/V SSE4_1 Set ZF if xmm2/m128 AND xmm1 result is all 
0s. Set CF if xmm2/m128 AND NOT xmm1 
result is all 0s.

VEX.128.66.0F38.WIG 17 /r
VPTEST xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on bitwise AND and 
ANDN of sources.

VEX.256.66.0F38.WIG 17 /r
VPTEST ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on bitwise AND and 
ANDN of sources.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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Intel C/C++ Compiler Intrinsic Equivalent

PTEST

int _mm_testz_si128 (__m128i s1, __m128i s2);

int _mm_testc_si128 (__m128i s1, __m128i s2);

int _mm_testnzc_si128 (__m128i s1, __m128i s2);

VPTEST 

int _mm256_testz_si256 (__m256i s1, __m256i s2);

int _mm256_testc_si256 (__m256i s1, __m256i s2);

int _mm256_testnzc_si256 (__m256i s1, __m256i s2);

int _mm_testz_si128 (__m128i s1, __m128i s2);

int _mm_testc_si128 (__m128i s1, __m128i s2);

int _mm_testnzc_si128 (__m128i s1, __m128i s2);

Flags Affected

The 0F, AF, PF, SF flags are cleared and the ZF, CF flags are set according to the operation.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
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PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data

Instruction Operand Encoding

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 68 /r1

PUNPCKHBW mm, mm/m64

RM V/V MMX Unpack and interleave high-order bytes from 
mm and mm/m64 into mm.

66 0F 68 /r

PUNPCKHBW xmm1, xmm2/m128

RM V/V SSE2 Unpack and interleave high-order bytes from 
xmm1 and xmm2/m128 into xmm1.

0F 69 /r1

PUNPCKHWD mm, mm/m64

RM V/V MMX Unpack and interleave high-order words from 
mm and mm/m64 into mm.

66 0F 69 /r

PUNPCKHWD xmm1, xmm2/m128

RM V/V SSE2 Unpack and interleave high-order words from 
xmm1 and xmm2/m128 into xmm1.

0F 6A /r1

PUNPCKHDQ mm, mm/m64

RM V/V MMX Unpack and interleave high-order 
doublewords from mm and mm/m64 into mm.

66 0F 6A /r

PUNPCKHDQ xmm1, xmm2/m128

RM V/V SSE2 Unpack and interleave high-order 
doublewords from xmm1 and xmm2/m128 
into xmm1.

66 0F 6D /r

PUNPCKHQDQ xmm1, xmm2/m128

RM V/V SSE2 Unpack and interleave high-order quadwords 
from xmm1 and xmm2/m128 into xmm1.

VEX.NDS.128.66.0F.WIG 68/r

VPUNPCKHBW xmm1,xmm2, xmm3/m128

RVM V/V AVX Interleave high-order bytes from xmm2 and 
xmm3/m128 into xmm1.

VEX.NDS.128.66.0F.WIG 69/r

VPUNPCKHWD xmm1,xmm2, xmm3/m128

RVM V/V AVX Interleave high-order words from xmm2 and 
xmm3/m128 into xmm1.

VEX.NDS.128.66.0F.WIG 6A/r

VPUNPCKHDQ xmm1, xmm2, xmm3/m128

RVM V/V AVX Interleave high-order doublewords from 
xmm2 and xmm3/m128 into xmm1.

VEX.NDS.128.66.0F.WIG 6D/r
VPUNPCKHQDQ xmm1, xmm2, xmm3/m128

RVM V/V AVX Interleave high-order quadword from xmm2 
and xmm3/m128 into xmm1 register.

VEX.NDS.256.66.0F.WIG 68 /r
VPUNPCKHBW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Interleave high-order bytes from ymm2 and 
ymm3/m256 into ymm1 register.

VEX.NDS.256.66.0F.WIG 69 /r
VPUNPCKHWD ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Interleave high-order words from ymm2 and 
ymm3/m256 into ymm1 register.

VEX.NDS.256.66.0F.WIG 6A /r
VPUNPCKHDQ ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Interleave high-order doublewords from 
ymm2 and ymm3/m256 into ymm1 register.

VEX.NDS.256.66.0F.WIG 6D /r
VPUNPCKHQDQ ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Interleave high-order quadword from ymm2 
and ymm3/m256 into ymm1 register.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Description

Unpacks and interleaves the high-order data elements (bytes, words, doublewords, or quadwords) of the destina-
tion operand (first operand) and source operand (second operand) into the destination operand. Figure 4-16 shows 
the unpack operation for bytes in 64-bit operands. The low-order data elements are ignored. 

Figure 4-17.  256-bit VPUNPCKHDQ Instruction Operation

When the source data comes from a 64-bit memory operand, the full 64-bit operand is accessed from memory, but 
the instruction uses only the high-order 32 bits. When the source data comes from a 128-bit memory operand, an 
implementation may fetch only the appropriate 64 bits; however, alignment to a 16-byte boundary and normal 
segment checking will still be enforced.

The (V)PUNPCKHBW instruction interleaves the high-order bytes of the source and destination operands, the 
(V)PUNPCKHWD instruction interleaves the high-order words of the source and destination operands, the 
(V)PUNPCKHDQ instruction interleaves the high-order doubleword (or doublewords) of the source and destination 
operands, and the (V)PUNPCKHQDQ instruction interleaves the high-order quadwords of the source and destina-
tion operands.

These instructions can be used to convert bytes to words, words to doublewords, doublewords to quadwords, and 
quadwords to double quadwords, respectively, by placing all 0s in the source operand. Here, if the source operand 
contains all 0s, the result (stored in the destination operand) contains zero extensions of the high-order data 
elements from the original value in the destination operand. For example, with the (V)PUNPCKHBW instruction the 
high-order bytes are zero extended (that is, unpacked into unsigned word integers), and with the (V)PUNPCKHWD 
instruction, the high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

Legacy SSE versions: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand is an MMX technology register.
128-bit Legacy SSE versions: The second source operand is an XMM register or a 128-bit memory location. The 
first source operand and destination operands are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM 
destination register remain unchanged.

Figure 4-16.  PUNPCKHBW Instruction Operation Using 64-bit Operands
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VEX.128 encoded versions: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (VLMAX-1:128) of the destination YMM register 
are zeroed. 
VEX.256 encoded version: The second source operand is an YMM register or a 256-bit memory location. The first 
source operand and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise instructions will #UD.

Operation

PUNPCKHBW instruction with 64-bit operands:

DEST[7:0] ← DEST[39:32];

DEST[15:8] ← SRC[39:32];

DEST[23:16] ← DEST[47:40];

DEST[31:24] ← SRC[47:40];

DEST[39:32] ← DEST[55:48];

DEST[47:40] ← SRC[55:48];

DEST[55:48] ← DEST[63:56];

DEST[63:56] ← SRC[63:56];

PUNPCKHW instruction with 64-bit operands:

DEST[15:0] ← DEST[47:32]; 

DEST[31:16] ← SRC[47:32];

DEST[47:32] ← DEST[63:48];

DEST[63:48] ← SRC[63:48];

PUNPCKHDQ instruction with 64-bit operands:

DEST[31:0] ← DEST[63:32];

DEST[63:32] ← SRC[63:32];

PUNPCKHBW instruction with 128-bit operands:

DEST[7:0]← DEST[71:64];

DEST[15:8]  ← SRC[71:64];

DEST[23:16] ← DEST[79:72];

DEST[31:24] ← SRC[79:72];

DEST[39:32] ← DEST[87:80];

DEST[47:40] ← SRC[87:80];

DEST[55:48] ← DEST[95:88];

DEST[63:56] ← SRC[95:88];

DEST[71:64] ← DEST[103:96];

DEST[79:72] ← SRC[103:96];

DEST[87:80] ← DEST[111:104];

DEST[95:88] ← SRC[111:104];

DEST[103:96]  ← DEST[119:112];

DEST[111:104] ← SRC[119:112];

DEST[119:112] ← DEST[127:120];

DEST[127:120] ← SRC[127:120];

PUNPCKHWD instruction with 128-bit operands:

DEST[15:0]  ← DEST[79:64];

DEST[31:16] ← SRC[79:64];

DEST[47:32] ← DEST[95:80];

DEST[63:48] ← SRC[95:80];

DEST[79:64] ← DEST[111:96];

DEST[95:80] ← SRC[111:96];

DEST[111:96]  ← DEST[127:112];
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DEST[127:112] ← SRC[127:112];

PUNPCKHDQ instruction with 128-bit operands:

DEST[31:0] ← DEST[95:64];

DEST[63:32]  ← SRC[95:64];

DEST[95:64]  ← DEST[127:96];

DEST[127:96] ← SRC[127:96];

PUNPCKHQDQ instruction:

DEST[63:0] ← DEST[127:64];

DEST[127:64] ← SRC[127:64];

INTERLEAVE_HIGH_BYTES_256b (SRC1, SRC2) 

DEST[7:0] Å SRC1[71:64]

DEST[15:8] Å SRC2[71:64]

DEST[23:16] Å SRC1[79:72]

DEST[31:24] Å SRC2[79:72]

DEST[39:32] Å SRC1[87:80]

DEST[47:40] Å SRC2[87:80]

DEST[55:48] Å SRC1[95:88]

DEST[63:56] ÅSRC2[95:88]

DEST[71:64] Å SRC1[103:96]

DEST[79:72] Å SRC2[103:96]

DEST[87:80] Å SRC1[111:104]

DEST[95:88] Å SRC2[111:104]

DEST[103:96] Å SRC1[119:112]

DEST[111:104] Å SRC2[119:112]

DEST[119:112] Å SRC1[127:120]

DEST[127:120] Å SRC2[127:120]

DEST[135:128] Å SRC1[199:192]

DEST[143:136] Å SRC2[199:192]

DEST[151:144] Å SRC1[207:200]

DEST[159:152] Å SRC2[207:200]

DEST[167:160] Å SRC1[215:208]

DEST[175:168] Å SRC2[215:208]

DEST[183:176] Å SRC1[223:216]

DEST[191:184] ÅSRC2[223:216]

DEST[199:192] Å SRC1[231:224]

DEST[207:200] Å SRC2[231:224]

DEST[215:208] Å SRC1[239:232]

DEST[223:216] Å SRC2[239:232]

DEST[231:224] Å SRC1[247:240]

DEST[239:232] Å SRC2[247:240]

DEST[247:240] Å SRC1[255:248]

DEST[255:248] Å SRC2[255:248]

INTERLEAVE_HIGH_BYTES (SRC1, SRC2) 

DEST[7:0] Å SRC1[71:64]

DEST[15:8] Å SRC2[71:64]

DEST[23:16] Å SRC1[79:72]

DEST[31:24] Å SRC2[79:72]

DEST[39:32] Å SRC1[87:80]

DEST[47:40] Å SRC2[87:80]

DEST[55:48] Å SRC1[95:88]

DEST[63:56] ÅSRC2[95:88]
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DEST[71:64] Å SRC1[103:96]

DEST[79:72] Å SRC2[103:96]

DEST[87:80] Å SRC1[111:104]

DEST[95:88] Å SRC2[111:104]

DEST[103:96] Å SRC1[119:112]

DEST[111:104] Å SRC2[119:112]

DEST[119:112] Å SRC1[127:120]

DEST[127:120] Å SRC2[127:120]

INTERLEAVE_HIGH_WORDS_256b(SRC1, SRC2)

DEST[15:0] Å SRC1[79:64]

DEST[31:16] Å SRC2[79:64]

DEST[47:32] Å SRC1[95:80]

DEST[63:48] Å SRC2[95:80]

DEST[79:64] Å SRC1[111:96]

DEST[95:80] Å SRC2[111:96]

DEST[111:96] Å SRC1[127:112]

DEST[127:112] Å SRC2[127:112]

DEST[143:128] Å SRC1[207:192]

DEST[159:144] Å SRC2[207:192]

DEST[175:160] Å SRC1[223:208]

DEST[191:176] Å SRC2[223:208]

DEST[207:192] Å SRC1[239:224]

DEST[223:208] Å SRC2[239:224]

DEST[239:224] Å SRC1[255:240]

DEST[255:240] Å SRC2[255:240]

INTERLEAVE_HIGH_WORDS (SRC1, SRC2)

DEST[15:0] Å SRC1[79:64]

DEST[31:16] Å SRC2[79:64]

DEST[47:32] Å SRC1[95:80]

DEST[63:48] Å SRC2[95:80]

DEST[79:64] Å SRC1[111:96]

DEST[95:80] Å SRC2[111:96]

DEST[111:96] ÅSRC1[127:112]

DEST[127:112] Å SRC2[127:112]

INTERLEAVE_HIGH_DWORDS_256b(SRC1, SRC2)

DEST[31:0] Å SRC1[95:64]

DEST[63:32] Å SRC2[95:64]

DEST[95:64] Å SRC1[127:96]

DEST[127:96] Å SRC2[127:96]

DEST[159:128] Å SRC1[223:192]

DEST[191:160] Å SRC2[223:192]

DEST[223:192] Å SRC1[255:224]

DEST[255:224] Å SRC2[255:224]

INTERLEAVE_HIGH_DWORDS(SRC1, SRC2)

DEST[31:0] Å SRC1[95:64]

DEST[63:32] Å SRC2[95:64]

DEST[95:64] Å SRC1[127:96]

DEST[127:96] Å SRC2[127:96]

INTERLEAVE_HIGH_QWORDS_256b(SRC1, SRC2)
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DEST[63:0] Å SRC1[127:64]

DEST[127:64] Å SRC2[127:64]

DEST[191:128] Å SRC1[255:192]

DEST[255:192] Å SRC2[255:192]

INTERLEAVE_HIGH_QWORDS(SRC1, SRC2)

DEST[63:0] Å SRC1[127:64]

DEST[127:64] Å SRC2[127:64]

PUNPCKHBW (128-bit Legacy SSE Version)

DEST[127:0] Å INTERLEAVE_HIGH_BYTES(DEST, SRC)

DEST[VLMAX-1:128] (Unmodified)

VPUNPCKHBW (VEX.128 encoded version)

DEST[127:0] Å INTERLEAVE_HIGH_BYTES(SRC1, SRC2)

DEST[VLMAX-1:128] Å 0

VPUNPCKHBW (VEX.256 encoded version)

DEST[255:0] Å INTERLEAVE_HIGH_BYTES_256b(SRC1, SRC2)

PUNPCKHWD (128-bit Legacy SSE Version)

DEST[127:0] Å INTERLEAVE_HIGH_WORDS(DEST, SRC)

DEST[VLMAX-1:128] (Unmodified)

VPUNPCKHWD (VEX.128 encoded version)

DEST[127:0] Å INTERLEAVE_HIGH_WORDS(SRC1, SRC2)

DEST[VLMAX-1:128] Å 0

VPUNPCKHWD (VEX.256 encoded version)

DEST[255:0] Å INTERLEAVE_HIGH_WORDS_256b(SRC1, SRC2)

PUNPCKHDQ (128-bit Legacy SSE Version)

DEST[127:0] Å INTERLEAVE_HIGH_DWORDS(DEST, SRC)

DEST[VLMAX-1:128] (Unmodified)

VPUNPCKHDQ (VEX.128 encoded version)

DEST[127:0] Å INTERLEAVE_HIGH_DWORDS(SRC1, SRC2)

DEST[VLMAX-1:128] Å 0

VPUNPCKHDQ (VEX.256 encoded version)

DEST[255:0] Å INTERLEAVE_HIGH_DWORDS_256b(SRC1, SRC2)

PUNPCKHQDQ (128-bit Legacy SSE Version)

DEST[127:0] Å INTERLEAVE_HIGH_QWORDS(DEST, SRC)

DEST[255:127] (Unmodified)

VPUNPCKHQDQ (VEX.128 encoded version)

DEST[127:0] Å INTERLEAVE_HIGH_QWORDS(SRC1, SRC2)

DEST[255:127] Å 0

VPUNPCKHQDQ (VEX.256 encoded version)

DEST[255:0] Å INTERLEAVE_HIGH_QWORDS_256(SRC1, SRC2)
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Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKHBW: __m64 _mm_unpackhi_pi8(__m64 m1, __m64 m2)

(V)PUNPCKHBW: __m128i _mm_unpackhi_epi8(__m128i m1, __m128i m2)

VPUNPCKHBW: __m256i _mm256_unpackhi_epi8(__m256i m1, __m256i m2)

PUNPCKHWD: __m64 _mm_unpackhi_pi16(__m64 m1,__m64 m2)

(V)PUNPCKHWD: __m128i _mm_unpackhi_epi16(__m128i m1,__m128i m2)

VPUNPCKHWD: __m256i _mm256_unpackhi_epi16(__m256i m1,__m256i m2)

PUNPCKHDQ: __m64 _mm_unpackhi_pi32(__m64 m1, __m64 m2)

(V)PUNPCKHDQ: __m128i _mm_unpackhi_epi32(__m128i m1, __m128i m2)

VPUNPCKHDQ: __m256i _mm256_unpackhi_epi32(__m256i m1, __m256i m2)

(V)PUNPCKHQDQ: __m128i _mm_unpackhi_epi64 ( __m128i a, __m128i b)

VPUNPCKHQDQ: __m256i _mm256_unpackhi_epi64 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.



PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—Unpack Low Data

INSTRUCTION SET REFERENCE, N-Z

4-260 Vol. 2B

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—Unpack Low Data

Instruction Operand Encoding

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 60 /r1

PUNPCKLBW mm, mm/m32

RM V/V MMX Interleave low-order bytes from mm and 
mm/m32 into mm.

66 0F 60 /r

PUNPCKLBW xmm1, xmm2/m128

RM V/V SSE2 Interleave low-order bytes from xmm1 and 
xmm2/m128 into xmm1.

0F 61 /r1

PUNPCKLWD mm, mm/m32

RM V/V MMX Interleave low-order words from mm and 
mm/m32 into mm.

66 0F 61 /r

PUNPCKLWD xmm1, xmm2/m128

RM V/V SSE2 Interleave low-order words from xmm1 and 

xmm2/m128 into xmm1.

0F 62 /r1

PUNPCKLDQ mm, mm/m32

RM V/V MMX Interleave low-order doublewords from mm 
and mm/m32 into mm.

66 0F 62 /r

PUNPCKLDQ xmm1, xmm2/m128

RM V/V SSE2 Interleave low-order doublewords from xmm1 
and xmm2/m128 into xmm1.

66 0F 6C /r

PUNPCKLQDQ xmm1, xmm2/m128

RM V/V SSE2 Interleave low-order quadword from xmm1 
and xmm2/m128 into xmm1 register.

VEX.NDS.128.66.0F.WIG 60/r

VPUNPCKLBW xmm1,xmm2, xmm3/m128

RVM V/V AVX Interleave low-order bytes from xmm2 and 
xmm3/m128 into xmm1.

VEX.NDS.128.66.0F.WIG 61/r

VPUNPCKLWD xmm1,xmm2, xmm3/m128

RVM V/V AVX Interleave low-order words from xmm2 and 
xmm3/m128 into xmm1.

VEX.NDS.128.66.0F.WIG 62/r

VPUNPCKLDQ xmm1, xmm2, xmm3/m128

RVM V/V AVX Interleave low-order doublewords from xmm2 
and xmm3/m128 into xmm1.

VEX.NDS.128.66.0F.WIG 6C/r

VPUNPCKLQDQ xmm1, xmm2, xmm3/m128

RVM V/V AVX Interleave low-order quadword from xmm2 
and xmm3/m128 into xmm1 register.

VEX.NDS.256.66.0F.WIG 60 /r

VPUNPCKLBW ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Interleave low-order bytes from ymm2 and 
ymm3/m256 into ymm1 register.

VEX.NDS.256.66.0F.WIG 61 /r

VPUNPCKLWD ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Interleave low-order words from ymm2 and 
ymm3/m256 into ymm1 register.

VEX.NDS.256.66.0F.WIG 62 /r

VPUNPCKLDQ ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Interleave low-order doublewords from ymm2 

and ymm3/m256 into ymm1 register.

VEX.NDS.256.66.0F.WIG 6C /r

VPUNPCKLQDQ ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Interleave low-order quadword from ymm2 

and ymm3/m256 into ymm1 register.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Description

Unpacks and interleaves the low-order data elements (bytes, words, doublewords, and quadwords) of the destina-
tion operand (first operand) and source operand (second operand) into the destination operand. (Figure 4-18 
shows the unpack operation for bytes in 64-bit operands.). The high-order data elements are ignored.

Figure 4-19.  256-bit VPUNPCKLDQ Instruction Operation

When the source data comes from a 128-bit memory operand, an implementation may fetch only the appropriate 
64 bits; however, alignment to a 16-byte boundary and normal segment checking will still be enforced.

The (V)PUNPCKLBW instruction interleaves the low-order bytes of the source and destination operands, the 
(V)PUNPCKLWD instruction interleaves the low-order words of the source and destination operands, the 
(V)PUNPCKLDQ instruction interleaves the low-order doubleword (or doublewords) of the source and destination 
operands, and the (V)PUNPCKLQDQ instruction interleaves the low-order quadwords of the source and destination 
operands.

These instructions can be used to convert bytes to words, words to doublewords, doublewords to quadwords, and 
quadwords to double quadwords, respectively, by placing all 0s in the source operand. Here, if the source operand 
contains all 0s, the result (stored in the destination operand) contains zero extensions of the high-order data 
elements from the original value in the destination operand. For example, with the (V)PUNPCKLBW instruction the 
high-order bytes are zero extended (that is, unpacked into unsigned word integers), and with the (V)PUNPCKLWD 
instruction, the high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

Legacy SSE versions: The source operand can be an MMX technology register or a 32-bit memory location. The 
destination operand is an MMX technology register. 
128-bit Legacy SSE versions: The second source operand is an XMM register or a 128-bit memory location. The 
first source operand and destination operands are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM 
destination register remain unchanged.
VEX.128 encoded versions: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (VLMAX-1:128) of the destination YMM register 
are zeroed. 

Figure 4-18.  PUNPCKLBW Instruction Operation Using 64-bit Operands

X0X3 X2 X1 Y0Y3 Y2 Y1

X0X3 X2 X1Y0Y3 Y2 Y1 X4X7 X6 X5Y4Y7 Y6 Y5SRC DEST

DEST

X0X5 X4 X1 Y0Y5 Y4 Y1

X0X3 X2 X1Y0Y3 Y2 Y1 X4X7 X6 X5Y4Y7 Y6 Y5SRC

DEST
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0

0255

255
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VEX.256 encoded version: The second source operand is an YMM register or a 256-bit memory location. The first 
source operand and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise instructions will #UD.

Operation

PUNPCKLBW instruction with 64-bit operands:

DEST[63:56] ← SRC[31:24];

DEST[55:48] ← DEST[31:24];

DEST[47:40] ← SRC[23:16];

DEST[39:32] ← DEST[23:16];

DEST[31:24] ← SRC[15:8];

DEST[23:16] ← DEST[15:8];

DEST[15:8] ← SRC[7:0];

DEST[7:0] ← DEST[7:0];

PUNPCKLWD instruction with 64-bit operands:

DEST[63:48] ← SRC[31:16];

DEST[47:32] ← DEST[31:16];

DEST[31:16] ← SRC[15:0];

DEST[15:0] ← DEST[15:0];

PUNPCKLDQ instruction with 64-bit operands:

DEST[63:32] ← SRC[31:0];

DEST[31:0] ← DEST[31:0];

PUNPCKLBW instruction with 128-bit operands:

DEST[7:0]← DEST[7:0];

DEST[15:8]  ← SRC[7:0];

DEST[23:16] ← DEST[15:8];

DEST[31:24] ← SRC[15:8];

DEST[39:32] ← DEST[23:16];

DEST[47:40] ← SRC[23:16];

DEST[55:48] ← DEST[31:24];

DEST[63:56] ← SRC[31:24];

DEST[71:64] ← DEST[39:32];

DEST[79:72] ← SRC[39:32];

DEST[87:80] ← DEST[47:40];

DEST[95:88] ← SRC[47:40];

DEST[103:96]  ← DEST[55:48];

DEST[111:104] ← SRC[55:48];

DEST[119:112] ← DEST[63:56];

DEST[127:120] ← SRC[63:56];

PUNPCKLWD instruction with 128-bit operands:

DEST[15:0]  ← DEST[15:0];

DEST[31:16] ← SRC[15:0];

DEST[47:32] ← DEST[31:16];

DEST[63:48] ← SRC[31:16];

DEST[79:64] ← DEST[47:32];

DEST[95:80] ← SRC[47:32];

DEST[111:96]  ← DEST[63:48];

DEST[127:112] ← SRC[63:48];
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PUNPCKLDQ instruction with 128-bit operands:

DEST[31:0] ← DEST[31:0];

DEST[63:32]  ← SRC[31:0];

DEST[95:64]  ← DEST[63:32];

DEST[127:96] ← SRC[63:32];

PUNPCKLQDQ

DEST[63:0] ← DEST[63:0];

DEST[127:64] ← SRC[63:0];

INTERLEAVE_BYTES_256b (SRC1, SRC2) 

DEST[7:0] Å SRC1[7:0]

DEST[15:8] Å SRC2[7:0]

DEST[23:16] Å SRC1[15:8]

DEST[31:24] Å SRC2[15:8]

DEST[39:32] Å SRC1[23:16]

DEST[47:40] Å SRC2[23:16]

DEST[55:48] Å SRC1[31:24]

DEST[63:56] ÅSRC2[31:24]

DEST[71:64] Å SRC1[39:32]

DEST[79:72] Å SRC2[39:32]

DEST[87:80] Å SRC1[47:40]

DEST[95:88] Å SRC2[47:40]

DEST[103:96] Å SRC1[55:48]

DEST[111:104] Å SRC2[55:48]

DEST[119:112] Å SRC1[63:56]

DEST[127:120] Å SRC2[63:56]

DEST[135:128] Å SRC1[135:128]

DEST[143:136] Å SRC2[135:128]

DEST[151:144] Å SRC1[143:136]

DEST[159:152] Å SRC2[143:136]

DEST[167:160] Å SRC1[151:144]

DEST[175:168] Å SRC2[151:144]

DEST[183:176] Å SRC1[159:152]

DEST[191:184] ÅSRC2[159:152]

DEST[199:192] Å SRC1[167:160]

DEST[207:200] Å SRC2[167:160]

DEST[215:208] Å SRC1[175:168]

DEST[223:216] Å SRC2[175:168]

DEST[231:224] Å SRC1[183:176]

DEST[239:232] Å SRC2[183:176]

DEST[247:240] Å SRC1[191:184]

DEST[255:248] Å SRC2[191:184]

INTERLEAVE_BYTES (SRC1, SRC2) 

DEST[7:0] Å SRC1[7:0]

DEST[15:8] Å SRC2[7:0]

DEST[23:16] Å SRC2[15:8]

DEST[31:24] Å SRC2[15:8]

DEST[39:32] Å SRC1[23:16]

DEST[47:40] Å SRC2[23:16]

DEST[55:48] Å SRC1[31:24]

DEST[63:56] ÅSRC2[31:24]

DEST[71:64] Å SRC1[39:32]

DEST[79:72] Å SRC2[39:32]
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DEST[87:80] Å SRC1[47:40]

DEST[95:88] Å SRC2[47:40]

DEST[103:96] Å SRC1[55:48]

DEST[111:104] Å SRC2[55:48]

DEST[119:112] Å SRC1[63:56]

DEST[127:120] Å SRC2[63:56]

INTERLEAVE_WORDS_256b(SRC1, SRC2)

DEST[15:0] Å SRC1[15:0]

DEST[31:16] Å SRC2[15:0]

DEST[47:32] Å SRC1[31:16]

DEST[63:48] Å SRC2[31:16]

DEST[79:64] Å SRC1[47:32]

DEST[95:80] Å SRC2[47:32]

DEST[111:96] Å SRC1[63:48]

DEST[127:112] Å SRC2[63:48]

DEST[143:128] Å SRC1[143:128]

DEST[159:144] Å SRC2[143:128]

DEST[175:160] Å SRC1[159:144]

DEST[191:176] Å SRC2[159:144]

DEST[207:192] Å SRC1[175:160]

DEST[223:208] Å SRC2[175:160]

DEST[239:224] Å SRC1[191:176]

DEST[255:240] Å SRC2[191:176]

INTERLEAVE_WORDS (SRC1, SRC2)

DEST[15:0] Å SRC1[15:0]

DEST[31:16] Å SRC2[15:0]

DEST[47:32] Å SRC1[31:16]

DEST[63:48] Å SRC2[31:16]

DEST[79:64] Å SRC1[47:32]

DEST[95:80] Å SRC2[47:32]

DEST[111:96] Å SRC1[63:48]

DEST[127:112] Å SRC2[63:48]

INTERLEAVE_DWORDS_256b(SRC1, SRC2)

DEST[31:0] Å SRC1[31:0]

DEST[63:32] Å SRC2[31:0]

DEST[95:64] Å SRC1[63:32]

DEST[127:96] Å SRC2[63:32]

DEST[159:128] Å SRC1[159:128]

DEST[191:160] Å SRC2[159:128]

DEST[223:192] Å SRC1[191:160]

DEST[255:224] Å SRC2[191:160]

INTERLEAVE_DWORDS(SRC1, SRC2)

DEST[31:0] Å SRC1[31:0]

DEST[63:32] Å SRC2[31:0]

DEST[95:64] Å SRC1[63:32]

DEST[127:96] Å SRC2[63:32]

INTERLEAVE_QWORDS_256b(SRC1, SRC2)

DEST[63:0] Å SRC1[63:0]

DEST[127:64] Å SRC2[63:0]
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DEST[191:128] Å SRC1[191:128]

DEST[255:192] Å SRC2[191:128]

INTERLEAVE_QWORDS(SRC1, SRC2)

DEST[63:0] Å SRC1[63:0]

DEST[127:64] Å SRC2[63:0]

PUNPCKLBW (128-bit Legacy SSE Version)

DEST[127:0] Å INTERLEAVE_BYTES(DEST, SRC)

DEST[255:127] (Unmodified)

VPUNPCKLBW (VEX.128 encoded instruction)

DEST[127:0] Å INTERLEAVE_BYTES(SRC1, SRC2)

DEST[VLMAX-1:128] Å 0

VPUNPCKLBW (VEX.256 encoded instruction)

DEST[255:0] Å INTERLEAVE_BYTES_128b(SRC1, SRC2)

PUNPCKLWD (128-bit Legacy SSE Version)

DEST[127:0] Å INTERLEAVE_WORDS(DEST, SRC)

DEST[255:127] (Unmodified)

VPUNPCKLWD (VEX.128 encoded instruction)

DEST[127:0] Å INTERLEAVE_WORDS(SRC1, SRC2)

DEST[VLMAX-1:128] Å 0

VPUNPCKLWD (VEX.256 encoded instruction)

DEST[255:0] Å INTERLEAVE_WORDS(SRC1, SRC2)

PUNPCKLDQ (128-bit Legacy SSE Version)

DEST[127:0] Å INTERLEAVE_DWORDS(DEST, SRC)

DEST[255:127] (Unmodified)

VPUNPCKLDQ (VEX.128 encoded instruction)

DEST[127:0] Å INTERLEAVE_DWORDS(SRC1, SRC2)

DEST[VLMAX-1:128] Å 0

VPUNPCKLDQ (VEX.256 encoded instruction)

DEST[255:0] Å INTERLEAVE_DWORDS(SRC1, SRC2)

PUNPCKLQDQ (128-bit Legacy SSE Version)

DEST[127:0] Å INTERLEAVE_QWORDS(DEST, SRC)

DEST[255:127] (Unmodified)

VPUNPCKLQDQ (VEX.128 encoded instruction)

DEST[127:0] Å INTERLEAVE_QWORDS(SRC1, SRC2)

DEST[VLMAX-1:128] Å 0

VPUNPCKLQDQ (VEX.256 encoded instruction)

DEST[255:0] Å INTERLEAVE_QWORDS(SRC1, SRC2)

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKLBW: __m64 _mm_unpacklo_pi8 (__m64 m1, __m64 m2)
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(V)PUNPCKLBW: __m128i _mm_unpacklo_epi8 (__m128i m1, __m128i m2)

VPUNPCKLBW: __m256i _mm256_unpacklo_epi8 (__m256i m1, __m256i m2)

PUNPCKLWD: __m64 _mm_unpacklo_pi16 (__m64 m1, __m64 m2)

(V)PUNPCKLWD: __m128i _mm_unpacklo_epi16 (__m128i m1, __m128i m2)

VPUNPCKLWD: __m256i _mm256_unpacklo_epi16 (__m256i m1, __m256i m2)

PUNPCKLDQ: __m64 _mm_unpacklo_pi32 (__m64 m1, __m64 m2)

(V)PUNPCKLDQ: __m128i _mm_unpacklo_epi32 (__m128i m1, __m128i m2)

VPUNPCKLDQ: __m256i _mm256_unpacklo_epi32 (__m256i m1, __m256i m2)

(V)PUNPCKLQDQ: __m128i _mm_unpacklo_epi64 (__m128i m1, __m128i m2)

VPUNPCKLQDQ: __m256i _mm256_unpacklo_epi64 (__m256i m1, __m256i m2)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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PUSH—Push Word, Doubleword or Quadword Onto the Stack

Instruction Operand Encoding

Description

Decrements the stack pointer and then stores the source operand on the top of the stack. Address and operand 
sizes are determined and used as follows:
• Address size. The D flag in the current code-segment descriptor determines the default address size; it may be 

overridden by an instruction prefix (67H).
The address size is used only when referencing a source operand in memory.

• Operand size. The D flag in the current code-segment descriptor determines the default operand size; it may 
be overridden by instruction prefixes (66H or REX.W).
The operand size (16, 32, or 64 bits) determines the amount by which the stack pointer is decremented (2, 4
or 8).
If the source operand is an immediate of size less than the operand size, a sign-extended value is pushed on
the stack. If the source operand is a segment register (16 bits) and the operand size is 64-bits, a zero-
extended value is pushed on the stack; if the operand size is 32-bits, either a zero-extended value is pushed
on the stack or the segment selector is written on the stack using a 16-bit move. For the last case, all recent
Core and Atom processors perform a 16-bit move, leaving the upper portion of the stack location unmodified.

• Stack-address size. Outside of 64-bit mode, the B flag in the current stack-segment descriptor determines the 
size of the stack pointer (16 or 32 bits); in 64-bit mode, the size of the stack pointer is always 64 bits.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

FF /6 PUSH r/m16 M Valid Valid Push r/m16.

FF /6 PUSH r/m32 M N.E. Valid Push r/m32.

FF /6 PUSH r/m64 M Valid N.E. Push r/m64. 

50+rw PUSH r16 O Valid Valid Push r16.

50+rd PUSH r32 O N.E. Valid Push r32.

50+rd PUSH r64 O Valid N.E. Push r64.

6A ib PUSH imm8 I Valid Valid Push imm8.

68 iw PUSH imm16 I Valid Valid Push imm16.

68 id PUSH imm32 I Valid Valid Push imm32.

0E PUSH CS NP Invalid Valid Push CS.

16 PUSH SS NP Invalid Valid Push SS.

1E PUSH DS NP Invalid Valid Push DS.

06 PUSH ES NP Invalid Valid Push ES.

0F A0 PUSH FS NP Valid Valid Push FS.

0F A8 PUSH GS NP Valid Valid Push GS.

NOTES:

* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

O opcode + rd (r) NA NA NA

I imm8/16/32 NA NA NA

NP NA NA NA NA
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The stack-address size determines the width of the stack pointer when writing to the stack in memory and
when decrementing the stack pointer. (As stated above, the amount by which the stack pointer is
decremented is determined by the operand size.)
If the operand size is less than the stack-address size, the PUSH instruction may result in a misaligned stack
pointer (a stack pointer that is not aligned on a doubleword or quadword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before the instruction was executed. If 
a PUSH instruction uses a memory operand in which the ESP register is used for computing the operand address, 
the address of the operand is computed before the ESP register is decremented. 

If the ESP or SP register is 1 when the PUSH instruction is executed in real-address mode, a stack-fault exception 
(#SS) is generated (because the limit of the stack segment is violated). Its delivery encounters a second stack-
fault exception (for the same reason), causing generation of a double-fault exception (#DF). Delivery of the 
double-fault exception encounters a third stack-fault exception, and the logical processor enters shutdown mode. 
See the discussion of the double-fault exception in Chapter 6 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A.

IA-32 Architecture Compatibility

For IA-32 processors from the Intel 286 on, the PUSH ESP instruction pushes the value of the ESP register as it 
existed before the instruction was executed. (This is also true for Intel 64 architecture, real-address and virtual-
8086 modes of IA-32 architecture.) For the Intel® 8086 processor, the PUSH SP instruction pushes the new value 
of the SP register (that is the value after it has been decremented by 2).

Operation

(* See Description section for possible sign-extension or zero-extension of source operand and for *)

(* a case in which the size of the memory store may be smaller than the instruction’s operand size *)

IF StackAddrSize = 64

THEN

IF OperandSize = 64

THEN

RSP ← RSP – 8;

Memory[SS:RSP] ← SRC; (* push quadword *)

ELSE IF OperandSize = 32

THEN

RSP ← RSP – 4;

Memory[SS:RSP] ← SRC; (* push dword *)

ELSE (* OperandSize = 16 *)

RSP ← RSP – 2;

Memory[SS:RSP] ← SRC; (* push word *)

FI;

ELSE IF StackAddrSize = 32

THEN

IF OperandSize = 64

THEN

ESP ← ESP – 8;

Memory[SS:ESP] ← SRC; (* push quadword *)

ELSE IF OperandSize = 32

THEN

ESP ← ESP – 4;

Memory[SS:ESP] ← SRC; (* push dword *)

ELSE (* OperandSize = 16 *)

ESP ← ESP – 2;

Memory[SS:ESP] ← SRC; (* push word *)

FI;

ELSE (* StackAddrSize = 16 *)
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IF OperandSize = 32

THEN

SP ← SP – 4;

Memory[SS:SP] ← SRC; (* push dword *)

ELSE (* OperandSize = 16 *)

SP ← SP – 2;

Memory[SS:SP] ← SRC; (* push word *)

FI;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

If the new value of the SP or ESP register is outside the stack segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

If the PUSH is of CS, SS, DS, or ES.
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PUSHA/PUSHAD—Push All General-Purpose Registers

Instruction Operand Encoding

Description

Pushes the contents of the general-purpose registers onto the stack. The registers are stored on the stack in the 
following order: EAX, ECX, EDX, EBX, ESP (original value), EBP, ESI, and EDI (if the current operand-size attribute 
is 32) and AX, CX, DX, BX, SP (original value), BP, SI, and DI (if the operand-size attribute is 16). These instruc-
tions perform the reverse operation of the POPA/POPAD instructions. The value pushed for the ESP or SP register 
is its value before prior to pushing the first register (see the “Operation” section below).

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same opcode. The PUSHA instruc-
tion is intended for use when the operand-size attribute is 16 and the PUSHAD instruction for when the operand-
size attribute is 32. Some assemblers may force the operand size to 16 when PUSHA is used and to 32 when 
PUSHAD is used. Others may treat these mnemonics as synonyms (PUSHA/PUSHAD) and use the current setting 
of the operand-size attribute to determine the size of values to be pushed from the stack, regardless of the 
mnemonic used.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when PUSHA/PUSHAD executes: an #SS exception 
is generated but not delivered (the stack error reported prevents #SS delivery). Next, the processor generates a 
#DF exception and enters a shutdown state as described in the #DF discussion in Chapter 6 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in 64-bit mode.

Operation

IF 64-bit Mode 

THEN #UD

FI;

IF OperandSize = 32 (* PUSHAD instruction *)

THEN

Temp ← (ESP);

Push(EAX);

Push(ECX);

Push(EDX);

Push(EBX);

Push(Temp);

Push(EBP);

Push(ESI);

Push(EDI);

ELSE (* OperandSize = 16, PUSHA instruction *)

Temp ← (SP);

Push(AX);

Push(CX);

Push(DX);

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

60 PUSHA NP Invalid Valid Push AX, CX, DX, BX, original SP, BP, SI, and DI.

60 PUSHAD NP Invalid Valid Push EAX, ECX, EDX, EBX, original ESP, EBP, 
ESI, and EDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Push(BX);

Push(Temp);

Push(BP);

Push(SI);

Push(DI);

FI;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is outside the stack segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current privilege level is 3 and alignment 

checking is enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If the ESP or SP register contains 7, 9, 11, 13, or 15.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If the ESP or SP register contains 7, 9, 11, 13, or 15.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If in 64-bit mode.



PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

INSTRUCTION SET REFERENCE, N-Z

4-272 Vol. 2B

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

Instruction Operand Encoding

Description

Decrements the stack pointer by 4 (if the current operand-size attribute is 32) and pushes the entire contents of 
the EFLAGS register onto the stack, or decrements the stack pointer by 2 (if the operand-size attribute is 16) and 
pushes the lower 16 bits of the EFLAGS register (that is, the FLAGS register) onto the stack. These instructions 
reverse the operation of the POPF/POPFD instructions. 

When copying the entire EFLAGS register to the stack, the VM and RF flags (bits 16 and 17) are not copied; instead, 
the values for these flags are cleared in the EFLAGS image stored on the stack. See Chapter 3 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, for more information about the EFLAGS register. 

The PUSHF (push flags) and PUSHFD (push flags double) mnemonics reference the same opcode. The PUSHF 
instruction is intended for use when the operand-size attribute is 16 and the PUSHFD instruction for when the 
operand-size attribute is 32. Some assemblers may force the operand size to 16 when PUSHF is used and to 32 
when PUSHFD is used. Others may treat these mnemonics as synonyms (PUSHF/PUSHFD) and use the current 
setting of the operand-size attribute to determine the size of values to be pushed from the stack, regardless of the 
mnemonic used.

In 64-bit mode, the instruction’s default operation is to decrement the stack pointer (RSP) by 8 and pushes RFLAGS 
on the stack. 16-bit operation is supported using the operand size override prefix 66H. 32-bit operand size cannot 
be encoded in this mode. When copying RFLAGS to the stack, the VM and RF flags (bits 16 and 17) are not copied; 
instead, values for these flags are cleared in the RFLAGS image stored on the stack.

When in virtual-8086 mode and the I/O privilege level (IOPL) is less than 3, the PUSHF/PUSHFD instruction causes 
a general protection exception (#GP).

In the real-address mode, if the ESP or SP register is 1 when PUSHF/PUSHFD instruction executes: an #SS excep-
tion is generated but not delivered (the stack error reported prevents #SS delivery). Next, the processor generates 
a #DF exception and enters a shutdown state as described in the #DF discussion in Chapter 6 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Operation

IF (PE = 0) or (PE = 1 and ((VM = 0) or (VM = 1 and IOPL = 3)))

(* Real-Address Mode, Protected mode, or Virtual-8086 mode with IOPL equal to 3 *)

THEN

IF OperandSize = 32

THEN 

push (EFLAGS AND 00FCFFFFH);

(* VM and RF EFLAG bits are cleared in image stored on the stack *)

ELSE 

push (EFLAGS); (* Lower 16 bits only *)

FI;

ELSE IF 64-bit MODE (* In 64-bit Mode *)

IF OperandSize = 64

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

9C PUSHF NP Valid Valid Push lower 16 bits of EFLAGS.

9C PUSHFD NP N.E. Valid Push EFLAGS.

9C PUSHFQ NP Valid N.E. Push RFLAGS.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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THEN 

push (RFLAGS AND 00000000_00FCFFFFH);

(* VM and RF RFLAG bits are cleared in image stored on the stack; *)

ELSE 

push (EFLAGS); (* Lower 16 bits only *)

FI;

ELSE (* In Virtual-8086 Mode with IOPL less than 3 *)

#GP(0); (* Trap to virtual-8086 monitor *)

FI;

Flags Affected

None.

Protected Mode Exceptions

#SS(0) If the new value of the ESP register is outside the stack segment boundary. 
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current privilege level is 3 and alignment 

checking is enabled.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If the I/O privilege level is less than 3.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while alignment checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
#SS(0) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current privilege level is 3 and alignment 

checking is enabled.
#UD If the LOCK prefix is used.
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PXOR—Logical Exclusive OR

Instruction Operand Encoding

Description

Performs a bitwise logical exclusive-OR (XOR) operation on the source operand (second operand) and the destina-
tion operand (first operand) and stores the result in the destination operand. Each bit of the result is 1 if the corre-
sponding bits of the two operands are different; each bit is 0 if the corresponding bits of the operands are the same.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

Legacy SSE instructions: The source operand can be an MMX technology register or a 64-bit memory location. The 
destination operand is an MMX technology register.
128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM desti-
nation register remain unchanged.
VEX.128 encoded version: The second source operand is an XMM register or a 128-bit memory location. The first 
source operand and destination operands are XMM registers. Bits (VLMAX-1:128) of the destination YMM register 
are zeroed. 
VEX.256 encoded version: The second source operand is an YMM register or a 256-bit memory location. The first 
source operand and destination operands are YMM registers.

Note: VEX.L must be 0, otherwise instructions will #UD.

Operation

PXOR (128-bit Legacy SSE version)

DEST Å DEST XOR SRC

DEST[VLMAX-1:128] (Unmodified)

VPXOR (VEX.128 encoded version)

DEST Å SRC1 XOR SRC2

DEST[VLMAX-1:128] Å 0

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F EF /r1

PXOR mm, mm/m64

RM V/V MMX Bitwise XOR of mm/m64 and mm.

66 0F EF /r

PXOR xmm1, xmm2/m128

RM V/V SSE2 Bitwise XOR of xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG EF /r
VPXOR xmm1, xmm2, xmm3/m128

RVM V/V AVX Bitwise XOR of xmm3/m128 and xmm2.

VEX.NDS.256.66.0F.WIG EF /r
VPXOR ymm1, ymm2, ymm3/m256

RVM V/V AVX2 Bitwise XOR of ymm3/m256 and ymm2.

NOTES:

1. See note in Section 2.4, “Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3A.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VPXOR (VEX.256 encoded version)

DEST Å SRC1 XOR SRC2

Intel C/C++ Compiler Intrinsic Equivalent

PXOR: __m64 _mm_xor_si64 (__m64 m1, __m64 m2)

(V)PXOR: __m128i _mm_xor_si128 ( __m128i a, __m128i b)

VPXOR: __m256i _mm256_xor_si256 ( __m256i a, __m256i b)

Flags Affected

None.

Numeric Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 1.
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RCL/RCR/ROL/ROR-—Rotate

Opcode** Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

D0 /2 RCL r/m8, 1 M1 Valid Valid Rotate 9 bits (CF, r/m8) left once.

REX + D0 /2 RCL r/m8*, 1 M1 Valid N.E. Rotate 9 bits (CF, r/m8) left once. 

D2 /2 RCL r/m8, CL MC Valid Valid Rotate 9 bits (CF, r/m8) left CL times. 

REX + D2 /2 RCL r/m8*, CL MC Valid N.E. Rotate 9 bits (CF, r/m8) left CL times. 

C0 /2 ib RCL r/m8, imm8 MI Valid Valid Rotate 9 bits (CF, r/m8) left imm8 times.

REX + C0 /2 ib RCL r/m8*, imm8 MI Valid N.E. Rotate 9 bits (CF, r/m8) left imm8 times.

D1 /2 RCL r/m16, 1 M1 Valid Valid Rotate 17 bits (CF, r/m16) left once.

D3 /2 RCL r/m16, CL MC Valid Valid Rotate 17 bits (CF, r/m16) left CL times.

C1 /2 ib RCL r/m16, imm8 MI Valid Valid Rotate 17 bits (CF, r/m16) left imm8 times.

D1 /2 RCL r/m32, 1 M1 Valid Valid Rotate 33 bits (CF, r/m32) left once.

REX.W + D1 /2 RCL r/m64, 1 M1 Valid N.E. Rotate 65 bits (CF, r/m64) left once. Uses a 6 
bit count.

D3 /2 RCL r/m32, CL MC Valid Valid Rotate 33 bits (CF, r/m32) left CL times.

REX.W + D3 /2 RCL r/m64, CL MC Valid N.E. Rotate 65 bits (CF, r/m64) left CL times. Uses a 
6 bit count.

C1 /2 ib RCL r/m32, imm8 MI Valid Valid Rotate 33 bits (CF, r/m32) left imm8 times.

REX.W + C1 /2 ib RCL r/m64, imm8 MI Valid N.E. Rotate 65 bits (CF, r/m64) left imm8 times. 
Uses a 6 bit count.

D0 /3 RCR r/m8, 1 M1 Valid Valid Rotate 9 bits (CF, r/m8) right once. 

REX + D0 /3 RCR r/m8*, 1 M1 Valid N.E. Rotate 9 bits (CF, r/m8) right once. 

D2 /3 RCR r/m8, CL MC Valid Valid Rotate 9 bits (CF, r/m8) right CL times. 

REX + D2 /3 RCR r/m8*, CL MC Valid N.E. Rotate 9 bits (CF, r/m8) right CL times. 

C0 /3 ib RCR r/m8, imm8 MI Valid Valid Rotate 9 bits (CF, r/m8) right imm8 times. 

REX + C0 /3 ib RCR r/m8*, imm8 MI Valid N.E. Rotate 9 bits (CF, r/m8) right imm8 times. 

D1 /3 RCR r/m16, 1 M1 Valid Valid Rotate 17 bits (CF, r/m16) right once.

D3 /3 RCR r/m16, CL MC Valid Valid Rotate 17 bits (CF, r/m16) right CL times.

C1 /3 ib RCR r/m16, imm8 MI Valid Valid Rotate 17 bits (CF, r/m16) right imm8 times.

D1 /3 RCR r/m32, 1 M1 Valid Valid Rotate 33 bits (CF, r/m32) right once. Uses a 6 
bit count.

REX.W + D1 /3 RCR r/m64, 1 M1 Valid N.E. Rotate 65 bits (CF, r/m64) right once. Uses a 6 
bit count.

D3 /3 RCR r/m32, CL MC Valid Valid Rotate 33 bits (CF, r/m32) right CL times.

REX.W + D3 /3 RCR r/m64, CL MC Valid N.E. Rotate 65 bits (CF, r/m64) right CL times. Uses 
a 6 bit count.

C1 /3 ib RCR r/m32, imm8 MI Valid Valid Rotate 33 bits (CF, r/m32) right imm8 times.

REX.W + C1 /3 ib RCR r/m64, imm8 MI Valid N.E. Rotate 65 bits (CF, r/m64) right imm8 times. 
Uses a 6 bit count.

D0 /0 ROL r/m8, 1 M1 Valid Valid Rotate 8 bits r/m8 left once.

REX + D0 /0 ROL r/m8*, 1 M1 Valid N.E. Rotate 8 bits r/m8 left once

D2 /0 ROL r/m8, CL MC Valid Valid Rotate 8 bits r/m8 left CL times.

REX + D2 /0 ROL r/m8*, CL MC Valid N.E. Rotate 8 bits r/m8 left CL times.

C0 /0 ib ROL r/m8, imm8 MI Valid Valid Rotate 8 bits r/m8 left imm8 times.
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Instruction Operand Encoding

Opcode** Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

REX + C0 /0 ib ROL r/m8*, imm8 MI Valid N.E. Rotate 8 bits r/m8 left imm8 times.

D1 /0 ROL r/m16, 1 M1 Valid Valid Rotate 16 bits r/m16 left once.

D3 /0 ROL r/m16, CL MC Valid Valid Rotate 16 bits r/m16 left CL times.

C1 /0 ib ROL r/m16, imm8 MI Valid Valid Rotate 16 bits r/m16 left imm8 times.

D1 /0 ROL r/m32, 1 M1 Valid Valid Rotate 32 bits r/m32 left once.

REX.W + D1 /0 ROL r/m64, 1 M1 Valid N.E. Rotate 64 bits r/m64 left once. Uses a 6 bit 
count.

D3 /0 ROL r/m32, CL MC Valid Valid Rotate 32 bits r/m32 left CL times.

REX.W + D3 /0 ROL r/m64, CL MC Valid N.E. Rotate 64 bits r/m64 left CL times. Uses a 6 
bit count.

C1 /0 ib ROL r/m32, imm8 MI Valid Valid Rotate 32 bits r/m32 left imm8 times.

REX.W + C1 /0 ib ROL r/m64, imm8 MI Valid N.E. Rotate 64 bits r/m64 left imm8 times. Uses a 
6 bit count.

D0 /1 ROR r/m8, 1 M1 Valid Valid Rotate 8 bits r/m8 right once.

REX + D0 /1 ROR r/m8*, 1 M1 Valid N.E. Rotate 8 bits r/m8 right once.

D2 /1 ROR r/m8, CL MC Valid Valid Rotate 8 bits r/m8 right CL times.

REX + D2 /1 ROR r/m8*, CL MC Valid N.E. Rotate 8 bits r/m8 right CL times.

C0 /1 ib ROR r/m8, imm8 MI Valid Valid Rotate 8 bits r/m16 right imm8 times.

REX + C0 /1 ib ROR r/m8*, imm8 MI Valid N.E. Rotate 8 bits r/m16 right imm8 times.

D1 /1 ROR r/m16, 1 M1 Valid Valid Rotate 16 bits r/m16 right once.

D3 /1 ROR r/m16, CL MC Valid Valid Rotate 16 bits r/m16 right CL times.

C1 /1 ib ROR r/m16, imm8 MI Valid Valid Rotate 16 bits r/m16 right imm8 times.

D1 /1 ROR r/m32, 1 M1 Valid Valid Rotate 32 bits r/m32 right once.

REX.W + D1 /1 ROR r/m64, 1 M1 Valid N.E. Rotate 64 bits r/m64 right once. Uses a 6 bit 
count.

D3 /1 ROR r/m32, CL MC Valid Valid Rotate 32 bits r/m32 right CL times.

REX.W + D3 /1 ROR r/m64, CL MC Valid N.E. Rotate 64 bits r/m64 right CL times. Uses a 6 
bit count.

C1 /1 ib ROR r/m32, imm8 MI Valid Valid Rotate 32 bits r/m32 right imm8 times.

REX.W + C1 /1 ib ROR r/m64, imm8 MI Valid N.E. Rotate 64 bits r/m64 right imm8 times. Uses a 
6 bit count.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

** See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M1 ModRM:r/m (w) 1 NA NA

MC ModRM:r/m (w) CL NA NA

MI ModRM:r/m (w) imm8 NA NA
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Description

Shifts (rotates) the bits of the first operand (destination operand) the number of bit positions specified in the 
second operand (count operand) and stores the result in the destination operand. The destination operand can be 
a register or a memory location; the count operand is an unsigned integer that can be an immediate or a value in 
the CL register. In legacy and compatibility mode, the processor restricts the count to a number between 0 and 31 
by masking all the bits in the count operand except the 5 least-significant bits.

The rotate left (ROL) and rotate through carry left (RCL) instructions shift all the bits toward more-significant bit 
positions, except for the most-significant bit, which is rotated to the least-significant bit location. The rotate right 
(ROR) and rotate through carry right (RCR) instructions shift all the bits toward less significant bit positions, except 
for the least-significant bit, which is rotated to the most-significant bit location.

The RCL and RCR instructions include the CF flag in the rotation. The RCL instruction shifts the CF flag into the 
least-significant bit and shifts the most-significant bit into the CF flag. The RCR instruction shifts the CF flag into the 
most-significant bit and shifts the least-significant bit into the CF flag. For the ROL and ROR instructions, the orig-
inal value of the CF flag is not a part of the result, but the CF flag receives a copy of the bit that was shifted from 
one end to the other.

The OF flag is defined only for the 1-bit rotates; it is undefined in all other cases (except RCL and RCR instructions 
only: a zero-bit rotate does nothing, that is affects no flags). For left rotates, the OF flag is set to the exclusive OR 
of the CF bit (after the rotate) and the most-significant bit of the result. For right rotates, the OF flag is set to the 
exclusive OR of the two most-significant bits of the result.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Use of 
REX.W promotes the first operand to 64 bits and causes the count operand to become a 6-bit counter.

IA-32 Architecture Compatibility

The 8086 does not mask the rotation count. However, all other IA-32 processors (starting with the Intel 286 
processor) do mask the rotation count to 5 bits, resulting in a maximum count of 31. This masking is done in all 
operating modes (including the virtual-8086 mode) to reduce the maximum execution time of the instructions.

Operation

(* RCL and RCR instructions *)

SIZE ← OperandSize;

CASE (determine count) OF

SIZE ← 8: tempCOUNT ← (COUNT AND 1FH) MOD 9;

SIZE ← 16: tempCOUNT ← (COUNT AND 1FH) MOD 17;

SIZE ← 32: tempCOUNT ← COUNT AND 1FH;

SIZE ← 64: tempCOUNT ← COUNT AND 3FH;

ESAC;

(* RCL instruction operation *)

WHILE (tempCOUNT ≠ 0)

DO

tempCF ← MSB(DEST);

DEST ← (DEST ∗ 2) + CF;

CF ← tempCF;

tempCOUNT ← tempCOUNT – 1;

OD;

ELIHW;

IF COUNT = 1
THEN OF ← MSB(DEST) XOR CF;

ELSE OF is undefined;

FI;

(* RCR instruction operation *)

IF COUNT = 1
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THEN OF ← MSB(DEST) XOR CF;

ELSE OF is undefined;

FI;

WHILE (tempCOUNT ≠ 0)

DO

tempCF ← LSB(SRC);

DEST ← (DEST / 2) + (CF * 2SIZE);

CF ← tempCF;

tempCOUNT ← tempCOUNT – 1;

OD;

(* ROL and ROR instructions *)

IF OperandSize = 64

THEN COUNTMASK = 3FH;

ELSE COUNTMASK = 1FH;

FI;

(* ROL instruction operation *)

tempCOUNT ← (COUNT & COUNTMASK) MOD SIZE

WHILE (tempCOUNT ≠ 0)

DO

tempCF ← MSB(DEST);

DEST ← (DEST ∗ 2) + tempCF;

tempCOUNT ← tempCOUNT – 1;

OD;

ELIHW;

CF ← LSB(DEST);

IF (COUNT & COUNTMASK) = 1

THEN OF ← MSB(DEST) XOR CF;

ELSE OF is undefined;

FI;

(* ROR instruction operation *)

tempCOUNT ← (COUNT & COUNTMASK) MOD SIZE

WHILE (tempCOUNT ≠ 0)

DO

tempCF ← LSB(SRC);

DEST ← (DEST / 2) + (tempCF ∗ 2SIZE);

tempCOUNT ← tempCOUNT – 1;

OD;

ELIHW;

CF ← MSB(DEST);

IF (COUNT & COUNTMASK) = 1
THEN OF ← MSB(DEST) XOR MSB − 1(DEST);

ELSE OF is undefined;

FI;

Flags Affected

The CF flag contains the value of the bit shifted into it. The OF flag is affected only for single-bit rotates (see 
“Description” above); it is undefined for multi-bit rotates. The SF, ZF, AF, and PF flags are not affected.
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Protected Mode Exceptions

#GP(0) If the source operand is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the source operand is located in a nonwritable segment.

If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD computation of the approximate reciprocals of the four packed single-precision floating-point 
values in the source operand (second operand) stores the packed single-precision floating-point results in the 
destination operand. The source operand can be an XMM register or a 128-bit memory location. The destination 
operand is an XMM register. See Figure 10-5 in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, for an illustration of a SIMD single-precision floating-point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12 

The RCPPS instruction is not affected by the rounding control bits in the MXCSR register. When a source value is a 
0.0, an ∞ of the sign of the source value is returned. A denormal source value is treated as a 0.0 (of the same sign). 
Tiny results are always flushed to 0.0, with the sign of the operand. (Input values greater than or equal to 
|1.11111111110100000000000B∗2125| are guaranteed to not produce tiny results; input values less than or equal 
to |1.00000000000110000000001B*2126| are guaranteed to produce tiny results, which are in turn flushed to 0.0; 
and input values in between this range may or may not produce tiny results, depending on the implementation.) 
When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 53 /r

RCPPS xmm1, xmm2/m128

RM V/V SSE Computes the approximate reciprocals of the 
packed single-precision floating-point values 
in xmm2/m128 and stores the results in 
xmm1.

VEX.128.0F.WIG 53 /r

VRCPPS xmm1, xmm2/m128

RM V/V AVX Computes the approximate reciprocals of 
packed single-precision values in xmm2/mem 
and stores the results in xmm1.

VEX.256.0F.WIG 53 /r

VRCPPS ymm1, ymm2/m256

RM V/V AVX Computes the approximate reciprocals of 
packed single-precision values in ymm2/mem 
and stores the results in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Operation

RCPPS (128-bit Legacy SSE version)

DEST[31:0] Å APPROXIMATE(1/SRC[31:0])

DEST[63:32] Å APPROXIMATE(1/SRC[63:32])

DEST[95:64] Å APPROXIMATE(1/SRC[95:64])

DEST[127:96] Å APPROXIMATE(1/SRC[127:96])

DEST[VLMAX-1:128] (Unmodified)

VRCPPS (VEX.128 encoded version)

DEST[31:0] Å APPROXIMATE(1/SRC[31:0])

DEST[63:32] Å APPROXIMATE(1/SRC[63:32])

DEST[95:64] Å APPROXIMATE(1/SRC[95:64])

DEST[127:96] Å APPROXIMATE(1/SRC[127:96])

DEST[VLMAX-1:128] Å 0

VRCPPS (VEX.256 encoded version)

DEST[31:0] Å APPROXIMATE(1/SRC[31:0])

DEST[63:32] Å APPROXIMATE(1/SRC[63:32])

DEST[95:64] Å APPROXIMATE(1/SRC[95:64])

DEST[127:96] Å APPROXIMATE(1/SRC[127:96])

DEST[159:128] Å APPROXIMATE(1/SRC[159:128])

DEST[191:160] Å APPROXIMATE(1/SRC[191:160])

DEST[223:192] Å APPROXIMATE(1/SRC[223:192])

DEST[255:224] Å APPROXIMATE(1/SRC[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

RCCPS: __m128 _mm_rcp_ps(__m128 a)

RCPPS:  __m256 _mm256_rcp_ps (__m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
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RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values 

Instruction Operand Encoding

Description

Computes of an approximate reciprocal of the low single-precision floating-point value in the source operand 
(second operand) and stores the single-precision floating-point result in the destination operand. The source 
operand can be an XMM register or a 32-bit memory location. The destination operand is an XMM register. The 
three high-order doublewords of the destination operand remain unchanged. See Figure 10-6 in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a scalar single-precision floating-
point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12 

The RCPSS instruction is not affected by the rounding control bits in the MXCSR register. When a source value is a 
0.0, an ∞ of the sign of the source value is returned. A denormal source value is treated as a 0.0 (of the same sign). 
Tiny results are always flushed to 0.0, with the sign of the operand. (Input values greater than or equal to 
|1.11111111110100000000000B∗2125| are guaranteed to not produce tiny results; input values less than or equal 
to |1.00000000000110000000001B*2126| are guaranteed to produce tiny results, which are in turn flushed to 0.0; 
and input values in between this range may or may not produce tiny results, depending on the implementation.) 
When a source value is an SNaN or QNaN, the SNaN is converted to a QNaN or the source QNaN is returned.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-
1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

RCPSS (128-bit Legacy SSE version)

DEST[31:0] Å APPROXIMATE(1/SRC[31:0])

DEST[VLMAX-1:32] (Unmodified)

VRCPSS (VEX.128 encoded version)

DEST[31:0] Å APPROXIMATE(1/SRC2[31:0])

DEST[127:32] Å SRC1[127:32]

DEST[VLMAX-1:128] Å 0

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 53 /r

RCPSS xmm1, xmm2/m32

RM V/V SSE Computes the approximate reciprocal of the 
scalar single-precision floating-point value in 
xmm2/m32 and stores the result in xmm1.

VEX.NDS.LIG.F3.0F.WIG 53 /r

VRCPSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Computes the approximate reciprocal of the 
scalar single-precision floating-point value in 
xmm3/m32 and stores the result in xmm1. 
Also, upper single precision floating-point 
values (bits[127:32]) from xmm2 are copied to 
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Intel C/C++ Compiler Intrinsic Equivalent

RCPSS: __m128 _mm_rcp_ss(__m128 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 5.
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RDFSBASE/RDGSBASE—Read FS/GS Segment Base

Instruction Operand Encoding

Description

Loads the general-purpose register indicated by the modR/M:r/m field with the FS or GS segment base address.

The destination operand may be either a 32-bit or a 64-bit general-purpose register. The REX.W prefix indicates 
the operand size is 64 bits. If no REX.W prefix is used, the operand size is 32 bits; the upper 32 bits of the source 
base address (for FS or GS) are ignored and upper 32 bits of the destination register are cleared. 
This instruction is supported only in 64-bit mode.

Operation

DEST ← FS/GS segment base address;

Flags Affected

None

C/C++ Compiler Intrinsic Equivalent

RDFSBASE: unsigned int _readfsbase_u32(void );

RDFSBASE: unsigned __int64 _readfsbase_u64(void );

RDGSBASE: unsigned int _readgsbase_u32(void );

RDGSBASE: unsigned __int64 _readgsbase_u64(void );

Protected Mode Exceptions

#UD The RDFSBASE and RDGSBASE instructions are not recognized in protected mode.

Real-Address Mode Exceptions

#UD The RDFSBASE and RDGSBASE instructions are not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The RDFSBASE and RDGSBASE instructions are not recognized in virtual-8086 mode.

Opcode/
Instruction

Op/ 
En

64/32-
bit 
Mode

CPUID Fea-
ture Flag

Description

F3 0F AE /0
RDFSBASE r32

M V/I FSGSBASE Load the 32-bit destination register with the FS 
base address.

REX.W + F3 0F AE /0
RDFSBASE r64

M V/I FSGSBASE Load the 64-bit destination register with the FS 
base address.

F3 0F AE /1
RDGSBASE r32

M V/I FSGSBASE Load the 32-bit destination register with the GS 
base address.

REX.W + F3 0F AE /1
RDGSBASE r64

M V/I FSGSBASE Load the 64-bit destination register with the GS 
base address.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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Compatibility Mode Exceptions

#UD The RDFSBASE and RDGSBASE instructions are not recognized in compatibility mode.

64-Bit Mode Exceptions

#UD If the LOCK prefix is used.
If CR4.FSGSBASE[bit 16] = 0.
If CPUID.07H.0H:EBX.FSGSBASE[bit 0] = 0.
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RDMSR—Read from Model Specific Register

Instruction Operand Encoding

Description

Reads the contents of a 64-bit model specific register (MSR) specified in the ECX register into registers EDX:EAX. 
(On processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The EDX register 
is loaded with the high-order 32 bits of the MSR and the EAX register is loaded with the low-order 32 bits. (On 
processors that support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are cleared.) If 
fewer than 64 bits are implemented in the MSR being read, the values returned to EDX:EAX in unimplemented bit 
locations are undefined.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a general protection 
exception #GP(0) will be generated. Specifying a reserved or unimplemented MSR address in ECX will also cause a 
general protection exception.

The MSRs control functions for testability, execution tracing, performance-monitoring, and machine check errors. 
Chapter 35, “Model-Specific Registers (MSRs),” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3C, lists all the MSRs that can be read with this instruction and their addresses. Note that each 
processor family has its own set of MSRs.

The CPUID instruction should be used to determine whether MSRs are supported (CPUID.01H:EDX[5] = 1) before 
using this instruction.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the RDMSR instruction were introduced into the IA-32 Architecture with 
the Pentium processor. Execution of this instruction by an IA-32 processor earlier than the Pentium processor 
results in an invalid opcode exception #UD.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in 
VMX non-root operation.

Operation

EDX:EAX ← MSR[ECX];

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
If the value in ECX specifies a reserved or unimplemented MSR address.

#UD If the LOCK prefix is used.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 32 RDMSR NP Valid Valid Read MSR specified by ECX into EDX:EAX.

NOTES:

* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Real-Address Mode Exceptions

#GP If the value in ECX specifies a reserved or unimplemented MSR address.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)  The RDMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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RDPMC—Read Performance-Monitoring Counters

Instruction Operand Encoding

Description

The EAX register is loaded with the low-order 32 bits. The EDX register is loaded with the supported high-order bits 
of the counter. The number of high-order bits loaded into EDX is implementation specific on processors that do no 
support architectural performance monitoring. The width of fixed-function and general-purpose performance coun-
ters on processors supporting architectural performance monitoring are reported by CPUID 0AH leaf. See below for 
the treatment of the EDX register for “fast” reads.

The ECX register selects one of two type of performance counters, specifies the index relative to the base of each 
counter type, and selects “fast” read mode if supported. The two counter types are : 
• General-purpose or special-purpose performance counters: The number of general-purpose counters is model 

specific if the processor does not support architectural performance monitoring, see Chapter 30 of Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3B. Special-purpose counters are available only 
in selected processor members, see Section 30.13, 30.14 of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3B. This counter type is selected if ECX[30] is clear.

• Fixed-function performance counter. The number fixed-function performance counters is enumerated by 
CPUID 0AH leaf. See Chapter 30 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3B. This counter type is selected if ECX[30] is set.

ECX[29:0] specifies the index. The width of general-purpose performance counters are 40-bits for processors that 
do not support architectural performance monitoring counters.The width of special-purpose performance counters 
are implementation specific. The width of fixed-function performance counters and general-purpose performance 
counters on processor supporting architectural performance monitoring are reported by CPUID 0AH leaf. 

Table 4-12 lists valid indices of the general-purpose and special-purpose performance counters according to the 
derived DisplayFamily_DisplayModel values of CPUID encoding for each processor family (see CPUID instruction in 
Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A). 

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 33 RDPMC NP Valid Valid Read performance-monitoring counter 
specified by ECX into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Table 4-12.  Valid General and Special Purpose Performance Counter Index Range for RDPMC

Processor Family DisplayFamily_DisplayModel/ 
Other Signatures

Valid PMC Index 
Range

General-purpose 
Counters

P6 06H_01H, 06H_03H, 06H_05H, 
06H_06H, 06H_07H, 06H_08H, 
06H_0AH, 06H_0BH

0, 1 0, 1

Pentium® 4, Intel® Xeon processors 0FH_00H, 0FH_01H, 0FH_02H ≥ 0 and ≤ 17 ≥ 0 and ≤ 17

Pentium 4, Intel Xeon processors (0FH_03H, 0FH_04H, 0FH_06H) 
and (L3 is absent)

≥ 0 and ≤ 17 ≥ 0 and ≤ 17

Pentium M processors 06H_09H, 06H_0DH 0, 1 0, 1

64-bit Intel Xeon processors with L3 0FH_03H, 0FH_04H) and (L3 is 
present)

≥ 0 and ≤ 25 ≥ 0 and ≤ 17

Intel® Core™ Solo and Intel® Core™ Duo 
processors, Dual-core Intel® Xeon® processor LV

06H_0EH 0, 1 0, 1
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The Pentium 4 and Intel Xeon processors also support “fast” (32-bit) and “slow” (40-bit) reads on the first 18 
performance counters. Selected this option using ECX[31]. If bit 31 is set, RDPMC reads only the low 32 bits of the 
selected performance counter. If bit 31 is clear, all 40 bits are read. A 32-bit result is returned in EAX and EDX is set 
to 0. A 32-bit read executes faster on Pentium 4 processors and Intel Xeon processors than a full 40-bit read.

On 64-bit Intel Xeon processors with L3, performance counters with indices 18-25 are 32-bit counters. EDX is 
cleared after executing RDPMC for these counters. On Intel Xeon processor 7100 series with L3, performance coun-
ters with indices 18-25 are also 32-bit counters.

In Intel Core 2 processor family, Intel Xeon processor 3000, 5100, 5300 and 7400 series, the fixed-function perfor-
mance counters are 40-bits wide; they can be accessed by RDMPC with ECX between from 4000_0000H and 
4000_0002H.

On Intel Xeon processor 7400 series, there are eight 32-bit special-purpose counters addressable with indices 2-9, 
ECX[30]=0. 

When in protected or virtual 8086 mode, the performance-monitoring counters enabled (PCE) flag in register CR4 
restricts the use of the RDPMC instruction as follows. When the PCE flag is set, the RDPMC instruction can be 
executed at any privilege level; when the flag is clear, the instruction can only be executed at privilege level 0. 
(When in real-address mode, the RDPMC instruction is always enabled.)

The performance-monitoring counters can also be read with the RDMSR instruction, when executing at privilege 
level 0.

The performance-monitoring counters are event counters that can be programmed to count events such as the 
number of instructions decoded, number of interrupts received, or number of cache loads. Chapter 19, “Perfor-
mance Monitoring Events,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, lists 
the events that can be counted for various processors in the Intel 64 and IA-32 architecture families.

The RDPMC instruction is not a serializing instruction; that is, it does not imply that all the events caused by the 
preceding instructions have been completed or that events caused by subsequent instructions have not begun. If 
an exact event count is desired, software must insert a serializing instruction (such as the CPUID instruction) 
before and/or after the RDPMC instruction.

In the Pentium 4 and Intel Xeon processors, performing back-to-back fast reads are not guaranteed to be mono-
tonic. To guarantee monotonicity on back-to-back reads, a serializing instruction must be placed between the two 
RDPMC instructions.

The RDPMC instruction can execute in 16-bit addressing mode or virtual-8086 mode; however, the full contents of 
the ECX register are used to select the counter, and the event count is stored in the full EAX and EDX registers. The 
RDPMC instruction was introduced into the IA-32 Architecture in the Pentium Pro processor and the Pentium 
processor with MMX technology. The earlier Pentium processors have performance-monitoring counters, but they 
must be read with the RDMSR instruction.

Intel® Core™2 Duo processor, Intel Xeon processor 
3000, 5100, 5300, 7300 Series - general-purpose 
PMC

06H_0FH 0, 1 0, 1

Intel Xeon processors 7100 series with L3 (0FH_06H) and (L3 is present) ≥ 0 and ≤ 25 ≥ 0 and ≤ 17

Intel® Core™2 Duo processor family, Intel Xeon 
processor family - general-purpose PMC

06H_17H 0, 1 0, 1

Intel Xeon processors 7400 series (06H_1DH) ≥ 0 and ≤ 9 0, 1
Intel® Atom™ processor family 06H_1CH 0, 1 0, 1

Intel® Core™i7 processor, Intel Xeon processors 
5500 series 

06H_1AH, 06H_1EH, 06H_1FH, 
06H_2EH

0-3 0, 1, 2, 3

Table 4-12.  Valid General and Special Purpose Performance Counter Index Range for RDPMC (Contd.)

Processor Family DisplayFamily_DisplayModel/ 
Other Signatures

Valid PMC Index 
Range

General-purpose 
Counters
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Operation

(* Intel Core i7 processor family and Intel Xeon processor 3400, 5500 series*)

Most significant counter bit (MSCB) = 47

IF ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))

THEN IF (ECX[30] = 1 and ECX[29:0] in valid fixed-counter range)

EAX ← IA32_FIXED_CTR(ECX)[30:0];

EDX ← IA32_FIXED_CTR(ECX)[MSCB:32];

ELSE IF (ECX[30] = 0 and ECX[29:0] in valid general-purpose counter range)

EAX ← PMC(ECX[30:0])[31:0];

EDX ← PMC(ECX[30:0])[MSCB:32];

ELSE (* ECX is not valid or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)

#GP(0); 

FI;

(* Intel Core 2 Duo processor family and Intel Xeon processor 3000, 5100, 5300, 7400 series*)

Most significant counter bit (MSCB) = 39

IF ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))

THEN IF (ECX[30] = 1 and ECX[29:0] in valid fixed-counter range)

EAX ← IA32_FIXED_CTR(ECX)[30:0];

EDX ← IA32_FIXED_CTR(ECX)[MSCB:32];

ELSE IF (ECX[30] = 0 and ECX[29:0] in valid general-purpose counter range)

EAX ← PMC(ECX[30:0])[31:0];

EDX ← PMC(ECX[30:0])[MSCB:32];

ELSE IF (ECX[30] = 0 and ECX[29:0] in valid special-purpose counter range)

EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)

ELSE (* ECX is not valid or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)

#GP(0); 

FI;

(* P6 family processors and Pentium processor with MMX technology *)

IF (ECX = 0 or 1) and ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))

THEN 

EAX ← PMC(ECX)[31:0];

EDX ← PMC(ECX)[39:32];

ELSE (* ECX is not 0 or 1 or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)

#GP(0); 

FI;

(* Processors with CPUID family 15 *)

IF ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))

THEN IF (ECX[30:0] = 0:17)

THEN IF ECX[31] = 0

THEN

EAX ← PMC(ECX[30:0])[31:0]; (* 40-bit read *)

EDX ← PMC(ECX[30:0])[39:32];

ELSE (* ECX[31] = 1*)

THEN

EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)

EDX ← 0;

FI;

ELSE IF (*64-bit Intel Xeon processor with L3 *)

THEN IF (ECX[30:0] = 18:25 )
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EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)

EDX ← 0;

FI;

ELSE IF (*Intel Xeon processor 7100 series with L3 *)

THEN IF (ECX[30:0] = 18:25 )

EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)

EDX ← 0;

FI;

ELSE (* Invalid PMC index in ECX[30:0], see Table 4-15. *)

GP(0); 

FI;

ELSE  (* CR4.PCE = 0 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)

#GP(0); 

FI; 

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 register is clear.
If an invalid performance counter index is specified (see Table 4-12).
(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0] is not within the valid range.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If an invalid performance counter index is specified (see Table 4-12).
(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0] is not within the valid range.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If the PCE flag in the CR4 register is clear.
If an invalid performance counter index is specified (see Table 4-12).
(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0] is not within the valid range.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 register is clear.
If an invalid performance counter index is specified in ECX[30:0] (see Table 4-12).

#UD If the LOCK prefix is used.
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RDRAND—Read Random Number

Instruction Operand Encoding

Description

Loads a hardware generated random value and store it in the destination register. The size of the random value is 
determined by the destination register size and operating mode. The Carry Flag indicates whether a random value 
is available at the time the instruction is executed. CF=1 indicates that the data in the destination is valid. Other-
wise CF=0 and the data in the destination operand will be returned as zeros for the specified width. All other flags 
are forced to 0 in either situation. Software must check the state of CF=1 for determining if a valid random value 
has been returned, otherwise it is expected to loop and retry execution of RDRAND (see Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, Section 7.3.17, “Random Number Generator Instruction”).
This instruction is available at all privilege levels.
In 64-bit mode, the instruction's default operation size is 32 bits. Using a REX prefix in the form of REX.B permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bit oper-
ands. See the summary chart at the beginning of this section for encoding data and limits.

Operation

IF HW_RND_GEN.ready = 1

THEN 

CASE of

osize is 64: DEST[63:0] ← HW_RND_GEN.data;

osize is 32: DEST[31:0] ← HW_RND_GEN.data;

osize is 16: DEST[15:0] ← HW_RND_GEN.data;

ESAC

CF ← 1;

ELSE

CASE of

osize is 64: DEST[63:0] ← 0;

osize is 32: DEST[31:0] ← 0;

osize is 16: DEST[15:0] ← 0;

ESAC

CF ← 0;

FI

OF, SF, ZF, AF, PF ← 0;

Flags Affected

The CF flag is set according to the result (see the “Operation” section above). The OF, SF, ZF, AF, and PF flags are 
set to 0.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F C7 /6

RDRAND r16

M V/V RDRAND Read a 16-bit random number and store in the 
destination register.

0F C7 /6

RDRAND r32

M V/V RDRAND Read a 32-bit random number and store in the 
destination register.

REX.W + 0F C7 /6

RDRAND r64

M V/I RDRAND Read a 64-bit random number and store in the 
destination register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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Intel C/C++ Compiler Intrinsic Equivalent

RDRAND:  int _rdrand16_step( unsigned short * );

RDRAND:  int _rdrand32_step( unsigned int * );

RDRAND:  int _rdrand64_step( unsigned __int64 *);

Protected Mode Exceptions

#UD If the LOCK prefix is used.
If the F2H or F3H prefix is used.
If CPUID.01H:ECX.RDRAND[bit 30] = 0.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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RDTSC—Read Time-Stamp Counter

Instruction Operand Encoding

Description

Loads the current value of the processor’s time-stamp counter (a 64-bit MSR) into the EDX:EAX registers. The EDX 
register is loaded with the high-order 32 bits of the MSR and the EAX register is loaded with the low-order 32 bits. 
(On processors that support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are cleared.)

The processor monotonically increments the time-stamp counter MSR every clock cycle and resets it to 0 whenever 
the processor is reset. See “Time Stamp Counter” in Chapter 17 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3B, for specific details of the time stamp counter behavior.

When in protected or virtual 8086 mode, the time stamp disable (TSD) flag in register CR4 restricts the use of the 
RDTSC instruction as follows. When the TSD flag is clear, the RDTSC instruction can be executed at any privilege 
level; when the flag is set, the instruction can only be executed at privilege level 0. (When in real-address mode, 
the RDTSC instruction is always enabled.)

The time-stamp counter can also be read with the RDMSR instruction, when executing at privilege level 0.

The RDTSC instruction is not a serializing instruction. It does not necessarily wait until all previous instructions 
have been executed before reading the counter. Similarly, subsequent instructions may begin execution before the 
read operation is performed. If software requires RDTSC to be executed only after all previous instructions have 
completed locally, it can either use RDTSCP (if the processor supports that instruction) or execute the sequence 
LFENCE;RDTSC.

This instruction was introduced by the Pentium processor.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in 
VMX non-root operation.

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CR0.PE = 0) 

THEN EDX:EAX ← TimeStampCounter;

ELSE (* CR4.TSD = 1 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)

#GP(0);

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 31 RDTSC NP Valid Valid Read time-stamp counter into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Virtual-8086 Mode Exceptions

#GP(0) If the TSD flag in register CR4 is set.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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RDTSCP—Read Time-Stamp Counter and Processor ID

Instruction Operand Encoding

Description

Loads the current value of the processor’s time-stamp counter (a 64-bit MSR) into the EDX:EAX registers and also 
loads the IA32_TSC_AUX MSR (address C000_0103H) into the ECX register. The EDX register is loaded with the 
high-order 32 bits of the IA32_TSC MSR; the EAX register is loaded with the low-order 32 bits of the IA32_TSC 
MSR; and the ECX register is loaded with the low-order 32-bits of IA32_TSC_AUX MSR. On processors that support 
the Intel 64 architecture, the high-order 32 bits of each of RAX, RDX, and RCX are cleared.

The processor monotonically increments the time-stamp counter MSR every clock cycle and resets it to 0 whenever 
the processor is reset. See “Time Stamp Counter” in Chapter 17 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3B, for specific details of the time stamp counter behavior.

When in protected or virtual 8086 mode, the time stamp disable (TSD) flag in register CR4 restricts the use of the 
RDTSCP instruction as follows. When the TSD flag is clear, the RDTSCP instruction can be executed at any privilege 
level; when the flag is set, the instruction can only be executed at privilege level 0. (When in real-address mode, 
the RDTSCP instruction is always enabled.)

The RDTSCP instruction waits until all previous instructions have been executed before reading the counter. 
However,  subsequent instructions may begin execution before the read operation is performed.

The presence of the RDTSCP instruction is indicated by CPUID leaf 80000001H, EDX bit 27. If the bit is set to 1 then 
RDTSCP is present on the processor. 

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in 
VMX non-root operation.

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CR0.PE = 0) 

THEN 

EDX:EAX ← TimeStampCounter;

ECX ← IA32_TSC_AUX[31:0];

ELSE (* CR4.TSD = 1 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)

#GP(0);

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than 0.
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 F9 RDTSCP NP Valid Valid Read 64-bit time-stamp counter and 32-bit 
IA32_TSC_AUX value into EDX:EAX and ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Real-Address Mode Exceptions

#UD If the LOCK prefix is used.
If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Virtual-8086 Mode Exceptions

#GP(0) If the TSD flag in register CR4 is set.
#UD If the LOCK prefix is used.

If CPUID.80000001H:EDX.RDTSCP[bit 27] = 0.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F3 6C REP INS m8, DX NP Valid Valid Input (E)CX bytes from port DX into ES:[(E)DI].

F3 6C REP INS m8, DX NP Valid N.E. Input RCX bytes from port DX into [RDI].

F3 6D REP INS m16, DX NP Valid Valid Input (E)CX words from port DX into ES:[(E)DI.]

F3 6D REP INS m32, DX NP Valid Valid Input (E)CX doublewords from port DX into 
ES:[(E)DI].

F3 6D REP INS r/m32, DX NP Valid N.E. Input RCX default size from port DX into [RDI].

F3 A4 REP MOVS m8, m8 NP Valid Valid Move (E)CX bytes from DS:[(E)SI] to ES:[(E)DI].

F3 REX.W A4 REP MOVS m8, m8 NP Valid N.E. Move RCX bytes from [RSI] to [RDI].

F3 A5 REP MOVS m16, m16 NP Valid Valid Move (E)CX words from DS:[(E)SI] to ES:[(E)DI].

F3 A5 REP MOVS m32, m32 NP Valid Valid Move (E)CX doublewords from DS:[(E)SI] to 
ES:[(E)DI].

F3 REX.W A5 REP MOVS m64, m64 NP Valid N.E. Move RCX quadwords from [RSI] to [RDI].

F3 6E REP OUTS DX, r/m8 NP Valid Valid Output (E)CX bytes from DS:[(E)SI] to port DX.

F3 REX.W 6E REP OUTS DX, r/m8* NP Valid N.E. Output RCX bytes from [RSI] to port DX.

F3 6F REP OUTS DX, r/m16 NP Valid Valid Output (E)CX words from DS:[(E)SI] to port DX.

F3 6F REP OUTS DX, r/m32 NP Valid Valid Output (E)CX doublewords from DS:[(E)SI] to 
port DX.

F3 REX.W 6F REP OUTS DX, r/m32 NP Valid N.E. Output RCX default size from [RSI] to port DX.

F3 AC REP LODS AL NP Valid Valid Load (E)CX bytes from DS:[(E)SI] to AL.

F3 REX.W AC REP LODS AL NP Valid N.E. Load RCX bytes from [RSI] to AL.

F3 AD REP LODS AX NP Valid Valid Load (E)CX words from DS:[(E)SI] to AX.

F3 AD REP LODS EAX NP Valid Valid Load (E)CX doublewords from DS:[(E)SI] to 
EAX.

F3 REX.W AD REP LODS RAX NP Valid N.E. Load RCX quadwords from [RSI] to RAX.

F3 AA REP STOS m8 NP Valid Valid Fill (E)CX bytes at ES:[(E)DI] with AL.

F3 REX.W AA REP STOS m8 NP Valid N.E. Fill RCX bytes at [RDI] with AL.

F3 AB REP STOS m16 NP Valid Valid Fill (E)CX words at ES:[(E)DI] with AX.

F3 AB REP STOS m32 NP Valid Valid Fill (E)CX doublewords at ES:[(E)DI] with EAX.

F3 REX.W AB REP STOS m64 NP Valid N.E. Fill RCX quadwords at [RDI] with RAX.

F3 A6 REPE CMPS m8, m8 NP Valid Valid Find nonmatching bytes in ES:[(E)DI] and 
DS:[(E)SI].

F3 REX.W A6 REPE CMPS m8, m8 NP Valid N.E. Find non-matching bytes in [RDI] and [RSI].

F3 A7 REPE CMPS m16, m16 NP Valid Valid Find nonmatching words in ES:[(E)DI] and 
DS:[(E)SI].

F3 A7 REPE CMPS m32, m32 NP Valid Valid Find nonmatching doublewords in ES:[(E)DI] 
and DS:[(E)SI].

F3 REX.W A7 REPE CMPS m64, m64 NP Valid N.E. Find non-matching quadwords in [RDI] and 
[RSI].

F3 AE REPE SCAS m8 NP Valid Valid Find non-AL byte starting at ES:[(E)DI].

F3 REX.W AE REPE SCAS m8 NP Valid N.E. Find non-AL byte starting at [RDI].

F3 AF REPE SCAS m16 NP Valid Valid Find non-AX word starting at ES:[(E)DI].

F3 AF REPE SCAS m32 NP Valid Valid Find non-EAX doubleword starting at 
ES:[(E)DI].
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Instruction Operand Encoding

Description

Repeats a string instruction the number of times specified in the count register or until the indicated condition of 
the ZF flag is no longer met. The REP (repeat), REPE (repeat while equal), REPNE (repeat while not equal), REPZ 
(repeat while zero), and REPNZ (repeat while not zero) mnemonics are prefixes that can be added to one of the 
string instructions. The REP prefix can be added to the INS, OUTS, MOVS, LODS, and STOS instructions, and the 
REPE, REPNE, REPZ, and REPNZ prefixes can be added to the CMPS and SCAS instructions. (The REPZ and REPNZ 
prefixes are synonymous forms of the REPE and REPNE prefixes, respectively.) The behavior of the REP prefix is 
undefined when used with non-string instructions.

The REP prefixes apply only to one string instruction at a time. To repeat a block of instructions, use the LOOP 
instruction or another looping construct. All of these repeat prefixes cause the associated instruction to be 
repeated until the count in register is decremented to 0. See Table 4-13.

The REPE, REPNE, REPZ, and REPNZ prefixes also check the state of the ZF flag after each iteration and terminate 
the repeat loop if the ZF flag is not in the specified state. When both termination conditions are tested, the cause 
of a repeat termination can be determined either by testing the count register with a JECXZ instruction or by testing 
the ZF flag (with a JZ, JNZ, or JNE instruction).

F3 REX.W AF REPE SCAS m64 NP Valid N.E. Find non-RAX quadword starting at [RDI].

F2 A6 REPNE CMPS m8, m8 NP Valid Valid Find matching bytes in ES:[(E)DI] and DS:[(E)SI].

F2 REX.W A6 REPNE CMPS m8, m8 NP Valid N.E. Find matching bytes in [RDI] and [RSI].

F2 A7 REPNE CMPS m16, m16 NP Valid Valid Find matching words in ES:[(E)DI] and 
DS:[(E)SI].

F2 A7 REPNE CMPS m32, m32 NP Valid Valid Find matching doublewords in ES:[(E)DI] and 
DS:[(E)SI].

F2 REX.W A7 REPNE CMPS m64, m64 NP Valid N.E. Find matching doublewords in [RDI] and [RSI].

F2 AE REPNE SCAS m8 NP Valid Valid Find AL, starting at ES:[(E)DI].

F2 REX.W AE REPNE SCAS m8 NP Valid N.E. Find AL, starting at [RDI].

F2 AF REPNE SCAS m16 NP Valid Valid Find AX, starting at ES:[(E)DI].

F2 AF REPNE SCAS m32 NP Valid Valid Find EAX, starting at ES:[(E)DI].

F2 REX.W AF REPNE SCAS m64 NP Valid N.E. Find RAX, starting at [RDI].

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Table 4-13.  Repeat Prefixes

Repeat Prefix Termination Condition 1* Termination Condition 2

REP RCX or (E)CX = 0 None

REPE/REPZ RCX or (E)CX = 0 ZF = 0

REPNE/REPNZ RCX or (E)CX = 0 ZF = 1

NOTES:

* Count register is CX, ECX or RCX by default, depending on attributes of the operating modes.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description
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When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not require initialization because both 
the CMPS and SCAS instructions affect the ZF flag according to the results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When this happens, the state of the 
registers is preserved to allow the string operation to be resumed upon a return from the exception or interrupt 
handler. The source and destination registers point to the next string elements to be operated on, the EIP register 
points to the string instruction, and the ECX register has the value it held following the last successful iteration of 
the instruction. This mechanism allows long string operations to proceed without affecting the interrupt response 
time of the system.

When a fault occurs during the execution of a CMPS or SCAS instruction that is prefixed with REPE or REPNE, the 
EFLAGS value is restored to the state prior to the execution of the instruction. Since the SCAS and CMPS instruc-
tions do not use EFLAGS as an input, the processor can resume the instruction after the page fault handler.

Use the REP INS and REP OUTS instructions with caution. Not all I/O ports can handle the rate at which these 
instructions execute. Note that a REP STOS instruction is the fastest way to initialize a large block of memory.

In 64-bit mode, the operand size of the count register is associated with the address size attribute. Thus the default 
count register is RCX; REX.W has no effect on the address size and the count register. In 64-bit mode, if 67H is 
used to override address size attribute, the count register is ECX and any implicit source/destination operand will 
use the corresponding 32-bit index register. See the summary chart at the beginning of this section for encoding 
data and limits.

Operation

IF AddressSize = 16

    THEN

        Use CX for CountReg;

        Implicit Source/Dest operand for memory use of SI/DI;

    ELSE IF AddressSize = 64

        THEN Use RCX for CountReg; 

        Implicit Source/Dest operand for memory use of RSI/RDI;

    ELSE

        Use ECX for CountReg;

        Implicit Source/Dest operand for memory use of ESI/EDI;

FI;

WHILE CountReg ≠ 0

DO

Service pending interrupts (if any);

Execute associated string instruction;

CountReg ← (CountReg – 1);

IF CountReg = 0
THEN exit WHILE loop; FI;

IF (Repeat prefix is REPZ or REPE) and (ZF = 0)

or (Repeat prefix is REPNZ or REPNE) and (ZF = 1)

THEN exit WHILE loop; FI;
OD;

Flags Affected

None; however, the CMPS and SCAS instructions do set the status flags in the EFLAGS register.

Exceptions (All Operating Modes)

Exceptions may be generated by an instruction associated with the prefix.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.



RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z

4-302 Vol. 2B

RET—Return from Procedure

Instruction Operand Encoding

Description

Transfers program control to a return address located on the top of the stack. The address is usually placed on the 
stack by a CALL instruction, and the return is made to the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after the return address is popped; 
the default is none. This operand can be used to release parameters from the stack that were passed to the called 
procedure and are no longer needed. It must be used when the CALL instruction used to switch to a new procedure 
uses a call gate with a non-zero word count to access the new procedure. Here, the source operand for the RET 
instruction must specify the same number of bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:
• Near return — A return to a calling procedure within the current code segment (the segment currently pointed 

to by the CS register), sometimes referred to as an intrasegment return.
• Far return — A return to a calling procedure located in a different segment than the current code segment, 

sometimes referred to as an intersegment return.
• Inter-privilege-level far return — A far return to a different privilege level than that of the currently 

executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode. See the section titled “Calling Proce-
dures Using Call and RET” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, for detailed information on near, far, and inter-privilege-level returns.

When executing a near return, the processor pops the return instruction pointer (offset) from the top of the stack 
into the EIP register and begins program execution at the new instruction pointer. The CS register is unchanged. 

When executing a far return, the processor pops the return instruction pointer from the top of the stack into the EIP 
register, then pops the segment selector from the top of the stack into the CS register. The processor then begins 
program execution in the new code segment at the new instruction pointer.

The mechanics of an inter-privilege-level far return are similar to an intersegment return, except that the processor 
examines the privilege levels and access rights of the code and stack segments being returned to determine if the 
control transfer is allowed to be made. The DS, ES, FS, and GS segment registers are cleared by the RET instruction 
during an inter-privilege-level return if they refer to segments that are not allowed to be accessed at the new priv-
ilege level. Since a stack switch also occurs on an inter-privilege level return, the ESP and SS registers are loaded 
from the stack. 

If parameters are passed to the called procedure during an inter-privilege level call, the optional source operand 
must be used with the RET instruction to release the parameters on the return. Here, the parameters are released 
both from the called procedure’s stack and the calling procedure’s stack (that is, the stack being returned to).

In 64-bit mode, the default operation size of this instruction is the stack-address size, i.e. 64 bits.

Opcode* Instruction Op/
En

64-Bit 
Mode

Compat/
Leg Mode

Description

C3 RET NP Valid Valid Near return to calling procedure.

CB RET NP Valid Valid Far return to calling procedure.

C2 iw RET imm16 I Valid Valid Near return to calling procedure and pop 
imm16 bytes from stack.

CA iw RET imm16 I Valid Valid Far return to calling procedure and pop imm16 
bytes from stack.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

I imm16 NA NA NA
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Operation

(* Near return *)

IF instruction = near return 

THEN;

IF OperandSize = 32

THEN

IF top 4 bytes of stack not within stack limits

THEN #SS(0); FI;

EIP ← Pop();

ELSE

IF OperandSize = 64

THEN

IF top 8 bytes of stack not within stack limits

THEN #SS(0); FI;

RIP ← Pop();

ELSE (* OperandSize = 16 *)

IF top 2 bytes of stack not within stack limits

THEN #SS(0); FI;

tempEIP ← Pop();

tempEIP ← tempEIP AND 0000FFFFH;

IF tempEIP not within code segment limits

THEN #GP(0); FI;

EIP ← tempEIP;

FI;

FI;

IF instruction has immediate operand

THEN (* Release parameters from stack *)

IF StackAddressSize = 32

THEN 

ESP ← ESP + SRC;

ELSE

IF StackAddressSize = 64

THEN 

RSP ← RSP + SRC;

ELSE (* StackAddressSize = 16 *)

SP ← SP + SRC;

FI;

FI;

FI;

FI;

(* Real-address mode or virtual-8086 mode *)

IF ((PE = 0) or (PE = 1 AND VM = 1)) and instruction = far return

THEN

IF OperandSize = 32

THEN

IF top 8 bytes of stack not within stack limits

THEN #SS(0); FI;

EIP ← Pop(); 

CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE (* OperandSize = 16 *)

IF top 4 bytes of stack not within stack limits

THEN #SS(0); FI;
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tempEIP ← Pop(); 

tempEIP ← tempEIP AND 0000FFFFH;

IF tempEIP not within code segment limits

THEN #GP(0); FI;

EIP ← tempEIP;

CS ← Pop(); (* 16-bit pop *)

FI;

IF instruction has immediate operand 

THEN (* Release parameters from stack *)

SP ← SP + (SRC AND FFFFH);

FI;

FI;

(* Protected mode, not virtual-8086 mode *)

IF (PE = 1 and VM = 0 and IA32_EFER.LMA = 0) and instruction = far return

THEN

IF OperandSize = 32

THEN 

IF second doubleword on stack is not within stack limits

THEN #SS(0); FI;

ELSE (* OperandSize = 16 *)

IF second word on stack is not within stack limits

THEN #SS(0); FI;

FI;

IF return code segment selector is NULL

THEN #GP(0); FI;

IF return code segment selector addresses descriptor beyond descriptor table limit 

THEN #GP(selector); FI;

Obtain descriptor to which return code segment selector points from descriptor table;

IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;

IF return code segment selector RPL < CPL

THEN #GP(selector); FI;

IF return code segment descriptor is conforming

and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;

IF return code segment descriptor is non-conforming and return code 
segment DPL ≠ return code segment selector RPL

THEN #GP(selector); FI;

IF return code segment descriptor is not present

THEN #NP(selector); FI:

IF return code segment selector RPL > CPL 

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;

ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL;

FI;

FI; 

RETURN-SAME-PRIVILEGE-LEVEL:

IF the return instruction pointer is not within the return code segment limit 

THEN #GP(0); FI;

IF OperandSize = 32

THEN

EIP ← Pop();

CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
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ELSE (* OperandSize = 16 *)

EIP ← Pop();

EIP ← EIP AND 0000FFFFH;

CS ← Pop(); (* 16-bit pop *)

FI;

IF instruction has immediate operand

THEN (* Release parameters from stack *)

IF StackAddressSize = 32

THEN 

ESP ← ESP + SRC;

ELSE (* StackAddressSize = 16 *)

SP ← SP + SRC;

FI;

FI;

RETURN-OUTER-PRIVILEGE-LEVEL:

IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32) 

or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

THEN #SS(0); FI;

Read return segment selector;

IF stack segment selector is NULL

THEN #GP(0); FI;

IF return stack segment selector index is not within its descriptor table limits

THEN #GP(selector); FI;

Read segment descriptor pointed to by return segment selector;

IF stack segment selector RPL ≠ RPL of the return code segment selector

or stack segment is not a writable data segment

or stack segment descriptor DPL ≠ RPL of the return code segment selector

THEN #GP(selector); FI;

IF stack segment not present

THEN #SS(StackSegmentSelector); FI;

IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;

CPL ← ReturnCodeSegmentSelector(RPL);

IF OperandSize = 32

THEN

EIP ← Pop();

CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded; segment descriptor loaded *)

CS(RPL) ← CPL;

IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)

IF StackAddressSize = 32

THEN 

ESP ← ESP + SRC;

ELSE (* StackAddressSize = 16 *)

SP ← SP + SRC;

FI;

FI;

tempESP ← Pop();

tempSS ← Pop(); (* 32-bit pop, high-order 16 bits discarded; seg. descriptor loaded *)

ESP ← tempESP;

SS ← tempSS;

ELSE (* OperandSize = 16 *)

EIP ← Pop();
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EIP ← EIP AND 0000FFFFH;

CS ← Pop(); (* 16-bit pop; segment descriptor loaded *)

CS(RPL) ← CPL;

IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)

IF StackAddressSize = 32

THEN 

ESP ← ESP + SRC;

ELSE (* StackAddressSize = 16 *)

SP ← SP + SRC;

FI;

FI;

tempESP ← Pop();

tempSS ← Pop(); (* 16-bit pop; segment descriptor loaded *)

ESP ← tempESP;

SS ← tempSS;

FI;

FOR each of segment register (ES, FS, GS, and DS)

DO

IF segment register points to data or non-conforming code segment 

and CPL > segment descriptor DPL (* DPL in hidden part of segment register *)

THEN SegmentSelector ← 0; (* Segment selector invalid *)

FI;

OD;

IF instruction has immediate operand

THEN (* Release parameters from calling procedure’s stack *)

IF StackAddressSize = 32

THEN 

ESP ← ESP + SRC;

ELSE (* StackAddressSize = 16 *)

SP ← SP + SRC;

FI;

FI;

(* IA-32e Mode *)

IF (PE = 1 and VM = 0 and IA32_EFER.LMA = 1) and instruction = far return

THEN

IF OperandSize = 32

THEN 

IF second doubleword on stack is not within stack limits

THEN #SS(0); FI;

IF first or second doubleword on stack is not in canonical space

THEN #SS(0); FI;

ELSE 

IF OperandSize = 16

THEN

IF second word on stack is not within stack limits

THEN #SS(0); FI;

IF first or second word on stack is not in canonical space

THEN #SS(0); FI;

ELSE (* OperandSize = 64 *)

IF first or second quadword on stack is not in canonical space 
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THEN #SS(0); FI;

FI

FI;

IF return code segment selector is NULL

THEN GP(0); FI;

IF return code segment selector addresses descriptor beyond descriptor table limit 

THEN GP(selector); FI;

IF return code segment selector addresses descriptor in non-canonical space

THEN GP(selector); FI;

Obtain descriptor to which return code segment selector points from descriptor table;

IF return code segment descriptor is not a code segment 

THEN #GP(selector); FI;

IF return code segment descriptor has L-bit = 1 and D-bit = 1 

THEN #GP(selector); FI;

IF return code segment selector RPL < CPL 

THEN #GP(selector); FI;

IF return code segment descriptor is conforming

and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;

IF return code segment descriptor is non-conforming

and return code segment DPL ≠ return code segment selector RPL

THEN #GP(selector); FI;

IF return code segment descriptor is not present 

THEN #NP(selector); FI:

IF return code segment selector RPL > CPL 

THEN GOTO IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL;

ELSE GOTO IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL;

FI; 

FI;

IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL:

IF the return instruction pointer is not within the return code segment limit 

THEN #GP(0); FI;

IF the return instruction pointer is not within canonical address space

THEN #GP(0); FI;

IF OperandSize = 32

THEN

EIP ← Pop();

CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE 

IF OperandSize = 16

THEN

EIP ← Pop();

EIP ← EIP AND 0000FFFFH;

CS ← Pop(); (* 16-bit pop *)

ELSE (* OperandSize = 64 *)

RIP ← Pop();

CS ← Pop(); (* 64-bit pop, high-order 48 bits discarded *)

FI;

FI; 

IF instruction has immediate operand

THEN (* Release parameters from stack *)

IF StackAddressSize = 32

THEN 
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ESP ← ESP + SRC;

ELSE

IF StackAddressSize = 16

THEN

SP ← SP + SRC;

ELSE (* StackAddressSize = 64 *)

RSP ← RSP + SRC;

FI;

FI;

FI;

IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL:

IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32) 

or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

THEN #SS(0); FI;

IF top (16 + SRC) bytes of stack are not in canonical address space (OperandSize = 32) 

or top (8 + SRC) bytes of stack are not in canonical address space (OperandSize = 16)

or top (32 + SRC) bytes of stack are not in canonical address space (OperandSize = 64)

THEN #SS(0); FI;

Read return stack segment selector;

IF stack segment selector is NULL

THEN

IF new CS descriptor L-bit = 0 

THEN #GP(selector);

IF stack segment selector RPL = 3

THEN #GP(selector);

FI;

IF return stack segment descriptor is not within descriptor table limits

THEN #GP(selector); FI;

IF return stack segment descriptor is in non-canonical address space

THEN #GP(selector); FI;

Read segment descriptor pointed to by return segment selector;

IF stack segment selector RPL ≠ RPL of the return code segment selector

or stack segment is not a writable data segment

or stack segment descriptor DPL ≠ RPL of the return code segment selector

THEN #GP(selector); FI;

IF stack segment not present 

THEN #SS(StackSegmentSelector); FI;

IF the return instruction pointer is not within the return code segment limit 

THEN #GP(0); FI:

IF the return instruction pointer is not within canonical address space 

THEN #GP(0); FI;

CPL ← ReturnCodeSegmentSelector(RPL);

IF OperandSize = 32

THEN

EIP ← Pop();

CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor loaded *)

CS(RPL) ← CPL;

IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)

IF StackAddressSize = 32

THEN 

ESP ← ESP + SRC;

ELSE
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IF StackAddressSize = 16

THEN

SP ← SP + SRC;

ELSE (* StackAddressSize = 64 *)

RSP ← RSP + SRC;

FI;

FI;

FI;

tempESP ← Pop();

tempSS ← Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor loaded *)

ESP ← tempESP;

SS ← tempSS;

ELSE 

IF OperandSize = 16

THEN

EIP ← Pop();

EIP ← EIP AND 0000FFFFH;

CS ← Pop(); (* 16-bit pop; segment descriptor loaded *)

CS(RPL) ← CPL;

IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)

IF StackAddressSize = 32

THEN 

ESP ← ESP + SRC;

ELSE

IF StackAddressSize = 16

THEN

SP ← SP + SRC;

ELSE (* StackAddressSize = 64 *)

RSP ← RSP + SRC;

FI;

FI;

FI;

tempESP ← Pop();

tempSS ← Pop(); (* 16-bit pop; segment descriptor loaded *)

ESP ← tempESP;

SS ← tempSS;

ELSE (* OperandSize = 64 *)

RIP ← Pop();

CS ← Pop(); (* 64-bit pop; high-order 48 bits discarded; seg. descriptor loaded *)

CS(RPL) ← CPL;

IF instruction has immediate operand

THEN (* Release parameters from called procedure’s stack *)

RSP ← RSP + SRC;

FI;

tempESP ← Pop();

tempSS ← Pop(); (* 64-bit pop; high-order 48 bits discarded; seg. desc. loaded *)

ESP ← tempESP;

SS ← tempSS;

FI;

FI;

FOR each of segment register (ES, FS, GS, and DS)

DO
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IF segment register points to data or non-conforming code segment

and CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)

THEN SegmentSelector ← 0; (* SegmentSelector invalid *)

FI;

OD;

IF instruction has immediate operand

THEN (* Release parameters from calling procedure’s stack *)

IF StackAddressSize = 32

THEN 

ESP ← ESP + SRC;

ELSE

IF StackAddressSize = 16

THEN

SP ← SP + SRC;

ELSE (* StackAddressSize = 64 *)

RSP ← RSP + SRC;

FI;

FI;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the return code or stack segment selector NULL.
If the return instruction pointer is not within the return code segment limit 

#GP(selector) If the RPL of the return code segment selector is less then the CPL.
If the return code or stack segment selector index is not within its descriptor table limits.
If the return code segment descriptor does not indicate a code segment.
If the return code segment is non-conforming and the segment selector’s DPL is not equal to 
the RPL of the code segment’s segment selector
If the return code segment is conforming and the segment selector’s DPL greater than the RPL 
of the code segment’s segment selector
If the stack segment is not a writable data segment.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment 
selector.

#SS(0) If the top bytes of stack are not within stack limits.
If the return stack segment is not present.

#NP(selector) If the return code segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when the CPL is 3 and alignment checking is enabled.

Real-Address Mode Exceptions

#GP If the return instruction pointer is not within the return code segment limit 
#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions

#GP(0) If the return instruction pointer is not within the return code segment limit 
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#SS(0) If the top bytes of stack are not within stack limits.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory access occurs when alignment checking is enabled.

Compatibility Mode Exceptions

Same as 64-bit mode exceptions.

64-Bit Mode Exceptions

#GP(0) If the return instruction pointer is non-canonical.
If the return instruction pointer is not within the return code segment limit.
If the stack segment selector is NULL going back to compatibility mode.
If the stack segment selector is NULL going back to CPL3 64-bit mode.
If a NULL stack segment selector RPL is not equal to CPL going back to non-CPL3 64-bit mode.
If the return code segment selector is NULL.

#GP(selector) If the proposed segment descriptor for a code segment does not indicate it is a code segment. 
If the proposed new code segment descriptor has both the D-bit and L-bit set.
If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment 
selector.
If CPL is greater than the RPL of the code segment selector.
If the DPL of a conforming-code segment is greater than the return code segment selector 
RPL.
If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the stack segment is not a writable data segment.
If the stack segment descriptor DPL is not equal to the RPL of the return code segment 
selector.
If the stack segment selector RPL is not equal to the RPL of the return code segment selector. 

#SS(0) If an attempt to pop a value off the stack violates the SS limit.
If an attempt to pop a value off the stack causes a non-canonical address to be referenced.

#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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RORX — Rotate Right Logical Without Affecting Flags

Instruction Operand Encoding

Description 

Rotates the bits of second operand right by the count value specified in imm8 without affecting arithmetic flags. 
The RORX instruction does not read or write the arithmetic flags.
This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.

Operation

IF (OperandSize = 32)

y ← imm8 AND 1FH;

DEST ← (SRC >> y) | (SRC << (32-y));

ELSEIF (OperandSize = 64 ) 

y ← imm8 AND 3FH;

DEST ← (SRC >> y) | (SRC << (64-y));

ENDIF

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent

Auto-generated from high-level language.

SIMD Floating-Point Exceptions

None

Other Exceptions

See Section 2.5.1, “Exception Conditions for VEX-Encoded GPR Instructions”, Table 2-29; additionally
#UD If VEX.W = 1.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.LZ.F2.0F3A.W0 F0 /r ib RMI V/V BMI2 Rotate 32-bit r/m32 right imm8 times without affecting arithmetic 
flags.RORX r32, r/m32, imm8

VEX.LZ.F2.0F3A.W1 F0 /r ib RMI V/N.E. BMI2 Rotate 64-bit r/m64 right imm8 times without affecting arithmetic 
flags.RORX r64, r/m64, imm8

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) Imm8 NA



ROUNDPD — Round Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-313

ROUNDPD — Round Packed Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the 2 double-precision floating-point values in the source operand (second operand) using the rounding 
mode specified in the immediate operand (third operand) and place the results in the destination operand (first 
operand). The rounding process rounds each input floating-point value to an integer value and returns the integer 
result as a single-precision floating-point value. 

The immediate operand specifies control fields for the rounding operation, three bit fields are defined and shown in 
Figure 4-20. Bit 3 of the immediate byte controls processor behavior for a precision exception, bit 2 selects the 
source of rounding mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-14 lists the encoded 
values for rounding-mode field). 

The Precision Floating-Point Exception is signaled according to the immediate operand. If any source operand is an 
SNaN then it will be converted to a QNaN. If DAZ is set to ‘1 then denormals will be converted to zero before 
rounding.
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit memory location. The destina-
tion is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM 
register destination are unmodified.
VEX.128 encoded version: the source operand second source operand or a 128-bit memory location. The destina-
tion operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 09 /r ib
ROUNDPD xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Round packed double precision floating-point 
values in xmm2/m128 and place the result in 
xmm1.  The rounding mode is determined by 
imm8.

VEX.128.66.0F3A.WIG 09 /r ib
VROUNDPD xmm1, xmm2/m128, imm8

RMI V/V AVX Round packed double-precision floating-point 
values in xmm2/m128 and place the result in 
xmm1. The rounding mode is determined by 
imm8.

VEX.256.66.0F3A.WIG 09 /r ib
VROUNDPD ymm1, ymm2/m256, imm8

RMI V/V AVX Round packed double-precision floating-point 
values in ymm2/m256 and place the result in 
ymm1. The rounding mode is determined by 
imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
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Operation

IF (imm[2] = ‘1) 

THEN // rounding mode is determined by MXCSR.RC 

DEST[63:0] Å ConvertDPFPToInteger_M(SRC[63:0]);

DEST[127:64] Å ConvertDPFPToInteger_M(SRC[127:64]);

ELSE // rounding mode is determined by IMM8.RC

DEST[63:0] Å ConvertDPFPToInteger_Imm(SRC[63:0]);

DEST[127:64] Å ConvertDPFPToInteger_Imm(SRC[127:64]);

FI

ROUNDPD (128-bit Legacy SSE version)

DEST[63:0] Å RoundToInteger(SRC[63:0]], ROUND_CONTROL)

DEST[127:64] Å RoundToInteger(SRC[127:64]], ROUND_CONTROL)

DEST[VLMAX-1:128] (Unmodified)

VROUNDPD (VEX.128 encoded version)

DEST[63:0] Å RoundToInteger(SRC[63:0]], ROUND_CONTROL)

DEST[127:64] Å RoundToInteger(SRC[127:64]], ROUND_CONTROL)

DEST[VLMAX-1:128] Å 0

VROUNDPD (VEX.256 encoded version)

DEST[63:0] Å RoundToInteger(SRC[63:0], ROUND_CONTROL)

DEST[127:64] Å RoundToInteger(SRC[127:64]], ROUND_CONTROL)

DEST[191:128] Å RoundToInteger(SRC[191:128]], ROUND_CONTROL)

DEST[255:192] Å RoundToInteger(SRC[255:192] ], ROUND_CONTROL)

Intel C/C++ Compiler Intrinsic Equivalent

__m128 _mm_round_pd(__m128d s1, int iRoundMode);

Figure 4-20.  Bit Control Fields of Immediate Byte for ROUNDxx Instruction

Table 4-14.  Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding 
Mode

RC Field 
Setting

Description

Round to 
nearest (even)

00B Rounded result is the closest to the infinitely precise result. If two values are equally close, the result is 
the even value (i.e., the integer value with the least-significant bit of zero). 

Round down 
(toward −∞)

01B Rounded result is closest to but no greater than the infinitely precise result.

Round up 
(toward +∞)

10B Rounded result is closest to but no less than the infinitely precise result.

Round toward 
zero (Truncate)

11B Rounded result is closest to but no greater in absolute value than the infinitely precise result.

8

RS — Rounding select; 1: MXCSR.RC, 0: Imm8.RC
RC — Rounding mode

3 2 1 0

P — Precision Mask; 0: normal, 1: inexact

Reserved
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__m128 _mm_floor_pd(__m128d s1);

__m128 _mm_ceil_pd(__m128d s1)

__m256 _mm256_round_pd(__m256d s1, int iRoundMode);

__m256 _mm256_floor_pd(__m256d s1);

__m256 _mm256_ceil_pd(__m256d s1)

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the MXSCSR is ignored and preci-
sion exception is not signaled.)
Note that Denormal is not signaled by ROUNDPD.

Other Exceptions

See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
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ROUNDPS — Round Packed Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the 4 single-precision floating-point values in the source operand (second operand) using the rounding 
mode specified in the immediate operand (third operand) and place the results in the destination operand (first 
operand). The rounding process rounds each input floating-point value to an integer value and returns the integer 
result as a single-precision floating-point value. 

The immediate operand specifies control fields for the rounding operation, three bit fields are defined and shown in 
Figure 4-20. Bit 3 of the immediate byte controls processor behavior for a precision exception, bit 2 selects the 
source of rounding mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-14 lists the encoded 
values for rounding-mode field). 

The Precision Floating-Point Exception is signaled according to the immediate operand. If any source operand is an 
SNaN then it will be converted to a QNaN. If DAZ is set to ‘1 then denormals will be converted to zero before 
rounding.
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit memory location. The destina-
tion is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM 
register destination are unmodified.
VEX.128 encoded version: the source operand second source operand or a 128-bit memory location. The destina-
tion operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 08
/r ib
ROUNDPS xmm1, xmm2/m128, imm8

RMI V/V SSE4_1 Round packed single precision floating-point 
values in xmm2/m128 and place the result in 
xmm1.  The rounding mode is determined by 
imm8.

VEX.128.66.0F3A.WIG 08 /r ib
VROUNDPS xmm1, xmm2/m128, imm8

RMI V/V AVX Round packed single-precision floating-point 
values in xmm2/m128 and place the result in 
xmm1. The rounding mode is determined by 
imm8.

VEX.256.66.0F3A.WIG 08 /r ib
VROUNDPS ymm1, ymm2/m256, imm8

RMI V/V AVX Round packed single-precision floating-point 
values in ymm2/m256 and place the result in 
ymm1. The rounding mode is determined by 
imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA
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Operation

IF (imm[2] = ‘1) 

THEN // rounding mode is determined by MXCSR.RC 

DEST[31:0] Å ConvertSPFPToInteger_M(SRC[31:0]);

DEST[63:32] Å ConvertSPFPToInteger_M(SRC[63:32]);

DEST[95:64] Å ConvertSPFPToInteger_M(SRC[95:64]);

DEST[127:96] Å ConvertSPFPToInteger_M(SRC[127:96]);

ELSE // rounding mode is determined by IMM8.RC

DEST[31:0] Å ConvertSPFPToInteger_Imm(SRC[31:0]);

DEST[63:32] Å ConvertSPFPToInteger_Imm(SRC[63:32]);

DEST[95:64] Å ConvertSPFPToInteger_Imm(SRC[95:64]);

DEST[127:96] Å ConvertSPFPToInteger_Imm(SRC[127:96]);

FI;

ROUNDPS(128-bit Legacy SSE version)

DEST[31:0] Å RoundToInteger(SRC[31:0], ROUND_CONTROL)

DEST[63:32] Å RoundToInteger(SRC[63:32], ROUND_CONTROL)

DEST[95:64] Å RoundToInteger(SRC[95:64]], ROUND_CONTROL)

DEST[127:96] Å RoundToInteger(SRC[127:96]], ROUND_CONTROL)

DEST[VLMAX-1:128] (Unmodified)

VROUNDPS (VEX.128 encoded version)

DEST[31:0] Å RoundToInteger(SRC[31:0], ROUND_CONTROL)

DEST[63:32] Å RoundToInteger(SRC[63:32], ROUND_CONTROL)

DEST[95:64] Å RoundToInteger(SRC[95:64]], ROUND_CONTROL)

DEST[127:96] Å RoundToInteger(SRC[127:96]], ROUND_CONTROL)

DEST[VLMAX-1:128] Å 0

VROUNDPS (VEX.256 encoded version)

DEST[31:0] Å RoundToInteger(SRC[31:0], ROUND_CONTROL)

DEST[63:32] Å RoundToInteger(SRC[63:32], ROUND_CONTROL)

DEST[95:64] Å RoundToInteger(SRC[95:64]], ROUND_CONTROL)

DEST[127:96] Å RoundToInteger(SRC[127:96]], ROUND_CONTROL)

DEST[159:128] Å RoundToInteger(SRC[159:128]], ROUND_CONTROL)

DEST[191:160] Å RoundToInteger(SRC[191:160]], ROUND_CONTROL)

DEST[223:192] Å RoundToInteger(SRC[223:192] ], ROUND_CONTROL)

DEST[255:224] Å RoundToInteger(SRC[255:224] ], ROUND_CONTROL)

Intel C/C++ Compiler Intrinsic Equivalent

__m128 _mm_round_ps(__m128 s1, int iRoundMode);

__m128 _mm_floor_ps(__m128 s1);

__m128 _mm_ceil_ps(__m128 s1)

__m256 _mm256_round_ps(__m256 s1, int iRoundMode);

__m256 _mm256_floor_ps(__m256 s1);

__m256 _mm256_ceil_ps(__m256 s1)
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SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN) 
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the MXSCSR is ignored and preci-
sion exception is not signaled.)
Note that Denormal is not signaled by ROUNDPS.

Other Exceptions

See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
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ROUNDSD — Round Scalar Double Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the DP FP value in the lower qword of the source operand (second operand) using the rounding mode spec-
ified in the immediate operand (third operand) and place the result in the destination operand (first operand). The 
rounding process rounds a double-precision floating-point input to an integer value and returns the integer result 
as a double precision floating-point value in the lowest position. The upper double precision floating-point value in 
the destination is retained. 

The immediate operand specifies control fields for the rounding operation, three bit fields are defined and shown in 
Figure 4-20. Bit 3 of the immediate byte controls processor behavior for a precision exception, bit 2 selects the 
source of rounding mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-14 lists the encoded 
values for rounding-mode field). 

The Precision Floating-Point Exception is signaled according to the immediate operand. If any source operand is an 
SNaN then it will be converted to a QNaN. If DAZ is set to ‘1 then denormals will be converted to zero before 
rounding.
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-
1:64) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

IF (imm[2] = ‘1) 

THEN // rounding mode is determined by MXCSR.RC 

DEST[63:0] Å ConvertDPFPToInteger_M(SRC[63:0]);

ELSE // rounding mode is determined by IMM8.RC

DEST[63:0] Å ConvertDPFPToInteger_Imm(SRC[63:0]);

FI;

DEST[127:63] remains unchanged ;

ROUNDSD (128-bit Legacy SSE version)

DEST[63:0] Å RoundToInteger(SRC[63:0], ROUND_CONTROL)

DEST[VLMAX-1:64] (Unmodified)

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 0B /r ib
ROUNDSD xmm1, xmm2/m64, imm8

RMI V/V SSE4_1 Round the low packed double precision 
floating-point value in xmm2/m64 and place 
the result in xmm1. The rounding mode is 
determined by imm8.

VEX.NDS.LIG.66.0F3A.WIG 0B /r ib
VROUNDSD xmm1, xmm2, xmm3/m64, imm8

RVMI V/V AVX Round the low packed double precision 
floating-point value in xmm3/m64 and place 
the result in xmm1. The rounding mode is 
determined by imm8. Upper packed double 
precision floating-point value (bits[127:64]) 
from xmm2 is copied to xmm1[127:64].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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VROUNDSD (VEX.128 encoded version)

DEST[63:0] Å RoundToInteger(SRC2[63:0], ROUND_CONTROL)

DEST[127:64] Å SRC1[127:64]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSD: __m128d mm_round_sd(__m128d dst, __m128d s1, int iRoundMode);
__m128d mm_floor_sd(__m128d dst, __m128d s1);
__m128d mm_ceil_sd(__m128d dst, __m128d s1);

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN)
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the MXSCSR is ignored and preci-
sion exception is not signaled.)
Note that Denormal is not signaled by ROUNDSD.

Other Exceptions

See Exceptions Type 3.
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ROUNDSS — Round Scalar Single Precision Floating-Point Values

Instruction Operand Encoding

Description

Round the single-precision floating-point value in the lowest dword of the source operand (second operand) using 
the rounding mode specified in the immediate operand (third operand) and place the result in the destination 
operand (first operand). The rounding process rounds a single-precision floating-point input to an integer value 
and returns the result as a single-precision floating-point value in the lowest position. The upper three single-preci-
sion floating-point values in the destination are retained. 

The immediate operand specifies control fields for the rounding operation, three bit fields are defined and shown in 
Figure 4-20. Bit 3 of the immediate byte controls processor behavior for a precision exception, bit 2 selects the 
source of rounding mode control. Bits 1:0 specify a non-sticky rounding-mode value (Table 4-14 lists the encoded 
values for rounding-mode field). 

The Precision Floating-Point Exception is signaled according to the immediate operand. If any source operand is an 
SNaN then it will be converted to a QNaN. If DAZ is set to ‘1 then denormals will be converted to zero before 
rounding.
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-
1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

IF (imm[2] = ‘1) 

THEN // rounding mode is determined by MXCSR.RC 

DEST[31:0] Å ConvertSPFPToInteger_M(SRC[31:0]);

ELSE // rounding mode is determined by IMM8.RC

DEST[31:0] Å ConvertSPFPToInteger_Imm(SRC[31:0]);

FI;

DEST[127:32] remains unchanged ;

ROUNDSS (128-bit Legacy SSE version)

DEST[31:0] Å RoundToInteger(SRC[31:0], ROUND_CONTROL)

DEST[VLMAX-1:32] (Unmodified)

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 3A 0A /r ib
ROUNDSS xmm1, xmm2/m32, imm8

RMI V/V SSE4_1 Round the low packed single precision 
floating-point value in xmm2/m32 and place 
the result in xmm1.  The rounding mode is 
determined by imm8.

VEX.NDS.LIG.66.0F3A.WIG 0A /r ib
VROUNDSS xmm1, xmm2, xmm3/m32, imm8

RVMI V/V AVX Round the low packed single precision 
floating-point value in xmm3/m32 and place 
the result in xmm1. The rounding mode is 
determined by imm8. Also, upper packed 
single precision floating-point values 
(bits[127:32]) from xmm2 are copied to 
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8
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VROUNDSS (VEX.128 encoded version)

DEST[31:0] Å RoundToInteger(SRC2[31:0], ROUND_CONTROL)

DEST[127:32] Å SRC1[127:32]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

ROUNDSS: __m128 mm_round_ss(__m128 dst, __m128 s1, int iRoundMode);
__m128 mm_floor_ss(__m128 dst, __m128 s1);
__m128 mm_ceil_ss(__m128 dst, __m128 s1);

SIMD Floating-Point Exceptions

Invalid (signaled only if SRC = SNaN) 
Precision (signaled only if imm[3] = ‘0; if imm[3] = ‘1, then the Precision Mask in the MXSCSR is ignored and preci-
sion exception is not signaled.)
Note that Denormal is not signaled by ROUNDSS.

Other Exceptions

See Exceptions Type 3.
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RSM—Resume from System Management Mode

Instruction Operand Encoding

Description

Returns program control from system management mode (SMM) to the application program or operating-system 
procedure that was interrupted when the processor received an SMM interrupt. The processor’s state is restored 
from the dump created upon entering SMM. If the processor detects invalid state information during state restora-
tion, it enters the shutdown state. The following invalid information can cause a shutdown:
• Any reserved bit of CR4 is set to 1.
• Any illegal combination of bits in CR0, such as (PG=1 and PE=0) or (NW=1 and CD=0).
• (Intel Pentium and Intel486™ processors only.) The value stored in the state dump base field is not a 32-KByte 

aligned address.

The contents of the model-specific registers are not affected by a return from SMM.

The SMM state map used by RSM supports resuming processor context for non-64-bit modes and 64-bit mode. 

See Chapter 34, “System Management Mode,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3C, for more information about SMM and the behavior of the RSM instruction.

Operation

ReturnFromSMM;

IF (IA-32e mode supported) or (CPUID DisplayFamily_DisplayModel = 06H_0CH )

THEN

ProcessorState ← Restore(SMMDump(IA-32e SMM STATE MAP));

Else

ProcessorState ← Restore(SMMDump(Non-32-Bit-Mode SMM STATE MAP));

FI

Flags Affected

All.

Protected Mode Exceptions

#UD If an attempt is made to execute this instruction when the processor is not in SMM.
If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AA RSM NP Invalid Valid Resume operation of interrupted program.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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64-Bit Mode Exceptions

Same exceptions as in protected mode.
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RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision Floating-Point 
Values

Instruction Operand Encoding

Description

Performs a SIMD computation of the approximate reciprocals of the square roots of the four packed single-preci-
sion floating-point values in the source operand (second operand) and stores the packed single-precision floating-
point results in the destination operand. The source operand can be an XMM register or a 128-bit memory location. 
The destination operand is an XMM register. See Figure 10-5 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for an illustration of a SIMD single-precision floating-point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12 

The RSQRTPS instruction is not affected by the rounding control bits in the MXCSR register. When a source value is 
a 0.0, an ∞ of the sign of the source value is returned. A denormal source value is treated as a 0.0 (of the same 
sign). When a source value is a negative value (other than −0.0), a floating-point indefinite is returned. When a 
source value is an SNaN or QNaN, the SNaN is converted to a QNaN or the source QNaN is returned. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 52 /r

RSQRTPS xmm1, xmm2/m128

RM V/V SSE Computes the approximate reciprocals of the 
square roots of the packed single-precision 
floating-point values in xmm2/m128 and 
stores the results in xmm1.

VEX.128.0F.WIG 52 /r

VRSQRTPS xmm1, xmm2/m128

RM V/V AVX Computes the approximate reciprocals of the 
square roots of packed single-precision values 
in xmm2/mem and stores the results in xmm1.

VEX.256.0F.WIG 52 /r

VRSQRTPS ymm1, ymm2/m256

RM V/V AVX Computes the approximate reciprocals of the 
square roots of packed single-precision values 
in ymm2/mem and stores the results in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Operation

RSQRTPS (128-bit Legacy SSE version)

DEST[31:0] Å APPROXIMATE(1/SQRT(SRC[31:0]))

DEST[63:32] Å APPROXIMATE(1/SQRT(SRC1[63:32]))

DEST[95:64] Å APPROXIMATE(1/SQRT(SRC1[95:64]))

DEST[127:96] Å APPROXIMATE(1/SQRT(SRC2[127:96]))

DEST[VLMAX-1:128] (Unmodified)

VRSQRTPS (VEX.128 encoded version)

DEST[31:0] Å APPROXIMATE(1/SQRT(SRC[31:0]))

DEST[63:32] Å APPROXIMATE(1/SQRT(SRC1[63:32]))

DEST[95:64] Å APPROXIMATE(1/SQRT(SRC1[95:64]))

DEST[127:96] Å APPROXIMATE(1/SQRT(SRC2[127:96]))

DEST[VLMAX-1:128] Å 0

VRSQRTPS (VEX.256 encoded version)

DEST[31:0] Å APPROXIMATE(1/SQRT(SRC[31:0]))

DEST[63:32] Å APPROXIMATE(1/SQRT(SRC1[63:32]))

DEST[95:64] Å APPROXIMATE(1/SQRT(SRC1[95:64]))

DEST[127:96] Å APPROXIMATE(1/SQRT(SRC2[127:96]))

DEST[159:128] Å APPROXIMATE(1/SQRT(SRC2[159:128]))

DEST[191:160] Å APPROXIMATE(1/SQRT(SRC2[191:160]))

DEST[223:192] Å APPROXIMATE(1/SQRT(SRC2[223:192]))

DEST[255:224] Å APPROXIMATE(1/SQRT(SRC2[255:224]))

Intel C/C++ Compiler Intrinsic Equivalent

RSQRTPS: __m128 _mm_rsqrt_ps(__m128 a)

RSQRTPS:  __m256 _mm256_rsqrt_ps (__m256 a);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.
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RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point Value

Instruction Operand Encoding

Description

Computes an approximate reciprocal of the square root of the low single-precision floating-point value in the 
source operand (second operand) stores the single-precision floating-point result in the destination operand. The 
source operand can be an XMM register or a 32-bit memory location. The destination operand is an XMM register. 
The three high-order doublewords of the destination operand remain unchanged. See Figure 10-6 in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a scalar single-precision 
floating-point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12 

The RSQRTSS instruction is not affected by the rounding control bits in the MXCSR register. When a source value is 
a 0.0, an ∞ of the sign of the source value is returned. A denormal source value is treated as a 0.0 (of the same 
sign). When a source value is a negative value (other than −0.0), a floating-point indefinite is returned. When a 
source value is an SNaN or QNaN, the SNaN is converted to a QNaN or the source QNaN is returned. 

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-
1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

RSQRTSS (128-bit Legacy SSE version)

DEST[31:0] Å APPROXIMATE(1/SQRT(SRC2[31:0]))

DEST[VLMAX-1:32] (Unmodified)

VRSQRTSS (VEX.128 encoded version)

DEST[31:0] Å APPROXIMATE(1/SQRT(SRC2[31:0]))

DEST[127:32] Å SRC1[31:0]

DEST[VLMAX-1:128] Å 0

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 52 /r

RSQRTSS xmm1, xmm2/m32

RM V/V SSE Computes the approximate reciprocal of the 
square root of the low single-precision 
floating-point value in xmm2/m32 and stores 
the results in xmm1.

VEX.NDS.LIG.F3.0F.WIG 52 /r
VRSQRTSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Computes the approximate reciprocal of the 
square root of the low single precision 
floating-point value in xmm3/m32 and stores 
the results in xmm1. Also, upper single 
precision floating-point values (bits[127:32]) 
from xmm2 are copied to xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Intel C/C++ Compiler Intrinsic Equivalent

RSQRTSS: __m128 _mm_rsqrt_ss(__m128 a)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 5.
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SAHF—Store AH into Flags

Instruction Operand Encoding

Description

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the corresponding bits in the AH 
register (bits 7, 6, 4, 2, and 0, respectively). Bits 1, 3, and 5 of register AH are ignored; the corresponding reserved 
bits (1, 3, and 5) in the EFLAGS register remain as shown in the “Operation” section below.

This instruction executes as described above in compatibility mode and legacy mode. It is valid in 64-bit mode only 
if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

Operation

IF IA-64 Mode

THEN

IF CPUID.80000001H.ECX[0] = 1;
THEN

RFLAGS(SF:ZF:0:AF:0:PF:1:CF) ← AH;
ELSE

#UD;

FI

ELSE

EFLAGS(SF:ZF:0:AF:0:PF:1:CF) ← AH;

FI;

Flags Affected

The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register. Bits 1, 3, and 5 of the EFLAGS register 
are unaffected, with the values remaining 1, 0, and 0, respectively.

Protected Mode Exceptions

None.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

None.

Compatibility Mode Exceptions

None.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

9E SAHF NP Invalid* Valid Loads SF, ZF, AF, PF, and CF from AH into 
EFLAGS register.

NOTES:
* Valid in specific steppings. See Description section.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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64-Bit Mode Exceptions

#UD If CPUID.80000001H.ECX[0] = 0.
If the LOCK prefix is used.
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SAL/SAR/SHL/SHR—Shift

Opcode*** Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

D0 /4 SAL r/m8, 1 M1 Valid Valid Multiply r/m8 by 2, once. 

REX + D0 /4 SAL r/m8**, 1 M1 Valid N.E. Multiply r/m8 by 2, once. 

D2 /4 SAL r/m8, CL MC Valid Valid Multiply r/m8 by 2, CL times.

REX + D2 /4 SAL r/m8**, CL MC Valid N.E. Multiply r/m8 by 2, CL times.

C0 /4 ib SAL r/m8, imm8 MI Valid Valid Multiply r/m8 by 2, imm8 times.

REX + C0 /4 ib SAL r/m8**, imm8 MI Valid N.E. Multiply r/m8 by 2, imm8 times.

D1 /4 SAL r/m16, 1 M1 Valid Valid Multiply r/m16 by 2, once.

D3 /4 SAL r/m16, CL MC Valid Valid Multiply r/m16 by 2, CL times.

C1 /4 ib SAL r/m16, imm8 MI Valid Valid Multiply r/m16 by 2, imm8 times.

D1 /4 SAL r/m32, 1 M1 Valid Valid Multiply r/m32 by 2, once.

REX.W + D1 /4 SAL r/m64, 1 M1 Valid N.E. Multiply r/m64 by 2, once.

D3 /4 SAL r/m32, CL MC Valid Valid Multiply r/m32 by 2, CL times.

REX.W + D3 /4 SAL r/m64, CL MC Valid N.E. Multiply r/m64 by 2, CL times.

C1 /4 ib SAL r/m32, imm8 MI Valid Valid Multiply r/m32 by 2, imm8 times.

REX.W + C1 /4 ib SAL r/m64, imm8 MI Valid N.E. Multiply r/m64 by 2, imm8 times.

D0 /7 SAR r/m8, 1 M1 Valid Valid Signed divide* r/m8 by 2, once.

REX + D0 /7 SAR r/m8**, 1 M1 Valid N.E. Signed divide* r/m8 by 2, once.

D2 /7 SAR r/m8, CL MC Valid Valid Signed divide* r/m8 by 2, CL times.

REX + D2 /7 SAR r/m8**, CL MC Valid N.E. Signed divide* r/m8 by 2, CL times.

C0 /7 ib SAR r/m8, imm8 MI Valid Valid Signed divide* r/m8 by 2, imm8 time.

REX + C0 /7 ib SAR r/m8**, imm8 MI Valid N.E. Signed divide* r/m8 by 2, imm8 times.

D1 /7 SAR r/m16,1 M1 Valid Valid Signed divide* r/m16 by 2, once.

D3 /7 SAR r/m16, CL MC Valid Valid Signed divide* r/m16 by 2, CL times.

C1 /7 ib SAR r/m16, imm8 MI Valid Valid Signed divide* 
r/m16 by 2, imm8 times.

D1 /7 SAR r/m32, 1 M1 Valid Valid Signed divide* r/m32 by 2, once.

REX.W + D1 /7 SAR r/m64, 1 M1 Valid N.E. Signed divide* r/m64 by 2, once.

D3 /7 SAR r/m32, CL MC Valid Valid Signed divide* 
r/m32 by 2, CL times.

REX.W + D3 /7 SAR r/m64, CL MC Valid N.E. Signed divide* 
r/m64 by 2, CL times.

C1 /7 ib SAR r/m32, imm8 MI Valid Valid Signed divide* 
r/m32 by 2, imm8 times.

REX.W + C1 /7 ib SAR r/m64, imm8 MI Valid N.E. Signed divide* 
r/m64 by 2, imm8 times

D0 /4 SHL r/m8, 1 M1 Valid Valid Multiply r/m8 by 2, once.

REX + D0 /4 SHL r/m8**, 1 M1 Valid N.E. Multiply r/m8 by 2, once.

D2 /4 SHL r/m8, CL MC Valid Valid Multiply r/m8 by 2, CL times.

REX + D2 /4 SHL r/m8**, CL MC Valid N.E. Multiply r/m8 by 2, CL times.

C0 /4 ib SHL r/m8, imm8 MI Valid Valid Multiply r/m8 by 2, imm8 times.

REX + C0 /4 ib SHL r/m8**, imm8 MI Valid N.E. Multiply r/m8 by 2, imm8 times.

D1 /4 SHL r/m16,1 M1 Valid Valid Multiply r/m16 by 2, once.

D3 /4 SHL r/m16, CL MC Valid Valid Multiply r/m16 by 2, CL times.

C1 /4 ib SHL r/m16, imm8 MI Valid Valid Multiply r/m16 by 2, imm8 times.

D1 /4 SHL r/m32,1 M1 Valid Valid Multiply r/m32 by 2, once.



SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, N-Z

4-332 Vol. 2B

Instruction Operand Encoding

Description

Shifts the bits in the first operand (destination operand) to the left or right by the number of bits specified in the 
second operand (count operand). Bits shifted beyond the destination operand boundary are first shifted into the CF 
flag, then discarded. At the end of the shift operation, the CF flag contains the last bit shifted out of the destination 
operand. 

The destination operand can be a register or a memory location. The count operand can be an immediate value or 
the CL register. The count is masked to 5 bits (or 6 bits if in 64-bit mode and REX.W is used). The count range is 
limited to 0 to 31 (or 63 if 64-bit mode and REX.W is used). A special opcode encoding is provided for a count of 1.

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the same operation; they shift the 
bits in the destination operand to the left (toward more significant bit locations). For each shift count, the most 
significant bit of the destination operand is shifted into the CF flag, and the least significant bit is cleared (see 
Figure 7-7 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

REX.W + D1 /4 SHL r/m64,1 M1 Valid N.E. Multiply r/m64 by 2, once.

D3 /4 SHL r/m32, CL MC Valid Valid Multiply r/m32 by 2, CL times.

REX.W + D3 /4 SHL r/m64, CL MC Valid N.E. Multiply r/m64 by 2, CL times.

C1 /4 ib SHL r/m32, imm8 MI Valid Valid Multiply r/m32 by 2, imm8 times.

REX.W + C1 /4 ib SHL r/m64, imm8 MI Valid N.E. Multiply r/m64 by 2, imm8 times.

D0 /5 SHR r/m8,1 M1 Valid Valid Unsigned divide r/m8 by 2, once.

REX + D0 /5 SHR r/m8**, 1 M1 Valid N.E. Unsigned divide r/m8 by 2, once.

D2 /5 SHR r/m8, CL MC Valid Valid Unsigned divide r/m8 by 2, CL times.

REX + D2 /5 SHR r/m8**, CL MC Valid N.E. Unsigned divide r/m8 by 2, CL times.

C0 /5 ib SHR r/m8, imm8 MI Valid Valid Unsigned divide r/m8 by 2, imm8 times.

REX + C0 /5 ib SHR r/m8**, imm8 MI Valid N.E. Unsigned divide r/m8 by 2, imm8 times.

D1 /5 SHR r/m16, 1 M1 Valid Valid Unsigned divide r/m16 by 2, once.

D3 /5 SHR r/m16, CL MC Valid Valid Unsigned divide r/m16 by 2, CL times

C1 /5 ib SHR r/m16, imm8 MI Valid Valid Unsigned divide r/m16 by 2, imm8 times.

D1 /5 SHR r/m32, 1 M1 Valid Valid Unsigned divide r/m32 by 2, once.

REX.W + D1 /5 SHR r/m64, 1 M1 Valid N.E. Unsigned divide r/m64 by 2, once.

D3 /5 SHR r/m32, CL MC Valid Valid Unsigned divide r/m32 by 2, CL times.

REX.W + D3 /5 SHR r/m64, CL MC Valid N.E. Unsigned divide r/m64 by 2, CL times.

C1 /5 ib SHR r/m32, imm8 MI Valid Valid Unsigned divide r/m32 by 2, imm8 times.

REX.W + C1 /5 ib SHR r/m64, imm8 MI Valid N.E. Unsigned divide r/m64 by 2, imm8 times.

NOTES:

* Not the same form of division as IDIV; rounding is toward negative infinity.

** In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

***See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M1 ModRM:r/m (r, w) 1 NA NA

MC ModRM:r/m (r, w) CL NA NA

MI ModRM:r/m (r, w) imm8 NA NA
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The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits of the destination operand to 
the right (toward less significant bit locations). For each shift count, the least significant bit of the destination 
operand is shifted into the CF flag, and the most significant bit is either set or cleared depending on the instruction 
type. The SHR instruction clears the most significant bit (see Figure 7-8 in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1); the SAR instruction sets or clears the most significant bit to correspond 
to the sign (most significant bit) of the original value in the destination operand. In effect, the SAR instruction fills 
the empty bit position’s shifted value with the sign of the unshifted value (see Figure 7-9 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1).

The SAR and SHR instructions can be used to perform signed or unsigned division, respectively, of the destination 
operand by powers of 2. For example, using the SAR instruction to shift a signed integer 1 bit to the right divides 
the value by 2.

Using the SAR instruction to perform a division operation does not produce the same result as the IDIV instruction. 
The quotient from the IDIV instruction is rounded toward zero, whereas the “quotient” of the SAR instruction is 
rounded toward negative infinity. This difference is apparent only for negative numbers. For example, when the 
IDIV instruction is used to divide -9 by 4, the result is -2 with a remainder of -1. If the SAR instruction is used to 
shift -9 right by two bits, the result is -3 and the “remainder” is +3; however, the SAR instruction stores only the 
most significant bit of the remainder (in the CF flag). 

The OF flag is affected only on 1-bit shifts. For left shifts, the OF flag is set to 0 if the most-significant bit of the 
result is the same as the CF flag (that is, the top two bits of the original operand were the same); otherwise, it is 
set to 1. For the SAR instruction, the OF flag is cleared for all 1-bit shifts. For the SHR instruction, the OF flag is set 
to the most-significant bit of the original operand.

In 64-bit mode, the instruction’s default operation size is 32 bits and the mask width for CL is 5 bits. Using a REX 
prefix in the form of REX.R permits access to additional registers (R8-R15). Using a REX prefix in the form of REX.W 
promotes operation to 64-bits and sets the mask width for CL to 6 bits. See the summary chart at the beginning of 
this section for encoding data and limits.

IA-32 Architecture Compatibility

The 8086 does not mask the shift count. However, all other IA-32 processors (starting with the Intel 286 processor) 
do mask the shift count to 5 bits, resulting in a maximum count of 31. This masking is done in all operating modes 
(including the virtual-8086 mode) to reduce the maximum execution time of the instructions.

Operation

IF 64-Bit Mode and using REX.W

THEN

countMASK ← 3FH;

ELSE

countMASK ← 1FH;

FI

tempCOUNT ← (COUNT AND countMASK);

tempDEST ← DEST;

WHILE (tempCOUNT ≠ 0)

DO

IF instruction is SAL or SHL

THEN 

CF ← MSB(DEST);

ELSE (* Instruction is SAR or SHR *)

CF ← LSB(DEST);

FI;

IF instruction is SAL or SHL

THEN 

DEST ← DEST ∗ 2;

ELSE 

IF instruction is SAR
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THEN 

DEST ← DEST / 2; (* Signed divide, rounding toward negative infinity *)

ELSE (* Instruction is SHR *)

DEST ← DEST / 2 ; (* Unsigned divide *)

FI;

FI;

tempCOUNT ← tempCOUNT – 1;

OD;

(* Determine overflow for the various instructions *)

IF (COUNT and countMASK) = 1
THEN

IF instruction is SAL or SHL

THEN 

OF ← MSB(DEST) XOR CF;

ELSE 

IF instruction is SAR

THEN 

OF ← 0;

ELSE (* Instruction is SHR *)

OF ← MSB(tempDEST);

FI;

FI;

ELSE IF (COUNT AND countMASK) = 0
THEN

All flags unchanged;

ELSE (* COUNT not 1 or 0 *)

OF ← undefined;

FI;

FI;

Flags Affected

The CF flag contains the value of the last bit shifted out of the destination operand; it is undefined for SHL and SHR 
instructions where the count is greater than or equal to the size (in bits) of the destination operand. The OF flag is 
affected only for 1-bit shifts (see “Description” above); otherwise, it is undefined. The SF, ZF, and PF flags are set 
according to the result. If the count is 0, the flags are not affected. For a non-zero count, the AF flag is undefined.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.
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Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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SARX/SHLX/SHRX — Shift Without Affecting Flags

Instruction Operand Encoding

Description

Shifts the bits of the first source operand (the second operand) to the left or right by a COUNT value specified in the 
second source operand (the third operand). The result is written to the destination operand (the first operand).
The shift arithmetic right (SARX) and shift logical right (SHRX) instructions shift the bits of the destination operand 
to the right (toward less significant bit locations), SARX keeps and propagates the most significant bit (sign bit) 
while shifting.
The logical shift left (SHLX) shifts the bits of the destination operand to the left (toward more significant bit loca-
tions). 
This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An 
attempt to execute this instruction with VEX.L not equal to 0 will cause #UD.
If the value specified in the first source operand exceeds OperandSize -1, the COUNT value is masked.
SARX,SHRX, and SHLX instructions do not update flags. 

Operation

TEMP ← SRC1;

IF VEX.W1 and CS.L = 1

THEN

countMASK ←3FH;

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDS1.LZ.F3.0F38.W0 F7 /r

NOTES:

1. ModRM:r/m is used to encode the first source operand (second operand) and VEX.vvvv encodes the second source operand (third oper-
and).

RMV V/V BMI2 Shift r/m32 arithmetically right with count specified in r32b.

SARX r32a, r/m32, r32b

VEX.NDS1.LZ.66.0F38.W0 F7 /r RMV V/V BMI2 Shift r/m32 logically left with count specified in r32b.

SHLX r32a, r/m32, r32b

VEX.NDS1.LZ.F2.0F38.W0 F7 /r RMV V/V BMI2 Shift r/m32 logically right with count specified in r32b.

SHRX r32a, r/m32, r32b

VEX.NDS1.LZ.F3.0F38.W1 F7 /r RMV V/N.E. BMI2 Shift r/m64 arithmetically right with count specified in r64b.

SARX r64a, r/m64, r64b

VEX.NDS1.LZ.66.0F38.W1 F7 /r RMV V/N.E. BMI2 Shift r/m64 logically left with count specified in r64b.

SHLX r64a, r/m64, r64b

VEX.NDS1.LZ.F2.0F38.W1 F7 /r RMV V/N.E. BMI2 Shift r/m64 logically right with count specified in r64b.

SHRX r64a, r/m64, r64b

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMV ModRM:reg (w) ModRM:r/m (r) VEX.vvvv (r) NA
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ELSE

countMASK ←1FH;

FI

COUNT ← (SRC2 AND countMASK)

DEST[OperandSize -1] = TEMP[OperandSize -1];

DO WHILE (COUNT != 0)

IF instruction is SHLX

THEN

DEST[] ← DEST *2;

ELSE IF instruction is SHRX

THEN

DEST[] ← DEST /2; //unsigned divide

ELSE // SARX

DEST[] ← DEST /2; // signed divide, round toward negative infinity

FI;

COUNT ← COUNT - 1;

OD

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

Auto-generated from high-level language.

SIMD Floating-Point Exceptions

None

Other Exceptions

See Section 2.5.1, “Exception Conditions for VEX-Encoded GPR Instructions”, Table 2-29; additionally
#UD If VEX.W = 1.
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SBB—Integer Subtraction with Borrow

Instruction Operand Encoding

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

1C ib SBB AL, imm8 I Valid Valid Subtract with borrow imm8 from AL.

1D iw SBB AX, imm16 I Valid Valid Subtract with borrow imm16 from AX.

1D id SBB EAX, imm32 I Valid Valid Subtract with borrow imm32 from EAX.

REX.W + 1D id SBB RAX, imm32 I Valid N.E. Subtract with borrow sign-extended imm.32 

to 64-bits from RAX.

80 /3 ib SBB r/m8, imm8 MI Valid Valid Subtract with borrow imm8 from r/m8.

REX + 80 /3 ib SBB r/m8*, imm8 MI Valid N.E. Subtract with borrow imm8 from r/m8.

81 /3 iw SBB r/m16, imm16 MI Valid Valid Subtract with borrow imm16 from r/m16.

81 /3 id SBB r/m32, imm32 MI Valid Valid Subtract with borrow imm32 from r/m32.

REX.W + 81 /3 id SBB r/m64, imm32 MI Valid N.E. Subtract with borrow sign-extended imm32 to 

64-bits from r/m64.

83 /3 ib SBB r/m16, imm8 MI Valid Valid Subtract with borrow sign-extended imm8 
from r/m16.

83 /3 ib SBB r/m32, imm8 MI Valid Valid Subtract with borrow sign-extended imm8 
from r/m32.

REX.W + 83 /3 ib SBB r/m64, imm8 MI Valid N.E. Subtract with borrow sign-extended imm8 
from r/m64.

18 /r SBB r/m8, r8 MR Valid Valid Subtract with borrow r8 from r/m8.

REX + 18 /r SBB r/m8*, r8 MR Valid N.E. Subtract with borrow r8 from r/m8.

19 /r SBB r/m16, r16 MR Valid Valid Subtract with borrow r16 from r/m16.

19 /r SBB r/m32, r32 MR Valid Valid Subtract with borrow r32 from r/m32.

REX.W + 19 /r SBB r/m64, r64 MR Valid N.E. Subtract with borrow r64 from r/m64.

1A /r SBB r8, r/m8 RM Valid Valid Subtract with borrow r/m8 from r8.

REX + 1A /r SBB r8*, r/m8* RM Valid N.E. Subtract with borrow r/m8 from r8.

1B /r SBB r16, r/m16 RM Valid Valid Subtract with borrow r/m16 from r16.

1B /r SBB r32, r/m32 RM Valid Valid Subtract with borrow r/m32 from r32.

REX.W + 1B /r SBB r64, r/m64 RM Valid N.E. Subtract with borrow r/m64 from r64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 NA NA

MI ModRM:r/m (w) imm8/16/32 NA NA

MR ModRM:r/m (w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Description

Adds the source operand (second operand) and the carry (CF) flag, and subtracts the result from the destination 
operand (first operand). The result of the subtraction is stored in the destination operand. The destination operand 
can be a register or a memory location; the source operand can be an immediate, a register, or a memory location. 
(However, two memory operands cannot be used in one instruction.) The state of the CF flag represents a borrow 
from a previous subtraction.

When an immediate value is used as an operand, it is sign-extended to the length of the destination operand 
format.

The SBB instruction does not distinguish between signed or unsigned operands. Instead, the processor evaluates 
the result for both data types and sets the OF and CF flags to indicate a borrow in the signed or unsigned result, 
respectively. The SF flag indicates the sign of the signed result.

The SBB instruction is usually executed as part of a multibyte or multiword subtraction in which a SUB instruction 
is followed by a SBB instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST ← (DEST – (SRC + CF));

Intel C/C++ Compiler Intrinsic Equivalent

SBB: extern unsigned char _subborrow_u8(unsigned char c_in, unsigned char src1, unsigned char src2, unsigned char *diff_out);

SBB: extern unsigned char _subborrow_u16(unsigned char c_in, unsigned short src1, unsigned short src2, unsigned short 
*diff_out);

SBB: extern unsigned char _subborrow_u32(unsigned char c_in, unsigned int src1, unsigned char int, unsigned int *diff_out);

SBB: extern unsigned char _subborrow_u64(unsigned char c_in, unsigned __int64 src1, unsigned __int64 src2, unsigned 
__int64 *diff_out);

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
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#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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SCAS/SCASB/SCASW/SCASD—Scan String 

Instruction Operand Encoding

Description

In non-64-bit modes and in default 64-bit mode: this instruction compares a byte, word, doubleword or quadword 
specified using a memory operand with the value in AL, AX, or EAX. It then sets status flags in EFLAGS recording 
the results. The memory operand address is read from ES:(E)DI register (depending on the address-size attribute 
of the instruction and the current operational mode). Note that ES cannot be overridden with a segment override 
prefix.

At the assembly-code level, two forms of this instruction are allowed. The explicit-operand form and the no-oper-
ands form. The explicit-operand form (specified using the SCAS mnemonic) allows a memory operand to be spec-
ified explicitly. The memory operand must be a symbol that indicates the size and location of the operand value. 
The register operand is then automatically selected to match the size of the memory operand (AL register for byte 
comparisons, AX for word comparisons, EAX for doubleword comparisons). The explicit-operand form is provided 
to allow documentation. Note that the documentation provided by this form can be misleading. That is, the 
memory operand symbol must specify the correct type (size) of the operand (byte, word, or doubleword) but it 
does not have to specify the correct location. The location is always specified by ES:(E)DI.

The no-operands form of the instruction uses a short form of SCAS. Again, ES:(E)DI is assumed to be the memory 
operand and AL, AX, or EAX is assumed to be the register operand. The size of operands is selected by the 
mnemonic: SCASB (byte comparison), SCASW (word comparison), or SCASD (doubleword comparison).

After the comparison, the (E)DI register is incremented or decremented automatically according to the setting of 
the DF flag in the EFLAGS register. If the DF flag is 0, the (E)DI register is incremented; if the DF flag is 1, the (E)DI 
register is decremented. The register is incremented or decremented by 1 for byte operations, by 2 for word oper-
ations, and by 4 for doubleword operations.

SCAS, SCASB, SCASW, SCASD, and SCASQ can be preceded by the REP prefix for block comparisons of ECX bytes, 
words, doublewords, or quadwords. Often, however, these instructions will be used in a LOOP construct that takes 

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

AE SCAS m8 NP Valid Valid Compare AL with byte at ES:(E)DI or RDI, then 
set status flags.*

AF SCAS m16 NP Valid Valid Compare AX with word at ES:(E)DI or RDI, then 
set status flags.*

AF SCAS m32 NP Valid Valid Compare EAX with doubleword at ES(E)DI or 
RDI then set status flags.*

REX.W + AF SCAS m64 NP Valid N.E. Compare RAX with quadword at RDI or EDI 
then set status flags.

AE SCASB NP Valid Valid Compare AL with byte at ES:(E)DI or RDI then 
set status flags.*

AF SCASW NP Valid Valid Compare AX with word at ES:(E)DI or RDI then 
set status flags.*

AF SCASD NP Valid Valid Compare EAX with doubleword at ES:(E)DI or 
RDI then set status flags.*

REX.W + AF SCASQ NP Valid N.E. Compare RAX with quadword at RDI or EDI 
then set status flags.

NOTES:

* In 64-bit mode, only 64-bit (RDI) and 32-bit (EDI) address sizes are supported. In non-64-bit mode, only 32-bit (EDI) and 16-bit (DI) 
address sizes are supported.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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some action based on the setting of status flags. See “REP/REPE/REPZ /REPNE/REPNZ—Repeat String Operation 
Prefix” in this chapter for a description of the REP prefix.

In 64-bit mode, the instruction’s default address size is 64-bits, 32-bit address size is supported using the prefix 
67H. Using a REX prefix in the form of REX.W promotes operation on doubleword operand to 64 bits. The 64-bit no-
operand mnemonic is SCASQ. Address of the memory operand is specified in either RDI or EDI, and 
AL/AX/EAX/RAX may be used as the register operand. After a comparison, the destination register is incremented 
or decremented by the current operand size (depending on the value of the DF flag). See the summary chart at the 
beginning of this section for encoding data and limits.

Operation

Non-64-bit Mode:

IF (Byte comparison)

THEN

temp ← AL − SRC;

SetStatusFlags(temp);

THEN IF DF = 0 

THEN (E)DI ← (E)DI + 1; 

ELSE (E)DI ← (E)DI – 1; FI;

ELSE IF (Word comparison)

THEN

temp ← AX − SRC;

SetStatusFlags(temp);

IF DF = 0

THEN (E)DI ← (E)DI + 2; 

ELSE (E)DI ← (E)DI – 2; FI;

FI;

ELSE IF (Doubleword comparison)

THEN

temp ← EAX – SRC;

SetStatusFlags(temp);

IF DF = 0
THEN (E)DI ← (E)DI + 4; 

ELSE (E)DI ← (E)DI – 4; FI;

FI;

FI;

64-bit Mode:

IF (Byte cmparison)

THEN

temp ← AL − SRC;

SetStatusFlags(temp);

THEN IF DF = 0 

THEN (R|E)DI ← (R|E)DI + 1; 

ELSE (R|E)DI ← (R|E)DI – 1; FI;

ELSE IF (Word comparison)

THEN

temp ← AX − SRC;

SetStatusFlags(temp);

IF DF = 0

THEN (R|E)DI ← (R|E)DI + 2; 

ELSE (R|E)DI ← (R|E)DI – 2; FI;

FI;



SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-343

ELSE IF (Doubleword comparison)

THEN

temp ← EAX – SRC;

SetStatusFlags(temp);

IF DF = 0
THEN (R|E)DI ← (R|E)DI + 4; 

ELSE (R|E)DI ← (R|E)DI – 4; FI;

FI;

ELSE IF (Quadword comparison using REX.W )

THEN

temp ← RAX − SRC;

SetStatusFlags(temp);

IF DF = 0

THEN (R|E)DI ← (R|E)DI + 8; 

ELSE (R|E)DI ← (R|E)DI – 8; 

FI;

FI;

F

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the comparison.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the limit of the ES segment.
If the ES register contains a NULL segment selector.
If an illegal memory operand effective address in the ES segment is given.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
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#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 
current privilege level is 3.

#UD If the LOCK prefix is used.



SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-345

SETcc—Set Byte on Condition

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 97 SETA r/m8 M Valid Valid Set byte if above (CF=0 and ZF=0).

REX + 0F 97 SETA r/m8* M Valid N.E. Set byte if above (CF=0 and ZF=0).

0F 93 SETAE r/m8 M Valid Valid Set byte if above or equal (CF=0).

REX + 0F 93 SETAE r/m8* M Valid N.E. Set byte if above or equal (CF=0).

0F 92 SETB r/m8 M Valid Valid Set byte if below (CF=1).

REX + 0F 92 SETB r/m8* M Valid N.E. Set byte if below (CF=1).

0F 96 SETBE r/m8 M Valid Valid Set byte if below or equal (CF=1 or ZF=1).

REX + 0F 96 SETBE r/m8* M Valid N.E. Set byte if below or equal (CF=1 or ZF=1).

0F 92 SETC r/m8 M Valid Valid Set byte if carry (CF=1).

REX + 0F 92 SETC r/m8* M Valid N.E. Set byte if carry (CF=1).

0F 94 SETE r/m8 M Valid Valid Set byte if equal (ZF=1).

REX + 0F 94 SETE r/m8* M Valid N.E. Set byte if equal (ZF=1).

0F 9F SETG r/m8 M Valid Valid Set byte if greater (ZF=0 and SF=OF).

REX + 0F 9F SETG r/m8* M Valid N.E. Set byte if greater (ZF=0 and SF=OF).

0F 9D SETGE r/m8 M Valid Valid Set byte if greater or equal (SF=OF).

REX + 0F 9D SETGE r/m8* M Valid N.E. Set byte if greater or equal (SF=OF).

0F 9C SETL r/m8 M Valid Valid Set byte if less (SF≠ OF).

REX + 0F 9C SETL r/m8* M Valid N.E. Set byte if less (SF≠ OF).

0F 9E SETLE r/m8 M Valid Valid Set byte if less or equal (ZF=1 or SF≠ OF).

REX + 0F 9E SETLE r/m8* M Valid N.E. Set byte if less or equal (ZF=1 or SF≠ OF).

0F 96 SETNA r/m8 M Valid Valid Set byte if not above (CF=1 or ZF=1).

REX + 0F 96 SETNA r/m8* M Valid N.E. Set byte if not above (CF=1 or ZF=1).

0F 92 SETNAE r/m8 M Valid Valid Set byte if not above or equal (CF=1).

REX + 0F 92 SETNAE r/m8* M Valid N.E. Set byte if not above or equal (CF=1).

0F 93 SETNB r/m8 M Valid Valid Set byte if not below (CF=0).

REX + 0F 93 SETNB r/m8* M Valid N.E. Set byte if not below (CF=0).

0F 97 SETNBE r/m8 M Valid Valid Set byte if not below or equal (CF=0 and 
ZF=0).

REX + 0F 97 SETNBE r/m8* M Valid N.E. Set byte if not below or equal (CF=0 and 
ZF=0).

0F 93 SETNC r/m8 M Valid Valid Set byte if not carry (CF=0).

REX + 0F 93 SETNC r/m8* M Valid N.E. Set byte if not carry (CF=0).

0F 95 SETNE r/m8 M Valid Valid Set byte if not equal (ZF=0).

REX + 0F 95 SETNE r/m8* M Valid N.E. Set byte if not equal (ZF=0).

0F 9E SETNG r/m8 M Valid Valid Set byte if not greater (ZF=1 or SF≠ OF)

REX + 0F 9E SETNG r/m8* M Valid N.E. Set byte if not greater (ZF=1 or SF≠ OF).

0F 9C SETNGE r/m8 M Valid Valid Set byte if not greater or equal (SF≠ OF).

REX + 0F 9C SETNGE r/m8* M Valid N.E. Set byte if not greater or equal (SF≠ OF).

0F 9D SETNL r/m8 M Valid Valid Set byte if not less (SF=OF).

REX + 0F 9D SETNL r/m8* M Valid N.E. Set byte if not less (SF=OF).

0F 9F SETNLE r/m8 M Valid Valid Set byte if not less or equal (ZF=0 and SF=OF).
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Instruction Operand Encoding

Description

Sets the destination operand to 0 or 1 depending on the settings of the status flags (CF, SF, OF, ZF, and PF) in the 
EFLAGS register. The destination operand points to a byte register or a byte in memory. The condition code suffix 
(cc) indicates the condition being tested for. 

The terms “above” and “below” are associated with the CF flag and refer to the relationship between two unsigned 
integer values. The terms “greater” and “less” are associated with the SF and OF flags and refer to the relationship 
between two signed integer values.

Many of the SETcc instruction opcodes have alternate mnemonics. For example, SETG (set byte if greater) and 
SETNLE (set if not less or equal) have the same opcode and test for the same condition: ZF equals 0 and SF equals 
OF. These alternate mnemonics are provided to make code more intelligible. Appendix B, “EFLAGS Condition 
Codes,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, shows the alternate 
mnemonics for various test conditions.

Some languages represent a logical one as an integer with all bits set. This representation can be obtained by 
choosing the logically opposite condition for the SETcc instruction, then decrementing the result. For example, to 
test for overflow, use the SETNO instruction, then decrement the result.

REX + 0F 9F SETNLE r/m8* M Valid N.E. Set byte if not less or equal (ZF=0 and SF=OF).

0F 91 SETNO r/m8 M Valid Valid Set byte if not overflow (OF=0).

REX + 0F 91 SETNO r/m8* M Valid N.E. Set byte if not overflow (OF=0).

0F 9B SETNP r/m8 M Valid Valid Set byte if not parity (PF=0).

REX + 0F 9B SETNP r/m8* M Valid N.E. Set byte if not parity (PF=0).

0F 99 SETNS r/m8 M Valid Valid Set byte if not sign (SF=0).

REX + 0F 99 SETNS r/m8* M Valid N.E. Set byte if not sign (SF=0).

0F 95 SETNZ r/m8 M Valid Valid Set byte if not zero (ZF=0).

REX + 0F 95 SETNZ r/m8* M Valid N.E. Set byte if not zero (ZF=0).

0F 90 SETO r/m8 M Valid Valid Set byte if overflow (OF=1)

REX + 0F 90 SETO r/m8* M Valid N.E. Set byte if overflow (OF=1).

0F 9A SETP r/m8 M Valid Valid Set byte if parity (PF=1).

REX + 0F 9A SETP r/m8* M Valid N.E. Set byte if parity (PF=1).

0F 9A SETPE r/m8 M Valid Valid Set byte if parity even (PF=1).

REX + 0F 9A SETPE r/m8* M Valid N.E. Set byte if parity even (PF=1).

0F 9B SETPO r/m8 M Valid Valid Set byte if parity odd (PF=0).

REX + 0F 9B SETPO r/m8* M Valid N.E. Set byte if parity odd (PF=0).

0F 98 SETS r/m8 M Valid Valid Set byte if sign (SF=1).

REX + 0F 98 SETS r/m8* M Valid N.E. Set byte if sign (SF=1).

0F 94 SETZ r/m8 M Valid Valid Set byte if zero (ZF=1).

REX + 0F 94 SETZ r/m8* M Valid N.E. Set byte if zero (ZF=1).

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description
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In IA-64 mode, the operand size is fixed at 8 bits. Use of REX prefix enable uniform addressing to additional byte 
registers. Otherwise, this instruction’s operation is the same as in legacy mode and compatibility mode. 

Operation

IF condition

THEN DEST ← 1; 

ELSE DEST ← 0; 

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.



SFENCE—Store Fence

INSTRUCTION SET REFERENCE, N-Z

4-348 Vol. 2B

SFENCE—Store Fence

Instruction Operand Encoding

Description

Performs a serializing operation on all store-to-memory instructions that were issued prior the SFENCE instruction. 
This serializing operation guarantees that every store instruction that precedes the SFENCE instruction in program 
order becomes globally visible before any store instruction that follows the SFENCE instruction. The SFENCE 
instruction is ordered with respect to store instructions, other SFENCE instructions, any LFENCE and MFENCE 
instructions, and any serializing instructions (such as the CPUID instruction). It is not ordered with respect to load 
instructions. 

Weakly ordered memory types can be used to achieve higher processor performance through such techniques as 
out-of-order issue, write-combining, and write-collapsing. The degree to which a consumer of data recognizes or 
knows that the data is weakly ordered varies among applications and may be unknown to the producer of this data. 
The SFENCE instruction provides a performance-efficient way of ensuring store ordering between routines that 
produce weakly-ordered results and routines that consume this data.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Wait_On_Following_Stores_Until(preceding_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_sfence(void)

Exceptions (All Operating Modes)

#UD If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AE /7 SFENCE NP Valid Valid Serializes store operations.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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SGDT—Store Global Descriptor Table Register

Instruction Operand Encoding

Description

Stores the content of the global descriptor table register (GDTR) in the destination operand. The destination 
operand specifies a memory location. 

In legacy or compatibility mode, the destination operand is a 6-byte memory location. If the operand-size attribute 
is 16 bits, the limit is stored in the low 2 bytes and the 24-bit base address is stored in bytes 3-5, and byte 6 is 
zero-filled. If the operand-size attribute is 32 bits, the 16-bit limit field of the register is stored in the low 2 bytes 
of the memory location and the 32-bit base address is stored in the high 4 bytes.

In IA-32e mode, the operand size is fixed at 8+2 bytes. The instruction stores an 8-byte base and a 2-byte limit.

SGDT is useful only by operating-system software. However, it can be used in application programs without causing 
an exception to be generated. See “LGDT/LIDT—Load Global/Interrupt Descriptor Table Register” in Chapter 3, 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for information on loading the GDTR 
and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of the SGDT is compatible with the Intel 286 processor if the upper 8 bits are not referenced. The 
Intel 286 processor fills these bits with 1s; the Pentium 4, Intel Xeon, P6 processor family, Pentium, Intel486, and 
Intel386™ processors fill these bits with 0s.

Operation

IF instruction is SGDT

IF OperandSize = 16

THEN 

DEST[0:15] ← GDTR(Limit);

DEST[16:39] ← GDTR(Base); (* 24 bits of base address stored *)

DEST[40:47] ← 0;

ELSE IF (32-bit Operand Size)

DEST[0:15] ← GDTR(Limit);

DEST[16:47] ← GDTR(Base); (* Full 32-bit base address stored *)

FI;

ELSE (* 64-bit Operand Size *)

DEST[0:15] ← GDTR(Limit);

DEST[16:79] ← GDTR(Base); (* Full 64-bit base address stored *)

FI; 

FI;

Flags Affected

None.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 /0 SGDT m M Valid Valid Store GDTR to m.

NOTES:

* See IA-32 Architecture Compatibility section below.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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Protected Mode Exceptions

#UD If the destination operand is a register.
If the LOCK prefix is used.

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.

Real-Address Mode Exceptions

#UD If the destination operand is a register.
If the LOCK prefix is used.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#UD If the destination operand is a register.
If the LOCK prefix is used.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#UD If the destination operand is a register.

If the LOCK prefix is used.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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SHLD—Double Precision Shift Left

Instruction Operand Encoding

Description

The SHLD instruction is used for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the left the number of bits specified by the third 
operand (count operand). The second operand (source operand) provides bits to shift in from the right (starting 
with bit 0 of the destination operand). 

The destination operand can be a register or a memory location; the source operand is a register. The count 
operand is an unsigned integer that can be stored in an immediate byte or in the CL register. If the count operand 
is CL, the shift count is the logical AND of CL and a count mask. In non-64-bit modes and default 64-bit mode; only 
bits 0 through 4 of the count are used. This masks the count to a value between 0 and 31. If a count is greater than 
the operand size, the result is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination operand. For a 1-bit 
shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. If the count operand is 0, flags are not 
affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits 
(upgrading the count mask to 6 bits). See the summary chart at the beginning of this section for encoding data and 
limits.

Operation

IF (In 64-Bit Mode and REX.W = 1) 

THEN COUNT ← COUNT MOD 64;

ELSE COUNT ← COUNT MOD 32;

FI

SIZE ← OperandSize;

IF COUNT = 0
THEN 

No operation;

ELSE

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F A4 /r ib SHLD r/m16, r16, imm8 MRI Valid Valid Shift r/m16 to left imm8 places while shifting 
bits from r16 in from the right.

0F A5 /r SHLD r/m16, r16, CL MRC Valid Valid Shift r/m16 to left CL places while shifting bits 
from r16 in from the right.

0F A4 /r ib SHLD r/m32, r32, imm8 MRI Valid Valid Shift r/m32 to left imm8 places while shifting 
bits from r32 in from the right.

REX.W + 0F A4 /r ib SHLD r/m64, r64, imm8 MRI Valid N.E. Shift r/m64 to left imm8 places while shifting 
bits from r64 in from the right.

0F A5 /r SHLD r/m32, r32, CL MRC Valid Valid Shift r/m32 to left CL places while shifting bits 
from r32 in from the right.

REX.W + 0F A5 /r SHLD r/m64, r64, CL MRC Valid N.E. Shift r/m64 to left CL places while shifting 
bits from r64 in from the right.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA

MRC ModRM:r/m (w) ModRM:reg (r) CL NA
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IF COUNT > SIZE

THEN (* Bad parameters *)

DEST is undefined;

CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)

CF ← BIT[DEST, SIZE – COUNT];

(* Last bit shifted out on exit *)

FOR i ← SIZE – 1 DOWN TO COUNT

DO

Bit(DEST, i) ← Bit(DEST, i – COUNT);

OD;

FOR i ← COUNT – 1 DOWN TO 0

DO

BIT[DEST, i] ← BIT[SRC, i – COUNT + SIZE];

OD;

FI;

FI;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination operand and the SF, ZF, 
and PF flags are set according to the value of the result. For a 1-bit shift, the OF flag is set if a sign change occurred; 
otherwise, it is cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF flag is unde-
fined. If the count operand is 0, the flags are not affected. If the count is greater than the operand size, the flags 
are undefined.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.
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64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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SHRD—Double Precision Shift Right

Instruction Operand Encoding

Description

The SHRD instruction is useful for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the right the number of bits specified by the third 
operand (count operand). The second operand (source operand) provides bits to shift in from the left (starting with 
the most significant bit of the destination operand). 

The destination operand can be a register or a memory location; the source operand is a register. The count 
operand is an unsigned integer that can be stored in an immediate byte or the CL register. If the count operand is 
CL, the shift count is the logical AND of CL and a count mask. In non-64-bit modes and default 64-bit mode, the 
width of the count mask is 5 bits. Only bits 0 through 4 of the count register are used (masking the count to a value 
between 0 and 31). If the count is greater than the operand size, the result is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination operand. For a 1-bit 
shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. If the count operand is 0, flags are not 
affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits 
(upgrading the count mask to 6 bits). See the summary chart at the beginning of this section for encoding data and 
limits.

Operation

IF (In 64-Bit Mode and REX.W = 1) 

THEN COUNT ← COUNT MOD 64;

ELSE COUNT ← COUNT MOD 32;

FI

SIZE ← OperandSize;

IF COUNT = 0
THEN 

No operation;

ELSE

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AC /r ib SHRD r/m16, r16, imm8 MRI Valid Valid Shift r/m16 to right imm8 places while 
shifting bits from r16 in from the left.

0F AD /r SHRD r/m16, r16, CL MRC Valid Valid Shift r/m16 to right CL places while shifting 
bits from r16 in from the left.

0F AC /r ib SHRD r/m32, r32, imm8 MRI Valid Valid Shift r/m32 to right imm8 places while 
shifting bits from r32 in from the left.

REX.W + 0F AC /r ib SHRD r/m64, r64, imm8 MRI Valid N.E. Shift r/m64 to right imm8 places while 
shifting bits from r64 in from the left.

0F AD /r SHRD r/m32, r32, CL MRC Valid Valid Shift r/m32 to right CL places while shifting 
bits from r32 in from the left.

REX.W + 0F AD /r SHRD r/m64, r64, CL MRC Valid N.E. Shift r/m64 to right CL places while shifting 
bits from r64 in from the left.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MRI ModRM:r/m (w) ModRM:reg (r) imm8 NA

MRC ModRM:r/m (w) ModRM:reg (r) CL NA
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IF COUNT > SIZE

THEN (* Bad parameters *)

DEST is undefined;

CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)

CF ← BIT[DEST, COUNT – 1]; (* Last bit shifted out on exit *)

FOR i ← 0 TO SIZE – 1 – COUNT

DO

BIT[DEST, i] ← BIT[DEST, i + COUNT];

OD;

FOR i ← SIZE – COUNT TO SIZE – 1

DO

BIT[DEST,i] ← BIT[SRC, i + COUNT – SIZE];

OD;

FI;

FI;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination operand and the SF, 
ZF, and PF flags are set according to the value of the result. For a 1-bit shift, the OF flag is set if a sign change 
occurred; otherwise, it is cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF flag 
is undefined. If the count operand is 0, the flags are not affected. If the count is greater than the operand size, the 
flags are undefined.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.
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64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Moves either of the two packed double-precision floating-point values from destination operand (first operand) into 
the low quadword of the destination operand; moves either of the two packed double-precision floating-point 
values from the source operand into to the high quadword of the destination operand (see Figure 4-21). The select 
operand (third operand) determines which values are moved to the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The source can be an XMM register or an 128-bit memory location. The destination is 
not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM 
register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F C6 /r ib

SHUFPD xmm1, xmm2/m128, imm8

RMI V/V SSE2 Shuffle packed double-precision floating-
point values selected by imm8 from xmm1 
and xmm2/m128 to xmm1.

VEX.NDS.128.66.0F.WIG C6 /r ib

VSHUFPD xmm1, xmm2, xmm3/m128, imm8

RVMI V/V AVX Shuffle Packed double-precision floating-
point values selected by imm8 from xmm2 
and xmm3/mem.

VEX.NDS.256.66.0F.WIG C6 /r ib

VSHUFPD ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX Shuffle Packed double-precision floating-
point values selected by imm8 from ymm2 
and ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

Figure 4-21.  SHUFPD Shuffle Operation

X1 X0

Y1 Y0

Y1 or Y0 X1 or X0

SRC

DEST

DEST
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The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM 
register. The select operand is an 8-bit immediate: bit 0 selects which value is moved from the destination operand 
to the result (where 0 selects the low quadword and 1 selects the high quadword) and bit 1 selects which value is 
moved from the source operand to the result. Bits 2 through 7 of the select operand are reserved and must be set 
to 0.

Operation

IF SELECT[0] = 0

THEN DEST[63:0]  ← DEST[63:0];

ELSE DEST[63:0]  ← DEST[127:64]; FI;

IF SELECT[1] = 0
THEN DEST[127:64]  ← SRC[63:0];

ELSE DEST[127:64]  ← SRC[127:64]; FI;

SHUFPD (128-bit Legacy SSE version)

IF IMM0[0] = 0

THEN DEST[63:0] Å SRC1[63:0]

ELSE DEST[63:0] Å SRC1[127:64] FI;

IF IMM0[1] = 0

THEN DEST[127:64] Å SRC2[63:0]

ELSE DEST[127:64] Å SRC2[127:64] FI;

DEST[VLMAX-1:128] (Unmodified)

VSHUFPD (VEX.128 encoded version)

IF IMM0[0] = 0

THEN DEST[63:0] Å SRC1[63:0]

ELSE DEST[63:0] Å SRC1[127:64] FI;

IF IMM0[1] = 0

THEN DEST[127:64] Å SRC2[63:0]

ELSE DEST[127:64] Å SRC2[127:64] FI;

DEST[VLMAX-1:128] Å 0

VSHUFPD (VEX.256 encoded version)

IF IMM0[0] = 0

THEN DEST[63:0] Å SRC1[63:0]

ELSE DEST[63:0] Å SRC1[127:64] FI;

IF IMM0[1] = 0

THEN DEST[127:64] Å SRC2[63:0]

ELSE DEST[127:64] Å SRC2[127:64] FI;

IF IMM0[2] = 0

THEN DEST[191:128] Å SRC1[191:128]

ELSE DEST[191:128] Å SRC1[255:192] FI;

IF IMM0[3] = 0

THEN DEST[255:192] Å SRC2[191:128]

ELSE DEST[255:192] Å SRC2[255:192] FI;

Intel C/C++ Compiler Intrinsic Equivalent

SHUFPD: __m128d _mm_shuffle_pd(__m128d a, __m128d b, unsigned int imm8)

VSHUFPD:  __m256d _mm256_shuffle_pd (__m256d a, __m256d b, const int select);

SIMD Floating-Point Exceptions

None.
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Other Exceptions

See Exceptions Type 4.
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SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Moves two of the four packed single-precision floating-point values from the destination operand (first operand) 
into the low quadword of the destination operand; moves two of the four packed single-precision floating-point 
values from the source operand (second operand) into to the high quadword of the destination operand (see 
Figure 4-22). The select operand (third operand) determines which values are moved to the destination operand.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The source can be an XMM register or an 128-bit memory location. The destination is 
not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM 
register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
determines which values are moved to the destination operand.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F C6 /r ib

SHUFPS xmm1, xmm2/m128, imm8

RMI V/V SSE Shuffle packed single-precision floating-point 
values selected by imm8 from xmm1 and 
xmm1/m128 to xmm1.

VEX.NDS.128.0F.WIG C6 /r ib

VSHUFPS xmm1, xmm2, xmm3/m128, imm8

RVMI V/V AVX Shuffle Packed single-precision floating-point 
values selected by imm8 from xmm2 and 
xmm3/mem.

VEX.NDS.256.0F.WIG C6 /r ib

VSHUFPS ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX Shuffle Packed single-precision floating-point 
values selected by imm8 from ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (r, w) ModRM:r/m (r) imm8 NA

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

Figure 4-22.  SHUFPS Shuffle Operation
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The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM 
register. The select operand is an 8-bit immediate: bits 0 and 1 select the value to be moved from the destination 
operand to the low doubleword of the result, bits 2 and 3 select the value to be moved from the destination operand 
to the second doubleword of the result, bits 4 and 5 select the value to be moved from the source operand to the 
third doubleword of the result, and bits 6 and 7 select the value to be moved from the source operand to the high 
doubleword of the result.

Operation

CASE (SELECT[1:0]) OF

0: DEST[31:0]  ← DEST[31:0];

1: DEST[31:0]  ← DEST[63:32];

2: DEST[31:0]  ← DEST[95:64];

3: DEST[31:0]  ← DEST[127:96];

ESAC;

CASE (SELECT[3:2]) OF

0: DEST[63:32]  ← DEST[31:0];

1: DEST[63:32]  ← DEST[63:32];

2: DEST[63:32]  ← DEST[95:64];

3: DEST[63:32]  ← DEST[127:96];

ESAC;

CASE (SELECT[5:4]) OF

0: DEST[95:64]  ← SRC[31:0];

1: DEST[95:64]  ← SRC[63:32];

2: DEST[95:64]  ← SRC[95:64];

3: DEST[95:64]  ← SRC[127:96];

ESAC;

CASE (SELECT[7:6]) OF

0: DEST[127:96]  ← SRC[31:0];

1: DEST[127:96]  ← SRC[63:32];

2: DEST[127:96]  ← SRC[95:64];

3: DEST[127:96]  ← SRC[127:96];

ESAC;

SHUFPS (128-bit Legacy SSE version)

DEST[31:0] Å Select4(SRC1[127:0], imm8[1:0]);

DEST[63:32] Å Select4(SRC1[127:0], imm8[3:2]);

DEST[95:64] Å Select4(SRC2[127:0], imm8[5:4]);

DEST[127:96] Å Select4(SRC2[127:0], imm8[7:6]);

DEST[VLMAX-1:128] (Unmodified)

VSHUFPS (VEX.128 encoded version)

DEST[31:0] Å Select4(SRC1[127:0], imm8[1:0]);

DEST[63:32] Å Select4(SRC1[127:0], imm8[3:2]);

DEST[95:64] Å Select4(SRC2[127:0], imm8[5:4]);

DEST[127:96] Å Select4(SRC2[127:0], imm8[7:6]);

DEST[VLMAX-1:128] Å 0
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VSHUFPS (VEX.256 encoded version)

DEST[31:0] Å Select4(SRC1[127:0], imm8[1:0]);

DEST[63:32] Å Select4(SRC1[127:0], imm8[3:2]);

DEST[95:64] Å Select4(SRC2[127:0], imm8[5:4]);

DEST[127:96] Å Select4(SRC2[127:0], imm8[7:6]);

DEST[159:128] Å Select4(SRC1[255:128], imm8[1:0]);

DEST[191:160] Å Select4(SRC1[255:128], imm8[3:2]);

DEST[223:192] Å Select4(SRC2[255:128], imm8[5:4]);

DEST[255:224] Å Select4(SRC2[255:128], imm8[7:6]);

Intel C/C++ Compiler Intrinsic Equivalent

SHUFPS: __m128 _mm_shuffle_ps(__m128 a, __m128 b, unsigned int imm8)

VSHUFPS:  __m256 _mm256_shuffle_ps (__m256 a, __m256 b, const int select);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.
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SIDT—Store Interrupt Descriptor Table Register

Instruction Operand Encoding

Description

Stores the content the interrupt descriptor table register (IDTR) in the destination operand. The destination 
operand specifies a 6-byte memory location. 

In non-64-bit modes, if the operand-size attribute is 32 bits, the 16-bit limit field of the register is stored in the low 
2 bytes of the memory location and the 32-bit base address is stored in the high 4 bytes. If the operand-size attri-
bute is 16 bits, the limit is stored in the low 2 bytes and the 24-bit base address is stored in the third, fourth, and 
fifth byte, with the sixth byte filled with 0s.

In 64-bit mode, the operand size fixed at 8+2 bytes. The instruction stores 8-byte base and 2-byte limit values.

SIDT is only useful in operating-system software; however, it can be used in application programs without causing 
an exception to be generated. See “LGDT/LIDT—Load Global/Interrupt Descriptor Table Register” in Chapter 3, 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for information on loading the GDTR 
and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of SIDT is compatible with the Intel 286 processor if the upper 8 bits are not referenced. The Intel 
286 processor fills these bits with 1s; the Pentium 4, Intel Xeon, P6 processor family, Pentium, Intel486, and 
Intel386 processors fill these bits with 0s.

Operation

IF instruction is SIDT

THEN

IF OperandSize = 16

THEN 

DEST[0:15] ← IDTR(Limit);

DEST[16:39] ← IDTR(Base); (* 24 bits of base address stored; *)

DEST[40:47] ← 0;

ELSE IF (32-bit Operand Size)

DEST[0:15] ← IDTR(Limit);

DEST[16:47] ← IDTR(Base); FI; (* Full 32-bit base address stored *)

ELSE (* 64-bit Operand Size *)

DEST[0:15] ← IDTR(Limit);

DEST[16:79] ← IDTR(Base); (* Full 64-bit base address stored *)

FI;

FI;

Flags Affected

None.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 /1 SIDT m M Valid Valid Store IDTR to m.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#UD If the destination operand is a register.

If the LOCK prefix is used.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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SLDT—Store Local Descriptor Table Register

Instruction Operand Encoding

Description

Stores the segment selector from the local descriptor table register (LDTR) in the destination operand. The desti-
nation operand can be a general-purpose register or a memory location. The segment selector stored with this 
instruction points to the segment descriptor (located in the GDT) for the current LDT. This instruction can only be 
executed in protected mode.

Outside IA-32e mode, when the destination operand is a 32-bit register, the 16-bit segment selector is copied into 
the low-order 16 bits of the register. The high-order 16 bits of the register are cleared for the Pentium 4, Intel Xeon, 
and P6 family processors. They are undefined for Pentium, Intel486, and Intel386 processors. When the destina-
tion operand is a memory location, the segment selector is written to memory as a 16-bit quantity, regardless of 
the operand size.

In compatibility mode, when the destination operand is a 32-bit register, the 16-bit segment selector is copied into 
the low-order 16 bits of the register. The high-order 16 bits of the register are cleared. When the destination 
operand is a memory location, the segment selector is written to memory as a 16-bit quantity, regardless of the 
operand size.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). The 
behavior of SLDT with a 64-bit register is to zero-extend the 16-bit selector and store it in the register. If the desti-
nation is memory and operand size is 64, SLDT will write the 16-bit selector to memory as a 16-bit quantity, 
regardless of the operand size

Operation

DEST ← LDTR(SegmentSelector);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD The SLDT instruction is not recognized in real-address mode.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 00 /0 SLDT r/m16 M Valid Valid Stores segment selector from LDTR in r/m16.

REX.W + 0F 00 /0 SLDT r64/m16 M Valid Valid Stores segment selector from LDTR in 
r64/m16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#UD The SLDT instruction is not recognized in virtual-8086 mode.
If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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SMSW—Store Machine Status Word

Instruction Operand Encoding

Description

Stores the machine status word (bits 0 through 15 of control register CR0) into the destination operand. The desti-
nation operand can be a general-purpose register or a memory location.

In non-64-bit modes, when the destination operand is a 32-bit register, the low-order 16 bits of register CR0 are 
copied into the low-order 16 bits of the register and the high-order 16 bits are undefined. When the destination 
operand is a memory location, the low-order 16 bits of register CR0 are written to memory as a 16-bit quantity, 
regardless of the operand size.

In 64-bit mode, the behavior of the SMSW instruction is defined by the following examples:
• SMSW r16 operand size 16, store CR0[15:0] in r16
• SMSW r32 operand size 32, zero-extend CR0[31:0], and store in r32
• SMSW r64 operand size 64, zero-extend CR0[63:0], and store in r64
• SMSW m16 operand size 16, store CR0[15:0] in m16
• SMSW m16 operand size 32, store CR0[15:0] in m16 (not m32)
• SMSW m16 operands size 64, store CR0[15:0] in m16 (not m64)

SMSW is only useful in operating-system software. However, it is not a privileged instruction and can be used in 
application programs. The is provided for compatibility with the Intel 286 processor. Programs and procedures 
intended to run on the Pentium 4, Intel Xeon, P6 family, Pentium, Intel486, and Intel386 processors should use the 
MOV (control registers) instruction to load the machine status word.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in 
VMX non-root operation.

Operation

DEST ← CR0[15:0]; 

(* Machine status word *)

Flags Affected

None.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 /4 SMSW r/m16 M Valid Valid Store machine status word to r/m16.

0F 01 /4 SMSW r32/m16 M Valid Valid Store machine status word in low-order 16 
bits of r32/m16; high-order 16 bits of r32 are 
undefined.

REX.W + 0F 01 /4 SMSW r64/m16 M Valid Valid Store machine status word in low-order 16 
bits of r64/m16; high-order 16 bits of r32 are 
undefined.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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SQRTPD—Compute Square Roots of Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD computation of the square roots of the two packed double-precision floating-point values in the 
source operand (second operand) stores the packed double-precision floating-point results in the destination 
operand. The source operand can be an XMM register or a 128-bit memory location. The destination operand is an 
XMM register. See Figure 11-3 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
for an illustration of a SIMD double-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit memory location. The destina-
tion is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM 
register destination are unmodified.
VEX.128 encoded version: the source operand second source operand or a 128-bit memory location. The destina-
tion operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

SQRTPD (128-bit Legacy SSE version)

DEST[63:0] Å SQRT(SRC[63:0])

DEST[127:64] Å SQRT(SRC[127:64])

DEST[VLMAX-1:128] (Unmodified)

VSQRTPD (VEX.128 encoded version)

DEST[63:0] Å SQRT(SRC[63:0])

DEST[127:64] Å SQRT(SRC[127:64])

DEST[VLMAX-1:128] Å 0

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 51 /r

SQRTPD xmm1, xmm2/m128

RM V/V SSE2 Computes square roots of the packed double-
precision floating-point values in xmm2/m128 
and stores the results in xmm1.

VEX.128.66.0F.WIG 51 /r

VSQRTPD xmm1, xmm2/m128

RM V/V AVX Computes Square Roots of the packed double-
precision floating-point values in xmm2/m128 
and stores the result in xmm1.

VEX.256.66.0F.WIG 51/r

VSQRTPD ymm1, ymm2/m256

RM V/V AVX Computes Square Roots of the packed double-
precision floating-point values in ymm2/m256 

and stores the result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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VSQRTPD (VEX.256 encoded version)

DEST[63:0] Å SQRT(SRC[63:0])

DEST[127:64] Å SQRT(SRC[127:64])

DEST[191:128] Å SQRT(SRC[191:128])

DEST[255:192] Å SQRT(SRC[255:192])

Intel C/C++ Compiler Intrinsic Equivalent

SQRTPD: __m128d _mm_sqrt_pd (m128d a)

SQRTPD:  __m256d _mm256_sqrt_pd (__m256d a);

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
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SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values 

Instruction Operand Encoding

Description

Performs a SIMD computation of the square roots of the four packed single-precision floating-point values in the 
source operand (second operand) stores the packed single-precision floating-point results in the destination 
operand. The source operand can be an XMM register or a 128-bit memory location. The destination operand is an 
XMM register. See Figure 10-5 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
for an illustration of a SIMD single-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or 128-bit memory location. The destina-
tion is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM 
register destination are unmodified.
VEX.128 encoded version: the source operand second source operand or a 128-bit memory location. The destina-
tion operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The source operand is a YMM register or a 256-bit memory location. The destination 
operand is a YMM register. 
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

SQRTPS (128-bit Legacy SSE version)

DEST[31:0] Å SQRT(SRC[31:0])

DEST[63:32] Å SQRT(SRC[63:32])

DEST[95:64] Å SQRT(SRC[95:64])

DEST[127:96] Å SQRT(SRC[127:96])

DEST[VLMAX-1:128] (Unmodified)

VSQRTPS (VEX.128 encoded version)

DEST[31:0] Å SQRT(SRC[31:0])

DEST[63:32] Å SQRT(SRC[63:32])

DEST[95:64] Å SQRT(SRC[95:64])

DEST[127:96] Å SQRT(SRC[127:96])

DEST[VLMAX-1:128] Å 0

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 51 /r

SQRTPS xmm1, xmm2/m128

RM V/V SSE Computes square roots of the packed single-
precision floating-point values in xmm2/m128 
and stores the results in xmm1.

VEX.128.0F.WIG 51 /r

VSQRTPS xmm1, xmm2/m128

RM V/V AVX Computes Square Roots of the packed single-
precision floating-point values in xmm2/m128 

and stores the result in xmm1.

VEX.256.0F.WIG 51/r

VSQRTPS ymm1, ymm2/m256

RM V/V AVX Computes Square Roots of the packed single-
precision floating-point values in ymm2/m256 
and stores the result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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VSQRTPS (VEX.256 encoded version)

DEST[31:0] Å SQRT(SRC[31:0])

DEST[63:32] Å SQRT(SRC[63:32])

DEST[95:64] Å SQRT(SRC[95:64])

DEST[127:96] Å SQRT(SRC[127:96])

DEST[159:128] Å SQRT(SRC[159:128])

DEST[191:160] Å SQRT(SRC[191:160])

DEST[223:192] Å SQRT(SRC[223:192])

DEST[255:224] Å SQRT(SRC[255:224])

Intel C/C++ Compiler Intrinsic Equivalent

SQRTPS: __m128 _mm_sqrt_ps(__m128 a)

SQRTPS: __m256 _mm256_sqrt_ps (__m256 a);

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 2; additionally
#UD If VEX.vvvv != 1111B.
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SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value

Instruction Operand Encoding

Description

Computes the square root of the low double-precision floating-point value in the source operand (second operand) 
and stores the double-precision floating-point result in the destination operand. The source operand can be an 
XMM register or a 64-bit memory location. The destination operand is an XMM register. The high quadword of the 
destination operand remains unchanged. See Figure 11-4 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for an illustration of a scalar double-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-
1:64) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

SQRTSD (128-bit Legacy SSE version)

DEST[63:0] Å SQRT(SRC[63:0])

DEST[VLMAX-1:64] (Unmodified)

VSQRTSD (VEX.128 encoded version)

DEST[63:0] Å SQRT(SRC2[63:0])

DEST[127:64] Å SRC1[127:64]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

SQRTSD: __m128d _mm_sqrt_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 3.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F2 0F 51 /r

SQRTSD xmm1, xmm2/m64

RM V/V SSE2 Computes square root of the low double-
precision floating-point value in xmm2/m64 
and stores the results in xmm1.

VEX.NDS.LIG.F2.0F.WIG 51/r

VSQRTSD xmm1,xmm2, xmm3/m64

RVM V/V AVX Computes square root of the low double-
precision floating point value in xmm3/m64 

and stores the results in xmm2. Also, upper 
double precision floating-point value 
(bits[127:64]) from xmm2 are copied to 
xmm1[127:64].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value

Instruction Operand Encoding

Description

Computes the square root of the low single-precision floating-point value in the source operand (second operand) 
and stores the single-precision floating-point result in the destination operand. The source operand can be an XMM 
register or a 32-bit memory location. The destination operand is an XMM register. The three high-order double-
words of the destination operand remain unchanged. See Figure 10-6 in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for an illustration of a scalar single-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (VLMAX-
1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

SQRTSS (128-bit Legacy SSE version)

DEST[31:0] Å SQRT(SRC2[31:0])

DEST[VLMAX-1:32] (Unmodified)

VSQRTSS (VEX.128 encoded version)

DEST[31:0] Å SQRT(SRC2[31:0])

DEST[127:32] Å SRC1[127:32]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

SQRTSS: __m128 _mm_sqrt_ss(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 3.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 51 /r

SQRTSS xmm1, xmm2/m32

RM V/V SSE Computes square root of the low single-
precision floating-point value in xmm2/m32 
and stores the results in xmm1.

VEX.NDS.LIG.F3.0F.WIG 51/r

VSQRTSS xmm1, xmm2, xmm3/m32

RVM V/V AVX Computes square root of the low single-
precision floating-point value in xmm3/m32 

and stores the results in xmm1. Also, upper 
single precision floating-point values 
(bits[127:32]) from xmm2 are copied to 
xmm1[127:32].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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STC—Set Carry Flag

Instruction Operand Encoding

Description

Sets the CF flag in the EFLAGS register.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CF ← 1;

Flags Affected

The CF flag is set. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

F9 STC NP Valid Valid Set CF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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STD—Set Direction Flag

Instruction Operand Encoding

Description

Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations decrement the index regis-
ters (ESI and/or EDI).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DF ← 1;

Flags Affected

The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

#UD If the LOCK prefix is used.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

FD STD NP Valid Valid Set DF flag.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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STI—Set Interrupt Flag

Instruction Operand Encoding

Description

If protected-mode virtual interrupts are not enabled, STI sets the interrupt flag (IF) in the EFLAGS register. After 
the IF flag is set, the processor begins responding to external, maskable interrupts after the next instruction is 
executed. The delayed effect of this instruction is provided to allow interrupts to be enabled just before returning 
from a procedure (or subroutine). For instance, if an STI instruction is followed by an RET instruction, the RET 
instruction is allowed to execute before external interrupts are recognized1. If the STI instruction is followed by a 
CLI instruction (which clears the IF flag), the effect of the STI instruction is negated. 

The IF flag and the STI and CLI instructions do not prohibit the generation of exceptions and NMI interrupts. NMI 
interrupts (and SMIs) may be blocked for one macroinstruction following an STI.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than 3; STI sets the VIF flag in the 
EFLAGS register, leaving IF unaffected.

Table 4-15 indicates the action of the STI instruction depending on the processor’s mode of operation and the 
CPL/IOPL settings of the running program or procedure.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode* Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

FB STI NP Valid Valid Set interrupt flag; external, maskable 
interrupts enabled at the end of the next 
instruction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. The STI instruction delays recognition of interrupts only if it is executed with EFLAGS.IF = 0. In a sequence of STI instructions, only 
the first instruction in the sequence is guaranteed to delay interrupts.

In the following instruction sequence, interrupts may be recognized before RET executes:
STI
STI
RET

Table 4-15.  Decision Table for STI Results 

PE VM IOPL CPL PVI VIP VME STI Result

0 X X X X X X IF = 1
1 0 ≥ CPL X X X X IF = 1

1 0 < CPL 3 1 0 X VIF = 1

1 0 < CPL < 3 X X X GP Fault

1 0 < CPL X 0 X X GP Fault

1 0 < CPL X X 1 X GP Fault

1 1 3 X X X X IF = 1
1 1 < 3 X X 0 1 VIF = 1

1 1 < 3 X X 1 X GP Fault

1 1 < 3 X X X 0 GP Fault

NOTES:

X = This setting has no impact.
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Operation

IF PE = 0  (* Executing in real-address mode *)

THEN 

IF ← 1; (* Set Interrupt Flag *)

ELSE  (* Executing in protected mode or virtual-8086 mode *)

IF VM = 0  (* Executing in protected mode*)

THEN

IF IOPL ≥ CPL

THEN

IF ← 1;  (* Set Interrupt Flag *)

ELSE

IF (IOPL < CPL) and (CPL = 3) and (VIP = 0)

THEN 

VIF ← 1;  (* Set Virtual Interrupt Flag *)

ELSE 

#GP(0);

FI;

FI;

ELSE  (* Executing in Virtual-8086 mode *)

IF IOPL = 3
THEN

IF ← 1;  (* Set Interrupt Flag *)

ELSE 

IF ((IOPL < 3) and (VIP = 0) and (VME = 1))

THEN

VIF ← 1;  (* Set Virtual Interrupt Flag *)

ELSE

#GP(0); (* Trap to virtual-8086 monitor *)

FI;)

FI;

FI; 

FI;

Flags Affected

The IF flag is set to 1; or the VIF flag is set to 1.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current program or procedure. 
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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STMXCSR—Store MXCSR Register State

Instruction Operand Encoding

Description

Stores the contents of the MXCSR control and status register to the destination operand. The destination operand 
is a 32-bit memory location. The reserved bits in the MXCSR register are stored as 0s.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
VEX.L must be 0, otherwise instructions will #UD.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

m32 ← MXCSR;

Intel C/C++ Compiler Intrinsic Equivalent

_mm_getcsr(void)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 5; additionally
#UD If VEX.L= 1,

If VEX.vvvv != 1111B.

Opcode*/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F AE /3

STMXCSR m32

M V/V SSE Store contents of MXCSR register to m32.

VEX.LZ.0F.WIG AE /3

VSTMXCSR m32

M V/V AVX Store contents of MXCSR register to m32.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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STOS/STOSB/STOSW/STOSD/STOSQ—Store String

Instruction Operand Encoding

Description

In non-64-bit and default 64-bit mode; stores a byte, word, or doubleword from the AL, AX, or EAX register 
(respectively) into the destination operand. The destination operand is a memory location, the address of which is 
read from either the ES:EDI or ES:DI register (depending on the address-size attribute of the instruction and the 
mode of operation). The ES segment cannot be overridden with a segment override prefix.

At the assembly-code level, two forms of the instruction are allowed: the “explicit-operands” form and the “no-
operands” form. The explicit-operands form (specified with the STOS mnemonic) allows the destination operand to 
be specified explicitly. Here, the destination operand should be a symbol that indicates the size and location of the 
destination value. The source operand is then automatically selected to match the size of the destination operand 
(the AL register for byte operands, AX for word operands, EAX for doubleword operands). The explicit-operands 
form is provided to allow documentation; however, note that the documentation provided by this form can be 
misleading. That is, the destination operand symbol must specify the correct type (size) of the operand (byte, 
word, or doubleword), but it does not have to specify the correct location. The location is always specified by the 
ES:(E)DI register. These must be loaded correctly before the store string instruction is executed.

The no-operands form provides “short forms” of the byte, word, doubleword, and quadword versions of the STOS 
instructions. Here also ES:(E)DI is assumed to be the destination operand and AL, AX, or EAX is assumed to be the 
source operand. The size of the destination and source operands is selected by the mnemonic: STOSB (byte read 
from register AL), STOSW (word from AX), STOSD (doubleword from EAX).

After the byte, word, or doubleword is transferred from the register to the memory location, the (E)DI register is 
incremented or decremented according to the setting of the DF flag in the EFLAGS register. If the DF flag is 0, the 
register is incremented; if the DF flag is 1, the register is decremented (the register is incremented or decremented 
by 1 for byte operations, by 2 for word operations, by 4 for doubleword operations).

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

AA STOS m8 NA Valid Valid For legacy mode, store AL at address ES:(E)DI; 
For 64-bit mode store AL at address RDI or 
EDI.

AB STOS m16 NA Valid Valid For legacy mode, store AX at address ES:(E)DI; 
For 64-bit mode store AX at address RDI or 
EDI.

AB STOS m32 NA Valid Valid For legacy mode, store EAX at address 
ES:(E)DI; For 64-bit mode store EAX at address 
RDI or EDI.

REX.W + AB STOS m64 NA Valid N.E. Store RAX at address RDI or EDI.

AA STOSB NA Valid Valid For legacy mode, store AL at address ES:(E)DI; 
For 64-bit mode store AL at address RDI or 
EDI.

AB STOSW NA Valid Valid For legacy mode, store AX at address ES:(E)DI; 
For 64-bit mode store AX at address RDI or 
EDI.

AB STOSD NA Valid Valid For legacy mode, store EAX at address 
ES:(E)DI; For 64-bit mode store EAX at address 
RDI or EDI.

REX.W + AB STOSQ NA Valid N.E. Store RAX at address RDI or EDI.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NA NA NA NA NA
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NOTE

To improve performance, more recent processors support modifications to the processor’s 
operation during the string store operations initiated with STOS and STOSB. See Section 7.3.9.3 in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 for additional 
information on fast-string operation.

In 64-bit mode, the default address size is 64 bits, 32-bit address size is supported using the prefix 67H. Using a 
REX prefix in the form of REX.W promotes operation on doubleword operand to 64 bits. The promoted no-operand 
mnemonic is STOSQ. STOSQ (and its explicit operands variant) store a quadword from the RAX register into the 
destination addressed by RDI or EDI. See the summary chart at the beginning of this section for encoding data and 
limits.

The STOS, STOSB, STOSW, STOSD, STOSQ instructions can be preceded by the REP prefix for block loads of ECX 
bytes, words, or doublewords. More often, however, these instructions are used within a LOOP construct because 
data needs to be moved into the AL, AX, or EAX register before it can be stored. See “REP/REPE/REPZ 
/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for a description of the REP prefix.

Operation

Non-64-bit Mode:

IF (Byte store)

THEN

DEST ← AL;

THEN IF DF = 0
THEN (E)DI ← (E)DI + 1; 

ELSE (E)DI ← (E)DI – 1; 

FI;

ELSE IF (Word store)

THEN

DEST ← AX;

THEN IF DF = 0

THEN (E)DI ← (E)DI + 2; 

ELSE (E)DI ← (E)DI – 2; 

FI;

FI;

ELSE IF (Doubleword store)

THEN

DEST ← EAX;

THEN IF DF = 0

THEN (E)DI ← (E)DI + 4; 

ELSE (E)DI ← (E)DI – 4; 

FI;

FI;

FI;

64-bit Mode:

IF (Byte store)

THEN

DEST ← AL;

THEN IF DF = 0
THEN (R|E)DI ← (R|E)DI + 1; 

ELSE (R|E)DI ← (R|E)DI – 1; 

FI;

ELSE IF (Word store)
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THEN

DEST ← AX;

THEN IF DF = 0

THEN (R|E)DI ← (R|E)DI + 2; 

ELSE (R|E)DI ← (R|E)DI – 2; 

FI;

FI;

ELSE IF (Doubleword store)

THEN

DEST ← EAX;

THEN IF DF = 0

THEN (R|E)DI ← (R|E)DI + 4; 

ELSE (R|E)DI ← (R|E)DI – 4; 

FI;

FI;

ELSE IF (Quadword store using REX.W )

THEN

DEST ← RAX;

THEN IF DF = 0

THEN (R|E)DI ← (R|E)DI + 8; 

ELSE (R|E)DI ← (R|E)DI – 8; 

FI;

FI;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the limit of the ES segment.
If the ES register contains a NULL segment selector.

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the ES segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the ES segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.
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64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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STR—Store Task Register

Instruction Operand Encoding

Description

Stores the segment selector from the task register (TR) in the destination operand. The destination operand can be 
a general-purpose register or a memory location. The segment selector stored with this instruction points to the 
task state segment (TSS) for the currently running task.

When the destination operand is a 32-bit register, the 16-bit segment selector is copied into the lower 16 bits of the 
register and the upper 16 bits of the register are cleared. When the destination operand is a memory location, the 
segment selector is written to memory as a 16-bit quantity, regardless of operand size.

In 64-bit mode, operation is the same. The size of the memory operand is fixed at 16 bits. In register stores, the 2-
byte TR is zero extended if stored to a 64-bit register.

The STR instruction is useful only in operating-system software. It can only be executed in protected mode.

Operation

DEST ← TR(SegmentSelector);

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination is a memory operand that is located in a non-writable segment or if the 
effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD The STR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The STR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 00 /1 STR r/m16 M Valid Valid Stores segment selector from TR in r/m16.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA
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64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
#SS(U) If the stack address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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SUB—Subtract

Instruction Operand Encoding

Description

Subtracts the second operand (source operand) from the first operand (destination operand) and stores the result 
in the destination operand. The destination operand can be a register or a memory location; the source operand 
can be an immediate, register, or memory location. (However, two memory operands cannot be used in one 
instruction.) When an immediate value is used as an operand, it is sign-extended to the length of the destination 
operand format.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

2C ib SUB AL, imm8 I Valid Valid Subtract imm8 from AL.

2D iw SUB AX, imm16 I Valid Valid Subtract imm16 from AX.

2D id SUB EAX, imm32 I Valid Valid Subtract imm32 from EAX.

REX.W + 2D id SUB RAX, imm32 I Valid N.E. Subtract imm32 sign-extended to 64-bits 
from RAX.

80 /5 ib SUB r/m8, imm8 MI Valid Valid Subtract imm8 from r/m8.

REX + 80 /5 ib SUB r/m8*, imm8 MI Valid N.E. Subtract imm8 from r/m8.

81 /5 iw SUB r/m16, imm16 MI Valid Valid Subtract imm16 from r/m16.

81 /5 id SUB r/m32, imm32 MI Valid Valid Subtract imm32 from r/m32.

REX.W + 81 /5 id SUB r/m64, imm32 MI Valid N.E. Subtract imm32 sign-extended to 64-bits 
from r/m64.

83 /5 ib SUB r/m16, imm8 MI Valid Valid Subtract sign-extended imm8 from r/m16.

83 /5 ib SUB r/m32, imm8 MI Valid Valid Subtract sign-extended imm8 from r/m32.

REX.W + 83 /5 ib SUB r/m64, imm8 MI Valid N.E. Subtract sign-extended imm8 from r/m64.

28 /r SUB r/m8, r8 MR Valid Valid Subtract r8 from r/m8.

REX + 28 /r SUB r/m8*, r8* MR Valid N.E. Subtract r8 from r/m8.

29 /r SUB r/m16, r16 MR Valid Valid Subtract r16 from r/m16.

29 /r SUB r/m32, r32 MR Valid Valid Subtract r32 from r/m32.

REX.W + 29 /r SUB r/m64, r64 MR Valid N.E. Subtract r64 from r/m64.

2A /r SUB r8, r/m8 RM Valid Valid Subtract r/m8 from r8.

REX + 2A /r SUB r8*, r/m8* RM Valid N.E. Subtract r/m8 from r8.

2B /r SUB r16, r/m16 RM Valid Valid Subtract r/m16 from r16.

2B /r SUB r32, r/m32 RM Valid Valid Subtract r/m32 from r32.

REX.W + 2B /r SUB r64, r/m64 RM Valid N.E. Subtract r/m64 from r64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/26/32 NA NA

MI ModRM:r/m (r, w) imm8/26/32 NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
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The SUB instruction performs integer subtraction. It evaluates the result for both signed and unsigned integer 
operands and sets the OF and CF flags to indicate an overflow in the signed or unsigned result, respectively. The SF 
flag indicates the sign of the signed result.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

Operation

DEST ← (DEST – SRC);

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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SUBPD—Subtract Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD subtract of the two packed double-precision floating-point values in the source operand (second 
operand) from the two packed double-precision floating-point values in the destination operand (first operand), 
and stores the packed double-precision floating-point results in the destination operand. The source operand can 
be an XMM register or a 128-bit memory location. The destination operand is an XMM register. See Figure 11-3 in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD 
double-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: T second source can be an XMM register or an 128-bit memory location. The destina-
tion is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM 
register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

SUBPD (128-bit Legacy SSE version)

DEST[63:0] Å DEST[63:0] - SRC[63:0]

DEST[127:64] Å DEST[127:64] - SRC[127:64]

DEST[VLMAX-1:128] (Unmodified)

VSUBPD (VEX.128 encoded version)

DEST[63:0] Å SRC1[63:0] - SRC2[63:0]

DEST[127:64] Å SRC1[127:64] - SRC2[127:64]

DEST[VLMAX-1:128] Å 0

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 5C /r

SUBPD xmm1, xmm2/m128

RM V/V SSE2 Subtract packed double-precision floating-
point values in xmm2/m128 from xmm1.

VEX.NDS.128.66.0F.WIG 5C /r

VSUBPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Subtract packed double-precision floating-
point values in xmm3/mem from xmm2 and 
stores result in xmm1.

VEX.NDS.256.66.0F.WIG 5C /r

VSUBPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Subtract packed double-precision floating-
point values in ymm3/mem from ymm2 and 
stores result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VSUBPD (VEX.256 encoded version)

DEST[63:0] Å SRC1[63:0] - SRC2[63:0]

DEST[127:64] Å SRC1[127:64] - SRC2[127:64]

DEST[191:128] Å SRC1[191:128] - SRC2[191:128]

DEST[255:192] Å SRC1[255:192] - SRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

SUBPD: __m128d _mm_sub_pd (m128d a, m128d b)

VSUBPD: __m256d _mm256_sub_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 2.
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SUBPS—Subtract Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD subtract of the four packed single-precision floating-point values in the source operand (second 
operand) from the four packed single-precision floating-point values in the destination operand (first operand), and 
stores the packed single-precision floating-point results in the destination operand. The source operand can be an 
XMM register or a 128-bit memory location. The destination operand is an XMM register. See Figure 10-5 in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD double-
precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

SUBPS (128-bit Legacy SSE version)

DEST[31:0] Å SRC1[31:0] - SRC2[31:0]

DEST[63:32] Å SRC1[63:32] - SRC2[63:32]

DEST[95:64] Å SRC1[95:64] - SRC2[95:64]

DEST[127:96] Å SRC1[127:96] - SRC2[127:96]

DEST[VLMAX-1:128] (Unmodified)

VSUBPS (VEX.128 encoded version)

DEST[31:0] Å SRC1[31:0] - SRC2[31:0]

DEST[63:32] Å SRC1[63:32] - SRC2[63:32]

DEST[95:64] Å SRC1[95:64] - SRC2[95:64]

DEST[127:96] Å SRC1[127:96] - SRC2[127:96]

DEST[VLMAX-1:128] Å 0

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 5C /r

SUBPS xmm1 xmm2/m128

RM V/V SSE Subtract packed single-precision floating-point 
values in xmm2/mem from xmm1.

VEX.NDS.128.0F.WIG 5C /r

VSUBPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Subtract packed single-precision floating-point 
values in xmm3/mem from xmm2 and stores 
result in xmm1.

VEX.NDS.256.0F.WIG 5C /r

VSUBPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Subtract packed single-precision floating-point 
values in ymm3/mem from ymm2 and stores 
result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VSUBPS (VEX.256 encoded version)

DEST[31:0] Å SRC1[31:0] - SRC2[31:0]

DEST[63:32] Å SRC1[63:32] - SRC2[63:32]

DEST[95:64] Å SRC1[95:64] - SRC2[95:64]

DEST[127:96] Å SRC1[127:96] - SRC2[127:96]

DEST[159:128] Å SRC1[159:128] - SRC2[159:128]

DEST[191:160]Å SRC1[191:160] - SRC2[191:160]

DEST[223:192] Å SRC1[223:192] - SRC2[223:192]

DEST[255:224] Å SRC1[255:224] - SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

SUBPS: __m128 _mm_sub_ps(__m128 a, __m128 b)

VSUBPS: __m256 _mm256_sub_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 2.
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SUBSD—Subtract Scalar Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Subtracts the low double-precision floating-point value in the source operand (second operand) from the low 
double-precision floating-point value in the destination operand (first operand), and stores the double-precision 
floating-point result in the destination operand. The source operand can be an XMM register or a 64-bit memory 
location. The destination operand is an XMM register. The high quadword of the destination operand remains 
unchanged. See Figure 11-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for 
an illustration of a scalar double-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (VLMAX-1:64) of the 
corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:64) of the XMM register destination are copied from corresponding bits in the 
first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

SUBSD (128-bit Legacy SSE version)

DEST[63:0] Å DEST[63:0] - SRC[63:0]

DEST[VLMAX-1:64] (Unmodified)

VSUBSD (VEX.128 encoded version)

DEST[63:0] Å SRC1[63:0] - SRC2[63:0]

DEST[127:64] Å SRC1[127:64]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

SUBSD: __m128d _mm_sub_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 3.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F2 0F 5C /r

SUBSD xmm1, xmm2/m64

RM V/V SSE2 Subtracts the low double-precision floating-
point values in xmm2/mem64 from xmm1.

VEX.NDS.LIG.F2.0F.WIG 5C /r
VSUBSD xmm1,xmm2, xmm3/m64

RVM V/V AVX Subtract the low double-precision floating-
point value in xmm3/mem from xmm2 and 
store the result in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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SUBSS—Subtract Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Subtracts the low single-precision floating-point value in the source operand (second operand) from the low single-
precision floating-point value in the destination operand (first operand), and stores the single-precision floating-
point result in the destination operand. The source operand can be an XMM register or a 32-bit memory location. 
The destination operand is an XMM register. The three high-order doublewords of the destination operand remain 
unchanged. See Figure 10-6 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for 
an illustration of a scalar single-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The destination and first source operand are the same. Bits (VLMAX-1:32) of the 
corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (127:32) of the XMM register destination are copied from corresponding bits in the 
first source operand. Bits (VLMAX-1:128) of the destination YMM register are zeroed.

Operation

SUBSS (128-bit Legacy SSE version)

DEST[31:0] Å DEST[31:0] - SRC[31:0]

DEST[VLMAX-1:32] (Unmodified)

VSUBSS (VEX.128 encoded version)

DEST[31:0] Å SRC1[31:0] - SRC2[31:0]

DEST[127:32] Å SRC1[127:32]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

SUBSS: __m128 _mm_sub_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Exceptions Type 3.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F3 0F 5C /r

SUBSS xmm1, xmm2/m32

RM V/V SSE Subtract the lower single-precision floating-
point values in xmm2/m32 from xmm1.

VEX.NDS.LIG.F3.0F.WIG 5C /r

VSUBSS xmm1,xmm2, xmm3/m32

RVM V/V AVX Subtract the low single-precision floating-
point value in xmm3/mem from xmm2 and 
store the result in xmm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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SWAPGS—Swap GS Base Register

Instruction Operand Encoding

Description

SWAPGS exchanges the current GS base register value with the value contained in MSR address C0000102H 
(IA32_KERNEL_GS_BASE). The SWAPGS instruction is a privileged instruction intended for use by system soft-
ware. 

When using SYSCALL to implement system calls, there is no kernel stack at the OS entry point. Neither is there a 
straightforward method to obtain a pointer to kernel structures from which the kernel stack pointer could be read. 
Thus, the kernel cannot save general purpose registers or reference memory. 

By design, SWAPGS does not require any general purpose registers or memory operands. No registers need to be 
saved before using the instruction. SWAPGS exchanges the CPL 0 data pointer from the IA32_KERNEL_GS_BASE 
MSR with the GS base register. The kernel can then use the GS prefix on normal memory references to access 
kernel data structures. Similarly, when the OS kernel is entered using an interrupt or exception (where the kernel 
stack is already set up), SWAPGS can be used to quickly get a pointer to the kernel data structures.

The IA32_KERNEL_GS_BASE MSR itself is only accessible using RDMSR/WRMSR instructions. Those instructions 
are only accessible at privilege level 0. The WRMSR instruction ensures that the IA32_KERNEL_GS_BASE MSR 
contains a canonical address.

Operation

IF CS.L ≠ 1 (* Not in 64-Bit Mode *)

THEN

#UD; FI;

IF CPL ≠ 0

THEN #GP(0); FI;

tmp ← GS.base;

GS.base ← IA32_KERNEL_GS_BASE;

IA32_KERNEL_GS_BASE ← tmp;

Flags Affected

None

Protected Mode Exceptions

#UD If Mode ≠ 64-Bit.

Real-Address Mode Exceptions

#UD If Mode ≠ 64-Bit.

Virtual-8086 Mode Exceptions

#UD If Mode ≠ 64-Bit.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 F8 SWAPGS NP Valid Invalid Exchanges the current GS base register value 
with the value contained in MSR address 
C0000102H.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Compatibility Mode Exceptions

#UD If Mode ≠ 64-Bit.

64-Bit Mode Exceptions

#GP(0) If CPL ≠ 0.
If the LOCK prefix is used.
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SYSCALL—Fast System Call

Instruction Operand Encoding

Description

SYSCALL invokes an OS system-call handler at privilege level 0. It does so by loading RIP from the IA32_LSTAR 
MSR (after saving the address of the instruction following SYSCALL into RCX). (The WRMSR instruction ensures 
that the IA32_LSTAR MSR always contain a canonical address.)

SYSCALL also saves RFLAGS into R11 and then masks RFLAGS using the IA32_FMASK MSR (MSR address 
C0000084H); specifically, the processor clears in RFLAGS every bit corresponding to a bit that is set in the 
IA32_FMASK MSR.

SYSCALL loads the CS and SS selectors with values derived from bits 47:32 of the IA32_STAR MSR. However, the 
CS and SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those selectors. 
Instead, the descriptor caches are loaded with fixed values. See the Operation section for details. It is the respon-
sibility of OS software to ensure that the descriptors (in GDT or LDT) referenced by those selector values corre-
spond to the fixed values loaded into the descriptor caches; the SYSCALL instruction does not ensure this 
correspondence.

The SYSCALL instruction does not save the stack pointer (RSP). If the OS system-call handler will change the stack 
pointer, it is the responsibility of software to save the previous value of the stack pointer. This might be done prior 
to executing SYSCALL, with software restoring the stack pointer with the instruction following SYSCALL (which will 
be executed after SYSRET). Alternatively, the OS system-call handler may save the stack pointer and restore it 
before executing SYSRET.

Operation

IF (CS.L ≠ 1 ) or (IA32_EFER.LMA ≠ 1) or (IA32_EFER.SCE ≠ 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD;

FI;

RCX ← RIP; (* Will contain address of next instruction *)

RIP ← IA32_LSTAR;

R11 ← RFLAGS;

RFLAGS ← RFLAGS AND NOT(IA32_FMASK);

CS.Selector ← IA32_STAR[47:32] AND FFFCH (* Operating system provides CS; RPL forced to 0 *)

(* Set rest of CS to a fixed value *)

CS.Base ← 0; (* Flat segment *)

CS.Limit ← FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)

CS.Type ← 11; (* Execute/read code, accessed *)

CS.S ← 1;

CS.DPL ← 0;

CS.P ← 1;

CS.L ← 1; (* Entry is to 64-bit mode *)

CS.D ← 0; (* Required if CS.L = 1 *)

CS.G ← 1; (* 4-KByte granularity *)

CPL ← 0;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 05 SYSCALL NP Valid Invalid Fast call to privilege level 0 system 
procedures.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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SS.Selector ← IA32_STAR[47:32] + 8; (* SS just above CS *)

(* Set rest of SS to a fixed value *)

SS.Base ← 0; (* Flat segment *)

SS.Limit ← FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)

SS.Type ← 3; (* Read/write data, accessed *)

SS.S ← 1;

SS.DPL ← 0;

SS.P ← 1;

SS.B ← 1; (* 32-bit stack segment *)

SS.G ← 1; (* 4-KByte granularity *)

Flags Affected

All.

Protected Mode Exceptions

#UD The SYSCALL instruction is not recognized in protected mode.

Real-Address Mode Exceptions

#UD The SYSCALL instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The SYSCALL instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The SYSCALL instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions

#UD If IA32_EFER.SCE = 0.
If the LOCK prefix is used.
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SYSENTER—Fast System Call

Instruction Operand Encoding

Description

Executes a fast call to a level 0 system procedure or routine. SYSENTER is a companion instruction to SYSEXIT. The 
instruction is optimized to provide the maximum performance for system calls from user code running at privilege 
level 3 to operating system or executive procedures running at privilege level 0.

When executed in IA-32e mode, the SYSENTER instruction transitions the logical processor to 64-bit mode; other-
wise, the logical processor remains in protected mode.

Prior to executing the SYSENTER instruction, software must specify the privilege level 0 code segment and code 
entry point, and the privilege level 0 stack segment and stack pointer by writing values to the following MSRs:
• IA32_SYSENTER_CS (MSR address 174H) — The lower 16 bits of this MSR are the segment selector for the 

privilege level 0 code segment. This value is also used to determine the segment selector of the privilege level 
0 stack segment (see the Operation section). This value cannot indicate a null selector.

• IA32_SYSENTER_EIP (MSR address 175H) — The value of this MSR is loaded into RIP (thus, this value 
references the first instruction of the selected operating procedure or routine). In protected mode, only 
bits 31:0 are loaded.

• IA32_SYSENTER_ESP (MSR address 176H) — The value of this MSR is loaded into RSP (thus, this value 
contains the stack pointer for the privilege level 0 stack). This value cannot represent a non-canonical address. 
In protected mode, only bits 31:0 are loaded.

These MSRs can be read from and written to using RDMSR/WRMSR. The WRMSR instruction ensures that the 
IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs always contain canonical addresses.

While SYSENTER loads the CS and SS selectors with values derived from the IA32_SYSENTER_CS MSR, the CS and 
SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those selectors. Instead, 
the descriptor caches are loaded with fixed values. See the Operation section for details. It is the responsibility of 
OS software to ensure that the descriptors (in GDT or LDT) referenced by those selector values correspond to the 
fixed values loaded into the descriptor caches; the SYSENTER instruction does not ensure this correspondence.

The SYSENTER instruction can be invoked from all operating modes except real-address mode. 

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not constitute a call/return pair. 
When executing a SYSENTER instruction, the processor does not save state information for the user code (e.g., the 
instruction pointer), and neither the SYSENTER nor the SYSEXIT instruction supports passing parameters on the 
stack.

To use the SYSENTER and SYSEXIT instructions as companion instructions for transitions between privilege level 3 
code and privilege level 0 operating system procedures, the following conventions must be followed:
• The segment descriptors for the privilege level 0 code and stack segments and for the privilege level 3 code and 

stack segments must be contiguous in a descriptor table. This convention allows the processor to compute the 
segment selectors from the value entered in the SYSENTER_CS_MSR MSR.

• The fast system call “stub” routines executed by user code (typically in shared libraries or DLLs) must save the 
required return IP and processor state information if a return to the calling procedure is required. Likewise, the 
operating system or executive procedures called with SYSENTER instructions must have access to and use this 
saved return and state information when returning to the user code.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 34 SYSENTER NP Valid Valid Fast call to privilege level 0 system 
procedures.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the Pentium II processor. 
The availability of these instructions on a processor is indicated with the SYSENTER/SYSEXIT present (SEP) feature 
flag returned to the EDX register by the CPUID instruction. An operating system that qualifies the SEP flag must 
also qualify the processor family and model to ensure that the SYSENTER/SYSEXIT instructions are actually 
present. For example:

IF CPUID SEP bit is set

THEN IF (Family = 6) and (Model < 3) and (Stepping < 3) 

THEN

SYSENTER/SYSEXIT_Not_Supported; FI;

ELSE 

SYSENTER/SYSEXIT_Supported; FI;

FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the processor returns a the SEP 
flag as set, but does not support the SYSENTER/SYSEXIT instructions.

Operation

IF CR0.PE = 0 OR IA32_SYSENTER_CS[15:2] = 0 THEN #GP(0); FI;

RFLAGS.VM ← 0; (* Ensures protected mode execution *)

RFLAGS.IF ← 0; (* Mask interrupts *)

IF in IA-32e mode

THEN

RSP ← IA32_SYSENTER_ESP;

RIP ← IA32_SYSENTER_EIP;

ELSE

ESP ← IA32_SYSENTER_ESP[31:0];

EIP ← IA32_SYSENTER_EIP[31:0];

FI;

CS.Selector ← IA32_SYSENTER_CS[15:0] AND FFFCH;

(* Operating system provides CS; RPL forced to 0 *)

(* Set rest of CS to a fixed value *)

CS.Base ← 0; (* Flat segment *)

CS.Limit ← FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)

CS.Type ← 11; (* Execute/read code, accessed *)

CS.S ← 1;

CS.DPL ← 0;

CS.P ← 1;

IF in IA-32e mode

THEN

CS.L ← 1; (* Entry is to 64-bit mode *)

CS.D ← 0; (* Required if CS.L = 1 *)

ELSE

CS.L ← 0;

CS.D ← 1; (* 32-bit code segment*)

FI;

CS.G ← 1; (* 4-KByte granularity *)

CPL ← 0;

SS.Selector ← CS.Selector + 8; (* SS just above CS *)

(* Set rest of SS to a fixed value *)

SS.Base ← 0; (* Flat segment *)

SS.Limit ← FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)

SS.Type ← 3; (* Read/write data, accessed *)
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SS.S ← 1;

SS.DPL ← 0;

SS.P ← 1;

SS.B ← 1; (* 32-bit stack segment*)

SS.G ← 1; (* 4-KByte granularity *)

Flags Affected

VM, IF (see Operation above)

Protected Mode Exceptions

#GP(0) If IA32_SYSENTER_CS[15:2] = 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP The SYSENTER instruction is not recognized in real-address mode.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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SYSEXIT—Fast Return from Fast System Call

Instruction Operand Encoding

Description

Executes a fast return to privilege level 3 user code. SYSEXIT is a companion instruction to the SYSENTER instruc-
tion. The instruction is optimized to provide the maximum performance for returns from system procedures 
executing at protections levels 0 to user procedures executing at protection level 3. It must be executed from code 
executing at privilege level 0. 

With a 64-bit operand size, SYSEXIT remains in 64-bit mode; otherwise, it either enters compatibility mode (if the 
logical processor is in IA-32e mode) or remains in protected mode (if it is not).

Prior to executing SYSEXIT, software must specify the privilege level 3 code segment and code entry point, and the 
privilege level 3 stack segment and stack pointer by writing values into the following MSR and general-purpose 
registers:
• IA32_SYSENTER_CS (MSR address 174H) — Contains a 32-bit value that is used to determine the segment 

selectors for the privilege level 3 code and stack segments (see the Operation section)
• RDX — The canonical address in this register is loaded into RIP (thus, this value references the first instruction 

to be executed in the user code). If the return is not to 64-bit mode, only bits 31:0 are loaded.
• ECX — The canonical address in this register is loaded into RSP (thus, this value contains the stack pointer for 

the privilege level 3 stack). If the return is not to 64-bit mode, only bits 31:0 are loaded.

The IA32_SYSENTER_CS MSR can be read from and written to using RDMSR and WRMSR.

While SYSEXIT loads the CS and SS selectors with values derived from the IA32_SYSENTER_CS MSR, the CS and 
SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those selectors. Instead, 
the descriptor caches are loaded with fixed values. See the Operation section for details. It is the responsibility of 
OS software to ensure that the descriptors (in GDT or LDT) referenced by those selector values correspond to the 
fixed values loaded into the descriptor caches; the SYSEXIT instruction does not ensure this correspondence.

The SYSEXIT instruction can be invoked from all operating modes except real-address mode and virtual-8086 
mode. 

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the Pentium II processor. 
The availability of these instructions on a processor is indicated with the SYSENTER/SYSEXIT present (SEP) feature 
flag returned to the EDX register by the CPUID instruction. An operating system that qualifies the SEP flag must 
also qualify the processor family and model to ensure that the SYSENTER/SYSEXIT instructions are actually 
present. For example:

IF CPUID SEP bit is set

THEN IF (Family = 6) and (Model < 3) and (Stepping < 3) 

THEN

SYSENTER/SYSEXIT_Not_Supported; FI;

ELSE 

SYSENTER/SYSEXIT_Supported; FI;

FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the processor returns a the SEP 
flag as set, but does not support the SYSENTER/SYSEXIT instructions.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 35 SYSEXIT NP Valid Valid Fast return to privilege level 3 user code.

REX.W + 0F 35 SYSEXIT NP Valid Valid Fast return to 64-bit mode privilege level 3 
user code.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Operation

IF IA32_SYSENTER_CS[15:2] = 0 OR CR0.PE = 0 OR CPL ≠ 0 THEN #GP(0); FI;

IF operand size is 64-bit

THEN (* Return to 64-bit mode *)

RSP ← RCX;

RIP ← RDX;

ELSE (* Return to protected mode or compatibility mode *)

RSP ← ECX;

RIP ← EDX;

FI;

IF operand size is 64-bit (* Operating system provides CS; RPL forced to 3 *)

THEN CS.Selector ← IA32_SYSENTER_CS[15:0] + 32;

ELSE CS.Selector ← IA32_SYSENTER_CS[15:0] + 16;

FI;

CS.Selector ← CS.Selector OR 3; (* RPL forced to 3 *)

(* Set rest of CS to a fixed value *)

CS.Base ← 0; (* Flat segment *)

CS.Limit ← FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)

CS.Type ← 11; (* Execute/read code, accessed *)

CS.S ← 1;

CS.DPL ← 3;

CS.P ← 1;

IF operand size is 64-bit

THEN (* return to 64-bit mode *)

CS.L ← 1; (* 64-bit code segment *)

CS.D ← 0; (* Required if CS.L = 1 *)

ELSE (* return to protected mode or compatibility mode *)

CS.L ← 0;

CS.D ← 1; (* 32-bit code segment*)

FI;

CS.G ← 1; (* 4-KByte granularity *)

CPL ← 3;

SS.Selector ← CS.Selector + 8; (* SS just above CS *)

(* Set rest of SS to a fixed value *)

SS.Base ← 0; (* Flat segment *)

SS.Limit ← FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)

SS.Type ← 3; (* Read/write data, accessed *)

SS.S ← 1;

SS.DPL ← 3;

SS.P ← 1;

SS.B ← 1; (* 32-bit stack segment*)

SS.G ← 1; (* 4-KByte granularity *)

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If IA32_SYSENTER_CS[15:2] = 0.
If CPL ≠ 0.

#UD If the LOCK prefix is used.



SYSEXIT—Fast Return from Fast System Call

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-403

Real-Address Mode Exceptions

#GP The SYSEXIT instruction is not recognized in real-address mode.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) The SYSEXIT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If IA32_SYSENTER_CS = 0.
If CPL ≠ 0.
If RCX or RDX contains a non-canonical address.

#UD If the LOCK prefix is used.



SYSRET—Return From Fast System Call

INSTRUCTION SET REFERENCE, N-Z

4-404 Vol. 2B

SYSRET—Return From Fast System Call

Instruction Operand Encoding

Description

SYSRET is a companion instruction to the SYSCALL instruction. It returns from an OS system-call handler to user 
code at privilege level 3. It does so by loading RIP from RCX and loading RFLAGS from R11.1 With a 64-bit operand 
size, SYSRET remains in 64-bit mode; otherwise, it enters compatibility mode and only the low 32 bits of the regis-
ters are loaded.

SYSRET loads the CS and SS selectors with values derived from bits 63:48 of the IA32_STAR MSR. However, the 
CS and SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those selectors. 
Instead, the descriptor caches are loaded with fixed values. See the Operation section for details. It is the respon-
sibility of OS software to ensure that the descriptors (in GDT or LDT) referenced by those selector values corre-
spond to the fixed values loaded into the descriptor caches; the SYSRET instruction does not ensure this 
correspondence.

The SYSRET instruction does not modify the stack pointer (ESP or RSP). For that reason, it is necessary for software 
to switch to the user stack. The OS may load the user stack pointer (if it was saved after SYSCALL) before executing 
SYSRET; alternatively, user code may load the stack pointer (if it was saved before SYSCALL) after receiving control 
from SYSRET.

If the OS loads the stack pointer before executing SYSRET, it must ensure that the handler of any interrupt or 
exception delivered between restoring the stack pointer and successful execution of SYSRET is not invoked with the 
user stack. It can do so using approaches such as the following:
• External interrupts. The OS can prevent an external interrupt from being delivered by clearing EFLAGS.IF 

before loading the user stack pointer.
• Nonmaskable interrupts (NMIs). The OS can ensure that the NMI handler is invoked with the correct stack by 

using the interrupt stack table (IST) mechanism for gate 2 (NMI) in the IDT (see Section 6.14.5, “Interrupt 
Stack Table,” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

• General-protection exceptions (#GP). The SYSRET instruction generates #GP(0) if the value of RCX is not 
canonical. The OS can address this possibility using one or more of the following approaches:

— Confirming that the value of RCX is canonical before executing SYSRET.

— Using paging to ensure that the SYSCALL instruction will never save a non-canonical value into RCX.

— Using the IST mechanism for gate 13 (#GP) in the IDT.

Operation

IF (CS.L ≠ 1 ) or (IA32_EFER.LMA ≠ 1) or (IA32_EFER.SCE ≠ 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;

IF (CPL ≠ 0) OR (RCX is not canonical) THEN #GP(0); FI;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 07 SYSRET NP Valid Invalid Return to compatibility mode from fast 
system call 

REX.W + 0F 07 SYSRET NP Valid Invalid Return to 64-bit mode from fast system call 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

1. Regardless of the value of R11, the RF and VM flags are always 0 in RFLAGS after execution of SYSRET. In addition, all reserved bits 
in RFLAGS retain the fixed values.
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IF (operand size is 64-bit) 

THEN (* Return to 64-Bit Mode *)

RIP ← RCX;

ELSE (* Return to Compatibility Mode *)

RIP ← ECX;

FI;

RFLAGS ← (R11 & 3C7FD7H) | 2; (* Clear RF, VM, reserved bits; set bit 2 *)

IF (operand size is 64-bit) 

THEN CS.Selector ← IA32_STAR[63:48]+16;

ELSE CS.Selector ← IA32_STAR[63:48];

FI;

CS.Selector ← CS.Selector OR 3; (* RPL forced to 3 *)

(* Set rest of CS to a fixed value *)

CS.Base ← 0; (* Flat segment *)

CS.Limit ← FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)

CS.Type ← 11; (* Execute/read code, accessed *)

CS.S ← 1;

CS.DPL ← 3;

CS.P ← 1;

IF (operand size is 64-bit) 

THEN (* Return to 64-Bit Mode *)

CS.L ← 1; (* 64-bit code segment *)

CS.D ← 0; (* Required if CS.L = 1 *)

ELSE (* Return to Compatibility Mode *)

CS.L ← 0; (* Compatibility mode *)

CS.D ← 1; (* 32-bit code segment *)

FI;

CS.G ← 1; (* 4-KByte granularity *)

CPL ← 0;

SS.Selector ← (IA32_STAR[63:48]+8) OR 3; (* RPL forced to 3 *)

(* Set rest of SS to a fixed value *)

SS.Base ← 0; (* Flat segment *)

SS.Limit ← FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)

SS.Type ← 3; (* Read/write data, accessed *)

SS.S ← 1;

SS.DPL ← 3;

SS.P ← 1;

SS.B ← 1; (* 32-bit stack segment*)

SS.G ← 1; (* 4-KByte granularity *)

Flags Affected

All.

Protected Mode Exceptions

#UD The SYSRET instruction is not recognized in protected mode.

Real-Address Mode Exceptions

#UD The SYSRET instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The SYSRET instruction is not recognized in virtual-8086 mode.
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Compatibility Mode Exceptions

#UD The SYSRET instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions

#UD If IA32_EFER.SCE = 0.
If the LOCK prefix is used.

#GP(0) If CPL ≠ 0.
If RCX contains a non-canonical address.
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TEST—Logical Compare

Instruction Operand Encoding

Description

Computes the bit-wise logical AND of first operand (source 1 operand) and the second operand (source 2 operand) 
and sets the SF, ZF, and PF status flags according to the result. The result is then discarded.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Using a 
REX prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this 
section for encoding data and limits.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

A8 ib TEST AL, imm8 I Valid Valid AND imm8 with AL; set SF, ZF, PF according to 
result.

A9 iw TEST AX, imm16 I Valid Valid AND imm16 with AX; set SF, ZF, PF according 
to result.

A9 id TEST EAX, imm32 I Valid Valid AND imm32 with EAX; set SF, ZF, PF according 
to result.

REX.W + A9 id TEST RAX, imm32 I Valid N.E. AND imm32 sign-extended to 64-bits with 
RAX; set SF, ZF, PF according to result.

F6 /0 ib TEST r/m8, imm8 MI Valid Valid AND imm8 with r/m8; set SF, ZF, PF according 
to result.

REX + F6 /0 ib TEST r/m8*, imm8 MI Valid N.E. AND imm8 with r/m8; set SF, ZF, PF according 
to result.

F7 /0 iw TEST r/m16, imm16 MI Valid Valid AND imm16 with r/m16; set SF, ZF, PF 
according to result.

F7 /0 id TEST r/m32, imm32 MI Valid Valid AND imm32 with r/m32; set SF, ZF, PF 
according to result.

REX.W + F7 /0 id TEST r/m64, imm32 MI Valid N.E. AND imm32 sign-extended to 64-bits with 
r/m64; set SF, ZF, PF according to result.

84 /r TEST r/m8, r8 MR Valid Valid AND r8 with r/m8; set SF, ZF, PF according to 
result.

REX + 84 /r TEST r/m8*, r8* MR Valid N.E. AND r8 with r/m8; set SF, ZF, PF according to 
result.

85 /r TEST r/m16, r16 MR Valid Valid AND r16 with r/m16; set SF, ZF, PF according 
to result.

85 /r TEST r/m32, r32 MR Valid Valid AND r32 with r/m32; set SF, ZF, PF according 
to result.

REX.W + 85 /r TEST r/m64, r64 MR Valid N.E. AND r64 with r/m64; set SF, ZF, PF according 
to result.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 NA NA

MI ModRM:r/m (r) imm8/16/32 NA NA

MR ModRM:r/m (r) ModRM:reg (r) NA NA
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Operation

TEMP ← SRC1 AND SRC2;

SF ← MSB(TEMP);

IF TEMP = 0
THEN ZF ← 1;

ELSE ZF ← 0;

FI:

PF ← BitwiseXNOR(TEMP[0:7]);

CF ← 0;

OF ← 0;

(* AF is undefined *)

Flags Affected

The OF and CF flags are set to 0. The SF, ZF, and PF flags are set according to the result (see the “Operation” section 
above). The state of the AF flag is undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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TZCNT — Count the Number of Trailing Zero Bits

Instruction Operand Encoding

Description 

TZCNT counts the number of trailing least significant zero bits in source operand (second operand) and returns the 
result in destination operand (first operand). TZCNT is an extension of the BSF instruction. The key difference 
between TZCNT and BSF instruction is that TZCNT provides operand size as output when source operand is zero 
while in the case of BSF instruction, if source operand is zero, the content of destination operand are undefined. On 
processors that do not support TZCNT, the instruction byte encoding is executed as BSF.

Operation

temp ← 0

DEST ← 0

DO WHILE ( (temp < OperandSize) and (SRC[ temp] = 0) )

temp ← temp +1

DEST ← DEST+ 1

OD

IF DEST = OperandSize

CF ← 1

ELSE

CF ← 0

FI

IF DEST = 0

ZF ← 1

ELSE

ZF ← 0

FI

Flags Affected

ZF is set to 1 in case of zero output (least significant bit of the source is set), and to 0 otherwise, CF is set to 1 if 
the input was zero and cleared otherwise. OF, SF, PF and AF flags are undefined.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

F3 0F BC /r RM V/V BMI1 Count the number of trailing zero bits in r/m16, return result in r16.

TZCNT r16, r/m16

F3 0F BC /r RM V/V BMI1 Count the number of trailing zero bits in r/m32, return result in r32.

TZCNT r32, r/m32

REX.W + F3 0F BC /r RM V/N.E. BMI1 Count the number of trailing zero bits in r/m64, return result in r64.

TZCNT r64, r/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (w) ModRM:r/m (r) NA NA
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Intel C/C++ Compiler Intrinsic Equivalent

TZCNT: unsigned __int32 _tzcnt_u32(unsigned __int32 src);

TZCNT: unsigned __int64 _tzcnt_u64(unsigned __int64 src);

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
If the DS, ES, FS, or GS register is used to access memory and it contains a null segment 
selector.

#SS(0) For an illegal address in the SS segment.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) For an illegal address in the SS segment.

Virtual 8086 Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address space from 0 to 0FFFFH.
#SS(0) For an illegal address in the SS segment.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF (fault-code) For a page fault.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
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UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values and Set EFLAGS

Instruction Operand Encoding

Description

Performs an unordered compare of the double-precision floating-point values in the low quadwords of source 
operand 1 (first operand) and source operand 2 (second operand), and sets the ZF, PF, and CF flags in the EFLAGS 
register according to the result (unordered, greater than, less than, or equal). The OF, SF and AF flags in the 
EFLAGS register are set to 0. The unordered result is returned if either source operand is a NaN (QNaN or SNaN). 
The sign of zero is ignored for comparisons, so that –0.0 is equal to +0.0.

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a 64 bit memory location.

The UCOMISD instruction differs from the COMISD instruction in that it signals a SIMD floating-point invalid oper-
ation exception (#I) only when a source operand is an SNaN. The COMISD instruction signals an invalid operation 
exception if a source operand is either a QNaN or an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

RESULT ← UnorderedCompare(SRC1[63:0] < > SRC2[63:0]) {

(* Set EFLAGS *) 

CASE (RESULT) OF

UNORDERED: ZF, PF, CF ← 111;

GREATER_THAN: ZF, PF, CF ← 000;

LESS_THAN: ZF, PF, CF ← 001;

EQUAL: ZF, PF, CF ← 100;

ESAC;

OF, AF, SF ← 0;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_ucomieq_sd(__m128d a, __m128d b)

int _mm_ucomilt_sd(__m128d a, __m128d b)

int _mm_ucomile_sd(__m128d a, __m128d b)

int _mm_ucomigt_sd(__m128d a, __m128d b)

int _mm_ucomige_sd(__m128d a, __m128d b)

int _mm_ucomineq_sd(__m128d a, __m128d b)

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 2E /r

UCOMISD xmm1, xmm2/m64

RM V/V SSE2 Compares (unordered) the low double-
precision floating-point values in xmm1 and 
xmm2/m64 and set the EFLAGS accordingly.

VEX.LIG.66.0F.WIG 2E /r

VUCOMISD xmm1, xmm2/m64

RM V/V AVX Compare low double precision floating-point 
values in xmm1 and xmm2/mem64 and set 
the EFLAGS flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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SIMD Floating-Point Exceptions

Invalid (if SNaN operands), Denormal. 

Other Exceptions

See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.
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UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values and Set EFLAGS

Instruction Operand Encoding

Description

Performs an unordered compare of the single-precision floating-point values in the low doublewords of the source 
operand 1 (first operand) and the source operand 2 (second operand), and sets the ZF, PF, and CF flags in the 
EFLAGS register according to the result (unordered, greater than, less than, or equal). The OF, SF and AF flags in 
the EFLAGS register are set to 0. The unordered result is returned if either source operand is a NaN (QNaN or 
SNaN). The sign of zero is ignored for comparisons, so that –0.0 is equal to +0.0.

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a 32 bit memory location.

The UCOMISS instruction differs from the COMISS instruction in that it signals a SIMD floating-point invalid opera-
tion exception (#I) only when a source operand is an SNaN. The COMISS instruction signals an invalid operation 
exception if a source operand is either a QNaN or an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Operation

RESULT ← UnorderedCompare(SRC1[31:0] <> SRC2[31:0]) {

(* Set EFLAGS *) 

CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;

GREATER_THAN: ZF,PF,CF ← 000;

LESS_THAN: ZF,PF,CF ← 001;

EQUAL: ZF,PF,CF ← 100;

ESAC;

OF,AF,SF ← 0;

Intel C/C++ Compiler Intrinsic Equivalent

int _mm_ucomieq_ss(__m128 a, __m128 b)

int _mm_ucomilt_ss(__m128 a, __m128 b)

int _mm_ucomile_ss(__m128 a, __m128 b)

int _mm_ucomigt_ss(__m128 a, __m128 b)

int _mm_ucomige_ss(__m128 a, __m128 b)

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 2E /r

UCOMISS xmm1, xmm2/m32

RM V/V SSE Compare lower single-precision floating-point 
value in xmm1 register with lower single-
precision floating-point value in xmm2/mem 
and set the status flags accordingly.

VEX.LIG.0F.WIG 2E /r

VUCOMISS xmm1, xmm2/m32

RM V/V AVX Compare low single precision floating-point 
values in xmm1 and xmm2/mem32 and set 
the EFLAGS flags accordingly.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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int _mm_ucomineq_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions

Invalid (if SNaN operands), Denormal. 

Other Exceptions

See Exceptions Type 3; additionally
#UD If VEX.vvvv != 1111B.



UD2—Undefined Instruction

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-415

UD2—Undefined Instruction

Instruction Operand Encoding

Description

Generates an invalid opcode exception. This instruction is provided for software testing to explicitly generate an 
invalid opcode exception. The opcode for this instruction is reserved for this purpose.

Other than raising the invalid opcode exception, this instruction has no effect on processor state or memory.

Even though it is the execution of the UD2 instruction that causes the invalid opcode exception, the instruction 
pointer saved by delivery of the exception references the UD2 instruction (and not the following instruction).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

#UD (* Generates invalid opcode exception *);

Flags Affected

None.

Exceptions (All Operating Modes)

#UD Raises an invalid opcode exception in all operating modes.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 0B UD2 NP Valid Valid Raise invalid opcode exception.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs an interleaved unpack of the high double-precision floating-point values from the source operand (second 
operand) and the destination operand (first operand). See Figure 4-23. 

When unpacking from a memory operand, an implementation may fetch only the appropriate 64 bits; however, 
alignment to 16-byte boundary and normal segment checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed. 

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 15 /r

UNPCKHPD xmm1, xmm2/m128

RM V/V SSE2 Unpacks and Interleaves double-precision 
floating-point values from high quadwords of 
xmm1 and xmm2/m128.

VEX.NDS.128.66.0F.WIG 15 /r

VUNPCKHPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Unpacks and Interleaves double precision 
floating-point values from high quadwords of 
xmm2 and xmm3/m128.

VEX.NDS.256.66.0F.WIG 15 /r

VUNPCKHPD ymm1,ymm2, ymm3/m256

RVM V/V AVX Unpacks and Interleaves double precision 
floating-point values from high quadwords of 
ymm2 and ymm3/m256.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Figure 4-23.  UNPCKHPD Instruction High Unpack and Interleave Operation
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Operation

UNPCKHPD (128-bit Legacy SSE version)

DEST[63:0] Å SRC1[127:64]

DEST[127:64] Å SRC2[127:64]

DEST[VLMAX-1:128] (Unmodified)

VUNPCKHPD (VEX.128 encoded version)

DEST[63:0] Å SRC1[127:64]

DEST[127:64] Å SRC2[127:64]

DEST[VLMAX-1:128] Å 0

VUNPCKHPD (VEX.256 encoded version)

DEST[63:0] Å SRC1[127:64]

DEST[127:64] Å SRC2[127:64]

DEST[191:128]ÅSRC1[255:192]

DEST[255:192]ÅSRC2[255:192]

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKHPD: __m128d _mm_unpackhi_pd(__m128d a, __m128d b)

UNPCKHPD: __m256d _mm256_unpackhi_pd(__m256d a, __m256d b)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.
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UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs an interleaved unpack of the high-order single-precision floating-point values from the source operand 
(second operand) and the destination operand (first operand). See Figure 4-24. The source operand can be an 
XMM register or a 128-bit memory location; the destination operand is an XMM register.

When unpacking from a memory operand, an implementation may fetch only the appropriate 64 bits; however, 
alignment to 16-byte boundary and normal segment checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: T second source can be an XMM register or an 128-bit memory location. The destina-
tion is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM 
register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 15 /r

UNPCKHPS xmm1, xmm2/m128

RM V/V SSE Unpacks and Interleaves single-precision 
floating-point values from high quadwords of 
xmm1 and xmm2/mem into xmm1.

VEX.NDS.128.0F.WIG 15 /r

VUNPCKHPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Unpacks and Interleaves single-precision 
floating-point values from high quadwords of 
xmm2 and xmm3/m128.

VEX.NDS.256.0F.WIG 15 /r

VUNPCKHPS ymm1,ymm2,ymm3/m256

RVM V/V AVX Unpacks and Interleaves single-precision 
floating-point values from high quadwords of 
ymm2 and ymm3/m256.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Figure 4-24.  UNPCKHPS Instruction High Unpack and Interleave Operation
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Operation

UNPCKHPS (128-bit Legacy SSE version)

DEST[31:0] Å SRC1[95:64]

DEST[63:32] Å SRC2[95:64]

DEST[95:64] Å SRC1[127:96]

DEST[127:96] Å SRC2[127:96]

DEST[VLMAX-1:128] (Unmodified)

VUNPCKHPS (VEX.128 encoded version)

DEST[31:0] Å SRC1[95:64]

DEST[63:32] Å SRC2[95:64]

DEST[95:64] Å SRC1[127:96]

DEST[127:96] Å SRC2[127:96]

DEST[VLMAX-1:128] Å 0

VUNPCKHPS (VEX.256 encoded version)

DEST[31:0] Å SRC1[95:64]

DEST[63:32] Å SRC2[95:64]

DEST[95:64] Å SRC1[127:96]

DEST[127:96] Å SRC2[127:96]

DEST[159:128] Å SRC1[223:192]

DEST[191:160] Å SRC2[223:192]

DEST[223:192] Å SRC1[255:224]

DEST[255:224] Å SRC2[255:224]

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKHPS: __m128 _mm_unpackhi_ps(__m128 a, __m128 b)

UNPCKHPS: __m256 _mm256_unpackhi_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.
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UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs an interleaved unpack of the low double-precision floating-point values from the source operand (second 
operand) and the destination operand (first operand). See Figure 4-25. The source operand can be an XMM register 
or a 128-bit memory location; the destination operand is an XMM register.

When unpacking from a memory operand, an implementation may fetch only the appropriate 64 bits; however, 
alignment to 16-byte boundary and normal segment checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: T second source can be an XMM register or an 128-bit memory location. The destina-
tion is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding YMM 
register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 14 /r

UNPCKLPD xmm1, xmm2/m128

RM V/V SSE2 Unpacks and Interleaves double-precision 
floating-point values from low quadwords of 
xmm1 and xmm2/m128.

VEX.NDS.128.66.0F.WIG 14 /r

VUNPCKLPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Unpacks and Interleaves double precision 
floating-point values low high quadwords of 
xmm2 and xmm3/m128.

VEX.NDS.256.66.0F.WIG 14 /r

VUNPCKLPD ymm1,ymm2, ymm3/m256

RVM V/V AVX Unpacks and Interleaves double precision 
floating-point values low high quadwords of 
ymm2 and ymm3/m256.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Figure 4-25.  UNPCKLPD Instruction Low Unpack and Interleave Operation
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Operation

UNPCKLPD (128-bit Legacy SSE version)

DEST[63:0] Å SRC1[63:0]

DEST[127:64] Å SRC2[63:0]

DEST[VLMAX-1:128] (Unmodified)

VUNPCKLPD (VEX.128 encoded version)

DEST[63:0] Å SRC1[63:0]

DEST[127:64] Å SRC2[63:0]

DEST[VLMAX-1:128] Å 0

VUNPCKLPD (VEX.256 encoded version)

DEST[63:0] Å SRC1[63:0]

DEST[127:64] Å SRC2[63:0]

DEST[191:128] Å SRC1[191:128]

DEST[255:192] Å SRC2[191:128]

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKHPD: __m128d _mm_unpacklo_pd(__m128d a, __m128d b)

UNPCKLPD: __m256d _mm256_unpacklo_pd(__m256d a, __m256d b)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.
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UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values 

Instruction Operand Encoding

Description

Performs an interleaved unpack of the low-order single-precision floating-point values from the source operand 
(second operand) and the destination operand (first operand). See Figure 4-26. The source operand can be an 
XMM register or a 128-bit memory location; the destination operand is an XMM register.

When unpacking from a memory operand, an implementation may fetch only the appropriate 64 bits; however, 
alignment to 16-byte boundary and normal segment checking will still be enforced.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: The first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 14 /r

UNPCKLPS xmm1, xmm2/m128

RM V/V SSE Unpacks and Interleaves single-precision 
floating-point values from low quadwords of 
xmm1 and xmm2/mem into xmm1.

VEX.NDS.128.0F.WIG 14 /r

VUNPCKLPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Unpacks and Interleaves single-precision 
floating-point values from low quadwords of 
xmm2 and xmm3/m128.

VEX.NDS.256.0F.WIG 14 /r

VUNPCKLPS ymm1,ymm2,ymm3/m256

RVM V/V AVX Unpacks and Interleaves single-precision 
floating-point values from low quadwords of 
ymm2 and ymm3/m256.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

Figure 4-26.  UNPCKLPS Instruction Low Unpack and Interleave Operation
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Operation

UNPCKLPS (128-bit Legacy SSE version)

DEST[31:0] Å SRC1[31:0]

DEST[63:32] Å SRC2[31:0]

DEST[95:64] Å SRC1[63:32]

DEST[127:96] Å SRC2[63:32]

DEST[VLMAX-1:128] (Unmodified)

VUNPCKLPS (VEX.128 encoded version)

DEST[31:0] Å SRC1[31:0]

DEST[63:32] Å SRC2[31:0]

DEST[95:64] Å SRC1[63:32]

DEST[127:96] Å SRC2[63:32]

DEST[VLMAX-1:128] Å 0

UNPCKLPS (VEX.256 encoded version)

DEST[31:0] Å SRC1[31:0]

DEST[63:32] Å SRC2[31:0]

DEST[95:64] Å SRC1[63:32]

DEST[127:96] Å SRC2[63:32]

DEST[159:128] Å SRC1[159:128]

DEST[191:160] Å SRC2[159:128]

DEST[223:192] Å SRC1[191:160]

DEST[255:224] Å SRC2[191:160]

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKLPS: __m128 _mm_unpacklo_ps(__m128 a, __m128 b)

UNPCKLPS: __m256 _mm256_unpacklo_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.
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VBROADCAST—Broadcast Floating-Point Data

Instruction Operand Encoding

Description

Load floating point values from the source operand (second operand) and broadcast to all elements of the destina-
tion operand (first operand).
VBROADCASTSD and VBROADCASTF128 are only supported as 256-bit wide versions. VBROADCASTSS is 
supported in both 128-bit and 256-bit wide versions. 
Memory and register source operand syntax support of 256-bit instructions depend on the processor’s enumeration 
of the following conditions with respect to CPUID.1:ECX.AVX[bit 28] and CPUID.(EAX=07H, 
ECX=0H):EBX.AVX2[bit 5]:
• If CPUID.1:ECX.AVX = 1 and CPUID.(EAX=07H, ECX=0H):EBX.AVX2 = 0: the destination operand is a YMM 

register. The source operand support can be either a 32-bit, 64-bit, or 128-bit memory location. Register 
source encodings are reserved and will #UD. 

• If CPUID.1:ECX.AVX = 1 and CPUID.(EAX=07H, ECX=0H):EBX.AVX2 = 1: the destination operand is a YMM 
register. The source operand support can be a register or memory location. 

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. An 
attempt to execute VBROADCASTSD or VBROADCASTF128 encoded with VEX.L= 0 will cause an #UD exception. 
Attempts to execute any VBROADCAST* instruction with VEX.W = 1 will cause #UD.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.128.66.0F38.W0 18 /r

VBROADCASTSS xmm1, m32

RM V/V AVX Broadcast single-precision floating-point 
element in mem to four locations in xmm1.

VEX.256.66.0F38.W0 18 /r

VBROADCASTSS ymm1, m32

RM V/V AVX Broadcast single-precision floating-point 
element in mem to eight locations in ymm1.

VEX.256.66.0F38.W0 19 /r

VBROADCASTSD ymm1, m64

RM V/V AVX Broadcast double-precision floating-point 
element in mem to four locations in ymm1.

VEX.256.66.0F38.W0 1A /r

VBROADCASTF128 ymm1, m128

RM V/V AVX Broadcast 128 bits of floating-point data in 
mem to low and high 128-bits in ymm1.

VEX.128.66.0F38.W0 18/r

VBROADCASTSS xmm1, xmm2

RM V/V AVX2 Broadcast the low single-precision floating-
point element in the source operand to four 
locations in xmm1.

VEX.256.66.0F38.W0 18 /r

VBROADCASTSS ymm1, xmm2

RM V/V AVX2 Broadcast low single-precision floating-point 
element in the source operand to eight 
locations in ymm1.

VEX.256.66.0F38.W0 19 /r

VBROADCASTSD ymm1, xmm2

RM V/V AVX2 Broadcast low double-precision floating-point 
element in the source operand to four 
locations in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA



VBROADCAST—Broadcast Floating-Point Data

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-425

Figure 4-27.  VBROADCASTSS Operation (VEX.256 encoded version)

Figure 4-28.  VBROADCASTSS Operation (128-bit version)

Figure 4-29.  VBROADCASTSD Operation
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Operation

VBROADCASTSS (128 bit version)

temp Å SRC[31:0]

DEST[31:0] Å temp

DEST[63:32] Å temp

DEST[95:64] Å temp

DEST[127:96] Å temp

DEST[VLMAX-1:128] Å 0

VBROADCASTSS (VEX.256 encoded version)

temp Å SRC[31:0]

DEST[31:0] Å temp

DEST[63:32] Å temp

DEST[95:64] Å temp

DEST[127:96] Å temp

DEST[159:128] Å temp

DEST[191:160] Å temp

DEST[223:192] Å temp

DEST[255:224] Å temp

VBROADCASTSD (VEX.256 encoded version)

temp Å SRC[63:0]

DEST[63:0] Å temp

DEST[127:64] Å temp

DEST[191:128] Å temp

DEST[255:192] Å temp

VBROADCASTF128

temp Å SRC[127:0]

DEST[127:0] Å temp

DEST[VLMAX-1:128] Å temp

Intel C/C++ Compiler Intrinsic Equivalent

VBROADCASTSS:  __m128 _mm_broadcast_ss(float *a);

VBROADCASTSS:  __m256 _mm256_broadcast_ss(float *a);

VBROADCASTSD:  __m256d _mm256_broadcast_sd(double *a);

Figure 4-30.  VBROADCASTF128 Operation

DEST

m128 X0

X0X0
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VBROADCASTF128:  __m256 _mm256_broadcast_ps(__m128 * a);

VBROADCASTF128:  __m256d _mm256_broadcast_pd(__m128d * a);

Flags Affected

None.

Other Exceptions

See Exceptions Type 6; additionally
#UD If VEX.L = 0 for VBROADCASTSD,

If VEX.L = 0 for VBROADCASTF128,
If VEX.W = 1.
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VCVTPH2PS—Convert 16-bit FP Values to Single-Precision FP Values

Instruction Operand Encoding

Description

Converts four/eight packed half precision (16-bits) floating-point values in the low-order 64/128 bits of an 
XMM/YMM register or 64/128-bit memory location to four/eight packed single-precision floating-point values and 
writes the converted values into the destination XMM/YMM register.
If case of a denormal operand, the correct normal result is returned. MXCSR.DAZ is ignored and is treated as if it 
0. No denormal exception is reported on MXCSR.
128-bit version: The source operand is a XMM register or 64-bit memory location. The destination operand is a 
XMM register. The upper bits (VLMAX-1:128) of the corresponding destination YMM register are zeroed.
256-bit version: The source operand is a XMM register or 128-bit memory location. The destination operand is a 
YMM register.
 The diagram below illustrates how data is converted from four packed half precision (in 64 bits) to four single 
precision (in 128 bits) FP values.
Note: VEX.vvvv is reserved (must be 1111b).

Operation

vCvt_h2s(SRC1[15:0])

{

RETURN Cvt_Half_Precision_To_Single_Precision(SRC1[15:0]);

}

Opcode/
Instruction

Op/ 
En

64/32-
bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.256.66.0F38.W0 13 /r RM V/V F16C Convert eight packed half precision (16-bit) 
floating-point values in xmm2/m128 to packed 
single-precision floating-point value in ymm1. 

VCVTPH2PS ymm1, xmm2/m128

VEX.128.66.0F38.W0 13 /r RM V/V F16C Convert four packed half precision (16-bit) 
floating-point values in xmm2/m64 to packed 
single-precision floating-point value in xmm1. 

VCVTPH2PS xmm1, xmm2/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA

Figure 4-31.  VCVTPH2PS (128-bit Version)

VH0VH1VH2VH3
15             031           1647           3263           4895                                64127                              96

VS0VS1VS2VS3
31                                  063                                3295                                64127                              96

convert convert
convertconvert

xmm2/mem64

xmm1

VCVTPH2PS xmm1, xmm2/mem64,  imm8
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VCVTPH2PS (VEX.256 encoded version)

DEST[31:0] ÅvCvt_h2s(SRC1[15:0]);

DEST[63:32] ÅvCvt_h2s(SRC1[31:16]);

DEST[95:64] ÅvCvt_h2s(SRC1[47:32]);

DEST[127:96] ÅvCvt_h2s(SRC1[63:48]);

DEST[159:128] ÅvCvt_h2s(SRC1[79:64]);

DEST[191:160] ÅvCvt_h2s(SRC1[95:80]);

DEST[223:192] ÅvCvt_h2s(SRC1[111:96]);

DEST[255:224] ÅvCvt_h2s(SRC1[127:112]);

VCVTPH2PS (VEX.128 encoded version) 

DEST[31:0] ÅvCvt_h2s(SRC1[15:0]);

DEST[63:32] ÅvCvt_h2s(SRC1[31:16]);

DEST[95:64] ÅvCvt_h2s(SRC1[47:32]);

DEST[127:96] ÅvCvt_h2s(SRC1[63:48]);

DEST[VLMAX-1:128] Å0

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

__m128 _mm_cvtph_ps ( __m128i m1);

__m256 _mm256_cvtph_ps ( __m128i m1)

SIMD Floating-Point Exceptions

Invalid

Other Exceptions

Exceptions Type 11 (do not report #AC); additionally
#UD If VEX.W=1.
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VCVTPS2PH—Convert Single-Precision FP value to 16-bit FP value

Instruction Operand Encoding

Description

Convert four or eight packed single-precision floating values in first source operand to four or eight packed half-
precision (16-bit) floating-point values. The rounding mode is specified using the immediate field (imm8).
Underflow results (i.e. tiny results) are converted to denormals. MXCSR.FTZ is ignored. If a source element is 
denormal relative to input format with MXCSR.DAZ not set, DM masked and at least one of PM or UM unmasked; a 
SIMD exception will be raised with DE, UE and PE set.
128-bit version: The source operand is a XMM register. The destination operand is a XMM register or 64-bit memory 
location. The upper-bits vector register zeroing behavior of VEX prefix encoding still applies if the destination 
operand is a xmm register. So the upper bits (255:64) of corresponding YMM register are zeroed. 
256-bit version: The source operand is a YMM register. The destination operand is a XMM register or 128-bit 
memory location. The upper-bits vector register zeroing behavior of VEX prefix encoding still applies if the destina-
tion operand is a xmm register. So the upper bits (255:128) of the corresponding YMM register are zeroed.
Note: VEX.vvvv is reserved (must be 1111b).
The diagram below illustrates how data is converted from four packed single precision (in 128 bits) to four half 
precision (in 64 bits) FP values.

Opcode/
Instruction

Op/ 
En

64/32-
bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.256.66.0F3A.W0 1D /r ib MR V/V F16C Convert eight packed single-precision 
floating-point value in ymm2 to packed 
half-precision (16-bit) floating-point value 
in xmm1/mem. Imm8 provides rounding 
controls.

VCVTPS2PH xmm1/m128, ymm2,  imm8

VEX.128.66.0F3A.W0.1D /r ib MR V/V F16C Convert four packed single-precision float-
ing-point value in xmm2 to packed half-
precision (16-bit) floating-point value in 
xmm1/mem. Imm8 provides rounding con-
trols.

VCVTPS2PH xmm1/m64, xmm2,  imm8

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

Figure 4-32.  VCVTPS2PH (128-bit Version)

VH0VH1VH2VH3
15             031           1647           3263           4895                                64127                              96

VS0VS1VS2VS3
31                                  063                                3295                                64127                              96

xmm1/mem64

xmm2

VCVTPS2PH xmm1/mem64, xmm2,  imm8

convertconvert convertconvert
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The immediate byte defines several bit fields that controls rounding operation. The effect and encoding of RC
field are listed in Table 4-16.

Operation

vCvt_s2h(SRC1[31:0])

{

IF Imm[2] = 0

THEN // using Imm[1:0] for rounding control, see Table 4-16

RETURN Cvt_Single_Precision_To_Half_Precision_FP_Imm(SRC1[31:0]);

ELSE // using MXCSR.RC for rounding control

RETURN Cvt_Single_Precision_To_Half_Precision_FP_Mxcsr(SRC1[31:0]);

FI;

}

VCVTPS2PH (VEX.256 encoded version)

DEST[15:0] Å vCvt_s2h(SRC1[31:0]);

DEST[31:16] Å vCvt_s2h(SRC1[63:32]);

DEST[47:32] Å vCvt_s2h(SRC1[95:64]);

DEST[63:48] Å vCvt_s2h(SRC1[127:96]);

DEST[79:64] Å vCvt_s2h(SRC1[159:128]);

DEST[95:80] Å vCvt_s2h(SRC1[191:160]);

DEST[111:96] Å vCvt_s2h(SRC1[223:192]);

DEST[127:112] Å vCvt_s2h(SRC1[255:224]);

DEST[255:128] Å 0; // if DEST is a register

VCVTPS2PH (VEX.128 encoded version) 

DEST[15:0] Å vCvt_s2h(SRC1[31:0]);

DEST[31:16] Å vCvt_s2h(SRC1[63:32]);

DEST[47:32] Å vCvt_s2h(SRC1[95:64]);

DEST[63:48] Å vCvt_s2h(SRC1[127:96]);

DEST[VLMAX-1:64] Å0; // if DEST is a register

Flags Affected

None

Table 4-16.  Immediate Byte Encoding for 16-bit Floating-Point Conversion Instructions

Bits Field Name/value Description Comment

Imm[1:0] RC=00B Round to nearest even If Imm[2] = 0

RC=01B Round down

RC=10B Round up

RC=11B Truncate

Imm[2] MS1=0 Use imm[1:0] for rounding Ignore MXCSR.RC 

MS1=1 Use MXCSR.RC for rounding

Imm[7:3] Ignored Ignored by processor
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Intel C/C++ Compiler Intrinsic Equivalent

__m128i _mm_cvtps_ph ( __m128 m1, const int imm);

__m128i _mm256_cvtps_ph(__m256 m1, const int imm);

SIMD Floating-Point Exceptions

Invalid, Underflow, Overflow, Precision, Denormal (if MXCSR.DAZ=0);

Other Exceptions

Exceptions Type 11 (do not report #AC); additionally
#UD If VEX.W=1.
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VERR/VERW—Verify a Segment for Reading or Writing

Instruction Operand Encoding

Description

Verifies whether the code or data segment specified with the source operand is readable (VERR) or writable 
(VERW) from the current privilege level (CPL). The source operand is a 16-bit register or a memory location that 
contains the segment selector for the segment to be verified. If the segment is accessible and readable (VERR) or 
writable (VERW), the ZF flag is set; otherwise, the ZF flag is cleared. Code segments are never verified as writable. 
This check cannot be performed on system segments. 

To set the ZF flag, the following conditions must be met:
• The segment selector is not NULL.
• The selector must denote a descriptor within the bounds of the descriptor table (GDT or LDT).
• The selector must denote the descriptor of a code or data segment (not that of a system segment or gate).
• For the VERR instruction, the segment must be readable.
• For the VERW instruction, the segment must be a writable data segment.
• If the segment is not a conforming code segment, the segment’s DPL must be greater than or equal to (have 

less or the same privilege as) both the CPL and the segment selector's RPL.

The validation performed is the same as is performed when a segment selector is loaded into the DS, ES, FS, or GS 
register, and the indicated access (read or write) is performed. The segment selector's value cannot result in a 
protection exception, enabling the software to anticipate possible segment access problems.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode. The operand size is fixed at 16 bits.

Operation

IF SRC(Offset) > (GDTR(Limit) or (LDTR(Limit))

THEN ZF ← 0; FI;

Read segment descriptor;

IF SegmentDescriptor(DescriptorType) = 0 (* System segment *)

or (SegmentDescriptor(Type) ≠ conforming code segment) 

and (CPL > DPL) or (RPL > DPL)

THEN

ZF ← 0;

ELSE

IF ((Instruction = VERR) and (Segment readable))

or ((Instruction = VERW) and (Segment writable))

THEN 

ZF ← 1;

FI;

FI;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 00 /4 VERR r/m16 M Valid Valid Set ZF=1 if segment specified with r/m16 can 
be read.

0F 00 /5 VERW r/m16 M Valid Valid Set ZF=1 if segment specified with r/m16 can 
be written.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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Flags Affected

The ZF flag is set to 1 if the segment is accessible and readable (VERR) or writable (VERW); otherwise, it is set to 0.

Protected Mode Exceptions

The only exceptions generated for these instructions are those related to illegal addressing of the source operand.
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment 
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD The VERR and VERW instructions are not recognized in real-address mode.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#UD The VERR and VERW instructions are not recognized in virtual-8086 mode.
If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used.
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VEXTRACTF128 — Extract Packed Floating-Point Values

Instruction Operand Encoding

Description

Extracts 128-bits of packed floating-point values from the source operand (second operand) at an 128-bit offset 
from imm8[0] into the destination operand (first operand). The destination may be either an XMM register or an 
128-bit memory location.
VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
The high 7 bits of the immediate are ignored.
If VEXTRACTF128 is encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will 
cause an #UD exception.

Operation

VEXTRACTF128 (memory destination form)

CASE (imm8[0]) OF

0: DEST[127:0] Å SRC1[127:0]

1: DEST[127:0] Å SRC1[255:128]

ESAC.

VEXTRACTF128 (register destination form)

CASE (imm8[0]) OF

0: DEST[127:0] Å SRC1[127:0]

1: DEST[127:0] Å SRC1[255:128]

ESAC.

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VEXTRACTF128:  __m128 _mm256_extractf128_ps (__m256 a, int offset);

VEXTRACTF128:  __m128d _mm256_extractf128_pd (__m256d a, int offset);

VEXTRACTF128:  __m128i_mm256_extractf128_si256(__m256i a, int offset);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 6; additionally
#UD If VEX.L= 0

If VEX.W=1.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.256.66.0F3A.W0 19 /r ib

VEXTRACTF128 xmm1/m128, ymm2, imm8

MR V/V AVX Extract 128 bits of packed floating-point 
values from ymm2 and store results in 
xmm1/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA
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VEXTRACTI128 — Extract packed Integer Values

Instruction Operand Encoding

Description

Extracts 128-bits of packed integer values from the source operand (second operand) at a 128-bit offset from 
imm8[0] into the destination operand (first operand). The destination may be either an XMM register or a 128-bit 
memory location.
VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
The high 7 bits of the immediate are ignored.
An attempt to execute VEXTRACTI128 encoded with VEX.L= 0 will cause an #UD exception.

Operation

VEXTRACTI128 (memory destination form)

CASE (imm8[0]) OF

0: DEST[127:0] Å SRC1[127:0]

1: DEST[127:0] Å SRC1[255:128]

ESAC.

VEXTRACTI128 (register destination form)

CASE (imm8[0]) OF

0: DEST[127:0] Å SRC1[127:0]

1: DEST[127:0] Å SRC1[255:128]

ESAC.

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VEXTRACTI128:  __m128i _mm256_extracti128_si256(__m256i a, int offset);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 6; additionally
#UD IF VEX.L = 0,

If VEX.W = 1.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.256.66.0F3A.W0 39 /r ib RMI V/V AVX2 Extract 128 bits of integer data from ymm2 and 
store results in xmm1/mem.VEXTRACTI128 xmm1/m128, ymm2, 

imm8

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:r/m (w) ModRM:reg (r) Imm8 NA
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VFMADD132PD/VFMADD213PD/VFMADD231PD — Fused Multiply-Add of Packed Double-
Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a set of SIMD multiply-add computation on packed double-precision floating-point values using three 
source operands and writes the multiply-add results in the destination operand. The destination operand is also the 
first source operand. The second operand must be a SIMD register. The third source operand can be a SIMD 
register or a memory location. 
VFMADD132PD: Multiplies the two or four packed double-precision floating-point values from the first source 
operand to the two or four packed double-precision floating-point values in the third source operand, adds the infi-
nite precision intermediate result to the two or four packed double-precision floating-point values in the second 
source operand, performs rounding and stores the resulting two or four packed double-precision floating-point 
values to the destination operand (first source operand).
VFMADD213PD: Multiplies the two or four packed double-precision floating-point values from the second source 
operand to the two or four packed double-precision floating-point values in the first source operand, adds the infi-
nite precision intermediate result to the two or four packed double-precision floating-point values in the third 
source operand, performs rounding and stores the resulting two or four packed double-precision floating-point 
values to the destination operand (first source operand).
VFMADD231PD: Multiplies the two or four packed double-precision floating-point values from the second source to 
the two or four packed double-precision floating-point values in the third source operand, adds the infinite preci-
sion intermediate result to the two or four packed double-precision floating-point values in the first source 
operand, performs rounding and stores the resulting two or four packed double-precision floating-point values to 
the destination operand (first source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

Opcode/
Instruction

Op/ 
En

64/32-
bit Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.128.66.0F38.W1 98 /r A V/V FMA Multiply packed double-precision floating-point val-
ues from xmm0 and xmm2/mem, add to xmm1 and 
put result in xmm0.

VFMADD132PD xmm0, xmm1, xmm2/m128

VEX.DDS.128.66.0F38.W1 A8 /r A V/V FMA Multiply packed double-precision floating-point val-
ues from xmm0 and xmm1, add to xmm2/mem and 
put result in xmm0.

VFMADD213PD xmm0, xmm1, xmm2/m128 

VEX.DDS.128.66.0F38.W1 B8 /r A V/V FMA Multiply packed double-precision floating-point val-
ues from xmm1 and xmm2/mem, add to xmm0 and 
put result in xmm0.

VFMADD231PD xmm0, xmm1, xmm2/m128

VEX.DDS.256.66.0F38.W1 98 /r A V/V FMA Multiply packed double-precision floating-point val-
ues from ymm0 and ymm2/mem, add to ymm1 and 
put result in ymm0.

VFMADD132PD ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W1 A8 /r A V/V FMA Multiply packed double-precision floating-point val-
ues from ymm0 and ymm1, add to ymm2/mem and 
put result in ymm0.

VFMADD213PD ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W1 B8 /r A V/V FMA Multiply packed double-precision floating-point val-
ues from ymm1 and ymm2/mem, add to ymm0 and 
put result in ymm0.

VFMADD231PD ymm0, ymm1, ymm2/m256

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations 
with infinite precision inputs and outputs (no rounding).

VFMADD132PD DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =2

ELSEIF (VEX.256)

MAXVL = 4

FI

For i = 0 to MAXVL-1 {

n = 64*i;

DEST[n+63:n] Å RoundFPControl_MXCSR(DEST[n+63:n]*SRC3[n+63:n] + SRC2[n+63:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

VFMADD213PD DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =2

ELSEIF (VEX.256)

MAXVL = 4

FI

For i = 0 to MAXVL-1 {

n = 64*i;

DEST[n+63:n] Å RoundFPControl_MXCSR(SRC2[n+63:n]*DEST[n+63:n] + SRC3[n+63:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0

FI

VFMADD231PD DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =2

ELSEIF (VEX.256)

MAXVL = 4

FI

For i = 0 to MAXVL-1 {

n = 64*i;

DEST[n+63:n] Å RoundFPControl_MXCSR(SRC2[n+63:n]*SRC3[n+63:n] + DEST[n+63:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
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FI

Intel C/C++ Compiler Intrinsic Equivalent

VFMADD132PD: __m128d _mm_fmadd_pd (__m128d a, __m128d b, __m128d c);

VFMADD213PD: __m128d _mm_fmadd_pd (__m128d a, __m128d b, __m128d c);

VFMADD231PD: __m128d _mm_fmadd_pd (__m128d a, __m128d b, __m128d c);

VFMADD132PD: __m256d _mm256_fmadd_pd (__m256d a, __m256d b, __m256d c);

VFMADD213PD: __m256d _mm256_fmadd_pd (__m256d a, __m256d b, __m256d c);

VFMADD231PD: __m256d _mm256_fmadd_pd (__m256d a, __m256d b, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

See Exceptions Type 2
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VFMADD132PS/VFMADD213PS/VFMADD231PS — Fused Multiply-Add of Packed Single-
Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a set of SIMD multiply-add computation on packed single-precision floating-point values using three 
source operands and writes the multiply-add results in the destination operand. The destination operand is also the 
first source operand. The second operand must be a SIMD register. The third source operand can be a SIMD 
register or a memory location. 
VFMADD132PS: Multiplies the four or eight packed single-precision floating-point values from the first source 
operand to the four or eight packed single-precision floating-point values in the third source operand, adds the infi-
nite precision intermediate result to the four or eight packed single-precision floating-point values in the second 
source operand, performs rounding and stores the resulting four or eight packed single-precision floating-point 
values to the destination operand (first source operand).
VFMADD213PS: Multiplies the four or eight packed single-precision floating-point values from the second source 
operand to the four or eight packed single-precision floating-point values in the first source operand, adds the infi-
nite precision intermediate result to the four or eight packed single-precision floating-point values in the third 
source operand, performs rounding and stores the resulting the four or eight packed single-precision floating-point 
values to the destination operand (first source operand).
VFMADD231PS: Multiplies the four or eight packed single-precision floating-point values from the second source 
operand to the four or eight packed single-precision floating-point values in the third source operand, adds the infi-
nite precision intermediate result to the four or eight packed single-precision floating-point values in the first 
source operand, performs rounding and stores the resulting four or eight packed single-precision floating-point 
values to the destination operand (first source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.128.66.0F38.W0 98 /r A V/V FMA Multiply packed single-precision floating-point values 
from xmm0 and xmm2/mem, add to xmm1 and put 
result in xmm0.

VFMADD132PS xmm0, xmm1, xmm2/m128

VEX.DDS.128.66.0F38.W0 A8 /r A V/V FMA Multiply packed single-precision floating-point values 
from xmm0 and xmm1, add to xmm2/mem and put 
result in xmm0.

VFMADD213PS xmm0, xmm1, xmm2/m128 

VEX.DDS.128.66.0F38.W0 B8 /r A V/V FMA Multiply packed single-precision floating-point values 
from xmm1 and xmm2/mem, add to xmm0 and put 
result in xmm0.

VFMADD231PS xmm0, xmm1, xmm2/m128

VEX.DDS.256.66.0F38.W0 98 /r A V/V FMA Multiply packed single-precision floating-point values 
from ymm0 and ymm2/mem, add to ymm1 and put 
result in ymm0.

VFMADD132PS ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W0 A8 /r A V/V FMA Multiply packed single-precision floating-point values 
from ymm0 and ymm1, add to ymm2/mem and put 
result in ymm0.

VFMADD213PS ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W0 B8 /r A V/V FMA Multiply packed single-precision floating-point values 
from ymm1 and ymm2/mem, add to ymm0 and put 
result in ymm0.

VFMADD231PS ymm0, ymm1, ymm2/m256

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the “Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1”.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations 
with infinite precision inputs and outputs (no rounding).

VFMADD132PS DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =4

ELSEIF (VEX.256)

MAXVL = 8

FI

For i = 0 to MAXVL-1 {

n = 32*i;

DEST[n+31:n] Å RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] + SRC2[n+31:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

VFMADD213PS DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =4

ELSEIF (VEX.256)

MAXVL = 8

FI

For i = 0 to MAXVL-1 {

n = 32*i;

DEST[n+31:n] Å RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] + SRC3[n+31:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

VFMADD231PS DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =4

ELSEIF (VEX.256)

MAXVL = 8

FI

For i = 0 to MAXVL-1 {

n = 32*i;

DEST[n+31:n] Å RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] + DEST[n+31:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0

FI
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Intel C/C++ Compiler Intrinsic Equivalent

VFMADD132PS: __m128 _mm_fmadd_ps (__m128 a, __m128 b, __m128 c);

VFMADD213PS: __m128 _mm_fmadd_ps (__m128 a, __m128 b, __m128 c);

VFMADD231PS: __m128 _mm_fmadd_ps (__m128 a, __m128 b, __m128 c);

VFMADD132PS: __m256 _mm256_fmadd_ps (__m256 a, __m256 b, __m256 c);

VFMADD213PS: __m256 _mm256_fmadd_ps (__m256 a, __m256 b, __m256 c);

VFMADD231PS: __m256 _mm256_fmadd_ps (__m256 a, __m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

See Exceptions Type 2
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VFMADD132SD/VFMADD213SD/VFMADD231SD — Fused Multiply-Add of Scalar Double-
Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD multiply-add computation on the low packed double-precision floating-point values using three 
source operands and writes the multiply-add result in the destination operand. The destination operand is also the 
first source operand. The second operand must be a SIMD register. The third source operand can be a SIMD 
register or a memory location. 
VFMADD132SD: Multiplies the low packed double-precision floating-point value from the first source operand to 
the low packed double-precision floating-point value in the third source operand, adds the infinite precision inter-
mediate result to the low packed double-precision floating-point values in the second source operand, performs 
rounding and stores the resulting packed double-precision floating-point value to the destination operand (first 
source operand).
VFMADD213SD: Multiplies the low packed double-precision floating-point value from the second source operand to 
the low packed double-precision floating-point value in the first source operand, adds the infinite precision inter-
mediate result to the low packed double-precision floating-point value in the third source operand, performs 
rounding and stores the resulting packed double-precision floating-point value to the destination operand (first 
source operand).
VFMADD231SD: Multiplies the low packed double-precision floating-point value from the second source to the low 
packed double-precision floating-point value in the third source operand, adds the infinite precision intermediate 
result to the low packed double-precision floating-point value in the first source operand, performs rounding and 
stores the resulting packed double-precision floating-point value to the destination operand (first source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 64-bit memory location and encoded in rm_field. The upper bits ([VLMAX-1:128]) of the YMM 
destination register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations 
with infinite precision inputs and outputs (no rounding).

Opcode/
Instruction

Op/ 
En

64/32-
bit Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.LIG.128.66.0F38.W1 99 /r A V/V FMA Multiply scalar double-precision floating-point value 
from xmm0 and xmm2/mem, add to xmm1 and put 
result in xmm0.

VFMADD132SD xmm0, xmm1, xmm2/m64

VEX.DDS.LIG.128.66.0F38.W1 A9 /r A V/V FMA Multiply scalar double-precision floating-point value 
from xmm0 and xmm1, add to xmm2/mem and put 
result in xmm0.

VFMADD213SD xmm0, xmm1, xmm2/m64 

VEX.DDS.LIG.128.66.0F38.W1 B9 /r A V/V FMA Multiply scalar double-precision floating-point value 
from xmm1 and xmm2/mem, add to xmm0 and put 
result in xmm0.

VFMADD231SD xmm0, xmm1, xmm2/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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VFMADD132SD DEST, SRC2, SRC3 

DEST[63:0] Å RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] + SRC2[63:0])

DEST[127:64] Å DEST[127:64]

DEST[VLMAX-1:128] Å 0

VFMADD213SD DEST, SRC2, SRC3 

DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] + SRC3[63:0])

DEST[127:64] Å DEST[127:64]

DEST[VLMAX-1:128] Å 0

VFMADD231SD DEST, SRC2, SRC3 

DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] + DEST[63:0])

DEST[127:64] Å DEST[127:64]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMADD132SD: __m128d _mm_fmadd_sd (__m128d a, __m128d b, __m128d c);

VFMADD213SD: __m128d _mm_fmadd_sd (__m128d a, __m128d b, __m128d c);

VFMADD231SD: __m128d _mm_fmadd_sd (__m128d a, __m128d b, __m128d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

See Exceptions Type 3
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VFMADD132SS/VFMADD213SS/VFMADD231SS — Fused Multiply-Add of Scalar Single-Precision 
Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD multiply-add computation on packed single-precision floating-point values using three source 
operands and writes the multiply-add results in the destination operand. The destination operand is also the first 
source operand. The second operand must be a SIMD register. The third source operand can be a SIMD register or 
a memory location. 
VFMADD132SS: Multiplies the low packed single-precision floating-point value from the first source operand to the 
low packed single-precision floating-point value in the third source operand, adds the infinite precision interme-
diate result to the low packed single-precision floating-point value in the second source operand, performs 
rounding and stores the resulting packed single-precision floating-point value to the destination operand (first 
source operand).
VFMADD213SS: Multiplies the low packed single-precision floating-point value from the second source operand to 
the low packed single-precision floating-point value in the first source operand, adds the infinite precision interme-
diate result to the low packed single-precision floating-point value in the third source operand, performs rounding 
and stores the resulting packed single-precision floating-point value to the destination operand (first source 
operand).
VFMADD231SS: Multiplies the low packed single-precision floating-point value from the second source operand to 
the low packed single-precision floating-point value in the third source operand, adds the infinite precision inter-
mediate result to the low packed single-precision floating-point value in the first source operand, performs 
rounding and stores the resulting packed single-precision floating-point value to the destination operand (first 
source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 32-bit memory location and encoded in rm_field. The upper bits ([VLMAX-1:128]) of the YMM 
destination register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations 
with infinite precision inputs and outputs (no rounding).

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.LIG.128.66.0F38.W0 99 /r A V/V FMA Multiply scalar single-precision floating-point value 
from xmm0 and xmm2/mem, add to xmm1 and put 
result in xmm0.

VFMADD132SS xmm0, xmm1, xmm2/m32

VEX.DDS.LIG.128.66.0F38.W0 A9 /r A V/V FMA Multiply scalar single-precision floating-point value 
from xmm0 and xmm1, add to xmm2/mem and put 
result in xmm0.

VFMADD213SS xmm0, xmm1, xmm2/m32 

VEX.DDS.LIG.128.66.0F38.W0 B9 /r A V/V FMA Multiply scalar single-precision floating-point value 
from xmm1 and xmm2/mem, add to xmm0 and put 
result in xmm0.

VFMADD231SS xmm0, xmm1, xmm2/m32

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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VFMADD132SS DEST, SRC2, SRC3 

DEST[31:0] Å RoundFPControl_MXCSR(DEST[31:0]*SRC3[31:0] + SRC2[31:0])

DEST[127:32] Å DEST[127:32]

DEST[VLMAX-1:128] Å 0

VFMADD213SS DEST, SRC2, SRC3 

DEST[31:0] Å RoundFPControl_MXCSR(SRC2[31:0]*DEST[31:0] + SRC3[31:0])

DEST[127:32] Å DEST[127:32]

DEST[VLMAX-1:128] Å 0

VFMADD231SS DEST, SRC2, SRC3 

DEST[31:0] Å RoundFPControl_MXCSR(SRC2[31:0]*SRC3[63:0] + DEST[31:0])

DEST[127:32] Å DEST[127:32]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMADD132SS: __m128 _mm_fmadd_ss (__m128 a, __m128 b, __m128 c);

VFMADD213SS: __m128 _mm_fmadd_ss (__m128 a, __m128 b, __m128 c);

VFMADD231SS: __m128 _mm_fmadd_ss (__m128 a, __m128 b, __m128 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

See Exceptions Type 3
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VFMADDSUB132PD/VFMADDSUB213PD/VFMADDSUB231PD — Fused Multiply-Alternating 
Add/Subtract of Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

VFMADDSUB132PD: Multiplies the two or four packed double-precision floating-point values from the first source 
operand to the two or four packed double-precision floating-point values in the third source operand. From the infi-
nite precision intermediate result, adds the odd double-precision floating-point elements and subtracts the even 
double-precision floating-point values in the second source operand, performs rounding and stores the resulting 
two or four packed double-precision floating-point values to the destination operand (first source operand).
VFMADDSUB213PD: Multiplies the two or four packed double-precision floating-point values from the second 
source operand to the two or four packed double-precision floating-point values in the first source operand. From 
the infinite precision intermediate result, adds the odd double-precision floating-point elements and subtracts the 
even double-precision floating-point values in the third source operand, performs rounding and stores the resulting 
two or four packed double-precision floating-point values to the destination operand (first source operand).
VFMADDSUB231PD: Multiplies the two or four packed double-precision floating-point values from the second 
source operand to the two or four packed double-precision floating-point values in the third source operand. From 
the infinite precision intermediate result, adds the odd double-precision floating-point elements and subtracts the 
even double-precision floating-point values in the first source operand, performs rounding and stores the resulting 
two or four packed double-precision floating-point values to the destination operand (first source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.128.66.0F38.W1 96 /r A V/V FMA Multiply packed double-precision floating-point 
values from xmm0 and xmm2/mem, add/subtract 
elements in xmm1 and put result in xmm0.

VFMADDSUB132PD xmm0, xmm1, xmm2/m128

VEX.DDS.128.66.0F38.W1 A6 /r A V/V FMA Multiply packed double-precision floating-point 
values from xmm0 and xmm1, add/subtract ele-
ments in xmm2/mem and put result in xmm0.

VFMADDSUB213PD xmm0, xmm1, xmm2/m128 

VEX.DDS.128.66.0F38.W1 B6 /r A V/V FMA Multiply packed double-precision floating-point 
values from xmm1 and xmm2/mem, add/subtract 
elements in xmm0 and put result in xmm0.

VFMADDSUB231PD xmm0, xmm1, xmm2/m128

VEX.DDS.256.66.0F38.W1 96 /r A V/V FMA Multiply packed double-precision floating-point 
values from ymm0 and ymm2/mem, add/subtract 
elements in ymm1 and put result in ymm0.

VFMADDSUB132PD ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W1 A6 /r A V/V FMA Multiply packed double-precision floating-point 
values from ymm0 and ymm1, add/subtract ele-
ments in ymm2/mem and put result in ymm0.

VFMADDSUB213PD ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W1 B6 /r A V/V FMA Multiply packed double-precision floating-point 
values from ymm1 and ymm2/mem, add/subtract 
elements in ymm0 and put result in ymm0.

VFMADDSUB231PD ymm0, ymm1, ymm2/m256

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations 
with infinite precision inputs and outputs (no rounding).

VFMADDSUB132PD DEST, SRC2, SRC3 

IF (VEX.128) THEN 

DEST[63:0] Å RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] - SRC2[63:0])

DEST[127:64] Å RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] + SRC2[127:64])

DEST[VLMAX-1:128] Å 0
ELSEIF (VEX.256)

DEST[63:0] Å RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] - SRC2[63:0])

DEST[127:64] Å RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] + SRC2[127:64])

DEST[191:128] Å RoundFPControl_MXCSR(DEST[191:128]*SRC3[191:128] - SRC2[191:128])

DEST[255:192] Å RoundFPControl_MXCSR(DEST[255:192]*SRC3[255:192] + SRC2[255:192]

FI

VFMADDSUB213PD DEST, SRC2, SRC3 

IF (VEX.128) THEN 

DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] - SRC3[63:0])

DEST[127:64] Å RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] + SRC3[127:64])

DEST[VLMAX-1:128] Å 0
ELSEIF (VEX.256)

DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] - SRC3[63:0])

DEST[127:64] Å RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] + SRC3[127:64])

DEST[191:128] Å RoundFPControl_MXCSR(SRC2[191:128]*DEST[191:128] - SRC3[191:128])

DEST[255:192] Å RoundFPControl_MXCSR(SRC2[255:192]*DEST[255:192] + SRC3[255:192]

FI

VFMADDSUB231PD DEST, SRC2, SRC3 

IF (VEX.128) THEN 

DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] - DEST[63:0])

DEST[127:64] Å RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] + DEST[127:64])

DEST[VLMAX-1:128] Å 0
ELSEIF (VEX.256)

DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] - DEST[63:0])

DEST[127:64] Å RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] + DEST[127:64])

DEST[191:128] Å RoundFPControl_MXCSR(SRC2[191:128]*SRC3[191:128] - DEST[191:128])

DEST[255:192] Å RoundFPControl_MXCSR(SRC2[255:192]*SRC3[255:192] + DEST[255:192]

FI

Intel C/C++ Compiler Intrinsic Equivalent

VFMADDSUB132PD: __m128d _mm_fmaddsub_pd (__m128d a, __m128d b, __m128d c);

VFMADDSUB213PD: __m128d _mm_fmaddsub_pd (__m128d a, __m128d b, __m128d c);

VFMADDSUB231PD: __m128d _mm_fmaddsub_pd (__m128d a, __m128d b, __m128d c);

VFMADDSUB132PD: __m256d _mm256_fmaddsub_pd (__m256d a, __m256d b, __m256d c);

VFMADDSUB213PD: __m256d _mm256_fmaddsub_pd (__m256d a, __m256d b, __m256d c);



VFMADDSUB132PD/VFMADDSUB213PD/VFMADDSUB231PD — Fused Multiply-Alternating Add/Subtract of Packed Double-Precision 

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-449

VFMADDSUB231PD: __m256d _mm256_fmaddsub_pd (__m256d a, __m256d b, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

See Exceptions Type 2



VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS — Fused Multiply-Alternating Add/Subtract of Packed Single-Precision

INSTRUCTION SET REFERENCE, N-Z

4-450 Vol. 2B

VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS — Fused Multiply-Alternating 
Add/Subtract of Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

VFMADDSUB132PS: Multiplies the four or eight packed single-precision floating-point values from the first source 
operand to the four or eight packed single-precision floating-point values in the third source operand. From the infi-
nite precision intermediate result, adds the odd single-precision floating-point elements and subtracts the even 
single-precision floating-point values in the second source operand, performs rounding and stores the resulting 
four or eight packed single-precision floating-point values to the destination operand (first source operand).
VFMADDSUB213PS: Multiplies the four or eight packed single-precision floating-point values from the second 
source operand to the four or eight packed single-precision floating-point values in the first source operand. From 
the infinite precision intermediate result, adds the odd single-precision floating-point elements and subtracts the 
even single-precision floating-point values in the third source operand, performs rounding and stores the resulting 
four or eight packed single-precision floating-point values to the destination operand (first source operand).
VFMADDSUB231PS: Multiplies the four or eight packed single-precision floating-point values from the second 
source operand to the four or eight packed single-precision floating-point values in the third source operand. From 
the infinite precision intermediate result, adds the odd single-precision floating-point elements and subtracts the 
even single-precision floating-point values in the first source operand, performs rounding and stores the resulting 
four or eight packed single-precision floating-point values to the destination operand (first source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.128.66.0F38.W0 96 /r A V/V FMA Multiply packed single-precision floating-point val-
ues from xmm0 and xmm2/mem, add/subtract ele-
ments in xmm1 and put result in xmm0.

VFMADDSUB132PS xmm0, xmm1, xmm2/m128

VEX.DDS.128.66.0F38.W0 A6 /r A V/V FMA Multiply packed single-precision floating-point val-
ues from xmm0 and xmm1, add/subtract elements 
in xmm2/mem and put result in xmm0.

VFMADDSUB213PS xmm0, xmm1, xmm2/m128 

VEX.DDS.128.66.0F38.W0 B6 /r A V/V FMA Multiply packed single-precision floating-point val-
ues from xmm1 and xmm2/mem, add/subtract ele-
ments in xmm0 and put result in xmm0.

VFMADDSUB231PS xmm0, xmm1, xmm2/m128

VEX.DDS.256.66.0F38.W0 96 /r A V/V FMA Multiply packed single-precision floating-point val-
ues from ymm0 and ymm2/mem, add/subtract ele-
ments in ymm1 and put result in ymm0.

VFMADDSUB132PS ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W0 A6 /r A V/V FMA Multiply packed single-precision floating-point val-
ues from ymm0 and ymm1, add/subtract elements 
in ymm2/mem and put result in ymm0.

VFMADDSUB213PS ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W0 B6 /r A V/V FMA Multiply packed single-precision floating-point val-
ues from ymm1 and ymm2/mem, add/subtract ele-
ments in ymm0 and put result in ymm0.

VFMADDSUB231PS ymm0, ymm1, ymm2/m256

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations 
with infinite precision inputs and outputs (no rounding).

VFMADDSUB132PS DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =2

ELSEIF (VEX.256)

MAXVL = 4

FI

For i = 0 to MAXVL -1{

n = 64*i;

DEST[n+31:n] Å RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] - SRC2[n+31:n])

DEST[n+63:n+32] Å RoundFPControl_MXCSR(DEST[n+63:n+32]*SRC3[n+63:n+32] + SRC2[n+63:n+32])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

VFMADDSUB213PS DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =2

ELSEIF (VEX.256)

MAXVL = 4

FI

For i = 0 to MAXVL -1{

n = 64*i;

DEST[n+31:n] Å RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] - SRC3[n+31:n])

DEST[n+63:n+32] Å RoundFPControl_MXCSR(SRC2[n+63:n+32]*DEST[n+63:n+32] + SRC3[n+63:n+32])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

VFMADDSUB231PS DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =2

ELSEIF (VEX.256)

MAXVL = 4

FI

For i = 0 to MAXVL -1{

n = 64*i;

DEST[n+31:n] Å RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] - DEST[n+31:n])

DEST[n+63:n+32] Å RoundFPControl_MXCSR(SRC2[n+63:n+32]*SRC3[n+63:n+32] + DEST[n+63:n+32])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI
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Intel C/C++ Compiler Intrinsic Equivalent

VFMADDSUB132PS: __m128 _mm_fmaddsub_ps (__m128 a, __m128 b, __m128 c);

VFMADDSUB213PS: __m128 _mm_fmaddsub_ps (__m128 a, __m128 b, __m128 c);

VFMADDSUB231PS: __m128 _mm_fmaddsub_ps (__m128 a, __m128 b, __m128 c);

VFMADDSUB132PS: __m256 _mm256_fmaddsub_ps (__m256 a, __m256 b, __m256 c);

VFMADDSUB213PS: __m256 _mm256_fmaddsub_ps (__m256 a, __m256 b, __m256 c);

VFMADDSUB231PS: __m256 _mm256_fmaddsub_ps (__m256 a, __m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

See Exceptions Type 2
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VFMSUBADD132PD/VFMSUBADD213PD/VFMSUBADD231PD — Fused Multiply-Alternating 
Subtract/Add of Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

VFMSUBADD132PD: Multiplies the two or four packed double-precision floating-point values from the first source 
operand to the two or four packed double-precision floating-point values in the third source operand. From the infi-
nite precision intermediate result, subtracts the odd double-precision floating-point elements and adds the even 
double-precision floating-point values in the second source operand, performs rounding and stores the resulting 
two or four packed double-precision floating-point values to the destination operand (first source operand).
VFMSUBADD213PD: Multiplies the two or four packed double-precision floating-point values from the second 
source operand to the two or four packed double-precision floating-point values in the first source operand. From 
the infinite precision intermediate result, subtracts the odd double-precision floating-point elements and adds the 
even double-precision floating-point values in the third source operand, performs rounding and stores the resulting 
two or four packed double-precision floating-point values to the destination operand (first source operand).
VFMSUBADD231PD: Multiplies the two or four packed double-precision floating-point values from the second 
source operand to the two or four packed double-precision floating-point values in the third source operand. From 
the infinite precision intermediate result, subtracts the odd double-precision floating-point elements and adds the 
even double-precision floating-point values in the first source operand, performs rounding and stores the resulting 
two or four packed double-precision floating-point values to the destination operand (first source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.128.66.0F38.W1 97 /r A V/V FMA Multiply packed double-precision floating-point 
values from xmm0 and xmm2/mem, subtract/add 
elements in xmm1 and put result in xmm0.

VFMSUBADD132PD xmm0, xmm1, xmm2/m128

VEX.DDS.128.66.0F38.W1 A7 /r A V/V FMA Multiply packed double-precision floating-point 
values from xmm0 and xmm1, subtract/add ele-
ments in xmm2/mem and put result in xmm0.

VFMSUBADD213PD xmm0, xmm1, xmm2/m128 

VEX.DDS.128.66.0F38.W1 B7 /r A V/V FMA Multiply packed double-precision floating-point 
values from xmm1 and xmm2/mem, subtract/add 
elements in xmm0 and put result in xmm0.

VFMSUBADD231PD xmm0, xmm1, xmm2/m128

VEX.DDS.256.66.0F38.W1 97 /r A V/V FMA Multiply packed double-precision floating-point 
values from ymm0 and ymm2/mem, subtract/add 
elements in ymm1 and put result in ymm0.

VFMSUBADD132PD ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W1 A7 /r A V/V FMA Multiply packed double-precision floating-point 
values from ymm0 and ymm1, subtract/add ele-
ments in ymm2/mem and put result in ymm0.

VFMSUBADD213PD ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W1 B7 /r A V/V FMA Multiply packed double-precision floating-point 
values from ymm1 and ymm2/mem, subtract/add 
elements in ymm0 and put result in ymm0.

VFMSUBADD231PD ymm0, ymm1, ymm2/m256

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations 
with infinite precision inputs and outputs (no rounding).

VFMSUBADD132PD DEST, SRC2, SRC3 

IF (VEX.128) THEN 

DEST[63:0] Å RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] + SRC2[63:0])

DEST[127:64] Å RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] - SRC2[127:64])

DEST[VLMAX-1:128] Å 0
ELSEIF (VEX.256)

DEST[63:0] Å RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] + SRC2[63:0])

DEST[127:64] Å RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] - SRC2[127:64])

DEST[191:128] Å RoundFPControl_MXCSR(DEST[191:128]*SRC3[191:128] + SRC2[191:128])

DEST[255:192] Å RoundFPControl_MXCSR(DEST[255:192]*SRC3[255:192] - SRC2[255:192]

FI

VFMSUBADD213PD DEST, SRC2, SRC3 

IF (VEX.128) THEN 

DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] + SRC3[63:0])

DEST[127:64] Å RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] - SRC3[127:64])

DEST[VLMAX-1:128] Å 0
ELSEIF (VEX.256)

DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] + SRC3[63:0])

DEST[127:64] Å RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] - SRC3[127:64])

DEST[191:128] Å RoundFPControl_MXCSR(SRC2[191:128]*DEST[191:128] + SRC3[191:128])

DEST[255:192] Å RoundFPControl_MXCSR(SRC2[255:192]*DEST[255:192] - SRC3[255:192]

FI

VFMSUBADD231PD DEST, SRC2, SRC3 

IF (VEX.128) THEN 

DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] + DEST[63:0])

DEST[127:64] Å RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] - DEST[127:64])

DEST[VLMAX-1:128] Å 0
ELSEIF (VEX.256)

DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] + DEST[63:0])

DEST[127:64] Å RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] - DEST[127:64])

DEST[191:128] Å RoundFPControl_MXCSR(SRC2[191:128]*SRC3[191:128] + DEST[191:128])

DEST[255:192] Å RoundFPControl_MXCSR(SRC2[255:192]*SRC3[255:192] - DEST[255:192]

FI

Intel C/C++ Compiler Intrinsic Equivalent

VFMSUBADD132PD: __m128d _mm_fmsubadd_pd (__m128d a, __m128d b, __m128d c);

VFMSUBADD213PD: __m128d _mm_fmsubadd_pd (__m128d a, __m128d b, __m128d c);

VFMSUBADD231PD: __m128d _mm_fmsubadd_pd (__m128d a, __m128d b, __m128d c);

VFMSUBADD132PD: __m256d _mm256_fmsubadd_pd (__m256d a, __m256d b, __m256d c);

VFMSUBADD213PD: __m256d _mm256_fmsubadd_pd (__m256d a, __m256d b, __m256d c);
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VFMSUBADD231PD: __m256d _mm256_fmsubadd_pd (__m256d a, __m256d b, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2
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VFMSUBADD132PS/VFMSUBADD213PS/VFMSUBADD231PS — Fused Multiply-Alternating 
Subtract/Add of Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

VFMSUBADD132PS: Multiplies the four or eight packed single-precision floating-point values from the first source 
operand to the four or eight packed single-precision floating-point values in the third source operand. From the infi-
nite precision intermediate result, subtracts the odd single-precision floating-point elements and adds the even 
single-precision floating-point values in the second source operand, performs rounding and stores the resulting 
four or eight packed single-precision floating-point values to the destination operand (first source operand).
VFMSUBADD213PS: Multiplies the four or eight packed single-precision floating-point values from the second 
source operand to the four or eight packed single-precision floating-point values in the first source operand. From 
the infinite precision intermediate result, subtracts the odd single-precision floating-point elements and adds the 
even single-precision floating-point values in the third source operand, performs rounding and stores the resulting 
four or eight packed single-precision floating-point values to the destination operand (first source operand).
VFMSUBADD231PS: Multiplies the four or eight packed single-precision floating-point values from the second 
source operand to the four or eight packed single-precision floating-point values in the third source operand. From 
the infinite precision intermediate result, subtracts the odd single-precision floating-point elements and adds the 
even single-precision floating-point values in the first source operand, performs rounding and stores the resulting 
four or eight packed single-precision floating-point values to the destination operand (first source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.128.66.0F38.W0 97 /r A V/V FMA Multiply packed single-precision floating-point 
values from xmm0 and xmm2/mem, subtract/add 
elements in xmm1 and put result in xmm0.

VFMSUBADD132PS xmm0, xmm1, xmm2/m128

VEX.DDS.128.66.0F38.W0 A7 /r A V/V FMA Multiply packed single-precision floating-point 
values from xmm0 and xmm1, subtract/add ele-
ments in xmm2/mem and put result in xmm0.

VFMSUBADD213PS xmm0, xmm1, xmm2/m128 

VEX.DDS.128.66.0F38.W0 B7 /r A V/V FMA Multiply packed single-precision floating-point 
values from xmm1 and xmm2/mem, sub-
tract/add elements in xmm0 and put result in 
xmm0.

VFMSUBADD231PS xmm0, xmm1, xmm2/m128

VEX.DDS.256.66.0F38.W0 97 /r A V/V FMA Multiply packed single-precision floating-point 
values from ymm0 and ymm2/mem, subtract/add 
elements in ymm1 and put result in ymm0.

VFMSUBADD132PS ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W0 A7 /r A V/V FMA Multiply packed single-precision floating-point 
values from ymm0 and ymm1, subtract/add ele-
ments in ymm2/mem and put result in ymm0.

VFMSUBADD213PS ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W0 B7 /r A V/V FMA Multiply packed single-precision floating-point 
values from ymm1 and ymm2/mem, subtract/add 
elements in ymm0 and put result in ymm0.

VFMSUBADD231PS ymm0, ymm1, ymm2/m256

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations 
with infinite precision inputs and outputs (no rounding).

VFMSUBADD132PS DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =2

ELSEIF (VEX.256)

MAXVL = 4

FI

For i = 0 to MAXVL -1{

n = 64*i;

DEST[n+31:n] Å RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] + SRC2[n+31:n])

DEST[n+63:n+32] Å RoundFPControl_MXCSR(DEST[n+63:n+32]*SRC3[n+63:n+32] -SRC2[n+63:n+32])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

VFMSUBADD213PS DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =2

ELSEIF (VEX.256)

MAXVL = 4

FI

For i = 0 to MAXVL -1{

n = 64*i;

DEST[n+31:n] Å RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] +SRC3[n+31:n])

DEST[n+63:n+32] Å RoundFPControl_MXCSR(SRC2[n+63:n+32]*DEST[n+63:n+32] -SRC3[n+63:n+32])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

VFMSUBADD231PS DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =2

ELSEIF (VEX.256)

MAXVL = 4

FI

For i = 0 to MAXVL -1{

n = 64*i;

DEST[n+31:n] Å RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] + DEST[n+31:n])

DEST[n+63:n+32] Å RoundFPControl_MXCSR(SRC2[n+63:n+32]*SRC3[n+63:n+32] -DEST[n+63:n+32])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI



VFMSUBADD132PS/VFMSUBADD213PS/VFMSUBADD231PS — Fused Multiply-Alternating Subtract/Add of Packed Single-Precision
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Intel C/C++ Compiler Intrinsic Equivalent

VFMSUBADD132PS: __m128 _mm_fmsubadd_ps (__m128 a, __m128 b, __m128 c);

VFMSUBADD213PS: __m128 _mm_fmsubadd_ps (__m128 a, __m128 b, __m128 c);

VFMSUBADD231PS: __m128 _mm_fmsubadd_ps (__m128 a, __m128 b, __m128 c);

VFMSUBADD132PS: __m256 _mm256_fmsubadd_ps (__m256 a, __m256 b, __m256 c);

VFMSUBADD213PS: __m256 _mm256_fmsubadd_ps (__m256 a, __m256 b, __m256 c);

VFMSUBADD231PS: __m256 _mm256_fmsubadd_ps (__m256 a, __m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

See Exceptions Type 2



VFMSUB132PD/VFMSUB213PD/VFMSUB231PD — Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-459

VFMSUB132PD/VFMSUB213PD/VFMSUB231PD — Fused Multiply-Subtract of Packed Double-
Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a set of SIMD multiply-subtract computation on packed double-precision floating-point values using three 
source operands and writes the multiply-subtract results in the destination operand. The destination operand is 
also the first source operand. The second operand must be a SIMD register. The third source operand can be a 
SIMD register or a memory location. 
VFMSUB132PD: Multiplies the two or four packed double-precision floating-point values from the first source 
operand to the two or four packed double-precision floating-point values in the third source operand. From the infi-
nite precision intermediate result, subtracts the two or four packed double-precision floating-point values in the 
second source operand, performs rounding and stores the resulting two or four packed double-precision floating-
point values to the destination operand (first source operand).
VFMSUB213PD: Multiplies the two or four packed double-precision floating-point values from the second source 
operand to the two or four packed double-precision floating-point values in the first source operand. From the infi-
nite precision intermediate result, subtracts the two or four packed double-precision floating-point values in the 
third source operand, performs rounding and stores the resulting two or four packed double-precision floating-
point values to the destination operand (first source operand).
VFMSUB231PD: Multiplies the two or four packed double-precision floating-point values from the second source to 
the two or four packed double-precision floating-point values in the third source operand. From the infinite preci-
sion intermediate result, subtracts the two or four packed double-precision floating-point values in the first source 
operand, performs rounding and stores the resulting two or four packed double-precision floating-point values to 
the destination operand (first source operand).

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.128.66.0F38.W1 9A /r A V/V FMA Multiply packed double-precision floating-point val-
ues from xmm0 and xmm2/mem, subtract xmm1 
and put result in xmm0.

VFMSUB132PD xmm0, xmm1, xmm2/m128

VEX.DDS.128.66.0F38.W1 AA /r A V/V FMA Multiply packed double-precision floating-point val-
ues from xmm0 and xmm1, subtract xmm2/mem 
and put result in xmm0.

VFMSUB213PD xmm0, xmm1, xmm2/m128 

VEX.DDS.128.66.0F38.W1 BA /r A V/V FMA Multiply packed double-precision floating-point val-
ues from xmm1 and xmm2/mem, subtract xmm0 
and put result in xmm0.

VFMSUB231PD xmm0, xmm1, xmm2/m128

VEX.DDS.256.66.0F38.W1 9A /r A V/V FMA Multiply packed double-precision floating-point val-
ues from ymm0 and ymm2/mem, subtract ymm1 

and put result in ymm0.
VFMSUB132PD ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W1 AA /r A V/V FMA Multiply packed double-precision floating-point val-
ues from ymm0 and ymm1, subtract ymm2/mem 
and put result in ymm0.

VFMSUB213PD ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W1 BA /r A V/V FMA Multiply packed double-precision floating-point val-
ues from ymm1 and ymm2/mem, subtract ymm0 
and put result in ymm0.

VFMSUB231PD ymm0, ymm1, ymm2/m256

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations 
with infinite precision inputs and outputs (no rounding).

VFMSUB132PD DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =2

ELSEIF (VEX.256)

MAXVL = 4

FI

For i = 0 to MAXVL-1 {

n = 64*i;

DEST[n+63:n] Å RoundFPControl_MXCSR(DEST[n+63:n]*SRC3[n+63:n] - SRC2[n+63:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

VFMSUB213PD DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =2

ELSEIF (VEX.256)

MAXVL = 4

FI

For i = 0 to MAXVL-1 {

n = 64*i;

DEST[n+63:n] Å RoundFPControl_MXCSR(SRC2[n+63:n]*DEST[n+63:n] - SRC3[n+63:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0

FI

VFMSUB231PD DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =2

ELSEIF (VEX.256)

MAXVL = 4

FI

For i = 0 to MAXVL-1 {

n = 64*i;

DEST[n+63:n] Å RoundFPControl_MXCSR(SRC2[n+63:n]*SRC3[n+63:n] - DEST[n+63:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI



VFMSUB132PD/VFMSUB213PD/VFMSUB231PD — Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-461

Intel C/C++ Compiler Intrinsic Equivalent

VFMSUB132PD: __m128d _mm_fmsub_pd (__m128d a, __m128d b, __m128d c);

VFMSUB213PD: __m128d _mm_fmsub_pd (__m128d a, __m128d b, __m128d c);

VFMSUB231PD: __m128d _mm_fmsub_pd (__m128d a, __m128d b, __m128d c);

VFMSUB132PD: __m256d _mm256_fmsub_pd (__m256d a, __m256d b, __m256d c);

VFMSUB213PD: __m256d _mm256_fmsub_pd (__m256d a, __m256d b, __m256d c);

VFMSUB231PD: __m256d _mm256_fmsub_pd (__m256d a, __m256d b, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

See Exceptions Type 2



VFMSUB132PS/VFMSUB213PS/VFMSUB231PS — Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
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VFMSUB132PS/VFMSUB213PS/VFMSUB231PS — Fused Multiply-Subtract of Packed Single-
Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a set of SIMD multiply-subtract computation on packed single-precision floating-point values using three 
source operands and writes the multiply-subtract results in the destination operand. The destination operand is 
also the first source operand. The second operand must be a SIMD register. The third source operand can be a 
SIMD register or a memory location. 
VFMSUB132PS: Multiplies the four or eight packed single-precision floating-point values from the first source 
operand to the four or eight packed single-precision floating-point values in the third source operand. From the infi-
nite precision intermediate result, subtracts the four or eight packed single-precision floating-point values in the 
second source operand, performs rounding and stores the resulting four or eight packed single-precision floating-
point values to the destination operand (first source operand).
VFMSUB213PS: Multiplies the four or eight packed single-precision floating-point values from the second source 
operand to the four or eight packed single-precision floating-point values in the first source operand. From the infi-
nite precision intermediate result, subtracts the four or eight packed single-precision floating-point values in the 
third source operand, performs rounding and stores the resulting four or eight packed single-precision floating-
point values to the destination operand (first source operand).
VFMSUB231PS: Multiplies the four or eight packed single-precision floating-point values from the second source to 
the four or eight packed single-precision floating-point values in the third source operand. From the infinite preci-
sion intermediate result, subtracts the four or eight packed single-precision floating-point values in the first source 
operand, performs rounding and stores the resulting four or eight packed single-precision floating-point values to 
the destination operand (first source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.128.66.0F38.W0 9A /r A V/V FMA Multiply packed single-precision floating-point values 
from xmm0 and xmm2/mem, subtract xmm1 and put 
result in xmm0.

VFMSUB132PS xmm0, xmm1, xmm2/m128

VEX.DDS.128.66.0F38.W0 AA /r A V/V FMA Multiply packed single-precision floating-point values 
from xmm0 and xmm1, subtract xmm2/mem and put 
result in xmm0.

VFMSUB213PS xmm0, xmm1, xmm2/m128 

VEX.DDS.128.66.0F38.W0 BA /r A V/V FMA Multiply packed single-precision floating-point values 
from xmm1 and xmm2/mem, subtract xmm0 and put 
result in xmm0.

VFMSUB231PS xmm0, xmm1, xmm2/m128

VEX.DDS.256.66.0F38.W0 9A /r A V/V FMA Multiply packed single-precision floating-point values 
from ymm0 and ymm2/mem, subtract ymm1 and put 
result in ymm0.

VFMSUB132PS ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W0 AA /r A V/V FMA Multiply packed single-precision floating-point values 
from ymm0 and ymm1, subtract ymm2/mem and put 
result in ymm0.

VFMSUB213PS ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.0 BA /r A V/V FMA Multiply packed single-precision floating-point values 
from ymm1 and ymm2/mem, subtract ymm0 and put 
result in ymm0.

VFMSUB231PS ymm0, ymm1, ymm2/m256

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA



VFMSUB132PS/VFMSUB213PS/VFMSUB231PS — Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-463

VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations 
with infinite precision inputs and outputs (no rounding).

VFMSUB132PS DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =4

ELSEIF (VEX.256)

MAXVL = 8

FI

For i = 0 to MAXVL-1 {

n = 32*i;

DEST[n+31:n] Å RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] - SRC2[n+31:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

VFMSUB213PS DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =4

ELSEIF (VEX.256)

MAXVL = 8

FI

For i = 0 to MAXVL-1 {

n = 32*i;

DEST[n+31:n] Å RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] - SRC3[n+31:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

VFMSUB231PS DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =4

ELSEIF (VEX.256)

MAXVL = 8

FI

For i = 0 to MAXVL-1 {

n = 32*i;

DEST[n+31:n] Å RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] - DEST[n+31:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI



VFMSUB132PS/VFMSUB213PS/VFMSUB231PS — Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

4-464 Vol. 2B

Intel C/C++ Compiler Intrinsic Equivalent

VFMSUB132PS: __m128 _mm_fmsub_ps (__m128 a, __m128 b, __m128 c);

VFMSUB213PS: __m128 _mm_fmsub_ps (__m128 a, __m128 b, __m128 c);

VFMSUB231PS: __m128 _mm_fmsub_ps (__m128 a, __m128 b, __m128 c);

VFMSUB132PS: __m256 _mm256_fmsub_ps (__m256 a, __m256 b, __m256 c);

VFMSUB213PS: __m256 _mm256_fmsub_ps (__m256 a, __m256 b, __m256 c);

VFMSUB231PS: __m256 _mm256_fmsub_ps (__m256 a, __m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

See Exceptions Type 2



VFMSUB132SD/VFMSUB213SD/VFMSUB231SD — Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-465

VFMSUB132SD/VFMSUB213SD/VFMSUB231SD — Fused Multiply-Subtract of Scalar Double-
Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD multiply-subtract computation on the low packed double-precision floating-point values using 
three source operands and writes the multiply-add result in the destination operand. The destination operand is 
also the first source operand. The second operand must be a SIMD register. The third source operand can be a 
SIMD register or a memory location. 
VFMSUB132SD: Multiplies the low packed double-precision floating-point value from the first source operand to 
the low packed double-precision floating-point value in the third source operand. From the infinite precision inter-
mediate result, subtracts the low packed double-precision floating-point values in the second source operand, 
performs rounding and stores the resulting packed double-precision floating-point value to the destination operand 
(first source operand).
VFMSUB213SD: Multiplies the low packed double-precision floating-point value from the second source operand to 
the low packed double-precision floating-point value in the first source operand. From the infinite precision inter-
mediate result, subtracts the low packed double-precision floating-point value in the third source operand, 
performs rounding and stores the resulting packed double-precision floating-point value to the destination operand 
(first source operand).
VFMSUB231SD: Multiplies the low packed double-precision floating-point value from the second source to the low 
packed double-precision floating-point value in the third source operand. From the infinite precision intermediate 
result, subtracts the low packed double-precision floating-point value in the first source operand, performs 
rounding and stores the resulting packed double-precision floating-point value to the destination operand (first 
source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 64-bit memory location and encoded in rm_field. The upper bits ([VLMAX-1:128]) of the YMM 
destination register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations 
with infinite precision inputs and outputs (no rounding).

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.LIG.128.66.0F38.W1 9B /r A V/V FMA Multiply scalar double-precision floating-point value 
from xmm0 and xmm2/mem, subtract xmm1 and put 
result in xmm0.

VFMSUB132SD xmm0, xmm1, xmm2/m64

VEX.DDS.LIG.128.66.0F38.W1 AB /r A V/V FMA Multiply scalar double-precision floating-point value 
from xmm0 and xmm1, subtract xmm2/mem and put 
result in xmm0.

VFMSUB213SD xmm0, xmm1, xmm2/m64 

VEX.DDS.LIG.128.66.0F38.W1 BB /r A V/V FMA Multiply scalar double-precision floating-point value 
from xmm1 and xmm2/mem, subtract xmm0 and put 
result in xmm0.

VFMSUB231SD xmm0, xmm1, xmm2/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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VFMSUB132SD DEST, SRC2, SRC3 

DEST[63:0] Å RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] - SRC2[63:0])

DEST[127:64] Å DEST[127:64]

DEST[VLMAX-1:128] Å 0

VFMSUB213SD DEST, SRC2, SRC3 

DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] - SRC3[63:0])

DEST[127:64] Å DEST[127:64]

DEST[VLMAX-1:128] Å 0

VFMSUB231SD DEST, SRC2, SRC3 

DEST[63:0] Å RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] - DEST[63:0])

DEST[127:64] Å DEST[127:64]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMSUB132SD: __m128d _mm_fmsub_sd (__m128d a, __m128d b, __m128d c);

VFMSUB213SD: __m128d _mm_fmsub_sd (__m128d a, __m128d b, __m128d c);

VFMSUB231SD: __m128d _mm_fmsub_sd (__m128d a, __m128d b, __m128d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

See Exceptions Type 3



VFMSUB132SS/VFMSUB213SS/VFMSUB231SS — Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-467

VFMSUB132SS/VFMSUB213SS/VFMSUB231SS — Fused Multiply-Subtract of Scalar Single-
Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a SIMD multiply-subtract computation on the low packed single-precision floating-point values using 
three source operands and writes the multiply-add result in the destination operand. The destination operand is 
also the first source operand. The second operand must be a SIMD register. The third source operand can be a 
SIMD register or a memory location. 
VFMSUB132SS: Multiplies the low packed single-precision floating-point value from the first source operand to the 
low packed single-precision floating-point value in the third source operand. From the infinite precision interme-
diate result, subtracts the low packed single-precision floating-point values in the second source operand, 
performs rounding and stores the resulting packed single-precision floating-point value to the destination operand 
(first source operand).
VFMSUB213SS: Multiplies the low packed single-precision floating-point value from the second source operand to 
the low packed single-precision floating-point value in the first source operand. From the infinite precision interme-
diate result, subtracts the low packed single-precision floating-point value in the third source operand, performs 
rounding and stores the resulting packed single-precision floating-point value to the destination operand (first 
source operand).
VFMSUB231SS: Multiplies the low packed single-precision floating-point value from the second source to the low 
packed single-precision floating-point value in the third source operand. From the infinite precision intermediate 
result, subtracts the low packed single-precision floating-point value in the first source operand, performs rounding 
and stores the resulting packed single-precision floating-point value to the destination operand (first source 
operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 32-bit memory location and encoded in rm_field. The upper bits ([VLMAX-1:128]) of the YMM 
destination register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations 
with infinite precision inputs and outputs (no rounding).

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.LIG.128.66.0F38.W0 9B /r A V/V FMA Multiply scalar single-precision floating-point value 
from xmm0 and xmm2/mem, subtract xmm1 and put 
result in xmm0.

VFMSUB132SS xmm0, xmm1, xmm2/m32

VEX.DDS.LIG.128.66.0F38.W0 AB /r A V/V FMA Multiply scalar single-precision floating-point value 
from xmm0 and xmm1, subtract xmm2/mem and put 
result in xmm0.

VFMSUB213SS xmm0, xmm1, xmm2/m32 

VEX.DDS.LIG.128.66.0F38.W0 BB /r A V/V FMA Multiply scalar single-precision floating-point value 
from xmm1 and xmm2/mem, subtract xmm0 and put 
result in xmm0.

VFMSUB231SS xmm0, xmm1, xmm2/m32

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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VFMSUB132SS DEST, SRC2, SRC3 

DEST[31:0] Å RoundFPControl_MXCSR(DEST[31:0]*SRC3[31:0] - SRC2[31:0])

DEST[127:32] Å DEST[127:32]

DEST[VLMAX-1:128] Å 0

VFMSUB213SS DEST, SRC2, SRC3 

DEST[31:0] Å RoundFPControl_MXCSR(SRC2[31:0]*DEST[31:0] - SRC3[31:0])

DEST[127:32] Å DEST[127:32]

DEST[VLMAX-1:128] Å 0

VFMSUB231SS DEST, SRC2, SRC3 

DEST[31:0] Å RoundFPControl_MXCSR(SRC2[31:0]*SRC3[63:0] - DEST[31:0])

DEST[127:32] Å DEST[127:32]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMSUB132SS: __m128 _mm_fmsub_ss (__m128 a, __m128 b, __m128 c);

VFMSUB213SS: __m128 _mm_fmsub_ss (__m128 a, __m128 b, __m128 c);

VFMSUB231SS: __m128 _mm_fmsub_ss (__m128 a, __m128 b, __m128 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

See Exceptions Type 3
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VFNMADD132PD/VFNMADD213PD/VFNMADD231PD — Fused Negative Multiply-Add of Packed 
Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

VFNMADD132PD: Multiplies the two or four packed double-precision floating-point values from the first source 
operand to the two or four packed double-precision floating-point values in the third source operand, adds the 
negated infinite precision intermediate result to the two or four packed double-precision floating-point values in the 
second source operand, performs rounding and stores the resulting two or four packed double-precision floating-
point values to the destination operand (first source operand).
VFNMADD213PD: Multiplies the two or four packed double-precision floating-point values from the second source 
operand to the two or four packed double-precision floating-point values in the first source operand, adds the 
negated infinite precision intermediate result to the two or four packed double-precision floating-point values in the 
third source operand, performs rounding and stores the resulting two or four packed double-precision floating-
point values to the destination operand (first source operand).
VFNMADD231PD: Multiplies the two or four packed double-precision floating-point values from the second source 
to the two or four packed double-precision floating-point values in the third source operand, adds the negated infi-
nite precision intermediate result to the two or four packed double-precision floating-point values in the first source 
operand, performs rounding and stores the resulting two or four packed double-precision floating-point values to 
the destination operand (first source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.128.66.0F38.W1 9C /r A V/V FMA Multiply packed double-precision floating-point val-
ues from xmm0 and xmm2/mem, negate the multi-
plication result and add to xmm1 and put result in 
xmm0.

VFNMADD132PD xmm0, xmm1, xmm2/m128

VEX.DDS.128.66.0F38.W1 AC /r A V/V FMA Multiply packed double-precision floating-point val-
ues from xmm0 and xmm1, negate the multiplica-
tion result and add to xmm2/mem and put result in 
xmm0.

VFNMADD213PD xmm0, xmm1, xmm2/m128 

VEX.DDS.128.66.0F38.W1 BC /r A V/V FMA Multiply packed double-precision floating-point val-
ues from xmm1 and xmm2/mem, negate the multi-
plication result and add to xmm0 and put result in 
xmm0.

VFNMADD231PD xmm0, xmm1, xmm2/m128

VEX.DDS.256.66.0F38.W1 9C /r A V/V FMA Multiply packed double-precision floating-point val-
ues from ymm0 and ymm2/mem, negate the multi-
plication result and add to ymm1 and put result in 
ymm0.

VFNMADD132PD ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W1 AC /r A V/V FMA Multiply packed double-precision floating-point val-
ues from ymm0 and ymm1, negate the multiplica-
tion result and add to ymm2/mem and put result in 
ymm0.

VFNMADD213PD ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W1 BC /r A V/V FMA Multiply packed double-precision floating-point val-
ues from ymm1 and ymm2/mem, negate the multi-
plication result and add to ymm0 and put result in 
ymm0.

VFNMADD231PD ymm0, ymm1, ymm2/m256

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations 
with infinite precision inputs and outputs (no rounding).

VFNMADD132PD DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =2

ELSEIF (VEX.256)

MAXVL = 4

FI

For i = 0 to MAXVL-1 {

n = 64*i;

DEST[n+63:n] Å RoundFPControl_MXCSR(-(DEST[n+63:n]*SRC3[n+63:n]) + SRC2[n+63:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

VFNMADD213PD DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =2

ELSEIF (VEX.256)

MAXVL = 4

FI

For i = 0 to MAXVL-1 {

n = 64*i;

DEST[n+63:n] Å RoundFPControl_MXCSR(-(SRC2[n+63:n]*DEST[n+63:n]) + SRC3[n+63:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

VFNMADD231PD DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =2

ELSEIF (VEX.256)

MAXVL = 4

FI

For i = 0 to MAXVL-1 {

n = 64*i;

DEST[n+63:n] Å RoundFPControl_MXCSR(-(SRC2[n+63:n]*SRC3[n+63:n]) + DEST[n+63:n])

}
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IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

Intel C/C++ Compiler Intrinsic Equivalent

VFNMADD132PD: __m128d _mm_fnmadd_pd (__m128d a, __m128d b, __m128d c);

VFNMADD213PD: __m128d _mm_fnmadd_pd (__m128d a, __m128d b, __m128d c);

VFNMADD231PD: __m128d _mm_fnmadd_pd (__m128d a, __m128d b, __m128d c);

VFNMADD132PD: __m256d _mm256_fnmadd_pd (__m256d a, __m256d b, __m256d c);

VFNMADD213PD: __m256d _mm256_fnmadd_pd (__m256d a, __m256d b, __m256d c);

VFNMADD231PD: __m256d _mm256_fnmadd_pd (__m256d a, __m256d b, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

See Exceptions Type 2
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VFNMADD132PS/VFNMADD213PS/VFNMADD231PS — Fused Negative Multiply-Add of Packed 
Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

VFNMADD132PS: Multiplies the four or eight packed single-precision floating-point values from the first source 
operand to the four or eight packed single-precision floating-point values in the third source operand, adds the 
negated infinite precision intermediate result to the four or eight packed single-precision floating-point values in 
the second source operand, performs rounding and stores the resulting four or eight packed single-precision 
floating-point values to the destination operand (first source operand).
VFNMADD213PS: Multiplies the four or eight packed single-precision floating-point values from the second source 
operand to the four or eight packed single-precision floating-point values in the first source operand, adds the 
negated infinite precision intermediate result to the four or eight packed single-precision floating-point values in 
the third source operand, performs rounding and stores the resulting the four or eight packed single-precision 
floating-point values to the destination operand (first source operand).
VFNMADD231PS: Multiplies the four or eight packed single-precision floating-point values from the second source 
operand to the four or eight packed single-precision floating-point values in the third source operand, adds the 
negated infinite precision intermediate result to the four or eight packed single-precision floating-point values in 
the first source operand, performs rounding and stores the resulting four or eight packed single-precision floating-
point values to the destination operand (first source operand).
VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.128.66.0F38.W0 9C /r A V/V FMA Multiply packed single-precision floating-point val-
ues from xmm0 and xmm2/mem, negate the multi-
plication result and add to xmm1 and put result in 
xmm0.

VFNMADD132PS xmm0, xmm1, xmm2/m128

VEX.DDS.128.66.0F38.W0 AC /r A V/V FMA Multiply packed single-precision floating-point val-
ues from xmm0 and xmm1, negate the multiplica-
tion result and add to xmm2/mem and put result in 
xmm0.

VFNMADD213PS xmm0, xmm1, xmm2/m128 

VEX.DDS.128.66.0F38.W0 BC /r A V/V FMA Multiply packed single-precision floating-point val-
ues from xmm1 and xmm2/mem, negate the multi-
plication result and add to xmm0 and put result in 
xmm0.

VFNMADD231PS xmm0, xmm1, xmm2/m128

VEX.DDS.256.66.0F38.W0 9C /r A V/V FMA Multiply packed single-precision floating-point val-
ues from ymm0 and ymm2/mem, negate the multi-
plication result and add to ymm1 and put result in 
ymm0.

VFNMADD132PS ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W0 AC /r A V/V FMA Multiply packed single-precision floating-point val-
ues from ymm0 and ymm1, negate the multiplica-
tion result and add to ymm2/mem and put result in 
ymm0.

VFNMADD213PS ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.0 BC /r A V/V FMA Multiply packed single-precision floating-point val-
ues from ymm1 and ymm2/mem, negate the multi-
plication result and add to ymm0 and put result in 
ymm0.

VFNMADD231PS ymm0, ymm1, ymm2/m256

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations 
with infinite precision inputs and outputs (no rounding).

VFNMADD132PS DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =4

ELSEIF (VEX.256)

MAXVL = 8

FI

For i = 0 to MAXVL-1 {

n = 32*i;

DEST[n+31:n] Å RoundFPControl_MXCSR(- (DEST[n+31:n]*SRC3[n+31:n]) + SRC2[n+31:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

VFNMADD213PS DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =4

ELSEIF (VEX.256)

MAXVL = 8

FI

For i = 0 to MAXVL-1 {

n = 32*i;

DEST[n+31:n] Å RoundFPControl_MXCSR(- (SRC2[n+31:n]*DEST[n+31:n]) + SRC3[n+31:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

VFNMADD231PS DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =4

ELSEIF (VEX.256)

MAXVL = 8

FI

For i = 0 to MAXVL-1 {

n = 32*i;

DEST[n+31:n] Å RoundFPControl_MXCSR(- (SRC2[n+31:n]*SRC3[n+31:n]) + DEST[n+31:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
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FI

Intel C/C++ Compiler Intrinsic Equivalent

VFNMADD132PS: __m128 _mm_fnmadd_ps (__m128 a, __m128 b, __m128 c);

VFNMADD213PS: __m128 _mm_fnmadd_ps (__m128 a, __m128 b, __m128 c);

VFNMADD231PS: __m128 _mm_fnmadd_ps (__m128 a, __m128 b, __m128 c);

VFNMADD132PS: __m256 _mm256_fnmadd_ps (__m256 a, __m256 b, __m256 c);

VFNMADD213PS: __m256 _mm256_fnmadd_ps (__m256 a, __m256 b, __m256 c);

VFNMADD231PS: __m256 _mm256_fnmadd_ps (__m256 a, __m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

See Exceptions Type 2
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VFNMADD132SD/VFNMADD213SD/VFNMADD231SD — Fused Negative Multiply-Add of Scalar 
Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

VFNMADD132SD: Multiplies the low packed double-precision floating-point value from the first source operand to 
the low packed double-precision floating-point value in the third source operand, adds the negated infinite preci-
sion intermediate result to the low packed double-precision floating-point values in the second source operand, 
performs rounding and stores the resulting packed double-precision floating-point value to the destination operand 
(first source operand).
VFNMADD213SD: Multiplies the low packed double-precision floating-point value from the second source operand 
to the low packed double-precision floating-point value in the first source operand, adds the negated infinite preci-
sion intermediate result to the low packed double-precision floating-point value in the third source operand, 
performs rounding and stores the resulting packed double-precision floating-point value to the destination operand 
(first source operand).
VFNMADD231SD: Multiplies the low packed double-precision floating-point value from the second source to the 
low packed double-precision floating-point value in the third source operand, adds the negated infinite precision 
intermediate result to the low packed double-precision floating-point value in the first source operand, performs 
rounding and stores the resulting packed double-precision floating-point value to the destination operand (first 
source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 64-bit memory location and encoded in rm_field. The upper bits ([VLMAX-1:128]) of the YMM 
destination register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations 
with infinite precision inputs and outputs (no rounding).

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.LIG.128.66.0F38.W1 9D /r A V/V FMA Multiply scalar double-precision floating-point value 
from xmm0 and xmm2/mem, negate the multiplica-
tion result and add to xmm1 and put result in xmm0.

VFNMADD132SD xmm0, xmm1, xmm2/m64

VEX.DDS.LIG.128.66.0F38.W1 AD /r A V/V FMA Multiply scalar double-precision floating-point value 
from xmm0 and xmm1, negate the multiplication 
result and add to xmm2/mem and put result in 
xmm0.

VFNMADD213SD xmm0, xmm1, xmm2/m64 

VEX.DDS.LIG.128.66.0F38.W1 BD /r A V/V FMA Multiply scalar double-precision floating-point value 
from xmm1 and xmm2/mem, negate the multiplica-
tion result and add to xmm0 and put result in xmm0.

VFNMADD231SD xmm0, xmm1, xmm2/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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VFNMADD132SD DEST, SRC2, SRC3 

DEST[63:0] Å RoundFPControl_MXCSR(- (DEST[63:0]*SRC3[63:0]) + SRC2[63:0])

DEST[127:64] Å DEST[127:64]

DEST[VLMAX-1:128] Å 0

VFNMADD213SD DEST, SRC2, SRC3 

DEST[63:0] Å RoundFPControl_MXCSR(- (SRC2[63:0]*DEST[63:0]) + SRC3[63:0])

DEST[127:64] Å DEST[127:64]

DEST[VLMAX-1:128] Å 0

VFNMADD231SD DEST, SRC2, SRC3 

DEST[63:0] Å RoundFPControl_MXCSR(- (SRC2[63:0]*SRC3[63:0]) + DEST[63:0])

DEST[127:64] Å DEST[127:64]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VFNMADD132SD: __m128d _mm_fnmadd_sd (__m128d a, __m128d b, __m128d c);

VFNMADD213SD: __m128d _mm_fnmadd_sd (__m128d a, __m128d b, __m128d c);

VFNMADD231SD: __m128d _mm_fnmadd_sd (__m128d a, __m128d b, __m128d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

See Exceptions Type 3
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VFNMADD132SS/VFNMADD213SS/VFNMADD231SS — Fused Negative Multiply-Add of Scalar 
Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

VFNMADD132SS: Multiplies the low packed single-precision floating-point value from the first source operand to 
the low packed single-precision floating-point value in the third source operand, adds the negated infinite precision 
intermediate result to the low packed single-precision floating-point value in the second source operand, performs 
rounding and stores the resulting packed single-precision floating-point value to the destination operand (first 
source operand).
VFNMADD213SS: Multiplies the low packed single-precision floating-point value from the second source operand 
to the low packed single-precision floating-point value in the first source operand, adds the negated infinite preci-
sion intermediate result to the low packed single-precision floating-point value in the third source operand, 
performs rounding and stores the resulting packed single-precision floating-point value to the destination operand 
(first source operand).
VFNMADD231SS: Multiplies the low packed single-precision floating-point value from the second source operand 
to the low packed single-precision floating-point value in the third source operand, adds the negated infinite preci-
sion intermediate result to the low packed single-precision floating-point value in the first source operand, 
performs rounding and stores the resulting packed single-precision floating-point value to the destination operand 
(first source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 32-bit memory location and encoded in rm_field. The upper bits ([VLMAX-1:128]) of the YMM 
destination register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations 
with infinite precision inputs and outputs (no rounding).

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.LIG.128.66.0F38.W0 9D /r A V/V FMA Multiply scalar single-precision floating-point value 
from xmm0 and xmm2/mem, negate the multiplication 
result and add to xmm1 and put result in xmm0.

VFNMADD132SS xmm0, xmm1, xmm2/m32

VEX.DDS.LIG.128.66.0F38.W0 AD /r A V/V FMA Multiply scalar single-precision floating-point value 
from xmm0 and xmm1, negate the multiplication 
result and add to xmm2/mem and put result in xmm0.

VFNMADD213SS xmm0, xmm1, xmm2/m32 

VEX.DDS.LIG.128.66.0F38.W0 BD /r A V/V FMA Multiply scalar single-precision floating-point value 
from xmm1 and xmm2/mem, negate the multiplication 
result and add to xmm0 and put result in xmm0.

VFNMADD231SS xmm0, xmm1, xmm2/m32

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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VFNMADD132SS DEST, SRC2, SRC3 

DEST[31:0] Å RoundFPControl_MXCSR(- (DEST[31:0]*SRC3[31:0]) + SRC2[31:0])

DEST[127:32] Å DEST[127:32]

DEST[VLMAX-1:128] Å 0

VFNMADD213SS DEST, SRC2, SRC3 

DEST[31:0] Å RoundFPControl_MXCSR(- (SRC2[31:0]*DEST[31:0]) + SRC3[31:0])

DEST[127:32] Å DEST[127:32]

DEST[VLMAX-1:128] Å 0

VFNMADD231SS DEST, SRC2, SRC3 

DEST[31:0] Å RoundFPControl_MXCSR(- (SRC2[31:0]*SRC3[63:0]) + DEST[31:0])

DEST[127:32] Å DEST[127:32]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VFNMADD132SS: __m128 _mm_fnmadd_ss (__m128 a, __m128 b, __m128 c);

VFNMADD213SS: __m128 _mm_fnmadd_ss (__m128 a, __m128 b, __m128 c);

VFNMADD231SS: __m128 _mm_fnmadd_ss (__m128 a, __m128 b, __m128 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

See Exceptions Type 3
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VFNMSUB132PD/VFNMSUB213PD/VFNMSUB231PD — Fused Negative Multiply-Subtract of 
Packed Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

VFNMSUB132PD: Multiplies the two or four packed double-precision floating-point values from the first source 
operand to the two or four packed double-precision floating-point values in the third source operand. From negated 
infinite precision intermediate results, subtracts the two or four packed double-precision floating-point values in 
the second source operand, performs rounding and stores the resulting two or four packed double-precision 
floating-point values to the destination operand (first source operand).
VFMSUB213PD: Multiplies the two or four packed double-precision floating-point values from the second source 
operand to the two or four packed double-precision floating-point values in the first source operand. From negated 
infinite precision intermediate results, subtracts the two or four packed double-precision floating-point values in 
the third source operand, performs rounding and stores the resulting two or four packed double-precision floating-
point values to the destination operand (first source operand).
VFMSUB231PD: Multiplies the two or four packed double-precision floating-point values from the second source to 
the two or four packed double-precision floating-point values in the third source operand. From negated infinite 
precision intermediate results, subtracts the two or four packed double-precision floating-point values in the first 
source operand, performs rounding and stores the resulting two or four packed double-precision floating-point 
values to the destination operand (first source operand).

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.128.66.0F38.W1 9E /r A V/V FMA Multiply packed double-precision floating-point val-
ues from xmm0 and xmm2/mem, negate the multi-
plication result and subtract xmm1 and put result in 
xmm0.

VFNMSUB132PD xmm0, xmm1, xmm2/m128

VEX.DDS.128.66.0F38.W1 AE /r A V/V FMA Multiply packed double-precision floating-point val-
ues from xmm0 and xmm1, negate the multiplica-
tion result and subtract xmm2/mem and put result 
in xmm0.

VFNMSUB213PD xmm0, xmm1, xmm2/m128 

VEX.DDS.128.66.0F38.W1 BE /r A V/V FMA Multiply packed double-precision floating-point val-
ues from xmm1 and xmm2/mem, negate the multi-
plication result and subtract xmm0 and put result in 
xmm0.

VFNMSUB231PD xmm0, xmm1, xmm2/m128

VEX.DDS.256.66.0F38.W1 9E /r A V/V FMA Multiply packed double-precision floating-point val-
ues from ymm0 and ymm2/mem, negate the multi-
plication result and subtract ymm1 and put result in 
ymm0.

VFNMSUB132PD ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W1 AE /r A V/V FMA Multiply packed double-precision floating-point val-
ues from ymm0 and ymm1, negate the multiplica-
tion result and subtract ymm2/mem and put result 
in ymm0.

VFNMSUB213PD ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W1 BE /r A V/V FMA Multiply packed double-precision floating-point val-
ues from ymm1 and ymm2/mem, negate the multi-
plication result and subtract ymm0 and put result in 
ymm0.

VFNMSUB231PD ymm0, ymm1, ymm2/m256

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations 
with infinite precision inputs and outputs (no rounding).

VFNMSUB132PD DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =2

ELSEIF (VEX.256)

MAXVL = 4

FI

For i = 0 to MAXVL-1 {

n = 64*i;

DEST[n+63:n] Å RoundFPControl_MXCSR( - (DEST[n+63:n]*SRC3[n+63:n]) - SRC2[n+63:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

VFNMSUB213PD DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =2

ELSEIF (VEX.256)

MAXVL = 4

FI

For i = 0 to MAXVL-1 {

n = 64*i;

DEST[n+63:n] Å RoundFPControl_MXCSR( - (SRC2[n+63:n]*DEST[n+63:n]) - SRC3[n+63:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

VFNMSUB231PD DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =2

ELSEIF (VEX.256)

MAXVL = 4

FI

For i = 0 to MAXVL-1 {

n = 64*i;

DEST[n+63:n] Å RoundFPControl_MXCSR( - (SRC2[n+63:n]*SRC3[n+63:n]) - DEST[n+63:n])

}
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IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

Intel C/C++ Compiler Intrinsic Equivalent

VFNMSUB132PD: __m128d _mm_fnmsub_pd (__m128d a, __m128d b, __m128d c);

VFNMSUB213PD: __m128d _mm_fnmsub_pd (__m128d a, __m128d b, __m128d c);

VFNMSUB231PD: __m128d _mm_fnmsub_pd (__m128d a, __m128d b, __m128d c);

VFNMSUB132PD: __m256d _mm256_fnmsub_pd (__m256d a, __m256d b, __m256d c);

VFNMSUB213PD: __m256d _mm256_fnmsub_pd (__m256d a, __m256d b, __m256d c);

VFNMSUB231PD: __m256d _mm256_fnmsub_pd (__m256d a, __m256d b, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

See Exceptions Type 2
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VFNMSUB132PS/VFNMSUB213PS/VFNMSUB231PS — Fused Negative Multiply-Subtract of 
Packed Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

VFNMSUB132PS: Multiplies the four or eight packed single-precision floating-point values from the first source 
operand to the four or eight packed single-precision floating-point values in the third source operand. From 
negated infinite precision intermediate results, subtracts the four or eight packed single-precision floating-point 
values in the second source operand, performs rounding and stores the resulting four or eight packed single-preci-
sion floating-point values to the destination operand (first source operand).
VFNMSUB213PS: Multiplies the four or eight packed single-precision floating-point values from the second source 
operand to the four or eight packed single-precision floating-point values in the first source operand. From negated 
infinite precision intermediate results, subtracts the four or eight packed single-precision floating-point values in 
the third source operand, performs rounding and stores the resulting four or eight packed single-precision floating-
point values to the destination operand (first source operand).
VFNMSUB231PS: Multiplies the four or eight packed single-precision floating-point values from the second source 
to the four or eight packed single-precision floating-point values in the third source operand. From negated infinite 
precision intermediate results, subtracts the four or eight packed single-precision floating-point values in the first 
source operand, performs rounding and stores the resulting four or eight packed single-precision floating-point 
values to the destination operand (first source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.128.66.0F38.W0 9E /r A V/V FMA Multiply packed single-precision floating-point values 
from xmm0 and xmm2/mem, negate the multiplica-
tion result and subtract xmm1 and put result in 
xmm0.

VFNMSUB132PS xmm0, xmm1, xmm2/m128

VEX.DDS.128.66.0F38.W0 AE /r A V/V FMA Multiply packed single-precision floating-point values 
from xmm0 and xmm1, negate the multiplication 
result and subtract xmm2/mem and put result in 
xmm0.

VFNMSUB213PS xmm0, xmm1, xmm2/m128 

VEX.DDS.128.66.0F38.W0 BE /r A V/V FMA Multiply packed single-precision floating-point values 
from xmm1 and xmm2/mem, negate the multiplica-
tion result and subtract xmm0 and put result in 
xmm0.

VFNMSUB231PS xmm0, xmm1, xmm2/m128

VEX.DDS.256.66.0F38.W0 9E /r A V/V FMA Multiply packed single-precision floating-point values 
from ymm0 and ymm2/mem, negate the multiplica-
tion result and subtract ymm1 and put result in 
ymm0.

VFNMSUB132PS ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W0 AE /r A V/V FMA Multiply packed single-precision floating-point values 
from ymm0 and ymm1, negate the multiplication 
result and subtract ymm2/mem and put result in 
ymm0.

VFNMSUB213PS ymm0, ymm1, ymm2/m256

VEX.DDS.256.66.0F38.0 BE /r A V/V FMA Multiply packed single-precision floating-point values 
from ymm1 and ymm2/mem, negate the multiplica-
tion result and subtract ymm0 and put result in 
ymm0.

VFNMSUB231PS ymm0, ymm1, ymm2/m256

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination 
register are zeroed.

VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in 
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a 
YMM register or a 256-bit memory location and encoded in rm_field. 
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations 
with infinite precision inputs and outputs (no rounding).

VFNMSUB132PS DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =4

ELSEIF (VEX.256)

MAXVL = 8

FI

For i = 0 to MAXVL-1 {

n = 32*i;

DEST[n+31:n] Å RoundFPControl_MXCSR( - (DEST[n+31:n]*SRC3[n+31:n]) - SRC2[n+31:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

VFNMSUB213PS DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =4

ELSEIF (VEX.256)

MAXVL = 8

FI

For i = 0 to MAXVL-1 {

n = 32*i;

DEST[n+31:n] Å RoundFPControl_MXCSR( - (SRC2[n+31:n]*DEST[n+31:n]) - SRC3[n+31:n])

}

IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

VFNMSUB231PS DEST, SRC2, SRC3 

IF (VEX.128) THEN 

MAXVL =4

ELSEIF (VEX.256)

MAXVL = 8

FI

For i = 0 to MAXVL-1 {

n = 32*i;

DEST[n+31:n] Å RoundFPControl_MXCSR( - (SRC2[n+31:n]*SRC3[n+31:n]) - DEST[n+31:n])

}
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IF (VEX.128) THEN

DEST[VLMAX-1:128] Å 0
FI

Intel C/C++ Compiler Intrinsic Equivalent

VFNMSUB132PS: __m128 _mm_fnmsub_ps (__m128 a, __m128 b, __m128 c);

VFNMSUB213PS: __m128 _mm_fnmsub_ps (__m128 a, __m128 b, __m128 c);

VFNMSUB231PS: __m128 _mm_fnmsub_ps (__m128 a, __m128 b, __m128 c);

VFNMSUB132PS: __m256 _mm256_fnmsub_ps (__m256 a, __m256 b, __m256 c);

VFNMSUB213PS: __m256 _mm256_fnmsub_ps (__m256 a, __m256 b, __m256 c);

VFNMSUB231PS: __m256 _mm256_fnmsub_ps (__m256 a, __m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

See Exceptions Type 2
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VFNMSUB132SD/VFNMSUB213SD/VFNMSUB231SD — Fused Negative Multiply-Subtract of 
Scalar Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

VFNMSUB132SD: Multiplies the low packed double-precision floating-point value from the first source operand to 
the low packed double-precision floating-point value in the third source operand. From negated infinite precision 
intermediate result, subtracts the low double-precision floating-point value in the second source operand, 
performs rounding and stores the resulting packed double-precision floating-point value to the destination operand 
(first source operand).
VFNMSUB213SD: Multiplies the low packed double-precision floating-point value from the second source operand 
to the low packed double-precision floating-point value in the first source operand. From negated infinite precision 
intermediate result, subtracts the low double-precision floating-point value in the third source operand, performs 
rounding and stores the resulting packed double-precision floating-point value to the destination operand (first 
source operand).
VFNMSUB231SD: Multiplies the low packed double-precision floating-point value from the second source to the low 
packed double-precision floating-point value in the third source operand. From negated infinite precision interme-
diate result, subtracts the low double-precision floating-point value in the first source operand, performs rounding 
and stores the resulting packed double-precision floating-point value to the destination operand (first source 
operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 64-bit memory location and encoded in rm_field. The upper bits ([VLMAX-1:128]) of the YMM 
destination register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations 
with infinite precision inputs and outputs (no rounding).

Opcode/
Instruction

Op/ 
En

64/32-
bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.LIG.128.66.0F38.W1 9F /r A V/V FMA Multiply scalar double-precision floating-point value 
from xmm0 and xmm2/mem, negate the multiplica-
tion result and subtract xmm1 and put result in 
xmm0.

VFNMSUB132SD xmm0, xmm1, xmm2/m64

VEX.DDS.LIG.128.66.0F38.W1 AF /r A V/V FMA Multiply scalar double-precision floating-point value 
from xmm0 and xmm1, negate the multiplication 
result and subtract xmm2/mem and put result in 
xmm0.

VFNMSUB213SD xmm0, xmm1, xmm2/m64 

VEX.DDS.LIG.128.66.0F38.W1 BF /r A V/V FMA Multiply scalar double-precision floating-point value 
from xmm1 and xmm2/mem, negate the multiplica-
tion result and subtract xmm0 and put result in 
xmm0.

VFNMSUB231SD xmm0, xmm1, xmm2/m64

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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VFNMSUB132SD DEST, SRC2, SRC3 

DEST[63:0] Å RoundFPControl_MXCSR(- (DEST[63:0]*SRC3[63:0]) - SRC2[63:0])

DEST[127:64] Å DEST[127:64]

DEST[VLMAX-1:128] Å 0

VFNMSUB213SD DEST, SRC2, SRC3 

DEST[63:0] Å RoundFPControl_MXCSR(- (SRC2[63:0]*DEST[63:0]) - SRC3[63:0])

DEST[127:64] Å DEST[127:64]

DEST[VLMAX-1:128] Å 0

VFNMSUB231SD DEST, SRC2, SRC3 

DEST[63:0] Å RoundFPControl_MXCSR(- (SRC2[63:0]*SRC3[63:0]) - DEST[63:0])

DEST[127:64] Å DEST[127:64]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VFNMSUB132SD: __m128d _mm_fnmsub_sd (__m128d a, __m128d b, __m128d c);

VFNMSUB213SD: __m128d _mm_fnmsub_sd (__m128d a, __m128d b, __m128d c);

VFNMSUB231SD: __m128d _mm_fnmsub_sd (__m128d a, __m128d b, __m128d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

See Exceptions Type 3
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VFNMSUB132SS/VFNMSUB213SS/VFNMSUB231SS — Fused Negative Multiply-Subtract of 
Scalar Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

VFNMSUB132SS: Multiplies the low packed single-precision floating-point value from the first source operand to 
the low packed single-precision floating-point value in the third source operand. From negated infinite precision 
intermediate result, the low single-precision floating-point value in the second source operand, performs rounding 
and stores the resulting packed single-precision floating-point value to the destination operand (first source 
operand).
VFNMSUB213SS: Multiplies the low packed single-precision floating-point value from the second source operand to 
the low packed single-precision floating-point value in the first source operand. From negated infinite precision 
intermediate result, the low single-precision floating-point value in the third source operand, performs rounding 
and stores the resulting packed single-precision floating-point value to the destination operand (first source 
operand).
VFNMSUB231SS: Multiplies the low packed single-precision floating-point value from the second source to the low 
packed single-precision floating-point value in the third source operand. From negated infinite precision interme-
diate result, the low single-precision floating-point value in the first source operand, performs rounding and stores 
the resulting packed single-precision floating-point value to the destination operand (first source operand).
VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in 
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a 
XMM register or a 32-bit memory location and encoded in rm_field. The upper bits ([VLMAX-1:128]) of the YMM 
destination register are zeroed.
Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the 
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations 
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction 
column. See also Section 14.5.1, “FMA Instruction Operand Order and Arithmetic Behavior” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations 
with infinite precision inputs and outputs (no rounding).

VFNMSUB132SS DEST, SRC2, SRC3 

DEST[31:0] Å RoundFPControl_MXCSR(- (DEST[31:0]*SRC3[31:0]) - SRC2[31:0])

DEST[127:32] Å DEST[127:32]

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.LIG.128.66.0F38.W0 9F /r A V/V FMA Multiply scalar single-precision floating-point value from 
xmm0 and xmm2/mem, negate the multiplication result 
and subtract xmm1 and put result in xmm0.

VFNMSUB132SS xmm0, xmm1, xmm2/m32

VEX.DDS.LIG.128.66.0F38.W0 AF /r A V/V FMA Multiply scalar single-precision floating-point value from 
xmm0 and xmm1, negate the multiplication result and 
subtract xmm2/mem and put result in xmm0.

VFNMSUB213SS xmm0, xmm1, xmm2/m32 

VEX.DDS.LIG.128.66.0F38.W0 BF /r A V/V FMA Multiply scalar single-precision floating-point value from 
xmm1 and xmm2/mem, negate the multiplication result 
and subtract xmm0 and put result in xmm0.

VFNMSUB231SS xmm0, xmm1, xmm2/m32

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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DEST[VLMAX-1:128] Å 0

VFNMSUB213SS DEST, SRC2, SRC3 

DEST[31:0] Å RoundFPControl_MXCSR(- (SRC2[31:0]*DEST[31:0]) - SRC3[31:0])

DEST[127:32] Å DEST[127:32]

DEST[VLMAX-1:128] Å 0

VFNMSUB231SS DEST, SRC2, SRC3 

DEST[31:0] Å RoundFPControl_MXCSR(- (SRC2[31:0]*SRC3[63:0]) - DEST[31:0])

DEST[127:32] Å DEST[127:32]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VFNMSUB132SS: __m128 _mm_fnmsub_ss (__m128 a, __m128 b, __m128 c);

VFNMSUB213SS: __m128 _mm_fnmsub_ss (__m128 a, __m128 b, __m128 c);

VFNMSUB231SS: __m128 _mm_fnmsub_ss (__m128 a, __m128 b, __m128 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions

See Exceptions Type 3
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VGATHERDPD/VGATHERQPD — Gather Packed DP FP Values Using Signed Dword/Qword Indices 

Instruction Operand Encoding

Description

The instruction conditionally loads up to 2 or 4 double-precision floating-point values from memory addresses 
specified by the memory operand (the second operand) and using qword indices. The memory operand uses the 
VSIB form of the SIB byte to specify a general purpose register operand as the common base, a vector register for 
an array of indices relative to the base and a constant scale factor.
The mask operand (the third operand) specifies the conditional load operation from each memory address and the 
corresponding update of each data element of the destination operand (the first operand). Conditionality is speci-
fied by the most significant bit of each data element of the mask register. If an element’s mask bit is not set, the 
corresponding element of the destination register is left unchanged. The width of data element in the destination 
register and mask register are identical. The entire mask register will be set to zero by this instruction unless the 
instruction causes an exception. 
Using dword indices in the lower half of the mask register, the instruction conditionally loads up to 2 or 4 double-
precision floating-point values from the VSIB addressing memory operand, and updates the destination register. 
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception 
is triggered by an element other than the rightmost one with its mask bit set).  When this happens, the destination 
register and the mask operand are partially updated; those elements that have been gathered are placed into the 
destination register and have their mask bits set to zero.  If any traps or interrupts are pending from already gath-
ered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruction 
breakpoint is not re-triggered when the instruction is continued.
If the data size and index size are different, part of the destination register and part of the mask register do not 
correspond to any elements being gathered.  This instruction sets those parts to zero.  It may do this to one or both 
of those registers even if the instruction triggers an exception, and even if the instruction triggers the exception 
before gathering any elements.

Opcode/
Instruction

Op/ 
En

64/3
2-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.128.66.0F38.W1 92 /r RMV V/V AVX2 Using dword indices specified in vm32x, gather double-pre-
cision FP values from memory conditioned on mask speci-
fied by xmm2. Conditionally gathered elements are merged 
into xmm1.

VGATHERDPD xmm1, vm32x, xmm2

VEX.DDS.128.66.0F38.W1 93 /r RMV V/V AVX2 Using qword indices specified in vm64x, gather double-pre-
cision FP values from memory conditioned on mask speci-
fied by xmm2. Conditionally gathered elements are merged 
into xmm1.

VGATHERQPD xmm1, vm64x, xmm2

VEX.DDS.256.66.0F38.W1 92 /r RMV V/V AVX2 Using dword indices specified in vm32x, gather double-pre-
cision FP values from memory conditioned on mask speci-
fied by ymm2. Conditionally gathered elements are merged 
into ymm1.

VGATHERDPD ymm1, vm32x, ymm2

VEX.DDS.256.66.0F38.W1 93 /r RMV V/V AVX2 Using qword indices specified in vm64y, gather double-pre-
cision FP values from memory conditioned on mask speci-
fied by ymm2. Conditionally gathered elements are merged 
into ymm1.

VGATHERQPD ymm1, vm64y, ymm2

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMV ModRM:reg (r,w) BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

VEX.vvvv (r, w) NA
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VEX.128 version: The instruction will gather two double-precision floating-point values.  For dword indices, only the 
lower two indices in the vector index register are used.
VEX.256 version: The instruction will gather four double-precision floating-point values.  For dword indices, only 
the lower four indices in the vector index register are used.
Note that:
• If any pair of the index, mask, or destination registers are the same, this instruction results a #UD fault.
• The values may be read from memory in any order.  Memory ordering with other instructions follows the Intel-

64 memory-ordering model.
• Faults are delivered in a right-to-left manner.  That is, if a fault is triggered by an element and delivered, all 

elements closer to the LSB of the destination will be completed (and non-faulting).  Individual elements closer 
to the MSB may or may not be completed.  If a given element triggers multiple faults, they are delivered in the 
conventional order.

• Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements to 
the left of a faulting one may be gathered before the fault is delivered.  A given implementation of this 
instruction is repeatable - given the same input values and architectural state, the same set of elements to the 
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• This instruction will cause a #UD if the address size attribute is 16-bit.
• This instruction will cause a #UD if the memory operand is encoded without the SIB byte.
• This instruction should not be used to access memory mapped I/O as the ordering of the individual loads it does 

is implementation specific, and some implementations may use loads larger than the data element size or load 
elements an indeterminate number of times.

• The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-
bit mode, if the scale is greater than one).  In this case, the most significant bits beyond the number of address 
bits are ignored.

Operation

DEST Å SRC1;

BASE_ADDR: base register encoded in VSIB addressing;

VINDEX: the vector index register encoded by VSIB addressing;

SCALE: scale factor encoded by SIB:[7:6];

DISP: optional 1, 4 byte displacement;

MASK Å SRC3;

VGATHERDPD (VEX.128 version)

FOR jÅ 0 to 1

i Å j * 64;

IF MASK[63+i] THEN

MASK[i +63:i] Å 0xFFFFFFFF_FFFFFFFF; // extend from most significant bit

ELSE

MASK[i +63:i] Å 0;

FI;

ENDFOR

FOR jÅ 0 to 1

k Å j * 32;

i Å j * 64;

DATA_ADDR Å BASE_ADDR + (SignExtend(VINDEX[k+31:k])*SCALE + DISP;

IF MASK[63+i] THEN

DEST[i +63:i] Å FETCH_64BITS(DATA_ADDR); // a fault exits the instruction

FI;

MASK[i +63: i] Å 0;

ENDFOR
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MASK[VLMAX-1:128] Å 0;

DEST[VLMAX-1:128] Å 0;

(non-masked elements of the mask register have the content of respective element  cleared)

VGATHERQPD (VEX.128 version)

FOR jÅ 0 to 1

i Å j * 64;

IF MASK[63+i] THEN

MASK[i +63:i] Å 0xFFFFFFFF_FFFFFFFF; // extend from most significant bit

ELSE

MASK[i +63:i] Å 0;

FI;

ENDFOR

FOR jÅ 0 to 1 

i Å j * 64;

DATA_ADDR Å BASE_ADDR + (SignExtend(VINDEX1[i+63:i])*SCALE + DISP;

IF MASK[63+i] THEN

DEST[i +63:i] Å FETCH_64BITS(DATA_ADDR); // a fault exits this instruction

FI;

MASK[i +63: i] Å 0;

ENDFOR

MASK[VLMAX-1:128] Å 0;

DEST[VLMAX-1:128] Å 0;

(non-masked elements of the mask register have the content of respective element  cleared)

VGATHERQPD (VEX.256 version)

FOR jÅ 0 to 3

i Å j * 64;

IF MASK[63+i] THEN

MASK[i +63:i] Å 0xFFFFFFFF_FFFFFFFF; // extend from most significant bit

ELSE

MASK[i +63:i] Å 0;

FI;

ENDFOR

FOR jÅ 0 to 3

i Å j * 64;

DATA_ADDR Å BASE_ADDR + (SignExtend(VINDEX1[i+63:i])*SCALE + DISP;

IF MASK[63+i] THEN

DEST[i +63:i] Å FETCH_64BITS(DATA_ADDR); // a fault exits the instruction

FI;

MASK[i +63: i] Å 0;

ENDFOR

(non-masked elements of the mask register have the content of respective element  cleared)

VGATHERDPD (VEX.256 version)

FOR jÅ 0 to 3

i Å j * 64;

IF MASK[63+i] THEN

MASK[i +63:i] Å 0xFFFFFFFF_FFFFFFFF; // extend from most significant bit

ELSE

MASK[i +63:i] Å 0;

FI;

ENDFOR

FOR jÅ 0 to 3
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k Å j * 32;

i Å j * 64;

DATA_ADDR Å BASE_ADDR + (SignExtend(VINDEX1[k+31:k])*SCALE + DISP;

IF MASK[63+i] THEN

DEST[i +63:i] Å FETCH_64BITS(DATA_ADDR); // a fault exits the instruction

FI;

MASK[i +63:i] Å 0;

ENDFOR

(non-masked elements of the mask register have the content of respective element  cleared)

Intel C/C++ Compiler Intrinsic Equivalent

VGATHERDPD: __m128d _mm_i32gather_pd (double const * base, __m128i index, const int scale);

VGATHERDPD: __m128d _mm_mask_i32gather_pd (__m128d src, double const * base, __m128i index, __m128d mask, const int 
scale);

VGATHERDPD: __m256d _mm256_i32gather_pd (double const * base, __m128i index, const int scale);

VGATHERDPD: __m256d _mm256_mask_i32gather_pd (__m256d src, double const * base, __m128i index, __m256d mask, const int 
scale);

VGATHERQPD: __m128d _mm_i64gather_pd (double const * base, __m128i index, const int scale);

VGATHERQPD: __m128d _mm_mask_i64gather_pd (__m128d src, double const * base, __m128i index, __m128d mask, const int 
scale);

VGATHERQPD: __m256d _mm256_i64gather_pd (double const * base, __m256i index, const int scale);

VGATHERQPD: __m256d _mm256_mask_i64gather_pd (__m256d src, double const * base, __m256i index, __m256d mask, const int 
scale);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 12
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VGATHERDPS/VGATHERQPS — Gather Packed SP FP values Using Signed Dword/Qword Indices 

Instruction Operand Encoding

Description

The instruction conditionally loads up to 4 or 8 single-precision floating-point values from memory addresses spec-
ified by the memory operand (the second operand) and using dword indices. The memory operand uses the VSIB 
form of the SIB byte to specify a general purpose register operand as the common base, a vector register for an 
array of indices relative to the base and a constant scale factor.
The mask operand (the third operand) specifies the conditional load operation from each memory address and the 
corresponding update of each data element of the destination operand (the first operand). Conditionality is speci-
fied by the most significant bit of each data element of the mask register. If an element’s mask bit is not set, the 
corresponding element of the destination register is left unchanged. The width of data element in the destination 
register and mask register are identical. The entire mask register will be set to zero by this instruction unless the 
instruction causes an exception. 
Using qword indices, the instruction conditionally loads up to 2 or 4 single-precision floating-point values from the 
VSIB addressing memory operand, and updates the lower half of the destination register. The upper 128 or 256 
bits of the destination register are zero’ed with qword indices.
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception 
is triggered by an element other than the rightmost one with its mask bit set).  When this happens, the destination 
register and the mask operand are partially updated; those elements that have been gathered are placed into the 
destination register and have their mask bits set to zero.  If any traps or interrupts are pending from already gath-
ered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruction 
breakpoint is not re-triggered when the instruction is continued.
If the data size and index size are different, part of the destination register and part of the mask register do not 
correspond to any elements being gathered.  This instruction sets those parts to zero.  It may do this to one or both 
of those registers even if the instruction triggers an exception, and even if the instruction triggers the exception 
before gathering any elements.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.128.66.0F38.W0 92 /r RMV V/V AVX2 Using dword indices specified in vm32x, gather single-preci-
sion FP values from memory conditioned on mask specified 
by xmm2. Conditionally gathered elements are merged into 
xmm1.

VGATHERDPS xmm1, vm32x, xmm2

VEX.DDS.128.66.0F38.W0 93 /r RMV V/V AVX2 Using qword indices specified in vm64x, gather single-preci-
sion FP values from memory conditioned on mask specified 
by xmm2. Conditionally gathered elements are merged into 
xmm1.

VGATHERQPS xmm1, vm64x, xmm2

VEX.DDS.256.66.0F38.W0 92 /r RMV V/V AVX2 Using dword indices specified in vm32y, gather single-preci-
sion FP values from memory conditioned on mask specified 
by ymm2. Conditionally gathered elements are merged into 
ymm1.

VGATHERDPS ymm1, vm32y, ymm2

VEX.DDS.256.66.0F38.W0 93 /r RMV V/V AVX2 Using qword indices specified in vm64y, gather single-preci-
sion FP values from memory conditioned on mask specified 
by xmm2. Conditionally gathered elements are merged into 
xmm1.

VGATHERQPS xmm1, vm64y, xmm2

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r,w) BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

VEX.vvvv (r, w) NA
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VEX.128 version: For dword indices, the instruction will gather four single-precision floating-point values.  For 
qword indices, the instruction will gather two values and zeroes the upper 64 bits of the destination.
VEX.256 version: For dword indices, the instruction will gather eight single-precision floating-point values.  For 
qword indices, the instruction will gather four values and zeroes the upper 128 bits of the destination.
Note that:
• If any pair of the index, mask, or destination registers are the same, this instruction results a UD fault.
• The values may be read from memory in any order.  Memory ordering with other instructions follows the Intel-

64 memory-ordering model.
• Faults are delivered in a right-to-left manner.  That is, if a fault is triggered by an element and delivered, all 

elements closer to the LSB of the destination will be completed (and non-faulting).  Individual elements closer 
to the MSB may or may not be completed.  If a given element triggers multiple faults, they are delivered in the 
conventional order.

• Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements to 
the left of a faulting one may be gathered before the fault is delivered.  A given implementation of this 
instruction is repeatable - given the same input values and architectural state, the same set of elements to the 
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• This instruction will cause a #UD if the address size attribute is 16-bit.
• This instruction will cause a #UD if the memory operand is encoded without the SIB byte.
• This instruction should not be used to access memory mapped I/O as the ordering of the individual loads it does 

is implementation specific, and some implementations may use loads larger than the data element size or load 
elements an indeterminate number of times.

• The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-
bit mode, if the scale is greater than one).  In this case, the most significant bits beyond the number of address 
bits are ignored.

Operation

DEST Å SRC1;

BASE_ADDR: base register encoded in VSIB addressing;

VINDEX: the vector index register encoded by VSIB addressing;

SCALE: scale factor encoded by SIB:[7:6];

DISP: optional 1, 4 byte displacement;

MASK Å SRC3;

VGATHERDPS (VEX.128 version)

FOR jÅ 0 to 3

i Å j * 32;

IF MASK[31+i] THEN

MASK[i +31:i] Å 0xFFFFFFFF; // extend from most significant bit

ELSE

MASK[i +31:i] Å 0;

FI;

ENDFOR

MASK[VLMAX-1:128] Å 0;

FOR jÅ 0 to 3 

i Å j * 32;

DATA_ADDR Å BASE_ADDR + (SignExtend(VINDEX[i+31:i])*SCALE + DISP;

IF MASK[31+i] THEN

DEST[i +31:i] Å FETCH_32BITS(DATA_ADDR); // a fault exits the instruction

FI;

MASK[i +31:i] Å 0;

ENDFOR
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DEST[VLMAX-1:128] Å 0;

(non-masked elements of the mask register have the content of respective element  cleared)

VGATHERQPS (VEX.128 version)

FOR jÅ 0 to 3

i Å j * 32;

IF MASK[31+i] THEN

MASK[i +31:i] Å 0xFFFFFFFF; // extend from most significant bit

ELSE

MASK[i +31:i] Å 0;

FI;

ENDFOR

MASK[VLMAX-1:128] Å 0;

FOR jÅ 0 to 1 

k Å j * 64;

i Å j * 32;

DATA_ADDR Å BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;

IF MASK[31+i] THEN

DEST[i +31:i] Å FETCH_32BITS(DATA_ADDR); // a fault exits the instruction

FI;

MASK[i +31:i] Å 0;

ENDFOR

MASK[127:64] Å 0;

DEST[VLMAX-1:64] Å 0;

(non-masked elements of the mask register have the content of respective element  cleared)

VGATHERDPS (VEX.256 version)

FOR jÅ 0 to 7

i Å j * 32;

IF MASK[31+i] THEN

MASK[i +31:i] Å 0xFFFFFFFF; // extend from most significant bit

ELSE

MASK[i +31:i] Å 0;

FI;

ENDFOR

FOR jÅ 0 to 7

i Å j * 32;

DATA_ADDR Å BASE_ADDR + (SignExtend(VINDEX1[i+31:i])*SCALE + DISP;

IF MASK[31+i] THEN

DEST[i +31:i] Å FETCH_32BITS(DATA_ADDR); // a fault exits the instruction

FI;

MASK[i +31:i] Å 0;

ENDFOR

(non-masked elements of the mask register have the content of respective element  cleared)

VGATHERQPS (VEX.256 version)

FOR jÅ 0 to 7

i Å j * 32;

IF MASK[31+i] THEN

MASK[i +31:i] Å 0xFFFFFFFF; // extend from most significant bit

ELSE

MASK[i +31:i] Å 0;

FI;

ENDFOR
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FOR jÅ 0 to 3

k Å j * 64;

i Å j * 32;

DATA_ADDR Å BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;

IF MASK[31+i] THEN

DEST[i +31:i] Å FETCH_32BITS(DATA_ADDR); // a fault exits the instruction

FI;

MASK[i +31:i] Å 0;

ENDFOR

MASK[VLMAX-1:128] Å 0;

DEST[VLMAX-1:128] Å 0;

(non-masked elements of the mask register have the content of respective element  cleared)

Intel C/C++ Compiler Intrinsic Equivalent

VGATHERDPS: __m128 _mm_i32gather_ps (float const * base, __m128i index, const int scale);

VGATHERDPS: __m128 _mm_mask_i32gather_ps (__m128 src, float const * base, __m128i index, __m128 mask, const int scale);

VGATHERDPS: __m256 _mm256_i32gather_ps (float const * base, __m256i index, const int scale);

VGATHERDPS: __m256 _mm256_mask_i32gather_ps (__m256 src, float const * base, __m256i index, __m256 mask, const int 
scale);

VGATHERQPS: __m128 _mm_i64gather_ps (float const * base, __m128i index, const int scale);

VGATHERQPS: __m128 _mm_mask_i64gather_ps (__m128 src, float const * base, __m128i index, __m128 mask, const int scale);

VGATHERQPS: __m128 _mm256_i64gather_ps (float const * base, __m256i index, const int scale);

VGATHERQPS: __m128 _mm256_mask_i64gather_ps (__m128 src, float const * base, __m256i index, __m128 mask, const int 
scale);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 12
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VPGATHERDD/VPGATHERQD — Gather Packed Dword Values Using Signed Dword/Qword 
Indices 

Instruction Operand Encoding

Description

The instruction conditionally loads up to 4 or 8 dword values from memory addresses specified by the memory 
operand (the second operand) and using dword indices. The memory operand uses the VSIB form of the SIB byte 
to specify a general purpose register operand as the common base, a vector register for an array of indices relative 
to the base and a constant scale factor.
The mask operand (the third operand) specifies the conditional load operation from each memory address and the 
corresponding update of each data element of the destination operand (the first operand). Conditionality is speci-
fied by the most significant bit of each data element of the mask register. If an element’s mask bit is not set, the 
corresponding element of the destination register is left unchanged. The width of data element in the destination 
register and mask register are identical. The entire mask register will be set to zero by this instruction unless the 
instruction causes an exception. 
Using qword indices, the instruction conditionally loads up to 2 or 4 dword values from the VSIB addressing 
memory operand, and updates the lower half of the destination register. The upper 128 or 256 bits of the destina-
tion register are zero’ed with qword indices.
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception 
is triggered by an element other than the rightmost one with its mask bit set).  When this happens, the destination 
register and the mask operand are partially updated; those elements that have been gathered are placed into the 
destination register and have their mask bits set to zero.  If any traps or interrupts are pending from already gath-
ered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruction 
breakpoint is not re-triggered when the instruction is continued.
If the data size and index size are different, part of the destination register and part of the mask register do not 
correspond to any elements being gathered.  This instruction sets those parts to zero.  It may do this to one or both 
of those registers even if the instruction triggers an exception, and even if the instruction triggers the exception 
before gathering any elements.
VEX.128 version: For dword indices, the instruction will gather four dword values.  For qword indices, the instruc-
tion will gather two values and zeroes the upper 64 bits of the destination.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.128.66.0F38.W0 90 /r RMV V/V AVX2 Using dword indices specified in vm32x, gather dword val-
ues from memory conditioned on mask specified by 
xmm2. Conditionally gathered elements are merged into 
xmm1.

VPGATHERDD xmm1, vm32x, xmm2

VEX.DDS.128.66.0F38.W0 91 /r RMV V/V AVX2 Using qword indices specified in vm64x, gather dword val-
ues from memory conditioned on mask specified by 
xmm2. Conditionally gathered elements are merged into 
xmm1.

VPGATHERQD xmm1, vm64x, xmm2

VEX.DDS.256.66.0F38.W0 90 /r RMV V/V AVX2 Using dword indices specified in vm32y, gather dword 
from memory conditioned on mask specified by ymm2. 
Conditionally gathered elements are merged into ymm1.

VPGATHERDD ymm1, vm32y, ymm2

VEX.DDS.256.66.0F38.W0 91 /r RMV V/V AVX2 Using qword indices specified in vm64y, gather dword val-
ues from memory conditioned on mask specified by 
xmm2. Conditionally gathered elements are merged into 
xmm1.

VPGATHERQD xmm1, vm64y, xmm2

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMV ModRM:reg (r,w) BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

VEX.vvvv (r, w) NA
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VEX.256 version: For dword indices, the instruction will gather eight dword values.  For qword indices, the instruc-
tion will gather four values and zeroes the upper 128 bits of the destination.
Note that:
• If any pair of the index, mask, or destination registers are the same, this instruction results a UD fault.
• The values may be read from memory in any order.  Memory ordering with other instructions follows the Intel-

64 memory-ordering model.
• Faults are delivered in a right-to-left manner.  That is, if a fault is triggered by an element and delivered, all 

elements closer to the LSB of the destination will be completed (and non-faulting).  Individual elements closer 
to the MSB may or may not be completed.  If a given element triggers multiple faults, they are delivered in the 
conventional order.

• Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements to 
the left of a faulting one may be gathered before the fault is delivered.  A given implementation of this 
instruction is repeatable - given the same input values and architectural state, the same set of elements to the 
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• This instruction will cause a #UD if the address size attribute is 16-bit.
• This instruction will cause a #UD if the memory operand is encoded without the SIB byte.
• This instruction should not be used to access memory mapped I/O as the ordering of the individual loads it does 

is implementation specific, and some implementations may use loads larger than the data element size or load 
elements an indeterminate number of times.

• The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-
bit mode, if the scale is greater than one).  In this case, the most significant bits beyond the number of address 
bits are ignored.

Operation

DEST Å SRC1;

BASE_ADDR: base register encoded in VSIB addressing;

VINDEX: the vector index register encoded by VSIB addressing;

SCALE: scale factor encoded by SIB:[7:6];

DISP: optional 1, 4 byte displacement;

MASK Å SRC3;

VPGATHERDD (VEX.128 version)

FOR jÅ 0 to 3

i Å j * 32;

IF MASK[31+i] THEN

MASK[i +31:i] Å 0xFFFFFFFF; // extend from most significant bit

ELSE

MASK[i +31:i] Å 0;

FI;

ENDFOR

MASK[VLMAX-1:128] Å 0;

FOR jÅ 0 to 3 

i Å j * 32;

DATA_ADDR Å BASE_ADDR + (SignExtend(VINDEX[i+31:i])*SCALE + DISP;

IF MASK[31+i] THEN

DEST[i +31:i] Å FETCH_32BITS(DATA_ADDR); // a fault exits the instruction

FI;

MASK[i +31:i] Å 0;

ENDFOR

DEST[VLMAX-1:128] Å 0;

(non-masked elements of the mask register have the content of respective element  cleared)
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VPGATHERQD (VEX.128 version)

FOR jÅ 0 to 3

i Å j * 32;

IF MASK[31+i] THEN

MASK[i +31:i] Å 0xFFFFFFFF; // extend from most significant bit

ELSE

MASK[i +31:i] Å 0;

FI;

ENDFOR

MASK[VLMAX-1:128] Å 0;

FOR jÅ 0 to 1 

k Å j * 64;

i Å j * 32;

DATA_ADDR Å BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;

IF MASK[31+i] THEN

DEST[i +31:i] Å FETCH_32BITS(DATA_ADDR); // a fault exits the instruction

FI;

MASK[i +31:i] Å 0;

ENDFOR

MASK[127:64] Å 0;

DEST[VLMAX-1:64] Å 0;

(non-masked elements of the mask register have the content of respective element  cleared)

VPGATHERDD (VEX.256 version)

FOR jÅ 0 to 7

i Å j * 32;

IF MASK[31+i] THEN

MASK[i +31:i] Å 0xFFFFFFFF; // extend from most significant bit

ELSE

MASK[i +31:i] Å 0;

FI;

ENDFOR

FOR jÅ 0 to 7

i Å j * 32;

DATA_ADDR Å BASE_ADDR + (SignExtend(VINDEX1[i+31:i])*SCALE + DISP;

IF MASK[31+i] THEN

DEST[i +31:i] Å FETCH_32BITS(DATA_ADDR); // a fault exits the instruction

FI;

MASK[i +31:i] Å 0;

ENDFOR

(non-masked elements of the mask register have the content of respective element  cleared)

VPGATHERQD (VEX.256 version)

FOR jÅ 0 to 7

i Å j * 32;

IF MASK[31+i] THEN

MASK[i +31:i] Å 0xFFFFFFFF; // extend from most significant bit

ELSE

MASK[i +31:i] Å 0;

FI;

ENDFOR

FOR jÅ 0 to 3

k Å j * 64;

i Å j * 32;
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DATA_ADDR Å BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;

IF MASK[31+i] THEN

DEST[i +31:i] Å FETCH_32BITS(DATA_ADDR); // a fault exits the instruction

FI;

MASK[i +31:i] Å 0;

ENDFOR

MASK[VLMAX-1:128] Å 0;

DEST[VLMAX-1:128] Å 0;

(non-masked elements of the mask register have the content of respective element  cleared)

Intel C/C++ Compiler Intrinsic Equivalent

VPGATHERDD: __m128i _mm_i32gather_epi32 (int const * base, __m128i index, const int scale);

VPGATHERDD: __m128i _mm_mask_i32gather_epi32 (__m128i src, int const * base, __m128i index, __m128i mask, const int scale);

VPGATHERDD: __m256i _mm256_i32gather_epi32 ( int const * base, __m256i index, const int scale);

VPGATHERDD: __m256i _mm256_mask_i32gather_epi32 (__m256i src, int const * base, __m256i index, __m256i mask, const int 
scale);

VPGATHERQD: __m128i _mm_i64gather_epi32 (int const * base, __m128i index, const int scale);

VPGATHERQD: __m128i _mm_mask_i64gather_epi32 (__m128i src, int const * base, __m128i index, __m128i mask, const int scale);

VPGATHERQD: __m128i _mm256_i64gather_epi32 (int const * base, __m256i index, const int scale);

VPGATHERQD: __m128i _mm256_mask_i64gather_epi32 (__m128i src, int const * base, __m256i index, __m128i mask, const int 
scale);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 12
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VPGATHERDQ/VPGATHERQQ — Gather Packed Qword Values Using Signed Dword/Qword 
Indices 

Instruction Operand Encoding

Description

The instruction conditionally loads up to 2 or 4 qword values from memory addresses specified by the memory 
operand (the second operand) and using qword indices. The memory operand uses the VSIB form of the SIB byte 
to specify a general purpose register operand as the common base, a vector register for an array of indices relative 
to the base and a constant scale factor.
The mask operand (the third operand) specifies the conditional load operation from each memory address and the 
corresponding update of each data element of the destination operand (the first operand). Conditionality is speci-
fied by the most significant bit of each data element of the mask register. If an element’s mask bit is not set, the 
corresponding element of the destination register is left unchanged. The width of data element in the destination 
register and mask register are identical. The entire mask register will be set to zero by this instruction unless the 
instruction causes an exception. 
Using dword indices in the lower half of the mask register, the instruction conditionally loads up to 2 or 4 qword 
values from the VSIB addressing memory operand, and updates the destination register. 
This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception 
is triggered by an element other than the rightmost one with its mask bit set).  When this happens, the destination 
register and the mask operand are partially updated; those elements that have been gathered are placed into the 
destination register and have their mask bits set to zero.  If any traps or interrupts are pending from already gath-
ered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruction 
breakpoint is not re-triggered when the instruction is continued.
If the data size and index size are different, part of the destination register and part of the mask register do not 
correspond to any elements being gathered.  This instruction sets those parts to zero.  It may do this to one or both 
of those registers even if the instruction triggers an exception, and even if the instruction triggers the exception 
before gathering any elements.
VEX.128 version: The instruction will gather two qword values.  For dword indices, only the lower two indices in the 
vector index register are used.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.DDS.128.66.0F38.W1 90 /r RMV V/V AVX2 Using dword indices specified in vm32x, gather qword val-
ues from memory conditioned on mask specified by 
xmm2. Conditionally gathered elements are merged into 
xmm1.

VPGATHERDQ xmm1, vm32x, xmm2

VEX.DDS.128.66.0F38.W1 91 /r RMV V/V AVX2 Using qword indices specified in vm64x, gather qword val-
ues from memory conditioned on mask specified by 
xmm2. Conditionally gathered elements are merged into 
xmm1.

VPGATHERQQ xmm1, vm64x, xmm2

VEX.DDS.256.66.0F38.W1 90 /r RMV V/V AVX2 Using dword indices specified in vm32x, gather qword val-
ues from memory conditioned on mask specified by 
ymm2. Conditionally gathered elements are merged into 
ymm1.

VPGATHERDQ ymm1, vm32x, ymm2

VEX.DDS.256.66.0F38.W1 91 /r RMV V/V AVX2 Using qword indices specified in vm64y, gather qword val-
ues from memory conditioned on mask specified by 
ymm2. Conditionally gathered elements are merged into 
ymm1.

VPGATHERQQ ymm1, vm64y, ymm2

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r,w) BaseReg (R): VSIB:base,
VectorReg(R): VSIB:index

VEX.vvvv (r, w) NA
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VEX.256 version: The instruction will gather four qword values.  For dword indices, only the lower four indices in 
the vector index register are used.
Note that:
• If any pair of the index, mask, or destination registers are the same, this instruction results a UD fault.
• The values may be read from memory in any order.  Memory ordering with other instructions follows the Intel-

64 memory-ordering model.
• Faults are delivered in a right-to-left manner.  That is, if a fault is triggered by an element and delivered, all 

elements closer to the LSB of the destination will be completed (and non-faulting).  Individual elements closer 
to the MSB may or may not be completed.  If a given element triggers multiple faults, they are delivered in the 
conventional order.

• Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements to 
the left of a faulting one may be gathered before the fault is delivered.  A given implementation of this 
instruction is repeatable - given the same input values and architectural state, the same set of elements to the 
left of the faulting one will be gathered.

• This instruction does not perform AC checks, and so will never deliver an AC fault.
• This instruction will cause a #UD if the address size attribute is 16-bit.
• This instruction will cause a #UD if the memory operand is encoded without the SIB byte.
• This instruction should not be used to access memory mapped I/O as the ordering of the individual loads it does 

is implementation specific, and some implementations may use loads larger than the data element size or load 
elements an indeterminate number of times.

• The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-
bit mode, if the scale is greater than one).  In this case, the most significant bits beyond the number of address 
bits are ignored.

Operation

DEST Å SRC1;

BASE_ADDR: base register encoded in VSIB addressing;

VINDEX: the vector index register encoded by VSIB addressing;

SCALE: scale factor encoded by SIB:[7:6];

DISP: optional 1, 4 byte displacement;

MASK Å SRC3;

VPGATHERDQ (VEX.128 version)

FOR jÅ 0 to 1

i Å j * 64;

IF MASK[63+i] THEN

MASK[i +63:i] Å 0xFFFFFFFF_FFFFFFFF; // extend from most significant bit

ELSE

MASK[i +63:i] Å 0;

FI;

ENDFOR

FOR jÅ 0 to 1

k Å j * 32;

i Å j * 64;

DATA_ADDR Å BASE_ADDR + (SignExtend(VINDEX[k+31:k])*SCALE + DISP;

IF MASK[63+i] THEN

DEST[i +63:i] Å FETCH_64BITS(DATA_ADDR); // a fault exits the instruction

FI;

MASK[i +63:i] Å 0;

ENDFOR

MASK[VLMAX-1:128] Å 0;

DEST[VLMAX-1:128] Å 0;
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(non-masked elements of the mask register have the content of respective element  cleared)

VPGATHERQQ (VEX.128 version)

FOR jÅ 0 to 1

i Å j * 64;

IF MASK[63+i] THEN

MASK[i +63:i] Å 0xFFFFFFFF_FFFFFFFF; // extend from most significant bit

ELSE

MASK[i +63:i] Å 0;

FI;

ENDFOR

FOR jÅ 0 to 1 

i Åj * 64;

DATA_ADDR Å BASE_ADDR + (SignExtend(VINDEX1[i+63:i])*SCALE + DISP;

IF MASK[63+i] THEN

DEST[i +63:i] Å FETCH_64BITS(DATA_ADDR); // a fault exits the instruction

FI;

MASK[i +63:i] Å 0;

ENDFOR

MASK[VLMAX-1:128] Å 0;

DEST[VLMAX-1:128] Å 0;

(non-masked elements of the mask register have the content of respective element  cleared)

VPGATHERQQ (VEX.256 version)

FOR jÅ 0 to 3

i Å j * 64;

IF MASK[63+i] THEN

MASK[i +63:i] Å 0xFFFFFFFF_FFFFFFFF; // extend from most significant bit

ELSE

MASK[i +63:i] Å 0;

FI;

ENDFOR

FOR jÅ 0 to 3

i Å j * 64;

DATA_ADDR Å BASE_ADDR + (SignExtend(VINDEX1[i+63:i])*SCALE + DISP;

IF MASK[63+i] THEN

DEST[i +63:i] Å FETCH_64BITS(DATA_ADDR); // a fault exits the instruction

FI;

MASK[i +63:i] Å 0;

ENDFOR

(non-masked elements of the mask register have the content of respective element  cleared)

VPGATHERDQ (VEX.256 version)

FOR jÅ 0 to 3

i Å j * 64;

IF MASK[63+i] THEN

MASK[i +63:i] Å 0xFFFFFFFF_FFFFFFFF; // extend from most significant bit

ELSE

MASK[i +63:i] Å 0;

FI;

ENDFOR

FOR jÅ 0 to 3

k Å j * 32;

i Å j * 64;
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DATA_ADDR Å BASE_ADDR + (SignExtend(VINDEX1[k+31:k])*SCALE + DISP;

IF MASK[63+i] THEN

DEST[i +63:i] Å FETCH_64BITS(DATA_ADDR); // a fault exits the instruction

FI;

MASK[i +63:i] Å 0;

ENDFOR

(non-masked elements of the mask register have the content of respective element  cleared)

Intel C/C++ Compiler Intrinsic Equivalent

VPGATHERDQ: __m128i _mm_i32gather_epi64 (int64 const * base, __m128i index, const int scale);

VPGATHERDQ: __m128i _mm_mask_i32gather_epi64 (__m128i src, int64 const * base, __m128i index, __m128i mask, const int 
scale);

VPGATHERDQ: __m256i _mm256_i32gather_epi64 ( int64 const * base, __m128i index, const int scale);

VPGATHERDQ: __m256i _mm256_mask_i32gather_epi64 (__m256i src, int64 const * base, __m128i index, __m256i mask, const int 
scale);

VPGATHERQQ: __m128i _mm_i64gather_epi64 (int64 const * base, __m128i index, const int scale);

VPGATHERQQ: __m128i _mm_mask_i64gather_epi64 (__m128i src, int64 const * base, __m128i index, __m128i mask, const int 
scale);

VPGATHERQQ: __m256i _mm256_i64gather_epi64 (int64 const * base, __m256i index, const int scale);

VPGATHERQQ: __m256i _mm256_mask_i64gather_epi64 (__m256i src, int64 const * base, __m256i index, __m256i mask, const int 
scale);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 12
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VINSERTF128 — Insert Packed Floating-Point Values

Instruction Operand Encoding

Description

Performs an insertion of 128-bits of packed floating-point values from the second source operand (third operand) 
into an the destination operand (first operand) at an 128-bit offset from imm8[0]. The remaining portions of the 
destination are written by the corresponding fields of the first source operand (second operand). The second 
source operand can be either an XMM register or a 128-bit memory location.
The high 7 bits of the immediate are ignored.

Operation

TEMP[255:0] Å SRC1[255:0]

CASE (imm8[0]) OF

0: TEMP[127:0] Å SRC2[127:0]

1: TEMP[255:128] Å SRC2[127:0]

ESAC

DEST ÅTEMP

Intel C/C++ Compiler Intrinsic Equivalent

INSERTF128:  __m256 _mm256_insertf128_ps (__m256 a, __m128 b, int offset);

INSERTF128:  __m256d _mm256_insertf128_pd (__m256d a, __m128d b, int offset);

INSERTF128:  __m256i _mm256_insertf128_si256 (__m256i a, __m128i b, int offset);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 6; additionally
#UD If VEX.W = 1.

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDS.256.66.0F3A.W0 18 /r ib

VINSERTF128 ymm1, ymm2, xmm3/m128, imm8

RVM V/V AVX Insert a single precision floating-point value 
selected by imm8 from xmm3/m128 into 
ymm2 at the specified destination element 
specified by imm8 and zero out destination 
elements in ymm1 as indicated in imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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VINSERTI128 — Insert Packed Integer Values

Instruction Operand Encoding

Description

Performs an insertion of 128-bits of packed integer data from the second source operand (third operand) into an 
the destination operand (first operand) at a 128-bit offset from imm8[0]. The remaining portions of the destination 
are written by the corresponding fields of the first source operand (second operand). The second source operand 
can be either an XMM register or a 128-bit memory location.
The high 7 bits of the immediate are ignored.
VEX.L must be 1; an attempt to execute this instruction with VEX.L=0 will cause #UD.

Operation

VINSERTI128

TEMP[255:0] Å SRC1[255:0]

CASE (imm8[0]) OF

0: TEMP[127:0] ÅSRC2[127:0]

1: TEMP[255:128] Å SRC2[127:0]

ESAC

DEST ÅTEMP

Intel C/C++ Compiler Intrinsic Equivalent

VINSERTI128: __m256i _mm256_inserti128_si256 (__m256i a, __m128i b, int offset);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 6; additionally
#UD If VEX.L = 0,

If VEX.W = 1.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDS.256.66.0F3A.W0 38 /r ib RVMI V/V AVX2 Insert 128-bits of integer data from xmm3/mem 
and the remaining values from ymm2 into 
ymm1.

VINSERTI128 ymm1, ymm2, xmm3/m128, imm8

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVMI ModRM:reg (w) VEX.vvvv ModRM:r/m (r) Imm8
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VMASKMOV—Conditional SIMD Packed Loads and Stores

Instruction Operand Encoding

Description

Conditionally moves packed data elements from the second source operand into the corresponding data element 
of the destination operand, depending on the mask bits associated with each data element. The mask bits are 
specified in the first source operand. 
The mask bit for each data element is the most significant bit of that element in the first source operand. If a mask 
is 1, the corresponding data element is copied from the second source operand to the destination operand. If the 
mask is 0, the corresponding data element is set to zero in the load form of these instructions, and unmodified in 
the store form. 
The second source operand is a memory address for the load form of these instruction. The destination operand is 
a memory address for the store form of these instructions. The other operands are both XMM registers (for 
VEX.128 version) or YMM registers (for VEX.256 version).
Faults occur only due to mask-bit required memory accesses that caused the faults. Faults will not occur due to 
referencing any memory location if the corresponding mask bit for that memory location is 0. For example, no 
faults will be detected if the mask bits are all zero.
Unlike previous MASKMOV instructions (MASKMOVQ and MASKMOVDQU), a nontemporal hint is not applied to 
these instructions.
Instruction behavior on alignment check reporting with mask bits of less than all 1s are the same as with mask bits 
of all 1s.
VMASKMOV should not be used to access memory mapped I/O and un-cached memory as the access and the 
ordering of the individual loads or stores it does is implementation specific. 

Opcode/
Instruction

Op/ 
En

64/32-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDS.128.66.0F38.W0 2C /r

VMASKMOVPS xmm1, xmm2, m128

RVM V/V AVX Conditionally load packed single-precision values from 
m128 using mask in xmm2 and store in xmm1.

VEX.NDS.256.66.0F38.W0 2C /r

VMASKMOVPS ymm1, ymm2, m256

RVM V/V AVX Conditionally load packed single-precision values from 
m256 using mask in ymm2 and store in ymm1.

VEX.NDS.128.66.0F38.W0 2D /r

VMASKMOVPD xmm1, xmm2, m128

RVM V/V AVX Conditionally load packed double-precision values from 
m128 using mask in xmm2 and store in xmm1.

VEX.NDS.256.66.0F38.W0 2D /r

VMASKMOVPD ymm1, ymm2, m256

RVM V/V AVX Conditionally load packed double-precision values from 
m256 using mask in ymm2 and store in ymm1.

VEX.NDS.128.66.0F38.W0 2E /r

VMASKMOVPS m128, xmm1, xmm2

MVR V/V AVX Conditionally store packed single-precision values from 
xmm2 using mask in xmm1.

VEX.NDS.256.66.0F38.W0 2E /r

VMASKMOVPS m256, ymm1, ymm2

MVR V/V AVX Conditionally store packed single-precision values from 
ymm2 using mask in ymm1.

VEX.NDS.128.66.0F38.W0 2F /r

VMASKMOVPD m128, xmm1, xmm2

MVR V/V AVX Conditionally store packed double-precision values from 
xmm2 using mask in xmm1.

VEX.NDS.256.66.0F38.W0 2F /r

VMASKMOVPD m256, ymm1, ymm2

MVR V/V AVX Conditionally store packed double-precision values from 
ymm2 using mask in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

MVR ModRM:r/m (w) VEX.vvvv (r) ModRM:reg (r) NA
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In cases where mask bits indicate data should not be loaded or stored paging A and D bits will be set in an imple-
mentation dependent way. However, A and D bits are always set for pages where data is actually loaded/stored.
Note: for load forms, the first source (the mask) is encoded in VEX.vvvv; the second source is encoded in rm_field, 
and the destination register is encoded in reg_field.
Note: for store forms, the first source (the mask) is encoded in VEX.vvvv; the second source register is encoded in 
reg_field, and the destination memory location is encoded in rm_field.

Operation

VMASKMOVPS -128-bit load 

DEST[31:0] Å IF (SRC1[31]) Load_32(mem) ELSE 0 

DEST[63:32] Å IF (SRC1[63]) Load_32(mem + 4) ELSE 0 

DEST[95:64] Å IF (SRC1[95]) Load_32(mem + 8) ELSE 0 

DEST[127:97] Å IF (SRC1[127]) Load_32(mem + 12) ELSE 0 

DEST[VLMAX-1:128] Å 0

DEST[31:0] Å IF (SRC1[31]) Load_32(mem) ELSE 0 

DEST[63:32] Å IF (SRC1[63]) Load_32(mem + 4) ELSE 0 

DEST[95:64] Å IF (SRC1[95]) Load_32(mem + 8) ELSE 0 

DEST[127:96] Å IF (SRC1[127]) Load_32(mem + 12) ELSE 0 

DEST[159:128] Å IF (SRC1[159]) Load_32(mem + 16) ELSE 0 

DEST[191:160] Å IF (SRC1[191]) Load_32(mem + 20) ELSE 0 

DEST[223:192] Å IF (SRC1[223]) Load_32(mem + 24) ELSE 0 

DEST[255:224] Å IF (SRC1[255]) Load_32(mem + 28) ELSE 0 

VMASKMOVPD - 128-bit load 

DEST[63:0] Å IF (SRC1[63]) Load_64(mem) ELSE 0 

DEST[127:64] Å IF (SRC1[127]) Load_64(mem + 16) ELSE 0

DEST[VLMAX-1:128] Å 0

VMASKMOVPD - 256-bit load

DEST[63:0] Å IF (SRC1[63]) Load_64(mem) ELSE 0 

DEST[127:64] Å IF (SRC1[127]) Load_64(mem + 8) ELSE 0 

DEST[195:128] Å IF (SRC1[191]) Load_64(mem + 16) ELSE 0 

DEST[255:196] Å IF (SRC1[255]) Load_64(mem + 24) ELSE 0 

VMASKMOVPS - 128-bit store

IF (SRC1[31]) DEST[31:0] Å SRC2[31:0] 

IF (SRC1[63]) DEST[63:32] Å SRC2[63:32] 

IF (SRC1[95]) DEST[95:64] Å SRC2[95:64] 

IF (SRC1[127]) DEST[127:96] Å SRC2[127:96] 

VMASKMOVPS - 256-bit store

IF (SRC1[31]) DEST[31:0] Å SRC2[31:0] 

IF (SRC1[63]) DEST[63:32] Å SRC2[63:32] 

IF (SRC1[95]) DEST[95:64] Å SRC2[95:64] 

IF (SRC1[127]) DEST[127:96] Å SRC2[127:96] 

IF (SRC1[159]) DEST[159:128] ÅSRC2[159:128] 

IF (SRC1[191]) DEST[191:160] Å SRC2[191:160] 

IF (SRC1[223]) DEST[223:192] Å SRC2[223:192] 

IF (SRC1[255]) DEST[255:224] Å SRC2[255:224] 

VMASKMOVPD - 128-bit store

IF (SRC1[63]) DEST[63:0] Å SRC2[63:0] 

IF (SRC1[127]) DEST[127:64] ÅSRC2[127:64] 
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VMASKMOVPD - 256-bit store

IF (SRC1[63]) DEST[63:0] Å SRC2[63:0] 

IF (SRC1[127]) DEST[127:64] ÅSRC2[127:64] 

VMASKMOVPS - 256-bit load

IF (SRC1[191]) DEST[191:128] Å SRC2[191:128] 

IF (SRC1[255]) DEST[255:192] Å SRC2[255:192] 

Intel C/C++ Compiler Intrinsic Equivalent

__m256  _mm256_maskload_ps(float const *a, __m256i mask)

void    _mm256_maskstore_ps(float *a, __m256i mask, __m256 b)

__m256d _mm256_maskload_pd(double *a, __m256i mask);

void    _mm256_maskstore_pd(double *a, __m256i mask, __m256d b);

__m128 _mm128_maskload_ps(float const *a, __m128i mask)

void    _mm128_maskstore_ps(float *a, __m128i mask, __m128 b)

__m128d _mm128_maskload_pd(double *a, __m128i mask);

void    _mm128_maskstore_pd(double *a, __m128i mask, __m128d b);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 6 (No AC# reported for any mask bit combinations);
additionally
#UD If VEX.W = 1.
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VPBLENDD — Blend Packed Dwords

Instruction Operand Encoding

Description

Dword elements from the source operand (second operand) are conditionally written to the destination operand 
(first operand) depending on bits in the immediate operand (third operand). The immediate bits (bits 7:0) form a 
mask that determines whether the corresponding word in the destination is copied from the source. If a bit in the 
mask, corresponding to a word, is “1", then the word is copied, else the word is unchanged.
VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The 
first source and destination operands are XMM registers. Bits (VLMAX-1:128) of the corresponding YMM register 
are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register 
or a 256-bit memory location. The destination operand is a YMM register. 

Operation

VPBLENDD (VEX.256 encoded version)

IF (imm8[0] == 1) THEN DEST[31:0] Å SRC2[31:0]

ELSE DEST[31:0] Å SRC1[31:0]

IF (imm8[1] == 1) THEN DEST[63:32] Å SRC2[63:32]

ELSE DEST[63:32] Å SRC1[63:32]

IF (imm8[2] == 1) THEN DEST[95:64] Å SRC2[95:64]

ELSE DEST[95:64] Å SRC1[95:64]

IF (imm8[3] == 1) THEN DEST[127:96] Å SRC2[127:96]

ELSE DEST[127:96] Å SRC1[127:96]

IF (imm8[4] == 1) THEN DEST[159:128] Å SRC2[159:128]

ELSE DEST[159:128] Å SRC1[159:128]

IF (imm8[5] == 1) THEN DEST[191:160] Å SRC2[191:160]

ELSE DEST[191:160] Å SRC1[191:160]

IF (imm8[6] == 1) THEN DEST[223:192] Å SRC2[223:192]

ELSE DEST[223:192] Å SRC1[223:192]

IF (imm8[7] == 1) THEN DEST[255:224] Å SRC2[255:224]

ELSE DEST[255:224] Å SRC1[255:224]

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDS.128.66.0F3A.W0 02 /r ib RVMI V/V AVX2 Select dwords from xmm2 and xmm3/m128 from 
mask specified in imm8 and store the values into 
xmm1.

VPBLENDD xmm1, xmm2, xmm3/m128, imm8

VEX.NDS.256.66.0F3A.W0 02 /r ib RVMI V/V AVX2 Select dwords from ymm2 and ymm3/m256 from 
mask specified in imm8 and store the values into 
ymm1.

VPBLENDD ymm1, ymm2, ymm3/m256, imm8

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVMI ModRM:reg (w) VEX.vvvv ModRM:r/m (r) Imm8
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VPBLENDD (VEX.128 encoded version)

IF (imm8[0] == 1) THEN DEST[31:0] Å SRC2[31:0]

ELSE DEST[31:0] Å SRC1[31:0]

IF (imm8[1] == 1) THEN DEST[63:32] Å SRC2[63:32]

ELSE DEST[63:32] Å SRC1[63:32]

IF (imm8[2] == 1) THEN DEST[95:64] Å SRC2[95:64]

ELSE DEST[95:64] Å SRC1[95:64]

IF (imm8[3] == 1) THEN DEST[127:96] Å SRC2[127:96]

ELSE DEST[127:96] Å SRC1[127:96]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VPBLENDD: __m128i _mm_blend_epi32 (__m128i v1, __m128i v2, const int mask)

VPBLENDD: __m256i _mm256_blend_epi32 (__m256i v1, __m256i v2, const int mask)

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.W = 1.
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VPBROADCAST—Broadcast Integer Data

Instruction Operand Encoding

Description

Load integer data from the source operand (second operand) and broadcast to all elements of the destination 
operand (first operand).
The destination operand is a YMM register. The source operand is 8-bit, 16-bit 32-bit, 64-bit memory location or the 
low 8-bit, 16-bit 32-bit, 64-bit data in an XMM register. VPBROADCASTB/D/W/Q also support XMM register as the 
source operand. 
VBROADCASTI128: The destination operand is a YMM register. The source operand is 128-bit memory location. 
Register source encodings for VBROADCASTI128 are reserved and will #UD.
VPBROADCASTB/W/D/Q is supported in both 128-bit and 256-bit wide versions. 

VBROADCASTI128 is only supported as a 256-bit wide version.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. 
Attempts to execute any VPBROADCAST* instruction with VEX.W = 1 will cause #UD. If VBROADCASTI128 is 
encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will cause an #UD exception.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.128.66.0F38.W0 78 /r RM V/V AVX2 Broadcast a byte integer in the source operand to six-
teen locations in xmm1.VPBROADCASTB xmm1, xmm2/m8

VEX.256.66.0F38.W0 78 /r RM V/V AVX2 Broadcast a byte integer in the source operand to thirty-
two locations in ymm1.VPBROADCASTB ymm1, xmm2/m8

VEX.128.66.0F38.W0 79 /r RM V/V AVX2 Broadcast a word integer in the source operand to eight 
locations in xmm1.VPBROADCASTW xmm1, xmm2/m16

VEX.256.66.0F38.W0 79 /r RM V/V AVX2 Broadcast a word integer in the source operand to six-
teen locations in ymm1.VPBROADCASTW ymm1, xmm2/m16

VEX.128.66.0F38.W0 58 /r RM V/V AVX2 Broadcast a dword integer in the source operand to four 
locations in xmm1.VPBROADCASTD xmm1, xmm2/m32

VEX.256.66.0F38.W0 58 /r RM V/V AVX2 Broadcast a dword integer in the source operand to eight 
locations in ymm1.VPBROADCASTD ymm1, xmm2/m32

VEX.128.66.0F38.W0 59 /r RM V/V AVX2 Broadcast a qword element in mem to two locations in 
xmm1.VPBROADCASTQ xmm1, xmm2/m64

VEX.256.66.0F38.W0 59 /r RM V/V AVX2 Broadcast a qword element in mem to four locations in 
ymm1.VPBROADCASTQ ymm1, xmm2/m64

VEX.256.66.0F38.W0 5A /r

VBROADCASTI128 ymm1, m128

RM V/V AVX2 Broadcast 128 bits of integer data in mem to low and 
high 128-bits in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Figure 4-33.  VPBROADCASTD Operation (VEX.256 encoded version)

Figure 4-34.  VPBROADCASTD Operation (128-bit version)

Figure 4-35.  VPBROADCASTQ Operation

DEST

m32 X0

X0X0 X0X0 X0X0 X0X0

DEST

m32 X0

X0X0 X00 X00 00

DEST

m64 X0

X0X0X0X0
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Figure 4-36.  VBROADCASTI128 Operation

Operation

VPBROADCASTB (VEX.128 encoded version)

temp Å SRC[7:0]

FOR j Å 0 TO 15

DEST[7+j*8: j*8] Å temp

ENDFOR

DEST[VLMAX-1:128] Å 0

VPBROADCASTB (VEX.256 encoded version)

temp Å SRC[7:0]

FOR j Å 0 TO 31

DEST[7+j*8: j*8] Å temp

ENDFOR

VPBROADCASTW (VEX.128 encoded version)

temp Å SRC[15:0]

FOR j Å 0 TO 7

DEST[15+j*16: j*16] Å temp

ENDFOR

DEST[VLMAX-1:128] Å 0

VPBROADCASTW (VEX.256 encoded version)

temp Å SRC[15:0]

FOR j Å 0 TO 15

DEST[15+j*16: j*16] Å temp

ENDFOR

VPBROADCASTD (128 bit version)

temp Å SRC[31:0]

FOR j Å 0 TO 3

DEST[31+j*32: j*32] Å temp

ENDFOR

DEST[VLMAX-1:128] Å 0

DEST

m128i X0

X0X0
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VPBROADCASTD (VEX.256 encoded version)

temp Å SRC[31:0]

FOR j Å 0 TO 7

DEST[31+j*32: j*32] Å temp

ENDFOR

VPBROADCASTQ (VEX.128 encoded version)

temp Å SRC[63:0]

DEST[63:0] Å temp

DEST[127:64] Å temp

DEST[VLMAX-1:128] Å 0

VPBROADCASTQ (VEX.256 encoded version)

temp Å SRC[63:0]

DEST[63:0] Å temp

DEST[127:64] Å temp

DEST[191:128] Å temp

DEST[255:192] Å temp

VBROADCASTI128

temp Å SRC[127:0]

DEST[127:0] Å temp

DEST[VLMAX-1:128] Å temp

Intel C/C++ Compiler Intrinsic Equivalent

VPBROADCASTB: __m256i _mm256_broadcastb_epi8(__m128i );

VPBROADCASTW: __m256i _mm256_broadcastw_epi16(__m128i );

VPBROADCASTD: __m256i _mm256_broadcastd_epi32(__m128i );

VPBROADCASTQ: __m256i _mm256_broadcastq_epi64(__m128i );

VPBROADCASTB: __m128i _mm_broadcastb_epi8(__m128i );

VPBROADCASTW: __m128i _mm_broadcastw_epi16(__m128i );

VPBROADCASTD: __m128i _mm_broadcastd_epi32(__m128i );

VPBROADCASTQ: __m128i _mm_broadcastq_epi64(__m128i );

VBROADCASTI128:  __m256i _mm256_broadcastsi128_si256(__m128i );

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 6; additionally
#UD If VEX.W = 1,

If VEX.L = 0 for VBROADCASTI128.
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VPERMD — Full Doublewords Element Permutation

Instruction Operand Encoding

Description

Use the index values in each dword element of the first source operand (the second operand) to select a dword 
element in the second source operand (the third operand), the resultant dword value from the second source 
operand is copied to the destination operand (the first operand) in the corresponding position of the index element. 
Note that this instruction permits a doubleword in the source operand to be copied to more than one doubleword 
location in the destination operand.
An attempt to execute VPERMD encoded with VEX.L= 0 will cause an #UD exception.

Operation

VPERMD (VEX.256 encoded version)

DEST[31:0] Å (SRC2[255:0] >> (SRC1[2:0] * 32))[31:0];

DEST[63:32] Å (SRC2[255:0] >> (SRC1[34:32] * 32))[31:0];

DEST[95:64] Å (SRC2[255:0] >> (SRC1[66:64] * 32))[31:0];

DEST[127:96] Å (SRC2[255:0] >> (SRC1[98:96] * 32))[31:0];

DEST[159:128] Å (SRC2[255:0] >> (SRC1[130:128] * 32))[31:0];

DEST[191:160] Å (SRC2[255:0] >> (SRC1[162:160] * 32))[31:0];

DEST[223:192] Å (SRC2[255:0] >> (SRC1[194:192] * 32))[31:0];

DEST[255:224] Å (SRC2[255:0] >> (SRC1[226:224] * 32))[31:0];

Intel C/C++ Compiler Intrinsic Equivalent

VPERMD: __m256i _mm256_permutevar8x32_epi32(__m256i a, __m256i offsets);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 0 for VPERMD,

If VEX.W = 1.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDS.256.66.0F38.W0 36 /r RVM V/V AVX2 Permute doublewords in ymm3/m256 using indexes in 
ymm2 and store the result in ymm1.VPERMD ymm1, ymm2, ymm3/m256

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
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VPERMPD — Permute Double-Precision Floating-Point Elements

Instruction Operand Encoding

Description

Use two-bit index values in the immediate byte to select a double-precision floating-point element in the source 
operand; the resultant data from the source operand is copied to the corresponding element of the destination 
operand in the order of the index field. Note that this instruction permits a qword in the source operand to be 
copied to multiple location in the destination operand.
An attempt to execute VPERMPD encoded with VEX.L= 0 will cause an #UD exception.

Operation

VPERMPD (VEX.256 encoded version)

DEST[63:0] Å (SRC[255:0] >> (IMM8[1:0] * 64))[63:0];

DEST[127:64] Å (SRC[255:0] >> (IMM8[3:2] * 64))[63:0];

DEST[191:128] Å (SRC[255:0] >> (IMM8[5:4] * 64))[63:0];

DEST[255:192] Å (SRC[255:0] >> (IMM8[7:6] * 64))[63:0];

Intel C/C++ Compiler Intrinsic Equivalent

VPERMPD: __m256d _mm256_permute4x64_pd(__m256d a, int control) ;

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 0.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.256.66.0F3A.W1 01 /r ib RMI V/V AVX2 Permute double-precision floating-point elements in 
ymm2/m256 using indexes in imm8 and store the 
result in ymm1.

VPERMPD ymm1, ymm2/m256, imm8

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) Imm8 NA
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VPERMPS — Permute Single-Precision Floating-Point Elements

Instruction Operand Encoding

Description

Use the index values in each dword element of the first source operand (the second operand) to select a single-
precision floating-point element in the second source operand (the third operand), the resultant data from the 
second source operand is copied to the destination operand (the first operand) in the corresponding position of the 
index element. Note that this instruction permits a doubleword in the source operand to be copied to more than one 
doubleword location in the destination operand.
An attempt to execute VPERMPS encoded with VEX.L= 0 will cause an #UD exception.

Operation

VPERMPS (VEX.256 encoded version)

DEST[31:0] Å (SRC2[255:0] >> (SRC1[2:0] * 32))[31:0];

DEST[63:32] Å (SRC2[255:0] >> (SRC1[34:32] * 32))[31:0];

DEST[95:64] Å (SRC2[255:0] >> (SRC1[66:64] * 32))[31:0];

DEST[127:96] Å (SRC2[255:0] >> (SRC1[98:96] * 32))[31:0];

DEST[159:128] Å (SRC2[255:0] >> (SRC1[130:128] * 32))[31:0];

DEST[191:160] Å (SRC2[255:0] >> (SRC1[162:160] * 32))[31:0];

DEST[223:192] Å (SRC2[255:0] >> (SRC1[194:192] * 32))[31:0];

DEST[255:224] Å (SRC2[255:0] >> (SRC1[226:224] * 32))[31:0];

Intel C/C++ Compiler Intrinsic Equivalent

VPERMPS: __m256i _mm256_permutevar8x32_ps(__m256 a, __m256i offsets)

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 0,

If VEX.W = 1.

Opcode/
Instruction

Op/
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDS.256.66.0F38.W0 16 /r RVM V/V AVX2 Permute single-precision floating-point elements in 
ymm3/m256 using indexes in ymm2 and store the 
result in ymm1.

VPERMPS ymm1, ymm2, ymm3/m256

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
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VPERMQ — Qwords Element Permutation

Instruction Operand Encoding

Description

Use two-bit index values in the immediate byte to select a qword element in the source operand, the resultant 
qword value from the source operand is copied to the corresponding element of the destination operand in the 
order of the index field. Note that this instruction permits a qword in the source operand to be copied to multiple 
locations in the destination operand.
An attempt to execute VPERMQ encoded with VEX.L= 0 will cause an #UD exception.

Operation

VPERMQ (VEX.256 encoded version)

DEST[63:0] Å (SRC[255:0] >> (IMM8[1:0] * 64))[63:0];

DEST[127:64] Å (SRC[255:0] >> (IMM8[3:2] * 64))[63:0];

DEST[191:128] Å (SRC[255:0] >> (IMM8[5:4] * 64))[63:0];

DEST[255:192] Å (SRC[255:0] >> (IMM8[7:6] * 64))[63:0];

Intel C/C++ Compiler Intrinsic Equivalent

VPERMQ: __m256i _mm256_permute4x64_epi64(__m256i a, int control) 

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = 0.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.256.66.0F3A.W1 00 /r ib RMI V/V AVX2 Permute qwords in ymm2/m256 using indexes in 
imm8 and store the result in ymm1.VPERMQ ymm1, ymm2/m256, imm8

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RMI ModRM:reg (w) ModRM:r/m (r) Imm8 NA
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VPERM2I128 — Permute Integer Values

Instruction Operand Encoding

Description

Permute 128 bit integer data from the first source operand (second operand) and second source operand (third 
operand) using bits in the 8-bit immediate and store results in the destination operand (first operand). The first 
source operand is a YMM register, the second source operand is a YMM register or a 256-bit memory location, and 
the destination operand is a YMM register.

Figure 4-37.  VPERM2I128 Operation

Imm8[1:0] select the source for the first destination 128-bit field, imm8[5:4] select the source for the second 
destination field. If imm8[3] is set, the low 128-bit field is zeroed. If imm8[7] is set, the high 128-bit field is zeroed.
VEX.L must be 1, otherwise the instruction will #UD.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDS.256.66.0F3A.W0 46 /r ib RVMI V/V AVX2 Permute 128-bit integer data in ymm2 and 
ymm3/mem using controls from imm8 and 
store result in ymm1.

VPERM2I128 ymm1, ymm2, ymm3/m256, imm8

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVMI ModRM:reg (w) VEX.vvvv ModRM:r/m (r) Imm8

DEST

SRC1 X0X1

X0, X1, Y0, or Y1

Y0Y1

X0, X1, Y0, or Y1

SRC2
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Operation

VPERM2I128

CASE IMM8[1:0] of 

0: DEST[127:0] Å SRC1[127:0]

1: DEST[127:0] Å SRC1[255:128]

2: DEST[127:0] Å SRC2[127:0]

3: DEST[127:0] Å SRC2[255:128]

ESAC

CASE IMM8[5:4] of 

0: DEST[255:128] Å SRC1[127:0]

1: DEST[255:128] Å SRC1[255:128]

2: DEST[255:128] Å SRC2[127:0]

3: DEST[255:128] Å SRC2[255:128]

ESAC

IF (imm8[3])

DEST[127:0] Å 0

FI

IF (imm8[7])

DEST[255:128] Å 0

FI

Intel C/C++ Compiler Intrinsic Equivalent

VPERM2I128: __m256i _mm256_permute2x128_si256 (__m256i a, __m256i b, int control)

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 6; additionally
#UD If VEX.L = 0,

If VEX.W = 1.
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VPERMILPD — Permute Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Permute double-precision floating-point values in the first source operand (second operand) using 8-bit control 
fields in the low bytes of the second source operand (third operand) and store results in the destination operand 
(first operand). The first source operand is a YMM register, the second source operand is a YMM register or a 256-
bit memory location, and the destination operand is a YMM register.

Figure 4-38.  VPERMILPD operation

There is one control byte per destination double-precision element. Each control byte is aligned with the low 8 bits 
of the corresponding double-precision destination element. Each control byte contains a 1-bit select field (see 
Figure 4-39) that determines which of the source elements are selected. Source elements are restricted to lie in the 
same source 128-bit region as the destination.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.NDS.128.66.0F38.W0 0D /r
VPERMILPD xmm1, xmm2, xmm3/m128

RVM V/V AVX Permute double-precision floating-point values 
in xmm2 using controls from xmm3/mem and 
store result in xmm1.

VEX.NDS.256.66.0F38.W0 0D /r
VPERMILPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Permute double-precision floating-point values 
in ymm2 using controls from ymm3/mem and 
store result in ymm1.

VEX.128.66.0F3A.W0 05 /r ib
VPERMILPD xmm1, xmm2/m128, imm8

RMI V/V AVX Permute double-precision floating-point values 
in xmm2/mem using controls from imm8.

VEX.256.66.0F3A.W0 05 /r ib
VPERMILPD ymm1, ymm2/m256, imm8

RMI V/V AVX Permute double-precision floating-point values 
in ymm2/mem using controls from imm8.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

X2..X3 X2..X3 X0..X1 X0..X1DEST

X3 X2SRC1 X1 X0



VPERMILPD — Permute Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-523

Figure 4-39.  VPERMILPD Shuffle Control

(immediate control version)
Permute double-precision floating-point values in the first source operand (second operand) using two, 1-bit 
control fields in the low 2 bits of the 8-bit immediate and store results in the destination operand (first operand). 
The source operand is a YMM register or 256-bit memory location and the destination operand is a YMM register. 
Note: For the VEX.128.66.0F3A 05 instruction version, VEX.vvvv is reserved and must be 1111b otherwise instruc-
tion will #UD.
Note: For the VEX.256.66.0F3A 05 instruction version, VEX.vvvv is reserved and must be 1111b otherwise instruc-
tion will #UD.

Operation

VPERMILPD (256-bit immediate version)

IF (imm8[0] = 0) THEN DEST[63:0]ÅSRC1[63:0]

IF (imm8[0] = 1) THEN DEST[63:0]ÅSRC1[127:64]

IF (imm8[1] = 0) THEN DEST[127:64]ÅSRC1[63:0]

IF (imm8[1] = 1) THEN DEST[127:64]ÅSRC1[127:64]

IF (imm8[2] = 0) THEN DEST[191:128]ÅSRC1[191:128]

IF (imm8[2] = 1) THEN DEST[191:128]ÅSRC1[255:192]

IF (imm8[3] = 0) THEN DEST[255:192]ÅSRC1[191:128]

IF (imm8[3] = 1) THEN DEST[255:192]ÅSRC1[255:192]

VPERMILPD (128-bit immediate version)

IF (imm8[0] = 0) THEN DEST[63:0]ÅSRC1[63:0]

IF (imm8[0] = 1) THEN DEST[63:0]ÅSRC1[127:64]

IF (imm8[1] = 0) THEN DEST[127:64]ÅSRC1[63:0]

IF (imm8[1] = 1) THEN DEST[127:64]ÅSRC1[127:64]

DEST[VLMAX-1:128] Å 0

VPERMILPD (256-bit variable version)

IF (SRC2[1] = 0) THEN DEST[63:0]ÅSRC1[63:0]

IF (SRC2[1] = 1) THEN DEST[63:0]ÅSRC1[127:64]

IF (SRC2[65] = 0) THEN DEST[127:64]ÅSRC1[63:0]

IF (SRC2[65] = 1) THEN DEST[127:64]ÅSRC1[127:64]

IF (SRC2[129] = 0) THEN DEST[191:128]ÅSRC1[191:128]

IF (SRC2[129] = 1) THEN DEST[191:128]ÅSRC1[255:192]

IF (SRC2[193] = 0) THEN DEST[255:192]ÅSRC1[191:128]

IF (SRC2[193] = 1) THEN DEST[255:192]ÅSRC1[255:192]

1

sel 

Bit

. . .ignored

Control Field1Control Field 2Control Field 4

ig
no

re
d

65

sel 

ig
no

re
d

194 193

sel 

ig
no

re
d

255

ignored

66127

ignored

263
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VPERMILPD (128-bit variable version)

IF (SRC2[1] = 0) THEN DEST[63:0]ÅSRC1[63:0]

IF (SRC2[1] = 1) THEN DEST[63:0]ÅSRC1[127:64]

IF (SRC2[65] = 0) THEN DEST[127:64]ÅSRC1[63:0]

IF (SRC2[65] = 1) THEN DEST[127:64]ÅSRC1[127:64]

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VPERMILPD:  __m128d _mm_permute_pd (__m128d a, int control)

VPERMILPD:  __m256d _mm256_permute_pd (__m256d a, int control)

VPERMILPD:  __m128d _mm_permutevar_pd (__m128d a, __m128i control);

VPERMILPD:  __m256d _mm256_permutevar_pd (__m256d a, __m256i control);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 6; additionally
#UD If VEX.W = 1
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VPERMILPS — Permute Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

(variable control version)
Permute single-precision floating-point values in the first source operand (second operand) using 8-bit control 
fields in the low bytes of corresponding elements the shuffle control (third operand) and store results in the desti-
nation operand (first operand). The first source operand is a YMM register, the second source operand is a YMM 
register or a 256-bit memory location, and the destination operand is a YMM register.

Figure 4-40.  VPERMILPS Operation

There is one control byte per destination single-precision element. Each control byte is aligned with the low 8 bits 
of the corresponding single-precision destination element. Each control byte contains a 2-bit select field (see 
Figure 4-41) that determines which of the source elements are selected. Source elements are restricted to lie in 
the same source 128-bit region as the destination.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.NDS.128.66.0F38.W0 0C /r
VPERMILPS xmm1, xmm2, xmm3/m128

RVM V/V AVX Permute single-precision floating-point values in 
xmm2 using controls from xmm3/mem and store 
result in xmm1.

VEX.128.66.0F3A.W0 04 /r ib
VPERMILPS xmm1, xmm2/m128, imm8

RMI V/V AVX Permute single-precision floating-point values in 
xmm2/mem using controls from imm8 and store 
result in xmm1.

VEX.NDS.256.66.0F38.W0 0C /r 
VPERMILPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Permute single-precision floating-point values in 
ymm2 using controls from ymm3/mem and store 
result in ymm1.

VEX.256.66.0F3A.W0 04 /r ib
VPERMILPS ymm1, ymm2/m256, imm8

RMI V/V AVX Permute single-precision floating-point values in 
ymm2/mem using controls from imm8 and store 
result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA

RMI ModRM:reg (w) ModRM:r/m (r) imm8 NA

X7 .. X4 X7 .. X4 X3 ..X0 X3 .. X0DEST

SRC1 X0X1X2X3X4X5X6X7

X3 .. X0X7 .. X4 X7 .. X4 X3 ..X0
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Figure 4-41.  VPERMILPS Shuffle Control

(immediate control version)
Permute single-precision floating-point values in the first source operand (second operand) using four 2-bit control 
fields in the 8-bit immediate and store results in the destination operand (first operand). The source operand is a 
YMM register or 256-bit memory location and the destination operand is a YMM register. This is similar to a wider 
version of PSHUFD, just operating on single-precision floating-point values.
Note: For the VEX.128.66.0F3A 04 instruction version, VEX.vvvv is reserved and must be 1111b otherwise instruc-
tion will #UD.
Note: For the VEX.256.66.0F3A 04 instruction version, VEX.vvvv is reserved and must be 1111b otherwise instruc-
tion will #UD.

Operation

Select4(SRC, control) {

CASE (control[1:0]) OF

0: TMP Å SRC[31:0];

1: TMP Å SRC[63:32];

2: TMP Å SRC[95:64];

3: TMP Å SRC[127:96];

ESAC;

RETURN TMP

}

VPERMILPS (256-bit immediate version)

DEST[31:0] Å Select4(SRC1[127:0], imm8[1:0]);

DEST[63:32] Å Select4(SRC1[127:0], imm8[3:2]);

DEST[95:64] Å Select4(SRC1[127:0], imm8[5:4]);

DEST[127:96] Å Select4(SRC1[127:0], imm8[7:6]);

DEST[159:128] Å Select4(SRC1[255:128], imm8[1:0]);

DEST[191:160] Å Select4(SRC1[255:128], imm8[3:2]);

DEST[223:192] Å Select4(SRC1[255:128], imm8[5:4]);

DEST[255:224] Å Select4(SRC1[255:128], imm8[7:6]);

VPERMILPS (128-bit immediate version)

DEST[31:0] Å Select4(SRC1[127:0], imm8[1:0]);

DEST[63:32] Å Select4(SRC1[127:0], imm8[3:2]);

DEST[95:64] Å Select4(SRC1[127:0], imm8[5:4]);

DEST[127:96] Å Select4(SRC1[127:0], imm8[7:6]);

DEST[VLMAX-1:128] Å 0

sel 

Bit
34 33 32

sel . . .

226 225 224

sel ignored

Control Field 1Control Field 2Control Field 7

1 0255

ignored ignored

63 31
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VPERMILPS (256-bit variable version)

DEST[31:0] Å Select4(SRC1[127:0], SRC2[1:0]);

DEST[63:32] Å Select4(SRC1[127:0], SRC2[33:32]);

DEST[95:64] Å Select4(SRC1[127:0], SRC2[65:64]);

DEST[127:96] Å Select4(SRC1[127:0], SRC2[97:96]);

DEST[159:128] Å Select4(SRC1[255:128], SRC2[129:128]);

DEST[191:160] Å Select4(SRC1[255:128], SRC2[161:160]);

DEST[223:192] Å Select4(SRC1[255:128], SRC2[193:192]);

DEST[255:224] Å Select4(SRC1[255:128], SRC2[225:224]);

VPERMILPS (128-bit variable version)

DEST[31:0] Å Select4(SRC1[127:0], SRC2[1:0]);

DEST[63:32] Å Select4(SRC1[127:0], SRC2[33:32]);

DEST[95:64] Å Select4(SRC1[127:0], SRC2[65:64]);

DEST[127:96] Å Select4(SRC1[127:0], SRC2[97:96]);

DEST[VLMAX-1:128] Å 0

Intel C/C++ Compiler Intrinsic Equivalent

VPERM1LPS:  __m128 _mm_permute_ps (__m128 a, int control);

VPERM1LPS:  __m256 _mm256_permute_ps (__m256 a, int control);

VPERM1LPS:  __m128 _mm_permutevar_ps (__m128 a, __m128i control);

VPERM1LPS:  __m256 _mm256_permutevar_ps (__m256 a, __m256i control);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 6; additionally
#UD If VEX.W = 1.
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VPERM2F128 — Permute Floating-Point Values

Instruction Operand Encoding

Description

Permute 128 bit floating-point-containing fields from the first source operand (second operand) and second source 
operand (third operand) using bits in the 8-bit immediate and store results in the destination operand (first 
operand). The first source operand is a YMM register, the second source operand is a YMM register or a 256-bit 
memory location, and the destination operand is a YMM register.

Figure 4-42.  VPERM2F128 Operation

Imm8[1:0] select the source for the first destination 128-bit field, imm8[5:4] select the source for the second 
destination field. If imm8[3] is set, the low 128-bit field is zeroed. If imm8[7] is set, the high 128-bit field is zeroed.
VEX.L must be 1, otherwise the instruction will #UD.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.NDS.256.66.0F3A.W0 06 /r ib
VPERM2F128 ymm1, ymm2, ymm3/m256, imm8

RVMI V/V AVX Permute 128-bit floating-point fields in ymm2 
and ymm3/mem using controls from imm8 and 
store result in ymm1.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVMI ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) imm8

DEST

SRC1 X0X1

X0, X1, Y0, or Y1

Y0Y1

X0, X1, Y0, or Y1

SRC2
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Operation

VPERM2F128

CASE IMM8[1:0] of 

0: DEST[127:0] Å SRC1[127:0]

1: DEST[127:0] Å SRC1[255:128]

2: DEST[127:0] Å SRC2[127:0]

3: DEST[127:0] Å SRC2[255:128]

ESAC

CASE IMM8[5:4] of 

0: DEST[255:128] Å SRC1[127:0]

1: DEST[255:128] Å SRC1[255:128]

2: DEST[255:128] Å SRC2[127:0]

3: DEST[255:128] Å SRC2[255:128]

ESAC

IF (imm8[3])

DEST[127:0] Å 0

FI

IF (imm8[7])

DEST[VLMAX-1:128] Å 0

FI

Intel C/C++ Compiler Intrinsic Equivalent

VPERM2F128:  __m256 _mm256_permute2f128_ps (__m256 a, __m256 b, int control)

VPERM2F128:  __m256d _mm256_permute2f128_pd (__m256d a, __m256d b, int control)

VPERM2F128:  __m256i _mm256_permute2f128_si256 (__m256i a, __m256i b, int control)

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 6; additionally
#UD If VEX.L = 0

If VEX.W = 1.
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VPMASKMOV — Conditional SIMD Integer Packed Loads and Stores

Instruction Operand Encoding

Description

Conditionally moves packed data elements from the second source operand into the corresponding data element of 
the destination operand, depending on the mask bits associated with each data element. The mask bits are speci-
fied in the first source operand. 
The mask bit for each data element is the most significant bit of that element in the first source operand. If a mask 
is 1, the corresponding data element is copied from the second source operand to the destination operand. If the 
mask is 0, the corresponding data element is set to zero in the load form of these instructions, and unmodified in 
the store form. 
The second source operand is a memory address for the load form of these instructions. The destination operand is 
a memory address for the store form of these instructions. The other operands are either XMM registers (for 
VEX.128 version) or YMM registers (for VEX.256 version).
Faults occur only due to mask-bit required memory accesses that caused the faults. Faults will not occur due to 
referencing any memory location if the corresponding mask bit for that memory location is 0. For example, no 
faults will be detected if the mask bits are all zero.
Unlike previous MASKMOV instructions (MASKMOVQ and MASKMOVDQU), a nontemporal hint is not applied to 
these instructions.

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDS.128.66.0F38.W0 8C /r RVM V/V AVX2 Conditionally load dword values from m128 using mask 
in xmm2 and store in xmm1.VPMASKMOVD xmm1, xmm2, m128

VEX.NDS.256.66.0F38.W0 8C /r RVM V/V AVX2 Conditionally load dword values from m256 using mask 
in ymm2 and store in ymm1.VPMASKMOVD ymm1, ymm2, m256

VEX.NDS.128.66.0F38.W1 8C /r RVM V/V AVX2 Conditionally load qword values from m128 using mask 
in xmm2 and store in xmm1.VPMASKMOVQ xmm1, xmm2, m128

VEX.NDS.256.66.0F38.W1 8C /r RVM V/V AVX2 Conditionally load qword values from m256 using mask 
in ymm2 and store in ymm1.VPMASKMOVQ ymm1, ymm2, m256

VEX.NDS.128.66.0F38.W0 8E /r MVR V/V AVX2 Conditionally store dword values from xmm2 using 
mask in xmm1.VPMASKMOVD m128, xmm1, xmm2

VEX.NDS.256.66.0F38.W0 8E /r MVR V/V AVX2 Conditionally store dword values from ymm2 using 
mask in ymm1.VPMASKMOVD m256, ymm1, ymm2

VEX.NDS.128.66.0F38.W1 8E /r MVR V/V AVX2 Conditionally store qword values from xmm2 using 
mask in xmm1.VPMASKMOVQ m128, xmm1, xmm2

VEX.NDS.256.66.0F38.W1 8E /r MVR V/V AVX2 Conditionally store qword values from ymm2 using 
mask in ymm1.VPMASKMOVQ m256, ymm1, ymm2

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA

MVR ModRM:r/m (w) VEX.vvvv ModRM:reg (r) NA
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Instruction behavior on alignment check reporting with mask bits of less than all 1s are the same as with mask bits 
of all 1s.
VMASKMOV should not be used to access memory mapped I/O as the ordering of the individual loads or stores it 
does is implementation specific. 
In cases where mask bits indicate data should not be loaded or stored paging A and D bits will be set in an imple-
mentation dependent way. However, A and D bits are always set for pages where data is actually loaded/stored.
Note: for load forms, the first source (the mask) is encoded in VEX.vvvv; the second source is encoded in rm_field, 
and the destination register is encoded in reg_field.
Note: for store forms, the first source (the mask) is encoded in VEX.vvvv; the second source register is encoded in 
reg_field, and the destination memory location is encoded in rm_field.

Operation

VPMASKMOVD - 256-bit load

DEST[31:0] Å IF (SRC1[31]) Load_32(mem) ELSE 0 

DEST[63:32] Å IF (SRC1[63]) Load_32(mem + 4) ELSE 0 

DEST[95:64] Å IF (SRC1[95]) Load_32(mem + 8) ELSE 0 

DEST[127:96] Å IF (SRC1[127]) Load_32(mem + 12) ELSE 0 

DEST[159:128] Å IF (SRC1[159]) Load_32(mem + 16) ELSE 0 

DEST[191:160] Å IF (SRC1[191]) Load_32(mem + 20) ELSE 0 

DEST[223:192] Å IF (SRC1[223]) Load_32(mem + 24) ELSE 0 

DEST[255:224] Å IF (SRC1[255]) Load_32(mem + 28) ELSE 0 

VPMASKMOVD -128-bit load 

DEST[31:0] Å IF (SRC1[31]) Load_32(mem) ELSE 0 

DEST[63:32] Å IF (SRC1[63]) Load_32(mem + 4) ELSE 0 

DEST[95:64] Å IF (SRC1[95]) Load_32(mem + 8) ELSE 0 

DEST[127:97] Å IF (SRC1[127]) Load_32(mem + 12) ELSE 0 

DEST[VLMAX-1:128] Å 0

VPMASKMOVQ - 256-bit load

DEST[63:0] Å IF (SRC1[63]) Load_64(mem) ELSE 0 

DEST[127:64] Å IF (SRC1[127]) Load_64(mem + 8) ELSE 0 

DEST[195:128] Å IF (SRC1[191]) Load_64(mem + 16) ELSE 0 

DEST[255:196] Å IF (SRC1[255]) Load_64(mem + 24) ELSE 0 

VPMASKMOVQ - 128-bit load 

DEST[63:0] Å IF (SRC1[63]) Load_64(mem) ELSE 0 

DEST[127:64] Å IF (SRC1[127]) Load_64(mem + 16) ELSE 0

DEST[VLMAX-1:128] Å 0

VPMASKMOVD - 256-bit store

IF (SRC1[31]) DEST[31:0] Å SRC2[31:0] 

IF (SRC1[63]) DEST[63:32] Å SRC2[63:32] 

IF (SRC1[95]) DEST[95:64] Å SRC2[95:64] 

IF (SRC1[127]) DEST[127:96] Å SRC2[127:96] 

IF (SRC1[159]) DEST[159:128] ÅSRC2[159:128] 

IF (SRC1[191]) DEST[191:160] Å SRC2[191:160] 

IF (SRC1[223]) DEST[223:192] Å SRC2[223:192] 

IF (SRC1[255]) DEST[255:224] Å SRC2[255:224] 
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VPMASKMOVD - 128-bit store

IF (SRC1[31]) DEST[31:0] Å SRC2[31:0] 

IF (SRC1[63]) DEST[63:32] Å SRC2[63:32] 

IF (SRC1[95]) DEST[95:64] Å SRC2[95:64] 

IF (SRC1[127]) DEST[127:96] Å SRC2[127:96] 

VPMASKMOVQ - 256-bit store

IF (SRC1[63]) DEST[63:0] Å SRC2[63:0] 

IF (SRC1[127]) DEST[127:64] ÅSRC2[127:64] 

IF (SRC1[191]) DEST[191:128] Å SRC2[191:128] 

IF (SRC1[255]) DEST[255:192] Å SRC2[255:192] 

VPMASKMOVQ - 128-bit store

IF (SRC1[63]) DEST[63:0] Å SRC2[63:0] 

IF (SRC1[127]) DEST[127:64] ÅSRC2[127:64] 

Intel C/C++ Compiler Intrinsic Equivalent

VPMASKMOVD: __m256i _mm256_maskload_epi32(int const *a, __m256i mask)

VPMASKMOVD: void    _mm256_maskstore_epi32(int *a, __m256i mask, __m256i b)

VPMASKMOVQ: __m256i _mm256_maskload_epi64(__int64 const *a, __m256i mask);

VPMASKMOVQ: void    _mm256_maskstore_epi64(__int64 *a, __m256i mask, __m256d b);

VPMASKMOVD: __m128i _mm_maskload_epi32(int const *a, __m128i mask)

VPMASKMOVD: void    _mm_maskstore_epi32(int *a, __m128i mask, __m128 b)

VPMASKMOVQ: __m128i _mm_maskload_epi64(__int cont *a, __m128i mask);

VPMASKMOVQ: void    _mm_maskstore_epi64(__int64 *a, __m128i mask, __m128i b);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 6 (No AC# reported for any mask bit combinations).
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VPSLLVD/VPSLLVQ — Variable Bit Shift Left Logical 

Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (doublewords, or quadword) in the first source operand to the left by 
the count value of respective data elements in the second source operand. As the bits in the data elements are 
shifted left, the empty low-order bits are cleared (set to 0). 
The count values are specified individually in each data element of the second source operand. If the unsigned 
integer value specified in the respective data element of the second source operand is greater than 31 (for double-
words), or 63 (for a quadword), then the destination data element are written with 0. 
VEX.128 encoded version: The destination and first source operands are XMM registers. The count operand can be 
either an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM register are 
zeroed.
VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be 
either an YMM register or a 256-bit memory location.

Operation

VPSLLVD (VEX.128 version)

COUNT_0 Å SRC2[31 : 0]

(* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*)

COUNT_3 Å SRC2[127 : 96];

IF COUNT_0 < 32 THEN

DEST[31:0] Å ZeroExtend(SRC1[31:0] << COUNT_0);

ELSE

DEST[31:0] Å 0;

(* Repeat shift operation for 2nd through 4th dwords *)

IF COUNT_3 < 32 THEN

DEST[127:96] Å ZeroExtend(SRC1[127:96] << COUNT_3);

ELSE

DEST[127:96] Å 0;

DEST[VLMAX-1:128] Å 0;

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDS.128.66.0F38.W0 47 /r RVM V/V AVX2 Shift bits in doublewords in xmm2 left by amount speci-
fied in the corresponding element of xmm3/m128 while 
shifting in 0s.

VPSLLVD xmm1, xmm2, xmm3/m128

VEX.NDS.128.66.0F38.W1 47 /r RVM V/V AVX2 Shift bits in quadwords in xmm2 left by amount speci-
fied in the corresponding element of xmm3/m128 while 
shifting in 0s.

VPSLLVQ xmm1, xmm2, xmm3/m128

VEX.NDS.256.66.0F38.W0 47 /r RVM V/V AVX2 Shift bits in doublewords in ymm2 left by amount speci-
fied in the corresponding element of ymm3/m256 while 
shifting in 0s.

VPSLLVD ymm1, ymm2, ymm3/m256

VEX.NDS.256.66.0F38.W1 47 /r RVM V/V AVX2 Shift bits in quadwords in ymm2 left by amount speci-
fied in the corresponding element of ymm3/m256 while 
shifting in 0s.

VPSLLVQ ymm1, ymm2, ymm3/m256

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
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VPSLLVD (VEX.256 version)

COUNT_0 Å SRC2[31 : 0];

(* Repeat Each COUNT_i for the 2nd through 7th dwords of SRC2*)

COUNT_7 Å SRC2[255 : 224];

IF COUNT_0 < 32 THEN

DEST[31:0] Å ZeroExtend(SRC1[31:0] << COUNT_0);

ELSE

DEST[31:0] Å 0;

(* Repeat shift operation for 2nd through 7th dwords *)

IF COUNT_7 < 32 THEN

DEST[255:224] Å ZeroExtend(SRC1[255:224] << COUNT_7);

ELSE

DEST[255:224] Å 0;

VPSLLVQ (VEX.128 version)

COUNT_0 Å SRC2[63 : 0];

COUNT_1 Å SRC2[127 : 64];

IF COUNT_0 < 64THEN

DEST[63:0] Å ZeroExtend(SRC1[63:0] << COUNT_0);

ELSE

DEST[63:0] Å 0;

IF COUNT_1 < 64 THEN

DEST[127:64] Å ZeroExtend(SRC1[127:64] << COUNT_1);

ELSE

DEST[127:96] Å 0;

DEST[VLMAX-1:128] Å 0;

VPSLLVQ (VEX.256 version)

COUNT_0 Å SRC2[5 : 0];

(* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*)

COUNT_3 Å SRC2[197 : 192];

IF COUNT_0 < 64THEN

DEST[63:0] Å ZeroExtend(SRC1[63:0] << COUNT_0);

ELSE

DEST[63:0] Å 0;

(* Repeat shift operation for 2nd through 4th dwords *)

IF COUNT_3 < 64 THEN

DEST[255:192] Å ZeroExtend(SRC1[255:192] << COUNT_3);

ELSE

DEST[255:192] Å 0;

Intel C/C++ Compiler Intrinsic Equivalent

VPSLLVD: __m256i _mm256_sllv_epi32 (__m256i m, __m256i count)

VPSLLVD: __m128i _mm_sllv_epi32 (__m128i m, __m128i count)

VPSLLVQ: __m256i _mm256_sllv_epi64 (__m256i m, __m256i count)

VPSLLVQ: __m128i _mm_sllv_epi64 (__m128i m, __m128i count)

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4
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VPSRAVD — Variable Bit Shift Right Arithmetic 

Instruction Operand Encoding

Description

Shifts the bits in the individual doubleword data elements in the first source operand to the right by the count value 
of respective data elements in the second source operand. As the bits in each data element are shifted right, the 
empty high-order bits are filled with the sign bit of the source element. 
The count values are specified individually in each data element of the second source operand. If the unsigned 
integer value specified in the respective data element of the second source operand is greater than 31, then the 
destination data element are filled with the corresponding sign bit of the source element. 
VEX.128 encoded version: The destination and first source operands are XMM registers. The count operand can be 
either an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM register are 
zeroed.
VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be 
either an YMM register or a 256-bit memory location.

Operation

VPSRAVD (VEX.128 version)

COUNT_0 Å SRC2[31: 0]

(* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*)

COUNT_3 Å SRC2[127 : 112];

IF COUNT_0 < 32 THEN

DEST[31:0] Å SignExtend(SRC1[31:0] >> COUNT_0);

ELSE

For (i = 0 to 31) DEST[i + 0] Å (SRC1[31] );

FI;

(* Repeat shift operation for 2nd through 4th dwords *)

IF COUNT_3 < 32 THEN

DEST[127:96] Å SignExtend(SRC1[127:96] >> COUNT_3);

ELSE

For (i = 0 to 31) DEST[i + 96] Å (SRC1[127] );

FI;

DEST[VLMAX-1:128] Å 0;

Opcode/
Instruction

Op/ 
En

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDS.128.66.0F38.W0 46 /r RVM V/V AVX2 Shift bits in doublewords in xmm2 right by amount speci-
fied in the corresponding element of xmm3/m128 while 
shifting in the sign bits.

VPSRAVD xmm1, xmm2, xmm3/m128

VEX.NDS.256.66.0F38.W0 46 /r RVM V/V AVX2 Shift bits in doublewords in ymm2 right by amount speci-
fied in the corresponding element of ymm3/m256 while 
shifting in the sign bits.

VPSRAVD ymm1, ymm2, ymm3/m256

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
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VPSRAVD (VEX.256 version)

COUNT_0 Å SRC2[31 : 0];

(* Repeat Each COUNT_i for the 2nd through 7th dwords of SRC2*)

COUNT_7 Å SRC2[255 : 224];

IF COUNT_0 < 32 THEN

DEST[31:0] Å SignExtend(SRC1[31:0] >> COUNT_0);

ELSE

For (i = 0 to 31) DEST[i + 0] Å (SRC1[31] );

FI;

(* Repeat shift operation for 2nd through 7th dwords *)

IF COUNT_7 < 32 THEN

DEST[255:224] Å SignExtend(SRC1[255:224] >> COUNT_7);

ELSE

For (i = 0 to 31) DEST[i + 224] Å (SRC1[255] );

FI;

Intel C/C++ Compiler Intrinsic Equivalent

VPSRAVD: __m256i _mm256_srav_epi32 (__m256i m, __m256i count)

VPSRAVD: __m128i _mm_srav_epi32 (__m128i m, __m128i count)

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.W = 1.
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VPSRLVD/VPSRLVQ — Variable Bit Shift Right Logical 

Instruction Operand Encoding

Description

Shifts the bits in the individual data elements (doublewords, or quadword) in the first source operand to the right 
by the count value of respective data elements in the second source operand. As the bits in the data elements are 
shifted right, the empty high-order bits are cleared (set to 0). 
The count values are specified individually in each data element of the second source operand. If the unsigned 
integer value specified in the respective data element of the second source operand is greater than 31 (for double-
words), or 63 (for a quadword), then the destination data element are written with 0. 
VEX.128 encoded version: The destination and first source operands are XMM registers. The count operand can be 
either an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM register are 
zeroed.
VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be 
either an YMM register or a 256-bit memory location.

Operation

VPSRLVD (VEX.128 version)

COUNT_0 Å SRC2[31 : 0]

(* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*)

COUNT_3 Å SRC2[127 : 96];

IF COUNT_0 < 32 THEN

DEST[31:0] Å ZeroExtend(SRC1[31:0] >> COUNT_0);

ELSE

DEST[31:0] Å 0;

(* Repeat shift operation for 2nd through 4th dwords *)

IF COUNT_3 < 32 THEN

DEST[127:96] Å ZeroExtend(SRC1[127:96] >> COUNT_3);

ELSE

DEST[127:96] Å 0;

DEST[VLMAX-1:128] Å 0;

Opcode/
Instruction

Op/
EN

64/32
-bit 
Mode

CPUID 
Feature 
Flag

Description

VEX.NDS.128.66.0F38.W0 45 /r RVM V/V AVX2 Shift bits in doublewords in xmm2 right by amount spec-
ified in the corresponding element of xmm3/m128 while 
shifting in 0s.

VPSRLVD xmm1, xmm2, xmm3/m128

VEX.NDS.128.66.0F38.W1 45 /r RVM V/V AVX2 Shift bits in quadwords in xmm2 right by amount speci-
fied in the corresponding element of xmm3/m128 while 
shifting in 0s.

VPSRLVQ xmm1, xmm2, xmm3/m128

VEX.NDS.256.66.0F38.W0 45 /r RVM V/V AVX2 Shift bits in doublewords in ymm2 right by amount spec-
ified in the corresponding element of ymm3/m256 while 
shifting in 0s.

VPSRLVD ymm1, ymm2, ymm3/m256

VEX.NDS.256.66.0F38.W1 45 /r RVM V/V AVX2 Shift bits in quadwords in ymm2 right by amount speci-
fied in the corresponding element of ymm3/m256 while 
shifting in 0s.

VPSRLVQ ymm1, ymm2, ymm3/m256

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
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VPSRLVD (VEX.256 version)

COUNT_0 Å SRC2[31 : 0];

(* Repeat Each COUNT_i for the 2nd through 7th dwords of SRC2*)

COUNT_7 Å SRC2[255 : 224];

IF COUNT_0 < 32 THEN

DEST[31:0] Å ZeroExtend(SRC1[31:0] >> COUNT_0);

ELSE

DEST[31:0] Å 0;

(* Repeat shift operation for 2nd through 7th dwords *)

IF COUNT_7 < 32 THEN

DEST[255:224] Å ZeroExtend(SRC1[255:224] >> COUNT_7);

ELSE

DEST[255:224] Å 0;

VPSRLVQ (VEX.128 version)

COUNT_0 Å SRC2[63 : 0];

COUNT_1 Å SRC2[127 : 64];

IF COUNT_0 < 64 THEN

DEST[63:0] Å ZeroExtend(SRC1[63:0] >> COUNT_0);

ELSE

DEST[63:0] Å 0;

IF COUNT_1 < 64THEN

DEST[127:64] Å ZeroExtend(SRC1[127:64] >> COUNT_1);

ELSE

DEST[127:64] Å 0;

DEST[VLMAX-1:128] Å 0;

VPSRLVQ (VEX.256 version)

COUNT_0 Å SRC2[63 : 0];

(* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*)

COUNT_3 Å SRC2[255 : 192];

IF COUNT_0 < 64 THEN

DEST[63:0] Å ZeroExtend(SRC1[63:0] >> COUNT_0);

ELSE

DEST[63:0] Å 0;

(* Repeat shift operation for 2nd through 4th dwords *)

IF COUNT_3 < 64THEN

DEST[255:192] Å ZeroExtend(SRC1[255:192] >> COUNT_3);

ELSE

DEST[255:192] Å 0;

Intel C/C++ Compiler Intrinsic Equivalent

VPSRLVD: __m256i _mm256_srlv_epi32 (__m256i m, __m256i count);

VPSRLVD: __m128i _mm_srlv_epi32 (__m128i m, __m128i count);

VPSRLVQ: __m256i _mm256_srlv_epi64 (__m256i m, __m256i count);

VPSRLVQ: __m128i _mm_srlv_epi64 (__m128i m, __m128i count);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4
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VTESTPD/VTESTPS—Packed Bit Test

Instruction Operand Encoding

Description

VTESTPS performs a bitwise comparison of all the sign bits of the packed single-precision elements in the first 
source operation and corresponding sign bits in the second source operand. If the AND of the source sign bits with 
the dest sign bits produces all zeros, the ZF is set else the ZF is clear. If the AND of the source sign bits with the 
inverted dest sign bits produces all zeros the CF is set else the CF is clear. An attempt to execute VTESTPS with 
VEX.W=1 will cause #UD.
VTESTPD performs a bitwise comparison of all the sign bits of the double-precision elements in the first source 
operation and corresponding sign bits in the second source operand. If the AND of the source sign bits with the dest 
sign bits produces all zeros, the ZF is set else the ZF is clear. If the AND the source sign bits with the inverted dest 
sign bits produces all zeros the CF is set else the CF is clear. An attempt to execute VTESTPS with VEX.W=1 will 
cause #UD.
The first source register is specified by the ModR/M reg field.
128-bit version: The first source register is an XMM register. The second source register can be an XMM register or 
a 128-bit memory location. The destination register is not modified.
VEX.256 encoded version: The first source register is a YMM register. The second source register can be a YMM 
register or a 256-bit memory location. The destination register is not modified.
Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.128.66.0F38.W0 0E /r
VTESTPS xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on sign bit AND and 
ANDN of packed single-precision floating-point 
sources.

VEX.256.66.0F38.W0 0E /r
VTESTPS ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on sign bit AND and 
ANDN of packed single-precision floating-point 
sources.

VEX.128.66.0F38.W0 0F /r
VTESTPD xmm1, xmm2/m128

RM V/V AVX Set ZF and CF depending on sign bit AND and 
ANDN of packed double-precision floating-point 
sources.

VEX.256.66.0F38.W0 0F /r
VTESTPD ymm1, ymm2/m256

RM V/V AVX Set ZF and CF depending on sign bit AND and 
ANDN of packed double-precision floating-point 
sources.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r) ModRM:r/m (r) NA NA
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Operation

VTESTPS (128-bit version)

TEMP[127:0] Å SRC[127:0] AND DEST[127:0]

IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127] = 0)

THEN ZF Å1;

ELSE ZF Å 0;

TEMP[127:0] Å SRC[127:0] AND NOT DEST[127:0]

IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127] = 0)

THEN CF Å1;

ELSE CF Å 0;

DEST (unmodified)

AF Å OF Å PF Å SF Å 0;

VTESTPS (VEX.256 encoded version)

TEMP[255:0] Å SRC[255:0] AND DEST[255:0]

IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127]= TEMP[160] =TEMP[191] = TEMP[224] = TEMP[255] = 0)

THEN ZF Å1;

ELSE ZF Å 0;

TEMP[255:0] Å SRC[255:0] AND NOT DEST[255:0]

IF (TEMP[31] = TEMP[63] = TEMP[95] = TEMP[127]= TEMP[160] =TEMP[191] = TEMP[224] = TEMP[255] = 0)

THEN CF Å1;

ELSE CF Å 0;

DEST (unmodified)

AF Å OF Å PF Å SF Å 0;

VTESTPD (128-bit version)

TEMP[127:0] Å SRC[127:0] AND DEST[127:0]

IF ( TEMP[63] = TEMP[127] = 0)

THEN ZF Å1;

ELSE ZF Å 0;

TEMP[127:0] Å SRC[127:0] AND NOT DEST[127:0]

IF ( TEMP[63] = TEMP[127] = 0)

THEN CF Å1;

ELSE CF Å 0;

DEST (unmodified)

AF Å OF Å PF Å SF Å 0;

VTESTPD (VEX.256 encoded version)

TEMP[255:0] Å SRC[255:0] AND DEST[255:0]

IF (TEMP[63] = TEMP[127] = TEMP[191] = TEMP[255] = 0)

THEN ZF Å1;

ELSE ZF Å 0;

TEMP[255:0] Å SRC[255:0] AND NOT DEST[255:0]

IF (TEMP[63] = TEMP[127] = TEMP[191] = TEMP[255] = 0)

THEN CF Å1;

ELSE CF Å 0;

DEST (unmodified)

AF Å OF Å PF Å SF Å 0;
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Intel C/C++ Compiler Intrinsic Equivalent

VTESTPS

int _mm256_testz_ps (__m256 s1, __m256 s2);

int _mm256_testc_ps (__m256 s1, __m256 s2);

int _mm256_testnzc_ps (__m256 s1, __m128 s2);

int _mm_testz_ps (__m128 s1, __m128 s2);

int _mm_testc_ps (__m128 s1, __m128 s2);

int _mm_testnzc_ps (__m128 s1, __m128 s2);

VTESTPD

int _mm256_testz_pd (__m256d s1, __m256d s2);

int _mm256_testc_pd (__m256d s1, __m256d s2);

int _mm256_testnzc_pd (__m256d s1, __m256d s2);

int _mm_testz_pd (__m128d s1, __m128d s2);

int _mm_testc_pd (__m128d s1, __m128d s2);

int _mm_testnzc_pd (__m128d s1, __m128d s2);

Flags Affected

The 0F, AF, PF, SF flags are cleared and the ZF, CF flags are set according to the operation.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.vvvv != 1111B.

If VEX.W = 1 for VTESTPS or VTESTPD.
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VZEROALL—Zero All YMM Registers

Instruction Operand Encoding

Description

The instruction zeros contents of all XMM or YMM registers.
Note: VEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD. In Compatibility and legacy 32-bit 
mode only the lower 8 registers are modified.

Operation

VZEROALL (VEX.256 encoded version)

IF (64-bit mode)

YMM0[VLMAX-1:0] Å 0

YMM1[VLMAX-1:0] Å 0

YMM2[VLMAX-1:0] Å 0

YMM3[VLMAX-1:0] Å 0

YMM4[VLMAX-1:0] Å 0

YMM5[VLMAX-1:0] Å 0

YMM6[VLMAX-1:0] Å 0

YMM7[VLMAX-1:0] Å 0

YMM8[VLMAX-1:0] Å 0

YMM9[VLMAX-1:0] Å 0

YMM10[VLMAX-1:0] Å 0

YMM11[VLMAX-1:0] Å 0

YMM12[VLMAX-1:0] Å 0

YMM13[VLMAX-1:0] Å 0

YMM14[VLMAX-1:0] Å 0

YMM15[VLMAX-1:0] Å 0

ELSE

YMM0[VLMAX-1:0] Å 0

YMM1[VLMAX-1:0] Å 0

YMM2[VLMAX-1:0] Å 0

YMM3[VLMAX-1:0] Å 0

YMM4[VLMAX-1:0] Å 0

YMM5[VLMAX-1:0] Å 0

YMM6[VLMAX-1:0] Å 0

YMM7[VLMAX-1:0] Å 0

YMM8-15: Unmodified

FI

Intel C/C++ Compiler Intrinsic Equivalent

VZEROALL:  _mm256_zeroall()

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.256.0F.WIG 77

VZEROALL

NP V/V AVX Zero all YMM registers.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 8.
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VZEROUPPER—Zero Upper Bits of YMM Registers

Instruction Operand Encoding

Description

The instruction zeros the bits in position 128 and higher of all YMM registers. The lower 128-bits of the registers 
(the corresponding XMM registers) are unmodified.
This instruction is recommended when transitioning between AVX and legacy SSE code - it will eliminate perfor-
mance penalties caused by false dependencies.
Note: VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD. In Compatibility and legacy 32-bit 
mode only the lower 8 registers are modified.

Operation

VZEROUPPER 

IF (64-bit mode)

YMM0[VLMAX-1:128] Å 0

YMM1[VLMAX-1:128] Å 0

YMM2[VLMAX-1:128] Å 0

YMM3[VLMAX-1:128] Å 0

YMM4[VLMAX-1:128] Å 0

YMM5[VLMAX-1:128] Å 0

YMM6[VLMAX-1:128] Å 0

YMM7[VLMAX-1:128] Å 0

YMM8[VLMAX-1:128] Å 0

YMM9[VLMAX-1:128] Å 0

YMM10[VLMAX-1:128] Å 0

YMM11[VLMAX-1:128] Å 0

YMM12[VLMAX-1:128] Å 0

YMM13[VLMAX-1:128] Å 0

YMM14[VLMAX-1:128] Å 0

YMM15[VLMAX-1:128] Å 0

ELSE

YMM0[VLMAX-1:128] Å 0

YMM1[VLMAX-1:128] Å 0

YMM2[VLMAX-1:128] Å 0

YMM3[VLMAX-1:128] Å 0

YMM4[VLMAX-1:128] Å 0

YMM5[VLMAX-1:128] Å 0

YMM6[VLMAX-1:128] Å 0

YMM7[VLMAX-1:128] Å 0

YMM8-15: unmodified

FI

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

VEX.128.0F.WIG 77

VZEROUPPER

NP V/V AVX Zero upper 128 bits of all YMM registers.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Intel C/C++ Compiler Intrinsic Equivalent

VZEROUPPER:  _mm256_zeroupper()

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 8.
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WAIT/FWAIT—Wait

Instruction Operand Encoding

Description

Causes the processor to check for and handle pending, unmasked, floating-point exceptions before proceeding. 
(FWAIT is an alternate mnemonic for WAIT.)

This instruction is useful for synchronizing exceptions in critical sections of code. Coding a WAIT instruction after a 
floating-point instruction ensures that any unmasked floating-point exceptions the instruction may raise are 
handled before the processor can modify the instruction’s results. See the section titled “Floating-Point Exception 
Synchronization” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
for more information on using the WAIT/FWAIT instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

CheckForPendingUnmaskedFloatingPointExceptions;

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None. 

Protected Mode Exceptions

#NM If CR0.MP[bit 1] = 1 and CR0.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

9B WAIT NP Valid Valid Check pending unmasked floating-point 
exceptions.

9B FWAIT NP Valid Valid Check pending unmasked floating-point 
exceptions.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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WBINVD—Write Back and Invalidate Cache

Instruction Operand Encoding

Description

Writes back all modified cache lines in the processor’s internal cache to main memory and invalidates (flushes) the 
internal caches. The instruction then issues a special-function bus cycle that directs external caches to also write 
back modified data and another bus cycle to indicate that the external caches should be invalidated.

After executing this instruction, the processor does not wait for the external caches to complete their write-back 
and flushing operations before proceeding with instruction execution. It is the responsibility of hardware to respond 
to the cache write-back and flush signals. The amount of time or cycles for WBINVD to complete will vary due to 
size and other factors of different cache hierarchies. As a consequence, the use of the WBINVD instruction can have 
an impact on logical processor interrupt/event response time. Additional information of WBINVD behavior in a 
cache hierarchy with hierarchical sharing topology can be found in Chapter 2 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.

The WBINVD instruction is a privileged instruction. When the processor is running in protected mode, the CPL of a 
program or procedure must be 0 to execute this instruction. This instruction is also a serializing instruction (see 
“Serializing Instructions” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A).

In situations where cache coherency with main memory is not a concern, software can use the INVD instruction. 

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The WBINVD instruction is implementation dependent, and its function may be implemented differently on future 
Intel 64 and IA-32 processors. The instruction is not supported on IA-32 processors earlier than the Intel486 
processor.

Operation

WriteBack(InternalCaches);

Flush(InternalCaches);

SignalWriteBack(ExternalCaches);

SignalFlush(ExternalCaches);

Continue; (* Continue execution *)

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 09 WBINVD NP Valid Valid Write back and flush Internal caches; initiate 
writing-back and flushing of external caches.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Virtual-8086 Mode Exceptions

#GP(0) WBINVD cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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WRFSBASE/WRGSBASE—Write FS/GS Segment Base

Instruction Operand Encoding

Description

Loads the FS or GS segment base address with the general-purpose register indicated by the modR/M:r/m field.

The source operand may be either a 32-bit or a 64-bit general-purpose register. The REX.W prefix indicates the 
operand size is 64 bits. If no REX.W prefix is used, the operand size is 32 bits; the upper 32 bits of the source 
register are ignored and upper 32 bits of the base address (for FS or GS) are cleared. 
This instruction is supported only in 64-bit mode.

Operation

FS/GS segment base address ← SRC;

Flags Affected

None

C/C++ Compiler Intrinsic Equivalent

WRFSBASE:  void _writefsbase_u32( unsigned int );

WRFSBASE:  _writefsbase_u64( unsigned __int64 );

WRGSBASE:  void _writegsbase_u32( unsigned int );

WRGSBASE:  _writegsbase_u64( unsigned __int64 );

Protected Mode Exceptions

#UD The WRFSBASE and WRGSBASE instructions are not recognized in protected mode.

Real-Address Mode Exceptions

#UD The WRFSBASE and WRGSBASE instructions are not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The WRFSBASE and WRGSBASE instructions are not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The WRFSBASE and WRGSBASE instructions are not recognized in compatibility mode.

Opcode/
Instruction

Op/ 
En

64/32-
bit 
Mode

CPUID Fea-
ture Flag

Description

F3 0F AE /2
WRFSBASE r32

M V/I FSGSBASE Load the FS base address with the 32-bit value in 
the source register.

REX.W + F3 0F AE /2
WRFSBASE r64

M V/I FSGSBASE Load the FS base address with the 64-bit value in 
the source register.

F3 0F AE /3
WRGSBASE r32

M V/I FSGSBASE Load the GS base address with the 32-bit value in 
the source register.

REX.W + F3 0F AE /3
WRGSBASE r64

M V/I FSGSBASE Load the GS base address with the 64-bit value in 
the source register.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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64-Bit Mode Exceptions

#UD If the LOCK prefix is used.
If CR4.FSGSBASE[bit 16] = 0.
If CPUID.07H.0H:EBX.FSGSBASE[bit 0] = 0

#GP(0) If the source register contains a non-canonical address.
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WRMSR—Write to Model Specific Register

Instruction Operand Encoding

Description

Writes the contents of registers EDX:EAX into the 64-bit model specific register (MSR) specified in the ECX register. 
(On processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The contents of 
the EDX register are copied to high-order 32 bits of the selected MSR and the contents of the EAX register are 
copied to low-order 32 bits of the MSR. (On processors that support the Intel 64 architecture, the high-order 32 
bits of each of RAX and RDX are ignored.) Undefined or reserved bits in an MSR should be set to values previously 
read.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a general protection 
exception #GP(0) is generated. Specifying a reserved or unimplemented MSR address in ECX will also cause a 
general protection exception. The processor will also generate a general protection exception if software attempts 
to write to bits in a reserved MSR.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated. This includes global entries 
(see “Translation Lookaside Buffers (TLBs)” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A).

MSRs control functions for testability, execution tracing, performance-monitoring and machine check errors. 
Chapter 35, “Model-Specific Registers (MSRs)”, in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3C, lists all MSRs that can be written with this instruction and their addresses. Note that each 
processor family has its own set of MSRs.

The WRMSR instruction is a serializing instruction (see “Serializing Instructions” in Chapter 8 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A). Note that WRMSR to the IA32_TSC_DEADLINE 
MSR (MSR index 6E0H) and the X2APIC MSRs (MSR indices 802H to 83FH) are not serializing.

The CPUID instruction should be used to determine whether MSRs are supported (CPUID.01H:EDX[5] = 1) before 
using this instruction.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the WRMSR instruction were introduced into the IA-32 architecture with 
the Pentium processor. Execution of this instruction by an IA-32 processor earlier than the Pentium processor 
results in an invalid opcode exception #UD.

Operation

MSR[ECX] ← EDX:EAX;

Flags Affected

None.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 30 WRMSR NP Valid Valid Write the value in EDX:EAX to MSR specified 
by ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
If the value in ECX specifies a reserved or unimplemented MSR address.
If the value in EDX:EAX sets bits that are reserved in the MSR specified by ECX.
If the source register contains a non-canonical address and ECX specifies one of the following 
MSRs: IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE, IA32_KERNEL_GS_BASE, 
IA32_LSTAR, IA32_SYSENTER_EIP, IA32_SYSENTER_ESP.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If the value in ECX specifies a reserved or unimplemented MSR address.
If the value in EDX:EAX sets bits that are reserved in the MSR specified by ECX.
If the source register contains a non-canonical address and ECX specifies one of the following 
MSRs: IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE, IA32_KERNEL_GS_BASE, 
IA32_LSTAR, IA32_SYSENTER_EIP, IA32_SYSENTER_ESP.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)  The WRMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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XACQUIRE/XRELEASE — Hardware Lock Elision Prefix Hints

Description

The XACQUIRE prefix is a hint to start lock elision on the memory address specified by the instruction and the 
XRELEASE prefix is a hint to end lock elision on the memory address specified by the instruction.
The XACQUIRE prefix hint can only be used with the following instructions (these instructions are also referred to 
as XACQUIRE-enabled when used with the XACQUIRE prefix):
• Instructions with an explicit LOCK prefix (F0H) prepended to forms of the instruction where the destination 

operand is a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCHG8B, DEC, INC, NEG, NOT, 
OR, SBB, SUB, XOR, XADD, and XCHG. 

• The XCHG instruction either with or without the presence of the LOCK prefix. 
The XRELEASE prefix hint can only be used with the following instructions (also referred to as XRELEASE-enabled 
when used with the XRELEASE prefix):
• Instructions with an explicit LOCK prefix (F0H) prepended to forms of the instruction where the destination 

operand is a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCHG8B, DEC, INC, NEG, NOT, 
OR, SBB, SUB, XOR, XADD, and XCHG. 

• The XCHG instruction either with or without the presence of the LOCK prefix. 
• The "MOV mem, reg" (Opcode 88H/89H) and "MOV mem, imm" (Opcode C6H/C7H) instructions. In these 

cases, the XRELEASE is recognized without the presence of the LOCK prefix.
The lock variables must satisfy the guidelines described in Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, Section 15.3.3, for elision to be successful, otherwise an HLE abort may be signaled.
If an encoded byte sequence that meets XACQUIRE/XRELEASE requirements includes both prefixes, then the HLE 
semantic is determined by the prefix byte that is placed closest to the instruction opcode. For example, an F3F2C6 
will not be treated as a XRELEASE-enabled instruction since the F2H (XACQUIRE) is closest to the instruction 
opcode C6. Similarly, an F2F3F0 prefixed instruction will be treated as a XRELEASE-enabled instruction since F3H 
(XRELEASE) is closest to the instruction opcode.
Intel 64 and IA-32 Compatibility

The effect of the XACQUIRE/XRELEASE prefix hint is the same in non-64-bit modes and in 64-bit mode.
For instructions that do not support the XACQUIRE hint, the presence of the F2H  prefix behaves the same way as 
prior hardware, according to
• REPNE/REPNZ semantics for string instructions,
• Serve as SIMD prefix for legacy SIMD instructions operating on XMM register
• Cause #UD if prepending the VEX prefix.
• Undefined for non-string instructions or other situations.
For instructions that do not support the XRELEASE hint, the presence of the F3H prefix behaves the same way as 
in prior hardware, according to
• REP/REPE/REPZ semantics for string instructions,

Opcode/Instruction 64/32bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

F2 V/V HLE1

NOTES:

1. Software is not required to check the HLE feature flag to use XACQUIRE or XRELEASE, as they are treated as regular prefix if HLE
feature flag reports 0.

A hint used with an “XACQUIRE-enabled“ instruction to start lock 
elision on the instruction memory operand address.XACQUIRE

F3 V/V HLE A hint used with an “XRELEASE-enabled“ instruction to end lock 
elision on the instruction memory operand address.XRELEASE
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• Serve as SIMD prefix for legacy SIMD instructions operating on XMM register
• Cause #UD if prepending the VEX prefix.
• Undefined for non-string instructions or other situations.

Operation
XACQUIRE

IF XACQUIRE-enabled instruction

THEN

IF (HLE_NEST_COUNT < MAX_HLE_NEST_COUNT) THEN

HLE_NEST_COUNT++

IF (HLE_NEST_COUNT = 1) THEN

HLE_ACTIVE ← 1
IF 64-bit mode

THEN 

restartRIP ← instruction pointer of the XACQUIRE-enabled instruction

ELSE

restartEIP ← instruction pointer of the XACQUIRE-enabled instruction

FI;

Enter HLE Execution (* record register state, start tracking memory state *)

FI; (* HLE_NEST_COUNT = 1*)

IF ElisionBufferAvailable 

THEN

Allocate elision buffer

Record address and data for forwarding and commit checking

Perform elision

ELSE 

Perform lock acquire operation transactionally but without elision

FI;

ELSE (* HLE_NEST_COUNT = MAX_HLE_NEST_COUNT *)

GOTO HLE_ABORT_PROCESSING

FI;

ELSE

Treat instruction as non-XACQUIRE F2H prefixed legacy instruction

FI;

XRELEASE

IF XRELEASE-enabled instruction 

THEN

IF (HLE_NEST_COUNT > 0) 

THEN

HLE_NEST_COUNT--

IF lock address matches in elision buffer THEN

IF lock satisfies address and value requirements THEN

Deallocate elision buffer

ELSE

GOTO HLE_ABORT_PROCESSING

FI;

FI;

IF (HLE_NEST_COUNT = 0) 

THEN

IF NoAllocatedElisionBuffer 

THEN
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Try to commit transactional execution

IF fail to commit transactional execution 

THEN

GOTO HLE_ABORT_PROCESSING;

ELSE (* commit success *)

HLE_ACTIVE ← 0
FI;

ELSE

GOTO HLE_ABORT_PROCESSING

FI;

FI;

FI; (* HLE_NEST_COUNT > 0 *)

ELSE 

Treat instruction as non-XRELEASE F3H prefixed legacy instruction

FI;

(* For any HLE abort condition encountered during HLE execution *)

HLE_ABORT_PROCESSING:

 HLE_ACTIVE ← 0
HLE_NEST_COUNT ← 0
Restore architectural register state

Discard memory updates performed in transaction

Free any allocated lock elision buffers

IF 64-bit mode

THEN 

RIP ← restartRIP

ELSE

EIP ← restartEIP

FI;

Execute and retire instruction at RIP (or EIP) and ignore any HLE hint

END

SIMD Floating-Point Exceptions

None

Other Exceptions

#GP(0) If the use of prefix causes instruction length to exceed 15 bytes.
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XABORT — Transactional Abort

Instruction Operand Encoding

Description

XABORT forces an RTM abort. Following an RTM abort, the logical processor resumes execution at the fallback 
address computed through the outermost XBEGIN instruction. The EAX register is updated to reflect an XABORT 
instruction caused the abort, and the imm8 argument will be provided in bits 31:24 of EAX. 

Operation
XABORT

IF RTM_ACTIVE = 0

THEN 

Treat as NOP;

ELSE

GOTO RTM_ABORT_PROCESSING;

FI;

(* For any RTM abort condition encountered during RTM execution *)

RTM_ABORT_PROCESSING:

Restore architectural register state;

Discard memory updates performed in transaction;

Update EAX with status and XABORT argument;

RTM_NEST_COUNT ← 0;

RTM_ACTIVE ← 0;

IF 64-bit Mode

THEN

RIP ← fallbackRIP;

ELSE

EIP ← fallbackEIP;

FI;

END

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent

XABORT: void _xabort( unsigned int);

SIMD Floating-Point Exceptions

None

Opcode/Instruction Op/ 
En

64/32bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

C6 F8 ib A V/V RTM Causes an RTM abort if in RTM execution

XABORT imm8

Op/En Operand 1 Operand2 Operand3 Operand4

A imm8 NA NA NA
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Other Exceptions

#UD CPUID.(EAX=7, ECX=0):RTM[bit 11] = 0.
If LOCK prefix is used.
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XADD—Exchange and Add

Instruction Operand Encoding

Description

Exchanges the first operand (destination operand) with the second operand (source operand), then loads the sum 
of the two values into the destination operand. The destination operand can be a register or a memory location; the 
source operand is a register.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

IA-32 Architecture Compatibility

IA-32 processors earlier than the Intel486 processor do not recognize this instruction. If this instruction is used, 
you should provide an equivalent code sequence that runs on earlier processors.

Operation

TEMP ← SRC + DEST;

SRC ← DEST;

DEST ← TEMP;

Flags Affected

The CF, PF, AF, SF, ZF, and OF flags are set according to the result of the addition, which is stored in the destination 
operand. 

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F C0 /r XADD r/m8, r8 MR Valid Valid Exchange r8 and r/m8; load sum into r/m8.

REX + 0F C0 /r XADD r/m8*, r8* MR Valid N.E. Exchange r8 and r/m8; load sum into r/m8.

0F C1 /r XADD r/m16, r16 MR Valid Valid Exchange r16 and r/m16; load sum into r/m16.

0F C1 /r XADD r/m32, r32 MR Valid Valid Exchange r32 and r/m32; load sum into r/m32.

REX.W + 0F C1 /r XADD r/m64, r64 MR Valid N.E. Exchange r64 and r/m64; load sum into r/m64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r, w) ModRM:reg (W) NA NA
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Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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XBEGIN — Transactional Begin

Instruction Operand Encoding

Description

The XBEGIN instruction specifies the start of an RTM code region. If the logical processor was not already in trans-
actional execution, then the XBEGIN instruction causes the logical processor to transition into transactional execu-
tion. The XBEGIN instruction that transitions the logical processor into transactional execution is referred to as the 
outermost XBEGIN instruction. The instruction also specifies a relative offset to compute the address of the fallback 
code path following a transactional abort.
On an RTM abort, the logical processor discards all architectural register and memory updates performed during 
the RTM execution and restores architectural state to that corresponding to the outermost XBEGIN instruction. The 
fallback address following an abort is computed from the outermost XBEGIN instruction. 

Operation
XBEGIN

IF RTM_NEST_COUNT < MAX_RTM_NEST_COUNT

THEN

RTM_NEST_COUNT++

IF RTM_NEST_COUNT = 1 THEN

IF 64-bit Mode

THEN

fallbackRIP ← RIP + SignExtend64(IMM)

(* RIP is instruction following XBEGIN instruction *)

ELSE

fallbackEIP ← EIP + SignExtend32(IMM)

(* EIP is instruction following XBEGIN instruction *)

FI;

IF (64-bit mode)

THEN IF (fallbackRIP is not canonical)

THEN #GP(0)

FI;

ELSE IF (fallbackEIP outside code segment limit)

THEN #GP(0)

FI;

FI;

RTM_ACTIVE ← 1
Enter RTM Execution (* record register state, start tracking memory state*)

Opcode/Instruction Op/ 
En

64/32bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

C7 F8 A V/V RTM Specifies the start of an RTM region. Provides a 16-bit relative 
offset to compute the address of the fallback instruction address at 
which execution resumes following an RTM abort.

XBEGIN rel16

C7 F8 A V/V RTM Specifies the start of an RTM region. Provides a 32-bit relative 
offset to compute the address of the fallback instruction address at 
which execution resumes following an RTM abort.

XBEGIN rel32

Op/En Operand 1 Operand2 Operand3 Operand4

A Offset NA NA NA
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FI; (* RTM_NEST_COUNT = 1 *)

ELSE (* RTM_NEST_COUNT = MAX_RTM_NEST_COUNT *)

GOTO RTM_ABORT_PROCESSING

FI;

(* For any RTM abort condition encountered during RTM execution *)

RTM_ABORT_PROCESSING:

Restore architectural register state

Discard memory updates performed in transaction

Update EAX with status

RTM_NEST_COUNT ← 0
RTM_ACTIVE ← 0
IF 64-bit mode

THEN

RIP ← fallbackRIP

ELSE

EIP ← fallbackEIP

FI;

END

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent

XBEGIN: unsigned int _xbegin( void );

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions

#UD CPUID.(EAX=7, ECX=0):RTM[bit 11]=0.
If LOCK prefix is used.

#GP(0) If the fallback address is outside the CS segment.

Real-Address Mode Exceptions

#GP(0) If the fallback address is outside the address space 0000H and FFFFH.
#UD CPUID.(EAX=7, ECX=0):RTM[bit 11]=0.

If LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If the fallback address is outside the address space 0000H and FFFFH.
#UD CPUID.(EAX=7, ECX=0):RTM[bit 11]=0.

If LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-bit Mode Exceptions

#UD CPUID.(EAX=7, ECX=0):RTM[bit 11] = 0.
If LOCK prefix is used.
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#GP(0) If the fallback address is non-canonical.
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XCHG—Exchange Register/Memory with Register

Instruction Operand Encoding

Description

Exchanges the contents of the destination (first) and source (second) operands. The operands can be two general-
purpose registers or a register and a memory location. If a memory operand is referenced, the processor’s locking 
protocol is automatically implemented for the duration of the exchange operation, regardless of the presence or 
absence of the LOCK prefix or of the value of the IOPL. (See the LOCK prefix description in this chapter for more 
information on the locking protocol.)

This instruction is useful for implementing semaphores or similar data structures for process synchronization. (See 
“Bus Locking” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for 
more information on bus locking.) 

The XCHG instruction can also be used instead of the BSWAP instruction for 16-bit operands.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits 
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. See 
the summary chart at the beginning of this section for encoding data and limits.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

90+rw XCHG AX, r16 O Valid Valid Exchange r16 with AX.

90+rw XCHG r16, AX O Valid Valid Exchange AX with r16.

90+rd XCHG EAX, r32 O Valid Valid Exchange r32 with EAX.

REX.W + 90+rd XCHG RAX, r64 O Valid N.E. Exchange r64 with RAX.

90+rd XCHG r32, EAX O Valid Valid Exchange EAX with r32.

REX.W + 90+rd XCHG r64, RAX O Valid N.E. Exchange RAX with r64.

86 /r XCHG r/m8, r8 MR Valid Valid Exchange r8 (byte register) with byte from 
r/m8.

REX + 86 /r XCHG r/m8*, r8* MR Valid N.E. Exchange r8 (byte register) with byte from 
r/m8.

86 /r XCHG r8, r/m8 RM Valid Valid Exchange byte from r/m8 with r8 (byte 
register).

REX + 86 /r XCHG r8*, r/m8* RM Valid N.E. Exchange byte from r/m8 with r8 (byte 
register).

87 /r XCHG r/m16, r16 MR Valid Valid Exchange r16 with word from r/m16.

87 /r XCHG r16, r/m16 RM Valid Valid Exchange word from r/m16 with r16.

87 /r XCHG r/m32, r32 MR Valid Valid Exchange r32 with doubleword from r/m32.

REX.W + 87 /r XCHG r/m64, r64 MR Valid N.E. Exchange r64 with quadword from r/m64.

87 /r XCHG r32, r/m32 RM Valid Valid Exchange doubleword from r/m32 with r32.

REX.W + 87 /r XCHG r64, r/m64 RM Valid N.E. Exchange quadword from r/m64 with r64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

O AX/EAX/RAX (r, w) opcode + rd (r, w) NA NA

O opcode + rd (r, w) AX/EAX/RAX (r, w) NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

RM ModRM:reg (w) ModRM:r/m (r) NA NA
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Operation

TEMP ← DEST;

DEST ← SRC;

SRC ← TEMP;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If either operand is in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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XEND — Transactional End

Instruction Operand Encoding

Description

The instruction marks the end of an RTM code region. If this corresponds to the outermost scope (that is, including 
this XEND instruction, the number of XBEGIN instructions is the same as number of XEND instructions), the logical 
processor will attempt to commit the logical processor state atomically. If the commit fails, the logical processor 
will rollback all architectural register and memory updates performed during the RTM execution. The logical 
processor will resume execution at the fallback address computed from the outermost XBEGIN instruction. The 
EAX register is updated to reflect RTM abort information.
XEND executed outside a transactional region will cause a #GP (General Protection Fault). 

Operation
XEND

IF (RTM_ACTIVE = 0) THEN

SIGNAL #GP

ELSE

RTM_NEST_COUNT--

IF (RTM_NEST_COUNT = 0) THEN

Try to commit transaction

IF fail to commit transactional execution

THEN

GOTO RTM_ABORT_PROCESSING;

ELSE (* commit success *)

RTM_ACTIVE ← 0
FI;

FI;

FI;

(* For any RTM abort condition encountered during RTM execution *)

RTM_ABORT_PROCESSING:

Restore architectural register state

Discard memory updates performed in transaction

Update EAX with status

RTM_NEST_COUNT ← 0
RTM_ACTIVE ← 0
IF 64-bit Mode

THEN

RIP ← fallbackRIP

ELSE

EIP ← fallbackEIP

FI;

END

Opcode/Instruction Op/ 
En

64/32bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 01 D5 A V/V RTM Specifies the end of an RTM code region.

XEND

Op/En Operand 1 Operand2 Operand3 Operand4

A NA NA NA NA
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Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent

XEND: void _xend( void );

SIMD Floating-Point Exceptions

None

Other Exceptions

#UD CPUID.(EAX=7, ECX=0):RTM[bit 11] = 0.
If LOCK or 66H or F2H or F3H prefix is used.

#GP(0) If RTM_ACTIVE = 0.
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XGETBV—Get Value of Extended Control Register

Instruction Operand Encoding

Description

Reads the contents of the extended control register (XCR) specified in the ECX register into registers EDX:EAX. (On 
processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The EDX register is 
loaded with the high-order 32 bits of the XCR and the EAX register is loaded with the low-order 32 bits. (On proces-
sors that support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are cleared.) If fewer 
than 64 bits are implemented in the XCR being read, the values returned to EDX:EAX in unimplemented bit loca-
tions are undefined.

XCR0 is supported on any processor that supports the XGETBV instruction. If 
CPUID.(EAX=0DH,ECX=1):EAX.XG1[bit 2] = 1, executing XGETBV with ECX = 1 returns in EDX:EAX the logical-
AND of XCR0 and the current value of the XINUSE state-component bitmap. This allows software to discover the 
state of the init optimization used by XSAVEOPT and XSAVES. See Chapter 13, “Managing State Using the XSAVE 
Feature Set‚” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

Use of any other value for ECX results in a general-protection (#GP) exception.

Operation

EDX:EAX ← XCR[ECX];

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XGETBV: unsigned __int64 _xgetbv( unsigned int);

Protected Mode Exceptions

#GP(0) If an invalid XCR is specified in ECX (includes ECX = 1 if 
CPUID.(EAX=0DH,ECX=1):EAX.XG1[bit 2] = 0).

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions

#GP(0) If an invalid XCR is specified in ECX (includes ECX = 1 if 
CPUID.(EAX=0DH,ECX=1):EAX.XG1[bit 2] = 0).

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 D0 XGETBV NP Valid Valid Reads an XCR specified by ECX into EDX:EAX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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XLAT/XLATB—Table Look-up Translation

Instruction Operand Encoding

Description

Locates a byte entry in a table in memory, using the contents of the AL register as a table index, then copies the 
contents of the table entry back into the AL register. The index in the AL register is treated as an unsigned integer. 
The XLAT and XLATB instructions get the base address of the table in memory from either the DS:EBX or the DS:BX 
registers (depending on the address-size attribute of the instruction, 32 or 16, respectively). (The DS segment 
may be overridden with a segment override prefix.)

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operand” form and the “no-
operand” form. The explicit-operand form (specified with the XLAT mnemonic) allows the base address of the table 
to be specified explicitly with a symbol. This explicit-operands form is provided to allow documentation; however, 
note that the documentation provided by this form can be misleading. That is, the symbol does not have to specify 
the correct base address. The base address is always specified by the DS:(E)BX registers, which must be loaded 
correctly before the XLAT instruction is executed.

The no-operands form (XLATB) provides a “short form” of the XLAT instructions. Here also the processor assumes 
that the DS:(E)BX registers contain the base address of the table.

In 64-bit mode, operation is similar to that in legacy or compatibility mode. AL is used to specify the table index 
(the operand size is fixed at 8 bits). RBX, however, is used to specify the table’s base address. See the summary 
chart at the beginning of this section for encoding data and limits.

Operation

IF AddressSize = 16

THEN

AL ← (DS:BX + ZeroExtend(AL));

ELSE IF (AddressSize = 32)

AL ← (DS:EBX + ZeroExtend(AL)); FI;

ELSE (AddressSize = 64)

AL ← (RBX + ZeroExtend(AL));

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

D7 XLAT m8 NP Valid Valid Set AL to memory byte DS:[(E)BX + unsigned 
AL].

D7 XLATB NP Valid Valid Set AL to memory byte DS:[(E)BX + unsigned 
AL].

REX.W + D7 XLATB NP Valid N.E. Set AL to memory byte [RBX + unsigned AL].

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
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XOR—Logical Exclusive OR

Instruction Operand Encoding

Description

Performs a bitwise exclusive OR (XOR) operation on the destination (first) and source (second) operands and 
stores the result in the destination operand location. The source operand can be an immediate, a register, or a 
memory location; the destination operand can be a register or a memory location. (However, two memory oper-
ands cannot be used in one instruction.) Each bit of the result is 1 if the corresponding bits of the operands are 
different; each bit is 0 if the corresponding bits are the same.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomically.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

34 ib XOR AL, imm8 I Valid Valid AL XOR imm8.

35 iw XOR AX, imm16 I Valid Valid AX XOR imm16.

35 id XOR EAX, imm32 I Valid Valid EAX XOR imm32.

REX.W + 35 id XOR RAX, imm32 I Valid N.E. RAX XOR imm32 (sign-extended).

80 /6 ib XOR r/m8, imm8 MI Valid Valid r/m8 XOR imm8.

REX + 80 /6 ib XOR r/m8*, imm8 MI Valid N.E. r/m8 XOR imm8.

81 /6 iw XOR r/m16, imm16 MI Valid Valid r/m16 XOR imm16.

81 /6 id XOR r/m32, imm32 MI Valid Valid r/m32 XOR imm32.

REX.W + 81 /6 id XOR r/m64, imm32 MI Valid N.E. r/m64 XOR imm32 (sign-extended).

83 /6 ib XOR r/m16, imm8 MI Valid Valid r/m16 XOR imm8 (sign-extended).

83 /6 ib XOR r/m32, imm8 MI Valid Valid r/m32 XOR imm8 (sign-extended).

REX.W + 83 /6 ib XOR r/m64, imm8 MI Valid N.E. r/m64 XOR imm8 (sign-extended).

30 /r XOR r/m8, r8 MR Valid Valid r/m8 XOR r8.

REX + 30 /r XOR r/m8*, r8* MR Valid N.E. r/m8 XOR r8.

31 /r XOR r/m16, r16 MR Valid Valid r/m16 XOR r16.

31 /r XOR r/m32, r32 MR Valid Valid r/m32 XOR r32.

REX.W + 31 /r XOR r/m64, r64 MR Valid N.E. r/m64 XOR r64.

32 /r XOR r8, r/m8 RM Valid Valid r8 XOR r/m8.

REX + 32 /r XOR r8*, r/m8* RM Valid N.E. r8 XOR r/m8.

33 /r XOR r16, r/m16 RM Valid Valid r16 XOR r/m16.

33 /r XOR r32, r/m32 RM Valid Valid r32 XOR r/m32.

REX.W + 33 /r XOR r64, r/m64 RM Valid N.E. r64 XOR r/m64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH. 

Op/En Operand 1 Operand 2 Operand 3 Operand 4

I AL/AX/EAX/RAX imm8/16/32 NA NA

MI ModRM:r/m (r, w) imm8/16/32 NA NA

MR ModRM:r/m (r, w) ModRM:reg (r) NA NA

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
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In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Using a 
REX prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this 
section for encoding data and limits.

Operation

DEST ← DEST XOR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The state of the AF flag is 
undefined.

Protected Mode Exceptions

#GP(0) If the destination operand points to a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
#UD If the LOCK prefix is used but the destination is not a memory operand.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3.
#UD If the LOCK prefix is used but the destination is not a memory operand.
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XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical exclusive-OR of the two packed double-precision floating-point values from the source 
operand (second operand) and the destination operand (first operand), and stores the result in the destination 
operand. The source operand can be an XMM register or a 128-bit memory location. The destination operand is an 
XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

XORPD (128-bit Legacy SSE version)

DEST[63:0] Å DEST[63:0] BITWISE XOR SRC[63:0]

DEST[127:64] Å DEST[127:64] BITWISE XOR SRC[127:64]

DEST[VLMAX-1:128] (Unmodified)

VXORPD (VEX.128 encoded version)

DEST[63:0] Å SRC1[63:0] BITWISE XOR SRC2[63:0]

DEST[127:64] Å SRC1[127:64] BITWISE XOR SRC2[127:64]

DEST[VLMAX-1:128] Å 0

VXORPD (VEX.256 encoded version)

DEST[63:0] Å SRC1[63:0] BITWISE XOR SRC2[63:0]

DEST[127:64] Å SRC1[127:64] BITWISE XOR SRC2[127:64]

DEST[191:128] Å SRC1[191:128] BITWISE XOR SRC2[191:128]

DEST[255:192] Å SRC1[255:192] BITWISE XOR SRC2[255:192]

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

66 0F 57 /r

XORPD xmm1, xmm2/m128

RM V/V SSE2 Bitwise exclusive-OR of xmm2/m128 and 
xmm1. 

VEX.NDS.128.66.0F.WIG 57 /r

VXORPD xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical XOR of packed 
double-precision floating-point values in xmm2 
and xmm3/mem.

VEX.NDS.256.66.0F.WIG 57 /r

VXORPD ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the bitwise logical XOR of packed 
double-precision floating-point values in ymm2 
and ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
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Intel C/C++ Compiler Intrinsic Equivalent

XORPD: __m128d _mm_xor_pd(__m128d a, __m128d b)

VXORPD: __m256d _mm256_xor_pd (__m256d a, __m256d b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.
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XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values

Instruction Operand Encoding

Description

Performs a bitwise logical exclusive-OR of the four packed single-precision floating-point values from the source 
operand (second operand) and the destination operand (first operand), and stores the result in the destination 
operand. The source operand can be an XMM register or a 128-bit memory location. The destination operand is an 
XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to access additional registers 
(XMM8-XMM15).
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (VLMAX-1:128) of the corresponding 
YMM register destination are unmodified.
VEX.128 encoded version: the first source operand is an XMM register or 128-bit memory location. The destination 
operand is an XMM register. The upper bits (VLMAX-1:128) of the corresponding YMM register destination are 
zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM 
register or a 256-bit memory location. The destination operand is a YMM register. 

Operation

XORPS (128-bit Legacy SSE version)

DEST[31:0] Å SRC1[31:0] BITWISE XOR SRC2[31:0]

DEST[63:32] Å SRC1[63:32] BITWISE XOR SRC2[63:32]

DEST[95:64] Å SRC1[95:64] BITWISE XOR SRC2[95:64]

DEST[127:96] Å SRC1[127:96] BITWISE XOR SRC2[127:96]

DEST[VLMAX-1:128] (Unmodified)

VXORPS (VEX.128 encoded version)

DEST[31:0] Å SRC1[31:0] BITWISE XOR SRC2[31:0]

DEST[63:32] Å SRC1[63:32] BITWISE XOR SRC2[63:32]

DEST[95:64] Å SRC1[95:64] BITWISE XOR SRC2[95:64]

DEST[127:96] Å SRC1[127:96] BITWISE XOR SRC2[127:96]

DEST[VLMAX-1:128] Å 0

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 57 /r

XORPS xmm1, xmm2/m128

RM V/V SSE Bitwise exclusive-OR of xmm2/m128 and xmm1.

VEX.NDS.128.0F.WIG 57 /r

VXORPS xmm1,xmm2, xmm3/m128

RVM V/V AVX Return the bitwise logical XOR of packed single-
precision floating-point values in xmm2 and 
xmm3/mem.

VEX.NDS.256.0F.WIG 57 /r

VXORPS ymm1, ymm2, ymm3/m256

RVM V/V AVX Return the bitwise logical XOR of packed single-
precision floating-point values in ymm2 and 
ymm3/mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) NA NA

RVM ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA



XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

4-576 Vol. 2B

VXORPS (VEX.256 encoded version)

DEST[31:0] Å SRC1[31:0] BITWISE XOR SRC2[31:0]

DEST[63:32] Å SRC1[63:32] BITWISE XOR SRC2[63:32]

DEST[95:64] Å SRC1[95:64] BITWISE XOR SRC2[95:64]

DEST[127:96] Å SRC1[127:96] BITWISE XOR SRC2[127:96]

DEST[159:128] Å SRC1[159:128] BITWISE XOR SRC2[159:128]

DEST[191:160]Å SRC1[191:160] BITWISE XOR SRC2[191:160]

DEST[223:192] Å SRC1[223:192] BITWISE XOR SRC2[223:192]

DEST[255:224] Å SRC1[255:224] BITWISE XOR SRC2[255:224].

Intel C/C++ Compiler Intrinsic Equivalent

XORPS: __m128 _mm_xor_ps(__m128 a, __m128 b)

VXORPS: __m256 _mm256_xor_ps (__m256 a, __m256 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.
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XRSTOR—Restore Processor Extended States

Instruction Operand Encoding

Description

Performs a full or partial restore of processor state components from the XSAVE area located at the memory 
address specified by the source operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. 
The specific state components restored correspond to the bits set in the requested-feature bitmap (RFBM), which 
is the logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.7, “Operation of XRSTOR,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
1 provides a detailed description of the operation of the XRSTOR instruction. The following items provide a high-
level outline:
• Execution of XRSTOR may take one of two forms: standard and compacted. Bit 63 of the XCOMP_BV field in the 

XSAVE header determines which form is used: value 0 specifies the standard form, while value 1 specifies the 
compacted form.

• If RFBM[i] = 0, XRSTOR does not update state component i.1

• If RFBM[i] = 1 and bit i is clear in the XSTATE_BV field in the XSAVE header, XRSTOR initializes state 
component i.

• If RFBM[i] = 1 and XSTATE_BV[i] = 1, XRSTOR loads state component i from the XSAVE area.
• The standard form of XRSTOR treats MXCSR (which is part of state component 1 — SSE) differently from the 

XMM registers. If either form attempts to load MXCSR with an illegal value, a general-protection exception 
(#GP) occurs.

• XRSTOR loads the internal value XRSTOR_INFO, which may be used to optimize a subsequent execution of 
XSAVEOPT or XSAVES.

• Immediately following an execution of XRSTOR, the processor tracks as in-use (not in initial configuration) any 
state component i for which RFBM[i] = 1 and XSTATE_BV[i] = 1; it tracks as modified any state component 
i for which RFBM[i] = 0.

Use of a source operand not aligned to 64-byte boundary (for 64-bit and 32-bit modes) results in a general-protec-
tion (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Operation

RFBM ← XCR0 AND EDX:EAX; /* bitwise logical AND */

COMPMASK ← XCOMP_BV field from XSAVE header;

RSTORMASK ← XSTATE_BV field from XSAVE header;

IF in VMX non-root operation

THEN VMXNR ← 1;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AE /5 XRSTOR mem M Valid Valid Restore state components specified by 
EDX:EAX from mem.

REX.W+ 0F AE /5 XRSTOR64 mem M Valid N.E. Restore state components specified by 
EDX:EAX from mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA

1. There is an exception if RFBM[1] = 0 and RFBM[2] = 1. In this case, the standard form of XRSTOR will load MXCSR from memory, 
even though MXCSR is part of state component 1 — SSE. The compacted form of XRSTOR does not make this exception.
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ELSE VMXNR ← 0;

FI;

LAXA ← linear address of XSAVE area;

IF COMPMASK[63] = 0

THEN

/* Standard form of XRSTOR */

If RFBM[0] = 1

THEN

IF RSTORMASK[0] = 1

THEN load x87 state from legacy region of XSAVE area;

ELSE initialize x87 state;

FI;

FI;

If RFBM[1] = 1

THEN

IF RSTORMASK[1] = 1

THEN load XMM registers from legacy region of XSAVE area;

ELSE set all XMM registers to 0;

FI;

FI;

If RFBM[2] = 1

THEN

IF RSTORMASK[2] = 1

THEN load AVX state from extended region (standard format) of XSAVE area;

ELSE initialize AVX state;

FI;

FI;

If RFBM[1] = 1 or RFBM[2] = 1

THEN load MXCSR from legacy region of XSAVE area;

FI;

FI;

ELSE

/* Compacted form of XRSTOR */

IF CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0

THEN /* compacted form not supported */

#GP(0);

FI;

If RFBM[0] = 1

THEN

IF RSTORMASK[0] = 1

THEN load x87 state from legacy region of XSAVE area;

ELSE initialize x87 state;

FI;

FI;

If RFBM[1] = 1

THEN

IF RSTORMASK[1] = 1

THEN load SSE state from legacy region of XSAVE area;

ELSE initialize SSE state;

FI;

FI;

If RFBM[2] = 1

THEN



XRSTOR—Restore Processor Extended States

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-579

IF RSTORMASK[2] = 1

THEN load AVX state from extended region (compacted format) of XSAVE area;

ELSE initialize AVX state;

FI;

FI;

FI;

XRSTOR_INFO ← ¢CPL,VMXNR,LAXA,COMPMASK²;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XRSTOR: void _xrstor( void * , unsigned __int64);

XRSTOR: void _xrstor64( void * , unsigned __int64);

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BV field of the XSAVE header is 1 and 
CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.
If the standard form is executed and a bit in XCR0 is 0 and the corresponding bit in the 
XSTATE_BV field of the XSAVE header is 1.
If the standard form is executed and bytes 23:8 of the XSAVE header are not all zero.
If the compacted form is executed and a bit in XCR0 is 0 and the corresponding bit in the 
XCOMP_BV field of the XSAVE header is 1.
If the compacted form is executed and a bit in the XCOMP_BV field in the XSAVE header is 0 
and the corresponding bit in the XSTATE_BV field is 1.
If the compacted form is executed and bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If any part of the operand lies outside the effective address space from 0 to FFFFH.
If bit 63 of the XCOMP_BV field of the XSAVE header is 1 and 
CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.
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If the standard form is executed and a bit in XCR0 is 0 and the corresponding bit in the 
XSTATE_BV field of the XSAVE header is 1.
If the standard form is executed and bytes 23:8 of the XSAVE header are not all zero.
If the compacted form is executed and a bit in XCR0 is 0 and the corresponding bit in the 
XCOMP_BV field of the XSAVE header is 1.
If the compacted form is executed and a bit in the XCOMP_BV field in the XSAVE header is 0 
and the corresponding bit in the XSTATE_BV field is 1.
If the compacted form is executed and bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BV field of the XSAVE header is 1 and 
CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.
If the standard form is executed and a bit in XCR0 is 0 and the corresponding bit in the 
XSTATE_BV field of the XSAVE header is 1.
If the standard form is executed and bytes 23:8 of the XSAVE header are not all zero.
If the compacted form is executed and a bit in XCR0 is 0 and the corresponding bit in the 
XCOMP_BV field of the XSAVE header is 1.
If the compacted form is executed and a bit in the XCOMP_BV field in the XSAVE header is 0 
and the corresponding bit in the XSTATE_BV field is 1.
If the compacted form is executed and bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).
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XRSTORS—Restore Processor Extended States Supervisor

Instruction Operand Encoding

Description

Performs a full or partial restore of processor state components from the XSAVE area located at the memory 
address specified by the source operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. 
The specific state components restored correspond to the bits set in the requested-feature bitmap (RFBM), which 
is the logical-AND of EDX:EAX and the logical-OR of XCR0 with the IA32_XSS MSR. XRSTORS may be executed only 
if CPL = 0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.11, “Operation of XRSTORS,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1 provides a detailed description of the operation of the XRSTOR instruction. The following items provide a 
high-level outline:
• Execution of XRSTORS is similar to that of the compacted form of XRSTOR; XRSTORS cannot restore from an 

XSAVE area in which the extended region is in the standard format (see Section 13.4.3, “Extended Region of an 
XSAVE Area”).

• XRSTORS differs from XRSTOR in that it can restore state components corresponding to bits set in the 
IA32_XSS MSR.

• If RFBM[i] = 0, XRSTORS does not update state component i.
• If RFBM[i] = 1 and bit i is clear in the XSTATE_BV field in the XSAVE header, XRSTORS initializes state 

component i.
• If RFBM[i] = 1 and XSTATE_BV[i] = 1, XRSTORS loads state component i from the XSAVE area.
• If XRSTORS attempts to load MXCSR with an illegal value, a general-protection exception (#GP) occurs.
• XRSTORS loads the internal value XRSTOR_INFO, which may be used to optimize a subsequent execution of 

XSAVEOPT or XSAVES.
• Immediately following an execution of XRSTORS, the processor tracks as in-use (not in initial configuration) 

any state component i for which RFBM[i] = 1 and XSTATE_BV[i] = 1; it tracks as modified any state component 
i for which RFBM[i] = 0.

Use of a source operand not aligned to 64-byte boundary (for 64-bit and 32-bit modes) results in a general-protec-
tion (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Operation

RFBM ← (XCR0 OR IA32_XSS) AND EDX:EAX; /* bitwise logical OR and AND */

COMPMASK ← XCOMP_BV field from XSAVE header;

RSTORMASK ← XSTATE_BV field from XSAVE header;

IF in VMX non-root operation

THEN VMXNR ← 1;

ELSE VMXNR ← 0;

FI;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F C7 /3 XRSTORS mem M Valid Valid Restore state components specified by 
EDX:EAX from mem.

REX.W+ 0F C7 /3 XRSTORS64 mem M Valid N.E. Restore state components specified by 
EDX:EAX from mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) NA NA NA
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LAXA ← linear address of XSAVE area;

If RFBM[0] = 1

THEN

IF RSTORMASK[0] = 1

THEN load x87 state from legacy region of XSAVE area;

ELSE initialize x87 state;

FI;

FI;

If RFBM[1] = 1

THEN

IF RSTORMASK[1] = 1

THEN load SSE state from legacy region of XSAVE area;

ELSE initialize SSE state;

FI;

FI;

If RFBM[2] = 1

THEN

IF RSTORMASK[2] = 1

THEN load AVX state from extended region (compacted format) of XSAVE area;

ELSE initialize AVX state;

FI;

FI;

XRSTOR_INFO ← ¢CPL,VMXNR,LAXA,COMPMASK²;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XRSTORS: void _xrstors( void * , unsigned __int64);

XRSTORS64: void _xrstors64( void * , unsigned __int64);

Protected Mode Exceptions

#GP(0) If CPL > 0.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BV field of the XSAVE header is 0.
If a bit in XCR0 is 0 and the corresponding bit in the XCOMP_BV field of the XSAVE header is 1.
If a bit in the XCOMP_BV field in the XSAVE header is 0 and the corresponding bit in the 
XSTATE_BV field is 1.
If bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
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exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a #GP 
is signaled in its place. In addition, the width of the alignment check may also vary with imple-
mentation. For instance, for a given implementation, an alignment check exception might be 
signaled for a 2-byte misalignment, whereas a #GP might be signaled for all other misalign-
ments (4-, 8-, or 16-byte misalignments).

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If any part of the operand lies outside the effective address space from 0 to FFFFH.
If bit 63 of the XCOMP_BV field of the XSAVE header is 0.
If a bit in XCR0 is 0 and the corresponding bit in the XCOMP_BV field of the XSAVE header is 1.
If a bit in the XCOMP_BV field in the XSAVE header is 0 and the corresponding bit in the 
XSTATE_BV field is 1.
If bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If CPL > 0.
If a memory address is in a non-canonical form.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If bit 63 of the XCOMP_BV field of the XSAVE header is 0.
If a bit in XCR0 is 0 and the corresponding bit in the XCOMP_BV field of the XSAVE header is 1.
If a bit in the XCOMP_BV field in the XSAVE header is 0 and the corresponding bit in the 
XSTATE_BV field is 1.
If bytes 63:16 of the XSAVE header are not all zero.
If attempting to write any reserved bits of the MXCSR register with 1.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
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tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).
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XSAVE—Save Processor Extended States

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address 
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The 
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the 
logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.6, “Operation of XSAVE,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 
provides a detailed description of the operation of the XSAVE instruction. The following items provide a high-level 
outline:
• XSAVE saves state component i if and only if RFBM[i] = 1.1

• XSAVE does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy 
Region of an XSAVE Area”).

• XSAVE reads the XSTATE_BV field of the XSAVE header (see Section 13.4.2, “XSAVE Header”) and writes a 
modified value back to memory as follows. If RFBM[i] = 1, XSAVE writes XSTATE_BV[i] with the value of 
XINUSE[i]. (XINUSE is a bitmap by which the processor tracks the status of various state components. See 
Section 13.5.4, “Processor Tracking of XSAVE-Managed State.”) If RFBM[i] = 0, XSAVE writes XSTATE_BV[i] 
with the value that it read from memory (it does not modify the bit). XSAVE does not write to any part of the 
XSAVE header other than the XSTATE_BV field.

• XSAVE always uses the standard format of the extended region of the XSAVE area (see Section 13.4.3, 
“Extended Region of an XSAVE Area”).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a 
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Operation

RFBM ← XCR0 AND EDX:EAX; /* bitwise logical AND */

OLD_BV ← XSTATE_BV field from XSAVE header;

IF RFBM[0] = 1

THEN store x87 state into legacy region of XSAVE area;

FI;

IF RFBM[1] = 1

THEN store XMM registers into legacy region of XSAVE area;

FI;

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F AE /4 XSAVE mem M Valid Valid Save state components specified by EDX:EAX 
to mem.

REX.W+ 0F AE /4 XSAVE64 mem M Valid N.E. Save state components specified by EDX:EAX 
to mem.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

1. An exception is made for MXCSR and MXCSR_MASK, which belong to state component 1 — SSE. XSAVE saves these values to mem-
ory if either RFBM[1] or RFBM[2] is 1.
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IF RFBM[2] = 1

THEN store AVX state into extended region of XSAVE area;

FI;

IF RFBM[1] = 1 or RFBM[2] = 1

THEN store MXCSR and MXCSR_MASK into legacy region of XSAVE area;

FI;

XSTATE_BV field in XSAVE header ← (OLD_BV AND ~RFBM) OR (XINUSE AND RFBM);

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVE: void _xsave( void * , unsigned __int64);

XSAVE: void _xsave64( void * , unsigned __int64);

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.



XSAVE—Save Processor Extended States

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-587

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).
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XSAVEC—Save Processor Extended States with Compaction

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address 
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The 
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the 
logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.9, “Operation of XSAVEC,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
1 provides a detailed description of the operation of the XSAVEC instruction. The following items provide a high-
level outline:
• Execution of XSAVEC is similar to that of XSAVE. XSAVEC differs from XSAVE in that it uses compaction and that 

it may use the init optimization.
• XSAVEC saves state component i if and only if RFBM[i] = 1 and XINUSE[i] = 1.1 (XINUSE is a bitmap by which 

the processor tracks the status of various state components. See Section 13.5.4, “Processor Tracking of 
XSAVE-Managed State.”)

• XSAVEC does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy 
Region of an XSAVE Area”).

• XSAVEC writes the logical AND of RFBM and XINUSE to the XSTATE_BV field of the XSAVE header.2,3 (See 
Section 13.4.2, “XSAVE Header.”) XSAVEC sets bit 63 of the XCOMP_BV field and sets bits 62:0 of that field to 
RFBM[62:0]. XSAVEC does not write to any parts of the XSAVE header other than the XSTATE_BV and 
XCOMP_BV fields.

• XSAVEC always uses the compacted format of the extended region of the XSAVE area (see Section 13.4.3, 
“Extended Region of an XSAVE Area”).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a 
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Operation

RFBM ← XCR0 AND EDX:EAX; /* bitwise logical AND */

COMPMASK ← RFBM OR 80000000_00000000H;

IF RFBM[0] = 1 and XINUSE[0] = 1

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F C7 /4 XSAVEC mem M Valid Valid Save state components specified by EDX:EAX 
to mem with compaction.

REX.W+ 0F C7 /4 XSAVEC64 mem M Valid N.E. Save state components specified by EDX:EAX 
to mem with compaction.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

1. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not 
have its initial value of 1F80H. In this case, XSAVEC saves SSE state as long as RFBM[1] = 1.

2. Unlike XSAVE and XSAVEOPT, XSAVEC clears bits in the XSTATE_BV field that correspond to bits that are clear in RFBM.

3. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not 
have its initial value of 1F80H. In this case, XSAVEC sets XSTATE_BV[1] to 1 as long as RFBM[1] = 1.
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THEN store x87 state into legacy region of XSAVE area;

FI;

IF RFBM[1] = 1 and (XINUSE[1] = 1 or MXCSR � 1F80H)

THEN store SSE state into legacy region of XSAVE area;

FI;

IF RFBM[2] = 1 AND XINUSE[2] = 1

THEN store AVX state into extended region of XSAVE area;

FI;

XSTATE_BV field in XSAVE header ← XINUSE AND RFBM;

XCOMP_BV field in XSAVE header ← COMPMASK;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVEC: void _xsavec( void * , unsigned __int64);

XSAVEC64: void _xsavec64( void * , unsigned __int64);

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.
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Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEC[bit 1] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).
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XSAVEOPT—Save Processor Extended States Optimized

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address 
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The 
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the 
logical-AND of EDX:EAX and XCR0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.8, “Operation of XSAVEOPT,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1 provides a detailed description of the operation of the XSAVEOPT instruction. The following items provide 
a high-level outline:
• Execution of XSAVEOPT is similar to that of XSAVE. XSAVEOPT differs from XSAVE in that it uses compaction 

and that it may use the init and modified optimizations. The performance of XSAVEOPT will be equal to or better 
than that of XSAVE.

• XSAVEOPT saves state component i only if RFBM[i] = 1 and XINUSE[i] = 1.1 (XINUSE is a bitmap by which the 
processor tracks the status of various state components. See Section 13.5.4, “Processor Tracking of XSAVE-
Managed State.”) Even if both bits are 1, XSAVEOPT may optimize and not save state component i if (1) state 
component i has not been modified since the last execution of XRTOR or XRSTORS; and (2) this execution of 
XSAVES corresponds to that last execution of XRTOR or XRSTORS as determined by the internal value 
XRSTOR_INFO (see the Operation section below).

• XSAVEOPT does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy 
Region of an XSAVE Area”).

• XSAVEOPT reads the XSTATE_BV field of the XSAVE header (see Section 13.4.2, “XSAVE Header”) and writes a 
modified value back to memory as follows. If RFBM[i] = 1, XSAVEOPT writes XSTATE_BV[i] with the value of 
XINUSE[i]. If RFBM[i] = 0, XSAVEOPT writes XSTATE_BV[i] with the value that it read from memory (it does 
not modify the bit). XSAVEOPT does not write to any part of the XSAVE header other than the XSTATE_BV field.

• XSAVEOPT always uses the standard format of the extended region of the XSAVE area (see Section 13.4.3, 
“Extended Region of an XSAVE Area”).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) will result in a 
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Operation

RFBM ← XCR0 AND EDX:EAX; /* bitwise logical AND */

OLD_BV ← XSTATE_BV field from XSAVE header;

Opcode/
Instruction

Op/ 
En

64/32 bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F AE /6

XSAVEOPT mem

M V/V XSAVEOPT Save state components specified by EDX:EAX 
to mem, optimizing if possible.

REX.W + 0F AE /6

XSAVEOPT64 mem

M V/V XSAVEOPT Save state components specified by EDX:EAX 
to mem, optimizing if possible.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

1. There is an exception made for MXCSR and MXCSR_MASK, which belong to state component 1 — SSE. XSAVEOPT always saves 
these to memory if RFBM[1] = 1 or RFBM[2] = 1, regardless of the value of XINUSE.
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IF in VMX non-root operation

THEN VMXNR ← 1;

ELSE VMXNR ← 0;

FI;

LAXA ← linear address of XSAVE area;

COMPMASK ← 00000000_00000000H;

IF XRSTOR_INFO = ¢CPL,VMXNR,LAXA,COMPMASK²
THEN MODOPT ← 1;

ELSE MODOPT ← 0;

FI;

IF RFBM[0] = 1 and XINUSE[0] = 1

THEN store x87 state into legacy region of XSAVE area;

/* might avoid saving if x87 state is not modified and MODOPT = 1 */

FI;

IF RFBM[1] = 1 and XINUSE[1]

THEN store XMM registers into legacy region of XSAVE area;

/* might avoid saving if XMM registers are not modified and MODOPT = 1 */

FI;

IF RFBM[2] = 1 AND XINUSE[2] = 1

THEN store AVX state into extended region of XSAVE area;

/* might avoid saving if AVX state is not modified and MODOPT = 1 */

FI;

IF RFBM[1] = 1 or RFBM[2] = 1

THEN store MXCSR and MXCSR_MASK into legacy region of XSAVE area;

FI;

XSTATE_BV field in XSAVE header ← (OLD_BV AND ~RFBM) OR (XINUSE AND RFBM);

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVEOPT: void _xsaveopt( void * , unsigned __int64);

XSAVEOPT: void _xsaveopt64( void * , unsigned __int64);

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] = 

0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If any part of the operand lies outside the effective address space from 0 to FFFFH.



XSAVEOPT—Save Processor Extended States Optimized

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-593

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] = 

0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] = 

0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.
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XSAVES—Save Processor Extended States Supervisor

Instruction Operand Encoding

Description

Performs a full or partial save of processor state components to the XSAVE area located at the memory address 
specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The 
specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), the logical-
AND of EDX:EAX and the logical-OR of XCR0 with the IA32_XSS MSR. XSAVES may be executed only if CPL = 0.

The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

Section 13.10, “Operation of XSAVES,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
1 provides a detailed description of the operation of the XSAVES instruction. The following items provide a high-
level outline:
• Execution of XSAVES is similar to that of XSAVEC. XSAVES differs from XSAVEC in that it can save state 

components corresponding to bits set in the IA32_XSS MSR and that it may use the modified optimization.
• XSAVES saves state component i only if RFBM[i] = 1 and XINUSE[i] = 1.1 (XINUSE is a bitmap by which the 

processor tracks the status of various state components. See Section 13.5.4, “Processor Tracking of XSAVE-
Managed State.”) Even if both bits are 1, XSAVES may optimize and not save state component i if (1) state 
component i has not been modified since the last execution of XRTOR or XRSTORS; and (2) this execution of 
XSAVES correspond to that last execution of XRTOR or XRSTORS as determined by XRSTOR_INFO (see the 
Operation section below).

• XSAVES does not modify bytes 511:464 of the legacy region of the XSAVE area (see Section 13.4.1, “Legacy 
Region of an XSAVE Area”).

• XSAVES writes the logical AND of RFBM and XINUSE to the XSTATE_BV field of the XSAVE header.2 (See Section 
13.4.2, “XSAVE Header.”) XSAVES sets bit 63 of the XCOMP_BV field and sets bits 62:0 of that field to 
RFBM[62:0]. XSAVES does not write to any parts of the XSAVE header other than the XSTATE_BV and 
XCOMP_BV fields.

• XSAVES always uses the compacted format of the extended region of the XSAVE area (see Section 13.4.3, 
“Extended Region of an XSAVE Area”).

Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) results in a 
general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F C7 /5 XSAVES mem M Valid Valid Save state components specified by EDX:EAX 
to mem with compaction, optimizing if 
possible.

REX.W+ 0F C7 /5 XSAVES64 mem M Valid N.E. Save state components specified by EDX:EAX 
to mem with compaction, optimizing if 
possible.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (w) NA NA NA

1. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not 
have its initial value of 1F80H. In this case, the init optimization does not apply and XSAVEC will save SSE state as long as RFBM[1] = 
1 and the modified optimization is not being applied.

2. There is an exception for state component 1 (SSE). MXCSR is part of SSE state, but XINUSE[1] may be 0 even if MXCSR does not 
have its initial value of 1F80H. In this case, XSAVES sets XSTATE_BV[1] to 1 as long as RFBM[1] = 1.
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Operation

RFBM ← XCR0 AND EDX:EAX; /* bitwise logical AND */

IF in VMX non-root operation

THEN VMXNR ← 1;

ELSE VMXNR ← 0;

FI;

LAXA ← linear address of XSAVE area;

COMPMASK ← RFBM OR 80000000_00000000H;

IF XRSTOR_INFO = ¢CPL,VMXNR,LAXA,COMPMASK²
THEN MODOPT ← 1;

ELSE MODOPT ← 0;

FI;

IF RFBM[0] = 1 and XINUSE[0] = 1

THEN store x87 state into legacy region of XSAVE area;

/* might avoid saving if x87 state is not modified and MODOPT = 1 */

FI;

IF RFBM[1] = 1 and (XINUSE[1] = 1 or MXCSR � 1F80H)

THEN store SSE state into legacy region of XSAVE area;

/* might avoid saving if SSE state is not modified and MODOPT = 1 */

FI;

IF RFBM[2] = 1 AND XINUSE[2] = 1

THEN store AVX state into extended region of XSAVE area;

/* might avoid saving if AVX state is not modified and MODOPT = 1 */

FI;

XSTATE_BV field in XSAVE header ← XINUSE AND RFBM;

XCOMP_BV field in XSAVE header ← COMPMASK;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSAVES: void _xsaves( void * , unsigned __int64);

XSAVES64: void _xsaves64( void * , unsigned __int64);

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
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ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).

Real-Address Mode Exceptions

#GP If a memory operand is not aligned on a 64-byte boundary, regardless of segment.
If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
If a memory operand is not aligned on a 64-byte boundary, regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#NM If CR0.TS[bit 3] = 1.
#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSS[bit 3] = 0.

If CR4.OSXSAVE[bit 18] = 0.
If any of the LOCK, 66H, F3H or F2H prefixes is used.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory 
operand is not aligned on a 16-byte boundary, as described above. If the alignment check 
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may 
vary with implementation, as follows. In all implementations where #AC is not signaled, a 
general protection exception is signaled in its place. In addition, the width of the alignment 
check may also vary with implementation. For instance, for a given implementation, an align-
ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-
tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte 
misalignments).
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XSETBV—Set Extended Control Register

Instruction Operand Encoding

Description

Writes the contents of registers EDX:EAX into the 64-bit extended control register (XCR) specified in the ECX 
register. (On processors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The 
contents of the EDX register are copied to high-order 32 bits of the selected XCR and the contents of the EAX 
register are copied to low-order 32 bits of the XCR. (On processors that support the Intel 64 architecture, the high-
order 32 bits of each of RAX and RDX are ignored.) Undefined or reserved bits in an XCR should be set to values 
previously read.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a general protection 
exception #GP(0) is generated. Specifying a reserved or unimplemented XCR in ECX will also cause a general 
protection exception. The processor will also generate a general protection exception if software attempts to write 
to reserved bits in an XCR.

Currently, only XCR0 is supported. Thus, all other values of ECX are reserved and will cause a #GP(0). Note that 
bit 0 of XCR0 (corresponding to x87 state) must be set to 1; the instruction will cause a #GP(0) if an attempt is 
made to clear this bit. In addition, the instruction causes a #GP(0) if an attempt is made to set XCR0[2] (AVX 
state) while clearing XCR0[1] (SSE state); it is necessary to set both bits to use AVX instructions; Section 13.3, 
“Enabling the XSAVE Feature Set and XSAVE-Supported Features,” of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.

Operation

XCR[ECX] ← EDX:EAX;

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSETBV: void _xsetbv( unsigned int, unsigned __int64);

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
If an invalid XCR is specified in ECX.
If the value in EDX:EAX sets bits that are reserved in the XCR specified by ECX.
If an attempt is made to clear bit 0 of XCR0.
If an attempt is made to set XCR0[2:1] to 10b.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Opcode Instruction Op/ 
En

64-Bit 
Mode

Compat/
Leg Mode

Description

0F 01 D1 XSETBV NP Valid Valid Write the value in EDX:EAX to the XCR 
specified by ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA
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Real-Address Mode Exceptions

#GP If an invalid XCR is specified in ECX.
If the value in EDX:EAX sets bits that are reserved in the XCR specified by ECX.
If an attempt is made to clear bit 0 of XCR0.
If an attempt is made to set XCR0[2:1] to 10b.

#UD If CPUID.01H:ECX.XSAVE[bit 26] = 0.
If CR4.OSXSAVE[bit 18] = 0.
If the LOCK prefix is used.
If 66H, F3H or F2H prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) The XSETBV instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.
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XTEST — Test If In Transactional Execution

Instruction Operand Encoding

Description

The XTEST instruction queries the transactional execution status. If the instruction executes inside a transaction-
ally executing RTM region or a transactionally executing HLE region, then the ZF flag is cleared, else it is set.

Operation
XTEST

IF (RTM_ACTIVE = 1 OR HLE_ACTIVE = 1)

THEN

ZF ← 0
ELSE

ZF ← 1
FI;

Flags Affected

The ZF flag is cleared if the instruction is executed transactionally; otherwise it is set to 1. The CF, OF, SF, PF, and 
AF, flags are cleared.

Intel C/C++ Compiler Intrinsic Equivalent

XTEST: int _xtest( void );

SIMD Floating-Point Exceptions

None

Other Exceptions

#UD CPUID.(EAX=7, ECX=0):HLE[bit 4] = 0 and CPUID.(EAX=7, ECX=0):RTM[bit 11] = 0.
If LOCK or 66H or F2H or F3H prefix is used.

Opcode/Instruction Op/ 
En

64/32bit 
Mode 
Support

CPUID 
Feature 
Flag

Description

0F 01 D6 A V/V HLE or 
RTM

Test if executing in a transactional region

XTEST

Op/En Operand 1 Operand2 Operand3 Operand4

A NA NA NA NA
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CHAPTER 5
SAFER MODE EXTENSIONS REFERENCE

5.1 OVERVIEW

This chapter describes the Safer Mode Extensions (SMX) for the Intel 64 and IA-32 architectures. Safer Mode 
Extensions (SMX) provide a programming interface for system software to establish a measured environment 
within the platform to support trust decisions by end users. The measured environment includes:
• Measured launch of a system executive, referred to as a Measured Launched Environment (MLE)1. The system 

executive may be based on a Virtual Machine Monitor (VMM), a measured VMM is referred to as MVMM2.
• Mechanisms to ensure the above measurement is protected and stored in a secure location in the platform.
• Protection mechanisms that allow the VMM to control attempts to modify the VMM

The measurement and protection mechanisms used by a measured environment are supported by the capabilities 
of an Intel® Trusted Execution Technology (Intel® TXT) platform: 
• The SMX are the processor’s programming interface in an Intel TXT platform; 
• The chipset in an Intel TXT platform provides enforcement of the protection mechanisms; 
• Trusted Platform Module (TPM) 1.2 in the platform provides platform configuration registers (PCRs) to store 

software measurement values.

5.2 SMX FUNCTIONALITY

SMX functionality is provided in an Intel 64 processor through the GETSEC instruction via leaf functions. The 
GETSEC instruction supports multiple leaf functions. Leaf functions are selected by the value in EAX at the time 
GETSEC is executed. Each GETSEC leaf function is documented separately in the reference pages with a unique 
mnemonic (even though these mnemonics share the same opcode, 0F 37).

5.2.1 Detecting and Enabling SMX

Software can detect support for SMX operation using the CPUID instruction. If software executes CPUID with 1 in 
EAX, a value of 1 in bit 6 of ECX indicates support for SMX operation (GETSEC is available), see CPUID instruction 
for the layout of feature flags of reported by CPUID.01H:ECX.

System software enables SMX operation by setting CR4.SMXE[Bit 14] = 1 before attempting to execute GETSEC. 
Otherwise, execution of GETSEC results in the processor signaling an invalid opcode exception (#UD). 

If the CPUID SMX feature flag is clear (CPUID.01H.ECX[Bit 6] = 0), attempting to set CR4.SMXE[Bit 14] results in 
a general protection exception. 

The IA32_FEATURE_CONTROL MSR (at address 03AH) provides feature control bits that configure operation of 
VMX and SMX. These bits are documented in Table 5-1.

1. See Intel® Trusted Execution Technology Measured Launched Environment Programming Guide.

2. An MVMM is sometimes referred to as a measured launched environment (MLE). See Intel® Trusted Execution Technology Measured 
Launched Environment Programming Guide 
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• Bit 0 is a lock bit. If the lock bit is clear, an attempt to execute VMXON will cause a general-protection exception. 
Attempting to execute GETSEC[SENTER] when the lock bit is clear will also cause a general-protection 
exception. If the lock bit is set, WRMSR to the IA32_FEATURE_CONTROL MSR will cause a general-protection 
exception. Once the lock bit is set, the MSR cannot be modified until a power-on reset. System BIOS can use 
this bit to provide a setup option for BIOS to disable support for VMX, SMX or both VMX and SMX. 

• Bit 1 enables VMX in SMX operation (between executing the SENTER and SEXIT leaves of GETSEC). If this bit is 
clear, an attempt to execute VMXON in SMX will cause a general-protection exception if executed in SMX 
operation. Attempts to set this bit on logical processors that do not support both VMX operation (Chapter 5, 
“Safer Mode Extensions Reference”) and SMX operation cause general-protection exceptions.

• Bit 2 enables VMX outside SMX operation. If this bit is clear, an attempt to execute VMXON will cause a general-
protection exception if executed outside SMX operation. Attempts to set this bit on logical processors that do 
not support VMX operation cause general-protection exceptions.

• Bits 8 through 14 specify enabled functionality of the SENTER leaf function. Each bit in the field represents an 
enable control for a corresponding SENTER function. Only enabled SENTER leaf functionality can be used when 
executing SENTER. 

• Bits 15 specify global enable of all SENTER functionalities. 

5.2.2 SMX Instruction Summary

System software must first query for available GETSEC leaf functions by executing GETSEC[CAPABILITIES]. The 
CAPABILITIES leaf function returns a bit map of available GETSEC leaves. An attempt to execute an unsupported 
leaf index results in an undefined opcode (#UD) exception. 

5.2.2.1  GETSEC[CAPABILITIES]

The SMX functionality provides an architectural interface for newer processor generations to extend SMX capabili-
ties. Specifically, the GETSEC instruction provides a capability leaf function for system software to discover the 
available GETSEC leaf functions that are supported in a processor. Table 5-2 lists the currently available GETSEC 
leaf functions.

Table 5-1.  Layout of IA32_FEATURE_CONTROL

Bit Position Description

0 Lock bit (0 = unlocked, 1 = locked). When set to '1' further writes to this MSR are blocked.

1 Enable VMX in SMX operation

2 Enable VMX outside SMX operation

7:3 Reserved

14:8 SENTER Local Function Enables: When set, each bit in the field represents an enable control for a corresponding 
SENTER function.

15 SENTER Global Enable: Must be set to ‘1’ to enable operation of GETSEC[SENTER]

63:16 Reserved
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.

5.2.2.2  GETSEC[ENTERACCS]

The GETSEC[ENTERACCS] leaf enables authenticated code execution mode. The ENTERACCS leaf function 
performs an authenticated code module load using the chipset public key as the signature verification. ENTERACCS 
requires the existence of an Intel® Trusted Execution Technology capable chipset since it unlocks the chipset 
private configuration register space after successful authentication of the loaded module. The physical base 
address and size of the authenticated code module are specified as input register values in EBX and ECX, respec-
tively. 

While in the authenticated code execution mode, certain processor state properties change. For this reason, the 
time in which the processor operates in authenticated code execution mode should be limited to minimize impact 
on external system events. 

Upon entry into , the previous paging context is disabled (since the authenticated code module image is specified 
with physical addresses and can no longer rely upon external memory-based page-table structures).

Prior to executing the GETSEC[ENTERACCS] leaf, system software must ensure the logical processor issuing 
GETSEC[ENTERACCS] is the boot-strap processor (BSP), as indicated by IA32_APIC_BASE.BSP = 1. System soft-
ware must ensure other logical processors are in a suitable idle state and not marked as BSP.

The GETSEC[ENTERACCS] leaf may be used by different agents to load different authenticated code modules to 
perform functions related to different aspects of a measured environment, for example system software and 
Intel® TXT enabled BIOS may use more than one authenticated code modules.

5.2.2.3  GETSEC[EXITAC]

GETSEC[EXITAC] takes the processor out of . When this instruction leaf is executed, the contents of the authenti-
cated code execution area are scrubbed and control is transferred to the non-authenticated context defined by a 
near pointer passed with the GETSEC[EXITAC] instruction. 

The authenticated code execution area is no longer accessible after completion of GETSEC[EXITAC]. RBX (or EBX) 
holds the address of the near absolute indirect target to be taken. 

5.2.2.4  GETSEC[SENTER]

The GETSEC[SENTER] leaf function is used by the initiating logical processor (ILP) to launch an MLE. 
GETSEC[SENTER] can be considered a superset of the ENTERACCS leaf, because it enters  as part of the measured 
environment launch. 

Measured environment startup consists of the following steps:

Table 5-2.  GETSEC Leaf Functions 

Index (EAX) Leaf function Description

0 CAPABILITIES Returns the available leaf functions of the GETSEC instruction

1 Undefined Reserved

2 ENTERACCS Enter 

3 EXITAC Exit 

4 SENTER Launch an MLE

5 SEXIT Exit the MLE

6 PARAMETERS Return SMX related parameter information

7 SMCTRL SMX mode control

8 WAKEUP Wake up sleeping processors in safer mode

9 - (4G-1) Undefined Reserved
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• the ILP rendezvous the responding logical processors (RLPs) in the platform into a controlled state (At the 
completion of this handshake, all the RLPs except for the ILP initiating the measured environment launch are 
placed in a newly defined SENTER sleep state).

• Load and authenticate the authenticated code module required by the measured environment, and enter 
authenticated code execution mode.

• Verify and lock certain system configuration parameters.
• Measure the dynamic root of trust and store into the PCRs in TPM. 
• Transfer control to the MLE with interrupts disabled.

Prior to executing the GETSEC[SENTER] leaf, system software must ensure the platform’s TPM is ready for access 
and the ILP is the boot-strap processor (BSP), as indicated by IA32_APIC_BASE.BSP. System software must ensure 
other logical processors (RLPs) are in a suitable idle state and not marked as BSP.

System software launching a measurement environment is responsible for providing a proper authenticate code 
module address when executing GETSEC[SENTER]. The AC module responsible for the launch of a measured envi-
ronment and loaded by GETSEC[SENTER] is referred to as SINIT. See Intel® Trusted Execution Technology 
Measured Launched Environment Programming Guide for additional information on system software requirements 
prior to executing GETSEC[SENTER].

5.2.2.5  GETSEC[SEXIT]

System software exits the measured environment by executing the instruction GETSEC[SEXIT] on the ILP. This 
instruction rendezvous the responding logical processors in the platform for exiting from the measured environ-
ment. External events (if left masked) are unmasked and Intel® TXT-capable chipset’s private configuration space 
is re-locked. 

5.2.2.6  GETSEC[PARAMETERS]

The GETSEC[PARAMETERS] leaf function is used to report attributes, options and limitations of SMX operation. 
Software uses this leaf to identify operating limits or additional options. 

The information reported by GETSEC[PARAMETERS] may require executing the leaf multiple times using EBX as an 
index. If the GETSEC[PARAMETERS] instruction leaf or if a specific parameter field is not available, then SMX oper-
ation should be interpreted to use the default limits of respective GETSEC leaves or parameter fields defined in the 
GETSEC[PARAMETERS] leaf.

5.2.2.7  GETSEC[SMCTRL]

The GETSEC[SMCTRL] leaf function is used for providing additional control over specific conditions associated with 
the SMX architecture. An input register is supported for selecting the control operation to be performed. See the 
specific leaf description for details on the type of control provided.

5.2.2.8  GETSEC[WAKEUP]

Responding logical processors (RLPs) are placed in the SENTER sleep state after the initiating logical processor 
executes GETSEC[SENTER]. The ILP can wake up RLPs to join the measured environment by using 
GETSEC[WAKEUP].When the RLPs in SENTER sleep state wake up, these logical processors begin execution at the 
entry point defined in a data structure held in system memory (pointed to by an chipset register LT.MLE.JOIN) in 
TXT configuration space.

5.2.3 Measured Environment and SMX

This section gives a simplified view of a representative life cycle of a measured environment that is launched by a 
system executive using SMX leaf functions. Intel® Trusted Execution Technology Measured Launched Environment 
Programming Guide provides more detailed examples of using SMX and chipset resources (including chipset regis-
ters, Trusted Platform Module) to launch an MVMM.
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The life cycle starts with the system executive (an OS, an OS loader, and so forth) loading the MLE and SINIT AC 
module into available system memory. The system executive must validate and prepare the platform for the 
measured launch. When the platform is properly configured, the system executive executes GETSEC[SENTER] on 
the initiating logical processor (ILP) to rendezvous the responding logical processors into an SENTER sleep state, 
the ILP then enters into  using the SINIT AC module. In a multi-threaded or multi-processing environment, the 
system executive must ensure that other logical processors are already in an idle loop, or asleep (such as after 
executing HLT) before executing GETSEC[SENTER].

After the GETSEC[SENTER] rendezvous handshake is performed between all logical processors in the platform, the 
ILP loads the chipset authenticated code module (SINIT) and performs an authentication check. If the check 
passes, the processor hashes the SINIT AC module and stores the result into TPM PCR 17. It then switches execu-
tion context to the SINIT AC module. The SINIT AC module will perform a number of platform operations, 
including: verifying the system configuration, protecting the system memory used by the MLE from I/O devices 
capable of DMA, producing a hash of the MLE, storing the hash value in TPM PCR 18, and various other operations. 
When SINIT completes execution, it executes the GETSEC[EXITAC] instruction and transfers control the MLE at the 
designated entry point. 

Upon receiving control from the SINIT AC module, the MLE must establish its protection and isolation controls 
before enabling DMA and interrupts and transferring control to other software modules.  It must also wakeup the 
RLPs from their SENTER sleep state using the GETSEC[WAKEUP] instruction and bring them into its protection and 
isolation environment.

While executing in a measured environment, the MVMM can access the Trusted Platform Module (TPM) in locality 2. 
The MVMM has complete access to all TPM commands and may use the TPM to report current measurement values 
or use the measurement values to protect information such that only when the platform configuration registers 
(PCRs) contain the same value is the information released from the TPM. This protection mechanism is known as 
sealing. 

A measured environment shutdown is ultimately completed by executing GETSEC[SEXIT]. Prior to this step system 
software is responsible for scrubbing sensitive information left in the processor caches, system memory.

5.3 GETSEC LEAF FUNCTIONS

This section provides detailed descriptions of each leaf function of the GETSEC instruction. GETSEC is available only 
if CPUID.01H:ECX[Bit 6] = 1. This indicates the availability of SMX and the GETSEC instruction. Before GETSEC can 
be executed, SMX must be enabled by setting CR4.SMXE[Bit 14] = 1.

A GETSEC leaf can only be used if it is shown to be available as reported by the GETSEC[CAPABILITIES] function. 
Attempts to access a GETSEC leaf index not supported by the processor, or if CR4.SMXE is 0, results in the signaling 
of an undefined opcode exception.

All GETSEC leaf functions are available in protected mode, including the compatibility sub-mode of IA-32e mode 
and the 64-bit sub-mode of IA-32e mode. Unless otherwise noted, the behavior of all GETSEC functions and inter-
actions related to the measured environment are independent of IA-32e mode. This also applies to the interpreta-
tion of register widths1 passed as input parameters to GETSEC functions and to register results returned as output 
parameters.

The GETSEC functions ENTERACCS, SENTER, SEXIT, and WAKEUP require a Intel® TXT capable-chipset to be 
present in the platform. The GETSEC[CAPABILITIES] returned bit vector in position 0 indicates an Intel® TXT-
capable chipset has been sampled present2 by the processor.

The processor's operating mode also affects the execution of the following GETSEC leaf functions: SMCTRL, ENTER-
ACCS, EXITAC, SENTER, SEXIT, and WAKEUP. These functions are only allowed in protected mode at CPL = 0. They 

1.  This chapter uses the 64-bit notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because processors that support SMX also 
support Intel 64 Architecture. The MVMM can be launched in IA-32e mode or outside IA-32e mode. The 64-bit notation of processor 
registers also refer to its 32-bit forms if SMX is used in 32-bit environment. In some places, notation such as EAX is used to refer 
specifically to lower 32 bits of the indicated register

2. Sampled present means that the processor sent a message to the chipset and the chipset responded that it (a) knows about the 
message and (b) is capable of executing SENTER. This means that the chipset CAN support Intel® TXT, and is configured and WILLING 
to support it.
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are not allowed while in SMM in order to prevent potential intra-mode conflicts. Further execution qualifications 
exist to prevent potential architectural conflicts (for example: nesting of the measured environment or authenti-
cated code execution mode). See the definitions of the GETSEC leaf functions for specific requirements.

For the purpose of performance monitor counting, the execution of GETSEC functions is counted as a single instruc-
tion with respect to retired instructions. The response by a responding logical processor (RLP) to messages associ-
ated with GETSEC[SENTER] or GTSEC[SEXIT] is transparent to the retired instruction count on the ILP.
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GETSEC[CAPABILITIES] - Report the SMX Capabilities

Description

The GETSEC[CAPABILITIES] function returns a bit vector of supported GETSEC leaf functions. The CAPABILITIES 
leaf of GETSEC is selected with EAX set to 0 at entry. EBX is used as the selector for returning the bit vector field in 
EAX. GETSEC[CAPABILITIES] may be executed at all privilege levels, but the CR4.SMXE bit must be set or an unde-
fined opcode exception (#UD) is returned.

With EBX = 0 upon execution of GETSEC[CAPABILITIES], EAX returns the a bit vector representing status on the 
presence of a Intel® TXT-capable chipset and the first 30 available GETSEC leaf functions. The format of the 
returned bit vector is provided in Table 5-3. 

If bit 0 is set to 1, then an Intel® TXT-capable chipset has been sampled present by the processor. If bits in the 
range of 1-30 are set, then the corresponding GETSEC leaf function is available. If the bit value at a given bit index 
is 0, then the GETSEC leaf function corresponding to that index is unsupported and attempted execution results in 
a #UD. 

Bit 31 of EAX indicates if further leaf indexes are supported. If the Extended Leafs bit 31 is set, then additional leaf 
functions are accessed by repeating GETSEC[CAPABILITIES] with EBX incremented by one. When the most signifi-
cant bit of EAX is not set, then additional GETSEC leaf functions are not supported; indexing EBX to a higher value 
results in EAX returning zero.

Operation
IF (CR4.SMXE=0)

THEN #UD;

ELSIF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);

IF (EBX=0) THEN

BitVector← 0;

Opcode Instruction Description

0F 37 

(EAX = 0)

GETSEC[CAPABILITIES] Report the SMX capabilities. 

The capabilities index is input in EBX with the result returned in EAX.

Table 5-3.  Getsec Capability Result Encoding (EBX = 0) 

Field Bit position Description

Chipset Present 0 Intel® TXT-capable chipset is present

Undefined 1 Reserved

ENTERACCS 2 GETSEC[ENTERACCS] is available

EXITAC 3 GETSEC[EXITAC] is available

SENTER 4 GETSEC[SENTER] is available

SEXIT 5 GETSEC[SEXIT] is available

PARAMETERS 6 GETSEC[PARAMETERS] is available

SMCTRL 7 GETSEC[SMCTRL] is available

WAKEUP 8 GETSEC[WAKEUP] is available

Undefined 30:9 Reserved

Extended Leafs 31 Reserved for extended information reporting of GETSEC capabilities
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IF (TXT chipset present)

BitVector[Chipset present]← 1;

IF (ENTERACCS Available)

THEN BitVector[ENTERACCS]← 1;

IF (EXITAC Available)

THEN BitVector[EXITAC]← 1;

IF (SENTER Available)

THEN BitVector[SENTER]← 1;

IF (SEXIT Available)

THEN BitVector[SEXIT]← 1;

IF (PARAMETERS Available)

THEN BitVector[PARAMETERS]← 1;

IF (SMCTRL Available)

THEN BitVector[SMCTRL]← 1;

IF (WAKEUP Available)

THEN BitVector[WAKEUP]← 1;

EAX← BitVector;

ELSE

EAX← 0;

END;;

Flags Affected

None

Use of Prefixes

LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions

#UD IF CR4.SMXE = 0.

Real-Address Mode Exceptions

#UD IF CR4.SMXE = 0.

Virtual-8086 Mode Exceptions

#UD IF CR4.SMXE = 0.

Compatibility Mode Exceptions

#UD IF CR4.SMXE = 0.

64-Bit Mode Exceptions

#UD IF CR4.SMXE = 0.

VM-exit Condition

Reason (GETSEC) IF in VMX non-root operation.
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GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

Description

The GETSEC[ENTERACCS] function loads, authenticates and executes an authenticated code module using an 
Intel® TXT platform chipset's public key. The ENTERACCS leaf of GETSEC is selected with EAX set to 2 at entry.

There are certain restrictions enforced by the processor for the execution of the GETSEC[ENTERACCS] instruction: 
• Execution is not allowed unless the processor is in protected mode or IA-32e mode with CPL = 0 and 

EFLAGS.VM = 0. 
• Processor cache must be available and not disabled, that is, CR0.CD and CR0.NW bits must be 0. 
• For processor packages containing more than one logical processor, CR0.CD is checked to ensure consistency 

between enabled logical processors. 
• For enforcing consistency of operation with numeric exception reporting using Interrupt 16, CR0.NE must be 

set. 
• An Intel TXT-capable chipset must be present as communicated to the processor by sampling of the power-on 

configuration capability field after reset. 
• The processor can not already be in authenticated code execution mode as launched by a previous 

GETSEC[ENTERACCS] or GETSEC[SENTER] instruction without a subsequent exiting using GETSEC[EXITAC]). 
• To avoid potential operability conflicts between modes, the processor is not allowed to execute this instruction 

if it currently is in SMM or VMX operation. 
• To insure consistent handling of SIPI messages, the processor executing the GETSEC[ENTERACCS] instruction 

must also be designated the BSP (boot-strap processor) as defined by IA32_APIC_BASE.BSP (Bit 8). 

Failure to conform to the above conditions results in the processor signaling a general protection exception.

Prior to execution of the ENTERACCS leaf, other logical processors, i.e. RLPs, in the platform must be:
• idle in a wait-for-SIPI state (as initiated by an INIT assertion or through reset for non-BSP designated 

processors), or 
• in the SENTER sleep state as initiated by a GETSEC[SENTER] from the initiating logical processor (ILP). 

If other logical processor(s) in the same package are not idle in one of these states, execution of ENTERACCS 
signals a general protection exception. The same requirement and action applies if the other logical processor(s) of 
the same package do not have CR0.CD = 0. 

A successful execution of ENTERACCS results in the ILP entering an authenticated code execution mode. Prior to 
reaching this point, the processor performs several checks. These include: 
• Establish and check the location and size of the specified authenticated code module to be executed by the 

processor.
• Inhibit the ILP’s response to the external events: INIT, A20M, NMI and SMI.
• Broadcast a message to enable protection of memory and I/O from other processor agents.
• Load the designated code module into an authenticated code execution area.
• Isolate the contents of the authenticated code execution area from further state modification by external 

agents.
• Authenticate the authenticated code module.
• Initialize the initiating logical processor state based on information contained in the authenticated code module 

header.
• Unlock the Intel® TXT-capable chipset private configuration space and TPM locality 3 space.

Opcode Instruction Description

0F 37 

(EAX = 2)

GETSEC[ENTERACCS] Enter authenticated code execution mode.

EBX holds the authenticated code module physical base address. ECX holds the authenticated 
code module size (bytes).
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• Begin execution in the authenticated code module at the defined entry point.

The GETSEC[ENTERACCS] function requires two additional input parameters in the general purpose registers EBX 
and ECX. EBX holds the authenticated code (AC) module physical base address (the AC module must reside below 
4 GBytes in physical address space) and ECX holds the AC module size (in bytes). The physical base address and 
size are used to retrieve the code module from system memory and load it into the internal authenticated code 
execution area. The base physical address is checked to verify it is on a modulo-4096 byte boundary. The size is 
verified to be a multiple of 64, that it does not exceed the internal authenticated code execution area capacity (as 
reported by GETSEC[CAPABILITIES]), and that the top address of the AC module does not exceed 32 bits. An error 
condition results in an abort of the authenticated code execution launch and the signaling of a general protection 
exception.

As an integrity check for proper processor hardware operation, execution of GETSEC[ENTERACCS] will also check 
the contents of all the machine check status registers (as reported by the MSRs IA32_MCi_STATUS) for any valid 
uncorrectable error condition. In addition, the global machine check status register IA32_MCG_STATUS MCIP bit 
must be cleared and the IERR processor package pin (or its equivalent) must not be asserted, indicating that no 
machine check exception processing is currently in progress. These checks are performed prior to initiating the 
load of the authenticated code module. Any outstanding valid uncorrectable machine check error condition present 
in these status registers at this point will result in the processor signaling a general protection violation.

The ILP masks the response to the assertion of the external signals INIT#, A20M, NMI#, and SMI#. This masking 
remains active until optionally unmasked by GETSEC[EXITAC] (this defined unmasking behavior assumes 
GETSEC[ENTERACCS] was not executed by a prior GETSEC[SENTER]). The purpose of this masking control is to 
prevent exposure to existing external event handlers that may not be under the control of the authenticated code 
module. 

The ILP sets an internal flag to indicate it has entered authenticated code execution mode. The state of the A20M 
pin is likewise masked and forced internally to a de-asserted state so that any external assertion is not recognized 
during authenticated code execution mode. 

To prevent other (logical) processors from interfering with the ILP operating in authenticated code execution mode, 
memory (excluding implicit write-back transactions) access and I/O originating from other processor agents are 
blocked. This protection starts when the ILP enters into authenticated code execution mode. Only memory and I/O 
transactions initiated from the ILP are allowed to proceed. Exiting authenticated code execution mode is done by 
executing GETSEC[EXITAC]. The protection of memory and I/O activities remains in effect until the ILP executes 
GETSEC[EXITAC].

Prior to launching the authenticated execution module using GETSEC[ENTERACCS] or GETSEC[SENTER], the 
processor’s MTRRs (Memory Type Range Registers) must first be initialized to map out the authenticated RAM 
addresses as WB (writeback). Failure to do so may affect the ability for the processor to maintain isolation of the 
loaded authenticated code module. If the processor detected this requirement is not met, it will signal an Intel® 
TXT reset condition with an error code during the loading of the authenticated code module.

While physical addresses within the load module must be mapped as WB, the memory type for locations outside of 
the module boundaries must be mapped to one of the supported memory types as returned by GETSEC[PARAME-
TERS] (or UC as default).

To conform to the minimum granularity of MTRR MSRs for specifying the memory type, authenticated code RAM 
(ACRAM) is allocated to the processor in 4096 byte granular blocks. If an AC module size as specified in ECX is not 
a multiple of 4096 then the processor will allocate up to the next 4096 byte boundary for mapping as ACRAM with 
indeterminate data. This pad area will not be visible to the authenticated code module as external memory nor can 
it depend on the value of the data used to fill the pad area.

At the successful completion of GETSEC[ENTERACCS], the architectural state of the processor is partially initialized 
from contents held in the header of the authenticated code module. The processor GDTR, CS, and DS selectors are 
initialized from fields within the authenticated code module. Since the authenticated code module must be relocat-
able, all address references must be relative to the authenticated code module base address in EBX. The processor 
GDTR base value is initialized to the AC module header field GDTBasePtr + module base address held in EBX and 
the GDTR limit is set to the value in the GDTLimit field. The CS selector is initialized to the AC module header SegSel 
field, while the DS selector is initialized to CS + 8. The segment descriptor fields are implicitly initialized to BASE=0, 
LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write access for DS, and execute/read access for CS. The processor 
begins the authenticated code module execution with the EIP set to the AC module header EntryPoint field + 
module base address (EBX). The AC module based fields used for initializing the processor state are checked for 
consistency and any failure results in a shutdown condition.
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A summary of the register state initialization after successful completion of GETSEC[ENTERACCS] is given for the 
processor in Table 5-4. The paging is disabled upon entry into authenticated code execution mode. The authenti-
cated code module is loaded and initially executed using physical addresses. It is up to the system software after 
execution of GETSEC[ENTERACCS] to establish a new (or restore its previous) paging environment with an appro-
priate mapping to meet new protection requirements. EBP is initialized to the authenticated code module base 
physical address for initial execution in the authenticated environment. As a result, the authenticated code can 
reference EBP for relative address based references, given that the authenticated code module must be position 
independent.

The segmentation related processor state that has not been initialized by GETSEC[ENTERACCS] requires appro-
priate initialization before use. Since a new GDT context has been established, the previous state of the segment 
selector values held in ES, SS, FS, GS, TR, and LDTR might not be valid. 

The MSR IA32_EFER is also unconditionally cleared as part of the processor state initialized by ENTERACCS. Since 
paging is disabled upon entering authenticated code execution mode, a new paging environment will have to be 
reestablished in order to establish IA-32e mode while operating in authenticated code execution mode.

Debug exception and trap related signaling is also disabled as part of GETSEC[ENTERACCS]. This is achieved by 
resetting DR7, TF in EFLAGs, and the MSR IA32_DEBUGCTL. These debug functions are free to be re-enabled once 
supporting exception handler(s), descriptor tables, and debug registers have been properly initialized following 

Table 5-4.  Register State Initialization after GETSEC[ENTERACCS] 

Register State Initialization Status Comment

CR0 PG←0, AM←0, WP←0: Others unchanged Paging, Alignment Check, Write-protection are 
disabled

CR4 MCE←0: Others unchanged Machine Check Exceptions Disabled

EFLAGS 00000002H

IA32_EFER 0H IA-32e mode disabled

EIP AC.base + EntryPoint AC.base is in EBX as input to GETSEC[ENTERACCS]

[E|R]BX Pre-ENTERACCS state: Next [E|R]IP prior to 
GETSEC[ENTERACCS]

Carry forward 64-bit processor state across 
GETSEC[ENTERACCS] 

ECX Pre-ENTERACCS state: [31:16]=GDTR.limit; 
[15:0]=CS.sel

Carry forward processor state across 
GETSEC[ENTERACCS]

[E|R]DX Pre-ENTERACCS state: 
GDTR base

Carry forward 64-bit processor state across 
GETSEC[ENTERACCS]

EBP AC.base

CS Sel=[SegSel], base=0, limit=FFFFFh, G=1, D=1, 
AR=9BH

DS Sel=[SegSel] +8, base=0, limit=FFFFFh, G=1, D=1, 
AR=93H

GDTR Base= AC.base (EBX) + [GDTBasePtr], 
Limit=[GDTLimit]

DR7 00000400H

IA32_DEBUGCTL 0H

IA32_MISC_ENABLE see Table 5-5 for example The number of initialized fields may change due.to 
processor implementation 



GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

SAFER MODE EXTENSIONS REFERENCE

5-12 Vol. 2C

entry into authenticated code execution mode. Also, any pending single-step trap condition will have been cleared 
upon entry into this mode.

The IA32_MISC_ENABLE MSR is initialized upon entry into authenticated execution mode. Certain bits of this MSR 
are preserved because preserving these bits may be important to maintain previously established platform settings 
(See the footnote for Table 5-5.). The remaining bits are cleared for the purpose of establishing a more consistent 
environment for the execution of authenticated code modules. One of the impacts of initializing this MSR is any 
previous condition established by the MONITOR instruction will be cleared. 

To support the possible return to the processor architectural state prior to execution of GETSEC[ENTERACCS], 
certain critical processor state is captured and stored in the general- purpose registers at instruction completion. 
[E|R]BX holds effective address ([E|R]IP) of the instruction that would execute next after GETSEC[ENTERACCS], 
ECX[15:0] holds the CS selector value, ECX[31:16] holds the GDTR limit field, and [E|R]DX holds the GDTR base 
field. The subsequent authenticated code can preserve the contents of these registers so that this state can be 
manually restored if needed, prior to exiting authenticated code execution mode with GETSEC[EXITAC]. For the 
processor state after exiting authenticated code execution mode, see the description of GETSEC[SEXIT].

The IDTR will also require reloading with a new IDT context after entering authenticated code execution mode, 
before any exceptions or the external interrupts INTR and NMI can be handled. Since external interrupts are re-
enabled at the completion of authenticated code execution mode (as terminated with EXITAC), it is recommended 
that a new IDT context be established before this point. Until such a new IDT context is established, the 
programmer must take care in not executing an INT n instruction or any other operation that would result in an 
exception or trap signaling.

Prior to completion of the GETSEC[ENTERACCS] instruction and after successful authentication of the AC module, 
the private configuration space of the Intel TXT chipset is unlocked. The authenticated code module alone can gain 
access to this normally restricted chipset state for the purpose of securing the platform. 

Once the authenticated code module is launched at the completion of GETSEC[ENTERACCS], it is free to enable 
interrupts by setting EFLAGS.IF and enable NMI by execution of IRET. This presumes that it has re-established 
interrupt handling support through initialization of the IDT, GDT, and corresponding interrupt handling code.

Table 5-5.  IA32_MISC_ENABLE MSR Initialization1 by ENTERACCS and SENTER

NOTES:

1. The number of IA32_MISC_ENABLE fields that are initialized may vary due to processor implementations.

Field Bit position Description

Fast strings enable 0 Clear to 0

FOPCODE compatibility mode 
enable

2 Clear to 0

Thermal monitor enable 3 Set to 1 if other thermal monitor capability is not enabled.2

2. ENTERACCS (and SENTER) initialize the state of processor thermal throttling such that at least a minimum level is enabled. If thermal 
throttling is already enabled when executing one of these GETSEC leaves, then no change in the thermal throttling control settings 
will occur. If thermal throttling is disabled, then it will be enabled via setting of the thermal throttle control bit 3 as a result of execut-
ing these GETSEC leaves.

Split-lock disable 4 Clear to 0

Bus lock on cache line splits 
disable

8 Clear to 0

Hardware prefetch disable 9 Clear to 0

GV1/2 legacy enable 15 Clear to 0

MONITOR/MWAIT s/m enable 18 Clear to 0

Adjacent sector prefetch disable 19 Clear to 0
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Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG persists across instruction boundary *)

IF (CR4.SMXE=0)

THEN #UD;

ELSIF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);

ELSIF (GETSEC leaf unsupported)

THEN #UD;

ELSIF ((in VMX operation) or

(CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or

(CPL>0) or (EFLAGS.VM=1) or

(IA32_APIC_BASE.BSP=0) or

(TXT chipset not present) or

(ACMODEFLAG=1) or (IN_SMM=1))

THEN #GP(0);

IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)

FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO

IF (IA32_MC[I]_STATUS = uncorrectable error)

THEN #GP(0);

OD;

FI;

IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN #GP(0);

ACBASE← EBX;

ACSIZE← ECX;

IF (((ACBASE MOD 4096) != 0) or ((ACSIZE MOD 64 )!= 0 ) or (ACSIZE < minimum module size) OR (ACSIZE > authenticated RAM 
capacity)) or ((ACBASE+ACSIZE) > (2^32 -1)))

THEN #GP(0);

IF (secondary thread(s) CR0.CD = 1) or ((secondary thread(s) NOT(wait-for-SIPI)) and

(secondary thread(s) not in SENTER sleep state)

THEN #GP(0);

Mask SMI, INIT, A20M, and NMI external pin events;

IA32_MISC_ENABLE← (IA32_MISC_ENABLE & MASK_CONST*)

(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)

A20M← 0;

IA32_DEBUGCTL← 0;

Invalidate processor TLB(s);

Drain Outgoing Transactions;

ACMODEFLAG← 1;

SignalTXTMessage(ProcessorHold);

Load the internal ACRAM based on the AC module size;

(* Ensure that all ACRAM loads hit Write Back memory space *)

IF (ACRAM memory type != WB)

THEN TXT-SHUTDOWN(#BadACMMType);

IF (AC module header version isnot supported) OR (ACRAM[ModuleType] <> 2)

THEN TXT-SHUTDOWN(#UnsupportedACM);

 (* Authenticate the AC Module and shutdown with an error if it fails *)

KEY← GETKEY(ACRAM, ACBASE);

KEYHASH← HASH(KEY);

CSKEYHASH← READ(TXT.PUBLIC.KEY);

IF (KEYHASH <> CSKEYHASH)

THEN TXT-SHUTDOWN(#AuthenticateFail);

SIGNATURE← DECRYPT(ACRAM, ACBASE, KEY);

(* The value of SIGNATURE_LEN_CONST is implementation-specific*)
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FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.I]← SIGNATURE[I];

COMPUTEDSIGNATURE← HASH(ACRAM, ACBASE, ACSIZE);

FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I]← COMPUTEDSIGNATURE[I];

IF (SIGNATURE<>COMPUTEDSIGNATURE)

THEN TXT-SHUTDOWN(#AuthenticateFail);

ACMCONTROL← ACRAM[CodeControl];

IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);

IF (ACMCONTROL reserved bits are set)

THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch_size)) OR

((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))

THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))

THEN ACEntryPoint← ACBASE+ACRAM[ErrorEntryPoint];

ELSE

ACEntryPoint← ACBASE+ACRAM[EntryPoint];

IF ((ACEntryPoint >= ACSIZE) OR (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch_size)))THEN TXT-SHUTDOWN(#BadACMFormat);

IF (ACRAM[GDTLimit] & FFFF0000h)

THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) OR (ACRAM[SegSel] < 8))

THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[SegSel].TI=1) OR (ACRAM[SegSel].RPL!=0))

THEN TXT-SHUTDOWN(#BadACMFormat);

CR0.[PG.AM.WP]← 0;

CR4.MCE← 0;

EFLAGS← 00000002h;

IA32_EFER← 0h;

[E|R]BX← [E|R]IP of the instruction after GETSEC[ENTERACCS];

ECX← Pre-GETSEC[ENTERACCS] GDT.limit:CS.sel;

[E|R]DX← Pre-GETSEC[ENTERACCS] GDT.base;

EBP← ACBASE;

GDTR.BASE← ACBASE+ACRAM[GDTBasePtr];

GDTR.LIMIT← ACRAM[GDTLimit];

CS.SEL← ACRAM[SegSel];

CS.BASE← 0;

CS.LIMIT← FFFFFh;

CS.G← 1;

CS.D← 1;

CS.AR← 9Bh;

DS.SEL← ACRAM[SegSel]+8;

DS.BASE← 0;

DS.LIMIT← FFFFFh;

DS.G← 1;

DS.D← 1;

DS.AR← 93h;

DR7← 00000400h;

IA32_DEBUGCTL← 0;

SignalTXTMsg(OpenPrivate);

SignalTXTMsg(OpenLocality3);

EIP← ACEntryPoint;

END;
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Flags Affected

All flags are cleared.

Use of Prefixes

LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.
If a Intel® TXT-capable chipset is not present.
If in VMX root operation.
If the initiating processor is not designated as the bootstrap processor via the MSR bit 
IA32_APIC_BASE.BSP.
If the processor is already in authenticated code execution mode.
If the processor is in SMM.
If a valid uncorrectable machine check error is logged in IA32_MC[I]_STATUS.
If the authenticated code base is not on a 4096 byte boundary.
If the authenticated code size > processor internal authenticated code area capacity.
If the authenticated code size is not modulo 64.
If other enabled logical processor(s) of the same package CR0.CD = 1.
If other enabled logical processor(s) of the same package are not in the wait-for-SIPI or 
SENTER sleep state.

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[ENTERACCS] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[ENTERACCS] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

All protected mode exceptions apply.
#GP  IF AC code module does not reside in physical address below 2^32 -1.

64-Bit Mode Exceptions

All protected mode exceptions apply.
#GP  IF AC code module does not reside in physical address below 2^32 -1.
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VM-exit Condition

Reason (GETSEC) IF in VMX non-root operation.
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GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

Description

The GETSEC[EXITAC] leaf function exits the ILP out of authenticated code execution mode established by 
GETSEC[ENTERACCS] or GETSEC[SENTER]. The EXITAC leaf of GETSEC is selected with EAX set to 3 at entry. EBX 
(or RBX, if in 64-bit mode) holds the near jump target offset for where the processor execution resumes upon 
exiting authenticated code execution mode. EDX contains additional parameter control information. Currently only 
an input value of 0 in EDX is supported. All other EDX settings are considered reserved and result in a general 
protection violation.

GETSEC[EXITAC] can only be executed if the processor is in protected mode with CPL = 0 and EFLAGS.VM = 0. The 
processor must also be in authenticated code execution mode. To avoid potential operability conflicts between 
modes, the processor is not allowed to execute this instruction if it is in SMM or in VMX operation. A violation of 
these conditions results in a general protection violation.

Upon completion of the GETSEC[EXITAC] operation, the processor unmasks responses to external event signals 
INIT#, NMI#, and SMI#. This unmasking is performed conditionally, based on whether the authenticated code 
execution mode was entered via execution of GETSEC[SENTER] or GETSEC[ENTERACCS]. If the processor is in 
authenticated code execution mode due to the execution of GETSEC[SENTER], then these external event signals 
will remain masked. In this case, A20M is kept disabled in the measured environment until the measured environ-
ment executes GETSEC[SEXIT]. INIT# is unconditionally unmasked by EXITAC. Note that any events that are 
pending, but have been blocked while in authenticated code execution mode, will be recognized at the completion 
of the GETSEC[EXITAC] instruction if the pin event is unmasked.

The intent of providing the ability to optionally leave the pin events SMI#, and NMI# masked is to support the 
completion of a measured environment bring-up that makes use of VMX. In this envisioned security usage 
scenario, these events will remain masked until an appropriate virtual machine has been established in order to 
field servicing of these events in a safer manner. Details on when and how events are masked and unmasked in 
VMX operation are described in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C. It 
should be cautioned that if no VMX environment is to be activated following GETSEC[EXITAC], that these events 
will remain masked until the measured environment is exited with GETSEC[SEXIT]. If this is not desired then the 
GETSEC function SMCTRL(0) can be used for unmasking SMI# in this context. NMI# can be correspondingly 
unmasked by execution of IRET.

A successful exit of the authenticated code execution mode requires the ILP to perform additional steps as outlined 
below:
• Invalidate the contents of the internal authenticated code execution area. 
• Invalidate processor TLBs. 
• Clear the internal processor AC Mode indicator flag. 
• Re-lock the TPM locality 3 space. 
• Unlock the Intel® TXT-capable chipset memory and I/O protections to allow memory and I/O activity by other 

processor agents. 
• Perform a near absolute indirect jump to the designated instruction location.

The content of the authenticated code execution area is invalidated by hardware in order to protect it from further 
use or visibility. This internal processor storage area can no longer be used or relied upon after GETSEC[EXITAC]. 
Data structures need to be re-established outside of the authenticated code execution area if they are to be refer-
enced after EXITAC. Since addressed memory content formerly mapped to the authenticated code execution area 
may no longer be coherent with external system memory after EXITAC, processor TLBs in support of linear to phys-
ical address translation are also invalidated.

Upon completion of GETSEC[EXITAC] a near absolute indirect transfer is performed with EIP loaded with the 
contents of EBX (based on the current operating mode size). In 64-bit mode, all 64 bits of RBX are loaded into RIP 

Opcode Instruction Description

0F 37

(EAX=3)

GETSEC[EXITAC] Exit authenticated code execution mode.

RBX holds the Near Absolute Indirect jump target and EDX hold the exit parameter flags
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if REX.W precedes GETSEC[EXITAC]. Otherwise RBX is treated as 32 bits even while in 64-bit mode. Conventional 
CS limit checking is performed as part of this control transfer. Any exception conditions generated as part of this 
control transfer will be directed to the existing IDT; thus it is recommended that an IDTR should also be established 
prior to execution of the EXITAC function if there is a need for fault handling. In addition, any segmentation related 
(and paging) data structures to be used after EXITAC should be re-established or validated by the authenticated 
code prior to EXITAC. 

In addition, any segmentation related (and paging) data structures to be used after EXITAC need to be re-estab-
lished and mapped outside of the authenticated RAM designated area by the authenticated code prior to EXITAC. 
Any data structure held within the authenticated RAM allocated area will no longer be accessible after completion 
by EXITAC.

Operation
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)

IF (CR4.SMXE=0)

THEN #UD;

ELSIF ( in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);

ELSIF (GETSEC leaf unsupported)

THEN #UD;

ELSIF ((in VMX operation) or ( (in 64-bit mode) and ( RBX is non-canonical) )

(CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or

(ACMODEFLAG=0) or (IN_SMM=1)) or (EDX != 0))

THEN #GP(0);

IF (OperandSize = 32)

THEN tempEIP← EBX;

ELSIF (OperandSize = 64)

THEN tempEIP← RBX;

ELSE

tempEIP← EBX AND 0000FFFFH;

IF (tempEIP > code segment limit)

THEN #GP(0);

Invalidate ACRAM contents;

Invalidate processor TLB(s);

Drain outgoing messages;

SignalTXTMsg(CloseLocality3);

SignalTXTMsg(LockSMRAM);

SignalTXTMsg(ProcessorRelease);

Unmask INIT;

IF (SENTERFLAG=0)

THEN Unmask SMI, INIT, NMI, and A20M pin event;

ELSEIF (IA32_SMM_MONITOR_CTL[0] = 0)

THEN Unmask SMI pin event;

ACMODEFLAG← 0;

EIP← tempEIP;

END;

Flags Affected

None.

Use of Prefixes

LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
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Segment overrides Ignored
Address size Ignored
REX.W Sets 64-bit mode Operand size attribute

Protected Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[EXITAC] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL>0 or EFLAGS.VM =1.
If in VMX root operation.
If the processor is not currently in authenticated code execution mode.
If the processor is in SMM.
If any reserved bit position is set in the EDX parameter register.

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[EXITAC] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[EXITAC] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[EXITAC] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[EXITAC] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

All protected mode exceptions apply.

64-Bit Mode Exceptions

All protected mode exceptions apply.
#GP(0) If the target address in RBX is not in a canonical form.

VM-Exit Condition

Reason (GETSEC) IF in VMX non-root operation.
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GETSEC[SENTER]—Enter a Measured Environment

Description

The GETSEC[SENTER] instruction initiates the launch of a measured environment and places the initiating logical 
processor (ILP) into the authenticated code execution mode. The SENTER leaf of GETSEC is selected with EAX set 
to 4 at execution. The physical base address of the AC module to be loaded and authenticated is specified in EBX. 
The size of the module in bytes is specified in ECX. EDX controls the level of functionality supported by the 
measured environment launch. To enable the full functionality of the protected environment launch, EDX must be 
initialized to zero.

The authenticated code base address and size parameters (in bytes) are passed to the GETSEC[SENTER] instruc-
tion using EBX and ECX respectively. The ILP evaluates the contents of these registers according to the rules for the 
AC module address in GETSEC[ENTERACCS]. AC module execution follows the same rules, as set by 
GETSEC[ENTERACCS].

The launching software must ensure that the TPM.ACCESS_0.activeLocality bit is clear before executing the 
GETSEC[SENTER] instruction.

There are restrictions enforced by the processor for execution of the GETSEC[SENTER] instruction: 
• Execution is not allowed unless the processor is in protected mode or IA-32e mode with CPL = 0 and 

EFLAGS.VM = 0. 
• Processor cache must be available and not disabled using the CR0.CD and NW bits. 
• For enforcing consistency of operation with numeric exception reporting using Interrupt 16, CR0.NE must be 

set. 
• An Intel TXT-capable chipset must be present as communicated to the processor by sampling of the power-on 

configuration capability field after reset. 
• The processor can not be in authenticated code execution mode or already in a measured environment (as 

launched by a previous GETSEC[ENTERACCS] or GETSEC[SENTER] instruction). 
• To avoid potential operability conflicts between modes, the processor is not allowed to execute this instruction 

if it currently is in SMM or VMX operation. 
• To insure consistent handling of SIPI messages, the processor executing the GETSEC[SENTER] instruction must 

also be designated the BSP (boot-strap processor) as defined by A32_APIC_BASE.BSP (Bit 8). 
• EDX must be initialized to a setting supportable by the processor. Unless enumeration by the GETSEC[PARAM-

ETERS] leaf reports otherwise, only a value of zero is supported.

Failure to abide by the above conditions results in the processor signaling a general protection violation.

This instruction leaf starts the launch of a measured environment by initiating a rendezvous sequence for all logical 
processors in the platform. The rendezvous sequence involves the initiating logical processor sending a message 
(by executing GETSEC[SENTER]) and other responding logical processors (RLPs) acknowledging the message, thus 
synchronizing the RLP(s) with the ILP.

In response to a message signaling the completion of rendezvous, RLPs clear the bootstrap processor indicator flag 
(IA32_APIC_BASE.BSP) and enter an SENTER sleep state. In this sleep state, RLPs enter an idle processor condi-
tion while waiting to be activated after a measured environment has been established by the system executive. 
RLPs in the SENTER sleep state can only be activated by the GETSEC leaf function WAKEUP in a measured environ-
ment.

A successful launch of the measured environment results in the initiating logical processor entering the authenti-
cated code execution mode. Prior to reaching this point, the ILP performs the following steps internally: 
• Inhibit processor response to the external events: INIT, A20M, NMI, and SMI. 

Opcode Instruction Description

0F 37

(EAX=4)

GETSEC[SENTER] Launch a measured environment

EBX holds the SINIT authenticated code module physical base address.

ECX holds the SINIT authenticated code module size (bytes).

EDX controls the level of functionality supported by the measured environment launch.
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• Establish and check the location and size of the authenticated code module to be executed by the ILP. 
• Check for the existence of an Intel® TXT-capable chipset. 
• Verify the current power management configuration is acceptable. 
• Broadcast a message to enable protection of memory and I/O from activities from other processor agents. 
• Load the designated AC module into authenticated code execution area. 
• Isolate the content of authenticated code execution area from further state modification by external agents.
• Authenticate the AC module.
• Updated the Trusted Platform Module (TPM) with the authenticated code module's hash. 
• Initialize processor state based on the authenticated code module header information. 
• Unlock the Intel® TXT-capable chipset private configuration register space and TPM locality 3 space. 
• Begin execution in the authenticated code module at the defined entry point.

As an integrity check for proper processor hardware operation, execution of GETSEC[SENTER] will also check the 
contents of all the machine check status registers (as reported by the MSRs IA32_MCi_STATUS) for any valid 
uncorrectable error condition. In addition, the global machine check status register IA32_MCG_STATUS MCIP bit 
must be cleared and the IERR processor package pin (or its equivalent) must be not asserted, indicating that no 
machine check exception processing is currently in-progress. These checks are performed twice: once by the ILP 
prior to the broadcast of the rendezvous message to RLPs, and later in response to RLPs acknowledging the 
rendezvous message. Any outstanding valid uncorrectable machine check error condition present in the machine 
check status registers at the first check point will result in the ILP signaling a general protection violation. If an 
outstanding valid uncorrectable machine check error condition is present at the second check point, then this will 
result in the corresponding logical processor signaling the more severe TXT-shutdown condition with an error code 
of 12.

Before loading and authentication of the target code module is performed, the processor also checks that the 
current voltage and bus ratio encodings correspond to known good values supportable by the processor. The MSR 
IA32_PERF_STATUS values are compared against either the processor supported maximum operating target 
setting, system reset setting, or the thermal monitor operating target. If the current settings do not meet any of 
these criteria then the SENTER function will attempt to change the voltage and bus ratio select controls in a 
processor-specific manner. This adjustment may be to the thermal monitor, minimum (if different), or maximum 
operating target depending on the processor.

This implies that some thermal operating target parameters configured by BIOS may be overridden by SENTER. 
The measured environment software may need to take responsibility for restoring such settings that are deemed 
to be safe, but not necessarily recognized by SENTER. If an adjustment is not possible when an out of range setting 
is discovered, then the processor will abort the measured launch. This may be the case for chipset controlled 
settings of these values or if the controllability is not enabled on the processor. In this case it is the responsibility 
of the external software to program the chipset voltage ID and/or bus ratio select settings to known good values 
recognized by the processor, prior to executing SENTER.

NOTE

For a mobile processor, an adjustment can be made according to the thermal monitor operating 
target. For a quad-core processor the SENTER adjustment mechanism may result in a more conser-
vative but non-uniform voltage setting, depending on the pre-SENTER settings per core.

The ILP and RLPs mask the response to the assertion of the external signals INIT#, A20M, NMI#, and SMI#. The 
purpose of this masking control is to prevent exposure to existing external event handlers until a protected handler 
has been put in place to directly handle these events. Masked external pin events may be unmasked conditionally 
or unconditionally via the GETSEC[EXITAC], GETSEC[SEXIT], GETSEC[SMCTRL] or for specific VMX related opera-
tions such as a VM entry or the VMXOFF instruction (see respective GETSEC leaves and Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C for more details).The state of the A20M pin is masked and 
forced internally to a de-asserted state so that external assertion is not recognized. A20M masking as set by 
GETSEC[SENTER] is undone only after taking down the measured environment with the GETSEC[SEXIT] instruc-
tion or processor reset. INTR is masked by simply clearing the EFLAGS.IF bit. It is the responsibility of system soft-
ware to control the processor response to INTR through appropriate management of EFLAGS.
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To prevent other (logical) processors from interfering with the ILP operating in authenticated code execution mode, 
memory (excluding implicit write-back transactions) and I/O activities originating from other processor agents are 
blocked. This protection starts when the ILP enters into authenticated code execution mode. Only memory and I/O 
transactions initiated from the ILP are allowed to proceed. Exiting authenticated code execution mode is done by 
executing GETSEC[EXITAC]. The protection of memory and I/O activities remains in effect until the ILP executes 
GETSEC[EXITAC].

Once the authenticated code module has been loaded into the authenticated code execution area, it is protected 
against further modification from external bus snoops. There is also a requirement that the memory type for the 
authenticated code module address range be WB (via initialization of the MTRRs prior to execution of this instruc-
tion). If this condition is not satisfied, it is a violation of security and the processor will force a TXT system reset 
(after writing an error code to the chipset LT.ERRORCODE register). This action is referred to as a Intel® TXT reset 
condition. It is performed when it is considered unreliable to signal an error through the conventional exception 
reporting mechanism. 

To conform to the minimum granularity of MTRR MSRs for specifying the memory type, authenticated code RAM 
(ACRAM) is allocated to the processor in 4096 byte granular blocks. If an AC module size as specified in ECX is not 
a multiple of 4096 then the processor will allocate up to the next 4096 byte boundary for mapping as ACRAM with 
indeterminate data. This pad area will not be visible to the authenticated code module as external memory nor can 
it depend on the value of the data used to fill the pad area.

Once successful authentication has been completed by the ILP, the computed hash is stored in a trusted storage 
facility in the platform. The following trusted storage facility are supported: 
• If the platform register FTM_INTERFACE_ID.[bits 3:0] = 0, the computed hash is stored to the platform’s TPM 

at PCR17 after this register is implicitly reset. PCR17 is a dedicated register for holding the computed hash of 
the authenticated code module loaded and subsequently executed by the GETSEC[SENTER]. As part of this 
process, the dynamic PCRs 18-22 are reset so they can be utilized by subsequently software for registration of 
code and data modules. 

• If the platform register FTM_INTERFACE_ID.[bits 3:0] = 1, the computed hash is stored in a firmware trusted 
module (FTM) using a modified protocol similar to the protocol used to write to TPM’s PCR17. 

After successful execution of SENTER, either PCR17 (if FTM is not enabled) or the FTM (if enabled) contains the 
measurement of AC code and the SENTER launching parameters. 

After authentication is completed successfully, the private configuration space of the Intel® TXT-capable chipset is 
unlocked so that the authenticated code module and measured environment software can gain access to this 
normally restricted chipset state. The Intel® TXT-capable chipset private configuration space can be locked later by 
software writing to the chipset LT.CMD.CLOSE-PRIVATE register or unconditionally using the GETSEC[SEXIT] 
instruction.

The SENTER leaf function also initializes some processor architecture state for the ILP from contents held in the 
header of the authenticated code module. Since the authenticated code module is relocatable, all address refer-
ences are relative to the base address passed in via EBX. The ILP GDTR base value is initialized to EBX + [GDTBa-
sePtr] and GDTR limit set to [GDTLimit]. The CS selector is initialized to the value held in the AC module header 
field SegSel, while the DS, SS, and ES selectors are initialized to CS+8. The segment descriptor fields are initialized 
implicitly with BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write/accessed for DS, SS, and ES, while 
execute/read/accessed for CS. Execution in the authenticated code module for the ILP begins with the EIP set to 
EBX + [EntryPoint]. AC module defined fields used for initializing processor state are consistency checked with a 
failure resulting in an TXT-shutdown condition.

Table 5-6 provides a summary of processor state initialization for the ILP and RLP(s) after successful completion of 
GETSEC[SENTER]. For both ILP and RLP(s), paging is disabled upon entry to the measured environment. It is up to 
the ILP to establish a trusted paging environment, with appropriate mappings, to meet protection requirements 
established during the launch of the measured environment. RLP state initialization is not completed until a subse-
quent wake-up has been signaled by execution of the GETSEC[WAKEUP] function by the ILP.
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Segmentation related processor state that has not been initialized by GETSEC[SENTER] requires appropriate 
initialization before use. Since a new GDT context has been established, the previous state of the segment selector 
values held in FS, GS, TR, and LDTR may no longer be valid. The IDTR will also require reloading with a new IDT 
context after launching the measured environment before exceptions or the external interrupts INTR and NMI can 
be handled. In the meantime, the programmer must take care in not executing an INT n instruction or any other 
condition that would result in an exception or trap signaling.

Debug exception and trap related signaling is also disabled as part of execution of GETSEC[SENTER]. This is 
achieved by clearing DR7, TF in EFLAGs, and the MSR IA32_DEBUGCTL as defined in Table 5-6. These can be re-
enabled once supporting exception handler(s), descriptor tables, and debug registers have been properly re-initial-
ized following SENTER. Also, any pending single-step trap condition will be cleared at the completion of SENTER for 
both the ILP and RLP(s).

Performance related counters and counter control registers are cleared as part of execution of SENTER on both the 
ILP and RLP. This implies any active performance counters at the time of SENTER execution will be disabled. To 
reactive the processor performance counters, this state must be re-initialized and re-enabled.

Since MCE along with all other state bits (with the exception of SMXE) are cleared in CR4 upon execution of SENTER 
processing, any enabled machine check error condition that occurs will result in the processor performing the TXT-

Table 5-6.  Register State Initialization after GETSEC[SENTER] and GETSEC[WAKEUP]

Register State ILP after GETSEC[SENTER] RLP after GETSEC[WAKEUP]

CR0 PG←0, AM←0, WP←0; Others unchanged PG←0, CD←0, NW←0, AM←0, WP←0; PE←1, NE←1

CR4 00004000H 00004000H

EFLAGS 00000002H 00000002H

IA32_EFER 0H 0

EIP [EntryPoint from MLE header1] [LT.MLE.JOIN + 12]

EBX Unchanged [SINIT.BASE] Unchanged

EDX SENTER control flags Unchanged

EBP SINIT.BASE Unchanged

CS Sel=[SINIT SegSel], base=0, limit=FFFFFh, G=1, 
D=1, AR=9BH

Sel = [LT.MLE.JOIN + 8], base = 0, limit = FFFFFH, G = 
1, D = 1, AR = 9BH

DS, ES, SS Sel=[SINIT SegSel] +8, base=0, limit=FFFFFh, G=1, 
D=1, AR=93H

Sel = [LT.MLE.JOIN + 8] +8, base = 0, limit = FFFFFH, 
G = 1, D = 1, AR = 93H

GDTR Base= SINIT.base (EBX) + [SINIT.GDTBasePtr], 
Limit=[SINIT.GDTLimit]

Base = [LT.MLE.JOIN + 4], Limit = [LT.MLE.JOIN]

DR7 00000400H 00000400H

IA32_DEBUGCTL 0H 0H

Performance 
counters and counter 
control registers

0H 0H

IA32_MISC_ENABLE See Table 5-5 See Table 5-5

IA32_SMM_MONITOR
_CTL

Bit 2←0 Bit 2←0

NOTES:

1. See Intel® Trusted Execution Technology Measured Launched Environment Programming Guide for MLE header 
format.
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shutdown action. This also applies to an RLP while in the SENTER sleep state. For each logical processor CR4.MCE 
must be reestablished with a valid machine check exception handler to otherwise avoid an TXT-shutdown under 
such conditions.

The MSR IA32_EFER is also unconditionally cleared as part of the processor state initialized by SENTER for both the 
ILP and RLP. Since paging is disabled upon entering authenticated code execution mode, a new paging environment 
will have to be re-established if it is desired to enable IA-32e mode while operating in authenticated code execution 
mode. 

The miscellaneous feature control MSR, IA32_MISC_ENABLE, is initialized as part of the measured environment 
launch. Certain bits of this MSR are preserved because preserving these bits may be important to maintain previ-
ously established platform settings. See the footnote for Table 5-5 The remaining bits are cleared for the purpose 
of establishing a more consistent environment for the execution of authenticated code modules. Among the impact 
of initializing this MSR, any previous condition established by the MONITOR instruction will be cleared. 

Effect of MSR IA32_FEATURE_CONTROL MSR

Bits 15:8 of the IA32_FEATURE_CONTROL MSR affect the execution of GETSEC[SENTER]. These bits consist of two 
fields: 
• Bit 15: a global enable control for execution of SENTER.
• Bits 14:8: a parameter control field providing the ability to qualify SENTER execution based on the level of 

functionality specified with corresponding EDX parameter bits 6:0. 

The layout of these fields in the IA32_FEATURE_CONTROL MSR is shown in Table 5-1. 

Prior to the execution of GETSEC[SENTER], the lock bit of IA32_FEATURE_CONTROL MSR must be bit set to affirm 
the settings to be used. Once the lock bit is set, only a power-up reset condition will clear this MSR. The 
IA32_FEATURE_CONTROL MSR must be configured in accordance to the intended usage at platform initialization. 
Note that this MSR is only available on SMX or VMX enabled processors. Otherwise, IA32_FEATURE_CONTROL is 
treated as reserved.

The Intel® Trusted Execution Technology Measured Launched Environment Programming Guide provides additional details and 
requirements for programming measured environment software to launch in an Intel TXT platform.

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)

GETSEC[SENTER] (ILP only):

IF (CR4.SMXE=0)

THEN #UD;

ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);

ELSE IF (GETSEC leaf unsupported)

THEN #UD;

ELSE IF ((in VMX root operation) or

(CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or

(CPL>0) or (EFLAGS.VM=1) or

(IA32_APIC_BASE.BSP=0) or (TXT chipset not present) or

(SENTERFLAG=1) or (ACMODEFLAG=1) or (IN_SMM=1) or

(TPM interface is not present) or

(EDX != (SENTER_EDX_support_mask & EDX)) or

(IA32_CR_FEATURE_CONTROL[0]=0) or (IA32_CR_FEATURE_CONTROL[15]=0) or

((IA32_CR_FEATURE_CONTROL[14:8] & EDX[6:0]) != EDX[6:0]))

THEN #GP(0);

IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)

FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO

IF IA32_MC[I]_STATUS = uncorrectable error

THEN #GP(0);

FI;

OD;
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FI;

IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN #GP(0);

ACBASE← EBX;

ACSIZE← ECX;

IF (((ACBASE MOD 4096) != 0) or ((ACSIZE MOD 64) != 0 ) or (ACSIZE < minimum 

module size) or (ACSIZE > AC RAM capacity) or ((ACBASE+ACSIZE) > (2^32 -1)))

THEN #GP(0);

Mask SMI, INIT, A20M, and NMI external pin events;

SignalTXTMsg(SENTER);

DO

WHILE (no SignalSENTER message);

TXT_SENTER__MSG_EVENT (ILP & RLP):

Mask and clear SignalSENTER event;

Unmask SignalSEXIT event;

IF (in VMX operation)

THEN TXT-SHUTDOWN(#IllegalEvent);

FOR I = 0 to IA32_MCG_CAP.COUNT-1 DO

IF IA32_MC[I]_STATUS = uncorrectable error

THEN TXT-SHUTDOWN(#UnrecovMCError);

FI;

OD;

IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)

THEN TXT-SHUTDOWN(#UnrecovMCError);

IF (Voltage or bus ratio status are NOT at a known good state)

THEN IF (Voltage select and bus ratio are internally adjustable)

THEN 

Make product-specific adjustment on operating parameters;

ELSE

TXT-SHUTDOWN(#IIlegalVIDBRatio);

FI;

IA32_MISC_ENABLE← (IA32_MISC_ENABLE & MASK_CONST*)

(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)

A20M← 0;

IA32_DEBUGCTL← 0;

Invalidate processor TLB(s);

Drain outgoing transactions;

Clear performance monitor counters and control;

SENTERFLAG← 1;

SignalTXTMsg(SENTERAck);

IF (logical processor is not ILP)

THEN GOTO RLP_SENTER_ROUTINE;

(* ILP waits for all logical processors to ACK *)

DO

DONE← TXT.READ(LT.STS);

WHILE (not DONE);

SignalTXTMsg(SENTERContinue);

SignalTXTMsg(ProcessorHold);

FOR I=ACBASE to ACBASE+ACSIZE-1 DO

ACRAM[I-ACBASE].ADDR← I;

ACRAM[I-ACBASE].DATA← LOAD(I);

OD;
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IF (ACRAM memory type != WB)

THEN TXT-SHUTDOWN(#BadACMMType);

IF (AC module header version is not supported) OR (ACRAM[ModuleType] <> 2)

THEN TXT-SHUTDOWN(#UnsupportedACM);

KEY← GETKEY(ACRAM, ACBASE);

KEYHASH← HASH(KEY);

CSKEYHASH← LT.READ(LT.PUBLIC.KEY);

IF (KEYHASH <> CSKEYHASH)

THEN TXT-SHUTDOWN(#AuthenticateFail);

SIGNATURE← DECRYPT(ACRAM, ACBASE, KEY);

(* The value of SIGNATURE_LEN_CONST is implementation-specific*)

FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.I]← SIGNATURE[I];

COMPUTEDSIGNATURE← HASH(ACRAM, ACBASE, ACSIZE);

FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I]← COMPUTEDSIGNATURE[I];

IF (SIGNATURE != COMPUTEDSIGNATURE)

THEN TXT-SHUTDOWN(#AuthenticateFail);

ACMCONTROL← ACRAM[CodeControl];

IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))

THEN TXT-SHUTDOWN(#UnexpectedHITM);

IF (ACMCONTROL reserved bits are set)

THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch_size)) OR 

((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))

THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified 

line detected on ACRAM load)) 

THEN ACEntryPoint← ACBASE+ACRAM[ErrorEntryPoint];

ELSE

ACEntryPoint← ACBASE+ACRAM[EntryPoint];

IF ((ACEntryPoint >= ACSIZE) or (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch_size)))

THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[SegSel] > (ACRAM[GDTLimit] - 15)) or (ACRAM[SegSel] < 8))

THEN TXT-SHUTDOWN(#BadACMFormat);

IF ((ACRAM[SegSel].TI=1) or (ACRAM[SegSel].RPL!=0))

THEN TXT-SHUTDOWN(#BadACMFormat);

IF (FTM_INTERFACE_ID.[3:0] = 1 ) (* Alternate FTM Interface has been enabled *)

THEN (* TPM_LOC_CTRL_4 is located at 0FED44008H, TMP_DATA_BUFFER_4 is located at 0FED44080H *)

WRITE(TPM_LOC_CTRL_4) ← 01H; (* Modified HASH.START protocol *)

(* Write to firmware storage *)

WRITE(TPM_DATA_BUFFER_4) ← SIGNATURE_LEN_CONST + 4;

FOR I=0 to SIGNATURE_LEN_CONST - 1 DO

WRITE(TPM_DATA_BUFFER_4 + 2 + I )← ACRAM[SCRATCH.I];

WRITE(TPM_DATA_BUFFER_4 + 2 + SIGNATURE_LEN_CONST) ← EDX;

WRITE(FTM.LOC_CTRL) ← 06H; (* Modified protocol combining HASH.DATA and HASH.END *)

ELSE IF (FTM_INTERFACE_ID.[3:0] = 0 ) (* Use standard TPM Interface *)

ACRAM[SCRATCH.SIGNATURE_LEN_CONST]← EDX;

WRITE(TPM.HASH.START)← 0;

FOR I=0 to SIGNATURE_LEN_CONST + 3 DO

WRITE(TPM.HASH.DATA)← ACRAM[SCRATCH.I];

WRITE(TPM.HASH.END)← 0;

FI;
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ACMODEFLAG← 1;

CR0.[PG.AM.WP]← 0;

CR4← 00004000h;

EFLAGS← 00000002h;

IA32_EFER← 0;

EBP← ACBASE;

GDTR.BASE← ACBASE+ACRAM[GDTBasePtr];

GDTR.LIMIT← ACRAM[GDTLimit];

CS.SEL← ACRAM[SegSel];

CS.BASE← 0;

CS.LIMIT← FFFFFh;

CS.G← 1;

CS.D← 1;

CS.AR← 9Bh;

DS.SEL← ACRAM[SegSel]+8;

DS.BASE← 0;

DS.LIMIT← FFFFFh;

DS.G← 1;

DS.D← 1;

DS.AR← 93h;

SS← DS;

ES← DS;

DR7← 00000400h;

IA32_DEBUGCTL← 0;

SignalTXTMsg(UnlockSMRAM);

SignalTXTMsg(OpenPrivate);

SignalTXTMsg(OpenLocality3);

EIP← ACEntryPoint;

END;

RLP_SENTER_ROUTINE: (RLP only)

Mask SMI, INIT, A20M, and NMI external pin events

Unmask SignalWAKEUP event;

Wait for SignalSENTERContinue message;

IA32_APIC_BASE.BSP← 0;

GOTO SENTER sleep state;

END;

Flags Affected

All flags are cleared.

Use of Prefixes

LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].
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#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.
If in VMX root operation.
If the initiating processor is not designated as the bootstrap processor via the MSR bit 
IA32_APIC_BASE.BSP.
If an Intel® TXT-capable chipset is not present.
If an Intel® TXT-capable chipset interface to TPM is not detected as present.
If a protected partition is already active or the processor is already in authenticated code 
mode.
If the processor is in SMM.
If a valid uncorrectable machine check error is logged in IA32_MC[I]_STATUS.
If the authenticated code base is not on a 4096 byte boundary.
If the authenticated code size > processor's authenticated code execution area storage 
capacity.
If the authenticated code size is not modulo 64.

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[SENTER] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[SENTER] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

All protected mode exceptions apply.
#GP  IF AC code module does not reside in physical address below 2^32 -1.

64-Bit Mode Exceptions

All protected mode exceptions apply.
#GP  IF AC code module does not reside in physical address below 2^32 -1.

VM-Exit Condition

Reason (GETSEC) IF in VMX non-root operation.
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GETSEC[SEXIT]—Exit Measured Environment

Description

The GETSEC[SEXIT] instruction initiates an exit of a measured environment established by GETSEC[SENTER]. The 
SEXIT leaf of GETSEC is selected with EAX set to 5 at execution. This instruction leaf sends a message to all logical 
processors in the platform to signal the measured environment exit. 

There are restrictions enforced by the processor for the execution of the GETSEC[SEXIT] instruction: 
• Execution is not allowed unless the processor is in protected mode (CR0.PE = 1) with CPL = 0 and EFLAGS.VM 

= 0. 
• The processor must be in a measured environment as launched by a previous GETSEC[SENTER] instruction, 

but not still in authenticated code execution mode. 
• To avoid potential inter-operability conflicts between modes, the processor is not allowed to execute this 

instruction if it currently is in SMM or in VMX operation. 
• To insure consistent handling of SIPI messages, the processor executing the GETSEC[SEXIT] instruction must 

also be designated the BSP (bootstrap processor) as defined by the register bit IA32_APIC_BASE.BSP (bit 8). 

Failure to abide by the above conditions results in the processor signaling a general protection violation.

This instruction initiates a sequence to rendezvous the RLPs with the ILP. It then clears the internal processor flag 
indicating the processor is operating in a measured environment.

In response to a message signaling the completion of rendezvous, all RLPs restart execution with the instruction 
that was to be executed at the time GETSEC[SEXIT] was recognized. This applies to all processor conditions, with 
the following exceptions: 
• If an RLP executed HLT and was in this halt state at the time of the message initiated by GETSEC[SEXIT], then 

execution resumes in the halt state. 
• If an RLP was executing MWAIT, then a message initiated by GETSEC[SEXIT] causes an exit of the MWAIT 

state, falling through to the next instruction. 
• If an RLP was executing an intermediate iteration of a string instruction, then the processor resumes execution 

of the string instruction at the point which the message initiated by GETSEC[SEXIT] was recognized. 
• If an RLP is still in the SENTER sleep state (never awakened with GETSEC[WAKEUP]), it will be sent to the wait-

for-SIPI state after first clearing the bootstrap processor indicator flag (IA32_APIC_BASE.BSP) and any 
pending SIPI state. In this case, such RLPs are initialized to an architectural state consistent with having taken 
a soft reset using the INIT# pin. 

Prior to completion of the GETSEC[SEXIT] operation, both the ILP and any active RLPs unmask the response of the 
external event signals INIT#, A20M, NMI#, and SMI#. This unmasking is performed unconditionally to recognize 
pin events which are masked after a GETSEC[SENTER]. The state of A20M is unmasked, as the A20M pin is not 
recognized while the measured environment is active.

On a successful exit of the measured environment, the ILP re-locks the Intel® TXT-capable chipset private config-
uration space. GETSEC[SEXIT] does not affect the content of any PCR.

At completion of GETSEC[SEXIT] by the ILP, execution proceeds to the next instruction. Since EFLAGS and the 
debug register state are not modified by this instruction, a pending trap condition is free to be signaled if previously 
enabled.

Operation in a Uni-Processor Platform
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)

GETSEC[SEXIT] (ILP only):

IF (CR4.SMXE=0)

Opcode Instruction Description

0F 37

(EAX=5)

GETSEC[SEXIT] Exit measured environment
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THEN #UD;

ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);

ELSE IF (GETSEC leaf unsupported)

THEN #UD;

ELSE IF ((in VMX root operation) or

(CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or

(IA32_APIC_BASE.BSP=0) or

(TXT chipset not present) or

(SENTERFLAG=0) or (ACMODEFLAG=1) or (IN_SMM=1))

THEN #GP(0);

SignalTXTMsg(SEXIT);

DO

WHILE (no SignalSEXIT message);

TXT_SEXIT_MSG_EVENT (ILP & RLP):

Mask and clear SignalSEXIT event;

Clear MONITOR FSM;

Unmask SignalSENTER event;

IF (in VMX operation)

THEN TXT-SHUTDOWN(#IllegalEvent);

SignalTXTMsg(SEXITAck);

IF (logical processor is not ILP)

THEN GOTO RLP_SEXIT_ROUTINE;

(* ILP waits for all logical processors to ACK *)

DO

DONE← READ(LT.STS);

WHILE (NOT DONE);

SignalTXTMsg(SEXITContinue);

SignalTXTMsg(ClosePrivate);

SENTERFLAG← 0;

Unmask SMI, INIT, A20M, and NMI external pin events;

END;

RLP_SEXIT_ROUTINE (RLPs only):

Wait for SignalSEXITContinue message;

Unmask SMI, INIT, A20M, and NMI external pin events;

IF (prior execution state = HLT)

THEN reenter HLT state;

IF (prior execution state = SENTER sleep)

THEN

IA32_APIC_BASE.BSP← 0;

Clear pending SIPI state;

Call INIT_PROCESSOR_STATE;

Unmask SIPI event;

GOTO WAIT-FOR-SIPI;

FI;

END;

Flags Affected

ILP: None. 
RLPs: all flags are modified for an RLP. returning to wait-for-SIPI state, none otherwise 
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Use of Prefixes

LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[SEXIT] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.
If in VMX root operation.
If the initiating processor is not designated as the  via the MSR bit IA32_APIC_BASE.BSP.
If an Intel® TXT-capable chipset is not present.
If a protected partition is not already active or the processor is already in authenticated code 
mode.
If the processor is in SMM.

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[SEXIT] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[SEXIT] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[SEXIT] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[SEXIT] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

All protected mode exceptions apply.

64-Bit Mode Exceptions

All protected mode exceptions apply.

VM-Exit Condition

Reason (GETSEC) IF in VMX non-root operation.
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GETSEC[PARAMETERS]—Report the SMX Parameters

Description

The GETSEC[PARAMETERS] instruction returns specific parameter information for SMX features supported by the 
processor. Parameter information is returned in EAX, EBX, and ECX, with the input parameter selected using EBX.

Software retrieves parameter information by searching with an input index for EBX starting at 0, and then reading 
the returned results in EAX, EBX, and ECX. EAX[4:0] is designated to return a parameter type field indicating if a 
parameter is available and what type it is. If EAX[4:0] is returned with 0, this designates a null parameter and indi-
cates no more parameters are available. 

Table 5-7 defines the parameter types supported in current and future implementations.

Opcode Instruction Description

0F 37

(EAX=6)

GETSEC[PARAMETERS] Report the SMX Parameters

The parameters index is input in EBX with the result returned in EAX, EBX, and ECX.

Table 5-7.  SMX Reporting Parameters Format 

Parameter 
Type EAX[4:0] Parameter Description EAX[31:5] EBX[31:0] ECX[31:0]

0 NULL Reserved (0 returned) Reserved (unmodified) Reserved (unmodified)

1 Supported AC module 
versions

Reserved (0 returned) version comparison mask version numbers 
supported

2 Max size of authenticated 
code execution area

Multiply by 32 for size in 
bytes

Reserved (unmodified) Reserved (unmodified)

3 External memory types 
supported during AC mode

Memory type bit mask Reserved (unmodified) Reserved (unmodified)

4 Selective SENTER 
functionality control

EAX[14:8] correspond to 
available SENTER function 
disable controls

Reserved (unmodified) Reserved (unmodified)

5 TXT extensions support TXT Feature Extensions 
Flags (see Table 5-8)

Reserved Reserved 

6-31 Undefined Reserved (unmodified) Reserved (unmodified) Reserved (unmodified)
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Table 5-8.  TXT Feature Extensions Flags

Supported AC module versions (as defined by the AC module HeaderVersion field) can be determined for a partic-
ular SMX capable processor by the type 1 parameter. Using EBX to index through the available parameters reported 
by GETSEC[PARAMETERS] for each unique parameter set returned for type 1, software can determine the 
complete list of AC module version(s) supported. 

For each parameter set, EBX returns the comparison mask and ECX returns the available HeaderVersion field 
values supported, after AND'ing the target HeaderVersion with the comparison mask. Software can then determine 
if a particular AC module version is supported by following the pseudo-code search routine given below:

parameter_search_index= 0
do {

EBX= parameter_search_index++
EAX= 6
GETSEC
if (EAX[4:0] = 1) {

if ((version_query & EBX) = ECX) {
version_is_supported= 1
break

}
}

} while (EAX[4:0]!= 0)

If only AC modules with a HeaderVersion of 0 are supported by the processor, then only one parameter set of type 
1 will be returned, as follows: EAX = 00000001H, 

EBX = FFFFFFFFH and ECX = 00000000H.

The maximum capacity for an authenticated code execution area supported by the processor is reported with the 
parameter type of 2. The maximum supported size in bytes is determined by multiplying the returned size in 
EAX[31:5] by 32. Thus, for a maximum supported authenticated RAM size of 32KBytes, EAX returns with 
00008002H. 

Supportable memory types for memory mapped outside of the authenticated code execution area are reported 
with the parameter type of 3. While is active, as initiated by the GETSEC functions SENTER and ENTERACCS and 
terminated by EXITAC, there are restrictions on what memory types are allowed for the rest of system memory. It 
is the responsibility of the system software to initialize the memory type range register (MTRR) MSRs and/or the 
page attribute table (PAT) to only map memory types consistent with the reporting of this parameter. The reporting 
of supportable memory types of external memory is indicated using a bit map returned in EAX[31:8]. These bit 
positions correspond to the memory type encodings defined for the MTRR MSR and PAT programming. See 
Table 5-9.

The parameter type of 4 is used for enumerating the availability of selective GETSEC[SENTER] function disable 
controls. If a 1 is reported in bits 14:8 of the returned parameter EAX, then this indicates a disable control capa-

Bit Definition Description

5 Processor based 
S-CRTM support

Returns 1 if this processor implements a processor-rooted S-CRTM capability and 0 if not (S-
CRTM is rooted in BIOS).
This flag cannot be used to infer whether the chipset supports TXT or whether the 
processor support SMX.

6 Machine Check 
Handling

Returns 1 if it machine check status registers can be preserved through ENTERACCS and 
SENTER. If this bit is 1, the caller of ENTERACCS and SENTER is not required to clear machine 
check error status bits before invoking these GETSEC leaves.

If this bit returns 0, the caller of ENTERACCS and SENTER must clear all machine check error 
status bits before invoking these GETSEC leaves.

31:7 Reserved Reserved for future use. Will return 0.
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bility exists with SENTER for a particular function. The enumerated field in bits 14:8 corresponds to use of the EDX 
input parameter bits 6:0 for SENTER. If an enumerated field bit is set to 1, then the corresponding EDX input 
parameter bit of EDX may be set to 1 to disable that designated function. If the enumerated field bit is 0 or this 
parameter is not reported, then no disable capability exists with the corresponding EDX input parameter for 
SENTER, and EDX bit(s) must be cleared to 0 to enable execution of SENTER. If no selective disable capability for 
SENTER exists as enumerated, then the corresponding bits in the IA32_FEATURE_CONTROL MSR bits 14:8 must 
also be programmed to 1 if the SENTER global enable bit 15 of the MSR is set. This is required to enable future 
extensibility of SENTER selective disable capability with respect to potentially separate software initialization of the 
MSR.

If the GETSEC[PARAMETERS] leaf or specific parameter is not present for a given SMX capable processor, then 
default parameter values should be assumed. These are defined in Table 5-10.

Operation
(* example of a processor supporting only a 0.0 HeaderVersion, 32K ACRAM size, memory types UC and WC *)

IF (CR4.SMXE=0)

THEN #UD;

ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);

ELSE IF (GETSEC leaf unsupported)

THEN #UD;

(* example of a processor supporting a 0.0 HeaderVersion *)

IF (EBX=0) THEN

EAX← 00000001h;

EBX← FFFFFFFFh;

ECX← 00000000h;

ELSE IF (EBX=1)

(* example of a processor supporting a 32K ACRAM size *)

Table 5-9.  External Memory Types Using Parameter 3

EAX Bit Position Parameter Description

8 Uncacheable (UC)

9 Write Combining (WC)

11:10 Reserved

12 Write-through (WT)

13 Write-protected (WP)

14 Write-back (WB)

31:15 Reserved

Table 5-10.  Default Parameter Values

Parameter Type EAX[4:0] Default Setting Parameter Description

1 0.0 only Supported AC module versions 

2 32 KBytes Authenticated code execution area size

3 UC only External memory types supported during AC execution mode

4 None Available SENTER selective disable controls
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THEN EAX← 00008002h;

ESE IF (EBX= 2)

(* example of a processor supporting external memory types of UC and WC *)

THEN EAX← 00000303h;

ESE IF (EBX= other value(s) less than unsupported index value)

(* EAX value varies. Consult Table 5-7 and Table 5-8*)

ELSE (* unsupported index*)

EAX¨ 00000000h;

END;

Flags Affected

None.

Use of Prefixes

LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[PARAMETERS] is not reported as supported by GETSEC[CAPABILITIES].

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[PARAMETERS] is not reported as supported by GETSEC[CAPABILITIES].

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[PARAMETERS] is not reported as supported by GETSEC[CAPABILITIES].

Compatibility Mode Exceptions

All protected mode exceptions apply.

64-Bit Mode Exceptions

All protected mode exceptions apply.

VM-Exit Condition

Reason (GETSEC) IF in VMX non-root operation.
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GETSEC[SMCTRL]—SMX Mode Control

Description

The GETSEC[SMCTRL] instruction is available for performing certain SMX specific mode control operations. The 
operation to be performed is selected through the input register EBX. Currently only an input value in EBX of 0 is 
supported. All other EBX settings will result in the signaling of a general protection violation. 

If EBX is set to 0, then the SMCTRL leaf is used to re-enable SMI events. SMI is masked by the ILP executing the 
GETSEC[SENTER] instruction (SMI is also masked in the responding logical processors in response to SENTER 
rendezvous messages.). The determination of when this instruction is allowed and the events that are unmasked 
is dependent on the processor context (See Table 5-11). For brevity, the usage of SMCTRL where EBX=0 will be 
referred to as GETSEC[SMCTRL(0)].

As part of support for launching a measured environment, the SMI, NMI and INIT events are masked after 
GETSEC[SENTER], and remain masked after exiting authenticated execution mode. Unmasking these events 
should be accompanied by securely enabling these event handlers. These security concerns can be addressed in 
VMX operation by a MVMM. 

The VM monitor can choose two approaches:
• In a dual monitor approach, the executive software will set up an SMM monitor in parallel to the executive VMM 

(i.e. the MVMM), see Chapter 34, “System Management Mode” of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3C. The SMM monitor is dedicated to handling SMI events without compromising 
the security of the MVMM. This usage model of handling SMI while a measured environment is active does not 
require the use of GETSEC[SMCTRL(0)] as event re-enabling after the VMX environment launch is handled 
implicitly and through separate VMX based controls. 

• If a dedicated SMM monitor will not be established and SMIs are to be handled within the measured 
environment, then GETSEC[SMCTRL(0)] can be used by the executive software to re-enable SMI that has been 
masked as a result of SENTER.

Table 5-11 defines the processor context in which GETSEC[SMCTRL(0)] can be used and which events will be 
unmasked. Note that the events that are unmasked are dependent upon the currently operating processor context.

Opcode Instruction Description

0F 37 (EAX = 7) GETSEC[SMCTRL] Perform specified SMX mode control as selected with the input EBX.

Table 5-11.  Supported Actions for GETSEC[SMCTRL(0)]

ILP Mode of Operation SMCTRL execution action

In VMX non-root operation VM exit

SENTERFLAG = 0 #GP(0), illegal context

In authenticated code execution mode 
(ACMODEFLAG = 1)

#GP(0), illegal context

SENTERFLAG = 1, not in VMX operation, not in 
SMM 

Unmask SMI 

SENTERFLAG = 1, in VMX root operation, not in 
SMM 

Unmask SMI if SMM monitor is not configured, otherwise #GP(0)

SENTERFLAG = 1, In VMX root operation, in SMM #GP(0), illegal context
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Operation
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)

IF (CR4.SMXE=0)

THEN #UD;

ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);

ELSE IF (GETSEC leaf unsupported)

THEN #UD;

ELSE IF ((CR0.PE=0) or (CPL>0) OR (EFLAGS.VM=1))

THEN #GP(0);

ELSE IF((EBX=0) and (SENTERFLAG=1) and (ACMODEFLAG=0) and (IN_SMM=0) and

 (((in VMX root operation) and (SMM monitor not configured)) or (not in VMX operation)) )

THEN unmask SMI;

ELSE

#GP(0);

END

Flags Affected

None.

Use of Prefixes

LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[SMCTRL] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.
If in VMX root operation.
If a protected partition is not already active or the processor is currently in authenticated code 
mode.
If the processor is in SMM.
If the SMM monitor is not configured

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[SMCTRL] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[SMCTRL] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[SMCTRL] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[SMCTRL] is not recognized in virtual-8086 mode.
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Compatibility Mode Exceptions

All protected mode exceptions apply.

64-Bit Mode Exceptions

All protected mode exceptions apply.

VM-exit Condition

Reason (GETSEC) IF in VMX non-root operation.
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GETSEC[WAKEUP]—Wake up sleeping processors in measured environment

Description

The GETSEC[WAKEUP] leaf function broadcasts a wake-up message to all logical processors currently in the 
SENTER sleep state. This GETSEC leaf must be executed only by the ILP, in order to wake-up the RLPs. Responding 
logical processors (RLPs) enter the SENTER sleep state after completion of the SENTER rendezvous sequence. 

The GETSEC[WAKEUP] instruction may only be executed: 
• In a measured environment as initiated by execution of GETSEC[SENTER]. 
• Outside of authenticated code execution mode. 
• Execution is not allowed unless the processor is in protected mode with CPL = 0 and EFLAGS.VM = 0. 
• In addition, the logical processor must be designated as the boot-strap processor as configured by setting 

IA32_APIC_BASE.BSP = 1. 

If these conditions are not met, attempts to execute GETSEC[WAKEUP] result in a general protection violation.

An RLP exits the SENTER sleep state and start execution in response to a WAKEUP signal initiated by ILP’s execu-
tion of GETSEC[WAKEUP]. The RLP retrieves a pointer to a data structure that contains information to enable 
execution from a defined entry point. This data structure is located using a physical address held in the Intel® TXT-
capable chipset configuration register LT.MLE.JOIN. The register is publicly writable in the chipset by all processors 
and is not restricted by the Intel® TXT-capable chipset configuration register lock status. The format of this data 
structure is defined in Table 5-12.

The MLE JOIN data structure contains the information necessary to initialize RLP processor state and permit the 
processor to join the measured environment. The GDTR, LIP, and CS, DS, SS, and ES selector values are initialized 
using this data structure. The CS selector index is derived directly from the segment selector initializer field; DS, 
SS, and ES selectors are initialized to CS+8. The segment descriptor fields are initialized implicitly with BASE = 0, 
LIMIT = FFFFFH, G = 1, D = 1, P = 1, S = 1; read/write/access for DS, SS, and ES; and execute/read/access for 
CS. It is the responsibility of external software to establish a GDT pointed to by the MLE JOIN data structure that 
contains descriptor entries consistent with the implicit settings initialized by the processor (see Table 5-6). Certain 
states from the content of Table 5-12 are checked for consistency by the processor prior to execution. A failure of 
any consistency check results in the RLP aborting entry into the protected environment and signaling an Intel® 
TXT shutdown condition. The specific checks performed are documented later in this section. After successful 
completion of processor consistency checks and subsequent initialization, RLP execution in the measured environ-
ment begins from the entry point at offset 12 (as indicated in Table 5-12).

Opcode Instruction Description

0F 37

(EAX=8)

GETSEC[WAKEUP] Wake up the responding logical processors from the SENTER sleep state.

Table 5-12.  RLP MVMM JOIN Data Structure

Offset Field

0 GDT limit

4 GDT base pointer

8 Segment selector initializer

12 EIP
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Operation
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)

IF (CR4.SMXE=0)

THEN #UD;

ELSE IF (in VMX non-root operation)

THEN VM Exit (reason=”GETSEC instruction”);

ELSE IF (GETSEC leaf unsupported)

THEN #UD;

ELSE IF ((CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or (SENTERFLAG=0) or (ACMODEFLAG=1) or (IN_SMM=0) or (in VMX operation) or 
(IA32_APIC_BASE.BSP=0) or (TXT chipset not present))

THEN #GP(0);

ELSE

SignalTXTMsg(WAKEUP);

END;

RLP_SIPI_WAKEUP_FROM_SENTER_ROUTINE: (RLP only)

WHILE (no SignalWAKEUP event);

IF (IA32_SMM_MONITOR_CTL[0] != ILP.IA32_SMM_MONITOR_CTL[0])

THEN TXT-SHUTDOWN(#IllegalEvent)

IF (IA32_SMM_MONITOR_CTL[0] = 0)

THEN Unmask SMI pin event;

ELSE

Mask SMI pin event;

Mask A20M, and NMI external pin events (unmask INIT);

Mask SignalWAKEUP event;

Invalidate processor TLB(s);

Drain outgoing transactions;

TempGDTRLIMIT← LOAD(LT.MLE.JOIN);

TempGDTRBASE← LOAD(LT.MLE.JOIN+4);

TempSegSel← LOAD(LT.MLE.JOIN+8);

TempEIP← LOAD(LT.MLE.JOIN+12);

IF (TempGDTLimit & FFFF0000h)

THEN TXT-SHUTDOWN(#BadJOINFormat);

IF ((TempSegSel > TempGDTRLIMIT-15) or (TempSegSel < 8))

THEN TXT-SHUTDOWN(#BadJOINFormat);

IF ((TempSegSel.TI=1) or (TempSegSel.RPL!=0))

THEN TXT-SHUTDOWN(#BadJOINFormat);

CR0.[PG,CD,NW,AM,WP]← 0;

CR0.[NE,PE]← 1;

CR4← 00004000h;

EFLAGS← 00000002h;

IA32_EFER← 0;

GDTR.BASE← TempGDTRBASE;

GDTR.LIMIT← TempGDTRLIMIT;

CS.SEL← TempSegSel;

CS.BASE← 0;

CS.LIMIT← FFFFFh;

CS.G← 1;

CS.D← 1;

CS.AR← 9Bh;

DS.SEL← TempSegSel+8;

DS.BASE← 0;

DS.LIMIT← FFFFFh;

DS.G← 1;
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DS.D← 1;

DS.AR← 93h;

SS← DS;

ES← DS;

DR7← 00000400h;

IA32_DEBUGCTL← 0;

EIP← TempEIP;

END;

Flags Affected

None.

Use of Prefixes

LOCK Causes #UD
REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Operand size Causes #UD
Segment overrides Ignored
Address size Ignored
REX Ignored

Protected Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[WAKEUP] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.
If in VMX operation.
If a protected partition is not already active or the processor is currently in authenticated code 
mode.
If the processor is in SMM.

#UD If CR4.SMXE = 0.
If GETSEC[WAKEUP] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[WAKEUP] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.
If GETSEC[WAKEUP] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[WAKEUP] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

All protected mode exceptions apply.

64-Bit Mode Exceptions

All protected mode exceptions apply.

VM-exit Condition

Reason (GETSEC) IF in VMX non-root operation.
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APPENDIX A
OPCODE MAP

           
Use the opcode tables in this chapter to interpret IA-32 and Intel 64 architecture object code. Instructions are 
divided into encoding groups:
• 1-byte, 2-byte and 3-byte opcode encodings are used to encode integer, system, MMX technology, 

SSE/SSE2/SSE3/SSSE3/SSE4, and VMX instructions. Maps for these instructions are given in Table A-2 
through Table A-6. 

• Escape opcodes (in the format: ESC character, opcode, ModR/M byte) are used for floating-point instructions. 
The maps for these instructions are provided in Table A-7 through Table A-22.

NOTE
All blanks in opcode maps are reserved and must not be used. Do not depend on the operation of 
undefined or blank opcodes.

A.1 USING OPCODE TABLES

Tables in this appendix list opcodes of instructions (including required instruction prefixes, opcode extensions in 
associated ModR/M byte). Blank cells in the tables indicate opcodes that are reserved or undefined.

The opcode map tables are organized by hex values of the upper and lower 4 bits of an opcode byte. For 1-byte 
encodings (Table A-2), use the four high-order bits of an opcode to index a row of the opcode table; use the four 
low-order bits to index a column of the table. For 2-byte opcodes beginning with 0FH (Table A-3), skip any instruc-
tion prefixes, the 0FH byte (0FH may be preceded by 66H, F2H, or F3H) and use the upper and lower 4-bit values 
of the next opcode byte to index table rows and columns. Similarly, for 3-byte opcodes beginning with 0F38H or 
0F3AH (Table A-4), skip any instruction prefixes, 0F38H or 0F3AH and use the upper and lower 4-bit values of the 
third opcode byte to index table rows and columns. See Section A.2.4, “Opcode Look-up Examples for One, Two, 
and Three-Byte Opcodes.”

When a ModR/M byte provides opcode extensions, this information qualifies opcode execution. For information on 
how an opcode extension in the ModR/M byte modifies the opcode map in Table A-2 and Table A-3, see Section A.4. 

The escape (ESC) opcode tables for floating point instructions identify the eight high order bits of opcodes at the 
top of each page. See Section A.5. If the accompanying ModR/M byte is in the range of 00H-BFH, bits 3-5 (the top 
row of the third table on each page) along with the reg bits of ModR/M determine the opcode. ModR/M bytes 
outside the range of 00H-BFH are mapped by the bottom two tables on each page of the section.

A.2 KEY TO ABBREVIATIONS

Operands are identified by a two-character code of the form Zz. The first character, an uppercase letter, specifies 
the addressing method; the second character, a lowercase letter, specifies the type of operand.

A.2.1  Codes for Addressing Method

The following abbreviations are used to document addressing methods:

A Direct address: the instruction has no ModR/M byte; the address of the operand is encoded in the instruc-
tion. No base register, index register, or scaling factor can be applied (for example, far JMP (EA)).

B The VEX.vvvv field of the VEX prefix selects a general purpose register.

C The reg field of the ModR/M byte selects a control register (for example, MOV (0F20, 0F22)).
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D The reg field of the ModR/M byte selects a debug register (for example, 
MOV (0F21,0F23)).

E A ModR/M byte follows the opcode and specifies the operand. The operand is either a general-purpose 
register or a memory address. If it is a memory address, the address is computed from a segment register 
and any of the following values: a base register, an index register, a scaling factor, a displacement.

F EFLAGS/RFLAGS Register.

G The reg field of the ModR/M byte selects a general register (for example, AX (000)).

H The VEX.vvvv field of the VEX prefix selects a 128-bit XMM register or a 256-bit YMM register, determined 
by operand type. For legacy SSE encodings this operand does not exist, changing the instruction to 
destructive form.

I Immediate data: the operand value is encoded in subsequent bytes of the instruction.

J The instruction contains a relative offset to be added to the instruction pointer register (for example, JMP 
(0E9), LOOP).

L The upper 4 bits of the 8-bit immediate selects a 128-bit XMM register or a 256-bit YMM register, deter-
mined by operand type. (the MSB is ignored in 32-bit mode)

M The ModR/M byte may refer only to memory (for example, BOUND, LES, LDS, LSS, LFS, LGS, 
CMPXCHG8B).

N The R/M field of the ModR/M byte selects a packed-quadword, MMX technology register.

O The instruction has no ModR/M byte. The offset of the operand is coded as a word or double word 
(depending on address size attribute) in the instruction. No base register, index register, or scaling factor 
can be applied (for example, MOV (A0–A3)).

P The reg field of the ModR/M byte selects a packed quadword MMX technology register.

Q A ModR/M byte follows the opcode and specifies the operand. The operand is either an MMX technology 
register or a memory address. If it is a memory address, the address is computed from a segment register 
and any of the following values: a base register, an index register, a scaling factor, and a displacement.

R The R/M field of the ModR/M byte may refer only to a general register (for example, MOV (0F20-0F23)).

S The reg field of the ModR/M byte selects a segment register (for example, MOV (8C,8E)).

U The R/M field of the ModR/M byte selects a 128-bit XMM register or a 256-bit YMM register, determined by 
operand type.

V The reg field of the ModR/M byte selects a 128-bit XMM register or a 256-bit YMM register, determined by 
operand type.

W A ModR/M byte follows the opcode and specifies the operand. The operand is either a 128-bit XMM register, 
a 256-bit YMM register (determined by operand type), or a memory address. If it is a memory address, the 
address is computed from a segment register and any of the following values: a base register, an index 
register, a scaling factor, and a displacement.

X Memory addressed by the DS:rSI register pair (for example, MOVS, CMPS, OUTS, or LODS).

Y Memory addressed by the ES:rDI register pair (for example, MOVS, CMPS, INS, STOS, or SCAS).

A.2.2  Codes for Operand Type

The following abbreviations are used to document operand types:

a Two one-word operands in memory or two double-word operands in memory, depending on operand-size 
attribute (used only by the BOUND instruction).

b Byte, regardless of operand-size attribute.

c Byte or word, depending on operand-size attribute.

d Doubleword, regardless of operand-size attribute.

dq Double-quadword, regardless of operand-size attribute.
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p 32-bit, 48-bit, or 80-bit pointer, depending on operand-size attribute.

pd 128-bit or 256-bit packed double-precision floating-point data.

pi Quadword MMX technology register (for example: mm0).

ps 128-bit or 256-bit packed single-precision floating-point data.

q Quadword, regardless of operand-size attribute.

qq Quad-Quadword (256-bits), regardless of operand-size attribute.

s 6-byte or 10-byte pseudo-descriptor.

sd Scalar element of a 128-bit double-precision floating data.

ss Scalar element of a 128-bit single-precision floating data.

si Doubleword integer register (for example: eax).

v Word, doubleword or quadword (in 64-bit mode), depending on operand-size attribute.

w Word, regardless of operand-size attribute.

x dq or qq based on the operand-size attribute.

y Doubleword or quadword (in 64-bit mode), depending on operand-size attribute.

z Word for 16-bit operand-size or doubleword for 32 or 64-bit operand-size.

A.2.3  Register Codes

When an opcode requires a specific register as an operand, the register is identified by name (for example, AX, CL, 
or ESI). The name indicates whether the register is 64, 32, 16, or 8 bits wide.

A register identifier of the form eXX or rXX is used when register width depends on the operand-size attribute. eXX 
is used when 16 or 32-bit sizes are possible; rXX is used when 16, 32, or 64-bit sizes are possible. For example: 
eAX indicates that the AX register is used when the operand-size attribute is 16 and the EAX register is used when 
the operand-size attribute is 32. rAX can indicate AX, EAX or RAX.

When the REX.B bit is used to modify the register specified in the reg field of the opcode, this fact is indicated by 
adding “/x” to the register name to indicate the additional possibility. For example, rCX/r9 is used to indicate that 
the register could either be rCX or r9. Note that the size of r9 in this case is determined by the operand size attri-
bute (just as for rCX).

A.2.4  Opcode Look-up Examples for One, Two, and Three-Byte Opcodes

This section provides examples that demonstrate how opcode maps are used. 

A.2.4.1  One-Byte Opcode Instructions

The opcode map for 1-byte opcodes is shown in Table A-2. The opcode map for 1-byte opcodes is arranged by row 
(the least-significant 4 bits of the hexadecimal value) and column (the most-significant 4 bits of the hexadecimal 
value). Each entry in the table lists one of the following types of opcodes:
• Instruction mnemonics and operand types using the notations listed in Section A.2
• Opcodes used as an instruction prefix

For each entry in the opcode map that corresponds to an instruction, the rules for interpreting the byte following 
the primary opcode fall into one of the following cases:
• A ModR/M byte is required and is interpreted according to the abbreviations listed in Section A.1 and Chapter 

2, “Instruction Format,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A. 
Operand types are listed according to notations listed in Section A.2.

• A ModR/M byte is required and includes an opcode extension in the reg field in the ModR/M byte. Use Table A-6 
when interpreting the ModR/M byte.
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• Use of the ModR/M byte is reserved or undefined. This applies to entries that represent an instruction prefix or 
entries for instructions without operands that use ModR/M (for example: 60H, PUSHA; 06H, PUSH ES).

Example A-1.  Look-up Example for 1-Byte Opcodes

Opcode 030500000000H for an ADD instruction is interpreted using the 1-byte opcode map (Table A-2) as follows:
• The first digit (0) of the opcode indicates the table row and the second digit (3) indicates the table column. This 

locates an opcode for ADD with two operands. 
• The first operand (type Gv) indicates a general register that is a word or doubleword depending on the operand-

size attribute. The second operand (type Ev) indicates a ModR/M byte follows that specifies whether the 
operand is a word or doubleword general-purpose register or a memory address.

• The ModR/M byte for this instruction is 05H, indicating that a 32-bit displacement follows (00000000H). The 
reg/opcode portion of the ModR/M byte (bits 3-5) is 000, indicating the EAX register. 

The instruction for this opcode is ADD EAX, mem_op, and the offset of mem_op is 00000000H.

Some 1- and 2-byte opcodes point to group numbers (shaded entries in the opcode map table). Group numbers 
indicate that the instruction uses the reg/opcode bits in the ModR/M byte as an opcode extension (refer to Section 
A.4).

A.2.4.2  Two-Byte Opcode Instructions

The two-byte opcode map shown in Table A-3 includes primary opcodes that are either two bytes or three bytes in 
length. Primary opcodes that are 2 bytes in length begin with an escape opcode 0FH. The upper and lower four bits 
of the second opcode byte are used to index a particular row and column in Table A-3. 

Two-byte opcodes that are 3 bytes in length begin with a mandatory prefix (66H, F2H, or F3H) and the escape 
opcode (0FH). The upper and lower four bits of the third byte are used to index a particular row and column in Table 
A-3 (except when the second opcode byte is the 3-byte escape opcodes 38H or 3AH; in this situation refer to 
Section A.2.4.3). 

For each entry in the opcode map, the rules for interpreting the byte following the primary opcode fall into one of 
the following cases:
• A ModR/M byte is required and is interpreted according to the abbreviations listed in Section A.1 and Chapter 

2, “Instruction Format,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A. 
The operand types are listed according to notations listed in Section A.2.

• A ModR/M byte is required and includes an opcode extension in the reg field in the ModR/M byte. Use Table A-6 
when interpreting the ModR/M byte.

• Use of the ModR/M byte is reserved or undefined. This applies to entries that represent an instruction without 
operands that are encoded using ModR/M (for example: 0F77H, EMMS).

Example A-2.  Look-up Example for 2-Byte Opcodes

Look-up opcode 0FA4050000000003H for a SHLD instruction using Table A-3.
• The opcode is located in row A, column 4. The location indicates a SHLD instruction with operands Ev, Gv, and 

Ib. Interpret the operands as follows:

— Ev: The ModR/M byte follows the opcode to specify a word or doubleword operand.

— Gv: The reg field of the ModR/M byte selects a general-purpose register.

— Ib: Immediate data is encoded in the subsequent byte of the instruction.
• The third byte is the ModR/M byte (05H). The mod and opcode/reg fields of ModR/M indicate that a 32-bit 

displacement is used to locate the first operand in memory and eAX as the second operand.
• The next part of the opcode is the 32-bit displacement for the destination memory operand (00000000H). The 

last byte stores immediate byte that provides the count of the shift (03H).
• By this breakdown, it has been shown that this opcode represents the instruction: SHLD DS:00000000H, EAX, 

3.
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A.2.4.3  Three-Byte Opcode Instructions

The three-byte opcode maps shown in Table A-4 and Table A-5 includes primary opcodes that are either 3 or 4 
bytes in length. Primary opcodes that are 3 bytes in length begin with two escape bytes 0F38H or 0F3A. The upper 
and lower four bits of the third opcode byte are used to index a particular row and column in Table A-4 or Table A-5. 

Three-byte opcodes that are 4 bytes in length begin with a mandatory prefix (66H, F2H, or F3H) and two escape 
bytes (0F38H or 0F3AH). The upper and lower four bits of the fourth byte are used to index a particular row and 
column in Table A-4 or Table A-5. 

For each entry in the opcode map, the rules for interpreting the byte following the primary opcode fall into the 
following case:
• A ModR/M byte is required and is interpreted according to the abbreviations listed in A.1 and Chapter 2, 

“Instruction Format,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A. The 
operand types are listed according to notations listed in Section A.2.

Example A-3.  Look-up Example for 3-Byte Opcodes

Look-up opcode 660F3A0FC108H for a PALIGNR instruction using Table A-5.
• 66H is a prefix and 0F3AH indicate to use Table A-5. The opcode is located in row 0, column F indicating a 

PALIGNR instruction with operands Vdq, Wdq, and Ib. Interpret the operands as follows:

— Vdq: The reg field of the ModR/M byte selects a 128-bit XMM register.

— Wdq: The R/M field of the ModR/M byte selects either a 128-bit XMM register or memory location.

— Ib: Immediate data is encoded in the subsequent byte of the instruction.
• The next byte is the ModR/M byte (C1H). The reg field indicates that the first operand is XMM0. The mod shows 

that the R/M field specifies a register and the R/M indicates that the second operand is XMM1.
• The last byte is the immediate byte (08H).
• By this breakdown, it has been shown that this opcode represents the instruction: PALIGNR XMM0, XMM1, 8.

A.2.4.4  VEX Prefix Instructions

Instructions that include a VEX prefix are organized relative to the 2-byte and 3-byte opcode maps, based on the 
VEX.mmmmm field encoding of implied 0F, 0F38H, 0F3AH, respectively. Each entry in the opcode map of a VEX-
encoded instruction is based on the value of the opcode byte, similar to non-VEX-encoded instructions. 

A VEX prefix includes several bit fields that encode implied 66H, F2H, F3H prefix functionality (VEX.pp) and 
operand size/opcode information (VEX.L). See chapter 4 for details. 

Opcode tables A2-A6 include both instructions with a VEX prefix and instructions without a VEX prefix. Many entries 
are only made once, but represent both the VEX and non-VEX forms of the instruction. If the VEX prefix is present 
all the operands are valid and the mnemonic is usually prefixed with a “v”. If the VEX prefix is not present the 
VEX.vvvv operand is not available and the prefix “v” is dropped from the mnemonic. 

A few instructions exist only in VEX form and these are marked with a superscript “v”.

Operand size of VEX prefix instructions can be determined by the operand type code. 128-bit vectors are indicated 
by 'dq', 256-bit vectors are indicated by 'qq', and instructions with operands supporting either 128 or 256-bit, 
determined by VEX.L, are indicated by 'x'. For example, the entry "VMOVUPD Vx,Wx" indicates both VEX.L=0 and 
VEX.L=1 are supported. 
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A.2.5  Superscripts Utilized in Opcode Tables

Table A-1 contains notes on particular encodings. These notes are indicated in the following opcode maps by super-
scripts. Gray cells indicate instruction groupings.

A.3 ONE, TWO, AND THREE-BYTE OPCODE MAPS

See Table A-2 through Table A-5 below. The tables are multiple page presentations. Rows and columns with 
sequential relationships are placed on facing pages to make look-up tasks easier. Note that table footnotes are not 
presented on each page. Table footnotes for each table are presented on the last page of the table.

Table A-1.  Superscripts Utilized in Opcode Tables

Superscript
Symbol

Meaning of Symbol

1A Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (refer to Section A.4, “Opcode Extensions For One-Byte 
And Two-byte Opcodes”).

1B Use the 0F0B opcode (UD2 instruction) or the 0FB9H opcode when deliberately trying to generate an invalid opcode 
exception (#UD).

1C Some instructions use the same two-byte opcode. If the instruction has variations, or the opcode represents 
different instructions, the ModR/M byte will be used to differentiate the instruction. For the value of the ModR/M 
byte needed to decode the instruction, see Table A-6. 

i64 The instruction is invalid or not encodable in 64-bit mode. 40 through 4F (single-byte INC and DEC) are REX prefix 
combinations when in 64-bit mode (use FE/FF Grp 4 and 5 for INC and DEC).

o64 Instruction is only available when in 64-bit mode.

d64 When in 64-bit mode, instruction defaults to 64-bit operand size and cannot encode 32-bit operand size. 

f64 The operand size is forced to a 64-bit operand size when in 64-bit mode (prefixes that change operand size are 
ignored for this instruction in 64-bit mode).

v VEX form only exists. There is no legacy SSE form of the instruction. For Integer GPR instructions it means VEX 
prefix required.

v1 VEX128 & SSE forms only exist (no VEX256), when can’t be inferred from the data size.
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Table A-2.  One-byte Opcode Map: (00H — F7H) *

0 1 2 3 4 5 6 7

0 ADD PUSH
ESi64

POP
ESi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 ADC PUSH
SSi64

POP
SSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 AND SEG=ES
(Prefix)

DAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 XOR SEG=SS
(Prefix)

AAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 INCi64 general register / REXo64 Prefixes

eAX
REX

eCX
REX.B

eDX
REX.X

eBX
REX.XB

eSP
REX.R

eBP
REX.RB

eSI
REX.RX

eDI
REX.RXB

5 PUSHd64 general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15 

6 PUSHAi64/
PUSHADi64

POPAi64/
POPADi64

BOUNDi64

Gv, Ma
ARPLi64

Ew, Gw
MOVSXDo64

Gv, Ev

SEG=FS
(Prefix)

SEG=GS
(Prefix)

Operand
Size

(Prefix)

Address
Size

(Prefix)

7 Jccf64, Jb - Short-displacement jump on condition

O NO B/NAE/C NB/AE/NC Z/E NZ/NE BE/NA NBE/A

8 Immediate Grp 11A TEST XCHG 

Eb, Ib Ev, Iz  Eb, Ibi64 Ev, Ib Eb, Gb Ev, Gv Eb, Gb Ev, Gv 

9 NOP 
PAUSE(F3)

XCHG r8, rAX

XCHG word, double-word or quad-word register with rAX

rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

A MOV MOVS/B
Yb, Xb

MOVS/W/D/Q
Yv, Xv 

CMPS/B
Xb, Yb 

CMPS/W/D
Xv, YvAL, Ob rAX, Ov Ob, AL Ov, rAX 

B MOV immediate byte into byte register

AL/R8L, Ib CL/R9L, Ib DL/R10L, Ib BL/R11L, Ib AH/R12L, Ib CH/R13L, Ib DH/R14L, Ib BH/R15L, Ib

C Shift Grp 21A near RETf64

Iw
near RETf64 LESi64

Gz, Mp 
VEX+2byte

LDSi64

Gz, Mp 
VEX+1byte

Grp 111A - MOV

Eb, Ib Ev, Ib Eb, Ib Ev, Iz

D Shift Grp 21A AAMi64

Ib
AADi64

Ib
XLAT/
XLATB Eb, 1 Ev, 1 Eb, CL Ev, CL 

E LOOPNEf64/
LOOPNZf64

Jb 

LOOPEf64/
LOOPZf64

Jb 

LOOPf64

Jb 
JrCXZf64/

Jb 
IN OUT

AL, Ib eAX, Ib Ib, AL Ib, eAX

F LOCK
(Prefix)

REPNE
XACQUIRE

(Prefix) 

REP/REPE 
XRELEASE

(Prefix)

HLT CMC Unary Grp 31A

Eb Ev
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Table A-2. One-byte Opcode Map: (08H — FFH) *

8 9 A B C D E F

0 OR PUSH
CSi64

2-byte
escape

(Table A-3) Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 SBB PUSH
DSi64

POP
DSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 SUB SEG=CS 
(Prefix)

DASi64 

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 CMP SEG=DS 
(Prefix)

AASi64 

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 DECi64 general register / REXo64 Prefixes

eAX
REX.W

eCX
REX.WB

eDX
REX.WX

eBX
REX.WXB

eSP
REX.WR

eBP
REX.WRB

eSI
REX.WRX

eDI 
REX.WRXB

5 POPd64 into general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15 

6 PUSHd64

Iz
IMUL

Gv, Ev, Iz
PUSHd64

Ib
IMUL

Gv, Ev, Ib
INS/
INSB

Yb, DX

INS/
INSW/
INSD

Yz, DX

OUTS/
OUTSB
DX, Xb

OUTS/
OUTSW/
OUTSD
DX, Xz

7 Jccf64, Jb- Short displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G 

8 MOV MOV
Ev, Sw

LEA
Gv, M 

MOV
Sw, Ew

Grp 1A1A POPd64 

EvEb, Gb Ev, Gv Gb, Eb Gv, Ev 

9 CBW/
CWDE/
CDQE

CWD/
CDQ/
CQO

far CALLi64

Ap
FWAIT/
WAIT

PUSHF/D/Q d64/
Fv

POPF/D/Q d64/
Fv

SAHF LAHF

A TEST STOS/B
Yb, AL 

STOS/W/D/Q
Yv, rAX 

LODS/B
AL, Xb 

LODS/W/D/Q
rAX, Xv

SCAS/B
AL, Yb

SCAS/W/D/Q
rAX, YvAL, Ib rAX, Iz

B MOV immediate word or double into word, double, or quad register

rAX/r8, Iv rCX/r9, Iv rDX/r10, Iv rBX/r11, Iv rSP/r12, Iv rBP/r13, Iv rSI/r14, Iv rDI/r15 , Iv

C ENTER LEAVEd64 far RET far RET INT 3 INT INTOi64 IRET/D/Q 

Iw, Ib Iw Ib

D ESC (Escape to coprocessor instruction set)

E near CALLf64 JMP IN OUT

Jz nearf64

Jz
fari64

Ap
shortf64

Jb
AL, DX eAX, DX DX, AL DX, eAX 

F CLC STC CLI STI CLD STD INC/DEC INC/DEC

Grp 41A Grp 51A

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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Table A-3.  Two-byte Opcode Map: 00H — 77H (First Byte is 0FH) *

pfx 0 1 2 3 4 5 6 7

0
Grp 61A Grp 71A LAR

Gv, Ew 
LSL

Gv, Ew 
 SYSCALLo64 CLTS SYSRETo64

1

vmovups
Vps, Wps

vmovups
Wps, Vps

vmovlps
Vq, Hq, Mq
vmovhlps

Vq, Hq, Uq

vmovlps
Mq, Vq

vunpcklps
Vx, Hx, Wx

vunpckhps
Vx, Hx, Wx

vmovhpsv1

Vdq, Hq, Mq 
vmovlhps

Vdq, Hq, Uq

vmovhpsv1

Mq, Vq

66 vmovupd
Vpd, Wpd

vmovupd
Wpd,Vpd

vmovlpd
Vq, Hq, Mq

vmovlpd
Mq, Vq

vunpcklpd
Vx,Hx,Wx

vunpckhpd
Vx,Hx,Wx

vmovhpdv1

Vdq, Hq, Mq
vmovhpdv1

Mq, Vq

F3 vmovss
Vx, Hx, Wss

vmovss
Wss, Hx, Vss

vmovsldup 
Vx, Wx

vmovshdup 
Vx, Wx

F2 vmovsd
Vx, Hx, Wsd

vmovsd
Wsd, Hx, Vsd

vmovddup
Vx, Wx

2

MOV
Rd, Cd

MOV
Rd, Dd

MOV
Cd, Rd

MOV
Dd, Rd

3 WRMSR RDTSC  RDMSR RDPMC SYSENTER SYSEXIT GETSEC

4

CMOVcc, (Gv, Ev) - Conditional Move

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

5

vmovmskps
Gy, Ups

vsqrtps
Vps, Wps

vrsqrtps
Vps, Wps

vrcpps
Vps, Wps

vandps
Vps, Hps, Wps

vandnps
Vps, Hps, Wps

vorps
Vps, Hps, Wps

vxorps
Vps, Hps, Wps

66 vmovmskpd 
Gy,Upd

vsqrtpd
Vpd, Wpd

vandpd
Vpd, Hpd, Wpd

vandnpd
Vpd, Hpd, Wpd

vorpd
Vpd, Hpd, Wpd

vxorpd
Vpd, Hpd, Wpd

F3 vsqrtss
Vss, Hss, Wss

vrsqrtss
Vss, Hss, Wss

vrcpss
Vss, Hss, Wss

F2 vsqrtsd
Vsd, Hsd, Wsd 

6

punpcklbw
Pq, Qd

punpcklwd
Pq, Qd

punpckldq
Pq, Qd

packsswb
Pq, Qq

pcmpgtb
Pq, Qq

pcmpgtw
Pq, Qq

pcmpgtd
Pq, Qq

packuswb
Pq, Qq

66 vpunpcklbw
Vx, Hx, Wx

vpunpcklwd
Vx, Hx, Wx

vpunpckldq
Vx, Hx, Wx

vpacksswb
Vx, Hx, Wx

vpcmpgtb
Vx, Hx, Wx

vpcmpgtw
Vx, Hx, Wx

vpcmpgtd
Vx, Hx, Wx

vpackuswb
Vx, Hx, Wx

F3

7

pshufw
Pq, Qq, Ib

(Grp 121A) (Grp 131A) (Grp 141A) pcmpeqb
Pq, Qq

pcmpeqw
Pq, Qq

pcmpeqd
Pq, Qq

emms 
vzeroupperv 

vzeroallv

66 vpshufd
Vx, Wx, Ib

vpcmpeqb
Vx, Hx, Wx

vpcmpeqw
Vx, Hx, Wx

vpcmpeqd
Vx, Hx, Wx

F3 vpshufhw
Vx, Wx, Ib

F2 vpshuflw
Vx, Wx, Ib
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Table A-3. Two-byte Opcode Map: 08H — 7FH (First Byte is 0FH) *

pfx 8 9 A B C D E F

0 
INVD WBINVD 2-byte Illegal 

Opcodes
UD21B

 prefetchw(/1)
Ev

1

Prefetch1C

(Grp 161A)
NOP /0 Ev

2 

vmovaps
Vps, Wps

vmovaps
Wps, Vps

cvtpi2ps
Vps, Qpi

vmovntps
Mps, Vps 

cvttps2pi
Ppi, Wps

cvtps2pi
Ppi, Wps

vucomiss
Vss, Wss

vcomiss
Vss, Wss

66 vmovapd
Vpd, Wpd

vmovapd
Wpd,Vpd

cvtpi2pd
Vpd, Qpi

vmovntpd
Mpd, Vpd

cvttpd2pi
Ppi, Wpd

cvtpd2pi
Qpi, Wpd

vucomisd
Vsd, Wsd

vcomisd
Vsd, Wsd

F3 vcvtsi2ss
Vss, Hss, Ey

vcvttss2si
Gy, Wss

vcvtss2si
Gy, Wss

F2 vcvtsi2sd
Vsd, Hsd, Ey 

vcvttsd2si
Gy, Wsd 

vcvtsd2si
Gy, Wsd 

3 
3-byte escape

(Table A-4) 
3-byte escape

(Table A-5) 

4 

CMOVcc(Gv, Ev) - Conditional Move 
S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

5

vaddps
Vps, Hps, Wps

vmulps
Vps, Hps, Wps

vcvtps2pd
Vpd, Wps

vcvtdq2ps
Vps, Wdq

vsubps 
Vps, Hps, Wps

vminps
Vps, Hps, Wps

vdivps
Vps, Hps, Wps

vmaxps
Vps, Hps, Wps

66 vaddpd
Vpd, Hpd, Wpd

vmulpd
Vpd, Hpd, Wpd

vcvtpd2ps
Vps, Wpd

vcvtps2dq
Vdq, Wps

vsubpd
Vpd, Hpd, Wpd

vminpd
Vpd, Hpd, Wpd

vdivpd
Vpd, Hpd, Wpd

vmaxpd
Vpd, Hpd, Wpd

F3 vaddss
Vss, Hss, Wss

vmulss
Vss, Hss, Wss

vcvtss2sd
Vsd, Hx, Wss

vcvttps2dq
Vdq, Wps

vsubss
Vss, Hss, Wss

vminss
Vss, Hss, Wss

vdivss
Vss, Hss, Wss

vmaxss
Vss, Hss, Wss

F2 vaddsd
Vsd, Hsd, Wsd 

vmulsd
Vsd, Hsd, Wsd 

vcvtsd2ss
Vss, Hx, Wsd 

vsubsd
Vsd, Hsd, Wsd 

vminsd
Vsd, Hsd, Wsd 

vdivsd
Vsd, Hsd, Wsd 

vmaxsd
Vsd, Hsd, Wsd 

6

punpckhbw
Pq, Qd

punpckhwd
Pq, Qd

punpckhdq
Pq, Qd

packssdw
Pq, Qd

movd/q
Pd, Ey

movq
Pq, Qq

66 vpunpckhbw
Vx, Hx, Wx

vpunpckhwd
Vx, Hx, Wx

vpunpckhdq
Vx, Hx, Wx

vpackssdw
Vx, Hx, Wx

vpunpcklqdq
Vx, Hx, Wx

vpunpckhqdq
Vx, Hx, Wx

vmovd/q
Vy, Ey

vmovdqa 

Vx, Wx

F3 vmovdqu
Vx, Wx

7

VMREAD
Ey, Gy

VMWRITE
Gy, Ey

movd/q
Ey, Pd

movq
Qq, Pq

66 vhaddpd
Vpd, Hpd, Wpd

vhsubpd
Vpd, Hpd, Wpd

vmovd/q
Ey, Vy

vmovdqa
Wx,Vx

F3 vmovq
Vq, Wq

vmovdqu
Wx,Vx

F2

vhaddps
Vps, Hps, Wps

vhsubps
Vps, Hps, Wps
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Table A-3. Two-byte Opcode Map: 80H — F7H (First Byte is 0FH) *

pfx 0 1 2 3 4 5 6 7

8
Jccf64, Jz - Long-displacement jump on condition

O NO B/CNAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

9
SETcc, Eb - Byte Set on condition

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

A
PUSHd64

FS
POPd64

FS
CPUID BT

Ev, Gv 
SHLD

Ev, Gv, Ib 
SHLD

Ev, Gv, CL 
 

B
CMPXCHG LSS

Gv, Mp 
BTR

Ev, Gv 
LFS

Gv, Mp 
LGS

Gv, Mp 
MOVZX

Eb, Gb Ev, Gv Gv, Eb Gv, Ew 

C

XADD
Eb, Gb

XADD
Ev, Gv

vcmpps
Vps,Hps,Wps,Ib

movnti
My, Gy

pinsrw
Pq,Ry/Mw,Ib

pextrw
Gd, Nq, Ib

vshufps
Vps,Hps,Wps,Ib

Grp 91A

66 vcmppd
Vpd,Hpd,Wpd,Ib

vpinsrw
Vdq,Hdq,Ry/Mw,Ib

vpextrw
Gd, Udq, Ib

vshufpd
Vpd,Hpd,Wpd,Ib

F3 vcmpss
Vss,Hss,Wss,Ib

F2 vcmpsd
Vsd,Hsd,Wsd,Ib

D

psrlw
Pq, Qq

psrld
Pq, Qq

psrlq
Pq, Qq

paddq
Pq, Qq

pmullw
Pq, Qq

pmovmskb
Gd, Nq

66 vaddsubpd
Vpd, Hpd, Wpd

vpsrlw
Vx, Hx, Wx

vpsrld
Vx, Hx, Wx

vpsrlq
Vx, Hx, Wx

vpaddq
Vx, Hx, Wx

vpmullw
Vx, Hx, Wx

vmovq
Wq, Vq

vpmovmskb 
Gd, Ux

F3 movq2dq
Vdq, Nq

F2 vaddsubps
Vps, Hps, Wps

movdq2q
Pq, Uq

E

pavgb
Pq, Qq

psraw
Pq, Qq

psrad
Pq, Qq

pavgw
Pq, Qq

pmulhuw
Pq, Qq

pmulhw
Pq, Qq

movntq
Mq, Pq

66 vpavgb
Vx, Hx, Wx

vpsraw
Vx, Hx, Wx

vpsrad
Vx, Hx, Wx

vpavgw
Vx, Hx, Wx

vpmulhuw
Vx, Hx, Wx

vpmulhw
Vx, Hx, Wx

vcvttpd2dq
Vx, Wpd

vmovntdq
Mx, Vx

F3 vcvtdq2pd
Vx, Wpd

F2 vcvtpd2dq
Vx, Wpd

F

psllw
Pq, Qq

pslld
Pq, Qq

psllq
Pq, Qq

pmuludq
Pq, Qq

pmaddwd
Pq, Qq

psadbw
Pq, Qq

maskmovq
Pq, Nq

66 vpsllw
Vx, Hx, Wx

vpslld
Vx, Hx, Wx

vpsllq
Vx, Hx, Wx

vpmuludq
Vx, Hx, Wx

vpmaddwd 
Vx, Hx, Wx

vpsadbw
Vx, Hx, Wx

vmaskmovdqu
Vdq, Udq

F2 vlddqu
Vx, Mx
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Table A-3. Two-byte Opcode Map: 88H — FFH (First Byte is 0FH) * 

pfx 8 9 A B C D E F

8  
Jccf64, Jz - Long-displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

9 
SETcc, Eb - Byte Set on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

A PUSHd64

GS
POPd64

GS
RSM BTS

Ev, Gv 
SHRD

Ev, Gv, Ib 
SHRD

Ev, Gv, CL 
(Grp 151A)1C IMUL

Gv, Ev 

B 
 

JMPE
(reserved for 

emulator on IPF)

Grp 101A

Invalid Opcode1B
Grp 81A

Ev, Ib
BTC

Ev, Gv
BSF

Gv, Ev
BSR

Gv, Ev
MOVSX

Gv, Eb Gv, Ew

F3 POPCNT
Gv, Ev

TZCNT 
Gv, Ev

LZCNT 
Gv, Ev

C  

BSWAP

RAX/EAX/
R8/R8D

RCX/ECX/ 
R9/R9D

RDX/EDX/ 
R10/R10D

RBX/EBX/ 
R11/R11D

RSP/ESP/ 
R12/R12D

RBP/EBP/ 
R13/R13D

RSI/ESI/ 
R14/R14D

RDI/EDI/ 
R15/R15D

D

psubusb
Pq, Qq

psubusw
Pq, Qq

pminub
Pq, Qq

pand
Pq, Qq

paddusb
Pq, Qq

paddusw
Pq, Qq

pmaxub
Pq, Qq

pandn
Pq, Qq

66 vpsubusb
Vx, Hx, Wx

vpsubusw
Vx, Hx, Wx

vpminub
Vx, Hx, Wx

vpand
Vx, Hx, Wx

vpaddusb
Vx, Hx, Wx

vpaddusw
Vx, Hx, Wx

vpmaxub
Vx, Hx, Wx

vpandn
Vx, Hx, Wx

F3

F2

E

psubsb
Pq, Qq

psubsw
Pq, Qq

pminsw
Pq, Qq

por
Pq, Qq

paddsb
Pq, Qq

paddsw
Pq, Qq

pmaxsw
Pq, Qq

pxor
Pq, Qq

66 vpsubsb
Vx, Hx, Wx

vpsubsw
Vx, Hx, Wx

vpminsw
Vx, Hx, Wx

vpor
Vx, Hx, Wx

vpaddsb
Vx, Hx, Wx

vpaddsw
Vx, Hx, Wx

vpmaxsw
Vx, Hx, Wx

vpxor
Vx, Hx, Wx

F3

F2

F

psubb
Pq, Qq

psubw
Pq, Qq

psubd
Pq, Qq

psubq
Pq, Qq

paddb
Pq, Qq

paddw
Pq, Qq

paddd
Pq, Qq

66 vpsubb
Vx, Hx, Wx

vpsubw
Vx, Hx, Wx 

vpsubd
Vx, Hx, Wx

vpsubq
Vx, Hx, Wx

vpaddb
Vx, Hx, Wx

vpaddw
Vx, Hx, Wx 

vpaddd
Vx, Hx, Wx

F2

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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Table A-4.  Three-byte Opcode Map: 00H — F7H (First Two Bytes are 0F 38H) *

pfx 0 1 2 3 4 5 6 7

0

pshufb
Pq, Qq

phaddw
Pq, Qq

phaddd
Pq, Qq

phaddsw
Pq, Qq

pmaddubsw
Pq, Qq

phsubw
Pq, Qq

phsubd
Pq, Qq

phsubsw
Pq, Qq

66 vpshufb
Vx, Hx, Wx

vphaddw
Vx, Hx, Wx

vphaddd
Vx, Hx, Wx

vphaddsw
Vx, Hx, Wx

vpmaddubsw
Vx, Hx, Wx

vphsubw
Vx, Hx, Wx

vphsubd
Vx, Hx, Wx

vphsubsw
Vx, Hx, Wx

1 66

pblendvb
Vdq, Wdq

vcvtph2psv

Vx, Wx, Ib
blendvps
Vdq, Wdq

blendvpd
Vdq, Wdq

vpermpsv

Vqq, Hqq, Wqq
vptest
Vx, Wx

2 66 vpmovsxbw
Vx, Ux/Mq

vpmovsxbd
Vx, Ux/Md

vpmovsxbq
Vx, Ux/Mw

vpmovsxwd
Vx, Ux/Mq

vpmovsxwq
Vx, Ux/Md

vpmovsxdq
Vx, Ux/Mq

3 66 vpmovzxbw
Vx, Ux/Mq

vpmovzxbd
Vx, Ux/Md

vpmovzxbq
Vx, Ux/Mw

vpmovzxwd
Vx, Ux/Mq

vpmovzxwq
Vx, Ux/Md

vpmovzxdq
Vx, Ux/Mq

vpermdv

Vqq, Hqq, Wqq
vpcmpgtq

Vx, Hx, Wx

4 66 vpmulld
Vx, Hx, Wx

vphminposuw 
Vdq, Wdq

vpsrlvd/qv

Vx, Hx, Wx
vpsravdv

Vx, Hx, Wx
vpsllvd/qv

Vx, Hx, Wx

5

6

7

8 66

INVEPT 
Gy, Mdq

INVVPID 
Gy, Mdq

INVPCID 
Gy, Mdq

9 66 vgatherdd/qv 
Vx,Hx,Wx

vgatherqd/qv 
Vx,Hx,Wx

vgatherdps/dv 
Vx,Hx,Wx

vgatherqps/dv 
Vx,Hx,Wx

vfmaddsub132ps/dv 
Vx,Hx,Wx

vfmsubadd132ps/dv 
Vx,Hx,Wx

A 66 vfmaddsub213ps/dv 
Vx,Hx,Wx

vfmsubadd213ps/dv 
Vx,Hx,Wx

B 66 vfmaddsub231ps/dv 
Vx,Hx,Wx

vfmsubadd231ps/dv 
Vx,Hx,Wx

C

D

E

F

MOVBE 
Gy, My

MOVBE 
My, Gy

ANDNv

Gy, By, Ey

Grp 171A

BZHIv
Gy, Ey, By

BEXTRv

Gy, Ey, By

66 MOVBE 
Gw, Mw

MOVBE 
Mw, Gw

ADCX
Gy, Ey

SHLXv

Gy, Ey, By

F3 PEXTv

Gy, By, Ey
ADOX
Gy, Ey

SARXv

Gy, Ey, By

F2 CRC32 
Gd, Eb

CRC32 
Gd, Ey

PDEPv

Gy, By, Ey
MULXv

By,Gy,rDX,Ey
SHRXv

Gy, Ey, By
66 & 
F2

CRC32 
Gd, Eb

CRC32 
Gd, Ew
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Table A-4. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 38H) *

pfx 8 9 A B C D E F

0

psignb
Pq, Qq

psignw
Pq, Qq

psignd
Pq, Qq

pmulhrsw
Pq, Qq

66
vpsignb

Vx, Hx, Wx
vpsignw

Vx, Hx, Wx
vpsignd

Vx, Hx, Wx
vpmulhrsw 
Vx, Hx, Wx

vpermilpsv 
Vx,Hx,Wx

vpermilpdv 
Vx,Hx,Wx

vtestpsv 
Vx, Wx

vtestpdv 
Vx, Wx

1

pabsb
Pq, Qq

pabsw
Pq, Qq

pabsd
Pq, Qq

66 vbroadcastssv 
Vx, Wd

vbroadcastsdv Vqq, 
Wq

vbroadcastf128v Vqq, 
Mdq

vpabsb
Vx, Wx

vpabsw
Vx, Wx

vpabsd
Vx, Wx

2 66 vpmuldq
Vx, Hx, Wx

vpcmpeqq
Vx, Hx, Wx

vmovntdqa
Vx, Mx

vpackusdw
Vx, Hx, Wx

vmaskmovpsv 
Vx,Hx,Mx

vmaskmovpdv 
Vx,Hx,Mx

vmaskmovpsv 
Mx,Hx,Vx

vmaskmovpdv 
Mx,Hx,Vx

3 66 vpminsb
Vx, Hx, Wx

vpminsd
Vx, Hx, Wx

vpminuw
Vx, Hx, Wx

vpminud
Vx, Hx, Wx

vpmaxsb
Vx, Hx, Wx

vpmaxsd
Vx, Hx, Wx

vpmaxuw
Vx, Hx, Wx

vpmaxud
Vx, Hx, Wx

4

5 66 vpbroadcastdv 
Vx, Wx

vpbroadcastqv 
Vx, Wx

vbroadcasti128v 
Vqq, Mdq

6

7 66 vpbroadcastbv 
Vx, Wx

vpbroadcastwv 
Vx, Wx

8 66
vpmaskmovd/qv 

Vx,Hx,Mx
vpmaskmovd/qv 

Mx,Vx,Hx

9 66 vfmadd132ps/dv 
Vx, Hx, Wx

vfmadd132ss/dv 
Vx, Hx, Wx

vfmsub132ps/dv 
Vx, Hx, Wx

vfmsub132ss/dv 
Vx, Hx, Wx

vfnmadd132ps/dv 
Vx, Hx, Wx

vfnmadd132ss/dv 
Vx, Hx, Wx

vfnmsub132ps/dv 
Vx, Hx, Wx

vfnmsub132ss/dv 
Vx, Hx, Wx

A 66 vfmadd213ps/dv 
Vx, Hx, Wx

vfmadd213ss/dv 
Vx, Hx, Wx

vfmsub213ps/dv 
Vx, Hx, Wx

vfmsub213ss/dv 
Vx, Hx, Wx

vfnmadd213ps/dv 
Vx, Hx, Wx

vfnmadd213ss/dv 
Vx, Hx, Wx

vfnmsub213ps/dv 
Vx, Hx, Wx

vfnmsub213ss/dv 
Vx, Hx, Wx

B 66 vfmadd231ps/dv 
Vx, Hx, Wx

vfmadd231ss/dv 
Vx, Hx, Wx

vfmsub231ps/dv 
Vx, Hx, Wx

vfmsub231ss/dv 
Vx, Hx, Wx

vfnmadd231ps/dv 
Vx, Hx, Wx

vfnmadd231ss/dv 
Vx, Hx, Wx

vfnmsub231ps/dv 
Vx, Hx, Wx

vfnmsub231ss/dv 
Vx, Hx, Wx

C

D 66 VAESIMC 
Vdq, Wdq

VAESENC 
Vdq,Hdq,Wdq

VAESENCLAST 
Vdq,Hdq,Wdq

VAESDEC 
Vdq,Hdq,Wdq

VAESDECLAST 
Vdq,Hdq,Wdq

E

F
66
F3
F2

66 & F2

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations. 
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Table A-5.  Three-byte Opcode Map: 00H — F7H (First two bytes are 0F 3AH) *

pfx 0 1 2 3 4 5 6 7

0 66

vpermqv

Vqq, Wqq, Ib
vpermpdv

Vqq, Wqq, Ib
vpblenddv

Vx,Hx,Wx,Ib
vpermilpsv 
Vx, Wx, Ib

vpermilpdv 
Vx, Wx, Ib

vperm2f128v 
Vqq,Hqq,Wqq,Ib

1 66 vpextrb
Rd/Mb, Vdq, Ib

vpextrw
Rd/Mw, Vdq, Ib

vpextrd/q 
Ey, Vdq, Ib 

vextractps 
Ed, Vdq, Ib

2 66 vpinsrb
Vdq,Hdq,Ry/Mb,Ib

vinsertps
Vdq,Hdq,Udq/Md,Ib

vpinsrd/q
Vdq,Hdq,Ey,Ib 

3

4 66 vdpps
Vx,Hx,Wx,Ib

vdppd
Vdq,Hdq,Wdq,Ib

vmpsadbw
Vx,Hx,Wx,Ib

vpclmulqdq
Vdq,Hdq,Wdq,Ib

vperm2i128v

Vqq,Hqq,Wqq,Ib
5

6 66 vpcmpestrm
Vdq, Wdq, Ib 

vpcmpestri 
Vdq, Wdq, Ib 

vpcmpistrm 
Vdq, Wdq, Ib 

vpcmpistri
Vdq, Wdq, Ib 

7
8
9
A
B
C

D

E
F F2 RORXv

Gy, Ey, Ib
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Table A-5. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 3AH) *

pfx 8 9 A B C D E F

0
palignr

Pq, Qq, Ib

66 vroundps
Vx,Wx,Ib

vroundpd
Vx,Wx,Ib

vroundss
Vss,Wss,Ib

vroundsd
Vsd,Wsd,Ib

vblendps
Vx,Hx,Wx,Ib

vblendpd
Vx,Hx,Wx,Ib

vpblendw
Vx,Hx,Wx,Ib

vpalignr
Vx,Hx,Wx,Ib

1 66
vinsertf128v 

Vqq,Hqq,Wqq,Ib
vextractf128v 
Wdq,Vqq,Ib

vcvtps2phv

Wx, Vx, Ib

2

3 66 vinserti128v 
Vqq,Hqq,Wqq,Ib

vextracti128v 
Wdq,Vqq,Ib

4 66 vblendvpsv

 Vx,Hx,Wx,Lx
vblendvpdv 

Vx,Hx,Wx,Lx
vpblendvbv

Vx,Hx,Wx,Lx
5

6

7
8
9
A
B
C

D 66 VAESKEYGEN 
Vdq, Wdq, Ib

E
F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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A.4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-BYTE OPCODES

Some 1-byte and 2-byte opcodes use bits 3-5 of the ModR/M byte (the nnn field in Figure A-1) as an extension of 
the opcode.

Opcodes that have opcode extensions are indicated in Table A-6 and organized by group number. Group numbers 
(from 1 to 16, second column) provide a table entry point. The encoding for the r/m field for each instruction can be 
established using the third column of the table.

A.4.1  Opcode Look-up Examples Using Opcode Extensions

An Example is provided below.

Example A-4.  Interpreting an ADD Instruction

An ADD instruction with a 1-byte opcode of 80H is a Group 1 instruction:
• Table A-6 indicates that the opcode extension field encoded in the ModR/M byte for this instruction is 000B. 
• The r/m field can be encoded to access a register (11B) or a memory address using a specified addressing 

mode (for example: mem = 00B, 01B, 10B).

Example A-5.  Looking Up 0F01C3H

Look up opcode 0F01C3 for a VMRESUME instruction by using Table A-2, Table A-3 and Table A-6:
• 0F tells us that this instruction is in the 2-byte opcode map.
• 01 (row 0, column 1 in Table A-3) reveals that this opcode is in Group 7 of Table A-6.
• C3 is the ModR/M byte. The first two bits of C3 are 11B. This tells us to look at the second of the Group 7 rows 

in Table A-6.
• The Op/Reg bits [5,4,3] are 000B. This tells us to look in the 000 column for Group 7.
• Finally, the R/M bits [2,1,0] are 011B. This identifies the opcode as the VMRESUME instruction.

A.4.2  Opcode Extension Tables

See Table A-6 below.

mod nnn R/M

Figure A-1.  ModR/M Byte nnn Field (Bits 5, 4, and 3)
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Table A-6.  Opcode Extensions for One- and Two-byte Opcodes by Group Number *

Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)

000 001 010 011 100 101 110 111

80-83 1 mem, 11B ADD OR ADC SBB AND SUB XOR CMP

8F 1A mem, 11B POP

C0,C1 reg, imm
D0, D1 reg, 1

D2, D3 reg, CL
2

mem, 11B ROL ROR RCL RCR SHL/SAL SHR SAR

F6, F7 3 mem, 11B TEST 
Ib/Iz

NOT NEG MUL
AL/rAX

IMUL
AL/rAX

DIV
AL/rAX

IDIV
AL/rAX

FE 4 mem, 11B INC
Eb

DEC
Eb

FF 5 mem, 11B INC
Ev

DEC
Ev

near CALLf64

Ev
far CALL

Ep 
near JMPf64

Ev
far JMP

Mp
PUSHd64

Ev

0F 00 6 mem, 11B SLDT
Rv/Mw

STR
Rv/Mw

LLDT
Ew

LTR
Ew 

VERR
Ew

VERW
Ew

0F 01 7

mem SGDT
Ms

SIDT
Ms

LGDT
Ms

LIDT
Ms 

SMSW
Mw/Rv

LMSW
Ew

INVLPG
Mb

11B VMCALL (001) 
VMLAUNCH 

(010) 
VMRESUME 

(011) VMXOFF 
(100) 

MONITOR 
(000)

MWAIT (001)
CLAC (010)
STAC (011)

XGETBV (000)
XSETBV (001)

VMFUNC 
(100)

XEND (101)
XTEST (110)

SWAPGS
o64(000)

RDTSCP (001)

0F BA 8 mem, 11B BT BTS BTR BTC

0F C7 9
mem

CMPXCH8B Mq
CMPXCHG16B

 Mdq

VMPTRLD
Mq

VMPTRST
Mq 

66 VMCLEAR
Mq 

F3 VMXON
Mq 

VMPTRST
Mq 

11B RDRAND
Rv

RDSEED
Rv

0F B9 10
mem

11B

C6

11

mem MOV
Eb, Ib

11B XABORT (000) Ib

C7
mem MOV

Ev, Iz11B XBEGIN (000) Jz

0F 71 12

mem

11B

psrlw
Nq, Ib

psraw
Nq, Ib

psllw
Nq, Ib

66 vpsrlw
Hx,Ux,Ib

vpsraw
Hx,Ux,Ib

vpsllw
Hx,Ux,Ib

0F 72 13

mem

11B

psrld
Nq, Ib

psrad
Nq, Ib

pslld
Nq, Ib

66 vpsrld
Hx,Ux,Ib

vpsrad
Hx,Ux,Ib

vpslld
Hx,Ux,Ib

0F 73 14

mem

11B

psrlq
Nq, Ib

psllq
Nq, Ib

66 vpsrlq
Hx,Ux,Ib

vpsrldq
Hx,Ux,Ib

vpsllq
Hx,Ux,Ib

vpslldq
Hx,Ux,Ib
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Opcode Group Mod 7,6 pfx

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)

000 001 010 011 100 101 110 111

0F AE 15

mem fxsave fxrstor ldmxcsr stmxcsr XSAVE XRSTOR XSAVEOPT clflush

11B

lfence mfence sfence

F3 RDFSBASE  
Ry

RDGSBASE 
Ry

WRFSBASE  
Ry

WRGSBASE 
Ry

0F 18 16
mem prefetch

NTA
prefetch

T0
prefetch

T1
prefetch

T2

11B

VEX.0F38 F3 17
mem BLSRv

By, Ey
BLSMSKv

By, Ey
BLSIv
By, Ey11B

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-6.  Opcode Extensions for One- and Two-byte Opcodes by Group Number * (Contd.)
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A.5 ESCAPE OPCODE INSTRUCTIONS

Opcode maps for coprocessor escape instruction opcodes (x87 floating-point instruction opcodes) are in Table A-7 
through Table A-22. These maps are grouped by the first byte of the opcode, from D8-DF. Each of these opcodes 
has a ModR/M byte. If the ModR/M byte is within the range of 00H-BFH, bits 3-5 of the ModR/M byte are used as 
an opcode extension, similar to the technique used for 1-and 2-byte opcodes (see A.4). If the ModR/M byte is 
outside the range of 00H through BFH, the entire ModR/M byte is used as an opcode extension.

A.5.1  Opcode Look-up Examples for Escape Instruction Opcodes

Examples are provided below.

Example A-6.  Opcode with ModR/M Byte in the 00H through BFH Range

DD0504000000H can be interpreted as follows:
• The instruction encoded with this opcode can be located in Section . Since the ModR/M byte (05H) is within the 

00H through BFH range, bits 3 through 5 (000) of this byte indicate the opcode for an FLD double-real 
instruction (see Table A-9). 

• The double-real value to be loaded is at 00000004H (the 32-bit displacement that follows and belongs to this 
opcode).

Example A-7.  Opcode with ModR/M Byte outside the 00H through BFH Range

D8C1H can be interpreted as follows:
• This example illustrates an opcode with a ModR/M byte outside the range of 00H through BFH. The instruction 

can be located in Section A.4. 
• In Table A-8, the ModR/M byte C1H indicates row C, column 1 (the FADD instruction using ST(0), ST(1) as 

operands).

A.5.2  Escape Opcode Instruction Tables

Tables are listed below.

A.5.2.1  Escape Opcodes with D8 as First Byte

Table A-7 and A-8 contain maps for the escape instruction opcodes that begin with D8H. Table A-7 shows the map if the ModR/M 
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-7.  D8 Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte (refer to Figure A.4)

000B 001B 010B 011B 100B 101B 110B 111B

FADD
single-real

FMUL
single-real

FCOM
single-real

FCOMP
single-real

FSUB
single-real

FSUBR
single-real

FDIV
single-real

FDIVR
single-real

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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Table A-8 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects the 
table row and the second digit selects the column.

A.5.2.2  Escape Opcodes with D9 as First Byte

Table A-9 and A-10 contain maps for escape instruction opcodes that begin with D9H. Table A-9 shows the map if the ModR/M 
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.
.

Table A-8.  D8 Opcode Map When ModR/M Byte is Outside 00H to BFH *

0 1 2 3 4 5 6 7

C FADD

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCOM

ST(0),ST(0) ST(0),ST(1) ST(0),T(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FSUB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F FDIV

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C FMUL

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCOMP

ST(0),ST(0) ST(0),ST(1) ST(0),T(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FSUBR

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F FDIVR

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-9.  D9 Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte 
000B 001B 010B 011B 100B 101B 110B 111B
FLD

single-real
FST

single-real
FSTP

single-real
FLDENV

14/28 bytes
FLDCW
2 bytes

FSTENV
14/28 bytes

FSTCW
2 bytes

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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Table A-10 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects 
the table row and the second digit selects the column.

A.5.2.3  Escape Opcodes with DA as First Byte

Table A-11 and A-12 contain maps for escape instruction opcodes that begin with DAH. Table A-11 shows the map if the ModR/M 
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-10.  D9 Opcode Map When ModR/M Byte is Outside 00H to BFH *

0 1 2 3 4 5 6 7
C FLD

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)
D FNOP

E FCHS FABS FTST FXAM

F F2XM1 FYL2X FPTAN FPATAN FXTRACT FPREM1 FDECSTP FINCSTP

8 9 A B C D E F
C FXCH

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)
D

E FLD1 FLDL2T FLDL2E FLDPI FLDLG2 FLDLN2 FLDZ

F FPREM FYL2XP1 FSQRT FSINCOS FRNDINT FSCALE FSIN FCOS

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-11.  DA Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte 

000B 001B 010B 011B 100B 101B 110B 111B

FIADD
dword-integer

FIMUL
dword-integer

FICOM
dword-integer

FICOMP
dword-integer

FISUB
dword-integer

FISUBR
dword-integer

FIDIV
dword-integer

FIDIVR
dword-integer

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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Table A-12 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects 
the table row and the second digit selects the column.

A.5.2.4  Escape Opcodes with DB as First Byte

Table A-13 and A-14 contain maps for escape instruction opcodes that begin with DBH. Table A-13 shows the map if the ModR/M 
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-12.  DA Opcode Map When ModR/M Byte is Outside 00H to BFH *

0 1 2 3 4 5 6 7

C FCMOVB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVBE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E

F

8 9 A B C D E F

C FCMOVE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVU

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FUCOMPP

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-13.  DB Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte 

000B 001B 010B 011B 100B 101B 110B 111B

FILD
dword-integer

FISTTP 
dword-integer

FIST
dword-integer

FISTP
dword-integer

FLD
extended-real

FSTP
extended-real

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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Table A-14 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects 
the table row and the second digit selects the column.

A.5.2.5  Escape Opcodes with DC as First Byte

Table A-15 and A-16 contain maps for escape instruction opcodes that begin with DCH. Table A-15 shows the map if the ModR/M 
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-14.  DB Opcode Map When ModR/M Byte is Outside 00H to BFH *

0 1 2 3 4 5 6 7

C FCMOVNB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVNBE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FCLEX FINIT

F FCOMI

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C FCMOVNE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVNU

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FUCOMI

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-15.  DC Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte (refer to Figure A-1)

000B 001B 010B 011B 100B 101B 110B 111B

FADD 
double-real

FMUL 
double-real

FCOM 
double-real

FCOMP 
double-real

FSUB 
double-real

FSUBR 
double-real

FDIV 
double-real

FDIVR 
double-real

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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Table A-16 shows the map if the ModR/M byte is outside the range of 00H-BFH. In this case the first digit of the ModR/M byte 
selects the table row and the second digit selects the column.

A.5.2.6  Escape Opcodes with DD as First Byte

Table A-17 and A-18 contain maps for escape instruction opcodes that begin with DDH. Table A-17 shows the map if the ModR/M 
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-16.  DC Opcode Map When ModR/M Byte is Outside 00H to BFH *

0 1 2 3 4 5 6 7

C FADD

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUBR

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVR

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

8 9 A B C D E F

C FMUL

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUB

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIV

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-17.  DD Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FLD 
double-real

FISTTP 
integer64

FST 
double-real

FSTP 
double-real

FRSTOR 
98/108bytes

FSAVE 
98/108bytes

FSTSW 
2 bytes

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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Table A-18 shows the map if the ModR/M byte is outside the range of 00H-BFH. The first digit of the ModR/M byte selects the table 
row and the second digit selects the column.

A.5.2.7  Escape Opcodes with DE as First Byte

Table A-19 and A-20 contain opcode maps for escape instruction opcodes that begin with DEH. Table A-19 shows the opcode map 
if the ModR/M byte is in the range of 00H-BFH. In this case, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruc-
tion.

Table A-18.  DD Opcode Map When ModR/M Byte is Outside 00H to BFH *

0 1 2 3 4 5 6 7

C FFREE

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

D FST

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

E FUCOM

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F

8 9 A B C D E F

C

D FSTP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

E FUCOMP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-19.  DE Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte 

000B 001B 010B 011B 100B 101B 110B 111B

FIADD 
word-integer

FIMUL 
word-integer

FICOM 
word-integer

FICOMP 
word-integer

FISUB 
word-integer

FISUBR 
word-integer

FIDIV 
word-integer

FIDIVR 
word-integer

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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Table A-20 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The first digit of the ModR/M byte selects 
the table row and the second digit selects the column.

A.5.2.8  Escape Opcodes with DF As First Byte

Table A-21 and A-22 contain the opcode maps for escape instruction opcodes that begin with DFH. Table A-21 shows the opcode 
map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-20.  DE Opcode Map When ModR/M Byte is Outside 00H to BFH *

0 1 2 3 4 5 6 7

C FADDP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUBRP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVRP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

8 9 A B C D E F

C FMULP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D FCOMPP

E FSUBP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0). ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-21.  DF Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FILD
word-integer

FISTTP
word-integer

FIST 
word-integer

FISTP 
word-integer

FBLD 
packed-BCD

FILD 
qword-integer

FBSTP 
packed-BCD

FISTP 
qword-integer

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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Table A-22 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The first digit of the ModR/M byte selects 
the table row and the second digit selects the column.

Table A-22.  DF Opcode Map When ModR/M Byte is Outside 00H to BFH *

0 1 2 3 4 5 6 7

C

D

E FSTSW
AX

F FCOMIP

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C

D

E FUCOMIP

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.
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APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS

This appendix provides machine instruction formats and encodings of IA-32 instructions. The first section describes 
the IA-32 architecture’s machine instruction format. The remaining sections show the formats and encoding of 
general-purpose, MMX, P6 family, SSE/SSE2/SSE3, x87 FPU instructions, and VMX instructions. Those instruction 
formats also apply to Intel 64 architecture. Instruction formats used in 64-bit mode are provided as supersets of 
the above.

B.1 MACHINE INSTRUCTION FORMAT

All Intel Architecture instructions are encoded using subsets of the general machine instruction format shown in 
Figure B-1. Each instruction consists of:
• an opcode
• a register and/or address mode specifier consisting of the ModR/M byte and sometimes the scale-index-base 

(SIB) byte (if required) 
• a displacement and an immediate data field (if required) 

The following sections discuss this format.

B.1.1  Legacy Prefixes

The legacy prefixes noted in Figure B-1 include 66H, 67H, F2H and F3H. They are optional, except when F2H, F3H 
and 66H are used in new instruction extensions. Legacy prefixes must be placed before REX prefixes.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A, for more information on legacy prefixes.

Figure B-1.  General Machine Instruction Format

ModR/M Byte

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7-6     5-3     2-07-6     5-3     2-0

T T T T T T T T T T T T T T T T

Mod   Reg*  R/M Scale Index Base d32 | 16 | 8 | Noned32 | 16 | 8 | None

SIB Byte Address Displacement
(4, 2, 1 Bytes or None)

Immediate Data
(4,2,1 Bytes or None)

Register and/or Address
Mode Specifier

Legacy Prefixes REX Prefixes

7 6 5 4 3 2 1 0

T T T T T T T T

(optional)Grp 1, Grp 2, 
Grp 3, Grp 4 

NOTE:

*  The Reg Field may be used as an 
opcode extension field (TTT) and as a 
way to  encode diagnostic registers 
(eee).

1, 2, or 3 Byte Opcodes (T = Opcode 
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B.1.2  REX Prefixes

REX prefixes are a set of 16 opcodes that span one row of the opcode map and occupy entries 40H to 4FH. These 
opcodes represent valid instructions (INC or DEC) in IA-32 operating modes and in compatibility mode. In 64-bit 
mode, the same opcodes represent the instruction prefix REX and are not treated as individual instructions.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A, for more information on REX prefixes.

B.1.3  Opcode Fields

The primary opcode for an instruction is encoded in one to three bytes of the instruction. Within the primary 
opcode, smaller encoding fields may be defined. These fields vary according to the class of operation being 
performed.

Almost all instructions that refer to a register and/or memory operand have a register and/or address mode byte 
following the opcode. This byte, the ModR/M byte, consists of the mod field (2 bits), the reg field (3 bits; this field 
is sometimes an opcode extension), and the R/M field (3 bits). Certain encodings of the ModR/M byte indicate that 
a second address mode byte, the SIB byte, must be used.

If the addressing mode specifies a displacement, the displacement value is placed immediately following the 
ModR/M byte or SIB byte. Possible sizes are 8, 16, or 32 bits. If the instruction specifies an immediate value, the 
immediate value follows any displacement bytes. The immediate, if specified, is always the last field of the instruc-
tion.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A, for more information on opcodes.

B.1.4  Special Fields

Table B-1 lists bit fields that appear in certain instructions, sometimes within the opcode bytes. All of these fields 
(except the d bit) occur in the general-purpose instruction formats in Table B-13.

B.1.4.1  Reg Field (reg) for Non-64-Bit Modes

The reg field in the ModR/M byte specifies a general-purpose register operand. The group of registers specified is 
modified by the presence and state of the w bit in an encoding (refer to Section B.1.4.3). Table B-2 shows the 
encoding of the reg field when the w bit is not present in an encoding; Table B-3 shows the encoding of the reg field 
when the w bit is present.

Table B-1.  Special Fields Within Instruction Encodings

Field Name Description
Number of 

Bits

reg General-register specifier (see Table B-4 or B-5) 3

w Specifies if data is byte or full-sized, where full-sized is 16 or 32 bits (see Table B-6) 1

s Specifies sign extension of an immediate field (see Table B-7) 1

sreg2 Segment register specifier for CS, SS, DS, ES (see Table B-8) 2

sreg3 Segment register specifier for CS, SS, DS, ES, FS, GS (see Table B-8) 3

eee Specifies a special-purpose (control or debug) register (see 
Table B-9)

3

tttn For conditional instructions, specifies a condition asserted or negated (see Table B-12) 4

d Specifies direction of data operation (see Table B-11) 1
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B.1.4.2  Reg Field (reg) for 64-Bit Mode

Just like in non-64-bit modes, the reg field in the ModR/M byte specifies a general-purpose register operand. The 
group of registers specified is modified by the presence of and state of the w bit in an encoding (refer to Section 
B.1.4.3). Table B-4 shows the encoding of the reg field when the w bit is not present in an encoding; Table B-5 
shows the encoding of the reg field when the w bit is present.

Table B-2.  Encoding of reg Field When w Field is Not Present in Instruction

reg Field
Register Selected during
16-Bit Data Operations

Register Selected during
32-Bit Data Operations

000 AX EAX

001 CX ECX

010 DX EDX

011 BX EBX

100 SP ESP

101 BP EBP

110 SI ESI

111 DI EDI

Table B-3.  Encoding of reg Field When w Field is Present in Instruction

Register Specified by reg Field
During 16-Bit Data Operations

Register Specified by reg Field
During 32-Bit Data Operations

Function of w Field Function of w Field

reg When w = 0 When w = 1 reg When w = 0 When w = 1

000 AL AX 000 AL EAX

001 CL CX 001 CL ECX

010 DL DX 010 DL EDX

011 BL BX 011 BL EBX

100 AH SP 100 AH ESP

101 CH BP 101 CH EBP

110 DH SI 110 DH ESI

111 BH DI 111 BH EDI

Table B-4.  Encoding of reg Field When w Field is Not Present in Instruction

reg Field
Register Selected during
16-Bit Data Operations

Register Selected during
32-Bit Data Operations

Register Selected during
64-Bit Data Operations

000 AX EAX RAX

001 CX ECX RCX

010 DX EDX RDX

011 BX EBX RBX

100 SP ESP RSP

101 BP EBP RBP

110 SI ESI RSI

111 DI EDI RDI
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B.1.4.3  Encoding of Operand Size (w) Bit 

The current operand-size attribute determines whether the processor is performing 16-bit, 32-bit or 64-bit opera-
tions. Within the constraints of the current operand-size attribute, the operand-size bit (w) can be used to indicate 
operations on 8-bit operands or the full operand size specified with the operand-size attribute. Table B-6 shows the 
encoding of the w bit depending on the current operand-size attribute.

B.1.4.4  Sign-Extend (s) Bit 

The sign-extend (s) bit occurs in instructions with immediate data fields that are being extended from 8 bits to 16 
or 32 bits. See Table B-7.

B.1.4.5  Segment Register (sreg) Field 

When an instruction operates on a segment register, the reg field in the ModR/M byte is called the sreg field and is 
used to specify the segment register. Table B-8 shows the encoding of the sreg field. This field is sometimes a 2-bit 
field (sreg2) and other times a 3-bit field (sreg3). 

Table B-5.  Encoding of reg Field When w Field is Present in Instruction 

Register Specified by reg Field
During 16-Bit Data Operations

Register Specified by reg Field
During 32-Bit Data Operations

Function of w Field Function of w Field

reg When w = 0 When w = 1 reg When w = 0 When w = 1

000 AL AX 000 AL EAX

001 CL CX 001 CL ECX

010 DL DX 010 DL EDX

011 BL BX 011 BL EBX

100 AH1 SP 100 AH* ESP

101 CH1 BP 101 CH* EBP

110 DH1 SI 110 DH* ESI

111 BH1 DI 111 BH* EDI

NOTES:

1. AH, CH, DH, BH can not be encoded when REX prefix is used. Such an expression defaults to the low byte.

Table B-6.  Encoding of Operand Size (w) Bit 

w Bit
Operand Size When 

Operand-Size Attribute is 16 Bits
Operand Size When 

Operand-Size Attribute is 32 Bits

0 8 Bits 8 Bits

1 16 Bits 32 Bits

Table B-7.  Encoding of Sign-Extend (s) Bit 

s
Effect on 8-Bit

Immediate Data
Effect on 16- or 32-Bit

Immediate Data

0 None None

1 Sign-extend to fill 16-bit or 32-bit destination None
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B.1.4.6  Special-Purpose Register (eee) Field 

When control or debug registers are referenced in an instruction they are encoded in the eee field, located in bits 5 
though 3 of the ModR/M byte (an alternate encoding of the sreg field). See Table B-9.

B.1.4.7  Condition Test (tttn) Field 

For conditional instructions (such as conditional jumps and set on condition), the condition test field (tttn) is 
encoded for the condition being tested. The ttt part of the field gives the condition to test and the n part indicates 
whether to use the condition (n = 0) or its negation (n = 1).
• For 1-byte primary opcodes, the tttn field is located in bits 3, 2, 1, and 0 of the opcode byte. 
• For 2-byte primary opcodes, the tttn field is located in bits 3, 2, 1, and 0 of the second opcode byte.

Table B-10 shows the encoding of the tttn field.

Table B-8.  Encoding of the Segment Register (sreg) Field 

2-Bit sreg2 Field
Segment Register Selected

3-Bit sreg3 Field
Segment Register Selected

00 ES 000 ES

01 CS 001 CS

10 SS 010 SS

11 DS 011 DS

100 FS

101 GS

110 Reserved1

111 Reserved

NOTES:

1. Do not use reserved encodings.

Table B-9.  Encoding of Special-Purpose Register (eee) Field  

eee Control Register Debug Register

000 CR0 DR0

001 Reserved1 DR1

010 CR2 DR2

011 CR3 DR3

100 CR4 Reserved

101 Reserved Reserved

110 Reserved DR6

111 Reserved DR7

NOTES:

1. Do not use reserved encodings.
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B.1.4.8  Direction (d) Bit 

In many two-operand instructions, a direction bit (d) indicates which operand is considered the source and which 
is the destination. See Table B-11. 
• When used for integer instructions, the d bit is located at bit 1 of a 1-byte primary opcode. Note that this bit 

does not appear as the symbol “d” in Table B-13; the actual encoding of the bit as 1 or 0 is given. 
• When used for floating-point instructions (in Table B-16), the d bit is shown as bit 2 of the first byte of the 

primary opcode.

B.1.5  Other Notes

Table B-12 contains notes on particular encodings. These notes are indicated in the tables shown in the following 
sections by superscripts.

Table B-10.  Encoding of Conditional Test (tttn) Field

t t t n Mnemonic Condition

0000 O Overflow

0001 NO No overflow

0010 B, NAE Below, Not above or equal

0011 NB, AE Not below, Above or equal

0100 E, Z Equal, Zero

0101 NE, NZ Not equal, Not zero

0110 BE, NA Below or equal, Not above

0111 NBE, A Not below or equal, Above

1000 S Sign

1001 NS Not sign

1010 P, PE Parity, Parity Even

1011 NP, PO Not parity, Parity Odd

1100 L, NGE Less than, Not greater than or equal to

1101 NL, GE Not less than, Greater than or equal to

1110 LE, NG Less than or equal to, Not greater than

1111 NLE, G Not less than or equal to, Greater than

Table B-11.  Encoding of Operation Direction (d) Bit 

d Source Destination

0 reg Field ModR/M or SIB Byte

1 ModR/M or SIB Byte reg Field

Table B-12.  Notes on Instruction Encoding

Symbol Note

A A value of 11B in bits 7 and 6 of the ModR/M byte is reserved.

B A value of 01B (or 10B) in bits 7 and 6 of the ModR/M byte is reserved.



Vol. 2C B-7

INSTRUCTION FORMATS AND ENCODINGS

B.2 GENERAL-PURPOSE INSTRUCTION FORMATS AND ENCODINGS FOR NON-
64-BIT MODES

Table B-13 shows machine instruction formats and encodings for general purpose instructions in non-64-bit 
modes.

Table B-13.  General Purpose Instruction Formats and Encodings for Non-64-Bit Modes

Instruction and Format Encoding

AAA – ASCII Adjust after Addition 0011 0111

AAD – ASCII Adjust AX before Division 1101 0101 : 0000 1010

AAM – ASCII Adjust AX after Multiply 1101 0100 : 0000 1010

AAS – ASCII Adjust AL after Subtraction 0011 1111

ADC – ADD with Carry

register1 to register2 0001 000w : 11 reg1 reg2

register2 to register1 0001 001w : 11 reg1 reg2 

memory to register 0001 001w : mod reg r/m

register to memory 0001 000w : mod reg r/m

immediate to register 1000 00sw : 11 010 reg : immediate data

immediate to AL, AX, or EAX 0001 010w : immediate data

immediate to memory 1000 00sw : mod 010 r/m : immediate data

ADD – Add

register1 to register2 0000 000w : 11 reg1 reg2

register2 to register1 0000 001w : 11 reg1 reg2 

memory to register 0000 001w : mod reg r/m

register to memory 0000 000w : mod reg r/m

immediate to register 1000 00sw : 11 000 reg : immediate data

immediate to AL, AX, or EAX 0000 010w : immediate data

immediate to memory 1000 00sw : mod 000 r/m : immediate data

AND – Logical AND

register1 to register2 0010 000w : 11 reg1 reg2

register2 to register1 0010 001w : 11 reg1 reg2 

memory to register 0010 001w : mod reg r/m

register to memory 0010 000w : mod reg r/m

immediate to register 1000 00sw : 11 100 reg : immediate data

immediate to AL, AX, or EAX 0010 010w : immediate data

immediate to memory 1000 00sw : mod 100 r/m : immediate data

ARPL – Adjust RPL Field of Selector

from register 0110 0011 : 11 reg1 reg2

from memory 0110 0011 : mod reg r/m

BOUND – Check Array Against Bounds 0110 0010 : modA reg r/m



B-8 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS

BSF – Bit Scan Forward

register1, register2 0000 1111 : 1011 1100 : 11 reg1 reg2

memory, register 0000 1111 : 1011 1100 : mod reg r/m

BSR – Bit Scan Reverse

register1, register2 0000 1111 : 1011 1101 : 11 reg1 reg2

memory, register 0000 1111 : 1011 1101 : mod reg r/m

BSWAP – Byte Swap 0000 1111 : 1100 1 reg

BT – Bit Test

register, immediate 0000 1111 : 1011 1010 : 11 100 reg: imm8 data

memory, immediate 0000 1111 : 1011 1010 : mod 100 r/m : imm8 data

register1, register2 0000 1111 : 1010 0011 : 11 reg2 reg1

memory, reg 0000 1111 : 1010 0011 : mod reg r/m

BTC – Bit Test and Complement

register, immediate 0000 1111 : 1011 1010 : 11 111 reg: imm8 data

memory, immediate 0000 1111 : 1011 1010 : mod 111 r/m : imm8 data

register1, register2 0000 1111 : 1011 1011 : 11 reg2 reg1

memory, reg 0000 1111 : 1011 1011 : mod reg r/m

BTR – Bit Test and Reset

register, immediate 0000 1111 : 1011 1010 : 11 110 reg: imm8 data

memory, immediate 0000 1111 : 1011 1010 : mod 110 r/m : imm8 data

register1, register2 0000 1111 : 1011 0011 : 11 reg2 reg1

memory, reg 0000 1111 : 1011 0011 : mod reg r/m

BTS – Bit Test and Set

register, immediate 0000 1111 : 1011 1010 : 11 101 reg: imm8 data

memory, immediate 0000 1111 : 1011 1010 : mod 101 r/m : imm8 data

register1, register2 0000 1111 : 1010 1011 : 11 reg2 reg1

memory, reg 0000 1111 : 1010 1011 : mod reg r/m

CALL – Call Procedure (in same segment)

direct 1110 1000 : full displacement

register indirect 1111 1111 : 11 010 reg

memory indirect 1111 1111 : mod 010 r/m

CALL – Call Procedure (in other segment)

direct 1001 1010 : unsigned full offset, selector

indirect 1111 1111 : mod 011 r/m

CBW – Convert Byte to Word 1001 1000

CDQ – Convert Doubleword to Qword 1001 1001

CLC – Clear Carry Flag 1111 1000

CLD – Clear Direction Flag 1111 1100

Table B-13.  General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
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CLI – Clear Interrupt Flag 1111 1010

CLTS – Clear Task-Switched Flag in CR0 0000 1111 : 0000 0110

CMC – Complement Carry Flag 1111 0101

CMP – Compare Two Operands

register1 with register2 0011 100w : 11 reg1 reg2

register2 with register1 0011 101w : 11 reg1 reg2

memory with register 0011 100w : mod reg r/m

register with memory 0011 101w : mod reg r/m

immediate with register 1000 00sw : 11 111 reg : immediate data

immediate with AL, AX, or EAX 0011 110w : immediate data

immediate with memory 1000 00sw : mod 111 r/m : immediate data

CMPS/CMPSB/CMPSW/CMPSD – Compare String Operands 1010 011w

CMPXCHG – Compare and Exchange 

register1, register2 0000 1111 : 1011 000w : 11 reg2 reg1

memory, register 0000 1111 : 1011 000w : mod reg r/m

CPUID – CPU Identification 0000 1111 : 1010 0010

CWD – Convert Word to Doubleword 1001 1001

CWDE – Convert Word to Doubleword 1001 1000

DAA – Decimal Adjust AL after Addition 0010 0111

DAS – Decimal Adjust AL after Subtraction 0010 1111

DEC – Decrement by 1

register 1111 111w : 11 001 reg

register (alternate encoding) 0100 1 reg

memory 1111 111w : mod 001 r/m

DIV – Unsigned Divide

AL, AX, or EAX by register 1111 011w : 11 110 reg

AL, AX, or EAX by memory 1111 011w : mod 110 r/m

HLT – Halt 1111 0100

IDIV – Signed Divide

AL, AX, or EAX by register 1111 011w : 11 111 reg

AL, AX, or EAX by memory 1111 011w : mod 111 r/m

IMUL – Signed Multiply

AL, AX, or EAX with register 1111 011w : 11 101 reg

AL, AX, or EAX with memory 1111 011w : mod 101 reg

register1 with register2 0000 1111 : 1010 1111 : 11 : reg1 reg2

register with memory 0000 1111 : 1010 1111 : mod reg r/m

register1 with immediate to register2 0110 10s1 : 11 reg1 reg2 : immediate data

memory with immediate to register 0110 10s1 : mod reg r/m : immediate data

Table B-13.  General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
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IN – Input From Port

fixed port 1110 010w : port number

variable port 1110 110w

INC – Increment by 1

reg 1111 111w : 11 000 reg

reg (alternate encoding) 0100 0 reg

memory 1111 111w : mod 000 r/m

INS – Input from DX Port 0110 110w

INT n – Interrupt Type n 1100 1101 : type

INT – Single-Step Interrupt 3 1100 1100

INTO – Interrupt 4 on Overflow 1100 1110

INVD – Invalidate Cache 0000 1111 : 0000 1000

INVLPG – Invalidate TLB Entry 0000 1111 : 0000 0001 : mod 111 r/m

INVPCID – Invalidate Process-Context Identifier 0110 0110:0000 1111:0011 1000:1000 0010: mod reg r/m

IRET/IRETD – Interrupt Return 1100 1111

Jcc – Jump if Condition is Met

8-bit displacement 0111 tttn : 8-bit displacement

full displacement 0000 1111 : 1000 tttn : full displacement

JCXZ/JECXZ – Jump on CX/ECX Zero
   Address-size prefix differentiates JCXZ 

   and JECXZ
1110 0011 : 8-bit displacement

JMP – Unconditional Jump (to same segment)

short 1110 1011 : 8-bit displacement

direct 1110 1001 : full displacement

register indirect 1111 1111 : 11 100 reg

memory indirect 1111 1111 : mod 100 r/m

JMP – Unconditional Jump (to other segment)

direct intersegment 1110 1010 : unsigned full offset, selector

indirect intersegment 1111 1111 : mod 101 r/m

LAHF – Load Flags into AHRegister 1001 1111

LAR – Load Access Rights Byte

from register 0000 1111 : 0000 0010 : 11 reg1 reg2

from memory 0000 1111 : 0000 0010 : mod reg r/m

LDS – Load Pointer to DS 1100 0101 : modA,B reg r/m

LEA – Load Effective Address 1000 1101 : modA reg r/m

LEAVE – High Level Procedure Exit 1100 1001

LES – Load Pointer to ES 1100 0100 : modA,B reg r/m

LFS – Load Pointer to FS 0000 1111 : 1011 0100 : modA reg r/m

LGDT – Load Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 010 r/m

Table B-13.  General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
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LGS – Load Pointer to GS 0000 1111 : 1011 0101 : modA reg r/m

LIDT – Load Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : modA 011 r/m

LLDT – Load Local Descriptor Table Register

LDTR from register 0000 1111 : 0000 0000 : 11 010 reg

LDTR from memory 0000 1111 : 0000 0000 : mod 010 r/m

LMSW – Load Machine Status Word

from register 0000 1111 : 0000 0001 : 11 110 reg

from memory 0000 1111 : 0000 0001 : mod 110 r/m

LOCK – Assert LOCK# Signal Prefix 1111 0000

LODS/LODSB/LODSW/LODSD – Load String Operand 1010 110w

LOOP – Loop Count 1110 0010 : 8-bit displacement

LOOPZ/LOOPE – Loop Count while Zero/Equal 1110 0001 : 8-bit displacement

LOOPNZ/LOOPNE – Loop Count while not Zero/Equal 1110 0000 : 8-bit displacement

LSL – Load Segment Limit

from register 0000 1111 : 0000 0011 : 11 reg1 reg2

from memory 0000 1111 : 0000 0011 : mod reg r/m

LSS – Load Pointer to SS 0000 1111 : 1011 0010 : modA reg r/m

LTR – Load Task Register

from register 0000 1111 : 0000 0000 : 11 011 reg

from memory 0000 1111 : 0000 0000 : mod 011 r/m

MOV – Move Data

register1 to register2 1000 100w : 11 reg1 reg2

register2 to register1 1000 101w : 11 reg1 reg2

memory to reg 1000 101w : mod reg r/m

reg to memory 1000 100w : mod reg r/m

immediate to register 1100 011w : 11 000 reg : immediate data

immediate to register (alternate encoding) 1011 w reg : immediate data

immediate to memory 1100 011w : mod 000 r/m : immediate data

memory to AL, AX, or EAX 1010 000w : full displacement

AL, AX, or EAX to memory 1010 001w : full displacement

MOV – Move to/from Control Registers

CR0 from register 0000 1111 : 0010 0010 : -- 000 reg

CR2 from register 0000 1111 : 0010 0010 : -- 010reg

CR3 from register 0000 1111 : 0010 0010 : -- 011 reg

CR4 from register 0000 1111 : 0010 0010 : -- 100 reg

register from CR0-CR4 0000 1111 : 0010 0000 : -- eee reg

MOV – Move to/from Debug Registers

DR0-DR3 from register 0000 1111 : 0010 0011 : -- eee reg

Table B-13.  General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
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DR4-DR5 from register 0000 1111 : 0010 0011 : -- eee reg

DR6-DR7 from register 0000 1111 : 0010 0011 : -- eee reg

register from DR6-DR7 0000 1111 : 0010 0001 : -- eee reg

register from DR4-DR5 0000 1111 : 0010 0001 : -- eee reg

register from DR0-DR3 0000 1111 : 0010 0001 : -- eee reg

MOV – Move to/from Segment Registers

register to segment register 1000 1110 : 11 sreg3 reg

register to SS 1000 1110 : 11 sreg3 reg

memory to segment reg 1000 1110 : mod sreg3 r/m

memory to SS 1000 1110 : mod sreg3 r/m

segment register to register 1000 1100 : 11 sreg3 reg

segment register to memory 1000 1100 : mod sreg3 r/m

MOVBE – Move data after swapping bytes

memory to register 0000 1111 : 0011 1000:1111 0000 : mod reg r/m

register to memory 0000 1111 : 0011 1000:1111 0001 : mod reg r/m

MOVS/MOVSB/MOVSW/MOVSD – Move Data from String to 
String

1010 010w

MOVSX – Move with Sign-Extend

memory to reg 0000 1111 : 1011 111w : mod reg r/m

MOVZX – Move with Zero-Extend

register2 to register1 0000 1111 : 1011 011w : 11 reg1 reg2

memory to register 0000 1111 : 1011 011w : mod reg r/m

MUL – Unsigned Multiply

AL, AX, or EAX with register 1111 011w : 11 100 reg

AL, AX, or EAX with memory 1111 011w : mod 100 r/m

NEG – Two's Complement Negation

register 1111 011w : 11 011 reg

memory 1111 011w : mod 011 r/m

NOP – No Operation 1001 0000

NOP – Multi-byte No Operation1

register 0000 1111 0001 1111 : 11 000 reg

memory 0000 1111 0001 1111 : mod 000 r/m

NOT – One's Complement Negation

register 1111 011w : 11 010 reg

memory 1111 011w : mod 010 r/m

Table B-13.  General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
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OR – Logical Inclusive OR

register1 to register2 0000 100w : 11 reg1 reg2

register2 to register1 0000 101w : 11 reg1 reg2 

memory to register 0000 101w : mod reg r/m

register to memory 0000 100w : mod reg r/m

immediate to register 1000 00sw : 11 001 reg : immediate data

immediate to AL, AX, or EAX 0000 110w : immediate data

immediate to memory 1000 00sw : mod 001 r/m : immediate data

OUT – Output to Port

fixed port 1110 011w : port number

variable port 1110 111w

OUTS – Output to DX Port 0110 111w

POP – Pop a Word from the Stack

register 1000 1111 : 11 000 reg

register (alternate encoding) 0101 1 reg

memory 1000 1111 : mod 000 r/m

POP – Pop a Segment Register from the Stack
(Note: CS cannot be sreg2 in this usage.)

segment register  DS, ES 000 sreg2 111

segment register  SS 000 sreg2 111

segment register  FS, GS 0000 1111: 10 sreg3 001

POPA/POPAD – Pop All General Registers 0110 0001

POPF/POPFD – Pop Stack into FLAGS or EFLAGS Register 1001 1101

PUSH – Push Operand onto the Stack

register 1111 1111 : 11 110 reg

register (alternate encoding) 0101 0 reg

memory 1111 1111 : mod 110 r/m

immediate 0110 10s0 : immediate data

PUSH – Push Segment Register onto the Stack

segment register CS,DS,ES,SS 000 sreg2 110

segment register FS,GS 0000 1111: 10 sreg3 000

PUSHA/PUSHAD – Push All General Registers 0110 0000

PUSHF/PUSHFD – Push Flags Register onto the Stack 1001 1100

RCL – Rotate thru Carry Left

register by 1 1101 000w : 11 010 reg

memory by 1 1101 000w : mod 010 r/m

register by CL 1101 001w : 11 010 reg

Table B-13.  General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
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memory by CL 1101 001w : mod 010 r/m

register by immediate count 1100 000w : 11 010 reg : imm8 data

memory by immediate count 1100 000w : mod 010 r/m : imm8 data

RCR – Rotate thru Carry Right

register by 1 1101 000w : 11 011 reg

memory by 1 1101 000w : mod 011 r/m

register by CL 1101 001w : 11 011 reg

memory by CL 1101 001w : mod 011 r/m

register by immediate count 1100 000w : 11 011 reg : imm8 data

memory by immediate count 1100 000w : mod 011 r/m : imm8 data

RDMSR – Read from Model-Specific Register 0000 1111 : 0011 0010

RDPMC – Read Performance Monitoring Counters 0000 1111 : 0011 0011

RDTSC – Read Time-Stamp Counter 0000 1111 : 0011 0001

RDTSCP – Read Time-Stamp Counter and Processor ID 0000 1111 : 0000 0001: 1111 1001

REP INS – Input String 1111 0011 : 0110 110w

REP LODS – Load String 1111 0011 : 1010 110w

REP MOVS – Move String 1111 0011 : 1010 010w

REP OUTS – Output String 1111 0011 : 0110 111w

REP STOS – Store String 1111 0011 : 1010 101w

REPE CMPS – Compare String 1111 0011 : 1010 011w

REPE SCAS – Scan String 1111 0011 : 1010 111w

REPNE CMPS – Compare String 1111 0010 : 1010 011w

REPNE SCAS – Scan String 1111 0010 : 1010 111w

RET – Return from Procedure (to same segment)

no argument 1100 0011

adding immediate to SP 1100 0010 : 16-bit displacement

RET – Return from Procedure (to other segment)

intersegment 1100 1011

adding immediate to SP 1100 1010 : 16-bit displacement

ROL – Rotate Left

register by 1 1101 000w : 11 000 reg

memory by 1 1101 000w : mod 000 r/m

register by CL 1101 001w : 11 000 reg

memory by CL 1101 001w : mod 000 r/m

register by immediate count 1100 000w : 11 000 reg : imm8 data

memory by immediate count 1100 000w : mod 000 r/m : imm8 data

Table B-13.  General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding



Vol. 2C B-15

INSTRUCTION FORMATS AND ENCODINGS

ROR – Rotate Right

register by 1 1101 000w : 11 001 reg

memory by 1 1101 000w : mod 001 r/m

register by CL 1101 001w : 11 001 reg

memory by CL 1101 001w : mod 001 r/m

register by immediate count 1100 000w : 11 001 reg : imm8 data

memory by immediate count 1100 000w : mod 001 r/m : imm8 data

RSM – Resume from System Management Mode 0000 1111 : 1010 1010

SAHF – Store AH into Flags 1001 1110

SAL – Shift Arithmetic Left same instruction as SHL

SAR – Shift Arithmetic Right

register by 1 1101 000w : 11 111 reg

memory by 1 1101 000w : mod 111 r/m

register by CL 1101 001w : 11 111 reg

memory by CL 1101 001w : mod 111 r/m

register by immediate count 1100 000w : 11 111 reg : imm8 data

memory by immediate count 1100 000w : mod 111 r/m : imm8 data

SBB – Integer Subtraction with Borrow

register1 to register2 0001 100w : 11 reg1 reg2

register2 to register1 0001 101w : 11 reg1 reg2 

memory to register 0001 101w : mod reg r/m

register to memory 0001 100w : mod reg r/m

immediate to register 1000 00sw : 11 011 reg : immediate data

immediate to AL, AX, or EAX 0001 110w : immediate data

immediate to memory 1000 00sw : mod 011 r/m : immediate data

SCAS/SCASB/SCASW/SCASD – Scan String 1010 111w

SETcc – Byte Set on Condition

register 0000 1111 : 1001 tttn : 11 000 reg

memory 0000 1111 : 1001 tttn : mod 000 r/m

SGDT – Store Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 000 r/m

SHL – Shift Left

register by 1 1101 000w : 11 100 reg

memory by 1 1101 000w : mod 100 r/m

register by CL 1101 001w : 11 100 reg

memory by CL 1101 001w : mod 100 r/m

register by immediate count 1100 000w : 11 100 reg : imm8 data

memory by immediate count 1100 000w : mod 100 r/m : imm8 data

Table B-13.  General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)
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SHLD – Double Precision Shift Left

register by immediate count 0000 1111 : 1010 0100 : 11 reg2 reg1 : imm8

memory by immediate count 0000 1111 : 1010 0100 : mod reg r/m : imm8

register by CL 0000 1111 : 1010 0101 : 11 reg2 reg1

memory by CL 0000 1111 : 1010 0101 : mod reg r/m

SHR – Shift Right

register by 1 1101 000w : 11 101 reg

memory by 1 1101 000w : mod 101 r/m

register by CL 1101 001w : 11 101 reg

memory by CL 1101 001w : mod 101 r/m

register by immediate count 1100 000w : 11 101 reg : imm8 data

memory by immediate count 1100 000w : mod 101 r/m : imm8 data

SHRD – Double Precision Shift Right

register by immediate count 0000 1111 : 1010 1100 : 11 reg2 reg1 : imm8

memory by immediate count 0000 1111 : 1010 1100 : mod reg r/m : imm8

register by CL 0000 1111 : 1010 1101 : 11 reg2 reg1

memory by CL 0000 1111 : 1010 1101 : mod reg r/m

SIDT – Store Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : modA 001 r/m

SLDT – Store Local Descriptor Table Register

to register 0000 1111 : 0000 0000 : 11 000 reg

to memory 0000 1111 : 0000 0000 : mod 000 r/m

SMSW – Store Machine Status Word

to register 0000 1111 : 0000 0001 : 11 100 reg

to memory 0000 1111 : 0000 0001 : mod 100 r/m

STC – Set Carry Flag 1111 1001

STD – Set Direction Flag 1111 1101

STI – Set Interrupt Flag 1111 1011

STOS/STOSB/STOSW/STOSD – Store String Data 1010 101w

STR – Store Task Register

to register 0000 1111 : 0000 0000 : 11 001 reg

to memory 0000 1111 : 0000 0000 : mod 001 r/m

SUB – Integer Subtraction

register1 to register2 0010 100w : 11 reg1 reg2

register2 to register1 0010 101w : 11 reg1 reg2 

memory to register 0010 101w : mod reg r/m

register to memory 0010 100w : mod reg r/m

immediate to register 1000 00sw : 11 101 reg : immediate data

immediate to AL, AX, or EAX 0010 110w : immediate data
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immediate to memory 1000 00sw : mod 101 r/m : immediate data

TEST – Logical Compare

register1 and register2 1000 010w : 11 reg1 reg2

memory and register 1000 010w : mod reg r/m

immediate and register 1111 011w : 11 000 reg : immediate data

immediate and AL, AX, or EAX 1010 100w : immediate data

immediate and memory 1111 011w : mod 000 r/m : immediate data

UD2 – Undefined instruction 0000 FFFF : 0000 1011

VERR – Verify a Segment for Reading 

register 0000 1111 : 0000 0000 : 11 100 reg

memory 0000 1111 : 0000 0000 : mod 100 r/m

VERW – Verify a Segment for Writing

register 0000 1111 : 0000 0000 : 11 101 reg

memory 0000 1111 : 0000 0000 : mod 101 r/m

WAIT – Wait 1001 1011

WBINVD – Writeback and Invalidate Data Cache 0000 1111 : 0000 1001

WRMSR – Write to Model-Specific Register 0000 1111 : 0011 0000

XADD – Exchange and Add

register1, register2 0000 1111 : 1100 000w : 11 reg2 reg1

memory, reg 0000 1111 : 1100 000w : mod reg r/m

XCHG – Exchange Register/Memory with Register

register1 with register2 1000 011w : 11 reg1 reg2

AX or EAX with reg 1001 0 reg

memory with reg 1000 011w : mod reg r/m

XLAT/XLATB – Table Look-up Translation 1101 0111

XOR – Logical Exclusive OR

register1 to register2 0011 000w : 11 reg1 reg2

register2 to register1 0011 001w : 11 reg1 reg2 

memory to register 0011 001w : mod reg r/m

register to memory 0011 000w : mod reg r/m

immediate to register 1000 00sw : 11 110 reg : immediate data

immediate to AL, AX, or EAX 0011 010w : immediate data

immediate to memory 1000 00sw : mod 110 r/m : immediate data

Prefix Bytes

address size 0110 0111

LOCK 1111 0000

operand size 0110 0110

CS segment override 0010 1110

Table B-13.  General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)
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B.2.1  General Purpose Instruction Formats and Encodings for 64-Bit Mode

Table B-15 shows machine instruction formats and encodings for general purpose instructions in 64-bit mode.

DS segment override 0011 1110

ES segment override 0010 0110

FS segment override 0110 0100

GS segment override 0110 0101

SS segment override 0011 0110

NOTES:

1. The multi-byte NOP instruction does not alter the content of the register and will not issue a memory operation. 

Table B-14.  Special Symbols

Symbol Application

S If the value of REX.W. is 1, it overrides the presence of 66H.

w The value of bit W. in REX is has no effect.

Table B-15.  General Purpose Instruction Formats and Encodings for 64-Bit Mode

Instruction and Format Encoding

ADC – ADD with Carry

register1 to register2 0100 0R0B : 0001 000w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B : 0001 0001 : 11 qwordreg1 qwordreg2

register2 to register1 0100 0R0B : 0001 001w : 11 reg1 reg2 

qwordregister1 to qwordregister2 0100 1R0B : 0001 0011 : 11 qwordreg1 qwordreg2 

memory to register 0100 0RXB : 0001 001w : mod reg r/m

memory to qwordregister 0100 1RXB : 0001 0011 : mod qwordreg r/m

register to memory 0100 0RXB : 0001 000w : mod reg r/m

qwordregister to memory 0100 1RXB : 0001 0001 : mod qwordreg r/m

immediate to register 0100 000B : 1000 00sw : 11 010 reg : immediate

immediate to qwordregister 0100 100B : 1000 0001 : 11 010 qwordreg : imm32

immediate to qwordregister 0100 1R0B : 1000 0011 : 11 010 qwordreg : imm8

immediate to AL, AX, or EAX 0001 010w : immediate data

immediate to RAX 0100 1000 : 0000 0101 : imm32

immediate to memory 0100 00XB : 1000 00sw : mod 010 r/m : immediate 

immediate32 to memory64 0100 10XB : 1000 0001 : mod 010 r/m : imm32

immediate8 to memory64 0100 10XB : 1000 0031 : mod 010 r/m : imm8

ADD – Add

register1 to register2 0100 0R0B : 0000 000w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 0000 0000 : 11 qwordreg1 qwordreg2

register2 to register1 0100 0R0B : 0000 001w : 11 reg1 reg2 

Table B-13.  General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)
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qwordregister1 to qwordregister2 0100 1R0B 0000 0010 : 11 qwordreg1 qwordreg2

memory to register 0100 0RXB : 0000 001w : mod reg r/m

memory64 to qwordregister 0100 1RXB : 0000 0000 : mod qwordreg r/m

register to memory 0100 0RXB : 0000 000w : mod reg r/m

qwordregister to memory64 0100 1RXB : 0000 0011 : mod qwordreg r/m

immediate to register 0100 0000B : 1000 00sw : 11 000 reg : immediate data

immediate32 to qwordregister 0100 100B : 1000 0001 : 11 010 qwordreg : imm

immediate to AL, AX, or EAX 0000 010w : immediate8

immediate to RAX 0100 1000 : 0000 0101 : imm32

immediate to memory 0100 00XB : 1000 00sw : mod 000 r/m : immediate

immediate32 to memory64 0100 10XB : 1000 0001 : mod 010 r/m : imm32

immediate8 to memory64 0100 10XB : 1000 0011 : mod 010 r/m : imm8

AND – Logical AND

register1 to register2 0100 0R0B 0010 000w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 0010 0001 : 11 qwordreg1 qwordreg2

register2 to register1 0100 0R0B 0010 001w : 11 reg1 reg2 

register1 to register2 0100 1R0B 0010 0011 : 11 qwordreg1 qwordreg2

memory to register 0100 0RXB 0010 001w : mod reg r/m

memory64 to qwordregister 0100 1RXB : 0010 0011 : mod qwordreg r/m

register to memory 0100 0RXB : 0010 000w : mod reg r/m

qwordregister to memory64 0100 1RXB : 0010 0001 : mod qwordreg r/m

immediate to register 0100 000B : 1000 00sw : 11 100 reg : immediate 

immediate32 to qwordregister 0100 100B 1000 0001 : 11 100 qwordreg : imm32

immediate to AL, AX, or EAX 0010 010w : immediate

immediate32 to RAX 0100 1000 0010 1001 : imm32

immediate to memory 0100 00XB : 1000 00sw : mod 100 r/m : immediate 

immediate32 to memory64 0100 10XB : 1000 0001 : mod 100 r/m : immediate32

immediate8 to memory64 0100 10XB : 1000 0011 : mod 100 r/m : imm8

BSF – Bit Scan Forward

register1, register2 0100 0R0B 0000 1111 : 1011 1100 : 11 reg1 reg2

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1100 : 11 qwordreg1 
qwordreg2

memory, register 0100 0RXB 0000 1111 : 1011 1100 : mod reg r/m

memory64, qwordregister 0100 1RXB 0000 1111 : 1011 1100 : mod qwordreg r/m

BSR – Bit Scan Reverse

register1, register2 0100 0R0B 0000 1111 : 1011 1101 : 11 reg1 reg2

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1101 : 11 qwordreg1 
qwordreg2

memory, register 0100 0RXB 0000 1111 : 1011 1101 : mod reg r/m

Table B-15.  General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)
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memory64, qwordregister 0100 1RXB 0000 1111 : 1011 1101 : mod qwordreg r/m

BSWAP – Byte Swap 0000 1111 : 1100 1 reg

BSWAP – Byte Swap 0100 100B 0000 1111 : 1100 1 qwordreg

BT – Bit Test

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 100 reg: imm8 

qwordregister, immediate8 0100 100B 1111 : 1011 1010 : 11 100 qwordreg: imm8 data

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod 100 r/m : imm8 

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 100 r/m : imm8 data

register1, register2 0100 0R0B 0000 1111 : 1010 0011 : 11 reg2 reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1010 0011 : 11 qwordreg2 
qwordreg1

memory, reg 0100 0RXB 0000 1111 : 1010 0011 : mod reg r/m

memory, qwordreg 0100 1RXB 0000 1111 : 1010 0011 : mod qwordreg r/m

BTC – Bit Test and Complement

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 111 reg: imm8 

qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 111 qwordreg: imm8 

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod 111 r/m : imm8 

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 111 r/m : imm8 

register1, register2 0100 0R0B 0000 1111 : 1011 1011 : 11 reg2 reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1011 : 11 qwordreg2 
qwordreg1

memory, register 0100 0RXB 0000 1111 : 1011 1011 : mod reg r/m

memory, qwordreg 0100 1RXB 0000 1111 : 1011 1011 : mod qwordreg r/m

BTR – Bit Test and Reset

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 110 reg: imm8 

qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 110 qwordreg: imm8 

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod 110 r/m : imm8 

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 110 r/m : imm8 

register1, register2 0100 0R0B 0000 1111 : 1011 0011 : 11 reg2 reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 0011 : 11 qwordreg2 
qwordreg1

memory, register 0100 0RXB 0000 1111 : 1011 0011 : mod reg r/m

memory64, qwordreg 0100 1RXB 0000 1111 : 1011 0011 : mod qwordreg r/m

BTS – Bit Test and Set

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 101 reg: imm8

qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 101 qwordreg: imm8 

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod 101 r/m : imm8

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 101 r/m : imm8 

register1, register2 0100 0R0B 0000 1111 : 1010 1011 : 11 reg2 reg1
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qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1010 1011 : 11 qwordreg2 
qwordreg1

memory, register 0100 0RXB 0000 1111 : 1010 1011 : mod reg r/m

memory64, qwordreg 0100 1RXB 0000 1111 : 1010 1011 : mod qwordreg r/m

CALL – Call Procedure (in same segment)

direct 1110 1000 : displacement32

 register indirect 0100 WR00w 1111 1111 : 11 010 reg

memory indirect 0100 W0XBw 1111 1111 : mod 010 r/m

CALL – Call Procedure (in other segment)

indirect 1111 1111 : mod 011 r/m

indirect 0100 10XB 0100 1000 1111 1111 : mod 011 r/m

CBW – Convert Byte to Word 1001 1000

CDQ – Convert Doubleword to Qword+ 1001 1001

CDQE – RAX, Sign-Extend of EAX 0100 1000 1001 1001

CLC – Clear Carry Flag 1111 1000

CLD – Clear Direction Flag 1111 1100

CLI – Clear Interrupt Flag 1111 1010

CLTS – Clear Task-Switched Flag in CR0 0000 1111 : 0000 0110

CMC – Complement Carry Flag 1111 0101

CMP – Compare Two Operands

register1 with register2 0100 0R0B 0011 100w : 11 reg1 reg2

qwordregister1 with qwordregister2 0100 1R0B 0011 1001 : 11 qwordreg1 qwordreg2

register2 with register1 0100 0R0B 0011 101w : 11 reg1 reg2

qwordregister2 with qwordregister1 0100 1R0B 0011 101w : 11 qwordreg1 qwordreg2

memory with register 0100 0RXB 0011 100w : mod reg r/m

memory64 with qwordregister 0100 1RXB 0011 1001 : mod qwordreg r/m

register with memory 0100 0RXB 0011 101w : mod reg r/m

qwordregister with memory64 0100 1RXB 0011 101w1 : mod qwordreg r/m

immediate with register 0100 000B 1000 00sw : 11 111 reg : imm

immediate32 with qwordregister 0100 100B 1000 0001 : 11 111 qwordreg : imm64

immediate with AL, AX, or EAX 0011 110w : imm

immediate32 with RAX 0100 1000 0011 1101 : imm32

immediate with memory 0100 00XB 1000 00sw : mod 111 r/m : imm

immediate32 with memory64 0100 1RXB 1000 0001 : mod 111 r/m : imm64

immediate8 with memory64 0100 1RXB 1000 0011 : mod 111 r/m : imm8

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ – Compare String 
Operands

compare string operands [ X at DS:(E)SI with Y at ES:(E)DI ] 1010 011w

qword at address RSI with qword at address RDI 0100 1000 1010 0111
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CMPXCHG – Compare and Exchange 

register1, register2 0000 1111 : 1011 000w : 11 reg2 reg1

byteregister1, byteregister2 0100 000B 0000 1111 : 1011 0000 : 11 bytereg2 reg1

qwordregister1, qwordregister2 0100 100B 0000 1111 : 1011 0001 : 11 qwordreg2 reg1

memory, register 0000 1111 : 1011 000w : mod reg r/m

memory8, byteregister 0100 00XB 0000 1111 : 1011 0000 : mod bytereg r/m

memory64, qwordregister 0100 10XB 0000 1111 : 1011 0001 : mod qwordreg r/m

CPUID – CPU Identification 0000 1111 : 1010 0010

CQO – Sign-Extend RAX 0100 1000 1001 1001

CWD – Convert Word to Doubleword 1001 1001

CWDE – Convert Word to Doubleword 1001 1000

DEC – Decrement by 1

register 0100 000B 1111 111w : 11 001 reg

qwordregister 0100 100B 1111 1111 : 11 001 qwordreg

memory 0100 00XB 1111 111w : mod 001 r/m

memory64 0100 10XB 1111 1111 : mod 001 r/m

DIV – Unsigned Divide

AL, AX, or EAX by register 0100 000B 1111 011w : 11 110 reg

Divide RDX:RAX by qwordregister 0100 100B 1111 0111 : 11 110 qwordreg

AL, AX, or EAX by memory 0100 00XB 1111 011w : mod 110 r/m

Divide RDX:RAX by memory64 0100 10XB 1111 0111 : mod 110 r/m

ENTER – Make Stack Frame for High Level Procedure 1100 1000 : 16-bit displacement : 8-bit level (L)

HLT – Halt 1111 0100

IDIV – Signed Divide

AL, AX, or EAX by register 0100 000B 1111 011w : 11 111 reg

RDX:RAX by qwordregister 0100 100B 1111 0111 : 11 111 qwordreg

AL, AX, or EAX by memory 0100 00XB 1111 011w : mod 111 r/m

RDX:RAX by memory64 0100 10XB 1111 0111 : mod 111 r/m

IMUL – Signed Multiply

AL, AX, or EAX with register 0100 000B 1111 011w : 11 101 reg

RDX:RAX <- RAX with qwordregister 0100 100B 1111 0111 : 11 101 qwordreg

AL, AX, or EAX with memory 0100 00XB 1111 011w : mod 101 r/m

RDX:RAX <- RAX with memory64 0100 10XB 1111 0111 : mod 101 r/m

register1 with register2 0000 1111 : 1010 1111 : 11 : reg1 reg2

qwordregister1 <- qwordregister1 with qwordregister2 0100 1R0B 0000 1111 : 1010 1111 : 11 : qwordreg1 
qwordreg2

register with memory 0100 0RXB 0000 1111 : 1010 1111 : mod reg r/m

qwordregister <- qwordregister withmemory64 0100 1RXB 0000 1111 : 1010 1111 : mod qwordreg r/m

register1 with immediate to register2 0100 0R0B 0110 10s1 : 11 reg1 reg2 : imm
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qwordregister1 <- qwordregister2 with sign-extended 
immediate8

0100 1R0B 0110 1011 : 11 qwordreg1 qwordreg2 : imm8

qwordregister1 <- qwordregister2 with immediate32 0100 1R0B 0110 1001 : 11 qwordreg1 qwordreg2 : imm32

memory with immediate to register 0100 0RXB 0110 10s1 : mod reg r/m : imm

qwordregister <- memory64 with sign-extended immediate8 0100 1RXB 0110 1011 : mod qwordreg r/m : imm8

qwordregister <- memory64 with immediate32 0100 1RXB 0110 1001 : mod qwordreg r/m : imm32

IN – Input From Port

fixed port 1110 010w : port number

variable port 1110 110w

INC – Increment by 1

reg 0100 000B 1111 111w : 11 000 reg

qwordreg 0100 100B 1111 1111 : 11 000 qwordreg

memory 0100 00XB 1111 111w : mod 000 r/m

memory64 0100 10XB 1111 1111 : mod 000 r/m

INS – Input from DX Port 0110 110w

INT n – Interrupt Type n 1100 1101 : type

INT – Single-Step Interrupt 3 1100 1100

INTO – Interrupt 4 on Overflow 1100 1110

INVD – Invalidate Cache 0000 1111 : 0000 1000

INVLPG – Invalidate TLB Entry 0000 1111 : 0000 0001 : mod 111 r/m

INVPCID – Invalidate Process-Context Identifier 0110 0110:0000 1111:0011 1000:1000 0010: mod reg r/m

IRETO – Interrupt Return 1100 1111

Jcc – Jump if Condition is Met

8-bit displacement 0111 tttn : 8-bit displacement

displacements (excluding 16-bit relative offsets) 0000 1111 : 1000 tttn : displacement32 

JCXZ/JECXZ – Jump on CX/ECX Zero

Address-size prefix differentiates JCXZ and JECXZ 1110 0011 : 8-bit displacement

JMP – Unconditional Jump (to same segment)

short 1110 1011 : 8-bit displacement

direct 1110 1001 : displacement32

register indirect 0100 W00Bw : 1111 1111 : 11 100 reg

memory indirect 0100 W0XBw : 1111 1111 : mod 100 r/m
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JMP – Unconditional Jump (to other segment)

indirect intersegment 0100 00XB : 1111 1111 : mod 101 r/m

64-bit indirect intersegment 0100 10XB : 1111 1111 : mod 101 r/m

LAR – Load Access Rights Byte

from register 0100 0R0B : 0000 1111 : 0000 0010 : 11 reg1 reg2

from dwordregister to qwordregister, masked by 00FxFF00H 0100 WR0B : 0000 1111 : 0000 0010 : 11 qwordreg1 
dwordreg2

from memory 0100 0RXB : 0000 1111 : 0000 0010 : mod reg r/m

from memory32 to qwordregister, masked by 00FxFF00H 0100 WRXB 0000 1111 : 0000 0010 : mod r/m

LEA – Load Effective Address

in wordregister/dwordregister 0100 0RXB : 1000 1101 : modA reg r/m

in qwordregister 0100 1RXB : 1000 1101 : modA qwordreg r/m

LEAVE – High Level Procedure Exit 1100 1001

LFS – Load Pointer to FS

FS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0100 : modA reg r/m

FS:r64 with far pointer from memory 0100 1RXB : 0000 1111 : 1011 0100 : modA qwordreg r/m

LGDT – Load Global Descriptor Table Register 0100 10XB : 0000 1111 : 0000 0001 : modA 010 r/m

LGS – Load Pointer to GS

GS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0101 : modA reg r/m

GS:r64 with far pointer from memory 0100 1RXB : 0000 1111 : 1011 0101 : modA qwordreg r/m

LIDT – Load Interrupt Descriptor Table Register 0100 10XB : 0000 1111 : 0000 0001 : modA 011 r/m

LLDT – Load Local Descriptor Table Register

LDTR from register 0100 000B : 0000 1111 : 0000 0000 : 11 010 reg

LDTR from memory 0100 00XB :0000 1111 : 0000 0000 : mod 010 r/m

LMSW – Load Machine Status Word

from register 0100 000B : 0000 1111 : 0000 0001 : 11 110 reg

from memory 0100 00XB :0000 1111 : 0000 0001 : mod 110 r/m

LOCK – Assert LOCK# Signal Prefix 1111 0000

LODS/LODSB/LODSW/LODSD/LODSQ – Load String Operand

at DS:(E)SI to AL/EAX/EAX 1010 110w

at (R)SI to RAX 0100 1000 1010 1101

LOOP – Loop Count

if count != 0, 8-bit displacement 1110 0010 

if count !=0, RIP + 8-bit displacement sign-extended to 64-bits 0100 1000 1110 0010 

LOOPE – Loop Count while Zero/Equal

if count != 0 & ZF =1, 8-bit displacement 1110 0001 

if count !=0 & ZF = 1, RIP + 8-bit displacement sign-extended to 
64-bits

0100 1000 1110 0001 
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LOOPNE/LOOPNZ – Loop Count while not Zero/Equal

if count != 0 & ZF = 0, 8-bit displacement 1110 0000 

if count !=0 & ZF = 0, RIP + 8-bit displacement sign-extended to 
64-bits

0100 1000 1110 0000 

LSL – Load Segment Limit

from register 0000 1111 : 0000 0011 : 11 reg1 reg2

from qwordregister 0100 1R00 0000 1111 : 0000 0011 : 11 qwordreg1 reg2

from memory16 0000 1111 : 0000 0011 : mod reg r/m

from memory64 0100 1RXB 0000 1111 : 0000 0011 : mod qwordreg r/m

LSS – Load Pointer to SS

SS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0010 : modA reg r/m

SS:r64 with far pointer from memory 0100 1WXB : 0000 1111 : 1011 0010 : modA qwordreg r/m

LTR – Load Task Register

from register 0100 0R00 : 0000 1111 : 0000 0000 : 11 011 reg

from memory 0100 00XB : 0000 1111 : 0000 0000 : mod 011 r/m

MOV – Move Data

register1 to register2 0100 0R0B : 1000 100w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 1000 1001 : 11 qwordeg1 qwordreg2

register2 to register1 0100 0R0B : 1000 101w : 11 reg1 reg2

qwordregister2 to qwordregister1 0100 1R0B 1000 1011 : 11 qwordreg1 qwordreg2

memory to reg 0100 0RXB : 1000 101w : mod reg r/m

memory64 to qwordregister 0100 1RXB 1000 1011 : mod qwordreg r/m

reg to memory 0100 0RXB : 1000 100w : mod reg r/m

qwordregister to memory64 0100 1RXB 1000 1001 : mod qwordreg r/m

immediate to register 0100 000B : 1100 011w : 11 000 reg : imm

immediate32 to qwordregister (zero extend) 0100 100B 1100 0111 : 11 000 qwordreg : imm32

immediate to register (alternate encoding) 0100 000B : 1011 w reg : imm

immediate64 to qwordregister (alternate encoding) 0100 100B 1011 1000 reg : imm64

immediate to memory 0100 00XB : 1100 011w : mod 000 r/m : imm

immediate32 to memory64 (zero extend) 0100 10XB 1100 0111 : mod 000 r/m : imm32

memory to AL, AX, or EAX 0100 0000 : 1010 000w : displacement

memory64 to RAX 0100 1000 1010 0001 : displacement64

AL, AX, or EAX to memory 0100 0000 : 1010 001w : displacement

RAX to memory64 0100 1000 1010 0011 : displacement64

MOV – Move to/from Control Registers

CR0-CR4 from register 0100 0R0B : 0000 1111 : 0010 0010 : 11 eee reg (eee = CR#)

CRx from qwordregister 0100 1R0B : 0000 1111 : 0010 0010 : 11 eee qwordreg (Reee 
= CR#)

register from CR0-CR4 0100 0R0B : 0000 1111 : 0010 0000 : 11 eee reg (eee = CR#)
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qwordregister from CRx 0100 1R0B 0000 1111 : 0010 0000 : 11 eee qwordreg 

(Reee = CR#)

MOV – Move to/from Debug Registers

DR0-DR7 from register 0000 1111 : 0010 0011 : 11 eee reg (eee = DR#)

DR0-DR7 from quadregister 0100 10OB 0000 1111 : 0010 0011 : 11 eee reg (eee = DR#)

register from DR0-DR7 0000 1111 : 0010 0001 : 11 eee reg (eee = DR#)

quadregister from DR0-DR7 0100 10OB 0000 1111 : 0010 0001 : 11 eee quadreg (eee = 
DR#)

MOV – Move to/from Segment Registers

register to segment register 0100 W00Bw : 1000 1110 : 11 sreg reg

register to SS 0100 000B : 1000 1110 : 11 sreg reg

memory to segment register 0100 00XB : 1000 1110 : mod sreg r/m

memory64 to segment register (lower 16 bits) 0100 10XB 1000 1110 : mod sreg r/m

memory to SS 0100 00XB : 1000 1110 : mod sreg r/m

segment register to register 0100 000B : 1000 1100 : 11 sreg reg

segment register to qwordregister (zero extended) 0100 100B 1000 1100 : 11 sreg qwordreg

segment register to memory 0100 00XB : 1000 1100 : mod sreg r/m

segment register to memory64 (zero extended) 0100 10XB 1000 1100 : mod sreg3 r/m

MOVBE – Move data after swapping bytes

memory to register 0100 0RXB : 0000 1111 : 0011 1000:1111 0000 : mod reg r/m

memory64 to qwordregister 0100 1RXB : 0000 1111 : 0011 1000:1111 0000 : mod reg r/m

register to memory 0100 0RXB :0000 1111 : 0011 1000:1111 0001 : mod reg r/m

qwordregister to memory64 0100 1RXB :0000 1111 : 0011 1000:1111 0001 : mod reg r/m

MOVS/MOVSB/MOVSW/MOVSD/MOVSQ – Move Data from 
String to String

Move data from string to string 1010 010w

Move data from string to string (qword) 0100 1000 1010 0101

MOVSX/MOVSXD – Move with Sign-Extend

register2 to register1 0100 0R0B : 0000 1111 : 1011 111w : 11 reg1 reg2

byteregister2 to qwordregister1 (sign-extend) 0100 1R0B 0000 1111 : 1011 1110 : 11 quadreg1 bytereg2

wordregister2 to qwordregister1 0100 1R0B 0000 1111  : 1011 1111 : 11 quadreg1 wordreg2

dwordregister2 to qwordregister1 0100 1R0B 0110 0011 : 11 quadreg1 dwordreg2

memory to register 0100 0RXB : 0000 1111 : 1011 111w : mod reg r/m

memory8 to qwordregister (sign-extend) 0100 1RXB 0000 1111 : 1011 1110 : mod qwordreg r/m

memory16 to qwordregister 0100 1RXB 0000 1111 : 1011 1111 : mod qwordreg r/m

memory32 to qwordregister 0100 1RXB 0110 0011 : mod qwordreg r/m

MOVZX – Move with Zero-Extend

register2 to register1 0100 0R0B : 0000 1111 : 1011 011w : 11 reg1 reg2

dwordregister2 to qwordregister1 0100 1R0B 0000 1111 : 1011 0111 : 11 qwordreg1 
dwordreg2
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memory to register 0100 0RXB : 0000 1111 : 1011 011w : mod reg r/m

memory32 to qwordregister 0100 1RXB 0000 1111 : 1011 0111 : mod qwordreg r/m

MUL – Unsigned Multiply

AL, AX, or EAX with register 0100 000B : 1111 011w : 11 100 reg

RAX with qwordregister (to RDX:RAX) 0100 100B 1111 0111 : 11 100 qwordreg

AL, AX, or EAX with memory 0100 00XB 1111 011w : mod 100 r/m

RAX with memory64 (to RDX:RAX) 0100 10XB 1111 0111 : mod 100 r/m

NEG – Two's Complement Negation

register 0100 000B : 1111 011w : 11 011 reg

qwordregister 0100 100B 1111 0111 : 11 011 qwordreg

memory 0100 00XB : 1111 011w : mod 011 r/m

memory64 0100 10XB 1111 0111 : mod 011 r/m

NOP – No Operation 1001 0000

NOT – One's Complement Negation

register 0100 000B : 1111 011w : 11 010 reg

qwordregister 0100 000B 1111 0111 : 11 010 qwordreg

memory 0100 00XB : 1111 011w : mod 010 r/m

memory64 0100 1RXB 1111 0111 : mod 010 r/m

OR – Logical Inclusive OR

register1 to register2 0000 100w : 11 reg1 reg2

byteregister1 to byteregister2 0100 0R0B 0000 1000 : 11 bytereg1 bytereg2

qwordregister1 to qwordregister2 0100 1R0B 0000 1001 : 11 qwordreg1 qwordreg2

register2 to register1 0000 101w : 11 reg1 reg2 

byteregister2 to byteregister1 0100 0R0B 0000 1010 : 11 bytereg1 bytereg2 

qwordregister2 to qwordregister1 0100 0R0B 0000 1011 : 11 qwordreg1 qwordreg2 

memory to register 0000 101w : mod reg r/m

memory8 to byteregister 0100 0RXB 0000 1010 : mod bytereg r/m

memory8 to qwordregister 0100 0RXB 0000 1011 : mod qwordreg r/m

register to memory 0000 100w : mod reg r/m

byteregister to memory8 0100 0RXB 0000 1000 : mod bytereg r/m

qwordregister to memory64 0100 1RXB 0000 1001 : mod qwordreg r/m

immediate to register 1000 00sw : 11 001 reg : imm

immediate8 to byteregister 0100 000B 1000 0000 : 11 001 bytereg : imm8

immediate32 to qwordregister 0100 000B 1000 0001 : 11 001 qwordreg : imm32

immediate8 to qwordregister 0100 000B 1000 0011 : 11 001 qwordreg : imm8

immediate to AL, AX, or EAX 0000 110w : imm

immediate64 to RAX 0100 1000 0000 1101 : imm64

immediate to memory 1000 00sw : mod 001 r/m : imm
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immediate8 to memory8 0100 00XB 1000 0000 : mod 001 r/m : imm8

immediate32 to memory64 0100 00XB 1000 0001 : mod 001 r/m : imm32

immediate8 to memory64 0100 00XB 1000 0011 : mod 001 r/m : imm8

OUT – Output to Port

fixed port 1110 011w : port number

variable port 1110 111w

OUTS – Output to DX Port

output to DX Port 0110 111w

POP – Pop a Value from the Stack

wordregister 0101 0101 : 0100 000B : 1000 1111 : 11 000 reg16

qwordregister 0100 W00BS : 1000 1111 : 11 000 reg64

wordregister (alternate encoding) 0101 0101 : 0100 000B : 0101 1 reg16

qwordregister (alternate encoding) 0100 W00B : 0101 1 reg64

memory64 0100 W0XBS : 1000 1111 : mod 000 r/m

memory16 0101 0101 : 0100 00XB 1000 1111 : mod 000 r/m

POP – Pop a Segment Register from the Stack
(Note: CS cannot be sreg2 in this usage.)

segment register  FS, GS 0000 1111: 10 sreg3 001

POPF/POPFQ – Pop Stack into FLAGS/RFLAGS Register

pop stack to FLAGS register 0101 0101 : 1001 1101

pop Stack to RFLAGS register 0100 1000 1001 1101

PUSH – Push Operand onto the Stack

wordregister 0101 0101 : 0100 000B : 1111 1111 : 11 110 reg16

qwordregister 0100 W00BS : 1111 1111 : 11 110 reg64

wordregister (alternate encoding) 0101 0101 : 0100 000B : 0101 0 reg16

qwordregister (alternate encoding) 0100 W00BS : 0101 0 reg64

memory16 0101 0101 : 0100 000B : 1111 1111 : mod 110 r/m

memory64 0100 W00BS : 1111 1111 : mod 110 r/m

immediate8 0110 1010 : imm8

immediate16 0101 0101 : 0110 1000 : imm16

immediate64 0110 1000 : imm64

PUSH – Push Segment Register onto the Stack

segment register FS,GS 0000 1111: 10 sreg3 000

PUSHF/PUSHFD – Push Flags Register onto the Stack 1001 1100

RCL – Rotate thru Carry Left

register by 1 0100 000B : 1101 000w : 11 010 reg

qwordregister by 1 0100 100B 1101 0001 : 11 010 qwordreg

memory by 1 0100 00XB : 1101 000w : mod 010 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 010 r/m
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register by CL 0100 000B : 1101 001w : 11 010 reg

qwordregister by CL 0100 100B 1101 0011 : 11 010 qwordreg

memory by CL 0100 00XB : 1101 001w : mod 010 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 010 r/m

register by immediate count 0100 000B : 1100 000w : 11 010 reg : imm 

qwordregister by immediate count 0100 100B 1100 0001 : 11 010 qwordreg : imm8

memory by immediate count 0100 00XB : 1100 000w : mod 010 r/m : imm 

memory64 by immediate count 0100 10XB 1100 0001 : mod 010 r/m : imm8

RCR – Rotate thru Carry Right

register by 1 0100 000B : 1101 000w : 11 011 reg

qwordregister by 1 0100 100B 1101 0001 : 11 011 qwordreg

memory by 1 0100 00XB : 1101 000w : mod 011 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 011 r/m

register by CL 0100 000B : 1101 001w : 11 011 reg

qwordregister by CL 0100 000B 1101 0010 : 11 011 qwordreg

memory by CL 0100 00XB : 1101 001w : mod 011 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 011 r/m

register by immediate count 0100 000B : 1100 000w : 11 011 reg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 011 qwordreg : imm8

memory by immediate count 0100 00XB : 1100 000w : mod 011 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 011 r/m : imm8

RDMSR – Read from Model-Specific Register

load ECX-specified register into EDX:EAX 0000 1111 : 0011 0010

RDPMC – Read Performance Monitoring Counters

load ECX-specified performance counter into EDX:EAX 0000 1111 : 0011 0011

RDTSC – Read Time-Stamp Counter

read time-stamp counter into EDX:EAX 0000 1111 : 0011 0001

RDTSCP – Read Time-Stamp Counter and Processor ID 0000 1111 : 0000 0001: 1111 1001

REP INS – Input String

REP LODS – Load String

REP MOVS – Move String

REP OUTS – Output String

REP STOS – Store String

REPE CMPS – Compare String

REPE SCAS – Scan String

REPNE CMPS – Compare String

REPNE SCAS – Scan String

RET – Return from Procedure (to same segment)
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no argument 1100 0011

adding immediate to SP 1100 0010 : 16-bit displacement

RET – Return from Procedure (to other segment)

intersegment 1100 1011

adding immediate to SP 1100 1010 : 16-bit displacement

ROL – Rotate Left

register by 1 0100 000B 1101 000w : 11 000 reg

byteregister by 1 0100 000B 1101 0000 : 11 000 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 000 qwordreg

memory by 1 0100 00XB 1101 000w : mod 000 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 000 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 000 r/m

register by CL 0100 000B 1101 001w : 11 000 reg

byteregister by CL 0100 000B 1101 0010 : 11 000 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 000 qwordreg

memory by CL 0100 00XB 1101 001w : mod 000 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 000 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 000 r/m

register by immediate count 1100 000w : 11 000 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 000 bytereg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 000 bytereg : imm8

memory by immediate count 1100 000w : mod 000 r/m : imm8

memory8 by immediate count 0100 00XB 1100 0000 : mod 000 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 000 r/m : imm8

ROR – Rotate Right

register by 1 0100 000B 1101 000w : 11 001 reg

byteregister by 1 0100 000B 1101 0000 : 11 001 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 001 qwordreg

memory by 1 0100 00XB 1101 000w : mod 001 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 001 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 001 r/m

register by CL 0100 000B 1101 001w : 11 001 reg

byteregister by CL 0100 000B 1101 0010 : 11 001 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 001 qwordreg

memory by CL 0100 00XB 1101 001w : mod 001 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 001 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 001 r/m

register by immediate count 0100 000B 1100 000w : 11 001 reg : imm8 
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byteregister by immediate count 0100 000B 1100 0000 : 11 001 reg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 001 qwordreg : imm8

memory by immediate count 0100 00XB 1100 000w : mod 001 r/m : imm8 

memory8 by immediate count 0100 00XB 1100 0000 : mod 001 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 001 r/m : imm8

RSM – Resume from System Management Mode 0000 1111 : 1010 1010

SAL – Shift Arithmetic Left same instruction as SHL

SAR – Shift Arithmetic Right

register by 1 0100 000B 1101 000w : 11 111 reg

byteregister by 1 0100 000B 1101 0000 : 11 111 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 111 qwordreg

memory by 1 0100 00XB 1101 000w : mod 111 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 111 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 111 r/m

register by CL 0100 000B 1101 001w : 11 111 reg

byteregister by CL 0100 000B 1101 0010 : 11 111 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 111 qwordreg

memory by CL 0100 00XB 1101 001w : mod 111 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 111 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 111 r/m

register by immediate count 0100 000B 1100 000w : 11 111 reg : imm8 

byteregister by immediate count 0100 000B 1100 0000 : 11 111 bytereg : imm8 

qwordregister by immediate count 0100 100B 1100 0001 : 11 111 qwordreg : imm8 

memory by immediate count 0100 00XB 1100 000w : mod 111 r/m : imm8 

memory8 by immediate count 0100 00XB 1100 0000 : mod 111 r/m : imm8 

memory64 by immediate count 0100 10XB 1100 0001 : mod 111 r/m : imm8 

SBB – Integer Subtraction with Borrow

register1 to register2 0100 0R0B 0001 100w : 11 reg1 reg2

byteregister1 to byteregister2 0100 0R0B 0001 1000 : 11 bytereg1 bytereg2

quadregister1 to quadregister2 0100 1R0B 0001 1001 : 11 quadreg1 quadreg2

register2 to register1 0100 0R0B 0001 101w : 11 reg1 reg2 

byteregister2 to byteregister1 0100 0R0B 0001 1010 : 11 reg1 bytereg2 

byteregister2 to byteregister1 0100 1R0B 0001 1011 : 11 reg1 bytereg2 

memory to register 0100 0RXB 0001 101w : mod reg r/m

memory8 to byteregister 0100 0RXB 0001 1010 : mod bytereg r/m

memory64 to byteregister 0100 1RXB 0001 1011 : mod quadreg r/m

register to memory 0100 0RXB 0001 100w : mod reg r/m

byteregister to memory8 0100 0RXB 0001 1000 : mod reg r/m
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quadregister to memory64 0100 1RXB 0001 1001 : mod reg r/m

immediate to register 0100 000B 1000 00sw : 11 011 reg : imm

immediate8 to byteregister 0100 000B 1000 0000 : 11 011 bytereg : imm8

immediate32 to qwordregister 0100 100B 1000 0001 : 11 011 qwordreg : imm32

immediate8 to qwordregister 0100 100B 1000 0011 : 11 011 qwordreg : imm8

immediate to AL, AX, or EAX 0100 000B 0001 110w : imm

immediate32 to RAL 0100 1000 0001 1101 : imm32

immediate to memory 0100 00XB 1000 00sw : mod 011 r/m : imm

immediate8 to memory8 0100 00XB 1000 0000 : mod 011 r/m : imm8

immediate32 to memory64 0100 10XB 1000 0001 : mod 011 r/m : imm32

immediate8 to memory64 0100 10XB 1000 0011 : mod 011 r/m : imm8

SCAS/SCASB/SCASW/SCASD – Scan String

scan string 1010 111w

scan string (compare AL with byte at RDI) 0100 1000 1010 1110

scan string (compare RAX with qword at RDI) 0100 1000 1010 1111

SETcc – Byte Set on Condition

register 0100 000B 0000 1111 : 1001 tttn : 11 000 reg

register 0100 0000 0000 1111 : 1001 tttn : 11 000 reg

memory 0100 00XB 0000 1111 : 1001 tttn : mod 000 r/m

memory 0100 0000 0000 1111 : 1001 tttn : mod 000 r/m

SGDT – Store Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 000 r/m

SHL – Shift Left

register by 1 0100 000B 1101 000w : 11 100 reg

byteregister by 1 0100 000B 1101 0000 : 11 100 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 100 qwordreg

memory by 1 0100 00XB 1101 000w : mod 100 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 100 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 100 r/m

register by CL 0100 000B 1101 001w : 11 100 reg

byteregister by CL 0100 000B 1101 0010 : 11 100 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 100 qwordreg

memory by CL 0100 00XB 1101 001w : mod 100 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 100 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 100 r/m

register by immediate count 0100 000B 1100 000w : 11 100 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 100 bytereg : imm8

quadregister by immediate count 0100 100B 1100 0001 : 11 100 quadreg : imm8

memory by immediate count 0100 00XB 1100 000w : mod 100 r/m : imm8
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memory8 by immediate count 0100 00XB 1100 0000 : mod 100 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 100 r/m : imm8

SHLD – Double Precision Shift Left

register by immediate count 0100 0R0B 0000 1111 : 1010 0100 : 11 reg2 reg1 : imm8

qwordregister by immediate8 0100 1R0B 0000 1111 : 1010 0100 : 11 qworddreg2 
qwordreg1 : imm8

memory by immediate count 0100 0RXB 0000 1111 : 1010 0100 : mod reg r/m : imm8

memory64 by immediate8 0100 1RXB 0000 1111 : 1010 0100 : mod qwordreg r/m : 
imm8

register by CL 0100 0R0B 0000 1111 : 1010 0101 : 11 reg2 reg1

quadregister by CL 0100 1R0B 0000 1111 : 1010 0101 : 11 quadreg2 quadreg1

memory by CL 0100 00XB 0000 1111 : 1010 0101 : mod reg r/m

memory64 by CL 0100 1RXB 0000 1111 : 1010 0101 : mod quadreg r/m

SHR – Shift Right

register by 1 0100 000B 1101 000w : 11 101 reg

byteregister by 1 0100 000B 1101 0000 : 11 101 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 101 qwordreg

memory by 1 0100 00XB 1101 000w : mod 101 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 101 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 101 r/m

register by CL 0100 000B 1101 001w : 11 101 reg

byteregister by CL 0100 000B 1101 0010 : 11 101 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 101 qwordreg

memory by CL 0100 00XB 1101 001w : mod 101 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 101 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 101 r/m

register by immediate count 0100 000B 1100 000w : 11 101 reg : imm8 

byteregister by immediate count 0100 000B 1100 0000 : 11 101 reg : imm8 

qwordregister by immediate count 0100 100B 1100 0001 : 11 101 reg : imm8 

memory by immediate count 0100 00XB 1100 000w : mod 101 r/m : imm8 

memory8 by immediate count 0100 00XB 1100 0000 : mod 101 r/m : imm8 

memory64 by immediate count 0100 10XB 1100 0001 : mod 101 r/m : imm8 

SHRD – Double Precision Shift Right

register by immediate count 0100 0R0B 0000 1111 : 1010 1100 : 11 reg2 reg1 : imm8

qwordregister by immediate8 0100 1R0B 0000 1111 : 1010 1100 : 11 qwordreg2 
qwordreg1 : imm8

memory by immediate count 0100 00XB 0000 1111 : 1010 1100 : mod reg r/m : imm8

memory64 by immediate8 0100 1RXB 0000 1111 : 1010 1100 : mod qwordreg r/m : 
imm8

register by CL 0100 000B 0000 1111 : 1010 1101 : 11 reg2 reg1
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qwordregister by CL 0100 1R0B 0000 1111 : 1010 1101 : 11 qwordreg2 
qwordreg1

memory by CL 0000 1111 : 1010 1101 : mod reg r/m

memory64 by CL 0100 1RXB 0000 1111 : 1010 1101 : mod qwordreg r/m

SIDT – Store Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : modA 001 r/m

SLDT – Store Local Descriptor Table Register

to register 0100 000B 0000 1111 : 0000 0000 : 11 000 reg

to memory 0100 00XB 0000 1111 : 0000 0000 : mod 000 r/m

SMSW – Store Machine Status Word

to register 0100 000B 0000 1111 : 0000 0001 : 11 100 reg

to memory 0100 00XB 0000 1111 : 0000 0001 : mod 100 r/m

STC – Set Carry Flag 1111 1001

STD – Set Direction Flag 1111 1101

STI – Set Interrupt Flag 1111 1011

STOS/STOSB/STOSW/STOSD/STOSQ – Store String Data

store string data 1010 101w

store string data (RAX at address RDI) 0100 1000 1010 1011

STR – Store Task Register

to register 0100 000B 0000 1111 : 0000 0000 : 11 001 reg

to memory 0100 00XB 0000 1111 : 0000 0000 : mod 001 r/m

SUB – Integer Subtraction

register1 from register2 0100 0R0B 0010 100w : 11 reg1 reg2

byteregister1 from byteregister2 0100 0R0B 0010 1000 : 11 bytereg1 bytereg2

qwordregister1 from qwordregister2 0100 1R0B 0010 1000 : 11 qwordreg1 qwordreg2

register2 from register1 0100 0R0B 0010 101w : 11 reg1 reg2 

byteregister2 from byteregister1 0100 0R0B 0010 1010 : 11 bytereg1 bytereg2 

qwordregister2 from qwordregister1 0100 1R0B 0010 1011 : 11 qwordreg1 qwordreg2 

memory from register 0100 00XB 0010 101w : mod reg r/m

memory8 from byteregister 0100 0RXB 0010 1010 : mod bytereg r/m

memory64 from qwordregister 0100 1RXB 0010 1011 : mod qwordreg r/m

register from memory 0100 0RXB 0010 100w : mod reg r/m

byteregister from memory8 0100 0RXB 0010 1000 : mod bytereg r/m

qwordregister from memory8 0100 1RXB 0010 1000 : mod qwordreg r/m

immediate from register 0100 000B 1000 00sw : 11 101 reg : imm

immediate8 from byteregister 0100 000B 1000 0000 : 11 101 bytereg : imm8

immediate32 from qwordregister 0100 100B 1000 0001 : 11 101 qwordreg : imm32

immediate8 from qwordregister 0100 100B 1000 0011 : 11 101 qwordreg : imm8

immediate from AL, AX, or EAX 0100 000B 0010 110w : imm

immediate32 from RAX 0100 1000 0010 1101 : imm32

Table B-15.  General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding
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immediate from memory 0100 00XB 1000 00sw : mod 101 r/m : imm

immediate8 from memory8 0100 00XB 1000 0000 : mod 101 r/m : imm8

immediate32 from memory64 0100 10XB 1000 0001 : mod 101 r/m : imm32

immediate8 from memory64 0100 10XB 1000 0011 : mod 101 r/m : imm8

SWAPGS – Swap GS Base Register

Exchanges the current GS base register value for value in MSR 
C0000102H

0000 1111 0000 0001 1111 1000

SYSCALL – Fast System Call

fast call to privilege level 0 system procedures 0000 1111 0000 0101

SYSRET – Return From Fast System Call

return from fast system call 0000 1111 0000 0111

TEST – Logical Compare

register1 and register2 0100 0R0B 1000 010w : 11 reg1 reg2

byteregister1 and byteregister2 0100 0R0B 1000 0100 : 11 bytereg1 bytereg2

qwordregister1 and qwordregister2 0100 1R0B 1000 0101 : 11 qwordreg1 qwordreg2

memory and register 0100 0R0B 1000 010w : mod reg r/m

memory8 and byteregister 0100 0RXB 1000 0100 : mod bytereg r/m

memory64 and qwordregister 0100 1RXB 1000 0101 : mod qwordreg r/m

immediate and register 0100 000B 1111 011w : 11 000 reg : imm

immediate8 and byteregister 0100 000B 1111 0110 : 11 000 bytereg : imm8

immediate32 and qwordregister 0100 100B 1111 0111 : 11 000 bytereg : imm8

immediate and AL, AX, or EAX 0100 000B 1010 100w : imm

immediate32 and RAX 0100 1000 1010 1001 : imm32

immediate and memory 0100 00XB 1111 011w : mod 000 r/m : imm

immediate8 and memory8 0100 1000 1111 0110 : mod 000 r/m : imm8

immediate32 and memory64 0100 1000 1111 0111 : mod 000 r/m : imm32

UD2 – Undefined instruction 0000 FFFF : 0000 1011

VERR – Verify a Segment for Reading 

register 0100 000B 0000 1111 : 0000 0000 : 11 100 reg

memory 0100 00XB 0000 1111 : 0000 0000 : mod 100 r/m

VERW – Verify a Segment for Writing

register 0100 000B 0000 1111 : 0000 0000 : 11 101 reg

memory 0100 00XB 0000 1111 : 0000 0000 : mod 101 r/m

WAIT – Wait 1001 1011

WBINVD – Writeback and Invalidate Data Cache 0000 1111 : 0000 1001

WRMSR – Write to Model-Specific Register

write EDX:EAX to ECX specified MSR 0000 1111 : 0011 0000

write RDX[31:0]:RAX[31:0] to RCX specified MSR 0100 1000 0000 1111 : 0011 0000

Table B-15.  General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding
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XADD – Exchange and Add

register1, register2 0100 0R0B 0000 1111 : 1100 000w : 11 reg2 reg1

byteregister1, byteregister2 0100 0R0B 0000 1111 : 1100 0000 : 11 bytereg2 bytereg1

qwordregister1, qwordregister2 0100 0R0B 0000 1111 : 1100 0001 : 11 qwordreg2 
qwordreg1

memory, register 0100 0RXB 0000 1111 : 1100 000w : mod reg r/m

memory8, bytereg 0100 1RXB 0000 1111 : 1100 0000 : mod bytereg r/m

memory64, qwordreg 0100 1RXB 0000 1111 : 1100 0001 : mod qwordreg r/m

XCHG – Exchange Register/Memory with Register

register1 with register2 1000 011w : 11 reg1 reg2

AX or EAX with register 1001 0 reg

memory with register 1000 011w : mod reg r/m

XLAT/XLATB – Table Look-up Translation

AL to byte DS:[(E)BX + unsigned AL] 1101 0111

AL to byte DS:[RBX + unsigned AL] 0100 1000 1101 0111

XOR – Logical Exclusive OR

register1 to register2 0100 0RXB 0011 000w : 11 reg1 reg2

byteregister1 to byteregister2 0100 0R0B 0011 0000 : 11 bytereg1 bytereg2

qwordregister1 to qwordregister2 0100 1R0B 0011 0001 : 11 qwordreg1 qwordreg2

register2 to register1 0100 0R0B 0011 001w : 11 reg1 reg2 

byteregister2 to byteregister1 0100 0R0B 0011 0010 : 11 bytereg1 bytereg2 

qwordregister2 to qwordregister1 0100 1R0B 0011 0011 : 11 qwordreg1 qwordreg2 

memory to register 0100 0RXB 0011 001w : mod reg r/m

memory8 to byteregister 0100 0RXB 0011 0010 : mod bytereg r/m

memory64 to qwordregister 0100 1RXB 0011 0011 : mod qwordreg r/m

register to memory 0100 0RXB 0011 000w : mod reg r/m

byteregister to memory8 0100 0RXB 0011 0000 : mod bytereg r/m

qwordregister to memory8 0100 1RXB 0011 0001 : mod qwordreg r/m

immediate to register 0100 000B 1000 00sw : 11 110 reg : imm

immediate8 to byteregister 0100 000B 1000 0000 : 11 110 bytereg : imm8

immediate32 to qwordregister 0100 100B 1000 0001 : 11 110 qwordreg : imm32

immediate8 to qwordregister 0100 100B 1000 0011 : 11 110 qwordreg : imm8

immediate to AL, AX, or EAX 0100 000B 0011 010w : imm

immediate to RAX 0100 1000 0011 0101 : immediate data

immediate to memory 0100 00XB 1000 00sw : mod 110 r/m : imm

immediate8 to memory8 0100 00XB 1000 0000 : mod 110 r/m : imm8

immediate32 to memory64 0100 10XB 1000 0001 : mod 110 r/m : imm32

immediate8 to memory64 0100 10XB 1000 0011 : mod 110 r/m : imm8

Table B-15.  General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding
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B.3 PENTIUM® PROCESSOR FAMILY INSTRUCTION FORMATS AND ENCODINGS

The following table shows formats and encodings introduced by the Pentium processor family.

B.4 64-BIT MODE INSTRUCTION ENCODINGS FOR SIMD INSTRUCTION 
EXTENSIONS

Non-64-bit mode instruction encodings for MMX Technology, SSE, SSE2, and SSE3 are covered by applying these 
rules to Table B-19 through Table B-31. Table B-34 lists special encodings (instructions that do not follow the rules 
below).

1. The REX instruction has no effect:

• On immediates

• If both operands are MMX registers

• On MMX registers and XMM registers

• If an MMX register is encoded in the reg field of the ModR/M byte

2. If a memory operand is encoded in the r/m field of the ModR/M byte, REX.X and REX.B may be used for 
encoding the memory operand.

Prefix Bytes

address size 0110 0111

LOCK 1111 0000

operand size 0110 0110

CS segment override 0010 1110

DS segment override 0011 1110

ES segment override 0010 0110

FS segment override 0110 0100

GS segment override 0110 0101

SS segment override 0011 0110

Table B-16.  Pentium Processor Family Instruction Formats and Encodings, Non-64-Bit Modes

Instruction and Format Encoding

CMPXCHG8B – Compare and Exchange 8 Bytes 

EDX:EAX with memory64 0000 1111 : 1100 0111 : mod 001 r/m

Table B-17.  Pentium Processor Family Instruction Formats and Encodings, 64-Bit Mode

Instruction and Format Encoding

CMPXCHG8B/CMPXCHG16B – Compare and Exchange Bytes 

EDX:EAX with memory64 0000 1111 : 1100 0111 : mod 001 r/m

RDX:RAX with memory128 0100 10XB 0000 1111 : 1100 0111 : mod 001 r/m

Table B-15.  General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format Encoding
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3. If a general-purpose register is encoded in the r/m field of the ModR/M byte, REX.B may be used for register 
encoding and REX.W may be used to encode the 64-bit operand size.

4. If an XMM register operand is encoded in the reg field of the ModR/M byte, REX.R may be used for register 
encoding. If an XMM register operand is encoded in the r/m field of the ModR/M byte, REX.B may be used for 
register encoding.

B.5 MMX INSTRUCTION FORMATS AND ENCODINGS

MMX instructions, except the EMMS instruction, use a format similar to the 2-byte Intel Architecture integer 
format. Details of subfield encodings within these formats are presented below.

B.5.1  Granularity Field (gg)

The granularity field (gg) indicates the size of the packed operands that the instruction is operating on. When this 
field is used, it is located in bits 1 and 0 of the second opcode byte. Table B-18 shows the encoding of the gg field.

B.5.2  MMX Technology and General-Purpose Register Fields (mmxreg and reg)

When MMX technology registers (mmxreg) are used as operands, they are encoded in the ModR/M byte in the reg 
field (bits 5, 4, and 3) and/or the R/M field (bits 2, 1, and 0).

If an MMX instruction operates on a general-purpose register (reg), the register is encoded in the R/M field of the 
ModR/M byte.

B.5.3  MMX Instruction Formats and Encodings Table

Table B-19 shows the formats and encodings of the integer instructions.

Table B-18.  Encoding of Granularity of Data Field (gg)

gg Granularity of Data

00 Packed Bytes

01 Packed Words

10 Packed Doublewords

11 Quadword

Table B-19.  MMX Instruction Formats and Encodings

Instruction and Format Encoding

EMMS – Empty MMX technology state 0000 1111:01110111

MOVD – Move doubleword

reg to mmxreg 0000 1111:0110 1110: 11 mmxreg reg

reg from mmxreg 0000 1111:0111 1110: 11 mmxreg reg

mem to mmxreg 0000 1111:0110 1110: mod mmxreg r/m

mem from mmxreg 0000 1111:0111 1110: mod mmxreg r/m

MOVQ – Move quadword

mmxreg2 to mmxreg1 0000 1111:0110 1111: 11 mmxreg1 mmxreg2

mmxreg2 from mmxreg1 0000 1111:0111 1111: 11 mmxreg1 mmxreg2

mem to mmxreg 0000 1111:0110 1111: mod mmxreg r/m
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mem from mmxreg 0000 1111:0111 1111: mod mmxreg r/m

PACKSSDW1 – Pack dword to word data (signed with 
saturation)

mmxreg2 to mmxreg1 0000 1111:0110 1011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 1011: mod mmxreg r/m

PACKSSWB1 – Pack word to byte data (signed with 
saturation)

mmxreg2 to mmxreg1 0000 1111:0110 0011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 0011: mod mmxreg r/m

PACKUSWB1 – Pack word to byte data (unsigned with 
saturation)

mmxreg2 to mmxreg1 0000 1111:0110 0111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 0111: mod mmxreg r/m

PADD – Add with wrap-around

mmxreg2 to mmxreg1 0000 1111: 1111 11gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111: 1111 11gg: mod mmxreg r/m

PADDS – Add signed with saturation

mmxreg2 to mmxreg1 0000 1111: 1110 11gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111: 1110 11gg: mod mmxreg r/m

PADDUS – Add unsigned with saturation

mmxreg2 to mmxreg1 0000 1111: 1101 11gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111: 1101 11gg: mod mmxreg r/m

PAND – Bitwise And

mmxreg2 to mmxreg1 0000 1111:1101 1011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1101 1011: mod mmxreg r/m

PANDN – Bitwise AndNot

mmxreg2 to mmxreg1 0000 1111:1101 1111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1101 1111: mod mmxreg r/m

PCMPEQ – Packed compare for equality

 mmxreg1 with mmxreg2 0000 1111:0111 01gg: 11 mmxreg1 mmxreg2

  mmxreg with memory 0000 1111:0111 01gg: mod mmxreg r/m

PCMPGT – Packed compare greater (signed)

mmxreg1 with mmxreg2 0000 1111:0110 01gg: 11 mmxreg1 mmxreg2

mmxreg with memory 0000 1111:0110 01gg: mod mmxreg r/m

PMADDWD – Packed multiply add

mmxreg2 to mmxreg1 0000 1111:1111 0101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1111 0101: mod mmxreg r/m

PMULHUW – Packed multiplication, store high word 
(unsigned)

   mmxreg2 to mmxreg1 0000 1111: 1110 0100: 11 mmxreg1 mmxreg2

Table B-19.  MMX Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding
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   memory to mmxreg 0000 1111: 1110 0100: mod mmxreg r/m

PMULHW – Packed multiplication, store high word

mmxreg2 to mmxreg1 0000 1111:1110 0101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1110 0101: mod mmxreg r/m

PMULLW – Packed multiplication, store low word

mmxreg2 to mmxreg1 0000 1111:1101 0101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1101 0101: mod mmxreg r/m

POR – Bitwise Or

mmxreg2 to mmxreg1 0000 1111:1110 1011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1110 1011: mod mmxreg r/m

PSLL2 – Packed shift left logical

mmxreg1 by mmxreg2 0000 1111:1111 00gg: 11 mmxreg1 mmxreg2

mmxreg by memory 0000 1111:1111 00gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:0111 00gg: 11 110 mmxreg: imm8 data

PSRA2 – Packed shift right arithmetic

mmxreg1 by mmxreg2 0000 1111:1110 00gg: 11 mmxreg1 mmxreg2

mmxreg by memory 0000 1111:1110 00gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:0111 00gg: 11 100 mmxreg: imm8 data

PSRL2 – Packed shift right logical

mmxreg1 by mmxreg2 0000 1111:1101 00gg: 11 mmxreg1 mmxreg2

   mmxreg by memory 0000 1111:1101 00gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:0111 00gg: 11 010 mmxreg: imm8 data

PSUB – Subtract with wrap-around

mmxreg2 from mmxreg1 0000 1111:1111 10gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:1111 10gg: mod mmxreg r/m

PSUBS – Subtract signed with saturation

mmxreg2 from mmxreg1 0000 1111:1110 10gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:1110 10gg: mod mmxreg r/m

PSUBUS – Subtract unsigned with saturation

mmxreg2 from mmxreg1 0000 1111:1101 10gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:1101 10gg: mod mmxreg r/m

PUNPCKH – Unpack high data to next larger type

mmxreg2 to mmxreg1 0000 1111:0110 10gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 10gg: mod mmxreg r/m

PUNPCKL – Unpack low data to next larger type

mmxreg2 to mmxreg1 0000 1111:0110 00gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 00gg: mod mmxreg r/m

Table B-19.  MMX Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding
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B.6 PROCESSOR EXTENDED STATE INSTRUCTION FORMATS AND ENCODINGS 

Table B-20 shows the formats and encodings for several instructions that relate to processor extended state 
management.

  

B.7 P6 FAMILY INSTRUCTION FORMATS AND ENCODINGS 

Table B-20 shows the formats and encodings for several instructions that were introduced into the IA-32 architec-
ture in the P6 family processors.

  

PXOR – Bitwise Xor

mmxreg2 to mmxreg1 0000 1111:1110 1111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1110 1111: mod mmxreg r/m

NOTES:

1. The pack instructions perform saturation from signed packed data of one type to signed or unsigned data of the next smaller type.

2. The format of the shift instructions has one additional format to support shifting by immediate shift-counts. The shift operations 
are not supported equally for all data types.

Table B-20.  Formats and Encodings of XSAVE/XRSTOR/XGETBV/XSETBV Instructions

Instruction and Format Encoding

XGETBV – Get Value of Extended Control Register 0000 1111:0000 0001: 1101 0000

XRSTOR – Restore Processor Extended States1 0000 1111:1010 1110: modA 101 r/m

XSAVE – Save Processor Extended States1 0000 1111:1010 1110: modA 100 r/m

XSETBV – Set Extended Control Register 0000 1111:0000 0001: 1101 0001

NOTES:

1.   For XSAVE and XRSTOR, “mod = 11” is reserved.

Table B-21.  Formats and Encodings of P6 Family Instructions 

Instruction and Format Encoding

CMOVcc – Conditional Move

register2 to  register1 0000 1111: 0100 tttn : 11 reg1 reg2

memory to register  0000 1111 : 0100 tttn : mod reg r/m

FCMOVcc – Conditional Move on EFLAG Register Condition 
Codes

move if below (B) 11011 010 : 11 000 ST(i)

move if equal (E) 11011 010 : 11 001 ST(i)

move if below or equal (BE) 11011 010 : 11 010 ST(i)

move if unordered (U) 11011 010 : 11 011 ST(i)

move if not below (NB) 11011 011 : 11 000 ST(i)

move if not equal (NE) 11011 011 : 11 001 ST(i)

Table B-19.  MMX Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding
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B.8 SSE INSTRUCTION FORMATS AND ENCODINGS 

The SSE instructions use the ModR/M format and are preceded by the 0FH prefix byte. In general, operations are 
not duplicated to provide two directions (that is, separate load and store variants).

The following three tables (Tables B-22, B-23, and B-24) show the formats and encodings for the SSE SIMD 
floating-point, SIMD integer, and cacheability and memory ordering instructions, respectively. Some SSE instruc-
tions require a mandatory prefix (66H, F2H, F3H) as part of the two-byte opcode. Mandatory prefixes are included 
in the tables.

move if not below or equal (NBE) 11011 011 : 11 010 ST(i)

move if not unordered (NU) 11011 011 : 11 011 ST(i)

FCOMI – Compare Real and Set EFLAGS 11011 011 : 11 110 ST(i)

FXRSTOR – Restore x87 FPU, MMX, SSE, and SSE2 State1 0000 1111:1010 1110: modA 001 r/m

FXSAVE – Save x87 FPU, MMX, SSE, and SSE2 State1 0000 1111:1010 1110: modA 000 r/m

SYSENTER – Fast System Call 0000 1111:0011 0100

SYSEXIT – Fast Return from Fast System Call 0000 1111:0011 0101

NOTES:

1.   For  FXSAVE and FXRSTOR, “mod = 11” is reserved.

Table B-22.  Formats and Encodings of SSE Floating-Point Instructions 

Instruction and Format Encoding

ADDPS—Add Packed Single-Precision Floating-Point 
Values

   xmmreg2 to xmmreg1 0000 1111:0101 1000:11 xmmreg1 xmmreg2 

   mem to xmmreg 0000 1111:0101 1000:  mod xmmreg r/m

ADDSS—Add Scalar Single-Precision Floating-Point 
Values

   xmmreg2 to xmmreg1 1111 0011:0000 1111:01011000:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0011:0000 1111:01011000: mod xmmreg r/m

ANDNPS—Bitwise Logical AND NOT of Packed Single-
Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 0101:11 xmmreg1 xmmreg2

   mem to xmmreg 0000 1111:0101 0101:  mod xmmreg r/m

ANDPS—Bitwise Logical AND of Packed Single-
Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 0100:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 0100:  mod xmmreg r/m

CMPPS—Compare Packed Single-Precision Floating-
Point Values

   xmmreg2 to xmmreg1, imm8 0000 1111:1100 0010:11 xmmreg1 xmmreg2: imm8

   mem to xmmreg, imm8 0000 1111:1100 0010:  mod xmmreg r/m: imm8

CMPSS—Compare Scalar Single-Precision Floating-
Point Values

Table B-21.  Formats and Encodings of P6 Family Instructions  (Contd.)

Instruction and Format Encoding
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   xmmreg2 to xmmreg1, imm8 1111 0011:0000 1111:1100 0010:11 xmmreg1 xmmreg2: imm8

   mem to xmmreg, imm8 1111 0011:0000 1111:1100 0010: mod xmmreg r/m: imm8

COMISS—Compare Scalar Ordered Single-Precision 
Floating-Point Values and Set EFLAGS

   xmmreg2 to xmmreg1 0000 1111:0010 1111:11 xmmreg1 xmmreg2

   mem to xmmreg 0000 1111:0010 1111:  mod xmmreg r/m

CVTPI2PS—Convert Packed Doubleword Integers to 
Packed Single-Precision Floating-Point Values

  mmreg to xmmreg 0000 1111:0010 1010:11 xmmreg1 mmreg1

  mem to xmmreg 0000 1111:0010 1010:  mod xmmreg r/m

CVTPS2PI—Convert Packed Single-Precision Floating-
Point Values to Packed Doubleword Integers

  xmmreg to mmreg 0000 1111:0010 1101:11 mmreg1 xmmreg1

  mem to mmreg 0000 1111:0010 1101:  mod mmreg r/m

CVTSI2SS—Convert Doubleword Integer to Scalar 
Single-Precision Floating-Point Value

  r32 to xmmreg1 1111 0011:0000 1111:00101010:11 xmmreg1 r32

  mem to xmmreg 1111 0011:0000 1111:00101010: mod xmmreg r/m

CVTSS2SI—Convert Scalar Single-Precision Floating-
Point Value to Doubleword Integer

  xmmreg to r32 1111 0011:0000 1111:0010 1101:11 r32 xmmreg

  mem to r32 1111 0011:0000 1111:0010 1101: mod r32 r/m

CVTTPS2PI—Convert with Truncation Packed Single-
Precision Floating-Point Values to Packed Doubleword 
Integers

  xmmreg to mmreg 0000 1111:0010 1100:11 mmreg1 xmmreg1

  mem to mmreg 0000 1111:0010 1100:  mod mmreg r/m

CVTTSS2SI—Convert with Truncation Scalar Single-
Precision Floating-Point Value to Doubleword Integer

  xmmreg to r32 1111 0011:0000 1111:0010 1100:11 r32 xmmreg1

  mem to r32 1111 0011:0000 1111:0010 1100: mod r32 r/m

DIVPS—Divide Packed Single-Precision Floating-Point 
Values

  xmmreg2 to xmmreg1 0000 1111:0101 1110:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 1110:  mod xmmreg r/m

DIVSS—Divide Scalar Single-Precision Floating-Point 
Values

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1110:11 xmmreg1 xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0101 1110: mod xmmreg r/m

LDMXCSR—Load  MXCSR Register State

  m32 to MXCSR 0000 1111:1010 1110:modA 010 mem

MAXPS—Return Maximum Packed Single-Precision 
Floating-Point Values

Table B-22.  Formats and Encodings of SSE Floating-Point Instructions  (Contd.)

Instruction and Format Encoding
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  xmmreg2 to xmmreg1 0000 1111:0101 1111:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 1111: mod xmmreg r/m

MAXSS—Return Maximum Scalar Double-Precision 
Floating-Point Value

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1111:11 xmmreg1 xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0101 1111: mod xmmreg r/m

MINPS—Return Minimum Packed Double-Precision 
Floating-Point 
Values

  xmmreg2 to xmmreg1 0000 1111:0101 1101:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 1101: mod xmmreg r/m

MINSS—Return Minimum Scalar Double-Precision 
Floating-Point Value

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1101:11 xmmreg1 xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0101 1101: mod xmmreg r/m

MOVAPS—Move Aligned Packed 
Single-Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0010 1000:11 xmmreg2 xmmreg1

  mem to xmmreg1 0000 1111:0010 1000: mod xmmreg r/m

  xmmreg1 to xmmreg2 0000 1111:0010 1001:11 xmmreg1 xmmreg2

  xmmreg1 to mem 0000 1111:0010 1001: mod xmmreg r/m

MOVHLPS—Move Packed Single-Precision Floating-
Point Values High to Low

  xmmreg2 to xmmreg1 0000 1111:0001 0010:11 xmmreg1 xmmreg2

MOVHPS—Move High Packed Single-Precision 
Floating-Point Values

  mem to xmmreg 0000 1111:0001 0110: mod xmmreg r/m

  xmmreg to mem 0000 1111:0001 0111: mod xmmreg r/m

MOVLHPS—Move Packed Single-Precision Floating-
Point Values Low to High

  xmmreg2 to xmmreg1 0000 1111:00010110:11 xmmreg1 xmmreg2

MOVLPS—Move Low Packed Single-Precision Floating-
Point Values

  mem to xmmreg 0000 1111:0001 0010: mod xmmreg r/m

  xmmreg to mem 0000 1111:0001 0011: mod xmmreg r/m

MOVMSKPS—Extract Packed Single-Precision Floating-
Point Sign Mask

  xmmreg to r32 0000 1111:0101 0000:11 r32 xmmreg

MOVSS—Move Scalar Single-Precision Floating-Point 
Values

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0001 0000:11 xmmreg2 xmmreg1

  mem to xmmreg1 1111 0011:0000 1111:0001 0000: mod xmmreg r/m

Table B-22.  Formats and Encodings of SSE Floating-Point Instructions  (Contd.)

Instruction and Format Encoding
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  xmmreg1 to xmmreg2 1111 0011:0000 1111:0001 0001:11 xmmreg1 xmmreg2

  xmmreg1 to mem 1111 0011:0000 1111:0001 0001: mod xmmreg r/m

MOVUPS—Move Unaligned Packed Single-Precision 
Floating-Point Values

   xmmreg2 to xmmreg1 0000 1111:0001 0000:11 xmmreg2 xmmreg1

  mem to xmmreg1 0000 1111:0001 0000: mod xmmreg r/m

   xmmreg1 to xmmreg2 0000 1111:0001 0001:11 xmmreg1 xmmreg2

  xmmreg1 to mem 0000 1111:0001 0001: mod xmmreg r/m

MULPS—Multiply Packed Single-Precision Floating-
Point Values

   xmmreg2 to xmmreg1 0000 1111:0101 1001:11 xmmreg1 xmmreg2

   mem to xmmreg 0000 1111:0101 1001: mod xmmreg r/m

MULSS—Multiply Scalar Single-Precision Floating-Point 
Values

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1001:11 xmmreg1 xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0101 1001: mod xmmreg r/m

ORPS—Bitwise Logical OR of Single-Precision Floating-
Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 0110:11 xmmreg1 xmmreg2

   mem to xmmreg 0000 1111:0101 0110: mod xmmreg r/m

RCPPS—Compute Reciprocals of Packed Single-
Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 0011:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 0011: mod xmmreg r/m

RCPSS—Compute Reciprocals of Scalar Single-
Precision Floating-Point Value

  xmmreg2 to xmmreg1 1111 0011:0000 1111:01010011:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0011:0000 1111:01010011: mod xmmreg r/m

RSQRTPS—Compute Reciprocals of Square Roots of 
Packed Single-Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 0010:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 0010: mode xmmreg r/m

RSQRTSS—Compute Reciprocals of Square Roots of 
Scalar Single-Precision Floating-Point Value

   xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 0010:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0011:0000 1111:0101 0010: mod xmmreg r/m

SHUFPS—Shuffle Packed Single-Precision Floating-
Point Values

  xmmreg2 to xmmreg1, imm8 0000 1111:1100 0110:11 xmmreg1 xmmreg2: imm8

  mem to xmmreg, imm8 0000 1111:1100 0110: mod xmmreg r/m: imm8

SQRTPS—Compute Square Roots of Packed Single-
Precision Floating-Point Values

Table B-22.  Formats and Encodings of SSE Floating-Point Instructions  (Contd.)

Instruction and Format Encoding
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  xmmreg2 to xmmreg1 0000 1111:0101 0001:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 0001: mod xmmreg r/m

SQRTSS—Compute Square Root of Scalar Single-
Precision Floating-Point Value

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 0001:11 xmmreg1 xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0101 0001:mod xmmreg r/m

STMXCSR—Store MXCSR Register State

   MXCSR to mem 0000 1111:1010 1110:modA 011 mem

SUBPS—Subtract Packed Single-Precision Floating-
Point Values

  xmmreg2 to xmmreg1 0000 1111:0101 1100:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0101 1100:mod xmmreg r/m

SUBSS—Subtract Scalar Single-Precision Floating-
Point Values

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1100:11 xmmreg1 xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0101 1100:mod xmmreg r/m

UCOMISS—Unordered Compare Scalar Ordered Single-
Precision Floating-Point Values and Set EFLAGS

  xmmreg2 to xmmreg1 0000 1111:0010 1110:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0010 1110: mod xmmreg r/m

UNPCKHPS—Unpack and Interleave High Packed 
Single-Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0001 0101:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0001 0101: mod xmmreg r/m

UNPCKLPS—Unpack and Interleave Low Packed 
Single-Precision Floating-Point Values

  xmmreg2 to xmmreg1 0000 1111:0001 0100:11 xmmreg1 xmmreg2

  mem to xmmreg 0000 1111:0001 0100: mod xmmreg r/m

XORPS—Bitwise Logical XOR of Single-Precision 
Floating-Point Values

   xmmreg2 to xmmreg1 0000 1111:0101 0111:11 xmmreg1 xmmreg2

   mem to xmmreg 0000 1111:0101 0111: mod xmmreg r/m

Table B-22.  Formats and Encodings of SSE Floating-Point Instructions  (Contd.)

Instruction and Format Encoding
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Table B-23.  Formats and Encodings of SSE Integer Instructions

Instruction and Format Encoding

PAVGB/PAVGW—Average Packed Integers

   mmreg2 to mmreg1 0000 1111:1110 0000:11 mmreg1 mmreg2

0000 1111:1110 0011:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1110 0000: mod mmreg r/m

0000 1111:1110 0011: mod mmreg r/m

PEXTRW—Extract Word

  mmreg to reg32, imm8 0000 1111:1100 0101:11 r32 mmreg: imm8

PINSRW—Insert Word

  reg32 to mmreg, imm8 0000 1111:1100 0100:11 mmreg r32: imm8

  m16 to mmreg, imm8 0000 1111:1100 0100: mod mmreg r/m: imm8

PMAXSW—Maximum of Packed Signed Word Integers

  mmreg2 to mmreg1 0000 1111:1110 1110:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1110 1110: mod mmreg r/m

PMAXUB—Maximum of Packed Unsigned Byte Integers

  mmreg2 to mmreg1 0000 1111:1101 1110:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1101 1110: mod mmreg r/m

PMINSW—Minimum of Packed Signed Word Integers

   mmreg2 to mmreg1 0000 1111:1110 1010:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1110 1010: mod mmreg r/m

PMINUB—Minimum of Packed Unsigned Byte Integers

   mmreg2 to mmreg1 0000 1111:1101 1010:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1101 1010: mod mmreg r/m

PMOVMSKB—Move Byte Mask To Integer

   mmreg to reg32 0000 1111:1101 0111:11 r32 mmreg

PMULHUW—Multiply Packed Unsigned Integers and Store High 
Result

  mmreg2 to mmreg1 0000 1111:1110 0100:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1110 0100: mod mmreg r/m

PSADBW—Compute Sum of Absolute Differences

  mmreg2 to mmreg1 0000 1111:1111 0110:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1111 0110: mod mmreg r/m

PSHUFW—Shuffle Packed Words

   mmreg2 to mmreg1, imm8 0000 1111:0111 0000:11 mmreg1 mmreg2: imm8

   mem to mmreg, imm8 0000 1111:0111 0000: mod mmreg r/m: imm8
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B.9 SSE2 INSTRUCTION FORMATS AND ENCODINGS 

The SSE2 instructions use the ModR/M format and are preceded by the 0FH prefix byte. In general, operations are 
not duplicated to provide two directions (that is, separate load and store variants).

The following three tables show the formats and encodings for the SSE2 SIMD floating-point, SIMD integer, and 
cacheability instructions, respectively. Some SSE2 instructions require a mandatory prefix (66H, F2H, F3H) as part 
of the two-byte opcode. These prefixes are included in the tables.

B.9.1  Granularity Field (gg)

The granularity field (gg) indicates the size of the packed operands that the instruction is operating on. When this 
field is used, it is located in bits 1 and 0 of the second opcode byte. Table B-25 shows the encoding of this gg field.

Table B-24.  Format and Encoding of SSE Cacheability & Memory Ordering Instructions  

Instruction and Format Encoding

MASKMOVQ—Store Selected Bytes of Quadword

   mmreg2 to mmreg1 0000 1111:1111 0111:11 mmreg1 mmreg2

MOVNTPS—Store Packed Single-Precision Floating-Point Values Using 
Non-Temporal Hint

   xmmreg to mem 0000 1111:0010 1011: mod xmmreg r/m

MOVNTQ—Store Quadword Using Non-Temporal Hint

   mmreg to mem 0000 1111:1110 0111: mod mmreg r/m

PREFETCHT0—Prefetch Temporal to All Cache Levels 0000 1111:0001 1000:modA 001 mem

PREFETCHT1—Prefetch Temporal to First Level Cache 0000 1111:0001 1000:modA 010 mem

PREFETCHT2—Prefetch Temporal to Second Level Cache 0000 1111:0001 1000:modA 011 mem

PREFETCHNTA—Prefetch Non-Temporal to All Cache Levels 0000 1111:0001 1000:modA 000 mem

SFENCE—Store Fence 0000 1111:1010 1110:11 111 000

Table B-25.  Encoding of Granularity of Data Field (gg)

gg Granularity of Data

00 Packed Bytes

01 Packed Words

10 Packed Doublewords

11 Quadword
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Table B-26.  Formats and Encodings of SSE2 Floating-Point Instructions

Instruction and Format Encoding

ADDPD—Add Packed Double-Precision Floating-
Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1000:11 xmmreg1 xmmreg2 

  mem to xmmreg 0110 0110:0000 1111:0101 1000:  mod xmmreg r/m

ADDSD—Add Scalar Double-Precision Floating-Point 
Values

  xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1000:11 xmmreg1 xmmreg2

  mem to xmmreg 1111 0010:0000 1111:0101 1000: mod xmmreg r/m

ANDNPD—Bitwise Logical AND NOT of Packed 
Double-Precision Floating-Point Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0101:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0101 0101:  mod xmmreg r/m

ANDPD—Bitwise Logical AND of Packed Double-
Precision Floating-Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0100:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0101 0100:  mod xmmreg r/m

CMPPD—Compare Packed Double-Precision 
Floating-Point Values

  xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:1100 0010:11 xmmreg1 xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:1100 0010:  mod xmmreg r/m: imm8

CMPSD—Compare Scalar Double-Precision Floating-
Point Values

  xmmreg2 to xmmreg1, imm8 1111 0010:0000 1111:1100 0010:11 xmmreg1 xmmreg2: imm8

  mem to xmmreg, imm8 11110 010:0000 1111:1100 0010: mod xmmreg r/m: imm8

COMISD—Compare Scalar Ordered Double-Precision 
Floating-Point Values and Set EFLAGS

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0010 1111:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0010 1111:  mod xmmreg r/m

CVTPI2PD—Convert Packed Doubleword Integers to 
Packed Double-Precision Floating-Point Values

   mmreg to xmmreg 0110 0110:0000 1111:0010 1010:11 xmmreg1 mmreg1

   mem to xmmreg 0110 0110:0000 1111:0010 1010:  mod xmmreg r/m

CVTPD2PI—Convert Packed Double-Precision 
Floating-Point Values to Packed Doubleword 
Integers

  xmmreg to mmreg 0110 0110:0000 1111:0010 1101:11 mmreg1 xmmreg1

  mem to mmreg 0110 0110:0000 1111:0010 1101:  mod mmreg r/m

CVTSI2SD—Convert Doubleword Integer to Scalar 
Double-Precision Floating-Point Value

  r32 to xmmreg1 1111 0010:0000 1111:0010 1010:11 xmmreg r32

  mem to xmmreg 1111 0010:0000 1111:0010 1010: mod xmmreg r/m

CVTSD2SI—Convert Scalar Double-Precision 
Floating-Point Value to Doubleword Integer
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  xmmreg to r32 1111 0010:0000 1111:0010 1101:11 r32 xmmreg

  mem to r32 1111 0010:0000 1111:0010 1101: mod r32 r/m

CVTTPD2PI—Convert with Truncation Packed 
Double-Precision Floating-Point Values to Packed 
Doubleword Integers

  xmmreg to mmreg 0110 0110:0000 1111:0010 1100:11 mmreg xmmreg

   mem to mmreg 0110 0110:0000 1111:0010 1100:  mod mmreg r/m

CVTTSD2SI—Convert with 
Truncation Scalar Double-Precision Floating-Point 
Value to Doubleword Integer

  xmmreg to r32 1111 0010:0000 1111:0010 1100:11 r32 xmmreg

  mem to r32 1111 0010:0000 1111:0010 1100: mod r32 r/m

CVTPD2PS—Covert Packed Double-Precision 
Floating-Point Values to Packed Single-Precision 
Floating-Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1010:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0101 1010:  mod xmmreg r/m

CVTPS2PD—Covert Packed Single-Precision 
Floating-Point Values to Packed Double-Precision 
Floating-Point Values

   xmmreg2 to xmmreg1 0000 1111:0101 1010:11 xmmreg1 xmmreg2

   mem to xmmreg 0000 1111:0101 1010:  mod xmmreg r/m

CVTSD2SS—Covert Scalar Double-Precision 
Floating-Point Value to Scalar Single-Precision 
Floating-Point Value

   xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1010:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0010:0000 1111:0101 1010:  mod xmmreg r/m

CVTSS2SD—Covert Scalar Single-Precision Floating-
Point Value to Scalar Double-Precision Floating-
Point Value

   xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1010:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0011:00001 111:0101 1010:  mod xmmreg r/m

CVTPD2DQ—Convert Packed Double-Precision 
Floating-Point Values to Packed Doubleword 
Integers

   xmmreg2 to xmmreg1 1111 0010:0000 1111:1110 0110:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0010:0000 1111:1110 0110:  mod xmmreg r/m

CVTTPD2DQ—Convert With Truncation Packed 
Double-Precision Floating-Point Values to Packed 
Doubleword Integers

   xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0110:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:1110 0110:  mod xmmreg r/m

Table B-26.  Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding
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CVTDQ2PD—Convert  Packed Doubleword Integers 
to Packed Single-Precision Floating-Point Values

   xmmreg2 to xmmreg1 1111 0011:0000 1111:1110 0110:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0011:0000 1111:1110 0110:  mod xmmreg r/m

CVTPS2DQ—Convert Packed Single-Precision 
Floating-Point Values to Packed Doubleword 
Integers

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1011:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0101 1011:  mod xmmreg r/m

CVTTPS2DQ—Convert With Truncation Packed 
Single-Precision Floating-Point Values to Packed 
Doubleword Integers

   xmmreg2 to xmmreg1 1111 0011:0000 1111:0101 1011:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0011:0000 1111:0101 1011:  mod xmmreg r/m

CVTDQ2PS—Convert  Packed Doubleword Integers 
to Packed Double-Precision Floating-Point Values

   xmmreg2 to xmmreg1 0000 1111:0101 1011:11 xmmreg1 xmmreg2

   mem to xmmreg 0000 1111:0101 1011:  mod xmmreg r/m

DIVPD—Divide Packed Double-Precision Floating-
Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1110:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0101 1110:  mod xmmreg r/m

DIVSD—Divide Scalar Double-Precision Floating-
Point Values

   xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1110:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0010:0000 1111:0101 1110: mod xmmreg r/m

MAXPD—Return Maximum Packed Double-Precision 
Floating-Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1111:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0101 1111: mod xmmreg r/m

MAXSD—Return Maximum Scalar Double-Precision 
Floating-Point Value

   xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1111:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0010:0000 1111:0101 1111: mod xmmreg r/m

MINPD—Return Minimum Packed Double-Precision 
Floating-Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1101:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0101 1101: mod xmmreg r/m

MINSD—Return Minimum Scalar Double-Precision 
Floating-Point Value

   xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1101:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0010:0000 1111:0101 1101: mod xmmreg r/m

Table B-26.  Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding
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MOVAPD—Move Aligned Packed Double-Precision 
Floating-Point Values

   xmmreg1 to xmmreg2 0110 0110:0000 1111:0010 1001:11 xmmreg2 xmmreg1

   xmmreg1 to mem 0110 0110:0000 1111:0010 1001: mod xmmreg r/m

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0010 1000:11 xmmreg1 xmmreg2

   mem to xmmreg1 0110 0110:0000 1111:0010 1000: mod xmmreg r/m

MOVHPD—Move High Packed Double-Precision 
Floating-Point Values

   xmmreg to mem 0110 0110:0000 1111:0001 0111: mod xmmreg r/m

   mem to xmmreg 0110 0110:0000 1111:0001 0110: mod xmmreg r/m

MOVLPD—Move Low Packed Double-Precision 
Floating-Point Values

   xmmreg to mem 0110 0110:0000 1111:0001 0011: mod xmmreg r/m

   mem to xmmreg 0110 0110:0000 1111:0001 0010: mod xmmreg r/m

MOVMSKPD—Extract Packed Double-Precision 
Floating-Point Sign Mask

   xmmreg to r32 0110 0110:0000 1111:0101 0000:11 r32 xmmreg

MOVSD—Move Scalar Double-Precision Floating-
Point Values

   xmmreg1 to xmmreg2 1111 0010:0000 1111:0001 0001:11 xmmreg2 xmmreg1

   xmmreg1 to mem 1111 0010:0000 1111:0001 0001: mod xmmreg r/m

   xmmreg2 to xmmreg1 1111 0010:0000 1111:0001 0000:11 xmmreg1 xmmreg2

   mem to xmmreg1 1111 0010:0000 1111:0001 0000: mod xmmreg r/m

MOVUPD—Move Unaligned Packed Double-
Precision Floating-Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0001 0001:11 xmmreg2 xmmreg1

  mem to xmmreg1 0110 0110:0000 1111:0001 0001: mod xmmreg r/m

  xmmreg1 to xmmreg2 0110 0110:0000 1111:0001 0000:11 xmmreg1 xmmreg2

   xmmreg1 to mem 0110 0110:0000 1111:0001 0000: mod xmmreg r/m

MULPD—Multiply Packed Double-Precision Floating-
Point Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1001:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0101 1001: mod xmmreg r/m

MULSD—Multiply Scalar Double-Precision Floating-
Point Values

   xmmreg2 to xmmreg1 1111 0010:00001111:01011001:11 xmmreg1 xmmreg2

   mem to xmmreg 1111 0010:00001111:01011001: mod xmmreg r/m

ORPD—Bitwise Logical OR of 
Double-Precision Floating-Point Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0110:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0101 0110: mod xmmreg r/m

Table B-26.  Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding
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SHUFPD—Shuffle Packed Double-Precision 
Floating-Point Values

  xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:1100 0110:11 xmmreg1 xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:1100 0110: mod xmmreg r/m: imm8

SQRTPD—Compute Square Roots of Packed Double-
Precision Floating-Point Values

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0001:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0101 0001: mod xmmreg r/m

SQRTSD—Compute Square Root of Scalar Double-
Precision Floating-Point Value

  xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 0001:11 xmmreg1 xmmreg2

  mem to xmmreg 1111 0010:0000 1111:0101 0001: mod xmmreg r/m

SUBPD—Subtract Packed Double-Precision 
Floating-Point Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 1100:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0101 1100: mod xmmreg r/m

SUBSD—Subtract Scalar Double-Precision Floating-
Point Values

  xmmreg2 to xmmreg1 1111 0010:0000 1111:0101 1100:11 xmmreg1 xmmreg2

  mem to xmmreg 1111 0010:0000 1111:0101 1100: mod xmmreg r/m

UCOMISD—Unordered Compare Scalar Ordered 
Double-Precision Floating-Point Values and Set 
EFLAGS

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0010 1110:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0010 1110: mod xmmreg r/m

UNPCKHPD—Unpack and Interleave High Packed 
Double-Precision Floating-Point Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0001 0101:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0001 0101: mod xmmreg r/m

UNPCKLPD—Unpack and Interleave Low Packed 
Double-Precision Floating-Point Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0001 0100:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0001 0100: mod xmmreg r/m

XORPD—Bitwise Logical OR of Double-Precision 
Floating-Point Values

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0101 0111:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0101 0111: mod xmmreg r/m

Table B-26.  Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format Encoding
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Table B-27.  Formats and Encodings of SSE2 Integer Instructions

Instruction and Format Encoding

MOVD—Move Doubleword

   reg to xmmreg 0110 0110:0000 1111:0110 1110: 11 xmmreg reg

reg from xmmreg 0110 0110:0000 1111:0111 1110: 11 xmmreg reg

mem to xmmreg 0110 0110:0000 1111:0110 1110: mod xmmreg r/m

mem from xmmreg 0110 0110:0000 1111:0111 1110: mod xmmreg r/m

MOVDQA—Move Aligned Double Quadword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1111:11 xmmreg1 xmmreg2

  xmmreg2 from xmmreg1 0110 0110:0000 1111:0111 1111:11 xmmreg1 xmmreg2

   mem to xmmreg 0110 0110:0000 1111:0110 1111: mod xmmreg r/m

   mem from xmmreg 0110 0110:0000 1111:0111 1111: mod xmmreg r/m

MOVDQU—Move Unaligned Double Quadword

  xmmreg2 to xmmreg1 1111 0011:0000 1111:0110 1111:11 xmmreg1 xmmreg2

xmmreg2 from xmmreg1 1111 0011:0000 1111:0111 1111:11 xmmreg1 xmmreg2

  mem to xmmreg 1111 0011:0000 1111:0110 1111: mod xmmreg r/m

   mem from xmmreg 1111 0011:0000 1111:0111 1111: mod xmmreg r/m

MOVQ2DQ—Move Quadword from MMX to XMM 
Register

   mmreg to xmmreg 1111 0011:0000 1111:1101 0110:11 mmreg1 mmreg2

MOVDQ2Q—Move Quadword from XMM to MMX 
Register

   xmmreg to mmreg 1111 0010:0000 1111:1101 0110:11 mmreg1 mmreg2

MOVQ—Move Quadword

xmmreg2 to xmmreg1 1111 0011:0000 1111:0111 1110: 11 xmmreg1 xmmreg2

xmmreg2 from xmmreg1 0110 0110:0000 1111:1101 0110: 11 xmmreg1 xmmreg2

mem to xmmreg 1111 0011:0000 1111:0111 1110: mod xmmreg r/m

mem from xmmreg 0110 0110:0000 1111:1101 0110: mod xmmreg r/m

PACKSSDW1—Pack Dword To Word Data (signed 
with saturation)

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1011: 11 xmmreg1 xmmreg2

  memory to xmmreg 0110 0110:0000 1111:0110 1011: mod xmmreg r/m

PACKSSWB—Pack  Word To Byte Data (signed with 
saturation)

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 0011: 11 xmmreg1 xmmreg2

   memory to xmmreg 0110 0110:0000 1111:0110 0011: mod xmmreg r/m

PACKUSWB—Pack Word To Byte Data (unsigned 
with saturation)

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 0111: 11 xmmreg1 xmmreg2

  memory to xmmreg 0110 0110:0000 1111:0110 0111: mod xmmreg r/m

PADDQ—Add Packed Quadword Integers

   mmreg2 to mmreg1 0000 1111:1101 0100:11 mmreg1 mmreg2
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  mem to mmreg 0000 1111:1101 0100: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 0100:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1101 0100: mod xmmreg r/m

PADD—Add With Wrap-around

  xmmreg2 to xmmreg1 0110 0110:0000 1111: 1111 11gg: 11 xmmreg1 xmmreg2

  memory to xmmreg 0110 0110:0000 1111: 1111 11gg: mod xmmreg r/m

PADDS—Add Signed With Saturation

  xmmreg2 to xmmreg1 0110 0110:0000 1111: 1110 11gg: 11 xmmreg1 xmmreg2

  memory to xmmreg 0110 0110:0000 1111: 1110 11gg: mod xmmreg r/m

PADDUS—Add Unsigned With Saturation

  xmmreg2 to xmmreg1 0110 0110:0000 1111: 1101 11gg: 11 xmmreg1 xmmreg2

  memory to xmmreg 0110 0110:0000 1111: 1101 11gg: mod xmmreg r/m

PAND—Bitwise And

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1011: 11 xmmreg1 xmmreg2

  memory to xmmreg 0110 0110:0000 1111:1101 1011: mod xmmreg r/m

PANDN—Bitwise AndNot

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1111: 11 xmmreg1 xmmreg2

  memory to xmmreg 0110 0110:0000 1111:1101 1111: mod xmmreg r/m

PAVGB—Average Packed Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:11100 000:11 xmmreg1 xmmreg2

  mem to xmmreg 01100110:00001111:11100000 mod xmmreg r/m

PAVGW—Average Packed Integers

   xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0011:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1110 0011 mod xmmreg r/m

PCMPEQ—Packed Compare For Equality

  xmmreg1 with xmmreg2 0110 0110:0000 1111:0111 01gg: 11 xmmreg1 xmmreg2

  xmmreg with memory 0110 0110:0000 1111:0111 01gg: mod xmmreg r/m

PCMPGT—Packed Compare Greater (signed)

  xmmreg1 with xmmreg2 0110 0110:0000 1111:0110 01gg: 11 xmmreg1 xmmreg2

  xmmreg with memory 0110 0110:0000 1111:0110 01gg: mod xmmreg r/m

PEXTRW—Extract Word

  xmmreg to reg32, imm8 0110 0110:0000 1111:1100 0101:11 r32 xmmreg: imm8

PINSRW—Insert Word

  reg32 to xmmreg, imm8 0110 0110:0000 1111:1100 0100:11 xmmreg r32: imm8

   m16 to xmmreg, imm8 0110 0110:0000 1111:1100 0100: mod xmmreg r/m: imm8

PMADDWD—Packed Multiply Add

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 0101: 11 xmmreg1 xmmreg2

  memory to xmmreg 0110 0110:0000 1111:1111 0101: mod xmmreg r/m

Table B-27.  Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding
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PMAXSW—Maximum of Packed Signed Word 
Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1110:11 xmmreg1 xmmreg2

  mem to xmmreg 01100110:00001111:11101110: mod xmmreg r/m

PMAXUB—Maximum of Packed Unsigned Byte 
Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1110:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1101 1110: mod xmmreg r/m

PMINSW—Minimum of Packed Signed Word Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1010:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1110 1010: mod xmmreg r/m

PMINUB—Minimum of Packed Unsigned Byte 
Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1010:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1101 1010 mod xmmreg r/m

PMOVMSKB—Move Byte Mask To Integer

  xmmreg to reg32 0110 0110:0000 1111:1101 0111:11 r32 xmmreg

PMULHUW—Packed multiplication, store high word 
(unsigned)

   xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0100: 11 xmmreg1 xmmreg2

   memory to xmmreg 0110 0110:0000 1111:1110 0100: mod xmmreg r/m

PMULHW—Packed Multiplication, store high word

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0101: 11 xmmreg1 xmmreg2

  memory to xmmreg 0110 0110:0000 1111:1110 0101: mod xmmreg r/m

PMULLW—Packed Multiplication, store low word

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 0101: 11 xmmreg1 xmmreg2

  memory to xmmreg 0110 0110:0000 1111:1101 0101: mod xmmreg r/m

PMULUDQ—Multiply Packed Unsigned Doubleword 
Integers

  mmreg2 to mmreg1 0000 1111:1111 0100:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:1111 0100: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:00001111:1111 0100:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:00001111:1111 0100: mod xmmreg r/m

POR—Bitwise Or

   xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1011: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1110 1011: mod xmmreg r/m

PSADBW—Compute Sum of Absolute Differences

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 0110:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1111 0110: mod xmmreg r/m

PSHUFLW—Shuffle Packed Low Words

Table B-27.  Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding
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  xmmreg2 to xmmreg1, imm8 1111 0010:0000 1111:0111 0000:11 xmmreg1 xmmreg2: imm8

  mem to xmmreg, imm8 1111 0010:0000 1111:0111 0000:11 mod xmmreg r/m: imm8

PSHUFHW—Shuffle Packed High Words

  xmmreg2 to xmmreg1, imm8 1111 0011:0000 1111:0111 0000:11 xmmreg1 xmmreg2: imm8

  mem to xmmreg, imm8 1111 0011:0000 1111:0111 0000: mod xmmreg r/m: imm8

PSHUFD—Shuffle Packed Doublewords

  xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0111 0000:11 xmmreg1 xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:0111 0000: mod xmmreg r/m: imm8

PSLLDQ—Shift Double Quadword Left Logical

  xmmreg, imm8 0110 0110:0000 1111:0111 0011:11 111 xmmreg: imm8

PSLL—Packed Shift Left Logical

  xmmreg1 by xmmreg2 0110 0110:0000 1111:1111 00gg: 11 xmmreg1 xmmreg2

  xmmreg by memory 0110 0110:0000 1111:1111 00gg: mod xmmreg r/m

  xmmreg by immediate 0110 0110:0000 1111:0111 00gg: 11 110 xmmreg: imm8 

PSRA—Packed Shift Right Arithmetic

  xmmreg1 by xmmreg2 0110 0110:0000 1111:1110 00gg: 11 xmmreg1 xmmreg2

  xmmreg by memory 0110 0110:0000 1111:1110 00gg: mod xmmreg r/m

  xmmreg by immediate 0110 0110:0000 1111:0111 00gg: 11 100 xmmreg: imm8 

PSRLDQ—Shift Double Quadword Right Logical

  xmmreg, imm8 0110 0110:00001111:01110011:11 011 xmmreg: imm8

PSRL—Packed Shift Right Logical

  xmmreg1 by xmmreg2 0110 0110:0000 1111:1101 00gg: 11 xmmreg1 xmmreg2

  xmmreg by memory 0110 0110:0000 1111:1101 00gg: mod xmmreg r/m

  xmmreg by immediate 0110 0110:0000 1111:0111 00gg: 11 010 xmmreg: imm8 

PSUBQ—Subtract Packed Quadword Integers

  mmreg2 to mmreg1 0000 1111:11111 011:11 mmreg1 mmreg2

   mem to mmreg 0000 1111:1111 1011: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 1011:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:1111 1011: mod xmmreg r/m

PSUB—Subtract With Wrap-around

  xmmreg2 from xmmreg1 0110 0110:0000 1111:1111 10gg: 11 xmmreg1 xmmreg2

  memory from xmmreg 0110 0110:0000 1111:1111 10gg: mod xmmreg r/m

PSUBS—Subtract Signed With Saturation

  xmmreg2 from xmmreg1 0110 0110:0000 1111:1110 10gg: 11 xmmreg1 xmmreg2

  memory from xmmreg 0110 0110:0000 1111:1110 10gg: mod xmmreg r/m

PSUBUS—Subtract Unsigned With Saturation

  xmmreg2 from xmmreg1 0000 1111:1101 10gg: 11 xmmreg1 xmmreg2

  memory from xmmreg 0000 1111:1101 10gg: mod xmmreg r/m

Table B-27.  Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding
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PUNPCKH—Unpack High Data To Next Larger Type

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 10gg:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0110 10gg: mod xmmreg r/m

PUNPCKHQDQ—Unpack High Data

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1101:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0110 1101: mod xmmreg r/m

PUNPCKL—Unpack Low Data To Next Larger Type

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 00gg:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0110 00gg: mod xmmreg r/m

PUNPCKLQDQ—Unpack Low Data

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1100:11 xmmreg1 xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0110 1100: mod xmmreg r/m

PXOR—Bitwise Xor

xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1111: 11 xmmreg1 xmmreg2

memory to xmmreg 0110 0110:0000 1111:1110 1111: mod xmmreg r/m

Table B-28.  Format and Encoding of SSE2 Cacheability Instructions

Instruction and Format Encoding

MASKMOVDQU—Store Selected Bytes of Double 
Quadword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 0111:11 xmmreg1 xmmreg2

CLFLUSH—Flush Cache Line

  mem 0000 1111:1010 1110: mod 111 r/m

MOVNTPD—Store Packed Double-Precision 
Floating-Point Values Using Non-Temporal Hint

  xmmreg to mem 0110 0110:0000 1111:0010 1011: mod xmmreg r/m

MOVNTDQ—Store Double Quadword Using Non-
Temporal Hint

  xmmreg to mem 0110 0110:0000 1111:1110 0111: mod xmmreg r/m

MOVNTI—Store Doubleword Using Non-Temporal 
Hint

  reg to mem 0000 1111:1100 0011: mod reg r/m

PAUSE—Spin Loop Hint 1111 0011:1001 0000

LFENCE—Load Fence 0000 1111:1010 1110: 11 101 000

MFENCE—Memory Fence 0000 1111:1010 1110: 11 110 000

Table B-27.  Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format Encoding
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B.10 SSE3 FORMATS AND ENCODINGS TABLE

The tables in this section provide SSE3 formats and encodings. Some SSE3 instructions require a mandatory prefix 
(66H, F2H, F3H) as part of the two-byte opcode. These prefixes are included in the tables.

When in IA-32e mode, use of the REX.R prefix permits instructions that use general purpose and XMM registers to 
access additional registers. Some instructions require the REX.W prefix to promote the instruction to 64-bit oper-
ation. Instructions that require the REX.W prefix are listed (with their opcodes) in Section B.13.

Table B-29.  Formats and Encodings of SSE3 Floating-Point Instructions

Instruction and Format Encoding

ADDSUBPD—Add /Sub packed DP FP numbers from 
XMM2/Mem to XMM1

xmmreg2 to xmmreg1 01100110:00001111:11010000:11 xmmreg1 xmmreg2

mem to xmmreg 01100110:00001111:11010000: mod xmmreg r/m

ADDSUBPS—Add /Sub packed SP FP numbers from 
XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:11010000:11 xmmreg1 xmmreg2

mem to xmmreg 11110010:00001111:11010000: mod xmmreg r/m

HADDPD—Add horizontally packed DP FP numbers 
XMM2/Mem to XMM1

xmmreg2 to xmmreg1 01100110:00001111:01111100:11 xmmreg1 xmmreg2

mem to xmmreg 01100110:00001111:01111100: mod xmmreg r/m

HADDPS—Add horizontally packed SP FP numbers 
XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:01111100:11 xmmreg1 xmmreg2

mem to xmmreg 11110010:00001111:01111100: mod xmmreg r/m

HSUBPD—Sub horizontally packed DP FP numbers 
XMM2/Mem to XMM1 

xmmreg2 to xmmreg1 01100110:00001111:01111101:11 xmmreg1 xmmreg2

mem to xmmreg 01100110:00001111:01111101: mod xmmreg r/m

HSUBPS—Sub horizontally packed SP FP numbers 
XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:01111101:11 xmmreg1 xmmreg2

mem to xmmreg 11110010:00001111:01111101: mod xmmreg r/m

Table B-30.  Formats and Encodings for SSE3 Event Management Instructions 

Instruction and Format Encoding

MONITOR—Set up a linear address range to be monitored 
by hardware

eax, ecx, edx 0000 1111 : 0000 0001:11 001 000

MWAIT—Wait until write-back store performed within the 
range specified by the instruction MONITOR

eax, ecx 0000 1111 : 0000 0001:11 001 001
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B.11 SSSE3 FORMATS AND ENCODING TABLE

The tables in this section provide SSSE3 formats and encodings. Some SSSE3 instructions require a mandatory 
prefix (66H) as part of the three-byte opcode. These prefixes are included in the table below.

 

Table B-31.  Formats and Encodings for SSE3 Integer and Move Instructions 

Instruction and Format Encoding

FISTTP—Store ST in int16 (chop) and pop

m16int 11011 111 : modA 001 r/m

FISTTP—Store ST in int32 (chop) and pop

m32int 11011 011 : modA 001 r/m

FISTTP—Store ST in int64 (chop) and pop

m64int 11011 101 : modA 001 r/m

LDDQU—Load unaligned integer 128-bit

xmm, m128 11110010:00001111:11110000: modA xmmreg r/m

MOVDDUP—Move 64 bits representing one DP data from 
XMM2/Mem to XMM1 and duplicate

xmmreg2 to xmmreg1 11110010:00001111:00010010:11 xmmreg1 xmmreg2

mem to xmmreg 11110010:00001111:00010010: mod xmmreg r/m

MOVSHDUP—Move 128 bits representing 4 SP data from 
XMM2/Mem to XMM1 and duplicate high

xmmreg2 to xmmreg1 11110011:00001111:00010110:11 xmmreg1 xmmreg2

mem to xmmreg 11110011:00001111:00010110: mod xmmreg r/m

MOVSLDUP—Move 128 bits representing 4 SP data from 
XMM2/Mem to XMM1 and duplicate low

xmmreg2 to xmmreg1 11110011:00001111:00010010:11 xmmreg1 xmmreg2

mem to xmmreg 11110011:00001111:00010010: mod xmmreg r/m

Table B-32.  Formats and Encodings for SSSE3 Instructions

Instruction and Format Encoding

PABSB—Packed Absolute Value Bytes

   mmreg2 to mmreg1 0000 1111:0011 1000: 0001 1100:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0001 1100: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0001 1100:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1100: mod xmmreg r/m

PABSD—Packed Absolute Value Double Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0001 1110:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0001 1110: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0001 1110:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1110: mod xmmreg r/m

PABSW—Packed Absolute Value Words
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   mmreg2 to mmreg1 0000 1111:0011 1000: 0001 1101:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0001 1101: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0001 1101:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 1101: mod xmmreg r/m

PALIGNR—Packed Align Right

   mmreg2 to mmreg1, imm8 0000 1111:0011 1010: 0000 1111:11 mmreg1 mmreg2: imm8

  mem to mmreg, imm8 0000 1111:0011 1010: 0000 1111: mod mmreg r/m: imm8

  xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1111:11 xmmreg1 
xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1111: mod xmmreg r/m: 
imm8

PHADDD—Packed Horizontal Add Double Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0010:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0010: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0010:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0010: mod xmmreg r/m

PHADDSW—Packed Horizontal Add and Saturate

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0011:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0011: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0011:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0011: mod xmmreg r/m

PHADDW—Packed Horizontal Add Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0001:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0001: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0001:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0001: mod xmmreg r/m

PHSUBD—Packed Horizontal Subtract Double Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0110:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0110: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0110:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0110: mod xmmreg r/m

PHSUBSW—Packed Horizontal Subtract and Saturate

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0111:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0111: mod mmreg r/m

Table B-32.  Formats and Encodings for SSSE3 Instructions (Contd.)

Instruction and Format Encoding



B-62 Vol. 2C

INSTRUCTION FORMATS AND ENCODINGS

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0111:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0111: mod xmmreg r/m

PHSUBW—Packed Horizontal Subtract Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0101:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0101: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0101:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0101: mod xmmreg r/m

PMADDUBSW—Multiply and Add Packed Signed and 
Unsigned Bytes

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0100:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0100: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0100:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0100: mod xmmreg r/m

PMULHRSW—Packed Multiply HIgn with Round and Scale

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 1011:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 1011: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 1011:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1011: mod xmmreg r/m

PSHUFB—Packed Shuffle Bytes

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 0000:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 0000: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 0000:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 0000: mod xmmreg r/m

PSIGNB—Packed Sign Bytes

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 1000:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 1000: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 1000:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1000: mod xmmreg r/m

PSIGND—Packed Sign Double Words

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 1010:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 1010: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 1010:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1010: mod xmmreg r/m

PSIGNW—Packed Sign Words

Table B-32.  Formats and Encodings for SSSE3 Instructions (Contd.)

Instruction and Format Encoding
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B.12 AESNI AND PCLMULQDQ INSTRUCTION FORMATS AND ENCODINGS 

Table B-33 shows the formats and encodings for AESNI and PCLMULQDQ instructions.

  

   mmreg2 to mmreg1 0000 1111:0011 1000: 0000 1001:11 mmreg1 mmreg2

  mem to mmreg 0000 1111:0011 1000: 0000 1001: mod mmreg r/m

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0000 1001:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0000 1001: mod xmmreg r/m

Table B-33.  Formats and Encodings of AESNI and PCLMULQDQ Instructions

Instruction and Format Encoding

AESDEC—Perform One Round of an AES Decryption Flow

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101 1110:11 xmmreg1 
xmmreg2 

   mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1110: mod xmmreg r/m

AESDECLAST—Perform Last Round of an AES Decryption 
Flow

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101 1111:11 xmmreg1 
xmmreg2 

   mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1111:  mod xmmreg r/m

AESENC—Perform One Round of an AES Encryption Flow

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101 1100:11 xmmreg1 
xmmreg2 

   mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1100:  mod xmmreg r/m

AESENCLAST—Perform Last Round of an AES Encryption 
Flow

   xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101 1101:11 xmmreg1 
xmmreg2 

   mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1101:  mod xmmreg r/m

AESIMC—Perform the AES InvMixColumn Transformation

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000:1101 1011:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000:1101 1011: mod xmmreg r/m

AESKEYGENASSIST—AES Round Key Generation Assist

   xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010:1101 1111:11 xmmreg1 
xmmreg2: imm8

   mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010:1101 1111: mod xmmreg r/m: 
imm8

PCLMULQDQ—Carry-Less Multiplication Quadword

   xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010:0100 0100:11 xmmreg1 
xmmreg2: imm8 

Table B-32.  Formats and Encodings for SSSE3 Instructions (Contd.)

Instruction and Format Encoding
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B.13 SPECIAL ENCODINGS FOR 64-BIT MODE

The following Pentium, P6, MMX, SSE, SSE2, SSE3 instructions are promoted to 64-bit operation in IA-32e mode 
by using REX.W. However, these entries are special cases that do not follow the general rules (specified in Section 
B.4).

   mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010:0100 0100:  mod xmmreg r/m: 
imm8

Table B-34.  Special Case Instructions Promoted Using REX.W

Instruction and Format Encoding

CMOVcc—Conditional Move

register2 to  register1 0100 0R0B 0000 1111: 0100 tttn : 11 reg1 reg2

qwordregister2 to qwordregister1 0100 1R0B 0000 1111: 0100 tttn : 11 qwordreg1 qwordreg2

memory to register  0100 0RXB 0000 1111 : 0100 tttn : mod reg r/m

memory64 to qwordregister 0100 1RXB 0000 1111 : 0100 tttn : mod qwordreg r/m

CVTSD2SI—Convert Scalar Double-Precision Floating-Point 
Value to Doubleword Integer

  xmmreg to r32 0100 0R0B 1111 0010:0000 1111:0010 1101:11 r32 
xmmreg

  xmmreg to r64 0100 1R0B 1111 0010:0000 1111:0010 1101:11 r64 
xmmreg

  mem64 to r32 0100 0R0XB 1111 0010:0000 1111:0010 1101: mod r32 r/m

  mem64 to r64 0100 1RXB 1111 0010:0000 1111:0010 1101: mod r64 r/m

CVTSI2SS—Convert Doubleword Integer to Scalar Single-
Precision Floating-Point Value

  r32 to xmmreg1 0100 0R0B 1111 0011:0000 1111:0010 1010:11 xmmreg 
r32

  r64 to xmmreg1 0100 1R0B 1111 0011:0000 1111:0010 1010:11 xmmreg 
r64

  mem to xmmreg 0100 0RXB 1111 0011:0000 1111:0010 1010: mod xmmreg 
r/m

  mem64 to xmmreg 0100 1RXB 1111 0011:0000 1111:0010 1010: mod xmmreg 
r/m

CVTSI2SD—Convert Doubleword Integer to Scalar Double-
Precision Floating-Point Value

  r32 to xmmreg1 0100 0R0B 1111 0010:0000 1111:0010 1010:11 xmmreg 
r32

  r64 to xmmreg1 0100 1R0B 1111 0010:0000 1111:0010 1010:11 xmmreg 
r64

  mem to xmmreg 0100 0RXB 1111 0010:0000 1111:00101 010: mod xmmreg 
r/m

Table B-33.  Formats and Encodings of AESNI and PCLMULQDQ Instructions

Instruction and Format Encoding
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  mem64 to xmmreg 0100 1RXB 1111 0010:0000 1111:0010 1010: mod xmmreg 
r/m

CVTSS2SI—Convert Scalar Single-Precision Floating-Point 
Value to Doubleword Integer

  xmmreg to r32 0100 0R0B 1111 0011:0000 1111:0010 1101:11 r32 
xmmreg

  xmmreg to r64 0100 1R0B 1111 0011:0000 1111:0010 1101:11 r64 
xmmreg

  mem to r32 0100 0RXB 11110011:00001111:00101101: mod r32 r/m

  mem32 to r64 0100 1RXB 1111 0011:0000 1111:0010 1101: mod r64 r/m

CVTTSD2SI—Convert with Truncation Scalar Double-Precision 
Floating-Point Value to Doubleword Integer

  xmmreg to r32 0100 0R0B 11110010:00001111:00101100:11 r32 xmmreg

  xmmreg to r64 0100 1R0B 1111 0010:0000 1111:0010 1100:11 r64 
xmmreg

  mem64 to r32 0100 0RXB 1111 0010:0000 1111:0010 1100: mod r32 r/m

  mem64 to r64 0100 1RXB 1111 0010:0000 1111:0010 1100: mod r64 r/m

CVTTSS2SI—Convert with Truncation Scalar Single-Precision 
Floating-Point Value to Doubleword Integer

  xmmreg to r32 0100 0R0B 1111 0011:0000 1111:0010 1100:11 r32 
xmmreg1

  xmmreg to r64 0100 1R0B 1111 0011:0000 1111:0010 1100:11 r64 
xmmreg1

  mem to r32 0100 0RXB 1111 0011:0000 1111:0010 1100: mod r32 r/m

  mem32 to r64 0100 1RXB 1111 0011:0000 1111:0010 1100: mod r64 r/m

MOVD/MOVQ—Move doubleword

reg to mmxreg 0100 0R0B 0000 1111:0110 1110: 11 mmxreg reg

qwordreg to mmxreg 0100 1R0B 0000 1111:0110 1110: 11 mmxreg qwordreg

reg from mmxreg 0100 0R0B 0000 1111:0111 1110: 11 mmxreg reg

qwordreg from mmxreg 0100 1R0B 0000 1111:0111 1110: 11 mmxreg qwordreg

mem to mmxreg 0100 0RXB 0000 1111:0110 1110: mod mmxreg r/m

mem64 to mmxreg 0100 1RXB 0000 1111:0110 1110: mod mmxreg r/m

mem from mmxreg 0100 0RXB 0000 1111:0111 1110: mod mmxreg r/m

mem64 from mmxreg 0100 1RXB 0000 1111:0111 1110: mod mmxreg r/m

mmxreg with memory 0100 0RXB 0000 1111:0110 01gg: mod mmxreg r/m

MOVMSKPS—Extract Packed Single-Precision Floating-Point 
Sign Mask

  xmmreg to r32 0100 0R0B 0000 1111:0101 0000:11 r32 xmmreg

  xmmreg to r64 0100 1R0B 00001111:01010000:11 r64 xmmreg

PEXTRW—Extract Word

  mmreg to reg32, imm8 0100 0R0B 0000 1111:1100 0101:11 r32 mmreg: imm8

Table B-34.  Special Case Instructions Promoted Using REX.W (Contd.)

Instruction and Format Encoding
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B.14 SSE4.1 FORMATS AND ENCODING TABLE

The tables in this section provide SSE4.1 formats and encodings. Some SSE4.1 instructions require a mandatory 
prefix (66H, F2H, F3H) as part of the three-byte opcode. These prefixes are included in the tables. 
In 64-bit mode, some instructions requires REX.W, the byte sequence of REX.W prefix in the opcode sequence is 
shown.

  mmreg to reg64, imm8 0100 1R0B 0000 1111:1100 0101:11 r64 mmreg: imm8

  xmmreg to reg32, imm8 0100 0R0B 0110 0110 0000 1111:1100 0101:11 r32 
xmmreg: imm8

  xmmreg to reg64, imm8 0100 1R0B 0110 0110 0000 1111:1100 0101:11 r64 
xmmreg: imm8

PINSRW—Insert Word

  reg32 to mmreg, imm8 0100 0R0B 0000 1111:1100 0100:11 mmreg r32: imm8

  reg64 to mmreg, imm8 0100 1R0B 0000 1111:1100 0100:11 mmreg r64: imm8

  m16 to mmreg, imm8 0100 0R0B 0000 1111:1100 0100 mod mmreg r/m: imm8

  m16 to mmreg, imm8 0100 1RXB 0000 1111:11000100 mod mmreg r/m: imm8

  reg32 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100 0100:11 xmmreg 
r32: imm8

  reg64 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100 0100:11 xmmreg 
r64: imm8

  m16 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100 0100 mod xmmreg 
r/m: imm8

  m16 to xmmreg, imm8 0100 1RXB 0110 0110 0000 1111:1100 0100 mod xmmreg 
r/m: imm8

PMOVMSKB—Move Byte Mask To Integer

   mmreg to reg32 0100 0RXB 0000 1111:1101 0111:11 r32 mmreg

   mmreg to reg64 0100 1R0B 0000 1111:1101 0111:11 r64 mmreg

   xmmreg to reg32 0100 0RXB 0110 0110 0000 1111:1101 0111:11 r32 mmreg

   xmmreg to reg64 0110 0110 0000 1111:1101 0111:11 r64 xmmreg

Table B-35.  Encodings of SSE4.1 instructions

Instruction and Format Encoding

BLENDPD — Blend Packed Double-Precision Floats

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1010: 0000 1101:11 xmmreg1 
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0000 1101: mod xmmreg r/m

BLENDPS — Blend Packed Single-Precision Floats

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1010: 0000 1100:11 xmmreg1 
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0000 1100: mod xmmreg r/m

BLENDVPD — Variable Blend Packed Double-Precision 
Floats

Table B-34.  Special Case Instructions Promoted Using REX.W (Contd.)

Instruction and Format Encoding
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 xmmreg2 to xmmreg1 <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0101:11 xmmreg1 
xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0101: mod xmmreg r/m

BLENDVPS — Variable Blend Packed Single-Precision Floats

 xmmreg2 to xmmreg1 <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0100:11 xmmreg1 
xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0100: mod xmmreg r/m

DPPD — Packed Double-Precision Dot Products

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0100 0001:11 xmmreg1 
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0001: mod xmmreg r/m: 
imm8

DPPS — Packed Single-Precision Dot Products

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0100 0000:11 xmmreg1 
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0000: mod xmmreg r/m: 
imm8

EXTRACTPS — Extract From Packed Single-Precision Floats

  reg from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0111:11 xmmreg reg: 
imm8

 mem from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0111: mod xmmreg r/m: 
imm8

INSERTPS — Insert Into Packed Single-Precision Floats

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0010 0001:11 xmmreg1 
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0001: mod xmmreg r/m: 
imm8

MOVNTDQA — Load Double Quadword Non-temporal 
Aligned

 m128 to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1010:11 r/m xmmreg2

MPSADBW — Multiple Packed Sums of Absolute Difference

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0100 0010:11 xmmreg1 
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0100 0010: mod xmmreg r/m: 
imm8

PACKUSDW — Pack with Unsigned Saturation

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 1011:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1011: mod xmmreg r/m

PBLENDVB — Variable Blend Packed Bytes

 xmmreg2 to xmmreg1 <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0000:11 xmmreg1 
xmmreg2

 mem to xmmreg <xmm0> 0110 0110:0000 1111:0011 1000: 0001 0000: mod xmmreg r/m

Table B-35.  Encodings of SSE4.1 instructions

Instruction and Format Encoding
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PBLENDW — Blend Packed Words

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0001 1110:11 xmmreg1 
xmmreg2: imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1110: mod xmmreg r/m: 
imm8

PCMPEQQ — Compare Packed Qword Data of Equal

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 1001:11 xmmreg1 
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1001: mod xmmreg r/m

PEXTRB — Extract Byte

 reg from xmmreg , imm8 0110 0110:0000 1111:0011 1010: 0001 0100:11 xmmreg reg: 
imm8

 xmmreg to mem, imm8 0110 0110:0000 1111:0011 1010: 0001 0100: mod xmmreg r/m: 
imm8

PEXTRD — Extract DWord

 reg from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0110:11 xmmreg reg: 
imm8

 xmmreg to mem, imm8 0110 0110:0000 1111:0011 1010: 0001 0110: mod 
xmmreg r/m: imm8

PEXTRQ — Extract QWord

 r64 from xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0001 0110:11 xmmreg 
reg: imm8

 m64 from xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0001 0110: mod 
xmmreg r/m: imm8

PEXTRW — Extract Word

 reg from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0101:11 reg xmmreg: 
imm8

  mem from xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0001 0101: mod xmmreg r/m: 
imm8

PHMINPOSUW — Packed Horizontal Word Minimum

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0100 0001:11 xmmreg1 
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0100 0001: mod xmmreg r/m

PINSRB — Extract Byte

  reg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0000:11 xmmreg reg: 
imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0000: mod xmmreg r/m: 
imm8

PINSRD — Extract DWord

 reg to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0010:11 xmmreg reg: 
imm8

Table B-35.  Encodings of SSE4.1 instructions

Instruction and Format Encoding
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 mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0010 0010: mod xmmreg r/m: 
imm8

PINSRQ — Extract QWord

 r64 to xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0010 0010:11 xmmreg 
reg: imm8

 m64 to xmmreg, imm8 0110 0110:REX.W:0000 1111:0011 1010: 0010 0010: mod 
xmmreg r/m: imm8

PMAXSB — Maximum of Packed Signed Byte Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1100:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1100: mod xmmreg r/m

PMAXSD — Maximum of Packed Signed Dword Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1101:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1101: mod xmmreg r/m

PMAXUD — Maximum of Packed Unsigned Dword Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1111:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1111: mod xmmreg r/m

PMAXUW — Maximum of Packed Unsigned Word Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1110:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1110: mod xmmreg r/m

PMINSB — Minimum of Packed Signed Byte Integers

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1000:11 xmmreg1 
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1000: mod xmmreg r/m

PMINSD — Minimum of Packed Signed Dword Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1001:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1001: mod xmmreg r/m

PMINUD — Minimum of Packed Unsigned Dword Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1011:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1011: mod xmmreg r/m

PMINUW — Minimum of Packed Unsigned Word Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 1010:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 1010: mod xmmreg r/m

PMOVSXBD — Packed Move Sign Extend - Byte to Dword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0001:11 xmmreg1 
xmmreg2

Table B-35.  Encodings of SSE4.1 instructions
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  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0001: mod xmmreg r/m

PMOVSXBQ — Packed Move Sign Extend - Byte to Qword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0010:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0010: mod xmmreg r/m

PMOVSXBW — Packed Move Sign Extend - Byte to Word

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0000:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0000: mod xmmreg r/m

PMOVSXWD — Packed Move Sign Extend - Word to Dword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0011:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0011: mod xmmreg r/m

PMOVSXWQ — Packed Move Sign Extend - Word to Qword

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0100:11 xmmreg1 
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0100: mod xmmreg r/m

PMOVSXDQ — Packed Move Sign Extend - Dword to Qword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 0101:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 0101: mod xmmreg r/m

PMOVZXBD — Packed Move Zero Extend - Byte to Dword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0001:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0001: mod xmmreg r/m

PMOVZXBQ — Packed Move Zero Extend - Byte to Qword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0010:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0010: mod xmmreg r/m

PMOVZXBW — Packed Move Zero Extend - Byte to Word

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0000:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0000: mod xmmreg r/m

PMOVZXWD — Packed Move Zero Extend - Word to Dword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0011:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0011: mod xmmreg r/m

PMOVZXWQ — Packed Move Zero Extend - Word to Qword

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0100:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0100: mod xmmreg r/m

PMOVZXDQ — Packed Move Zero Extend - Dword to Qword

Table B-35.  Encodings of SSE4.1 instructions

Instruction and Format Encoding



Vol. 2C B-71

INSTRUCTION FORMATS AND ENCODINGS

B.15 SSE4.2 FORMATS AND ENCODING TABLE

The tables in this section provide SSE4.2 formats and encodings. Some SSE4.2 instructions require a mandatory 
prefix (66H, F2H, F3H) as part of the three-byte opcode. These prefixes are included in the tables. In 64-bit mode, 
some instructions requires REX.W, the byte sequence of REX.W prefix in the opcode sequence is shown.

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0011 0101:11 xmmreg1 
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0101: mod xmmreg r/m

PMULDQ — Multiply Packed Signed Dword Integers

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0010 1000:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0010 1000: mod xmmreg r/m

PMULLD — Multiply Packed Signed Dword Integers, Store 
low Result

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0100 0000:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0100 0000: mod xmmreg r/m

PTEST — Logical Compare

  xmmreg2 to xmmreg1 0110 0110:0000 1111:0011 1000: 0001 0111:11 xmmreg1 
xmmreg2

  mem to xmmreg 0110 0110:0000 1111:0011 1000: 0001 0111: mod xmmreg r/m

ROUNDPD — Round Packed Double-Precision Values

  xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1001:11 xmmreg1 
xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1001: mod xmmreg r/m: 
imm8

ROUNDPS — Round Packed Single-Precision Values

  xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1000:11 xmmreg1 
xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1000: mod xmmreg r/m: 
imm8

ROUNDSD — Round Scalar Double-Precision Value

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1011:11 xmmreg1 
xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1011: mod xmmreg r/m: 
imm8

ROUNDSS — Round Scalar Single-Precision Value

  xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0000 1010:11 xmmreg1 
xmmreg2: imm8

  mem to xmmreg, imm8 0110 0110:0000 1111:0011 1010: 0000 1010: mod xmmreg r/m: 
imm8

Table B-35.  Encodings of SSE4.1 instructions
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Table B-36.  Encodings of SSE4.2 instructions

Instruction and Format Encoding

CRC32 — Accumulate CRC32

 reg2 to reg1 1111 0010:0000 1111:0011 1000: 1111 000w :11 reg1 reg2

 mem to reg 1111 0010:0000 1111:0011 1000: 1111 000w : mod reg r/m

 bytereg2 to reg1 1111 0010:0100 WR0B:0000 1111:0011 1000: 1111 0000 :11 
reg1 bytereg2

 m8 to reg 1111 0010:0100 WR0B:0000 1111:0011 1000: 1111 0000 : mod 
reg r/m

 qwreg2 to qwreg1 1111 0010:0100 1R0B:0000 1111:0011 1000: 1111 0000 :11 
qwreg1 qwreg2

 mem64 to qwreg 1111 0010:0100 1R0B:0000 1111:0011 1000: 1111 0000 : mod 
qwreg r/m

PCMPESTRI— Packed Compare Explicit-Length Strings To 
Index

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0001:11 xmmreg1 
xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0001: mod xmmreg r/m

PCMPESTRM— Packed Compare Explicit-Length Strings To 
Mask

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0000:11 xmmreg1 
xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0000: mod xmmreg r/m

PCMPISTRI— Packed Compare Implicit-Length String To 
Index

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0011:11 xmmreg1 
xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0011: mod xmmreg r/m

PCMPISTRM— Packed Compare Implicit-Length Strings To 
Mask

 xmmreg2 to xmmreg1, imm8 0110 0110:0000 1111:0011 1010: 0110 0010:11 xmmreg1 
xmmreg2: imm8

 mem to xmmreg 0110 0110:0000 1111:0011 1010: 0110 0010: mod xmmreg r/m

PCMPGTQ— Packed Compare Greater Than

 xmmreg to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0111:11 xmmreg1 
xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0011 1000: 0011 0111: mod xmmreg r/m

POPCNT— Return Number of Bits Set to 1

 reg2 to reg1 1111 0011:0000 1111:1011 1000:11 reg1 reg2

 mem to reg1 1111 0011:0000 1111:1011 1000:mod reg1 r/m

 qwreg2 to qwreg1 1111 0011:0100 1R0B:0000 1111:1011 1000:11 reg1 reg2

 mem64 to qwreg1 1111 0011:0100 1R0B:0000 1111:1011 1000:mod reg1 r/m
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B.16 AVX FORMATS AND ENCODING TABLE

The tables in this section provide AVX formats and encodings. A mixed form of bit/hex/symbolic forms are used to 
express the various bytes:

The C4/C5 and opcode bytes are expressed in hex notation; the first and second payload byte of VEX, the modR/M 
byte is expressed in combination of bit/symbolic form. The first payload byte of C4 is expressed as combination of 
bits and hex form, with the hex value preceded by an underscore. The VEX bit field to encode upper register 8-15 
uses 1’s complement form, each of those bit field is expressed as lower case notation rxb, instead of RXB.

The hybrid bit-nibble-byte form is depicted below:

Table B-37.  Encodings of AVX instructions

Figure B-2.  Hybrid Notation of VEX-Encoded Key Instruction Bytes

Instruction and Format Encoding

VBLENDPD — Blend Packed Double-Precision Floats

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0D:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0D:mod xmmreg1 r/m: imm

 ymmreg2 with ymmreg3 into ymmreg1 C4: rxb0_3: w ymmreg2 101:0D:11 ymmreg1 ymmreg3: imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:0D:mod ymmreg1 r/m: imm

VBLENDPS — Blend Packed Single-Precision Floats

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0C:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0C:mod xmmreg1 r/m: imm

 ymmreg2 with ymmreg3 into ymmreg1 C4: rxb0_3: w ymmreg2 101:0C:11 ymmreg1 ymmreg3: imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:0C:mod ymmreg1 r/m: imm

VBLENDVPD — Variable Blend Packed Double-Precision 
Floats

 xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as 
mask

C4: rxb0_3: 0 xmmreg2 001:4B:11 xmmreg1 xmmreg3: xmmreg4

 xmmreg2 with mem to xmmreg1 using xmmreg4 as mask C4: rxb0_3: 0 xmmreg2 001:4B:mod xmmreg1 r/m: xmmreg4

 ymmreg2 with ymmreg3 into ymmreg1 using ymmreg4 as 
mask

C4: rxb0_3: 0 ymmreg2 101:4B:11 ymmreg1 ymmreg3: ymmreg4

 ymmreg2 with mem to ymmreg1 using ymmreg4 as mask C4: rxb0_3: 0 ymmreg2 101:4B:mod ymmreg1 r/m: ymmreg4

VBLENDVPS — Variable Blend Packed Single-Precision 
Floats

7 6 ----3 2 1 0 hex notation 7-6     5-3     2-0

R srcreg Lp p Opcode byte Mod   Reg*  R/MC5

7 6 ----3 2 1 0

W srcreg L pp

Two-Byte VEX

hex notation

7 6 5 hex notation 7-6     5-3     2-0

R X B Opcode byte Mod   Reg R/MC4

4 ----- 0

0_hex 

mmmmm

Three-Byte VEX
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 xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as 
mask

C4: rxb0_3: 0 xmmreg2 001:4A:11 xmmreg1 xmmreg3: xmmreg4

 xmmreg2 with mem to xmmreg1 using xmmreg4 as mask C4: rxb0_3: 0 xmmreg2 001:4A:mod xmmreg1 r/m: xmmreg4

 ymmreg2 with ymmreg3 into ymmreg1 using ymmreg4 as 
mask

C4: rxb0_3: 0 ymmreg2 101:4A:11 ymmreg1 ymmreg3: ymmreg4

 ymmreg2 with mem to ymmreg1 using ymmreg4 as mask C4: rxb0_3: 0 ymmreg2 101:4A:mod ymmreg1 r/m: ymmreg4

VDPPD — Packed Double-Precision Dot Products

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:41:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:41:mod xmmreg1 r/m: imm

VDPPS — Packed Single-Precision Dot Products

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:40:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:40:mod xmmreg1 r/m: imm

 ymmreg2 with ymmreg3 into ymmreg1 C4: rxb0_3: w ymmreg2 101:40:11 ymmreg1 ymmreg3: imm

 ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:40:mod ymmreg1 r/m: imm

VEXTRACTPS — Extract From Packed Single-Precision 
Floats

 reg from xmmreg1 using imm C4: rxb0_3: w_F 001:17:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: w_F 001:17:mod xmmreg1 r/m: imm

VINSERTPS — Insert Into Packed Single-Precision Floats

 use imm to merge xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:21:11 xmmreg1 xmmreg3: imm

 use imm to merge mem with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:21:mod xmmreg1 r/m: imm

VMOVNTDQA — Load Double Quadword Non-temporal 
Aligned

 m128 to xmmreg1 C4: rxb0_2: w_F 001:2A:11 xmmreg1 r/m

VMPSADBW — Multiple Packed Sums of Absolute 
Difference

  xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: imm

  m128 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:mod xmmreg1 r/m: imm

VPACKUSDW — Pack with Unsigned Saturation

 xmmreg3 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:11 xmmreg1 xmmreg3: imm

  m128 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:mod xmmreg1 r/m: imm

VPBLENDVB — Variable Blend Packed Bytes

 xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as 
mask

C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: xmmreg4

 xmmreg2 with mem to xmmreg1 using xmmreg4 as mask C4: rxb0_3: w xmmreg2 001:4C:mod xmmreg1 r/m: xmmreg4

VPBLENDW — Blend Packed Words

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: imm

 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:mod xmmreg1 r/m: imm

VPCMPEQQ — Compare Packed Qword Data of Equal

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:29:mod xmmreg1 r/m:

Instruction and Format Encoding
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VPEXTRB — Extract Byte

 reg from xmmreg1 using imm C4: rxb0_3: 0_F 001:14:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: 0_F 001:14:mod xmmreg1 r/m: imm

VPEXTRD — Extract DWord

 reg from xmmreg1 using imm C4: rxb0_3: 0_F 001:16:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: 0_F 001:16:mod xmmreg1 r/m: imm

VPEXTRQ — Extract QWord

 reg from xmmreg1 using imm C4: rxb0_3: 1_F 001:16:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: 1_F 001:16:mod xmmreg1 r/m: imm

VPEXTRW — Extract Word

 reg from xmmreg1 using imm C4: rxb0_3: 0_F 001:15:11 xmmreg1 reg: imm

 mem from xmmreg1 using imm C4: rxb0_3: 0_F 001:15:mod xmmreg1 r/m: imm

VPHMINPOSUW — Packed Horizontal Word Minimum

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:41:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:41:mod xmmreg1 r/m

VPINSRB — Insert Byte

  reg with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 0 xmmreg2 001:20:11 xmmreg1 reg: imm

 mem with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 0 xmmreg2 001:20:mod xmmreg1 r/m: imm

VPINSRD — Insert DWord

 reg with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 0 xmmreg2 001:22:11 xmmreg1 reg: imm

 mem with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 0 xmmreg2 001:22:mod xmmreg1 r/m: imm

VPINSRQ — Insert QWord

 r64 with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 1 xmmreg2 001:22:11 xmmreg1 reg: imm

 m64 with xmmreg2 to xmmreg1, imm8 C4: rxb0_3: 1 xmmreg2 001:22:mod xmmreg1 r/m: imm

VPMAXSB — Maximum of Packed Signed Byte Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:3C:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3C:mod xmmreg1 r/m

VPMAXSD — Maximum of Packed Signed Dword Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:3D:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3D:mod xmmreg1 r/m

VPMAXUD — Maximum of Packed Unsigned Dword Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:3F:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3F:mod xmmreg1 r/m

VPMAXUW — Maximum of Packed Unsigned Word Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:3E:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3E:mod xmmreg1 r/m

VPMINSB — Minimum of Packed Signed Byte Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:38:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:38:mod xmmreg1 r/m
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VPMINSD — Minimum of Packed Signed Dword Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:39:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:39:mod xmmreg1 r/m

VPMINUD — Minimum of Packed Unsigned Dword Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:3B:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3B:mod xmmreg1 r/m

VPMINUW — Minimum of Packed Unsigned Word Integers

 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:3A:11 xmmreg1 xmmreg3

 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:3A:mod xmmreg1 r/m

VPMOVSXBD — Packed Move Sign Extend - Byte to Dword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:21:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:21:mod xmmreg1 r/m

VPMOVSXBQ — Packed Move Sign Extend - Byte to Qword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:22:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:22:mod xmmreg1 r/m

VPMOVSXBW — Packed Move Sign Extend - Byte to Word

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:20:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:20:mod xmmreg1 r/m

VPMOVSXWD — Packed Move Sign Extend - Word to Dword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:23:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:23:mod xmmreg1 r/m

VPMOVSXWQ — Packed Move Sign Extend - Word to Qword

 xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:24:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:24:mod xmmreg1 r/m

VPMOVSXDQ — Packed Move Sign Extend - Dword to 
Qword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:25:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:25:mod xmmreg1 r/m

VPMOVZXBD — Packed Move Zero Extend - Byte to Dword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:31:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:31:mod xmmreg1 r/m

VPMOVZXBQ — Packed Move Zero 
Extend - Byte to Qword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:32:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:32:mod xmmreg1 r/m

VPMOVZXBW — Packed Move Zero 
Extend - Byte to Word

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:30:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:30:mod xmmreg1 r/m

VPMOVZXWD — Packed Move Zero 
Extend - Word to Dword
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  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:33:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:33:mod xmmreg1 r/m

VPMOVZXWQ — Packed Move Zero 
Extend - Word to Qword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:34:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:34:mod xmmreg1 r/m

VPMOVZXDQ — Packed Move Zero 
Extend - Dword to Qword

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:35:11 xmmreg1 xmmreg2

 mem to xmmreg1 C4: rxb0_2: w_F 001:35:mod xmmreg1 r/m

VPMULDQ — Multiply Packed Signed 
Dword Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:mod xmmreg1 r/m

VPMULLD — Multiply Packed Signed 
Dword Integers, Store low Result

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:40:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:40:mod xmmreg1 r/m

VPTEST — Logical Compare

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:17:11 xmmreg1 xmmreg2

  mem to xmmreg C4: rxb0_2: w_F 001:17:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_2: w_F 101:17:11 ymmreg1 ymmreg2

  mem to ymmreg C4: rxb0_2: w_F 101:17:mod ymmreg1 r/m

VROUNDPD — Round Packed Double-
Precision Values

  xmmreg2 to xmmreg1, imm8 C4: rxb0_3: w_F 001:09:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1, imm8 C4: rxb0_3: w_F 001:09:mod xmmreg1 r/m: imm

  ymmreg2 to ymmreg1, imm8 C4: rxb0_3: w_F 101:09:11 ymmreg1 ymmreg2: imm

  mem to ymmreg1, imm8 C4: rxb0_3: w_F 101:09:mod ymmreg1 r/m: imm

VROUNDPS — Round Packed Single-Precision Values

  xmmreg2 to xmmreg1, imm8 C4: rxb0_3: w_F 001:08:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1, imm8 C4: rxb0_3: w_F 001:08:mod xmmreg1 r/m: imm

  ymmreg2 to ymmreg1, imm8 C4: rxb0_3: w_F 101:08:11 ymmreg1 ymmreg2: imm

  mem to ymmreg1, imm8 C4: rxb0_3: w_F 101:08:mod ymmreg1 r/m: imm

VROUNDSD — Round Scalar Double-
Precision Value

 xmmreg2 and xmmreg3 to xmmreg1, imm8 C4: rxb0_3: w xmmreg2 001:0B:11 xmmreg1 xmmreg3: imm

  xmmreg2 and mem to xmmreg1, imm8 C4: rxb0_3: w xmmreg2 001:0B:mod xmmreg1 r/m: imm

VROUNDSS — Round Scalar Single-
Precision Value

 xmmreg2 and xmmreg3 to xmmreg1, imm8 C4: rxb0_3: w xmmreg2 001:0A:11 xmmreg1 xmmreg3: imm

  xmmreg2 and mem to xmmreg1, imm8 C4: rxb0_3: w xmmreg2 001:0A:mod xmmreg1 r/m: imm
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VPCMPESTRI — Packed Compare Explicit Length Strings, 
Return Index

  xmmreg2 with xmmreg1, imm8 C4: rxb0_3: w_F 001:61:11 xmmreg1 xmmreg2: imm

  mem with xmmreg1, imm8 C4: rxb0_3: w_F 001:61:mod xmmreg1 r/m: imm

VPCMPESTRM — Packed Compare Explicit Length Strings, 
Return Mask

  xmmreg2 with xmmreg1, imm8 C4: rxb0_3: w_F 001:60:11 xmmreg1 xmmreg2: imm

  mem with xmmreg1, imm8 C4: rxb0_3: w_F 001:60:mod xmmreg1 r/m: imm

VPCMPGTQ — Compare Packed Data for Greater Than

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:mod xmmreg1 r/m

VPCMPISTRI — Packed Compare Implicit Length Strings, 
Return Index

  xmmreg2 with xmmreg1, imm8 C4: rxb0_3: w_F 001:63:11 xmmreg1 xmmreg2: imm

  mem with xmmreg1, imm8 C4: rxb0_3: w_F 001:63:mod xmmreg1 r/m: imm

VPCMPISTRM — Packed Compare Implicit Length Strings, 
Return Mask

  xmmreg2 with xmmreg1, imm8 C4: rxb0_3: w_F 001:62:11 xmmreg1 xmmreg2: imm

  mem with xmmreg, imm8 C4: rxb0_3: w_F 001:62:mod xmmreg1 r/m: imm

VAESDEC — Perform One Round of an AES Decryption Flow

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:DE:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:DE:mod xmmreg1 r/m

VAESDECLAST — Perform Last Round of an AES Decryption 
Flow

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:DF:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:DF:mod xmmreg1 r/m

VAESENC — Perform One Round of an AES Encryption Flow

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:DC:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:DC:mod xmmreg1 r/m

VAESENCLAST — Perform Last Round of an AES Encryption 
Flow

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:DD:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:DD:mod xmmreg1 r/m

VAESIMC — Perform the AES InvMixColumn Transformation

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:DB:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:DB:mod xmmreg1 r/m

VAESKEYGENASSIST — AES Round Key Generation Assist

  xmmreg2 to xmmreg1, imm8 C4: rxb0_3: w_F 001:DF:11 xmmreg1 xmmreg2: imm

  mem to xmmreg, imm8 C4: rxb0_3: w_F 001:DF:mod xmmreg1 r/m: imm

VPABSB — Packed Absolute Value

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:1C:11 xmmreg1 xmmreg2
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  mem to xmmreg1 C4: rxb0_2: w_F 001:1C:mod xmmreg1 r/m

VPABSD — Packed Absolute Value

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:1E:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:1E:mod xmmreg1 r/m

VPABSW — Packed Absolute Value

  xmmreg2 to xmmreg1 C4: rxb0_2: w_F 001:1D:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_2: w_F 001:1D:mod xmmreg1 r/m

VPALIGNR — Packed Align Right

  xmmreg2 with xmmreg3 to xmmreg1, imm8 C4: rxb0_3: w xmmreg2 001:DD:11 xmmreg1 xmmreg3: imm

  xmmreg2 with mem to xmmreg1, imm8 C4: rxb0_3: w xmmreg2 001:DD:mod xmmreg1 r/m: imm

VPHADDD — Packed Horizontal Add

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:02:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:02:mod xmmreg1 r/m

VPHADDW — Packed Horizontal Add

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:01:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:01:mod xmmreg1 r/m

VPHADDSW — Packed Horizontal Add and Saturate

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:03:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:03:mod xmmreg1 r/m

VPHSUBD — Packed Horizontal Subtract

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:06:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:06:mod xmmreg1 r/m

VPHSUBW — Packed Horizontal Subtract

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:05:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:05:mod xmmreg1 r/m

VPHSUBSW — Packed Horizontal Subtract and Saturate

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:07:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:07:mod xmmreg1 r/m

VPMADDUBSW — Multiply and Add Packed Signed and 
Unsigned Bytes

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:04:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:04:mod xmmreg1 r/m

VPMULHRSW — Packed Multiply High with Round and Scale

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:0B:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:0B:mod xmmreg1 r/m

VPSHUFB — Packed Shuffle Bytes

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:00:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:00:mod xmmreg1 r/m

VPSIGNB — Packed SIGN

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:08:11 xmmreg1 xmmreg3
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  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:08:mod xmmreg1 r/m

VPSIGND — Packed SIGN

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:0A:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:0A:mod xmmreg1 r/m

VPSIGNW — Packed SIGN

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:09:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:09:mod xmmreg1 r/m

VADDSUBPD — Packed Double-FP Add/Subtract

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D0:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D0:mod xmmreg1 r/m

  xmmreglo21 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D0:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D0:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:D0:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:D0:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:D0:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:D0:mod ymmreg1 r/m

VADDSUBPS — Packed Single-FP Add/Subtract

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:D0:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:D0:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:D0:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:D0:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 111:D0:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 111:D0:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 111:D0:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 111:D0:mod ymmreg1 r/m

VHADDPD — Packed Double-FP Horizontal Add

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:7C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:7C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:7C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:7C:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:7C:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:7C:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:7C:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:7C:mod ymmreg1 r/m

VHADDPS — Packed Single-FP Horizontal Add

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:7C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:7C:mod xmmreg1 r/m
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  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 111:7C:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 111:7C:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 111:7C:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 111:7C:mod ymmreg1 r/m

VHSUBPD — Packed Double-FP Horizontal Subtract

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:7D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:7D:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:7D:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:7D:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:7D:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:7D:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:7D:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:7D:mod ymmreg1 r/m

VHSUBPS — Packed Single-FP Horizontal Subtract

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:7D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:7D:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:7D:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:7D:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 111:7D:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 111:7D:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 111:7D:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 111:7D:mod ymmreg1 r/m

VLDDQU — Load Unaligned Integer 128 Bits

  mem to xmmreg1 C4: rxb0_1: w_F 011:F0:mod xmmreg1 r/m

  mem to xmmreg1 C5: r_F 011:F0:mod xmmreg1 r/m

  mem to ymmreg1 C4: rxb0_1: w_F 111:F0:mod ymmreg1 r/m

  mem to ymmreg1 C5: r_F 111:F0:mod ymmreg1 r/m

VMOVDDUP — Move One Double-FP and Duplicate

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 011:12:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 011:12:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 011:12:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 011:12:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 111:12:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 111:12:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_ F 111:12:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 111:12:mod ymmreg1 r/m

VMOVHLPS — Move Packed Single-Precision Floating-Point 
Values High to Low

  xmmreg2 and xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:12:11 xmmreg1 xmmreg3
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  xmmreglo2 and xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:12:11 xmmreg1 xmmreglo3

VMOVSHDUP — Move Packed Single-FP High and Duplicate

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:16:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 010:16:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 010:16:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 010:16:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:16:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 110:16:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 110:16:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 110:16:mod ymmreg1 r/m

VMOVSLDUP — Move Packed Single-FP Low and Duplicate

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:12:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 010:12:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 010:12:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 010:12:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:12:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 110:12:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 110:12:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 110:12:mod ymmreg1 r/m

VADDPD — Add Packed Double-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:58:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:58:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:58:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:58:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:58:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:58:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:58:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:58:mod ymmreg1 r/m

VADDSD — Add Scalar Double-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:58:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:58:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:58:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5 r_xmmreglo2 011:58:mod xmmreg1 r/m

VANDPD — Bitwise Logical AND of Packed Double-Precision 
Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:54:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:54:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:54:11 xmmreg1 xmmreglo3
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  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:54:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:54:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:54:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:54:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:54:mod ymmreg1 r/m

VANDNPD — Bitwise Logical AND NOT of Packed Double-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:55:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:55:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:55:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:55:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:55:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:55:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:55:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:55:mod ymmreg1 r/m

VCMPPD — Compare Packed Double-Precision Floating-
Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:C2:11 xmmreg1 xmmreg3: imm

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:C2:mod xmmreg1 r/m: imm

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:C2:11 xmmreg1 xmmreglo3: imm

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:C2:mod xmmreg1 r/m: imm

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:C2:11 ymmreg1 ymmreg3: imm

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:C2:mod ymmreg1 r/m: imm

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:C2:11 ymmreg1 ymmreglo3: imm

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:C2:mod ymmreg1 r/m: imm

VCMPSD — Compare Scalar Double-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:C2:11 xmmreg1 xmmreg3: imm

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:C2:mod xmmreg1 r/m: imm

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:C2:11 xmmreg1 xmmreglo3: imm

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:C2:mod xmmreg1 r/m: imm

VCOMISD — Compare Scalar Ordered Double-Precision 
Floating-Point Values and Set EFLAGS

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:2F:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:2F:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 001:2F:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:2F:mod xmmreg1 r/m

VCVTDQ2PD— Convert Packed Dword Integers to Packed 
Double-Precision FP Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:E6:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 010:E6:mod xmmreg1 r/m
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  xmmreglo to xmmreg1 C5: r_F 010:E6:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 010:E6:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:E6:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 110:E6:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 110:E6:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 110:E6:mod ymmreg1 r/m

VCVTDQ2PS— Convert Packed Dword Integers to Packed 
Single-Precision FP Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:5B:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:5B:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:5B:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 000:5B:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:5B:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 100:5B:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 100:5B:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 100:5B:mod ymmreg1 r/m

VCVTPD2DQ— Convert Packed Double-Precision FP Values 
to Packed Dword Integers

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 011:E6:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 011:E6:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 011:E6:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 011:E6:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 111:E6:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 111:E6:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 111:E6:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 111:E6:mod ymmreg1 r/m

VCVTPD2PS— Convert Packed Double-Precision FP Values 
to Packed Single-Precision FP Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:5A:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:5A:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 001:5A:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:5A:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:5A:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 101:5A:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 101:5A:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:5A:mod ymmreg1 r/m

VCVTPS2DQ— Convert Packed Single-Precision FP Values 
to Packed Dword Integers

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:5B:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:5B:mod xmmreg1 r/m
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  xmmreglo to xmmreg1 C5: r_F 001:5B:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:5B:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:5B:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 101:5B:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 101:5B:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:5B:mod ymmreg1 r/m

VCVTPS2PD— Convert Packed Single-Precision FP Values 
to Packed Double-Precision FP Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:5A:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:5A:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:5A:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 000:5A:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:5A:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 100:5A:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 100:5A:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 100:5A:mod ymmreg1 r/m

VCVTSD2SI— Convert Scalar Double-Precision FP Value to 
Integer

  xmmreg1 to reg32 C4: rxb0_1: 0_F 011:2D:11 reg xmmreg1

  mem to reg32 C4: rxb0_1: 0_F 011:2D:mod reg r/m

  xmmreglo to reg32 C5: r_F 011:2D:11 reg xmmreglo

  mem to reg32 C5: r_F 011:2D:mod reg r/m

  ymmreg1 to reg64 C4: rxb0_1: 1_F 111:2D:11 reg ymmreg1

  mem to reg64 C4: rxb0_1: 1_F 111:2D:mod reg r/m

VCVTSD2SS — Convert Scalar Double-Precision FP Value to 
Scalar Single-Precision FP Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5A:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5A:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:5A:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5A:mod xmmreg1 r/m

VCVTSI2SD— Convert Dword Integer to Scalar Double-
Precision FP Value

  xmmreg2 with reg to xmmreg1 C4: rxb0_1: 0 xmmreg2 011:2A:11 xmmreg1 reg

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: 0 xmmreg2 011:2A:mod xmmreg1 r/m

  xmmreglo2 with reglo to xmmreg1 C5: r_xmmreglo2 011:2A:11 xmmreg1 reglo

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:2A:mod xmmreg1 r/m

  ymmreg2 with reg to ymmreg1 C4: rxb0_1: 1 ymmreg2 111:2A:11 ymmreg1 reg

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: 1 ymmreg2 111:2A:mod ymmreg1 r/m

VCVTSS2SD — Convert Scalar Single-Precision FP Value to 
Scalar Double-Precision FP Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5A:11 xmmreg1 xmmreg3
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  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5A:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:5A:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5A:mod xmmreg1 r/m

VCVTTPD2DQ— Convert with Truncation Packed Double-
Precision FP Values to Packed Dword Integers

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:E6:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:E6:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 001:E6:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:E6:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:E6:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 101:E6:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 101:E6:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:E6:mod ymmreg1 r/m

VCVTTPS2DQ— Convert with Truncation Packed Single-
Precision FP Values to Packed Dword Integers

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:5B:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 010:5B:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 010:5B:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 010:5B:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:5B:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 110:5B:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 110:5B:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 110:5B:mod ymmreg1 r/m

VCVTTSD2SI— Convert with Truncation Scalar Double-
Precision FP Value to Signed Integer

  xmmreg1 to reg32 C4: rxb0_1: 0_F 011:2C:11 reg xmmreg1

  mem to reg32 C4: rxb0_1: 0_F 011:2C:mod reg r/m

  xmmreglo to reg32 C5: r_F 011:2C:11 reg xmmreglo

  mem to reg32 C5: r_F 011:2C:mod reg r/m

  xmmreg1 to reg64 C4: rxb0_1: 1_F 011:2C:11 reg xmmreg1

  mem to reg64 C4: rxb0_1: 1_F 011:2C:mod reg r/m

VDIVPD — Divide Packed Double-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:5E:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:5E:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:5E:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:5E:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:5E:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:5E:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:5E:11 ymmreg1 ymmreglo3
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  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:5E:mod ymmreg1 r/m

VDIVSD — Divide Scalar Double-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5E:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5E:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:5E:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5E:mod xmmreg1 r/m

VMASKMOVDQU— Store Selected Bytes of Double 
Quadword

  xmmreg1 to mem; xmmreg2 as mask C4: rxb0_1: w_F 001:F7:11 r/m xmmreg1: xmmreg2

  xmmreg1 to mem; xmmreg2 as mask C5: r_F 001:F7:11 r/m xmmreg1: xmmreg2

VMAXPD — Return Maximum Packed Double-Precision 
Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:5F:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:5F:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:5F:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:5F:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:5F:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:5F:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:5F:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:5F:mod ymmreg1 r/m

VMAXSD — Return Maximum Scalar Double-Precision 
Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5F:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5F:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:5F:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5F:mod xmmreg1 r/m

VMINPD — Return Minimum Packed Double-Precision 
Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:5D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:5D:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:5D:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:5D:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:5D:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:5D:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:5D:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:5D:mod ymmreg1 r/m

VMINSD — Return Minimum Scalar Double-Precision 
Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5D:mod xmmreg1 r/m
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  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:5D:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5D:mod xmmreg1 r/m

VMOVAPD — Move Aligned Packed Double-Precision 
Floating-Point Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:28:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:28:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 001:28:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:28:mod xmmreg1 r/m

  xmmreg1 to xmmreg2 C4: rxb0_1: w_F 001:29:11 xmmreg2 xmmreg1

  xmmreg1 to mem C4: rxb0_1: w_F 001:29:mod r/m xmmreg1

  xmmreg1 to xmmreglo C5: r_F 001:29:11 xmmreglo xmmreg1

  xmmreg1 to mem C5: r_F 001:29:mod r/m xmmreg1

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:28:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 101:28:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 101:28:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:28:mod ymmreg1 r/m

  ymmreg1 to ymmreg2 C4: rxb0_1: w_F 101:29:11 ymmreg2 ymmreg1

  ymmreg1 to mem C4: rxb0_1: w_F 101:29:mod r/m ymmreg1

  ymmreg1 to ymmreglo C5: r_F 101:29:11 ymmreglo ymmreg1

  ymmreg1 to mem C5: r_F 101:29:mod r/m ymmreg1

VMOVD — Move Doubleword

  reg32 to xmmreg1 C4: rxb0_1: 0_F 001:6E:11 xmmreg1 reg32

  mem32 to xmmreg1 C4: rxb0_1: 0_F 001:6E:mod xmmreg1 r/m

  reg32 to xmmreg1 C5: r_F 001:6E:11 xmmreg1 reg32

  mem32 to xmmreg1 C5: r_F 001:6E:mod xmmreg1 r/m

  xmmreg1 to reg32 C4: rxb0_1: 0_F 001:7E:11 reg32 xmmreg1

  xmmreg1 to mem32 C4: rxb0_1: 0_F 001:7E:mod mem32 xmmreg1

  xmmreglo to reg32 C5: r_F 001:7E:11 reg32 xmmreglo

  xmmreglo to mem32 C5: r_F 001:7E:mod mem32 xmmreglo

VMOVQ — Move Quadword

  reg64 to xmmreg1 C4: rxb0_1: 1_F 001:6E:11 xmmreg1 reg64

  mem64 to xmmreg1 C4: rxb0_1: 1_F 001:6E:mod xmmreg1 r/m

  xmmreg1 to reg64 C4: rxb0_1: 1_F 001:7E:11 reg64 xmmreg1

  xmmreg1 to mem64 C4: rxb0_1: 1_F 001:7E:mod r/m xmmreg1

VMOVDQA — Move Aligned Double Quadword

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:6F:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:6F:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 001:6F:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:6F:mod xmmreg1 r/m
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  xmmreg1 to xmmreg2 C4: rxb0_1: w_F 001:7F:11 xmmreg2 xmmreg1

  xmmreg1 to mem C4: rxb0_1: w_F 001:7F:mod r/m xmmreg1

  xmmreg1 to xmmreglo C5: r_F 001:7F:11 xmmreglo xmmreg1

  xmmreg1 to mem C5: r_F 001:7F:mod r/m xmmreg1

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:6F:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 101:6F:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 101:6F:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:6F:mod ymmreg1 r/m

  ymmreg1 to ymmreg2 C4: rxb0_1: w_F 101:7F:11 ymmreg2 ymmreg1

  ymmreg1 to mem C4: rxb0_1: w_F 101:7F:mod r/m ymmreg1

  ymmreg1 to ymmreglo C5: r_F 101:7F:11 ymmreglo ymmreg1

  ymmreg1 to mem C5: r_F 101:7F:mod r/m ymmreg1

VMOVDQU — Move Unaligned Double Quadword

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 010:6F:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 010:6F:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 010:6F:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 010:6F:mod xmmreg1 r/m

  xmmreg1 to xmmreg2 C4: rxb0_1: w_F 010:7F:11 xmmreg2 xmmreg1

  xmmreg1 to mem C4: rxb0_1: w_F 010:7F:mod r/m xmmreg1

  xmmreg1 to xmmreglo C5: r_F 010:7F:11 xmmreglo xmmreg1

  xmmreg1 to mem C5: r_F 010:7F:mod r/m xmmreg1

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 110:6F:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 110:6F:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 110:6F:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 110:6F:mod ymmreg1 r/m

  ymmreg1 to ymmreg2 C4: rxb0_1: w_F 110:7F:11 ymmreg2 ymmreg1

  ymmreg1 to mem C4: rxb0_1: w_F 110:7F:mod r/m ymmreg1

  ymmreg1 to ymmreglo C5: r_F 110:7F:11 ymmreglo ymmreg1

  ymmreg1 to mem C5: r_F 110:7F:mod r/m ymmreg1

VMOVHPD — Move High Packed Double-Precision Floating-
Point Value

  xmmreg1 and mem to xmmreg2 C4: rxb0_1: w xmmreg1 001:16:11 xmmreg2 r/m

  xmmreg1 and mem to xmmreglo2 C5: r_xmmreg1 001:16:11 xmmreglo2 r/m

  xmmreg1 to mem C4: rxb0_1: w_F 001:17:mod r/m xmmreg1

  xmmreglo to mem C5: r_F 001:17:mod r/m xmmreglo

VMOVLPD — Move Low Packed Double-Precision Floating-
Point Value

  xmmreg1 and mem to xmmreg2 C4: rxb0_1: w xmmreg1 001:12:11 xmmreg2 r/m

  xmmreg1 and mem to xmmreglo2 C5: r_xmmreg1 001:12:11 xmmreglo2 r/m

  xmmreg1 to mem C4: rxb0_1: w_F 001:13:mod r/m xmmreg1
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  xmmreglo to mem C5: r_F 001:13:mod r/m xmmreglo

VMOVMSKPD — Extract Packed Double-Precision Floating-
Point Sign Mask

  xmmreg2 to reg C4: rxb0_1: w_F 001:50:11 reg xmmreg1

  xmmreglo to reg C5: r_F 001:50:11 reg xmmreglo

  ymmreg2 to reg C4: rxb0_1: w_F 101:50:11 reg ymmreg1

  ymmreglo to reg C5: r_F 101:50:11 reg ymmreglo

VMOVNTDQ — Store Double Quadword Using Non-Temporal 
Hint

  xmmreg1 to mem C4: rxb0_1: w_F 001:E7:11 r/m xmmreg1

  xmmreglo to mem C5: r_F 001:E7:11 r/m xmmreglo

  ymmreg1 to mem C4: rxb0_1: w_F 101:E7:11 r/m ymmreg1

  ymmreglo to mem C5: r_F 101:E7:11 r/m ymmreglo

VMOVNTPD — Store Packed Double-Precision Floating-
Point Values Using Non-Temporal Hint

  xmmreg1 to mem C4: rxb0_1: w_F 001:2B:11 r/m xmmreg1

  xmmreglo to mem C5: r_F 001:2B:11 r/m xmmreglo

  ymmreg1 to mem C4: rxb0_1: w_F 101:2B:11r/m ymmreg1

  ymmreglo to mem C5: r_F 101:2B:11r/m ymmreglo

VMOVSD — Move Scalar Double-Precision Floating-Point 
Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:10:11 xmmreg1 xmmreg3

  mem to xmmreg1 C4: rxb0_1: w_F 011:10:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:10:11 xmmreg1 xmmreglo3

  mem to xmmreg1 C5: r_F 011:10:mod xmmreg1 r/m

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:11:11 xmmreg1 xmmreg3

  xmmreg1 to mem C4: rxb0_1: w_F 011:11:mod r/m xmmreg1

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:11:11 xmmreg1 xmmreglo3

  xmmreglo to mem C5: r_F 011:11:mod r/m xmmreglo

VMOVUPD — Move Unaligned Packed Double-Precision 
Floating-Point Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:10:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:10:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 001:10:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 001:10:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:10:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 101:10:mod ymmreg1 r/m 

  ymmreglo to ymmreg1 C5: r_F 101:10:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:10:mod ymmreg1 r/m 

  xmmreg1 to xmmreg2 C4: rxb0_1: w_F 001:11:11 xmmreg2 xmmreg1

  xmmreg1 to mem C4: rxb0_1: w_F 001:11:mod r/m xmmreg1
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  xmmreg1 to xmmreglo C5: r_F 001:11:11 xmmreglo xmmreg1

  xmmreg1 to mem C5: r_F 001:11:mod r/m xmmreg1

  ymmreg1 to ymmreg2 C4: rxb0_1: w_F 101:11:11 ymmreg2 ymmreg1

  ymmreg1 to mem C4: rxb0_1: w_F 101:11:mod r/m ymmreg1

  ymmreg1 to ymmreglo C5: r_F 101:11:11 ymmreglo ymmreg1

  ymmreg1 to mem C5: r_F 101:11:mod r/m ymmreg1

VMULPD — Multiply Packed Double-Precision Floating-
Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:59:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:59:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:59:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:59:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:59:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:59:mod ymmreg1 r/m 

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:59:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:59:mod ymmreg1 r/m 

VMULSD — Multiply Scalar Double-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:59:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:59:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:59:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:59:mod xmmreg1 r/m

VORPD — Bitwise Logical OR of Double-Precision Floating-
Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:56:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:56:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:56:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:56:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:56:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:56:mod ymmreg1 r/m 

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:56:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:56:mod ymmreg1 r/m 

VPACKSSWB— Pack with Signed Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:63:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:63:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:63:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:63:mod xmmreg1 r/m

VPACKSSDW— Pack with Signed Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6B:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:6B:mod xmmreg1 r/m
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  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:6B:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6B:mod xmmreg1 r/m

VPACKUSWB— Pack with Unsigned Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:67:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:67:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:67:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:67:mod xmmreg1 r/m

VPADDB — Add Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FC:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FC:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:FC:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FC:mod xmmreg1 r/m

VPADDW — Add Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FD:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FD:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:FD:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FD:mod xmmreg1 r/m

VPADDD — Add Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FE:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FE:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:FE:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FE:mod xmmreg1 r/m

VPADDQ — Add Packed Quadword Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D4:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D4:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D4:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D4:mod xmmreg1 r/m

VPADDSB — Add Packed Signed Integers with Signed 
Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EC:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EC:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:EC:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EC:mod xmmreg1 r/m

VPADDSW — Add Packed Signed Integers with Signed 
Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:ED:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:ED:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:ED:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:ED:mod xmmreg1 r/m
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VPADDUSB — Add Packed Unsigned Integers with 
Unsigned Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DC:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DC:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:DC:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DC:mod xmmreg1 r/m

VPADDUSW — Add Packed Unsigned Integers with 
Unsigned Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DD:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DD:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:DD:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DD:mod xmmreg1 r/m

VPAND — Logical AND

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DB:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DB:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:DB:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DB:mod xmmreg1 r/m

VPANDN — Logical AND NOT

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DF:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DF:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:DF:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DF:mod xmmreg1 r/m

VPAVGB — Average Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E0:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E0:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E0:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E0:mod xmmreg1 r/m

VPAVGW — Average Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E3:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E3:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E3:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E3:mod xmmreg1 r/m

VPCMPEQB — Compare Packed Data for Equal

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:74:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:74:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:74:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:74:mod xmmreg1 r/m

VPCMPEQW — Compare Packed Data for Equal

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:75:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:75:mod xmmreg1 r/m
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  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:75:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:75:mod xmmreg1 r/m

VPCMPEQD — Compare Packed Data for Equal

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:76:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:76:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:76:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:76:mod xmmreg1 r/m

VPCMPGTB — Compare Packed Signed Integers for Greater 
Than

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:64:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:64:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:64:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:64:mod xmmreg1 r/m

VPCMPGTW — Compare Packed Signed Integers for Greater 
Than

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:65:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:65:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:65:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:65:mod xmmreg1 r/m

VPCMPGTD — Compare Packed Signed Integers for Greater 
Than

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:66:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:66:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:66:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:66:mod xmmreg1 r/m

VPEXTRW — Extract Word

  xmmreg1 to reg using imm C4: rxb0_1: 0_F 001:C5:11 reg xmmreg1: imm

  xmmreg1 to reg using imm C5: r_F 001:C5:11 reg xmmreg1: imm

VPINSRW — Insert Word

  xmmreg2 with reg to xmmreg1 C4: rxb0_1: 0 xmmreg2 001:C4:11 xmmreg1 reg: imm

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: 0 xmmreg2 001:C4:mod xmmreg1 r/m: imm

  xmmreglo2 with reglo to xmmreg1 C5: r_xmmreglo2 001:C4:11 xmmreg1 reglo: imm

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:C4:mod xmmreg1 r/m: imm

VPMADDWD — Multiply and Add Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F5:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F5:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F5:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F5:mod xmmreg1 r/m

VPMAXSW — Maximum of Packed Signed Word Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EE:11 xmmreg1 xmmreg3
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  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EE:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:EE:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EE:mod xmmreg1 r/m

VPMAXUB — Maximum of Packed Unsigned Byte Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DE:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DE:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:DE:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DE:mod xmmreg1 r/m

VPMINSW — Minimum of Packed Signed Word Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EA:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EA:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:EA:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EA:mod xmmreg1 r/m

VPMINUB — Minimum of Packed Unsigned Byte Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:DA:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:DA:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:DA:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:DA:mod xmmreg1 r/m

VPMOVMSKB — Move Byte Mask

  xmmreg1 to reg C4: rxb0_1: w_F 001:D7:11 reg xmmreg1

  xmmreg1 to reg C5: r_F 001:D7:11 reg xmmreg1

VPMULHUW — Multiply Packed Unsigned Integers and 
Store High Result

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E4:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E4:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E4:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E4:mod xmmreg1 r/m

VPMULHW — Multiply Packed Signed Integers and Store 
High Result

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E5:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E5:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E5:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E5:mod xmmreg1 r/m

VPMULLW — Multiply Packed Signed Integers and Store 
Low Result

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D5:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D5:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D5:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D5:mod xmmreg1 r/m
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VPMULUDQ — Multiply Packed Unsigned Doubleword 
Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F4:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F4:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F4:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F4:mod xmmreg1 r/m

VPOR — Bitwise Logical OR

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EB:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EB:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:EB:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EB:mod xmmreg1 r/m

VPSADBW — Compute Sum of Absolute Differences

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F6:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F6:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F6:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F6:mod xmmreg1 r/m

VPSHUFD — Shuffle Packed Doublewords

  xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:70:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1 using imm C4: rxb0_1: w_F 001:70:mod xmmreg1 r/m: imm

  xmmreglo to xmmreg1 using imm C5: r_F 001:70:11 xmmreg1 xmmreglo: imm

  mem to xmmreg1 using imm C5: r_F 001:70:mod xmmreg1 r/m: imm

VPSHUFHW — Shuffle Packed High Words

  xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1 using imm C4: rxb0_1: w_F 010:70:mod xmmreg1 r/m: imm

  xmmreglo to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreglo: imm

  mem to xmmreg1 using imm C5: r_F 010:70:mod xmmreg1 r/m: imm

VPSHUFLW — Shuffle Packed Low Words

  xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1 using imm C4: rxb0_1: w_F 011:70:mod xmmreg1 r/m: imm

  xmmreglo to xmmreg1 using imm C5: r_F 011:70:11 xmmreg1 xmmreglo: imm

  mem to xmmreg1 using imm C5: r_F 011:70:mod xmmreg1 r/m: imm

VPSLLDQ — Shift Double Quadword Left Logical

  xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm C5: r_F 001:73:11 xmmreg1 xmmreglo: imm

VPSLLW — Shift Packed Data Left Logical

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F1:mod xmmreg1 r/m
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  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:71:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:71:11 xmmreg1 xmmreglo: imm

VPSLLD — Shift Packed Data Left Logical

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F2:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F2:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F2:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F2:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:72:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:72:11 xmmreg1 xmmreglo: imm

VPSLLQ — Shift Packed Data Left Logical

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F3:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F3:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F3:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F3:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:73:11 xmmreg1 xmmreglo: imm

VPSRAW — Shift Packed Data Right Arithmetic

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E1:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E1:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E1:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E1:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:71:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:71:11 xmmreg1 xmmreglo: imm

VPSRAD — Shift Packed Data Right Arithmetic

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E2:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E2:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E2:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E2:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:72:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:72:11 xmmreg1 xmmreglo: imm

VPSRLDQ — Shift Double Quadword Right Logical

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:73:11 xmmreg1 xmmreglo: imm

VPSRLW — Shift Packed Data Right Logical

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D1:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D1:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D1:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D1:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:71:11 xmmreg1 xmmreg2: imm
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  xmmreglo to xmmreg1 using imm8 C5: r_F 001:71:11 xmmreg1 xmmreglo: imm

VPSRLD — Shift Packed Data Right Logical

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D2:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D2:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D2:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D2:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:72:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:72:11 xmmreg1 xmmreglo: imm

VPSRLQ — Shift Packed Data Right Logical

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D3:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D3:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D3:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D3:mod xmmreg1 r/m

  xmmreg2 to xmmreg1 using imm8 C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm

  xmmreglo to xmmreg1 using imm8 C5: r_F 001:73:11 xmmreg1 xmmreglo: imm

VPSUBB — Subtract Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F8:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F8:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F8:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F8:mod xmmreg1 r/m

VPSUBW — Subtract Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F9:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F9:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F9:11 xmmreg1 xmmreglo3

  xmmrelog2 with mem to xmmreg1 C5: r_xmmreglo2 001:F9:mod xmmreg1 r/m

VPSUBD — Subtract Packed Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FA:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FA:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:FA:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FA:mod xmmreg1 r/m

VPSUBQ — Subtract Packed Quadword Integers

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:FB:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:FB:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:FB:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:FB:mod xmmreg1 r/m

VPSUBSB — Subtract Packed Signed Integers with Signed 
Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E8:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E8:mod xmmreg1 r/m
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  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E8:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E8:mod xmmreg1 r/m

VPSUBSW — Subtract Packed Signed Integers with Signed 
Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E9:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:E9:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:E9:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:E9:mod xmmreg1 r/m

VPSUBUSB — Subtract Packed Unsigned Integers with 
Unsigned Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D8:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D8:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D8:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D8:mod xmmreg1 r/m

VPSUBUSW — Subtract Packed Unsigned Integers with 
Unsigned Saturation

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:D9:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:D9:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:D9:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:D9:mod xmmreg1 r/m

VPUNPCKHBW — Unpack High Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:68:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:68:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:68:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:68:mod xmmreg1 r/m

VPUNPCKHWD — Unpack High Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:69:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:69:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:69:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:69:mod xmmreg1 r/m

VPUNPCKHDQ — Unpack High Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6A:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:6A:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:6A:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6A:mod xmmreg1 r/m

VPUNPCKHQDQ — Unpack High Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:6D:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:6D:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6D:mod xmmreg1 r/m
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VPUNPCKLBW — Unpack Low Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:60:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:60:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:60:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:60:mod xmmreg1 r/m

VPUNPCKLWD — Unpack Low Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:61:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:61:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:61:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:61:mod xmmreg1 r/m

VPUNPCKLDQ — Unpack Low Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:62:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:62:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:62:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:62:mod xmmreg1 r/m

VPUNPCKLQDQ — Unpack Low Data

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:6C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:6C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6C:mod xmmreg1 r/m

VPXOR — Logical Exclusive OR

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EF:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EF:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:EF:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EF:mod xmmreg1 r/m

VSHUFPD — Shuffle Packed Double-Precision Floating-
Point Values

  xmmreg2 with xmmreg3 to xmmreg1 using imm8 C4: rxb0_1: w xmmreg2 001:C6:11 xmmreg1 xmmreg3: imm

  xmmreg2 with mem to xmmreg1 using imm8 C4: rxb0_1: w xmmreg2 001:C6:mod xmmreg1 r/m: imm

  xmmreglo2 with xmmreglo3 to xmmreg1 using imm8 C5: r_xmmreglo2 001:C6:11 xmmreg1 xmmreglo3: imm

  xmmreglo2 with mem to xmmreg1 using imm8 C5: r_xmmreglo2 001:C6:mod xmmreg1 r/m: imm

  ymmreg2 with ymmreg3 to ymmreg1 using imm8 C4: rxb0_1: w ymmreg2 101:C6:11 ymmreg1 ymmreg3: imm

  ymmreg2 with mem to ymmreg1 using imm8 C4: rxb0_1: w ymmreg2 101:C6:mod ymmreg1 r/m: imm

  ymmreglo2 with ymmreglo3 to ymmreg1 using imm8 C5: r_ymmreglo2 101:C6:11 ymmreg1 ymmreglo3: imm

  ymmreglo2 with mem to ymmreg1 using imm8 C5: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm

VSQRTPD — Compute Square Roots of Packed Double-
Precision Floating-Point Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 001:51:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 001:51:11 xmmreg1 xmmreglo
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  mem to xmmreg1 C5: r_F 001:51:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 101:51:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 101:51:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 101:51:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 101:51:mod ymmreg1 r/m

VSQRTSD — Compute Square Root of Scalar Double-
Precision Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:51:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:51:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:51:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:51:mod xmmreg1 r/m

VSUBPD — Subtract Packed Double-Precision Floating-
Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:5C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:5C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:5C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:5C:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:5C:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:5C:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:5C:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:5C:mod ymmreg1 r/m

VSUBSD — Subtract Scalar Double-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:5C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:5C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:5C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:5C:mod xmmreg1 r/m

VUCOMISD — Unordered Compare Scalar Double-Precision 
Floating-Point Values and Set EFLAGS

  xmmreg2 with xmmreg1, set EFLAGS C4: rxb0_1: w_F xmmreg1 001:2E:11 xmmreg2

  mem with xmmreg1, set EFLAGS C4: rxb0_1: w_F xmmreg1 001:2E:mod r/m

  xmmreglo with xmmreg1, set EFLAGS C5: r_F xmmreg1 001:2E:11 xmmreglo

  mem with xmmreg1, set EFLAGS C5: r_F xmmreg1 001:2E:mod r/m

VUNPCKHPD — Unpack and Interleave High Packed 
Double-Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:15:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:15:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:15:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:15:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:15:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:15:mod ymmreg1 r/m
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  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:15:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:15:mod ymmreg1 r/m

VUNPCKHPS — Unpack and Interleave High Packed Single-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:15:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:15:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:15:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:15:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:15:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:15:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:15:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:15:mod ymmreg1 r/m

VUNPCKLPD — Unpack and Interleave Low Packed Double-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:14:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:14:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:14:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:14:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:14:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:14:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:14:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:14:mod ymmreg1 r/m

VUNPCKLPS — Unpack and Interleave Low Packed Single-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:14:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:14:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:14:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:14:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:14:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:14:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:14:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:14:mod ymmreg1 r/m

VXORPD — Bitwise Logical XOR for Double-Precision 
Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:57:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:57:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:57:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:57:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:57:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:57:mod ymmreg1 r/m
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  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:57:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:57:mod ymmreg1 r/m

VADDPS — Add Packed Single-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:58:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:58:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:58:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:58:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:58:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:58:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:58:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:58:mod ymmreg1 r/m

VADDSS — Add Scalar Single-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:58:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:58:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:58:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:58:mod xmmreg1 r/m

VANDPS — Bitwise Logical AND of Packed Single-Precision 
Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:54:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:54:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:54:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:54:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:54:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:54:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:54:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:54:mod ymmreg1 r/m

VANDNPS — Bitwise Logical AND NOT of Packed Single-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:55:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:55:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:55:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:55:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:55:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:55:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:55:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:55:mod ymmreg1 r/m

VCMPPS — Compare Packed Single-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:C2:11 xmmreg1 xmmreg3: imm
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  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:C2:mod xmmreg1 r/m: imm

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:C2:11 xmmreg1 xmmreglo3: imm

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:C2:mod xmmreg1 r/m: imm

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:C2:11 ymmreg1 ymmreg3: imm

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:C2:mod ymmreg1 r/m: imm

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:C2:11 ymmreg1 ymmreglo3: imm

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:C2:mod ymmreg1 r/m: imm

VCMPSS — Compare Scalar Single-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:C2:11 xmmreg1 xmmreg3: imm

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:C2:mod xmmreg1 r/m: imm

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:C2:11 xmmreg1 xmmreglo3: imm

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:C2:mod xmmreg1 r/m: imm

VCOMISS — Compare Scalar Ordered Single-Precision 
Floating-Point Values and Set EFLAGS

  xmmreg2 with xmmreg1 C4: rxb0_1: w_F 000:2F:11 xmmreg1 xmmreg2

  mem with xmmreg1 C4: rxb0_1: w_F 000:2F:mod xmmreg1 r/m

  xmmreglo with xmmreg1 C5: r_F 000:2F:11 xmmreg1 xmmreglo

  mem with xmmreg1 C5: r_F 000:2F:mod xmmreg1 r/m

VCVTSI2SS — Convert Dword Integer to Scalar Single-
Precision FP Value

  xmmreg2 with reg to xmmreg1 C4: rxb0_1: 0 xmmreg2 010:2A:11 xmmreg1 reg

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: 0 xmmreg2 010:2A:mod xmmreg1 r/m

  xmmreglo2 with reglo to xmmreg1 C5: r_xmmreglo2 010:2A:11 xmmreg1 reglo

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:2A:mod xmmreg1 r/m

  xmmreg2 with reg to xmmreg1 C4: rxb0_1: 1 xmmreg2 010:2A:11 xmmreg1 reg

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: 1 xmmreg2 010:2A:mod xmmreg1 r/m

VCVTSS2SI — Convert Scalar Single-Precision FP Value to 
Dword Integer

  xmmreg1 to reg C4: rxb0_1: 0_F 010:2D:11 reg xmmreg1

  mem to reg C4: rxb0_1: 0_F 010:2D:mod reg r/m

  xmmreglo to reg C5: r_F 010:2D:11 reg xmmreglo

  mem to reg C5: r_F 010:2D:mod reg r/m

  xmmreg1 to reg C4: rxb0_1: 1_F 010:2D:11 reg xmmreg1

  mem to reg C4: rxb0_1: 1_F 010:2D:mod reg r/m

VCVTTSS2SI — Convert with Truncation Scalar Single-
Precision FP Value to Dword Integer

  xmmreg1 to reg C4: rxb0_1: 0_F 010:2C:11 reg xmmreg1

  mem to reg C4: rxb0_1: 0_F 010:2C:mod reg r/m

  xmmreglo to reg C5: r_F 010:2C:11 reg xmmreglo

  mem to reg C5: r_F 010:2C:mod reg r/m
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  xmmreg1 to reg C4: rxb0_1: 1_F 010:2C:11 reg xmmreg1

  mem to reg C4: rxb0_1: 1_F 010:2C:mod reg r/m

VDIVPS — Divide Packed Single-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5E:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5E:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:5E:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5E:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5E:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5E:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:5E:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5E:mod ymmreg1 r/m

VDIVSS — Divide Scalar Single-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5E:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5E:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:5E:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5E:mod xmmreg1 r/m

VLDMXCSR — Load MXCSR Register

  mem to MXCSR reg C4: rxb0_1: w_F 000:AEmod 011 r/m

  mem to MXCSR reg C5: r_F 000:AEmod 011 r/m

VMAXPS — Return Maximum Packed Single-Precision 
Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5F:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:5F:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5F:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:5F:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5F:mod ymmreg1 r/m

VMAXSS — Return Maximum Scalar Single-Precision 
Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5F:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5F:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:5F:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5F:mod xmmreg1 r/m

VMINPS — Return Minimum Packed Single-Precision 
Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5D:mod xmmreg1 r/m
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  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:5D:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5D:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5D:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5D:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:5D:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5D:mod ymmreg1 r/m

VMINSS — Return Minimum Scalar Single-Precision 
Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5D:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:5D:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5D:mod xmmreg1 r/m

VMOVAPS— Move Aligned Packed Single-Precision 
Floating-Point Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:28:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:28:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:28:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 000:28:mod xmmreg1 r/m

  xmmreg1 to xmmreg2 C4: rxb0_1: w_F 000:29:11 xmmreg2 xmmreg1

  xmmreg1 to mem C4: rxb0_1: w_F 000:29:mod r/m xmmreg1

  xmmreg1 to xmmreglo C5: r_F 000:29:11 xmmreglo xmmreg1

  xmmreg1 to mem C5: r_F 000:29:mod r/m xmmreg1

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:28:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 100:28:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 100:28:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 100:28:mod ymmreg1 r/m

  ymmreg1 to ymmreg2 C4: rxb0_1: w_F 100:29:11 ymmreg2 ymmreg1

  ymmreg1 to mem C4: rxb0_1: w_F 100:29:mod r/m ymmreg1

  ymmreg1 to ymmreglo C5: r_F 100:29:11 ymmreglo ymmreg1

  ymmreg1 to mem C5: r_F 100:29:mod r/m ymmreg1

VMOVHPS — Move High Packed Single-Precision Floating-
Point Values

  xmmreg1 with mem to xmmreg2 C4: rxb0_1: w xmmreg1 000:16:mod xmmreg2 r/m

  xmmreg1 with mem to xmmreglo2 C5: r_xmmreg1 000:16:mod xmmreglo2 r/m

  xmmreg1 to mem C4: rxb0_1: w_F 000:17:mod r/m xmmreg1

  xmmreglo to mem C5: r_F 000:17:mod r/m xmmreglo

VMOVLHPS — Move Packed Single-Precision Floating-Point 
Values Low to High

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:16:11 xmmreg1 xmmreg3

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:16:11 xmmreg1 xmmreglo3
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VMOVLPS — Move Low Packed Single-Precision Floating-
Point Values

  xmmreg1 with mem to xmmreg2 C4: rxb0_1: w xmmreg1 000:12:mod xmmreg2 r/m

  xmmreg1 with mem to xmmreglo2 C5: r_xmmreg1 000:12:mod xmmreglo2 r/m

  xmmreg1 to mem C4: rxb0_1: w_F 000:13:mod r/m xmmreg1

  xmmreglo to mem C5: r_F 000:13:mod r/m xmmreglo

VMOVMSKPS — Extract Packed Single-Precision Floating-
Point Sign Mask

  xmmreg2 to reg C4: rxb0_1: w_F 000:50:11 reg xmmreg2

  xmmreglo to reg C5: r_F 000:50:11 reg xmmreglo

  ymmreg2 to reg C4: rxb0_1: w_F 100:50:11 reg ymmreg2

  ymmreglo to reg C5: r_F 100:50:11 reg ymmreglo

VMOVNTPS — Store Packed Single-Precision Floating-Point 
Values Using Non-Temporal Hint

  xmmreg1 to mem C4: rxb0_1: w_F 000:2B:mod r/m xmmreg1

  xmmreglo to mem C5: r_F 000:2B:mod r/m xmmreglo

  ymmreg1 to mem C4: rxb0_1: w_F 100:2B:mod r/m ymmreg1

  ymmreglo to mem C5: r_F 100:2B:mod r/m ymmreglo

VMOVSS — Move Scalar Single-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:10:11 xmmreg1 xmmreg3

  mem to xmmreg1 C4: rxb0_1: w_F 010:10:mod xmmreg1 r/m

  xmmreg2 with xmmreg3 to xmmreg1 C5: r_xmmreg2 010:10:11 xmmreg1 xmmreg3

  mem to xmmreg1 C5: r_F 010:10:mod xmmreg1 r/m

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:11:11 xmmreg1 xmmreg3

  xmmreg1 to mem C4: rxb0_1: w_F 010:11:mod r/m xmmreg1

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:11:11 xmmreg1 xmmreglo3

  xmmreglo to mem C5: r_F 010:11:mod r/m xmmreglo

VMOVUPS— Move Unaligned Packed Single-Precision 
Floating-Point Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:10:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:10:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:10:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 000:10:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:10:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 100:10:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 100:10:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 100:10:mod ymmreg1 r/m

  xmmreg1 to xmmreg2 C4: rxb0_1: w_F 000:11:11 xmmreg2 xmmreg1

  xmmreg1 to mem C4: rxb0_1: w_F 000:11:mod r/m xmmreg1

  xmmreg1 to xmmreglo C5: r_F 000:11:11 xmmreglo xmmreg1
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  xmmreg1 to mem C5: r_F 000:11:mod r/m xmmreg1

  ymmreg1 to ymmreg2 C4: rxb0_1: w_F 100:11:11 ymmreg2 ymmreg1

  ymmreg1 to mem C4: rxb0_1: w_F 100:11:mod r/m ymmreg1

  ymmreg1 to ymmreglo C5: r_F 100:11:11 ymmreglo ymmreg1

  ymmreg1 to mem C5: r_F 100:11:mod r/m ymmreg1

VMULPS — Multiply Packed Single-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:59:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:59:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:59:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:59:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:59:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:59:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:59:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:59:mod ymmreg1 r/m

VMULSS — Multiply Scalar Single-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:59:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:59:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:59:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:59:mod xmmreg1 r/m

VORPS — Bitwise Logical OR of Single-Precision Floating-
Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:56:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:56:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:56:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:56:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:56:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:56:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:56:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:56:mod ymmreg1 r/m

VRCPPS — Compute Reciprocals of Packed Single-Precision 
Floating-Point Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:53:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:53:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:53:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 000:53:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:53:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 100:53:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 100:53:11 ymmreg1 ymmreglo
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  mem to ymmreg1 C5: r_F 100:53:mod ymmreg1 r/m

VRCPSS — Compute Reciprocal of Scalar Single-Precision 
Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:53:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:53:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:53:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:53:mod xmmreg1 r/m

VRSQRTPS — Compute Reciprocals of Square Roots of 
Packed Single-Precision Floating-Point Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:52:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:52:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:52:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 000:52:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:52:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 100:52:mod ymmreg1 r/m

  ymmreglo to ymmreg1 C5: r_F 100:52:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 100:52:mod ymmreg1 r/m

VRSQRTSS — Compute Reciprocal of Square Root of Scalar 
Single-Precision Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:52:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:52:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:52:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:52:mod xmmreg1 r/m

VSHUFPS — Shuffle Packed Single-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1, imm8 C4: rxb0_1: w xmmreg2 000:C6:11 xmmreg1 xmmreg3: imm

  xmmreg2 with mem to xmmreg1, imm8 C4: rxb0_1: w xmmreg2 000:C6:mod xmmreg1 r/m: imm

  xmmreglo2 with xmmreglo3 to xmmreg1, imm8 C5: r_xmmreglo2 000:C6:11 xmmreg1 xmmreglo3: imm

  xmmreglo2 with mem to xmmreg1, imm8 C5: r_xmmreglo2 000:C6:mod xmmreg1 r/m: imm

  ymmreg2 with ymmreg3 to ymmreg1, imm8 C4: rxb0_1: w ymmreg2 100:C6:11 ymmreg1 ymmreg3: imm

  ymmreg2 with mem to ymmreg1, imm8 C4: rxb0_1: w ymmreg2 100:C6:mod ymmreg1 r/m: imm

  ymmreglo2 with ymmreglo3 to ymmreg1, imm8 C5: r_ymmreglo2 100:C6:11 ymmreg1 ymmreglo3: imm

  ymmreglo2 with mem to ymmreg1, imm8 C5: r_ymmreglo2 100:C6:mod ymmreg1 r/m: imm

VSQRTPS — Compute Square Roots of Packed Single-
Precision Floating-Point Values

  xmmreg2 to xmmreg1 C4: rxb0_1: w_F 000:51:11 xmmreg1 xmmreg2

  mem to xmmreg1 C4: rxb0_1: w_F 000:51:mod xmmreg1 r/m

  xmmreglo to xmmreg1 C5: r_F 000:51:11 xmmreg1 xmmreglo

  mem to xmmreg1 C5: r_F 000:51:mod xmmreg1 r/m

  ymmreg2 to ymmreg1 C4: rxb0_1: w_F 100:51:11 ymmreg1 ymmreg2

  mem to ymmreg1 C4: rxb0_1: w_F 100:51:mod ymmreg1 r/m
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  ymmreglo to ymmreg1 C5: r_F 100:51:11 ymmreg1 ymmreglo

  mem to ymmreg1 C5: r_F 100:51:mod ymmreg1 r/m

VSQRTSS — Compute Square Root of Scalar Single-
Precision Floating-Point Value

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:51:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:51:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:51:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:51:mod xmmreg1 r/m

VSTMXCSR — Store MXCSR Register State

  MXCSR to mem C4: rxb0_1: w_F 000:AE:mod 011 r/m

  MXCSR to mem C5: r_F 000:AE:mod 011 r/m

VSUBPS — Subtract Packed Single-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:5C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5C:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5C:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5C:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:5C:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5C:mod ymmreg1 r/m

VSUBSS — Subtract Scalar Single-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5C:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 010:5C:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5C:mod xmmreg1 r/m

VUCOMISS — Unordered Compare Scalar Single-Precision 
Floating-Point Values and Set EFLAGS

  xmmreg2 with xmmreg1 C4: rxb0_1: w_F 000:2E:11 xmmreg1 xmmreg2

  mem with xmmreg1 C4: rxb0_1: w_F 000:2E:mod xmmreg1 r/m

  xmmreglo with xmmreg1 C5: r_F 000:2E:11 xmmreg1 xmmreglo

  mem with xmmreg1 C5: r_F 000:2E:mod xmmreg1 r/m

UNPCKHPS — Unpack and Interleave High Packed Single-
Precision Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:15:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:15mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:15:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:15mod ymmreg1 r/m

UNPCKLPS — Unpack and Interleave Low Packed Single-
Precision Floating-Point Value
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  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:14:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:14mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:14:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:14mod ymmreg1 r/m

VXORPS — Bitwise Logical XOR for Single-Precision 
Floating-Point Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:57:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:57:mod xmmreg1 r/m

  xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:57:11 xmmreg1 xmmreglo3

  xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:57:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:57:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:57:mod ymmreg1 r/m

  ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:57:11 ymmreg1 ymmreglo3

  ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:57:mod ymmreg1 r/m

VBROADCAST —Load with Broadcast

  mem to xmmreg1 C4: rxb0_2: 0_F 001:18:mod xmmreg1 r/m

  mem to ymmreg1 C4: rxb0_2: 0_F 101:18:mod ymmreg1 r/m

  mem to ymmreg1 C4: rxb0_2: 0_F 101:19:mod ymmreg1 r/m

  mem to ymmreg1 C4: rxb0_2: 0_F 101:1A:mod ymmreg1 r/m

VEXTRACTF128 — Extract Packed Floating-Point Values

 ymmreg2 to xmmreg1, imm8 C4: rxb0_3: 0_F 001:19:11 xmmreg1 ymmreg2: imm

  ymmreg2 to mem, imm8 C4: rxb0_3: 0_F 001:19:mod r/m ymmreg2: imm

VINSERTF128 — Insert Packed Floating-Point Values

 xmmreg3 and merge with ymmreg2 to ymmreg1, imm8 C4: rxb0_3: 0 ymmreg2101:18:11 ymmreg1 xmmreg3: imm

  mem and merge with ymmreg2 to ymmreg1, imm8 C4: rxb0_3: 0 ymmreg2 101:18:mod ymmreg1 r/m: imm

VPERMILPD — Permute Double-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: 0 xmmreg2 001:0D:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: 0 xmmreg2 001:0D:mod xmmreg1 r/m

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_2: 0 ymmreg2 101:0D:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_2: 0 ymmreg2 101:0D:mod ymmreg1 r/m

  xmmreg2 to xmmreg1, imm C4: rxb0_3: 0_F 001:05:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1, imm C4: rxb0_3: 0_F 001:05:mod xmmreg1 r/m: imm

  ymmreg2 to ymmreg1, imm C4: rxb0_3: 0_F 101:05:11 ymmreg1 ymmreg2: imm

  mem to ymmreg1, imm C4: rxb0_3: 0_F 101:05:mod ymmreg1 r/m: imm

VPERMILPS — Permute Single-Precision Floating-Point 
Values

  xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: 0 xmmreg2 001:0C:11 xmmreg1 xmmreg3

  xmmreg2 with mem to xmmreg1 C4: rxb0_2: 0 xmmreg2 001:0C:mod xmmreg1 r/m

  xmmreg2 to xmmreg1, imm C4: rxb0_3: 0_F 001:04:11 xmmreg1 xmmreg2: imm
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  mem to xmmreg1, imm C4: rxb0_3: 0_F 001:04:mod xmmreg1 r/m: imm

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_2: 0 ymmreg2 101:0C:11 ymmreg1 ymmreg3

  ymmreg2 with mem to ymmreg1 C4: rxb0_2: 0 ymmreg2 101:0C:mod ymmreg1 r/m

  ymmreg2 to ymmreg1, imm C4: rxb0_3: 0_F 101:04:11 ymmreg1 ymmreg2: imm

  mem to ymmreg1, imm C4: rxb0_3: 0_F 101:04:mod ymmreg1 r/m: imm

VPERM2F128 — Permute Floating-Point Values

  ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_3: 0 ymmreg2 101:06:11 ymmreg1 ymmreg3: imm

  ymmreg2 with mem to ymmreg1 C4: rxb0_3: 0 ymmreg2 101:06:mod ymmreg1 r/m: imm

VTESTPD/VTESTPS — Packed Bit Test

  xmmreg2 to xmmreg1 C4: rxb0_2: 0_F 001:0E:11 xmmreg2 xmmreg1

  mem to xmmreg1 C4: rxb0_2: 0_F 001:0E:mod xmmreg2 r/m

  ymmreg2 to ymmreg1 C4: rxb0_2: 0_F 101:0E:11 ymmreg2 ymmreg1

  mem to ymmreg1 C4: rxb0_2: 0_F 101:0E:mod ymmreg2 r/m

  xmmreg2 to xmmreg1 C4: rxb0_2: 0_F 001:0F:11 xmmreg1 xmmreg2: imm

  mem to xmmreg1 C4: rxb0_2: 0_F 001:0F:mod xmmreg1 r/m: imm

  ymmreg2 to ymmreg1 C4: rxb0_2: 0_F 101:0F:11 ymmreg1 ymmreg2: imm

  mem to ymmreg1 C4: rxb0_2: 0_F 101:0F:mod ymmreg1 r/m: imm

NOTES:

1. The term “lo” refers to the lower eight registers, 0-7

Instruction and Format Encoding
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B.17 FLOATING-POINT INSTRUCTION FORMATS AND ENCODINGS

Table B-38 shows the five different formats used for floating-point instructions. In all cases, instructions are at 
least two bytes long and begin with the bit pattern 11011.

The Mod and R/M fields of the ModR/M byte have the same interpretation as the corresponding fields of the integer 
instructions. The SIB byte and disp (displacement) are optionally present in instructions that have Mod and R/M 
fields. Their presence depends on the values of Mod and R/M, as for integer instructions.

Table B-39 shows the formats and encodings of the floating-point instructions.

Table B-38.  General Floating-Point Instruction Formats

Instruction

First Byte Second Byte Optional Fields

1 11011 OPA 1 mod 1 OPB r/m s-i-b disp

2 11011 MF OPA mod OPB r/m s-i-b disp

3 11011 d P OPA 1 1 OPB R ST(i)

4 11011 0 0 1 1 1 1 OP

5 11011 0 1 1 1 1 1 OP

15–11 10 9 8 7 6 5 4 3 2 1 0

MF = Memory Format
00 — 32-bit real
01 — 32-bit integer
10 — 64-bit real
11 — 16-bit integer

P = Pop
0 — Do not pop stack
1 — Pop stack after operation

d = Destination
0 — Destination is ST(0)
1 — Destination is ST(i)

R XOR d = 0 — Destination OP Source
R XOR d = 1 — Source OP Destination

ST(i) = Register stack element i
000 = Stack Top
001 = Second stack element
 ⋅
 ⋅
 ⋅
111 = Eighth stack element

Table B-39.  Floating-Point Instruction Formats and Encodings

Instruction and Format Encoding

F2XM1 – Compute 2ST(0) – 1 11011 001 : 1111 0000

FABS – Absolute Value 11011 001 : 1110 0001

FADD – Add

   ST(0) ← ST(0) + 32-bit memory 11011 000 : mod 000 r/m

ST(0) ← ST(0) + 64-bit memory 11011 100 : mod 000 r/m

ST(d) ← ST(0) + ST(i) 11011 d00 : 11 000 ST(i)

FADDP – Add and Pop

ST(0) ← ST(0) + ST(i) 11011 110 : 11 000 ST(i)

FBLD – Load Binary Coded Decimal 11011 111 : mod 100 r/m 

FBSTP – Store Binary Coded Decimal and Pop 11011 111 : mod 110 r/m

FCHS – Change Sign 11011 001 : 1110 0000

FCLEX – Clear Exceptions 11011 011 : 1110 0010

FCOM – Compare Real
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32-bit memory 11011 000 : mod 010 r/m

64-bit memory 11011 100 : mod 010 r/m

ST(i) 11011 000 : 11 010 ST(i)

FCOMP – Compare Real and Pop

32-bit memory 11011 000 : mod 011 r/m

64-bit memory 11011 100 : mod 011 r/m

ST(i) 11011 000 : 11 011 ST(i)

FCOMPP – Compare Real and Pop Twice 11011 110 : 11 011 001

FCOMIP – Compare Real, Set EFLAGS, and Pop 11011 111 : 11 110 ST(i)

FCOS – Cosine of ST(0) 11011 001 : 1111 1111

FDECSTP – Decrement Stack-Top Pointer  11011 001 : 1111 0110

FDIV – Divide

ST(0) ← ST(0) ÷ 32-bit memory 11011 000 : mod 110 r/m

ST(0) ← ST(0) ÷ 64-bit memory 11011 100 : mod 110 r/m

ST(d) ← ST(0) ÷ ST(i) 11011 d00 : 1111 R ST(i)

FDIVP – Divide and Pop

ST(0) ← ST(0) ÷ ST(i) 11011 110 : 1111 1 ST(i)

FDIVR – Reverse Divide

ST(0) ← 32-bit memory ÷ ST(0) 11011 000 : mod 111 r/m

ST(0) ← 64-bit memory ÷ ST(0) 11011 100 : mod 111 r/m

ST(d) ← ST(i) ÷ ST(0) 11011 d00 : 1111 R ST(i)

FDIVRP – Reverse Divide and Pop

ST(0) ¨ ST(i) ÷ ST(0) 11011 110 : 1111 0 ST(i)

FFREE – Free ST(i) Register 11011 101 : 1100 0 ST(i)

FIADD – Add Integer

ST(0) ← ST(0) + 16-bit memory 11011 110 : mod 000 r/m

ST(0) ← ST(0) + 32-bit memory 11011 010 : mod 000 r/m

FICOM – Compare Integer

16-bit memory 11011 110 : mod 010 r/m

32-bit memory 11011 010 : mod 010 r/m

FICOMP – Compare Integer and Pop

16-bit memory 11011 110 : mod 011 r/m

32-bit memory 11011 010 : mod 011 r/m

FIDIV – Divide

ST(0) ← ST(0) ÷ 16-bit memory 11011 110 : mod 110 r/m

ST(0) ← ST(0) ÷ 32-bit memory 11011 010 : mod 110 r/m

FIDIVR – Reverse Divide

ST(0) ← 16-bit memory ÷ ST(0) 11011 110 : mod 111 r/m

Table B-39.  Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format Encoding
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ST(0) ← 32-bit memory ÷ ST(0) 11011 010 : mod 111 r/m

FILD – Load Integer

16-bit memory 11011 111 : mod 000 r/m

32-bit memory 11011 011 : mod 000 r/m

64-bit memory 11011 111 : mod 101 r/m

FIMUL– Multiply

ST(0) ← ST(0) × 16-bit memory 11011 110 : mod 001 r/m

ST(0) ← ST(0) ×  32-bit memory 11011 010 : mod 001 r/m

FINCSTP – Increment Stack Pointer 11011 001 : 1111 0111

FINIT – Initialize Floating-Point Unit

FIST – Store Integer

16-bit memory 11011 111 : mod 010 r/m

32-bit memory 11011 011 : mod 010 r/m

FISTP – Store Integer and Pop

16-bit memory 11011 111 : mod 011 r/m

32-bit memory 11011 011 : mod 011 r/m

64-bit memory 11011 111 : mod 111 r/m

FISUB – Subtract

ST(0) ← ST(0) - 16-bit memory 11011 110 : mod 100 r/m

ST(0) ← ST(0) - 32-bit memory 11011 010 : mod 100 r/m

FISUBR – Reverse Subtract

ST(0) ← 16-bit memory − ST(0) 11011 110 : mod 101 r/m

ST(0) ←  32-bit memory − ST(0) 11011 010 : mod 101 r/m

FLD – Load Real

32-bit memory 11011 001 : mod 000 r/m

64-bit memory 11011 101 : mod 000 r/m

80-bit memory 11011 011 : mod 101 r/m

ST(i) 11011 001 : 11 000 ST(i)

FLD1 – Load +1.0 into ST(0) 11011 001 : 1110 1000

FLDCW – Load Control Word 11011 001 : mod 101 r/m

FLDENV – Load FPU Environment 11011 001 : mod 100 r/m

FLDL2E – Load log2(ε) into ST(0) 11011 001 : 1110 1010

FLDL2T – Load log2(10) into ST(0) 11011 001 : 1110 1001

FLDLG2 – Load log10(2) into ST(0) 11011 001 : 1110 1100

FLDLN2 – Load logε(2) into ST(0) 11011 001 : 1110 1101

FLDPI – Load π into ST(0) 11011 001 : 1110 1011

FLDZ – Load +0.0 into ST(0) 11011 001 : 1110 1110

FMUL – Multiply

Table B-39.  Floating-Point Instruction Formats and Encodings (Contd.)
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ST(0) ← ST(0) × 32-bit memory 11011 000 : mod 001 r/m

ST(0) ← ST(0) × 64-bit memory 11011 100 : mod 001 r/m

ST(d) ← ST(0) × ST(i) 11011 d00 : 1100 1 ST(i)

FMULP – Multiply

ST(i) ← ST(0) × ST(i) 11011 110 : 1100 1 ST(i)

FNOP – No Operation 11011 001 : 1101 0000

FPATAN – Partial Arctangent 11011 001 : 1111 0011

FPREM – Partial Remainder 11011 001 : 1111 1000

FPREM1 – Partial Remainder (IEEE) 11011 001 : 1111 0101

FPTAN – Partial Tangent 11011 001 : 1111 0010

FRNDINT – Round to Integer 11011 001 : 1111 1100

FRSTOR – Restore FPU State 11011 101 : mod 100 r/m

FSAVE – Store FPU State 11011 101 : mod 110 r/m

FSCALE – Scale 11011 001 : 1111 1101

FSIN – Sine 11011 001 : 1111 1110

FSINCOS – Sine and Cosine 11011 001 : 1111 1011

FSQRT – Square Root 11011 001 : 1111 1010

FST – Store Real

32-bit memory 11011 001 : mod 010 r/m

64-bit memory 11011 101 : mod 010 r/m

ST(i) 11011 101 : 11 010 ST(i)

FSTCW – Store Control Word 11011 001 : mod 111 r/m

FSTENV – Store FPU Environment 11011 001 : mod 110 r/m

FSTP – Store Real and Pop

32-bit memory 11011 001 : mod 011 r/m

64-bit memory 11011 101 : mod 011 r/m

80-bit memory 11011 011 : mod 111 r/m

ST(i) 11011 101 : 11 011 ST(i)

FSTSW – Store Status Word into AX 11011 111 : 1110 0000

FSTSW – Store Status Word into Memory 11011 101 : mod 111 r/m

FSUB – Subtract

ST(0) ← ST(0) – 32-bit memory 11011 000 : mod 100 r/m

ST(0) ← ST(0) – 64-bit memory 11011 100 : mod 100 r/m

ST(d) ← ST(0) – ST(i) 11011 d00 : 1110 R ST(i)

FSUBP – Subtract and Pop

ST(0) ← ST(0) – ST(i) 11011 110 : 1110 1 ST(i)

FSUBR – Reverse Subtract

ST(0) ← 32-bit memory – ST(0) 11011 000 : mod 101 r/m

Table B-39.  Floating-Point Instruction Formats and Encodings (Contd.)
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B.18 VMX INSTRUCTIONS

Table B-40 describes virtual-machine extensions (VMX).

ST(0) ← 64-bit memory – ST(0) 11011 100 : mod 101 r/m

ST(d) ← ST(i) – ST(0) 11011 d00 : 1110 R ST(i)

FSUBRP – Reverse Subtract and Pop

ST(i) ← ST(i) – ST(0) 11011 110 : 1110 0 ST(i)

FTST – Test 11011 001 : 1110 0100

FUCOM – Unordered Compare Real 11011 101 : 1110 0 ST(i)

FUCOMP – Unordered Compare Real and Pop 11011 101 : 1110 1 ST(i)

FUCOMPP – Unordered Compare Real and Pop Twice 11011 010 : 1110 1001

FUCOMI – Unorderd Compare Real and Set EFLAGS 11011 011 : 11 101 ST(i)

FUCOMIP – Unorderd Compare Real, Set EFLAGS, and Pop 11011 111 : 11 101 ST(i)

FXAM – Examine 11011 001 : 1110 0101

FXCH – Exchange ST(0) and ST(i) 11011 001 : 1100 1 ST(i)

FXTRACT – Extract Exponent and Significand 11011 001 : 1111 0100

FYL2X – ST(1) × log2(ST(0)) 11011 001 : 1111 0001

FYL2XP1 – ST(1) × log2(ST(0) + 1.0) 11011 001 : 1111 1001

FWAIT – Wait until FPU Ready 1001 1011

Table B-40.  Encodings for VMX Instructions

Instruction and Format Encoding

INVEPT—Invalidate Cached EPT Mappings

Descriptor m128 according to reg 01100110 00001111 00111000 10000000: mod reg r/m

INVVPID—Invalidate Cached VPID Mappings

Descriptor m128 according to reg 01100110 00001111 00111000 10000001: mod reg r/m

VMCALL—Call to VM Monitor

Call VMM: causes VM exit. 00001111 00000001 11000001

VMCLEAR—Clear Virtual-Machine Control Structure

mem32:VMCS_data_ptr 01100110 00001111 11000111: mod 110 r/m

mem64:VMCS_data_ptr 01100110 00001111 11000111: mod 110 r/m

VMFUNC—Invoke VM Function

Invoke VM function specified in EAX 00001111 00000001 11010100

VMLAUNCH—Launch Virtual Machine

Launch VM managed by Current_VMCS 00001111 00000001 11000010

VMRESUME—Resume Virtual Machine

Resume VM managed by Current_VMCS 00001111 00000001 11000011

VMPTRLD—Load Pointer to Virtual-Machine Control 
Structure

Table B-39.  Floating-Point Instruction Formats and Encodings (Contd.)
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B.19 SMX INSTRUCTIONS

Table B-38 describes Safer Mode extensions (VMX). GETSEC leaf functions are selected by a valid value in EAX on input.

mem32 to Current_VMCS_ptr 00001111 11000111: mod 110 r/m

mem64 to Current_VMCS_ptr 00001111 11000111: mod 110 r/m

VMPTRST—Store Pointer to Virtual-Machine Control 
Structure

Current_VMCS_ptr to mem32 00001111 11000111: mod 111 r/m

Current_VMCS_ptr to mem64 00001111 11000111: mod 111 r/m

VMREAD—Read Field from Virtual-Machine Control 
Structure

r32 (VMCS_fieldn) to r32

r32 (VMCS_fieldn) to mem32

r64 (VMCS_fieldn) to r64

r64 (VMCS_fieldn) to mem64

00001111 01111000: 11 reg2 reg1

00001111 01111000: mod r32 r/m

00001111 01111000: 11 reg2 reg1

00001111 01111000: mod r64 r/m

VMWRITE—Write Field to Virtual-Machine Control Structure

r32 to r32 (VMCS_fieldn)

mem32 to r32 (VMCS_fieldn)

r64 to r64 (VMCS_fieldn)

mem64 to r64 (VMCS_fieldn)

00001111 01111001: 11 reg1 reg2

00001111 01111001: mod r32 r/m

00001111 01111001: 11 reg1 reg2

00001111 01111001: mod r64 r/m

VMXOFF—Leave VMX Operation

Leave VMX. 00001111 00000001 11000100

VMXON—Enter VMX Operation

Enter VMX. 11110011 000011111 11000111: mod 110 r/m

Table B-41.  Encodings for SMX Instructions

Instruction and Format Encoding

GETSEC—GETSEC leaf functions are 
selected by the value in EAX on input

GETSEC[CAPABILITIES]. 00001111 00110111 (EAX= 0)

GETSEC[ENTERACCS]. 00001111 00110111 (EAX= 2)

GETSEC[EXITAC]. 00001111 00110111 (EAX= 3)

GETSEC[SENTER]. 00001111 00110111 (EAX= 4)

GETSEC[SEXIT]. 00001111 00110111 (EAX= 5)

GETSEC[PARAMETERS]. 00001111 00110111 (EAX= 6)

GETSEC[SMCTRL]. 00001111 00110111 (EAX= 7)

GETSEC[WAKEUP]. 00001111 00110111 (EAX= 8)

Table B-40.  Encodings for VMX Instructions

Instruction and Format Encoding
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INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

The two tables in this appendix itemize the Intel C/C++ compiler intrinsics and functional equivalents for the Intel 
MMX technology, SSE, SSE2, SSE3, and SSSE3 instructions.

There may be additional intrinsics that do not have an instruction equivalent. It is strongly recommended that the 
reader reference the compiler documentation for the complete list of supported intrinsics. Please refer to 
http://www.intel.com/support/performancetools/. 

Table C-1 presents simple intrinsics and Table C-2 presents composite intrinsics. Some intrinsics are “composites” 
because they require more than one instruction to implement them.

Intel C/C++ Compiler intrinsic names reflect the following naming conventions:
_mm_<intrin_op>_<suffix>

where:
<intrin_op> Indicates the intrinsics basic operation; for example, add for addition and sub for subtrac-

tion
<suffix> Denotes the type of data operated on by the instruction. The first one or two letters of 

each suffix denotes whether the data is packed (p), extended packed (ep), or scalar (s). 
The remaining letters denote the type:

s single-precision floating point
d double-precision floating point
i128 signed 128-bit integer
i64 signed 64-bit integer
u64 unsigned 64-bit integer
i32 signed 32-bit integer
u32 unsigned 32-bit integer
i16 signed 16-bit integer
u16 unsigned 16-bit integer
i8 signed 8-bit integer
u8 unsigned 8-bit integer

The variable r is generally used for the intrinsic's return value. A number appended to a variable name indicates the 
element of a packed object. For example, r0 is the lowest word of r.

The packed values are represented in right-to-left order, with the lowest value being used for scalar operations. 
Consider the following example operation:

double a[2] = {1.0, 2.0};

__m128d t = _mm_load_pd(a);

The result is the same as either of the following:

__m128d t = _mm_set_pd(2.0, 1.0);

__m128d t = _mm_setr_pd(1.0, 2.0);

In other words, the XMM register that holds the value t will look as follows:

0127 64 63

2.0 1.0
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The “scalar” element is 1.0. Due to the nature of the instruction, some intrinsics require their arguments to be 
immediates (constant integer literals).

To use an intrinsic in your code, insert a line with the following syntax:

data_type intrinsic_name (parameters)

Where:
data_type Is the return data type, which can be either void, int, __m64, __m128, __m128d, or 

__m128i. Only the _mm_empty intrinsic returns void.
intrinsic_name Is the name of the intrinsic, which behaves like a function that you can use in your C/C++ 

code instead of in-lining the actual instruction.
parameters Represents the parameters required by each intrinsic.

C.1 SIMPLE INTRINSICS

NOTE

For detailed descriptions of the intrinsics in Table C-1, see the corresponding mnemonic in Chapter 
3 in the “Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A”, or Chapter 
4, “Instruction Set Reference, N-Z” in the “Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2B”. 

Table C-1.  Simple Intrinsics

Mnemonic Intrinsic

ADDPD __m128d _mm_add_pd(__m128d a, __m128d b)

ADDPS __m128 _mm_add_ps(__m128 a, __m128 b)

ADDSD __m128d _mm_add_sd(__m128d a, __m128d b)

ADDSS __m128 _mm_add_ss(__m128 a, __m128 b)

ADDSUBPD __m128d _mm_addsub_pd(__m128d a, __m128d b)

ADDSUBPS __m128 _mm_addsub_ps(__m128 a, __m128 b)

AESDEC  __m128i  _mm_aesdec (__m128i, __m128i)

AESDECLAST  __m128i  _mm_aesdeclast (__m128i, __m128i)

AESENC  __m128i  _mm_aesenc (__m128i, __m128i)

AESENCLAST __m128i  _mm_aesenclast (__m128i, __m128i)

AESIMC __m128i  _mm_aesimc (__m128i)

AESKEYGENASSIST __m128i  _mm_aesimc (__m128i, const int)

ANDNPD __m128d _mm_andnot_pd(__m128d a, __m128d b)

ANDNPS __m128 _mm_andnot_ps(__m128 a, __m128 b)

ANDPD __m128d _mm_and_pd(__m128d a, __m128d b)

ANDPS __m128 _mm_and_ps(__m128 a, __m128 b)

BLENDPD __m128d _mm_blend_pd(__m128d v1, __m128d v2, const int mask)

BLENDPS __m128 _mm_blend_ps(__m128 v1, __m128 v2, const int mask)

BLENDVPD __m128d _mm_blendv_pd(__m128d v1, __m128d v2, __m128d v3)

BLENDVPS __m128 _mm_blendv_ps(__m128 v1, __m128 v2, __m128 v3)

CLFLUSH void _mm_clflush(void const *p)

CMPPD __m128d _mm_cmpeq_pd(__m128d a, __m128d b)

__m128d _mm_cmplt_pd(__m128d a, __m128d b)
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__m128d _mm_cmple_pd(__m128d a, __m128d b)

__m128d _mm_cmpgt_pd(__m128d a, __m128d b)

__m128d _mm_cmpge_pd(__m128d a, __m128d b)

__m128d _mm_cmpneq_pd(__m128d a, __m128d b)

__m128d _mm_cmpnlt_pd(__m128d a, __m128d b)

__m128d _mm_cmpngt_pd(__m128d a, __m128d b)

__m128d _mm_cmpnge_pd(__m128d a, __m128d b)

__m128d _mm_cmpord_pd(__m128d a, __m128d b)

__m128d _mm_cmpunord_pd(__m128d a, __m128d b)

__m128d _mm_cmpnle_pd(__m128d a, __m128d b)

CMPPS __m128 _mm_cmpeq_ps(__m128 a, __m128 b)

__m128 _mm_cmplt_ps(__m128 a, __m128 b)

__m128 _mm_cmple_ps(__m128 a, __m128 b)

__m128 _mm_cmpgt_ps(__m128 a, __m128 b)

__m128 _mm_cmpge_ps(__m128 a, __m128 b)

__m128 _mm_cmpneq_ps(__m128 a, __m128 b)

__m128 _mm_cmpnlt_ps(__m128 a, __m128 b)

__m128 _mm_cmpngt_ps(__m128 a, __m128 b)

__m128 _mm_cmpnge_ps(__m128 a, __m128 b)

__m128 _mm_cmpord_ps(__m128 a, __m128 b)

__m128 _mm_cmpunord_ps(__m128 a, __m128 b)

__m128 _mm_cmpnle_ps(__m128 a, __m128 b)

CMPSD __m128d _mm_cmpeq_sd(__m128d a, __m128d b)

__m128d _mm_cmplt_sd(__m128d a, __m128d b)

__m128d _mm_cmple_sd(__m128d a, __m128d b)

__m128d _mm_cmpgt_sd(__m128d a, __m128d b)

__m128d _mm_cmpge_sd(__m128d a, __m128d b)

__m128 _mm_cmpneq_sd(__m128d a, __m128d b)

__m128 _mm_cmpnlt_sd(__m128d a, __m128d b)

__m128d _mm_cmpnle_sd(__m128d a, __m128d b)

__m128d _mm_cmpngt_sd(__m128d a, __m128d b)

__m128d _mm_cmpnge_sd(__m128d a, __m128d b)

__m128d _mm_cmpord_sd(__m128d a, __m128d b)

__m128d _mm_cmpunord_sd(__m128d a, __m128d b)

CMPSS __m128 _mm_cmpeq_ss(__m128 a, __m128 b)

__m128 _mm_cmplt_ss(__m128 a, __m128 b)

__m128 _mm_cmple_ss(__m128 a, __m128 b)

__m128 _mm_cmpgt_ss(__m128 a, __m128 b)

__m128 _mm_cmpge_ss(__m128 a, __m128 b)

__m128 _mm_cmpneq_ss(__m128 a, __m128 b)

__m128 _mm_cmpnlt_ss(__m128 a, __m128 b)

Table C-1.  Simple Intrinsics (Contd.)

Mnemonic Intrinsic
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__m128 _mm_cmpnle_ss(__m128 a, __m128 b)

__m128 _mm_cmpngt_ss(__m128 a, __m128 b)

__m128 _mm_cmpnge_ss(__m128 a, __m128 b)

__m128 _mm_cmpord_ss(__m128 a, __m128 b)

__m128 _mm_cmpunord_ss(__m128 a, __m128 b)

COMISD int _mm_comieq_sd(__m128d a, __m128d b)

int _mm_comilt_sd(__m128d a, __m128d b)

int _mm_comile_sd(__m128d a, __m128d b)

int _mm_comigt_sd(__m128d a, __m128d b)

int _mm_comige_sd(__m128d a, __m128d b)

int _mm_comineq_sd(__m128d a, __m128d b)

COMISS int _mm_comieq_ss(__m128 a, __m128 b)

int _mm_comilt_ss(__m128 a, __m128 b)

int _mm_comile_ss(__m128 a, __m128 b)

int _mm_comigt_ss(__m128 a, __m128 b)

int _mm_comige_ss(__m128 a, __m128 b)

int _mm_comineq_ss(__m128 a, __m128 b)

CRC32 unsigned int _mm_crc32_u8(unsigned int crc, unsigned char data)

unsigned int _mm_crc32_u16(unsigned int crc, unsigned short data)

unsigned int _mm_crc32_u32(unsigned int crc, unsigned int data)

unsigned __int64 _mm_crc32_u64(unsinged __int64 crc, unsigned __int64 data)

CVTDQ2PD __m128d _mm_cvtepi32_pd(__m128i a)

CVTDQ2PS __m128 _mm_cvtepi32_ps(__m128i a)

CVTPD2DQ __m128i _mm_cvtpd_epi32(__m128d a)

CVTPD2PI __m64 _mm_cvtpd_pi32(__m128d a)

CVTPD2PS __m128 _mm_cvtpd_ps(__m128d a)

CVTPI2PD __m128d _mm_cvtpi32_pd(__m64 a)

CVTPI2PS __m128 _mm_cvt_pi2ps(__m128 a, __m64 b)
__m128 _mm_cvtpi32_ps(__m128 a, __m64 b)

CVTPS2DQ __m128i _mm_cvtps_epi32(__m128 a)

CVTPS2PD __m128d _mm_cvtps_pd(__m128 a)

CVTPS2PI __m64 _mm_cvt_ps2pi(__m128 a)
__m64 _mm_cvtps_pi32(__m128 a)

CVTSD2SI int _mm_cvtsd_si32(__m128d a)

CVTSD2SS __m128 _mm_cvtsd_ss(__m128 a, __m128d b)

CVTSI2SD __m128d _mm_cvtsi32_sd(__m128d a, int b)

CVTSI2SS __m128 _mm_cvt_si2ss(__m128 a, int b)
__m128 _mm_cvtsi32_ss(__m128 a, int b)
__m128  _mm_cvtsi64_ss(__m128  a, __int64 b)

CVTSS2SD __m128d _mm_cvtss_sd(__m128d a, __m128 b)

CVTSS2SI int _mm_cvt_ss2si(__m128 a)
int _mm_cvtss_si32(__m128 a)

CVTTPD2DQ __m128i _mm_cvttpd_epi32(__m128d a)

Table C-1.  Simple Intrinsics (Contd.)

Mnemonic Intrinsic
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CVTTPD2PI __m64 _mm_cvttpd_pi32(__m128d a)

CVTTPS2DQ __m128i _mm_cvttps_epi32(__m128 a)

CVTTPS2PI __m64 _mm_cvtt_ps2pi(__m128 a)
__m64 _mm_cvttps_pi32(__m128 a)

CVTTSD2SI int _mm_cvttsd_si32(__m128d a)

CVTTSS2SI int _mm_cvtt_ss2si(__m128 a)
int _mm_cvttss_si32(__m128 a)

__m64 _mm_cvtsi32_si64(int i)

int _mm_cvtsi64_si32(__m64 m)

DIVPD __m128d _mm_div_pd(__m128d a, __m128d b)

DIVPS __m128 _mm_div_ps(__m128 a, __m128 b)

DIVSD __m128d _mm_div_sd(__m128d a, __m128d b)

DIVSS __m128 _mm_div_ss(__m128 a, __m128 b)

DPPD __m128d _mm_dp_pd(__m128d a, __m128d b, const int mask)

DPPS __m128 _mm_dp_ps(__m128 a, __m128 b, const int mask)

EMMS void _mm_empty()

EXTRACTPS int _mm_extract_ps(__m128 src, const int ndx)

HADDPD __m128d _mm_hadd_pd(__m128d a, __m128d b)

HADDPS __m128 _mm_hadd_ps(__m128 a, __m128 b)

HSUBPD __m128d _mm_hsub_pd(__m128d a, __m128d b)

HSUBPS __m128 _mm_hsub_ps(__m128 a, __m128 b)

INSERTPS __m128 _mm_insert_ps(__m128 dst, __m128 src, const int ndx)

LDDQU __m128i _mm_lddqu_si128(__m128i const *p)

LDMXCSR __mm_setcsr(unsigned int i)

LFENCE void _mm_lfence(void)

MASKMOVDQU void _mm_maskmoveu_si128(__m128i d, __m128i n, char *p)

MASKMOVQ void _mm_maskmove_si64(__m64 d, __m64 n, char *p)

MAXPD __m128d _mm_max_pd(__m128d a, __m128d b)

MAXPS __m128 _mm_max_ps(__m128 a, __m128 b)

MAXSD __m128d _mm_max_sd(__m128d a, __m128d b)

MAXSS __m128 _mm_max_ss(__m128 a, __m128 b)

MFENCE void _mm_mfence(void)

MINPD __m128d _mm_min_pd(__m128d a, __m128d b)

MINPS __m128 _mm_min_ps(__m128 a, __m128 b)

MINSD __m128d _mm_min_sd(__m128d a, __m128d b)

MINSS __m128 _mm_min_ss(__m128 a, __m128 b)

MONITOR void _mm_monitor(void const *p, unsigned extensions, unsigned hints)

MOVAPD __m128d _mm_load_pd(double * p)

void_mm_store_pd(double *p, __m128d a)

MOVAPS __m128 _mm_load_ps(float * p)

void_mm_store_ps(float *p, __m128 a)

MOVD __m128i _mm_cvtsi32_si128(int a)

Table C-1.  Simple Intrinsics (Contd.)

Mnemonic Intrinsic
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int _mm_cvtsi128_si32(__m128i a)

__m64 _mm_cvtsi32_si64(int a)

int _mm_cvtsi64_si32(__m64 a)

MOVDDUP __m128d _mm_movedup_pd(__m128d a)

__m128d _mm_loaddup_pd(double const * dp)

MOVDQA __m128i _mm_load_si128(__m128i * p)

void_mm_store_si128(__m128i *p, __m128i a)

MOVDQU __m128i _mm_loadu_si128(__m128i * p)

void_mm_storeu_si128(__m128i *p, __m128i a)

MOVDQ2Q __m64 _mm_movepi64_pi64(__m128i a)

MOVHLPS __m128 _mm_movehl_ps(__m128 a, __m128 b)

MOVHPD __m128d _mm_loadh_pd(__m128d a, double * p)

void _mm_storeh_pd(double * p, __m128d a)

MOVHPS __m128 _mm_loadh_pi(__m128 a, __m64 * p)

void _mm_storeh_pi(__m64 * p, __m128 a)

MOVLPD __m128d _mm_loadl_pd(__m128d a, double * p)

void _mm_storel_pd(double * p, __m128d a)

MOVLPS __m128 _mm_loadl_pi(__m128 a, __m64 *p)

void_mm_storel_pi(__m64 * p, __m128 a)

MOVLHPS __m128 _mm_movelh_ps(__m128 a, __m128 b)

MOVMSKPD int _mm_movemask_pd(__m128d a)

MOVMSKPS int _mm_movemask_ps(__m128 a)

MOVNTDQA __m128i _mm_stream_load_si128(__m128i *p)

MOVNTDQ void_mm_stream_si128(__m128i * p, __m128i a)

MOVNTPD void_mm_stream_pd(double * p, __m128d a)

MOVNTPS void_mm_stream_ps(float * p, __m128 a)

MOVNTI void_mm_stream_si32(int * p, int a)

MOVNTQ void_mm_stream_pi(__m64 * p, __m64 a)

MOVQ __m128i _mm_loadl_epi64(__m128i * p)

void_mm_storel_epi64(_m128i * p, __m128i a)

__m128i _mm_move_epi64(__m128i a)

MOVQ2DQ __m128i _mm_movpi64_epi64(__m64 a)

MOVSD __m128d _mm_load_sd(double * p)

void_mm_store_sd(double * p, __m128d a)

__m128d _mm_move_sd(__m128d a, __m128d b)

MOVSHDUP __m128 _mm_movehdup_ps(__m128 a)

MOVSLDUP __m128 _mm_moveldup_ps(__m128 a)

MOVSS __m128 _mm_load_ss(float * p)

void_mm_store_ss(float * p, __m128 a)

__m128 _mm_move_ss(__m128 a, __m128 b)

MOVUPD __m128d _mm_loadu_pd(double * p)

Table C-1.  Simple Intrinsics (Contd.)

Mnemonic Intrinsic
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void_mm_storeu_pd(double *p, __m128d a) 

MOVUPS __m128 _mm_loadu_ps(float * p)

void_mm_storeu_ps(float *p, __m128 a) 

MPSADBW __m128i _mm_mpsadbw_epu8(__m128i s1, __m128i s2, const int mask)

MULPD __m128d _mm_mul_pd(__m128d a, __m128d b)

MULPS __m128 _mm_mul_ss(__m128 a, __m128 b)

MULSD __m128d _mm_mul_sd(__m128d a, __m128d b)

MULSS __m128 _mm_mul_ss(__m128 a, __m128 b)

MWAIT void _mm_mwait(unsigned extensions, unsigned hints)

ORPD __m128d _mm_or_pd(__m128d a, __m128d b)

ORPS __m128 _mm_or_ps(__m128 a, __m128 b)

PABSB  __m64 _mm_abs_pi8 (__m64 a)

 __m128i _mm_abs_epi8 (__m128i a)

PABSD  __m64 _mm_abs_pi32 (__m64 a)

 __m128i _mm_abs_epi32 (__m128i a)

PABSW  __m64 _mm_abs_pi16 (__m64 a)

 __m128i _mm_abs_epi16 (__m128i a)

PACKSSWB __m128i _mm_packs_epi16(__m128i m1, __m128i m2)

PACKSSWB __m64 _mm_packs_pi16(__m64 m1, __m64 m2)

PACKSSDW __m128i _mm_packs_epi32 (__m128i m1, __m128i m2)

PACKSSDW __m64 _mm_packs_pi32 (__m64 m1, __m64 m2)

PACKUSDW __m128i _mm_packus_epi32(__m128i m1, __m128i m2)

PACKUSWB __m128i _mm_packus_epi16(__m128i m1, __m128i m2)

PACKUSWB __m64 _mm_packs_pu16(__m64 m1, __m64 m2)

PADDB __m128i _mm_add_epi8(__m128i m1, __m128i m2)

PADDB __m64 _mm_add_pi8(__m64 m1, __m64 m2)

PADDW __m128i _mm_add_epi16(__m128i m1, __m128i m2)

PADDW __m64 _mm_add_pi16(__m64 m1, __m64 m2)

PADDD __m128i _mm_add_epi32(__m128i m1, __m128i m2)

PADDD __m64 _mm_add_pi32(__m64 m1, __m64 m2)

PADDQ __m128i _mm_add_epi64(__m128i m1, __m128i m2)

PADDQ __m64 _mm_add_si64(__m64 m1, __m64 m2)

PADDSB __m128i _mm_adds_epi8(__m128i m1, __m128i m2)

PADDSB __m64 _mm_adds_pi8(__m64 m1, __m64 m2)

PADDSW __m128i _mm_adds_epi16(__m128i m1, __m128i m2)

PADDSW __m64 _mm_adds_pi16(__m64 m1, __m64 m2)

PADDUSB __m128i _mm_adds_epu8(__m128i m1, __m128i m2)

PADDUSB __m64 _mm_adds_pu8(__m64 m1, __m64 m2)

PADDUSW __m128i _mm_adds_epu16(__m128i m1, __m128i m2)

PADDUSW __m64 _mm_adds_pu16(__m64 m1, __m64 m2)

Table C-1.  Simple Intrinsics (Contd.)
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PALIGNR  __m64 _mm_alignr_pi8 (__m64 a, __m64 b, int n)

 __m128i _mm_alignr_epi8 (__m128i a, __m128i b, int n)

PAND __m128i _mm_and_si128(__m128i m1, __m128i m2)

PAND __m64 _mm_and_si64(__m64 m1, __m64 m2)

PANDN __m128i _mm_andnot_si128(__m128i m1, __m128i m2)

PANDN __m64 _mm_andnot_si64(__m64 m1, __m64 m2)

PAUSE void _mm_pause(void)

PAVGB __m128i _mm_avg_epu8(__m128i a, __m128i b)

PAVGB __m64 _mm_avg_pu8(__m64 a, __m64 b)

PAVGW __m128i _mm_avg_epu16(__m128i a, __m128i b)

PAVGW __m64 _mm_avg_pu16(__m64 a, __m64 b)

PBLENDVB __m128i _mm_blendv_epi (__m128i v1, __m128i v2, __m128i mask)

PBLENDW __m128i _mm_blend_epi16(__m128i v1, __m128i v2, const int mask)

PCLMULQDQ __m128i  _mm_clmulepi64_si128 (__m128i, __m128i, const int)

PCMPEQB __m128i _mm_cmpeq_epi8(__m128i m1, __m128i m2)

PCMPEQB __m64 _mm_cmpeq_pi8(__m64 m1, __m64 m2)

PCMPEQQ __m128i _mm_cmpeq_epi64(__m128i a, __m128i b)

PCMPEQW __m128i _mm_cmpeq_epi16 (__m128i m1, __m128i m2)

PCMPEQW __m64 _mm_cmpeq_pi16 (__m64 m1, __m64 m2)

PCMPEQD __m128i _mm_cmpeq_epi32(__m128i m1, __m128i m2)

PCMPEQD __m64 _mm_cmpeq_pi32(__m64 m1, __m64 m2)

PCMPESTRI int _mm_cmpestri (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode)

PCMPESTRM __m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrz (__m128i a, int la, __m128i b, int lb, const int mode)

PCMPGTB __m128i _mm_cmpgt_epi8 (__m128i m1, __m128i m2)

PCMPGTB __m64 _mm_cmpgt_pi8 (__m64 m1, __m64 m2)

PCMPGTW __m128i _mm_cmpgt_epi16(__m128i m1, __m128i m2)

PCMPGTW __m64 _mm_cmpgt_pi16 (__m64 m1, __m64 m2)

PCMPGTD __m128i _mm_cmpgt_epi32(__m128i m1, __m128i m2)

PCMPGTD __m64 _mm_cmpgt_pi32(__m64 m1, __m64 m2)

PCMPISTRI __m128i _mm_cmpestrm (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestra (__m128i a, int la, __m128i b, int lb, const int mode)

Table C-1.  Simple Intrinsics (Contd.)
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int _mm_cmpestrc (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestro (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpestrs (__m128i a, int la, __m128i b, int lb, const int mode)

int _mm_cmpistrz (__m128i a, __m128i b, const int mode)

PCMPISTRM __m128i _mm_cmpistrm (__m128i a, __m128i b, const int mode)

int _mm_cmpistra (__m128i a, __m128i b, const int mode)

int _mm_cmpistrc (__m128i a, __m128i b, const int mode)

int _mm_cmpistro (__m128i a, __m128i b, const int mode)

int _mm_cmpistrs (__m128i a, __m128i b, const int mode)

int _mm_cmpistrz (__m128i a, __m128i b, const int mode)

PCMPGTQ __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)

PEXTRB int _mm_extract_epi8 (__m128i src, const int ndx)

PEXTRD int _mm_extract_epi32 (__m128i src, const int ndx)

PEXTRQ __int64 _mm_extract_epi64 (__m128i src, const int ndx)

PEXTRW int _mm_extract_epi16(__m128i a, int n)

PEXTRW int _mm_extract_pi16(__m64 a, int n)

int _mm_extract_epi16 (__m128i src, int ndx)

PHADDD  __m64 _mm_hadd_pi32 (__m64 a, __m64 b)

 __m128i _mm_hadd_epi32 (__m128i a, __m128i b)

PHADDSW  __m64 _mm_hadds_pi16 (__m64 a, __m64 b)

 __m128i _mm_hadds_epi16 (__m128i a, __m128i b)

PHADDW __m64 _mm_hadd_pi16 (__m64 a, __m64 b)

__m128i _mm_hadd_epi16 (__m128i a, __m128i b)

PHMINPOSUW __m128i _mm_minpos_epu16( __m128i packed_words)

PHSUBD  __m64 _mm_hsub_pi32 (__m64 a, __m64 b)

 __m128i _mm_hsub_epi32 (__m128i a, __m128i b)

PHSUBSW  __m64 _mm_hsubs_pi16 (__m64 a, __m64 b)

 __m128i _mm_hsubs_epi16 (__m128i a, __m128i b)

PHSUBW  __m64 _mm_hsub_pi16 (__m64 a, __m64 b)

 __m128i _mm_hsub_epi16 (__m128i a, __m128i b)

PINSRB __m128i _mm_insert_epi8(__m128i s1, int s2, const int ndx)

PINSRD __m128i _mm_insert_epi32(__m128i s2, int s, const int ndx)

PINSRQ __m128i _mm_insert_epi64(__m128i s2, __int64 s, const int ndx)

PINSRW __m128i _mm_insert_epi16(__m128i a, int d, int n)

PINSRW __m64 _mm_insert_pi16(__m64 a, int d, int n)

PMADDUBSW  __m64 _mm_maddubs_pi16 (__m64 a, __m64 b)

 __m128i _mm_maddubs_epi16 (__m128i a, __m128i b)

PMADDWD __m128i _mm_madd_epi16(__m128i m1 __m128i m2)

PMADDWD __m64 _mm_madd_pi16(__m64 m1, __m64 m2)

PMAXSB __m128i _mm_max_epi8( __m128i a, __m128i b)

PMAXSD __m128i _mm_max_epi32( __m128i a, __m128i b)
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PMAXSW __m128i _mm_max_epi16(__m128i a, __m128i b)

PMAXSW __m64 _mm_max_pi16(__m64 a, __m64 b)

PMAXUB __m128i _mm_max_epu8(__m128i a, __m128i b)

PMAXUB __m64 _mm_max_pu8(__m64 a, __m64 b)

PMAXUD __m128i _mm_max_epu32( __m128i a, __m128i b)

PMAXUW __m128i _mm_max_epu16( __m128i a, __m128i b)

PMINSB _m128i _mm_min_epi8( __m128i a, __m128i b)

PMINSD __m128i _mm_min_epi32( __m128i a, __m128i b)

PMINSW __m128i _mm_min_epi16(__m128i a, __m128i b)

PMINSW __m64 _mm_min_pi16(__m64 a, __m64 b)

PMINUB __m128i _mm_min_epu8(__m128i a, __m128i b)

PMINUB __m64 _mm_min_pu8(__m64 a, __m64 b)

PMINUD __m128i _mm_min_epu32 ( __m128i a, __m128i b)

PMINUW __m128i _mm_min_epu16 ( __m128i a, __m128i b)

PMOVMSKB int _mm_movemask_epi8(__m128i a)

PMOVMSKB int _mm_movemask_pi8(__m64 a)

PMOVSXBW __m128i _mm_ cvtepi8_epi16( __m128i a)

PMOVSXBD __m128i _mm_ cvtepi8_epi32( __m128i a)

PMOVSXBQ __m128i _mm_ cvtepi8_epi64( __m128i a)

PMOVSXWD __m128i _mm_ cvtepi16_epi32( __m128i a)

PMOVSXWQ __m128i _mm_ cvtepi16_epi64( __m128i a)

PMOVSXDQ __m128i _mm_ cvtepi32_epi64( __m128i a)

PMOVZXBW __m128i _mm_ cvtepu8_epi16( __m128i a)

PMOVZXBD __m128i _mm_ cvtepu8_epi32( __m128i a)

PMOVZXBQ __m128i _mm_ cvtepu8_epi64( __m128i a)

PMOVZXWD __m128i _mm_ cvtepu16_epi32( __m128i a)

PMOVZXWQ __m128i _mm_ cvtepu16_epi64( __m128i a)

PMOVZXDQ __m128i _mm_ cvtepu32_epi64( __m128i a)

PMULDQ __m128i _mm_mul_epi32( __m128i a, __m128i b)

PMULHRSW __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)

__m128i _mm_mulhrs_epi16 (__m128i a, __m128i b)

PMULHUW __m128i _mm_mulhi_epu16(__m128i a, __m128i b)

PMULHUW __m64 _mm_mulhi_pu16(__m64 a, __m64 b)

PMULHW __m128i _mm_mulhi_epi16(__m128i m1, __m128i m2)

PMULHW __m64 _mm_mulhi_pi16(__m64 m1, __m64 m2)

PMULLUD __m128i _mm_mullo_epi32(__m128i a, __m128i b)

PMULLW __m128i _mm_mullo_epi16(__m128i m1, __m128i m2)

PMULLW __m64 _mm_mullo_pi16(__m64 m1, __m64 m2)

PMULUDQ __m64 _mm_mul_su32(__m64 m1, __m64 m2)

__m128i _mm_mul_epu32(__m128i m1, __m128i m2)

Table C-1.  Simple Intrinsics (Contd.)

Mnemonic Intrinsic



Vol. 2C C-11

INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

POPCNT int _mm_popcnt_u32(unsigned int a)

int64_t _mm_popcnt_u64(unsigned __int64 a)

POR __m64 _mm_or_si64(__m64 m1, __m64 m2)

POR __m128i _mm_or_si128(__m128i m1, __m128i m2)

PREFETCHh void _mm_prefetch(char *a, int sel)

PSADBW __m128i _mm_sad_epu8(__m128i a, __m128i b)

PSADBW __m64 _mm_sad_pu8(__m64 a, __m64 b)

PSHUFB  __m64 _mm_shuffle_pi8 (__m64 a, __m64 b)

 __m128i _mm_shuffle_epi8 (__m128i a, __m128i b)

PSHUFD __m128i _mm_shuffle_epi32(__m128i a, int n)

PSHUFHW __m128i _mm_shufflehi_epi16(__m128i a, int n)

PSHUFLW __m128i _mm_shufflelo_epi16(__m128i a, int n)

PSHUFW __m64 _mm_shuffle_pi16(__m64 a, int n)

PSIGNB  __m64 _mm_sign_pi8 (__m64 a, __m64 b)

 __m128i _mm_sign_epi8 (__m128i a, __m128i b)

PSIGND  __m64 _mm_sign_pi32 (__m64 a, __m64 b)

 __m128i _mm_sign_epi32 (__m128i a, __m128i b)

PSIGNW  __m64 _mm_sign_pi16 (__m64 a, __m64 b)

 __m128i _mm_sign_epi16 (__m128i a, __m128i b)

PSLLW __m128i _mm_sll_epi16(__m128i m, __m128i count)

PSLLW __m128i _mm_slli_epi16(__m128i m, int count)

PSLLW __m64 _mm_sll_pi16(__m64 m, __m64 count)

__m64 _mm_slli_pi16(__m64 m, int count)

PSLLD __m128i _mm_slli_epi32(__m128i m, int count)

__m128i _mm_sll_epi32(__m128i m, __m128i count)

PSLLD __m64 _mm_slli_pi32(__m64 m, int count)

__m64 _mm_sll_pi32(__m64 m, __m64 count)

PSLLQ __m64 _mm_sll_si64(__m64 m, __m64 count)

__m64 _mm_slli_si64(__m64 m, int count)

PSLLQ __m128i _mm_sll_epi64(__m128i m, __m128i count)

__m128i _mm_slli_epi64(__m128i m, int count)

PSLLDQ __m128i _mm_slli_si128(__m128i m, int imm)

PSRAW __m128i _mm_sra_epi16(__m128i m, __m128i count)

__m128i _mm_srai_epi16(__m128i m, int count)

PSRAW __m64 _mm_sra_pi16(__m64 m, __m64 count)

__m64 _mm_srai_pi16(__m64 m, int count)

PSRAD __m128i _mm_sra_epi32 (__m128i m, __m128i count)

__m128i _mm_srai_epi32 (__m128i m, int count)

PSRAD __m64 _mm_sra_pi32 (__m64 m, __m64 count)

__m64 _mm_srai_pi32 (__m64 m, int count)

PSRLW _m128i _mm_srl_epi16 (__m128i m, __m128i count)
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__m128i _mm_srli_epi16 (__m128i m, int count)

__m64 _mm_srl_pi16 (__m64 m, __m64 count)

__m64 _mm_srli_pi16(__m64 m, int count)

PSRLD __m128i _mm_srl_epi32 (__m128i m, __m128i count)

__m128i _mm_srli_epi32 (__m128i m, int count)

PSRLD __m64 _mm_srl_pi32 (__m64 m, __m64 count)

__m64 _mm_srli_pi32 (__m64 m, int count)

PSRLQ __m128i _mm_srl_epi64 (__m128i m, __m128i count)

__m128i _mm_srli_epi64 (__m128i m, int count)

PSRLQ __m64 _mm_srl_si64 (__m64 m, __m64 count)

__m64 _mm_srli_si64 (__m64 m, int count)

PSRLDQ __m128i _mm_srli_si128(__m128i m, int imm)

PSUBB __m128i _mm_sub_epi8(__m128i m1, __m128i m2)

PSUBB __m64 _mm_sub_pi8(__m64 m1, __m64 m2)

PSUBW __m128i _mm_sub_epi16(__m128i m1, __m128i m2)

PSUBW __m64 _mm_sub_pi16(__m64 m1, __m64 m2)

PSUBD __m128i _mm_sub_epi32(__m128i m1, __m128i m2)

PSUBD __m64 _mm_sub_pi32(__m64 m1, __m64 m2)

PSUBQ __m128i _mm_sub_epi64(__m128i m1, __m128i m2)

PSUBQ __m64 _mm_sub_si64(__m64 m1, __m64 m2)

PSUBSB __m128i _mm_subs_epi8(__m128i m1, __m128i m2)

PSUBSB __m64 _mm_subs_pi8(__m64 m1, __m64 m2)

PSUBSW __m128i _mm_subs_epi16(__m128i m1, __m128i m2)

PSUBSW __m64 _mm_subs_pi16(__m64 m1, __m64 m2)

PSUBUSB __m128i _mm_subs_epu8(__m128i m1, __m128i m2)

PSUBUSB __m64 _mm_subs_pu8(__m64 m1, __m64 m2)

PSUBUSW __m128i _mm_subs_epu16(__m128i m1, __m128i m2)

PSUBUSW __m64 _mm_subs_pu16(__m64 m1, __m64 m2)

PTEST int _mm_testz_si128(__m128i s1, __m128i s2)

int _mm_testc_si128(__m128i s1, __m128i s2)

int _mm_testnzc_si128(__m128i s1, __m128i s2)

PUNPCKHBW __m64 _mm_unpackhi_pi8(__m64 m1, __m64 m2)

PUNPCKHBW __m128i _mm_unpackhi_epi8(__m128i m1, __m128i m2)

PUNPCKHWD __m64 _mm_unpackhi_pi16(__m64 m1,__m64 m2)

PUNPCKHWD __m128i _mm_unpackhi_epi16(__m128i m1, __m128i m2)

PUNPCKHDQ ___m64 _mm_unpackhi_pi32(__m64 m1, __m64 m2)

PUNPCKHDQ __m128i _mm_unpackhi_epi32(__m128i m1, __m128i m2)

PUNPCKHQDQ __m128i _mm_unpackhi_epi64(__m128i m1, __m128i m2)

PUNPCKLBW __m64 _mm_unpacklo_pi8 (__m64 m1, __m64 m2)

PUNPCKLBW __m128i _mm_unpacklo_epi8 (__m128i m1, __m128i m2)

PUNPCKLWD __m64 _mm_unpacklo_pi16(__m64 m1, __m64 m2)
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PUNPCKLWD __m128i _mm_unpacklo_epi16(__m128i m1, __m128i m2)

PUNPCKLDQ __m64 _mm_unpacklo_pi32(__m64 m1, __m64 m2)

PUNPCKLDQ __m128i _mm_unpacklo_epi32(__m128i m1, __m128i m2)

PUNPCKLQDQ __m128i _mm_unpacklo_epi64(__m128i m1, __m128i m2)

PXOR __m64 _mm_xor_si64(__m64 m1, __m64 m2)

PXOR __m128i _mm_xor_si128(__m128i m1, __m128i m2)

RCPPS __m128 _mm_rcp_ps(__m128 a)

RCPSS __m128 _mm_rcp_ss(__m128 a)

ROUNDPD __m128 mm_round_pd(__m128d s1, int iRoundMode)

__m128 mm_floor_pd(__m128d s1)

__m128 mm_ceil_pd(__m128d s1)

ROUNDPS __m128 mm_round_ps(__m128 s1, int iRoundMode)

__m128 mm_floor_ps(__m128 s1)

__m128 mm_ceil_ps(__m128 s1)

ROUNDSD __m128d mm_round_sd(__m128d dst, __m128d s1, int iRoundMode)

__m128d mm_floor_sd(__m128d dst, __m128d s1)

__m128d mm_ceil_sd(__m128d dst, __m128d s1)

ROUNDSS __m128 mm_round_ss(__m128 dst, __m128 s1, int iRoundMode)

__m128 mm_floor_ss(__m128 dst, __m128 s1)

__m128 mm_ceil_ss(__m128 dst, __m128 s1)

RSQRTPS __m128 _mm_rsqrt_ps(__m128 a)

RSQRTSS __m128 _mm_rsqrt_ss(__m128 a)

SFENCE void_mm_sfence(void)

SHUFPD __m128d _mm_shuffle_pd(__m128d a, __m128d b, unsigned int imm8)

SHUFPS __m128 _mm_shuffle_ps(__m128 a, __m128 b, unsigned int imm8)

SQRTPD __m128d _mm_sqrt_pd(__m128d a)

SQRTPS __m128 _mm_sqrt_ps(__m128 a)

SQRTSD __m128d _mm_sqrt_sd(__m128d a)

SQRTSS __m128 _mm_sqrt_ss(__m128 a)

STMXCSR _mm_getcsr(void)

SUBPD __m128d _mm_sub_pd(__m128d a, __m128d b)

SUBPS __m128 _mm_sub_ps(__m128 a, __m128 b)

SUBSD __m128d _mm_sub_sd(__m128d a, __m128d b)

SUBSS __m128 _mm_sub_ss(__m128 a, __m128 b)

UCOMISD int _mm_ucomieq_sd(__m128d a, __m128d b)

int _mm_ucomilt_sd(__m128d a, __m128d b)

int _mm_ucomile_sd(__m128d a, __m128d b)

int _mm_ucomigt_sd(__m128d a, __m128d b)

int _mm_ucomige_sd(__m128d a, __m128d b)

int _mm_ucomineq_sd(__m128d a, __m128d b)

UCOMISS int _mm_ucomieq_ss(__m128 a, __m128 b)
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C.2 COMPOSITE INTRINSICS

int _mm_ucomilt_ss(__m128 a, __m128 b)

int _mm_ucomile_ss(__m128 a, __m128 b)

int _mm_ucomigt_ss(__m128 a, __m128 b)

int _mm_ucomige_ss(__m128 a, __m128 b)

int _mm_ucomineq_ss(__m128 a, __m128 b)

UNPCKHPD __m128d _mm_unpackhi_pd(__m128d a, __m128d b)

UNPCKHPS __m128 _mm_unpackhi_ps(__m128 a, __m128 b)

UNPCKLPD __m128d _mm_unpacklo_pd(__m128d a, __m128d b)

UNPCKLPS __m128 _mm_unpacklo_ps(__m128 a, __m128 b)

XORPD __m128d _mm_xor_pd(__m128d a, __m128d b)

XORPS __m128 _mm_xor_ps(__m128 a, __m128 b)

Table C-2.  Composite Intrinsics

Mnemonic Intrinsic

(composite) __m128i _mm_set_epi64(__m64 q1, __m64 q0)

(composite) __m128i _mm_set_epi32(int i3, int i2, int i1, int i0)

(composite) __m128i _mm_set_epi16(short w7,short w6, short w5, short w4, short w3, short w2, 
 short w1,short w0)

(composite) __m128i _mm_set_epi8(char w15,char w14, char w13, char w12, char w11, char w10,
 char w9, char w8, char w7,char w6, char w5, char w4, char w3, char w2,char w1, char w0)

(composite) __m128i _mm_set1_epi64(__m64 q)

(composite) __m128i _mm_set1_epi32(int a)

(composite) __m128i _mm_set1_epi16(short a)

(composite) __m128i _mm_set1_epi8(char a)

(composite) __m128i _mm_setr_epi64(__m64 q1, __m64 q0)

(composite) __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0)

(composite) __m128i _mm_setr_epi16(short w7,short w6, short w5, short w4, short w3, short w2, short w,
short w0)

(composite) __m128i _mm_setr_epi8(char w15,char w14, char w13, char w12, char w11, char w10,
char w9, char w8,char w7, char w6,char w5, char w4, char w3, char w2,char w1,char w0)

(composite) __m128i _mm_setzero_si128()

(composite) __m128 _mm_set_ps1(float w)
__m128 _mm_set1_ps(float w)

(composite) __m128cmm_set1_pd(double w)

(composite) __m128d _mm_set_sd(double w)

(composite) __m128d _mm_set_pd(double z, double y)

(composite) __m128 _mm_set_ps(float z, float y, float x, float w)

(composite) __m128d _mm_setr_pd(double z, double y)

(composite) __m128 _mm_setr_ps(float z, float y, float x, float w)

(composite) __m128d _mm_setzero_pd(void)

(composite) __m128 _mm_setzero_ps(void)
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MOVSD + shuffle __m128d _mm_load_pd(double * p)
__m128d _mm_load1_pd(double *p)

MOVSS + shuffle __m128 _mm_load_ps1(float * p)
__m128 _mm_load1_ps(float *p)

MOVAPD + shuffle __m128d _mm_loadr_pd(double * p)

MOVAPS + shuffle __m128 _mm_loadr_ps(float * p)

MOVSD + shuffle void _mm_store1_pd(double *p, __m128d a)

MOVSS + shuffle void _mm_store_ps1(float * p, __m128 a)
void _mm_store1_ps(float *p, __m128 a)

MOVAPD + shuffle _mm_storer_pd(double * p, __m128d a)

MOVAPS + shuffle _mm_storer_ps(float * p, __m128 a)

Table C-2.  Composite Intrinsics (Contd.)
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CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System Programming Guide, 
Part 1 (order number 253668), the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B: 
System Programming Guide, Part 2 (order number 253669) and the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3C: System Programming Guide, Part 3 (order number 326019) are part of a set that 
describes the architecture and programming environment of Intel 64 and IA-32 Architecture processors. The other 
volumes in this set are:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (order number 

253665).
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B & 2C: Instruction Set 

Reference (order numbers 253666, 253667 and 326018).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture 
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volumes 2A, 2B & 2C, describe the instruction set of the processor and the opcode structure. 
These volumes apply to application programmers and to programmers who write operating systems or executives. 
The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B & 3C, describe the oper-
ating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-system and 
BIOS designers. In addition, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, and 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C address the programming environ-
ment for classes of software that host operating systems. 

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which 
include: 
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series
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• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Core™2 Extreme QX9000 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® Core™2 Extreme processor QX9000 and X9000 series
• Intel® Core™2 Quad processor Q9000 series
• Intel® Core™2 Duo processor E8000, T9000 series
• Intel® Atom™ processor family
• Intel® Core™ i7 processor
• Intel® Core™ i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families 
• Intel® Core™ i7-3930K processor
• 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
• Intel® Xeon® processor E3-1200 product family
• Intel® Xeon® processor E5-2400/1400 product family
• Intel® Xeon® processor E5-4600/2600/1600 product family
• 3rd generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v2 product family
• Intel® Xeon® processor E5-2400/1400 v2 product families
• Intel® Xeon® processor E5-4600/2600/1600 v2 product families
• Intel® Xeon® processor E7-8800/4800/2800 v2 product families
• 4th generation Intel® Core™ processors
• Intel® Xeon® processor E3-1200 v3 product family

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium® 
Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® processors. 

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® micro-
architecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon 
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved 
Pentium® M processor microarchitecture. 

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel® 
Core™2 Duo, Intel® Core™2 Quad and Intel® Core™2 Extreme processors are based on Intel® Core™ microarchi-
tecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™2 Quad processor Q9000 series, and Intel® 
Core™2 Extreme processors QX9000, X9000 series, Intel® Core™2 processor E8000 series are based on Enhanced 
Intel® Core™ microarchitecture.

The Intel® Atom™ processor family is based on the Intel® Atom™ microarchitecture and supports Intel 64 archi-
tecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Intel® 
microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32nm version of Intel® 
microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and various 
Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code name Westmere. These processors 
support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx, 
Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel® microarchitecture code 
name Sandy Bridge and support Intel 64 architecture.
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The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 product 
family and 3rd generation Intel® Core™ processors are based on the Intel® microarchitecture code name Ivy 
Bridge and support Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families and Intel® Xeon® processor E5-2400/1400 
v2 product families are based on the Intel® microarchitecture code name Ivy Bridge-EP and support Intel 64 archi-
tecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th generation Intel® Core™ processors are based on 
the Intel® microarchitecture code name Haswell and support Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV, 
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™ 
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel® 
Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad processors, Pentium® D processors, Pentium® 
Dual-Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architec-
ture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microproces-
sors. Intel® 64 architecture is the instruction set architecture and programming environment which is a superset 
of and compatible with IA-32 architecture.

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE

A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all seven volumes of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual. It also describes the notational conventions in these manuals and lists related 
Intel manuals and documentation of interest to programmers and hardware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation used by Intel 64 and IA-32 
processors and the mechanisms provided by the architectures to support operating systems and executives, 
including the system-oriented registers and data structures and the system-oriented instructions. The steps 
necessary for switching between real-address and protected modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data structures, registers, and instructions 
that support segmentation and paging. The chapter explains how they can be used to implement a “flat” (unseg-
mented) memory model or a segmented memory model.

Chapter 4 — Paging. Describes the paging modes supported by Intel 64 and IA-32 processors.

Chapter 5 — Protection. Describes the support for page and segment protection provided in the Intel 64 and IA-
32 architectures. This chapter also explains the implementation of privilege rules, stack switching, pointer valida-
tion, user and supervisor modes.

Chapter 6 — Interrupt and Exception Handling. Describes the basic interrupt mechanisms defined in the Intel 
64 and IA-32 architectures, shows how interrupts and exceptions relate to protection, and describes how the archi-
tecture handles each exception type. Reference information for each exception is given in this chapter. Includes 
programming the LINT0 and LINT1 inputs and gives an example of how to program the LINT0 and LINT1 pins for 
specific interrupt vectors.

Chapter 7 — Task Management. Describes mechanisms the Intel 64 and IA-32 architectures provide to support 
multitasking and inter-task protection.

Chapter 8 — Multiple-Processor Management. Describes the instructions and flags that support multiple 
processors with shared memory, memory ordering, and Intel® Hyper-Threading Technology. Includes MP initializa-
tion for P6 family processors and gives an example of how to use of the MP protocol to boot P6 family processors in 
an MP system.

Chapter 9 — Processor Management and Initialization. Defines the state of an Intel 64 or IA-32 processor 
after reset initialization. This chapter also explains how to set up an Intel 64 or IA-32 processor for real-address 
mode operation and protected- mode operation, and how to switch between modes.
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Chapter 10 — Advanced Programmable Interrupt Controller (APIC). Describes the programming interface 
to the local APIC and gives an overview of the interface between the local APIC and the I/O APIC. Includes APIC bus 
message formats and describes the message formats for messages transmitted on the APIC bus for P6 family and 
Pentium processors.

Chapter 11 — Memory Cache Control. Describes the general concept of caching and the caching mechanisms 
supported by the Intel 64 or IA-32 architectures. This chapter also describes the memory type range registers 
(MTRRs) and how they can be used to map memory types of physical memory. Information on using the new cache 
control and memory streaming instructions introduced with the Pentium III, Pentium 4, and Intel Xeon processors 
is also given.

Chapter 12 — Intel® MMX™ Technology System Programming. Describes those aspects of the Intel® MMX™ 
technology that must be handled and considered at the system programming level, including: task switching, 
exception handling, and compatibility with existing system environments.

Chapter 13 — System Programming For Instruction Set Extensions And Processor Extended States. 
Describes the operating system requirements to support SSE/SSE2/SSE3/SSSE3/SSE4 extensions, including task 
switching, exception handling, and compatibility with existing system environments. The latter part of this chapter 
describes the extensible framework of operating system requirements to support processor extended states. 
Processor extended state may be required by instruction set extensions beyond those of 
SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

Chapter 14 — Power and Thermal Management. Describes facilities of Intel 64 and IA-32 architecture used for 
power management and thermal monitoring.

Chapter 15 — Machine-Check Architecture. Describes the machine-check architecture and machine-
check exception mechanism found in the Pentium 4, Intel Xeon, and P6 family processors. Additionally, 
a signaling mechanism for software to respond to hardware corrected machine check error is covered.
Chapter 16 — Interpreting Machine-Check Error Codes. Gives an example of how to interpret the error codes 
for a machine-check error that occurred on a P6 family processor.

Chapter 17 — Debugging, Branch Profiles and Time-Stamp Counter. Describes the debugging registers and 
other debug mechanism provided in Intel 64 or IA-32 processors. This chapter also describes the time-stamp 
counter. 

Chapter 18 — Performance Monitoring. Describes the Intel 64 and IA-32 architectures’ facilities for monitoring 
performance.

Chapter 19 — Performance-Monitoring Events. Lists architectural performance events. Non-architectural 
performance events (i.e. model-specific events) are listed for each generation of microarchitecture.

Chapter 20 — 8086 Emulation. Describes the real-address and virtual-8086 modes of the IA-32 architecture.

Chapter 21 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-bit code modules within the 
same program or task.

Chapter 22 — IA-32 Architecture Compatibility. Describes architectural compatibility among IA-32 proces-
sors.

Chapter 23 — Introduction to Virtual-Machine Extensions. Describes the basic elements of virtual machine 
architecture and the virtual-machine extensions for Intel 64 and IA-32 Architectures.

Chapter 24 — Virtual-Machine Control Structures. Describes components that manage VMX operation. These 
include the working-VMCS pointer and the controlling-VMCS pointer.

Chapter 25 — VMX Non-Root Operation. Describes the operation of a VMX non-root operation. Processor oper-
ation in VMX non-root mode can be restricted programmatically such that certain operations, events or conditions 
can cause the processor to transfer control from the guest (running in VMX non-root mode) to the monitor software 
(running in VMX root mode).

Chapter 26 — VM Entries. Describes VM entries. VM entry transitions the processor from the VMM running in VMX 
root-mode to a VM running in VMX non-root mode. VM-Entry is performed by the execution of VMLAUNCH or VMRE-
SUME instructions.

Chapter 27 — VM Exits. Describes VM exits. Certain events, operations or situations while the processor is in VMX 
non-root operation may cause VM-exit transitions. In addition, VM exits can also occur on failed VM entries.
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Chapter 28 — VMX Support for Address Translation. Describes virtual-machine extensions that support 
address translation and the virtualization of physical memory.

Chapter 29 — APIC Virtualization and Virtual Interrupts. Describes the VMCS including controls that enable 
the virtualization of interrupts and the Advanced Programmable Interrupt Controller (APIC).

Chapter 30 — VMX Instruction Reference. Describes the virtual-machine extensions (VMX). VMX is intended 
for a system executive to support virtualization of processor hardware and a system software layer acting as a host 
to multiple guest software environments.

Chapter 31 — Virtual-Machine Monitoring Programming Considerations. Describes programming consider-
ations for VMMs. VMMs manage virtual machines (VMs).

Chapter 32 — Virtualization of System Resources. Describes the virtualization of the system resources. These 
include: debugging facilities, address translation, physical memory, and microcode update facilities.

Chapter 33 — Handling Boundary Conditions in a Virtual Machine Monitor. Describes what a VMM must 
consider when handling exceptions, interrupts, error conditions, and transitions between activity states.

Chapter 34 — System Management Mode. Describes Intel 64 and IA-32 architectures’ system management 
mode (SMM) facilities.

Chapter 35 — Model-Specific Registers (MSRs). Lists the MSRs available in the Pentium processors, the P6 
family processors, the Pentium 4, Intel Xeon, Intel Core Solo, Intel Core Duo processors, and Intel Core 2 
processor family and describes their functions.

Appendix A — VMX Capability Reporting Facility. Describes the VMX capability MSRs. Support for specific VMX 
features is determined by reading capability MSRs.

Appendix B — Field Encoding in VMCS. Enumerates all fields in the VMCS and their encodings. Fields are 
grouped by width (16-bit, 32-bit, etc.) and type (guest-state, host-state, etc.).

Appendix C — VM Basic Exit Reasons. Describes the 32-bit fields that encode reasons for a VM exit. Examples 
of exit reasons include, but are not limited to: software interrupts, processor exceptions, software traps, NMIs, 
external interrupts, and triple faults.

1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for 
hexadecimal and binary numbers. A review of this notation makes the manual easier to read.

1.3.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses 
increase toward the top. Bit positions are numbered from right to left. The numerical value of a set bit is equal to 
two raised to the power of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this means 
the bytes of a word are numbered starting from the least significant byte. Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as 
reserved, it is essential for compatibility with future processors that software treat these bits as having a future, 
though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredict-
able. Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of registers which contain such bits. 

Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a register.
• Do not depend on the ability to retain information written into any reserved bits.
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• When loading a register, always load the reserved bits with the values indicated in the documentation, if any, or 
reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved bits in Intel 64 and IA-32 registers. 
Depending upon the values of reserved register bits will make software dependent upon the 
unspecified manner in which the processor handles these bits. Programs that depend upon 
reserved values risk incompatibility with future processors.

1.3.3 Instruction Operands

When instructions are represented symbolically, a subset of assembly language is used. In this subset, an instruc-
tion has the following format:

label: mnemonic argument1, argument2, argument3

where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have the same function.
• The operands argument1, argument2, and argument3 are optional. There may be from zero to three 

operands, depending on the opcode. When present, they take the form of either literals or identifiers for data 
items. Operand identifiers are either reserved names of registers or are assumed to be assigned to data items 
declared in another part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left 
operand is the destination. 

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand, 
and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for 
example, F82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, 
E, and F.

Figure 1-1.  Bit and Byte Order
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Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the character B (for 
example, 1010B). The “B” designation is only used in situations where confusion as to the type of number might 
arise.

1.3.5 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes. 
Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes memory. The 
range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing where a program may have many 
independent address spaces, called segments. For example, a program can keep its code (instructions) and stack 
in separate segments. Code addresses would always refer to the code space, and stack addresses would always 
refer to the stack space. The following notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS 
register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS register points to the 
code segment and the EIP register contains the address of the instruction.

CS:EIP
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1.3.6 Syntax for CPUID, CR, and MSR Values

Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register 
bits, and by reading model-specific registers. We are moving toward a single syntax to represent this type of infor-
mation. See Figure 1-2.

1.3.7 Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to 
divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other condi-
tions. Some types of exceptions may provide error codes. An error code reports additional information about the 
error. An example of the notation used to show an exception and error code is shown below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type of fault is 
reported. Under some conditions, exceptions which produce error codes may not be able to report an accurate 
code. In this case, the error code is zero, as shown below for a general-protection exception:

#GP(0)

Figure 1-2.  Syntax for CPUID, CR, and MSR Data Presentation

For Control Register Values

For Model-Specific Register Values

CPUID.01H : ECX.SSE [bit 25] = 1
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Syntax Representation for CPUID Input and Output

Output register and feature flag or 
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CR4.OSFXSR[bit 9] = 1

Feature flag or field name 
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Value (or range) of output

Example CR name

Feature flag or field name with bit position(s)

IA32_MISC_ENABLES.ENABLEFOPCODE[bit 2] = 1

Value (or range) of output

Example MSR name

OM17732

Input value for EAX defines output
(NOTE: Some leaves require input values for
EAX and ECX. If only one value is present, 
EAX is implied.)
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1.4 RELATED LITERATURE

Literature related to Intel 64 and IA-32 processors is listed on-line at: 
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html.html

Some of the documents listed at this web site can be viewed on-line; others can be ordered. The literature available 
is listed by Intel processor and then by the following literature types: applications notes, data sheets, manuals, 
papers, and specification updates. 

See also: 
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® Fortran Compiler documentation and online help:

http://software.intel.com/en-us/articles/intel-compilers/
• Intel® VTune™ Performance Analyzer documentation and online help:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm 
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in three or five volumes):

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html.html
• Intel® 64 and IA-32 Architectures Optimization Reference Manual: 

http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-
manual.html

• Intel® Processor Identification with the CPUID Instruction, AP-485:
http://www.intel.com/Assets/PDF/appnote/241618.pdf

• Intel 64 Architecture x2APIC Specification:
http://www.intel.com/content/www/us/en/architecture-and-technology/64-architecture-x2apic-specifi-
cation.html

• Intel 64 Architecture Processor Topology Enumeration:
http://softwarecommunity.intel.com/articles/eng/3887.htm

• Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
• Intel® SSE4 Programming Reference: http://edc.intel.com/Link.aspx?id=1630&wapkw=intel® sse4 

programming reference
• Developing Multi-threaded Applications: A Platform Consistent Approach:

http://cache-www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.pdf
• Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:

http://software.intel.com/en-us/articles/ap949-using-spin-loops-on-intel-pentiumr-4-processor-and-intel-
xeonr-processor/

• Performance Monitoring Unit Sharing Guide
http://software.intel.com/file/30388

More relevant links are:
• Software network link:

http://softwarecommunity.intel.com/isn/home/
• Developer centers:

http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
• Processor support general link:

http://www.intel.com/support/processors/
• Software products and packages:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://softwarecommunity.intel.com/articles/eng/3887.htm
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://softwarecommunity.intel.com/isn/home/
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/support/processors/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm


1-10 Vol. 3A

ABOUT THIS MANUAL

• Intel 64 and IA-32 processor manuals (printed or PDF downloads):
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html.html

• Intel® Multi-Core Technology:
http://software.intel.com/partner/multicore

• Intel® Hyper-Threading Technology (Intel® HT Technology):
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/technology/hyperthread/
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CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

IA-32 architecture (beginning with the Intel386 processor family) provides extensive support for operating-system 
and system-development software. This support offers multiple modes of operation, which include:
• Real mode, protected mode, virtual 8086 mode, and system management mode. These are sometimes 

referred to as legacy modes.

Intel 64 architecture supports almost all the system programming facilities available in IA-32 architecture and 
extends them to a new operating mode (IA-32e mode) that supports a 64-bit programming environment. IA-32e 
mode allows software to operate in one of two sub-modes: 
• 64-bit mode supports 64-bit OS and 64-bit applications
• Compatibility mode allows most legacy software to run; it co-exists with 64-bit applications under a 64-bit OS.

The IA-32 system-level architecture and includes features to assist in the following operations:
• Memory management
• Protection of software modules
• Multitasking
• Exception and interrupt handling
• Multiprocessing
• Cache management
• Hardware resource and power management
• Debugging and performance monitoring

This chapter provides a description of each part of this architecture. It also describes the system registers that are 
used to set up and control the processor at the system level and gives a brief overview of the processor’s system-
level (operating system) instructions.

Many features of the system-level architectural are used only by system programmers. However, application 
programmers may need to read this chapter and the following chapters in order to create a reliable and secure 
environment for application programs.

This overview and most subsequent chapters of this book focus on protected-mode operation of the IA-32 architec-
ture. IA-32e mode operation of the Intel 64 architecture, as it differs from protected mode operation, is also 
described. 

All Intel 64 and IA-32 processors enter real-address mode following a power-up or reset (see Chapter 9, “Processor 
Management and Initialization”). Software then initiates the switch from real-address mode to protected mode. If 
IA-32e mode operation is desired, software also initiates a switch from protected mode to IA-32e mode.

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE

System-level architecture consists of a set of registers, data structures, and instructions designed to support basic 
system-level operations such as memory management, interrupt and exception handling, task management, and 
control of multiple processors.

Figure 2-1 provides a summary of system registers and data structures that applies to 32-bit modes. System regis-
ters and data structures that apply to IA-32e mode are shown in Figure 2-2.
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Figure 2-1.  IA-32 System-Level Registers and Data Structures
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2.1.1 Global and Local Descriptor Tables

When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or 
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment 
descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage 
information.

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses 
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information. 

Figure 2-2.  System-Level Registers and Data Structures in IA-32e Mode
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To access a byte in a segment, a segment selector and an offset must be supplied. The segment selector provides 
access to the segment descriptor for the segment (in the GDT or LDT). From the segment descriptor, the processor 
obtains the base address of the segment in the linear address space. The offset then provides the location of the 
byte relative to the base address. This mechanism can be used to access any valid code, data, or stack segment, 
provided the segment is accessible from the current privilege level (CPL) at which the processor is operating. The 
CPL is defined as the protection level of the currently executing code segment.

See Figure 2-1. The solid arrows in the figure indicate a linear address, dashed lines indicate a segment selector, 
and the dotted arrows indicate a physical address. For simplicity, many of the segment selectors are shown as 
direct pointers to a segment. However, the actual path from a segment selector to its associated segment is always 
through a GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR); the linear address of the LDT is 
contained in the LDT register (LDTR).

2.1.1.1  Global and Local Descriptor Tables in IA-32e Mode

GDTR and LDTR registers are expanded to 64-bits wide in both IA-32e sub-modes (64-bit mode and compatibility 
mode). For more information: see Section 3.5.2, “Segment Descriptor Tables in IA-32e Mode.”

Global and local descriptor tables are expanded in 64-bit mode to support 64-bit base addresses, (16-byte LDT 
descriptors hold a 64-bit base address and various attributes). In compatibility mode, descriptors are not 
expanded. 

2.1.2 System Segments, Segment Descriptors, and Gates

Besides code, data, and stack segments that make up the execution environment of a program or procedure, the 
architecture defines two system segments: the task-state segment (TSS) and the LDT. The GDT is not considered 
a segment because it is not accessed by means of a segment selector and segment descriptor. TSSs and LDTs have 
segment descriptors defined for them.

The architecture also defines a set of special descriptors called gates (call gates, interrupt gates, trap gates, and 
task gates). These provide protected gateways to system procedures and handlers that may operate at a different 
privilege level than application programs and most procedures. For example, a CALL to a call gate can provide 
access to a procedure in a code segment that is at the same or a numerically lower privilege level (more privileged) 
than the current code segment. To access a procedure through a call gate, the calling procedure1 supplies the 
selector for the call gate. The processor then performs an access rights check on the call gate, comparing the CPL 
with the privilege level of the call gate and the destination code segment pointed to by the call gate. 

If access to the destination code segment is allowed, the processor gets the segment selector for the destination 
code segment and an offset into that code segment from the call gate. If the call requires a change in privilege 
level, the processor also switches to the stack for the targeted privilege level. The segment selector for the new 
stack is obtained from the TSS for the currently running task. Gates also facilitate transitions between 16-bit and 
32-bit code segments, and vice versa. 

2.1.2.1  Gates in IA-32e Mode

In IA-32e mode, the following descriptors are 16-byte descriptors (expanded to allow a 64-bit base): LDT descrip-
tors, 64-bit TSSs, call gates, interrupt gates, and trap gates.

Call gates facilitate transitions between 64-bit mode and compatibility mode. Task gates are not supported in IA-
32e mode. On privilege level changes, stack segment selectors are not read from the TSS. Instead, they are set to 
NULL.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or block of code (such as a program, pro-
cedure, function, or routine). 
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2.1.3 Task-State Segments and Task Gates

The TSS (see Figure 2-1) defines the state of the execution environment for a task. It includes the state of general-
purpose registers, segment registers, the EFLAGS register, the EIP register, and segment selectors with stack 
pointers for three stack segments (one stack for each privilege level). The TSS also includes the segment selector 
for the LDT associated with the task and the base address of the paging-structure hierarchy. 

All program execution in protected mode happens within the context of a task (called the current task). The 
segment selector for the TSS for the current task is stored in the task register. The simplest method for switching 
to a task is to make a call or jump to the new task. Here, the segment selector for the TSS of the new task is given 
in the CALL or JMP instruction. In switching tasks, the processor performs the following actions:

1. Stores the state of the current task in the current TSS.

2. Loads the task register with the segment selector for the new task.

3. Accesses the new TSS through a segment descriptor in the GDT.

4. Loads the state of the new task from the new TSS into the general-purpose registers, the segment registers, 
the LDTR, control register CR3 (base address of the paging-structure hierarchy), the EFLAGS register, and the 
EIP register.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate, except that it provides access 
(through a segment selector) to a TSS rather than a code segment. 

2.1.3.1  Task-State Segments in IA-32e Mode

Hardware task switches are not supported in IA-32e mode. However, TSSs continue to exist. The base address of 
a TSS is specified by its descriptor. 

A 64-bit TSS holds the following information that is important to 64-bit operation: 
• Stack pointer addresses for each privilege level
• Pointer addresses for the interrupt stack table
• Offset address of the IO-permission bitmap (from the TSS base)

The task register is expanded to hold 64-bit base addresses in IA-32e mode. See also: Section 7.7, “Task Manage-
ment in 64-bit Mode.”

2.1.4 Interrupt and Exception Handling

External interrupts, software interrupts and exceptions are handled through the interrupt descriptor table (IDT). 
The IDT stores a collection of gate descriptors that provide access to interrupt and exception handlers. Like the 
GDT, the IDT is not a segment. The linear address for the base of the IDT is contained in the IDT register (IDTR).

Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors. To access an interrupt or exception 
handler, the processor first receives an interrupt vector (interrupt number) from internal hardware, an external 
interrupt controller, or from software by means of an INT, INTO, INT 3, or BOUND instruction. The interrupt vector 
provides an index into the IDT. If the selected gate descriptor is an interrupt gate or a trap gate, the associated 
handler procedure is accessed in a manner similar to calling a procedure through a call gate. If the descriptor is a 
task gate, the handler is accessed through a task switch.

2.1.4.1  Interrupt and Exception Handling IA-32e Mode

In IA-32e mode, interrupt descriptors are expanded to 16 bytes to support 64-bit base addresses. This is true for 
64-bit mode and compatibility mode. 

The IDTR register is expanded to hold a 64-bit base address. Task gates are not supported.
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2.1.5 Memory Management

System architecture supports either direct physical addressing of memory or virtual memory (through paging). 
When physical addressing is used, a linear address is treated as a physical address. When paging is used: all code, 
data, stack, and system segments (including the GDT and IDT) can be paged with only the most recently accessed 
pages being held in physical memory.

The location of pages (sometimes called page frames) in physical memory is contained in the paging structures. 
These structures reside in physical memory (see Figure 2-1 for the case of 32-bit paging). 

The base physical address of the paging-structure hierarchy is contained in control register CR3. The entries in the 
paging structures determine the physical address of the base of a page frame, access rights and memory manage-
ment information. 

To use this paging mechanism, a linear address is broken into parts. The parts provide separate offsets into the 
paging structures and the page frame. A system can have a single hierarchy of paging structures or several. For 
example, each task can have its own hierarchy.

2.1.5.1  Memory Management in IA-32e Mode 

In IA-32e mode, physical memory pages are managed by a set of system data structures. In compatibility mode 
and 64-bit mode, four levels of system data structures are used. These include: 
• The page map level 4 (PML4) — An entry in a PML4 table contains the physical address of the base of a page 

directory pointer table, access rights, and memory management information. The base physical address of the 
PML4 is stored in CR3.

• A set of page directory pointer tables — An entry in a page directory pointer table contains the physical 
address of the base of a page directory table, access rights, and memory management information.

• Sets of page directories — An entry in a page directory table contains the physical address of the base of a 
page table, access rights, and memory management information.

• Sets of page tables — An entry in a page table contains the physical address of a page frame, access rights, 
and memory management information.

2.1.6 System Registers

To assist in initializing the processor and controlling system operations, the system architecture provides system 
flags in the EFLAGS register and several system registers:
• The system flags and IOPL field in the EFLAGS register control task and mode switching, interrupt handling, 

instruction tracing, and access rights. See also: Section 2.3, “System Flags and Fields in the EFLAGS Register.”
• The control registers (CR0, CR2, CR3, and CR4) contain a variety of flags and data fields for controlling system-

level operations. Other flags in these registers are used to indicate support for specific processor capabilities 
within the operating system or executive. See also: Section 2.5, “Control Registers.”

• The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for use in debugging programs 
and systems software. See also: Chapter 17, “Debug, Branch Profile, TSC, and Quality of Service.”

• The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes (limits) of their respective tables. 
See also: Section 2.4, “Memory-Management Registers.”

• The task register contains the linear address and size of the TSS for the current task. See also: Section 2.4, 
“Memory-Management Registers.”

• Model-specific registers (not shown in Figure 2-1).

The model-specific registers (MSRs) are a group of registers available primarily to operating-system or executive 
procedures (that is, code running at privilege level 0). These registers control items such as the debug extensions, 
the performance-monitoring counters, the machine- check architecture, and the memory type ranges (MTRRs). 

The number and function of these registers varies among different members of the Intel 64 and IA-32 processor 
families. See also: Section 9.4, “Model-Specific Registers (MSRs),” and Chapter 35, “Model-Specific Registers 
(MSRs).”
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Most systems restrict access to system registers (other than the EFLAGS register) by application programs. 
Systems can be designed, however, where all programs and procedures run at the most privileged level (privilege 
level 0). In such a case, application programs would be allowed to modify the system registers.

2.1.6.1  System Registers in IA-32e Mode

In IA-32e mode, the four system-descriptor-table registers (GDTR, IDTR, LDTR, and TR) are expanded in hardware 
to hold 64-bit base addresses. EFLAGS becomes the 64-bit RFLAGS register. CR0–CR4 are expanded to 64 bits. 
CR8 becomes available. CR8 provides read-write access to the task priority register (TPR) so that the operating 
system can control the priority classes of external interrupts. 

In 64-bit mode, debug registers DR0–DR7 are 64 bits. In compatibility mode, address-matching in DR0–DR3 is 
also done at 64-bit granularity.

On systems that support IA-32e mode, the extended feature enable register (IA32_EFER) is available. This model-
specific register controls activation of IA-32e mode and other IA-32e mode operations. In addition, there are 
several model-specific registers that govern IA-32e mode instructions:
• IA32_KernelGSbase — Used by SWAPGS instruction.
• IA32_LSTAR — Used by SYSCALL instruction.
• IA32_SYSCALL_FLAG_MASK — Used by SYSCALL instruction.
• IA32_STAR_CS — Used by SYSCALL and SYSRET instruction.

2.1.7 Other System Resources

Besides the system registers and data structures described in the previous sections, system architecture provides 
the following additional resources:
• Operating system instructions (see also: Section 2.7, “System Instruction Summary”).
• Performance-monitoring counters (not shown in Figure 2-1).
• Internal caches and buffers (not shown in Figure 2-1).

Performance-monitoring counters are event counters that can be programmed to count processor events such as 
the number of instructions decoded, the number of interrupts received, or the number of cache loads. See also: 
Chapter 19, “Performance Monitoring Events.”

The processor provides several internal caches and buffers. The caches are used to store both data and instruc-
tions. The buffers are used to store things like decoded addresses to system and application segments and write 
operations waiting to be performed. See also: Chapter 11, “Memory Cache Control.”

2.2 MODES OF OPERATION

The IA-32 supports three operating modes and one quasi-operating mode: 
• Protected mode — This is the native operating mode of the processor. It provides a rich set of architectural 

features, flexibility, high performance and backward compatibility to existing software base.
• Real-address mode — This operating mode provides the programming environment of the Intel 8086 

processor, with a few extensions (such as the ability to switch to protected or system management mode).
• System management mode (SMM) — SMM is a standard architectural feature in all IA-32 processors, 

beginning with the Intel386 SL processor. This mode provides an operating system or executive with a 
transparent mechanism for implementing power management and OEM differentiation features. SMM is 
entered through activation of an external system interrupt pin (SMI#), which generates a system management 
interrupt (SMI). In SMM, the processor switches to a separate address space while saving the context of the 
currently running program or task. SMM-specific code may then be executed transparently. Upon returning 
from SMM, the processor is placed back into its state prior to the SMI.

• Virtual-8086 mode — In protected mode, the processor supports a quasi-operating mode known as virtual-
8086 mode. This mode allows the processor execute 8086 software in a protected, multitasking environment.
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Intel 64 architecture supports all operating modes of IA-32 architecture and IA-32e modes:
• IA-32e mode — In IA-32e mode, the processor supports two sub-modes: compatibility mode and 64-bit 

mode. 64-bit mode provides 64-bit linear addressing and support for physical address space larger than 64 
GBytes. Compatibility mode allows most legacy protected-mode applications to run unchanged.

Figure 2-3 shows how the processor moves between operating modes.

The processor is placed in real-address mode following power-up or a reset. The PE flag in control register CR0 then 
controls whether the processor is operating in real-address or protected mode. See also: Section 9.9, “Mode 
Switching.” and Section 4.1.2, “Paging-Mode Enabling.”

The VM flag in the EFLAGS register determines whether the processor is operating in protected mode or virtual-
8086 mode. Transitions between protected mode and virtual-8086 mode are generally carried out as part of a task 
switch or a return from an interrupt or exception handler. See also: Section 20.2.5, “Entering Virtual-8086 Mode.”

The LMA bit (IA32_EFER.LMA[bit 10]) determines whether the processor is operating in IA-32e mode. When 
running in IA-32e mode, 64-bit or compatibility sub-mode operation is determined by CS.L bit of the code segment. 
The processor enters into IA-32e mode from protected mode by enabling paging and setting the LME bit 
(IA32_EFER.LME[bit 8]). See also: Chapter 9, “Processor Management and Initialization.”

The processor switches to SMM whenever it receives an SMI while the processor is in real-address, protected, 
virtual-8086, or IA-32e modes. Upon execution of the RSM instruction, the processor always returns to the mode 
it was in when the SMI occurred.

Figure 2-3.  Transitions Among the Processor’s Operating Modes
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2.2.1 Extended Feature Enable Register

The IA32_EFER MSR provides several fields related to IA-32e mode enabling and operation. It also provides one 
field that relates to page-access right modification (see Section 4.6, “Access Rights”). The layout of the 
IA32_EFER MSR is shown in Figure 2-4.

2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER

The system flags and IOPL field of the EFLAGS register control I/O, maskable hardware interrupts, debugging, task 
switching, and the virtual-8086 mode (see Figure 2-5). Only privileged code (typically operating system or execu-
tive code) should be allowed to modify these bits.

The system flags and IOPL are:

TF Trap (bit 8) — Set to enable single-step mode for debugging; clear to disable single-step mode. In single-
step mode, the processor generates a debug exception after each instruction. This allows the execution 
state of a program to be inspected after each instruction. If an application program sets the TF flag using 

Figure 2-4.  IA32_EFER MSR Layout

Table 2-1.  IA32_EFER MSR Information

Bit Description

0 SYSCALL Enable (R/W)

Enables SYSCALL/SYSRET instructions in 64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable (R/W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active (R) 

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable (R/W)

Enables page access restriction by preventing instruction fetches from PAE pages with the XD bit set (See Section 4.6).

63:12 Reserved.

Reserved

IA-32e Mode Active

0178910111263

IA32_EFER

IA-32e Mode Enable

Execute Disable Bit Enable

SYSCALL Enable
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a POPF, POPFD, or IRET instruction, a debug exception is generated after the instruction that follows the 
POPF, POPFD, or IRET.

IF Interrupt enable (bit 9) — Controls the response of the processor to maskable hardware interrupt 
requests (see also: Section 6.3.2, “Maskable Hardware Interrupts”). The flag is set to respond to maskable 
hardware interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does not affect the gener-
ation of exceptions or nonmaskable interrupts (NMI interrupts). The CPL, IOPL, and the state of the VME 
flag in control register CR4 determine whether the IF flag can be modified by the CLI, STI, POPF, POPFD, 
and IRET.

IOPL I/O privilege level field (bits 12 and 13) — Indicates the I/O privilege level (IOPL) of the currently 
running program or task. The CPL of the currently running program or task must be less than or equal to 
the IOPL to access the I/O address space. The POPF and IRET instructions can modify this field only when 
operating at a CPL of 0. 

The IOPL is also one of the mechanisms that controls the modification of the IF flag and the handling of 
interrupts in virtual-8086 mode when virtual mode extensions are in effect (when CR4.VME = 1). See also: 
Chapter 16, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1.

NT Nested task (bit 14) — Controls the chaining of interrupted and called tasks. The processor sets this flag 
on calls to a task initiated with a CALL instruction, an interrupt, or an exception. It examines and modifies 
this flag on returns from a task initiated with the IRET instruction. The flag can be explicitly set or cleared 
with the POPF/POPFD instructions; however, changing to the state of this flag can generate unexpected 
exceptions in application programs. 

See also: Section 7.4, “Task Linking.”

RF Resume (bit 16) — Controls the processor’s response to instruction-breakpoint conditions. When set, this 
flag temporarily disables debug exceptions (#DB) from being generated for instruction breakpoints 
(although other exception conditions can cause an exception to be generated). When clear, instruction 
breakpoints will generate debug exceptions. 

The primary function of the RF flag is to allow the restarting of an instruction following a debug exception 
that was caused by an instruction breakpoint condition. Here, debug software must set this flag in the 
EFLAGS image on the stack just prior to returning to the interrupted program with IRETD (to prevent the 
instruction breakpoint from causing another debug exception). The processor then automatically clears 
this flag after the instruction returned to has been successfully executed, enabling instruction breakpoint 
faults again.

See also: Section 17.3.1.1, “Instruction-Breakpoint Exception Condition.”

VM Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to return to protected mode. 

Figure 2-5.  System Flags in the EFLAGS Register
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See also: Section 20.2.1, “Enabling Virtual-8086 Mode.”

AC Alignment check (bit 18) — Set this flag and the AM flag in control register CR0 to enable alignment 
checking of memory references; clear the AC flag and/or the AM flag to disable alignment checking. An 
alignment-check exception is generated when reference is made to an unaligned operand, such as a word 
at an odd byte address or a doubleword at an address which is not an integral multiple of four. Alignment-
check exceptions are generated only in user mode (privilege level 3). Memory references that default to 
privilege level 0, such as segment descriptor loads, do not generate this exception even when caused by 
instructions executed in user-mode.

The alignment-check exception can be used to check alignment of data. This is useful when exchanging 
data with processors which require all data to be aligned. The alignment-check exception can also be used 
by interpreters to flag some pointers as special by misaligning the pointer. This eliminates overhead of 
checking each pointer and only handles the special pointer when used.

VIF Virtual Interrupt (bit 19) — Contains a virtual image of the IF flag. This flag is used in conjunction with 
the VIP flag. The processor only recognizes the VIF flag when either the VME flag or the PVI flag in control 
register CR4 is set and the IOPL is less than 3. (The VME flag enables the virtual-8086 mode extensions; 
the PVI flag enables the protected-mode virtual interrupts.) 

See also: Section 20.3.3.5, “Method 6: Software Interrupt Handling,” and Section 20.4, “Protected-Mode 
Virtual Interrupts.”

VIP Virtual interrupt pending (bit 20) — Set by software to indicate that an interrupt is pending; cleared to 
indicate that no interrupt is pending. This flag is used in conjunction with the VIF flag. The processor reads 
this flag but never modifies it. The processor only recognizes the VIP flag when either the VME flag or the 
PVI flag in control register CR4 is set and the IOPL is less than 3. The VME flag enables the virtual-8086 
mode extensions; the PVI flag enables the protected-mode virtual interrupts. 

See Section 20.3.3.5, “Method 6: Software Interrupt Handling,” and Section 20.4, “Protected-Mode Virtual 
Interrupts.”

ID Identification (bit 21). — The ability of a program or procedure to set or clear this flag indicates support 
for the CPUID instruction.

2.3.1 System Flags and Fields in IA-32e Mode

In 64-bit mode, the RFLAGS register expands to 64 bits with the upper 32 bits reserved. System flags in RFLAGS 
(64-bit mode) or EFLAGS (compatibility mode) are shown in Figure 2-5.

In IA-32e mode, the processor does not allow the VM bit to be set because virtual-8086 mode is not supported 
(attempts to set the bit are ignored). Also, the processor will not set the NT bit. The processor does, however, allow 
software to set the NT bit (note that an IRET causes a general protection fault in IA-32e mode if the NT bit is set).

In IA-32e mode, the SYSCALL/SYSRET instructions have a programmable method of specifying which bits are 
cleared in RFLAGS/EFLAGS. These instructions save/restore EFLAGS/RFLAGS.

2.4 MEMORY-MANAGEMENT REGISTERS

The processor provides four memory-management registers (GDTR, LDTR, IDTR, and TR) that specify the locations 
of the data structures which control segmented memory management (see Figure 2-6). Special instructions are 
provided for loading and storing these registers.
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2.4.1 Global Descriptor Table Register (GDTR)

The GDTR register holds the base address (32 bits in protected mode; 64 bits in IA-32e mode) and the 16-bit table 
limit for the GDT. The base address specifies the linear address of byte 0 of the GDT; the table limit specifies the 
number of bytes in the table. 

The LGDT and SGDT instructions load and store the GDTR register, respectively. On power up or reset of the 
processor, the base address is set to the default value of 0 and the limit is set to 0FFFFH. A new base address must 
be loaded into the GDTR as part of the processor initialization process for protected-mode operation. 

See also: Section 3.5.1, “Segment Descriptor Tables.”

2.4.2 Local Descriptor Table Register (LDTR)

The LDTR register holds the 16-bit segment selector, base address (32 bits in protected mode; 64 bits in IA-32e 
mode), segment limit, and descriptor attributes for the LDT. The base address specifies the linear address of byte 
0 of the LDT segment; the segment limit specifies the number of bytes in the segment. See also: Section 3.5.1, 
“Segment Descriptor Tables.”

The LLDT and SLDT instructions load and store the segment selector part of the LDTR register, respectively. The 
segment that contains the LDT must have a segment descriptor in the GDT. When the LLDT instruction loads a 
segment selector in the LDTR: the base address, limit, and descriptor attributes from the LDT descriptor are auto-
matically loaded in the LDTR. 

When a task switch occurs, the LDTR is automatically loaded with the segment selector and descriptor for the LDT 
for the new task. The contents of the LDTR are not automatically saved prior to writing the new LDT information 
into the register.

On power up or reset of the processor, the segment selector and base address are set to the default value of 0 and 
the limit is set to 0FFFFH.

2.4.3 IDTR Interrupt Descriptor Table Register

The IDTR register holds the base address (32 bits in protected mode; 64 bits in IA-32e mode) and 16-bit table limit 
for the IDT. The base address specifies the linear address of byte 0 of the IDT; the table limit specifies the number 
of bytes in the table. The LIDT and SIDT instructions load and store the IDTR register, respectively. On power up or 
reset of the processor, the base address is set to the default value of 0 and the limit is set to 0FFFFH. The base 
address and limit in the register can then be changed as part of the processor initialization process. 

See also: Section 6.10, “Interrupt Descriptor Table (IDT).”

Figure 2-6.  Memory Management Registers
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2.4.4 Task Register (TR)

The task register holds the 16-bit segment selector, base address (32 bits in protected mode; 64 bits in IA-32e 
mode), segment limit, and descriptor attributes for the TSS of the current task. The selector references the TSS 
descriptor in the GDT. The base address specifies the linear address of byte 0 of the TSS; the segment limit speci-
fies the number of bytes in the TSS. See also: Section 7.2.4, “Task Register.”

The LTR and STR instructions load and store the segment selector part of the task register, respectively. When the 
LTR instruction loads a segment selector in the task register, the base address, limit, and descriptor attributes from 
the TSS descriptor are automatically loaded into the task register. On power up or reset of the processor, the base 
address is set to the default value of 0 and the limit is set to 0FFFFH.

When a task switch occurs, the task register is automatically loaded with the segment selector and descriptor for 
the TSS for the new task. The contents of the task register are not automatically saved prior to writing the new TSS 
information into the register.

2.5 CONTROL REGISTERS

Control registers (CR0, CR1, CR2, CR3, and CR4; see Figure 2-7) determine operating mode of the processor and 
the characteristics of the currently executing task. These registers are 32 bits in all 32-bit modes and compatibility 
mode. 

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions are used to manipulate the 
register bits. Operand-size prefixes for these instructions are ignored. The following is also true:
• Bits 63:32 of CR0 and CR4 are reserved and must be written with zeros. Writing a nonzero value to any of the 

upper 32 bits results in a general-protection exception, #GP(0). 
• All 64 bits of CR2 are writable by software. 
• Bits 51:40 of CR3 are reserved and must be 0. 
• The MOV CRn instructions do not check that addresses written to CR2 and CR3 are within the linear-address or 

physical-address limitations of the implementation. 
• Register CR8 is available in 64-bit mode only. 

The control registers are summarized below, and each architecturally defined control field in these control registers 
are described individually. In Figure 2-7, the width of the register in 64-bit mode is indicated in parenthesis (except 
for CR0).
• CR0 — Contains system control flags that control operating mode and states of the processor. 
• CR1 — Reserved.
• CR2 — Contains the page-fault linear address (the linear address that caused a page fault).
• CR3 — Contains the physical address of the base of the paging-structure hierarchy and two flags (PCD and 

PWT). Only the most-significant bits (less the lower 12 bits) of the base address are specified; the lower 12 bits 
of the address are assumed to be 0. The first paging structure must thus be aligned to a page (4-KByte) 
boundary. The PCD and PWT flags control caching of that paging structure in the processor’s internal data 
caches (they do not control TLB caching of page-directory information).

When using the physical address extension, the CR3 register contains the base address of the page-directory-
pointer table In IA-32e mode, the CR3 register contains the base address of the PML4 table.

See also: Chapter 4, “Paging.”
• CR4 — Contains a group of flags that enable several architectural extensions, and indicate operating system or 

executive support for specific processor capabilities. The control registers can be read and loaded (or modified) 
using the move-to-or-from-control-registers forms of the MOV instruction. In protected mode, the MOV 
instructions allow the control registers to be read or loaded (at privilege level 0 only). This restriction means 
that application programs or operating-system procedures (running at privilege levels 1, 2, or 3) are prevented 
from reading or loading the control registers. 
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• CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies the priority threshold 
value that operating systems use to control the priority class of external interrupts allowed to interrupt the 
processor. This register is available only in 64-bit mode. However, interrupt filtering continues to apply in 
compatibility mode.

When loading a control register, reserved bits should always be set to the values previously read. The flags in 
control registers are:

PG Paging (bit 31 of CR0) — Enables paging when set; disables paging when clear. When paging is 
disabled, all linear addresses are treated as physical addresses. The PG flag has no effect if the PE flag (bit 
0 of register CR0) is not also set; setting the PG flag when the PE flag is clear causes a general-protection 
exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also requires modifying CR0.PG.

CD Cache Disable (bit 30 of CR0) — When the CD and NW flags are clear, caching of memory locations for 
the whole of physical memory in the processor’s internal (and external) caches is enabled. When the CD 
flag is set, caching is restricted as described in Table 11-5. To prevent the processor from accessing and 
updating its caches, the CD flag must be set and the caches must be invalidated so that no cache hits can 
occur.

See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “Cache Control.”

NW Not Write-through (bit 29 of CR0) — When the NW and CD flags are clear, write-back (for Pentium 4, 
Intel Xeon, P6 family, and Pentium processors) or write-through (for Intel486 processors) is enabled for 
writes that hit the cache and invalidation cycles are enabled. See Table 11-5 for detailed information about 
the affect of the NW flag on caching for other settings of the CD and NW flags.

AM Alignment Mask (bit 18 of CR0) — Enables automatic alignment checking when set; disables alignment 
checking when clear. Alignment checking is performed only when the AM flag is set, the AC flag in the 
EFLAGS register is set, CPL is 3, and the processor is operating in either protected or virtual-8086 mode.

Figure 2-7.  Control Registers
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WP Write Protect (bit 16 of CR0) — When set, inhibits supervisor-level procedures from writing into read-
only pages; when clear, allows supervisor-level procedures to write into read-only pages (regardless of the 
U/S bit setting; see Section 4.1.3 and Section 4.6). This flag facilitates implementation of the copy-on-
write method of creating a new process (forking) used by operating systems such as UNIX.

NE Numeric Error (bit 5 of CR0) — Enables the native (internal) mechanism for reporting x87 FPU errors 
when set; enables the PC-style x87 FPU error reporting mechanism when clear. When the NE flag is clear 
and the IGNNE# input is asserted, x87 FPU errors are ignored. When the NE flag is clear and the IGNNE# 
input is deasserted, an unmasked x87 FPU error causes the processor to assert the FERR# pin to generate 
an external interrupt and to stop instruction execution immediately before executing the next waiting 
floating-point instruction or WAIT/FWAIT instruction. 

The FERR# pin is intended to drive an input to an external interrupt controller (the FERR# pin emulates the 
ERROR# pin of the Intel 287 and Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and FERR# 
pin are used with external logic to implement PC-style error reporting. Using FERR# and IGNNE# to handle 
floating-point exceptions is deprecated by modern operating systems; this non-native approach also limits 
newer processors to operate with one logical processor active.

See also: “Software Exception Handling” in Chapter 8, “Programming with the x87 FPU,” and Appendix A, 
“EFLAGS Cross-Reference,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1.

ET Extension Type (bit 4 of CR0) — Reserved in the Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors. In the Pentium 4, Intel Xeon, and P6 family processors, this flag is hardcoded to 1. In the Intel386 
and Intel486 processors, this flag indicates support of Intel 387 DX math coprocessor instructions when 
set.

TS Task Switched (bit 3 of CR0) — Allows the saving of the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 
context on a task switch to be delayed until an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is 
actually executed by the new task. The processor sets this flag on every task switch and tests it when 
executing x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

• If the TS flag is set and the EM flag (bit 2 of CR0) is clear, a device-not-available exception (#NM) is 
raised prior to the execution of any x87 FPU/MMX/SSE/ SSE2/SSE3/SSSE3/SSE4 instruction; with the 
exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT. 
See the paragraph below for the special case of the WAIT/FWAIT instructions.

• If the TS flag is set and the MP flag (bit 1 of CR0) and EM flag are clear, an #NM exception is not raised 
prior to the execution of an x87 FPU WAIT/FWAIT instruction.

• If the EM flag is set, the setting of the TS flag has no affect on the execution of x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

Table 2-2 shows the actions taken when the processor encounters an x87 FPU instruction based on the 
settings of the TS, EM, and MP flags. Table 12-1 and 13-1 show the actions taken when the processor 
encounters an MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction.

The processor does not automatically save the context of the x87 FPU, XMM, and MXCSR registers on a 
task switch. Instead, it sets the TS flag, which causes the processor to raise an #NM exception whenever 
it encounters an x87 FPU/MMX/SSE /SSE2/SSE3/SSSE3/SSE4 instruction in the instruction stream for the 
new task (with the exception of the instructions listed above). 

The fault handler for the #NM exception can then be used to clear the TS flag (with the CLTS instruction) and save 
the context of the x87 FPU, XMM, and MXCSR registers. If the task never encounters an x87 
FPU/MMX/SSE/SSE2/SSE3//SSSE3/SSE4 instruction; the x87 FPU/MMX/SSE/SSE2/ SSE3/SSSE3/SSE4 context is 
never saved.
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EM Emulation (bit 2 of CR0) — Indicates that the processor does not have an internal or external x87 FPU 
when set; indicates an x87 FPU is present when clear. This flag also affects the execution of 
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a device-not-available exception 
(#NM). This flag must be set when the processor does not have an internal x87 FPU or is not connected to 
an external math coprocessor. Setting this flag forces all floating-point instructions to be handled by soft-
ware emulation. Table 9-2 shows the recommended setting of this flag, depending on the IA-32 processor 
and x87 FPU or math coprocessor present in the system. Table 2-2 shows the interaction of the EM, MP, and 
TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an invalid-opcode exception (#UD) 
to be generated (see Table 12-1). Thus, if an IA-32 or Intel 64 processor incorporates MMX technology, the 
EM flag must be set to 0 to enable execution of MMX instructions.

Similarly for SSE/SSE2/SSE3/SSSE3/SSE4 extensions, when the EM flag is set, execution of most 
SSE/SSE2/SSE3/SSSE3/SSE4 instructions causes an invalid opcode exception (#UD) to be generated (see 
Table 13-1). If an IA-32 or Intel 64 processor incorporates the SSE/SSE2/SSE3/SSSE3/SSE4 extensions, 
the EM flag must be set to 0 to enable execution of these extensions. SSE/SSE2/SSE3/SSSE3/SSE4 
instructions not affected by the EM flag include: PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, 
CLFLUSH, CRC32, and POPCNT.

MP Monitor Coprocessor (bit 1 of CR0). — Controls the interaction of the WAIT (or FWAIT) instruction with 
the TS flag (bit 3 of CR0). If the MP flag is set, a WAIT instruction generates a device-not-available exception 
(#NM) if the TS flag is also set. If the MP flag is clear, the WAIT instruction ignores the setting of the TS flag. 
Table 9-2 shows the recommended setting of this flag, depending on the IA-32 processor and x87 FPU or 
math coprocessor present in the system. Table 2-2 shows the interaction of the MP, EM, and TS flags.

PE Protection Enable (bit 0 of CR0) — Enables protected mode when set; enables real-address mode when 
clear. This flag does not enable paging directly. It only enables segment-level protection. To enable paging, 
both the PE and PG flags must be set. 

See also: Section 9.9, “Mode Switching.”

PCD Page-level Cache Disable (bit 4 of CR3) — Controls the memory type used to access the first paging 
structure of the current paging-structure hierarchy. See Section 4.9, “Paging and Memory Typing”. This bit 
is not used if paging is disabled, with PAE paging, or with IA-32e paging if CR4.PCIDE=1.

PWT Page-level Write-Through (bit 3 of CR3) — Controls the memory type used to access the first paging 
structure of the current paging-structure hierarchy. See Section 4.9, “Paging and Memory Typing”. This bit 
is not used if paging is disabled, with PAE paging, or with IA-32e paging if CR4.PCIDE=1.

VME Virtual-8086 Mode Extensions (bit 0 of CR4) — Enables interrupt- and exception-handling extensions 
in virtual-8086 mode when set; disables the extensions when clear. Use of the virtual mode extensions can 
improve the performance of virtual-8086 applications by eliminating the overhead of calling the virtual-
8086 monitor to handle interrupts and exceptions that occur while executing an 8086 program and, 
instead, redirecting the interrupts and exceptions back to the 8086 program’s handlers. It also provides 

Table 2-2.  Action Taken By x87 FPU Instructions for Different Combinations of EM, MP, and TS

CR0 Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT

0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.

1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.

1 1 1 #NM Exception #NM exception.
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hardware support for a virtual interrupt flag (VIF) to improve reliability of running 8086 programs in multi-
tasking and multiple-processor environments.

See also: Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode.”

PVI Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware support for a virtual interrupt 
flag (VIF) in protected mode when set; disables the VIF flag in protected mode when clear. 

See also: Section 20.4, “Protected-Mode Virtual Interrupts.”

TSD Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the RDTSC instruction to procedures 
running at privilege level 0 when set; allows RDTSC instruction to be executed at any privilege level when 
clear. This bit also applies to the RDTSCP instruction if supported (if CPUID.80000001H:EDX[27] = 1).

DE Debugging Extensions (bit 3 of CR4) — References to debug registers DR4 and DR5 cause an unde-
fined opcode (#UD) exception to be generated when set; when clear, processor aliases references to regis-
ters DR4 and DR5 for compatibility with software written to run on earlier IA-32 processors. 

See also: Section 17.2.2, “Debug Registers DR4 and DR5.”

PSE Page Size Extensions (bit 4 of CR4) — Enables 4-MByte pages with 32-bit paging when set; restricts 
32-bit paging to pages to 4 KBytes when clear.

See also: Section 4.3, “32-Bit Paging.”

PAE Physical Address Extension (bit 5 of CR4) — When set, enables paging to produce physical addresses 
with more than 32 bits. When clear, restricts physical addresses to 32 bits. PAE must be set before entering 
IA-32e mode.

See also: Chapter 4, “Paging.”

MCE Machine-Check Enable (bit 6 of CR4) — Enables the machine-check exception when set; disables the 
machine-check exception when clear.

See also: Chapter 15, “Machine-Check Architecture.”

PGE Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family processors.) Enables the global page 
feature when set; disables the global page feature when clear. The global page feature allows frequently 
used or shared pages to be marked as global to all users (done with the global flag, bit 8, in a page-direc-
tory or page-table entry). Global pages are not flushed from the translation-lookaside buffer (TLB) on a 
task switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting the PG flag in control register 
CR0) before the PGE flag is set. Reversing this sequence may affect program correctness, and processor 
performance will be impacted. 

See also: Section 4.10, “Caching Translation Information.”

PCE Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables execution of the RDPMC instruc-
tion for programs or procedures running at any protection level when set; RDPMC instruction can be 
executed only at protection level 0 when clear.

OSFXSR
Operating System Support for FXSAVE and FXRSTOR instructions (bit 9 of CR4) — When set, this 
flag: (1) indicates to software that the operating system supports the use of the FXSAVE and FXRSTOR 
instructions, (2) enables the FXSAVE and FXRSTOR instructions to save and restore the contents of the 
XMM and MXCSR registers along with the contents of the x87 FPU and MMX registers, and (3) enables the 
processor to execute SSE/SSE2/SSE3/SSSE3/SSE4 instructions, with the exception of the PAUSE, 
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT. 

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and restore the contents of the x87 FPU 
and MMX instructions, but they may not save and restore the contents of the XMM and MXCSR registers. 
Also, the processor will generate an invalid opcode exception (#UD) if it attempts to execute any 
SSE/SSE2/SSE3 instruction, with the exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, 
MOVNTI, CLFLUSH, CRC32, and POPCNT. The operating system or executive must explicitly set this flag.
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NOTE

CPUID feature flags FXSR indicates availability of the FXSAVE/FXRSTOR instructions. The OSFXSR 
bit provides operating system software with a means of enabling FXSAVE/FXRSTOR to save/restore 
the contents of the X87 FPU, XMM and MXCSR registers. Consequently OSFXSR bit indicates that 
the operating system provides context switch support for SSE/SSE2/SSE3/SSSE3/SSE4.

OSXMMEXCPT
Operating System Support for Unmasked SIMD Floating-Point Exceptions (bit 10 of CR4) — 
When set, indicates that the operating system supports the handling of unmasked SIMD floating-point 
exceptions through an exception handler that is invoked when a SIMD floating-point exception (#XF) is 
generated. SIMD floating-point exceptions are only generated by SSE/SSE2/SSE3/SSE4.1 SIMD floating-
point instructions. 

The operating system or executive must explicitly set this flag. If this flag is not set, the processor will 
generate an invalid opcode exception (#UD) whenever it detects an unmasked SIMD floating-point excep-
tion.

VMXE
VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See Chapter 23, “Introduction to 
Virtual-Machine Extensions.”

SMXE
SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See Chapter 5, “Safer Mode Exten-
sions Reference” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C.

FSGSBASE
FSGSBASE-Enable Bit (bit 16 of CR4) — Enables the instructions RDFSBASE, RDGSBASE, WRFSBASE, 
and WRGSBASE.

PCIDE
PCID-Enable Bit (bit 17 of CR4) — Enables process-context identifiers (PCIDs) when set. See Section 
4.10.1, “Process-Context Identifiers (PCIDs)”. Can be set only in IA-32e mode (if IA32_EFER.LMA = 1).

OSXSAVE
XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) — When set, this flag: (1) indi-
cates (via CPUID.01H:ECX.OSXSAVE[bit 27]) that the operating system supports the use of the XGETBV, 
XSAVE and XRSTOR instructions by general software; (2) enables the XSAVE and XRSTOR instructions to 
save and restore the x87 FPU state (including MMX registers), the SSE state (XMM registers and MXCSR), 
along with other processor extended states enabled in XCR0; (3) enables the processor to execute XGETBV 
and XSETBV instructions in order to read and write XCR0. See Section 2.6 and Chapter 13, “System 
Programming for Instruction Set Extensions and Processor Extended States”.

SMEP
SMEP-Enable Bit (bit 20 of CR4) — Enables supervisor-mode execution prevention (SMEP) when set. 
See Section 4.6, “Access Rights”.

TPL
Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corresponding to the highest-
priority interrupt to be blocked. A value of 0 means all interrupts are enabled. This field is available in 64-
bit mode. A value of 15 means all interrupts will be disabled.

2.5.1 CPUID Qualification of Control Register Flags

Not all flags in control register CR4 are implemented on all processors. With the exception of the PCE flag, they can 
be qualified with the CPUID instruction to determine if they are implemented on the processor before they are 
used. 

The CR8 register is available on processors that support Intel 64 architecture.
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2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCR0)

If CPUID.01H:ECX.XSAVE[bit 26] is 1, the processor supports one or more extended control registers (XCRs). 
Currently, the only such register defined is XCR0. This register specifies the set of processor states that the oper-
ating system enables on that processor, e.g. x87 FPU state, SSE state, AVX state, and other processor extended 
states that Intel 64 architecture may introduce in the future. The OS programs XCR0 to reflect the features it 
supports.

Software can access XCR0 only if CR4.OSXSAVE[bit 18] = 1. (This bit is also readable as 
CPUID.01H:ECX.OSXSAVE[bit 27].) The layout of XCR0 is architected to allow software to use CPUID leaf function 
0DH to enumerate the set of bits that the processor supports in XCR0 (see CPUID instruction in Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2A). Each processor state (X87 FPU state, SSE state, 
AVX state, or a future processor extended state) is represented by a bit in XCR0. The OS can enable future 
processor extended states in a forward manner by specifying the appropriate bit mask value using the XSETBV 
instruction according to the results of the CPUID leaf 0DH.
With the exception of bit 63, each bit in XCR0 corresponds to a subset of the processor states. XCR0 thus provides 
space for up to 63 sets of processor state extensions. Bit 63 of XCR0 is reserved for future expansion and will not 
represent a processor extended state.

Currently, XCR0 has three processor states defined, with up to 61 bits reserved for future processor extended 
states:
• XCR0.X87 (bit 0): This bit 0 must be 1. An attempt to write 0 to this bit causes a #GP exception.
• XCR0.SSE (bit 1): If 1, XSAVE, XSAVEOPT, and XRSTOR can be used to manage MXCSR and XMM registers 

(XMM0-XMM15 in 64-bit mode; otherwise XMM0-XMM7). 
• XCR0.AVX (bit 2): If 1, AVX instructions can be executed and XSAVE, XSAVEOPT, and XRSTOR can be used to 

manage the upper halves of the YMM registers (YMM0-YMM15 in 64-bit mode; otherwise YMM0-YMM7).

Any attempt to set a reserved bit (as determined by the contents of EAX and EDX after executing CPUID with 
EAX=0DH, ECX= 0H) in XCR0 for a given processor will result in a #GP exception. An attempt to write 0 to 
XCR0.x87 (bit 0) will result in a #GP exception. An attempt to write 0 to XCR0.SSE (bit 1) and 1 to XCR0.AVX (bit 
2) also results in a #GP exception.

If a bit in XCR0 is 1, software can use the XSAVE instruction to save the corresponding processor state to memory 
(see XSAVE instruction in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B).
After reset, all bits (except bit 0) in XCR0 are cleared to zero, XCR0[0] is set to 1.

2.7 SYSTEM INSTRUCTION SUMMARY

System instructions handle system-level functions such as loading system registers, managing the cache, 
managing interrupts, or setting up the debug registers. Many of these instructions can be executed only by oper-

Figure 2-8.  XCR0
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ating-system or executive procedures (that is, procedures running at privilege level 0). Others can be executed at 
any privilege level and are thus available to application programs. 

Table 2-3 lists the system instructions and indicates whether they are available and useful for application programs. 
These instructions are described in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 
2A, 2B & 2C.

Table 2-3.  Summary of System Instructions

Instruction Description
Useful to
Application?

Protected from
Application?

LLDT Load LDT Register No Yes

SLDT Store LDT Register No No

LGDT Load GDT Register No Yes

SGDT Store GDT Register No No

LTR Load Task Register No Yes

STR Store Task Register No No

LIDT Load IDT Register No Yes

SIDT Store IDT Register No No

MOV CRn Load and store control registers No Yes

SMSW Store MSW Yes No

LMSW Load MSW No Yes

CLTS Clear TS flag in CR0 No Yes

ARPL Adjust RPL Yes1, 5 No

LAR Load Access Rights Yes No

LSL Load Segment Limit Yes No

VERR Verify for Reading Yes No

VERW Verify for Writing Yes No

MOV DRn Load and store debug registers No Yes

INVD Invalidate cache, no writeback No Yes

WBINVD Invalidate cache, with writeback No Yes

INVLPG Invalidate TLB entry No Yes

HLT Halt Processor No Yes

LOCK (Prefix) Bus Lock Yes No

RSM Return from system management mode No Yes

RDMSR3 Read Model-Specific Registers No Yes

WRMSR3 Write Model-Specific Registers No Yes

RDPMC4 Read Performance-Monitoring Counter Yes Yes2

RDTSC3 Read Time-Stamp Counter Yes Yes2

RDTSCP7 Read Serialized Time-Stamp Counter Yes Yes2

XGETBV Return the state of XCR0 Yes No

XSETBV Enable one or more processor extended states No6 Yes
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2.7.1 Loading and Storing System Registers

The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for loading data into and storing 
data from the register:
• LGDT (Load GDTR Register) — Loads the GDT base address and limit from memory into the GDTR register.
• SGDT (Store GDTR Register) — Stores the GDT base address and limit from the GDTR register into memory.
• LIDT (Load IDTR Register) — Loads the IDT base address and limit from memory into the IDTR register.
• SIDT (Load IDTR Register — Stores the IDT base address and limit from the IDTR register into memory.
• LLDT (Load LDT Register) — Loads the LDT segment selector and segment descriptor from memory into the 

LDTR. (The segment selector operand can also be located in a general-purpose register.)
• SLDT (Store LDT Register) — Stores the LDT segment selector from the LDTR register into memory or a 

general-purpose register.
• LTR (Load Task Register) — Loads segment selector and segment descriptor for a TSS from memory into the 

task register. (The segment selector operand can also be located in a general-purpose register.)
• STR (Store Task Register) — Stores the segment selector for the current task TSS from the task register into 

memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word) instructions operate on bits 0 
through 15 of control register CR0. These instructions are provided for compatibility with the 16-bit Intel 286 
processor. Programs written to run on 32-bit IA-32 processors should not use these instructions. Instead, they 
should access the control register CR0 using the MOV instruction.

The CLTS (clear TS flag in CR0) instruction is provided for use in handling a device-not-available exception (#NM) 
that occurs when the processor attempts to execute a floating-point instruction when the TS flag is set. This 
instruction allows the TS flag to be cleared after the x87 FPU context has been saved, preventing further #NM 
exceptions. See Section 2.5, “Control Registers,” for more information on the TS flag.

The control registers (CR0, CR1, CR2, CR3, CR4, and CR8) are loaded using the MOV instruction. The instruction 
loads a control register from a general-purpose register or stores the content of a control register in a general-
purpose register.

2.7.2 Verifying of Access Privileges

The processor provides several instructions for examining segment selectors and segment descriptors to deter-
mine if access to their associated segments is allowed. These instructions duplicate some of the automatic access 
rights and type checking done by the processor, thus allowing operating-system or executive software to prevent 
exceptions from being generated. 

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) of a segment selector to match that 
of the program or procedure that supplied the segment selector. See Section 5.10.4, “Checking Caller Access Priv-

NOTES:

1. Useful to application programs running at a CPL of 1 or 2.

2. The TSD and PCE flags in control register CR4 control access to these instructions by application programs running at a CPL of 3.

3. These instructions were introduced into the IA-32 Architecture with the Pentium processor.

4. This instruction was introduced into the IA-32 Architecture with the Pentium Pro processor and the Pentium processor with MMX 
technology.

5. This instruction is not supported in 64-bit mode.

6. Application uses XGETBV to query which set of processor extended states are enabled.

7. RDTSCP is introduced in Intel Core i7 processor.

Table 2-3.  Summary of System Instructions (Contd.)

Instruction Description
Useful to
Application?

Protected from
Application?
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ileges (ARPL Instruction),” for a detailed explanation of the function and use of this instruction. Note that ARPL is 
not supported in 64-bit mode.

The LAR (load access rights) instruction verifies the accessibility of a specified segment and loads access rights 
information from the segment’s segment descriptor into a general-purpose register. Software can then examine 
the access rights to determine if the segment type is compatible with its intended use. See Section 5.10.1, 
“Checking Access Rights (LAR Instruction),” for a detailed explanation of the function and use of this instruction.

The LSL (load segment limit) instruction verifies the accessibility of a specified segment and loads the segment 
limit from the segment’s segment descriptor into a general-purpose register. Software can then compare the 
segment limit with an offset into the segment to determine whether the offset lies within the segment. See Section 
5.10.3, “Checking That the Pointer Offset Is Within Limits (LSL Instruction),” for a detailed explanation of the func-
tion and use of this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions verify if a selected segment is readable or 
writable, respectively, at a given CPL. See Section 5.10.2, “Checking Read/Write Rights (VERR and VERW Instruc-
tions),” for a detailed explanation of the function and use of this instruction.

2.7.3 Loading and Storing Debug Registers

Internal debugging facilities in the processor are controlled by a set of 8 debug registers (DR0-DR7). The MOV 
instruction allows setup data to be loaded to and stored from these registers.

On processors that support Intel 64 architecture, debug registers DR0-DR7 are 64 bits. In 32-bit modes and 
compatibility mode, writes to a debug register fill the upper 32 bits with zeros. Reads return the lower 32 bits. In 
64-bit mode, the upper 32 bits of DR6-DR7 are reserved and must be written with zeros. Writing one to any of the 
upper 32 bits causes an exception, #GP(0).

In 64-bit mode, MOV DRn instructions read or write all 64 bits of a debug register (operand-size prefixes are 
ignored). All 64 bits of DR0-DR3 are writable by software. However, MOV DRn instructions do not check that 
addresses written to DR0-DR3 are in the limits of the implementation. Address matching is supported only on valid 
addresses generated by the processor implementation.

2.7.4 Invalidating Caches and TLBs

The processor provides several instructions for use in explicitly invalidating its caches and TLB entries. The INVD 
(invalidate cache with no writeback) instruction invalidates all data and instruction entries in the internal caches 
and sends a signal to the external caches indicating that they should be also be invalidated.

The WBINVD (invalidate cache with writeback) instruction performs the same function as the INVD instruction, 
except that it writes back modified lines in its internal caches to memory before it invalidates the caches. After 
invalidating the caches local to the executing logical processor or processor core, WBINVD signals caches higher in 
the cache hierarchy (caches shared with the invalidating logical processor or core) to write back any data they have 
in modified state, at the time of instruction execution and to invalidate their contents. 

Note, non-shared caches may not be written back nor invalidated. In Figure 2-9 below, if code executing on either 
LP0 or LP1 were to execute a WBINVD, the shared L1 and L2 for LP0/LP1 will be written back and invalidated as do 
the shared L3. However, the L1 and L2 caches not shared with LP0 and LP1 will not be written back nor invalidated.
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The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for a specified page.

2.7.5 Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt (such as NMI or SMI, which are 
normally enabled), a debug exception, the BINIT# signal, the INIT# signal, or the RESET# signal is received. The 
processor generates a special bus cycle to indicate that the halt mode has been entered. 

Hardware may respond to this signal in a number of ways. An indicator light on the front panel may be turned on. 
An NMI interrupt for recording diagnostic information may be generated. Reset initialization may be invoked (note 
that the BINIT# pin was introduced with the Pentium Pro processor). If any non-wake events are pending during 
shutdown, they will be handled after the wake event from shutdown is processed (for example, A20M# interrupts).

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modifying a memory operand. This 
mechanism is used to allow reliable communications between processors in multiprocessor systems, as described 
below:
• In the Pentium processor and earlier IA-32 processors, the LOCK prefix causes the processor to assert the 

LOCK# signal during the instruction. This always causes an explicit bus lock to occur. 
• In the Pentium 4, Intel Xeon, and P6 family processors, the locking operation is handled with either a cache lock 

or bus lock. If a memory access is cacheable and affects only a single cache line, a cache lock is invoked and 
the system bus and the actual memory location in system memory are not locked during the operation. Here, 
other Pentium 4, Intel Xeon, or P6 family processors on the bus write-back any modified data and invalidate 
their caches as necessary to maintain system memory coherency. If the memory access is not cacheable 
and/or it crosses a cache line boundary, the processor’s LOCK# signal is asserted and the processor does not 
respond to requests for bus control during the locked operation.

The RSM (return from SMM) instruction restores the processor (from a context dump) to the state it was in prior to 
an system management mode (SMM) interrupt.

2.7.6 Reading Performance-Monitoring and Time-Stamp Counters

The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp counter) instructions allow 
application programs to read the processor’s performance-monitoring and time-stamp counters, respectively. 
Processors based on Intel NetBurst® microarchitecture have eighteen 40-bit performance-monitoring counters; P6 
family processors have two 40-bit counters. Intel® Atom™ processors and most of the processors based on the 
Intel Core microarchitecture support two types of performance monitoring counters: two programmable perfor-

Figure 2-9.  WBINVD Invalidation of Shared and Non-Shared Cache Hierarchy
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mance counters similar to those available in the P6 family, and three fixed-function performance monitoring coun-
ters.

The programmable performance counters can support counting either the occurrence or duration of events. Events 
that can be monitored on programmable counters generally are model specific (except for architectural perfor-
mance events enumerated by CPUID leaf 0AH); they may include the number of instructions decoded, interrupts 
received, or the number of cache loads. Individual counters can be set up to monitor different events. Use the 
system instruction WRMSR to set up values in IA32_PERFEVTSEL0/1 (for Intel Atom, Intel Core 2, Intel Core Duo, 
and Intel Pentium M processors), in one of the 45 ESCRs and one of the 18 CCCR MSRs (for Pentium 4 and Intel 
Xeon processors); or in the PerfEvtSel0 or the PerfEvtSel1 MSR (for the P6 family processors). The RDPMC instruc-
tion loads the current count from the selected counter into the EDX:EAX registers.

Fixed-function performance counters record only specific events that are defined in Chapter 19, “Performance 
Monitoring Events”, and the width/number of fixed-function counters are enumerated by CPUID leaf 0AH.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each time the processor is reset. If 
not reset, the counter will increment ~9.5 x 1016 times per year when the processor is operating at a clock rate 
of 3GHz. At this clock frequency, it would take over 190 years for the counter to wrap around. The RDTSC 
instruction loads the current count of the time-stamp counter into the EDX:EAX registers.

See Section 18.1, “Performance Monitoring Overview,” and Section 17.13, “Time-Stamp Counter,” for more infor-
mation about the performance monitoring and time-stamp counters.

The RDTSC instruction was introduced into the IA-32 architecture with the Pentium processor. The RDPMC instruc-
tion was introduced into the IA-32 architecture with the Pentium Pro processor and the Pentium processor with 
MMX technology. Earlier Pentium processors have two performance-monitoring counters, but they can be read only 
with the RDMSR instruction, and only at privilege level 0.

2.7.6.1  Reading Counters in 64-Bit Mode

In 64-bit mode, RDTSC operates the same as in protected mode. The count in the time-stamp counter is stored in 
EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32] cleared).

RDPMC requires an index to specify the offset of the performance-monitoring counter. In 64-bit mode for Pentium 
4 or Intel Xeon processor families, the index is specified in ECX[30:0]. The current count of the performance-moni-
toring counter is stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32] cleared).

2.7.7 Reading and Writing Model-Specific Registers

The RDMSR (read model-specific register) and WRMSR (write model-specific register) instructions allow a 
processor’s 64-bit model-specific registers (MSRs) to be read and written, respectively. The MSR to be read or 
written is specified by the value in the ECX register.

RDMSR reads the value from the specified MSR to the EDX:EAX registers; WRMSR writes the value in the EDX:EAX 
registers to the specified MSR. RDMSR and WRMSR were introduced into the IA-32 architecture with the Pentium 
processor.

See Section 9.4, “Model-Specific Registers (MSRs),” for more information.

2.7.7.1  Reading and Writing Model-Specific Registers in 64-Bit Mode

RDMSR and WRMSR require an index to specify the address of an MSR. In 64-bit mode, the index is 32 bits; it is 
specified using ECX.

2.7.8 Enabling Processor Extended States

The XSETBV instruction is required to enable OS support of individual processor extended states in XCR0 (see 
Section 2.6).
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CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the Intel 64 and IA-32 architecture’s protected-mode memory management facilities, 
including the physical memory requirements, segmentation mechanism, and paging mechanism.

See also: Chapter 5, “Protection” (for a description of the processor’s protection mechanism) and Chapter 20, 
“8086 Emulation” (for a description of memory addressing protection in real-address and virtual-8086 modes).

3.1 MEMORY MANAGEMENT OVERVIEW

The memory management facilities of the IA-32 architecture are divided into two parts: segmentation and paging. 
Segmentation provides a mechanism of isolating individual code, data, and stack modules so that multiple 
programs (or tasks) can run on the same processor without interfering with one another. Paging provides a mech-
anism for implementing a conventional demand-paged, virtual-memory system where sections of a program’s 
execution environment are mapped into physical memory as needed. Paging can also be used to provide isolation 
between multiple tasks. When operating in protected mode, some form of segmentation must be used. There is 
no mode bit to disable segmentation. The use of paging, however, is optional.

These two mechanisms (segmentation and paging) can be configured to support simple single-program (or single-
task) systems, multitasking systems, or multiple-processor systems that used shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the processor’s addressable memory 
space (called the linear address space) into smaller protected address spaces called segments. Segments can 
be used to hold the code, data, and stack for a program or to hold system data structures (such as a TSS or LDT). 
If more than one program (or task) is running on a processor, each program can be assigned its own set of 
segments. The processor then enforces the boundaries between these segments and insures that one program 
does not interfere with the execution of another program by writing into the other program’s segments. The 
segmentation mechanism also allows typing of segments so that the operations that may be performed on a partic-
ular type of segment can be restricted.

All the segments in a system are contained in the processor’s linear address space. To locate a byte in a particular 
segment, a logical address (also called a far pointer) must be provided. A logical address consists of a segment 
selector and an offset. The segment selector is a unique identifier for a segment. Among other things it provides an 
offset into a descriptor table (such as the global descriptor table, GDT) to a data structure called a segment 
descriptor. Each segment has a segment descriptor, which specifies the size of the segment, the access rights and 
privilege level for the segment, the segment type, and the location of the first byte of the segment in the linear 
address space (called the base address of the segment). The offset part of the logical address is added to the base 
address for the segment to locate a byte within the segment. The base address plus the offset thus forms a linear 
address in the processor’s linear address space.



3-2 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

If paging is not used, the linear address space of the processor is mapped directly into the physical address space 
of processor. The physical address space is defined as the range of addresses that the processor can generate on 
its address bus.

Because multitasking computing systems commonly define a linear address space much larger than it is economi-
cally feasible to contain all at once in physical memory, some method of “virtualizing” the linear address space is 
needed. This virtualization of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space is simulated with a small 
amount of physical memory (RAM and ROM) and some disk storage. When using paging, each segment is divided 
into pages (typically 4 KBytes each in size), which are stored either in physical memory or on the disk. The oper-
ating system or executive maintains a page directory and a set of page tables to keep track of the pages. When a 
program (or task) attempts to access an address location in the linear address space, the processor uses the page 
directory and page tables to translate the linear address into a physical address and then performs the requested 
operation (read or write) on the memory location. 

If the page being accessed is not currently in physical memory, the processor interrupts execution of the program 
(by generating a page-fault exception). The operating system or executive then reads the page into physical 
memory from the disk and continues executing the program. 

When paging is implemented properly in the operating-system or executive, the swapping of pages between phys-
ical memory and the disk is transparent to the correct execution of a program. Even programs written for 16-bit IA-
32 processors can be paged (transparently) when they are run in virtual-8086 mode.

3.2 USING SEGMENTS

The segmentation mechanism supported by the IA-32 architecture can be used to implement a wide variety of 
system designs. These designs range from flat models that make only minimal use of segmentation to protect 

Figure 3-1.  Segmentation and Paging
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programs to multi-segmented models that employ segmentation to create a robust operating environment in 
which multiple programs and tasks can be executed reliably.

The following sections give several examples of how segmentation can be employed in a system to improve 
memory management performance and reliability.

3.2.1 Basic Flat Model

The simplest memory model for a system is the basic “flat model,” in which the operating system and application 
programs have access to a continuous, unsegmented address space. To the greatest extent possible, this basic flat 
model hides the segmentation mechanism of the architecture from both the system designer and the application 
programmer.

To implement a basic flat memory model with the IA-32 architecture, at least two segment descriptors must be 
created, one for referencing a code segment and one for referencing a data segment (see Figure 3-2). Both of 
these segments, however, are mapped to the entire linear address space: that is, both segment descriptors have 
the same base address value of 0 and the same segment limit of 4 GBytes. By setting the segment limit to 4 
GBytes, the segmentation mechanism is kept from generating exceptions for out of limit memory references, even 
if no physical memory resides at a particular address. ROM (EPROM) is generally located at the top of the physical 
address space, because the processor begins execution at FFFF_FFF0H. RAM (DRAM) is placed at the bottom of the 
address space because the initial base address for the DS data segment after reset initialization is 0.

3.2.2 Protected Flat Model

The protected flat model is similar to the basic flat model, except the segment limits are set to include only the 
range of addresses for which physical memory actually exists (see Figure 3-3). A general-protection exception 
(#GP) is then generated on any attempt to access nonexistent memory. This model provides a minimum level of 
hardware protection against some kinds of program bugs.

Figure 3-2.  Flat Model
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More complexity can be added to this protected flat model to provide more protection. For example, for the paging 
mechanism to provide isolation between user and supervisor code and data, four segments need to be defined: 
code and data segments at privilege level 3 for the user, and code and data segments at privilege level 0 for the 
supervisor. Usually these segments all overlay each other and start at address 0 in the linear address space. This 
flat segmentation model along with a simple paging structure can protect the operating system from applications, 
and by adding a separate paging structure for each task or process, it can also protect applications from each other. 
Similar designs are used by several popular multitasking operating systems.

3.2.3 Multi-Segment Model

A multi-segment model (such as the one shown in Figure 3-4) uses the full capabilities of the segmentation mech-
anism to provided hardware enforced protection of code, data structures, and programs and tasks. Here, each 
program (or task) is given its own table of segment descriptors and its own segments. The segments can be 
completely private to their assigned programs or shared among programs. Access to all segments and to the 
execution environments of individual programs running on the system is controlled by hardware.

Figure 3-3.  Protected Flat Model
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Access checks can be used to protect not only against referencing an address outside the limit of a segment, but 
also against performing disallowed operations in certain segments. For example, since code segments are desig-
nated as read-only segments, hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels. Protection levels can be used to 
protect operating-system procedures from unauthorized access by application programs.

3.2.4 Segmentation in IA-32e Mode

In IA-32e mode of Intel 64 architecture, the effects of segmentation depend on whether the processor is running 
in compatibility mode or 64-bit mode. In compatibility mode, segmentation functions just as it does using legacy 
16-bit or 32-bit protected mode semantics.

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address 
space. The processor treats the segment base of CS, DS, ES, SS as zero, creating a linear address that is equal to 
the effective address. The FS and GS segments are exceptions. These segment registers (which hold the segment 
base) can be used as an additional base registers in linear address calculations. They facilitate addressing local 
data and certain operating system data structures. 

Note that the processor does not perform segment limit checks at runtime in 64-bit mode.

3.2.5 Paging and Segmentation

Paging can be used with any of the segmentation models described in Figures 3-2, 3-3, and 3-4. The processor’s 
paging mechanism divides the linear address space (into which segments are mapped) into pages (as shown in 
Figure 3-1). These linear-address-space pages are then mapped to pages in the physical address space. The 
paging mechanism offers several page-level protection facilities that can be used with or instead of the segment-

Figure 3-4.  Multi-Segment Model
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protection facilities. For example, it lets read-write protection be enforced on a page-by-page basis. The paging 
mechanism also provides two-level user-supervisor protection that can also be specified on a page-by-page basis.

3.3 PHYSICAL ADDRESS SPACE

In protected mode, the IA-32 architecture provides a normal physical address space of 4 GBytes (232
 bytes). This 

is the address space that the processor can address on its address bus. This address space is flat (unsegmented), 
with addresses ranging continuously from 0 to FFFFFFFFH. This physical address space can be mapped to read-
write memory, read-only memory, and memory mapped I/O. The memory mapping facilities described in this 
chapter can be used to divide this physical memory up into segments and/or pages.

Starting with the Pentium Pro processor, the IA-32 architecture also supports an extension of the physical address 
space to 236 bytes (64 GBytes); with a maximum physical address of FFFFFFFFFH. This extension is invoked in 
either of two ways:
• Using the physical address extension (PAE) flag, located in bit 5 of control register CR4. 
• Using the 36-bit page size extension (PSE-36) feature (introduced in the Pentium III processors).

Physical address support has since been extended beyond 36 bits. See Chapter 4, “Paging” for more information 
about 36-bit physical addressing.

3.3.1 Intel® 64 Processors and Physical Address Space

On processors that support Intel 64 architecture (CPUID.80000001:EDX[29] = 1), the size of the physical address 
range is implementation-specific and indicated by CPUID.80000008H:EAX[bits 7-0]. 

For the format of information returned in EAX, see “CPUID—CPU Identification” in Chapter 3 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2A. See also: Chapter 4, “Paging.”

3.4 LOGICAL AND LINEAR ADDRESSES

At the system-architecture level in protected mode, the processor uses two stages of address translation to arrive 
at a physical address: logical-address translation and linear address space paging.

Even with the minimum use of segments, every byte in the processor’s address space is accessed with a logical 
address. A logical address consists of a 16-bit segment selector and a 32-bit offset (see Figure 3-5). The segment 
selector identifies the segment the byte is located in and the offset specifies the location of the byte in the segment 
relative to the base address of the segment. 

The processor translates every logical address into a linear address. A linear address is a 32-bit address in the 
processor’s linear address space. Like the physical address space, the linear address space is a flat (unsegmented), 
232-byte address space, with addresses ranging from 0 to FFFFFFFFH. The linear address space contains all the 
segments and system tables defined for a system. 

To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the segment in the GDT or LDT and 
reads it into the processor. (This step is needed only when a new segment selector is loaded into a segment 
register.)

2. Examines the segment descriptor to check the access rights and range of the segment to insure that the 
segment is accessible and that the offset is within the limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset to form a linear address.
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If paging is not used, the processor maps the linear address directly to a physical address (that is, the linear 
address goes out on the processor’s address bus). If the linear address space is paged, a second level of address 
translation is used to translate the linear address into a physical address. 

See also: Chapter 4, “Paging.”

3.4.1 Logical Address Translation in IA-32e Mode

In IA-32e mode, an Intel 64 processor uses the steps described above to translate a logical address to a linear 
address. In 64-bit mode, the offset and base address of the segment are 64-bits instead of 32 bits. The linear 
address format is also 64 bits wide and is subject to the canonical form requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to execute 64-bit code or legacy 
32-bit code by code segment.

3.4.2 Segment Selectors

A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not point directly to the segment, 
but instead points to the segment descriptor that defines the segment. A segment selector contains the following 
items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or LDT. The processor multiplies 
the index value by 8 (the number of bytes in a segment descriptor) and adds the result to the base 
address of the GDT or LDT (from the GDTR or LDTR register, respectively).

TI (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag selects the GDT; setting this flag 
selects the current LDT.

Figure 3-5.  Logical Address to Linear Address Translation
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Requested Privilege Level (RPL)
(Bits 0 and 1) — Specifies the privilege level of the selector. The privilege level can range from 0 to 
3, with 0 being the most privileged level. See Section 5.5, “Privilege Levels”, for a description of the 
relationship of the RPL to the CPL of the executing program (or task) and the descriptor privilege 
level (DPL) of the descriptor the segment selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points to this entry of the GDT (that 
is, a segment selector with an index of 0 and the TI flag set to 0) is used as a “null segment selector.” The processor 
does not generate an exception when a segment register (other than the CS or SS registers) is loaded with a null 
selector. It does, however, generate an exception when a segment register holding a null selector is used to access 
memory. A null selector can be used to initialize unused segment registers. Loading the CS or SS register with a null 
segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, but the values of selectors are 
usually assigned or modified by link editors or linking loaders, not application programs.

3.4.3 Segment Registers

To reduce address translation time and coding complexity, the processor provides registers for holding up to 6 
segment selectors (see Figure 3-7). Each of these segment registers support a specific kind of memory reference 
(code, stack, or data). For virtually any kind of program execution to take place, at least the code-segment (CS), 
data-segment (DS), and stack-segment (SS) registers must be loaded with valid segment selectors. The processor 
also provides three additional data-segment registers (ES, FS, and GS), which can be used to make additional data 
segments available to the currently executing program (or task).

For a program to access a segment, the segment selector for the segment must have been loaded in one of the 
segment registers. So, although a system can define thousands of segments, only 6 can be available for immediate 
use. Other segments can be made available by loading their segment selectors into these registers during program 
execution.

Every segment register has a “visible” part and a “hidden” part. (The hidden part is sometimes referred to as a 
“descriptor cache” or a “shadow register.”) When a segment selector is loaded into the visible part of a segment 
register, the processor also loads the hidden part of the segment register with the base address, segment limit, and 
access control information from the segment descriptor pointed to by the segment selector. The information cached 
in the segment register (visible and hidden) allows the processor to translate addresses without taking extra bus 
cycles to read the base address and limit from the segment descriptor. In systems in which multiple processors 
have access to the same descriptor tables, it is the responsibility of software to reload the segment registers when 
the descriptor tables are modified. If this is not done, an old segment descriptor cached in a segment register might 
be used after its memory-resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS instructions. These instructions 
explicitly reference the segment registers.

Figure 3-7.  Segment Registers
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2. Implied load instructions such as the far pointer versions of the CALL, JMP, and RET instructions, the SYSENTER 
and SYSEXIT instructions, and the IRET, INTn, INTO and INT3 instructions. These instructions change the 
contents of the CS register (and sometimes other segment registers) as an incidental part of their operation.

The MOV instruction can also be used to store visible part of a segment register in a general-purpose register.

3.4.4 Segment Loading Instructions in IA-32e Mode

Because ES, DS, and SS segment registers are not used in 64-bit mode, their fields (base, limit, and attribute) in 
segment descriptor registers are ignored. Some forms of segment load instructions are also invalid (for example, 
LDS, POP ES). Address calculations that reference the ES, DS, or SS segments are treated as if the segment base 
is zero. 

The processor checks that all linear-address references are in canonical form instead of performing limit checks. 
Mode switching does not change the contents of the segment registers or the associated descriptor registers. 
These registers are also not changed during 64-bit mode execution, unless explicit segment loads are performed.

In order to set up compatibility mode for an application, segment-load instructions (MOV to Sreg, POP Sreg) work 
normally in 64-bit mode. An entry is read from the system descriptor table (GDT or LDT) and is loaded in the 
hidden portion of the segment descriptor register. The descriptor-register base, limit, and attribute fields are all 
loaded. However, the contents of the data and stack segment selector and the descriptor registers are ignored.

When FS and GS segment overrides are used in 64-bit mode, their respective base addresses are used in the linear 
address calculation: (FS or GS).base + index + displacement. FS.base and GS.base are then expanded to the full 
linear-address size supported by the implementation. The resulting effective address calculation can wrap across 
positive and negative addresses; the resulting linear address must be canonical.

In 64-bit mode, memory accesses using FS-segment and GS-segment overrides are not checked for a runtime limit 
nor subjected to attribute-checking. Normal segment loads (MOV to Sreg and POP Sreg) into FS and GS load a 
standard 32-bit base value in the hidden portion of the segment descriptor register. The base address bits above 
the standard 32 bits are cleared to 0 to allow consistency for implementations that use less than 64 bits. 

The hidden descriptor register fields for FS.base and GS.base are physically mapped to MSRs in order to load all 
address bits supported by a 64-bit implementation. Software with CPL = 0 (privileged software) can load all 
supported linear-address bits into FS.base or GS.base using WRMSR. Addresses written into the 64-bit FS.base 
and GS.base registers must be in canonical form. A WRMSR instruction that attempts to write a non-canonical 
address to those registers causes a #GP fault. 

When in compatibility mode, FS and GS overrides operate as defined by 32-bit mode behavior regardless of the 
value loaded into the upper 32 linear-address bits of the hidden descriptor register base field. Compatibility mode 
ignores the upper 32 bits when calculating an effective address.

A new 64-bit mode instruction, SWAPGS, can be used to load GS base. SWAPGS exchanges the kernel data struc-
ture pointer from the IA32_KernelGSbase MSR with the GS base register. The kernel can then use the GS prefix on 
normal memory references to access the kernel data structures. An attempt to write a non-canonical value (using 
WRMSR) to the IA32_KernelGSBase MSR causes a #GP fault.

3.4.5 Segment Descriptors

A segment descriptor is a data structure in a GDT or LDT that provides the processor with the size and location of 
a segment, as well as access control and status information. Segment descriptors are typically created by 
compilers, linkers, loaders, or the operating system or executive, but not application programs. Figure 3-8 illus-
trates the general descriptor format for all types of segment descriptors.
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The flags and fields in a segment descriptor are as follows:

Segment limit field
Specifies the size of the segment. The processor puts together the two segment limit fields to form 
a 20-bit value. The processor interprets the segment limit in one of two ways, depending on the 
setting of the G (granularity) flag:

• If the granularity flag is clear, the segment size can range from 1 byte to 1 MByte, in byte incre-
ments.

• If the granularity flag is set, the segment size can range from 4 KBytes to 4 GBytes, in 4-KByte 
increments.

The processor uses the segment limit in two different ways, depending on whether the segment is 
an expand-up or an expand-down segment. See Section 3.4.5.1, “Code- and Data-Segment 
Descriptor Types”, for more information about segment types. For expand-up segments, the offset 
in a logical address can range from 0 to the segment limit. Offsets greater than the segment limit 
generate general-protection exceptions (#GP, for all segment other than SS) or stack-fault excep-
tions (#SS for the SS segment). For expand-down segments, the segment limit has the reverse 
function; the offset can range from the segment limit plus 1 to FFFFFFFFH or FFFFH, depending on 
the setting of the B flag. Offsets less than or equal to the segment limit generate general-protection 
exceptions or stack-fault exceptions. Decreasing the value in the segment limit field for an expand-
down segment allocates new memory at the bottom of the segment's address space, rather than at 
the top. IA-32 architecture stacks always grow downwards, making this mechanism convenient for 
expandable stacks.

Base address fields
Defines the location of byte 0 of the segment within the 4-GByte linear address space. The 
processor puts together the three base address fields to form a single 32-bit value. Segment base 
addresses should be aligned to 16-byte boundaries. Although 16-byte alignment is not required, 
this alignment allows programs to maximize performance by aligning code and data on 16-byte 
boundaries.

Type field Indicates the segment or gate type and specifies the kinds of access that can be made to the 
segment and the direction of growth. The interpretation of this field depends on whether the 
descriptor type flag specifies an application (code or data) descriptor or a system descriptor. The 
encoding of the type field is different for code, data, and system descriptors (see Figure 5-1). See 
Section 3.4.5.1, “Code- and Data-Segment Descriptor Types”, for a description of how this field is 
used to specify code and data-segment types. 

Figure 3-8.  Segment Descriptor
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S (descriptor type) flag
Specifies whether the segment descriptor is for a system segment (S flag is clear) or a code or data 
segment (S flag is set).

DPL (descriptor privilege level) field
Specifies the privilege level of the segment. The privilege level can range from 0 to 3, with 0 being 
the most privileged level. The DPL is used to control access to the segment. See Section 5.5, “Priv-
ilege Levels”, for a description of the relationship of the DPL to the CPL of the executing code 
segment and the RPL of a segment selector.

P (segment-present) flag
Indicates whether the segment is present in memory (set) or not present (clear). If this flag is clear, 
the processor generates a segment-not-present exception (#NP) when a segment selector that 
points to the segment descriptor is loaded into a segment register. Memory management software 
can use this flag to control which segments are actually loaded into physical memory at a given 
time. It offers a control in addition to paging for managing virtual memory.

Figure 3-9 shows the format of a segment descriptor when the segment-present flag is clear. When 
this flag is clear, the operating system or executive is free to use the locations marked “Available” to 
store its own data, such as information regarding the whereabouts of the missing segment.

D/B (default operation size/default stack pointer size and/or upper bound) flag
Performs different functions depending on whether the segment descriptor is an executable code 
segment, an expand-down data segment, or a stack segment. (This flag should always be set to 1 
for 32-bit code and data segments and to 0 for 16-bit code and data segments.)

• Executable code segment. The flag is called the D flag and it indicates the default length for 
effective addresses and operands referenced by instructions in the segment. If the flag is set, 
32-bit addresses and 32-bit or 8-bit operands are assumed; if it is clear, 16-bit addresses and 
16-bit or 8-bit operands are assumed. 
The instruction prefix 66H can be used to select an operand size other than the default, and the 
prefix 67H can be used select an address size other than the default.

• Stack segment (data segment pointed to by the SS register). The flag is called the B (big) 
flag and it specifies the size of the stack pointer used for implicit stack operations (such as 
pushes, pops, and calls). If the flag is set, a 32-bit stack pointer is used, which is stored in the 
32-bit ESP register; if the flag is clear, a 16-bit stack pointer is used, which is stored in the 16-
bit SP register. If the stack segment is set up to be an expand-down data segment (described in 
the next paragraph), the B flag also specifies the upper bound of the stack segment.

• Expand-down data segment. The flag is called the B flag and it specifies the upper bound of 
the segment. If the flag is set, the upper bound is FFFFFFFFH (4 GBytes); if the flag is clear, the 
upper bound is FFFFH (64 KBytes).

G (granularity) flag
Determines the scaling of the segment limit field. When the granularity flag is clear, the segment 
limit is interpreted in byte units; when flag is set, the segment limit is interpreted in 4-KByte units. 
(This flag does not affect the granularity of the base address; it is always byte granular.) When the 
granularity flag is set, the twelve least significant bits of an offset are not tested when checking the 

Figure 3-9.  Segment Descriptor When Segment-Present Flag Is Clear
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offset against the segment limit. For example, when the granularity flag is set, a limit of 0 results in 
valid offsets from 0 to 4095.

L (64-bit code segment) flag
In IA-32e mode, bit 21 of the second doubleword of the segment descriptor indicates whether a 
code segment contains native 64-bit code. A value of 1 indicates instructions in this code segment 
are executed in 64-bit mode. A value of 0 indicates the instructions in this code segment are 
executed in compatibility mode. If L-bit is set, then D-bit must be cleared. When not in IA-32e mode 
or for non-code segments, bit 21 is reserved and should always be set to 0.

Available and reserved bits
Bit 20 of the second doubleword of the segment descriptor is available for use by system software.

3.4.5.1  Code- and Data-Segment Descriptor Types

When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for either a code or a data 
segment. The highest order bit of the type field (bit 11 of the second double word of the segment descriptor) then 
determines whether the descriptor is for a data segment (clear) or a code segment (set). 

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are interpreted as accessed (A), 
write-enable (W), and expansion-direction (E). See Table 3-1 for a description of the encoding of the bits in the 
type field for code and data segments. Data segments can be read-only or read/write segments, depending on the 
setting of the write-enable bit. 

Stack segments are data segments which must be read/write segments. Loading the SS register with a segment 
selector for a nonwritable data segment generates a general-protection exception (#GP). If the size of a stack 
segment needs to be changed dynamically, the stack segment can be an expand-down data segment (expansion-
direction flag set). Here, dynamically changing the segment limit causes stack space to be added to the bottom of 

Table 3-1.  Code- and Data-Segment Types 

Type Field Descriptor
Type

Description

Decimal 11 10
E

9
W

8
A

0 0 0 0 0 Data Read-Only

1 0 0 0 1 Data Read-Only, accessed

2 0 0 1 0 Data Read/Write

3 0 0 1 1 Data Read/Write, accessed

4 0 1 0 0 Data Read-Only, expand-down

5 0 1 0 1 Data Read-Only, expand-down, accessed

6 0 1 1 0 Data Read/Write, expand-down

7 0 1 1 1 Data Read/Write, expand-down, accessed

C R A

8 1 0 0 0 Code Execute-Only

9 1 0 0 1 Code Execute-Only, accessed

10 1 0 1 0 Code Execute/Read

11 1 0 1 1 Code Execute/Read, accessed

12 1 1 0 0 Code Execute-Only, conforming

13 1 1 0 1 Code Execute-Only, conforming, accessed

14 1 1 1 0 Code Execute/Read, conforming

15 1 1 1 1 Code Execute/Read, conforming, accessed
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the stack. If the size of a stack segment is intended to remain static, the stack segment may be either an expand-
up or expand-down type.

The accessed bit indicates whether the segment has been accessed since the last time the operating-system or 
executive cleared the bit. The processor sets this bit whenever it loads a segment selector for the segment into a 
segment register, assuming that the type of memory that contains the segment descriptor supports processor 
writes. The bit remains set until explicitly cleared. This bit can be used both for virtual memory management and 
for debugging. 

For code segments, the three low-order bits of the type field are interpreted as accessed (A), read enable (R), and 
conforming (C). Code segments can be execute-only or execute/read, depending on the setting of the read-enable 
bit. An execute/read segment might be used when constants or other static data have been placed with instruction 
code in a ROM. Here, data can be read from the code segment either by using an instruction with a CS override 
prefix or by loading a segment selector for the code segment in a data-segment register (the DS, ES, FS, or GS 
registers). In protected mode, code segments are not writable.

Code segments can be either conforming or nonconforming. A transfer of execution into a more-privileged 
conforming segment allows execution to continue at the current privilege level. A transfer into a nonconforming 
segment at a different privilege level results in a general-protection exception (#GP), unless a call gate or task 
gate is used (see Section 5.8.1, “Direct Calls or Jumps to Code Segments”, for more information on conforming and 
nonconforming code segments). System utilities that do not access protected facilities and handlers for some types 
of exceptions (such as, divide error or overflow) may be loaded in conforming code segments. Utilities that need to 
be protected from less privileged programs and procedures should be placed in nonconforming code segments. 

NOTE

Execution cannot be transferred by a call or a jump to a less-privileged (numerically higher 
privilege level) code segment, regardless of whether the target segment is a conforming or 
nonconforming code segment. Attempting such an execution transfer will result in a general-
protection exception.

All data segments are nonconforming, meaning that they cannot be accessed by less privileged programs or proce-
dures (code executing at numerically high privilege levels). Unlike code segments, however, data segments can be 
accessed by more privileged programs or procedures (code executing at numerically lower privilege levels) without 
using a special access gate.

If the segment descriptors in the GDT or an LDT are placed in ROM, the processor can enter an indefinite loop if 
software or the processor attempts to update (write to) the ROM-based segment descriptors. To prevent this 
problem, set the accessed bits for all segment descriptors placed in a ROM. Also, remove operating-system or 
executive code that attempts to modify segment descriptors located in ROM.

3.5 SYSTEM DESCRIPTOR TYPES

When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type is a system descriptor. The 
processor recognizes the following types of system descriptors:
• Local descriptor-table (LDT) segment descriptor.
• Task-state segment (TSS) descriptor.
• Call-gate descriptor.
• Interrupt-gate descriptor.
• Trap-gate descriptor.
• Task-gate descriptor.

These descriptor types fall into two categories: system-segment descriptors and gate descriptors. System-
segment descriptors point to system segments (LDT and TSS segments). Gate descriptors are in themselves 
“gates,” which hold pointers to procedure entry points in code segments (call, interrupt, and trap gates) or which 
hold segment selectors for TSS’s (task gates). 
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Table 3-2 shows the encoding of the type field for system-segment descriptors and gate descriptors. Note that 
system descriptors in IA-32e mode are 16 bytes instead of 8 bytes.

See also: Section 3.5.1, “Segment Descriptor Tables”, and Section 7.2.2, “TSS Descriptor” (for more information 
on the system-segment descriptors); see Section 5.8.3, “Call Gates”, Section 6.11, “IDT Descriptors”, and Section 
7.2.5, “Task-Gate Descriptor” (for more information on the gate descriptors).

3.5.1 Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors (see Figure 3-10). A descriptor table is variable in 
length and can contain up to 8192 (213) 8-byte descriptors. There are two kinds of descriptor tables:
• The global descriptor table (GDT)
• The local descriptor tables (LDT)

Table 3-2.  System-Segment and Gate-Descriptor Types

Type Field Description

Decimal 11 10 9 8 32-Bit Mode IA-32e Mode

0 0 0 0 0 Reserved Upper 8 byte of an 16-byte 
descriptor

1 0 0 0 1 16-bit TSS (Available) Reserved

2 0 0 1 0 LDT LDT

3 0 0 1 1 16-bit TSS (Busy) Reserved

4 0 1 0 0 16-bit Call Gate Reserved

5 0 1 0 1 Task Gate Reserved

6 0 1 1 0 16-bit Interrupt Gate Reserved

7 0 1 1 1 16-bit Trap Gate Reserved

8 1 0 0 0 Reserved Reserved

9 1 0 0 1 32-bit TSS (Available) 64-bit TSS (Available)

10 1 0 1 0 Reserved Reserved

11 1 0 1 1 32-bit TSS (Busy) 64-bit TSS (Busy)

12 1 1 0 0 32-bit Call Gate 64-bit Call Gate

13 1 1 0 1 Reserved Reserved

14 1 1 1 0 32-bit Interrupt Gate 64-bit Interrupt Gate

15 1 1 1 1 32-bit Trap Gate 64-bit Trap Gate
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Each system must have one GDT defined, which may be used for all programs and tasks in the system. Optionally, 
one or more LDTs can be defined. For example, an LDT can be defined for each separate task being run, or some or 
all tasks can share the same LDT.

The GDT is not a segment itself; instead, it is a data structure in linear address space. The base linear address and 
limit of the GDT must be loaded into the GDTR register (see Section 2.4, “Memory-Management Registers”). The 
base addresses of the GDT should be aligned on an eight-byte boundary to yield the best processor performance. 
The limit value for the GDT is expressed in bytes. As with segments, the limit value is added to the base address to 
get the address of the last valid byte. A limit value of 0 results in exactly one valid byte. Because segment descrip-
tors are always 8 bytes long, the GDT limit should always be one less than an integral multiple of eight (that is, 8N 
– 1).

The first descriptor in the GDT is not used by the processor. A segment selector to this “null descriptor” does not 
generate an exception when loaded into a data-segment register (DS, ES, FS, or GS), but it always generates a 
general-protection exception (#GP) when an attempt is made to access memory using the descriptor. By initializing 
the segment registers with this segment selector, accidental reference to unused segment registers can be guar-
anteed to generate an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a segment descriptor for the LDT 
segment. If the system supports multiple LDTs, each must have a separate segment selector and segment 
descriptor in the GDT. The segment descriptor for an LDT can be located anywhere in the GDT. See Section 3.5, 
“System Descriptor Types”, information on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when accessing the LDT, the 
segment selector, base linear address, limit, and access rights of the LDT are stored in the LDTR register (see 
Section 2.4, “Memory-Management Registers”). 

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-descriptor” is stored in memory 
(see top diagram in Figure 3-11). To avoid alignment check faults in user mode (privilege level 3), the pseudo-

Figure 3-10.  Global and Local Descriptor Tables
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descriptor should be located at an odd word address (that is, address MOD 4 is equal to 2). This causes the 
processor to store an aligned word, followed by an aligned doubleword. User-mode programs normally do not store 
pseudo-descriptors, but the possibility of generating an alignment check fault can be avoided by aligning pseudo-
descriptors in this way. The same alignment should be used when storing the IDTR register using the SIDT instruc-
tion. When storing the LDTR or task register (using the SLDT or STR instruction, respectively), the pseudo-
descriptor should be located at a doubleword address (that is, address MOD 4 is equal to 0).

3.5.2 Segment Descriptor Tables in IA-32e Mode

In IA-32e mode, a segment descriptor table can contain up to 8192 (213) 8-byte descriptors. An entry in the 
segment descriptor table can be 8 bytes. System descriptors are expanded to 16 bytes (occupying the space of two 
entries). 

GDTR and LDTR registers are expanded to hold 64-bit base address. The corresponding pseudo-descriptor is 80 
bits. (see the bottom diagram in Figure 3-11).

The following system descriptors expand to 16 bytes:

— Call gate descriptors (see Section 5.8.3.1, “IA-32e Mode Call Gates”)

— IDT gate descriptors (see Section 6.14.1, “64-Bit Mode IDT”)

— LDT and TSS descriptors (see Section 7.2.3, “TSS Descriptor in 64-bit mode”).

Figure 3-11.  Pseudo-Descriptor Formats
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CHAPTER 4
PAGING

Chapter 3 explains how segmentation converts logical addresses to linear addresses. Paging (or linear-address 
translation) is the process of translating linear addresses so that they can be used to access memory or I/O 
devices. Paging translates each linear address to a physical address and determines, for each translation, what 
accesses to the linear address are allowed (the address’s access rights) and the type of caching used for such 
accesses (the address’s memory type).

Intel-64 processors support three different paging modes. These modes are identified and defined in Section 4.1. 
Section 4.2 gives an overview of the translation mechanism that is used in all modes. Section 4.3, Section 4.4, and 
Section 4.5 discuss the three paging modes in detail.

Section 4.6 details how paging determines and uses access rights. Section 4.7 discusses exceptions that may be 
generated by paging (page-fault exceptions). Section 4.8 considers data which the processor writes in response to 
linear-address accesses (accessed and dirty flags).

Section 4.9 describes how paging determines the memory types used for accesses to linear addresses. Section 4.10 
provides details of how a processor may cache information about linear-address translation. Section 4.11 outlines 
interactions between paging and certain VMX features. Section 4.12 gives an overview of how paging can be used 
to implement virtual memory.

4.1 PAGING MODES AND CONTROL BITS

Paging behavior is controlled by the following control bits:
• The WP and PG flags in control register CR0 (bit 16 and bit 31, respectively).
• The PSE, PAE, PGE, PCIDE, and SMEP flags in control register CR4 (bit 4, bit 5, bit 7, bit 17, and bit 20 respec-

tively).
• The LME and NXE flags in the IA32_EFER MSR (bit 8 and bit 11, respectively).

Software enables paging by using the MOV to CR0 instruction to set CR0.PG. Before doing so, software should 
ensure that control register CR3 contains the physical address of the first paging structure that the processor will 
use for linear-address translation (see Section 4.2) and that structure is initialized as desired. See Table 4-3, 
Table 4-7, and Table 4-12 for the use of CR3 in the different paging modes.

Section 4.1.1 describes how the values of CR0.PG, CR4.PAE, and IA32_EFER.LME determine whether paging is in 
use and, if so, which of three paging modes is in use. Section 4.1.2 explains how to manage these bits to establish 
or make changes in paging modes. Section 4.1.3 discusses how CR0.WP, CR4.PSE, CR4.PGE, CR4.PCIDE, 
CR4.SMEP, and IA32_EFER.NXE modify the operation of the different paging modes.

4.1.1 Three Paging Modes

If CR0.PG = 0, paging is not used. The logical processor treats all linear addresses as if they were physical 
addresses. CR4.PAE and IA32_EFER.LME are ignored by the processor, as are CR0.WP, CR4.PSE, CR4.PGE, 
CR4.SMEP, and IA32_EFER.NXE.

Paging is enabled if CR0.PG = 1. Paging can be enabled only if protection is enabled (CR0.PE = 1). If paging is 
enabled, one of three paging modes is used. The values of CR4.PAE and IA32_EFER.LME determine which paging 
mode is used:
• If CR0.PG = 1 and CR4.PAE = 0, 32-bit paging is used. 32-bit paging is detailed in Section 4.3. 32-bit paging 

uses CR0.WP, CR4.PSE, CR4.PGE, and CR4.SMEP as described in Section 4.1.3.
• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 0, PAE paging is used. PAE paging is detailed in Section 

4.4. PAE paging uses CR0.WP, CR4.PGE, CR4.SMEP, and IA32_EFER.NXE as described in Section 4.1.3.
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• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 1, IA-32e paging is used.1 IA-32e paging is detailed in 
Section 4.5. IA-32e paging uses CR0.WP, CR4.PGE, CR4.PCIDE, CR4.SMEP, and IA32_EFER.NXE as described 
in Section 4.1.3. IA-32e paging is available only on processors that support the Intel 64 architecture.

The three paging modes differ with regard to the following details:
• Linear-address width. The size of the linear addresses that can be translated.
• Physical-address width. The size of the physical addresses produced by paging.
• Page size. The granularity at which linear addresses are translated. Linear addresses on the same page are 

translated to corresponding physical addresses on the same page.
• Support for execute-disable access rights. In some paging modes, software can be prevented from fetching 

instructions from pages that are otherwise readable.
• Support for PCIDs. In some paging modes, software can enable a facility by which a logical processor caches 

information for multiple linear-address spaces. The processor may retain cached information when software 
switches between different linear-address spaces.

Table 4-1 illustrates the key differences between the three paging modes.

Because they are used only if IA32_EFER.LME = 0, 32-bit paging and PAE paging is used only in legacy protected 
mode. Because legacy protected mode cannot produce linear addresses larger than 32 bits, 32-bit paging and PAE 
paging translate 32-bit linear addresses.

Because it is used only if IA32_EFER.LME = 1, IA-32e paging is used only in IA-32e mode. (In fact, it is the use of 
IA-32e paging that defines IA-32e mode.) IA-32e mode has two sub-modes:
• Compatibility mode. This mode uses only 32-bit linear addresses. IA-32e paging treats bits 47:32 of such an 

address as all 0.

1. The LMA flag in the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical processor is in IA-32e mode (and thus 
using IA-32e paging). The processor always sets IA32_EFER.LMA to CR0.PG & IA32_EFER.LME. Software cannot directly modify 
IA32_EFER.LMA; an execution of WRMSR to the IA32_EFER MSR ignores bit 10 of its source operand.

Table 4-1.  Properties of Different Paging Modes

Paging
Mode

PG in
CR0

PAE in
CR4

LME in
IA32_EFER

Lin.-
Addr.
Width

Phys.-
Addr.
Width1

NOTES:

1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.4.

Page
Sizes

Supports
Execute-
Disable?

Supports
PCIDs?

None 0 N/A N/A 32 32 N/A No No

32-bit 1 0 02

2. The processor ensures that IA32_EFER.LME must be 0 if CR0.PG = 1 and CR4.PAE = 0.

32
Up to
403

3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and only if the PSE-36 mechanism is 
supported; see Section 4.1.4 and Section 4.3.

4 KB
4 MB4

4. 4-MByte pages are used with 32-bit paging only if CR4.PSE = 1; see Section 4.3.

No No

PAE 1 1 0 32
Up to
52

4 KB
2 MB

Yes5

5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.

No

IA-32e 1 1 1 48
Up to
52

4 KB
2 MB
1 GB6

6. Not all processors that support IA-32e paging support 1-GByte pages; see Section 4.1.4.

Yes5 Yes7

7. PCIDs are used only if CR4.PCIDE = 1; see Section 4.10.1.
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• 64-bit mode. While this mode produces 64-bit linear addresses, the processor ensures that bits 63:47 of such 
an address are identical.1 IA-32e paging does not use bits 63:48 of such addresses.

4.1.2 Paging-Mode Enabling

If CR0.PG = 1, a logical processor is in one of three paging modes, depending on the values of CR4.PAE and 
IA32_EFER.LME. Figure 4-1 illustrates how software can enable these modes and make transitions between them. 
The following items identify certain limitations and other details:

• IA32_EFER.LME cannot be modified while paging is enabled (CR0.PG = 1). Attempts to do so using WRMSR 
cause a general-protection exception (#GP(0)).

• Paging cannot be enabled (by setting CR0.PG to 1) while CR4.PAE = 0 and IA32_EFER.LME = 1. Attempts to do 
so using MOV to CR0 cause a general-protection exception (#GP(0)).

• CR4.PAE cannot be cleared while IA-32e paging is active (CR0.PG = 1 and IA32_EFER.LME = 1). Attempts to 
do so using MOV to CR4 cause a general-protection exception (#GP(0)).

• Regardless of the current paging mode, software can disable paging by clearing CR0.PG with MOV to CR0.2

1. Such an address is called canonical. Use of a non-canonical linear address in 64-bit mode produces a general-protection exception 
(#GP(0)); the processor does not attempt to translate non-canonical linear addresses using IA-32e paging.

Figure 4-1.  Enabling and Changing Paging Modes

2. If CR4.PCIDE = 1, an attempt to clear CR0.PG causes a general-protection exception (#GP); software should clear CR4.PCIDE before 
attempting to disable paging.

PG = 1

No Paging
PAE Paging

PAE = 1
LME = 0

PG = 0
PAE = 0
LME = 0

32-bit Paging
PG = 1
PAE = 0
LME = 0

PG = 0
PAE = 0
LME = 1

Set PG Set PAE

Clear PAEClear PG

No Paging
PG = 0
PAE = 1
LME = 0

No Paging
PG = 1

IA-32e Paging

PAE = 1
LME = 1

Clear LME

Setr LME

PG = 0
PAE = 1
LME = 1

No Paging

Clear PAE
Set PAE Clear PG

Set PG

Set PAE
Clear PAE

Setr LME

Clear LME Clear PG

Set PG

#GP

Set LME

#GP

Set LME

#GP

Set PG

Clear PAE

#GP

Clear LME

#GP



4-4 Vol. 3A

PAGING

• Software can make transitions between 32-bit paging and PAE paging by changing the value of CR4.PAE with 
MOV to CR4.

• Software cannot make transitions directly between IA-32e paging and either of the other two paging modes. It 
must first disable paging (by clearing CR0.PG with MOV to CR0), then set CR4.PAE and IA32_EFER.LME to the 
desired values (with MOV to CR4 and WRMSR), and then re-enable paging (by setting CR0.PG with MOV to 
CR0). As noted earlier, an attempt to clear either CR4.PAE or IA32_EFER.LME cause a general-protection 
exception (#GP(0)).

• VMX transitions allow transitions between paging modes that are not possible using MOV to CR or WRMSR. This 
is because VMX transitions can load CR0, CR4, and IA32_EFER in one operation. See Section 4.11.1.

4.1.3 Paging-Mode Modifiers

Details of how each paging mode operates are determined by the following control bits:
• The WP flag in CR0 (bit 16).
• The PSE, PGE, PCIDE, and SMEP flags in CR4 (bit 4, bit 7, bit 17, and bit 20, respectively).
• The NXE flag in the IA32_EFER MSR (bit 11).

CR0.WP allows pages to be protected from supervisor-mode writes. If CR0.WP = 0, supervisor-mode write 
accesses are allowed to linear addresses with read-only access rights; if CR0.WP = 1, they are not. (User-mode 
write accesses are never allowed to linear addresses with read-only access rights, regardless of the value of 
CR0.WP.) Section 4.6 explains how access rights are determined, including the definition of supervisor-mode and 
user-mode accesses.

CR4.PSE enables 4-MByte pages for 32-bit paging. If CR4.PSE = 0, 32-bit paging can use only 4-KByte pages; if 
CR4.PSE = 1, 32-bit paging can use both 4-KByte pages and 4-MByte pages. See Section 4.3 for more information. 
(PAE paging and IA-32e paging can use multiple page sizes regardless of the value of CR4.PSE.)

CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across address spaces; if CR4.PGE = 1, 
specified translations may be shared across address spaces. See Section 4.10.2.4 for more information.

CR4.PCIDE enables process-context identifiers (PCIDs) for IA-32e paging (CR4.PCIDE can be 1 only when IA-32e 
paging is in use). PCIDs allow a logical processor to cache information for multiple linear-address spaces. See 
Section 4.10.1 for more information.

CR4.SMEP allows pages to be protected from supervisor-mode instruction fetches. If CR4.SMEP = 1, software 
operating in supervisor mode cannot fetch instructions from linear addresses that are accessible in user mode. 
Section 4.6 explains how access rights are determined, including the definition of supervisor-mode accesses and 
user-mode accessibility.

IA32_EFER.NXE enables execute-disable access rights for PAE paging and IA-32e paging. If IA32_EFER.NXE = 1, 
instructions fetches can be prevented from specified linear addresses (even if data reads from the addresses are 
allowed). Section 4.6 explains how access rights are determined. (IA32_EFER.NXE has no effect with 32-bit 
paging. Software that wants to use this feature to limit instruction fetches from readable pages must use either PAE 
paging or IA-32e paging.)

4.1.4 Enumeration of Paging Features by CPUID

Software can discover support for different paging features using the CPUID instruction:
• PSE: page-size extensions for 32-bit paging.

If CPUID.01H:EDX.PSE [bit 3] = 1, CR4.PSE may be set to 1, enabling support for 4-MByte pages with 32-bit 
paging (see Section 4.3).

• PAE: physical-address extension.
If CPUID.01H:EDX.PAE [bit 6] = 1, CR4.PAE may be set to 1, enabling PAE paging (this setting is also required 
for IA-32e paging).

• PGE: global-page support.
If CPUID.01H:EDX.PGE [bit 13] = 1, CR4.PGE may be set to 1, enabling the global-page feature (see Section 
4.10.2.4).



Vol. 3A 4-5

PAGING

• PAT: page-attribute table.
If CPUID.01H:EDX.PAT [bit 16] = 1, the 8-entry page-attribute table (PAT) is supported. When the PAT is 
supported, three bits in certain paging-structure entries select a memory type (used to determine type of 
caching used) from the PAT (see Section 4.9.2).

• PSE-36: page-size extensions with 40-bit physical-address extension.
If CPUID.01H:EDX.PSE-36 [bit 17] = 1, the PSE-36 mechanism is supported, indicating that translations using 
4-MByte pages with 32-bit paging may produce physical addresses with up to 40 bits (see Section 4.3).

• PCID: process-context identifiers.
If CPUID.01H:ECX.PCID [bit 17] = 1, CR4.PCIDE may be set to 1, enabling process-context identifiers (see 
Section 4.10.1).

• SMEP: supervisor-mode execution prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMEP [bit 7] = 1, CR4.SMEP may be set to 1, enabling supervisor-mode 
execution prevention (see Section 4.6).

• NX: execute disable.
If CPUID.80000001H:EDX.NX [bit 20] = 1, IA32_EFER.NXE may be set to 1, allowing PAE paging and IA-32e 
paging to disable execute access to selected pages (see Section 4.6). (Processors that do not support CPUID 
function 80000001H do not allow IA32_EFER.NXE to be set to 1.)

• Page1GB: 1-GByte pages.
If CPUID.80000001H:EDX.Page1GB [bit 26] = 1, 1-GByte pages are supported with IA-32e paging (see 
Section 4.5).

• LM: IA-32e mode support.
If CPUID.80000001H:EDX.LM [bit 29] = 1, IA32_EFER.LME may be set to 1, enabling IA-32e paging. 
(Processors that do not support CPUID function 80000001H do not allow IA32_EFER.LME to be set to 1.)

• CPUID.80000008H:EAX[7:0] reports the physical-address width supported by the processor. (For processors 
that do not support CPUID function 80000008H, the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1 
and 32 otherwise.) This width is referred to as MAXPHYADDR. MAXPHYADDR is at most 52.

• CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the processor. Generally, this 
value is 48 if CPUID.80000001H:EDX.LM [bit 29] = 1 and 32 otherwise. (Processors that do not support CPUID 
function 80000008H, support a linear-address width of 32.)

4.2 HIERARCHICAL PAGING STRUCTURES: AN OVERVIEW

All three paging modes translate linear addresses use hierarchical paging structures. This section provides an 
overview of their operation. Section 4.3, Section 4.4, and Section 4.5 provide details for the three paging modes.

Every paging structure is 4096 Bytes in size and comprises a number of individual entries. With 32-bit paging, 
each entry is 32 bits (4 bytes); there are thus 1024 entries in each structure. With PAE paging and IA-32e paging, 
each entry is 64 bits (8 bytes); there are thus 512 entries in each structure. (PAE paging includes one exception, a 
paging structure that is 32 bytes in size, containing 4 64-bit entries.)

The processor uses the upper portion of a linear address to identify a series of paging-structure entries. The last of 
these entries identifies the physical address of the region to which the linear address translates (called the page 
frame). The lower portion of the linear address (called the page offset) identifies the specific address within that 
region to which the linear address translates.

Each paging-structure entry contains a physical address, which is either the address of another paging structure or 
the address of a page frame. In the first case, the entry is said to reference the other paging structure; in the 
latter, the entry is said to map a page.

The first paging structure used for any translation is located at the physical address in CR3. A linear address is 
translated using the following iterative procedure. A portion of the linear address (initially the uppermost bits) 
select an entry in a paging structure (initially the one located using CR3). If that entry references another paging 
structure, the process continues with that paging structure and with the portion of the linear address immediately 
below that just used. If instead the entry maps a page, the process completes: the physical address in the entry is 
that of the page frame and the remaining lower portion of the linear address is the page offset.
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The following items give an example for each of the three paging modes (each example locates a 4-KByte page 
frame):
• With 32-bit paging, each paging structure comprises 1024 = 210 entries. For this reason, the translation 

process uses 10 bits at a time from a 32-bit linear address. Bits 31:22 identify the first paging-structure entry 
and bits 21:12 identify a second. The latter identifies the page frame. Bits 11:0 of the linear address are the 
page offset within the 4-KByte page frame. (See Figure 4-2 for an illustration.)

• With PAE paging, the first paging structure comprises only 4 = 22 entries. Translation thus begins by using 
bits 31:30 from a 32-bit linear address to identify the first paging-structure entry. Other paging structures 
comprise 512 =29 entries, so the process continues by using 9 bits at a time. Bits 29:21 identify a second 
paging-structure entry and bits 20:12 identify a third. This last identifies the page frame. (See Figure 4-5 for 
an illustration.)

• With IA-32e paging, each paging structure comprises 512 = 29 entries and translation uses 9 bits at a time 
from a 48-bit linear address. Bits 47:39 identify the first paging-structure entry, bits 38:30 identify a second, 
bits 29:21 a third, and bits 20:12 identify a fourth. Again, the last identifies the page frame. (See Figure 4-8 
for an illustration.)

The translation process in each of the examples above completes by identifying a page frame; the page frame is 
part of the translation of the original linear address. In some cases, however, the paging structures may be 
configured so that translation process terminates before identifying a page frame. This occurs if process encoun-
ters a paging-structure entry that is marked “not present” (because its P flag — bit 0 — is clear) or in which a 
reserved bit is set. In this case, there is no translation for the linear address; an access to that address causes a 
page-fault exception (see Section 4.7).

In the examples above, a paging-structure entry maps a page with 4-KByte page frame when only 12 bits remain 
in the linear address; entries identified earlier always reference other paging structures. That may not apply in 
other cases. The following items identify when an entry maps a page and when it references another paging struc-
ture:
• If more than 12 bits remain in the linear address, bit 7 (PS — page size) of the current paging-structure entry 

is consulted. If the bit is 0, the entry references another paging structure; if the bit is 1, the entry maps a page.
• If only 12 bits remain in the linear address, the current paging-structure entry always maps a page (bit 7 is 

used for other purposes).

If a paging-structure entry maps a page when more than 12 bits remain in the linear address, the entry identifies 
a page frame larger than 4 KBytes. For example, 32-bit paging uses the upper 10 bits of a linear address to locate 
the first paging-structure entry; 22 bits remain. If that entry maps a page, the page frame is 222 Bytes = 4 MBytes. 
32-bit paging supports 4-MByte pages if CR4.PSE = 1. PAE paging and IA-32e paging support 2-MByte pages 
(regardless of the value of CR4.PSE). IA-32e paging may support 1-GByte pages (see Section 4.1.4).

Paging structures are given different names based their uses in the translation process. Table 4-2 gives the names 
of the different paging structures. It also provides, for each structure, the source of the physical address used to 
locate it (CR3 or a different paging-structure entry); the bits in the linear address used to select an entry from the 
structure; and details of about whether and how such an entry can map a page.

4.3 32-BIT PAGING

A logical processor uses 32-bit paging if CR0.PG = 1 and CR4.PAE = 0. 32-bit paging translates 32-bit linear 
addresses to 40-bit physical addresses.1 Although 40 bits corresponds to 1 TByte, linear addresses are limited to 
32 bits; at most 4 GBytes of linear-address space may be accessed at any given time.

32-bit paging uses a hierarchy of paging structures to produce a translation for a linear address. CR3 is used to 
locate the first paging-structure, the page directory. Table 4-3 illustrates how CR3 is used with 32-bit paging.

1. Bits in the range 39:32 are 0 in any physical address used by 32-bit paging except those used to map 4-MByte pages. If the proces-
sor does not support the PSE-36 mechanism, this is true also for physical addresses used to map 4-MByte pages. If the processor 
does support the PSE-36 mechanism and MAXPHYADDR < 40, bits in the range 39:MAXPHYADDR are 0 in any physical address used 
to map a 4-MByte page. (The corresponding bits are reserved in PDEs.) See Section 4.1.4 for how to determine MAXPHYADDR and 
whether the PSE-36 mechanism is supported.
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32-bit paging may map linear addresses to either 4-KByte pages or 4-MByte pages. Figure 4-2 illustrates the 
translation process when it uses a 4-KByte page; Figure 4-3 covers the case of a 4-MByte page. The following 
items describe the 32-bit paging process in more detail as well has how the page size is determined:
• A 4-KByte naturally aligned page directory is located at the physical address specified in bits 31:12 of CR3 (see 

Table 4-3). A page directory comprises 1024 32-bit entries (PDEs). A PDE is selected using the physical address 
defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from CR3.

— Bits 11:2 are bits 31:22 of the linear address.

— Bits 1:0 are 0.

Because a PDE is identified using bits 31:22 of the linear address, it controls access to a 4-Mbyte region of the 
linear-address space. Use of the PDE depends on CR.PSE and the PDE’s PS flag (bit 7):
• If CR4.PSE = 1 and the PDE’s PS flag is 1, the PDE maps a 4-MByte page (see Table 4-4). The final physical 

address is computed as follows:

— Bits 39:32 are bits 20:13 of the PDE.

— Bits 31:22 are bits 31:22 of the PDE.1

— Bits 21:0 are from the original linear address.
• If CR4.PSE = 0 or the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical 

address specified in bits 31:12 of the PDE (see Table 4-5). A page table comprises 1024 32-bit entries (PTEs). 
A PTE is selected using the physical address defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PDE.

— Bits 11:2 are bits 21:12 of the linear address.

Table 4-2.   Paging Structures in the Different Paging Modes

Paging Structure
Entry 
Name

Paging Mode
Physical 
Address of 
Structure

Bits Selecting 
Entry

Page Mapping

PML4 table PML4E
32-bit, PAE N/A

IA-32e CR3 47:39 N/A (PS must be 0)

Page-directory-
pointer table

PDPTE

32-bit N/A

PAE CR3 31:30 N/A (PS must be 0)

IA-32e PML4E 38:30 1-GByte page if PS=11

Page directory PDE
32-bit CR3 31:22 4-MByte page if PS=12

PAE, IA-32e PDPTE 29:21 2-MByte page if PS=1

Page table PTE
32-bit

PDE
21:12 4-KByte page

PAE, IA-32e 20:12 4-KByte page

NOTES:

1. Not all processors allow the PS flag to be 1 in PDPTEs; see Section 4.1.4 for how to determine whether 1-GByte pages are supported.

2. 32-bit paging ignores the PS flag in a PDE (and uses the entry to reference a page table) unless CR4.PSE = 1. Not all processors allow 
CR4.PSE to be 1; see Section 4.1.4 for how to determine whether 4-MByte pages are supported with 32-bit paging.

1. The upper bits in the final physical address do not all come from corresponding positions in the PDE; the physical-address bits in the 
PDE are not all contiguous.
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— Bits 1:0 are 0.
• Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a 4-KByte page (see 

Table 4-6). The final physical address is computed as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the entry is used neither to refer-
ence another paging-structure entry nor to map a page. There is no translation for a linear address whose transla-
tion would use such a paging-structure entry; a reference to such a linear address causes a page-fault exception 
(see Section 4.7).

With 32-bit paging, there are reserved bits only if CR4.PSE = 1:
• If the P flag and the PS flag (bit 7) of a PDE are both 1, the bits reserved depend on MAXPHYADDR whether the 

PSE-36 mechanism is supported:1

— If the PSE-36 mechanism is not supported, bits 21:13 are reserved.

— If the PSE-36 mechanism is supported, bits 21:(M–19) are reserved, where M is the minimum of 40 and 
MAXPHYADDR.

• If the PAT is not supported:2

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

(If CR4.PSE = 0, no bits are reserved with 32-bit paging.)

A reference using a linear address that is successfully translated to a physical address is performed only if allowed 
by the access rights of the translation; see Section 4.6.

1. See Section 4.1.4 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is supported.

2. See Section 4.1.4 for how to determine whether the PAT is supported.

Figure 4-2.  Linear-Address Translation to a 4-KByte Page using 32-Bit Paging
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Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries with 32-bit paging. For the 
paging structure entries, it identifies separately the format of entries that map pages, those that reference other 
paging structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are high-
lighted because they determine how such an entry is used.

Figure 4-3.  Linear-Address Translation to a 4-MByte Page using 32-Bit Paging
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Figure 4-4.  Formats of CR3 and Paging-Structure Entries with 32-Bit Paging
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Table 4-3.  Use of CR3 with 32-Bit Paging

Bit 
Position(s)

Contents

2:0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory during linear-
address translation (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory during linear-
address translation (see Section 4.9)

11:5 Ignored

31:12 Physical address of the 4-KByte aligned page directory used for linear-address translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)
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Table 4-4.  Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte page referenced by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-MByte page referenced by 
this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-MByte page referenced by 
this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-MByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-MByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-5)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-MByte page referenced by this 
entry (see Section 4.9.2); otherwise, reserved (must be 0)1

(M–20):13 Bits (M–1):32 of physical address of the 4-MByte page referenced by this entry2

21:(M–19) Reserved (must be 0)

31:22 Bits 31:22 of physical address of the 4-MByte page referenced by this entry

NOTES:

1. See Section 4.1.4 for how to determine whether the PAT is supported.

2. If the PSE-36 mechanism is not supported, M is 32, and this row does not apply. If the PSE-36 mechanism is supported, M is the min-
imum of 40 and MAXPHYADDR (this row does not apply if MAXPHYADDR = 32). See Section 4.1.4 for how to determine MAXPHYA-
DDR and whether the PSE-36 mechanism is supported.
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Table 4-5.  Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-MByte region controlled by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this 
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this 
entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) If CR4.PSE = 1, must be 0 (otherwise, this entry maps a 4-MByte page; see Table 4-4); otherwise, ignored

11:8 Ignored

31:12 Physical address of 4-KByte aligned page table referenced by this entry

Table 4-6.  Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 4.9.2); otherwise, reserved (must be 0)1

NOTES:

1. See Section 4.1.4 for how to determine whether the PAT is supported.

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

31:12 Physical address of the 4-KByte page referenced by this entry
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4.4 PAE PAGING

A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 0. PAE paging translates 
32-bit linear addresses to 52-bit physical addresses.1 Although 52 bits corresponds to 4 PBytes, linear addresses 
are limited to 32 bits; at most 4 GBytes of linear-address space may be accessed at any given time.

With PAE paging, a logical processor maintains a set of four (4) PDPTE registers, which are loaded from an address 
in CR3. Linear address are translated using 4 hierarchies of in-memory paging structures, each located using one 
of the PDPTE registers. (This is different from the other paging modes, in which there is one hierarchy referenced 
by CR3.)

Section 4.4.1 discusses the PDPTE registers. Section 4.4.2 describes linear-address translation with PAE paging.

4.4.1 PDPTE Registers

When PAE paging is used, CR3 references the base of a 32-Byte page-directory-pointer table. Table 4-7 illus-
trates how CR3 is used with PAE paging.

The page-directory-pointer-table comprises four (4) 64-bit entries called PDPTEs. Each PDPTE controls access to a 
1-GByte region of the linear-address space. Corresponding to the PDPTEs, the logical processor maintains a set of 
four (4) internal, non-architectural PDPTE registers, called PDPTE0, PDPTE1, PDPTE2, and PDPTE3. The logical 
processor loads these registers from the PDPTEs in memory as part of certain operations:
• If PAE paging would be in use following an execution of MOV to CR0 or MOV to CR4 (see Section 4.1.1) and the 

instruction is modifying any of CR0.CD, CR0.NW, CR0.PG, CR4.PAE, CR4.PGE, CR4.PSE, or CR4.SMEP; then the 
PDPTEs are loaded from the address in CR3.

• If MOV to CR3 is executed while the logical processor is using PAE paging, the PDPTEs are loaded from the 
address being loaded into CR3.

• If PAE paging is in use and a task switch changes the value of CR3, the PDPTEs are loaded from the address in 
the new CR3 value.

• Certain VMX transitions load the PDPTE registers. See Section 4.11.1.

Table 4-8 gives the format of a PDPTE. If any of the PDPTEs sets both the P flag (bit 0) and any reserved bit, the 
MOV to CR instruction causes a general-protection exception (#GP(0)) and the PDPTEs are not loaded.2 As shown 
in Table 4-8, bits 2:1, 8:5, and 63:MAXPHYADDR are reserved in the PDPTEs.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used by PAE paging. (The corresponding 
bits are reserved in the paging-structure entries.) See Section 4.1.4 for how to determine MAXPHYADDR.

Table 4-7.  Use of CR3 with PAE Paging

Bit 
Position(s)

Contents

4:0 Ignored

31:5 Physical address of the 32-Byte aligned page-directory-pointer table used for linear-address translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

2. On some processors, reserved bits are checked even in PDPTEs in which the P flag (bit 0) is 0.
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4.4.2 Linear-Address Translation with PAE Paging

PAE paging may map linear addresses to either 4-KByte pages or 2-MByte pages. Figure 4-5 illustrates the trans-
lation process when it produces a 4-KByte page; Figure 4-6 covers the case of a 2-MByte page. The following items 
describe the PAE paging process in more detail as well has how the page size is determined:
• Bits 31:30 of the linear address select a PDPTE register (see Section 4.4.1); this is PDPTEi, where i is the value 

of bits 31:30.1 Because a PDPTE register is identified using bits 31:30 of the linear address, it controls access 
to a 1-GByte region of the linear-address space. If the P flag (bit 0) of PDPTEi is 0, the processor ignores bits 
63:1, and there is no mapping for the 1-GByte region controlled by PDPTEi. A reference using a linear address 
in this region causes a page-fault exception (see Section 4.7).

• If the P flag of PDPTEi is 1, 4-KByte naturally aligned page directory is located at the physical address specified 
in bits 51:12 of PDPTEi (see Table 4-8 in Section 4.4.1) A page directory comprises 512 64-bit entries (PDEs). 
A PDE is selected using the physical address defined as follows:

— Bits 51:12 are from PDPTEi.

— Bits 11:3 are bits 29:21 of the linear address.

— Bits 2:0 are 0.

Because a PDE is identified using bits 31:21 of the linear address, it controls access to a 2-Mbyte region of the 
linear-address space. Use of the PDE depends on its PS flag (bit 7):
• If the PDE’s PS flag is 1, the PDE maps a 2-MByte page (see Table 4-9). The final physical address is computed 

as follows:

— Bits 51:21 are from the PDE.

— Bits 20:0 are from the original linear address.
• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical address specified in 

bits 51:12 of the PDE (see Table 4-10). A page directory comprises 512 64-bit entries (PTEs). A PTE is selected 
using the physical address defined as follows:

— Bits 51:12 are from the PDE.

Table 4-8.  Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE)

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

2:1 Reserved (must be 0)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory referenced by 
this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory referenced by 
this entry (see Section 4.9)

8:5 Reserved (must be 0)

11:9 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry1

63:M Reserved (must be 0)

NOTES:

1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

1. With PAE paging, the processor does not use CR3 when translating a linear address (as it does the other paging modes). It does not 
access the PDPTEs in the page-directory-pointer table during linear-address translation.
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— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are 0.
• Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a 4-KByte page (see 

Table 4-11). The final physical address is computed as follows:

— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If the P flag (bit 0) of a PDE or a PTE is 0 or if a PDE or a PTE sets any reserved bit, the entry is used neither to 
reference another paging-structure entry nor to map a page. There is no translation for a linear address whose 
translation would use such a paging-structure entry; a reference to such a linear address causes a page-fault 
exception (see Section 4.7).

The following bits are reserved with PAE paging:
• If the P flag (bit 0) of a PDE or a PTE is 1, bits 62:MAXPHYADDR are reserved.
• If the P flag and the PS flag (bit 7) of a PDE are both 1, bits 20:13 are reserved.
• If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is reserved.
• If the PAT is not supported:1

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

A reference using a linear address that is successfully translated to a physical address is performed only if allowed 
by the access rights of the translation; see Section 4.6.

1. See Section 4.1.4 for how to determine whether the PAT is supported.

Figure 4-5.  Linear-Address Translation to a 4-KByte Page using PAE Paging
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Figure 4-6.  Linear-Address Translation to a 2-MByte Page using PAE Paging

Table 4-9.  Format of a PAE Page-Directory Entry that Maps a 2-MByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte page referenced by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 2-MByte page referenced by 
this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 2-MByte page referenced by this 
entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-10)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 2-MByte page referenced by this 
entry (see Section 4.9.2); otherwise, reserved (must be 0)1

NOTES:

1. See Section 4.1.4 for how to determine whether the PAT is supported.

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte page controlled by 
this entry; see Section 4.6); otherwise, reserved (must be 0)
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Table 4-10.  Format of a PAE Page-Directory Entry that References a Page Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte region controlled by this entry (see 
Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this 
entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this 
entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 4-9)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte region controlled 
by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-11.  Format of a PAE Page-Table Entry that Maps a 4-KByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by 
this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 4.9.2); otherwise, reserved (must be 0)1

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise
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Figure 4-7 gives a summary of the formats of CR3 and the paging-structure entries with PAE paging. For the paging 
structure entries, it identifies separately the format of entries that map pages, those that reference other paging 
structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted 
because they determine how a paging-structure entry is used.

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by 
this entry; see Section 4.6); otherwise, reserved (must be 0)

NOTES:

1. See Section 4.1.4 for how to determine whether the PAT is supported.
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Figure 4-7.  Formats of CR3 and Paging-Structure Entries with PAE Paging

Table 4-11.  Format of a PAE Page-Table Entry that Maps a 4-KByte Page (Contd.)

Bit 
Position(s)

Contents
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4.5 IA-32E PAGING

A logical processor uses IA-32e paging if CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 1. With IA-32e paging, 
linear address are translated using a hierarchy of in-memory paging structures located using the contents of CR3. 
IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses.1 Although 52 bits corresponds to 4 
PBytes, linear addresses are limited to 48 bits; at most 256 TBytes of linear-address space may be accessed at any 
given time.

IA-32e paging uses a hierarchy of paging structures to produce a translation for a linear address. CR3 is used to 
locate the first paging-structure, the PML4 table. Use of CR3 with IA-32e paging depends on whether process-
context identifiers (PCIDs) have been enabled by setting CR4.PCIDE:
• Table 4-12 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 0.

• Table 4-13 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 1.

After software modifies the value of CR4.PCIDE, the logical processor immediately begins using CR3 as specified 
for the new value. For example, if software changes CR4.PCIDE from 1 to 0, the current PCID immediately changes 

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used by IA-32e paging. (The correspond-
ing bits are reserved in the paging-structure entries.) See Section 4.1.4 for how to determine MAXPHYADDR.

Table 4-12.  Use of CR3 with IA-32e Paging and CR4.PCIDE = 0

Bit 
Position(s)

Contents

2:0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the PML4 table during linear-
address translation (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the PML4 table during linear-address 
translation (see Section 4.9.2)

11:5 Ignored

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address translation1

NOTES:

1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)

Table 4-13.  Use of CR3 with IA-32e Paging and CR4.PCIDE = 1

Bit 
Position(s)

Contents

11:0 PCID (see Section 4.10.1)1

NOTES:

1. Section 4.9.2 explains how the processor determines the memory type used to access the PML4 table during linear-address transla-
tion with CR4.PCIDE = 1.

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address translation2

2. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)3

3. See Section 4.10.4.1 for use of bit 63 of the source operand of the MOV to CR3 instruction.
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from CR3[11:0] to 000H (see also Section 4.10.4.1). In addition, the logical processor subsequently determines 
the memory type used to access the PML4 table using CR3.PWT and CR3.PCD, which had been bits 4:3 of the PCID.

IA-32e paging may map linear addresses to 4-KByte pages, 2-MByte pages, or 1-GByte pages.1 Figure 4-8 illus-
trates the translation process when it produces a 4-KByte page; Figure 4-9 covers the case of a 2-MByte page, and 
Figure 4-10 the case of a 1-GByte page.

1. Not all processors support 1-GByte pages; see Section 4.1.4.

Figure 4-8.  Linear-Address Translation to a 4-KByte Page using IA-32e Paging
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Figure 4-9.  Linear-Address Translation to a 2-MByte Page using IA-32e Paging

Figure 4-10.  Linear-Address Translation to a 1-GByte Page using IA-32e Paging
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The following items describe the IA-32e paging process in more detail as well has how the page size is determined.
• A 4-KByte naturally aligned PML4 table is located at the physical address specified in bits 51:12 of CR3 (see 

Table 4-12). A PML4 table comprises 512 64-bit entries (PML4Es). A PML4E is selected using the physical 
address defined as follows:

— Bits 51:12 are from CR3.

— Bits 11:3 are bits 47:39 of the linear address.

— Bits 2:0 are all 0.
Because a PML4E is identified using bits 47:39 of the linear address, it controls access to a 512-GByte region of 
the linear-address space.

• A 4-KByte naturally aligned page-directory-pointer table is located at the physical address specified in 
bits 51:12 of the PML4E (see Table 4-14). A page-directory-pointer table comprises 512 64-bit entries 
(PDPTEs). A PDPTE is selected using the physical address defined as follows:

— Bits 51:12 are from the PML4E.

— Bits 11:3 are bits 38:30 of the linear address.

— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the linear address, it controls access to a 1-GByte region of the 
linear-address space. Use of the PDPTE depends on its PS flag (bit 7):1

• If the PDPTE’s PS flag is 1, the PDPTE maps a 1-GByte page (see Table 4-15). The final physical address is 
computed as follows:

— Bits 51:30 are from the PDPTE.

— Bits 29:0 are from the original linear address.
• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page directory is located at the physical address specified 

in bits 51:12 of the PDPTE (see Table 4-16). A page directory comprises 512 64-bit entries (PDEs). A PDE is 
selected using the physical address defined as follows:

— Bits 51:12 are from the PDPTE.

— Bits 11:3 are bits 29:21 of the linear address.

— Bits 2:0 are all 0.

Because a PDE is identified using bits 47:21 of the linear address, it controls access to a 2-MByte region of the 
linear-address space. Use of the PDE depends on its PS flag:
• If the PDE’s PS flag is 1, the PDE maps a 2-MByte page. The final physical address is computed as shown in 

Table 4-17.

— Bits 51:21 are from the PDE.

— Bits 20:0 are from the original linear address.
• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the physical address specified in 

bits 51:12 of the PDE (see Table 4-18). A page table comprises 512 64-bit entries (PTEs). A PTE is selected 
using the physical address defined as follows:

— Bits 51:12 are from the PDE.

— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are all 0.
• Because a PTE is identified using bits 47:12 of the linear address, every PTE maps a 4-KByte page (see 

Table 4-19). The final physical address is computed as follows:

— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.

1. The PS flag of a PDPTE is reserved and must be 0 (if the P flag is 1) if 1-GByte pages are not supported. See Section 4.1.4 for how 
to determine whether 1-GByte pages are supported.
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If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the entry is used neither to refer-
ence another paging-structure entry nor to map a page. There is no translation for a linear address whose transla-
tion would use such a paging-structure entry; a reference to such a linear address causes a page-fault exception 
(see Section 4.7).

The following bits are reserved with IA-32e paging:
• If the P flag of a paging-structure entry is 1, bits 51:MAXPHYADDR are reserved.
• If the P flag of a PML4E is 1, the PS flag is reserved.
• If 1-GByte pages are not supported and the P flag of a PDPTE is 1, the PS flag is reserved.1

• If the P flag and the PS flag of a PDPTE are both 1, bits 29:13 are reserved.
• If the P flag and the PS flag of a PDE are both 1, bits 20:13 are reserved.
• If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag (bit 63) is reserved.

A reference using a linear address that is successfully translated to a physical address is performed only if allowed 
by the access rights of the translation; see Section 4.6.

Figure 4-11 gives a summary of the formats of CR3 and the IA-32e paging-structure entries. For the paging struc-
ture entries, it identifies separately the format of entries that map pages, those that reference other paging struc-
tures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted because 
they determine how a paging-structure entry is used.

1. See Section 4.1.4 for how to determine whether 1-GByte pages are supported.

Table 4-14.  Format of an IA-32e PML4 Entry (PML4E) that References a Page-Directory-Pointer Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page-directory-pointer table

1 (R/W) Read/write; if 0, writes may not be allowed to the 512-GByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 512-GByte region controlled by this entry (see 
Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page-directory-pointer table 
referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page-directory-pointer table 
referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Reserved (must be 0)

11:8 Ignored

M–1:12 Physical address of 4-KByte aligned page-directory-pointer table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 512-GByte region 
controlled by this entry; see Section 4.6); otherwise, reserved (must be 0)
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Table 4-15.  Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 1-GByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte page referenced by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 1-GByte page referenced by this 
entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 1-GByte page referenced by this 
entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 1-GByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 1-GByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page directory; see Table 4-16)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 1-GByte page referenced by this entry (see Section 
4.9.2)1

NOTES:

1. The PAT is supported on all processors that support IA-32e paging.

29:13 Reserved (must be 0)

(M–1):30 Physical address of the 1-GByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 1-GByte page controlled by 
this entry; see Section 4.6); otherwise, reserved (must be 0)
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Table 4-16.  Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that References a Page Directory

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 1-GByte region controlled by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page directory referenced by 
this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page directory referenced by 
this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 1-GByte page; see Table 4-15)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 1-GByte region controlled 
by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-17.  Format of an IA-32e Page-Directory Entry that Maps a 2-MByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte page referenced by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 2-MByte page referenced by 
this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 2-MByte page referenced by 
this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-18)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise
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11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 2-MByte page referenced by this entry (see Section 
4.9.2)

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte page controlled by 
this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-18.  Format of an IA-32e Page-Directory Entry that References a Page Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 2-MByte region controlled by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the page table referenced by this 
entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the page table referenced by this 
entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 4-17)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 2-MByte region controlled 
by this entry; see Section 4.6); otherwise, reserved (must be 0)

Table 4-17.  Format of an IA-32e Page-Directory Entry that Maps a 2-MByte Page (Contd.)

Bit 
Position(s)

Contents
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Table 4-19.  Format of an IA-32e Page-Table Entry that Maps a 4-KByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section 
4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by 
this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this 
entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) Indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 4.9.2)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by 
this entry; see Section 4.6); otherwise, reserved (must be 0)
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4.6 ACCESS RIGHTS

There is a translation for a linear address if the processes described in Section 4.3, Section 4.4.2, and Section 4.5 
(depending upon the paging mode) completes and produces a physical address. Whether an access is permitted by 
a translation is determined by the access rights specified by the paging-structure entries controlling the transla-
tion;1 paging-mode modifiers in CR0, CR4, and the IA32_EFER MSR; and the mode of the access.
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Figure 4-11.  Formats of CR3 and Paging-Structure Entries with IA-32e Paging

1. With PAE paging, the PDPTEs do not determine access rights.
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Every access to a linear address is either a supervisor-mode access or a user-mode access. All accesses 
performed while the current privilege level (CPL) is less than 3 are supervisor-mode accesses. If CPL = 3, accesses 
are generally user-mode accesses. However, some operations implicitly access system data structures with linear 
addresses; the resulting accesses to those data structures are supervisor-mode accesses regardless of CPL. Exam-
ples of such implicit supervisor accesses include the following: accesses to the global descriptor table (GDT) or 
local descriptor table (LDT) to load a segment descriptor; accesses to the interrupt descriptor table (IDT) when 
delivering an interrupt or exception; and accesses to the task-state segment (TSS) as part of a task switch or 
change of CPL.

The following items detail how paging determines access rights:
• For supervisor-mode accesses:

— Data reads.
Data may be read from any linear address with a translation.

— Data writes.

• If CR0.WP = 0, data may be written to any linear address with a translation.

• If CR0.WP = 1, data may be written to any linear address with a translation for which the R/W flag 
(bit 1) is 1 in every paging-structure entry controlling the translation.

— Instruction fetches.

• For 32-bit paging or if IA32_EFER.NXE = 0, access rights depend on the value of CR4.SMEP:

— If CR4.SMEP = 0, instructions may be fetched from any linear address with a translation.

— If CR4.SMEP = 1, instructions may be fetched from any linear address with a translation for which 
the U/S flag (bit 2) is 0 in at least one of the paging-structure entries controlling the translation.

• For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, access rights depend on the value of 
CR4.SMEP:

— If CR4.SMEP = 0, instructions may be fetched from any linear address with a translation for which 
the XD flag (bit 63) is 0 in every paging-structure entry controlling the translation.

— If CR4.SMEP = 1, instructions may be fetched from any linear address with a translation for which 
(1) the U/S flag is 0 in at least one of the paging-structure entries controlling the translation; and 
(2) the XD flag is 0 in every paging-structure entry controlling the translation.

• For user-mode accesses:

— Data reads.
Data may be read from any linear address with a translation for which the U/S flag (bit 2) is 1 in every 
paging-structure entry controlling the translation.

— Data writes.
Data may be written to any linear address with a translation for which both the R/W flag and the U/S flag 
are 1 in every paging-structure entry controlling the translation.

— Instruction fetches.

• For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched from any linear address with a 
translation for which the U/S flag is 1 in every paging-structure entry controlling the translation.

• For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, instructions may be fetched from any linear 
address with a translation for which the U/S flag is 1 and the XD flag is 0 in every paging-structure entry 
controlling the translation.

A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see 
Section 4.10). These structures may include information about access rights. The processor may enforce access 
rights based on the TLBs and paging-structure caches instead of on the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change access rights, the processor might 
not use that change for a subsequent access to an affected linear address (see Section 4.10.4.3). See Section 
4.10.4.2 for how software can ensure that the processor uses the modified access rights.
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4.7 PAGE-FAULT EXCEPTIONS

Accesses using linear addresses may cause page-fault exceptions (#PF; exception 14). An access to a linear 
address may cause page-fault exception for either of two reasons: (1) there is no translation for the linear address; 
or (2) there is a translation for the linear address, but its access rights do not permit the access.

As noted in Section 4.3, Section 4.4.2, and Section 4.5, there is no translation for a linear address if the translation 
process for that address would use a paging-structure entry in which the P flag (bit 0) is 0 or one that sets a 
reserved bit. If there is a translation for a linear address, its access rights are determined as specified in Section 
4.6.

Figure 4-12 illustrates the error code that the processor provides on delivery of a page-fault exception. The 
following items explain how the bits in the error code describe the nature of the page-fault exception:

• P flag (bit 0).
This flag is 0 if there is no translation for the linear address because the P flag was 0 in one of the paging-
structure entries used to translate that address.

• W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is 0. This flag describes 
the access causing the page-fault exception, not the access rights specified by paging.

• U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a supervisor-mode access did so. 
This flag describes the access causing the page-fault exception, not the access rights specified by paging. User-
mode and supervisor-mode accesses are defined in Section 4.6.

• RSVD flag (bit 3).
This flag is 1 if there is no translation for the linear address because a reserved bit was set in one of the paging-
structure entries used to translate that address. (Because reserved bits are not checked in a paging-structure 
entry whose P flag is 0, bit 3 of the error code can be set only if bit 0 is also set.)
Bits reserved in the paging-structure entries are reserved for future functionality. Software developers should 
be aware that such bits may be used in the future and that a paging-structure entry that causes a page-fault 
exception on one processor might not do so in the future.

• I/D flag (bit 4).
This flag is 1 if (1) the access causing the page-fault exception was an instruction fetch; and (2) either 
(a) CR4.SMEP = 1; or (b) both (i) CR4.PAE = 1 (either PAE paging or IA-32e paging is in use); and 
(ii) IA32_EFER.NXE = 1. Otherwise, the flag is 0. This flag describes the access causing the page-fault 
exception, not the access rights specified by paging.

 

Figure 4-12.  Page-Fault Error Code
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Page-fault exceptions occur only due to an attempt to use a linear address. Failures to load the PDPTE registers 
with PAE paging (see Section 4.4.1) cause general-protection exceptions (#GP(0)) and not page-fault exceptions.

4.8 ACCESSED AND DIRTY FLAGS

For any paging-structure entry that is used during linear-address translation, bit 5 is the accessed flag.1 For 
paging-structure entries that map a page (as opposed to referencing another paging structure), bit 6 is the dirty 
flag. These flags are provided for use by memory-management software to manage the transfer of pages and 
paging structures into and out of physical memory.

Whenever the processor uses a paging-structure entry as part of linear-address translation, it sets the accessed 
flag in that entry (if it is not already set).

Whenever there is a write to a linear address, the processor sets the dirty flag (if it is not already set) in the paging-
structure entry that identifies the final physical address for the linear address (either a PTE or a paging-structure 
entry in which the PS flag is 1).

Memory-management software may clear these flags when a page or a paging structure is initially loaded into 
physical memory. These flags are “sticky,” meaning that, once set, the processor does not clear them; only soft-
ware can clear them.

A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see 
Section 4.10). This fact implies that, if software changes an accessed flag or a dirty flag from 1 to 0, the processor 
might not set the corresponding bit in memory on a subsequent access using an affected linear address (see 
Section 4.10.4.3). See Section 4.10.4.2 for how software can ensure that these bits are updated as desired.

NOTE

The accesses used by the processor to set these flags may or may not be exposed to the 
processor’s self-modifying code detection logic. If the processor is executing code from the same 
memory area that is being used for the paging structures, the setting of these flags may or may not 
result in an immediate change to the executing code stream.

4.9 PAGING AND MEMORY TYPING

The memory type of a memory access refers to the type of caching used for that access. Chapter 11, “Memory 
Cache Control” provides many details regarding memory typing in the Intel-64 and IA-32 architectures. This 
section describes how paging contributes to the determination of memory typing.

The way in which paging contributes to memory typing depends on whether the processor supports the Page 
Attribute Table (PAT; see Section 11.12).2 Section 4.9.1 and Section 4.9.2 explain how paging contributes to 
memory typing depending on whether the PAT is supported.

4.9.1 Paging and Memory Typing When the PAT is Not Supported (Pentium Pro and 
Pentium II Processors)

NOTE

The PAT is supported on all processors that support IA-32e paging. Thus, this section applies only 
to 32-bit paging and PAE paging.

1. With PAE paging, the PDPTEs are not used during linear-address translation but only to load the PDPTE registers for some execu-
tions of the MOV CR instruction (see Section 4.4.1). For this reason, the PDPTEs do not contain accessed flags with PAE paging. 

2. The PAT is supported on Pentium III and more recent processor families. See Section 4.1.4 for how to determine whether the PAT is 
supported.
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If the PAT is not supported, paging contributes to memory typing in conjunction with the memory-type range regis-
ters (MTRRs) as specified in Table 11-6 in Section 11.5.2.1.

For any access to a physical address, the table combines the memory type specified for that physical address by 
the MTRRs with a PCD value and a PWT value. The latter two values are determined as follows:
• For an access to a PDE with 32-bit paging, the PCD and PWT values come from CR3.
• For an access to a PDE with PAE paging, the PCD and PWT values come from the relevant PDPTE register.
• For an access to a PTE, the PCD and PWT values come from the relevant PDE.
• For an access to the physical address that is the translation of a linear address, the PCD and PWT values come 

from the relevant PTE (if the translation uses a 4-KByte page) or the relevant PDE (otherwise).
• With PAE paging, the UC memory type is used when loading the PDPTEs (see Section 4.4.1).

4.9.2 Paging and Memory Typing When the PAT is Supported (Pentium III and More Recent 
Processor Families)

If the PAT is supported, paging contributes to memory typing in conjunction with the PAT and the memory-type 
range registers (MTRRs) as specified in Table 11-7 in Section 11.5.2.2.

The PAT is a 64-bit MSR (IA32_PAT; MSR index 277H) comprising eight (8) 8-bit entries (entry i comprises 
bits 8i+7:8i of the MSR).

For any access to a physical address, the table combines the memory type specified for that physical address by 
the MTRRs with a memory type selected from the PAT. Table 11-11 in Section 11.12.3 specifies how a memory type 
is selected from the PAT. Specifically, it comes from entry i of the PAT, where i is defined as follows:
• For an access to an entry in a paging structure whose address is in CR3 (e.g., the PML4 table with IA-32e 

paging):

— For IA-32e paging with CR4.PCIDE = 1, i = 0.

— Otherwise, i = 2*PCD+PWT, where the PCD and PWT values come from CR3. 
• For an access to a PDE with PAE paging, i = 2*PCD+PWT, where the PCD and PWT values come from the 

relevant PDPTE register.
• For an access to a paging-structure entry X whose address is in another paging-structure entry Y, i = 

2*PCD+PWT, where the PCD and PWT values come from Y.
• For an access to the physical address that is the translation of a linear address, i = 4*PAT+2*PCD+PWT, where 

the PAT, PCD, and PWT values come from the relevant PTE (if the translation uses a 4-KByte page), the relevant 
PDE (if the translation uses a 2-MByte page or a 4-MByte page), or the relevant PDPTE (if the translation uses 
a 1-GByte page).

• With PAE paging, the WB memory type is used when loading the PDPTEs (see Section 4.4.1).1

4.9.3 Caching Paging-Related Information about Memory Typing

A processor may cache information from the paging-structure entries in TLBs and paging-structure caches (see 
Section 4.10). These structures may include information about memory typing. The processor may use memory-
typing information from the TLBs and paging-structure caches instead of from the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change the memory-typing bits, the 
processor might not use that change for a subsequent translation using that entry or for access to an affected linear 
address. See Section 4.10.4.2 for how software can ensure that the processor uses the modified memory typing.

1. Some older IA-32 processors used the UC memory type when loading the PDPTEs. Some processors may use the UC memory type if 
CR0.CD = 1 or if the MTRRs are disabled. These behaviors are model-specific and not architectural.
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4.10 CACHING TRANSLATION INFORMATION

The Intel-64 and IA-32 architectures may accelerate the address-translation process by caching data from the 
paging structures on the processor. Because the processor does not ensure that the data that it caches are always 
consistent with the structures in memory, it is important for software developers to understand how and when the 
processor may cache such data. They should also understand what actions software can take to remove cached 
data that may be inconsistent and when it should do so. This section provides software developers information 
about the relevant processor operation.

Section 4.10.1 introduces process-context identifiers (PCIDs), which a logical processor may use to distinguish 
information cached for different linear-address spaces. Section 4.10.2 and Section 4.10.3 describe how the 
processor may cache information in translation lookaside buffers (TLBs) and paging-structure caches, respectively. 
Section 4.10.4 explains how software can remove inconsistent cached information by invalidating portions of the 
TLBs and paging-structure caches. Section 4.10.5 describes special considerations for multiprocessor systems.

4.10.1 Process-Context Identifiers (PCIDs)

Process-context identifiers (PCIDs) are a facility by which a logical processor may cache information for multiple 
linear-address spaces. The processor may retain cached information when software switches to a different linear-
address space with a different PCID (e.g., by loading CR3; see Section 4.10.4.1 for details).

A PCID is a 12-bit identifier. Non-zero PCIDs are enabled by setting the PCIDE flag (bit 17) of CR4. If CR4.PCIDE = 
0, the current PCID is always 000H; otherwise, the current PCID is the value of bits 11:0 of CR3. Not all processors 
allow CR4.PCIDE to be set to 1; see Section 4.1.4 for how to determine whether this is allowed.

The processor ensures that CR4.PCIDE can be 1 only in IA-32e mode (thus, 32-bit paging and PAE paging use only 
PCID 000H). In addition, software can change CR4.PCIDE from 0 to 1 only if CR3[11:0] = 000H. These require-
ments are enforced by the following limitations on the MOV CR instruction:
• MOV to CR4 causes a general-protection exception (#GP) if it would change CR4.PCIDE from 0 to 1 and either 

IA32_EFER.LMA = 0 or CR3[11:0] ≠ 000H.
• MOV to CR0 causes a general-protection exception if it would clear CR0.PG to 0 while CR4.PCIDE = 1.

When a logical processor creates entries in the TLBs (Section 4.10.2) and paging-structure caches (Section 
4.10.3), it associates those entries with the current PCID. When using entries in the TLBs and paging-structure 
caches to translate a linear address, a logical processor uses only those entries associated with the current PCID 
(see Section 4.10.2.4 for an exception).

If CR4.PCIDE = 0, a logical processor does not cache information for any PCID other than 000H. This is because 
(1) if CR4.PCIDE = 0, the logical processor will associate any newly cached information with the current PCID, 
000H; and (2) if MOV to CR4 clears CR4.PCIDE, all cached information is invalidated (see Section 4.10.4.1).

NOTE

In revisions of this manual that were produced when no processors allowed CR4.PCIDE to be set to 
1, Section 4.10 discussed the caching of translation information without any reference to PCIDs. 
While the section now refers to PCIDs in its specification of this caching, this documentation change 
is not intended to imply any change to the behavior of processors that do not allow CR4.PCIDE to 
be set to 1.

4.10.2 Translation Lookaside Buffers (TLBs)

A processor may cache information about the translation of linear addresses in translation lookaside buffers 
(TLBs). In general, TLBs contain entries that map page numbers to page frames; these terms are defined in 
Section 4.10.2.1. Section 4.10.2.2 describes how information may be cached in TLBs, and Section 4.10.2.3 gives 
details of TLB usage. Section 4.10.2.4 explains the global-page feature, which allows software to indicate that 
certain translations should receive special treatment when cached in the TLBs.



4-34 Vol. 3A

PAGING

4.10.2.1  Page Numbers, Page Frames, and Page Offsets

Section 4.3, Section 4.4.2, and Section 4.5 give details of how the different paging modes translate linear 
addresses to physical addresses. Specifically, the upper bits of a linear address (called the page number) deter-
mine the upper bits of the physical address (called the page frame); the lower bits of the linear address (called the 
page offset) determine the lower bits of the physical address. The boundary between the page number and the 
page offset is determined by the page size. Specifically:
• 32-bit paging:

— If the translation does not use a PTE (because CR4.PSE = 1 and the PS flag is 1 in the PDE used), the page 
size is 4 MBytes and the page number comprises bits 31:22 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page number comprises bits 31:12 of 
the linear address.

• PAE paging:

— If the translation does not use a PTE (because the PS flag is 1 in the PDE used), the page size is 2 MBytes 
and the page number comprises bits 31:21 of the linear address.

— If the translation does uses a PTE, the page size is 4 KBytes and the page number comprises bits 31:12 of 
the linear address.

• IA-32e paging:

— If the translation does not use a PDE (because the PS flag is 1 in the PDPTE used), the page size is 1 GBytes 
and the page number comprises bits 47:30 of the linear address.

— If the translation does use a PDE but does not uses a PTE (because the PS flag is 1 in the PDE used), the 
page size is 2 MBytes and the page number comprises bits 47:21 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page number comprises bits 47:12 of 
the linear address.

4.10.2.2  Caching Translations in TLBs

The processor may accelerate the paging process by caching individual translations in translation lookaside 
buffers (TLBs). Each entry in a TLB is an individual translation. Each translation is referenced by a page number. 
It contains the following information from the paging-structure entries used to translate linear addresses with the 
page number:
• The physical address corresponding to the page number (the page frame).
• The access rights from the paging-structure entries used to translate linear addresses with the page number 

(see Section 4.6):

— The logical-AND of the R/W flags.

— The logical-AND of the U/S flags.

— The logical-OR of the XD flags (necessary only if IA32_EFER.NXE = 1).
• Attributes from a paging-structure entry that identifies the final page frame for the page number (either a PTE 

or a paging-structure entry in which the PS flag is 1):

— The dirty flag (see Section 4.8).

— The memory type (see Section 4.9).

(TLB entries may contain other information as well. A processor may implement multiple TLBs, and some of these 
may be for special purposes, e.g., only for instruction fetches. Such special-purpose TLBs may not contain some of 
this information if it is not necessary. For example, a TLB used only for instruction fetches need not contain infor-
mation about the R/W and dirty flags.)

As noted in Section 4.10.1, any TLB entries created by a logical processor are associated with the current PCID.

Processors need not implement any TLBs. Processors that do implement TLBs may invalidate any TLB entry at any 
time. Software should not rely on the existence of TLBs or on the retention of TLB entries.
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4.10.2.3  Details of TLB Use

Because the TLBs cache entries only for linear addresses with translations, there can be a TLB entry for a page 
number only if the P flag is 1 and the reserved bits are 0 in each of the paging-structure entries used to translate 
that page number. In addition, the processor does not cache a translation for a page number unless the accessed 
flag is 1 in each of the paging-structure entries used during translation; before caching a translation, the processor 
sets any of these accessed flags that is not already 1.

The processor may cache translations required for prefetches and for accesses that are a result of speculative 
execution that would never actually occur in the executed code path.

If the page number of a linear address corresponds to a TLB entry associated with the current PCID, the processor 
may use that TLB entry to determine the page frame, access rights, and other attributes for accesses to that linear 
address. In this case, the processor may not actually consult the paging structures in memory. The processor may 
retain a TLB entry unmodified even if software subsequently modifies the relevant paging-structure entries in 
memory. See Section 4.10.4.2 for how software can ensure that the processor uses the modified paging-structure 
entries.

If the paging structures specify a translation using a page larger than 4 KBytes, some processors may choose to 
cache multiple smaller-page TLB entries for that translation. Each such TLB entry would be associated with a page 
number corresponding to the smaller page size (e.g., bits 47:12 of a linear address with IA-32e paging), even 
though part of that page number (e.g., bits 20:12) are part of the offset with respect to the page specified by the 
paging structures. The upper bits of the physical address in such a TLB entry are derived from the physical address 
in the PDE used to create the translation, while the lower bits come from the linear address of the access for which 
the translation is created. There is no way for software to be aware that multiple translations for smaller pages 
have been used for a large page.

If software modifies the paging structures so that the page size used for a 4-KByte range of linear addresses 
changes, the TLBs may subsequently contain multiple translations for the address range (one for each page size). 
A reference to a linear address in the address range may use any of these translations. Which translation is used 
may vary from one execution to another, and the choice may be implementation-specific.

4.10.2.4  Global Pages

The Intel-64 and IA-32 architectures also allow for global pages when the PGE flag (bit 7) is 1 in CR4. If the G flag 
(bit 8) is 1 in a paging-structure entry that maps a page (either a PTE or a paging-structure entry in which the PS 
flag is 1), any TLB entry cached for a linear address using that paging-structure entry is considered to be global. 
Because the G flag is used only in paging-structure entries that map a page, and because information from such 
entries are not cached in the paging-structure caches, the global-page feature does not affect the behavior of the 
paging-structure caches.

A logical processor may use a global TLB entry to translate a linear address, even if the TLB entry is associated with 
a PCID different from the current PCID.

4.10.3 Paging-Structure Caches

In addition to the TLBs, a processor may cache other information about the paging structures in memory.

4.10.3.1  Caches for Paging Structures

A processor may support any or of all the following paging-structure caches:
• PML4 cache (IA-32e paging only). Each PML4-cache entry is referenced by a 9-bit value and is used for linear 

addresses for which bits 47:39 have that value. The entry contains information from the PML4E used to 
translate such linear addresses:

— The physical address from the PML4E (the address of the page-directory-pointer table).

— The value of the R/W flag of the PML4E.

— The value of the U/S flag of the PML4E.

— The value of the XD flag of the PML4E.
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— The values of the PCD and PWT flags of the PML4E.
The following items detail how a processor may use the PML4 cache:

— If the processor has a PML4-cache entry for a linear address, it may use that entry when translating the 
linear address (instead of the PML4E in memory).

— The processor does not create a PML4-cache entry unless the P flag is 1 and all reserved bits are 0 in the 
PML4E in memory.

— The processor does not create a PML4-cache entry unless the accessed flag is 1 in the PML4E in memory; 
before caching a translation, the processor sets the accessed flag if it is not already 1.

— The processor may create a PML4-cache entry even if there are no translations for any linear address that 
might use that entry (e.g., because the P flags are 0 in all entries in the referenced page-directory-pointer 
table).

— If the processor creates a PML4-cache entry, the processor may retain it unmodified even if software subse-
quently modifies the corresponding PML4E in memory.

• PDPTE cache (IA-32e paging only).1 Each PDPTE-cache entry is referenced by an 18-bit value and is used for 
linear addresses for which bits 47:30 have that value. The entry contains information from the PML4E and 
PDPTE used to translate such linear addresses:

— The physical address from the PDPTE (the address of the page directory). (No PDPTE-cache entry is created 
for a PDPTE that maps a 1-GByte page.)

— The logical-AND of the R/W flags in the PML4E and the PDPTE.

— The logical-AND of the U/S flags in the PML4E and the PDPTE.

— The logical-OR of the XD flags in the PML4E and the PDPTE.

— The values of the PCD and PWT flags of the PDPTE.
The following items detail how a processor may use the PDPTE cache:

— If the processor has a PDPTE-cache entry for a linear address, it may use that entry when translating the 
linear address (instead of the PML4E and the PDPTE in memory).

— The processor does not create a PDPTE-cache entry unless the P flag is 1, the PS flag is 0, and the reserved 
bits are 0 in the PML4E and the PDPTE in memory.

— The processor does not create a PDPTE-cache entry unless the accessed flags are 1 in the PML4E and the 
PDPTE in memory; before caching a translation, the processor sets any accessed flags that are not already 
1.

— The processor may create a PDPTE-cache entry even if there are no translations for any linear address that 
might use that entry.

— If the processor creates a PDPTE-cache entry, the processor may retain it unmodified even if software 
subsequently modifies the corresponding PML4E or PDPTE in memory.

• PDE cache. The use of the PDE cache depends on the paging mode:

— For 32-bit paging, each PDE-cache entry is referenced by a 10-bit value and is used for linear addresses for 
which bits 31:22 have that value.

— For PAE paging, each PDE-cache entry is referenced by an 11-bit value and is used for linear addresses for 
which bits 31:21 have that value.

— For IA-32e paging, each PDE-cache entry is referenced by a 27-bit value and is used for linear addresses for 
which bits 47:21 have that value.

A PDE-cache entry contains information from the PML4E, PDPTE, and PDE used to translate the relevant linear 
addresses (for 32-bit paging and PAE paging, only the PDE applies):

— The physical address from the PDE (the address of the page table). (No PDE-cache entry is created for a 
PDE that maps a page.)

1. With PAE paging, the PDPTEs are stored in internal, non-architectural registers. The operation of these registers is described in Sec-
tion 4.4.1 and differs from that described here.
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— The logical-AND of the R/W flags in the PML4E, PDPTE, and PDE.

— The logical-AND of the U/S flags in the PML4E, PDPTE, and PDE.

— The logical-OR of the XD flags in the PML4E, PDPTE, and PDE.

— The values of the PCD and PWT flags of the PDE.
The following items detail how a processor may use the PDE cache (references below to PML4Es and PDPTEs 
apply on to IA-32e paging):

— If the processor has a PDE-cache entry for a linear address, it may use that entry when translating the 
linear address (instead of the PML4E, the PDPTE, and the PDE in memory).

— The processor does not create a PDE-cache entry unless the P flag is 1, the PS flag is 0, and the reserved 
bits are 0 in the PML4E, the PDPTE, and the PDE in memory.

— The processor does not create a PDE-cache entry unless the accessed flag is 1 in the PML4E, the PDPTE, 
and the PDE in memory; before caching a translation, the processor sets any accessed flags that are not 
already 1.

— The processor may create a PDE-cache entry even if there are no translations for any linear address that 
might use that entry.

— If the processor creates a PDE-cache entry, the processor may retain it unmodified even if software subse-
quently modifies the corresponding PML4E, the PDPTE, or the PDE in memory.

Information from a paging-structure entry can be included in entries in the paging-structure caches for other 
paging-structure entries referenced by the original entry. For example, if the R/W flag is 0 in a PML4E, then the R/W 
flag will be 0 in any PDPTE-cache entry for a PDPTE from the page-directory-pointer table referenced by that 
PML4E. This is because the R/W flag of each such PDPTE-cache entry is the logical-AND of the R/W flags in the 
appropriate PML4E and PDPTE.

The paging-structure caches contain information only from paging-structure entries that reference other paging 
structures (and not those that map pages). Because the G flag is not used in such paging-structure entries, the 
global-page feature does not affect the behavior of the paging-structure caches.

The processor may create entries in paging-structure caches for translations required for prefetches and for 
accesses that are a result of speculative execution that would never actually occur in the executed code path.

As noted in Section 4.10.1, any entries created in paging-structure caches by a logical processor are associated 
with the current PCID.

A processor may or may not implement any of the paging-structure caches. Software should rely on neither their 
presence nor their absence. The processor may invalidate entries in these caches at any time. Because the 
processor may create the cache entries at the time of translation and not update them following subsequent modi-
fications to the paging structures in memory, software should take care to invalidate the cache entries appropri-
ately when causing such modifications. The invalidation of TLBs and the paging-structure caches is described in 
Section 4.10.4.

4.10.3.2  Using the Paging-Structure Caches to Translate Linear Addresses

When a linear address is accessed, the processor uses a procedure such as the following to determine the physical 
address to which it translates and whether the access should be allowed:
• If the processor finds a TLB entry that is for the page number of the linear address and that is associated with 

the current PCID (or which is global), it may use the physical address, access rights, and other attributes from 
that entry.

• If the processor does not find a relevant TLB entry, it may use the upper bits of the linear address to select an 
entry from the PDE cache that is associated with the current PCID (Section 4.10.3.1 indicates which bits are 
used in each paging mode). It can then use that entry to complete the translation process (locating a PTE, etc.) 
as if it had traversed the PDE (and, for IA-32e paging, the PDPTE and PML4) corresponding to the PDE-cache 
entry.

• The following items apply when IA-32e paging is used:

— If the processor does not find a relevant TLB entry or a relevant PDE-cache entry, it may use bits 47:30 of 
the linear address to select an entry from the PDPTE cache that is associated with the current PCID. It can 
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then use that entry to complete the translation process (locating a PDE, etc.) as if it had traversed the 
PDPTE and the PML4 corresponding to the PDPTE-cache entry.

— If the processor does not find a relevant TLB entry, a relevant PDE-cache entry, or a relevant PDPTE-cache 
entry, it may use bits 47:39 of the linear address to select an entry from the PML4 cache that is associated 
with the current PCID. It can then use that entry to complete the translation process (locating a PDPTE, 
etc.) as if it had traversed the corresponding PML4.

(Any of the above steps would be skipped if the processor does not support the cache in question.)

If the processor does not find a TLB or paging-structure-cache entry for the linear address, it uses the linear 
address to traverse the entire paging-structure hierarchy, as described in Section 4.3, Section 4.4.2, and Section 
4.5.

4.10.3.3  Multiple Cached Entries for a Single Paging-Structure Entry

The paging-structure caches and TLBs and paging-structure caches may contain multiple entries associated with a 
single PCID and with information derived from a single paging-structure entry. The following items give some 
examples for IA-32e paging:
• Suppose that two PML4Es contain the same physical address and thus reference the same page-directory-

pointer table. Any PDPTE in that table may result in two PDPTE-cache entries, each associated with a different 
set of linear addresses. Specifically, suppose that the n1

th and n2
th entries in the PML4 table contain the same 

physical address. This implies that the physical address in the mth PDPTE in the page-directory-pointer table 
would appear in the PDPTE-cache entries associated with both p1 and p2, where (p1 » 9) = n1, (p2 » 9) = n2, 
and (p1 & 1FFH) = (p2 & 1FFH) = m. This is because both PDPTE-cache entries use the same PDPTE, one 
resulting from a reference from the n1

th PML4E and one from the n2
th PML4E.

• Suppose that the first PML4E (i.e., the one in position 0) contains the physical address X in CR3 (the physical 
address of the PML4 table). This implies the following:

— Any PML4-cache entry associated with linear addresses with 0 in bits 47:39 contains address X.

— Any PDPTE-cache entry associated with linear addresses with 0 in bits 47:30 contains address X. This is 
because the translation for a linear address for which the value of bits 47:30 is 0 uses the value of 
bits 47:39 (0) to locate a page-directory-pointer table at address X (the address of the PML4 table). It then 
uses the value of bits 38:30 (also 0) to find address X again and to store that address in the PDPTE-cache 
entry.

— Any PDE-cache entry associated with linear addresses with 0 in bits 47:21 contains address X for similar 
reasons.

— Any TLB entry for page number 0 (associated with linear addresses with 0 in bits 47:12) translates to page 
frame X » 12 for similar reasons.

The same PML4E contributes its address X to all these cache entries because the self-referencing nature of the 
entry causes it to be used as a PML4E, a PDPTE, a PDE, and a PTE.

4.10.4 Invalidation of TLBs and Paging-Structure Caches

As noted in Section 4.10.2 and Section 4.10.3, the processor may create entries in the TLBs and the paging-struc-
ture caches when linear addresses are translated, and it may retain these entries even after the paging structures 
used to create them have been modified. To ensure that linear-address translation uses the modified paging struc-
tures, software should take action to invalidate any cached entries that may contain information that has since 
been modified.

4.10.4.1  Operations that Invalidate TLBs and Paging-Structure Caches

The following instructions invalidate entries in the TLBs and the paging-structure caches:
• INVLPG. This instruction takes a single operand, which is a linear address. The instruction invalidates any TLB 

entries that are for a page number corresponding to the linear address and that are associated with the current 
PCID. It also invalidates any global TLB entries with that page number, regardless of PCID (see Section 
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4.10.2.4).1 INVLPG also invalidates all entries in all paging-structure caches associated with the current PCID, 
regardless of the linear addresses to which they correspond.

• INVPCID. The operation of this instruction is based on instruction operands, called the INVPCID type and the 
INVPCID descriptor. Four INVPCID types are currently defined:

— Individual-address. If the INVPCID type is 0, the logical processor invalidates mappings—except global 
translations—associated with the PCID specified in the INVPCID descriptor and that would be used to 
translate the linear address specified in the INVPCID descriptor. (The instruction may also invalidate global 
translations, as well as mappings associated with other PCIDs and for other linear addresses.)

— Single-context. If the INVPCID type is 1, the logical processor invalidates all mappings—except global 
translations—associated with the PCID specified in the INVPCID descriptor. (The instruction may also 
invalidate global translations, as well as mappings associated with other PCIDs.)

— All-context, including globals. If the INVPCID type is 2, the logical processor invalidates 
mappings—including global translations—associated with all PCIDs.

— All-context. If the INVPCID type is 3, the logical processor invalidates mappings—except global transla-
tions—associated with all PCIDs. (The instruction may also invalidate global translations.)

See Chapter 3 of the Intel 64 and IA-32 Architecture Software Developer’s Manual, Volume 2A for details of the 
INVPCID instruction.

• MOV to CR0. The instruction invalidates all TLB entries (including global entries) and all entries in all paging-
structure caches (for all PCIDs) if it changes the value of CR0.PG from 1 to 0.

• MOV to CR3. The behavior of the instruction depends on the value of CR4.PCIDE:

— If CR4.PCIDE = 0, the instruction invalidates all TLB entries associated with PCID 000H except those for 
global pages. It also invalidates all entries in all paging-structure caches associated with PCID 000H.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 0, the instruction invalidates all TLB 
entries associated with the PCID specified in bits 11:0 of the instruction’s source operand except those for 
global pages. It also invalidates all entries in all paging-structure caches associated with that PCID. It is not 
required to invalidate entries in the TLBs and paging-structure caches that are associated with other PCIDs.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 1, the instruction is not required to 
invalidate any TLB entries or entries in paging-structure caches.

• MOV to CR4. The behavior of the instruction depends on the bits being modified:

— The instruction invalidates all TLB entries (including global entries) and all entries in all paging-structure 
caches (for all PCIDs) if (1) it changes the value of CR4.PGE;2 or (2) it changes the value of the CR4.PCIDE 
from 1 to 0.

— The instruction invalidates all TLB entries and all entries in all paging-structure caches for the current PCID 
if (1) it changes the value of CR4.PAE; or (2) it changes the value of CR4.SMEP from 0 to 1.

• Task switch. If a task switch changes the value of CR3, it invalidates all TLB entries associated with PCID 000H 
except those for global pages. It also invalidates all entries in all paging-structure caches for associated with 
PCID 000H.3

• VMX transitions. See Section 4.11.1.

The processor is always free to invalidate additional entries in the TLBs and paging-structure caches. The following 
are some examples:
• INVLPG may invalidate TLB entries for pages other than the one corresponding to its linear-address operand. It 

may invalidate TLB entries and paging-structure-cache entries associated with PCIDs other than the current 
PCID.

1. If the paging structures map the linear address using a page larger than 4 KBytes and there are multiple TLB entries for that page 
(see Section 4.10.2.3), the instruction invalidates all of them.

2. If CR4.PGE is changing from 0 to 1, there were no global TLB entries before the execution; if CR4.PGE is changing from 1 to 0, there 
will be no global TLB entries after the execution.

3. Task switches do not occur in IA-32e mode and thus cannot occur with IA-32e paging. Since CR4.PCIDE can be set only with IA-32e 
paging, task switches occur only with CR4.PCIDE = 0.
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• INVPCID may invalidate TLB entries for pages other than the one corresponding to the specified linear address. 
It may invalidate TLB entries and paging-structure-cache entries associated with PCIDs other than the specified 
PCID.

• MOV to CR0 may invalidate TLB entries even if CR0.PG is not changing. For example, this may occur if either 
CR0.CD or CR0.NW is modified.

• MOV to CR3 may invalidate TLB entries for global pages. If CR4.PCIDE = 1 and bit 63 of the instruction’s source 
operand is 0, it may invalidate TLB entries and entries in the paging-structure caches associated with PCIDs 
other than the current PCID. It may invalidate entries if CR4.PCIDE = 1 and bit 63 of the instruction’s source 
operand is 1. 

• MOV to CR4 may invalidate TLB entries when changing CR4.PSE or when changing CR4.SMEP from 1 to 0.
• On a processor supporting Hyper-Threading Technology, invalidations performed on one logical processor may 

invalidate entries in the TLBs and paging-structure caches used by other logical processors.

(Other instructions and operations may invalidate entries in the TLBs and the paging-structure caches, but the 
instructions identified above are recommended.)

In addition to the instructions identified above, page faults invalidate entries in the TLBs and paging-structure 
caches. In particular, a page-fault exception resulting from an attempt to use a linear address will invalidate any 
TLB entries that are for a page number corresponding to that linear address and that are associated with the 
current PCID. it also invalidates all entries in the paging-structure caches that would be used for that linear address 
and that are associated with the current PCID.1 These invalidations ensure that the page-fault exception will not 
recur (if the faulting instruction is re-executed) if it would not be caused by the contents of the paging structures 
in memory (and if, therefore, it resulted from cached entries that were not invalidated after the paging structures 
were modified in memory).

As noted in Section 4.10.2, some processors may choose to cache multiple smaller-page TLB entries for a transla-
tion specified by the paging structures to use a page larger than 4 KBytes. There is no way for software to be aware 
that multiple translations for smaller pages have been used for a large page. The INVLPG instruction and page 
faults provide the same assurances that they provide when a single TLB entry is used: they invalidate all TLB 
entries corresponding to the translation specified by the paging structures.

4.10.4.2  Recommended Invalidation

The following items provide some recommendations regarding when software should perform invalidations:
• If software modifies a paging-structure entry that identifies the final page frame for a page number (either a 

PTE or a paging-structure entry in which the PS flag is 1), it should execute INVLPG for any linear address with 
a page number whose translation uses that PTE.2

(If the paging-structure entry may be used in the translation of different page numbers — see Section 4.10.3.3 
— software should execute INVLPG for linear addresses with each of those page numbers; alternatively, it could 
use MOV to CR3 or MOV to CR4.)

• If software modifies a paging-structure entry that references another paging structure, it may use one of the 
following approaches depending upon the types and number of translations controlled by the modified entry:

— Execute INVLPG for linear addresses with each of the page numbers with translations that would use the 
entry. However, if no page numbers that would use the entry have translations (e.g., because the P flags are 
0 in all entries in the paging structure referenced by the modified entry), it remains necessary to execute 
INVLPG at least once.

— Execute MOV to CR3 if the modified entry controls no global pages.

— Execute MOV to CR4 to modify CR4.PGE.
• If CR4.PCIDE = 1 and software modifies a paging-structure entry that does not map a page or in which the G 

flag (bit 8) is 0, additional steps are required if the entry may be used for PCIDs other than the current one. Any 
one of the following suffices:

1. Unlike INVLPG, page faults need not invalidate all entries in the paging-structure caches, only those that would be used to translate 
the faulting linear address.

2. One execution of INVLPG is sufficient even for a page with size greater than 4 KBytes.
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— Execute MOV to CR4 to modify CR4.PGE, either immediately or before again using any of the affected 
PCIDs. For example, software could use different (previously unused) PCIDs for the processes that used the 
affected PCIDs.

— For each affected PCID, execute MOV to CR3 to make that PCID current (and to load the address of the 
appropriate PML4 table). If the modified entry controls no global pages and bit 63 of the source operand to 
MOV to CR3 was 0, no further steps are required. Otherwise, execute INVLPG for linear addresses with each 
of the page numbers with translations that would use the entry; if no page numbers that would use the 
entry have translations, execute INVLPG at least once.

• If software using PAE paging modifies a PDPTE, it should reload CR3 with the register’s current value to ensure 
that the modified PDPTE is loaded into the corresponding PDPTE register (see Section 4.4.1).

• If the nature of the paging structures is such that a single entry may be used for multiple purposes (see Section 
4.10.3.3), software should perform invalidations for all of these purposes. For example, if a single entry might 
serve as both a PDE and PTE, it may be necessary to execute INVLPG with two (or more) linear addresses, one 
that uses the entry as a PDE and one that uses it as a PTE. (Alternatively, software could use MOV to CR3 or 
MOV to CR4.)

• As noted in Section 4.10.2, the TLBs may subsequently contain multiple translations for the address range if 
software modifies the paging structures so that the page size used for a 4-KByte range of linear addresses 
changes. A reference to a linear address in the address range may use any of these translations.
Software wishing to prevent this uncertainty should not write to a paging-structure entry in a way that would 
change, for any linear address, both the page size and either the page frame, access rights, or other attributes. 
It can instead use the following algorithm: first clear the P flag in the relevant paging-structure entry (e.g., 
PDE); then invalidate any translations for the affected linear addresses (see above); and then modify the 
relevant paging-structure entry to set the P flag and establish modified translation(s) for the new page size.

• Software should clear bit 63 of the source operand to a MOV to CR3 instruction that establishes a PCID that had 
been used earlier for a different linear-address space (e.g., with a different value in bits 51:12 of CR3). This 
ensures invalidation of any information that may have been cached for the previous linear-address space.
This assumes that both linear-address spaces use the same global pages and that it is thus not necessary to 
invalidate any global TLB entries. If that is not the case, software should invalidate those entries by executing 
MOV to CR4 to modify CR4.PGE.

4.10.4.3  Optional Invalidation

The following items describe cases in which software may choose not to invalidate and the potential consequences 
of that choice:
• If a paging-structure entry is modified to change the P flag from 0 to 1, no invalidation is necessary. This is 

because no TLB entry or paging-structure cache entry is created with information from a paging-structure 
entry in which the P flag is 0.1

• If a paging-structure entry is modified to change the accessed flag from 0 to 1, no invalidation is necessary 
(assuming that an invalidation was performed the last time the accessed flag was changed from 1 to 0). This is 
because no TLB entry or paging-structure cache entry is created with information from a paging-structure 
entry in which the accessed flag is 0.

• If a paging-structure entry is modified to change the R/W flag from 0 to 1, failure to perform an invalidation 
may result in a “spurious” page-fault exception (e.g., in response to an attempted write access) but no other 
adverse behavior. Such an exception will occur at most once for each affected linear address (see Section 
4.10.4.1).

• If CR4.SMEP = 0 and a paging-structure entry is modified to change the U/S flag from 0 to 1, failure to perform 
an invalidation may result in a “spurious” page-fault exception (e.g., in response to an attempted user-mode 
access) but no other adverse behavior. Such an exception will occur at most once for each affected linear 
address (see Section 4.10.4.1).

• If a paging-structure entry is modified to change the XD flag from 1 to 0, failure to perform an invalidation may 
result in a “spurious” page-fault exception (e.g., in response to an attempted instruction fetch) but no other 

1. If it is also the case that no invalidation was performed the last time the P flag was changed from 1 to 0, the processor may use a 
TLB entry or paging-structure cache entry that was created when the P flag had earlier been 1.
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adverse behavior. Such an exception will occur at most once for each affected linear address (see Section 
4.10.4.1).

• If a paging-structure entry is modified to change the accessed flag from 1 to 0, failure to perform an invali-
dation may result in the processor not setting that bit in response to a subsequent access to a linear address 
whose translation uses the entry. Software cannot interpret the bit being clear as an indication that such an 
access has not occurred.

• If software modifies a paging-structure entry that identifies the final physical address for a linear address 
(either a PTE or a paging-structure entry in which the PS flag is 1) to change the dirty flag from 1 to 0, failure 
to perform an invalidation may result in the processor not setting that bit in response to a subsequent write to 
a linear address whose translation uses the entry. Software cannot interpret the bit being clear as an indication 
that such a write has not occurred.

• The read of a paging-structure entry in translating an address being used to fetch an instruction may appear to 
execute before an earlier write to that paging-structure entry if there is no serializing instruction between the 
write and the instruction fetch. Note that the invalidating instructions identified in Section 4.10.4.1 are all 
serializing instructions.

• Section 4.10.3.3 describes situations in which a single paging-structure entry may contain information cached 
in multiple entries in the paging-structure caches. Because all entries in these caches are invalidated by any 
execution of INVLPG, it is not necessary to follow the modification of such a paging-structure entry by 
executing INVLPG multiple times solely for the purpose of invalidating these multiple cached entries. (It may be 
necessary to do so to invalidate multiple TLB entries.)

4.10.4.4  Delayed Invalidation

Required invalidations may be delayed under some circumstances. Software developers should understand that, 
between the modification of a paging-structure entry and execution of the invalidation instruction recommended in 
Section 4.10.4.2, the processor may use translations based on either the old value or the new value of the paging-
structure entry. The following items describe some of the potential consequences of delayed invalidation:
• If a paging-structure entry is modified to change from 1 to 0 the P flag from 1 to 0, an access to a linear address 

whose translation is controlled by this entry may or may not cause a page-fault exception.
• If a paging-structure entry is modified to change the R/W flag from 0 to 1, write accesses to linear addresses 

whose translation is controlled by this entry may or may not cause a page-fault exception.
• If a paging-structure entry is modified to change the U/S flag from 0 to 1, user-mode accesses to linear 

addresses whose translation is controlled by this entry may or may not cause a page-fault exception.
• If a paging-structure entry is modified to change the XD flag from 1 to 0, instruction fetches from linear 

addresses whose translation is controlled by this entry may or may not cause a page-fault exception.

As noted in Section 8.1.1, an x87 instruction or an SSE instruction that accesses data larger than a quadword may 
be implemented using multiple memory accesses. If such an instruction stores to memory and invalidation has 
been delayed, some of the accesses may complete (writing to memory) while another causes a page-fault excep-
tion.1 In this case, the effects of the completed accesses may be visible to software even though the overall instruc-
tion caused a fault.

In some cases, the consequences of delayed invalidation may not affect software adversely. For example, when 
freeing a portion of the linear-address space (by marking paging-structure entries “not present”), invalidation 
using INVLPG may be delayed if software does not re-allocate that portion of the linear-address space or the 
memory that had been associated with it. However, because of speculative execution (or errant software), there 
may be accesses to the freed portion of the linear-address space before the invalidations occur. In this case, the 
following can happen:
• Reads can occur to the freed portion of the linear-address space. Therefore, invalidation should not be delayed 

for an address range that has read side effects.
• The processor may retain entries in the TLBs and paging-structure caches for an extended period of time. 

Software should not assume that the processor will not use entries associated with a linear address simply 
because time has passed.

1. If the accesses are to different pages, this may occur even if invalidation has not been delayed.



Vol. 3A 4-43

PAGING

• As noted in Section 4.10.3.1, the processor may create an entry in a paging-structure cache even if there are 
no translations for any linear address that might use that entry. Thus, if software has marked “not present” all 
entries in page table, the processor may subsequently create a PDE-cache entry for the PDE that references 
that page table (assuming that the PDE itself is marked “present”).

• If software attempts to write to the freed portion of the linear-address space, the processor might not generate 
a page fault. (Such an attempt would likely be the result of a software error.) For that reason, the page frames 
previously associated with the freed portion of the linear-address space should not be reallocated for another 
purpose until the appropriate invalidations have been performed.

4.10.5 Propagation of Paging-Structure Changes to Multiple Processors

As noted in Section 4.10.4, software that modifies a paging-structure entry may need to invalidate entries in the 
TLBs and paging-structure caches that were derived from the modified entry before it was modified. In a system 
containing more than one logical processor, software must account for the fact that there may be entries in the 
TLBs and paging-structure caches of logical processors other than the one used to modify the paging-structure 
entry. The process of propagating the changes to a paging-structure entry is commonly referred to as “TLB shoot-
down.”

TLB shootdown can be done using memory-based semaphores and/or interprocessor interrupts (IPI). The 
following items describe a simple but inefficient example of a TLB shootdown algorithm for processors supporting 
the Intel-64 and IA-32 architectures:

1. Begin barrier: Stop all but one logical processor; that is, cause all but one to execute the HLT instruction or to 
enter a spin loop.

2. Allow the active logical processor to change the necessary paging-structure entries.

3. Allow all logical processors to perform invalidations appropriate to the modifications to the paging-structure 
entries.

4. Allow all logical processors to resume normal operation.

Alternative, performance-optimized, TLB shootdown algorithms may be developed; however, software developers 
must take care to ensure that the following conditions are met:
• All logical processors that are using the paging structures that are being modified must participate and perform 

appropriate invalidations after the modifications are made.
• If the modifications to the paging-structure entries are made before the barrier or if there is no barrier, the 

operating system must ensure one of the following: (1) that the affected linear-address range is not used 
between the time of modification and the time of invalidation; or (2) that it is prepared to deal with the conse-
quences of the affected linear-address range being used during that period. For example, if the operating 
system does not allow pages being freed to be reallocated for another purpose until after the required invalida-
tions, writes to those pages by errant software will not unexpectedly modify memory that is in use.

• Software must be prepared to deal with reads, instruction fetches, and prefetch requests to the affected linear-
address range that are a result of speculative execution that would never actually occur in the executed code 
path.

When multiple logical processors are using the same linear-address space at the same time, they must coordinate 
before any request to modify the paging-structure entries that control that linear-address space. In these cases, 
the barrier in the TLB shootdown routine may not be required. For example, when freeing a range of linear 
addresses, some other mechanism can assure no logical processor is using that range before the request to free it 
is made. In this case, a logical processor freeing the range can clear the P flags in the PTEs associated with the 
range, free the physical page frames associated with the range, and then signal the other logical processors using 
that linear-address space to perform the necessary invalidations. All the affected logical processors must complete 
their invalidations before the linear-address range and the physical page frames previously associated with that 
range can be reallocated.
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4.11 INTERACTIONS WITH VIRTUAL-MACHINE EXTENSIONS (VMX)

The architecture for virtual-machine extensions (VMX) includes features that interact with paging. Section 4.11.1 
discusses ways in which VMX-specific control transfers, called VMX transitions specially affect paging. Section 
4.11.2 gives an overview of VMX features specifically designed to support address translation.

4.11.1 VMX Transitions

The VMX architecture defines two control transfers called VM entries and VM exits; collectively, these are called 
VMX transitions. VM entries and VM exits are described in detail in Chapter 26 and Chapter 27, respectively, in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C. The following items identify 
paging-related details:
• VMX transitions modify the CR0 and CR4 registers and the IA32_EFER MSR concurrently. For this reason, they 

allow transitions between paging modes that would not otherwise be possible:

— VM entries allow transitions from IA-32e paging directly to either 32-bit paging or PAE paging.

— VM exits allow transitions from either 32-bit paging or PAE paging directly to IA-32e paging.
• VMX transitions that result in PAE paging load the PDPTE registers (see Section 4.4.1) as follows:

— VM entries load the PDPTE registers either from the physical address being loaded into CR3 or from the 
virtual-machine control structure (VMCS); see Section 26.3.2.4.

— VM exits load the PDPTE registers from the physical address being loaded into CR3; see Section 27.5.4.
• VMX transitions invalidate the TLBs and paging-structure caches based on certain control settings. See Section 

26.3.2.5 and Section 27.5.5 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3C.

4.11.2 VMX Support for Address Translation

Chapter 28, “VMX Support for Address Translation,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3C describe two features of the virtual-machine extensions (VMX) that interact directly with 
paging. These are virtual-processor identifiers (VPIDs) and the extended page table mechanism (EPT).

VPIDs provide a way for software to identify to the processor the address spaces for different “virtual processors.” 
The processor may use this identification to maintain concurrently information for multiple address spaces in its 
TLBs and paging-structure caches, even when non-zero PCIDs are not being used. See Section 28.1 for details.

When EPT is in use, the addresses in the paging-structures are not used as physical addresses to access memory 
and memory-mapped I/O. Instead, they are treated as guest-physical addresses and are translated through a set 
of EPT paging structures to produce physical addresses. EPT can also specify its own access rights and memory 
typing; these are used on conjunction with those specified in this chapter. See Section 28.2 for more information.

Both VPIDs and EPT may change the way that a processor maintains information in TLBs and paging structure 
caches and the ways in which software can manage that information. Some of the behaviors documented in Section 
4.10 may change. See Section 28.3 for details.

4.12 USING PAGING FOR VIRTUAL MEMORY

With paging, portions of the linear-address space need not be mapped to the physical-address space; data for the 
unmapped addresses can be stored externally (e.g., on disk). This method of mapping the linear-address space is 
referred to as virtual memory or demand-paged virtual memory.

Paging divides the linear address space into fixed-size pages that can be mapped into the physical-address space 
and/or external storage. When a program (or task) references a linear address, the processor uses paging to trans-
late the linear address into a corresponding physical address if such an address is defined.

If the page containing the linear address is not currently mapped into the physical-address space, the processor 
generates a page-fault exception as described in Section 4.7. The handler for page-fault exceptions typically 
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directs the operating system or executive to load data for the unmapped page from external storage into physical 
memory (perhaps writing a different page from physical memory out to external storage in the process) and to 
map it using paging (by updating the paging structures). When the page has been loaded into physical memory, a 
return from the exception handler causes the instruction that generated the exception to be restarted.

Paging differs from segmentation through its use of fixed-size pages. Unlike segments, which usually are the same 
size as the code or data structures they hold, pages have a fixed size. If segmentation is the only form of address 
translation used, a data structure present in physical memory will have all of its parts in memory. If paging is used, 
a data structure can be partly in memory and partly in disk storage.

4.13 MAPPING SEGMENTS TO PAGES

The segmentation and paging mechanisms provide in the support a wide variety of approaches to memory 
management. When segmentation and paging are combined, segments can be mapped to pages in several ways. 
To implement a flat (unsegmented) addressing environment, for example, all the code, data, and stack modules 
can be mapped to one or more large segments (up to 4-GBytes) that share same range of linear addresses (see 
Figure 3-2 in Section 3.2.2). Here, segments are essentially invisible to applications and the operating-system or 
executive. If paging is used, the paging mechanism can map a single linear-address space (contained in a single 
segment) into virtual memory. Alternatively, each program (or task) can have its own large linear-address space 
(contained in its own segment), which is mapped into virtual memory through its own paging structures.

Segments can be smaller than the size of a page. If one of these segments is placed in a page which is not shared 
with another segment, the extra memory is wasted. For example, a small data structure, such as a 1-Byte sema-
phore, occupies 4 KBytes if it is placed in a page by itself. If many semaphores are used, it is more efficient to pack 
them into a single page.

The Intel-64 and IA-32 architectures do not enforce correspondence between the boundaries of pages and 
segments. A page can contain the end of one segment and the beginning of another. Similarly, a segment can 
contain the end of one page and the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some alignment between page and 
segment boundaries. For example, if a segment which can fit in one page is placed in two pages, there may be 
twice as much paging overhead to support access to that segment.

One approach to combining paging and segmentation that simplifies memory-management software is to give 
each segment its own page table, as shown in Figure 4-13. This convention gives the segment a single entry in the 
page directory, and this entry provides the access control information for paging the entire segment.

Figure 4-13.  Memory Management Convention That Assigns a Page Table
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CHAPTER 5
PROTECTION

In protected mode, the Intel 64 and IA-32 architectures provide a protection mechanism that operates at both the 
segment level and the page level. This protection mechanism provides the ability to limit access to certain 
segments or pages based on privilege levels (four privilege levels for segments and two privilege levels for pages). 
For example, critical operating-system code and data can be protected by placing them in more privileged 
segments than those that contain applications code. The processor’s protection mechanism will then prevent appli-
cation code from accessing the operating-system code and data in any but a controlled, defined manner.

Segment and page protection can be used at all stages of software development to assist in localizing and detecting 
design problems and bugs. It can also be incorporated into end-products to offer added robustness to operating 
systems, utilities software, and applications software.

When the protection mechanism is used, each memory reference is checked to verify that it satisfies various 
protection checks. All checks are made before the memory cycle is started; any violation results in an exception. 
Because checks are performed in parallel with address translation, there is no performance penalty. The protection 
checks that are performed fall into the following categories:
• Limit checks.
• Type checks.
• Privilege level checks.
• Restriction of addressable domain.
• Restriction of procedure entry-points.
• Restriction of instruction set.

All protection violation results in an exception being generated. See Chapter 6, “Interrupt and Exception Handling,” 
for an explanation of the exception mechanism. This chapter describes the protection mechanism and the viola-
tions which lead to exceptions.

The following sections describe the protection mechanism available in protected mode. See Chapter 20, “8086 
Emulation,” for information on protection in real-address and virtual-8086 mode.

5.1 ENABLING AND DISABLING SEGMENT AND PAGE PROTECTION

Setting the PE flag in register CR0 causes the processor to switch to protected mode, which in turn enables the 
segment-protection mechanism. Once in protected mode, there is no control bit for turning the protection mecha-
nism on or off. The part of the segment-protection mechanism that is based on privilege levels can essentially be 
disabled while still in protected mode by assigning a privilege level of 0 (most privileged) to all segment selectors 
and segment descriptors. This action disables the privilege level protection barriers between segments, but other 
protection checks such as limit checking and type checking are still carried out.

Page-level protection is automatically enabled when paging is enabled (by setting the PG flag in register CR0). Here 
again there is no mode bit for turning off page-level protection once paging is enabled. However, page-level protec-
tion can be disabled by performing the following operations:
• Clear the WP flag in control register CR0.
• Set the read/write (R/W) and user/supervisor (U/S) flags for each page-directory and page-table entry. 

This action makes each page a writable, user page, which in effect disables page-level protection.
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5.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND 
PAGE-LEVEL PROTECTION

The processor’s protection mechanism uses the following fields and flags in the system data structures to control 
access to segments and pages:
• Descriptor type (S) flag — (Bit 12 in the second doubleword of a segment descriptor.) Determines if the 

segment descriptor is for a system segment or a code or data segment.
• Type field — (Bits 8 through 11 in the second doubleword of a segment descriptor.) Determines the type of 

code, data, or system segment.
• Limit field — (Bits 0 through 15 of the first doubleword and bits 16 through 19 of the second doubleword of a 

segment descriptor.) Determines the size of the segment, along with the G flag and E flag (for data segments).
• G flag — (Bit 23 in the second doubleword of a segment descriptor.) Determines the size of the segment, along 

with the limit field and E flag (for data segments).
• E flag — (Bit 10 in the second doubleword of a data-segment descriptor.) Determines the size of the segment, 

along with the limit field and G flag.
• Descriptor privilege level (DPL) field — (Bits 13 and 14 in the second doubleword of a segment descriptor.) 

Determines the privilege level of the segment.
• Requested privilege level (RPL) field — (Bits 0 and 1 of any segment selector.) Specifies the requested 

privilege level of a segment selector. 
• Current privilege level (CPL) field — (Bits 0 and 1 of the CS segment register.) Indicates the privilege level 

of the currently executing program or procedure. The term current privilege level (CPL) refers to the setting of 
this field.

• User/supervisor (U/S) flag — (Bit 2 of paging-structure entries.) Determines the type of page: user or 
supervisor.

• Read/write (R/W) flag — (Bit 1 of paging-structure entries.) Determines the type of access allowed to a 
page: read-only or read/write.

• Execute-disable (XD) flag — (Bit 63 of certain paging-structure entries.) Determines the type of access 
allowed to a page: executable or not-executable.

Figure 5-1 shows the location of the various fields and flags in the data, code, and system- segment descriptors; 
Figure 3-6 shows the location of the RPL (or CPL) field in a segment selector (or the CS register); and Chapter 4 
identifies the locations of the U/S, R/W, and XD flags in the paging-structure entries.
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Many different styles of protection schemes can be implemented with these fields and flags. When the operating 
system creates a descriptor, it places values in these fields and flags in keeping with the particular protection style 
chosen for an operating system or executive. Application program do not generally access or modify these fields 
and flags. 

The following sections describe how the processor uses these fields and flags to perform the various categories of 
checks described in the introduction to this chapter.

5.2.1 Code Segment Descriptor in 64-bit Mode

Code segments continue to exist in 64-bit mode even though, for address calculations, the segment base is treated 
as zero. Some code-segment (CS) descriptor content (the base address and limit fields) is ignored; the remaining 
fields function normally (except for the readable bit in the type field). 

Code segment descriptors and selectors are needed in IA-32e mode to establish the processor’s operating mode 
and execution privilege-level. The usage is as follows:

Figure 5-1.  Descriptor Fields Used for Protection
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• IA-32e mode uses a previously unused bit in the CS descriptor. Bit 53 is defined as the 64-bit (L) flag and is 
used to select between 64-bit mode and compatibility mode when IA-32e mode is active (IA32_EFER.LMA = 1). 
See Figure 5-2.

— If CS.L = 0 and IA-32e mode is active, the processor is running in compatibility mode. In this case, CS.D 
selects the default size for data and addresses. If CS.D = 0, the default data and address size is 16 bits. If 
CS.D = 1, the default data and address size is 32 bits.

— If CS.L = 1 and IA-32e mode is active, the only valid setting is CS.D = 0. This setting indicates a default 
operand size of 32 bits and a default address size of 64 bits. The CS.L = 1 and CS.D = 1 bit combination is 
reserved for future use and a #GP fault will be generated on an attempt to use a code segment with these 
bits set in IA-32e mode.

• In IA-32e mode, the CS descriptor’s DPL is used for execution privilege checks (as in legacy 32-bit mode).

5.3 LIMIT CHECKING

The limit field of a segment descriptor prevents programs or procedures from addressing memory locations outside 
the segment. The effective value of the limit depends on the setting of the G (granularity) flag (see Figure 5-1). For 
data segments, the limit also depends on the E (expansion direction) flag and the B (default stack pointer size 
and/or upper bound) flag. The E flag is one of the bits in the type field when the segment descriptor is for a data-
segment type.

When the G flag is clear (byte granularity), the effective limit is the value of the 20-bit limit field in the segment 
descriptor. Here, the limit ranges from 0 to FFFFFH (1 MByte). When the G flag is set (4-KByte page granularity), 
the processor scales the value in the limit field by a factor of 212 (4 KBytes). In this case, the effective limit ranges 
from FFFH (4 KBytes) to FFFFFFFFH (4 GBytes). Note that when scaling is used (G flag is set), the lower 12 bits of 
a segment offset (address) are not checked against the limit; for example, note that if the segment limit is 0, 
offsets 0 through FFFH are still valid.

For all types of segments except expand-down data segments, the effective limit is the last address that is allowed 
to be accessed in the segment, which is one less than the size, in bytes, of the segment. The processor causes a 
general-protection exception (or, if the segment is SS, a stack-fault exception) any time an attempt is made to 
access the following addresses in a segment:
• A byte at an offset greater than the effective limit
• A word at an offset greater than the (effective-limit – 1)
• A doubleword at an offset greater than the (effective-limit – 3)
• A quadword at an offset greater than the (effective-limit – 7)

Figure 5-2.  Descriptor Fields with Flags used in IA-32e Mode
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• A double quadword at an offset greater than the (effective limit – 15)

When the effective limit is FFFFFFFFH (4 GBytes), these accesses may or may not cause the indicated exceptions. 
Behavior is implementation-specific and may vary from one execution to another.

For expand-down data segments, the segment limit has the same function but is interpreted differently. Here, the 
effective limit specifies the last address that is not allowed to be accessed within the segment; the range of valid 
offsets is from (effective-limit + 1) to FFFFFFFFH if the B flag is set and from (effective-limit + 1) to FFFFH if the B 
flag is clear. An expand-down segment has maximum size when the segment limit is 0.

Limit checking catches programming errors such as runaway code, runaway subscripts, and invalid pointer calcu-
lations. These errors are detected when they occur, so identification of the cause is easier. Without limit checking, 
these errors could overwrite code or data in another segment.

In addition to checking segment limits, the processor also checks descriptor table limits. The GDTR and IDTR regis-
ters contain 16-bit limit values that the processor uses to prevent programs from selecting a segment descriptors 
outside the respective descriptor tables. The LDTR and task registers contain 32-bit segment limit value (read from 
the segment descriptors for the current LDT and TSS, respectively). The processor uses these segment limits to 
prevent accesses beyond the bounds of the current LDT and TSS. See Section 3.5.1, “Segment Descriptor Tables,” 
for more information on the GDT and LDT limit fields; see Section 6.10, “Interrupt Descriptor Table (IDT),” for more 
information on the IDT limit field; and see Section 7.2.4, “Task Register,” for more information on the TSS segment 
limit field.

5.3.1 Limit Checking in 64-bit Mode

In 64-bit mode, the processor does not perform runtime limit checking on code or data segments. However, the 
processor does check descriptor-table limits.

5.4 TYPE CHECKING

Segment descriptors contain type information in two places:
• The S (descriptor type) flag.
• The type field.

The processor uses this information to detect programming errors that result in an attempt to use a segment or 
gate in an incorrect or unintended manner.

The S flag indicates whether a descriptor is a system type or a code or data type. The type field provides 4 addi-
tional bits for use in defining various types of code, data, and system descriptors. Table 3-1 shows the encoding of 
the type field for code and data descriptors; Table 3-2 shows the encoding of the field for system descriptors.

The processor examines type information at various times while operating on segment selectors and segment 
descriptors. The following list gives examples of typical operations where type checking is performed (this list is not 
exhaustive):
• When a segment selector is loaded into a segment register — Certain segment registers can contain only 

certain descriptor types, for example:

— The CS register only can be loaded with a selector for a code segment.

— Segment selectors for code segments that are not readable or for system segments cannot be loaded into 
data-segment registers (DS, ES, FS, and GS).

— Only segment selectors of writable data segments can be loaded into the SS register.
• When a segment selector is loaded into the LDTR or task register — For example:

— The LDTR can only be loaded with a selector for an LDT.

— The task register can only be loaded with a segment selector for a TSS.
• When instructions access segments whose descriptors are already loaded into segment registers — 

Certain segments can be used by instructions only in certain predefined ways, for example:

— No instruction may write into an executable segment.
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— No instruction may write into a data segment if it is not writable.

— No instruction may read an executable segment unless the readable flag is set.
• When an instruction operand contains a segment selector — Certain instructions can access segments 

or gates of only a particular type, for example:

— A far CALL or far JMP instruction can only access a segment descriptor for a conforming code segment, 
nonconforming code segment, call gate, task gate, or TSS.

— The LLDT instruction must reference a segment descriptor for an LDT.

— The LTR instruction must reference a segment descriptor for a TSS.

— The LAR instruction must reference a segment or gate descriptor for an LDT, TSS, call gate, task gate, code 
segment, or data segment.

— The LSL instruction must reference a segment descriptor for a LDT, TSS, code segment, or data segment.

— IDT entries must be interrupt, trap, or task gates.
• During certain internal operations — For example:

— On a far call or far jump (executed with a far CALL or far JMP instruction), the processor determines the 
type of control transfer to be carried out (call or jump to another code segment, a call or jump through a 
gate, or a task switch) by checking the type field in the segment (or gate) descriptor pointed to by the 
segment (or gate) selector given as an operand in the CALL or JMP instruction. If the descriptor type is for 
a code segment or call gate, a call or jump to another code segment is indicated; if the descriptor type is for 
a TSS or task gate, a task switch is indicated.

— On a call or jump through a call gate (or on an interrupt- or exception-handler call through a trap or 
interrupt gate), the processor automatically checks that the segment descriptor being pointed to by the 
gate is for a code segment.

— On a call or jump to a new task through a task gate (or on an interrupt- or exception-handler call to a new 
task through a task gate), the processor automatically checks that the segment descriptor being pointed to 
by the task gate is for a TSS.

— On a call or jump to a new task by a direct reference to a TSS, the processor automatically checks that the 
segment descriptor being pointed to by the CALL or JMP instruction is for a TSS.

— On return from a nested task (initiated by an IRET instruction), the processor checks that the previous task 
link field in the current TSS points to a TSS.

5.4.1 Null Segment Selector Checking

Attempting to load a null segment selector (see Section 3.4.2, “Segment Selectors”) into the CS or SS segment 
register generates a general-protection exception (#GP). A null segment selector can be loaded into the DS, ES, 
FS, or GS register, but any attempt to access a segment through one of these registers when it is loaded with a null 
segment selector results in a #GP exception being generated. Loading unused data-segment registers with a null 
segment selector is a useful method of detecting accesses to unused segment registers and/or preventing 
unwanted accesses to data segments.

5.4.1.1  NULL Segment Checking in 64-bit Mode

In 64-bit mode, the processor does not perform runtime checking on NULL segment selectors. The processor does 
not cause a #GP fault when an attempt is made to access memory where the referenced segment register has a 
NULL segment selector. 

5.5 PRIVILEGE LEVELS

The processor’s segment-protection mechanism recognizes 4 privilege levels, numbered from 0 to 3. The greater 
numbers mean lesser privileges. Figure 5-3 shows how these levels of privilege can be interpreted as rings of 
protection. 
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The center (reserved for the most privileged code, data, and stacks) is used for the segments containing the critical 
software, usually the kernel of an operating system. Outer rings are used for less critical software. (Systems that 
use only 2 of the 4 possible privilege levels should use levels 0 and 3.) 

The processor uses privilege levels to prevent a program or task operating at a lesser privilege level from accessing 
a segment with a greater privilege, except under controlled situations. When the processor detects a privilege level 
violation, it generates a general-protection exception (#GP).

To carry out privilege-level checks between code segments and data segments, the processor recognizes the 
following three types of privilege levels: 
• Current privilege level (CPL) — The CPL is the privilege level of the currently executing program or task. It 

is stored in bits 0 and 1 of the CS and SS segment registers. Normally, the CPL is equal to the privilege level of 
the code segment from which instructions are being fetched. The processor changes the CPL when program 
control is transferred to a code segment with a different privilege level. The CPL is treated slightly differently 
when accessing conforming code segments. Conforming code segments can be accessed from any privilege 
level that is equal to or numerically greater (less privileged) than the DPL of the conforming code segment. 
Also, the CPL is not changed when the processor accesses a conforming code segment that has a different 
privilege level than the CPL.

• Descriptor privilege level (DPL) — The DPL is the privilege level of a segment or gate. It is stored in the DPL 
field of the segment or gate descriptor for the segment or gate. When the currently executing code segment 
attempts to access a segment or gate, the DPL of the segment or gate is compared to the CPL and RPL of the 
segment or gate selector (as described later in this section). The DPL is interpreted differently, depending on 
the type of segment or gate being accessed:

— Data segment — The DPL indicates the numerically highest privilege level that a program or task can have 
to be allowed to access the segment. For example, if the DPL of a data segment is 1, only programs running 
at a CPL of 0 or 1 can access the segment. 

— Nonconforming code segment (without using a call gate) — The DPL indicates the privilege level that 
a program or task must be at to access the segment. For example, if the DPL of a nonconforming code 
segment is 0, only programs running at a CPL of 0 can access the segment. 

— Call gate — The DPL indicates the numerically highest privilege level that the currently executing program 
or task can be at and still be able to access the call gate. (This is the same access rule as for a data 
segment.)

— Conforming code segment and nonconforming code segment accessed through a call gate — The 
DPL indicates the numerically lowest privilege level that a program or task can have to be allowed to access 
the segment. For example, if the DPL of a conforming code segment is 2, programs running at a CPL of 0 or 
1 cannot access the segment. 

Figure 5-3.  Protection Rings
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— TSS — The DPL indicates the numerically highest privilege level that the currently executing program or 
task can be at and still be able to access the TSS. (This is the same access rule as for a data segment.)

• Requested privilege level (RPL) — The RPL is an override privilege level that is assigned to segment 
selectors. It is stored in bits 0 and 1 of the segment selector. The processor checks the RPL along with the CPL 
to determine if access to a segment is allowed. Even if the program or task requesting access to a segment has 
sufficient privilege to access the segment, access is denied if the RPL is not of sufficient privilege level. That is, 
if the RPL of a segment selector is numerically greater than the CPL, the RPL overrides the CPL, and vice versa. 
The RPL can be used to insure that privileged code does not access a segment on behalf of an application 
program unless the program itself has access privileges for that segment. See Section 5.10.4, “Checking Caller 
Access Privileges (ARPL Instruction),” for a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is loaded into a segment register. 
The checks used for data access differ from those used for transfers of program control among code segments; 
therefore, the two kinds of accesses are considered separately in the following sections.

5.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA SEGMENTS

To access operands in a data segment, the segment selector for the data segment must be loaded into the data-
segment registers (DS, ES, FS, or GS) or into the stack-segment register (SS). (Segment registers can be loaded 
with the MOV, POP, LDS, LES, LFS, LGS, and LSS instructions.) Before the processor loads a segment selector into 
a segment register, it performs a privilege check (see Figure 5-4) by comparing the privilege levels of the currently 
running program or task (the CPL), the RPL of the segment selector, and the DPL of the segment’s segment 
descriptor. The processor loads the segment selector into the segment register if the DPL is numerically greater 
than or equal to both the CPL and the RPL. Otherwise, a general-protection fault is generated and the segment 
register is not loaded.

Figure 5-5 shows four procedures (located in codes segments A, B, C, and D), each running at different privilege 
levels and each attempting to access the same data segment. 

1. The procedure in code segment A is able to access data segment E using segment selector E1, because the CPL 
of code segment A and the RPL of segment selector E1 are equal to the DPL of data segment E.

2. The procedure in code segment B is able to access data segment E using segment selector E2, because the CPL 
of code segment B and the RPL of segment selector E2 are both numerically lower than (more privileged) than 
the DPL of data segment E. A code segment B procedure can also access data segment E using segment 
selector E1.

3. The procedure in code segment C is not able to access data segment E using segment selector E3 (dotted line), 
because the CPL of code segment C and the RPL of segment selector E3 are both numerically greater than (less 
privileged) than the DPL of data segment E. Even if a code segment C procedure were to use segment selector 

Figure 5-4.  Privilege Check for Data Access
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E1 or E2, such that the RPL would be acceptable, it still could not access data segment E because its CPL is not 
privileged enough.

4. The procedure in code segment D should be able to access data segment E because code segment D’s CPL is 
numerically less than the DPL of data segment E. However, the RPL of segment selector E3 (which the code 
segment D procedure is using to access data segment E) is numerically greater than the DPL of data segment 
E, so access is not allowed. If the code segment D procedure were to use segment selector E1 or E2 to access 
the data segment, access would be allowed.

As demonstrated in the previous examples, the addressable domain of a program or task varies as its CPL changes. 
When the CPL is 0, data segments at all privilege levels are accessible; when the CPL is 1, only data segments at 
privilege levels 1 through 3 are accessible; when the CPL is 3, only data segments at privilege level 3 are acces-
sible. 

The RPL of a segment selector can always override the addressable domain of a program or task. When properly 
used, RPLs can prevent problems caused by accidental (or intensional) use of segment selectors for privileged data 
segments by less privileged programs or procedures.

It is important to note that the RPL of a segment selector for a data segment is under software control. For 
example, an application program running at a CPL of 3 can set the RPL for a data- segment selector to 0. With the 
RPL set to 0, only the CPL checks, not the RPL checks, will provide protection against deliberate, direct attempts to 
violate privilege-level security for the data segment. To prevent these types of privilege-level-check violations, a 
program or procedure can check access privileges whenever it receives a data-segment selector from another 
procedure (see Section 5.10.4, “Checking Caller Access Privileges (ARPL Instruction)”).

5.6.1 Accessing Data in Code Segments

In some instances it may be desirable to access data structures that are contained in a code segment. The 
following methods of accessing data in code segments are possible:
• Load a data-segment register with a segment selector for a nonconforming, readable, code segment.
• Load a data-segment register with a segment selector for a conforming, readable, code segment.
• Use a code-segment override prefix (CS) to read a readable, code segment whose selector is already loaded in 

the CS register.

The same rules for accessing data segments apply to method 1. Method 2 is always valid because the privilege 
level of a conforming code segment is effectively the same as the CPL, regardless of its DPL. Method 3 is always 
valid because the DPL of the code segment selected by the CS register is the same as the CPL.

Figure 5-5.  Examples of Accessing Data Segments From Various Privilege Levels
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5.7 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS REGISTER

Privilege level checking also occurs when the SS register is loaded with the segment selector for a stack segment. 
Here all privilege levels related to the stack segment must match the CPL; that is, the CPL, the RPL of the stack-
segment selector, and the DPL of the stack-segment descriptor must be the same. If the RPL and DPL are not equal 
to the CPL, a general-protection exception (#GP) is generated.

5.8 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING PROGRAM CONTROL 
BETWEEN CODE SEGMENTS

To transfer program control from one code segment to another, the segment selector for the destination code 
segment must be loaded into the code-segment register (CS). As part of this loading process, the processor exam-
ines the segment descriptor for the destination code segment and performs various limit, type, and privilege 
checks. If these checks are successful, the CS register is loaded, program control is transferred to the new code 
segment, and program execution begins at the instruction pointed to by the EIP register. 

Program control transfers are carried out with the JMP, CALL, RET, SYSENTER, SYSEXIT, SYSCALL, SYSRET, INT n, 
and IRET instructions, as well as by the exception and interrupt mechanisms. Exceptions, interrupts, and the IRET 
instruction are special cases discussed in Chapter 6, “Interrupt and Exception Handling.” This chapter discusses 
only the JMP, CALL, RET, SYSENTER, SYSEXIT, SYSCALL, and SYSRET instructions.

A JMP or CALL instruction can reference another code segment in any of four ways:
• The target operand contains the segment selector for the target code segment.
• The target operand points to a call-gate descriptor, which contains the segment selector for the target code 

segment.
• The target operand points to a TSS, which contains the segment selector for the target code segment. 
• The target operand points to a task gate, which points to a TSS, which in turn contains the segment selector for 

the target code segment. 

The following sections describe first two types of references. See Section 7.3, “Task Switching,” for information on 
transferring program control through a task gate and/or TSS.

The SYSENTER and SYSEXIT instructions are special instructions for making fast calls to and returns from operating 
system or executive procedures. These instructions are discussed in Section 5.8.7, “Performing Fast Calls to 
System Procedures with the SYSENTER and SYSEXIT Instructions.”

The SYCALL and SYSRET instructions are special instructions for making fast calls to and returns from operating 
system or executive procedures in 64-bit mode. These instructions are discussed in Section 5.8.8, “Fast System 
Calls in 64-Bit Mode.”

5.8.1 Direct Calls or Jumps to Code Segments

The near forms of the JMP, CALL, and RET instructions transfer program control within the current code segment, 
so privilege-level checks are not performed. The far forms of the JMP, CALL, and RET instructions transfer control 
to other code segments, so the processor does perform privilege-level checks. 

When transferring program control to another code segment without going through a call gate, the processor 
examines four kinds of privilege level and type information (see Figure 5-6):
• The CPL. (Here, the CPL is the privilege level of the calling code segment; that is, the code segment that 

contains the procedure that is making the call or jump.)
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• The DPL of the segment descriptor for the destination code segment that contains the called procedure. 
• The RPL of the segment selector of the destination code segment.
• The conforming (C) flag in the segment descriptor for the destination code segment, which determines whether 

the segment is a conforming (C flag is set) or nonconforming (C flag is clear) code segment. See Section 
3.4.5.1, “Code- and Data-Segment Descriptor Types,” for more information about this flag.

The rules that the processor uses to check the CPL, RPL, and DPL depends on the setting of the C flag, as described 
in the following sections.

5.8.1.1  Accessing Nonconforming Code Segments

When accessing nonconforming code segments, the CPL of the calling procedure must be equal to the DPL of the 
destination code segment; otherwise, the processor generates a general-protection exception (#GP). For example 
in Figure 5-7:
• Code segment C is a nonconforming code segment. A procedure in code segment A can call a procedure in code 

segment C (using segment selector C1) because they are at the same privilege level (CPL of code segment A is 
equal to the DPL of code segment C). 

• A procedure in code segment B cannot call a procedure in code segment C (using segment selector C2 or C1) 
because the two code segments are at different privilege levels.

Figure 5-6.  Privilege Check for Control Transfer Without Using a Gate
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The RPL of the segment selector that points to a nonconforming code segment has a limited effect on the privilege 
check. The RPL must be numerically less than or equal to the CPL of the calling procedure for a successful control 
transfer to occur. So, in the example in Figure 5-7, the RPLs of segment selectors C1 and C2 could legally be set to 
0, 1, or 2, but not to 3.

When the segment selector of a nonconforming code segment is loaded into the CS register, the privilege level field 
is not changed; that is, it remains at the CPL (which is the privilege level of the calling procedure). This is true, even 
if the RPL of the segment selector is different from the CPL.

5.8.1.2  Accessing Conforming Code Segments

When accessing conforming code segments, the CPL of the calling procedure may be numerically equal to or 
greater than (less privileged) the DPL of the destination code segment; the processor generates a general-protec-
tion exception (#GP) only if the CPL is less than the DPL. (The segment selector RPL for the destination code 
segment is not checked if the segment is a conforming code segment.)

In the example in Figure 5-7, code segment D is a conforming code segment. Therefore, calling procedures in both 
code segment A and B can access code segment D (using either segment selector D1 or D2, respectively), because 
they both have CPLs that are greater than or equal to the DPL of the conforming code segment. For conforming 
code segments, the DPL represents the numerically lowest privilege level that a calling procedure may 
be at to successfully make a call to the code segment.

(Note that segments selectors D1 and D2 are identical except for their respective RPLs. But since RPLs are not 
checked when accessing conforming code segments, the two segment selectors are essentially interchangeable.)

When program control is transferred to a conforming code segment, the CPL does not change, even if the DPL of 
the destination code segment is less than the CPL. This situation is the only one where the CPL may be different 
from the DPL of the current code segment. Also, since the CPL does not change, no stack switch occurs.

Conforming segments are used for code modules such as math libraries and exception handlers, which support 
applications but do not require access to protected system facilities. These modules are part of the operating 
system or executive software, but they can be executed at numerically higher privilege levels (less privileged 
levels). Keeping the CPL at the level of a calling code segment when switching to a conforming code segment 

Figure 5-7.  Examples of Accessing Conforming and Nonconforming Code Segments From Various Privilege Levels
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prevents an application program from accessing nonconforming code segments while at the privilege level (DPL) of 
a conforming code segment and thus prevents it from accessing more privileged data.

Most code segments are nonconforming. For these segments, program control can be transferred only to code 
segments at the same level of privilege, unless the transfer is carried out through a call gate, as described in the 
following sections.

5.8.2 Gate Descriptors

To provide controlled access to code segments with different privilege levels, the processor provides special set of 
descriptors called gate descriptors. There are four kinds of gate descriptors:
• Call gates
• Trap gates
• Interrupt gates
• Task gates

Task gates are used for task switching and are discussed in Chapter 7, “Task Management”. Trap and interrupt 
gates are special kinds of call gates used for calling exception and interrupt handlers. The are described in Chapter 
6, “Interrupt and Exception Handling.” This chapter is concerned only with call gates. 

5.8.3 Call Gates

Call gates facilitate controlled transfers of program control between different privilege levels. They are typically 
used only in operating systems or executives that use the privilege-level protection mechanism. Call gates are also 
useful for transferring program control between 16-bit and 32-bit code segments, as described in Section 21.4, 
“Transferring Control Among Mixed-Size Code Segments.”

Figure 5-8 shows the format of a call-gate descriptor. A call-gate descriptor may reside in the GDT or in an LDT, but 
not in the interrupt descriptor table (IDT). It performs six functions:
• It specifies the code segment to be accessed.
• It defines an entry point for a procedure in the specified code segment.
• It specifies the privilege level required for a caller trying to access the procedure.

• If a stack switch occurs, it specifies the number of optional parameters to be copied between stacks.
• It defines the size of values to be pushed onto the target stack: 16-bit gates force 16-bit pushes and 32-bit 

gates force 32-bit pushes.
• It specifies whether the call-gate descriptor is valid. 

The segment selector field in a call gate specifies the code segment to be accessed. The offset field specifies the 
entry point in the code segment. This entry point is generally to the first instruction of a specific procedure. The 
DPL field indicates the privilege level of the call gate, which in turn is the privilege level required to access the 

Figure 5-8.  Call-Gate Descriptor
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selected procedure through the gate. The P flag indicates whether the call-gate descriptor is valid. (The presence 
of the code segment to which the gate points is indicated by the P flag in the code segment’s descriptor.) The 
parameter count field indicates the number of parameters to copy from the calling procedures stack to the new 
stack if a stack switch occurs (see Section 5.8.5, “Stack Switching”). The parameter count specifies the number of 
words for 16-bit call gates and doublewords for 32-bit call gates.

Note that the P flag in a gate descriptor is normally always set to 1. If it is set to 0, a not present (#NP) exception 
is generated when a program attempts to access the descriptor. The operating system can use the P flag for special 
purposes. For example, it could be used to track the number of times the gate is used. Here, the P flag is initially 
set to 0 causing a trap to the not-present exception handler. The exception handler then increments a counter and 
sets the P flag to 1, so that on returning from the handler, the gate descriptor will be valid.

5.8.3.1  IA-32e Mode Call Gates

Call-gate descriptors in 32-bit mode provide a 32-bit offset for the instruction pointer (EIP); 64-bit extensions 
double the size of 32-bit mode call gates in order to store 64-bit instruction pointers (RIP). See Figure 5-9:
• The first eight bytes (bytes 7:0) of a 64-bit mode call gate are similar but not identical to legacy 32-bit mode 

call gates. The parameter-copy-count field has been removed. 
• Bytes 11:8 hold the upper 32 bits of the target-segment offset in canonical form. A general-protection 

exception (#GP) is generated if software attempts to use a call gate with a target offset that is not in canonical 
form.

• 16-byte descriptors may reside in the same descriptor table with 16-bit and 32-bit descriptors. A type field, 
used for consistency checking, is defined in bits 12:8 of the 64-bit descriptor’s highest dword (cleared to zero). 
A general-protection exception (#GP) results if an attempt is made to access the upper half of a 64-bit mode 
descriptor as a 32-bit mode descriptor.

• Target code segments referenced by a 64-bit call gate must be 64-bit code segments (CS.L = 1, CS.D = 0). If 
not, the reference generates a general-protection exception, #GP (CS selector). 

• Only 64-bit mode call gates can be referenced in IA-32e mode (64-bit mode and compatibility mode). The 
legacy 32-bit mode call gate type (0CH) is redefined in IA-32e mode as a 64-bit call-gate type; no 32-bit call-
gate type exists in IA-32e mode. 

Figure 5-9.  Call-Gate Descriptor in IA-32e Mode
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• If a far call references a 16-bit call gate type (04H) in IA-32e mode, a general-protection exception (#GP) is 
generated.

When a call references a 64-bit mode call gate, actions taken are identical to those taken in 32-bit mode, with the 
following exceptions:
• Stack pushes are made in eight-byte increments.
• A 64-bit RIP is pushed onto the stack.
• Parameter copying is not performed.

Use a matching far-return instruction size for correct operation (returns from 64-bit calls must be performed with 
a 64-bit operand-size return to process the stack correctly).

5.8.4 Accessing a Code Segment Through a Call Gate

To access a call gate, a far pointer to the gate is provided as a target operand in a CALL or JMP instruction. The 
segment selector from this pointer identifies the call gate (see Figure 5-10); the offset from the pointer is required, 
but not used or checked by the processor. (The offset can be set to any value.) 

When the processor has accessed the call gate, it uses the segment selector from the call gate to locate the 
segment descriptor for the destination code segment. (This segment descriptor can be in the GDT or the LDT.) It 
then combines the base address from the code-segment descriptor with the offset from the call gate to form the 
linear address of the procedure entry point in the code segment.

As shown in Figure 5-11, four different privilege levels are used to check the validity of a program control transfer 
through a call gate:
• The CPL (current privilege level).
• The RPL (requestor's privilege level) of the call gate’s selector.
• The DPL (descriptor privilege level) of the call gate descriptor.
• The DPL of the segment descriptor of the destination code segment.

The C flag (conforming) in the segment descriptor for the destination code segment is also checked.

Figure 5-10.  Call-Gate Mechanism
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The privilege checking rules are different depending on whether the control transfer was initiated with a CALL or a 
JMP instruction, as shown in Table 5-1.

The DPL field of the call-gate descriptor specifies the numerically highest privilege level from which a calling proce-
dure can access the call gate; that is, to access a call gate, the CPL of a calling procedure must be equal to or less 
than the DPL of the call gate. For example, in Figure 5-15, call gate A has a DPL of 3. So calling procedures at all 
CPLs (0 through 3) can access this call gate, which includes calling procedures in code segments A, B, and C. Call 
gate B has a DPL of 2, so only calling procedures at a CPL or 0, 1, or 2 can access call gate B, which includes calling 
procedures in code segments B and C. The dotted line shows that a calling procedure in code segment A cannot 
access call gate B.

The RPL of the segment selector to a call gate must satisfy the same test as the CPL of the calling procedure; that 
is, the RPL must be less than or equal to the DPL of the call gate. In the example in Figure 5-15, a calling procedure 
in code segment C can access call gate B using gate selector B2 or B1, but it could not use gate selector B3 to 
access call gate B.

If the privilege checks between the calling procedure and call gate are successful, the processor then checks the 
DPL of the code-segment descriptor against the CPL of the calling procedure. Here, the privilege check rules vary 
between CALL and JMP instructions. Only CALL instructions can use call gates to transfer program control to more 
privileged (numerically lower privilege level) nonconforming code segments; that is, to nonconforming code 
segments with a DPL less than the CPL. A JMP instruction can use a call gate only to transfer program control to a 
nonconforming code segment with a DPL equal to the CPL. CALL and JMP instruction can both transfer program 
control to a more privileged conforming code segment; that is, to a conforming code segment with a DPL less than 
or equal to the CPL.

Figure 5-11.  Privilege Check for Control Transfer with Call Gate
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If a call is made to a more privileged (numerically lower privilege level) nonconforming destination code segment, 
the CPL is lowered to the DPL of the destination code segment and a stack switch occurs (see Section 5.8.5, “Stack 
Switching”). If a call or jump is made to a more privileged conforming destination code segment, the CPL is not 
changed and no stack switch occurs. 

Call gates allow a single code segment to have procedures that can be accessed at different privilege levels. For 
example, an operating system located in a code segment may have some services which are intended to be used 
by both the operating system and application software (such as procedures for handling character I/O). Call gates 
for these procedures can be set up that allow access at all privilege levels (0 through 3). More privileged call gates 
(with DPLs of 0 or 1) can then be set up for other operating system services that are intended to be used only by 
the operating system (such as procedures that initialize device drivers).

5.8.5 Stack Switching

Whenever a call gate is used to transfer program control to a more privileged nonconforming code segment (that 
is, when the DPL of the nonconforming destination code segment is less than the CPL), the processor automatically 
switches to the stack for the destination code segment’s privilege level. This stack switching is carried out to 
prevent more privileged procedures from crashing due to insufficient stack space. It also prevents less privileged 
procedures from interfering (by accident or intent) with more privileged procedures through a shared stack.

Each task must define up to 4 stacks: one for applications code (running at privilege level 3) and one for each of 
the privilege levels 2, 1, and 0 that are used. (If only two privilege levels are used [3 and 0], then only two stacks 
must be defined.) Each of these stacks is located in a separate segment and is identified with a segment selector 
and an offset into the stack segment (a stack pointer).

The segment selector and stack pointer for the privilege level 3 stack is located in the SS and ESP registers, respec-
tively, when privilege-level-3 code is being executed and is automatically stored on the called procedure’s stack 
when a stack switch occurs. 

Pointers to the privilege level 0, 1, and 2 stacks are stored in the TSS for the currently running task (see 
Figure 7-2). Each of these pointers consists of a segment selector and a stack pointer (loaded into the ESP 
register). These initial pointers are strictly read-only values. The processor does not change them while the task is 
running. They are used only to create new stacks when calls are made to more privileged levels (numerically lower 

Figure 5-12.  Example of Accessing Call Gates At Various Privilege Levels
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privilege levels). These stacks are disposed of when a return is made from the called procedure. The next time the 
procedure is called, a new stack is created using the initial stack pointer. (The TSS does not specify a stack for priv-
ilege level 3 because the processor does not allow a transfer of program control from a procedure running at a CPL 
of 0, 1, or 2 to a procedure running at a CPL of 3, except on a return.)

The operating system is responsible for creating stacks and stack-segment descriptors for all the privilege levels to 
be used and for loading initial pointers for these stacks into the TSS. Each stack must be read/write accessible (as 
specified in the type field of its segment descriptor) and must contain enough space (as specified in the limit field) 
to hold the following items:
• The contents of the SS, ESP, CS, and EIP registers for the calling procedure.
• The parameters and temporary variables required by the called procedure.
• The EFLAGS register and error code, when implicit calls are made to an exception or interrupt handler.

The stack will need to require enough space to contain many frames of these items, because procedures often call 
other procedures, and an operating system may support nesting of multiple interrupts. Each stack should be large 
enough to allow for the worst case nesting scenario at its privilege level.

(If the operating system does not use the processor’s multitasking mechanism, it still must create at least one TSS 
for this stack-related purpose.) 

When a procedure call through a call gate results in a change in privilege level, the processor performs the 
following steps to switch stacks and begin execution of the called procedure at a new privilege level:

1. Uses the DPL of the destination code segment (the new CPL) to select a pointer to the new stack (segment
selector and stack pointer) from the TSS. 

2. Reads the segment selector and stack pointer for the stack to be switched to from the current TSS. Any limit 
violations detected while reading the stack-segment selector, stack pointer, or stack-segment descriptor cause 
an invalid TSS (#TS) exception to be generated.

3. Checks the stack-segment descriptor for the proper privileges and type and generates an invalid TSS (#TS) 
exception if violations are detected.

4. Temporarily saves the current values of the SS and ESP registers.

5. Loads the segment selector and stack pointer for the new stack in the SS and ESP registers.

6. Pushes the temporarily saved values for the SS and ESP registers (for the calling procedure) onto the new stack 
(see Figure 5-13).

7. Copies the number of parameter specified in the parameter count field of the call gate from the calling 
procedure’s stack to the new stack. If the count is 0, no parameters are copied.

8. Pushes the return instruction pointer (the current contents of the CS and EIP registers) onto the new stack.

9. Loads the segment selector for the new code segment and the new instruction pointer from the call gate into 
the CS and EIP registers, respectively, and begins execution of the called procedure.

See the description of the CALL instruction in Chapter 3, Instruction Set Reference, in the IA-32 Intel Architecture 
Software Developer’s Manual, Volume 2, for a detailed description of the privilege level checks and other protection 
checks that the processor performs on a far call through a call gate.
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The parameter count field in a call gate specifies the number of data items (up to 31) that the processor should 
copy from the calling procedure’s stack to the stack of the called procedure. If more than 31 data items need to be 
passed to the called procedure, one of the parameters can be a pointer to a data structure, or the saved contents 
of the SS and ESP registers may be used to access parameters in the old stack space. The size of the data items 
passed to the called procedure depends on the call gate size, as described in Section 5.8.3, “Call Gates.”

5.8.5.1  Stack Switching in 64-bit Mode

Although protection-check rules for call gates are unchanged from 32-bit mode, stack-switch changes in 64-bit 
mode are different.

When stacks are switched as part of a 64-bit mode privilege-level change through a call gate, a new SS (stack 
segment) descriptor is not loaded; 64-bit mode only loads an inner-level RSP from the TSS. The new SS is forced 
to NULL and the SS selector’s RPL field is forced to the new CPL. The new SS is set to NULL in order to handle 
nested far transfers (far CALL, INTn, interrupts and exceptions). The old SS and RSP are saved on the new stack. 

On a subsequent far RET, the old SS is popped from the stack and loaded into the SS register. See Table 5-2.

In 64-bit mode, stack operations resulting from a privilege-level-changing far call or far return are eight-bytes wide 
and change the RSP by eight. The mode does not support the automatic parameter-copy feature found in 32-bit 
mode. The call-gate count field is ignored. Software can access the old stack, if necessary, by referencing the old 
stack-segment selector and stack pointer saved on the new process stack. 

In 64-bit mode, far RET is allowed to load a NULL SS under certain conditions. If the target mode is 64-bit mode 
and the target CPL<>3, IRET allows SS to be loaded with a NULL selector. If the called procedure itself is inter-
rupted, the NULL SS is pushed on the stack frame. On the subsequent far RET, the NULL SS on the stack acts as a 
flag to tell the processor not to load a new SS descriptor.

Figure 5-13.  Stack Switching During an Interprivilege-Level Call

Table 5-2.  64-Bit-Mode Stack Layout After Far CALL with CPL Change
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5.8.6 Returning from a Called Procedure

The RET instruction can be used to perform a near return, a far return at the same privilege level, and a far return 
to a different privilege level. This instruction is intended to execute returns from procedures that were called with 
a CALL instruction. It does not support returns from a JMP instruction, because the JMP instruction does not save a 
return instruction pointer on the stack.

A near return only transfers program control within the current code segment; therefore, the processor performs 
only a limit check. When the processor pops the return instruction pointer from the stack into the EIP register, it 
checks that the pointer does not exceed the limit of the current code segment.

On a far return at the same privilege level, the processor pops both a segment selector for the code segment being 
returned to and a return instruction pointer from the stack. Under normal conditions, these pointers should be 
valid, because they were pushed on the stack by the CALL instruction. However, the processor performs privilege 
checks to detect situations where the current procedure might have altered the pointer or failed to maintain the 
stack properly.

A far return that requires a privilege-level change is only allowed when returning to a less privileged level (that is, 
the DPL of the return code segment is numerically greater than the CPL). The processor uses the RPL field from the 
CS register value saved for the calling procedure (see Figure 5-13) to determine if a return to a numerically higher 
privilege level is required. If the RPL is numerically greater (less privileged) than the CPL, a return across privilege 
levels occurs. 

The processor performs the following steps when performing a far return to a calling procedure (see Figures 6-2 
and 6-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of the 
stack contents prior to and after a return):

1. Checks the RPL field of the saved CS register value to determine if a privilege level change is required on the
return.

2. Loads the CS and EIP registers with the values on the called procedure’s stack. (Type and privilege level checks 
are performed on the code-segment descriptor and RPL of the code- segment selector.)

3. (If the RET instruction includes a parameter count operand and the return requires a privilege level change.) 
Adds the parameter count (in bytes obtained from the RET instruction) to the current ESP register value (after 
popping the CS and EIP values), to step past the parameters on the called procedure’s stack. The resulting 
value in the ESP register points to the saved SS and ESP values for the calling procedure’s stack. (Note that the 
byte count in the RET instruction must be chosen to match the parameter count in the call gate that the calling 
procedure referenced when it made the original call multiplied by the size of the parameters.)

4. (If the return requires a privilege level change.) Loads the SS and ESP registers with the saved SS and ESP 
values and switches back to the calling procedure’s stack. The SS and ESP values for the called procedure’s 
stack are discarded. Any limit violations detected while loading the stack-segment selector or stack pointer 
cause a general-protection exception (#GP) to be generated. The new stack-segment descriptor is also 
checked for type and privilege violations.

5. (If the RET instruction includes a parameter count operand.) Adds the parameter count (in bytes obtained from 
the RET instruction) to the current ESP register value, to step past the parameters on the calling procedure’s 
stack. The resulting ESP value is not checked against the limit of the stack segment. If the ESP value is beyond 
the limit, that fact is not recognized until the next stack operation.

6. (If the return requires a privilege level change.) Checks the contents of the DS, ES, FS, and GS segment 
registers. If any of these registers refer to segments whose DPL is less than the new CPL (excluding conforming 
code segments), the segment register is loaded with a null segment selector.

See the description of the RET instruction in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2B, for a detailed description of the privilege level checks and other protection checks that 
the processor performs on a far return.

5.8.7 Performing Fast Calls to System Procedures with the
SYSENTER and SYSEXIT Instructions

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the Pentium II processors 
for the purpose of providing a fast (low overhead) mechanism for calling operating system or executive procedures. 
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SYSENTER is intended for use by user code running at privilege level 3 to access operating system or executive 
procedures running at privilege level 0. SYSEXIT is intended for use by privilege level 0 operating system or exec-
utive procedures for fast returns to privilege level 3 user code. SYSENTER can be executed from privilege levels 3, 
2, 1, or 0; SYSEXIT can only be executed from privilege level 0.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not constitute a call/return pair. 
This is because SYSENTER does not save any state information for use by SYSEXIT on a return.

The target instruction and stack pointer for these instructions are not specified through instruction operands. 
Instead, they are specified through parameters entered in MSRs and general-purpose registers. 

For SYSENTER, target fields are generated using the following sources:
• Target code segment — Reads this from IA32_SYSENTER_CS.
• Target instruction — Reads this from IA32_SYSENTER_EIP.
• Stack segment — Computed by adding 8 to the value in IA32_SYSENTER_CS.
• Stack pointer — Reads this from the IA32_SYSENTER_ESP.

For SYSEXIT, target fields are generated using the following sources:
• Target code segment — Computed by adding 16 to the value in the IA32_SYSENTER_CS.
• Target instruction — Reads this from EDX.
• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
• Stack pointer — Reads this from ECX.

The SYSENTER and SYSEXIT instructions preform “fast” calls and returns because they force the processor into a 
predefined privilege level 0 state when SYSENTER is executed and into a predefined privilege level 3 state when 
SYSEXIT is executed. By forcing predefined and consistent processor states, the number of privilege checks ordi-
narily required to perform a far call to another privilege levels are greatly reduced. Also, by predefining the target 
context state in MSRs and general-purpose registers eliminates all memory accesses except when fetching the 
target code.

Any additional state that needs to be saved to allow a return to the calling procedure must be saved explicitly by 
the calling procedure or be predefined through programming conventions.

5.8.7.1  SYSENTER and SYSEXIT Instructions in IA-32e Mode

For Intel 64 processors, the SYSENTER and SYSEXIT instructions are enhanced to allow fast system calls from user 
code running at privilege level 3 (in compatibility mode or 64-bit mode) to 64-bit executive procedures running at 
privilege level 0. IA32_SYSENTER_EIP MSR and IA32_SYSENTER_ESP MSR are expanded to hold 64-bit addresses. 
If IA-32e mode is inactive, only the lower 32-bit addresses stored in these MSRs are used. The WRMSR instruction 
ensures that the addresses stored in these MSRs are canonical. Note that, in 64-bit mode, IA32_SYSENTER_CS 
must not contain a NULL selector. 

When SYSENTER transfers control, the following fields are generated and bits set:
• Target code segment — Reads non-NULL selector from IA32_SYSENTER_CS.
• New CS attributes — CS base = 0, CS limit = FFFFFFFFH.
• Target instruction — Reads 64-bit canonical address from IA32_SYSENTER_EIP.
• Stack segment — Computed by adding 8 to the value from IA32_SYSENTER_CS.
• Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.
• New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

When the SYSEXIT instruction transfers control to 64-bit mode user code using REX.W, the following fields are 
generated and bits set:
• Target code segment — Computed by adding 32 to the value in IA32_SYSENTER_CS.
• New CS attributes — L-bit = 1 (go to 64-bit mode).
• Target instruction — Reads 64-bit canonical address in RDX.
• Stack segment — Computed by adding 40 to the value of IA32_SYSENTER_CS.
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• Stack pointer — Update RSP using 64-bit canonical address in RCX.

When SYSEXIT transfers control to compatibility mode user code when the operand size attribute is 32 bits, the 
following fields are generated and bits set:
• Target code segment — Computed by adding 16 to the value in IA32_SYSENTER_CS.
• New CS attributes — L-bit = 0 (go to compatibility mode).
• Target instruction — Fetch the target instruction from 32-bit address in EDX.
• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
• Stack pointer — Update ESP from 32-bit address in ECX.

5.8.8 Fast System Calls in 64-Bit Mode

The SYSCALL and SYSRET instructions are designed for operating systems that use a flat memory model (segmen-
tation is not used). The instructions, along with SYSENTER and SYSEXIT, are suited for IA-32e mode operation. 
SYSCALL and SYSRET, however, are not supported in compatibility mode (or in protected mode). Use CPUID to 
check if SYSCALL and SYSRET are available (CPUID.80000001H.EDX[bit 11] = 1). 

SYSCALL is intended for use by user code running at privilege level 3 to access operating system or executive 
procedures running at privilege level 0. SYSRET is intended for use by privilege level 0 operating system or execu-
tive procedures for fast returns to privilege level 3 user code. 

Stack pointers for SYSCALL/SYSRET are not specified through model specific registers. The clearing of bits in 
RFLAGS is programmable rather than fixed. SYSCALL/SYSRET save and restore the RFLAGS register. 

For SYSCALL, the processor saves RFLAGS into R11 and the RIP of the next instruction into RCX; it then gets the 
privilege-level 0 target code segment, instruction pointer, stack segment, and flags as follows:
• Target code segment — Reads a non-NULL selector from IA32_STAR[47:32].
• Target instruction pointer — Reads a 64-bit address from IA32_LSTAR. (The WRMSR instruction ensures 

that the value of the IA32_LSTAR MSR is canonical.)
• Stack segment — Computed by adding 8 to the value in IA32_STAR[47:32].
• Flags — The processor sets RFLAGS to the logical-AND of its current value with the complement of the value in 

the IA32_FMASK MSR.

When SYSRET transfers control to 64-bit mode user code using REX.W, the processor gets the privilege level 3 
target code segment, instruction pointer, stack segment, and flags as follows:
• Target code segment — Reads a non-NULL selector from IA32_STAR[63:48] + 16.
• Target instruction pointer — Copies the value in RCX into RIP.
• Stack segment — IA32_STAR[63:48] + 8.
• EFLAGS — Loaded from R11.

When SYSRET transfers control to 32-bit mode user code using a 32-bit operand size, the processor gets the priv-
ilege level 3 target code segment, instruction pointer, stack segment, and flags as follows:
• Target code segment — Reads a non-NULL selector from IA32_STAR[63:48].
• Target instruction pointer — Copies the value in ECX into EIP.
• Stack segment — IA32_STAR[63:48] + 8.
• EFLAGS — Loaded from R11.

It is the responsibility of the OS to ensure the descriptors in the GDT/LDT correspond to the selectors loaded by 
SYSCALL/SYSRET (consistent with the base, limit, and attribute values forced by the instructions). 

See Figure 5-14 for the layout of IA32_STAR, IA32_LSTAR and IA32_FMASK.
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The SYSCALL instruction does not save the stack pointer, and the SYSRET instruction does not restore it. It is likely 
that the OS system-call handler will change the stack pointer from the user stack to the OS stack. If so, it is the 
responsibility of software first to save the user stack pointer. This might be done by user code, prior to executing 
SYSCALL, or by the OS system-call handler after SYSCALL.

Because the SYSRET instruction does not modify the stack pointer, it is necessary for software to switch back to the 
user stack. The OS may load the user stack pointer (if it was saved after SYSCALL) before executing SYSRET; alter-
natively, user code may load the stack pointer (if it was saved before SYSCALL) after receiving control from 
SYSRET.

If the OS loads the stack pointer before executing SYSRET, it must ensure that the handler of any interrupt or 
exception delivered between restoring the stack pointer and successful execution of SYSRET is not invoked with the 
user stack. It can do so using approaches such as the following:
• External interrupts. The OS can prevent an external interrupt from being delivered by clearing EFLAGS.IF 

before loading the user stack pointer.
• Nonmaskable interrupts (NMIs). The OS can ensure that the NMI handler is invoked with the correct stack by 

using the interrupt stack table (IST) mechanism for gate 2 (NMI) in the IDT (see Section 6.14.5, “Interrupt 
Stack Table”).

• General-protection exceptions (#GP). The SYSRET instruction generates #GP(0) if the value of RCX is not 
canonical. The OS can address this possibility using one or more of the following approaches:

— Confirming that the value of RCX is canonical before executing SYSRET.

— Using paging to ensure that the SYSCALL instruction will never save a non-canonical value into RCX.

— Using the IST mechanism for gate 13 (#GP) in the IDT.

5.9 PRIVILEGED INSTRUCTIONS

Some of the system instructions (called “privileged instructions”) are protected from use by application programs. 
The privileged instructions control system functions (such as the loading of system registers). They can be 
executed only when the CPL is 0 (most privileged). If one of these instructions is executed when the CPL is not 0, 
a general-protection exception (#GP) is generated. The following system instructions are privileged instructions:
• LGDT — Load GDT register.
• LLDT — Load LDT register.

Figure 5-14.  MSRs Used by SYSCALL and SYSRET
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• LTR — Load task register.
• LIDT — Load IDT register.
• MOV (control registers) — Load and store control registers.
• LMSW — Load machine status word.
• CLTS — Clear task-switched flag in register CR0.
• MOV (debug registers) — Load and store debug registers.
• INVD — Invalidate cache, without writeback.
• WBINVD — Invalidate cache, with writeback.
• INVLPG —Invalidate TLB entry.
• HLT— Halt processor.
• RDMSR — Read Model-Specific Registers.
• WRMSR —Write Model-Specific Registers.
• RDPMC — Read Performance-Monitoring Counter.
• RDTSC — Read Time-Stamp Counter.

Some of the privileged instructions are available only in the more recent families of Intel 64 and IA-32 processors 
(see Section 22.13, “New Instructions In the Pentium and Later IA-32 Processors”).

The PCE and TSD flags in register CR4 (bits 4 and 2, respectively) enable the RDPMC and RDTSC instructions, 
respectively, to be executed at any CPL.

5.10 POINTER VALIDATION

When operating in protected mode, the processor validates all pointers to enforce protection between segments 
and maintain isolation between privilege levels. Pointer validation consists of the following checks:

1. Checking access rights to determine if the segment type is compatible with its use.

2. Checking read/write rights.

3. Checking if the pointer offset exceeds the segment limit.

4. Checking if the supplier of the pointer is allowed to access the segment.

5. Checking the offset alignment.

The processor automatically performs first, second, and third checks during instruction execution. Software must 
explicitly request the fourth check by issuing an ARPL instruction. The fifth check (offset alignment) is performed 
automatically at privilege level 3 if alignment checking is turned on. Offset alignment does not affect isolation of 
privilege levels.

5.10.1 Checking Access Rights (LAR Instruction)

When the processor accesses a segment using a far pointer, it performs an access rights check on the segment 
descriptor pointed to by the far pointer. This check is performed to determine if type and privilege level (DPL) of the 
segment descriptor are compatible with the operation to be performed. For example, when making a far call in 
protected mode, the segment-descriptor type must be for a conforming or nonconforming code segment, a call 
gate, a task gate, or a TSS. Then, if the call is to a nonconforming code segment, the DPL of the code segment must 
be equal to the CPL, and the RPL of the code segment’s segment selector must be less than or equal to the DPL. If 
type or privilege level are found to be incompatible, the appropriate exception is generated.

To prevent type incompatibility exceptions from being generated, software can check the access rights of a 
segment descriptor using the LAR (load access rights) instruction. The LAR instruction specifies the segment 
selector for the segment descriptor whose access rights are to be checked and a destination register. The instruc-
tion then performs the following operations:

1. Check that the segment selector is not null.
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2. Checks that the segment selector points to a segment descriptor that is within the descriptor table limit (GDT 
or LDT).

3. Checks that the segment descriptor is a code, data, LDT, call gate, task gate, or TSS segment-descriptor type.

4. If the segment is not a conforming code segment, checks if the segment descriptor is visible at the CPL (that 
is, if the CPL and the RPL of the segment selector are less than or equal to the DPL).

5. If the privilege level and type checks pass, loads the second doubleword of the segment descriptor into the 
destination register (masked by the value 00FXFF00H, where X indicates that the corresponding 4 bits are 
undefined) and sets the ZF flag in the EFLAGS register. If the segment selector is not visible at the current 
privilege level or is an invalid type for the LAR instruction, the instruction does not modify the destination 
register and clears the ZF flag.

Once loaded in the destination register, software can preform additional checks on the access rights information.

5.10.2 Checking Read/Write Rights (VERR and VERW Instructions)

When the processor accesses any code or data segment it checks the read/write privileges assigned to the 
segment to verify that the intended read or write operation is allowed. Software can check read/write rights using 
the VERR (verify for reading) and VERW (verify for writing) instructions. Both these instructions specify the 
segment selector for the segment being checked. The instructions then perform the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within the descriptor table limit (GDT 
or LDT).

3. Checks that the segment descriptor is a code or data-segment descriptor type.

4. If the segment is not a conforming code segment, checks if the segment descriptor is visible at the CPL (that 
is, if the CPL and the RPL of the segment selector are less than or equal to the DPL).

5. Checks that the segment is readable (for the VERR instruction) or writable (for the VERW) instruction.

The VERR instruction sets the ZF flag in the EFLAGS register if the segment is visible at the CPL and readable; the 
VERW sets the ZF flag if the segment is visible and writable. (Code segments are never writable.) The ZF flag is 
cleared if any of these checks fail.

5.10.3 Checking That the Pointer Offset Is Within Limits (LSL Instruction)

When the processor accesses any segment it performs a limit check to insure that the offset is within the limit of 
the segment. Software can perform this limit check using the LSL (load segment limit) instruction. Like the LAR 
instruction, the LSL instruction specifies the segment selector for the segment descriptor whose limit is to be 
checked and a destination register. The instruction then performs the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within the descriptor table limit (GDT 
or LDT).

3. Checks that the segment descriptor is a code, data, LDT, or TSS segment-descriptor type.

4. If the segment is not a conforming code segment, checks if the segment descriptor is visible at the CPL (that 
is, if the CPL and the RPL of the segment selector less than or equal to the DPL).

5. If the privilege level and type checks pass, loads the unscrambled limit (the limit scaled according to the setting 
of the G flag in the segment descriptor) into the destination register and sets the ZF flag in the EFLAGS register. 
If the segment selector is not visible at the current privilege level or is an invalid type for the LSL instruction, 
the instruction does not modify the destination register and clears the ZF flag.

Once loaded in the destination register, software can compare the segment limit with the offset of a pointer. 
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5.10.4 Checking Caller Access Privileges (ARPL Instruction)

The requestor’s privilege level (RPL) field of a segment selector is intended to carry the privilege level of a calling 
procedure (the calling procedure’s CPL) to a called procedure. The called procedure then uses the RPL to determine 
if access to a segment is allowed. The RPL is said to “weaken” the privilege level of the called procedure to that of 
the RPL. 

Operating-system procedures typically use the RPL to prevent less privileged application programs from accessing 
data located in more privileged segments. When an operating-system procedure (the called procedure) receives a 
segment selector from an application program (the calling procedure), it sets the segment selector’s RPL to the 
privilege level of the calling procedure. Then, when the operating system uses the segment selector to access its 
associated segment, the processor performs privilege checks using the calling procedure’s privilege level (stored in 
the RPL) rather than the numerically lower privilege level (the CPL) of the operating-system procedure. The RPL 
thus insures that the operating system does not access a segment on behalf of an application program unless that 
program itself has access to the segment.

Figure 5-15 shows an example of how the processor uses the RPL field. In this example, an application program 
(located in code segment A) possesses a segment selector (segment selector D1) that points to a privileged data 
structure (that is, a data structure located in a data segment D at privilege level 0). 

The application program cannot access data segment D, because it does not have sufficient privilege, but the oper-
ating system (located in code segment C) can. So, in an attempt to access data segment D, the application 
program executes a call to the operating system and passes segment selector D1 to the operating system as a 
parameter on the stack. Before passing the segment selector, the (well behaved) application program sets the RPL 
of the segment selector to its current privilege level (which in this example is 3). If the operating system attempts 
to access data segment D using segment selector D1, the processor compares the CPL (which is now 0 following 
the call), the RPL of segment selector D1, and the DPL of data segment D (which is 0). Since the RPL is greater than 
the DPL, access to data segment D is denied. The processor’s protection mechanism thus protects data segment D 
from access by the operating system, because application program’s privilege level (represented by the RPL of 
segment selector B) is greater than the DPL of data segment D.

Figure 5-15.  Use of RPL to Weaken Privilege Level of Called Procedure
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Now assume that instead of setting the RPL of the segment selector to 3, the application program sets the RPL to 
0 (segment selector D2). The operating system can now access data segment D, because its CPL and the RPL of 
segment selector D2 are both equal to the DPL of data segment D. 

Because the application program is able to change the RPL of a segment selector to any value, it can potentially use 
a procedure operating at a numerically lower privilege level to access a protected data structure. This ability to 
lower the RPL of a segment selector breaches the processor’s protection mechanism.

Because a called procedure cannot rely on the calling procedure to set the RPL correctly, operating-system proce-
dures (executing at numerically lower privilege-levels) that receive segment selectors from numerically higher 
privilege-level procedures need to test the RPL of the segment selector to determine if it is at the appropriate level. 
The ARPL (adjust requested privilege level) instruction is provided for this purpose. This instruction adjusts the RPL 
of one segment selector to match that of another segment selector.

The example in Figure 5-15 demonstrates how the ARPL instruction is intended to be used. When the operating-
system receives segment selector D2 from the application program, it uses the ARPL instruction to compare the 
RPL of the segment selector with the privilege level of the application program (represented by the code-segment 
selector pushed onto the stack). If the RPL is less than application program’s privilege level, the ARPL instruction 
changes the RPL of the segment selector to match the privilege level of the application program (segment selector 
D1). Using this instruction thus prevents a procedure running at a numerically higher privilege level from 
accessing numerically lower privilege-level (more privileged) segments by lowering the RPL of a segment selector.

Note that the privilege level of the application program can be determined by reading the RPL field of the segment 
selector for the application-program’s code segment. This segment selector is stored on the stack as part of the call 
to the operating system. The operating system can copy the segment selector from the stack into a register for 
use as an operand for the ARPL instruction.

5.10.5 Checking Alignment

When the CPL is 3, alignment of memory references can be checked by setting the AM flag in the CR0 register and 
the AC flag in the EFLAGS register. Unaligned memory references generate alignment exceptions (#AC). The 
processor does not generate alignment exceptions when operating at privilege level 0, 1, or 2. See Table 6-7 for a 
description of the alignment requirements when alignment checking is enabled.

5.11 PAGE-LEVEL PROTECTION

Page-level protection can be used alone or applied to segments. When page-level protection is used with the flat 
memory model, it allows supervisor code and data (the operating system or executive) to be protected from user 
code and data (application programs). It also allows pages containing code to be write protected. When the 
segment- and page-level protection are combined, page-level read/write protection allows more protection granu-
larity within segments.

With page-level protection (as with segment-level protection) each memory reference is checked to verify that 
protection checks are satisfied. All checks are made before the memory cycle is started, and any violation prevents 
the cycle from starting and results in a page-fault exception being generated. Because checks are performed in 
parallel with address translation, there is no performance penalty.

The processor performs two page-level protection checks:
• Restriction of addressable domain (supervisor and user modes).
• Page type (read only or read/write).

Violations of either of these checks results in a page-fault exception being generated. See Chapter 6, “Interrupt 
14—Page-Fault Exception (#PF),” for an explanation of the page-fault exception mechanism. This chapter 
describes the protection violations which lead to page-fault exceptions.
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5.11.1 Page-Protection Flags

Protection information for pages is contained in two flags in a paging-structure entry (see Chapter 4): the 
read/write flag (bit 1) and the user/supervisor flag (bit 2). The protection checks use the flags in all paging struc-
tures. 

5.11.2 Restricting Addressable Domain

The page-level protection mechanism allows restricting access to pages based on two privilege levels:
• Supervisor mode (U/S flag is 0)—(Most privileged) For the operating system or executive, other system 

software (such as device drivers), and protected system data (such as page tables).
• User mode (U/S flag is 1)—(Least privileged) For application code and data.

The segment privilege levels map to the page privilege levels as follows. If the processor is currently operating at 
a CPL of 0, 1, or 2, it is in supervisor mode; if it is operating at a CPL of 3, it is in user mode. When the processor is 
in supervisor mode, it can access all pages; when in user mode, it can access only user-level pages. (Note that the 
WP flag in control register CR0 modifies the supervisor permissions, as described in Section 5.11.3, “Page Type.”)

Note that to use the page-level protection mechanism, code and data segments must be set up for at least two 
segment-based privilege levels: level 0 for supervisor code and data segments and level 3 for user code and data 
segments. (In this model, the stacks are placed in the data segments.) To minimize the use of segments, a flat 
memory model can be used (see Section 3.2.1, “Basic Flat Model”). 

Here, the user and supervisor code and data segments all begin at address zero in the linear address space and 
overlay each other. With this arrangement, operating-system code (running at the supervisor level) and application 
code (running at the user level) can execute as if there are no segments. Protection between operating-system and 
application code and data is provided by the processor’s page-level protection mechanism. 

5.11.3 Page Type

The page-level protection mechanism recognizes two page types:
• Read-only access (R/W flag is 0).
• Read/write access (R/W flag is 1).

When the processor is in supervisor mode and the WP flag in register CR0 is clear (its state following reset initial-
ization), all pages are both readable and writable (write-protection is ignored). When the processor is in user 
mode, it can write only to user-mode pages that are read/write accessible. User-mode pages which are read/write 
or read-only are readable; supervisor-mode pages are neither readable nor writable from user mode. A page-fault 
exception is generated on any attempt to violate the protection rules.

Starting with the P6 family, Intel processors allow user-mode pages to be write-protected against supervisor-mode 
access. Setting CR0.WP = 1 enables supervisor-mode sensitivity to write protected pages. If CR0.WP = 1, read-
only pages are not writable from any privilege level. This supervisor write-protect feature is useful for imple-
menting a “copy-on-write” strategy used by some operating systems, such as UNIX*, for task creation (also called 
forking or spawning). When a new task is created, it is possible to copy the entire address space of the parent task. 
This gives the child task a complete, duplicate set of the parent's segments and pages. An alternative copy-on-
write strategy saves memory space and time by mapping the child's segments and pages to the same segments 
and pages used by the parent task. A private copy of a page gets created only when one of the tasks writes to the 
page. By using the WP flag and marking the shared pages as read-only, the supervisor can detect an attempt to 
write to a page, and can copy the page at that time.

5.11.4 Combining Protection of Both Levels of Page Tables

For any one page, the protection attributes of its page-directory entry (first-level page table) may differ from those 
of its page-table entry (second-level page table). The processor checks the protection for a page in both its page-
directory and the page-table entries. Table 5-3 shows the protection provided by the possible combinations of 
protection attributes when the WP flag is clear.
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5.11.5 Overrides to Page Protection

The following types of memory accesses are checked as if they are privilege-level 0 accesses, regardless of the CPL 
at which the processor is currently operating:
• Access to segment descriptors in the GDT, LDT, or IDT.
• Access to an inner-privilege-level stack during an inter-privilege-level call or a call to in exception or interrupt 

handler, when a change of privilege level occurs.

5.12 COMBINING PAGE AND SEGMENT PROTECTION

When paging is enabled, the processor evaluates segment protection first, then evaluates page protection. If the 
processor detects a protection violation at either the segment level or the page level, the memory access is not 
carried out and an exception is generated. If an exception is generated by segmentation, no paging exception is 
generated.

Page-level protections cannot be used to override segment-level protection. For example, a code segment is by 
definition not writable. If a code segment is paged, setting the R/W flag for the pages to read-write does not make 
the pages writable. Attempts to write into the pages will be blocked by segment-level protection checks.

Page-level protection can be used to enhance segment-level protection. For example, if a large read-write data 
segment is paged, the page-protection mechanism can be used to write-protect individual pages.

Table 5-3.  Combined Page-Directory and Page-Table Protection

Page-Directory Entry Page-Table Entry Combined Effect

Privilege Access Type Privilege Access Type Privilege Access Type

User Read-Only User Read-Only User Read-Only

User Read-Only User Read-Write User Read-Only

User Read-Write User Read-Only User Read-Only 

User Read-Write User Read-Write User Read/Write

User Read-Only Supervisor Read-Only Supervisor Read/Write*

User Read-Only Supervisor Read-Write Supervisor Read/Write*

User Read-Write Supervisor Read-Only Supervisor Read/Write*

User Read-Write Supervisor Read-Write Supervisor Read/Write

Supervisor Read-Only User Read-Only Supervisor Read/Write*

Supervisor Read-Only User Read-Write Supervisor Read/Write*

Supervisor Read-Write User Read-Only Supervisor Read/Write*

Supervisor Read-Write User Read-Write Supervisor Read/Write

Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write

NOTE:

* If CR0.WP = 1, access type is determined by the R/W flags of the page-directory and page-table entries. IF CR0.WP = 0, supervisor 
privilege permits read-write access.
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5.13 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLE BIT

In addition to page-level protection offered by the U/S and R/W flags, paging structures used with PAE paging and 
IA-32e paging (see Chapter 4) provide the execute-disable bit. This bit offers additional protection for data pages. 

An Intel 64 or IA-32 processor with the execute-disable bit capability can prevent data pages from being used by 
malicious software to execute code. This capability is provided in:
• 32-bit protected mode with PAE enabled.
• IA-32e mode.

While the execute-disable bit capability does not introduce new instructions, it does require operating systems to 
use a PAE-enabled environment and establish a page-granular protection policy for memory pages. 

If the execute-disable bit of a memory page is set, that page can be used only as data. An attempt to execute code 
from a memory page with the execute-disable bit set causes a page-fault exception. 

The execute-disable capability is supported only with PAE paging and IA-32e paging. It is not supported with 32-bit 
paging. Existing page-level protection mechanisms (see Section 5.11, “Page-Level Protection”) continue to apply 
to memory pages independent of the execute-disable setting.

5.13.1 Detecting and Enabling the Execute-Disable Capability

Software can detect the presence of the execute-disable capability using the CPUID instruction. 
CPUID.80000001H:EDX.NX [bit 20] = 1 indicates the capability is available.

If the capability is available, software can enable it by setting IA32_EFER.NXE[bit 11] to 1. IA32_EFER is available 
if CPUID.80000001H.EDX[bit 20 or 29] = 1. 

If the execute-disable capability is not available, a write to set IA32_EFER.NXE produces a #GP exception. See 
Table 5-4.

5.13.2 Execute-Disable Page Protection

The execute-disable bit in the paging structures enhances page protection for data pages. Instructions cannot be 
fetched from a memory page if IA32_EFER.NXE =1 and the execute-disable bit is set in any of the paging-structure 
entries used to map the page. Table 5-5 lists the valid usage of a page in relation to the value of execute-disable bit 
(bit 63) of the corresponding entry in each level of the paging structures. Execute-disable protection can be acti-
vated using the execute-disable bit at any level of the paging structure, irrespective of the corresponding entry in 
other levels. When execute-disable protection is not activated, the page can be used as code or data.

Table 5-4.  Extended Feature Enable MSR (IA32_EFER)

63:12 11 10 9 8 7:1 0

Reserved Execute-disable bit 
enable (NXE)

IA-32e mode 
active (LMA)

Reserved IA-32e mode 
enable (LME)

Reserved SysCall enable (SCE)
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In legacy PAE-enabled mode, Table 5-6 and Table 5-7 show the effect of setting the execute-disable bit for code 
and data pages.
 

5.13.3 Reserved Bit Checking

The processor enforces reserved bit checking in paging data structure entries. The bits being checked varies with 
paging mode and may vary with the size of physical address space. 

Table 5-8 shows the reserved bits that are checked when the execute disable bit capability is enabled (CR4.PAE = 1 
and IA32_EFER.NXE = 1). Table 5-8 and Table 5-9 show the following paging modes:
• Non-PAE 4-KByte paging: 4-KByte-page only paging (CR4.PAE = 0, CR4.PSE = 0).
• PSE36: 4-KByte and 4-MByte pages (CR4.PAE = 0, CR4.PSE = 1).
• PAE: 4-KByte and 2-MByte pages (CR4.PAE = 1, CR4.PSE = X).

The reserved bit checking depends on the physical address size supported by the implementation, which is 
reported in CPUID.80000008H. See the table note.

Table 5-5.  IA-32e Mode Page Level Protection Matrix 
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) Valid Usage

PML4 PDP PDE PTE

Bit 63 = 1 * * * Data

* Bit 63 = 1 * * Data

* * Bit 63 = 1 * Data

* * * Bit 63 = 1 Data

Bit 63 = 0 Bit 63 = 0 Bit 63 = 0 Bit 63 = 0 Data/Code

NOTES:

* Value not checked.

Table 5-6.  Legacy PAE-Enabled 4-KByte Page Level Protection Matrix 
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) Valid Usage

PDE PTE

Bit 63 = 1 * Data

* Bit 63 = 1 Data

Bit 63 = 0 Bit 63 = 0 Data/Code

NOTE:

*  Value not checked.

Table 5-7.  Legacy PAE-Enabled 2-MByte Page Level Protection 
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) Valid Usage

PDE

Bit 63 = 1 Data

Bit 63 = 0 Data/Code



5-32 Vol. 3A

PROTECTION

If execute disable bit capability is not enabled or not available, reserved bit checking in 64-bit mode includes bit 63 
and additional bits. This and reserved bit checking for legacy 32-bit paging modes are shown in Table 5-10.

 

5.13.4 Exception Handling

When execute disable bit capability is enabled (IA32_EFER.NXE = 1), conditions for a page fault to occur include 
the same conditions that apply to an Intel 64 or IA-32 processor without execute disable bit capability plus the 
following new condition: an instruction fetch to a linear address that translates to physical address in a memory 
page that has the execute-disable bit set.

Table 5-8.  IA-32e Mode Page Level Protection Matrix with Execute-Disable Bit Capability Enabled

Mode Paging Mode Check Bits

32-bit 4-KByte paging (non-PAE) No reserved bits checked

PSE36 - PDE, 4-MByte page Bit [21] 

PSE36 - PDE, 4-KByte page No reserved bits checked

PSE36 - PTE No reserved bits checked

PAE - PDP table entry Bits [63:MAXPHYADDR] & [8:5] & [2:1] *

PAE - PDE, 2-MByte page Bits [62:MAXPHYADDR] & [20:13] *

PAE - PDE, 4-KByte page Bits [62:MAXPHYADDR] *

PAE - PTE Bits [62:MAXPHYADDR] *

64-bit PML4E Bits [51:MAXPHYADDR] *

PDPTE Bits [51:MAXPHYADDR] *

PDE, 2-MByte page Bits [51:MAXPHYADDR] & [20:13] *

PDE, 4-KByte page Bits [51:MAXPHYADDR] *

PTE Bits [51:MAXPHYADDR] *

NOTES:

* MAXPHYADDR is the maximum physical address size and is indicated by CPUID.80000008H:EAX[bits 7-0].

Table 5-9.  Reserved Bit Checking WIth Execute-Disable Bit Capability Not Enabled

Mode Paging Mode Check Bits

32-bit KByte paging (non-PAE)  No reserved bits checked

PSE36 - PDE, 4-MByte page  Bit [21] 

PSE36 - PDE, 4-KByte page  No reserved bits checked

PSE36 - PTE  No reserved bits checked

PAE - PDP table entry  Bits [63:MAXPHYADDR] & [8:5] & [2:1]*

PAE - PDE, 2-MByte page  Bits [63:MAXPHYADDR] & [20:13]*

PAE - PDE, 4-KByte page  Bits [63:MAXPHYADDR]*

PAE - PTE  Bits [63:MAXPHYADDR]*

64-bit PML4E  Bit [63], bits [51:MAXPHYADDR]* 

PDPTE  Bit [63], bits [51:MAXPHYADDR]* 

PDE, 2-MByte page  Bit [63], bits [51:MAXPHYADDR] & [20:13]* 

PDE, 4-KByte page  Bit [63], bits [51:MAXPHYADDR]* 

PTE  Bit [63], bits [51:MAXPHYADDR]* 

NOTES:

* MAXPHYADDR is the maximum physical address size and is indicated by CPUID.80000008H:EAX[bits 7-0].
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An Execute Disable Bit page fault can occur at all privilege levels. It can occur on any instruction fetch, including 
(but not limited to): near branches, far branches, CALL/RET/INT/IRET execution, sequential instruction fetches, 
and task switches. The execute-disable bit in the page translation mechanism is checked only when:
• IA32_EFER.NXE = 1.
• The instruction translation look-aside buffer (ITLB) is loaded with a page that is not already present in the ITLB.
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CHAPTER 6
INTERRUPT AND EXCEPTION HANDLING

This chapter describes the interrupt and exception-handling mechanism when operating in protected mode on an 
Intel 64 or IA-32 processor. Most of the information provided here also applies to interrupt and exception mecha-
nisms used in real-address, virtual-8086 mode, and 64-bit mode. 

Chapter 20, “8086 Emulation,” describes information specific to interrupt and exception mechanisms in real-
address and virtual-8086 mode. Section 6.14, “Exception and Interrupt Handling in 64-bit Mode,” describes infor-
mation specific to interrupt and exception mechanisms in IA-32e mode and 64-bit sub-mode.

6.1 INTERRUPT AND EXCEPTION OVERVIEW

Interrupts and exceptions are events that indicate that a condition exists somewhere in the system, the processor, 
or within the currently executing program or task that requires the attention of a processor. They typically result in 
a forced transfer of execution from the currently running program or task to a special software routine or task 
called an interrupt handler or an exception handler. The action taken by a processor in response to an interrupt or 
exception is referred to as servicing or handling the interrupt or exception.

Interrupts occur at random times during the execution of a program, in response to signals from hardware. System 
hardware uses interrupts to handle events external to the processor, such as requests to service peripheral devices. 
Software can also generate interrupts by executing the INT n instruction. 

Exceptions occur when the processor detects an error condition while executing an instruction, such as division by 
zero. The processor detects a variety of error conditions including protection violations, page faults, and internal 
machine faults. The machine-check architecture of the Pentium 4, Intel Xeon, P6 family, and Pentium processors 
also permits a machine-check exception to be generated when internal hardware errors and bus errors are 
detected.

When an interrupt is received or an exception is detected, the currently running procedure or task is suspended 
while the processor executes an interrupt or exception handler. When execution of the handler is complete, the 
processor resumes execution of the interrupted procedure or task. The resumption of the interrupted procedure or 
task happens without loss of program continuity, unless recovery from an exception was not possible or an inter-
rupt caused the currently running program to be terminated.

This chapter describes the processor’s interrupt and exception-handling mechanism, when operating in protected 
mode. A description of the exceptions and the conditions that cause them to be generated is given at the end of this 
chapter.

6.2 EXCEPTION AND INTERRUPT VECTORS

To aid in handling exceptions and interrupts, each architecturally defined exception and each interrupt condition 
requiring special handling by the processor is assigned a unique identification number, called a vector number. The 
processor uses the vector number assigned to an exception or interrupt as an index into the interrupt descriptor 
table (IDT). The table provides the entry point to an exception or interrupt handler (see Section 6.10, “Interrupt 
Descriptor Table (IDT)”).

The allowable range for vector numbers is 0 to 255. Vector numbers in the range 0 through 31 are reserved by the 
Intel 64 and IA-32 architectures for architecture-defined exceptions and interrupts. Not all of the vector numbers 
in this range have a currently defined function. The unassigned vector numbers in this range are reserved. Do not 
use the reserved vector numbers. 

Vector numbers in the range 32 to 255 are designated as user-defined interrupts and are not reserved by the Intel 
64 and IA-32 architecture. These interrupts are generally assigned to external I/O devices to enable those devices 
to send interrupts to the processor through one of the external hardware interrupt mechanisms (see Section 6.3, 
“Sources of Interrupts”).
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Table 6-1 shows vector number assignments for architecturally defined exceptions and for the NMI interrupt. This 
table gives the exception type (see Section 6.5, “Exception Classifications”) and indicates whether an error code is 
saved on the stack for the exception. The source of each predefined exception and the NMI interrupt is also given.

6.3 SOURCES OF INTERRUPTS

The processor receives interrupts from two sources:
• External (hardware generated) interrupts.
• Software-generated interrupts.

6.3.1 External Interrupts

External interrupts are received through pins on the processor or through the local APIC. The primary interrupt pins 
on Pentium 4, Intel Xeon, P6 family, and Pentium processors are the LINT[1:0] pins, which are connected to the 
local APIC (see Chapter 10, “Advanced Programmable Interrupt Controller (APIC)”). When the local APIC is 
enabled, the LINT[1:0] pins can be programmed through the APIC’s local vector table (LVT) to be associated with 
any of the processor’s exception or interrupt vectors.

When the local APIC is global/hardware disabled, these pins are configured as INTR and NMI pins, respectively. 
Asserting the INTR pin signals the processor that an external interrupt has occurred. The processor reads from the 
system bus the interrupt vector number provided by an external interrupt controller, such as an 8259A (see Section 
6.2, “Exception and Interrupt Vectors”). Asserting the NMI pin signals a non-maskable interrupt (NMI), which is 
assigned to interrupt vector 2.

Table 6-1.  Protected-Mode Exceptions and Interrupts 

Vector 
No.

Mne-
monic

Description Type Error 
Code

Source

 0 #DE Divide Error Fault No DIV and IDIV instructions.

 1 #DB RESERVED Fault/ Trap No For Intel use only.

 2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.

 3 #BP Breakpoint Trap No INT 3 instruction.

 4 #OF Overflow Trap No INTO instruction.

 5 #BR BOUND Range Exceeded Fault No BOUND instruction.

 6 #UD Invalid Opcode (Undefined Opcode) Fault No UD2 instruction or reserved opcode.1

 7 #NM Device Not Available (No Math 
Coprocessor)

Fault No Floating-point or WAIT/FWAIT instruction.

 8 #DF Double Fault Abort Yes 
(zero)

Any instruction that can generate an 
exception, an NMI, or an INTR.

 9 Coprocessor Segment Overrun 
(reserved)

Fault No Floating-point instruction.2

10 #TS Invalid TSS Fault Yes Task switch or TSS access.

11 #NP Segment Not Present Fault Yes Loading segment registers or accessing 
system segments.

12 #SS Stack-Segment Fault Fault Yes Stack operations and SS register loads.

13 #GP General Protection Fault Yes Any memory reference and other 
protection checks.

14 #PF Page Fault Fault Yes Any memory reference.

15 — (Intel reserved. Do not use.) No
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The processor’s local APIC is normally connected to a system-based I/O APIC. Here, external interrupts received at 
the I/O APIC’s pins can be directed to the local APIC through the system bus (Pentium 4, Intel Core Duo, Intel Core 
2, Intel® Atom™, and Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors). The I/O 
APIC determines the vector number of the interrupt and sends this number to the local APIC. When a system 
contains multiple processors, processors can also send interrupts to one another by means of the system bus 
(Pentium 4, Intel Core Duo, Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6 family 
and Pentium processors). 

The LINT[1:0] pins are not available on the Intel486 processor and earlier Pentium processors that do not contain 
an on-chip local APIC. These processors have dedicated NMI and INTR pins. With these processors, external inter-
rupts are typically generated by a system-based interrupt controller (8259A), with the interrupts being signaled 
through the INTR pin.

Note that several other pins on the processor can cause a processor interrupt to occur. However, these interrupts 
are not handled by the interrupt and exception mechanism described in this chapter. These pins include the 
RESET#, FLUSH#, STPCLK#, SMI#, R/S#, and INIT# pins. Whether they are included on a particular processor is 
implementation dependent. Pin functions are described in the data books for the individual processors. The SMI# 
pin is described in Chapter 34, “System Management Mode.”

6.3.2 Maskable Hardware Interrupts

Any external interrupt that is delivered to the processor by means of the INTR pin or through the local APIC is called 
a maskable hardware interrupt. Maskable hardware interrupts that can be delivered through the INTR pin include 
all IA-32 architecture defined interrupt vectors from 0 through 255; those that can be delivered through the local 
APIC include interrupt vectors 16 through 255. 

The IF flag in the EFLAGS register permits all maskable hardware interrupts to be masked as a group (see Section 
6.8.1, “Masking Maskable Hardware Interrupts”). Note that when interrupts 0 through 15 are delivered through the 
local APIC, the APIC indicates the receipt of an illegal vector. 

16 #MF x87 FPU Floating-Point Error (Math 
Fault)

Fault No x87 FPU floating-point or WAIT/FWAIT 
instruction.

17 #AC Alignment Check Fault Yes 
(Zero)

Any data reference in memory.3

18 #MC Machine Check Abort No Error codes (if any) and source are model 
dependent.4

19 #XM SIMD Floating-Point Exception Fault No SSE/SSE2/SSE3 floating-point 
instructions5

20 #VE Virtualization Exception Fault No EPT violations6

21-31 — Intel reserved. Do not use.

32-255 — User Defined (Non-reserved) 
Interrupts

Interrupt External interrupt or INT n instruction.

NOTES:

1. The UD2 instruction was introduced in the Pentium Pro processor.

2. Processors after the Intel386 processor do not generate this exception.

3. This exception was introduced in the Intel486 processor.

4. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.

5. This exception was introduced in the Pentium III processor.

6. This exception can occur only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.

Table 6-1.  Protected-Mode Exceptions and Interrupts  (Contd.)
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6.3.3 Software-Generated Interrupts

The INT n instruction permits interrupts to be generated from within software by supplying an interrupt vector 
number as an operand. For example, the INT 35 instruction forces an implicit call to the interrupt handler for inter-
rupt 35. 

Any of the interrupt vectors from 0 to 255 can be used as a parameter in this instruction. If the processor’s 
predefined NMI vector is used, however, the response of the processor will not be the same as it would be from an 
NMI interrupt generated in the normal manner. If vector number 2 (the NMI vector) is used in this instruction, the 
NMI interrupt handler is called, but the processor’s NMI-handling hardware is not activated. 

Interrupts generated in software with the INT n instruction cannot be masked by the IF flag in the EFLAGS register.

6.4 SOURCES OF EXCEPTIONS

The processor receives exceptions from three sources:
• Processor-detected program-error exceptions.
• Software-generated exceptions.
• Machine-check exceptions.

6.4.1 Program-Error Exceptions

The processor generates one or more exceptions when it detects program errors during the execution in an appli-
cation program or the operating system or executive. Intel 64 and IA-32 architectures define a vector number for 
each processor-detectable exception. Exceptions are classified as faults, traps, and aborts (see Section 6.5, 
“Exception Classifications”).

6.4.2 Software-Generated Exceptions

The INTO, INT 3, and BOUND instructions permit exceptions to be generated in software. These instructions allow 
checks for exception conditions to be performed at points in the instruction stream. For example, INT 3 causes a 
breakpoint exception to be generated.

The INT n instruction can be used to emulate exceptions in software; but there is a limitation. If INT n provides a 
vector for one of the architecturally-defined exceptions, the processor generates an interrupt to the correct vector 
(to access the exception handler) but does not push an error code on the stack. This is true even if the associated 
hardware-generated exception normally produces an error code. The exception handler will still attempt to pop an 
error code from the stack while handling the exception. Because no error code was pushed, the handler will pop off 
and discard the EIP instead (in place of the missing error code). This sends the return to the wrong location.

6.4.3 Machine-Check Exceptions

The P6 family and Pentium processors provide both internal and external machine-check mechanisms for checking 
the operation of the internal chip hardware and bus transactions. These mechanisms are implementation depen-
dent. When a machine-check error is detected, the processor signals a machine-check exception (vector 18) and 
returns an error code. 

See Chapter 6, “Interrupt 18—Machine-Check Exception (#MC)” and Chapter 15, “Machine-Check Architecture,” 
for more information about the machine-check mechanism.

6.5 EXCEPTION CLASSIFICATIONS

Exceptions are classified as faults, traps, or aborts depending on the way they are reported and whether the 
instruction that caused the exception can be restarted without loss of program or task continuity.
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• Faults — A fault is an exception that can generally be corrected and that, once corrected, allows the program 
to be restarted with no loss of continuity. When a fault is reported, the processor restores the machine state to 
the state prior to the beginning of execution of the faulting instruction. The return address (saved contents of 
the CS and EIP registers) for the fault handler points to the faulting instruction, rather than to the instruction 
following the faulting instruction.

• Traps — A trap is an exception that is reported immediately following the execution of the trapping instruction. 
Traps allow execution of a program or task to be continued without loss of program continuity. The return 
address for the trap handler points to the instruction to be executed after the trapping instruction.

• Aborts — An abort is an exception that does not always report the precise location of the instruction causing 
the exception and does not allow a restart of the program or task that caused the exception. Aborts are used 
to report severe errors, such as hardware errors and inconsistent or illegal values in system tables.

NOTE

One exception subset normally reported as a fault is not restartable. Such exceptions result in loss 
of some processor state. For example, executing a POPAD instruction where the stack frame 
crosses over the end of the stack segment causes a fault to be reported. In this situation, the 
exception handler sees that the instruction pointer (CS:EIP) has been restored as if the POPAD 
instruction had not been executed. However, internal processor state (the general-purpose 
registers) will have been modified. Such cases are considered programming errors. An application 
causing this class of exceptions should be terminated by the operating system.

6.6 PROGRAM OR TASK RESTART

To allow the restarting of program or task following the handling of an exception or an interrupt, all exceptions 
(except aborts) are guaranteed to report exceptions on an instruction boundary. All interrupts are guaranteed to be 
taken on an instruction boundary.

For fault-class exceptions, the return instruction pointer (saved when the processor generates an exception) points 
to the faulting instruction. So, when a program or task is restarted following the handling of a fault, the faulting 
instruction is restarted (re-executed). Restarting the faulting instruction is commonly used to handle exceptions 
that are generated when access to an operand is blocked. The most common example of this type of fault is a page-
fault exception (#PF) that occurs when a program or task references an operand located on a page that is not in 
memory. When a page-fault exception occurs, the exception handler can load the page into memory and resume 
execution of the program or task by restarting the faulting instruction. To insure that the restart is handled trans-
parently to the currently executing program or task, the processor saves the necessary registers and stack pointers 
to allow a restart to the state prior to the execution of the faulting instruction.

For trap-class exceptions, the return instruction pointer points to the instruction following the trapping instruction. 
If a trap is detected during an instruction which transfers execution, the return instruction pointer reflects the 
transfer. For example, if a trap is detected while executing a JMP instruction, the return instruction pointer points 
to the destination of the JMP instruction, not to the next address past the JMP instruction. All trap exceptions allow 
program or task restart with no loss of continuity. For example, the overflow exception is a trap exception. Here, 
the return instruction pointer points to the instruction following the INTO instruction that tested EFLAGS.OF (over-
flow) flag. The trap handler for this exception resolves the overflow condition. Upon return from the trap handler, 
program or task execution continues at the instruction following the INTO instruction.

The abort-class exceptions do not support reliable restarting of the program or task. Abort handlers are designed 
to collect diagnostic information about the state of the processor when the abort exception occurred and then shut 
down the application and system as gracefully as possible.

Interrupts rigorously support restarting of interrupted programs and tasks without loss of continuity. The return 
instruction pointer saved for an interrupt points to the next instruction to be executed at the instruction boundary 
where the processor took the interrupt. If the instruction just executed has a repeat prefix, the interrupt is taken 
at the end of the current iteration with the registers set to execute the next iteration. 

The ability of a P6 family processor to speculatively execute instructions does not affect the taking of interrupts by 
the processor. Interrupts are taken at instruction boundaries located during the retirement phase of instruction 
execution; so they are always taken in the “in-order” instruction stream. See Chapter 2, “Intel® 64 and IA-32 
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Architectures,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more infor-
mation about the P6 family processors’ microarchitecture and its support for out-of-order instruction execution.

Note that the Pentium processor and earlier IA-32 processors also perform varying amounts of prefetching and 
preliminary decoding. With these processors as well, exceptions and interrupts are not signaled until actual “in-
order” execution of the instructions. For a given code sample, the signaling of exceptions occurs uniformly when 
the code is executed on any family of IA-32 processors (except where new exceptions or new opcodes have been 
defined).

6.7 NONMASKABLE INTERRUPT (NMI)

The nonmaskable interrupt (NMI) can be generated in either of two ways:
• External hardware asserts the NMI pin.
• The processor receives a message on the system bus (Pentium 4, Intel Core Duo, Intel Core 2, Intel Atom, and 

Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors) with a delivery mode NMI.

When the processor receives a NMI from either of these sources, the processor handles it immediately by calling 
the NMI handler pointed to by interrupt vector number 2. The processor also invokes certain hardware conditions 
to insure that no other interrupts, including NMI interrupts, are received until the NMI handler has completed 
executing (see Section 6.7.1, “Handling Multiple NMIs”).

Also, when an NMI is received from either of the above sources, it cannot be masked by the IF flag in the EFLAGS 
register.

It is possible to issue a maskable hardware interrupt (through the INTR pin) to vector 2 to invoke the NMI interrupt 
handler; however, this interrupt will not truly be an NMI interrupt. A true NMI interrupt that activates the 
processor’s NMI-handling hardware can only be delivered through one of the mechanisms listed above.

6.7.1 Handling Multiple NMIs

While an NMI interrupt handler is executing, the processor blocks delivery of subsequent NMIs until the next execu-
tion of the IRET instruction. This blocking of NMIs prevents nested execution of the NMI handler. It is recommended 
that the NMI interrupt handler be accessed through an interrupt gate to disable maskable hardware interrupts (see 
Section 6.8.1, “Masking Maskable Hardware Interrupts”). 

An execution of the IRET instruction unblocks NMIs even if the instruction causes a fault. For example, if the IRET 
instruction executes with EFLAGS.VM = 1 and IOPL of less than 3, a general-protection exception is generated (see 
Section 20.2.7, “Sensitive Instructions”). In such a case, NMIs are unmasked before the exception handler is 
invoked.

6.8 ENABLING AND DISABLING INTERRUPTS

The processor inhibits the generation of some interrupts, depending on the state of the processor and of the IF and 
RF flags in the EFLAGS register, as described in the following sections.

6.8.1 Masking Maskable Hardware Interrupts

The IF flag can disable the servicing of maskable hardware interrupts received on the processor’s INTR pin or 
through the local APIC (see Section 6.3.2, “Maskable Hardware Interrupts”). When the IF flag is clear, the 
processor inhibits interrupts delivered to the INTR pin or through the local APIC from generating an internal inter-
rupt request; when the IF flag is set, interrupts delivered to the INTR or through the local APIC pin are processed 
as normal external interrupts. 

The IF flag does not affect non-maskable interrupts (NMIs) delivered to the NMI pin or delivery mode NMI 
messages delivered through the local APIC, nor does it affect processor generated exceptions. As with the other 
flags in the EFLAGS register, the processor clears the IF flag in response to a hardware reset.



Vol. 3A 6-7

INTERRUPT AND EXCEPTION HANDLING

The fact that the group of maskable hardware interrupts includes the reserved interrupt and exception vectors 0 
through 32 can potentially cause confusion. Architecturally, when the IF flag is set, an interrupt for any of the 
vectors from 0 through 32 can be delivered to the processor through the INTR pin and any of the vectors from 16 
through 32 can be delivered through the local APIC. The processor will then generate an interrupt and call the 
interrupt or exception handler pointed to by the vector number. So for example, it is possible to invoke the page-
fault handler through the INTR pin (by means of vector 14); however, this is not a true page-fault exception. It is 
an interrupt. As with the INT n instruction (see Section 6.4.2, “Software-Generated Exceptions”), when an inter-
rupt is generated through the INTR pin to an exception vector, the processor does not push an error code on the 
stack, so the exception handler may not operate correctly.

The IF flag can be set or cleared with the STI (set interrupt-enable flag) and CLI (clear interrupt-enable flag) 
instructions, respectively. These instructions may be executed only if the CPL is equal to or less than the IOPL. A 
general-protection exception (#GP) is generated if they are executed when the CPL is greater than the IOPL. (The 
effect of the IOPL on these instructions is modified slightly when the virtual mode extension is enabled by setting 
the VME flag in control register CR4: see Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode.” 
Behavior is also impacted by the PVI flag: see Section 20.4, “Protected-Mode Virtual Interrupts.”

The IF flag is also affected by the following operations:
• The PUSHF instruction stores all flags on the stack, where they can be examined and modified. The POPF 

instruction can be used to load the modified flags back into the EFLAGS register.
• Task switches and the POPF and IRET instructions load the EFLAGS register; therefore, they can be used to 

modify the setting of the IF flag.
• When an interrupt is handled through an interrupt gate, the IF flag is automatically cleared, which disables 

maskable hardware interrupts. (If an interrupt is handled through a trap gate, the IF flag is not cleared.)

See the descriptions of the CLI, STI, PUSHF, POPF, and IRET instructions in Chapter 3, “Instruction Set Reference, 
A-M,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, and Chapter 4, “Instruc-
tion Set Reference, N-Z,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for a 
detailed description of the operations these instructions are allowed to perform on the IF flag.

6.8.2 Masking Instruction Breakpoints

The RF (resume) flag in the EFLAGS register controls the response of the processor to instruction-breakpoint condi-
tions (see the description of the RF flag in Section 2.3, “System Flags and Fields in the EFLAGS Register”). 

When set, it prevents an instruction breakpoint from generating a debug exception (#DB); when clear, instruction 
breakpoints will generate debug exceptions. The primary function of the RF flag is to prevent the processor from 
going into a debug exception loop on an instruction-breakpoint. See Section 17.3.1.1, “Instruction-Breakpoint 
Exception Condition,” for more information on the use of this flag.

6.8.3 Masking Exceptions and Interrupts When Switching Stacks

To switch to a different stack segment, software often uses a pair of instructions, for example:
MOV SS, AX

MOV ESP, StackTop

If an interrupt or exception occurs after the segment selector has been loaded into the SS register but before the 
ESP register has been loaded, these two parts of the logical address into the stack space are inconsistent for the 
duration of the interrupt or exception handler.

To prevent this situation, the processor inhibits interrupts, debug exceptions, and single-step trap exceptions after 
either a MOV to SS instruction or a POP to SS instruction, until the instruction boundary following the next instruc-
tion is reached. All other faults may still be generated. If the LSS instruction is used to modify the contents of the 
SS register (which is the recommended method of modifying this register), this problem does not occur.
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6.9 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND INTERRUPTS 

If more than one exception or interrupt is pending at an instruction boundary, the processor services them in a 
predictable order. Table 6-2 shows the priority among classes of exception and interrupt sources. 

While priority among these classes listed in Table 6-2 is consistent throughout the architecture, exceptions within 
each class are implementation-dependent and may vary from processor to processor. The processor first services 

Table 6-2.  Priority Among Simultaneous Exceptions and Interrupts

Priority Description

1 (Highest) Hardware Reset and Machine Checks

- RESET

- Machine Check

2 Trap on Task Switch

- T flag in TSS is set

3 External Hardware Interventions

- FLUSH

- STOPCLK

- SMI

- INIT

4 Traps on the Previous Instruction

- Breakpoints

- Debug Trap Exceptions (TF flag set or data/I-O breakpoint)

5 Nonmaskable Interrupts (NMI) 1

6 Maskable Hardware Interrupts 1

7 Code Breakpoint Fault

8 Faults from Fetching Next Instruction 

- Code-Segment Limit Violation

- Code Page Fault

9 Faults from Decoding the Next Instruction

- Instruction length > 15 bytes 

- Invalid Opcode 

- Coprocessor Not Available

10 (Lowest) Faults on Executing an Instruction

- Overflow

- Bound error

- Invalid TSS

- Segment Not Present

- Stack fault

- General Protection

- Data Page Fault

- Alignment Check

- x87 FPU Floating-point exception

- SIMD floating-point exception

- Virtualization exception

NOTE

1. The Intel® 486 processor and earlier processors group nonmaskable and maskable interrupts in the same priority class.
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a pending exception or interrupt from the class which has the highest priority, transferring execution to the first 
instruction of the handler. Lower priority exceptions are discarded; lower priority interrupts are held pending. 
Discarded exceptions are re-generated when the interrupt handler returns execution to the point in the program or 
task where the exceptions and/or interrupts occurred. 

6.10 INTERRUPT DESCRIPTOR TABLE (IDT)

The interrupt descriptor table (IDT) associates each exception or interrupt vector with a gate descriptor for the 
procedure or task used to service the associated exception or interrupt. Like the GDT and LDTs, the IDT is an array 
of 8-byte descriptors (in protected mode). Unlike the GDT, the first entry of the IDT may contain a descriptor. To 
form an index into the IDT, the processor scales the exception or interrupt vector by eight (the number of bytes in 
a gate descriptor). Because there are only 256 interrupt or exception vectors, the IDT need not contain more than 
256 descriptors. It can contain fewer than 256 descriptors, because descriptors are required only for the interrupt 
and exception vectors that may occur. All empty descriptor slots in the IDT should have the present flag for the 
descriptor set to 0.

The base addresses of the IDT should be aligned on an 8-byte boundary to maximize performance of cache line 
fills. The limit value is expressed in bytes and is added to the base address to get the address of the last valid byte. 
A limit value of 0 results in exactly 1 valid byte. Because IDT entries are always eight bytes long, the limit should 
always be one less than an integral multiple of eight (that is, 8N – 1).

The IDT may reside anywhere in the linear address space. As shown in Figure 6-1, the processor locates the IDT 
using the IDTR register. This register holds both a 32-bit base address and 16-bit limit for the IDT.

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store the contents of the IDTR 
register, respectively. The LIDT instruction loads the IDTR register with the base address and limit held in a 
memory operand. This instruction can be executed only when the CPL is 0. It normally is used by the initialization 
code of an operating system when creating an IDT. An operating system also may use it to change from one IDT to 
another. The SIDT instruction copies the base and limit value stored in IDTR to memory. This instruction can be 
executed at any privilege level. 

If a vector references a descriptor beyond the limit of the IDT, a general-protection exception (#GP) is generated.

NOTE

Because interrupts are delivered to the processor core only once, an incorrectly configured IDT 
could result in incomplete interrupt handling and/or the blocking of interrupt delivery. 
IA-32 architecture rules need to be followed for setting up IDTR base/limit/access fields and each 
field in the gate descriptors. The same apply for the Intel 64 architecture. This includes implicit 
referencing of the destination code segment through the GDT or LDT and accessing the stack.
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6.11 IDT DESCRIPTORS

The IDT may contain any of three kinds of gate descriptors:
• Task-gate descriptor
• Interrupt-gate descriptor
• Trap-gate descriptor

Figure 6-2 shows the formats for the task-gate, interrupt-gate, and trap-gate descriptors. The format of a task 
gate used in an IDT is the same as that of a task gate used in the GDT or an LDT (see Section 7.2.5, “Task-Gate 
Descriptor”). The task gate contains the segment selector for a TSS for an exception and/or interrupt handler task. 

Interrupt and trap gates are very similar to call gates (see Section 5.8.3, “Call Gates”). They contain a far pointer 
(segment selector and offset) that the processor uses to transfer program execution to a handler procedure in an 
exception- or interrupt-handler code segment. These gates differ in the way the processor handles the IF flag in the 
EFLAGS register (see Section 6.12.1.2, “Flag Usage By Exception- or Interrupt-Handler Procedure”).

Figure 6-1.  Relationship of the IDTR and IDT
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6.12 EXCEPTION AND INTERRUPT HANDLING

The processor handles calls to exception- and interrupt-handlers similar to the way it handles calls with a CALL 
instruction to a procedure or a task. When responding to an exception or interrupt, the processor uses the excep-
tion or interrupt vector as an index to a descriptor in the IDT. If the index points to an interrupt gate or trap gate, 
the processor calls the exception or interrupt handler in a manner similar to a CALL to a call gate (see Section 
5.8.2, “Gate Descriptors,” through Section 5.8.6, “Returning from a Called Procedure”). If index points to a task 
gate, the processor executes a task switch to the exception- or interrupt-handler task in a manner similar to a CALL 
to a task gate (see Section 7.3, “Task Switching”).

6.12.1 Exception- or Interrupt-Handler Procedures

An interrupt gate or trap gate references an exception- or interrupt-handler procedure that runs in the context of 
the currently executing task (see Figure 6-3). The segment selector for the gate points to a segment descriptor for 
an executable code segment in either the GDT or the current LDT. The offset field of the gate descriptor points to 
the beginning of the exception- or interrupt-handling procedure.

Figure 6-2.  IDT Gate Descriptors
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When the processor performs a call to the exception- or interrupt-handler procedure:
• If the handler procedure is going to be executed at a numerically lower privilege level, a stack switch occurs. 

When the stack switch occurs: 

a. The segment selector and stack pointer for the stack to be used by the handler are obtained from the TSS 
for the currently executing task. On this new stack, the processor pushes the stack segment selector and 
stack pointer of the interrupted procedure. 

b. The processor then saves the current state of the EFLAGS, CS, and EIP registers on the new stack (see 
Figures 6-4). 

c. If an exception causes an error code to be saved, it is pushed on the new stack after the EIP value.
• If the handler procedure is going to be executed at the same privilege level as the interrupted procedure:

a. The processor saves the current state of the EFLAGS, CS, and EIP registers on the current stack (see 
Figures 6-4). 

b. If an exception causes an error code to be saved, it is pushed on the current stack after the EIP value.

Figure 6-3.  Interrupt Procedure Call
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To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or IRETD) instruction. 
The IRET instruction is similar to the RET instruction except that it restores the saved flags into the EFLAGS 
register. The IOPL field of the EFLAGS register is restored only if the CPL is 0. The IF flag is changed only if the CPL 
is less than or equal to the IOPL. See Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A, for a description of the complete operation performed by the 
IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction switches back to the interrupted 
procedure’s stack on the return.

6.12.1.1  Protection of Exception- and Interrupt-Handler Procedures

The privilege-level protection for exception- and interrupt-handler procedures is similar to that used for ordinary 
procedure calls when called through a call gate (see Section 5.8.4, “Accessing a Code Segment Through a Call 
Gate”). The processor does not permit transfer of execution to an exception- or interrupt-handler procedure in a 
less privileged code segment (numerically greater privilege level) than the CPL. 

An attempt to violate this rule results in a general-protection exception (#GP). The protection mechanism for 
exception- and interrupt-handler procedures is different in the following ways:
• Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit calls to exception and 

interrupt handlers.
• The processor checks the DPL of the interrupt or trap gate only if an exception or interrupt is generated with an 

INT n, INT 3, or INTO instruction. Here, the CPL must be less than or equal to the DPL of the gate. This 
restriction prevents application programs or procedures running at privilege level 3 from using a software 
interrupt to access critical exception handlers, such as the page-fault handler, providing that those handlers are 
placed in more privileged code segments (numerically lower privilege level). For hardware-generated 
interrupts and processor-detected exceptions, the processor ignores the DPL of interrupt and trap gates.

Figure 6-4.  Stack Usage on Transfers to Interrupt and Exception-Handling Routines
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Because exceptions and interrupts generally do not occur at predictable times, these privilege rules effectively 
impose restrictions on the privilege levels at which exception and interrupt- handling procedures can run. Either of 
the following techniques can be used to avoid privilege-level violations.
• The exception or interrupt handler can be placed in a conforming code segment. This technique can be used for 

handlers that only need to access data available on the stack (for example, divide error exceptions). If the 
handler needs data from a data segment, the data segment needs to be accessible from privilege level 3, which 
would make it unprotected.

• The handler can be placed in a nonconforming code segment with privilege level 0. This handler would always 
run, regardless of the CPL that the interrupted program or task is running at.

6.12.1.2  Flag Usage By Exception- or Interrupt-Handler Procedure

When accessing an exception or interrupt handler through either an interrupt gate or a trap gate, the processor 
clears the TF flag in the EFLAGS register after it saves the contents of the EFLAGS register on the stack. (On calls 
to exception and interrupt handlers, the processor also clears the VM, RF, and NT flags in the EFLAGS register, after 
they are saved on the stack.) Clearing the TF flag prevents instruction tracing from affecting interrupt response. A 
subsequent IRET instruction restores the TF (and VM, RF, and NT) flags to the values in the saved contents of the 
EFLAGS register on the stack.

The only difference between an interrupt gate and a trap gate is the way the processor handles the IF flag in the 
EFLAGS register. When accessing an exception- or interrupt-handling procedure through an interrupt gate, the 
processor clears the IF flag to prevent other interrupts from interfering with the current interrupt handler. A subse-
quent IRET instruction restores the IF flag to its value in the saved contents of the EFLAGS register on the stack. 
Accessing a handler procedure through a trap gate does not affect the IF flag.

6.12.2 Interrupt Tasks

When an exception or interrupt handler is accessed through a task gate in the IDT, a task switch results. Handling 
an exception or interrupt with a separate task offers several advantages:
• The entire context of the interrupted program or task is saved automatically.
• A new TSS permits the handler to use a new privilege level 0 stack when handling the exception or interrupt. If 

an exception or interrupt occurs when the current privilege level 0 stack is corrupted, accessing the handler 
through a task gate can prevent a system crash by providing the handler with a new privilege level 0 stack.

• The handler can be further isolated from other tasks by giving it a separate address space. This is done by 
giving it a separate LDT.

The disadvantage of handling an interrupt with a separate task is that the amount of machine state that must be 
saved on a task switch makes it slower than using an interrupt gate, resulting in increased interrupt latency.

A task gate in the IDT references a TSS descriptor in the GDT (see Figure 6-5). A switch to the handler task is 
handled in the same manner as an ordinary task switch (see Section 7.3, “Task Switching”). The link back to the 
interrupted task is stored in the previous task link field of the handler task’s TSS. If an exception caused an error 
code to be generated, this error code is copied to the stack of the new task.

When exception- or interrupt-handler tasks are used in an operating system, there are actually two mechanisms 
that can be used to dispatch tasks: the software scheduler (part of the operating system) and the hardware sched-
uler (part of the processor's interrupt mechanism). The software scheduler needs to accommodate interrupt tasks 
that may be dispatched when interrupts are enabled.
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NOTE

Because IA-32 architecture tasks are not re-entrant, an interrupt-handler task must disable 
interrupts between the time it completes handling the interrupt and the time it executes the IRET 
instruction. This action prevents another interrupt from occurring while the interrupt task’s TSS is 
still marked busy, which would cause a general-protection (#GP) exception.

6.13 ERROR CODE

When an exception condition is related to a specific segment selector or IDT vector, the processor pushes an error 
code onto the stack of the exception handler (whether it is a procedure or task). The error code has the format 
shown in Figure 6-6. The error code resembles a segment selector; however, instead of a TI flag and RPL field, the 
error code contains 3 flags:

EXT External event (bit 0) — When set, indicates that the exception occurred during delivery of an 
event external to the program, such as an interrupt or an earlier exception.

IDT Descriptor location (bit 1) — When set, indicates that the index portion of the error code refers 
to a gate descriptor in the IDT; when clear, indicates that the index refers to a descriptor in the GDT 
or the current LDT.

TI GDT/LDT (bit 2) — Only used when the IDT flag is clear. When set, the TI flag indicates that the 
index portion of the error code refers to a segment or gate descriptor in the LDT; when clear, it indi-
cates that the index refers to a descriptor in the current GDT.

Figure 6-5.  Interrupt Task Switch
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The segment selector index field provides an index into the IDT, GDT, or current LDT to the segment or gate 
selector being referenced by the error code. In some cases the error code is null (all bits are clear except possibly 
EXT). A null error code indicates that the error was not caused by a reference to a specific segment or that a null 
segment descriptor was referenced in an operation.

The format of the error code is different for page-fault exceptions (#PF). See the “Interrupt 14—Page-Fault Excep-
tion (#PF)” section in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the default interrupt, trap, or task 
gate size). To keep the stack aligned for doubleword pushes, the upper half of the error code is reserved. Note that 
the error code is not popped when the IRET instruction is executed to return from an exception handler, so the 
handler must remove the error code before executing a return.

Error codes are not pushed on the stack for exceptions that are generated externally (with the INTR or LINT[1:0] 
pins) or the INT n instruction, even if an error code is normally produced for those exceptions.

6.14 EXCEPTION AND INTERRUPT HANDLING IN 64-BIT MODE

In 64-bit mode, interrupt and exception handling is similar to what has been described for non-64-bit modes. The 
following are the exceptions:
• All interrupt handlers pointed by the IDT are in 64-bit code (this does not apply to the SMI handler).
• The size of interrupt-stack pushes is fixed at 64 bits; and the processor uses 8-byte, zero extended stores.
• The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy modes, this push is conditional 

and based on a change in current privilege level (CPL).
• The new SS is set to NULL if there is a change in CPL.
• IRET behavior changes.
• There is a new interrupt stack-switch mechanism.
• The alignment of interrupt stack frame is different.

6.14.1 64-Bit Mode IDT

Interrupt and trap gates are 16 bytes in length to provide a 64-bit offset for the instruction pointer (RIP). The 64-
bit RIP referenced by interrupt-gate descriptors allows an interrupt service routine to be located anywhere in the 
linear-address space. See Figure 6-7.

Figure 6-6.  Error Code
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In 64-bit mode, the IDT index is formed by scaling the interrupt vector by 16. The first eight bytes (bytes 7:0) of a 
64-bit mode interrupt gate are similar but not identical to legacy 32-bit interrupt gates. The type field (bits 11:8 in 
bytes 7:4) is described in Table 3-2. The Interrupt Stack Table (IST) field (bits 4:0 in bytes 7:4) is used by the stack 
switching mechanisms described in Section 6.14.5, “Interrupt Stack Table.” Bytes 11:8 hold the upper 32 bits of 
the target RIP (interrupt segment offset) in canonical form. A general-protection exception (#GP) is generated if 
software attempts to reference an interrupt gate with a target RIP that is not in canonical form.

The target code segment referenced by the interrupt gate must be a 64-bit code segment (CS.L = 1, CS.D = 0). If 
the target is not a 64-bit code segment, a general-protection exception (#GP) is generated with the IDT vector 
number reported as the error code.

Only 64-bit interrupt and trap gates can be referenced in IA-32e mode (64-bit mode and compatibility mode). 
Legacy 32-bit interrupt or trap gate types (0EH or 0FH) are redefined in IA-32e mode as 64-bit interrupt and trap 
gate types. No 32-bit interrupt or trap gate type exists in IA-32e mode. If a reference is made to a 16-bit interrupt 
or trap gate (06H or 07H), a general-protection exception (#GP(0)) is generated.

6.14.2 64-Bit Mode Stack Frame

In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of interrupt-stack-frame pushes. 
SS:ESP is pushed only on a CPL change. In 64-bit mode, the size of interrupt stack-frame pushes is fixed at eight 
bytes. This is because only 64-bit mode gates can be referenced. 64-bit mode also pushes SS:RSP unconditionally, 
rather than only on a CPL change.

Aside from error codes, pushing SS:RSP unconditionally presents operating systems with a consistent interrupt-
stackframe size across all interrupts. Interrupt service-routine entry points that handle interrupts generated by the 
INTn instruction or external INTR# signal can push an additional error code place-holder to maintain consistency.

In legacy mode, the stack pointer may be at any alignment when an interrupt or exception causes a stack frame to 
be pushed. This causes the stack frame and succeeding pushes done by an interrupt handler to be at arbitrary 
alignments. In IA-32e mode, the RSP is aligned to a 16-byte boundary before pushing the stack frame. The stack 
frame itself is aligned on a 16-byte boundary when the interrupt handler is called. The processor can arbitrarily 
realign the new RSP on interrupts because the previous (possibly unaligned) RSP is unconditionally saved on the 
newly aligned stack. The previous RSP will be automatically restored by a subsequent IRET.

Aligning the stack permits exception and interrupt frames to be aligned on a 16-byte boundary before interrupts 
are re-enabled. This allows the stack to be formatted for optimal storage of 16-byte XMM registers, which enables 

Figure 6-7.  64-Bit IDT Gate Descriptors
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the interrupt handler to use faster 16-byte aligned loads and stores (MOVAPS rather than MOVUPS) to save and 
restore XMM registers. 

Although the RSP alignment is always performed when LMA = 1, it is only of consequence for the kernel-mode case 
where there is no stack switch or IST used. For a stack switch or IST, the OS would have presumably put suitably 
aligned RSP values in the TSS.

6.14.3 IRET in IA-32e Mode 

In IA-32e mode, IRET executes with an 8-byte operand size. There is nothing that forces this requirement. The 
stack is formatted in such a way that for actions where IRET is required, the 8-byte IRET operand size works 
correctly. 

Because interrupt stack-frame pushes are always eight bytes in IA-32e mode, an IRET must pop eight byte items 
off the stack. This is accomplished by preceding the IRET with a 64-bit operand-size prefix. The size of the pop is 
determined by the address size of the instruction. The SS/ESP/RSP size adjustment is determined by the stack size.

IRET pops SS:RSP unconditionally off the interrupt stack frame only when it is executed in 64-bit mode. In compat-
ibility mode, IRET pops SS:RSP off the stack only if there is a CPL change. This allows legacy applications to 
execute properly in compatibility mode when using the IRET instruction. 64-bit interrupt service routines that exit 
with an IRET unconditionally pop SS:RSP off of the interrupt stack frame, even if the target code segment is 
running in 64-bit mode or at CPL = 0. This is because the original interrupt always pushes SS:RSP.

In IA-32e mode, IRET is allowed to load a NULL SS under certain conditions. If the target mode is 64-bit mode and 
the target CPL <> 3, IRET allows SS to be loaded with a NULL selector. As part of the stack switch mechanism, an 
interrupt or exception sets the new SS to NULL, instead of fetching a new SS selector from the TSS and loading the 
corresponding descriptor from the GDT or LDT. The new SS selector is set to NULL in order to properly handle 
returns from subsequent nested far transfers. If the called procedure itself is interrupted, the NULL SS is pushed on 
the stack frame. On the subsequent IRET, the NULL SS on the stack acts as a flag to tell the processor not to load 
a new SS descriptor.

6.14.4 Stack Switching in IA-32e Mode 

The IA-32 architecture provides a mechanism to automatically switch stack frames in response to an interrupt. The 
64-bit extensions of Intel 64 architecture implement a modified version of the legacy stack-switching mechanism 
and an alternative stack-switching mechanism called the interrupt stack table (IST).

In IA-32 modes, the legacy IA-32 stack-switch mechanism is unchanged. In IA-32e mode, the legacy stack-switch 
mechanism is modified. When stacks are switched as part of a 64-bit mode privilege-level change (resulting from 
an interrupt), a new SS descriptor is not loaded. IA-32e mode loads only an inner-level RSP from the TSS. The new 
SS selector is forced to NULL and the SS selector’s RPL field is set to the new CPL. The new SS is set to NULL in 
order to handle nested far transfers (far CALL, INT, interrupts and exceptions). The old SS and RSP are saved on 
the new stack (Figure 6-8). On the subsequent IRET, the old SS is popped from the stack and loaded into the SS 
register.

In summary, a stack switch in IA-32e mode works like the legacy stack switch, except that a new SS selector is not 
loaded from the TSS. Instead, the new SS is forced to NULL.
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6.14.5 Interrupt Stack Table 

In IA-32e mode, a new interrupt stack table (IST) mechanism is available as an alternative to the modified legacy 
stack-switching mechanism described above. This mechanism unconditionally switches stacks when it is enabled. 
It can be enabled on an individual interrupt-vector basis using a field in the IDT entry. This means that some inter-
rupt vectors can use the modified legacy mechanism and others can use the IST mechanism. 

The IST mechanism is only available in IA-32e mode. It is part of the 64-bit mode TSS. The motivation for the IST 
mechanism is to provide a method for specific interrupts (such as NMI, double-fault, and machine-check) to always 
execute on a known good stack. In legacy mode, interrupts can use the task-switch mechanism to set up a known-
good stack by accessing the interrupt service routine through a task gate located in the IDT. However, the legacy 
task-switch mechanism is not supported in IA-32e mode. 

The IST mechanism provides up to seven IST pointers in the TSS. The pointers are referenced by an interrupt-gate 
descriptor in the interrupt-descriptor table (IDT); see Figure 6-7. The gate descriptor contains a 3-bit IST index 
field that provides an offset into the IST section of the TSS. Using the IST mechanism, the processor loads the 
value pointed by an IST pointer into the RSP.

When an interrupt occurs, the new SS selector is forced to NULL and the SS selector’s RPL field is set to the new 
CPL. The old SS, RSP, RFLAGS, CS, and RIP are pushed onto the new stack. Interrupt processing then proceeds as 
normal. If the IST index is zero, the modified legacy stack-switching mechanism described above is used.

6.15 EXCEPTION AND INTERRUPT REFERENCE

The following sections describe conditions which generate exceptions and interrupts. They are arranged in the 
order of vector numbers. The information contained in these sections are as follows:
• Exception Class — Indicates whether the exception class is a fault, trap, or abort type. Some exceptions can 

be either a fault or trap type, depending on when the error condition is detected. (This section is not applicable 
to interrupts.)

• Description — Gives a general description of the purpose of the exception or interrupt type. It also describes 
how the processor handles the exception or interrupt.

• Exception Error Code — Indicates whether an error code is saved for the exception. If one is saved, the 
contents of the error code are described. (This section is not applicable to interrupts.)

• Saved Instruction Pointer — Describes which instruction the saved (or return) instruction pointer points to. 
It also indicates whether the pointer can be used to restart a faulting instruction.

• Program State Change — Describes the effects of the exception or interrupt on the state of the currently 
running program or task and the possibilities of restarting the program or task without loss of continuity.

Figure 6-8.  IA-32e Mode Stack Usage After Privilege Level Change
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Interrupt 0—Divide Error Exception (#DE)

Exception Class Fault.

Description

Indicates the divisor operand for a DIV or IDIV instruction is 0 or that the result cannot be represented in the 
number of bits specified for the destination operand.

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany the divide error, because the exception occurs before the faulting 
instruction is executed.
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Interrupt 1—Debug Exception (#DB)

Exception Class Trap or Fault. The exception handler can distinguish between traps or faults by exam-
ining the contents of DR6 and the other debug registers.

Description

Indicates that one or more of several debug-exception conditions has been detected. Whether the exception is a 
fault or a trap depends on the condition (see Table 6-3). See Chapter 17, “Debug, Branch Profile, TSC, and Quality 
of Service,” for detailed information about the debug exceptions.

Exception Error Code

None. An exception handler can examine the debug registers to determine which condition caused the exception.

Saved Instruction Pointer

Fault — Saved contents of CS and EIP registers point to the instruction that generated the exception.

Trap — Saved contents of CS and EIP registers point to the instruction following the instruction that generated the 
exception.

Program State Change

Fault — A program-state change does not accompany the debug exception, because the exception occurs before 
the faulting instruction is executed. The program can resume normal execution upon returning from the debug 
exception handler.

Trap — A program-state change does accompany the debug exception, because the instruction or task switch being 
executed is allowed to complete before the exception is generated. However, the new state of the program is not 
corrupted and execution of the program can continue reliably.

Table 6-3.  Debug Exception Conditions and Corresponding Exception Classes

Exception Condition Exception Class

Instruction fetch breakpoint Fault

Data read or write breakpoint Trap

I/O read or write breakpoint Trap

General detect condition (in conjunction with in-circuit emulation) Fault

Single-step Trap

Task-switch Trap
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Interrupt 2—NMI Interrupt

Exception Class Not applicable.

Description

The nonmaskable interrupt (NMI) is generated externally by asserting the processor’s NMI pin or through an NMI 
request set by the I/O APIC to the local APIC. This interrupt causes the NMI interrupt handler to be called.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The processor always takes an NMI interrupt on an instruction boundary. The saved contents of CS and EIP regis-
ters point to the next instruction to be executed at the point the interrupt is taken. See Section 6.5, “Exception 
Classifications,” for more information about when the processor takes NMI interrupts.

Program State Change

The instruction executing when an NMI interrupt is received is completed before the NMI is generated. A program 
or task can thus be restarted upon returning from an interrupt handler without loss of continuity, provided the 
interrupt handler saves the state of the processor before handling the interrupt and restores the processor’s state 
prior to a return.
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Interrupt 3—Breakpoint Exception (#BP)

Exception Class Trap.

Description

Indicates that a breakpoint instruction (INT 3) was executed, causing a breakpoint trap to be generated. Typically, 
a debugger sets a breakpoint by replacing the first opcode byte of an instruction with the opcode for the INT 3 
instruction. (The INT 3 instruction is one byte long, which makes it easy to replace an opcode in a code segment in 
RAM with the breakpoint opcode.) The operating system or a debugging tool can use a data segment mapped to 
the same physical address space as the code segment to place an INT 3 instruction in places where it is desired to 
call the debugger.

With the P6 family, Pentium, Intel486, and Intel386 processors, it is more convenient to set breakpoints with the 
debug registers. (See Section 17.3.2, “Breakpoint Exception (#BP)—Interrupt Vector 3,” for information about the 
breakpoint exception.) If more breakpoints are needed beyond what the debug registers allow, the INT 3 instruc-
tion can be used. 

The breakpoint (#BP) exception can also be generated by executing the INT n instruction with an operand of 3. The 
action of this instruction (INT 3) is slightly different than that of the INT 3 instruction (see “INTn/INTO/INT3—Call 
to Interrupt Procedure” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A).

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction following the INT 3 instruction.

Program State Change

Even though the EIP points to the instruction following the breakpoint instruction, the state of the program is 
essentially unchanged because the INT 3 instruction does not affect any register or memory locations. The 
debugger can thus resume the suspended program by replacing the INT 3 instruction that caused the breakpoint 
with the original opcode and decrementing the saved contents of the EIP register. Upon returning from the 
debugger, program execution resumes with the replaced instruction.
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Interrupt 4—Overflow Exception (#OF)

Exception Class Trap.

Description

Indicates that an overflow trap occurred when an INTO instruction was executed. The INTO instruction checks the 
state of the OF flag in the EFLAGS register. If the OF flag is set, an overflow trap is generated.

Some arithmetic instructions (such as the ADD and SUB) perform both signed and unsigned arithmetic. These 
instructions set the OF and CF flags in the EFLAGS register to indicate signed overflow and unsigned overflow, 
respectively. When performing arithmetic on signed operands, the OF flag can be tested directly or the INTO 
instruction can be used. The benefit of using the INTO instruction is that if the overflow exception is detected, an 
exception handler can be called automatically to handle the overflow condition.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction following the INTO instruction.

Program State Change

Even though the EIP points to the instruction following the INTO instruction, the state of the program is essentially 
unchanged because the INTO instruction does not affect any register or memory locations. The program can thus 
resume normal execution upon returning from the overflow exception handler.
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Interrupt 5—BOUND Range Exceeded Exception (#BR)

Exception Class Fault.

Description

Indicates that a BOUND-range-exceeded fault occurred when a BOUND instruction was executed. The BOUND 
instruction checks that a signed array index is within the upper and lower bounds of an array located in memory. If 
the array index is not within the bounds of the array, a BOUND-range-exceeded fault is generated.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the BOUND instruction that generated the exception.

Program State Change

A program-state change does not accompany the bounds-check fault, because the operands for the BOUND 
instruction are not modified. Returning from the BOUND-range-exceeded exception handler causes the BOUND 
instruction to be restarted.
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Interrupt 6—Invalid Opcode Exception (#UD)

Exception Class Fault.

Description

Indicates that the processor did one of the following things:
• Attempted to execute an invalid or reserved opcode.
• Attempted to execute an instruction with an operand type that is invalid for its accompanying opcode; for 

example, the source operand for a LES instruction is not a memory location.
• Attempted to execute an MMX or SSE/SSE2/SSE3 instruction on an Intel 64 or IA-32 processor that does not 

support the MMX technology or SSE/SSE2/SSE3/SSSE3 extensions, respectively. CPUID feature flags MMX (bit 
23), SSE (bit 25), SSE2 (bit 26), SSE3 (ECX, bit 0), SSSE3 (ECX, bit 9) indicate support for these extensions.

• Attempted to execute an MMX instruction or SSE/SSE2/SSE3/SSSE3 SIMD instruction (with the exception of 
the MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, CLFLUSH, MONITOR, and MWAIT instructions) 
when the EM flag in control register CR0 is set (1).

• Attempted to execute an SSE/SE2/SSE3/SSSE3 instruction when the OSFXSR bit in control register CR4 is clear 
(0). Note this does not include the following SSE/SSE2/SSE3 instructions: MASKMOVQ, MOVNTQ, MOVNTI, 
PREFETCHh, SFENCE, LFENCE, MFENCE, and CLFLUSH; or the 64-bit versions of the PAVGB, PAVGW, PEXTRW, 
PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB, PMOVMSKB, PMULHUW, PSADBW, PSHUFW, PADDQ, PSUBQ, 
PALIGNR, PABSB, PABSD, PABSW, PHADDD, PHADDSW, PHADDW, PHSUBD, PHSUBSW, PHSUBW, 
PMADDUBSM, PMULHRSW, PSHUFB, PSIGNB, PSIGND, and PSIGNW.

• Attempted to execute an SSE/SSE2/SSE3/SSSE3 instruction on an Intel 64 or IA-32 processor that caused a 
SIMD floating-point exception when the OSXMMEXCPT bit in control register CR4 is clear (0).

• Executed a UD2 instruction. Note that even though it is the execution of the UD2 instruction that causes the 
invalid opcode exception, the saved instruction pointer will still points at the UD2 instruction.

• Detected a LOCK prefix that precedes an instruction that may not be locked or one that may be locked but the 
destination operand is not a memory location.

• Attempted to execute an LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, or ARPL instruction while in real-
address or virtual-8086 mode.

• Attempted to execute the RSM instruction when not in SMM mode.

In Intel 64 and IA-32 processors that implement out-of-order execution microarchitectures, this exception is not 
generated until an attempt is made to retire the result of executing an invalid instruction; that is, decoding and 
speculatively attempting to execute an invalid opcode does not generate this exception. Likewise, in the Pentium 
processor and earlier IA-32 processors, this exception is not generated as the result of prefetching and preliminary 
decoding of an invalid instruction. (See Section 6.5, “Exception Classifications,” for general rules for taking of inter-
rupts and exceptions.)

The opcodes D6 and F1 are undefined opcodes reserved by the Intel 64 and IA-32 architectures. These opcodes, 
even though undefined, do not generate an invalid opcode exception.

The UD2 instruction is guaranteed to generate an invalid opcode exception.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an invalid-opcode fault, because the invalid instruction is not 
executed.
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Interrupt 7—Device Not Available Exception (#NM)

Exception Class Fault.

Description

Indicates one of the following things:

The device-not-available exception is generated by either of three conditions:
• The processor executed an x87 FPU floating-point instruction while the EM flag in control register CR0 was set 

(1). See the paragraph below for the special case of the WAIT/FWAIT instruction.
• The processor executed a WAIT/FWAIT instruction while the MP and TS flags of register CR0 were set, 

regardless of the setting of the EM flag.
• The processor executed an x87 FPU, MMX, or SSE/SSE2/SSE3 instruction (with the exception of MOVNTI, 

PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, and CLFLUSH) while the TS flag in control register CR0 was set 
and the EM flag is clear.

The EM flag is set when the processor does not have an internal x87 FPU floating-point unit. A device-not-available 
exception is then generated each time an x87 FPU floating-point instruction is encountered, allowing an exception 
handler to call floating-point instruction emulation routines.

The TS flag indicates that a context switch (task switch) has occurred since the last time an x87 floating-point, 
MMX, or SSE/SSE2/SSE3 instruction was executed; but that the context of the x87 FPU, XMM, and MXCSR registers 
were not saved. When the TS flag is set and the EM flag is clear, the processor generates a device-not-available 
exception each time an x87 floating-point, MMX, or SSE/SSE2/SSE3 instruction is encountered (with the exception 
of the instructions listed above). The exception handler can then save the context of the x87 FPU, XMM, and MXCSR 
registers before it executes the instruction. See Section 2.5, “Control Registers,” for more information about the TS 
flag.

The MP flag in control register CR0 is used along with the TS flag to determine if WAIT or FWAIT instructions should 
generate a device-not-available exception. It extends the function of the TS flag to the WAIT and FWAIT instruc-
tions, giving the exception handler an opportunity to save the context of the x87 FPU before the WAIT or FWAIT 
instruction is executed. The MP flag is provided primarily for use with the Intel 286 and Intel386 DX processors. For 
programs running on the Pentium 4, Intel Xeon, P6 family, Pentium, or Intel486 DX processors, or the Intel 487 SX 
coprocessors, the MP flag should always be set; for programs running on the Intel486 SX processor, the MP flag 
should be clear. 

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point instruction or the WAIT/FWAIT instruction 
that generated the exception.

Program State Change

A program-state change does not accompany a device-not-available fault, because the instruction that generated 
the exception is not executed.

If the EM flag is set, the exception handler can then read the floating-point instruction pointed to by the EIP and 
call the appropriate emulation routine.

If the MP and TS flags are set or the TS flag alone is set, the exception handler can save the context of the x87 FPU, 
clear the TS flag, and continue execution at the interrupted floating-point or WAIT/FWAIT instruction.
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Interrupt 8—Double Fault Exception (#DF)

Exception Class Abort.

Description

Indicates that the processor detected a second exception while calling an exception handler for a prior exception. 
Normally, when the processor detects another exception while trying to call an exception handler, the two excep-
tions can be handled serially. If, however, the processor cannot handle them serially, it signals the double-fault 
exception. To determine when two faults need to be signalled as a double fault, the processor divides the excep-
tions into three classes: benign exceptions, contributory exceptions, and page faults (see Table 6-4).

Table 6-5 shows the various combinations of exception classes that cause a double fault to be generated. A double-
fault exception falls in the abort class of exceptions. The program or task cannot be restarted or resumed. The 
double-fault handler can be used to collect diagnostic information about the state of the machine and/or, when 
possible, to shut the application and/or system down gracefully or restart the system.

A segment or page fault may be encountered while prefetching instructions; however, this behavior is outside the 
domain of Table 6-5. Any further faults generated while the processor is attempting to transfer control to the appro-
priate fault handler could still lead to a double-fault sequence.

Table 6-4.  Interrupt and Exception Classes 

Class Vector Number Description

Benign Exceptions and Interrupts  1
 2
 3
 4
 5
 6
 7
9
16
17
18

19
All
All

Debug
NMI Interrupt
Breakpoint
Overflow
BOUND Range Exceeded
Invalid Opcode
Device Not Available
Coprocessor Segment Overrun
Floating-Point Error
Alignment Check
Machine Check

SIMD floating-point
INT n
INTR

Contributory Exceptions  0
10
11
12
13

Divide Error
Invalid TSS
Segment Not Present
Stack Fault
General Protection

Page Faults 14
20

Page Fault
Virtualization Exception

Table 6-5.  Conditions for Generating a Double Fault 

Second Exception

First Exception Benign Contributory Page Fault

Benign Handle Exceptions Serially Handle Exceptions Serially Handle Exceptions Serially

Contributory Handle Exceptions Serially Generate a Double Fault Handle Exceptions Serially

Page Fault Handle Exceptions Serially Generate a Double Fault Generate a Double Fault
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If another exception occurs while attempting to call the double-fault handler, the processor enters shutdown mode. 
This mode is similar to the state following execution of an HLT instruction. In this mode, the processor stops 
executing instructions until an NMI interrupt, SMI interrupt, hardware reset, or INIT# is received. The processor 
generates a special bus cycle to indicate that it has entered shutdown mode. Software designers may need to be 
aware of the response of hardware when it goes into shutdown mode. For example, hardware may turn on an indi-
cator light on the front panel, generate an NMI interrupt to record diagnostic information, invoke reset initializa-
tion, generate an INIT initialization, or generate an SMI. If any events are pending during shutdown, they will be 
handled after an wake event from shutdown is processed (for example, A20M# interrupts).

If a shutdown occurs while the processor is executing an NMI interrupt handler, then only a hardware reset can 
restart the processor. Likewise, if the shutdown occurs while executing in SMM, a hardware reset must be used to 
restart the processor.

Exception Error Code

Zero. The processor always pushes an error code of 0 onto the stack of the double-fault handler. 

Saved Instruction Pointer

The saved contents of CS and EIP registers are undefined.

Program State Change

A program-state following a double-fault exception is undefined. The program or task cannot be resumed or 
restarted. The only available action of the double-fault exception handler is to collect all possible context informa-
tion for use in diagnostics and then close the application and/or shut down or reset the processor.

If the double fault occurs when any portion of the exception handling machine state is corrupted, the handler 
cannot be invoked and the processor must be reset.
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Interrupt 9—Coprocessor Segment Overrun

Exception Class Abort. (Intel reserved; do not use. Recent IA-32 processors do not generate this 
exception.)

Description

Indicates that an Intel386 CPU-based systems with an Intel 387 math coprocessor detected a page or segment 
violation while transferring the middle portion of an Intel 387 math coprocessor operand. The P6 family, Pentium, 
and Intel486 processors do not generate this exception; instead, this condition is detected with a general protec-
tion exception (#GP), interrupt 13.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state following a coprocessor segment-overrun exception is undefined. The program or task cannot 
be resumed or restarted. The only available action of the exception handler is to save the instruction pointer and 
reinitialize the x87 FPU using the FNINIT instruction.
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Interrupt 10—Invalid TSS Exception (#TS)

Exception Class Fault.

Description

Indicates that there was an error related to a TSS. Such an error might be detected during a task switch or during 
the execution of instructions that use information from a TSS. Table 6-6 shows the conditions that cause an invalid 
TSS exception to be generated.

Table 6-6.  Invalid TSS Conditions 

Error Code Index Invalid Condition

TSS segment selector index The TSS segment limit is less than 67H for 32-bit TSS or less than 2CH for 16-bit TSS.

TSS segment selector index During an IRET task switch, the TI flag in the TSS segment selector indicates the LDT.

TSS segment selector index During an IRET task switch, the TSS segment selector exceeds descriptor table limit.

TSS segment selector index During an IRET task switch, the busy flag in the TSS descriptor indicates an inactive task.

TSS segment selector index During an IRET task switch, an attempt to load the backlink limit faults.

TSS segment selector index During an IRET task switch, the backlink is a NULL selector.

TSS segment selector index During an IRET task switch, the backlink points to a descriptor which is not a busy TSS.

TSS segment selector index The new TSS descriptor is beyond the GDT limit.

TSS segment selector index The new TSS descriptor is not writable.

TSS segment selector index Stores to the old TSS encounter a fault condition.

TSS segment selector index The old TSS descriptor is not writable for a jump or IRET task switch.

TSS segment selector index The new TSS backlink is not writable for a call or exception task switch.

TSS segment selector index The new TSS selector is null on an attempt to lock the new TSS.

TSS segment selector index The new TSS selector has the TI bit set on an attempt to lock the new TSS.

TSS segment selector index The new TSS descriptor is not an available TSS descriptor on an attempt to lock the new 
TSS.

LDT segment selector index LDT or LDT not present.

Stack segment selector index The stack segment selector exceeds descriptor table limit.

Stack segment selector index The stack segment selector is NULL.

Stack segment selector index The stack segment descriptor is a non-data segment.

Stack segment selector index The stack segment is not writable.

Stack segment selector index The stack segment DPL != CPL.

Stack segment selector index The stack segment selector RPL != CPL.

Code segment selector index The code segment selector exceeds descriptor table limit.

Code segment selector index The code segment selector is NULL.

Code segment selector index The code segment descriptor is not a code segment type.

Code segment selector index The nonconforming code segment DPL != CPL.

Code segment selector index The conforming code segment DPL is greater than CPL.

Data segment selector index The data segment selector exceeds the descriptor table limit.

Data segment selector index The data segment descriptor is not a readable code or data type.

Data segment selector index The data segment descriptor is a nonconforming code type and RPL > DPL.
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This exception can generated either in the context of the original task or in the context of the new task (see Section 
7.3, “Task Switching”). Until the processor has completely verified the presence of the new TSS, the exception is 
generated in the context of the original task. Once the existence of the new TSS is verified, the task switch is 
considered complete. Any invalid-TSS conditions detected after this point are handled in the context of the new 
task. (A task switch is considered complete when the task register is loaded with the segment selector for the new 
TSS and, if the switch is due to a procedure call or interrupt, the previous task link field of the new TSS references 
the old TSS.)

The invalid-TSS handler must be a task called using a task gate. Handling this exception inside the faulting TSS 
context is not recommended because the processor state may not be consistent. 

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the violation is pushed 
onto the stack of the exception handler. If the EXT flag is set, it indicates that the exception was caused by an event 
external to the currently running program (for example, if an external interrupt handler using a task gate 
attempted a task switch to an invalid TSS).

Saved Instruction Pointer

If the exception condition was detected before the task switch was carried out, the saved contents of CS and EIP 
registers point to the instruction that invoked the task switch. If the exception condition was detected after the task 
switch was carried out, the saved contents of CS and EIP registers point to the first instruction of the new task. 

Program State Change

The ability of the invalid-TSS handler to recover from the fault depends on the error condition than causes the fault. 
See Section 7.3, “Task Switching,” for more information on the task switch process and the possible recovery 
actions that can be taken.

If an invalid TSS exception occurs during a task switch, it can occur before or after the commit-to-new-task point. 
If it occurs before the commit point, no program state change occurs. If it occurs after the commit point (when the 
segment descriptor information for the new segment selectors have been loaded in the segment registers), the 
processor will load all the state information from the new TSS before it generates the exception. During a task 
switch, the processor first loads all the segment registers with segment selectors from the TSS, then checks their 
contents for validity. If an invalid TSS exception is discovered, the remaining segment registers are loaded but not 
checked for validity and therefore may not be usable for referencing memory. The invalid TSS handler should not 
rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing 
another exception. The exception handler should load all segment registers before trying to resume the new task; 
otherwise, general-protection exceptions (#GP) may result later under conditions that make diagnosis more diffi-

Data segment selector index The data segment descriptor is a nonconforming code type and CPL > DPL.

TSS segment selector index The TSS segment selector is NULL for LTR.

TSS segment selector index The TSS segment selector has the TI bit set for LTR.

TSS segment selector index The TSS segment descriptor/upper descriptor is beyond the GDT segment limit.

TSS segment selector index The TSS segment descriptor is not an available TSS type.

TSS segment selector index The TSS segment descriptor is an available 286 TSS type in IA-32e mode.

TSS segment selector index The TSS segment upper descriptor is not the correct type.

TSS segment selector index The TSS segment descriptor contains a non-canonical base.

TSS segment selector index There is a limit violation in attempting to load SS selector or ESP from a TSS on a call or 
exception which changes privilege levels in legacy mode.

TSS segment selector index There is a limit violation or canonical fault in attempting to load RSP or IST from a TSS on a 
call or exception which changes privilege levels in IA-32e mode.

Table 6-6.  Invalid TSS Conditions  (Contd.)

Error Code Index Invalid Condition
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cult. The Intel recommended way of dealing situation is to use a task for the invalid TSS exception handler. The 
task switch back to the interrupted task from the invalid-TSS exception-handler task will then cause the processor 
to check the registers as it loads them from the TSS.
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Interrupt 11—Segment Not Present (#NP)

Exception Class Fault.

Description

Indicates that the present flag of a segment or gate descriptor is clear. The processor can generate this exception 
during any of the following operations:
• While attempting to load CS, DS, ES, FS, or GS registers. [Detection of a not-present segment while loading the 

SS register causes a stack fault exception (#SS) to be generated.] This situation can occur while performing a 
task switch.

• While attempting to load the LDTR using an LLDT instruction. Detection of a not-present LDT while loading the 
LDTR during a task switch operation causes an invalid-TSS exception (#TS) to be generated.

• When executing the LTR instruction and the TSS is marked not present.
• While attempting to use a gate descriptor or TSS that is marked segment-not-present, but is otherwise valid.

An operating system typically uses the segment-not-present exception to implement virtual memory at the 
segment level. If the exception handler loads the segment and returns, the interrupted program or task resumes 
execution.

A not-present indication in a gate descriptor, however, does not indicate that a segment is not present (because 
gates do not correspond to segments). The operating system may use the present flag for gate descriptors to 
trigger exceptions of special significance to the operating system.

A contributory exception or page fault that subsequently referenced a not-present segment would cause a double 
fault (#DF) to be generated instead of #NP.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the violation is pushed 
onto the stack of the exception handler. If the EXT flag is set, it indicates that the exception resulted from either:
• an external event (NMI or INTR) that caused an interrupt, which subsequently referenced a not-present 

segment
• a benign exception that subsequently referenced a not-present segment 

The IDT flag is set if the error code refers to an IDT entry. This occurs when the IDT entry for an interrupt being 
serviced references a not-present gate. Such an event could be generated by an INT instruction or a hardware 
interrupt.

Saved Instruction Pointer

The saved contents of CS and EIP registers normally point to the instruction that generated the exception. If the 
exception occurred while loading segment descriptors for the segment selectors in a new TSS, the CS and EIP 
registers point to the first instruction in the new task. If the exception occurred while accessing a gate descriptor, 
the CS and EIP registers point to the instruction that invoked the access (for example a CALL instruction that refer-
ences a call gate).

Program State Change

If the segment-not-present exception occurs as the result of loading a register (CS, DS, SS, ES, FS, GS, or LDTR), 
a program-state change does accompany the exception because the register is not loaded. Recovery from this 
exception is possible by simply loading the missing segment into memory and setting the present flag in the 
segment descriptor.

If the segment-not-present exception occurs while accessing a gate descriptor, a program-state change does not 
accompany the exception. Recovery from this exception is possible merely by setting the present flag in the gate 
descriptor.

If a segment-not-present exception occurs during a task switch, it can occur before or after the commit-to-new-
task point (see Section 7.3, “Task Switching”). If it occurs before the commit point, no program state change 
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occurs. If it occurs after the commit point, the processor will load all the state information from the new TSS 
(without performing any additional limit, present, or type checks) before it generates the exception. The segment-
not-present exception handler should not rely on being able to use the segment selectors found in the CS, SS, DS, 
ES, FS, and GS registers without causing another exception. (See the Program State Change description for “Inter-
rupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information on how to handle this situation.) 
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Interrupt 12—Stack Fault Exception (#SS)

Exception Class Fault.

Description

Indicates that one of the following stack related conditions was detected:
• A limit violation is detected during an operation that refers to the SS register. Operations that can cause a limit 

violation include stack-oriented instructions such as POP, PUSH, CALL, RET, IRET, ENTER, and LEAVE, as well as 
other memory references which implicitly or explicitly use the SS register (for example, MOV AX, [BP+6] or 
MOV AX, SS:[EAX+6]). The ENTER instruction generates this exception when there is not enough stack space 
for allocating local variables.

• A not-present stack segment is detected when attempting to load the SS register. This violation can occur 
during the execution of a task switch, a CALL instruction to a different privilege level, a return to a different 
privilege level, an LSS instruction, or a MOV or POP instruction to the SS register.

• A canonical violation is detected in 64-bit mode during an operation that reference memory using the stack 
pointer register containing a non-canonical memory address.

Recovery from this fault is possible by either extending the limit of the stack segment (in the case of a limit viola-
tion) or loading the missing stack segment into memory (in the case of a not-present violation. 

In the case of a canonical violation that was caused intentionally by software, recovery is possible by loading the 
correct canonical value into RSP. Otherwise, a canonical violation of the address in RSP likely reflects some register 
corruption in the software.

Exception Error Code

If the exception is caused by a not-present stack segment or by overflow of the new stack during an inter-privilege-
level call, the error code contains a segment selector for the segment that caused the exception. Here, the excep-
tion handler can test the present flag in the segment descriptor pointed to by the segment selector to determine 
the cause of the exception. For a normal limit violation (on a stack segment already in use) the error code is set to 
0.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the exception. 
However, when the exception results from attempting to load a not-present stack segment during a task switch, 
the CS and EIP registers point to the first instruction of the new task.

Program State Change

A program-state change does not generally accompany a stack-fault exception, because the instruction that gener-
ated the fault is not executed. Here, the instruction can be restarted after the exception handler has corrected the 
stack fault condition.

If a stack fault occurs during a task switch, it occurs after the commit-to-new-task point (see Section 7.3, “Task 
Switching”). Here, the processor loads all the state information from the new TSS (without performing any addi-
tional limit, present, or type checks) before it generates the exception. The stack fault handler should thus not rely 
on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing 
another exception. The exception handler should check all segment registers before trying to resume the new 
task; otherwise, general protection faults may result later under conditions that are more difficult to diagnose. (See 
the Program State Change description for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for additional 
information on how to handle this situation.) 
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Interrupt 13—General Protection Exception (#GP)

Exception Class Fault.

Description

Indicates that the processor detected one of a class of protection violations called “general-protection violations.” 
The conditions that cause this exception to be generated comprise all the protection violations that do not cause 
other exceptions to be generated (such as, invalid-TSS, segment-not-present, stack-fault, or page-fault excep-
tions). The following conditions cause general-protection exceptions to be generated:
• Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS segments.
• Exceeding the segment limit when referencing a descriptor table (except during a task switch or a stack 

switch).
• Transferring execution to a segment that is not executable.
• Writing to a code segment or a read-only data segment.
• Reading from an execute-only code segment.
• Loading the SS register with a segment selector for a read-only segment (unless the selector comes from a TSS 

during a task switch, in which case an invalid-TSS exception occurs).
• Loading the SS, DS, ES, FS, or GS register with a segment selector for a system segment.
• Loading the DS, ES, FS, or GS register with a segment selector for an execute-only code segment.
• Loading the SS register with the segment selector of an executable segment or a null segment selector.
• Loading the CS register with a segment selector for a data segment or a null segment selector.
• Accessing memory using the DS, ES, FS, or GS register when it contains a null segment selector.
• Switching to a busy task during a call or jump to a TSS.
• Using a segment selector on a non-IRET task switch that points to a TSS descriptor in the current LDT. TSS 

descriptors can only reside in the GDT. This condition causes a #TS exception during an IRET task switch.
• Violating any of the privilege rules described in Chapter 5, “Protection.”
• Exceeding the instruction length limit of 15 bytes (this only can occur when redundant prefixes are placed 

before an instruction).
• Loading the CR0 register with a set PG flag (paging enabled) and a clear PE flag (protection disabled).
• Loading the CR0 register with a set NW flag and a clear CD flag.
• Referencing an entry in the IDT (following an interrupt or exception) that is not an interrupt, trap, or task gate.
• Attempting to access an interrupt or exception handler through an interrupt or trap gate from virtual-8086 

mode when the handler’s code segment DPL is greater than 0.
• Attempting to write a 1 into a reserved bit of CR4.
• Attempting to execute a privileged instruction when the CPL is not equal to 0 (see Section 5.9, “Privileged 

Instructions,” for a list of privileged instructions).
• Writing to a reserved bit in an MSR.
• Accessing a gate that contains a null segment selector.
• Executing the INT n instruction when the CPL is greater than the DPL of the referenced interrupt, trap, or task 

gate.
• The segment selector in a call, interrupt, or trap gate does not point to a code segment.
• The segment selector operand in the LLDT instruction is a local type (TI flag is set) or does not point to a 

segment descriptor of the LDT type.
• The segment selector operand in the LTR instruction is local or points to a TSS that is not available.
• The target code-segment selector for a call, jump, or return is null.



6-38 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

• If the PAE and/or PSE flag in control register CR4 is set and the processor detects any reserved bits in a page-
directory-pointer-table entry set to 1. These bits are checked during a write to control registers CR0, CR3, or 
CR4 that causes a reloading of the page-directory-pointer-table entry.

• Attempting to write a non-zero value into the reserved bits of the MXCSR register.
• Executing an SSE/SSE2/SSE3 instruction that attempts to access a 128-bit memory location that is not aligned 

on a 16-byte boundary when the instruction requires 16-byte alignment. This condition also applies to the stack 
segment.

A program or task can be restarted following any general-protection exception. If the exception occurs while 
attempting to call an interrupt handler, the interrupted program can be restartable, but the interrupt may be lost.

Exception Error Code

The processor pushes an error code onto the exception handler's stack. If the fault condition was detected while 
loading a segment descriptor, the error code contains a segment selector to or IDT vector number for the 
descriptor; otherwise, the error code is 0. The source of the selector in an error code may be any of the following:
• An operand of the instruction.
• A selector from a gate which is the operand of the instruction.
• A selector from a TSS involved in a task switch.
• IDT vector number.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

In general, a program-state change does not accompany a general-protection exception, because the invalid 
instruction or operation is not executed. An exception handler can be designed to correct all of the conditions that 
cause general-protection exceptions and restart the program or task without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or after the commit-to-new-task 
point (see Section 7.3, “Task Switching”). If it occurs before the commit point, no program state change occurs. If 
it occurs after the commit point, the processor will load all the state information from the new TSS (without 
performing any additional limit, present, or type checks) before it generates the exception. The general-protection 
exception handler should thus not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, 
and GS registers without causing another exception. (See the Program State Change description for “Interrupt 
10—Invalid TSS Exception (#TS)” in this chapter for additional information on how to handle this situation.)

General Protection Exception in 64-bit Mode

The following conditions cause general-protection exceptions in 64-bit mode:
• If the memory address is in a non-canonical form.
• If a segment descriptor memory address is in non-canonical form.
• If the target offset in a destination operand of a call or jmp is in a non-canonical form.
• If a code segment or 64-bit call gate overlaps non-canonical space.
• If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the L-bit set and the 

D-bit clear.
• If the EFLAGS.NT bit is set in IRET.
• If the stack segment selector of IRET is null when going back to compatibility mode.
• If the stack segment selector of IRET is null going back to CPL3 and 64-bit mode.
• If a null stack segment selector RPL of IRET is not equal to CPL going back to non-CPL3 and 64-bit mode.
• If the proposed new code segment descriptor of IRET has both the D-bit and the L-bit set.
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• If the segment descriptor pointed to by the segment selector in the destination operand is a code segment and 
it has both the D-bit and the L-bit set.

• If the segment descriptor from a 64-bit call gate is in non-canonical space.
• If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-gate.
• If the upper type field of a 64-bit call gate is not 0x0.
• If an attempt is made to load a null selector in the SS register in compatibility mode.
• If an attempt is made to load null selector in the SS register in CPL3 and 64-bit mode.
• If an attempt is made to load a null selector in the SS register in non-CPL3 and 64-bit mode where RPL is not 

equal to CPL.
• If an attempt is made to clear CR0.PG while IA-32e mode is enabled.
• If an attempt is made to set a reserved bit in CR3, CR4 or CR8.
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Interrupt 14—Page-Fault Exception (#PF)

Exception Class Fault.

Description

Indicates that, with paging enabled (the PG flag in the CR0 register is set), the processor detected one of the 
following conditions while using the page-translation mechanism to translate a linear address to a physical 
address:
• The P (present) flag in a page-directory or page-table entry needed for the address translation is clear, 

indicating that a page table or the page containing the operand is not present in physical memory.
• The procedure does not have sufficient privilege to access the indicated page (that is, a procedure running in 

user mode attempts to access a supervisor-mode page).
• Code running in user mode attempts to write to a read-only page. In the Intel486 and later processors, if the 

WP flag is set in CR0, the page fault will also be triggered by code running in supervisor mode that tries to write 
to a read-only page.

• An instruction fetch to a linear address that translates to a physical address in a memory page with the 
execute-disable bit set (for information about the execute-disable bit, see Chapter 4, “Paging”).

• One or more reserved bits in page directory entry are set to 1. See description below of RSVD error code flag.

The exception handler can recover from page-not-present conditions and restart the program or task without any 
loss of program continuity. It can also restart the program or task after a privilege violation, but the problem that 
caused the privilege violation may be uncorrectable.

See also: Section 4.7, “Page-Fault Exceptions.”

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of information to aid in diag-
nosing the exception and recovering from it:
• An error code on the stack. The error code for a page fault has a format different from that for other exceptions 

(see Figure 6-9). The error code tells the exception handler four things:

— The P flag indicates whether the exception was due to a not-present page (0) or to either an access rights 
violation or the use of a reserved bit (1).

— The W/R flag indicates whether the memory access that caused the exception was a read (0) or write (1).

— The U/S flag indicates whether the processor was executing at user mode (1) or supervisor mode (0) at the 
time of the exception.

— The RSVD flag indicates that the processor detected 1s in reserved bits of the page directory, when the PSE 
or PAE flags in control register CR4 are set to 1. Note: 

• The PSE flag is only available in recent Intel 64 and IA-32 processors including the Pentium 4, Intel 
Xeon, P6 family, and Pentium processors. 

• The PAE flag is only available on recent Intel 64 and IA-32 processors including the Pentium 4, Intel 
Xeon, and P6 family processors. 

• In earlier IA-32 processors, the bit position of the RSVD flag is reserved and is cleared to 0.

— The I/D flag indicates whether the exception was caused by an instruction fetch. This flag is reserved and 
cleared to 0 if CR4.SMEP = 0 (supervisor-mode execution prevention is either unsupported or not enabled) 
and either CR4.PAE = 0 (32-bit paging is in use) or IA32_EFER.NXE= 0 (the execute-disable feature is 
either unsupported or not enabled). See Section 4.7, “Page-Fault Exceptions,” for details. 
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• The contents of the CR2 register. The processor loads the CR2 register with the 32-bit linear address that 
generated the exception. The page-fault handler can use this address to locate the corresponding page 
directory and page-table entries. Another page fault can potentially occur during execution of the page-fault 
handler; the handler should save the contents of the CR2 register before a second page fault can occur.1 If a 
page fault is caused by a page-level protection violation, the access flag in the page-directory entry is set when 
the fault occurs. The behavior of IA-32 processors regarding the access flag in the corresponding page-table 
entry is model specific and not architecturally defined.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the exception. If the 
page-fault exception occurred during a task switch, the CS and EIP registers may point to the first instruction of the 
new task (as described in the following “Program State Change” section).

Program State Change

A program-state change does not normally accompany a page-fault exception, because the instruction that causes 
the exception to be generated is not executed. After the page-fault exception handler has corrected the violation 
(for example, loaded the missing page into memory), execution of the program or task can be resumed.

When a page-fault exception is generated during a task switch, the program-state may change, as follows. During 
a task switch, a page-fault exception can occur during any of following operations:
• While writing the state of the original task into the TSS of that task.
• While reading the GDT to locate the TSS descriptor of the new task.
• While reading the TSS of the new task.
• While reading segment descriptors associated with segment selectors from the new task.
• While reading the LDT of the new task to verify the segment registers stored in the new TSS.

In the last two cases the exception occurs in the context of the new task. The instruction pointer refers to the first 
instruction of the new task, not to the instruction which caused the task switch (or the last instruction to be 

 

Figure 6-9.  Page-Fault Error Code

1. Processors update CR2 whenever a page fault is detected. If a second page fault occurs while an earlier page fault is being deliv-
ered, the faulting linear address of the second fault will overwrite the contents of CR2 (replacing the previous address). These 
updates to CR2 occur even if the page fault results in a double fault or occurs during the delivery of a double fault.
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executed, in the case of an interrupt). If the design of the operating system permits page faults to occur during 
task-switches, the page-fault handler should be called through a task gate.

If a page fault occurs during a task switch, the processor will load all the state information from the new TSS 
(without performing any additional limit, present, or type checks) before it generates the exception. The page-fault 
handler should thus not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS 
registers without causing another exception. (See the Program State Change description for “Interrupt 10—Invalid 
TSS Exception (#TS)” in this chapter for additional information on how to handle this situation.) 

Additional Exception-Handling Information

Special care should be taken to ensure that an exception that occurs during an explicit stack switch does not cause 
the processor to use an invalid stack pointer (SS:ESP). Software written for 16-bit IA-32 processors often use a 
pair of instructions to change to a new stack, for example:

MOV SS, AX

MOV SP, StackTop

When executing this code on one of the 32-bit IA-32 processors, it is possible to get a page fault, general-protec-
tion fault (#GP), or alignment check fault (#AC) after the segment selector has been loaded into the SS register 
but before the ESP register has been loaded. At this point, the two parts of the stack pointer (SS and ESP) are 
inconsistent. The new stack segment is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the exception handler switches to a well defined stack 
(that is, the handler is a task or a more privileged procedure). However, if the exception handler is called at the 
same privilege level and from the same task, the processor will attempt to use the inconsistent stack pointer.

In systems that handle page-fault, general-protection, or alignment check exceptions within the faulting task (with 
trap or interrupt gates), software executing at the same privilege level as the exception handler should initialize a 
new stack by using the LSS instruction rather than a pair of MOV instructions, as described earlier in this note. 
When the exception handler is running at privilege level 0 (the normal case), the problem is limited to procedures 
or tasks that run at privilege level 0, typically the kernel of the operating system.
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Interrupt 16—x87 FPU Floating-Point Error (#MF)

Exception Class Fault.

Description

Indicates that the x87 FPU has detected a floating-point error. The NE flag in the register CR0 must be set for an 
interrupt 16 (floating-point error exception) to be generated. (See Section 2.5, “Control Registers,” for a detailed 
description of the NE flag.)

NOTE

SIMD floating-point exceptions (#XM) are signaled through interrupt 19. 

While executing x87 FPU instructions, the x87 FPU detects and reports six types of floating-point error conditions:
• Invalid operation (#I)

— Stack overflow or underflow (#IS)

— Invalid arithmetic operation (#IA)
• Divide-by-zero (#Z)
• Denormalized operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (precision) (#P)

Each of these error conditions represents an x87 FPU exception type, and for each of exception type, the x87 FPU 
provides a flag in the x87 FPU status register and a mask bit in the x87 FPU control register. If the x87 FPU detects 
a floating-point error and the mask bit for the exception type is set, the x87 FPU handles the exception automati-
cally by generating a predefined (default) response and continuing program execution. The default responses have 
been designed to provide a reasonable result for most floating-point applications.

If the mask for the exception is clear and the NE flag in register CR0 is set, the x87 FPU does the following:

1. Sets the necessary flag in the FPU status register.

2. Waits until the next “waiting” x87 FPU instruction or WAIT/FWAIT instruction is encountered in the program’s 
instruction stream.

3. Generates an internal error signal that cause the processor to generate a floating-point exception (#MF).

Prior to executing a waiting x87 FPU instruction or the WAIT/FWAIT instruction, the x87 FPU checks for pending 
x87 FPU floating-point exceptions (as described in step 2 above). Pending x87 FPU floating-point exceptions are 
ignored for “non-waiting” x87 FPU instructions, which include the FNINIT, FNCLEX, FNSTSW, FNSTSW AX, FNSTCW, 
FNSTENV, and FNSAVE instructions. Pending x87 FPU exceptions are also ignored when executing the state 
management instructions FXSAVE and FXRSTOR.

All of the x87 FPU floating-point error conditions can be recovered from. The x87 FPU floating-point-error exception 
handler can determine the error condition that caused the exception from the settings of the flags in the x87 FPU 
status word. See “Software Exception Handling” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for more information on handling x87 FPU floating-point exceptions.

Exception Error Code

None. The x87 FPU provides its own error information.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point or WAIT/FWAIT instruction that was about to 
be executed when the floating-point-error exception was generated. This is not the faulting instruction in which the 
error condition was detected. The address of the faulting instruction is contained in the x87 FPU instruction pointer 
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register. See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1, for more information about information the FPU saves for use in 
handling floating-point-error exceptions.

Program State Change

A program-state change generally accompanies an x87 FPU floating-point exception because the handling of the 
exception is delayed until the next waiting x87 FPU floating-point or WAIT/FWAIT instruction following the faulting 
instruction. The x87 FPU, however, saves sufficient information about the error condition to allow recovery from the 
error and re-execution of the faulting instruction if needed.

In situations where non- x87 FPU floating-point instructions depend on the results of an x87 FPU floating-point 
instruction, a WAIT or FWAIT instruction can be inserted in front of a dependent instruction to force a pending x87 
FPU floating-point exception to be handled before the dependent instruction is executed. See “x87 FPU Exception 
Synchronization” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
for more information about synchronization of x87 floating-point-error exceptions.
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Interrupt 17—Alignment Check Exception (#AC)

Exception Class Fault.

Description

Indicates that the processor detected an unaligned memory operand when alignment checking was enabled. Align-
ment checks are only carried out in data (or stack) accesses (not in code fetches or system segment accesses). An 
example of an alignment-check violation is a word stored at an odd byte address, or a doubleword stored at an 
address that is not an integer multiple of 4. Table 6-7 lists the alignment requirements various data types recog-
nized by the processor.

Note that the alignment check exception (#AC) is generated only for data types that must be aligned on word, 
doubleword, and quadword boundaries. A general-protection exception (#GP) is generated 128-bit data types that 
are not aligned on a 16-byte boundary.

To enable alignment checking, the following conditions must be true:
• AM flag in CR0 register is set.
• AC flag in the EFLAGS register is set.
• The CPL is 3 (protected mode or virtual-8086 mode).

Alignment-check exceptions (#AC) are generated only when operating at privilege level 3 (user mode). Memory 
references that default to privilege level 0, such as segment descriptor loads, do not generate alignment-check 
exceptions, even when caused by a memory reference made from privilege level 3.

Storing the contents of the GDTR, IDTR, LDTR, or task register in memory while at privilege level 3 can generate 
an alignment-check exception. Although application programs do not normally store these registers, the fault can 
be avoided by aligning the information stored on an even word-address.

The FXSAVE/XSAVE and FXRSTOR/XRSTOR instructions save and restore a 512-byte data structure, the first byte 
of which must be aligned on a 16-byte boundary. If the alignment-check exception (#AC) is enabled when 
executing these instructions (and CPL is 3), a misaligned memory operand can cause either an alignment-check 
exception or a general-protection exception (#GP) depending on the processor implementation (see “FXSAVE-
Save x87 FPU, MMX, SSE, and SSE2 State” and “FXRSTOR-Restore x87 FPU, MMX, SSE, and SSE2 State” in 

Table 6-7.  Alignment Requirements by Data Type

Data Type Address Must Be Divisible By

Word 2

Doubleword 4

Single-precision floating-point (32-bits) 4

Double-precision floating-point (64-bits) 8

Double extended-precision floating-point (80-bits) 8

Quadword 8

Double quadword 16

Segment Selector 2

32-bit Far Pointer 2

48-bit Far Pointer 4

32-bit Pointer 4

GDTR, IDTR, LDTR, or Task Register Contents 4

FSTENV/FLDENV Save Area 4 or 2, depending on operand size

FSAVE/FRSTOR Save Area 4 or 2, depending on operand size

Bit String 2 or 4 depending on the operand-size attribute.
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Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A; see “XSAVE—Save 
Processor Extended States” and “XRSTOR—Restore Processor Extended States” in Chapter 4 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2B).

The MOVDQU, MOVUPS, and MOVUPD instructions perform 128-bit unaligned loads or stores. The LDDQU instruc-
tions loads 128-bit unaligned data.They do not generate general-protection exceptions (#GP) when operands are 
not aligned on a 16-byte boundary. If alignment checking is enabled, alignment-check exceptions (#AC) may or 
may not be generated depending on processor implementation when data addresses are not aligned on an 8-byte 
boundary.

FSAVE and FRSTOR instructions can generate unaligned references, which can cause alignment-check faults. These 
instructions are rarely needed by application programs. 

Exception Error Code

Yes. The error code is null; all bits are clear except possibly bit 0 — EXT; see Section 6.13. EXT is set if the #AC is 
recognized during delivery of an event other than a software interrupt (see “INT n/INTO/INT 3—Call to Interrupt 
Procedure” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an alignment-check fault, because the instruction is not executed.
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Interrupt 18—Machine-Check Exception (#MC)

Exception Class Abort.

Description

Indicates that the processor detected an internal machine error or a bus error, or that an external agent detected 
a bus error. The machine-check exception is model-specific, available on the Pentium and later generations of 
processors. The implementation of the machine-check exception is different between different processor families, 
and these implementations may not be compatible with future Intel 64 or IA-32 processors. (Use the CPUID 
instruction to determine whether this feature is present.)

Bus errors detected by external agents are signaled to the processor on dedicated pins: the BINIT# and MCERR# 
pins on the Pentium 4, Intel Xeon, and P6 family processors and the BUSCHK# pin on the Pentium processor. When 
one of these pins is enabled, asserting the pin causes error information to be loaded into machine-check registers 
and a machine-check exception is generated.

The machine-check exception and machine-check architecture are discussed in detail in Chapter 15, “Machine-
Check Architecture.” Also, see the data books for the individual processors for processor-specific hardware infor-
mation. 

Exception Error Code

None. Error information is provide by machine-check MSRs.

Saved Instruction Pointer

For the Pentium 4 and Intel Xeon processors, the saved contents of extended machine-check state registers are 
directly associated with the error that caused the machine-check exception to be generated (see Section 15.3.1.2, 
“IA32_MCG_STATUS MSR,” and Section 15.3.2.6, “IA32_MCG Extended Machine Check State MSRs”).

For the P6 family processors, if the EIPV flag in the MCG_STATUS MSR is set, the saved contents of CS and EIP 
registers are directly associated with the error that caused the machine-check exception to be generated; if the 
flag is clear, the saved instruction pointer may not be associated with the error (see Section 15.3.1.2, 
“IA32_MCG_STATUS MSR”).

For the Pentium processor, contents of the CS and EIP registers may not be associated with the error.

Program State Change

The machine-check mechanism is enabled by setting the MCE flag in control register CR4. 

For the Pentium 4, Intel Xeon, P6 family, and Pentium processors, a program-state change always accompanies a 
machine-check exception, and an abort class exception is generated. For abort exceptions, information about the 
exception can be collected from the machine-check MSRs, but the program cannot generally be restarted. 

If the machine-check mechanism is not enabled (the MCE flag in control register CR4 is clear), a machine-check 
exception causes the processor to enter the shutdown state.
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Interrupt 19—SIMD Floating-Point Exception (#XM)

Exception Class Fault.

Description

Indicates the processor has detected an SSE/SSE2/SSE3 SIMD floating-point exception. The appropriate status 
flag in the MXCSR register must be set and the particular exception unmasked for this interrupt to be generated.

There are six classes of numeric exception conditions that can occur while executing an SSE/ SSE2/SSE3 SIMD 
floating-point instruction:
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

The invalid operation, divide-by-zero, and denormal-operand exceptions are pre-computation exceptions; that is, 
they are detected before any arithmetic operation occurs. The numeric underflow, numeric overflow, and inexact 
result exceptions are post-computational exceptions.

See “SIMD Floating-Point Exceptions” in Chapter 11 of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, for additional information about the SIMD floating-point exception classes.

When a SIMD floating-point exception occurs, the processor does either of the following things:
• It handles the exception automatically by producing the most reasonable result and allowing program 

execution to continue undisturbed. This is the response to masked exceptions.
• It generates a SIMD floating-point exception, which in turn invokes a software exception handler. This is the 

response to unmasked exceptions.

Each of the six SIMD floating-point exception conditions has a corresponding flag bit and mask bit in the MXCSR 
register. If an exception is masked (the corresponding mask bit in the MXCSR register is set), the processor takes 
an appropriate automatic default action and continues with the computation. If the exception is unmasked (the 
corresponding mask bit is clear) and the operating system supports SIMD floating-point exceptions (the OSXM-
MEXCPT flag in control register CR4 is set), a software exception handler is invoked through a SIMD floating-point 
exception. If the exception is unmasked and the OSXMMEXCPT bit is clear (indicating that the operating system 
does not support unmasked SIMD floating-point exceptions), an invalid opcode exception (#UD) is signaled instead 
of a SIMD floating-point exception.

Note that because SIMD floating-point exceptions are precise and occur immediately, the situation does not arise 
where an x87 FPU instruction, a WAIT/FWAIT instruction, or another SSE/SSE2/SSE3 instruction will catch a 
pending unmasked SIMD floating-point exception.

In situations where a SIMD floating-point exception occurred while the SIMD floating-point exceptions were 
masked (causing the corresponding exception flag to be set) and the SIMD floating-point exception was subse-
quently unmasked, then no exception is generated when the exception is unmasked.

When SSE/SSE2/SSE3 SIMD floating-point instructions operate on packed operands (made up of two or four sub-
operands), multiple SIMD floating-point exception conditions may be detected. If no more than one exception 
condition is detected for one or more sets of sub-operands, the exception flags are set for each exception condition 
detected. For example, an invalid exception detected for one sub-operand will not prevent the reporting of a divide-
by-zero exception for another sub-operand. However, when two or more exceptions conditions are generated for 
one sub-operand, only one exception condition is reported, according to the precedences shown in Table 6-8. This 
exception precedence sometimes results in the higher priority exception condition being reported and the lower 
priority exception conditions being ignored.
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Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the SSE/SSE2/SSE3 instruction that was executed when the 
SIMD floating-point exception was generated. This is the faulting instruction in which the error condition was 
detected.

Program State Change

A program-state change does not accompany a SIMD floating-point exception because the handling of the excep-
tion is immediate unless the particular exception is masked. The available state information is often sufficient to 
allow recovery from the error and re-execution of the faulting instruction if needed.

Table 6-8.  SIMD Floating-Point Exceptions Priority

Priority Description

1 (Highest) Invalid operation exception due to SNaN operand (or any NaN operand for maximum, minimum, or certain compare and 
convert operations).

2 QNaN operand1.

3 Any other invalid operation exception not mentioned above or a divide-by-zero exception2.

4 Denormal operand exception2.

5 Numeric overflow and underflow exceptions possibly in conjunction with the inexact result exception2.

6 (Lowest) Inexact result exception.

NOTES:

1. Though a QNaN this is not an exception, the handling of a QNaN operand has precedence over lower priority exceptions. For exam-
ple, a QNaN divided by zero results in a QNaN, not a divide-by-zero- exception.

2. If masked, then instruction execution continues, and a lower priority exception can occur as well.
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Interrupt 20—Virtualization Exception (#VE)

Exception Class Fault.

Description

Indicates that the processor detected an EPT violation in VMX non-root operation. Not all EPT violations cause virtu-
alization exceptions. See Section 25.5.6.2 for details.

The exception handler can recover from EPT violations and restart the program or task without any loss of program 
continuity. In some cases, however, the problem that caused the EPT violation may be uncorrectable.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the exception.

Program State Change

A program-state change does not normally accompany a virtualization exception, because the instruction that 
causes the exception to be generated is not executed. After the virtualization exception handler has corrected the 
violation (for example, by executing the EPTP-switching VM function), execution of the program or task can be 
resumed.

Additional Exception-Handling Information

The processor saves information about virtualization exceptions in the virtualization-exception information area. 
See Section 25.5.6.2 for details.
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Interrupts 32 to 255—User Defined Interrupts

Exception Class Not applicable.

Description

Indicates that the processor did one of the following things:
• Executed an INT n instruction where the instruction operand is one of the vector numbers from 32 through 255.
• Responded to an interrupt request at the INTR pin or from the local APIC when the interrupt vector number 

associated with the request is from 32 through 255.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that follows the INT n instruction or instruction 
following the instruction on which the INTR signal occurred.

Program State Change

A program-state change does not accompany interrupts generated by the INT n instruction or the INTR signal. The 
INT n instruction generates the interrupt within the instruction stream. When the processor receives an INTR 
signal, it commits all state changes for all previous instructions before it responds to the interrupt; so, program 
execution can resume upon returning from the interrupt handler.
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CHAPTER 7
TASK MANAGEMENT

This chapter describes the IA-32 architecture’s task management facilities. These facilities are only available when 
the processor is running in protected mode.

This chapter focuses on 32-bit tasks and the 32-bit TSS structure. For information on 16-bit tasks and the 16-bit 
TSS structure, see Section 7.6, “16-Bit Task-State Segment (TSS).” For information specific to task management in 
64-bit mode, see Section 7.7, “Task Management in 64-bit Mode.”

7.1 TASK MANAGEMENT OVERVIEW

A task is a unit of work that a processor can dispatch, execute, and suspend. It can be used to execute a program, 
a task or process, an operating-system service utility, an interrupt or exception handler, or a kernel or executive 
utility.

The IA-32 architecture provides a mechanism for saving the state of a task, for dispatching tasks for execution, and 
for switching from one task to another. When operating in protected mode, all processor execution takes place from 
within a task. Even simple systems must define at least one task. More complex systems can use the processor’s 
task management facilities to support multitasking applications.

7.1.1 Task Structure

A task is made up of two parts: a task execution space and a task-state segment (TSS). The task execution space 
consists of a code segment, a stack segment, and one or more data segments (see Figure 7-1). If an operating 
system or executive uses the processor’s privilege-level protection mechanism, the task execution space also 
provides a separate stack for each privilege level.

The TSS specifies the segments that make up the task execution space and provides a storage place for task state 
information. In multitasking systems, the TSS also provides a mechanism for linking tasks.

A task is identified by the segment selector for its TSS. When a task is loaded into the processor for execution, the 
segment selector, base address, limit, and segment descriptor attributes for the TSS are loaded into the task 
register (see Section 2.4.4, “Task Register (TR)”).

If paging is implemented for the task, the base address of the page directory used by the task is loaded into control 
register CR3.
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7.1.2 Task State

The following items define the state of the currently executing task:
• The task’s current execution space, defined by the segment selectors in the segment registers (CS, DS, SS, ES, 

FS, and GS).
• The state of the general-purpose registers.
• The state of the EFLAGS register.
• The state of the EIP register.
• The state of control register CR3.
• The state of the task register.
• The state of the LDTR register.
• The I/O map base address and I/O map (contained in the TSS).
• Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS).
• Link to previously executed task (contained in the TSS).

Prior to dispatching a task, all of these items are contained in the task’s TSS, except the state of the task register. 
Also, the complete contents of the LDTR register are not contained in the TSS, only the segment selector for the 
LDT.

7.1.3 Executing a Task

Software or the processor can dispatch a task for execution in one of the following ways:
• A explicit call to a task with the CALL instruction.
• A explicit jump to a task with the JMP instruction.
• An implicit call (by the processor) to an interrupt-handler task.
• An implicit call to an exception-handler task.
• A return (initiated with an IRET instruction) when the NT flag in the EFLAGS register is set.

All of these methods for dispatching a task identify the task to be dispatched with a segment selector that points to 
a task gate or the TSS for the task. When dispatching a task with a CALL or JMP instruction, the selector in the 
instruction may select the TSS directly or a task gate that holds the selector for the TSS. When dispatching a task 

Figure 7-1.  Structure of a Task
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to handle an interrupt or exception, the IDT entry for the interrupt or exception must contain a task gate that holds 
the selector for the interrupt- or exception-handler TSS. 

When a task is dispatched for execution, a task switch occurs between the currently running task and the 
dispatched task. During a task switch, the execution environment of the currently executing task (called the task’s 
state or context) is saved in its TSS and execution of the task is suspended. The context for the dispatched task is 
then loaded into the processor and execution of that task begins with the instruction pointed to by the newly loaded 
EIP register. If the task has not been run since the system was last initialized, the EIP will point to the first instruc-
tion of the task’s code; otherwise, it will point to the next instruction after the last instruction that the task 
executed when it was last active.

If the currently executing task (the calling task) called the task being dispatched (the called task), the TSS 
segment selector for the calling task is stored in the TSS of the called task to provide a link back to the calling task.

For all IA-32 processors, tasks are not recursive. A task cannot call or jump to itself.

Interrupts and exceptions can be handled with a task switch to a handler task. Here, the processor performs a task 
switch to handle the interrupt or exception and automatically switches back to the interrupted task upon returning 
from the interrupt-handler task or exception-handler task. This mechanism can also handle interrupts that occur 
during interrupt tasks.

As part of a task switch, the processor can also switch to another LDT, allowing each task to have a different logical-
to-physical address mapping for LDT-based segments. The page-directory base register (CR3) also is reloaded on a 
task switch, allowing each task to have its own set of page tables. These protection facilities help isolate tasks and 
prevent them from interfering with one another. 

If protection mechanisms are not used, the processor provides no protection between tasks. This is true even with 
operating systems that use multiple privilege levels for protection. A task running at privilege level 3 that uses the 
same LDT and page tables as other privilege-level-3 tasks can access code and corrupt data and the stack of other 
tasks.

Use of task management facilities for handling multitasking applications is optional. Multitasking can be handled in 
software, with each software defined task executed in the context of a single IA-32 architecture task.

7.2 TASK MANAGEMENT DATA STRUCTURES

The processor defines five data structures for handling task-related activities:
• Task-state segment (TSS).
• Task-gate descriptor.
• TSS descriptor.
• Task register.
• NT flag in the EFLAGS register.

When operating in protected mode, a TSS and TSS descriptor must be created for at least one task, and the 
segment selector for the TSS must be loaded into the task register (using the LTR instruction).

7.2.1 Task-State Segment (TSS)

The processor state information needed to restore a task is saved in a system segment called the task-state 
segment (TSS). Figure 7-2 shows the format of a TSS for tasks designed for 32-bit CPUs. The fields of a TSS are 
divided into two main categories: dynamic fields and static fields.

For information about 16-bit Intel 286 processor task structures, see Section 7.6, “16-Bit Task-State Segment 
(TSS).” For information about 64-bit mode task structures, see Section 7.7, “Task Management in 64-bit Mode.”
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The processor updates dynamic fields when a task is suspended during a task switch. The following are dynamic 
fields:
• General-purpose register fields — State of the EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI registers prior 

to the task switch.
• Segment selector fields — Segment selectors stored in the ES, CS, SS, DS, FS, and GS registers prior to the 

task switch.
• EFLAGS register field — State of the EFAGS register prior to the task switch.
• EIP (instruction pointer) field — State of the EIP register prior to the task switch.
• Previous task link field — Contains the segment selector for the TSS of the previous task (updated on a task 

switch that was initiated by a call, interrupt, or exception). This field (which is sometimes called the back link 
field) permits a task switch back to the previous task by using the IRET instruction.

The processor reads the static fields, but does not normally change them. These fields are set up when a task is 
created. The following are static fields:
• LDT segment selector field — Contains the segment selector for the task's LDT.

Figure 7-2.  32-Bit Task-State Segment (TSS)
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• CR3 control register field — Contains the base physical address of the page directory to be used by the task. 
Control register CR3 is also known as the page-directory base register (PDBR).

• Privilege level-0, -1, and -2 stack pointer fields — These stack pointers consist of a logical address made 
up of the segment selector for the stack segment (SS0, SS1, and SS2) and an offset into the stack (ESP0, 
ESP1, and ESP2). Note that the values in these fields are static for a particular task; whereas, the SS and ESP 
values will change if stack switching occurs within the task.

• T (debug trap) flag (byte 100, bit 0) — When set, the T flag causes the processor to raise a debug exception 
when a task switch to this task occurs (see Section 17.3.1.5, “Task-Switch Exception Condition”).

• I/O map base address field — Contains a 16-bit offset from the base of the TSS to the I/O permission bit 
map and interrupt redirection bitmap. When present, these maps are stored in the TSS at higher addresses. 
The I/O map base address points to the beginning of the I/O permission bit map and the end of the interrupt 
redirection bit map. See Chapter 16, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for more information about the I/O permission bit map. See Section 20.3, 
“Interrupt and Exception Handling in Virtual-8086 Mode,” for a detailed description of the interrupt redirection 
bit map.

If paging is used: 
• Avoid placing a page boundary in the part of the TSS that the processor reads during a task switch (the first 104 

bytes). The processor may not correctly perform address translations if a boundary occurs in this area. During 
a task switch, the processor reads and writes into the first 104 bytes of each TSS (using contiguous physical 
addresses beginning with the physical address of the first byte of the TSS). So, after TSS access begins, if part 
of the 104 bytes is not physically contiguous, the processor will access incorrect information without generating 
a page-fault exception.

• Pages corresponding to the previous task’s TSS, the current task’s TSS, and the descriptor table entries for 
each all should be marked as read/write. 

• Task switches are carried out faster if the pages containing these structures are present in memory before the 
task switch is initiated.

7.2.2 TSS Descriptor

The TSS, like all other segments, is defined by a segment descriptor. Figure 7-3 shows the format of a TSS 
descriptor. TSS descriptors may only be placed in the GDT; they cannot be placed in an LDT or the IDT. 

An attempt to access a TSS using a segment selector with its TI flag set (which indicates the current LDT) causes 
a general-protection exception (#GP) to be generated during CALLs and JMPs; it causes an invalid TSS exception 
(#TS) during IRETs. A general-protection exception is also generated if an attempt is made to load a segment 
selector for a TSS into a segment register.

The busy flag (B) in the type field indicates whether the task is busy. A busy task is currently running or suspended. 
A type field with a value of 1001B indicates an inactive task; a value of 1011B indicates a busy task. Tasks are not 
recursive. The processor uses the busy flag to detect an attempt to call a task whose execution has been inter-
rupted. To insure that there is only one busy flag is associated with a task, each TSS should have only one TSS 
descriptor that points to it.
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The base, limit, and DPL fields and the granularity and present flags have functions similar to their use in data-
segment descriptors (see Section 3.4.5, “Segment Descriptors”). When the G flag is 0 in a TSS descriptor for a 32-
bit TSS, the limit field must have a value equal to or greater than 67H, one byte less than the minimum size of a 
TSS. Attempting to switch to a task whose TSS descriptor has a limit less than 67H generates an invalid-TSS excep-
tion (#TS). A larger limit is required if an I/O permission bit map is included or if the operating system stores addi-
tional data. The processor does not check for a limit greater than 67H on a task switch; however, it does check 
when accessing the I/O permission bit map or interrupt redirection bit map.

Any program or procedure with access to a TSS descriptor (that is, whose CPL is numerically equal to or less than 
the DPL of the TSS descriptor) can dispatch the task with a call or a jump. 

In most systems, the DPLs of TSS descriptors are set to values less than 3, so that only privileged software can 
perform task switching. However, in multitasking applications, DPLs for some TSS descriptors may be set to 3 to 
allow task switching at the application (or user) privilege level.

7.2.3 TSS Descriptor in 64-bit mode

In 64-bit mode, task switching is not supported, but TSS descriptors still exist. The format of a 64-bit TSS is 
described in Section 7.7. 

In 64-bit mode, the TSS descriptor is expanded to 16 bytes (see Figure 7-4). This expansion also applies to an LDT 
descriptor in 64-bit mode. Table 3-2 provides the encoding information for the segment type field.

Figure 7-3.  TSS Descriptor
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7.2.4 Task Register

The task register holds the 16-bit segment selector and the entire segment descriptor (32-bit base address (64 bits 
in IA-32e mode), 16-bit segment limit, and descriptor attributes) for the TSS of the current task (see Figure 2-6). 
This information is copied from the TSS descriptor in the GDT for the current task. Figure 7-5 shows the path the 
processor uses to access the TSS (using the information in the task register).

The task register has a visible part (that can be read and changed by software) and an invisible part (maintained 
by the processor and is inaccessible by software). The segment selector in the visible portion points to a TSS 
descriptor in the GDT. The processor uses the invisible portion of the task register to cache the segment descriptor 
for the TSS. Caching these values in a register makes execution of the task more efficient. The LTR (load task 
register) and STR (store task register) instructions load and read the visible portion of the task register: 

The LTR instruction loads a segment selector (source operand) into the task register that points to a TSS descriptor 
in the GDT. It then loads the invisible portion of the task register with information from the TSS descriptor. LTR is a 
privileged instruction that may be executed only when the CPL is 0. It’s used during system initialization to put an 
initial value in the task register. Afterwards, the contents of the task register are changed implicitly when a task 
switch occurs.

The STR (store task register) instruction stores the visible portion of the task register in a general-purpose register 
or memory. This instruction can be executed by code running at any privilege level in order to identify the currently 
running task. However, it is normally used only by operating system software.

On power up or reset of the processor, segment selector and base address are set to the default value of 0; the limit 
is set to FFFFH.

Figure 7-4.  Format of TSS and LDT Descriptors in 64-bit Mode
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7.2.5 Task-Gate Descriptor

A task-gate descriptor provides an indirect, protected reference to a task (see Figure 7-6). It can be placed in the 
GDT, an LDT, or the IDT. The TSS segment selector field in a task-gate descriptor points to a TSS descriptor in the 
GDT. The RPL in this segment selector is not used.

The DPL of a task-gate descriptor controls access to the TSS descriptor during a task switch. When a program or 
procedure makes a call or jump to a task through a task gate, the CPL and the RPL field of the gate selector pointing 
to the task gate must be less than or equal to the DPL of the task-gate descriptor. Note that when a task gate is 
used, the DPL of the destination TSS descriptor is not used.

Figure 7-5.  Task Register

Figure 7-6.  Task-Gate Descriptor
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A task can be accessed either through a task-gate descriptor or a TSS descriptor. Both of these structures satisfy 
the following needs:
• Need for a task to have only one busy flag — Because the busy flag for a task is stored in the TSS 

descriptor, each task should have only one TSS descriptor. There may, however, be several task gates that 
reference the same TSS descriptor. 

• Need to provide selective access to tasks — Task gates fill this need, because they can reside in an LDT and 
can have a DPL that is different from the TSS descriptor's DPL. A program or procedure that does not have 
sufficient privilege to access the TSS descriptor for a task in the GDT (which usually has a DPL of 0) may be 
allowed access to the task through a task gate with a higher DPL. Task gates give the operating system greater 
latitude for limiting access to specific tasks.

• Need for an interrupt or exception to be handled by an independent task — Task gates may also reside 
in the IDT, which allows interrupts and exceptions to be handled by handler tasks. When an interrupt or 
exception vector points to a task gate, the processor switches to the specified task.

Figure 7-7 illustrates how a task gate in an LDT, a task gate in the GDT, and a task gate in the IDT can all point to 
the same task.

7.3 TASK SWITCHING

The processor transfers execution to another task in one of four cases:
• The current program, task, or procedure executes a JMP or CALL instruction to a TSS descriptor in the GDT.
• The current program, task, or procedure executes a JMP or CALL instruction to a task-gate descriptor in the 

GDT or the current LDT.

Figure 7-7.  Task Gates Referencing the Same Task
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• An interrupt or exception vector points to a task-gate descriptor in the IDT.
• The current task executes an IRET when the NT flag in the EFLAGS register is set. 

JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all mechanisms for redirecting a 
program. The referencing of a TSS descriptor or a task gate (when calling or jumping to a task) or the state of the 
NT flag (when executing an IRET instruction) determines whether a task switch occurs.

The processor performs the following operations when switching to a new task:

1. Obtains the TSS segment selector for the new task as the operand of the JMP or CALL instruction, from a task 
gate, or from the previous task link field (for a task switch initiated with an IRET instruction).

2. Checks that the current (old) task is allowed to switch to the new task. Data-access privilege rules apply to JMP 
and CALL instructions. The CPL of the current (old) task and the RPL of the segment selector for the new task 
must be less than or equal to the DPL of the TSS descriptor or task gate being referenced. Exceptions, 
interrupts (except for interrupts generated by the INT n instruction), and the IRET instruction are permitted to 
switch tasks regardless of the DPL of the destination task-gate or TSS descriptor. For interrupts generated by 
the INT n instruction, the DPL is checked.

3. Checks that the TSS descriptor of the new task is marked present and has a valid limit (greater than or equal 
to 67H).

4. Checks that the new task is available (call, jump, exception, or interrupt) or busy (IRET return).

5. Checks that the current (old) TSS, new TSS, and all segment descriptors used in the task switch are paged into 
system memory.

6. If the task switch was initiated with a JMP or IRET instruction, the processor clears the busy (B) flag in the 
current (old) task’s TSS descriptor; if initiated with a CALL instruction, an exception, or an interrupt: the busy 
(B) flag is left set. (See Table 7-2.)

7. If the task switch was initiated with an IRET instruction, the processor clears the NT flag in a temporarily saved 
image of the EFLAGS register; if initiated with a CALL or JMP instruction, an exception, or an interrupt, the NT 
flag is left unchanged in the saved EFLAGS image.

8. Saves the state of the current (old) task in the current task’s TSS. The processor finds the base address of the 
current TSS in the task register and then copies the states of the following registers into the current TSS: all the 
general-purpose registers, segment selectors from the segment registers, the temporarily saved image of the 
EFLAGS register, and the instruction pointer register (EIP).

9. If the task switch was initiated with a CALL instruction, an exception, or an interrupt, the processor will set the 
NT flag in the EFLAGS loaded from the new task. If initiated with an IRET instruction or JMP instruction, the NT 
flag will reflect the state of NT in the EFLAGS loaded from the new task (see Table 7-2).

10. If the task switch was initiated with a CALL instruction, JMP instruction, an exception, or an interrupt, the 
processor sets the busy (B) flag in the new task’s TSS descriptor; if initiated with an IRET instruction, the busy 
(B) flag is left set.

11. Loads the task register with the segment selector and descriptor for the new task's TSS.

12. The TSS state is loaded into the processor. This includes the LDTR register, the PDBR (control register CR3), the 
EFLAGS register, the EIP register, the general-purpose registers, and the segment selectors. A fault during the 
load of this state may corrupt architectural state. (If paging is not enabled, a PDBR value is read from the new 
task's TSS, but it is not loaded into CR3.)

13. The descriptors associated with the segment selectors are loaded and qualified. Any errors associated with this 
loading and qualification occur in the context of the new task and may corrupt architectural state.

NOTES

If all checks and saves have been carried out successfully, the processor commits to the task 
switch. If an unrecoverable error occurs in steps 1 through 11, the processor does not complete the 
task switch and insures that the processor is returned to its state prior to the execution of the 
instruction that initiated the task switch.

If an unrecoverable error occurs in step 12, architectural state may be corrupted, but an attempt 
will be made to handle the error in the prior execution environment. If an unrecoverable error 
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occurs after the commit point (in step 13), the processor completes the task switch (without 
performing additional access and segment availability checks) and generates the appropriate 
exception prior to beginning execution of the new task.

If exceptions occur after the commit point, the exception handler must finish the task switch itself 
before allowing the processor to begin executing the new task. See Chapter 6, “Interrupt 
10—Invalid TSS Exception (#TS),” for more information about the affect of exceptions on a task 
when they occur after the commit point of a task switch.

14. Begins executing the new task. (To an exception handler, the first instruction of the new task appears not to 
have been executed.)

The state of the currently executing task is always saved when a successful task switch occurs. If the task is 
resumed, execution starts with the instruction pointed to by the saved EIP value, and the registers are restored to 
the values they held when the task was suspended.

When switching tasks, the privilege level of the new task does not inherit its privilege level from the suspended 
task. The new task begins executing at the privilege level specified in the CPL field of the CS register, which is 
loaded from the TSS. Because tasks are isolated by their separate address spaces and TSSs and because privilege 
rules control access to a TSS, software does not need to perform explicit privilege checks on a task switch.

Table 7-1 shows the exception conditions that the processor checks for when switching tasks. It also shows the 
exception that is generated for each check if an error is detected and the segment that the error code references. 
(The order of the checks in the table is the order used in the P6 family processors. The exact order is model specific 
and may be different for other IA-32 processors.) Exception handlers designed to handle these exceptions may be 
subject to recursive calls if they attempt to reload the segment selector that generated the exception. The cause of 
the exception (or the first of multiple causes) should be fixed before reloading the selector.

Table 7-1.  Exception Conditions Checked During a Task Switch 

Condition Checked Exception1 Error Code Reference2

Segment selector for a TSS descriptor references 
the GDT and is within the limits of the table.

#GP

#TS (for IRET)

New Task’s TSS

TSS descriptor is present in memory. #NP New Task’s TSS

TSS descriptor is not busy (for task switch initiated by a call, interrupt, or 
exception).

#GP (for JMP, CALL, INT) Task’s back-link TSS

TSS descriptor is not busy (for task switch initiated by an IRET instruction). #TS (for IRET) New Task’s TSS

TSS segment limit greater than or equal to 108 (for 32-bit TSS) or 44 (for 16-bit 
TSS).

#TS New Task’s TSS

Registers are loaded from the values in the TSS.

LDT segment selector of new task is valid 3. #TS New Task’s LDT

Code segment DPL matches segment selector RPL. #TS New Code Segment

SS segment selector is valid 2. #TS New Stack Segment

Stack segment is present in memory. #SS New Stack Segment

Stack segment DPL matches CPL. #TS New stack segment

LDT of new task is present in memory. #TS New Task’s LDT

CS segment selector is valid 3. #TS New Code Segment

Code segment is present in memory. #NP New Code Segment

Stack segment DPL matches selector RPL. #TS New Stack Segment

DS, ES, FS, and GS segment selectors are valid 3. #TS New Data Segment

DS, ES, FS, and GS segments are readable. #TS New Data Segment
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The TS (task switched) flag in the control register CR0 is set every time a task switch occurs. System software uses 
the TS flag to coordinate the actions of floating-point unit when generating floating-point exceptions with the rest 
of the processor. The TS flag indicates that the context of the floating-point unit may be different from that of the 
current task. See Section 2.5, “Control Registers”, for a detailed description of the function and use of the TS flag.

7.4 TASK LINKING

The previous task link field of the TSS (sometimes called the “backlink”) and the NT flag in the EFLAGS register are 
used to return execution to the previous task. EFLAGS.NT = 1 indicates that the currently executing task is nested 
within the execution of another task. 

When a CALL instruction, an interrupt, or an exception causes a task switch: the processor copies the segment 
selector for the current TSS to the previous task link field of the TSS for the new task; it then sets EFLAGS.NT = 1. 
If software uses an IRET instruction to suspend the new task, the processor checks for EFLAGS.NT = 1; it then uses 
the value in the previous task link field to return to the previous task. See Figures 7-8.

When a JMP instruction causes a task switch, the new task is not nested. The previous task link field is not used and 
EFLAGS.NT = 0. Use a JMP instruction to dispatch a new task when nesting is not desired.

Table 7-2 shows the busy flag (in the TSS segment descriptor), the NT flag, the previous task link field, and TS flag 
(in control register CR0) during a task switch.

The NT flag may be modified by software executing at any privilege level. It is possible for a program to set the NT 
flag and execute an IRET instruction. This might randomly invoke the task specified in the previous link field of the 
current task's TSS. To keep such spurious task switches from succeeding, the operating system should initialize the 
previous task link field in every TSS that it creates to 0.

DS, ES, FS, and GS segments are present in memory. #NP New Data Segment

DS, ES, FS, and GS segment DPL greater than or equal to CPL (unless these are 
conforming segments).

#TS New Data Segment

NOTES:

1. #NP is segment-not-present exception, #GP is general-protection exception, #TS is invalid-TSS exception, and #SS is stack-fault 
exception.

2. The error code contains an index to the segment descriptor referenced in this column.

3. A segment selector is valid if it is in a compatible type of table (GDT or LDT), occupies an address within the table's segment limit, 
and refers to a compatible type of descriptor (for example, a segment selector in the CS register only is valid when it points to a 
code-segment descriptor).

Figure 7-8.  Nested Tasks
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7.4.1 Use of Busy Flag To Prevent Recursive Task Switching

A TSS allows only one context to be saved for a task; therefore, once a task is called (dispatched), a recursive (or 
re-entrant) call to the task would cause the current state of the task to be lost. The busy flag in the TSS segment 
descriptor is provided to prevent re-entrant task switching and a subsequent loss of task state information. The 
processor manages the busy flag as follows:

1. When dispatching a task, the processor sets the busy flag of the new task.

2. If during a task switch, the current task is placed in a nested chain (the task switch is being generated by a 
CALL instruction, an interrupt, or an exception), the busy flag for the current task remains set. 

3. When switching to the new task (initiated by a CALL instruction, interrupt, or exception), the processor 
generates a general-protection exception (#GP) if the busy flag of the new task is already set. If the task switch 
is initiated with an IRET instruction, the exception is not raised because the processor expects the busy flag to 
be set.

4. When a task is terminated by a jump to a new task (initiated with a JMP instruction in the task code) or by an 
IRET instruction in the task code, the processor clears the busy flag, returning the task to the “not busy” state.

The processor prevents recursive task switching by preventing a task from switching to itself or to any task in a 
nested chain of tasks. The chain of nested suspended tasks may grow to any length, due to multiple calls, inter-
rupts, or exceptions. The busy flag prevents a task from being invoked if it is in this chain.

The busy flag may be used in multiprocessor configurations, because the processor follows a LOCK protocol (on the 
bus or in the cache) when it sets or clears the busy flag. This lock keeps two processors from invoking the same 
task at the same time. See Section 8.1.2.1, “Automatic Locking,” for more information about setting the busy flag 
in a multiprocessor applications.

7.4.2 Modifying Task Linkages

In a uniprocessor system, in situations where it is necessary to remove a task from a chain of linked tasks, use the 
following procedure to remove the task:

1. Disable interrupts.

2. Change the previous task link field in the TSS of the pre-empting task (the task that suspended the task to be 
removed). It is assumed that the pre-empting task is the next task (newer task) in the chain from the task to 
be removed. Change the previous task link field to point to the TSS of the next oldest task in the chain or to an 
even older task in the chain.

3. Clear the busy (B) flag in the TSS segment descriptor for the task being removed from the chain. If more than 
one task is being removed from the chain, the busy flag for each task being remove must be cleared.

Table 7-2.  Effect of a Task Switch on Busy Flag, NT Flag, Previous Task Link Field, and TS Flag

Flag or Field Effect of JMP instruction Effect of CALL Instruction or 
Interrupt

Effect of IRET
Instruction

Busy (B) flag of new task. Flag is set. Must have been 
clear before.

Flag is set. Must have been 
clear before.

No change. Must have been set.

Busy flag of old task. Flag is cleared. No change. Flag is currently 
set.

Flag is cleared.

NT flag of new task. Set to value from TSS of new 
task.

Flag is set. Set to value from TSS of new 
task.

NT flag of old task. No change. No change. Flag is cleared.

Previous task link field of new 
task.

No change. Loaded with selector 
for old task’s TSS.

No change.

Previous task link field of old 
task.

No change. No change. No change.

TS flag in control register CR0. Flag is set. Flag is set. Flag is set.
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4. Enable interrupts.

In a multiprocessing system, additional synchronization and serialization operations must be added to this proce-
dure to insure that the TSS and its segment descriptor are both locked when the previous task link field is changed 
and the busy flag is cleared.

7.5 TASK ADDRESS SPACE

The address space for a task consists of the segments that the task can access. These segments include the code, 
data, stack, and system segments referenced in the TSS and any other segments accessed by the task code. The 
segments are mapped into the processor’s linear address space, which is in turn mapped into the processor’s phys-
ical address space (either directly or through paging).

The LDT segment field in the TSS can be used to give each task its own LDT. Giving a task its own LDT allows the 
task address space to be isolated from other tasks by placing the segment descriptors for all the segments associ-
ated with the task in the task’s LDT.

It also is possible for several tasks to use the same LDT. This is a memory-efficient way to allow specific tasks to 
communicate with or control each other, without dropping the protection barriers for the entire system.

Because all tasks have access to the GDT, it also is possible to create shared segments accessed through segment 
descriptors in this table.

If paging is enabled, the CR3 register (PDBR) field in the TSS allows each task to have its own set of page tables for 
mapping linear addresses to physical addresses. Or, several tasks can share the same set of page tables.

7.5.1 Mapping Tasks to the Linear and Physical Address Spaces

Tasks can be mapped to the linear address space and physical address space in one of two ways:
• One linear-to-physical address space mapping is shared among all tasks. — When paging is not 

enabled, this is the only choice. Without paging, all linear addresses map to the same physical addresses. When 
paging is enabled, this form of linear-to-physical address space mapping is obtained by using one page 
directory for all tasks. The linear address space may exceed the available physical space if demand-paged 
virtual memory is supported.

• Each task has its own linear address space that is mapped to the physical address space. — This form 
of mapping is accomplished by using a different page directory for each task. Because the PDBR (control 
register CR3) is loaded on task switches, each task may have a different page directory.

The linear address spaces of different tasks may map to completely distinct physical addresses. If the entries of 
different page directories point to different page tables and the page tables point to different pages of physical 
memory, then the tasks do not share physical addresses.

With either method of mapping task linear address spaces, the TSSs for all tasks must lie in a shared area of the 
physical space, which is accessible to all tasks. This mapping is required so that the mapping of TSS addresses does 
not change while the processor is reading and updating the TSSs during a task switch. The linear address space 
mapped by the GDT also should be mapped to a shared area of the physical space; otherwise, the purpose of the 
GDT is defeated. Figure 7-9 shows how the linear address spaces of two tasks can overlap in the physical space by 
sharing page tables. 
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7.5.2 Task Logical Address Space

To allow the sharing of data among tasks, use the following techniques to create shared logical-to-physical 
address-space mappings for data segments:
• Through the segment descriptors in the GDT — All tasks must have access to the segment descriptors in 

the GDT. If some segment descriptors in the GDT point to segments in the linear-address space that are 
mapped into an area of the physical-address space common to all tasks, then all tasks can share the data and 
code in those segments.

• Through a shared LDT — Two or more tasks can use the same LDT if the LDT fields in their TSSs point to the 
same LDT. If some segment descriptors in a shared LDT point to segments that are mapped to a common area 
of the physical address space, the data and code in those segments can be shared among the tasks that share 
the LDT. This method of sharing is more selective than sharing through the GDT, because the sharing can be 
limited to specific tasks. Other tasks in the system may have different LDTs that do not give them access to the 
shared segments.

• Through segment descriptors in distinct LDTs that are mapped to common addresses in linear 
address space — If this common area of the linear address space is mapped to the same area of the physical 
address space for each task, these segment descriptors permit the tasks to share segments. Such segment 
descriptors are commonly called aliases. This method of sharing is even more selective than those listed above, 
because, other segment descriptors in the LDTs may point to independent linear addresses which are not 
shared.

7.6 16-BIT TASK-STATE SEGMENT (TSS)

The 32-bit IA-32 processors also recognize a 16-bit TSS format like the one used in Intel 286 processors (see 
Figure 7-10). This format is supported for compatibility with software written to run on earlier IA-32 processors. 

The following information is important to know about the 16-bit TSS.
• Do not use a 16-bit TSS to implement a virtual-8086 task.
• The valid segment limit for a 16-bit TSS is 2CH.

Figure 7-9.  Overlapping Linear-to-Physical Mappings
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• The 16-bit TSS does not contain a field for the base address of the page directory, which is loaded into control 
register CR3. A separate set of page tables for each task is not supported for 16-bit tasks. If a 16-bit task is 
dispatched, the page-table structure for the previous task is used.

• The I/O base address is not included in the 16-bit TSS. None of the functions of the I/O map are supported.
• When task state is saved in a 16-bit TSS, the upper 16 bits of the EFLAGS register and the EIP register are lost.
• When the general-purpose registers are loaded or saved from a 16-bit TSS, the upper 16 bits of the registers 

are modified and not maintained.

7.7 TASK MANAGEMENT IN 64-BIT MODE

In 64-bit mode, task structure and task state are similar to those in protected mode. However, the task switching 
mechanism available in protected mode is not supported in 64-bit mode. Task management and switching must be 
performed by software. The processor issues a general-protection exception (#GP) if the following is attempted in 
64-bit mode:
• Control transfer to a TSS or a task gate using JMP, CALL, INTn, or interrupt.
• An IRET with EFLAGS.NT (nested task) set to 1.

Figure 7-10.  16-Bit TSS Format
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Although hardware task-switching is not supported in 64-bit mode, a 64-bit task state segment (TSS) must exist. 
Figure 7-11 shows the format of a 64-bit TSS. The TSS holds information important to 64-bit mode and that is not 
directly related to the task-switch mechanism. This information includes:
• RSPn — The full 64-bit canonical forms of the stack pointers (RSP) for privilege levels 0-2.
• ISTn — The full 64-bit canonical forms of the interrupt stack table (IST) pointers.
• I/O map base address — The 16-bit offset to the I/O permission bit map from the 64-bit TSS base.

The operating system must create at least one 64-bit TSS after activating IA-32e mode. It must execute the LTR 
instruction (in 64-bit mode) to load the TR register with a pointer to the 64-bit TSS responsible for both 64-bit-
mode programs and compatibility-mode programs.

Figure 7-11.  64-Bit TSS Format
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CHAPTER 8
MULTIPLE-PROCESSOR MANAGEMENT

The Intel 64 and IA-32 architectures provide mechanisms for managing and improving the performance of multiple 
processors connected to the same system bus. These include:
• Bus locking and/or cache coherency management for performing atomic operations on system memory.
• Serializing instructions.
• An advance programmable interrupt controller (APIC) located on the processor chip (see Chapter 10, 

“Advanced Programmable Interrupt Controller (APIC)”). This feature was introduced by the Pentium processor.
• A second-level cache (level 2, L2). For the Pentium 4, Intel Xeon, and P6 family processors, the L2 cache is 

included in the processor package and is tightly coupled to the processor. For the Pentium and Intel486 
processors, pins are provided to support an external L2 cache.

• A third-level cache (level 3, L3). For Intel Xeon processors, the L3 cache is included in the processor package 
and is tightly coupled to the processor.

• Intel Hyper-Threading Technology. This extension to the Intel 64 and IA-32 architectures enables a single 
processor core to execute two or more threads concurrently (see Section 8.5, “Intel® Hyper-Threading 
Technology and Intel® Multi-Core Technology”).

These mechanisms are particularly useful in symmetric-multiprocessing (SMP) systems. However, they can also be 
used when an Intel 64 or IA-32 processor and a special-purpose processor (such as a communications, graphics, 
or video processor) share the system bus.

These multiprocessing mechanisms have the following characteristics:
• To maintain system memory coherency — When two or more processors are attempting simultaneously to 

access the same address in system memory, some communication mechanism or memory access protocol 
must be available to promote data coherency and, in some instances, to allow one processor to temporarily lock 
a memory location.

• To maintain cache consistency — When one processor accesses data cached on another processor, it must not 
receive incorrect data. If it modifies data, all other processors that access that data must receive the modified 
data.

• To allow predictable ordering of writes to memory — In some circumstances, it is important that memory writes 
be observed externally in precisely the same order as programmed.

• To distribute interrupt handling among a group of processors — When several processors are operating in a 
system in parallel, it is useful to have a centralized mechanism for receiving interrupts and distributing them to 
available processors for servicing.

• To increase system performance by exploiting the multi-threaded and multi-process nature of contemporary 
operating systems and applications.

The caching mechanism and cache consistency of Intel 64 and IA-32 processors are discussed in Chapter 11. The 
APIC architecture is described in Chapter 10. Bus and memory locking, serializing instructions, memory ordering, 
and Intel Hyper-Threading Technology are discussed in the following sections. 

8.1 LOCKED ATOMIC OPERATIONS

The 32-bit IA-32 processors support locked atomic operations on locations in system memory. These operations 
are typically used to manage shared data structures (such as semaphores, segment descriptors, system segments, 
or page tables) in which two or more processors may try simultaneously to modify the same field or flag. The 
processor uses three interdependent mechanisms for carrying out locked atomic operations:
• Guaranteed atomic operations
• Bus locking, using the LOCK# signal and the LOCK instruction prefix
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• Cache coherency protocols that ensure that atomic operations can be carried out on cached data structures 
(cache lock); this mechanism is present in the Pentium 4, Intel Xeon, and P6 family processors

These mechanisms are interdependent in the following ways. Certain basic memory transactions (such as reading 
or writing a byte in system memory) are always guaranteed to be handled atomically. That is, once started, the 
processor guarantees that the operation will be completed before another processor or bus agent is allowed access 
to the memory location. The processor also supports bus locking for performing selected memory operations (such 
as a read-modify-write operation in a shared area of memory) that typically need to be handled atomically, but are 
not automatically handled this way. Because frequently used memory locations are often cached in a processor’s L1 
or L2 caches, atomic operations can often be carried out inside a processor’s caches without asserting the bus lock. 
Here the processor’s cache coherency protocols ensure that other processors that are caching the same memory 
locations are managed properly while atomic operations are performed on cached memory locations.

NOTE

Where there are contested lock accesses, software may need to implement algorithms that ensure 
fair access to resources in order to prevent lock starvation. The hardware provides no resource that 
guarantees fairness to participating agents. It is the responsibility of software to manage the 
fairness of semaphores and exclusive locking functions.

The mechanisms for handling locked atomic operations have evolved with the complexity of IA-32 processors. More 
recent IA-32 processors (such as the Pentium 4, Intel Xeon, and P6 family processors) and Intel 64 provide a more 
refined locking mechanism than earlier processors. These mechanisms are described in the following sections.

8.1.1 Guaranteed Atomic Operations

The Intel486 processor (and newer processors since) guarantees that the following basic memory operations will 
always be carried out atomically:
• Reading or writing a byte
• Reading or writing a word aligned on a 16-bit boundary
• Reading or writing a doubleword aligned on a 32-bit boundary

The Pentium processor (and newer processors since) guarantees that the following additional memory operations 
will always be carried out atomically:
• Reading or writing a quadword aligned on a 64-bit boundary
• 16-bit accesses to uncached memory locations that fit within a 32-bit data bus

The P6 family processors (and newer processors since) guarantee that the following additional memory operation 
will always be carried out atomically:
• Unaligned 16-, 32-, and 64-bit accesses to cached memory that fit within a cache line

Accesses to cacheable memory that are split across cache lines and page boundaries are not guaranteed to be 
atomic by the Intel Core 2 Duo, Intel® Atom™, Intel Core Duo, Pentium M, Pentium 4, Intel Xeon, P6 family, 
Pentium, and Intel486 processors. The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4, Intel 
Xeon, and P6 family processors provide bus control signals that permit external memory subsystems to make split 
accesses atomic; however, nonaligned data accesses will seriously impact the performance of the processor and 
should be avoided.

An x87 instruction or an SSE instructions that accesses data larger than a quadword may be implemented using 
multiple memory accesses. If such an instruction stores to memory, some of the accesses may complete (writing 
to memory) while another causes the operation to fault for architectural reasons (e.g. due an page-table entry that 
is marked “not present”). In this case, the effects of the completed accesses may be visible to software even 
though the overall instruction caused a fault. If TLB invalidation has been delayed (see Section 4.10.4.4), such 
page faults may occur even if all accesses are to the same page.



Vol. 3A 8-3

MULTIPLE-PROCESSOR MANAGEMENT

8.1.2 Bus Locking

Intel 64 and IA-32 processors provide a LOCK# signal that is asserted automatically during certain critical memory 
operations to lock the system bus or equivalent link. While this output signal is asserted, requests from other 
processors or bus agents for control of the bus are blocked. Software can specify other occasions when the LOCK 
semantics are to be followed by prepending the LOCK prefix to an instruction.

In the case of the Intel386, Intel486, and Pentium processors, explicitly locked instructions will result in the asser-
tion of the LOCK# signal. It is the responsibility of the hardware designer to make the LOCK# signal available in 
system hardware to control memory accesses among processors.

For the P6 and more recent processor families, if the memory area being accessed is cached internally in the 
processor, the LOCK# signal is generally not asserted; instead, locking is only applied to the processor’s caches 
(see Section 8.1.4, “Effects of a LOCK Operation on Internal Processor Caches”).

8.1.2.1  Automatic Locking

The operations on which the processor automatically follows the LOCK semantics are as follows:
• When executing an XCHG instruction that references memory.
• When setting the B (busy) flag of a TSS descriptor — The processor tests and sets the busy flag in the 

type field of the TSS descriptor when switching to a task. To ensure that two processors do not switch to the 
same task simultaneously, the processor follows the LOCK semantics while testing and setting this flag.

• When updating segment descriptors — When loading a segment descriptor, the processor will set the 
accessed flag in the segment descriptor if the flag is clear. During this operation, the processor follows the 
LOCK semantics so that the descriptor will not be modified by another processor while it is being updated. For 
this action to be effective, operating-system procedures that update descriptors should use the following steps:

— Use a locked operation to modify the access-rights byte to indicate that the segment descriptor is not-
present, and specify a value for the type field that indicates that the descriptor is being updated.

— Update the fields of the segment descriptor. (This operation may require several memory accesses; 
therefore, locked operations cannot be used.)

— Use a locked operation to modify the access-rights byte to indicate that the segment descriptor is valid and 
present.

• The Intel386 processor always updates the accessed flag in the segment descriptor, whether it is clear or not. 
The Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors only update this flag if it is not already 
set.

• When updating page-directory and page-table entries — When updating page-directory and page-table 
entries, the processor uses locked cycles to set the accessed and dirty flag in the page-directory and page-table 
entries.

• Acknowledging interrupts — After an interrupt request, an interrupt controller may use the data bus to send 
the interrupt vector for the interrupt to the processor. The processor follows the LOCK semantics during this 
time to ensure that no other data appears on the data bus when the interrupt vector is being transmitted.

8.1.2.2  Software Controlled Bus Locking

To explicitly force the LOCK semantics, software can use the LOCK prefix with the following instructions when they 
are used to modify a memory location. An invalid-opcode exception (#UD) is generated when the LOCK prefix is 
used with any other instruction or when no write operation is made to memory (that is, when the destination 
operand is in a register).
• The bit test and modify instructions (BTS, BTR, and BTC).
• The exchange instructions (XADD, CMPXCHG, and CMPXCHG8B). 
• The LOCK prefix is automatically assumed for XCHG instruction.
• The following single-operand arithmetic and logical instructions: INC, DEC, NOT, and NEG.
• The following two-operand arithmetic and logical instructions: ADD, ADC, SUB, SBB, AND, OR, and XOR.
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A locked instruction is guaranteed to lock only the area of memory defined by the destination operand, but may be 
interpreted by the system as a lock for a larger memory area.

Software should access semaphores (shared memory used for signalling between multiple processors) using iden-
tical addresses and operand lengths. For example, if one processor accesses a semaphore using a word access, 
other processors should not access the semaphore using a byte access. 

NOTE

Do not implement semaphores using the WC memory type. Do not perform non-temporal stores to 
a cache line containing a location used to implement a semaphore.

The integrity of a bus lock is not affected by the alignment of the memory field. The LOCK semantics are followed 
for as many bus cycles as necessary to update the entire operand. However, it is recommend that locked accesses 
be aligned on their natural boundaries for better system performance:
• Any boundary for an 8-bit access (locked or otherwise).
• 16-bit boundary for locked word accesses.
• 32-bit boundary for locked doubleword accesses.
• 64-bit boundary for locked quadword accesses.

Locked operations are atomic with respect to all other memory operations and all externally visible events. Only 
instruction fetch and page table accesses can pass locked instructions. Locked instructions can be used to synchro-
nize data written by one processor and read by another processor.

For the P6 family processors, locked operations serialize all outstanding load and store operations (that is, wait for 
them to complete). This rule is also true for the Pentium 4 and Intel Xeon processors, with one exception. Load 
operations that reference weakly ordered memory types (such as the WC memory type) may not be serialized.

Locked instructions should not be used to ensure that data written can be fetched as instructions. 

NOTE

The locked instructions for the current versions of the Pentium 4, Intel Xeon, P6 family, Pentium, 
and Intel486 processors allow data written to be fetched as instructions. However, Intel 
recommends that developers who require the use of self-modifying code use a different synchro-
nizing mechanism, described in the following sections.

8.1.3 Handling Self- and Cross-Modifying Code

The act of a processor writing data into a currently executing code segment with the intent of executing that data 
as code is called self-modifying code. IA-32 processors exhibit model-specific behavior when executing self-
modified code, depending upon how far ahead of the current execution pointer the code has been modified. 

As processor microarchitectures become more complex and start to speculatively execute code ahead of the retire-
ment point (as in P6 and more recent processor families), the rules regarding which code should execute, pre- or 
post-modification, become blurred. To write self-modifying code and ensure that it is compliant with current and 
future versions of the IA-32 architectures, use one of the following coding options:

(* OPTION 1 *)

Store modified code (as data) into code segment; 

Jump to new code or an intermediate location;

Execute new code;

(* OPTION 2 *)

Store modified code (as data) into code segment;

Execute a serializing instruction; (* For example, CPUID instruction *)

Execute new code;

The use of one of these options is not required for programs intended to run on the Pentium or Intel486 processors, 
but are recommended to ensure compatibility with the P6 and more recent processor families.
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Self-modifying code will execute at a lower level of performance than non-self-modifying or normal code. The 
degree of the performance deterioration will depend upon the frequency of modification and specific characteristics 
of the code.

The act of one processor writing data into the currently executing code segment of a second processor with the 
intent of having the second processor execute that data as code is called cross-modifying code. As with self-
modifying code, IA-32 processors exhibit model-specific behavior when executing cross-modifying code, 
depending upon how far ahead of the executing processors current execution pointer the code has been modified. 

To write cross-modifying code and ensure that it is compliant with current and future versions of the IA-32 archi-
tecture, the following processor synchronization algorithm must be implemented:

(* Action of Modifying Processor *)

Memory_Flag ← 0; (* Set Memory_Flag to value other than 1 *)

Store modified code (as data) into code segment;

Memory_Flag ← 1;

(* Action of Executing Processor *)

WHILE (Memory_Flag ≠ 1)

Wait for code to update;

ELIHW;
Execute serializing instruction; (* For example, CPUID instruction *)

Begin executing modified code;

(The use of this option is not required for programs intended to run on the Intel486 processor, but is recommended 
to ensure compatibility with the Pentium 4, Intel Xeon, P6 family, and Pentium processors.)

Like self-modifying code, cross-modifying code will execute at a lower level of performance than non-cross-modi-
fying (normal) code, depending upon the frequency of modification and specific characteristics of the code.

The restrictions on self-modifying code and cross-modifying code also apply to the Intel 64 architecture.

8.1.4 Effects of a LOCK Operation on Internal Processor Caches

For the Intel486 and Pentium processors, the LOCK# signal is always asserted on the bus during a LOCK operation, 
even if the area of memory being locked is cached in the processor.

For the P6 and more recent processor families, if the area of memory being locked during a LOCK operation is 
cached in the processor that is performing the LOCK operation as write-back memory and is completely contained 
in a cache line, the processor may not assert the LOCK# signal on the bus. Instead, it will modify the memory loca-
tion internally and allow it’s cache coherency mechanism to ensure that the operation is carried out atomically. This 
operation is called “cache locking.” The cache coherency mechanism automatically prevents two or more proces-
sors that have cached the same area of memory from simultaneously modifying data in that area.

8.2 MEMORY ORDERING

The term memory ordering refers to the order in which the processor issues reads (loads) and writes (stores) 
through the system bus to system memory. The Intel 64 and IA-32 architectures support several memory-ordering 
models depending on the implementation of the architecture. For example, the Intel386 processor enforces 
program ordering (generally referred to as strong ordering), where reads and writes are issued on the system 
bus in the order they occur in the instruction stream under all circumstances. 

To allow performance optimization of instruction execution, the IA-32 architecture allows departures from strong-
ordering model called processor ordering in Pentium 4, Intel Xeon, and P6 family processors. These processor-
ordering variations (called here the memory-ordering model) allow performance enhancing operations such as 
allowing reads to go ahead of buffered writes. The goal of any of these variations is to increase instruction execu-
tion speeds, while maintaining memory coherency, even in multiple-processor systems.

Section 8.2.1 and Section 8.2.2 describe the memory-ordering implemented by Intel486, Pentium, Intel Core 2 
Duo, Intel Atom, Intel Core Duo, Pentium 4, Intel Xeon, and P6 family processors. Section 8.2.3 gives examples 
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illustrating the behavior of the memory-ordering model on IA-32 and Intel-64 processors. Section 8.2.4 considers 
the special treatment of stores for string operations and Section 8.2.5 discusses how memory-ordering behavior 
may be modified through the use of specific instructions.

8.2.1 Memory Ordering in the Intel® Pentium® and Intel486™ Processors

The Pentium and Intel486 processors follow the processor-ordered memory model; however, they operate as 
strongly-ordered processors under most circumstances. Reads and writes always appear in programmed order at 
the system bus—except for the following situation where processor ordering is exhibited. Read misses are 
permitted to go ahead of buffered writes on the system bus when all the buffered writes are cache hits and, there-
fore, are not directed to the same address being accessed by the read miss. 

In the case of I/O operations, both reads and writes always appear in programmed order.

Software intended to operate correctly in processor-ordered processors (such as the Pentium 4, Intel Xeon, and P6 
family processors) should not depend on the relatively strong ordering of the Pentium or Intel486 processors. 
Instead, it should ensure that accesses to shared variables that are intended to control concurrent execution 
among processors are explicitly required to obey program ordering through the use of appropriate locking or seri-
alizing operations (see Section 8.2.5, “Strengthening or Weakening the Memory-Ordering Model”).

8.2.2 Memory Ordering in P6 and More Recent Processor Families

The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and P6 family processors also use a processor-ordered 
memory-ordering model that can be further defined as “write ordered with store-buffer forwarding.” This model 
can be characterized as follows. 

In a single-processor system for memory regions defined as write-back cacheable, the memory-ordering model 
respects the following principles (Note the memory-ordering principles for single-processor and multiple-
processor systems are written from the perspective of software executing on the processor, where the term 
“processor” refers to a logical processor. For example, a physical processor supporting multiple cores and/or 
HyperThreading Technology is treated as a multi-processor systems.):
• Reads are not reordered with other reads.
• Writes are not reordered with older reads.
• Writes to memory are not reordered with other writes, with the following exceptions:

— writes executed with the CLFLUSH instruction;

— streaming stores (writes) executed with the non-temporal move instructions (MOVNTI, MOVNTQ, 
MOVNTDQ, MOVNTPS, and MOVNTPD); and

— string operations (see Section 8.2.4.1).
• Reads may be reordered with older writes to different locations but not with older writes to the same location. 
• Reads or writes cannot be reordered with I/O instructions, locked instructions, or serializing instructions.
• Reads cannot pass earlier LFENCE and MFENCE instructions.
• Writes cannot pass earlier LFENCE, SFENCE, and MFENCE instructions.
• LFENCE instructions cannot pass earlier reads.
• SFENCE instructions cannot pass earlier writes.
• MFENCE instructions cannot pass earlier reads or writes.

In a multiple-processor system, the following ordering principles apply:
• Individual processors use the same ordering principles as in a single-processor system.
• Writes by a single processor are observed in the same order by all processors.
• Writes from an individual processor are NOT ordered with respect to the writes from other processors.
• Memory ordering obeys causality (memory ordering respects transitive visibility).
• Any two stores are seen in a consistent order by processors other than those performing the stores
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• Locked instructions have a total order.

See the example in Figure 8-1. Consider three processors in a system and each processor performs three writes, 
one to each of three defined locations (A, B, and C). Individually, the processors perform the writes in the same 
program order, but because of bus arbitration and other memory access mechanisms, the order that the three 
processors write the individual memory locations can differ each time the respective code sequences are executed 
on the processors. The final values in location A, B, and C would possibly vary on each execution of the write 
sequence.

The processor-ordering model described in this section is virtually identical to that used by the Pentium and 
Intel486 processors. The only enhancements in the Pentium 4, Intel Xeon, and P6 family processors are:
• Added support for speculative reads, while still adhering to the ordering principles above.
• Store-buffer forwarding, when a read passes a write to the same memory location.
• Out of order store from long string store and string move operations (see Section 8.2.4, “Fast-String Operation 

and Out-of-Order Stores,” below).

NOTE

In P6 processor family, store-buffer forwarding to reads of WC memory from streaming stores to the same address 
does not occur due to errata.

8.2.3 Examples Illustrating the Memory-Ordering Principles

This section provides a set of examples that illustrate the behavior of the memory-ordering principles introduced in 
Section 8.2.2. They are designed to give software writers an understanding of how memory ordering may affect 
the results of different sequences of instructions.

These examples are limited to accesses to memory regions defined as write-back cacheable (WB). (Section 8.2.3.1 
describes other limitations on the generality of the examples.) The reader should understand that they describe 
only software-visible behavior. A logical processor may reorder two accesses even if one of examples indicates that 
they may not be reordered. Such an example states only that software cannot detect that such a reordering 
occurred. Similarly, a logical processor may execute a memory access more than once as long as the behavior 
visible to software is consistent with a single execution of the memory access.

Figure 8-1.  Example of Write Ordering in Multiple-Processor Systems

Processor #1 Processor #2 Processor #3
Write A.3
Write B.3
Write C.3

Write A.1
Write B.1
Write A.2
Write A.3
Write C.1
Write B.2
Write C.2
Write B.3
Write C.3

Order of Writes From Individual Processors

Write A.2
Write B.2
Write C.2

Write A.1
Write B.1
Write C.1

Writes from all
processors are
not guaranteed
to occur in a
particular order.

Each processor
is guaranteed to
perform writes in
program order.

Writes are in order
with respect to 
individual processes.

Example of order of actual writes
from all processors to memory
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8.2.3.1  Assumptions, Terminology, and Notation

As noted above, the examples in this section are limited to accesses to memory regions defined as write-back 
cacheable (WB). They apply only to ordinary loads stores and to locked read-modify-write instructions. They do not 
necessarily apply to any of the following: out-of-order stores for string instructions (see Section 8.2.4); accesses 
with a non-temporal hint; reads from memory by the processor as part of address translation (e.g., page walks); 
and updates to segmentation and paging structures by the processor (e.g., to update “accessed” bits).

The principles underlying the examples in this section apply to individual memory accesses and to locked read-
modify-write instructions. The Intel-64 memory-ordering model guarantees that, for each of the following 
memory-access instructions, the constituent memory operation appears to execute as a single memory access:
• Instructions that read or write a single byte.
• Instructions that read or write a word (2 bytes) whose address is aligned on a 2 byte boundary.
• Instructions that read or write a doubleword (4 bytes) whose address is aligned on a 4 byte boundary.
• Instructions that read or write a quadword (8 bytes) whose address is aligned on an 8 byte boundary.

Any locked instruction (either the XCHG instruction or another read-modify-write instruction with a LOCK prefix) 
appears to execute as an indivisible and uninterruptible sequence of load(s) followed by store(s) regardless of 
alignment.

Other instructions may be implemented with multiple memory accesses. From a memory-ordering point of view, 
there are no guarantees regarding the relative order in which the constituent memory accesses are made. There is 
also no guarantee that the constituent operations of a store are executed in the same order as the constituent 
operations of a load.

Section 8.2.3.2 through Section 8.2.3.7 give examples using the MOV instruction. The principles that underlie 
these examples apply to load and store accesses in general and to other instructions that load from or store to 
memory. Section 8.2.3.8 and Section 8.2.3.9 give examples using the XCHG instruction. The principles that 
underlie these examples apply to other locked read-modify-write instructions.

This section uses the term “processor” is to refer to a logical processor. The examples are written using Intel-64 
assembly-language syntax and use the following notational conventions:
• Arguments beginning with an “r”, such as r1 or r2 refer to registers (e.g., EAX) visible only to the processor 

being considered.
• Memory locations are denoted with x, y, z.
• Stores are written as mov [ _x], val, which implies that val is being stored into the memory location x.
• Loads are written as mov r, [ _x], which implies that the contents of the memory location x are being loaded 

into the register r.

As noted earlier, the examples refer only to software visible behavior. When the succeeding sections make state-
ment such as “the two stores are reordered,” the implication is only that “the two stores appear to be reordered 
from the point of view of software.”

8.2.3.2  Neither Loads Nor Stores Are Reordered with Like Operations

The Intel-64 memory-ordering model allows neither loads nor stores to be reordered with the same kind of opera-
tion. That is, it ensures that loads are seen in program order and that stores are seen in program order. This is illus-
trated by the following example:

The disallowed return values could be exhibited only if processor 0’s two stores are reordered (with the two loads 
occurring between them) or if processor 1’s two loads are reordered (with the two stores occurring between them).

Example 8-1.  Stores Are Not Reordered with Other Stores

Processor 0 Processor 1

mov [ _x], 1 mov r1, [ _y]

mov [ _y], 1 mov r2, [ _x]

Initially x = y = 0

r1 = 1 and r2 = 0 is not allowed
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If r1 = 1, the store to y occurs before the load from y. Because the Intel-64 memory-ordering model does not allow 
stores to be reordered, the earlier store to x occurs before the load from y. Because the Intel-64 memory-ordering 
model does not allow loads to be reordered, the store to x also occurs before the later load from x. This r2 = 1.

8.2.3.3  Stores Are Not Reordered With Earlier Loads

The Intel-64 memory-ordering model ensures that a store by a processor may not occur before a previous load by 
the same processor. This is illustrated by the following example:

Assume r1 = 1.
• Because r1 = 1, processor 1’s store to x occurs before processor 0’s load from x.
• Because the Intel-64 memory-ordering model prevents each store from being reordered with the earlier load 

by the same processor, processor 1’s load from y occurs before its store to x.
• Similarly, processor 0’s load from x occurs before its store to y.
• Thus, processor 1’s load from y occurs before processor 0’s store to y, implying r2 = 0.

8.2.3.4  Loads May Be Reordered with Earlier Stores to Different Locations

The Intel-64 memory-ordering model allows a load to be reordered with an earlier store to a different location. 
However, loads are not reordered with stores to the same location.

The fact that a load may be reordered with an earlier store to a different location is illustrated by the following 
example:

At each processor, the load and the store are to different locations and hence may be reordered. Any interleaving 
of the operations is thus allowed. One such interleaving has the two loads occurring before the two stores. This 
would result in each load returning value 0.

The fact that a load may not be reordered with an earlier store to the same location is illustrated by the following 
example:

Example 8-2.  Stores Are Not Reordered with Older Loads

Processor 0 Processor 1

mov r1, [ _x] mov r2, [ _y]

mov [ _y], 1 mov [ _x], 1

Initially x = y = 0

r1 = 1 and r2 = 1 is not allowed

Example 8-3.  Loads May be Reordered with Older Stores

Processor 0 Processor 1

mov [ _x], 1 mov [ _y], 1

mov r1, [ _y] mov r2, [ _x]

Initially x = y = 0

r1 = 0 and r2 = 0 is allowed

Example 8-4.  Loads Are not Reordered with Older Stores to the Same Location

Processor 0

mov [ _x], 1

mov r1, [ _x]

Initially x = 0

r1 = 0 is not allowed
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The Intel-64 memory-ordering model does not allow the load to be reordered with the earlier store because the 
accesses are to the same location. Therefore, r1 = 1 must hold.

8.2.3.5  Intra-Processor Forwarding Is Allowed

The memory-ordering model allows concurrent stores by two processors to be seen in different orders by those two 
processors; specifically, each processor may perceive its own store occurring before that of the other. This is illus-
trated by the following example:

The memory-ordering model imposes no constraints on the order in which the two stores appear to execute by the 
two processors. This fact allows processor 0 to see its store before seeing processor 1's, while processor 1 sees its 
store before seeing processor 0's. (Each processor is self consistent.) This allows r2 = 0 and r4 = 0.

In practice, the reordering in this example can arise as a result of store-buffer forwarding. While a store is tempo-
rarily held in a processor's store buffer, it can satisfy the processor's own loads but is not visible to (and cannot 
satisfy) loads by other processors.

8.2.3.6  Stores Are Transitively Visible

The memory-ordering model ensures transitive visibility of stores; stores that are causally related appear to all 
processors to occur in an order consistent with the causality relation. This is illustrated by the following example:

Assume that r1 = 1 and r2 = 1.
• Because r1 = 1, processor 0’s store occurs before processor 1’s load.
• Because the memory-ordering model prevents a store from being reordered with an earlier load (see Section 

8.2.3.3), processor 1’s load occurs before its store. Thus, processor 0’s store causally precedes processor 1’s 
store.

• Because processor 0’s store causally precedes processor 1’s store, the memory-ordering model ensures that 
processor 0’s store appears to occur before processor 1’s store from the point of view of all processors.

• Because r2 = 1, processor 1’s store occurs before processor 2’s load.
• Because the Intel-64 memory-ordering model prevents loads from being reordered (see Section 8.2.3.2), 

processor 2’s load occur in order.
• The above items imply that processor 0’s store to x occurs before processor 2’s load from x. This implies that 

r3 = 1.

Example 8-5.  Intra-Processor Forwarding is Allowed

Processor 0 Processor 1

mov [ _x], 1 mov [ _y], 1

mov r1, [ _x] mov r3, [ _y]

mov r2, [ _y] mov r4, [ _x]

Initially x = y = 0

r2 = 0 and r4 = 0 is allowed

Example 8-6.  Stores Are Transitively Visible

Processor 0 Processor 1 Processor 2

mov [ _x], 1 mov r1, [ _x]

mov [ _y], 1 mov r2, [ _y]

mov r3, [_x]

Initially x = y = 0

r1 = 1, r2 = 1, r3 = 0 is not allowed
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8.2.3.7  Stores Are Seen in a Consistent Order by Other Processors

As noted in Section 8.2.3.5, the memory-ordering model allows stores by two processors to be seen in different 
orders by those two processors. However, any two stores must appear to execute in the same order to all proces-
sors other than those performing the stores. This is illustrated by the following example:

By the principles discussed in Section 8.2.3.2, 
• processor 2’s first and second load cannot be reordered,
• processor 3’s first and second load cannot be reordered. 
• If r1 = 1 and r2 = 0, processor 0’s store appears to precede processor 1’s store with respect to processor 2. 
• Similarly, r3 = 1 and r4 = 0 imply that processor 1’s store appears to precede processor 0’s store with respect 

to processor 1. 

Because the memory-ordering model ensures that any two stores appear to execute in the same order to all 
processors (other than those performing the stores), this set of return values is not allowed

8.2.3.8  Locked Instructions Have a Total Order

The memory-ordering model ensures that all processors agree on a single execution order of all locked instruc-
tions, including those that are larger than 8 bytes or are not naturally aligned. This is illustrated by the following 
example:

Processor 2 and processor 3 must agree on the order of the two executions of XCHG. Without loss of generality, 
suppose that processor 0’s XCHG occurs first.
• If r5 = 1, processor 1’s XCHG into y occurs before processor 3’s load from y.
• Because the Intel-64 memory-ordering model prevents loads from being reordered (see Section 8.2.3.2), 

processor 3’s loads occur in order and, therefore, processor 1’s XCHG occurs before processor 3’s load from x.
• Since processor 0’s XCHG into x occurs before processor 1’s XCHG (by assumption), it occurs before 

processor 3’s load from x. Thus, r6 = 1.

A similar argument (referring instead to processor 2’s loads) applies if processor 1’s XCHG occurs before 
processor 0’s XCHG.

8.2.3.9  Loads and Stores Are Not Reordered with Locked Instructions

The memory-ordering model prevents loads and stores from being reordered with locked instructions that execute 
earlier or later. The examples in this section illustrate only cases in which a locked instruction is executed before a 

Example 8-7.  Stores Are Seen in a Consistent Order by Other Processors

Processor 0 Processor 1 Processor 2 Processor 3

mov [ _x], 1 mov [ _y], 1 mov r1, [ _x] mov r3, [_y] 

mov r2, [ _y] mov r4, [_x] 

Initially x = y =0

r1 = 1, r2 = 0, r3 = 1, r4 = 0 is not allowed

Example 8-8.  Locked Instructions Have a Total Order

Processor 0 Processor 1 Processor 2 Processor 3

xchg [ _x], r1 xchg [ _y], r2

mov r3, [ _x] mov r5, [_y]

mov r4, [ _y] mov r6, [_x]

Initially r1 = r2 = 1, x = y = 0

r3 = 1, r4 = 0, r5 = 1, r6 = 0 is not allowed
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load or a store. The reader should note that reordering is prevented also if the locked instruction is executed after 
a load or a store.

The first example illustrates that loads may not be reordered with earlier locked instructions:

As explained in Section 8.2.3.8, there is a total order of the executions of locked instructions. Without loss of 
generality, suppose that processor 0’s XCHG occurs first.

Because the Intel-64 memory-ordering model prevents processor 1’s load from being reordered with its earlier 
XCHG, processor 0’s XCHG occurs before processor 1’s load. This implies r4 = 1.

A similar argument (referring instead to processor 2’s accesses) applies if processor 1’s XCHG occurs before 
processor 0’s XCHG.

The second example illustrates that a store may not be reordered with an earlier locked instruction:

Assume r2 = 1.
• Because r2 = 1, processor 0’s store to y occurs before processor 1’s load from y.
• Because the memory-ordering model prevents a store from being reordered with an earlier locked instruction, 

processor 0’s XCHG into x occurs before its store to y. Thus, processor 0’s XCHG into x occurs before 
processor 1’s load from y.

• Because the memory-ordering model prevents loads from being reordered (see Section 8.2.3.2), processor 1’s 
loads occur in order and, therefore, processor 1’s XCHG into x occurs before processor 1’s load from x. Thus, 
r3 = 1.

8.2.4 Fast-String Operation and Out-of-Order Stores

Section 7.3.9.3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 described an optimi-
zation of repeated string operations called fast-string operation.

As explained in that section, the stores produced by fast-string operation may appear to execute out of order. Soft-
ware dependent upon sequential store ordering should not use string operations for the entire data structure to be 
stored. Data and semaphores should be separated. Order-dependent code should write to a discrete semaphore 
variable after any string operations to allow correctly ordered data to be seen by all processors. Atomicity of load 
and store operations is guaranteed only for native data elements of the string with native data size, and only if they 
are included in a single cache line.

Section 8.2.4.1 and Section 8.2.4.2 provide further explain and examples.

8.2.4.1  Memory-Ordering Model for String Operations on Write-Back (WB) Memory

This section deals with the memory-ordering model for string operations on write-back (WB) memory for the Intel 
64 architecture. 

Example 8-9.  Loads Are not Reordered with Locks

Processor 0 Processor 1

xchg [ _x], r1 xchg [ _y], r3

mov r2, [ _y] mov r4, [ _x]

Initially x = y = 0, r1 = r3 = 1

r2 = 0 and r4 = 0 is not allowed

Example 8-10.  Stores Are not Reordered with Locks

Processor 0 Processor 1

xchg [ _x], r1 mov r2, [ _y]

mov [ _y], 1 mov r3, [ _x]

Initially x = y = 0, r1 = 1

r2 = 1 and r3 = 0 is not allowed
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The memory-ordering model respects the follow principles:

1. Stores within a single string operation may be executed out of order.

2. Stores from separate string operations (for example, stores from consecutive string operations) do not execute 
out of order. All the stores from an earlier string operation will complete before any store from a later string 
operation. 

3. String operations are not reordered with other store operations.

Fast string operations (e.g. string operations initiated with the MOVS/STOS instructions and the REP prefix) may be 
interrupted by exceptions or interrupts. The interrupts are precise but may be delayed - for example, the interrup-
tions may be taken at cache line boundaries, after every few iterations of the loop, or after operating on every few 
bytes. Different implementations may choose different options, or may even choose not to delay interrupt 
handling, so software should not rely on the delay. When the interrupt/trap handler is reached, the source/destina-
tion registers point to the next string element to be operated on, while the EIP stored in the stack points to the 
string instruction, and the ECX register has the value it held following the last successful iteration. The return from 
that trap/interrupt handler should cause the string instruction to be resumed from the point where it was inter-
rupted.

The string operation memory-ordering principles, (item 2 and 3 above) should be interpreted by taking the incor-
ruptibility of fast string operations into account. For example, if a fast string operation gets interrupted after k iter-
ations, then stores performed by the interrupt handler will become visible after the fast string stores from iteration 
0 to k, and before the fast string stores from the (k+1)th iteration onward. 

Stores within a single string operation may execute out of order (item 1 above) only if fast string operation is 
enabled. Fast string operations are enabled/disabled through the IA32_MISC_ENABLE model specific register. 

8.2.4.2  Examples Illustrating Memory-Ordering Principles for String Operations

The following examples uses the same notation and convention as described in Section 8.2.3.1.

In Example 8-11, processor 0 does one round of (128 iterations) doubleword string store operation via rep:stosd, 
writing the value 1 (value in EAX) into a block of 512 bytes from location _x (kept in ES:EDI) in ascending order. 
Since each operation stores a doubleword (4 bytes), the operation is repeated 128 times (value in ECX). The block 
of memory initially contained 0. Processor 1 is reading two memory locations that are part of the memory block 
being updated by processor 0, i.e, reading locations in the range _x to (_x+511).

It is possible for processor 1 to perceive that the repeated string stores in processor 0 are happening out of order. 
Assume that fast string operations are enabled on processor 0.

In Example 8-12, processor 0 does two separate rounds of rep stosd operation of 128 doubleword stores, writing 
the value 1 (value in EAX) into the first block of 512 bytes from location _x (kept in ES:EDI) in ascending order. It 
then writes 1 into a second block of memory from (_x+512) to (_x+1023). All of the memory locations initially 
contain 0. The block of memory initially contained 0. Processor 1 performs two load operations from the two blocks 
of memory.

Example 8-11.  Stores Within a String Operation May be Reordered

Processor 0 Processor 1

rep:stosd [ _x] mov r1, [ _z]

mov r2, [ _y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x 

Initially [_x] to 511[_x]= 0, _x <= _y < _z < _x+512

r1 = 1 and r2 = 0 is allowed
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It is not possible in the above example for processor 1 to perceive any of the stores from the later string operation 
(to the second 512 block) in processor 0 before seeing the stores from the earlier string operation to the first 512 
block. 

The above example assumes that writes to the second block (_x+512 to _x+1023) does not get executed while 
processor 0’s string operation to the first block has been interrupted. If the string operation to the first block by 
processor 0 is interrupted, and a write to the second memory block is executed by the interrupt handler, then that 
change in the second memory block will be visible before the string operation to the first memory block resumes.

In Example 8-13, processor 0 does one round of (128 iterations) doubleword string store operation via rep:stosd, 
writing the value 1 (value in EAX) into a block of 512 bytes from location _x (kept in ES:EDI) in ascending order. It 
then writes to a second memory location outside the memory block of the previous string operation. Processor 1 
performs two read operations, the first read is from an address outside the 512-byte block but to be updated by 
processor 0, the second ready is from inside the block of memory of string operation.

Processor 1 cannot perceive the later store by processor 0 until it sees all the stores from the string operation. 
Example 8-13 assumes that processor 0’s store to [_z] is not executed while the string operation has been inter-
rupted. If the string operation is interrupted and the store to [_z] by processor 0 is executed by the interrupt 
handler, then changes to [_z] will become visible before the string operation resumes. 

Example 8-14 illustrates the visibility principle when a string operation is interrupted. 

Example 8-12.  Stores Across String Operations Are not Reordered

Processor 0 Processor 1

rep:stosd [ _x]

mov r1, [ _z]

mov ecx, $128

mov r2, [ _y]

rep:stosd 512[ _x]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x 

Initially [_x] to 1023[_x]= 0, _x <= _y < _x+512 < _z < _x+1024

r1 = 1 and r2 = 0 is not allowed

Example 8-13.  String Operations Are not Reordered with later Stores

Processor 0 Processor 1

rep:stosd [ _x] mov r1, [ _z]

mov [_z], $1 mov r2, [ _y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x 

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is not allowed

Example 8-14.  Interrupted String Operation

Processor 0 Processor 1

rep:stosd [ _x] // interrupted before es:edi reach _y mov r1, [ _z]

mov [_z], $1 // interrupt handler mov r2, [ _y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x 

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is allowed
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In Example 8-14, processor 0 started a string operation to write to a memory block of 512 bytes starting at address 
_x. Processor 0 got interrupted after k iterations of store operations. The address _y has not yet been updated by 
processor 0 when processor 0 got interrupted. The interrupt handler that took control on processor 0 writes to the 
address _z. Processor 1 may see the store to _z from the interrupt handler, before seeing the remaining stores to 
the 512-byte memory block that are executed when the string operation resumes.

Example 8-15 illustrates the ordering of string operations with earlier stores. No store from a string operation can 
be visible before all prior stores are visible.

8.2.5 Strengthening or Weakening the Memory-Ordering Model

The Intel 64 and IA-32 architectures provide several mechanisms for strengthening or weakening the memory-
ordering model to handle special programming situations. These mechanisms include:
• The I/O instructions, locking instructions, the LOCK prefix, and serializing instructions force stronger ordering 

on the processor.
• The SFENCE instruction (introduced to the IA-32 architecture in the Pentium III processor) and the LFENCE and 

MFENCE instructions (introduced in the Pentium 4 processor) provide memory-ordering and serialization 
capabilities for specific types of memory operations.

• The memory type range registers (MTRRs) can be used to strengthen or weaken memory ordering for specific 
area of physical memory (see Section 11.11, “Memory Type Range Registers (MTRRs)”). MTRRs are available 
only in the Pentium 4, Intel Xeon, and P6 family processors. 

• The page attribute table (PAT) can be used to strengthen memory ordering for a specific page or group of pages 
(see Section 11.12, “Page Attribute Table (PAT)”). The PAT is available only in the Pentium 4, Intel Xeon, and 
Pentium III processors. 

These mechanisms can be used as follows:

Memory mapped devices and other I/O devices on the bus are often sensitive to the order of writes to their I/O 
buffers. I/O instructions can be used to (the IN and OUT instructions) impose strong write ordering on such 
accesses as follows. Prior to executing an I/O instruction, the processor waits for all previous instructions in the 
program to complete and for all buffered writes to drain to memory. Only instruction fetch and page tables walks 
can pass I/O instructions. Execution of subsequent instructions do not begin until the processor determines that 
the I/O instruction has been completed.

Synchronization mechanisms in multiple-processor systems may depend upon a strong memory-ordering model. 
Here, a program can use a locking instruction such as the XCHG instruction or the LOCK prefix to ensure that a 
read-modify-write operation on memory is carried out atomically. Locking operations typically operate like I/O 
operations in that they wait for all previous instructions to complete and for all buffered writes to drain to memory 
(see Section 8.1.2, “Bus Locking”).

Program synchronization can also be carried out with serializing instructions (see Section 8.3). These instructions 
are typically used at critical procedure or task boundaries to force completion of all previous instructions before a 
jump to a new section of code or a context switch occurs. Like the I/O and locking instructions, the processor waits 
until all previous instructions have been completed and all buffered writes have been drained to memory before 
executing the serializing instruction.

Example 8-15.  String Operations Are not Reordered with Earlier Stores

Processor 0 Processor 1

mov [_z], $1 mov r1, [ _y]

rep:stosd [ _x] mov r2, [ _z]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x 

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is not allowed
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The SFENCE, LFENCE, and MFENCE instructions provide a performance-efficient way of ensuring load and store 
memory ordering between routines that produce weakly-ordered results and routines that consume that data. The 
functions of these instructions are as follows:
• SFENCE — Serializes all store (write) operations that occurred prior to the SFENCE instruction in the program 

instruction stream, but does not affect load operations.
• LFENCE — Serializes all load (read) operations that occurred prior to the LFENCE instruction in the program 

instruction stream, but does not affect store operations.1

• MFENCE — Serializes all store and load operations that occurred prior to the MFENCE instruction in the 
program instruction stream.

Note that the SFENCE, LFENCE, and MFENCE instructions provide a more efficient method of controlling memory 
ordering than the CPUID instruction.

The MTRRs were introduced in the P6 family processors to define the cache characteristics for specified areas of 
physical memory. The following are two examples of how memory types set up with MTRRs can be used strengthen 
or weaken memory ordering for the Pentium 4, Intel Xeon, and P6 family processors:
• The strong uncached (UC) memory type forces a strong-ordering model on memory accesses. Here, all reads 

and writes to the UC memory region appear on the bus and out-of-order or speculative accesses are not 
performed. This memory type can be applied to an address range dedicated to memory mapped I/O devices to 
force strong memory ordering.

• For areas of memory where weak ordering is acceptable, the write back (WB) memory type can be chosen. 
Here, reads can be performed speculatively and writes can be buffered and combined. For this type of memory, 
cache locking is performed on atomic (locked) operations that do not split across cache lines, which helps to 
reduce the performance penalty associated with the use of the typical synchronization instructions, such as 
XCHG, that lock the bus during the entire read-modify-write operation. With the WB memory type, the XCHG 
instruction locks the cache instead of the bus if the memory access is contained within a cache line.

The PAT was introduced in the Pentium III processor to enhance the caching characteristics that can be assigned to 
pages or groups of pages. The PAT mechanism typically used to strengthen caching characteristics at the page level 
with respect to the caching characteristics established by the MTRRs. Table 11-7 shows the interaction of the PAT 
with the MTRRs.

Intel recommends that software written to run on Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, Intel 
Xeon, and P6 family processors assume the processor-ordering model or a weaker memory-ordering model. The 
Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, Intel Xeon, and P6 family processors do not implement a 
strong memory-ordering model, except when using the UC memory type. Despite the fact that Pentium 4, Intel 
Xeon, and P6 family processors support processor ordering, Intel does not guarantee that future processors will 
support this model. To make software portable to future processors, it is recommended that operating systems 
provide critical region and resource control constructs and API’s (application program interfaces) based on I/O, 
locking, and/or serializing instructions be used to synchronize access to shared areas of memory in multiple-
processor systems. Also, software should not depend on processor ordering in situations where the system hard-
ware does not support this memory-ordering model.

8.3 SERIALIZING INSTRUCTIONS

The Intel 64 and IA-32 architectures define several serializing instructions. These instructions force the 
processor to complete all modifications to flags, registers, and memory by previous instructions and to drain all 
buffered writes to memory before the next instruction is fetched and executed. For example, when a MOV to control 
register instruction is used to load a new value into control register CR0 to enable protected mode, the processor 
must perform a serializing operation before it enters protected mode. This serializing operation ensures that all 

1. Specifically, LFENCE does not execute until all prior instructions have completed locally, and no later instruction begins execution 
until LFENCE completes. As a result, an instruction that loads from memory and that precedes an LFENCE receives data from mem-
ory prior to completion of the LFENCE. An LFENCE that follows an instruction that stores to memory might complete before the data 
being stored have become globally visible. Instructions following an LFENCE may be fetched from memory before the LFENCE, but 
they will not execute until the LFENCE completes.
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operations that were started while the processor was in real-address mode are completed before the switch to 
protected mode is made.

The concept of serializing instructions was introduced into the IA-32 architecture with the Pentium processor to 
support parallel instruction execution. Serializing instructions have no meaning for the Intel486 and earlier proces-
sors that do not implement parallel instruction execution.

It is important to note that executing of serializing instructions on P6 and more recent processor families constrain 
speculative execution because the results of speculatively executed instructions are discarded. The following 
instructions are serializing instructions:
• Privileged serializing instructions — INVD, INVEPT, INVLPG, INVVPID, LGDT, LIDT, LLDT, LTR, MOV (to 

control register, with the exception of MOV CR82), MOV (to debug register), WBINVD, and WRMSR3.
• Non-privileged serializing instructions — CPUID, IRET, and RSM.

When the processor serializes instruction execution, it ensures that all pending memory transactions are 
completed (including writes stored in its store buffer) before it executes the next  instruction. Nothing can pass a 
serializing instruction and a serializing instruction cannot pass any other instruction (read, write, instruction fetch, 
or I/O). For example, CPUID can be executed at any privilege level to serialize instruction execution with no effect 
on program flow, except that the EAX, EBX, ECX, and EDX registers are modified.

The following instructions are memory-ordering instructions, not serializing instructions. These drain the data 
memory subsystem. They do not serialize the instruction execution stream:4

• Non-privileged memory-ordering instructions — SFENCE, LFENCE, and MFENCE.

The SFENCE, LFENCE, and MFENCE instructions provide more granularity in controlling the serialization of memory 
loads and stores (see Section 8.2.5, “Strengthening or Weakening the Memory-Ordering Model”).

The following additional information is worth noting regarding serializing instructions:
• The processor does not write back the contents of modified data in its data cache to external memory when it 

serializes instruction execution. Software can force modified data to be written back by executing the WBINVD 
instruction, which is a serializing instruction. The amount of time or cycles for WBINVD to complete will vary 
due to the size of different cache hierarchies and other factors. As a consequence, the use of the WBINVD 
instruction can have an impact on interrupt/event response time.

• When an instruction is executed that enables or disables paging (that is, changes the PG flag in control register 
CR0), the instruction should be followed by a jump instruction. The target instruction of the jump instruction is 
fetched with the new setting of the PG flag (that is, paging is enabled or disabled), but the jump instruction 
itself is fetched with the previous setting. The Pentium 4, Intel Xeon, and P6 family processors do not require 
the jump operation following the move to register CR0 (because any use of the MOV instruction in a Pentium 4, 
Intel Xeon, or P6 family processor to write to CR0 is completely serializing). However, to maintain backwards 
and forward compatibility with code written to run on other IA-32 processors, it is recommended that the jump 
operation be performed.

• Whenever an instruction is executed to change the contents of CR3 while paging is enabled, the next 
instruction is fetched using the translation tables that correspond to the new value of CR3. Therefore the next 
instruction and the sequentially following instructions should have a mapping based upon the new value of 
CR3. (Global entries in the TLBs are not invalidated, see Section 4.10.4, “Invalidation of TLBs and Paging-
Structure Caches.”)

• The Pentium processor and more recent processor families use branch-prediction techniques to improve 
performance by prefetching the destination of a branch instruction before the branch instruction is executed. 
Consequently, instruction execution is not deterministically serialized when a branch instruction is executed.

2. MOV CR8 is not defined architecturally as a serializing instruction.

3. WRMSR to the IA32_TSC_DEADLINE MSR (MSR index 6E0H) and the X2APIC MSRs (MSR indices 802H to 83FH) are not serializing.

4. LFENCE does provide some guarantees on instruction ordering. It does not execute until all prior instructions have completed locally, 
and no later instruction begins execution until LFENCE completes.
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8.4 MULTIPLE-PROCESSOR (MP) INITIALIZATION

The IA-32 architecture (beginning with the P6 family processors) defines a multiple-processor (MP) initialization 
protocol called the Multiprocessor Specification Version 1.4. This specification defines the boot protocol to be used 
by IA-32 processors in multiple-processor systems. (Here, multiple processors is defined as two or more proces-
sors.) The MP initialization protocol has the following important features:
• It supports controlled booting of multiple processors without requiring dedicated system hardware.
• It allows hardware to initiate the booting of a system without the need for a dedicated signal or a predefined 

boot processor.
• It allows all IA-32 processors to be booted in the same manner, including those supporting Intel Hyper-

Threading Technology.
• The MP initialization protocol also applies to MP systems using Intel 64 processors.

The mechanism for carrying out the MP initialization protocol differs depending on the IA-32 processor family, as 
follows:
• For P6 family processors — The selection of the BSP and APs (see Section 8.4.1, “BSP and AP Processors”) 

is handled through arbitration on the APIC bus, using BIPI and FIPI messages. See Section 8.11.1, “Overview 
of the MP Initialization Process For P6 Family Processors” for a complete discussion of MP initialization for P6 
family processors.

• Intel Xeon processors with family, model, and stepping IDs up to F09H — The selection of the BSP and 
APs (see Section 8.4.1, “BSP and AP Processors”) is handled through arbitration on the system bus, using BIPI 
and FIPI messages (see Section 8.4.3, “MP Initialization Protocol Algorithm for Intel Xeon Processors”).

• Intel Xeon processors with family, model, and stepping IDs of F0AH and beyond, 6E0H and beyond, 
6F0H and beyond — The selection of the BSP and APs is handled through a special system bus cycle, without 
using BIPI and FIPI message arbitration (see Section 8.4.3, “MP Initialization Protocol Algorithm for 
Intel Xeon Processors”).

The family, model, and stepping ID for a processor is given in the EAX register when the CPUID instruction is 
executed with a value of 1 in the EAX register.

8.4.1 BSP and AP Processors

The MP initialization protocol defines two classes of processors: the bootstrap processor (BSP) and the application 
processors (APs). Following a power-up or RESET of an MP system, system hardware dynamically selects one of the 
processors on the system bus as the BSP. The remaining processors are designated as APs.

As part of the BSP selection mechanism, the BSP flag is set in the IA32_APIC_BASE MSR (see Figure 10-5) of the 
BSP, indicating that it is the BSP. This flag is cleared for all other processors. 

The BSP executes the BIOS’s boot-strap code to configure the APIC environment, sets up system-wide data struc-
tures, and starts and initializes the APs. When the BSP and APs are initialized, the BSP then begins executing the 
operating-system initialization code.

Following a power-up or reset, the APs complete a minimal self-configuration, then wait for a startup signal (a SIPI 
message) from the BSP processor. Upon receiving a SIPI message, an AP executes the BIOS AP configuration code, 
which ends with the AP being placed in halt state.

For Intel 64 and IA-32 processors supporting Intel Hyper-Threading Technology, the MP initialization protocol treats 
each of the logical processors on the system bus or coherent link domain as a separate processor (with a unique 
APIC ID). During boot-up, one of the logical processors is selected as the BSP and the remainder of the logical 
processors are designated as APs.

8.4.2 MP Initialization Protocol Requirements and Restrictions

The MP initialization protocol imposes the following requirements and restrictions on the system:
• The MP protocol is executed only after a power-up or RESET. If the MP protocol has completed and a BSP is 

chosen, subsequent INITs (either to a specific processor or system wide) do not cause the MP protocol to be 
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repeated. Instead, each logical processor examines its BSP flag (in the IA32_APIC_BASE MSR) to determine 
whether it should execute the BIOS boot-strap code (if it is the BSP) or enter a wait-for-SIPI state (if it is an 
AP).

• All devices in the system that are capable of delivering interrupts to the processors must be inhibited from 
doing so for the duration of the MP initialization protocol. The time during which interrupts must be inhibited 
includes the window between when the BSP issues an INIT-SIPI-SIPI sequence to an AP and when the AP 
responds to the last SIPI in the sequence.

8.4.3 MP Initialization Protocol Algorithm for Intel Xeon Processors

Following a power-up or RESET of an MP system, the processors in the system execute the MP initialization protocol 
algorithm to initialize each of the logical processors on the system bus or coherent link domain. In the course of 
executing this algorithm, the following boot-up and initialization operations are carried out:

1. Each logical processor is assigned a unique APIC ID, based on system topology. The unique ID is a 32-bit value 
if the processor supports CPUID leaf 0BH, otherwise the unique ID is an 8-bit value. (see Section 8.4.5, “Identi-
fying Logical Processors in an MP System”). This ID is written into the local APIC ID register for each processor.

2. Each logical processor is assigned a unique arbitration priority based on its APIC ID.

3. Each logical processor executes its internal BIST simultaneously with the other logical processors on the 
system bus. 

4. Upon completion of the BIST, the logical processors use a hardware-defined selection mechanism to select the 
BSP and the APs from the available logical processors on the system bus. The BSP selection mechanism differs 
depending on the family, model, and stepping IDs of the processors, as follows: 

— Family, model, and stepping IDs of F0AH and onwards:

• The logical processors begin monitoring the BNR# signal, which is toggling. When the BNR# pin stops 
toggling, each processor attempts to issue a NOP special cycle on the system bus. 

• The logical processor with the highest arbitration priority succeeds in issuing a NOP special cycle and is 
nominated the BSP. This processor sets the BSP flag in its IA32_APIC_BASE MSR, then fetches and 
begins executing BIOS boot-strap code, beginning at the reset vector (physical address FFFF FFF0H).

• The remaining logical processors (that failed in issuing a NOP special cycle) are designated as APs. They 
leave their BSP flags in the clear state and enter a “wait-for-SIPI state.”

— Family, model, and stepping IDs up to F09H:

• Each processor broadcasts a BIPI to “all including self.” The first processor that broadcasts a BIPI (and 
thus receives its own BIPI vector), selects itself as the BSP and sets the BSP flag in its IA32_APIC_BASE 
MSR. (See Section 8.11.1, “Overview of the MP Initialization Process For P6 Family Processors” for a 
description of the BIPI, FIPI, and SIPI messages.)

• The remainder of the processors (which were not selected as the BSP) are designated as APs. They 
leave their BSP flags in the clear state and enter a “wait-for-SIPI state.”

• The newly established BSP broadcasts an FIPI message to “all including self,” which the BSP and APs 
treat as an end of MP initialization signal. Only the processor with its BSP flag set responds to the FIPI 
message. It responds by fetching and executing the BIOS boot-strap code, beginning at the reset 
vector (physical address FFFF FFF0H).

5. As part of the boot-strap code, the BSP creates an ACPI table and an MP table and adds its initial APIC ID to 
these tables as appropriate. 

6. At the end of the boot-strap procedure, the BSP sets a processor counter to 1, then broadcasts a SIPI message 
to all the APs in the system. Here, the SIPI message contains a vector to the BIOS AP initialization code (at 
000VV000H, where VV is the vector contained in the SIPI message).

7. The first action of the AP initialization code is to set up a race (among the APs) to a BIOS initialization 
semaphore. The first AP to the semaphore begins executing the initialization code. (See Section 8.4.4, “MP 
Initialization Example,” for semaphore implementation details.) As part of the AP initialization procedure, the 
AP adds its APIC ID number to the ACPI and MP tables as appropriate and increments the processor counter by 
1. At the completion of the initialization procedure, the AP executes a CLI instruction and halts itself.
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8. When each of the APs has gained access to the semaphore and executed the AP initialization code, the BSP 
establishes a count for the number of processors connected to the system bus, completes executing the BIOS 
boot-strap code, and then begins executing operating-system boot-strap and start-up code.

9. While the BSP is executing operating-system boot-strap and start-up code, the APs remain in the halted state. 
In this state they will respond only to INITs, NMIs, and SMIs. They will also respond to snoops and to assertions 
of the STPCLK# pin.

The following section gives an example (with code) of the MP initialization protocol for multiple Intel Xeon proces-
sors operating in an MP configuration.

Chapter 35, “Model-Specific Registers (MSRs),” describes how to program the LINT[0:1] pins of the processor’s 
local APICs after an MP configuration has been completed.

8.4.4 MP Initialization Example

The following example illustrates the use of the MP initialization protocol used to initialize processors in an MP 
system after the BSP and APs have been established. The code runs on Intel 64 or IA-32 processors that use a 
protocol. This includes P6 Family processors, Pentium 4 processors, Intel Core Duo, Intel Core 2 Duo and Intel Xeon 
processors.

The following constants and data definitions are used in the accompanying 
code examples. They are based on the addresses of the APIC registers defined in Table 10-1.

ICR_LOW EQU 0FEE00300H

SVR EQU 0FEE000F0H

APIC_ID EQU 0FEE00020H

LVT3 EQU 0FEE00370H

APIC_ENABLED EQU 0100H

BOOT_ID DD ?

COUNT EQU 00H

VACANT EQU 00H

8.4.4.1  Typical BSP Initialization Sequence

After the BSP and APs have been selected (by means of a hardware protocol, see Section 8.4.3, “MP Initialization 
Protocol Algorithm for Intel Xeon Processors”), the BSP begins executing BIOS boot-strap code (POST) at the 
normal IA-32 architecture starting address (FFFF FFF0H). The boot-strap code typically performs the following 
operations:

1. Initializes memory.

2. Loads the microcode update into the processor.

3. Initializes the MTRRs.

4. Enables the caches.

5. Executes the CPUID instruction with a value of 0H in the EAX register, then reads the EBX, ECX, and EDX 
registers to determine if the BSP is “GenuineIntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves the values in the EAX, ECX, 
and EDX registers in a system configuration space in RAM for use later.

7. Loads start-up code for the AP to execute into a 4-KByte page in the lower 1 MByte of memory.

8. Switches to protected mode and ensures that the APIC address space is mapped to the strong uncacheable 
(UC) memory type.

9. Determine the BSP’s APIC ID from the local APIC ID register (default is 0), the code snippet below is an 
example that applies to logical processors in a system whose local APIC units operate in xAPIC mode that APIC 
registers are accessed using memory mapped interface:

MOV ESI, APIC_ID; Address of local APIC ID register
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MOV EAX, [ESI];

AND EAX, 0FF000000H; Zero out all other bits except APIC ID

MOV BOOT_ID, EAX; Save in memory

Saves the APIC ID in the ACPI and MP tables and optionally in the system configuration space in RAM.

10. Converts the base address of the 4-KByte page for the AP’s bootup code into 8-bit vector. The 8-bit vector 
defines the address of a 4-KByte page in the real-address mode address space (1-MByte space). For example, 
a vector of 0BDH specifies a start-up memory address of 000BD000H. 

11. Enables the local APIC by setting bit 8 of the APIC spurious vector register (SVR).

MOV ESI, SVR; Address of SVR

MOV EAX, [ESI];

OR  EAX, APIC_ENABLED; Set bit 8 to enable (0 on reset)

MOV [ESI], EAX;

12. Sets up the LVT error handling entry by establishing an 8-bit vector for the APIC error handler.

MOV ESI, LVT3;

MOV EAX, [ESI];

AND EAX, FFFFFF00H; Clear out previous vector.

OR EAX, 000000xxH; xx is the 8-bit vector the APIC error handler. 

MOV [ESI], EAX;

13. Initializes the Lock Semaphore variable VACANT to 00H. The APs use this semaphore to determine the order in 
which they execute BIOS AP initialization code.

14. Performs the following operation to set up the BSP to detect the presence of APs in the system and the number 
of processors:

— Sets the value of the COUNT variable to 1.

— Starts a timer (set for an approximate interval of 100 milliseconds). In the AP BIOS initialization code, the 
AP will increment the COUNT variable to indicate its presence. When the timer expires, the BSP checks the 
value of the COUNT variable. If the timer expires and the COUNT variable has not been incremented, no APs 
are present or some error has occurred.

15. Broadcasts an INIT-SIPI-SIPI IPI sequence to the APs to wake them up and initialize them:

MOV ESI, ICR_LOW; Load address of ICR low dword into ESI.

MOV EAX, 000C4500H; Load ICR encoding for broadcast INIT IPI 

; to all APs into EAX.

MOV [ESI], EAX; Broadcast INIT IPI to all APs

; 10-millisecond delay loop.

MOV EAX, 000C46XXH; Load ICR encoding for broadcast SIPI IP

; to all APs into EAX, where xx is the vector computed in step 10.

MOV [ESI], EAX; Broadcast SIPI IPI to all APs

; 200-microsecond delay loop

MOV [ESI], EAX; Broadcast second SIPI IPI to all APs

; 200-microsecond delay loop

Step 15:

MOV EAX, 000C46XXH; Load ICR encoding from broadcast SIPI IP

; to all APs into EAX where xx is the vector computed in step 8.

16. Waits for the timer interrupt.

17. Reads and evaluates the COUNT variable and establishes a processor count.

18. If necessary, reconfigures the APIC and continues with the remaining system diagnostics as appropriate.
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8.4.4.2  Typical AP Initialization Sequence

When an AP receives the SIPI, it begins executing BIOS AP initialization code at the vector encoded in the SIPI. The 
AP initialization code typically performs the following operations:

1. Waits on the BIOS initialization Lock Semaphore. When control of the semaphore is attained, initialization 
continues.

2. Loads the microcode update into the processor.

3. Initializes the MTRRs (using the same mapping that was used for the BSP).

4. Enables the cache.

5. Executes the CPUID instruction with a value of 0H in the EAX register, then reads the EBX, ECX, and EDX 
registers to determine if the AP is “GenuineIntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves the values in the EAX, ECX, 
and EDX registers in a system configuration space in RAM for use later.

7. Switches to protected mode and ensures that the APIC address space is mapped to the strong uncacheable 
(UC) memory type.

8. Determines the AP’s APIC ID from the local APIC ID register, and adds it to the MP and ACPI tables and 
optionally to the system configuration space in RAM.

9. Initializes and configures the local APIC by setting bit 8 in the SVR register and setting up the LVT3 (error LVT) 
for error handling (as described in steps 9 and 10 in Section 8.4.4.1, “Typical BSP Initialization Sequence”).

10. Configures the APs SMI execution environment. (Each AP and the BSP must have a different SMBASE address.)

11. Increments the COUNT variable by 1.

12. Releases the semaphore.

13. Executes the CLI and HLT instructions.

14. Waits for an INIT IPI.

8.4.5 Identifying Logical Processors in an MP System

After the BIOS has completed the MP initialization protocol, each logical processor can be uniquely identified by its 
local APIC ID. Software can access these APIC IDs in either of the following ways:
• Read APIC ID for a local APIC — Code running on a logical processor can read APIC ID in one of two ways 

depending on the local APIC unit is operating in x2APIC mode (see Intel® 64 Architecture x2APIC Specifi-
cation)or in xAPIC mode:

— If the local APIC unit supports x2APIC and is operating in x2APIC mode, 32-bit APIC ID can be read by 
executing a RDMSR instruction to read the processor’s x2APIC ID register. This method is equivalent to 
executing CPUID leaf 0BH described below.

— If the local APIC unit is operating in xAPIC mode, 8-bit APIC ID can be read by executing a MOV instruction 
to read the processor’s local APIC ID register (see Section 10.4.6, “Local APIC ID”). This is the ID to use for 
directing physical destination mode interrupts to the processor.

• Read ACPI or MP table — As part of the MP initialization protocol, the BIOS creates an ACPI table and an MP 
table. These tables are defined in the Multiprocessor Specification Version 1.4 and provide software with a list 
of the processors in the system and their local APIC IDs. The format of the ACPI table is derived from the ACPI 
specification, which is an industry standard power management and platform configuration specification for MP 
systems.

• Read Initial APIC ID (If the process does not support CPUID leaf 0BH) — An APIC ID is assigned to a logical 
processor during power up. This is the initial APIC ID reported by CPUID.1:EBX[31:24] and may be different 
from the current value read from the local APIC. The initial APIC ID can be used to determine the topological 
relationship between logical processors for multi-processor systems that do not support CPUID leaf 0BH.
Bits in the 8-bit initial APIC ID can be interpreted using several bit masks. Each bit mask can be used to extract 
an identifier to represent a hierarchical level of the multi-threading resource topology in an MP system (See 
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Section 8.9.1, “Hierarchical Mapping of Shared Resources”). The initial APIC ID may consist of up to four bit-
fields. In a non-clustered MP system, the field consists of up to three bit fields. 

• Read 32-bit APIC ID from CPUID leaf 0BH (If the processor supports CPUID leaf 0BH) — A unique APIC ID 
is assigned to a logical processor during power up. This APIC ID is reported by CPUID.0BH:EDX[31:0] as a 32-
bit value. Use the 32-bit APIC ID and CPUID leaf 0BH to determine the topological relationship between logical 
processors if the processor supports CPUID leaf 0BH.
Bits in the 32-bit x2APIC ID can be extracted into sub-fields using CPUID leaf 0BH parameters. (See Section 
8.9.1, “Hierarchical Mapping of Shared Resources”). 

Figure 8-2 shows two examples of APIC ID bit fields in earlier single-core processors. In single-core Intel Xeon 
processors, the APIC ID assigned to a logical processor during power-up and initialization is 8 bits. Bits 2:1 form a 
2-bit physical package identifier (which can also be thought of as a socket identifier). In systems that configure 
physical processors in clusters, bits 4:3 form a 2-bit cluster ID. Bit 0 is used in the Intel Xeon processor MP to iden-
tify the two logical processors within the package (see Section 8.9.3, “Hierarchical ID of Logical Processors in an 
MP System”). For Intel Xeon processors that do not support Intel Hyper-Threading Technology, bit 0 is always set 
to 0; for Intel Xeon processors supporting Intel Hyper-Threading Technology, bit 0 performs the same function as 
it does for Intel Xeon processor MP. 

For more recent multi-core processors, see Section 8.9.1, “Hierarchical Mapping of Shared Resources” for a 
complete description of the topological relationships between logical processors and bit field locations within an 
initial APIC ID across Intel 64 and IA-32 processor families.

Note the number of bit fields and the width of bit-fields are dependent on processor and platform hardware capa-
bilities. Software should determine these at runtime. When initial APIC IDs are assigned to logical processors, the 
value of APIC ID assigned to a logical processor will respect the bit-field boundaries corresponding core, physical 
package, etc. Additional examples of the bit fields in the initial APIC ID of multi-threading capable systems are 
shown in Section 8.9.

For P6 family processors, the APIC ID that is assigned to a processor during power-up and initialization is 4 bits 
(see Figure 8-2). Here, bits 0 and 1 form a 2-bit processor (or socket) identifier and bits 2 and 3 form a 2-bit 
cluster ID. 

Figure 8-2.  Interpretation of APIC ID in Early MP Systems
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8.5 INTEL® HYPER-THREADING TECHNOLOGY AND INTEL® MULTI-CORE 
TECHNOLOGY

Intel Hyper-Threading Technology and Intel multi-core technology are extensions to Intel 64 and IA-32 architec-
tures that enable a single physical processor to execute two or more separate code streams (called threads) 
concurrently. In Intel Hyper-Threading Technology, a single processor core provides two logical processors that 
share execution resources (see Section 8.7, “Intel® Hyper-Threading Technology Architecture”). In Intel multi-core 
technology, a physical processor package provides two or more processor cores. Both configurations require chip-
sets and a BIOS that support the technologies.

Software should not rely on processor names to determine whether a processor supports Intel Hyper-Threading 
Technology or Intel multi-core technology. Use the CPUID instruction to determine processor capability (see 
Section 8.6.2, “Initializing Multi-Core Processors”). 

8.6 DETECTING HARDWARE MULTI-THREADING SUPPORT AND TOPOLOGY

Use the CPUID instruction to detect the presence of hardware multi-threading support in a physical processor. 
Hardware multi-threading can support several varieties of multigrade and/or Intel Hyper-Threading Technology. 
CPUID instruction provides several sets of parameter information to aid software enumerating topology informa-
tion. The relevant topology enumeration parameters provided by CPUID include:
• Hardware Multi-Threading feature flag (CPUID.1:EDX[28] = 1) — Indicates when set that the physical 

package is capable of supporting Intel Hyper-Threading Technology and/or multiple cores. 
• Processor topology enumeration parameters for 8-bit APIC ID:

— Addressable IDs for Logical processors in the same Package (CPUID.1:EBX[23:16]) — Indicates 
the maximum number of addressable ID for logical processors in a physical package. Within a physical 
package, there may be addressable IDs that are not occupied by any logical processors. This parameter 
does not represents the hardware capability of the physical processor.5

• Addressable IDs for processor cores in the same Package6 (CPUID.(EAX=4, ECX=07):EAX[31:26] + 
1 = Y) — Indicates the maximum number of addressable IDs attributable to processor cores (Y) in the physical 
package.

• Extended Processor Topology Enumeration parameters for 32-bit APIC ID: Intel 64 processors 
supporting CPUID leaf 0BH will assign unique APIC IDs to each logical processor in the system. CPUID leaf 0BH 
reports the 32-bit APIC ID and provide topology enumeration parameters. See CPUID instruction reference 
pages in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

The CPUID feature flag may indicate support for hardware multi-threading when only one logical processor avail-
able in the package. In this case, the decimal value represented by bits 16 through 23 in the EBX register will have 
a value of 1.

Software should note that the number of logical processors enabled by system software may be less than the value 
of “Addressable IDs for Logical processors”. Similarly, the number of cores enabled by system software may be less 
than the value of “Addressable IDs for processor cores”.

Software can detect the availability of the CPUID extended topology enumeration leaf (0BH) by performing two 
steps:
• Check maximum input value for basic CPUID information by executing CPUID with EAX= 0. If CPUID.0H:EAX is 

greater than or equal or 11 (0BH), then proceed to next step,
• Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero.

5. Operating system and BIOS may implement features that reduce the number of logical processors available in a platform to applica-
tions at runtime to less than the number of physical packages times the number of hardware-capable logical processors per package.

6. Software must check CPUID for its support of leaf 4 when implementing support for multi-core. If CPUID leaf 4 is not available at run-
time, software should handle the situation as if there is only one core per package.

7. Maximum number of cores in the physical package must be queried by executing CPUID with EAX=4 and a valid ECX input value. 
Valid ECX input values start from 0.
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If both of the above conditions are true, extended topology enumeration leaf is available. Note the presence of 
CPUID leaf 0BH in a processor does not guarantee support that the local APIC supports x2APIC. If 
CPUID.(EAX=0BH, ECX=0H):EBX returns zero and maximum input value for basic CPUID information is greater 
than 0BH, then CPUID.0BH leaf is not supported on that processor.

8.6.1 Initializing Processors Supporting Hyper-Threading Technology

The initialization process for an MP system that contains processors supporting Intel Hyper-Threading Technology 
is the same as for conventional MP systems (see Section 8.4, “Multiple-Processor (MP) Initialization”). One logical 
processor in the system is selected as the BSP and other processors (or logical processors) are designated as APs. 
The initialization process is identical to that described in Section 8.4.3, “MP Initialization Protocol Algorithm for 
Intel Xeon Processors,” and Section 8.4.4, “MP Initialization Example.”

During initialization, each logical processor is assigned an APIC ID that is stored in the local APIC ID register for 
each logical processor. If two or more processors supporting Intel Hyper-Threading Technology are present, each 
logical processor on the system bus is assigned a unique ID (see Section 8.9.3, “Hierarchical ID of Logical Proces-
sors in an MP System”). Once logical processors have APIC IDs, software communicates with them by sending APIC 
IPI messages.

8.6.2 Initializing Multi-Core Processors

The initialization process for an MP system that contains multi-core Intel 64 or IA-32 processors is the same as for 
conventional MP systems (see Section 8.4, “Multiple-Processor (MP) Initialization”). A logical processor in one core 
is selected as the BSP; other logical processors are designated as APs. 

During initialization, each logical processor is assigned an APIC ID. Once logical processors have APIC IDs, soft-
ware may communicate with them by sending APIC IPI messages.

8.6.3 Executing Multiple Threads on an Intel® 64 or IA-32 Processor Supporting Hardware 
Multi-Threading

Upon completing the operating system boot-up procedure, the bootstrap processor (BSP) executes operating 
system code. Other logical processors are placed in the halt state. To execute a code stream (thread) on a halted 
logical processor, the operating system issues an interprocessor interrupt (IPI) addressed to the halted logical 
processor. In response to the IPI, the processor wakes up and begins executing the thread identified by the inter-
rupt vector received as part of the IPI. 

To manage execution of multiple threads on logical processors, an operating system can use conventional 
symmetric multiprocessing (SMP) techniques. For example, the operating-system can use a time-slice or load 
balancing mechanism to periodically interrupt each of the active logical processors. Upon interrupting a logical 
processor, the operating system checks its run queue for a thread waiting to be executed and dispatches the thread 
to the interrupted logical processor.

8.6.4 Handling Interrupts on an IA-32 Processor Supporting Hardware Multi-Threading

Interrupts are handled on processors supporting Intel Hyper-Threading Technology as they are on conventional MP 
systems. External interrupts are received by the I/O APIC, which distributes them as interrupt messages to specific 
logical processors (see Figure 8-3). 

Logical processors can also send IPIs to other logical processors by writing to the ICR register of its local APIC (see 
Section 10.6, “Issuing Interprocessor Interrupts”). This also applies to dual-core processors.
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8.7 INTEL® HYPER-THREADING TECHNOLOGY ARCHITECTURE

Figure 8-4 shows a generalized view of an Intel processor supporting Intel Hyper-Threading Technology, using the 
original Intel Xeon processor MP as an example. This implementation of the Intel Hyper-Threading Technology 
consists of two logical processors (each represented by a separate architectural state) which share the processor’s 
execution engine and the bus interface. Each logical processor also has its own advanced programmable interrupt 
controller (APIC).

 

Figure 8-3.  Local APICs and I/O APIC in MP System Supporting Intel HT Technology
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8.7.1 State of the Logical Processors

The following features are part of the architectural state of logical processors within Intel 64 or IA-32 processors 
supporting Intel Hyper-Threading Technology. The features can be subdivided into three groups: 
• Duplicated for each logical processor
• Shared by logical processors in a physical processor
• Shared or duplicated, depending on the implementation

The following features are duplicated for each logical processor:
• General purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP)
• Segment registers (CS, DS, SS, ES, FS, and GS)
• EFLAGS and EIP registers. Note that the CS and EIP/RIP registers for each logical processor point to the 

instruction stream for the thread being executed by the logical processor.
• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data operand pointer, and instruction 

pointer)
• MMX registers (MM0 through MM7)
• XMM registers (XMM0 through XMM7) and the MXCSR register
• Control registers and system table pointer registers (GDTR, LDTR, IDTR, task register)
• Debug registers (DR0, DR1, DR2, DR3, DR6, DR7) and the debug control MSRs
• Machine check global status (IA32_MCG_STATUS) and machine check capability (IA32_MCG_CAP) MSRs
• Thermal clock modulation and ACPI Power management control MSRs
• Time stamp counter MSRs
• Most of the other MSR registers, including the page attribute table (PAT). See the exceptions below.
• Local APIC registers.
• Additional general purpose registers (R8-R15), XMM registers (XMM8-XMM15), control register, IA32_EFER on 

Intel 64 processors.

The following features are shared by logical processors:
• Memory type range registers (MTRRs)

Whether the following features are shared or duplicated is implementation-specific:
• IA32_MISC_ENABLE MSR (MSR address 1A0H)

Figure 8-4.  IA-32 Processor with Two Logical Processors Supporting Intel HT Technology
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• Machine check architecture (MCA) MSRs (except for the IA32_MCG_STATUS and IA32_MCG_CAP MSRs)
• Performance monitoring control and counter MSRs

8.7.2 APIC Functionality

When a processor supporting Intel Hyper-Threading Technology support is initialized, each logical processor is 
assigned a local APIC ID (see Table 10-1). The local APIC ID serves as an ID for the logical processor and is stored 
in the logical processor’s APIC ID register. If two or more processors supporting Intel Hyper-Threading Technology 
are present in a dual processor (DP) or MP system, each logical processor on the system bus is assigned a unique 
local APIC ID (see Section 8.9.3, “Hierarchical ID of Logical Processors in an MP System”).

Software communicates with local processors using the APIC’s interprocessor interrupt (IPI) messaging facility. 
Setup and programming for APICs is identical in processors that support and do not support Intel Hyper-Threading 
Technology. See Chapter 10, “Advanced Programmable Interrupt Controller (APIC),” for a detailed discussion.

8.7.3 Memory Type Range Registers (MTRR)

MTRRs in a processor supporting Intel Hyper-Threading Technology are shared by logical processors. When one 
logical processor updates the setting of the MTRRs, settings are automatically shared with the other logical proces-
sors in the same physical package. 

The architectures require that all MP systems based on Intel 64 and IA-32 processors (this includes logical proces-
sors) must use an identical MTRR memory map. This gives software a consistent view of memory, independent of 
the processor on which it is running. See Section 11.11, “Memory Type Range Registers (MTRRs),” for information 
on setting up MTRRs.

8.7.4 Page Attribute Table (PAT)

Each logical processor has its own PAT MSR (IA32_PAT). However, as described in Section 11.12, “Page Attribute 
Table (PAT),” the PAT MSR settings must be the same for all processors in a system, including the logical proces-
sors.

8.7.5 Machine Check Architecture

In the Intel HT Technology context as implemented by processors based on Intel NetBurst® microarchitecture, all 
of the machine check architecture (MCA) MSRs (except for the IA32_MCG_STATUS and IA32_MCG_CAP MSRs) are 
duplicated for each logical processor. This permits logical processors to initialize, configure, query, and handle 
machine-check exceptions simultaneously within the same physical processor. The design is compatible with 
machine check exception handlers that follow the guidelines given in Chapter 15, “Machine-Check Architecture.”

The IA32_MCG_STATUS MSR is duplicated for each logical processor so that its machine check in progress bit field 
(MCIP) can be used to detect recursion on the part of MCA handlers. In addition, the MSR allows each logical 
processor to determine that a machine-check exception is in progress independent of the actions of another logical 
processor in the same physical package.

Because the logical processors within a physical package are tightly coupled with respect to shared hardware 
resources, both logical processors are notified of machine check errors that occur within a given physical processor. 
If machine-check exceptions are enabled when a fatal error is reported, all the logical processors within a physical 
package are dispatched to the machine-check exception handler. If machine-check exceptions are disabled, the 
logical processors enter the shutdown state and assert the IERR# signal.

When enabling machine-check exceptions, the MCE flag in control register CR4 should be set for each logical 
processor.

On Intel Atom family processors that support Intel Hyper-Threading Technology, the MCA facilities are shared 
between all logical processors on the same processor core.
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8.7.6 Debug Registers and Extensions

Each logical processor has its own set of debug registers (DR0, DR1, DR2, DR3, DR6, DR7) and its own debug 
control MSR. These can be set to control and record debug information for each logical processor independently. 
Each logical processor also has its own last branch records (LBR) stack.

8.7.7 Performance Monitoring Counters

Performance counters and their companion control MSRs are shared between the logical processors within a 
processor core for processors based on Intel NetBurst microarchitecture. As a result, software must manage the 
use of these resources. The performance counter interrupts, events, and precise event monitoring support can be 
set up and allocated on a per thread (per logical processor) basis. 

See Section 18.13, “Performance Monitoring and Intel Hyper-Threading Technology in Processors Based on Intel 
NetBurst® Microarchitecture,” for a discussion of performance monitoring in the Intel Xeon processor MP. 

In Intel Atom processor family that support Intel Hyper-Threading Technology, the performance counters (general-
purpose and fixed-function counters) and their companion control MSRs are duplicated for each logical processor.

8.7.8 IA32_MISC_ENABLE MSR

The IA32_MISC_ENABLE MSR (MSR address 1A0H) is generally shared between the logical processors in a 
processor core supporting Intel Hyper-Threading Technology. However, some bit fields within IA32_MISC_ENABLE 
MSR may be duplicated per logical processor. The partition of shared or duplicated bit fields within 
IA32_MISC_ENABLE is implementation dependent. Software should program duplicated fields carefully on all 
logical processors in the system to ensure consistent behavior.

8.7.9 Memory Ordering

The logical processors in an Intel 64 or IA-32 processor supporting Intel Hyper-Threading Technology obey the 
same rules for memory ordering as Intel 64 or IA-32 processors without Intel HT Technology (see Section 8.2, 
“Memory Ordering”). Each logical processor uses a processor-ordered memory model that can be further defined 
as “write-ordered with store buffer forwarding.” All mechanisms for strengthening or weakening the memory-
ordering model to handle special programming situations apply to each logical processor.

8.7.10 Serializing Instructions

As a general rule, when a logical processor in a processor supporting Intel Hyper-Threading Technology executes a 
serializing instruction, only that logical processor is affected by the operation. An exception to this rule is the 
execution of the WBINVD, INVD, and WRMSR instructions; and the MOV CR instruction when the state of the CD 
flag in control register CR0 is modified. Here, both logical processors are serialized.

8.7.11 Microcode Update Resources

In an Intel processor supporting Intel Hyper-Threading Technology, the microcode update facilities are shared 
between the logical processors; either logical processor can initiate an update. Each logical processor has its own 
BIOS signature MSR (IA32_BIOS_SIGN_ID at MSR address 8BH). When a logical processor performs an update for 
the physical processor, the IA32_BIOS_SIGN_ID MSRs for resident logical processors are updated with identical 
information. If logical processors initiate an update simultaneously, the processor core provides the necessary 
synchronization needed to ensure that only one update is performed at a time. 
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NOTE

Some processors (prior to the introduction of Intel 64 Architecture and based on Intel NetBurst 
microarchitecture) do not support simultaneous loading of microcode update to the sibling logical 
processors in the same core. All other processors support logical processors initiating an update 
simultaneously. Intel recommends a common approach that the microcode loader use the 
sequential technique described in Section 9.11.6.3.

8.7.12 Self Modifying Code

Intel processors supporting Intel Hyper-Threading Technology support self-modifying code, where data writes 
modify instructions cached or currently in flight. They also support cross-modifying code, where on an MP system 
writes generated by one processor modify instructions cached or currently in flight on another. See Section 8.1.3, 
“Handling Self- and Cross-Modifying Code,” for a description of the requirements for self- and cross-modifying code 
in an IA-32 processor.

8.7.13 Implementation-Specific Intel HT Technology Facilities

The following non-architectural facilities are implementation-specific in IA-32 processors supporting Intel Hyper-
Threading Technology:
• Caches
• Translation lookaside buffers (TLBs)
• Thermal monitoring facilities

The Intel Xeon processor MP implementation is described in the following sections.

8.7.13.1  Processor Caches

For processors supporting Intel Hyper-Threading Technology, the caches are shared. Any cache manipulation 
instruction that is executed on one logical processor has a global effect on the cache hierarchy of the physical 
processor. Note the following:
• WBINVD instruction — The entire cache hierarchy is invalidated after modified data is written back to 

memory. All logical processors are stopped from executing until after the write-back and invalidate operation is 
completed. A special bus cycle is sent to all caching agents. The amount of time or cycles for WBINVD to 
complete will vary due to the size of different cache hierarchies and other factors. As a consequence, the use of 
the WBINVD instruction can have an impact on interrupt/event response time.

• INVD instruction — The entire cache hierarchy is invalidated without writing back modified data to memory. 
All logical processors are stopped from executing until after the invalidate operation is completed. A special bus 
cycle is sent to all caching agents.

• CLFLUSH instruction — The specified cache line is invalidated from the cache hierarchy after any modified 
data is written back to memory and a bus cycle is sent to all caching agents, regardless of which logical 
processor caused the cache line to be filled.

• CD flag in control register CR0 — Each logical processor has its own CR0 control register, and thus its own 
CD flag in CR0. The CD flags for the two logical processors are ORed together, such that when any logical 
processor sets its CD flag, the entire cache is nominally disabled. 

8.7.13.2  Processor Translation Lookaside Buffers (TLBs)

In processors supporting Intel Hyper-Threading Technology, data cache TLBs are shared. The instruction cache TLB 
may be duplicated or shared in each logical processor, depending on implementation specifics of different processor 
families.

Entries in the TLBs are tagged with an ID that indicates the logical processor that initiated the translation. This tag 
applies even for translations that are marked global using the page-global feature for memory paging. See Section 
4.10, “Caching Translation Information,” for information about global translations.
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When a logical processor performs a TLB invalidation operation, only the TLB entries that are tagged for that logical 
processor are guaranteed to be flushed. This protocol applies to all TLB invalidation operations, including writes to 
control registers CR3 and CR4 and uses of the INVLPG instruction.

8.7.13.3  Thermal Monitor

In a processor that supports Intel Hyper-Threading Technology, logical processors share the catastrophic shutdown 
detector and the automatic thermal monitoring mechanism (see Section 14.7, “Thermal Monitoring and Protec-
tion”). Sharing results in the following behavior:
• If the processor’s core temperature rises above the preset catastrophic shutdown temperature, the processor 

core halts execution, which causes both logical processors to stop execution.
• When the processor’s core temperature rises above the preset automatic thermal monitor trip temperature, the 

clock speed of the processor core is automatically modulated, which effects the execution speed of both logical 
processors.

For software controlled clock modulation, each logical processor has its own IA32_CLOCK_MODULATION MSR, 
allowing clock modulation to be enabled or disabled on a logical processor basis. Typically, if software controlled 
clock modulation is going to be used, the feature must be enabled for all the logical processors within a physical 
processor and the modulation duty cycle must be set to the same value for each logical processor. If the duty cycle 
values differ between the logical processors, the processor clock will be modulated at the highest duty cycle 
selected.

8.7.13.4  External Signal Compatibility

This section describes the constraints on external signals received through the pins of a processor supporting Intel 
Hyper-Threading Technology and how these signals are shared between its logical processors.
• STPCLK# — A single STPCLK# pin is provided on the physical package of the Intel Xeon processor MP. External 

control logic uses this pin for power management within the system. When the STPCLK# signal is asserted, the 
processor core transitions to the stop-grant state, where instruction execution is halted but the processor core 
continues to respond to snoop transactions. Regardless of whether the logical processors are active or halted 
when the STPCLK# signal is asserted, execution is stopped on both logical processors and neither will respond 
to interrupts.

In MP systems, the STPCLK# pins on all physical processors are generally tied together. As a result this signal 
affects all the logical processors within the system simultaneously.

• LINT0 and LINT1 pins — A processor supporting Intel Hyper-Threading Technology has only one set of LINT0 
and LINT1 pins, which are shared between the logical processors. When one of these pins is asserted, both 
logical processors respond unless the pin has been masked in the APIC local vector tables for one or both of the 
logical processors.

Typically in MP systems, the LINT0 and LINT1 pins are not used to deliver interrupts to the logical processors. 
Instead all interrupts are delivered to the local processors through the I/O APIC.

• A20M# pin — On an IA-32 processor, the A20M# pin is typically provided for compatibility with the Intel 286 
processor. Asserting this pin causes bit 20 of the physical address to be masked (forced to zero) for all external 
bus memory accesses. Processors supporting Intel Hyper-Threading Technology provide one A20M# pin, which 
affects the operation of both logical processors within the physical processor. 
The functionality of A20M# is used primarily by older operating systems and not used by modern operating 
systems. On newer Intel 64 processors, A20M# may be absent. 

8.8 MULTI-CORE ARCHITECTURE

This section describes the architecture of Intel 64 and IA-32 processors supporting dual-core and quad-core tech-
nology. The discussion is applicable to the Intel Pentium processor Extreme Edition, Pentium D, Intel Core Duo, 
Intel Core 2 Duo, Dual-core Intel Xeon processor, Intel Core 2 Quad processors, and quad-core Intel Xeon proces-
sors. Features vary across different microarchitectures and are detectable using CPUID.
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In general, each processor core has dedicated microarchitectural resources identical to a single-processor imple-
mentation of the underlying microarchitecture without hardware multi-threading capability. Each logical processor 
in a dual-core processor (whether supporting Intel Hyper-Threading Technology or not) has its own APIC function-
ality, PAT, machine check architecture, debug registers and extensions. Each logical processor handles serialization 
instructions or self-modifying code on its own. Memory order is handled the same way as in Intel Hyper-Threading 
Technology.

The topology of the cache hierarchy (with respect to whether a given cache level is shared by one or more 
processor cores or by all logical processors in the physical package) depends on the processor implementation. 
Software must use the deterministic cache parameter leaf of CPUID instruction to discover the cache-sharing 
topology between the logical processors in a multi-threading environment.

8.8.1 Logical Processor Support

The topological composition of processor cores and logical processors in a multi-core processor can be discovered 
using CPUID. Within each processor core, one or more logical processors may be available. 

System software must follow the requirement MP initialization sequences (see Section 8.4, “Multiple-Processor 
(MP) Initialization”) to recognize and enable logical processors. At runtime, software can enumerate those logical 
processors enabled by system software to identify the topological relationships between these logical processors. 
(See Section 8.9.5, “Identifying Topological Relationships in a MP System”). 

8.8.2 Memory Type Range Registers (MTRR)

MTRR is shared between two logical processors sharing a processor core if the physical processor supports Intel 
Hyper-Threading Technology. MTRR is not shared between logical processors located in different cores or different 
physical packages. 

The Intel 64 and IA-32 architectures require that all logical processors in an MP system use an identical MTRR 
memory map. This gives software a consistent view of memory, independent of the processor on which it is 
running. 

See Section 11.11, “Memory Type Range Registers (MTRRs).”

8.8.3 Performance Monitoring Counters

Performance counters and their companion control MSRs are shared between two logical processors sharing a 
processor core if the processor core supports Intel Hyper-Threading Technology and is based on Intel NetBurst 
microarchitecture. They are not shared between logical processors in different cores or different physical packages. 
As a result, software must manage the use of these resources, based on the topology of performance monitoring 
resources. Performance counter interrupts, events, and precise event monitoring support can be set up and allo-
cated on a per thread (per logical processor) basis. 

See Section 18.13, “Performance Monitoring and Intel Hyper-Threading Technology in Processors Based on Intel 
NetBurst® Microarchitecture.”

8.8.4 IA32_MISC_ENABLE MSR

Some bit fields in IA32_MISC_ENABLE MSR (MSR address 1A0H) may be shared between two logical processors 
sharing a processor core, or may be shared between different cores in a physical processor. See Chapter 35, 
“Model-Specific Registers (MSRs),”.

8.8.5 Microcode Update Resources

Microcode update facilities are shared between two logical processors sharing a processor core if the physical 
package supports Intel Hyper-Threading Technology. They are not shared between logical processors in different 
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cores or different physical packages. Either logical processor that has access to the microcode update facility can 
initiate an update. 

Each logical processor has its own BIOS signature MSR (IA32_BIOS_SIGN_ID at MSR address 8BH). When a logical 
processor performs an update for the physical processor, the IA32_BIOS_SIGN_ID MSRs for resident logical 
processors are updated with identical information. 

NOTE

Some processors (prior to the introduction of Intel 64 Architecture and based on Intel NetBurst 
microarchitecture) do not support simultaneous loading of microcode update to the sibling logical 
processors in the same core. All other processors support logical processors initiating an update 
simultaneously. Intel recommends a common approach that the microcode loader use the 
sequential technique described in Section 9.11.6.3.

8.9 PROGRAMMING CONSIDERATIONS FOR HARDWARE MULTI-THREADING 
CAPABLE PROCESSORS

In a multi-threading environment, there may be certain hardware resources that are physically shared at some 
level of the hardware topology. In the multi-processor systems, typically bus and memory sub-systems are physi-
cally shared between multiple sockets. Within a hardware multi-threading capable processors, certain resources 
are provided for each processor core, while other resources may be provided for each logical processors (see 
Section 8.7, “Intel® Hyper-Threading Technology Architecture,” and Section 8.8, “Multi-Core Architecture”). 

From a software programming perspective, control transfer of processor operation is managed at the granularity of 
logical processor (operating systems dispatch a runnable task by allocating an available logical processor on the 
platform). To manage the topology of shared resources in a multi-threading environment, it may be useful for soft-
ware to understand and manage resources that are shared by more than one logical processors.

8.9.1 Hierarchical Mapping of Shared Resources

The APIC_ID value associated with each logical processor in a multi-processor system is unique (see Section 8.6, 
“Detecting Hardware Multi-Threading Support and Topology”). This 8-bit or 32-bit value can be decomposed into 
sub-fields, where each sub-field corresponds a hierarchical level of the topological mapping of hardware resources. 

The decomposition of an APIC_ID may consist of several sub fields representing the topology within a physical 
processor package, the higher-order bits of an APIC ID may also be used by cluster vendors to represent the 
topology of cluster nodes of each coherent multiprocessor systems. If the processor does not support CPUID leaf 
0BH, the 8-bit initial APIC ID can represent 4 levels of hierarchy:
• Cluster — Some multi-threading environments consists of multiple clusters of multi-processor systems. The 

CLUSTER_ID sub-field is usually supported by vendor firmware to distinguish different clusters. For non-
clustered systems, CLUSTER_ID is usually 0 and system topology is reduced to three levels of hierarchy.

• Package — A multi-processor system consists of two or more sockets, each mates with a physical processor 
package. The PACKAGE_ID sub-field distinguishes different physical packages within a cluster.

• Core — A physical processor package consists of one or more processor cores. The CORE_ID sub-field distin-
guishes processor cores in a package. For a single-core processor, the width of this bit field is 0.

• SMT — A processor core provides one or more logical processors sharing execution resources. The SMT_ID 
sub-field distinguishes logical processors in a core. The width of this bit field is non-zero if a processor core 
provides more than one logical processors.

SMT and CORE sub-fields are bit-wise contiguous in the APIC_ID field (see Figure 8-5). 
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If the processor supports CPUID leaf 0BH, the 32-bit APIC ID can represent cluster plus several levels of topology 
within the physical processor package. The exact number of hierarchical levels within a physical processor package 
must be enumerated through CPUID leaf 0BH. Common processor families may employ topology similar to that 
represented by 8-bit Initial APIC ID. In general, CPUID leaf 0BH can support topology enumeration algorithm that 
decompose a 32-bit APIC ID into more than four sub-fields (see Figure 8-6). 

The width of each sub-field depends on hardware and software configurations. Field widths can be determined at 
runtime using the algorithm discussed below (Example 8-16 through Example 8-20). 

Figure 7-6 depicts the relationships of three of the hierarchical sub-fields in a hypothetical MP system. The value of 
valid APIC_IDs need not be contiguous across package boundary or core boundaries.

8.9.2 Hierarchical Mapping of CPUID Extended Topology Leaf 

CPUID leaf 0BH provides enumeration parameters for software to identify each hierarchy of the processor topology 
in a deterministic manner. Each hierarchical level of the topology starting from the SMT level is represented numer-
ically by a sub-leaf index within the CPUID 0BH leaf. Each level of the topology is mapped to a sub-field in the APIC 
ID, following the general relationship depicted in Figure 8-6. This mechanism allows software to query the exact 
number of levels within a physical processor package and the bit-width of each sub-field of x2APIC ID directly. For 
example,
• Starting from sub-leaf index 0 and incrementing ECX until CPUID.(EAX=0BH, ECX=N):ECX[15:8] returns an 

invalid “level type” encoding. The number of levels within the physical processor package is “N” (excluding 
PACKAGE). Using Figure 8-6 as an example, CPUID.(EAX=0BH, ECX=3):ECX[15:8] will report 00H, indicating 
sub leaf 03H is invalid. This is also depicted by a pseudo code example:

Figure 8-5.  Generalized Four level Interpretation of the APIC ID

Figure 8-6.  Conceptual Five-level Topology and 32-bit APIC ID Composition
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Example 8-16.  Number of Levels Below the Physical Processor Package

Byte type = 1;

s = 0;

While ( type ) {

EAX = 0BH; // query each sub leaf of CPUID leaf 0BH

ECX = s;

CPUID; 

type = ECX[15:8]; // examine level type encoding

s ++;

}

N = ECX[7:0];

• Sub-leaf index 0 (ECX= 0 as input) provides enumeration parameters to extract the SMT sub-field of x2APIC 
ID. If EAX = 0BH, and ECX =0 is specified as input when executing CPUID, CPUID.(EAX=0BH, 
ECX=0):EAX[4:0] reports a value (a right-shift count) that allow software to extract part of x2APIC ID to 
distinguish the next higher topological entities above the SMT level. This value also corresponds to the bit-
width of the sub-field of x2APIC ID corresponding the hierarchical level with sub-leaf index 0. 

• For each subsequent higher sub-leaf index m, CPUID.(EAX=0BH, ECX=m):EAX[4:0] reports the right-shift 
count that will allow software to extract part of x2APIC ID to distinguish higher-level topological entities. This 
means the right-shift value at of sub-leaf m, corresponds to the least significant (m+1) subfields of the 32-bit 
x2APIC ID. 

Example 8-17.  BitWidth Determination of x2APIC ID Subfields

For m = 0, m < N, m ++;

{ cumulative_width[m] = CPUID.(EAX=0BH, ECX= m): EAX[4:0]; }

BitWidth[0] = cumulative_width[0];

For m = 1, m < N, m ++;

BitWidth[m] = cumulative_width[m] - cumulative_width[m-1];

Currently, only the following encoding of hierarchical level type are defined: 0 (invalid), 1 (SMT), and 2 (core). 
Software must not assume any “level type“ encoding value to be related to any sub-leaf index, except sub-leaf 0.

Example 8-16 and Example 8-17 represent the general technique for using CPUID leaf 0BH to enumerate processor 
topology of more than two levels of hierarchy inside a physical package. Most processor families to date requires 
only “SMT” and “CORE” levels within a physical package. The examples in later sections will focus on these three-
level topology only.

8.9.3 Hierarchical ID of Logical Processors in an MP System

For Intel 64 and IA-32 processors, system hardware establishes an 8-bit initial APIC ID (or 32-bit APIC ID if the 
processor supports CPUID leaf 0BH) that is unique for each logical processor following power-up or RESET (see 
Section 8.6.1). Each logical processor on the system is allocated an initial APIC ID. BIOS may implement features 
that tell the OS to support less than the total number of logical processors on the system bus. Those logical proces-
sors that are not available to applications at runtime are halted during the OS boot process. As a result, the number 
valid local APIC_IDs that can be queried by affinitizing-current-thread-context (See Example 8-22) is limited to the 
number of logical processors enabled at runtime by the OS boot process.

Table 8-1 shows an example of the 8-bit APIC IDs that are initially reported for logical processors in a system with 
four Intel Xeon MP processors that support Intel Hyper-Threading Technology (a total of 8 logical processors, each 
physical package has two processor cores and supports Intel Hyper-Threading Technology). Of the two logical 
processors within a Intel Xeon processor MP, logical processor 0 is designated the primary logical processor and 
logical processor 1 as the secondary logical processor.
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Table 8-2 shows the initial APIC IDs for a hypothetical situation with a dual processor system. Each physical 
package providing two processor cores, and each processor core also supporting Intel Hyper-Threading Tech-
nology.

Figure 8-7.  Topological Relationships between Hierarchical IDs in a Hypothetical MP Platform

Table 8-1.  Initial APIC IDs for the Logical Processors in a System that has Four Intel Xeon MP Processors Supporting 

Intel Hyper-Threading Technology1 

Initial APIC ID Package ID Core ID SMT ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 1H 0H 0H

3H 1H 0H 1H

4H 2H 0H 0H

5H 2H 0H 1H

6H 3H 0H 0H

7H 3H 0H 1H

NOTE:

1. Because information on the number of processor cores in a physical package was not available in early single-core processors sup-
porting Intel Hyper-Threading Technology, the core ID can be treated as 0.

Table 8-2.  Initial APIC IDs for the Logical Processors in a System that has Two Physical Processors Supporting Dual-

Core and Intel Hyper-Threading Technology 

Initial APIC ID Package ID Core ID SMT ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 0H 1H 0H

3H 0H 1H 1H

4H 1H 0H 0H

5H 1H 0H 1H

6H 1H 1H 0H

7H 1H 1H 1H

Package 0

Core 0

T0 T1

Core1

T0 T1

Package 1

Core 0

T0 T1

Core1

T0 T1 SMT_ID

Core ID

Package ID
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8.9.3.1  Hierarchical ID of Logical Processors with x2APIC ID

Table 8-3 shows an example of possible x2APIC ID assignments for a dual processor system that support x2APIC. 
Each physical package providing four processor cores, and each processor core also supporting Intel Hyper-
Threading Technology. Note that the x2APIC ID need not be contiguous in the system.

8.9.4 Algorithm for Three-Level Mappings of APIC_ID

Software can gather the initial APIC_IDs for each logical processor supported by the operating system at runtime8 
and extract identifiers corresponding to the three levels of sharing topology (package, core, and SMT). The three-
level algorithms below focus on a non-clustered MP system for simplicity. They do not assume APIC IDs are contig-
uous or that all logical processors on the platform are enabled.

Intel supports multi-threading systems where all physical processors report identical values in CPUID leaf 0BH, 
CPUID.1:EBX[23:16]), CPUID.49:EAX[31:26], and CPUID.410:EAX[25:14]. The algorithms below assume the 
target system has symmetry across physical package boundaries with respect to the number of logical processors 
per package, number of cores per package, and cache topology within a package.

The extraction algorithm (for three-level mappings from an APIC ID) uses the general procedure depicted in 
Example 8-18, and is supplemented by more detailed descriptions on the derivation of topology enumeration 
parameters for extraction bit masks:

1. Detect hardware multi-threading support in the processor.

Table 8-3.  Example of Possible x2APIC ID Assignment in a System that has Two Physical Processors Supporting 

x2APIC and Intel Hyper-Threading Technology 

x2APIC ID Package ID Core ID SMT ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 0H 1H 0H

3H 0H 1H 1H

4H 0H 2H 0H

5H 0H 2H 1H

6H 0H 3H 0H

7H 0H 3H 1H

10H 1H 0H 0H

11H 1H 0H 1H

12H 1H 1H 0H

13H 1H 1H 1H

14H 1H 2H 0H

15H 1H 2H 1H

16H 1H 3H 0H

17H 1H 3H 1H

8. As noted in Section 8.6 and Section 8.9.3, the number of logical processors supported by the OS at runtime may be less than the 
total number logical processors available in the platform hardware.

9. Maximum number of addressable ID for processor cores in a physical processor is obtained by executing CPUID with EAX=4 and a 
valid ECX index, The ECX index start at 0.

10. Maximum number addressable ID for processor cores sharing the target cache level is obtained by executing CPUID with EAX = 4 
and the ECX index corresponding to the target cache level.
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2. Derive a set of bit masks that can extract the sub ID of each hierarchical level of the topology. The algorithm to 
derive extraction bit masks for SMT_ID/CORE_ID/PACKAGE_ID differs based on APIC ID is 32-bit (see step 3 
below) or 8-bit (see step 4 below):

3. If the processor supports CPUID leaf 0BH, each APIC ID contains a 32-bit value, the topology enumeration 
parameters needed to derive three-level extraction bit masks are:

a. Query the right-shift value for the SMT level of the topology using CPUID leaf 0BH with ECX =0H as input. 
The number of bits to shift-right on x2APIC ID (EAX[4:0]) can distinguish different higher-level entities 
above SMT (e.g. processor cores) in the same physical package. This is also the width of the bit mask to 
extract the SMT_ID. 

b. Query CPUID leaf 0BH for the amount of bit shift to distinguish next higher-level entities (e.g. physical 
processor packages) in the system. This describes an explicit three-level-topology situation for commonly 
available processors. Consult Example 8-17 to adapt to situations beyond three-level topology of a physical 
processor. The width of the extraction bit mask can be used to derive the cumulative extraction bitmask to 
extract the sub IDs of logical processors (including different processor cores) in the same physical package. 
The extraction bit mask to distinguish merely different processor cores can be derived by xor’ing the SMT 
extraction bit mask from the cumulative extraction bit mask.

c. Query the 32-bit x2APIC ID for the logical processor where the current thread is executing.

d. Derive the extraction bit masks corresponding to SMT_ID, CORE_ID, and PACKAGE_ID, starting from 
SMT_ID.

e. Apply each extraction bit mask to the 32-bit x2APIC ID to extract sub-field IDs.

4. If the processor does not support CPUID leaf 0BH, each initial APIC ID contains an 8-bit value, the topology 
enumeration parameters needed to derive extraction bit masks are:

a. Query the size of address space for sub IDs that can accommodate logical processors in a physical 
processor package. This size parameters (CPUID.1:EBX[23:16]) can be used to derive the width of an 
extraction bitmask to enumerate the sub IDs of different logical processors in the same physical package.

b. Query the size of address space for sub IDs that can accommodate processor cores in a physical processor 
package. This size parameters can be used to derive the width of an extraction bitmask to enumerate the 
sub IDs of processor cores in the same physical package.

c. Query the 8-bit initial APIC ID for the logical processor where the current thread is executing.

d. Derive the extraction bit masks using respective address sizes corresponding to SMT_ID, CORE_ID, and 
PACKAGE_ID, starting from SMT_ID.

e. Apply each extraction bit mask to the 8-bit initial APIC ID to extract sub-field IDs.
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Example 8-18.  Support Routines for Detecting Hardware Multi-Threading and Identifying the Relationships Between Package, 
Core and Logical Processors

1. Detect support for Hardware Multi-Threading Support in a processor.

// Returns a non-zero value if CPUID reports the presence of hardware multi-threading 
// support in the physical package where the current logical processor is located. 

// This does not guarantee BIOS or OS will enable all logical processors in the physical 

// package and make them available to applications. 

// Returns zero if hardware multi-threading is not present. 

#define HWMT_BIT 0x10000000

unsigned int HWMTSupported(void)

{

 // ensure cpuid instruction is supported

execute cpuid with eax = 0 to get vendor string

execute cpuid with eax = 1 to get feature flag and signature

// Check to see if this a Genuine Intel Processor 

if (vendor string EQ GenuineIntel) {

return (feature_flag_edx & HWMT_BIT); // bit 28

}

return 0;

}

Example 8-19.  Support Routines for Identifying Package, Core and Logical Processors from 32-bit x2APIC ID

a. Derive the extraction bitmask for logical processors in a processor core and associated mask offset for different
cores.

int DeriveSMT_Mask_Offsets (void)

{

if (!HWMTSupported()) return -1;

execute cpuid with eax = 11, ECX = 0;

If (returned level type encoding in ECX[15:8] does not match SMT) return -1;

Mask_SMT_shift = EAX[4:0]; // # bits shift right of APIC ID to distinguish different cores

SMT_MASK = ~( (-1) << Mask_SMT_shift); // shift left to derive extraction bitmask for SMT_ID

return 0;

}
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b. Derive the extraction bitmask for processor cores in a physical processor package and associated mask offset for
different packages.

int DeriveCore_Mask_Offsets (void)

{

if (!HWMTSupported()) return -1;

execute cpuid with eax = 11, ECX = 0;

while( ECX[15:8] ) { // level type encoding is valid

If (returned level type encoding in ECX[15:8] matches CORE) {

Mask_Core_shift = EAX[4:0]; // needed to distinguish different physical packages

COREPlusSMT_MASK = ~( (-1) << Mask_Core_shift);

CORE_MASK = COREPlusSMT_MASK ^ SMT_MASK;

PACKAGE_MASK = (-1) << Mask_Core_shift;

return 0

}

ECX ++;

execute cpuid with eax = 11;

}

return -1;

}

c. Query the x2APIC ID of a logical processor.

APIC_IDs for each logical processor.

unsigned char Getx2APIC_ID (void)

{

unsigned reg_edx = 0;

execute cpuid with eax = 11, ECX = 0

store returned value of edx

return (unsigned) (reg_edx) ;

}

Example 8-20.  Support Routines for Identifying Package, Core and Logical Processors from 8-bit Initial APIC ID

a. Find the size of address space for logical processors in a physical processor package.

#define NUM_LOGICAL_BITS 0x00FF0000 

// Use the mask above and CPUID.1.EBX[23:16] to obtain the max number of addressable IDs

// for logical processors in a physical package, 

//Returns the size of address space of logical processors in a physical processor package;

// Software should not assume the value to be a power of 2.

unsigned char MaxLPIDsPerPackage(void)

{

if (!HWMTSupported()) return 1;

execute cpuid with eax = 1

store returned value of ebx

return (unsigned char) ((reg_ebx & NUM_LOGICAL_BITS) >> 16);

}
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b. Find the size of address space for processor cores in a physical processor package.

// Returns the max number of addressable IDs for processor cores in a physical processor package;

// Software should not assume cpuid reports this value to be a power of 2.

unsigned MaxCoreIDsPerPackage(void)

{

if (!HWMTSupported()) return (unsigned char) 1;

if cpuid supports leaf number 4 

{ // we can retrieve multi-core topology info using leaf 4

execute cpuid with eax = 4, ecx = 0

store returned value of eax

return (unsigned) ((reg_eax >> 26) +1);

}

else // must be a single-core processor

return 1;

}

c. Query the initial APIC ID of a logical processor.

#define INITIAL_APIC_ID_BITS 0xFF000000 // CPUID.1.EBX[31:24] initial APIC ID

// Returns the 8-bit unique initial APIC ID for the processor running the code. 

// Software can use OS services to affinitize the current thread to each logical processor 

// available under the OS to gather the initial APIC_IDs for each logical processor.

unsigned GetInitAPIC_ID (void)

{

unsigned int reg_ebx = 0;

execute cpuid with eax = 1

store returned value of ebx

return (unsigned) ((reg_ebx & INITIAL_APIC_ID_BITS) >> 24;

}
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d. Find the width of an extraction bitmask from the maximum count of the bit-field (address size).

// Returns the mask bit width of a bit field from the maximum count that bit field can represent.

// This algorithm does not assume ‘address size’ to have a value equal to power of 2.

// Address size for SMT_ID can be calculated from MaxLPIDsPerPackage()/MaxCoreIDsPerPackage()

// Then use the routine below to derive the corresponding width of SMT extraction bitmask

// Address size for CORE_ID is MaxCoreIDsPerPackage(), 

// Derive the bitwidth for CORE extraction mask similarly

unsigned FindMaskWidth(Unsigned Max_Count)

{unsigned int mask_width, cnt = Max_Count;

__asm {

mov eax, cnt

mov ecx, 0

mov mask_width, ecx

dec eax

bsr cx, ax

jz next

inc cx

mov  mask_width, ecx

next:  

mov eax, mask_width

}

return mask_width;

}

e. Extract a sub ID from an 8-bit full ID, using address size of the sub ID and shift count.

// The routine below can extract SMT_ID, CORE_ID, and PACKAGE_ID respectively from the init APIC_ID

// To extract SMT_ID, MaxSubIDvalue is set to the address size of SMT_ID, Shift_Count = 0

// To extract CORE_ID, MaxSubIDvalue is the address size of CORE_ID, Shift_Count is width of SMT extraction bitmask.

// Returns the value of the sub ID, this is not a zero-based value 

Unsigned char GetSubID(unsigned char Full_ID, unsigned char MaxSubIDvalue, unsigned char Shift_Count)

{

MaskWidth = FindMaskWidth(MaxSubIDValue);

MaskBits = ((uchar) (0xff << Shift_Count)) ^ ((uchar) (0xff << Shift_Count + MaskWidth)) ;

SubID = Full_ID & MaskBits;

Return SubID;

}

Software must not assume local APIC_ID values in an MP system are consecutive. Non-consecutive local APIC_IDs 
may be the result of hardware configurations or debug features implemented in the BIOS or OS.

An identifier for each hierarchical level can be extracted from an 8-bit APIC_ID using the support routines illus-
trated in Example 8-20. The appropriate bit mask and shift value to construct the appropriate bit mask for each 
level must be determined dynamically at runtime. 

8.9.5 Identifying Topological Relationships in a MP System

To detect the number of physical packages, processor cores, or other topological relationships in a MP system, the 
following procedures are recommended:
• Extract the three-level identifiers from the APIC ID of each logical processor enabled by system software. The 

sequence is as follows (See the pseudo code shown in Example 8-21 and support routines shown in Example 
8-18):
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• The extraction start from the right-most bit field, corresponding to SMT_ID, the innermost hierarchy in 
a three-level topology (See Figure 8-7). For the right-most bit field, the shift value of the working mask 
is zero. The width of the bit field is determined dynamically using the maximum number of logical 
processor per core, which can be derived from information provided from CPUID.

• To extract the next bit-field, the shift value of the working mask is determined from the width of the bit 
mask of the previous step. The width of the bit field is determined dynamically using the maximum 
number of cores per package.

• To extract the remaining bit-field, the shift value of the working mask is determined from the maximum 
number of logical processor per package. So the remaining bits in the APIC ID (excluding those bits 
already extracted in the two previous steps) are extracted as the third identifier. This applies to a non-
clustered MP system, or if there is no need to distinguish between PACKAGE_ID and CLUSTER_ID.

If there is need to distinguish between PACKAGE_ID and CLUSTER_ID, PACKAGE_ID can be extracted 
using an algorithm similar to the extraction of CORE_ID, assuming the number of physical packages in 
each node of a clustered system is symmetric.

• Assemble the three-level identifiers of SMT_ID, CORE_ID, PACKAGE_IDs into arrays for each enabled logical 
processor. This is shown in Example 8-22a.

• To detect the number of physical packages: use PACKAGE_ID to identify those logical processors that reside in 
the same physical package. This is shown in Example 8-22b. This example also depicts a technique to construct 
a mask to represent the logical processors that reside in the same package.

• To detect the number of processor cores: use CORE_ID to identify those logical processors that reside in the 
same core. This is shown in Example 8-22. This example also depicts a technique to construct a mask to 
represent the logical processors that reside in the same core.

In Example 8-21, the numerical ID value can be obtained from the value extracted with the mask by shifting it right 
by shift count. Algorithms below do not shift the value. The assumption is that the SubID values can be compared 
for equivalence without the need to shift. 

Example 8-21.  Pseudo Code Depicting Three-level Extraction Algorithm

For Each local_APIC_ID{

// Calculate SMT_MASK, the bit mask pattern to extract SMT_ID, 

// SMT_MASK is determined using topology enumertaion parameters

// from CPUID leaf 0BH (Example 8-19);

// otherwise, SMT_MASK is determined using CPUID leaf 01H and leaf 04H (Example 8-20).

// This algorithm assumes there is symmetry across core boundary, i.e. each core within a

// package has the same number of logical processors

// SMT_ID always starts from bit 0, corresponding to the right-most bit-field

SMT_ID = APIC_ID & SMT_MASK;

// Extract CORE_ID:

// CORE_MASK is determined in Example 8-19 or Example 8-20
CORE_ID = (APIC_ID & CORE_MASK) ;

// Extract PACKAGE_ID:

// Assume single cluster. 

// Shift out the mask width for maximum logical processors per package

// PACKAGE_MASK is determined in Example 8-19 or Example 8-20
PACKAGE_ID = (APIC_ID & PACKAGE_MASK) ;

}
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Example 8-22.  Compute the Number of Packages, Cores, and Processor Relationships in a MP System

a) Assemble lists of PACKAGE_ID, CORE_ID, and SMT_ID of each enabled logical processors

//The BIOS and/or OS may limit the number of logical processors available to applications 

// after system boot. The below algorithm will compute topology for the processors visible 

// to the thread that is computing it.

// Extract the 3-levels of IDs on every processor

// SystemAffinity is a bitmask of all the processors started by the OS. Use OS specific APIs to

// obtain it.

// ThreadAffinityMask is used to affinitize the topology enumeration thread to each processor

using OS specific APIs.

// Allocate per processor arrays to store the Package_ID, Core_ID and SMT_ID for every started

// processor.

 

ThreadAffinityMask = 1;

     ProcessorNum = 0;

while (ThreadAffinityMask != 0 && ThreadAffinityMask <= SystemAffinity) {

// Check to make sure we can utilize this processor first.

if (ThreadAffinityMask & SystemAffinity){

Set thread to run on the processor specified in ThreadAffinityMask

Wait if necessary and ensure thread is running on specified processor

APIC_ID = GetAPIC_ID(); // 32 bit ID in Example 8-19 or 8-bit ID in Example 8-20
Extract the Package_ID, Core_ID and SMT_ID as explained in three level extraction 

algorithm of Example 8-21

PackageID[ProcessorNUM] = PACKAGE_ID;

CoreID[ProcessorNum] = CORE_ID;

SmtID[ProcessorNum] = SMT_ID;

ProcessorNum++;

}

ThreadAffinityMask <<= 1;

}

NumStartedLPs = ProcessorNum;

b) Using the list of PACKAGE_ID to count the number of physical packages in a MP system and construct, for each package, a multi-bit 
mask corresponding to those logical processors residing in the same package.

// Compute the number of packages by counting the number of processors 
// with unique PACKAGE_IDs in the PackageID array. 
// Compute the mask of processors in each package.

PackageIDBucket is an array of unique PACKAGE_ID values. Allocate an array of
NumStartedLPs count of entries in this array.

PackageProcessorMask is a corresponding array of the bit mask of processors belonging to
the same package, these are processors with the same PACKAGE_ID 

The algorithm below assumes there is symmetry across package boundary if more than 
one socket is populated in an MP system.

// Bucket Package IDs and compute processor mask for every package.

PackageNum = 1;

PackageIDBucket[0] = PackageID[0];

ProcessorMask = 1;

PackageProcessorMask[0] = ProcessorMask;
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For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) { 

ProcessorMask << = 1; 

For (i=0; i < PackageNum; i++) {

// we may be comparing bit-fields of logical processors residing in different

// packages, the code below assume package symmetry

If (PackageID[ProcessorNum] = PackageIDBucket[i]) {

PackageProcessorMask[i] |= ProcessorMask;

Break; // found in existing bucket, skip to next iteration

}

}

if (i =PackageNum) {

//PACKAGE_ID did not match any bucket, start new bucket

PackageIDBucket[i] = PackageID[ProcessorNum];

PackageProcessorMask[i] = ProcessorMask;

PackageNum++;

}

}

// PackageNum has the number of Packages started in OS

// PackageProcessorMask[] array has the processor set of each package

c) Using the list of CORE_ID to count the number of cores in a MP system and construct, for each core, a multi-bit mask corresponding 
to those logical processors residing in the same core. 

Processors in the same core can be determined by bucketing the processors with the same PACKAGE_ID and CORE_ID. Note that code 
below can BIT OR the values of PACKGE and CORE ID because they have not been shifted right.

The algorithm below assumes there is symmetry across package boundary if more than one socket is populated in an MP system.

//Bucketing PACKAGE and CORE IDs and computing processor mask for every core

CoreNum = 1;

CoreIDBucket[0] = PackageID[0] | CoreID[0];

ProcessorMask = 1;

CoreProcessorMask[0] = ProcessorMask;

For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) { 

ProcessorMask << = 1; 

For (i=0; i < CoreNum; i++) {

// we may be comparing bit-fields of logical processors residing in different

// packages, the code below assume package symmetry

If ((PackageID[ProcessorNum] | CoreID[ProcessorNum]) = CoreIDBucket[i]) {

CoreProcessorMask[i] |= ProcessorMask;

Break; // found in existing bucket, skip to next iteration

}

}

if (i = CoreNum) {

//Did not match any bucket, start new bucket

CoreIDBucket[i] = PackageID[ProcessorNum] | CoreID[ProcessorNum];

CoreProcessorMask[i] = ProcessorMask;

CoreNum++;

}

}

// CoreNum has the number of cores started in the OS

// CoreProcessorMask[] array has the processor set of each core

Other processor relationships such as processor mask of sibling cores can be computed from set operations of the 
PackageProcessorMask[] and CoreProcessorMask[]. 
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The algorithm shown above can be adapted to work with earlier generations of single-core IA-32 processors that 
support Intel Hyper-Threading Technology and in situations that the deterministic cache parameter leaf is not 
supported (provided CPUID supports initial APIC ID). A reference code example is available (see Intel® 64 Archi-
tecture Processor Topology Enumeration).

8.10 MANAGEMENT OF IDLE AND BLOCKED CONDITIONS

When a logical processor in an MP system (including multi-core processor or processors supporting Intel Hyper-
Threading Technology) is idle (no work to do) or blocked (on a lock or semaphore), additional management of the 
core execution engine resource can be accomplished by using the HLT (halt), PAUSE, or the MONITOR/MWAIT 
instructions.

8.10.1 HLT Instruction

The HLT instruction stops the execution of the logical processor on which it is executed and places it in a halted 
state until further notice (see the description of the HLT instruction in Chapter 3 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A). When a logical processor is halted, active logical processors 
continue to have full access to the shared resources within the physical package. Here shared resources that were 
being used by the halted logical processor become available to active logical processors, allowing them to execute 
at greater efficiency. When the halted logical processor resumes execution, shared resources are again shared 
among all active logical processors. (See Section 8.10.6.3, “Halt Idle Logical Processors,” for more information 
about using the HLT instruction with processors supporting Intel Hyper-Threading Technology.)

8.10.2 PAUSE Instruction

The PAUSE instruction can improves the performance of processors supporting Intel Hyper-Threading Technology 
when executing “spin-wait loops” and other routines where one thread is accessing a shared lock or semaphore in 
a tight polling loop. When executing a spin-wait loop, the processor can suffer a severe performance penalty when 
exiting the loop because it detects a possible memory order violation and flushes the core processor’s pipeline. The 
PAUSE instruction provides a hint to the processor that the code sequence is a spin-wait loop. The processor uses 
this hint to avoid the memory order violation and prevent the pipeline flush. In addition, the PAUSE instruction de-
pipelines the spin-wait loop to prevent it from consuming execution resources excessively and consume power 
needlessly. (See Section 8.10.6.1, “Use the PAUSE Instruction in Spin-Wait Loops,” for more information about 
using the PAUSE instruction with IA-32 processors supporting Intel Hyper-Threading Technology.)

8.10.3 Detecting Support MONITOR/MWAIT Instruction

Streaming SIMD Extensions 3 introduced two instructions (MONITOR and MWAIT) to help multithreaded software 
improve thread synchronization. In the initial implementation, MONITOR and MWAIT are available to software at 
ring 0. The instructions are conditionally available at levels greater than 0. Use the following steps to detect the 
availability of MONITOR and MWAIT:
• Use CPUID to query the MONITOR bit (CPUID.1.ECX[3] = 1).
• If CPUID indicates support, execute MONITOR inside a TRY/EXCEPT exception handler and trap for an 

exception. If an exception occurs, MONITOR and MWAIT are not supported at a privilege level greater than 0. 
See Example 8-23.
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Example 8-23.  Verifying MONITOR/MWAIT Support

boolean MONITOR_MWAIT_works = TRUE;

try {

_asm {

xor ecx, ecx

xor edx, edx

mov eax, MemArea

monitor 

}

        // Use monitor

} except (UNWIND) {

        // if we get here, MONITOR/MWAIT is not supported

MONITOR_MWAIT_works = FALSE;

}

8.10.4 MONITOR/MWAIT Instruction

Operating systems usually implement idle loops to handle thread synchronization. In a typical idle-loop scenario, 
there could be several “busy loops” and they would use a set of memory locations. An impacted processor waits in 
a loop and poll a memory location to determine if there is available work to execute. The posting of work is typically 
a write to memory (the work-queue of the waiting processor). The time for initiating a work request and getting it 
scheduled is on the order of a few bus cycles. 

From a resource sharing perspective (logical processors sharing execution resources), use of the HLT instruction in 
an OS idle loop is desirable but has implications. Executing the HLT instruction on a idle logical processor puts the 
targeted processor in a non-execution state. This requires another processor (when posting work for the halted 
logical processor) to wake up the halted processor using an inter-processor interrupt. The posting and servicing of 
such an interrupt introduces a delay in the servicing of new work requests. 

In a shared memory configuration, exits from busy loops usually occur because of a state change applicable to a 
specific memory location; such a change tends to be triggered by writes to the memory location by another agent 
(typically a processor). 

MONITOR/MWAIT complement the use of HLT and PAUSE to allow for efficient partitioning and un-partitioning of 
shared resources among logical processors sharing physical resources. MONITOR sets up an effective address 
range that is monitored for write-to-memory activities; MWAIT places the processor in an optimized state (this 
may vary between different implementations) until a write to the monitored address range occurs. 

In the initial implementation of MONITOR and MWAIT, they are available at CPL = 0 only.

Both instructions rely on the state of the processor’s monitor hardware. The monitor hardware can be either armed 
(by executing the MONITOR instruction) or triggered (due to a variety of events, including a store to the monitored 
memory region). If upon execution of MWAIT, monitor hardware is in a triggered state: MWAIT behaves as a NOP 
and execution continues at the next instruction in the execution stream. The state of monitor hardware is not archi-
tecturally visible except through the behavior of MWAIT.

Multiple events other than a write to the triggering address range can cause a processor that executed MWAIT to 
wake up. These include events that would lead to voluntary or involuntary context switches, such as:
• External interrupts, including NMI, SMI, INIT, BINIT, MCERR, A20M#
• Faults, Aborts (including Machine Check)
• Architectural TLB invalidations including writes to CR0, CR3, CR4 and certain MSR writes; execution of LMSW 

(occurring prior to issuing MWAIT but after setting the monitor)
• Voluntary transitions due to fast system call and far calls (occurring prior to issuing MWAIT but after setting the 

monitor)

Power management related events (such as Thermal Monitor 2 or chipset driven STPCLK# assertion) will not cause 
the monitor event pending flag to be cleared. Faults will not cause the monitor event pending flag to be cleared.
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Software should not allow for voluntary context switches in between MONITOR/MWAIT in the instruction flow. Note 
that execution of MWAIT does not re-arm the monitor hardware. This means that MONITOR/MWAIT need to be 
executed in a loop. Also note that exits from the MWAIT state could be due to a condition other than a write to the 
triggering address; software should explicitly check the triggering data location to determine if the write occurred. 
Software should also check the value of the triggering address following the execution of the monitor instruction 
(and prior to the execution of the MWAIT instruction). This check is to identify any writes to the triggering address 
that occurred during the course of MONITOR execution. 

The address range provided to the MONITOR instruction must be of write-back caching type. Only write-back 
memory type stores to the monitored address range will trigger the monitor hardware. If the address range is not 
in memory of write-back type, the address monitor hardware may not be set up properly or the monitor hardware 
may not be armed. Software is also responsible for ensuring that
• Writes that are not intended to cause the exit of a busy loop do not write to a location within the address region 

being monitored by the monitor hardware,
• Writes intended to cause the exit of a busy loop are written to locations within the monitored address region.

Not doing so will lead to more false wakeups (an exit from the MWAIT state not due to a write to the intended data 
location). These have negative performance implications. It might be necessary for software to use padding to 
prevent false wakeups. CPUID provides a mechanism for determining the size data locations for monitoring as well 
as a mechanism for determining the size of a the pad.

8.10.5 Monitor/Mwait Address Range Determination

To use the MONITOR/MWAIT instructions, software should know the length of the region monitored by the 
MONITOR/MWAIT instructions and the size of the coherence line size for cache-snoop traffic in a multiprocessor 
system. This information can be queried using the CPUID monitor leaf function (EAX = 05H). You will need the 
smallest and largest monitor line size:
• To avoid missed wake-ups: make sure that the data structure used to monitor writes fits within the smallest 

monitor line-size. Otherwise, the processor may not wake up after a write intended to trigger an exit from 
MWAIT. 

• To avoid false wake-ups; use the largest monitor line size to pad the data structure used to monitor writes. 
Software must make sure that beyond the data structure, no unrelated data variable exists in the triggering 
area for MWAIT. A pad may be needed to avoid this situation.

These above two values bear no relationship to cache line size in the system and software should not make any 
assumptions to that effect. Within a single-cluster system, the two parameters should default to be the same (the 
size of the monitor triggering area is the same as the system coherence line size).

Based on the monitor line sizes returned by the CPUID, the OS should dynamically allocate structures with appro-
priate padding. If static data structures must be used by an OS, attempt to adapt the data structure and use a 
dynamically allocated data buffer for thread synchronization. When the latter technique is not possible, consider 
not using MONITOR/MWAIT when using static data structures.

To set up the data structure correctly for MONITOR/MWAIT on multi-clustered systems: interaction between 
processors, chipsets, and the BIOS is required (system coherence line size may depend on the chipset used in the 
system; the size could be different from the processor’s monitor triggering area). The BIOS is responsible to set the 
correct value for system coherence line size using the IA32_MONITOR_FILTER_LINE_SIZE MSR. Depending on the 
relative magnitude of the size of the monitor triggering area versus the value written into the 
IA32_MONITOR_FILTER_LINE_SIZE MSR, the smaller of the parameters will be reported as the Smallest Monitor 
Line Size. The larger of the parameters will be reported as the Largest Monitor Line Size.

8.10.6 Required Operating System Support

This section describes changes that must be made to an operating system to run on processors supporting Intel 
Hyper-Threading Technology. It also describes optimizations that can help an operating system make more efficient 
use of the logical processors sharing execution resources. The required changes and suggested optimizations are 
representative of the types of modifications that appear in Windows* XP and Linux* kernel 2.4.0 operating systems 
for Intel processors supporting Intel Hyper-Threading Technology. Additional optimizations for processors 
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supporting Intel Hyper-Threading Technology are described in the Intel® 64 and IA-32 Architectures Optimization 
Reference Manual.

8.10.6.1  Use the PAUSE Instruction in Spin-Wait Loops

Intel recommends that a PAUSE instruction be placed in all spin-wait loops that run on Intel processors supporting 
Intel Hyper-Threading Technology and multi-core processors. 

Software routines that use spin-wait loops include multiprocessor synchronization primitives (spin-locks, sema-
phores, and mutex variables) and idle loops. Such routines keep the processor core busy executing a load-compare-
branch loop while a thread waits for a resource to become available. Including a PAUSE instruction in such a loop 
greatly improves efficiency (see Section 8.10.2, “PAUSE Instruction”). The following routine gives an example of a 
spin-wait loop that uses a PAUSE instruction:

Spin_Lock:

CMP lockvar, 0 ;Check if lock is free

JE Get_Lock

PAUSE ;Short delay

JMP Spin_Lock

Get_Lock:

MOV EAX, 1

XCHG EAX, lockvar ;Try to get lock

CMP EAX, 0 ;Test if successful

JNE Spin_Lock

Critical_Section:

<critical section code>

MOV lockvar, 0

...

Continue:

The spin-wait loop above uses a “test, test-and-set” technique for determining the availability of the synchroniza-
tion variable. This technique is recommended when writing spin-wait loops.

In IA-32 processor generations earlier than the Pentium 4 processor, the PAUSE instruction is treated as a NOP 
instruction.

8.10.6.2  Potential Usage of MONITOR/MWAIT in C0 Idle Loops

An operating system may implement different handlers for different idle states. A typical OS idle loop on an ACPI-
compatible OS is shown in Example 8-24: 

Example 8-24.  A Typical OS Idle Loop

// WorkQueue is a memory location indicating there is a thread 

// ready to run.  A non-zero value for WorkQueue is assumed to

// indicate the presence of work to be scheduled on the processor.

// The idle loop is entered with interrupts disabled.

WHILE (1) {

IF (WorkQueue) THEN {

// Schedule work at WorkQueue.

} 

ELSE {

// No work to do - wait in appropriate C-state handler depending 

// on Idle time accumulated

IF (IdleTime >= IdleTimeThreshhold) THEN {

// Call appropriate C1, C2, C3 state handler, C1 handler 
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// shown below

}

}

}

// C1 handler uses a Halt instruction

VOID C1Handler() 

{ STI

HLT

}

The MONITOR and MWAIT instructions may be considered for use in the C0 idle state loops, if MONITOR and MWAIT are supported. 

Example 8-25.  An OS Idle Loop with MONITOR/MWAIT in the C0 Idle Loop

// WorkQueue is a memory location indicating there is a thread 

// ready to run.  A non-zero value for WorkQueue is assumed to

// indicate the presence of work to be scheduled on the processor.

// The following example assumes that the necessary padding has been 

// added surrounding WorkQueue to eliminate false wakeups

// The idle loop is entered with interrupts disabled.

WHILE (1) {

IF (WorkQueue) THEN {

// Schedule work at WorkQueue.

} 

ELSE {

// No work to do - wait in appropriate C-state handler depending 
// on Idle time accumulated.
IF (IdleTime >= IdleTimeThreshhold) THEN {

// Call appropriate C1, C2, C3 state handler, C1 

// handler shown below

MONITOR WorkQueue // Setup of eax with WorkQueue

// LinearAddress, 

// ECX, EDX = 0

IF (WorkQueue != 0) THEN {

MWAIT

}

}

}

}

// C1 handler uses a Halt instruction.
VOID C1Handler() 

{ STI

HLT

}

8.10.6.3  Halt Idle Logical Processors

If one of two logical processors is idle or in a spin-wait loop of long duration, explicitly halt that processor by means 
of a HLT instruction. 

In an MP system, operating systems can place idle processors into a loop that continuously checks the run queue 
for runnable software tasks. Logical processors that execute idle loops consume a significant amount of core’s 
execution resources that might otherwise be used by the other logical processors in the physical package. For this 
reason, halting idle logical processors optimizes the performance.11 If all logical processors within a physical 
package are halted, the processor will enter a power-saving state.
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8.10.6.4  Potential Usage of MONITOR/MWAIT in C1 Idle Loops

An operating system may also consider replacing HLT with MONITOR/MWAIT in its C1 idle loop. An example is 
shown in Example 8-26: 

Example 8-26.  An OS Idle Loop with MONITOR/MWAIT in the C1 Idle Loop

// WorkQueue is a memory location indicating there is a thread 

// ready to run.  A non-zero value for WorkQueue is assumed to

// indicate the presence of work to be scheduled on the processor.

// The following example assumes that the necessary padding has been 

// added surrounding WorkQueue to eliminate false wakeups

// The idle loop is entered with interrupts disabled.

WHILE (1) {

IF (WorkQueue) THEN {

// Schedule work at WorkQueue

} 

ELSE {

// No work to do - wait in appropriate C-state handler depending 

// on Idle time accumulated

IF (IdleTime >= IdleTimeThreshhold) THEN {

// Call appropriate C1, C2, C3 state handler, C1 

// handler shown below

}

}

}

VOID C1Handler() 

{ MONITOR WorkQueue // Setup of eax with WorkQueue LinearAddress, 

// ECX, EDX = 0

IF (WorkQueue != 0) THEN {

STI

MWAIT // EAX, ECX = 0

}

}

8.10.6.5  Guidelines for Scheduling Threads on Logical Processors Sharing Execution Resources

Because the logical processors, the order in which threads are dispatched to logical processors for execution can 
affect the overall efficiency of a system. The following guidelines are recommended for scheduling threads for 
execution.
• Dispatch threads to one logical processor per processor core before dispatching threads to the other logical 

processor sharing execution resources in the same processor core. 
• In an MP system with two or more physical packages, distribute threads out over all the physical processors, 

rather than concentrate them in one or two physical processors.
• Use processor affinity to assign a thread to a specific processor core or package, depending on the cache-

sharing topology. The practice increases the chance that the processor’s caches will contain some of the 
thread’s code and data when it is dispatched for execution after being suspended. 

11. Excessive transitions into and out of the HALT state could also incur performance penalties. Operating systems should evaluate the 
performance trade-offs for their operating system.
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8.10.6.6  Eliminate Execution-Based Timing Loops

Intel discourages the use of timing loops that depend on a processor’s execution speed to measure time. There are 
several reasons:
• Timing loops cause problems when they are calibrated on a IA-32 processor running at one clock speed and 

then executed on a processor running at another clock speed. 
• Routines for calibrating execution-based timing loops produce unpredictable results when run on an IA-32 

processor supporting Intel Hyper-Threading Technology. This is due to the sharing of execution resources 
between the logical processors within a physical package. 

To avoid the problems described, timing loop routines must use a timing mechanism for the loop that does not 
depend on the execution speed of the logical processors in the system. The following sources are generally avail-
able:
• A high resolution system timer (for example, an Intel 8254).
• A high resolution timer within the processor (such as, the local APIC timer or the time-stamp counter).

For additional information, see the Intel® 64 and IA-32 Architectures Optimization Reference Manual.

8.10.6.7  Place Locks and Semaphores in Aligned, 128-Byte Blocks of Memory

When software uses locks or semaphores to synchronize processes, threads, or other code sections; Intel recom-
mends that only one lock or semaphore be present within a cache line (or 128 byte sector, if 128-byte sector is 
supported). In processors based on Intel NetBurst microarchitecture (which support 128-byte sector consisting of 
two cache lines), following this recommendation means that each lock or semaphore should be contained in a 128-
byte block of memory that begins on a 128-byte boundary. The practice minimizes the bus traffic required to 
service locks.

8.11 MP INITIALIZATION FOR P6 FAMILY PROCESSORS

This section describes the MP initialization process for systems that use multiple P6 family processors. This process 
uses the MP initialization protocol that was introduced with the Pentium Pro processor (see Section 8.4, “Multiple-
Processor (MP) Initialization”). For P6 family processors, this protocol is typically used to boot 2 or 4 processors 
that reside on single system bus; however, it can support from 2 to 15 processors in a multi-clustered system when 
the APIC busses are tied together. Larger systems are not supported.

8.11.1 Overview of the MP Initialization Process For P6 Family Processors

During the execution of the MP initialization protocol, one processor is selected as the bootstrap processor (BSP) 
and the remaining processors are designated as application processors (APs), see Section 8.4.1, “BSP and AP 
Processors.” Thereafter, the BSP manages the initialization of itself and the APs. This initialization includes 
executing BIOS initialization code and operating-system initialization code.

The MP protocol imposes the following requirements and restrictions on the system:
• An APIC clock (APICLK) must be provided.
• The MP protocol will be executed only after a power-up or RESET. If the MP protocol has been completed and a 

BSP has been chosen, subsequent INITs (either to a specific processor or system wide) do not cause the MP 
protocol to be repeated. Instead, each processor examines its BSP flag (in the APIC_BASE MSR) to determine 
whether it should execute the BIOS boot-strap code (if it is the BSP) or enter a wait-for-SIPI state (if it is an 
AP).

• All devices in the system that are capable of delivering interrupts to the processors must be inhibited from 
doing so for the duration of the MP initialization protocol. The time during which interrupts must be inhibited 
includes the window between when the BSP issues an INIT-SIPI-SIPI sequence to an AP and when the AP 
responds to the last SIPI in the sequence.

The following special-purpose interprocessor interrupts (IPIs) are used during the boot phase of the MP initializa-
tion protocol. These IPIs are broadcast on the APIC bus.
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• Boot IPI (BIPI)—Initiates the arbitration mechanism that selects a BSP from the group of processors on the 
system bus and designates the remainder of the processors as APs. Each processor on the system bus 
broadcasts a BIPI to all the processors following a power-up or RESET. 

• Final Boot IPI (FIPI)—Initiates the BIOS initialization procedure for the BSP. This IPI is broadcast to all the 
processors on the system bus, but only the BSP responds to it. The BSP responds by beginning execution of the 
BIOS initialization code at the reset vector.

• Startup IPI (SIPI)—Initiates the initialization procedure for an AP. The SIPI message contains a vector to the AP 
initialization code in the BIOS.

Table 8-4 describes the various fields of the boot phase IPIs.

For BIPI messages, the lower 4 bits of the vector field contain the APIC ID of the processor issuing the message and 
the upper 4 bits contain the “generation ID” of the message. All P6 family processor will have a generation ID of 
4H. BIPIs will therefore use vector values ranging from 40H to 4EH (4FH can not be used because FH is not a valid 
APIC ID). 

8.11.2 MP Initialization Protocol Algorithm

Following a power-up or RESET of a system, the P6 family processors in the system execute the MP initialization 
protocol algorithm to initialize each of the processors on the system bus. In the course of executing this algorithm, 
the following boot-up and initialization operations are carried out:

1. Each processor on the system bus is assigned a unique APIC ID, based on system topology (see Section 8.4.5, 
“Identifying Logical Processors in an MP System”). This ID is written into the local APIC ID register for each 
processor.

2. Each processor executes its internal BIST simultaneously with the other processors on the system bus. Upon 
completion of the BIST (at T0), each processor broadcasts a BIPI to “all including self” (see Figure 8-1). 

3. APIC arbitration hardware causes all the APICs to respond to the BIPIs one at a time (at T1, T2, T3, and T4). 

4. When the first BIPI is received (at time T1), each APIC compares the four least significant bits of the BIPI’s 
vector field with its APIC ID. If the vector and APIC ID match, the processor selects itself as the BSP by setting 
the BSP flag in its IA32_APIC_BASE MSR. If the vector and APIC ID do not match, the processor selects itself 
as an AP by entering the “wait for SIPI” state. (Note that in Figure 8-1, the BIPI from processor 1 is the first 
BIPI to be handled, so processor 1 becomes the BSP.)

5. The newly established BSP broadcasts an FIPI message to “all including self.” The FIPI is guaranteed to be 
handled only after the completion of the BIPIs that were issued by the non-BSP processors.

Table 8-4.  Boot Phase IPI Message Format

Type
Destination
Field

Destination
Shorthand

Trigger
Mode Level

Destination
Mode

Delivery
Mode

Vector
(Hex)

BIPI Not used All including self Edge Deassert Don’t Care Fixed
(000)

40 to 4E*

FIPI Not used All including self Edge Deassert Don’t Care Fixed
(000)

10

SIPI Used All excluding self Edge Assert Physical StartUp
(110)

00 to FF

NOTE:

* For all P6 family processors.
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6. After the BSP has been established, the outstanding BIPIs are received one at a time (at T2, T3, and T4) and 
ignored by all processors.

7. When the FIPI is finally received (at T5), only the BSP responds to it. It responds by fetching and executing 
BIOS boot-strap code, beginning at the reset vector (physical address FFFF FFF0H).

8. As part of the boot-strap code, the BSP creates an ACPI table and an MP table and adds its initial APIC ID to 
these tables as appropriate. 

9. At the end of the boot-strap procedure, the BSP broadcasts a SIPI message to all the APs in the system. Here, 
the SIPI message contains a vector to the BIOS AP initialization code (at 000V V000H, where VV is the vector 
contained in the SIPI message).

10. All APs respond to the SIPI message by racing to a BIOS initialization semaphore. The first one to the 
semaphore begins executing the initialization code. (See MP init code for semaphore implementation details.) 
As part of the AP initialization procedure, the AP adds its APIC ID number to the ACPI and MP tables as appro-
priate. At the completion of the initialization procedure, the AP executes a CLI instruction (to clear the IF flag in 
the EFLAGS register) and halts itself.

11. When each of the APs has gained access to the semaphore and executed the AP initialization code and all 
written their APIC IDs into the appropriate places in the ACPI and MP tables, the BSP establishes a count for the 
number of processors connected to the system bus, completes executing the BIOS boot-strap code, and then 
begins executing operating-system boot-strap and start-up code.

12. While the BSP is executing operating-system boot-strap and start-up code, the APs remain in the halted state. 
In this state they will respond only to INITs, NMIs, and SMIs. They will also respond to snoops and to assertions 
of the STPCLK# pin.

See Section 8.4.4, “MP Initialization Example,” for an annotated example the use of the MP protocol to boot IA-32 
processors in an MP. This code should run on any IA-32 processor that used the MP protocol.

8.11.2.1  Error Detection and Handling During the MP Initialization Protocol

Errors may occur on the APIC bus during the MP initialization phase. These errors may be transient or permanent 
and can be caused by a variety of failure mechanisms (for example, broken traces, soft errors during bus usage, 
etc.). All serial bus related errors will result in an APIC checksum or acceptance error. 

The MP initialization protocol makes the following assumptions regarding errors that occur during initialization:
• If errors are detected on the APIC bus during execution of the MP initialization protocol, the processors that 

detect the errors are shut down. 

 

Figure 8-1.  MP System With Multiple Pentium III Processors

Pentium III
Processor 0

Pentium III
Processor 1

Pentium III
Processor 2

Pentium III
Processor 3

BIPI.1 BIPI.0 BIPI.3 BIPI.2 FIPI

T0 T1 T2 T3 T4 T5

System (CPU) Bus

APIC Bus

Serial Bus Activity

Processor 1
Becomes BSP



Vol. 3A 8-55

MULTIPLE-PROCESSOR MANAGEMENT

• The MP initialization protocol will be executed by processors even if they fail their BIST sequences.
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CHAPTER 9
PROCESSOR MANAGEMENT AND INITIALIZATION

This chapter describes the facilities provided for managing processor wide functions and for initializing the 
processor. The subjects covered include: processor initialization, x87 FPU initialization, processor configuration, 
feature determination, mode switching, the MSRs (in the Pentium, P6 family, Pentium 4, and Intel Xeon proces-
sors), and the MTRRs (in the P6 family, Pentium 4, and Intel Xeon processors).

9.1 INITIALIZATION OVERVIEW

Following power-up or an assertion of the RESET# pin, each processor on the system bus performs a hardware 
initialization of the processor (known as a hardware reset) and an optional built-in self-test (BIST). A hardware 
reset sets each processor’s registers to a known state and places the processor in real-address mode. It also inval-
idates the internal caches, translation lookaside buffers (TLBs) and the branch target buffer (BTB). At this point, 
the action taken depends on the processor family:
• Pentium 4 and Intel Xeon processors — All the processors on the system bus (including a single processor 

in a uniprocessor system) execute the multiple processor (MP) initialization protocol. The processor that is 
selected through this protocol as the bootstrap processor (BSP) then immediately starts executing software-
initialization code in the current code segment beginning at the offset in the EIP register. The application (non-
BSP) processors (APs) go into a Wait For Startup IPI (SIPI) state while the BSP is executing initialization code. 
See Section 8.4, “Multiple-Processor (MP) Initialization,” for more details. Note that in a uniprocessor system, 
the single Pentium 4 or Intel Xeon processor automatically becomes the BSP.

• P6 family processors — The action taken is the same as for the Pentium 4 and Intel Xeon processors (as 
described in the previous paragraph).

• Pentium processors — In either a single- or dual- processor system, a single Pentium processor is always 
pre-designated as the primary processor. Following a reset, the primary processor behaves as follows in both 
single- and dual-processor systems. Using the dual-processor (DP) ready initialization protocol, the primary 
processor immediately starts executing software-initialization code in the current code segment beginning at 
the offset in the EIP register. The secondary processor (if there is one) goes into a halt state.

• Intel486 processor — The primary processor (or single processor in a uniprocessor system) immediately 
starts executing software-initialization code in the current code segment beginning at the offset in the EIP 
register. (The Intel486 does not automatically execute a DP or MP initialization protocol to determine which 
processor is the primary processor.)

The software-initialization code performs all system-specific initialization of the BSP or primary processor and the 
system logic.

At this point, for MP (or DP) systems, the BSP (or primary) processor wakes up each AP (or secondary) processor 
to enable those processors to execute self-configuration code.

When all processors are initialized, configured, and synchronized, the BSP or primary processor begins executing 
an initial operating-system or executive task.

The x87 FPU is also initialized to a known state during hardware reset. x87 FPU software initialization code can then 
be executed to perform operations such as setting the precision of the x87 FPU and the exception masks. No special 
initialization of the x87 FPU is required to switch operating modes. 

Asserting the INIT# pin on the processor invokes a similar response to a hardware reset. The major difference is 
that during an INIT, the internal caches, MSRs, MTRRs, and x87 FPU state are left unchanged (although, the TLBs 
and BTB are invalidated as with a hardware reset). An INIT provides a method for switching from protected to real-
address mode while maintaining the contents of the internal caches.
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9.1.1 Processor State After Reset

Table 9-1 shows the state of the flags and other registers following power-up for the Pentium 4, Intel Xeon, P6 
family (including Intel processors with CPUID DisplayFamily signature of 06H), and Pentium processors. The state 
of control register CR0 is 60000010H (see Figure 9-1). This places the processor is in real-address mode with 
paging disabled. 

9.1.2 Processor Built-In Self-Test (BIST)

Hardware may request that the BIST be performed at power-up. The EAX register is cleared (0H) if the processor 
passes the BIST. A nonzero value in the EAX register after the BIST indicates that a processor fault was detected. 
If the BIST is not requested, the contents of the EAX register after a hardware reset is 0H. 

The overhead for performing a BIST varies between processor families. For example, the BIST takes approximately 
30 million processor clock periods to execute on the Pentium 4 processor. This clock count is model-specific; Intel 
reserves the right to change the number of periods for any Intel 64 or IA-32 processor, without notification.

Table 9-1.  IA-32 Processor States Following Power-up, Reset, or INIT 

Register Pentium 4 and Intel Xeon 
Processor

P6 Family Processor (Including 
DisplayFamily = 06H)

Pentium Processor

EFLAGS1 00000002H 00000002H 00000002H

EIP 0000FFF0H 0000FFF0H 0000FFF0H

CR0 60000010H2 60000010H2 60000010H2

CR2, CR3, CR4 00000000H 00000000H 00000000H

CS Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, Accessed

SS, DS, ES, FS, GS Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, Accessed

EDX 00000FxxH  000n06xxH3 000005xxH 

EAX 04 04 04

EBX, ECX, ESI, EDI, EBP, 
ESP

00000000H 00000000H 00000000H

ST0 through ST75 Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

x87 FPU Control 
Word5

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

x87 FPU Status Word5 Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Tag Word5 Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

x87 FPU Data 
Operand and CS Seg. 
Selectors5

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Data 
Operand and Inst. 
Pointers5

Pwr up or Reset: 
   00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset: 
   00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset: 
   00000000H
FINIT/FNINIT: 00000000H
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MM0 through MM75 Pwr up or Reset:
   0000000000000000H
INIT or FINIT/FNINIT:
   Unchanged

Pentium II and Pentium III 
Processors Only—

Pwr up or Reset:
   0000000000000000H
INIT or FINIT/FNINIT:
   Unchanged

Pentium with MMX Technology 
Only—

Pwr up or Reset:
   0000000000000000H
INIT or FINIT/FNINIT:
   Unchanged

XMM0 through XMM7 Pwr up or Reset: 0H
INIT: Unchanged

If CPUID.01H:SSE is 1 —

Pwr up or Reset: 0H
INIT: Unchanged

NA

MXCSR Pwr up or Reset: 1F80H
INIT: Unchanged

Pentium III processor only-

Pwr up or Reset: 1F80H
INIT: Unchanged

NA

GDTR, IDTR Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

LDTR, Task Register Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

DR0, DR1, DR2, DR3 00000000H 00000000H 00000000H

DR6 FFFF0FF0H FFFF0FF0H FFFF0FF0H

DR7 00000400H 00000400H 00000400H

Time-Stamp Counter Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Perf. Counters and 
Event Select

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

All Other MSRs Pwr up or Reset:
   Undefined
INIT: Unchanged

Pwr up or Reset:
   Undefined
INIT: Unchanged

Pwr up or Reset:
   Undefined
INIT: Unchanged

Data and Code Cache, 
TLBs

Invalid6 Invalid6 Invalid6

Fixed MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Variable MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Machine-Check 
Architecture

Pwr up or Reset:
    Undefined
INIT: Unchanged

Pwr up or Reset:
    Undefined
INIT: Unchanged

Not Implemented

APIC Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

R8-R157 0000000000000000H 0000000000000000H N.A.

Table 9-1.  IA-32 Processor States Following Power-up, Reset, or INIT  (Contd.)

Register Pentium 4 and Intel Xeon 
Processor

P6 Family Processor (Including 
DisplayFamily = 06H)

Pentium Processor
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9.1.3 Model and Stepping Information

Following a hardware reset, the EDX register contains component identification and revision information (see 
Figure 9-2). For example, the model, family, and processor type returned for the first processor in the Intel 
Pentium 4 family is as follows: model (0000B), family (1111B), and processor type (00B). 

XMM8-XMM157 Pwr up or Reset: 0H
INIT: Unchanged

Pwr up or Reset: 0H
INIT: Unchanged

N.A.

YMMn[128:VLMAX]8 N.A. Pwr up or Reset: 0H
INIT: Unchanged

N.A.

NOTES: 

1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software should not depend on the states of 
any of these bits.

2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.

3. Where “n” is the Extended Model Value for the respective processor.

4. If Built-In Self-Test (BIST) is invoked on power up or reset, EAX is 0 only if all tests passed. (BIST cannot be invoked during an INIT.)

5. The state of the x87 FPU and MMX registers is not changed by the execution of an INIT.

6. Internal caches are invalid after power-up and RESET, but left unchanged with an INIT.

7. If the processor supports IA-32e mode.

8. If the processor supports AVX.

Figure 9-1.  Contents of CR0 Register after Reset

Table 9-1.  IA-32 Processor States Following Power-up, Reset, or INIT  (Contd.)

Register Pentium 4 and Intel Xeon 
Processor

P6 Family Processor (Including 
DisplayFamily = 06H)

Pentium Processor

External x87 FPU error reporting: 0
(Not used): 1
No task switch: 0
x87 FPU instructions not trapped: 0
WAIT/FWAIT instructions not trapped: 0
Real-address mode: 0
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Paging disabled: 0

Alignment check disabled: 0

Caching disabled: 1
Not write-through disabled: 1

Write-protect disabled: 0

Reserved Reserved
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The stepping ID field contains a unique identifier for the processor’s stepping ID or revision level. The extended 
family and extended model fields were added to the IA-32 architecture in the Pentium 4 processors.

9.1.4 First Instruction Executed

The first instruction that is fetched and executed following a hardware reset is located at physical address 
FFFFFFF0H. This address is 16 bytes below the processor’s uppermost physical address. The EPROM containing the 
software-
initialization code must be located at this address. 

The address FFFFFFF0H is beyond the 1-MByte addressable range of the processor while in real-address mode. The 
processor is initialized to this starting address as follows. The CS register has two parts: the visible segment 
selector part and the hidden base address part. In real-address mode, the base address is normally formed by 
shifting the 16-bit segment selector value 4 bits to the left to produce a 20-bit base address. However, during a 
hardware reset, the segment selector in the CS register is loaded with F000H and the base address is loaded with 
FFFF0000H. The starting address is thus formed by adding the base address to the value in the EIP register (that 
is, FFFF0000 + FFF0H = FFFFFFF0H).

The first time the CS register is loaded with a new value after a hardware reset, the processor will follow the normal 
rule for address translation in real-address mode (that is, [CS base address = CS segment selector * 16]). To 
insure that the base address in the CS register remains unchanged until the EPROM based software-initialization 
code is completed, the code must not contain a far jump or far call or allow an interrupt to occur (which would 
cause the CS selector value to be changed).

9.2 X87 FPU INITIALIZATION

Software-initialization code can determine the whether the processor contains an x87 FPU by using the CPUID 
instruction. The code must then initialize the x87 FPU and set flags in control register CR0 to reflect the state of the 
x87 FPU environment.

A hardware reset places the x87 FPU in the state shown in Table 9-1. This state is different from the state the x87 
FPU is placed in following the execution of an FINIT or FNINIT instruction (also shown in Table 9-1). If the x87 FPU 
is to be used, the software-initialization code should execute an FINIT/FNINIT instruction following a hardware 
reset. These instructions, tag all data registers as empty, clear all the exception masks, set the TOP-of-stack value 
to 0, and select the default rounding and precision controls setting (round to nearest and 64-bit precision).

If the processor is reset by asserting the INIT# pin, the x87 FPU state is not changed.

9.2.1 Configuring the x87 FPU Environment

Initialization code must load the appropriate values into the MP, EM, and NE flags of control register CR0. These bits 
are cleared on hardware reset of the processor. Figure 9-2 shows the suggested settings for these flags, depending 
on the IA-32 processor being initialized. Initialization code can test for the type of processor present before setting 
or clearing these flags.

Figure 9-2.  Version Information in the EDX Register after Reset
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The EM flag determines whether floating-point instructions are executed by the x87 FPU (EM is cleared) or a 
device-not-available exception (#NM) is generated for all floating-point instructions so that an exception handler 
can emulate the floating-point operation (EM = 1). Ordinarily, the EM flag is cleared when an x87 FPU or math 
coprocessor is present and set if they are not present. If the EM flag is set and no x87 FPU, math coprocessor, or 
floating-point emulator is present, the processor will hang when a floating-point instruction is executed.

The MP flag determines whether WAIT/FWAIT instructions react to the setting of the TS flag. If the MP flag is clear, 
WAIT/FWAIT instructions ignore the setting of the TS flag; if the MP flag is set, they will generate a device-not-
available exception (#NM) if the TS flag is set. Generally, the MP flag should be set for processors with an inte-
grated x87 FPU and clear for processors without an integrated x87 FPU and without a math coprocessor present. 
However, an operating system can choose to save the floating-point context at every context switch, in which case 
there would be no need to set the MP bit. 

Table 2-2 shows the actions taken for floating-point and WAIT/FWAIT instructions based on the settings of the EM, 
MP, and TS flags.

The NE flag determines whether unmasked floating-point exceptions are handled by generating a floating-point 
error exception internally (NE is set, native mode) or through an external interrupt (NE is cleared). In systems 
where an external interrupt controller is used to invoke numeric exception handlers (such as MS-DOS-based 
systems), the NE bit should be cleared.

9.2.2 Setting the Processor for x87 FPU Software Emulation

Setting the EM flag causes the processor to generate a device-not-available exception (#NM) and trap to a software 
exception handler whenever it encounters a floating-point instruction. (Table 9-2 shows when it is appropriate to 
use this flag.) Setting this flag has two functions:
• It allows x87 FPU code to run on an IA-32 processor that has neither an integrated x87 FPU nor is connected to 

an external math coprocessor, by using a floating-point emulator. 
• It allows floating-point code to be executed using a special or nonstandard floating-point emulator, selected for 

a particular application, regardless of whether an x87 FPU or math coprocessor is present. 

To emulate floating-point instructions, the EM, MP, and NE flag in control register CR0 should be set as shown in 
Table 9-3.

Regardless of the value of the EM bit, the Intel486 SX processor generates a device-not-available exception (#NM) 
upon encountering any floating-point instruction.

Table 9-2.  Recommended Settings of EM and MP Flags on IA-32 Processors

EM MP NE IA-32 processor

1 0 1 Intel486™ SX, Intel386™ DX, and Intel386™ SX processors only, without the presence of a math 
coprocessor.

0 1 1 or 0* Pentium 4, Intel Xeon, P6 family, Pentium, Intel486™ DX, and Intel 487 SX processors, and 
Intel386 DX and Intel386 SX processors when a companion math coprocessor is present.

0 1 1 or 0* More recent Intel 64 or IA-32 processors

NOTE:

* The setting of the NE flag depends on the operating system being used.

Table 9-3.  Software Emulation Settings of EM, MP, and NE Flags

CR0 Bit Value

EM 1

MP 0

NE 1
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9.3 CACHE ENABLING

IA-32 processors (beginning with the Intel486 processor) and Intel 64 processors contain internal instruction and 
data caches. These caches are enabled by clearing the CD and NW flags in control register CR0. (They are set 
during a hardware reset.) Because all internal cache lines are invalid following reset initialization, it is not neces-
sary to invalidate the cache before enabling caching. Any external caches may require initialization and invalidation 
using a system-specific initialization and invalidation code sequence.

Depending on the hardware and operating system or executive requirements, additional configuration of the 
processor’s caching facilities will probably be required. Beginning with the Intel486 processor, page-level caching 
can be controlled with the PCD and PWT flags in page-directory and page-table entries. Beginning with the P6 
family processors, the memory type range registers (MTRRs) control the caching characteristics of the regions of 
physical memory. (For the Intel486 and Pentium processors, external hardware can be used to control the caching 
characteristics of regions of physical memory.) See Chapter 11, “Memory Cache Control,” for detailed information 
on configuration of the caching facilities in the Pentium 4, Intel Xeon, and P6 family processors and system 
memory.

9.4 MODEL-SPECIFIC REGISTERS (MSRS)

Most IA-32 processors (starting from Pentium processors) and Intel 64 processors contain a model-specific regis-
ters (MSRs). A given MSR may not be supported across all families and models for Intel 64 and IA-32 processors. 
Some MSRs are designated as architectural to simplify software programming; a feature introduced by an architec-
tural MSR is expected to be supported in future processors. Non-architectural MSRs are not guaranteed to be 
supported or to have the same functions on future processors.   

MSRs that provide control for a number of hardware and software-related features, include:
• Performance-monitoring counters (see Chapter 23, “Introduction to Virtual-Machine Extensions”).
• Debug extensions (see Chapter 23, “Introduction to Virtual-Machine Extensions.”).
• Machine-check exception capability and its accompanying machine-check architecture (see Chapter 15, 

“Machine-Check Architecture”).
• MTRRs (see Section 11.11, “Memory Type Range Registers (MTRRs)”).
• Thermal and power management.
• Instruction-specific support (for example: SYSENTER, SYSEXIT, SWAPGS, etc.).
• Processor feature/mode support (for example: IA32_EFER, IA32_FEATURE_CONTROL).

The MSRs can be read and written to using the RDMSR and WRMSR instructions, respectively.

When performing software initialization of an IA-32 or Intel 64 processor, many of the MSRs will need to be initial-
ized to set up things like performance-monitoring events, run-time machine checks, and memory types for phys-
ical memory.

Lists of available performance-monitoring events are given in Chapter 19, “Performance Monitoring Events”, and 
lists of available MSRs are given in Chapter 35, “Model-Specific Registers (MSRs)” The references earlier in this 
section show where the functions of the various groups of MSRs are described in this manual.

9.5 MEMORY TYPE RANGE REGISTERS (MTRRS)

Memory type range registers (MTRRs) were introduced into the IA-32 architecture with the Pentium Pro processor. 
They allow the type of caching (or no caching) to be specified in system memory for selected physical address 
ranges. They allow memory accesses to be optimized for various types of memory such as RAM, ROM, frame buffer 
memory, and memory-mapped I/O devices.

In general, initializing the MTRRs is normally handled by the software initialization code or BIOS and is not an oper-
ating system or executive function. At the very least, all the MTRRs must be cleared to 0, which selects the 
uncached (UC) memory type. See Section 11.11, “Memory Type Range Registers (MTRRs),” for detailed informa-
tion on the MTRRs.
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9.6 INITIALIZING SSE/SSE2/SSE3/SSSE3 EXTENSIONS

For processors that contain SSE/SSE2/SSE3/SSSE3 extensions, steps must be taken when initializing the 
processor to allow execution of these instructions.

1. Check the CPUID feature flags for the presence of the SSE/SSE2/SSE3/SSSE3 extensions (respectively: EDX 
bits 25 and 26, ECX bit 0 and 9) and support for the FXSAVE and FXRSTOR instructions (EDX bit 24). Also check 
for support for the CLFLUSH instruction (EDX bit 19). The CPUID feature flags are loaded in the EDX and ECX 
registers when the CPUID instruction is executed with a 1 in the EAX register.

2. Set the OSFXSR flag (bit 9 in control register CR4) to indicate that the operating system supports saving and 
restoring the SSE/SSE2/SSE3/SSSE3 execution environment (XXM and MXCSR registers) with the FXSAVE and 
FXRSTOR instructions, respectively. See Section 2.5, “Control Registers,” for a description of the OSFXSR flag.

3. Set the OSXMMEXCPT flag (bit 10 in control register CR4) to indicate that the operating system supports the 
handling of SSE/SSE2/SSE3 SIMD floating-point exceptions (#XF). See Section 2.5, “Control Registers,” for a 
description of the OSXMMEXCPT flag.

4. Set the mask bits and flags in the MXCSR register according to the mode of operation desired for 
SSE/SSE2/SSE3 SIMD floating-point instructions. See “MXCSR Control and Status Register” in Chapter 10, 
“Programming with Streaming SIMD Extensions (SSE),” of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for a detailed description of the bits and flags in the MXCSR register.

9.7 SOFTWARE INITIALIZATION FOR REAL-ADDRESS MODE OPERATION

Following a hardware reset (either through a power-up or the assertion of the RESET# pin) the processor is placed 
in real-address mode and begins executing software initialization code from physical address FFFFFFF0H. Software 
initialization code must first set up the necessary data structures for handling basic system functions, such as a 
real-mode IDT for handling interrupts and exceptions. If the processor is to remain in real-address mode, software 
must then load additional operating-system or executive code modules and data structures to allow reliable execu-
tion of application programs in real-address mode.

If the processor is going to operate in protected mode, software must load the necessary data structures to operate 
in protected mode and then switch to protected mode. The protected-mode data structures that must be loaded 
are described in Section 9.8, “Software Initialization for Protected-Mode Operation.”

9.7.1 Real-Address Mode IDT

In real-address mode, the only system data structure that must be loaded into memory is the IDT (also called the 
“interrupt vector table”). By default, the address of the base of the IDT is physical address 0H. This address can be 
changed by using the LIDT instruction to change the base address value in the IDTR. Software initialization code 
needs to load interrupt- and exception-handler pointers into the IDT before interrupts can be enabled. 

The actual interrupt- and exception-handler code can be contained either in EPROM or RAM; however, the code 
must be located within the 1-MByte addressable range of the processor in real-address mode. If the handler code 
is to be stored in RAM, it must be loaded along with the IDT.

9.7.2 NMI Interrupt Handling

The NMI interrupt is always enabled (except when multiple NMIs are nested). If the IDT and the NMI interrupt 
handler need to be loaded into RAM, there will be a period of time following hardware reset when an NMI interrupt 
cannot be handled. During this time, hardware must provide a mechanism to prevent an NMI interrupt from halting 
code execution until the IDT and the necessary NMI handler software is loaded. Here are two examples of how NMIs 
can be handled during the initial states of processor initialization:
• A simple IDT and NMI interrupt handler can be provided in EPROM. This allows an NMI interrupt to be handled 

immediately after reset initialization.
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• The system hardware can provide a mechanism to enable and disable NMIs by passing the NMI# signal through 
an AND gate controlled by a flag in an I/O port. Hardware can clear the flag when the processor is reset, and 
software can set the flag when it is ready to handle NMI interrupts.

9.8 SOFTWARE INITIALIZATION FOR PROTECTED-MODE OPERATION

The processor is placed in real-address mode following a hardware reset. At this point in the initialization process, 
some basic data structures and code modules must be loaded into physical memory to support further initialization 
of the processor, as described in Section 9.7, “Software Initialization for Real-Address Mode Operation.” Before the 
processor can be switched to protected mode, the software initialization code must load a minimum number of 
protected mode data structures and code modules into memory to support reliable operation of the processor in 
protected mode. These data structures include the following:
• A IDT.
• A GDT.
• A TSS.
• (Optional) An LDT.
• If paging is to be used, at least one page directory and one page table.
• A code segment that contains the code to be executed when the processor switches to protected mode.
• One or more code modules that contain the necessary interrupt and exception handlers.

Software initialization code must also initialize the following system registers before the processor can be switched 
to protected mode:
• The GDTR.
• (Optional.) The IDTR. This register can also be initialized immediately after switching to protected mode, prior 

to enabling interrupts.
• Control registers CR1 through CR4.
• (Pentium 4, Intel Xeon, and P6 family processors only.) The memory type range registers (MTRRs).

With these data structures, code modules, and system registers initialized, the processor can be switched to 
protected mode by loading control register CR0 with a value that sets the PE flag (bit 0).

9.8.1 Protected-Mode System Data Structures

The contents of the protected-mode system data structures loaded into memory during software initialization, 
depend largely on the type of memory management the protected-mode operating-system or executive is going to 
support: flat, flat with paging, segmented, or segmented with paging.

To implement a flat memory model without paging, software initialization code must at a minimum load a GDT with 
one code and one data-segment descriptor. A null descriptor in the first GDT entry is also required. The stack can 
be placed in a normal read/write data segment, so no dedicated descriptor for the stack is required. A flat memory 
model with paging also requires a page directory and at least one page table (unless all pages are 4 MBytes in 
which case only a page directory is required). See Section 9.8.3, “Initializing Paging.”

Before the GDT can be used, the base address and limit for the GDT must be loaded into the GDTR register using 
an LGDT instruction.

A multi-segmented model may require additional segments for the operating system, as well as segments and 
LDTs for each application program. LDTs require segment descriptors in the GDT. Some operating systems allocate 
new segments and LDTs as they are needed. This provides maximum flexibility for handling a dynamic program-
ming environment. However, many operating systems use a single LDT for all tasks, allocating GDT entries in 
advance. An embedded system, such as a process controller, might pre-allocate a fixed number of segments and 
LDTs for a fixed number of application programs. This would be a simple and efficient way to structure the software 
environment of a real-time system.
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9.8.2 Initializing Protected-Mode Exceptions and Interrupts

Software initialization code must at a minimum load a protected-mode IDT with gate descriptor for each exception 
vector that the processor can generate. If interrupt or trap gates are used, the gate descriptors can all point to the 
same code segment, which contains the necessary exception handlers. If task gates are used, one TSS and accom-
panying code, data, and task segments are required for each exception handler called with a task gate.

If hardware allows interrupts to be generated, gate descriptors must be provided in the IDT for one or more inter-
rupt handlers.

Before the IDT can be used, the base address and limit for the IDT must be loaded into the IDTR register using an 
LIDT instruction. This operation is typically carried out immediately after switching to protected mode.

9.8.3 Initializing Paging

Paging is controlled by the PG flag in control register CR0. When this flag is clear (its state following a hardware 
reset), the paging mechanism is turned off; when it is set, paging is enabled. Before setting the PG flag, the 
following data structures and registers must be initialized:
• Software must load at least one page directory and one page table into physical memory. The page table can 

be eliminated if the page directory contains a directory entry pointing to itself (here, the page directory and 
page table reside in the same page), or if only 4-MByte pages are used.

• Control register CR3 (also called the PDBR register) is loaded with the physical base address of the page 
directory.

• (Optional) Software may provide one set of code and data descriptors in the GDT or in an LDT for supervisor 
mode and another set for user mode.

With this paging initialization complete, paging is enabled and the processor is switched to protected mode at the 
same time by loading control register CR0 with an image in which the PG and PE flags are set. (Paging cannot be 
enabled before the processor is switched to protected mode.)

9.8.4 Initializing Multitasking

If the multitasking mechanism is not going to be used and changes between privilege levels are not allowed, it is 
not necessary load a TSS into memory or to initialize the task register.

If the multitasking mechanism is going to be used and/or changes between privilege levels are allowed, software 
initialization code must load at least one TSS and an accompanying TSS descriptor. (A TSS is required to change 
privilege levels because pointers to the privileged-level 0, 1, and 2 stack segments and the stack pointers for these 
stacks are obtained from the TSS.) TSS descriptors must not be marked as busy when they are created; they 
should be marked busy by the processor only as a side-effect of performing a task switch. As with descriptors for 
LDTs, TSS descriptors reside in the GDT.

After the processor has switched to protected mode, the LTR instruction can be used to load a segment selector for 
a TSS descriptor into the task register. This instruction marks the TSS descriptor as busy, but does not perform a 
task switch. The processor can, however, use the TSS to locate pointers to privilege-level 0, 1, and 2 stacks. The 
segment selector for the TSS must be loaded before software performs its first task switch in protected mode, 
because a task switch copies the current task state into the TSS.

After the LTR instruction has been executed, further operations on the task register are performed by task 
switching. As with other segments and LDTs, TSSs and TSS descriptors can be either pre-allocated or allocated as 
needed.

9.8.5 Initializing IA-32e Mode

On Intel 64 processors, the IA32_EFER MSR is cleared on system reset. The operating system must be in protected 
mode with paging enabled before attempting to initialize IA-32e mode. IA-32e mode operation also requires phys-
ical-address extensions with four levels of enhanced paging structures (see Section 4.5, “IA-32e Paging”).

Operating systems should follow this sequence to initialize IA-32e mode:
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1. Starting from protected mode, disable paging by setting CR0.PG = 0. Use the MOV CR0 instruction to disable 
paging (the instruction must be located in an identity-mapped page).

2. Enable physical-address extensions (PAE) by setting CR4.PAE = 1. Failure to enable PAE will result in a #GP 
fault when an attempt is made to initialize IA-32e mode.

3. Load CR3 with the physical base address of the Level 4 page map table (PML4).

4. Enable IA-32e mode by setting IA32_EFER.LME = 1.

5. Enable paging by setting CR0.PG = 1. This causes the processor to set the IA32_EFER.LMA bit to 1. The MOV 
CR0 instruction that enables paging and the following instructions must be located in an identity-mapped page 
(until such time that a branch to non-identity mapped pages can be effected).

64-bit mode paging tables must be located in the first 4 GBytes of physical-address space prior to activating IA-32e 
mode. This is necessary because the MOV CR3 instruction used to initialize the page-directory base must be 
executed in legacy mode prior to activating IA-32e mode (setting CR0.PG = 1 to enable paging). Because MOV CR3 
is executed in protected mode, only the lower 32 bits of the register are written, limiting the table location to the 
low 4 GBytes of memory. Software can relocate the page tables anywhere in physical memory after IA-32e mode 
is activated.

The processor performs 64-bit mode consistency checks whenever software attempts to modify any of the enable 
bits directly involved in activating IA-32e mode (IA32_EFER.LME, CR0.PG, and CR4.PAE). It will generate a general 
protection fault (#GP) if consistency checks fail. 64-bit mode consistency checks ensure that the processor does 
not enter an undefined mode or state with unpredictable behavior.

64-bit mode consistency checks fail in the following circumstances:
• An attempt is made to enable or disable IA-32e mode while paging is enabled.
• IA-32e mode is enabled and an attempt is made to enable paging prior to enabling physical-address extensions 

(PAE).
• IA-32e mode is active and an attempt is made to disable physical-address extensions (PAE).
• If the current CS has the L-bit set on an attempt to activate IA-32e mode.
• If the TR contains a 16-bit TSS.

9.8.5.1  IA-32e Mode System Data Structures

After activating IA-32e mode, the system-descriptor-table registers (GDTR, LDTR, IDTR, TR) continue to reference 
legacy protected-mode descriptor tables. Tables referenced by the descriptors all reside in the lower 4 GBytes of 
linear-address space. After activating IA-32e mode, 64-bit operating-systems should use the LGDT, LLDT, LIDT, 
and LTR instructions to load the system-descriptor-table registers with references to 64-bit descriptor tables.

9.8.5.2  IA-32e Mode Interrupts and Exceptions

Software must not allow exceptions or interrupts to occur between the time IA-32e mode is activated and the 
update of the interrupt-descriptor-table register (IDTR) that establishes references to a 64-bit interrupt-descriptor 
table (IDT). This is because the IDT remains in legacy form immediately after IA-32e mode is activated.

If an interrupt or exception occurs prior to updating the IDTR, a legacy 32-bit interrupt gate will be referenced and 
interpreted as a 64-bit interrupt gate with unpredictable results. External interrupts can be disabled by using the 
CLI instruction.

Non-maskable interrupts (NMI) must be disabled using external hardware.

9.8.5.3  64-bit Mode and Compatibility Mode Operation

IA-32e mode uses two code segment-descriptor bits (CS.L and CS.D, see Figure 3-8) to control the operating modes 
after IA-32e mode is initialized. If CS.L = 1 and CS.D = 0, the processor is running in 64-bit mode. With this 
encoding, the default operand size is 32 bits and default address size is 64 bits. Using instruction prefixes, operand 
size can be changed to 64 bits or 16 bits; address size can be changed to 32 bits. 
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When IA-32e mode is active and CS.L = 0, the processor operates in compatibility mode. In this mode, CS.D 
controls default operand and address sizes exactly as it does in the IA-32 architecture. Setting CS.D = 1 specifies 
default operand and address size as 32 bits. Clearing CS.D to 0 specifies default operand and address size as 16 
bits (the CS.L = 1, CS.D = 1 bit combination is reserved).

Compatibility mode execution is selected on a code-segment basis. This mode allows legacy applications to coexist 
with 64-bit applications running in 64-bit mode. An operating system running in IA-32e mode can execute existing 
16-bit and 32-bit applications by clearing their code-segment descriptor’s CS.L bit to 0.

In compatibility mode, the following system-level mechanisms continue to operate using the IA-32e-mode archi-
tectural semantics:
• Linear-to-physical address translation uses the 64-bit mode extended page-translation mechanism.
• Interrupts and exceptions are handled using the 64-bit mode mechanisms.
• System calls (calls through call gates and SYSENTER/SYSEXIT) are handled using the IA-32e mode 

mechanisms.

9.8.5.4  Switching Out of IA-32e Mode Operation

To return from IA-32e mode to paged-protected mode operation. Operating systems must use the following 
sequence:

1. Switch to compatibility mode.

2. Deactivate IA-32e mode by clearing CR0.PG = 0. This causes the processor to set IA32_EFER.LMA = 0. The 
MOV CR0 instruction used to disable paging and subsequent instructions must be located in an identity-mapped 
page.

3. Load CR3 with the physical base address of the legacy page-table-directory base address.

4. Disable IA-32e mode by setting IA32_EFER.LME = 0.

5. Enable legacy paged-protected mode by setting CR0.PG = 1

6. A branch instruction must follow the MOV CR0 that enables paging. Both the MOV CR0 and the branch 
instruction must be located in an identity-mapped page.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved across transitions from 64-bit 
mode into compatibility mode then back into 64-bit mode. However, values of R8-R15 and XMM8-XMM15 are unde-
fined after transitions from 64-bit mode through compatibility mode to legacy or real mode and then back through 
compatibility mode to 64-bit mode.

9.9 MODE SWITCHING

To use the processor in protected mode after hardware or software reset, a mode switch must be performed from 
real-address mode. Once in protected mode, software generally does not need to return to real-address mode. To 
run software written to run in real-address mode (8086 mode), it is generally more convenient to run the software 
in virtual-8086 mode, than to switch back to real-address mode.

9.9.1 Switching to Protected Mode

Before switching to protected mode from real mode, a minimum set of system data structures and code modules 
must be loaded into memory, as described in Section 9.8, “Software Initialization for Protected-Mode Operation.” 
Once these tables are created, software initialization code can switch into protected mode.

Protected mode is entered by executing a MOV CR0 instruction that sets the PE flag in the CR0 register. (In the 
same instruction, the PG flag in register CR0 can be set to enable paging.) Execution in protected mode begins with 
a CPL of 0.

Intel 64 and IA-32 processors have slightly different requirements for switching to protected mode. To insure 
upwards and downwards code compatibility with Intel 64 and IA-32 processors, we recommend that you follow 
these steps:
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1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI interrupts can be disabled 
with external circuitry. (Software must guarantee that no exceptions or interrupts are generated during the 
mode switching operation.)

2. Execute the LGDT instruction to load the GDTR register with the base address of the GDT.

3. Execute a MOV CR0 instruction that sets the PE flag (and optionally the PG flag) in control register CR0.

4. Immediately following the MOV CR0 instruction, execute a far JMP or far CALL instruction. (This operation is 
typically a far jump or call to the next instruction in the instruction stream.)

5. The JMP or CALL instruction immediately after the MOV CR0 instruction changes the flow of execution and 
serializes the processor.

6. If paging is enabled, the code for the MOV CR0 instruction and the JMP or CALL instruction must come from a 
page that is identity mapped (that is, the linear address before the jump is the same as the physical address 
after paging and protected mode is enabled). The target instruction for the JMP or CALL instruction does not 
need to be identity mapped.

7. If a local descriptor table is going to be used, execute the LLDT instruction to load the segment selector for the 
LDT in the LDTR register.

8. Execute the LTR instruction to load the task register with a segment selector to the initial protected-mode task 
or to a writable area of memory that can be used to store TSS information on a task switch.

9. After entering protected mode, the segment registers continue to hold the contents they had in real-address 
mode. The JMP or CALL instruction in step 4 resets the CS register. Perform one of the following operations to 
update the contents of the remaining segment registers.

— Reload segment registers DS, SS, ES, FS, and GS. If the ES, FS, and/or GS registers are not going to be 
used, load them with a null selector.

— Perform a JMP or CALL instruction to a new task, which automatically resets the values of the segment 
registers and branches to a new code segment.

10. Execute the LIDT instruction to load the IDTR register with the address and limit of the protected-mode IDT.

11. Execute the STI instruction to enable maskable hardware interrupts and perform the necessary hardware 
operation to enable NMI interrupts.

Random failures can occur if other instructions exist between steps 3 and 4 above. Failures will be readily seen in 
some situations, such as when instructions that reference memory are inserted between steps 3 and 4 while in 
system management mode.

9.9.2 Switching Back to Real-Address Mode

The processor switches from protected mode back to real-address mode if software clears the PE bit in the CR0 
register with a MOV CR0 instruction. A procedure that re-enters real-address mode should perform the following 
steps:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI interrupts can be disabled 
with external circuitry.

2. If paging is enabled, perform the following operations:

— Transfer program control to linear addresses that are identity mapped to physical addresses (that is, linear 
addresses equal physical addresses).

— Insure that the GDT and IDT are in identity mapped pages.

— Clear the PG bit in the CR0 register.

— Move 0H into the CR3 register to flush the TLB.

3. Transfer program control to a readable segment that has a limit of 64 KBytes (FFFFH). This operation loads the 
CS register with the segment limit required in real-address mode.
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4. Load segment registers SS, DS, ES, FS, and GS with a selector for a descriptor containing the following values, 
which are appropriate for real-address mode:

— Limit = 64 KBytes (0FFFFH)

— Byte granular (G = 0)

— Expand up (E = 0)

— Writable (W = 1)

— Present (P = 1)

— Base = any value
The segment registers must be loaded with non-null segment selectors or the segment registers will be 
unusable in real-address mode. Note that if the segment registers are not reloaded, execution continues using 
the descriptor attributes loaded during protected mode.

5. Execute an LIDT instruction to point to a real-address mode interrupt table that is within the 1-MByte real-
address mode address range.

6. Clear the PE flag in the CR0 register to switch to real-address mode.

7. Execute a far JMP instruction to jump to a real-address mode program. This operation flushes the instruction 
queue and loads the appropriate base-address value in the CS register.

8. Load the SS, DS, ES, FS, and GS registers as needed by the real-address mode code. If any of the registers are 
not going to be used in real-address mode, write 0s to them.

9. Execute the STI instruction to enable maskable hardware interrupts and perform the necessary hardware 
operation to enable NMI interrupts.

NOTE

All the code that is executed in steps 1 through 9 must be in a single page and the linear addresses 
in that page must be identity mapped to physical addresses.

9.10 INITIALIZATION AND MODE SWITCHING EXAMPLE

This section provides an initialization and mode switching example that can be incorporated into an application. 
This code was originally written to initialize the Intel386 processor, but it will execute successfully on the Pentium 
4, Intel Xeon, P6 family, Pentium, and Intel486 processors. The code in this example is intended to reside in EPROM 
and to run following a hardware reset of the processor. The function of the code is to do the following:
• Establish a basic real-address mode operating environment.
• Load the necessary protected-mode system data structures into RAM.
• Load the system registers with the necessary pointers to the data structures and the appropriate flag settings 

for protected-mode operation.
• Switch the processor to protected mode.

Figure 9-3 shows the physical memory layout for the processor following a hardware reset and the starting point of 
this example. The EPROM that contains the initialization code resides at the upper end of the processor’s physical 
memory address range, starting at address FFFFFFFFH and going down from there. The address of the first instruc-
tion to be executed is at FFFFFFF0H, the default starting address for the processor following a hardware reset.

The main steps carried out in this example are summarized in Table 9-4. The source listing for the example (with 
the filename STARTUP.ASM) is given in Example 9-1. The line numbers given in Table 9-4 refer to the source listing.

The following are some additional notes concerning this example:
• When the processor is switched into protected mode, the original code segment base-address value of 

FFFF0000H (located in the hidden part of the CS register) is retained and execution continues from the current 
offset in the EIP register. The processor will thus continue to execute code in the EPROM until a far jump or call 
is made to a new code segment, at which time, the base address in the CS register will be changed.
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• Maskable hardware interrupts are disabled after a hardware reset and should remain disabled until the 
necessary interrupt handlers have been installed. The NMI interrupt is not disabled following a reset. The NMI# 
pin must thus be inhibited from being asserted until an NMI handler has been loaded and made available to the 
processor.

• The use of a temporary GDT allows simple transfer of tables from the EPROM to anywhere in the RAM area. A 
GDT entry is constructed with its base pointing to address 0 and a limit of 4 GBytes. When the DS and ES 
registers are loaded with this descriptor, the temporary GDT is no longer needed and can be replaced by the 
application GDT.

• This code loads one TSS and no LDTs. If more TSSs exist in the application, they must be loaded into RAM. If 
there are LDTs they may be loaded as well.

Figure 9-3.  Processor State After Reset

Table 9-4.  Main Initialization Steps in STARTUP.ASM Source Listing

STARTUP.ASM Line 
Numbers

Description

From To

157 157 Jump (short) to the entry code in the EPROM

162 169 Construct a temporary GDT in RAM with one entry:
0 - null
1 - R/W data segment, base = 0, limit = 4 GBytes

171 172 Load the GDTR to point to the temporary GDT

174 177 Load CR0 with PE flag set to switch to protected mode

179 181 Jump near to clear real mode instruction queue

184 186 Load DS, ES registers with GDT[1] descriptor, so both point to the entire physical memory space

188 195 Perform specific board initialization that is imposed by the new protected mode

0

FFFF FFFFH
After Reset

[CS.BASE+EIP] FFFF FFF0H

EIP = 0000 FFF0H

[SP, DS, SS, ES]

FFFF 0000H

64K EPROM

CS.BASE = FFFF 0000H
DS.BASE = 0H
ES.BASE = 0H
SS.BASE = 0H
ESP = 0H
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9.10.1 Assembler Usage

In this example, the Intel assembler ASM386 and build tools BLD386 are used to assemble and build the initializa-
tion code module. The following assumptions are used when using the Intel ASM386 and BLD386 tools.
• The ASM386 will generate the right operand size opcodes according to the code-segment attribute. The 

attribute is assigned either by the ASM386 invocation controls or in the code-segment definition.
• If a code segment that is going to run in real-address mode is defined, it must be set to a USE 16 attribute. If 

a 32-bit operand is used in an instruction in this code segment (for example, MOV EAX, EBX), the assembler 
automatically generates an operand prefix for the instruction that forces the processor to execute a 32-bit 
operation, even though its default code-segment attribute is 16-bit.

• Intel's ASM386 assembler allows specific use of the 16- or 32-bit instructions, for example, LGDTW, LGDTD, 
IRETD. If the generic instruction LGDT is used, the default- segment attribute will be used to generate the right 
opcode.

9.10.2 STARTUP.ASM Listing

Example 9-1 provides high-level sample code designed to move the processor into protected mode. This listing 
does not include any opcode and offset information.

Example 9-1.  STARTUP.ASM

MS-DOS* 5.0(045-N) 386(TM) MACRO ASSEMBLER STARTUP  09:44:51 08/19/92 PAGE 1

MS-DOS 5.0(045-N) 386(TM) MACRO ASSEMBLER V4.0, ASSEMBLY OF MODULE STARTUP
OBJECT MODULE PLACED IN startup.obj
ASSEMBLER INVOKED BY: f:\386tools\ASM386.EXE startup.a58 pw (132 )

LINE     SOURCE

   1      NAME    STARTUP

196 218 Copy the application's GDT from ROM into RAM

220 238 Copy the application's IDT from ROM into RAM

241 243 Load application's GDTR

244 245 Load application's IDTR

247 261 Copy the application's TSS from ROM into RAM

263 267 Update TSS descriptor and other aliases in GDT (GDT alias or IDT alias) 

277 277 Load the task register (without task switch) using LTR instruction

282 286 Load SS, ESP with the value found in the application's TSS

287 287 Push EFLAGS value found in the application's TSS

288 288 Push CS value found in the application's TSS

289 289 Push EIP value found in the application's TSS

290 293 Load DS, ES with the value found in the application's TSS

296 296 Perform IRET; pop the above values and enter the application code

Table 9-4.  Main Initialization Steps in STARTUP.ASM Source Listing (Contd.)

STARTUP.ASM Line 
Numbers

Description

From To
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   2  
   3  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
   4  ;
   5  ;   ASSUMPTIONS:
   6  ;
   7  ;     1.  The bottom 64K of memory is ram, and can be used for
   8  ;         scratch space by this module.
   9  ;
  10  ;     2.  The system has sufficient free usable ram to copy the
  11  ;         initial GDT, IDT, and TSS
  12  ;
  13  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  14  
  15  ; configuration data - must match with build definition
  16  
  17  CS_BASE       EQU     0FFFF0000H
  18  
  19   ; CS_BASE is the linear address of the segment STARTUP_CODE
  20   ; - this is specified in the build language file
  21  
  22  RAM_START     EQU     400H
  23  
  24  ; RAM_START  is the start of free, usable ram in the linear
  25  ; memory  space.   The GDT,  IDT, and  initial TSS  will be
  26  ; copied above this space, and a small data segment will be
  27  ; discarded at  this linear  address.   The 32-bit  word at
  28  ; RAM_START will contain  the linear  address of  the first
  29  ; free byte above the copied tables - this may be useful if
  30  ; a memory manager is used.
  31  
  32  TSS_INDEX    EQU     10
  33  
  34  ; TSS_INDEX is the  index of the  TSS of the  first task to
  35  ; run after startup
  36  
  37  
  38   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  39  
  40  ; ------------------------- STRUCTURES and EQU ---------------
  41  ; structures for system data
  42  
  43  ; TSS structure
  44  TASK_STATE  STRUC
  45      link DW ?
  46      link_h DW ?
  47      ESP0 DD ?
  48      SS0 DW ?
  49      SS0_h DW ?
  50      ESP1 DD ?
  51      SS1 DW ?
  52      SS1_h DW ?
  53      ESP2 DD ?
  54      SS2 DW ?
  55      SS2_h DW ?
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  56      CR3_reg DD ?
  57      EIP_reg DD ?
  58      EFLAGS_regDD ?
  59      EAX_reg DD ?
  60      ECX_reg DD ?
  61      EDX_reg DD ?
  62      EBX_reg DD ?
  63      ESP_reg DD ?
  64      EBP_reg DD ?
  65      ESI_reg DD ?
  66      EDI_reg DD ?
  67      ES_reg DW ?
  68      ES_h DW ?
  69      CS_reg DW ?
  70      CS_h DW ?
  71      SS_reg DW ?
  72      SS_h   DW ?
  73      DS_reg DW ?
  74      DS_h DW ?
  75      FS_reg DW ?
  76      FS_h DW ?
  77      GS_reg DW ?
  78      GS_h DW ?
  79      LDT_reg DW ?
  80      LDT_h DW ?
  81      TRAP_reg DW ?
  82      IO_map_baseDW ?
  83  TASK_STATE  ENDS
  84  
  85  ; basic structure of a descriptor
  86  DESC    STRUC
  87      lim_0_15 DW ?
  88      bas_0_15 DW ?
  89      bas_16_23DB ?
  90      access DB ?
  91      gran DB ?
  92      bas_24_31DB ?
  93  DESC    ENDS
  94  
  95  ; structure for use with LGDT and LIDT instructions
  96  TABLE_REG   STRUC
  97      table_limDW ?
  98      table_linearDD ?
  99  TABLE_REG   ENDS
 100  
 101  ; offset of GDT and IDT descriptors in builder generated GDT
 102  GDT_DESC_OFF    EQU 1*SIZE(DESC)
 103  IDT_DESC_OFF    EQU 2*SIZE(DESC)
 104  
 105  ; equates for building temporary GDT in RAM
 106  LINEAR_SEL          EQU     1*SIZE (DESC)
 107  LINEAR_PROTO_LO     EQU     00000FFFFH  ; LINEAR_ALIAS
 108  LINEAR_PROTO_HI     EQU     000CF9200H
 109  
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 110  ; Protection Enable Bit in CR0
 111  PE_BIT  EQU 1B
 112  
 113  ; ------------------------------------------------------------
 114  
 115  ; ------------------------- DATA SEGMENT----------------------
 116  
 117  ; Initially, this  data segment starts at linear 0, according
 118  ; to the processor’s power-up state.
 119  
 120  STARTUP_DATA    SEGMENT RW
 121  
 122  free_mem_linear_base    LABEL   DWORD
 123  TEMP_GDT                LABEL   BYTE  ; must be first in segment
 124  TEMP_GDT_NULL_DESC   DESC    <>
 125  TEMP_GDT_LINEAR_DESC DESC    <>
 126  
 127  ; scratch areas for LGDT and LIDT instructions
 128  TEMP_GDT_SCRATCH TABLE_REG   <>
 129  APP_GDT_RAM     TABLE_REG    <>
 130  APP_IDT_RAM     TABLE_REG    <>
 131          ; align end_data
 132  fill    DW      ?
 133   
 134  ; last thing in this segment - should be on a dword boundary
 135  end_data    LABEL   BYTE
 136  
 137  STARTUP_DATA    ENDS
 138  ; ------------------------------------------------------------
 139  
 140  
 141  ; ------------------------- CODE SEGMENT----------------------
 142  STARTUP_CODE SEGMENT ER PUBLIC USE16
 143  
 144  ; filled in by builder
 145      PUBLIC  GDT_EPROM
 146  GDT_EPROM   TABLE_REG   <>
 147  
 148  ; filled in by builder
 149      PUBLIC  IDT_EPROM
 150  IDT_EPROM   TABLE_REG   <>
 151  
 152  ; entry point into startup code - the bootstrap will vector
 153  ; here  with a  near JMP  generated by  the builder.   This
 154  ; label must be in the top 64K of linear memory.
 155  
 156      PUBLIC  STARTUP
 157  STARTUP:
 158  
 159  ; DS,ES address the bottom 64K of flat linear memory
 160      ASSUME  DS:STARTUP_DATA, ES:STARTUP_DATA
 161  ; See Figure 9-4
 162  ; load GDTR with temporary GDT
 163          LEA     EBX,TEMP_GDT  ; build the TEMP_GDT in low ram,
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 164          MOV     DWORD PTR [EBX],0   ; where we can address
 165          MOV     DWORD PTR [EBX]+4,0
 166          MOV     DWORD PTR [EBX]+8, LINEAR_PROTO_LO
 167          MOV     DWORD PTR [EBX]+12, LINEAR_PROTO_HI
 168          MOV     TEMP_GDT_scratch.table_linear,EBX
 169          MOV     TEMP_GDT_scratch.table_lim,15
 170  
 171 DB 66H; execute a 32 bit LGDT
 172          LGDT    TEMP_GDT_scratch
 173  
 174  ; enter protected mode
 175          MOV     EBX,CR0
 176          OR      EBX,PE_BIT
 177          MOV     CR0,EBX
 178  

 179   ; clear prefetch queue
 180          JMP     CLEAR_LABEL
 181  CLEAR_LABEL:
 182  
 183   ; make DS and ES address 4G of linear memory
 184          MOV     CX,LINEAR_SEL
 185          MOV     DS,CX
 186          MOV     ES,CX
 187  
 188    ; do board specific initialization 
 189    ;
 190                  ; 
 191                  ; ......
 192                  ; 
 193  
 194  
 195          ; See Figure 9-5
 196          ; copy EPROM GDT to ram at:
 197          ;                RAM_START + size (STARTUP_DATA)
 198          MOV     EAX,RAM_START
 199          ADD     EAX,OFFSET (end_data)   
 200          MOV     EBX,RAM_START
 201          MOV     ECX, CS_BASE
 202          ADD     ECX, OFFSET (GDT_EPROM) 
 203          MOV     ESI, [ECX].table_linear
 204          MOV     EDI,EAX
 205          MOVZX   ECX, [ECX].table_lim
 206          MOV     APP_GDT_ram[EBX].table_lim,CX
 207          INC     ECX
 208          MOV     EDX,EAX
 209          MOV     APP_GDT_ram[EBX].table_linear,EAX
 210          ADD     EAX,ECX
 211      REP MOVS    BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]
 212  
 213          ; fixup GDT base in descriptor
 214          MOV     ECX,EDX
 215          MOV     [EDX].bas_0_15+GDT_DESC_OFF,CX
 216          ROR     ECX,16
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 217          MOV     [EDX].bas_16_23+GDT_DESC_OFF,CL
 218          MOV     [EDX].bas_24_31+GDT_DESC_OFF,CH
 219  
 220          ; copy EPROM IDT to ram at:
 221          ; RAM_START+size(STARTUP_DATA)+SIZE (EPROM GDT)
 222          MOV     ECX, CS_BASE
 223          ADD     ECX, OFFSET (IDT_EPROM)     
 224          MOV     ESI, [ECX].table_linear
 225          MOV     EDI,EAX
 226          MOVZX   ECX, [ECX].table_lim
 227          MOV     APP_IDT_ram[EBX].table_lim,CX
 228          INC     ECX
 229          MOV     APP_IDT_ram[EBX].table_linear,EAX
 230          MOV     EBX,EAX
 231          ADD     EAX,ECX
 232      REP MOVS    BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]
 233  
 234                  ; fixup IDT pointer in GDT
 235          MOV     [EDX].bas_0_15+IDT_DESC_OFF,BX
 236          ROR     EBX,16
 237          MOV     [EDX].bas_16_23+IDT_DESC_OFF,BL
 238          MOV     [EDX].bas_24_31+IDT_DESC_OFF,BH
 239  
 240                  ; load GDTR and IDTR
 241          MOV     EBX,RAM_START
 242                  DB      66H         ; execute a 32 bit LGDT
 243          LGDT    APP_GDT_ram[EBX]    
 244                  DB      66H         ; execute a 32 bit LIDT
 245          LIDT    APP_IDT_ram[EBX]    
 246  
 247                  ; move the TSS
 248          MOV     EDI,EAX
 249          MOV     EBX,TSS_INDEX*SIZE(DESC)
 250          MOV     ECX,GDT_DESC_OFF ;build linear address for TSS
 251          MOV     GS,CX
 252          MOV     DH,GS:[EBX].bas_24_31
 253          MOV     DL,GS:[EBX].bas_16_23
 254          ROL     EDX,16
 255          MOV     DX,GS:[EBX].bas_0_15
 256          MOV     ESI,EDX
 257          LSL     ECX,EBX
 258          INC     ECX
 259          MOV     EDX,EAX
 260          ADD     EAX,ECX
 261      REP MOVS    BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]
 262
 263                  ; fixup TSS pointer
 264          MOV     GS:[EBX].bas_0_15,DX
 265          ROL     EDX,16
 266          MOV     GS:[EBX].bas_24_31,DH
 267          MOV     GS:[EBX].bas_16_23,DL
 268          ROL     EDX,16
 269      ;save start of free ram at linear location RAMSTART
 270          MOV     free_mem_linear_base+RAM_START,EAX
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 271
 272      ;assume no  LDT used in  the initial task  - if necessary,
 273      ;code  to move the LDT could be added, and should resemble
 274      ;that used to move the TSS
 275
 276      ; load task register
 277          LTR     BX   ; No task switch, only descriptor loading
 278      ; See Figure 9-6
 279      ; load minimal set of registers necessary to simulate task
 280      ; switch
 281  
 282
 283          MOV     AX,[EDX].SS_reg     ; start loading registers
 284          MOV     EDI,[EDX].ESP_reg
 285          MOV     SS,AX
 286          MOV     ESP,EDI             ; stack now valid
 287          PUSH    DWORD PTR [EDX].EFLAGS_reg
 288          PUSH    DWORD PTR [EDX].CS_reg
 289          PUSH    DWORD PTR [EDX].EIP_reg
 290          MOV     AX,[EDX].DS_reg
 291          MOV     BX,[EDX].ES_reg
 292          MOV     DS,AX     ; DS and ES no longer linear memory
 293          MOV     ES,BX
294

 295          ; simulate far jump to initial task
 296          IRETD
 297
 298  STARTUP_CODE  ENDS
*** WARNING #377 IN 298, (PASS 2) SEGMENT CONTAINS PRIVILEGED INSTRUCTION(S)
 299
 300  END STARTUP, DS:STARTUP_DATA, SS:STARTUP_DATA
 301
 302

ASSEMBLY COMPLETE,   1 WARNING,   NO ERRORS.
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Figure 9-4.  Constructing Temporary GDT and Switching to Protected Mode (Lines 162-172 of List File)

FFFF FFFFH
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START: [CS.BASE+EIP]

TEMP_GDT
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FFFF 0000H
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0
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GDT_SCRATCH
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Limit
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Figure 9-5.  Moving the GDT, IDT, and TSS from ROM to RAM (Lines 196-261 of List File)

FFFF FFFFH

GDT RAM
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9.10.3 MAIN.ASM Source Code

The file MAIN.ASM shown in Example 9-2 defines the data and stack segments for this application and can be 
substituted with the main module task written in a high-level language that is invoked by the IRET instruction 
executed by STARTUP.ASM. 

Example 9-2.  MAIN.ASM

NAME    main_module
data    SEGMENT RW

dw 1000 dup(?)
DATA    ENDS
stack stackseg 800
CODE SEGMENT ER  use32 PUBLIC
main_start:

nop
nop
nop

CODE  ENDS
END main_start, ds:data, ss:stack

9.10.4 Supporting Files

The batch file shown in Example 9-3 can be used to assemble the source code files STARTUP.ASM and MAIN.ASM 
and build the final application.

Figure 9-6.  Task Switching (Lines 282-296 of List File)

GDT RAM
RAM_START

TSS RAM
IDT RAM

GDT Alias
IDT Alias

DS

EIP
EFLAGS

CS
SS

0

ES

ESP

•

•
•

•
•
•

SS = TSS.SS
ESP = TSS.ESP
PUSH TSS.EFLAG
PUSH TSS.CS
PUSH TSS.EIP
ES = TSS.ES
DS = TSS.DS
IRET

GDT
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Example 9-3.  Batch File to Assemble and Build the Application

ASM386 STARTUP.ASM
ASM386 MAIN.ASM
BLD386 STARTUP.OBJ, MAIN.OBJ buildfile(EPROM.BLD) bootstrap(STARTUP) Bootload

BLD386 performs several operations in this example:
It allocates physical memory location to segments and tables.
It generates tables using the build file and the input files.
It links object files and resolves references.
It generates a boot-loadable file to be programmed into the EPROM.

Example 9-4 shows the build file used as an input to BLD386 to perform the above functions.

Example 9-4.  Build File

INIT_BLD_EXAMPLE;

SEGMENT
        *SEGMENTS(DPL = 0)
    ,   startup.startup_code(BASE = 0FFFF0000H)
    ;

TASK
        BOOT_TASK(OBJECT = startup, INITIAL,DPL = 0, 

NOT INTENABLED)
,       PROTECTED_MODE_TASK(OBJECT = main_module,DPL = 0, 

NOT INTENABLED)
    ;

TABLE
    GDT (
        LOCATION = GDT_EPROM
    ,   ENTRY = (
            10:   PROTECTED_MODE_TASK
    , startup.startup_code
    ,       startup.startup_data
    ,       main_module.data
    ,       main_module.code
    ,       main_module.stack

          )
        ),

    IDT (
        LOCATION = IDT_EPROM
        );

MEMORY
    (
        RESERVE = (0..3FFFH 

-- Area for the GDT, IDT, TSS copied from ROM
    ,              60000H..0FFFEFFFFH)
    ,   RANGE = (ROM_AREA = ROM (0FFFF0000H..0FFFFFFFFH)) 

-- Eprom size 64K
    ,   RANGE = (RAM_AREA = RAM (4000H..05FFFFH))
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    );

END

Table 9-5 shows the relationship of each build item with an ASM source file.

9.11 MICROCODE UPDATE FACILITIES

The Pentium 4, Intel Xeon, and P6 family processors have the capability to correct errata by loading an Intel-
supplied data block into the processor. The data block is called a microcode update. This section describes the 
mechanisms the BIOS needs to provide in order to use this feature during system initialization. It also describes a 
specification that permits the incorporation of future updates into a system BIOS.

Intel considers the release of a microcode update for a silicon revision to be the equivalent of a processor stepping 
and completes a full-stepping level validation for releases of microcode updates.

A microcode update is used to correct errata in the processor. The BIOS, which has an update loader, is responsible 
for loading the update on processors during system initialization (Figure 9-7). There are two steps to this process: 
the first is to incorporate the necessary update data blocks into the BIOS; the second is to load update data blocks 
into the processor.

Table 9-5.  Relationship Between BLD Item and ASM Source File 

Item ASM386 and Startup.A58 BLD386 Controls 
and BLD file

Effect

Bootstrap public startup
startup:

bootstrap
start(startup)

Near jump at 0FFFFFFF0H to 
start.

GDT location public GDT_EPROM
GDT_EPROM TABLE_REG  <>

TABLE
GDT(location = GDT_EPROM)

The location of the GDT will be 
programmed into the 
GDT_EPROM location.

IDT location public IDT_EPROM
IDT_EPROM TABLE_REG  <>

TABLE
IDT(location = IDT_EPROM

The location of the IDT will be 
programmed into the 
IDT_EPROM location.

RAM start RAM_START equ 400H memory (reserve = (0..3FFFH)) RAM_START is used as the ram 
destination for moving the 
tables. It must be excluded from 
the application's segment area.

Location of the 
application TSS in 
the GDT

TSS_INDEX EQU 10 TABLE GDT(
ENTRY = (10: PROTECTED_MODE_
TASK))

Put the descriptor of the 
application TSS in GDT entry 10.

EPROM size and 
location

size and location of the initialization 
code

SEGMENT startup.code (base = 
0FFFF0000H) ...memory (RANGE(
ROM_AREA = ROM(x..y)) 

Initialization code size must be 
less than 64K and resides at 
upper most 64K of the 4-GByte 
memory space.
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9.11.1 Microcode Update

A microcode update consists of an Intel-supplied binary that contains a descriptive header and data. No executable 
code resides within the update. Each microcode update is tailored for a specific list of processor signatures. A 
mismatch of the processor’s signature with the signature contained in the update will result in a failure to load. A 
processor signature includes the extended family, extended model, type, family, model, and stepping of the 
processor (starting with processor family 0fH, model 03H, a given microcode update may be associated with one of 
multiple processor signatures; see Section 9.11.2 for detail).

Microcode updates are composed of a multi-byte header, followed by encrypted data and then by an optional 
extended signature table. Table 9-6 provides a definition of the fields; Table 9-7 shows the format of an update. 

The header is 48 bytes. The first 4 bytes of the header contain the header version. The update header and its 
reserved fields are interpreted by software based upon the header version. An encoding scheme guards against 
tampering and provides a means for determining the authenticity of any given update. For microcode updates with 
a data size field equal to 00000000H, the size of the microcode update is 2048 bytes. The first 48 bytes contain the 
microcode update header. The remaining 2000 bytes contain encrypted data. 

For microcode updates with a data size not equal to 00000000H, the total size field specifies the size of the micro-
code update. The first 48 bytes contain the microcode update header. The second part of the microcode update is 
the encrypted data.  The data size field of the microcode update header specifies the encrypted data size, its value 
must be a multiple of the size of DWORD. The total size field of the microcode update header specifies the 
encrypted data size plus the header size; its value must be in multiples of 1024 bytes (1 KBytes). The optional 
extended signature table if implemented follows the encrypted data, and its size is calculated by (Total Size – (Data 
Size + 48)). 

NOTE

The optional extended signature table is supported starting with processor family 0FH, model 03H.

. 

Figure 9-7.  Applying Microcode Updates

Table 9-6.  Microcode Update Field Definitions

Field Name Offset (bytes) Length 
(bytes)

Description

Header Version 0 4 Version number of the update header.

Update Revision 4 4 Unique version number for the update, the basis for the update 
signature provided by the processor to indicate the current update 
functioning within the processor.  Used by the BIOS to authenticate 
the update and verify that the processor loads successfully.  The 
value in this field cannot be used for processor stepping identification 
alone.  This is a signed 32-bit number.

Date 8 4 Date of the update creation in binary format: mmddyyyy (e.g. 
07/18/98 is 07181998H).

CPU

BIOS

Update
BlocksNew Update

Update
Loader
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Processor Signature 12 4 Extended family, extended model, type, family, model, and stepping 
of processor that requires this particular update revision (e.g., 
00000650H). Each microcode update is designed specifically for a 
given extended family, extended model, type, family, model, and 
stepping of the processor. 

The BIOS uses the processor signature field in conjunction with the 
CPUID instruction to determine whether or not an update is 
appropriate to load on a processor. The information encoded within 
this field exactly corresponds to the bit representations returned by 
the CPUID instruction.

Checksum 16 4 Checksum of Update Data and Header. Used to verify the integrity of 
the update header and data. Checksum is correct when the 
summation of all the DWORDs (including the extended Processor 
Signature Table) that comprise the microcode update result in 
00000000H.

Loader Revision 20 4 Version number of the loader program needed to correctly load this 
update. The initial version is 00000001H.

Processor Flags 24 4 Platform type information is encoded in the lower 8 bits of this 4-
byte field.  Each bit represents a particular platform type for a given 
CPUID.  The BIOS uses the processor flags field in conjunction with 
the platform Id bits in MSR (17H) to determine whether or not an 
update is appropriate to load on a processor.  Multiple bits may be set 
representing support for multiple platform IDs.

Data Size 28 4 Specifies the size of the encrypted data in bytes, and must be a 
multiple of DWORDs.  If this value is 00000000H, then the microcode 
update encrypted data is 2000 bytes (or 500 DWORDs).

Total Size 32 4 Specifies the total size of the microcode update in bytes.  It is the 
summation of the header size, the encrypted data size and the size of 
the optional extended signature table. This value is always a multiple 
of 1024.

Reserved 36 12 Reserved fields for future expansion

Update Data 48 Data Size or 
2000

Update data

Extended Signature 
Count

Data Size + 48 4 Specifies the number of extended signature structures (Processor 
Signature[n], processor flags[n] and checksum[n]) that exist in this 
microcode update.

Extended Checksum Data Size + 52 4 Checksum of update extended processor signature table.  Used to 
verify the integrity of the extended processor signature table.  
Checksum is correct when the summation of the DWORDs that 
comprise the extended processor signature table results in 
00000000H.

Reserved Data Size + 56 12 Reserved fields

Table 9-6.  Microcode Update Field Definitions (Contd.)

Field Name Offset (bytes) Length 
(bytes)

Description
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Processor Signature[n] Data Size + 68 + 
(n * 12)

4 Extended family, extended model, type, family, model, and stepping 
of processor that requires this particular update revision (e.g., 
00000650H). Each microcode update is designed specifically for a 
given extended family, extended model, type, family, model, and 
stepping of the processor. 

The BIOS uses the processor signature field in conjunction with the 
CPUID instruction to determine whether or not an update is 
appropriate to load on a processor. The information encoded within 
this field exactly corresponds to the bit representations returned by 
the CPUID instruction.

Processor Flags[n] Data Size + 72 + 
(n * 12)

4 Platform type information is encoded in the lower 8 bits of this 4-
byte field.  Each bit represents a particular platform type for a given 
CPUID.  The BIOS uses the processor flags field in conjunction with 
the platform Id bits in MSR (17H) to determine whether or not an 
update is appropriate to load on a processor.  Multiple bits may be set 
representing support for multiple platform IDs.

Checksum[n] Data Size + 76 + 
(n * 12)

4 Used by utility software to decompose a microcode update into 
multiple microcode updates where each of the new updates is 
constructed without the optional Extended Processor Signature 
Table.

To calculate the Checksum, substitute the Primary Processor 
Signature entry and the Processor Flags entry with the 
corresponding Extended Patch entry. Delete the Extended Processor 
Signature Table entries. The Checksum is correct when the 
summation of all DWORDs that comprise the created Extended 
Processor Patch results in 00000000H.

Table 9-7.  Microcode Update Format

31 24 16 8 0 Bytes

Header Version 0

Update Revision 4

Month: 8 Day: 8 Year: 16 8

Processor Signature (CPUID) 12
R

e
s: 4
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: 2
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: 4

M
o
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S
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: 4

Checksum 16

Loader Revision 20

Processor Flags 24

Reserved (24 bits)

P
7

P
6

P
5

P
4

P
3

P
2

P
1

P
0

Data Size 28

Total Size 32

Reserved (12 Bytes) 36

Table 9-6.  Microcode Update Field Definitions (Contd.)

Field Name Offset (bytes) Length 
(bytes)

Description
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9.11.2 Optional Extended Signature Table

The extended signature table is a structure that may be appended to the end of the encrypted data when the 
encrypted data only supports a single processor signature (optional case). The extended signature table will always 
be present when the encrypted data supports multiple processor steppings and/or models (required case). 

The extended signature table consists of a 20-byte extended signature header structure, which contains the 
extended signature count, the extended processor signature table checksum, and 12 reserved bytes (Table 9-8). 
Following the extended signature header structure, the extended signature table contains 0-to-n extended 
processor signature structures.

Each processor signature structure consist of the processor signature, processor flags, and a checksum 
(Table 9-9). 

The extended signature count in the extended signature header structure indicates the number of processor signa-
ture structures that exist in the extended signature table.  

The extended processor signature table checksum is a checksum of all DWORDs that comprise the extended signa-
ture table. That includes the extended signature count, extended processor signature table checksum, 12 reserved 
bytes and the n processor signature structures. A valid extended signature table exists when the result of a 
DWORD checksum is 00000000H.

Update Data (Data Size bytes, or 2000 Bytes if Data Size = 00000000H) 48

Extended Signature Count ‘n’ Data Size + 
48

Extended Processor Signature Table Checksum Data Size + 
52

Reserved (12 Bytes) Data Size + 
56

Processor Signature[n] Data Size + 
68 + 
(n * 12)

Processor Flags[n] Data Size + 
72 + 
(n * 12)

Checksum[n] Data Size + 
76 + 
(n * 12)

Table 9-8.  Extended Processor Signature Table Header Structure

Extended Signature Count ‘n’ Data Size + 48

Extended Processor Signature Table Checksum Data Size + 52

Reserved (12 Bytes) Data Size + 56

Table 9-9.  Processor Signature Structure 

Processor Signature[n] Data Size + 68 + (n * 12)

Processor Flags[n] Data Size + 72 + (n * 12)

Checksum[n] Data Size + 76 + (n * 12)

Table 9-7.  Microcode Update Format (Contd.)

31 24 16 8 0 Bytes
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9.11.3 Processor Identification

Each microcode update is designed to for a specific processor or set of processors. To determine the correct micro-
code update to load, software must ensure that one of the processor signatures embedded in the microcode update 
matches the 32-bit processor signature returned by the CPUID instruction when executed by the target processor 
with EAX = 1.  Attempting to load a microcode update that does not match a processor signature embedded in the 
microcode update with the processor signature returned by CPUID will cause the BIOS to reject the update.

Example 9-5 shows how to check for a valid processor signature match between the processor and microcode 
update.

Example 9-5.  Pseudo Code to Validate the Processor Signature

ProcessorSignature ← CPUID(1):EAX

If (Update.HeaderVersion = 00000001h)
{

// first check the ProcessorSignature field
If (ProcessorSignature = Update.ProcessorSignature)

Success

// if extended signature is present
Else If (Update.TotalSize > (Update.DataSize + 48))
{

//
// Assume the Data Size has been used to calculate the 
// location of Update.ProcessorSignature[0].
//

For (N ← 0; ((N < Update.ExtendedSignatureCount) AND 
 (ProcessorSignature != Update.ProcessorSignature[N])); N++);

// if the loops ended when the iteration count is
// less than the number of processor signatures in
// the table, we have a match

If (N < Update.ExtendedSignatureCount)
Success

Else
Fail

}
Else

Fail
Else

Fail 

9.11.4 Platform Identification

In addition to verifying the processor signature, the intended processor platform type must be determined to prop-
erly target the microcode update. The intended processor platform type is determined by reading the 
IA32_PLATFORM_ID register, (MSR 17H).  This 64-bit register must be read using the RDMSR instruction. 

The three platform ID bits, when read as a binary coded decimal (BCD) number, indicate the bit position in the 
microcode update header’s processor flags field associated with the installed processor.  The processor flags in the 
48-byte header and the processor flags field associated with the extended processor signature structures may have 
multiple bits set. Each set bit represents a different platform ID that the update supports.

Register Name: IA32_PLATFORM_ID

MSR Address: 017H
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Access: Read Only

IA32_PLATFORM_ID is a 64-bit register accessed only when referenced as a Qword through a RDMSR instruction.

To validate the platform information, software may implement an algorithm similar to the algorithms in 
Example 9-6.

Example 9-6.  Pseudo Code Example of Processor Flags Test

Flag ← 1 << IA32_PLATFORM_ID[52:50]

If (Update.HeaderVersion = 00000001h)
{

If (Update.ProcessorFlags & Flag)
{

Load Update
}
Else
{

//
// Assume the Data Size has been used to calculate the 
// location of Update.ProcessorSignature[N] and a match
// on Update.ProcessorSignature[N] has already succeeded
//

If (Update.ProcessorFlags[n] & Flag)
{

Load Update
}

}
}

9.11.5 Microcode Update Checksum

Each microcode update contains a DWORD checksum located in the update header. It is software’s responsibility to 
ensure that a microcode update is not corrupt. To check for a corrupt microcode update, software must perform a 
unsigned DWORD (32-bit) checksum of the microcode update. Even though some fields are signed, the checksum 

Table 9-10.  Processor Flags

Bit Descriptions

63:53 Reserved

52:50 Platform Id Bits (RO). The field gives information concerning the intended platform for the processor. See also Table 9-7.

52 51 50

0 0 0 Processor Flag 0

0 0 1 Processor Flag 1

0 1 0 Processor Flag 2

0 1 1 Processor Flag 3

1 0 0 Processor Flag 4

1 0 1 Processor Flag 5

1 1 0 Processor Flag 6

1 1 1 Processor Flag 7

49:0 Reserved
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procedure treats all DWORDs as unsigned. Microcode updates with a header version equal to 00000001H must sum 
all DWORDs that comprise the microcode update. A valid checksum check will yield a value of 00000000H. Any 
other value indicates the microcode update is corrupt and should not be loaded.

The checksum algorithm shown by the pseudo code in Example 9-7 treats the microcode update as an array of 
unsigned DWORDs. If the data size DWORD field at byte offset 32 equals 00000000H, the size of the encrypted 
data is 2000 bytes, resulting in 500 DWORDs. Otherwise the microcode update size in DWORDs = (Total Size / 4), 
where the total size is a multiple of 1024 bytes (1 KBytes).

Example 9-7.  Pseudo Code Example of Checksum Test

N ← 512

If (Update.DataSize != 00000000H)
N ← Update.TotalSize / 4

ChkSum ← 0
For (I ← 0; I < N; I++)
{

ChkSum ← ChkSum + MicrocodeUpdate[I]
}

If (ChkSum = 00000000H)
Success

Else
Fail

9.11.6 Microcode Update Loader

This section describes an update loader used to load an update into a Pentium 4, Intel Xeon, or P6 family processor. 
It also discusses the requirements placed on the BIOS to ensure proper loading. The update loader described 
contains the minimal instructions needed to load an update. The specific instruction sequence that is required to 
load an update is dependent upon the loader revision field contained within the update header. This revision is 
expected to change infrequently (potentially, only when new processor models are introduced).

Example 9-8 below represents the update loader with a loader revision of 00000001H. Note that the microcode 
update must be aligned on a 16-byte boundary and the size of the microcode update must be 1-KByte granular.

Example 9-8.  Assembly Code Example of Simple Microcode Update Loader

mov ecx,79h ; MSR to read in ECX
xor eax,eax ; clear EAX
xor ebx,ebx ; clear EBX
mov ax,cs ; Segment of microcode update
shl eax,4
mov bx,offset Update ; Offset of microcode update
add eax,ebx ; Linear Address of Update in EAX
add eax,48d ; Offset of the Update Data within the Update
xor edx,edx ; Zero in EDX
WRMSR ; microcode update trigger

The loader shown in Example 9-8 assumes that update is the address of a microcode update (header and data) 
embedded within the code segment of the BIOS. It also assumes that the processor is operating in real mode. The 
data may reside anywhere in memory, aligned on a 16-byte boundary, that is accessible by the processor within its 
current operating mode.

Before the BIOS executes the microcode update trigger (WRMSR) instruction, the following must be true:



Vol. 3A 9-35

PROCESSOR MANAGEMENT AND INITIALIZATION

• In 64-bit mode, EAX contains the lower 32-bits of the microcode update linear address. In protected mode, 
EAX contains the full 32-bit linear address of the microcode update.

• In 64-bit mode, EDX contains the upper 32-bits of the microcode update linear address. In protected mode, 
EDX equals zero.

• ECX contains 79H (address of IA32_BIOS_UPDT_TRIG).

Other requirements are:
• If the update is loaded while the processor is in real mode, then the update data may not cross a segment 

boundary.
• If the update is loaded while the processor is in real mode, then the update data may not exceed a segment 

limit.
• If paging is enabled, pages that are currently present must map the update data.
• The microcode update data requires a 16-byte boundary alignment.

9.11.6.1  Hard Resets in Update Loading

The effects of a loaded update are cleared from the processor upon a hard reset. Therefore, each time a hard reset 
is asserted during the BIOS POST, the update must be reloaded on all processors that observed the reset. The 
effects of a loaded update are, however, maintained across a processor INIT. There are no side effects caused by 
loading an update into a processor multiple times.

9.11.6.2  Update in a Multiprocessor System

A multiprocessor (MP) system requires loading each processor with update data appropriate for its CPUID and plat-
form ID bits. The BIOS is responsible for ensuring that this requirement is met and that the loader is located in a 
module executed by all processors in the system. If a system design permits multiple steppings of Pentium 4, Intel 
Xeon, and P6 family processors to exist concurrently; then the BIOS must verify individual processors against the 
update header information to ensure appropriate loading. Given these considerations, it is most practical to load 
the update during MP initialization.

9.11.6.3  Update in a System Supporting Intel Hyper-Threading Technology 

Intel Hyper-Threading Technology has implications on the loading of the microcode update. The update must be 
loaded for each core in a physical processor. Thus, for a processor supporting Intel Hyper-Threading Technology, 
only one logical processor per core is required to load the microcode update. Each individual logical processor can 
independently load the update. However, MP initialization must provide some mechanism (e.g. a software sema-
phore) to force serialization of microcode update loads and to prevent simultaneous load attempts to the same 
core.

9.11.6.4  Update in a System Supporting Dual-Core Technology 

Dual-core technology has implications on the loading of the microcode update. The microcode update facility is not 
shared between processor cores in the same physical package. The update must be loaded for each core in a phys-
ical processor. 

If processor core supports Intel Hyper-Threading Technology, the guideline described in Section 9.11.6.3 also 
applies.

9.11.6.5  Update Loader Enhancements

The update loader presented in Section 9.11.6, “Microcode Update Loader,” is a minimal implementation that can 
be enhanced to provide additional functionality. Potential enhancements are described below:
• BIOS can incorporate multiple updates to support multiple steppings of the Pentium 4, Intel Xeon, and P6 

family processors. This feature provides for operating in a mixed stepping environment on an MP system and 
enables a user to upgrade to a later version of the processor. In this case, modify the loader to check the CPUID 
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and platform ID bits of the processor that it is running on against the available headers before loading a 
particular update. The number of updates is only limited by available BIOS space.

• A loader can load the update and test the processor to determine if the update was loaded correctly. See 
Section 9.11.7, “Update Signature and Verification.”

• A loader can verify the integrity of the update data by performing a checksum on the double words of the 
update summing to zero. See Section 9.11.5, “Microcode Update Checksum.”

• A loader can provide power-on messages indicating successful loading of an update.

9.11.7 Update Signature and Verification

The Pentium 4, Intel Xeon, and P6 family processors provide capabilities to verify the authenticity of a particular 
update and to identify the current update revision. This section describes the model-specific extensions of proces-
sors that support this feature. The update verification method below assumes that the BIOS will only verify an 
update that is more recent than the revision currently loaded in the processor.

CPUID returns a value in a model specific register in addition to its usual register return values. The semantics of 
CPUID cause it to deposit an update ID value in the 64-bit model-specific register at address 08BH 
(IA32_BIOS_SIGN_ID). If no update is present in the processor, the value in the MSR remains unmodified. The 
BIOS must pre-load a zero into the MSR before executing CPUID. If a read of the MSR at 8BH still returns zero after 
executing CPUID, this indicates that no update is present.

The update ID value returned in the EDX register after RDMSR executes indicates the revision of the update loaded 
in the processor. This value, in combination with the CPUID value returned in the EAX register, uniquely identifies a 
particular update. The signature ID can be directly compared with the update revision field in a microcode update 
header for verification of a correct load. No consecutive updates released for a given stepping of a processor may 
share the same signature. The processor signature returned by CPUID differentiates updates for different step-
pings.

9.11.7.1  Determining the Signature

An update that is successfully loaded into the processor provides a signature that matches the update revision of 
the currently functioning revision. This signature is available any time after the actual update has been loaded. 
Requesting the signature does not have a negative impact upon a loaded update.  

The procedure for determining this signature shown in Example 9-9.

Example 9-9.  Assembly Code to Retrieve the Update Revision

MOV ECX, 08BH ;IA32_BIOS_SIGN_ID
XOR EAX, EAX ;clear EAX
XOR EDX, EDX ;clear EDX
WRMSR ;Load 0 to MSR at 8BH
MOV EAX, 1
cpuid
MOV ECX, 08BH ;IA32_BIOS_SIGN_ID
rdmsr ;Read Model Specific Register

If there is an update active in the processor, its revision is returned in the EDX register after the RDMSR instruction 
executes.

IA32_BIOS_SIGN_ID Microcode Update Signature Register 
MSR Address: 08BH Accessed as a Qword

Default Value: XXXX XXXX XXXX XXXXh

Access: Read/Write

The IA32_BIOS_SIGN_ID register is used to report the microcode update signature when CPUID executes. The 
signature is returned in the upper DWORD (Table 9-11).
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9.11.7.2  Authenticating the Update

An update may be authenticated by the BIOS using the signature primitive, described above, and the algorithm in 
Example 9-10.

Example 9-10.  Pseudo Code to Authenticate the Update

Z ← Obtain Update Revision from the Update Header to be authenticated;
X ← Obtain Current Update Signature from MSR 8BH;

If (Z > X)
{

Load Update that is to be authenticated;
Y ← Obtain New Signature from MSR 8BH;

If (Z = Y)
Success

Else
Fail

}
Else

Fail

Example 9-10 requires that the BIOS only authenticate updates that contain a numerically larger revision than the 
currently loaded revision, where Current Signature (X) < New Update Revision (Z). A processor with no loaded 
update is considered to have a revision equal to zero.

This authentication procedure relies upon the decoding provided by the processor to verify an update from a poten-
tially hostile source.  As an example, this mechanism in conjunction with other safeguards provides security for 
dynamically incorporating field updates into the BIOS.

9.11.8 Pentium 4, Intel Xeon, and P6 Family Processor
Microcode Update Specifications

This section describes the interface that an application can use to dynamically integrate processor-specific updates 
into the system BIOS. In this discussion, the application is referred to as the calling program or caller.

The real mode INT15 call specification described here is an Intel extension to an OEM BIOS. This extension allows 
an application to read and modify the contents of the microcode update data in NVRAM. The update loader, which 
is part of the system BIOS, cannot be updated by the interface. All of the functions defined in the specification must 
be implemented for a system to be considered compliant with the specification. The INT15 functions are accessible 
only from real mode.

Table 9-11.  Microcode Update Signature 

Bit Description

63:32 Microcode update signature. This field contains the signature of the currently loaded microcode update when read following 
the execution of the CPUID instruction, function 1. It is required that this register field be pre-loaded with zero prior to 
executing the CPUID, function 1. If the field remains equal to zero, then there is no microcode update loaded. Another non-
zero value will be the signature.

31:0 Reserved.
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9.11.8.1  Responsibilities of the BIOS

If a BIOS passes the presence test (INT 15H, AX = 0D042H, BL = 0H), it must implement all of the sub-functions 
defined in the INT 15H, AX = 0D042H specification. There are no optional functions. BIOS must load the appropriate 
update for each processor during system initialization.

A Header Version of an update block containing the value 0FFFFFFFFH indicates that the update block is unused and 
available for storing a new update.

The BIOS is responsible for providing a region of non-volatile storage (NVRAM) for each potential processor step-
ping within a system. This storage unit consists of one or more update blocks. An update block is a contiguous 
2048-byte block of memory. The BIOS for a single processor system need only provide update blocks to store one 
microcode update. If the BIOS for a multiple processor system is intended to support mixed processor steppings, 
then the BIOS needs to provide enough update blocks to store each unique microcode update or for each processor 
socket on the OEM’s system board. 

The BIOS is responsible for managing the NVRAM update blocks. This includes garbage collection, such as 
removing microcode updates that exist in NVRAM for which a corresponding processor does not exist in the system. 
This specification only provides the mechanism for ensuring security, the uniqueness of an entry, and that stale 
entries are not loaded. The actual update block management is implementation specific on a per-BIOS basis. 

As an example, the BIOS may use update blocks sequentially in ascending order with CPU signatures sorted versus 
the first available block. In addition, garbage collection may be implemented as a setup option to clear all NVRAM 
slots or as BIOS code that searches and eliminates unused entries during boot.

NOTES

For IA-32 processors starting with family 0FH and model 03H and Intel 64 processors, the 
microcode update may be as large as 16 KBytes. Thus, BIOS must allocate 8 update blocks for each 
microcode update. In a MP system, a common microcode update may be sufficient for each socket 
in the system. 
For IA-32 processors earlier than family 0FH and model 03H, the microcode update is 2 KBytes. An 
MP-capable BIOS that supports multiple steppings must allocate a block for each socket in the 
system.
A single-processor BIOS that supports variable-sized microcode update and fixed-sized microcode 
update must allocate one 16-KByte region and a second region of at least 2 KBytes.

The following algorithm (Example 9-11) describes the steps performed during BIOS initialization used to load the 
updates into the processor(s). The algorithm assumes:
• The BIOS ensures that no update contained within NVRAM has a header version or loader version that does not 

match one currently supported by the BIOS.
• The update contains a correct checksum.
• The BIOS ensures that (at most) one update exists for each processor stepping.
• Older update revisions are not allowed to overwrite more recent ones.

These requirements are checked by the BIOS during the execution of the write update function of this interface. 
The BIOS sequentially scans through all of the update blocks in NVRAM starting with index 0. The BIOS scans until 
it finds an update where the processor fields in the header match the processor signature (extended family, 
extended model, type, family, model, and stepping) as well as the platform bits of the current processor.

Example 9-11.  Pseudo Code, Checks Required Prior to Loading an Update

For each processor in the system
{

Determine the Processor Signature via CPUID function 1;
Determine the Platform Bits ← 1 << IA32_PLATFORM_ID[52:50];

For (I ← UpdateBlock 0, I < NumOfBlocks; I++)
{

If (Update.Header_Version = 0x00000001)
{
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If ((Update.ProcessorSignature = Processor Signature) &&
 (Update.ProcessorFlags & Platform Bits))

{
Load Update.UpdateData into the Processor;
Verify update was correctly loaded into the processor 
Go on to next processor

Break;
}
Else If (Update.TotalSize > (Update.DataSize + 48))
{

N ← 0
While (N < Update.ExtendedSignatureCount)
{

If ((Update.ProcessorSignature[N] = 
 Processor Signature) &&
 (Update.ProcessorFlags[N] & Platform Bits))

{
Load Update.UpdateData into the Processor;
Verify update correctly loaded into the processor
Go on to next processor

Break;
}
N ← N + 1

}
I ← I + (Update.TotalSize / 2048)
If ((Update.TotalSize MOD 2048) = 0)

I ← I + 1
}

}
}

}

NOTES

The platform Id bits in IA32_PLATFORM_ID are encoded as a three-bit binary coded decimal field. 
The platform bits in the microcode update header are individually bit encoded. The algorithm must 
do a translation from one format to the other prior to doing a check.

When performing the INT 15H, 0D042H functions, the BIOS must assume that the caller has no knowledge of plat-
form specific requirements. It is the responsibility of BIOS calls to manage all chipset and platform specific prereq-
uisites for managing the NVRAM device. When writing the update data using the Write Update sub-function, the 
BIOS must maintain implementation specific data requirements (such as the update of NVRAM checksum). The 
BIOS should also attempt to verify the success of write operations on the storage device used to record the update.

9.11.8.2  Responsibilities of the Calling Program

This section of the document lists the responsibilities of a calling program using the interface specifications to load 
microcode update(s) into BIOS NVRAM.
• The calling program should call the INT 15H, 0D042H functions from a pure real mode program and should be 

executing on a system that is running in pure real mode. 
• The caller should issue the presence test function (sub function 0) and verify the signature and return codes of 

that function. 
• It is important that the calling program provides the required scratch RAM buffers for the BIOS and the proper 

stack size as specified in the interface definition.
• The calling program should read any update data that already exists in the BIOS in order to make decisions 

about the appropriateness of loading the update. The BIOS must refuse to overwrite a newer update with an 
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older version. The update header contains information about version and processor specifics for the calling 
program to make an intelligent decision about loading.

• There can be no ambiguous updates. The BIOS must refuse to allow multiple updates for the same CPU to exist 
at the same time; it also must refuse to load updates for processors that don’t exist on the system.

• The calling application should implement a verify function that is run after the update write function success-
fully completes. This function reads back the update and verifies that the BIOS returned an image identical to 
the one that was written. 

Example 9-12 represents a calling program.

Example 9-12.  INT 15 DO42 Calling Program Pseudo-code

//
// We must be in real mode
//
If the system is not in Real mode exit
//
// Detect presence of Genuine Intel processor(s) that can be updated 
// using(CPUID)
//
If no Intel processors exist that can be updated exit
//
// Detect the presence of the Intel microcode update extensions
//
If the BIOS fails the PresenceTestexit
//
// If the APIC is enabled, see if any other processors are out there
//
Read IA32_APICBASE
If APIC enabled
{

Send Broadcast Message to all processors except self via APIC
Have all processors execute CPUID, record the Processor Signature 
(i.e.,Extended Family, Extended Model, Type, Family, Model, Stepping)
Have all processors read IA32_PLATFORM_ID[52:50], record Platform
 Id Bits

If current processor cannot be updated
exit

}
//
// Determine the number of unique update blocks needed for this system
//
NumBlocks = 0
For each processor
{

If ((this is a unique processor stepping) AND
(we have a unique update in the database for this processor))

{
Checksum the update from the database;
If Checksum fails

exit
NumBlocks ← NumBlocks + size of microcode update / 2048

}
}

//
// Do we have enough update slots for all CPUs?
//
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If there are more blocks required to support the unique processor steppings than update blocks 
provided by the BIOS exit
//
// Do we need any update blocks at all?  If not, we are done
//
If (NumBlocks = 0)

exit
//
// Record updates for processors in NVRAM.
//
For (I=0; I<NumBlocks; I++)
{

//
// Load each Update
//
Issue the WriteUpdate function

If (STORAGE_FULL) returned
{

Display Error -- BIOS is not managing NVRAM appropriately
exit

}

If (INVALID_REVISION) returned
{

Display Message: More recent update already loaded in NVRAM for
 this stepping
continue

}

If any other error returned
{

Display Diagnostic
exit

}

//
// Verify the update was loaded correctly
//
Issue the ReadUpdate function

If an error occurred
{

Display Diagnostic
exit

}
//
// Compare the Update read to that written
//
If (Update read != Update written)
{

Display Diagnostic
exit

}

I ← I + (size of microcode update / 2048)
}
//
// Enable Update Loading, and inform user
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//
Issue the Update Control function with Task = Enable.

9.11.8.3  Microcode Update Functions

Table 9-12 defines current Pentium 4, Intel Xeon, and P6 family processor microcode update functions.

9.11.8.4  INT 15H-based Interface

Intel recommends that a BIOS interface be provided that allows additional microcode updates to be added to 
system flash. The INT15H interface is the Intel-defined method for doing this.

The program that calls this interface is responsible for providing three 64-kilobyte RAM areas for BIOS use during 
calls to the read and write functions. These RAM scratch pads can be used by the BIOS for any purpose, but only 
for the duration of the function call. The calling routine places real mode segments pointing to the RAM blocks in 
the CX, DX and SI registers. Calls to functions in this interface must be made with a minimum of 32 kilobytes of 
stack available to the BIOS.

In general, each function returns with CF cleared and AH contains the returned status. The general return codes 
and other constant definitions are listed in Section 9.11.8.9, “Return Codes.”

The OEM error field (AL) is provided for the OEM to return additional error information specific to the platform. If 
the BIOS provides no additional information about the error, OEM error must be set to SUCCESS. The OEM error 
field is undefined if AH contains either SUCCESS (00H) or NOT_IMPLEMENTED (86H). In all other cases, it must be 
set with either SUCCESS or a value meaningful to the OEM.

The following sections describe functions provided by the INT15H-based interface.

9.11.8.5  Function 00H—Presence Test

This function verifies that the BIOS has implemented required microcode update functions. Table 9-13 lists the 
parameters and return codes for the function.

Table 9-12.  Microcode Update Functions 

Microcode Update Function Function 
Number

Description Required/Optional

Presence test 00H Returns information about the supported functions. Required

Write update data 01H Writes one of the update data areas (slots). Required

Update control 02H Globally controls the loading of updates. Required

Read update data 03H Reads one of the update data areas (slots). Required

Table 9-13.  Parameters for the Presence Test 

Input

AX Function Code 0D042H

BL Sub-function 00H - Presence test

Output

CF Carry Flag Carry Set - Failure - AH contains status

Carry Clear - All return values valid

AH Return Code  

AL OEM Error Additional OEM information.

EBX Signature Part 1 'INTE' - Part one of the signature 

ECX Signature Part 2 'LPEP'- Part two of the signature

EDX Loader Version Version number of the microcode update loader
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In order to assure that the BIOS function is present, the caller must verify the carry flag, the return code, and the 
64-bit signature. The update count reflects the number of 2048-byte blocks available for storage within one non-
volatile RAM.

The loader version number refers to the revision of the update loader program that is included in the system BIOS 
image.

9.11.8.6  Function 01H—Write Microcode Update Data

This function integrates a new microcode update into the BIOS storage device. Table 9-14 lists the parameters and 
return codes for the function.

SI Update Count Number of 2048 update blocks in NVRAM the BIOS allocated to storing 
microcode updates 

Return Codes (see Table 9-18 for code definitions

SUCCESS The function completed successfully.

NOT_IMPLEMENTED The function is not implemented. 

Table 9-14.  Parameters for the Write Update Data Function

Input

AX Function Code 0D042H

BL Sub-function 01H - Write update

ES:DI Update Address Real Mode pointer to the Intel Update structure. This buffer is 2048 bytes in 
length if the processor supports only fixed-size microcode update or...

Real Mode pointer to the Intel Update structure. This buffer is 64 KBytes in 
length if the processor supports a variable-size microcode update.

CX Scratch Pad1 Real mode segment address of 64 KBytes of RAM block

DX Scratch Pad2 Real mode segment address of 64 KBytes of RAM block

SI Scratch Pad3 Real mode segment address of 64 KBytes of RAM block

SS:SP Stack pointer 32 KBytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH Contains status

Carry Clear - All return values valid

AH Return Code Status of the call

AL OEM Error Additional OEM information

Return Codes (see Table 9-18 for code definitions

SUCCESS The function completed successfully.

NOT_IMPLEMENTED The function is not implemented. 

WRITE_FAILURE A failure occurred because of the inability to write the storage device.

ERASE_FAILURE A failure occurred because of the inability to erase the storage device.

READ_FAILURE A failure occurred because of the inability to read the storage device.

Table 9-13.  Parameters for the Presence Test  (Contd.)

Input
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Description

The BIOS is responsible for selecting an appropriate update block in the non-volatile storage for storing the new 
update. This BIOS is also responsible for ensuring the integrity of the information provided by the caller, including 
authenticating the proposed update before incorporating it into storage.

Before writing the update block into NVRAM, the BIOS should ensure that the update structure meets the following 
criteria in the following order:

1. The update header version should be equal to an update header version recognized by the BIOS.

2. The update loader version in the update header should be equal to the update loader version contained within 
the BIOS image.

3. The update block must checksum. This checksum is computed as a 32-bit summation of all double words in the 
structure, including the header, data, and processor signature table.

The BIOS selects update block(s) in non-volatile storage for storing the candidate update. The BIOS can select any 
available update block as long as it guarantees that only a single update exists for any given processor stepping in 
non-volatile storage. If the update block selected already contains an update, the following additional criteria apply 
to overwrite it:
• The processor signature in the proposed update must be equal to the processor signature in the header of the 

current update in NVRAM (Processor Signature + platform ID bits).
• The update revision in the proposed update should be greater than the update revision in the header of the 

current update in NVRAM.

If no unused update blocks are available and the above criteria are not met, the BIOS can overwrite update 
block(s) for a processor stepping that is no longer present in the system. This can be done by scanning the update 
blocks and comparing the processor steppings, identified in the MP Specification table, to the processor steppings 
that currently exist in the system.

Finally, before storing the proposed update in NVRAM, the BIOS must verify the authenticity of the update via the 
mechanism described in Section 9.11.6, “Microcode Update Loader.” This includes loading the update into the 
current processor, executing the CPUID instruction, reading MSR 08Bh, and comparing a calculated value with the 
update revision in the proposed update header for equality.

When performing the write update function, the BIOS must record the entire update, including the header, the 
update data, and the extended processor signature table (if applicable). When writing an update, the original 
contents may be overwritten, assuming the above criteria have been met. It is the responsibility of the BIOS to 
ensure that more recent updates are not overwritten through the use of this BIOS call, and that only a single 
update exists within the NVRAM for any processor stepping and platform ID.

Figure 9-8 and Figure 9-9 show the process the BIOS follows to choose an update block and ensure the integrity of 
the data when it stores the new microcode update. 

STORAGE_FULL The BIOS non-volatile storage area is unable to accommodate the update 
because all available update blocks are filled with updates that are needed for 
processors in the system.

CPU_NOT_PRESENT The processor stepping does not currently exist in the system.

INVALID_HEADER The update header contains a header or loader version that is not recognized by 
the BIOS.

INVALID_HEADER_CS The update does not checksum correctly.

SECURITY_FAILURE The processor rejected the update.

INVALID_REVISION The same or more recent revision of the update exists in the storage device. 

Table 9-14.  Parameters for the Write Update Data Function (Contd.)

Input
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Figure 9-8.  Microcode Update Write Operation Flow [1]
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9.11.8.7  Function 02H—Microcode Update Control

This function enables loading of binary updates into the processor. Table 9-15 lists the parameters and return codes 
for the function.

Figure 9-9.  Microcode Update Write Operation Flow [2]
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This control is provided on a global basis for all updates and processors. The caller can determine the current status 
of update loading (enabled or disabled) without changing the state. The function does not allow the caller to disable 
loading of binary updates, as this poses a security risk.

The caller specifies the requested operation by placing one of the values from Table 9-16 in the BH register. After 
successfully completing this function, the BL register contains either the enable or the disable designator. Note that 
if the function fails, the update status return value is undefined.

The READ_FAILURE error code returned by this function has meaning only if the control function is implemented in 
the BIOS NVRAM. The state of this feature (enabled/disabled) can also be implemented using CMOS RAM bits 
where READ failure errors cannot occur. 

9.11.8.8  Function 03H—Read Microcode Update Data

This function reads a currently installed microcode update from the BIOS storage into a caller-provided RAM buffer. 
Table 9-17 lists the parameters and return codes. 

Table 9-15.  Parameters for the Control Update Sub-function

Input

AX Function Code 0D042H

BL Sub-function 02H - Control update

BH Task See the description below.

CX Scratch Pad1 Real mode segment of 64 KBytes of RAM block

DX Scratch Pad2 Real mode segment of 64 KBytes of RAM block

SI Scratch Pad3 Real mode segment of 64 KBytes of RAM block

SS:SP Stack pointer 32 kilobytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH contains status

Carry Clear - All return values valid.

AH Return Code Status of the call

AL OEM Error Additional OEM Information. 

BL Update Status Either enable or disable indicator

Return Codes (see Table 9-18 for code definitions)

SUCCESS Function completed successfully.

READ_FAILURE A failure occurred because of the inability to read the storage device. 

Table 9-16.  Mnemonic Values

Mnemonic Value Meaning

Enable 1 Enable the Update loading at initialization time.

Query 2 Determine the current state of the update control without changing its status.

Table 9-17.  Parameters for the Read Microcode Update Data Function

Input

AX Function Code 0D042H

BL Sub-function 03H - Read Update

ES:DI Buffer Address Real Mode pointer to the Intel Update structure that 
will be written with the binary data
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The read function enables the caller to read any microcode update data that already exists in a BIOS and make 
decisions about the addition of new updates.  As a result of a successful call, the BIOS copies the microcode update 
into the location pointed to by ES:DI, with the contents of all Update block(s) that are used to store the specified 
microcode update.

If the specified block is not a header block, but does contain valid data from a microcode update that spans multiple 
update blocks, then the BIOS must return Failure with the NOT_EMPTY error code in AH.

An update block is considered unused and available for storing a new update if its Header Version contains the 
value 0FFFFFFFFH after return from this function call.  The actual implementation of NVRAM storage management 
is not specified here and is BIOS dependent.  As an example, the actual data value used to represent an empty 
block by the BIOS may be zero, rather than 0FFFFFFFFH. The BIOS is responsible for translating this information 
into the header provided by this function.

9.11.8.9  Return Codes

After the call has been made, the return codes listed in Table 9-18 are available in the AH register.

ECX Scratch Pad1 Real Mode Segment address of 64 KBytes of RAM 
Block (lower 16 bits)

ECX Scratch Pad2 Real Mode Segment address of 64 KBytes of RAM 
Block (upper 16 bits)

DX Scratch Pad3 Real Mode Segment address of 64 KBytes of RAM 
Block

SS:SP Stack pointer 32 KBytes of Stack Minimum

SI Update Number This is the index number of the update block to be 
read. This value is zero based and must be less than 
the update count returned from the presence test 
function.

Output

CF Carry Flag Carry Set     - Failure - AH contains Status

Carry Clear - All return values are 
valid.

AH Return Code Status of the Call

AL OEM Error Additional OEM Information

Return Codes (see Table 9-18 for code definitions)

SUCCESS The function completed successfully.

READ_FAILURE There was a failure because of the inability to read the 
storage device.

UPDATE_NUM_INVALID Update number exceeds the maximum number of 
update blocks implemented by the BIOS.

NOT_EMPTY The specified update block is a subsequent block in use 
to store a valid microcode update that spans multiple 
blocks. 

The specified block is not a header block and is not 
empty. 

Table 9-17.  Parameters for the Read Microcode Update Data Function (Contd.)
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Table 9-18.  Return Code Definitions

Return Code Value Description

SUCCESS 00H The function completed successfully.

NOT_IMPLEMENTED 86H The function is not implemented.

ERASE_FAILURE 90H A failure because of the inability to erase the storage device.

WRITE_FAILURE 91H A failure because of the inability to write the storage device.

READ_FAILURE 92H A failure because of the inability to read the storage device.

STORAGE_FULL 93H The BIOS non-volatile storage area is unable to accommodate the update 
because all available update blocks are filled with updates that are needed 
for processors in the system.

CPU_NOT_PRESENT 94H The processor stepping does not currently exist in the system.

INVALID_HEADER 95H The update header contains a header or loader version that is not 
recognized by the BIOS.

INVALID_HEADER_CS 96H The update does not checksum correctly.

SECURITY_FAILURE 97H The update was rejected by the processor.

INVALID_REVISION 98H The same or more recent revision of the update exists in the storage device.

UPDATE_NUM_INVALID 99H The update number exceeds the maximum number of update blocks 
implemented by the BIOS.

NOT_EMPTY 9AH The specified update block is a subsequent block in use to store a valid 
microcode update that spans multiple blocks. 

The specified block is not a header block and is not empty.



9-50 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION



Vol. 3A 10-1

CHAPTER 10
ADVANCED PROGRAMMABLE

INTERRUPT CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in the following sections as the local APIC, 
was introduced into the IA-32 processors with the Pentium processor (see Section 22.27, “Advanced Program-
mable Interrupt Controller (APIC)”) and is included in the P6 family, Pentium 4, Intel Xeon processors, and other 
more recent Intel 64 and IA-32 processor families (see Section 10.4.2, “Presence of the Local APIC”). The local 
APIC performs two primary functions for the processor:
• It receives interrupts from the processor’s interrupt pins, from internal sources and from an external I/O APIC 

(or other external interrupt controller). It sends these to the processor core for handling.
• In multiple processor (MP) systems, it sends and receives interprocessor interrupt (IPI) messages to and from 

other logical processors on the system bus. IPI messages can be used to distribute interrupts among the 
processors in the system or to execute system wide functions (such as, booting up processors or distributing 
work among a group of processors).

The external I/O APIC is part of Intel’s system chip set. Its primary function is to receive external interrupt events 
from the system and its associated I/O devices and relay them to the local APIC as interrupt messages. In MP 
systems, the I/O APIC also provides a mechanism for distributing external interrupts to the local APICs of selected 
processors or groups of processors on the system bus. 

This chapter provides a description of the local APIC and its programming interface. It also provides an overview of 
the interface between the local APIC and the I/O APIC. Contact Intel for detailed information about the I/O APIC.

When a local APIC has sent an interrupt to its processor core for handling, the processor uses the interrupt and 
exception handling mechanism described in Chapter 6, “Interrupt and Exception Handling.” See Section 6.1, 
“Interrupt and Exception Overview,” for an introduction to interrupt and exception handling.

10.1 LOCAL AND I/O APIC OVERVIEW

Each local APIC consists of a set of APIC registers (see Table 10-1) and associated hardware that control the 
delivery of interrupts to the processor core and the generation of IPI messages. The APIC registers are memory 
mapped and can be read and written to using the MOV instruction.

Local APICs can receive interrupts from the following sources:
• Locally connected I/O devices — These interrupts originate as an edge or level asserted by an I/O device 

that is connected directly to the processor’s local interrupt pins (LINT0 and LINT1). The I/O devices may also 
be connected to an 8259-type interrupt controller that is in turn connected to the processor through one of the 
local interrupt pins.

• Externally connected I/O devices — These interrupts originate as an edge or level asserted by an I/O 
device that is connected to the interrupt input pins of an I/O APIC. Interrupts are sent as I/O interrupt 
messages from the I/O APIC to one or more of the processors in the system.

• Inter-processor interrupts (IPIs) — An Intel 64 or IA-32 processor can use the IPI mechanism to interrupt 
another processor or group of processors on the system bus. IPIs are used for software self-interrupts, 
interrupt forwarding, or preemptive scheduling.

• APIC timer generated interrupts — The local APIC timer can be programmed to send a local interrupt to its 
associated processor when a programmed count is reached (see Section 10.5.4, “APIC Timer”).

• Performance monitoring counter interrupts — P6 family, Pentium 4, and Intel Xeon processors provide the 
ability to send an interrupt to its associated processor when a performance-monitoring counter overflows (see 
Section 18.12.5.8, “Generating an Interrupt on Overflow”).

• Thermal Sensor interrupts — Pentium 4 and Intel Xeon processors provide the ability to send an interrupt to 
themselves when the internal thermal sensor has been tripped (see Section 14.7.2, “Thermal Monitor”).
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• APIC internal error interrupts — When an error condition is recognized within the local APIC (such as an 
attempt to access an unimplemented register), the APIC can be programmed to send an interrupt to its 
associated processor (see Section 10.5.3, “Error Handling”).

Of these interrupt sources: the processor’s LINT0 and LINT1 pins, the APIC timer, the performance-monitoring 
counters, the thermal sensor, and the internal APIC error detector are referred to as local interrupt sources. 
Upon receiving a signal from a local interrupt source, the local APIC delivers the interrupt to the processor core 
using an interrupt delivery protocol that has been set up through a group of APIC registers called the local vector 
table or LVT (see Section 10.5.1, “Local Vector Table”). A separate entry is provided in the local vector table for 
each local interrupt source, which allows a specific interrupt delivery protocol to be set up for each source. For 
example, if the LINT1 pin is going to be used as an NMI pin, the LINT1 entry in the local vector table can be set up 
to deliver an interrupt with vector number 2 (NMI interrupt) to the processor core.

The local APIC handles interrupts from the other two interrupt sources (externally connected I/O devices and IPIs) 
through its IPI message handling facilities. 

A processor can generate IPIs by programming the interrupt command register (ICR) in its local APIC (see Section 
10.6.1, “Interrupt Command Register (ICR)”). The act of writing to the ICR causes an IPI message to be generated 
and issued on the system bus (for Pentium 4 and Intel Xeon processors) or on the APIC bus (for Pentium and P6 
family processors). See Section 10.2, “System Bus Vs. APIC Bus.”

IPIs can be sent to other processors in the system or to the originating processor (self-interrupts). When the target 
processor receives an IPI message, its local APIC handles the message automatically (using information included 
in the message such as vector number and trigger mode). See Section 10.6, “Issuing Interprocessor Interrupts,” 
for a detailed explanation of the local APIC’s IPI message delivery and acceptance mechanism.

The local APIC can also receive interrupts from externally connected devices through the I/O APIC (see 
Figure 10-1). The I/O APIC is responsible for receiving interrupts generated by system hardware and I/O devices 
and forwarding them to the local APIC as interrupt messages.

Individual pins on the I/O APIC can be programmed to generate a specific interrupt vector when asserted. The I/O 
APIC also has a “virtual wire mode” that allows it to communicate with a standard 8259A-style external interrupt 
controller. Note that the local APIC can be disabled (see Section 10.4.3, “Enabling or Disabling the Local APIC”). 
This allows an associated processor core to receive interrupts directly from an 8259A interrupt controller.

 

Figure 10-1.  Relationship of Local APIC and I/O APIC In Single-Processor Systems
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Both the local APIC and the I/O APIC are designed to operate in MP systems (see Figures 10-2 and 10-3). Each 
local APIC handles interrupts from the I/O APIC, IPIs from processors on the system bus, and self-generated inter-
rupts. Interrupts can also be delivered to the individual processors through the local interrupt pins; however, this 
mechanism is commonly not used in MP systems.

The IPI mechanism is typically used in MP systems to send fixed interrupts (interrupts for a specific vector number) 
and special-purpose interrupts to processors on the system bus. For example, a local APIC can use an IPI to 
forward a fixed interrupt to another processor for servicing. Special-purpose IPIs (including NMI, INIT, SMI and 
SIPI IPIs) allow one or more processors on the system bus to perform system-wide boot-up and control functions.

The following sections focus on the local APIC and its implementation in the Pentium 4, Intel Xeon, and P6 family 
processors. In these sections, the terms “local APIC” and “I/O APIC” refer to local and I/O APICs used with the P6 
family processors and to local and I/O xAPICs used with the Pentium 4 and Intel Xeon processors (see Section 
10.3, “The Intel® 82489DX External APIC, the APIC, the xAPIC, and the X2APIC”). 

 

Figure 10-2.  Local APICs and I/O APIC When Intel Xeon Processors Are Used in Multiple-Processor Systems

 

Figure 10-3.  Local APICs and I/O APIC When P6 Family Processors Are Used in Multiple-Processor Systems
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10.2 SYSTEM BUS VS. APIC BUS

For the P6 family and Pentium processors, the I/O APIC and local APICs communicate through the 3-wire inter-
APIC bus (see Figure 10-3). Local APICs also use the APIC bus to send and receive IPIs. The APIC bus and its 
messages are invisible to software and are not classed as architectural.

Beginning with the Pentium 4 and Intel Xeon processors, the I/O APIC and local APICs (using the xAPIC architec-
ture) communicate through the system bus (see Figure 10-2). The I/O APIC sends interrupt requests to the 
processors on the system bus through bridge hardware that is part of the Intel chip set. The bridge hardware 
generates the interrupt messages that go to the local APICs. IPIs between local APICs are transmitted directly on 
the system bus.

10.3 THE INTEL® 82489DX EXTERNAL APIC, THE APIC, THE XAPIC, AND THE 
X2APIC

The local APIC in the P6 family and Pentium processors is an architectural subset of the Intel® 82489DX external 
APIC. See Section 22.27.1, “Software Visible Differences Between the Local APIC and the 82489DX.”
The APIC architecture used in the Pentium 4 and Intel Xeon processors (called the xAPIC architecture) is an exten-
sion of the APIC architecture found in the P6 family processors. The primary difference between the APIC and 
xAPIC architectures is that with the xAPIC architecture, the local APICs and the I/O APIC communicate through the 
system bus. With the APIC architecture, they communication through the APIC bus (see Section 10.2, “System Bus 
Vs. APIC Bus”). Also, some APIC architectural features have been extended and/or modified in the xAPIC architec-
ture. These extensions and modifications are described in Section 10.4 through Section 10.10.

The basic operating mode of the xAPIC is xAPIC mode. The x2APIC architecture is an extension of the xAPIC 
architecture, primarily to increase processor addressability. The x2APIC architecture provides backward compati-
bility to the xAPIC architecture and forward extendability for future Intel platform innovations. These extensions 
and modifications are supported by a new mode of execution (x2APIC mode) are detailed in Section 10.12.

10.4 LOCAL APIC

The following sections describe the architecture of the local APIC and how to detect it, identify it, and determine its 
status. Descriptions of how to program the local APIC are given in Section 10.5.1, “Local Vector Table,” and Section 
10.6.1, “Interrupt Command Register (ICR).”

10.4.1 The Local APIC Block Diagram

Figure 10-4 gives a functional block diagram for the local APIC. Software interacts with the local APIC by reading 
and writing its registers. APIC registers are memory-mapped to a 4-KByte region of the processor’s physical 
address space with an initial starting address of FEE00000H. For correct APIC operation, this address space must 
be mapped to an area of memory that has been designated as strong uncacheable (UC). See Section 11.3, 
“Methods of Caching Available.”

In MP system configurations, the APIC registers for Intel 64 or IA-32 processors on the system bus are initially 
mapped to the same 4-KByte region of the physical address space. Software has the option of changing initial 
mapping to a different 4-KByte region for all the local APICs or of mapping the APIC registers for each local APIC to 
its own 4-KByte region. Section 10.4.5, “Relocating the Local APIC Registers,” describes how to relocate the base 
address for APIC registers.

On processors supporting x2APIC architecture (indicated by CPUID.01H:ECX[21] = 1), the local APIC supports 
operation both in xAPIC mode and (if enabled by software) in x2APIC mode. x2APIC mode provides extended 
processor addressability (see Section 10.12).
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NOTE

For P6 family, Pentium 4, and Intel Xeon processors, the APIC handles all memory accesses to 
addresses within the 4-KByte APIC register space internally and no external bus cycles are 
produced. For the Pentium processors with an on-chip APIC, bus cycles are produced for accesses 
to the APIC register space. Thus, for software intended to run on Pentium processors, system 
software should explicitly not map the APIC register space to regular system memory. Doing so can 
result in an invalid opcode exception (#UD) being generated or unpredictable execution.

Table 10-1 shows how the APIC registers are mapped into the 4-KByte APIC register space. Registers are 32 bits, 
64 bits, or 256 bits in width; all are aligned on 128-bit boundaries. All 32-bit registers should be accessed using 
128-bit aligned 32-bit loads or stores. Some processors may support loads and stores of less than 32 bits to some 
of the APIC registers. This is model specific behavior and is not guaranteed to work on all processors. Any 

Figure 10-4.  Local APIC Structure
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FP/MMX/SSE access to an APIC register, or any access that touches bytes 4 through 15 of an APIC register may 
cause undefined behavior and must not be executed. This undefined behavior could include hangs, incorrect results 
or unexpected exceptions, including machine checks, and may vary between implementations. Wider registers 
(64-bit or 256-bit) must be accessed using multiple 32-bit loads or stores, with all accesses being 128-bit aligned. 

The local APIC registers listed in Table 10-1 are not MSRs. The only MSR associated with the programming of the 
local APIC is the IA32_APIC_BASE MSR (see Section 10.4.3, “Enabling or Disabling the Local APIC”).

NOTE

In processors based on Intel microarchitecture code name Nehalem the Local APIC ID Register is no 
longer Read/Write; it is Read Only.

Table 10-1 Local APIC Register Address Map 

Address Register Name Software Read/Write

FEE0 0000H Reserved

FEE0 0010H Reserved

FEE0 0020H Local APIC ID Register Read/Write.

FEE0 0030H Local APIC Version Register Read Only.

FEE0 0040H Reserved

FEE0 0050H Reserved

FEE0 0060H Reserved

FEE0 0070H Reserved

FEE0 0080H Task Priority Register (TPR) Read/Write.

FEE0 0090H Arbitration Priority Register1 (APR) Read Only.

FEE0 00A0H Processor Priority Register (PPR) Read Only.

FEE0 00B0H EOI Register Write Only.

FEE0 00C0H Remote Read Register1 (RRD) Read Only

FEE0 00D0H Logical Destination Register Read/Write.

FEE0 00E0H Destination Format Register Read/Write (see Section 
10.6.2.2).

FEE0 00F0H Spurious Interrupt Vector Register Read/Write (see Section 10.9.

FEE0 0100H In-Service Register (ISR); bits 31:0 Read Only.

FEE0 0110H In-Service Register (ISR); bits 63:32 Read Only.

FEE0 0120H In-Service Register (ISR); bits 95:64 Read Only.

FEE0 0130H In-Service Register (ISR); bits 127:96 Read Only.

FEE0 0140H In-Service Register (ISR); bits 159:128 Read Only.

FEE0 0150H In-Service Register (ISR); bits 191:160 Read Only.

FEE0 0160H In-Service Register (ISR); bits 223:192 Read Only.

FEE0 0170H In-Service Register (ISR); bits 255:224 Read Only.

FEE0 0180H Trigger Mode Register (TMR); bits 31:0 Read Only.

FEE0 0190H Trigger Mode Register (TMR); bits 63:32 Read Only.

FEE0 01A0H Trigger Mode Register (TMR); bits 95:64 Read Only.

FEE0 01B0H Trigger Mode Register (TMR); bits 127:96 Read Only.

FEE0 01C0H Trigger Mode Register (TMR); bits 159:128  Read Only.

FEE0 01D0H Trigger Mode Register (TMR); bits 191:160 Read Only.
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10.4.2 Presence of the Local APIC

Beginning with the P6 family processors, the presence or absence of an on-chip local APIC can be detected using 
the CPUID instruction. When the CPUID instruction is executed with a source operand of 1 in the EAX register, bit 
9 of the CPUID feature flags returned in the EDX register indicates the presence (set) or absence (clear) of a local 
APIC.

FEE0 01E0H Trigger Mode Register (TMR); bits 223:192 Read Only.

FEE0 01F0H Trigger Mode Register (TMR); bits 255:224 Read Only.

FEE0 0200H Interrupt Request Register (IRR); bits 31:0 Read Only.

FEE0 0210H Interrupt Request Register (IRR); bits 63:32 Read Only.

FEE0 0220H Interrupt Request Register (IRR); bits 95:64 Read Only.

FEE0 0230H Interrupt Request Register (IRR); bits 127:96 Read Only.

FEE0 0240H Interrupt Request Register (IRR); bits 159:128 Read Only.

FEE0 0250H Interrupt Request Register (IRR); bits 191:160 Read Only.

FEE0 0260H Interrupt Request Register (IRR); bits 223:192 Read Only.

FEE0 0270H Interrupt Request Register (IRR); bits 255:224 Read Only.

FEE0 0280H Error Status Register Read Only.

FEE0 0290H through
FEE0 02E0H

Reserved

FEE0 02F0H LVT CMCI Register Read/Write.

FEE0 0300H Interrupt Command Register (ICR); bits 0-31 Read/Write.

FEE0 0310H Interrupt Command Register (ICR); bits 32-63 Read/Write.

FEE0 0320H LVT Timer Register Read/Write.

FEE0 0330H LVT Thermal Sensor Register2 Read/Write.

FEE0 0340H LVT Performance Monitoring Counters Register3 Read/Write.

FEE0 0350H LVT LINT0 Register Read/Write.

FEE0 0360H LVT LINT1 Register Read/Write.

FEE0 0370H LVT Error Register Read/Write.

FEE0 0380H Initial Count Register (for Timer) Read/Write.

FEE0 0390H Current Count Register (for Timer) Read Only.

FEE0 03A0H through 
FEE0 03D0H

Reserved

FEE0 03E0H Divide Configuration Register (for Timer) Read/Write.

FEE0 03F0H Reserved

NOTES:

1. Not supported in the Pentium 4 and Intel Xeon processors. The Illegal Register Access bit (7) of the ESR will not be set when writ-
ing to these registers.

2. Introduced in the Pentium 4 and Intel Xeon processors. This APIC register and its associated function are implementation depen-
dent and may not be present in future IA-32 or Intel 64 processors.

3. Introduced in the Pentium Pro processor. This APIC register and its associated function are implementation dependent and may not 
be present in future IA-32 or Intel 64 processors.

Table 10-1 Local APIC Register Address Map  (Contd.)

Address Register Name Software Read/Write
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10.4.3 Enabling or Disabling the Local APIC

The local APIC can be enabled or disabled in either of two ways:

1. Using the APIC global enable/disable flag in the IA32_APIC_BASE MSR (MSR address 1BH; see Figure 10-5):

— When IA32_APIC_BASE[11] is 0, the processor is functionally equivalent to an IA-32 processor without an 
on-chip APIC. The CPUID feature flag for the APIC (see Section 10.4.2, “Presence of the Local APIC”) is also 
set to 0.

— When IA32_APIC_BASE[11] is set to 0, processor APICs based on the 3-wire APIC bus cannot be generally 
re-enabled until a system hardware reset. The 3-wire bus loses track of arbitration that would be necessary 
for complete re-enabling. Certain APIC functionality can be enabled (for example: performance and 
thermal monitoring interrupt generation).

— For processors that use Front Side Bus (FSB) delivery of interrupts, software may disable or enable the 
APIC by setting and resetting IA32_APIC_BASE[11]. A hardware reset is not required to re-start APIC 
functionality, if software guarantees no interrupt will be sent to the APIC as IA32_APIC_BASE[11] is 
cleared.

— When IA32_APIC_BASE[11] is set to 0, prior initialization to the APIC may be lost and the APIC may return 
to the state described in Section 10.4.7.1, “Local APIC State After Power-Up or Reset.”

2. Using the APIC software enable/disable flag in the spurious-interrupt vector register (see Figure 10-23):

— If IA32_APIC_BASE[11] is 1, software can temporarily disable a local APIC at any time by clearing the APIC 
software enable/disable flag in the spurious-interrupt vector register (see Figure 10-23). The state of the 
local APIC when in this software-disabled state is described in Section 10.4.7.2, “Local APIC State After It 
Has Been Software Disabled.” 

— When the local APIC is in the software-disabled state, it can be re-enabled at any time by setting the APIC 
software enable/disable flag to 1.

For the Pentium processor, the APICEN pin (which is shared with the PICD1 pin) is used during power-up or reset 
to disable the local APIC.

Note that each entry in the LVT has a mask bit that can be used to inhibit interrupts from being delivered to the 
processor from selected local interrupt sources (the LINT0 and LINT1 pins, the APIC timer, the performance-moni-
toring counters, the thermal sensor, and/or the internal APIC error detector).

10.4.4 Local APIC Status and Location

The status and location of the local APIC are contained in the IA32_APIC_BASE MSR (see Figure 10-5). MSR bit 
functions are described below:
• BSP flag, bit 8  Indicates if the processor is the bootstrap processor (BSP). See Section 8.4, “Multiple-

Processor (MP) Initialization.” Following a power-up or reset, this flag is set to 1 for the processor selected as 
the BSP and set to 0 for the remaining processors (APs).

• APIC Global Enable flag, bit 11  Enables or disables the local APIC (see Section 10.4.3, “Enabling or 
Disabling the Local APIC”). This flag is available in the Pentium 4, Intel Xeon, and P6 family processors. It is not 
guaranteed to be available or available at the same location in future Intel 64 or IA-32 processors.

• APIC Base field, bits 12 through 35  Specifies the base address of the APIC registers. This 24-bit value is 
extended by 12 bits at the low end to form the base address. This automatically aligns the address on a 4-KByte 
boundary. Following a power-up or reset, the field is set to FEE0 0000H.

• Bits 0 through 7, bits 9 and 10, and bits MAXPHYADDR1 through 63 in the IA32_APIC_BASE MSR are reserved.

1. The MAXPHYADDR is 36 bits for processors that do not support CPUID leaf 80000008H, or indicated by 
CPUID.80000008H:EAX[bits 7:0] for processors that support CPUID leaf 80000008H.
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10.4.5 Relocating the Local APIC Registers

The Pentium 4, Intel Xeon, and P6 family processors permit the starting address of the APIC registers to be relo-
cated from FEE00000H to another physical address by modifying the value in the 24-bit base address field of the 
IA32_APIC_BASE MSR. This extension of the APIC architecture is provided to help resolve conflicts with memory 
maps of existing systems and to allow individual processors in an MP system to map their APIC registers to 
different locations in physical memory.

10.4.6 Local APIC ID

At power up, system hardware assigns a unique APIC ID to each local APIC on the system bus (for Pentium 4 and 
Intel Xeon processors) or on the APIC bus (for P6 family and Pentium processors). The hardware assigned APIC ID 
is based on system topology and includes encoding for socket position and cluster information (see Figure 8-2).

In MP systems, the local APIC ID is also used as a processor ID by the BIOS and the operating system. Some 
processors permit software to modify the APIC ID. However, the ability of software to modify the APIC ID is 
processor model specific. Because of this, operating system software should avoid writing to the local APIC ID 
register. The value returned by bits 31-24 of the EBX register (when the CPUID instruction is executed with a 
source operand value of 1 in the EAX register) is always the Initial APIC ID (determined by the platform initializa-
tion). This is true even if software has changed the value in the Local APIC ID register.

The processor receives the hardware assigned APIC ID (or Initial APIC ID) by sampling pins A11# and A12# and 
pins BR0# through BR3# (for the Pentium 4, Intel Xeon, and P6 family processors) and pins BE0# through BE3# 
(for the Pentium processor). The APIC ID latched from these pins is stored in the APIC ID field of the local APIC ID 
register (see Figure 10-6), and is used as the Initial APIC ID for the processor. 

Figure 10-5.  IA32_APIC_BASE MSR (APIC_BASE_MSR in P6 Family)

BSP—Processor is BSP
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For the P6 family and Pentium processors, the local APIC ID field in the local APIC ID register is 4 bits. Encodings 
0H through EH can be used to uniquely identify 15 different processors connected to the APIC bus. For the Pentium 
4 and Intel Xeon processors, the xAPIC specification extends the local APIC ID field to 8 bits. These can be used to 
identify up to 255 processors in the system.

10.4.7 Local APIC State

The following sections describe the state of the local APIC and its registers following a power-up or reset, after the 
local APIC has been software disabled, following an INIT reset, and following an INIT-deassert message.

x2APIC will introduce 32-bit ID; see Section 10.12.

10.4.7.1  Local APIC State After Power-Up or Reset

Following a power-up or reset of the processor, the state of local APIC and its registers are as follows:
• The following registers are reset to all 0s: 

• IRR, ISR, TMR, ICR, LDR, and TPR

• Timer initial count and timer current count registers

• Divide configuration register
• The DFR register is reset to all 1s.
• The LVT register is reset to 0s except for the mask bits; these are set to 1s.
• The local APIC version register is not affected.
• The local APIC ID register is set to a unique APIC ID. (Pentium and P6 family processors only). The Arb ID 

register is set to the value in the APIC ID register.
• The spurious-interrupt vector register is initialized to 000000FFH. By setting bit 8 to 0, software disables the 

local APIC.
• If the processor is the only processor in the system or it is the BSP in an MP system (see Section 8.4.1, “BSP 

and AP Processors”); the local APIC will respond normally to INIT and NMI messages, to INIT# signals and to 
STPCLK# signals. If the processor is in an MP system and has been designated as an AP; the local APIC will 
respond the same as for the BSP. In addition, it will respond to SIPI messages. For P6 family processors only, 
an AP will not respond to a STPCLK# signal.

Figure 10-6.  Local APIC ID Register
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10.4.7.2  Local APIC State After It Has Been Software Disabled 

When the APIC software enable/disable flag in the spurious interrupt vector register has been explicitly cleared (as 
opposed to being cleared during a power up or reset), the local APIC is temporarily disabled (see Section 10.4.3, 
“Enabling or Disabling the Local APIC”). The operation and response of a local APIC while in this software-disabled 
state is as follows:
• The local APIC will respond normally to INIT, NMI, SMI, and SIPI messages.
• Pending interrupts in the IRR and ISR registers are held and require masking or handling by the CPU.
• The local APIC can still issue IPIs. It is software’s responsibility to avoid issuing IPIs through the IPI mechanism 

and the ICR register if sending interrupts through this mechanism is not desired.
• The reception or transmission of any IPIs that are in progress when the local APIC is disabled are completed 

before the local APIC enters the software-disabled state.
• The mask bits for all the LVT entries are set. Attempts to reset these bits will be ignored.
• (For Pentium and P6 family processors) The local APIC continues to listen to all bus messages in order to keep 

its arbitration ID synchronized with the rest of the system.

10.4.7.3  Local APIC State After an INIT Reset (“Wait-for-SIPI” State)

An INIT reset of the processor can be initiated in either of two ways:
• By asserting the processor’s INIT# pin.
• By sending the processor an INIT IPI (an IPI with the delivery mode set to INIT).

Upon receiving an INIT through either of these mechanisms, the processor responds by beginning the initialization 
process of the processor core and the local APIC. The state of the local APIC following an INIT reset is the same as 
it is after a power-up or hardware reset, except that the APIC ID and arbitration ID registers are not affected. This 
state is also referred to at the “wait-for-SIPI” state (see also: Section 8.4.2, “MP Initialization Protocol Require-
ments and Restrictions”).

10.4.7.4  Local APIC State After It Receives an INIT-Deassert IPI

Only the Pentium and P6 family processors support the INIT-deassert IPI. An INIT-deassert IPI has no affect on the 
state of the APIC, other than to reload the arbitration ID register with the value in the APIC ID register. 

10.4.8 Local APIC Version Register

The local APIC contains a hardwired version register. Software can use this register to identify the APIC version 
(see Figure 10-7). In addition, the register specifies the number of entries in the local vector table (LVT) for a 
specific implementation. 

The fields in the local APIC version register are as follows:
Version The version numbers of the local APIC:

0XH 82489DX discrete APIC.

10H - 15H Integrated APIC.

Other values reserved.
Max LVT Entry Shows the number of LVT entries minus 1. For the Pentium 4 and Intel Xeon processors (which 

have 6 LVT entries), the value returned in the Max LVT field is 5; for the P6 family processors 
(which have 5 LVT entries), the value returned is 4; for the Pentium processor (which has 4 LVT 
entries), the value returned is 3. For processors based on the Intel microarchitecture code 
name Nehalem (which has 7 LVT entries) and onward, the value returned is 6.

Suppress EOI-broadcasts
Indicates whether software can inhibit the broadcast of EOI message by setting bit 12 of the 
Spurious Interrupt Vector Register; see Section 10.8.5 and Section 10.9.
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10.5 HANDLING LOCAL INTERRUPTS

The following sections describe facilities that are provided in the local APIC for handling local interrupts. These 
include: the processor’s LINT0 and LINT1 pins, the APIC timer, the performance-monitoring counters, the thermal 
sensor, and the internal APIC error detector. Local interrupt handling facilities include: the LVT, the error status 
register (ESR), the divide configuration register (DCR), and the initial count and current count registers.

10.5.1 Local Vector Table

The local vector table (LVT) allows software to specify the manner in which the local interrupts are delivered to the 
processor core. It consists of the following 32-bit APIC registers (see Figure 10-8), one for each local interrupt:
• LVT CMCI Register (FEE0 02F0H) — Specifies interrupt delivery when an overflow condition of corrected 

machine check error count reaching a threshold value occurred in a machine check bank supporting CMCI (see 
Section 15.5.1, “CMCI Local APIC Interface”).

• LVT Timer Register (FEE0 0320H) — Specifies interrupt delivery when the APIC timer signals an interrupt 
(see Section 10.5.4, “APIC Timer”).

• LVT Thermal Monitor Register (FEE0 0330H) — Specifies interrupt delivery when the thermal sensor 
generates an interrupt (see Section 14.7.2, “Thermal Monitor”). This LVT entry is implementation specific, not 
architectural. If implemented, it will always be at base address FEE0 0330H.

• LVT Performance Counter Register (FEE0 0340H) — Specifies interrupt delivery when a performance 
counter generates an interrupt on overflow (see Section 18.12.5.8, “Generating an Interrupt on Overflow”). 
This LVT entry is implementation specific, not architectural. If implemented, it is not guaranteed to be at base 
address FEE0 0340H.

• LVT LINT0 Register (FEE0 0350H) — Specifies interrupt delivery when an interrupt is signaled at the LINT0 
pin.

• LVT LINT1 Register (FEE0 0360H) — Specifies interrupt delivery when an interrupt is signaled at the LINT1 
pin.

• LVT Error Register (FEE0 0370H) — Specifies interrupt delivery when the APIC detects an internal error 
(see Section 10.5.3, “Error Handling”).

The LVT performance counter register and its associated interrupt were introduced in the P6 processors and are 
also present in the Pentium 4 and Intel Xeon processors. The LVT thermal monitor register and its associated inter-
rupt were introduced in the Pentium 4 and Intel Xeon processors. The LVT CMCI register and its associated inter-
rupt were introduced in the Intel Xeon 5500 processors.

As shown in Figures 10-8, some of these fields and flags are not available (and reserved) for some entries.

The setup information that can be specified in the registers of the LVT table is as follows:
Vector Interrupt vector number.

Figure 10-7.  Local APIC Version Register
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25 24

VersionMax LVT Entry

Value after reset: 00BN 00VVH
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Address: FEE0 0030H
B = 1 if EOI-broadcast suppression supported
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Delivery Mode Specifies the type of interrupt to be sent to the processor. Some delivery modes will only 
operate as intended when used in conjunction with a specific trigger mode. The allowable 
delivery modes are as follows:

000 (Fixed) Delivers the interrupt specified in the vector field.

010 (SMI) Delivers an SMI interrupt to the processor core through the processor’s lo-
cal SMI signal path. When using this delivery mode, the vector field should 
be set to 00H for future compatibility.

100 (NMI) Delivers an NMI interrupt to the processor. The vector information is ig-
nored. 

101 (INIT) Delivers an INIT request to the processor core, which causes the processor 
to perform an INIT. When using this delivery mode, the vector field should 

Figure 10-8.  Local Vector Table (LVT)
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be set to 00H for future compatibility. Not supported for the LVT CMCI reg-
ister, the LVT thermal monitor register, or the LVT performance counter 
register.

110 Reserved; not supported for any LVT register.

111 (ExtINT) Causes the processor to respond to the interrupt as if the interrupt origi-
nated in an externally connected (8259A-compatible) interrupt controller. 
A special INTA bus cycle corresponding to ExtINT, is routed to the external 
controller. The external controller is expected to supply the vector informa-
tion. The APIC architecture supports only one ExtINT source in a system, 
usually contained in the compatibility bridge. Only one processor in the 
system should have an LVT entry configured to use the ExtINT delivery 
mode. Not supported for the LVT CMCI register, the LVT thermal monitor 
register, or the LVT performance counter register.

Delivery Status (Read Only)
Indicates the interrupt delivery status, as follows:

0 (Idle) There is currently no activity for this interrupt source, or the previous in-
terrupt from this source was delivered to the processor core and accepted.

1 (Send Pending)
Indicates that an interrupt from this source has been delivered to the pro-
cessor core but has not yet been accepted (see Section 10.5.5, “Local In-
terrupt Acceptance”).

Interrupt Input Pin Polarity
Specifies the polarity of the corresponding interrupt pin: (0) active high or (1) active low. 

Remote IRR Flag (Read Only)
For fixed mode, level-triggered interrupts; this flag is set when the local APIC accepts the 
interrupt for servicing and is reset when an EOI command is received from the processor. The 
meaning of this flag is undefined for edge-triggered interrupts and other delivery modes. 

Trigger Mode Selects the trigger mode for the local LINT0 and LINT1 pins: (0) edge sensitive and (1) level 
sensitive. This flag is only used when the delivery mode is Fixed. When the delivery mode is 
NMI, SMI, or INIT, the trigger mode is always edge sensitive. When the delivery mode is 
ExtINT, the trigger mode is always level sensitive. The timer and error interrupts are always 
treated as edge sensitive. 
If the local APIC is not used in conjunction with an I/O APIC and fixed delivery mode is 
selected; the Pentium 4, Intel Xeon, and P6 family processors will always use level-sensitive 
triggering, regardless if edge-sensitive triggering is selected.
Software should always set the trigger mode in the LVT LINT1 register to 0 (edge sensitive). 
Level-sensitive interrupts are not supported for LINT1.

Mask Interrupt mask: (0) enables reception of the interrupt and (1) inhibits reception of the inter-
rupt. When the local APIC handles a performance-monitoring counters interrupt, it automati-
cally sets the mask flag in the LVT performance counter register. This flag is set to 1 on reset. 
It can be cleared only by software.

Timer Mode Bits 18:17 selects the timer mode (see Section 10.5.4): 
(00b) one-shot mode using a count-down value,
(01b) periodic mode reloading a count-down value,
(10b) TSC-Deadline mode using absolute target value in IA32_TSC_DEADLINE MSR (see 
Section 10.5.4.1),
(11b) is reserved.

10.5.2 Valid Interrupt Vectors

The Intel 64 and IA-32 architectures define 256 vector numbers, ranging from 0 through 255 (see Section 6.2, 
“Exception and Interrupt Vectors”). Local and I/O APICs support 240 of these vectors (in the range of 16 to 255) as 
valid interrupts.



Vol. 3A 10-15

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

When an interrupt vector in the range of 0 to 15 is sent or received through the local APIC, the APIC indicates an 
illegal vector in its Error Status Register (see Section 10.5.3, “Error Handling”). The Intel 64 and IA-32 architec-
tures reserve vectors 16 through 31 for predefined interrupts, exceptions, and Intel-reserved encodings (see Table 
6-1). However, the local APIC does not treat vectors in this range as illegal.

When an illegal vector value (0 to 15) is written to an LVT entry and the delivery mode is Fixed (bits 8-11 equal 0), 
the APIC may signal an illegal vector error, without regard to whether the mask bit is set or whether an interrupt is 
actually seen on the input.

10.5.3 Error Handling

The local APIC records errors detected during interrupt handling in the error status register (ESR). The format of 
the ESR is given in Figure 10-9; it contains the following flags:

• Bit 0: Send Checksum Error.
Set when the local APIC detects a checksum error for a message that it sent on the APIC bus. Used only on P6 
family and Pentium processors.

• Bit 1: Receive Checksum Error.
Set when the local APIC detects a checksum error for a message that it received on the APIC bus. Used only on 
P6 family and Pentium processors.

• Bit 2: Send Accept Error.
Set when the local APIC detects that a message it sent was not accepted by any APIC on the APIC bus. Used 
only on P6 family and Pentium processors.

• Bit 3: Receive Accept Error.
Set when the local APIC detects that the message it received was not accepted by any APIC on the APIC bus, 
including itself. Used only on P6 family and Pentium processors.

• Bit 4: Redirectable IPI.
Set when the local APIC detects an attempt to send an IPI with the lowest-priority delivery mode and the local 
APIC does not support the sending of such IPIs. This bit is used on some Intel Core and Intel Xeon processors. 
As noted in Section 10.6.2, the ability of a processor to send a lowest-priority IPI is model-specific and should 
be avoided.

Figure 10-9.  Error Status Register (ESR)

Address: FEE0 0280H
Value after reset: 0H

31 0

Reserved
78 123456

Illegal Register Address1

Received Illegal Vector
Send Illegal Vector
Redirectable IPI2
Receive Accept Error3
Send Accept Error3
Receive Checksum Error3
Send Checksum Error3

2. Used only by some Intel Core and Intel Xeon processors;
reserved on other processors.

1. Used only by Intel Core, Pentium 4, Intel Xeon, and P6 family
processors; reserved on the Pentium processor.

NOTES:

3. Used only by the P6 family and Pentium processors;
reserved on Intel Core, Pentium 4 and Intel Xeon processors.
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• Bit 5: Send Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in the message that it is sending. 
This occurs as the result of a write to the ICR (in both xAPIC and x2APIC modes) or to SELF IPI register (x2APIC 
mode only) with an illegal vector.
If the local APIC does not support the sending of lowest-priority IPIs and software writes the ICR to send a 
lowest-priority IPI with an illegal vector, the local APIC sets only the “redirectible IPI” error bit. The interrupt is 
not processed and hence the “Send Illegal Vector” bit is not set in the ESR.

• Bit 6: Receive Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in an interrupt message it receives 
or in an interrupt generated locally from the local vector table or via a self IPI. Such interrupts are not be 
delivered to the processor; the local APIC will never set an IRR bit in the range 0 to 15.

• Bit 7: Illegal Register Address
Set when the local APIC is in xAPIC mode and software attempts to access a register that is reserved in the 
processor's local-APIC register-address space; see Table 10-1. (The local-APIC register-address space 
comprises the 4 KBytes at the physical address specified in the IA32_APIC_BASE MSR.) Used only on Intel 
Core, Intel Atom™, Pentium 4, Intel Xeon, and P6 family processors.
In x2APIC mode, software accesses the APIC registers using the RDMSR and WRMSR instructions. Use of one 
of these instructions to access a reserved register cause a general-protection exception (see Section 
10.12.1.3). They do not set the “Illegal Register Access” bit in the ESR.

The ESR is a write/read register. Before attempt to read from the ESR, software should first write to it. (The value 
written does not affect the values read subsequently; only zero may be written in x2APIC mode.) This write clears 
any previously logged errors and updates the ESR with any errors detected since the last write to the ESR. This 
write also rearms the APIC error interrupt triggering mechanism.

The LVT Error Register (see Section 10.5.1) allows specification of the vector of the interrupt to be delivered to the 
processor core when APIC error is detected. The register also provides a means of masking an APIC-error interrupt. 
This masking only prevents delivery of APIC-error interrupts; the APIC continues to record errors in the ESR.

10.5.4 APIC Timer

The local APIC unit contains a 32-bit programmable timer that is available to software to time events or operations. 
This timer is set up by programming four registers: the divide configuration register (see Figure 10-10), the initial-
count and current-count registers (see Figure 10-11), and the LVT timer register (see Figure 10-8). 

If CPUID.06H:EAX.ARAT[bit 2] = 1, the processor’s APIC timer runs at a constant rate regardless of P-state transi-
tions and it continues to run at the same rate in deep C-states.

If CPUID.06H:EAX.ARAT[bit 2] = 0 or if CPUID 06H is not supported, the APIC timer may temporarily stop while the 
processor is in deep C-states or during transitions caused by Enhanced Intel SpeedStep® Technology.

The time base for the timer is derived from the processor’s bus clock, divided by the value specified in the divide 
configuration register.

Figure 10-10.  Divide Configuration Register

Address: FEE0 03E0H
Value after reset: 0H

0

Divide Value (bits 0, 1 and 3)
000: Divide by 2
001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

31 0

Reserved
1234
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The timer can be configured through the timer LVT entry for one-shot or periodic operation. In one-shot mode, the 
timer is started by programming its initial-count register. The initial count value is then copied into the current-
count register and count-down begins. After the timer reaches zero, an timer interrupt is generated and the timer 
remains at its 0 value until reprogrammed. 

In periodic mode, the current-count register is automatically reloaded from the initial-count register when the 
count reaches 0 and a timer interrupt is generated, and the count-down is repeated. If during the count-down 
process the initial-count register is set, counting will restart, using the new initial-count value. The initial-count 
register is a read-write register; the current-count register is read only.

A write of 0 to the initial-count register effectively stops the local APIC timer, in both one-shot and periodic mode.

The LVT timer register determines the vector number that is delivered to the processor with the timer interrupt that 
is generated when the timer count reaches zero. The mask flag in the LVT timer register can be used to mask the 
timer interrupt.

10.5.4.1  TSC-Deadline Mode

The mode of operation of the local-APIC timer is determined by the LVT Timer Register. Specifically, if 
CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, the mode is determined by bit 17 of the register; if 
CPUID.01H:ECX.TSC_Deadline[bit 24] = 1, the mode is determined by bits 18:17. See Figure 10-8. (If 
CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, bit 18 of the register is reserved.) A write to the LVT Timer Register 
that changes the timer mode disarms the local APIC timer. The supported timer modes are given in Table 10-2. The 
three modes of the local APIC timer are mutually exclusive.

The TSC-deadline mode allows software to use local APIC timer to single interrupt at an absolute time. In TSC-
deadline mode, writes to the initial-count register are ignored; and current-count register always reads 0. Instead, 
timer behavior is controlled using the IA32_TSC_DEADLINE MSR.

The IA32_TSC_DEADLINE MSR (MSR address 6E0H) is a per-logical processor MSR that specifies the time at which 
a timer interrupt should occur. Writing a non-zero 64-bit value into IA32_TSC_DEADLINE arms the timer. An inter-
rupt is generated when the logical processor’s time-stamp counter equals or exceeds the target value in the 
IA32_TSC_DEADLINE MSR.2 When the timer generates an interrupt, it disarms itself and clears the 

 

Figure 10-11.  Initial Count and Current Count Registers

Table 10-2. Local APIC Timer Modes

LVT Bits [18:17] Timer Mode

00b One-shot mode, program count-down value in an initial-count register. See Section 10.5.4

01b Periodic mode, program interval value in an initial-count register. See Section 10.5.4

10b TSC-Deadline mode, program target value in IA32_TSC_DEADLINE MSR.

11b Reserved

2. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using either RDMSR, RDTSC, or RDTSCP) may 
not return the actual value of the time-stamp counter; see Chapter 27 of the Intel® 64 and IA-32 Architectures Software Devel-

oper’s Manual, Volume 3C. It is the responsibility of software operating in VMX root operation to coordinate the virtualization of the 
time-stamp counter and the IA32_TSC_DEADLINE MSR.

31 0

Initial Count

Address: Initial Count

Value after reset: 0H

Current Count

Current Count FEE0 0390H
FEE0 0380H
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IA32_TSC_DEADLINE MSR. Thus, each write to the IA32_TSC_DEADLINE MSR generates at most one timer inter-
rupt.

In TSC-deadline mode, writing 0 to the IA32_TSC_DEADLINE MSR disarms the local-APIC timer. Transitioning 
between TSC-deadline mode and other timer modes also disarms the timer.

The hardware reset value of the IA32_TSC_DEADLINE MSR is 0. In other timer modes (LVT bit 18 = 0), the 
IA32_TSC_DEADLINE MSR reads zero and writes are ignored.

Software can configure the TSC-deadline timer to deliver a single interrupt using the following algorithm:

1. Detect support for TSC-deadline mode by verifying CPUID.1:ECX.24 = 1.

2. Select the TSC-deadline mode by programming bits 18:17 of the LVT Timer register with 10b.

3. Program the IA32_TSC_DEADLINE MSR with the target TSC value at which the timer interrupt is desired. This 
causes the processor to arm the timer.

4. The processor generates a timer interrupt when the value of time-stamp counter is greater than or equal to that 
of IA32_TSC_DEADLINE. It then disarms the timer and clear the IA32_TSC_DEADLINE MSR. (Both the time-
stamp counter and the IA32_TSC_DEADLINE MSR are 64-bit unsigned integers.)

5. Software can re-arm the timer by repeating step 3.

The following are usage guidelines for TSC-deadline mode:
• Writes to the IA32_TSC_DEADLINE MSR are not serialized. Therefore, system software should not use WRMSR 

to the IA32_TSC_DEADLINE MSR as a serializing instruction. Read and write accesses to the 
IA32_TSC_DEADLINE and other MSR registers will occur in program order. 

• Software can disarm the timer at any time by writing 0 to the IA32_TSC_DEADLINE MSR. 
• If timer is armed, software can change the deadline (forward or backward) by writing a new value to the 

IA32_TSC_DEADLINE MSR.
• If software disarms the timer or postpones the deadline, race conditions may result in the delivery of a spurious 

timer interrupt. Software is expected to detect such spurious interrupts by checking the current value of the 
time-stamp counter to confirm that the interrupt was desired.3

• In xAPIC mode (in which the local-APIC registers are memory-mapped), software must serialize between the 
memory-mapped write to the LVT entry and the WRMSR to IA32_TSC_DEADLINE. In x2APIC mode, no serial-
ization is required between the two writes (by WRMSR) to the LVT and IA32_TSC_DEADLINE MSRs.

The following is a sample algorithm for serializing writes in xAPIC mode:

1. Memory-mapped write to LVT Timer Register, setting bits 18:17 to 10b.

2. WRMSR to the IA32_TSC_DEADLINE MSR a value much larger than current time-stamp counter.

3. If RDMSR of the IA32_TSC_DEADLINE MSR returns zero, go to step 2.

4. WRMSR to the IA32_TSC_DEADLINE MSR the desired deadline. 

10.5.5 Local Interrupt Acceptance

When a local interrupt is sent to the processor core, it is subject to the acceptance criteria specified in the interrupt 
acceptance flow chart in Figure 10-17. If the interrupt is accepted, it is logged into the IRR register and handled by 
the processor according to its priority (see Section 10.8.4, “Interrupt Acceptance for Fixed Interrupts”). If the 
interrupt is not accepted, it is sent back to the local APIC and retried.

3. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using either RDMSR, RDTSC, or RDTSCP) may 
not return the actual value of the time-stamp counter; see Chapter 27 of the Intel® 64 and IA-32 Architectures Software Devel-

oper’s Manual, Volume 3C. It is the responsibility of software operating in VMX root operation to coordinate the virtualization of the 
time-stamp counter and the IA32_TSC_DEADLINE MSR.
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10.6 ISSUING INTERPROCESSOR INTERRUPTS

The following sections describe the local APIC facilities that are provided for issuing interprocessor interrupts (IPIs) 
from software. The primary local APIC facility for issuing IPIs is the interrupt command register (ICR). The ICR can 
be used for the following functions:
• To send an interrupt to another processor.
• To allow a processor to forward an interrupt that it received but did not service to another processor for 

servicing.
• To direct the processor to interrupt itself (perform a self interrupt).
• To deliver special IPIs, such as the start-up IPI (SIPI) message, to other processors. 

Interrupts generated with this facility are delivered to the other processors in the system through the system bus 
(for Pentium 4 and Intel Xeon processors) or the APIC bus (for P6 family and Pentium processors). The ability for a 
processor to send a lowest priority IPI is model specific and should be avoided by BIOS and operating system soft-
ware.

10.6.1 Interrupt Command Register (ICR)

The interrupt command register (ICR) is a 64-bit4 local APIC register (see Figure 10-12) that allows software 
running on the processor to specify and send interprocessor interrupts (IPIs) to other processors in the system.

To send an IPI, software must set up the ICR to indicate the type of IPI message to be sent and the destination 
processor or processors. (All fields of the ICR are read-write by software with the exception of the delivery status 
field, which is read-only.) The act of writing to the low doubleword of the ICR causes the IPI to be sent.

The ICR consists of the following fields. 
Vector The vector number of the interrupt being sent.
Delivery Mode Specifies the type of IPI to be sent. This field is also know as the IPI message type field.

000 (Fixed) Delivers the interrupt specified in the vector field to the target processor 
or processors.

001 (Lowest Priority)
Same as fixed mode, except that the interrupt is delivered to the proces-
sor executing at the lowest priority among the set of processors specified 
in the destination field. The ability for a processor to send a lowest priority 
IPI is model specific and should be avoided by BIOS and operating system 
software.

010 (SMI) Delivers an SMI interrupt to the target processor or processors. The vector 
field must be programmed to 00H for future compatibility.

011 (Reserved)

100 (NMI) Delivers an NMI interrupt to the target processor or processors. The vector 
information is ignored. 

101 (INIT) Delivers an INIT request to the target processor or processors, which 
causes them to perform an INIT. As a result of this IPI message, all the 
target processors perform an INIT. The vector field must be programmed 
to 00H for future compatibility.

101 (INIT Level De-assert)
(Not supported in the Pentium 4 and Intel Xeon processors.) Sends a syn-
chronization message to all the local APICs in the system to set their arbi-
tration IDs (stored in their Arb ID registers) to the values of their APIC IDs 
(see Section 10.7, “System and APIC Bus Arbitration”). For this delivery 
mode, the level flag must be set to 0 and trigger mode flag to 1. This IPI is 

4. In XAPIC mode the ICR is addressed as two 32-bit registers, ICR_LOW (FFE0 0300H) and ICR_HIGH (FFE0 0310H).
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sent to all processors, regardless of the value in the destination field or the 
destination shorthand field; however, software should specify the “all in-
cluding self” shorthand. 

110 (Start-Up)
Sends a special “start-up” IPI (called a SIPI) to the target processor or 
processors. The vector typically points to a start-up routine that is part of 
the BIOS boot-strap code (see Section 8.4, “Multiple-Processor (MP) Ini-
tialization”). IPIs sent with this delivery mode are not automatically retried 
if the source APIC is unable to deliver it. It is up to the software to deter-
mine if the SIPI was not successfully delivered and to reissue the SIPI if 
necessary.

Destination Mode Selects either physical (0) or logical (1) destination mode (see Section 10.6.2, “Determining 
IPI Destination”).

Delivery Status (Read Only)
Indicates the IPI delivery status, as follows:

0 (Idle) Indicates that this local APIC has completed sending any previous IPIs.

1 (Send Pending)
Indicates that this local APIC has not completed sending the last IPI.

Level For the INIT level de-assert delivery mode this flag must be set to 0; for all other delivery 
modes it must be set to 1. (This flag has no meaning in Pentium 4 and Intel Xeon processors, 
and will always be issued as a 1.)

Figure 10-12.  Interrupt Command Register (ICR)

31 0

Reserved
7

Vector

Destination Shorthand

810

Delivery Mode
000: Fixed
001: Lowest Priority1

00: No Shorthand
01: Self

111213141516171819

10: All Including Self
11: All Excluding Self

010: SMI
011: Reserved
100: NMI
101: INIT
110: Start Up
111: Reserved

Destination Mode
0: Physical
1: Logical

Delivery Status
0: Idle
1: Send Pending

Level
0 = De-assert
1 = Assert

Trigger Mode
0: Edge
1: Level

63 32

ReservedDestination Field
56

Address: FEE0 0300H (0 - 31)

Value after Reset: 0H

Reserved

20

55

FEE0 0310H (32 - 63)

 NOTE:
1. The ability of a processor to send Lowest Priority IPI is model specific.
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Trigger Mode Selects the trigger mode when using the INIT level de-assert delivery mode: edge (0) or level 
(1). It is ignored for all other delivery modes. (This flag has no meaning in Pentium 4 and Intel 
Xeon processors, and will always be issued as a 0.) 

Destination Shorthand
Indicates whether a shorthand notation is used to specify the destination of the interrupt and, 
if so, which shorthand is used. Destination shorthands are used in place of the 8-bit destina-
tion field, and can be sent by software using a single write to the low doubleword of the ICR. 
Shorthands are defined for the following cases: software self interrupt, IPIs to all processors 
in the system including the sender, IPIs to all processors in the system excluding the sender.

00: (No Shorthand)
The destination is specified in the destination field.

01: (Self) The issuing APIC is the one and only destination of the IPI. This destination 
shorthand allows software to interrupt the processor on which it is execut-
ing. An APIC implementation is free to deliver the self-interrupt message 
internally or to issue the message to the bus and “snoop” it as with any 
other IPI message.

10: (All Including Self)
The IPI is sent to all processors in the system including the processor send-
ing the IPI. The APIC will broadcast an IPI message with the destination 
field set to FH for Pentium and P6 family processors and to FFH for Pentium 
4 and Intel Xeon processors.

11: (All Excluding Self)
The IPI is sent to all processors in a system with the exception of the pro-
cessor sending the IPI. The APIC broadcasts a message with the physical 
destination mode and destination field set to 0xFH for Pentium and P6 
family processors and to 0xFFH for Pentium 4 and Intel Xeon processors. 
Support for this destination shorthand in conjunction with the lowest-pri-
ority delivery mode is model specific. For Pentium 4 and Intel Xeon proces-
sors, when this shorthand is used together with lowest priority delivery 
mode, the IPI may be redirected back to the issuing processor.

Destination Specifies the target processor or processors. This field is only used when the destination 
shorthand field is set to 00B. If the destination mode is set to physical, then bits 56 through 59 
contain the APIC ID of the target processor for Pentium and P6 family processors and bits 56 
through 63 contain the APIC ID of the target processor the for Pentium 4 and Intel Xeon 
processors. If the destination mode is set to logical, the interpretation of the 8-bit destination 
field depends on the settings of the DFR and LDR registers of the local APICs in all the proces-
sors in the system (see Section 10.6.2, “Determining IPI Destination”).

Not all combinations of options for the ICR are valid. Table 10-3 shows the valid combinations for the fields in the 
ICR for the Pentium 4 and Intel Xeon processors; Table 10-4 shows the valid combinations for the fields in the ICR 
for the P6 family processors. Also note that the lower half of the ICR may not be preserved over transitions to the 
deepest C-States.

ICR operation in x2APIC mode is discussed in Section 10.12.9.

Table 10-3 Valid Combinations for the Pentium 4 and Intel Xeon Processors’ 

Local xAPIC Interrupt Command Register

Destination 
Shorthand

Valid/
Invalid

Trigger 
Mode Delivery Mode

Destination Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Invalid2 Level All Modes Physical or Logical

Self Valid Edge Fixed X3

Self Invalid2 Level Fixed X

Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up X
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All Including Self Valid Edge Fixed X

All Including Self Invalid2 Level Fixed X

All Including Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-Up X

All Excluding Self Valid Edge Fixed, Lowest Priority1,4, NMI, INIT, SMI, Start-Up X

All Excluding Self Invalid2 Level FIxed, Lowest Priority4, NMI, INIT, SMI, Start-Up X

NOTES:

1. The ability of a processor to send a lowest priority IPI is model specific.

2. For these interrupts, if the trigger mode bit is 1 (Level), the local xAPIC will override the bit setting and issue the interrupt as an 
edge triggered interrupt.

3. X means the setting is ignored.

4. When using the “lowest priority” delivery mode and the “all excluding self” destination, the IPI can be redirected back to the issuing 
APIC, which is essentially the same as the “all including self” destination mode.

Table 10-4 Valid Combinations for the P6 Family Processors’

Local APIC Interrupt Command Register

Destination 
Shorthand

Valid/
Invalid

Trigger Mode
Delivery Mode Destination Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Valid2 Level Fixed, Lowest Priority1, NMI Physical or Logical

No Shorthand Valid3 Level INIT Physical or Logical

Self Valid Edge Fixed X4

Self 1 Level Fixed X

Self Invalid5 X Lowest Priority, NMI, INIT, SMI, Start-Up X

All including Self Valid Edge Fixed X

All including Self Valid2 Level Fixed X

All including Self Invalid5 X Lowest Priority, NMI, INIT, SMI, Start-Up X

All excluding Self Valid Edge All Modes1 X

All excluding Self Valid2 Level Fixed, Lowest Priority1, NMI X

All excluding Self Invalid5 Level SMI, Start-Up X

All excluding Self Valid3 Level INIT X

X Invalid5 Level SMI, Start-Up X

NOTES:

1. The ability of a processor to send a lowest priority IPI is model specific.

2. Treated as edge triggered if level bit is set to 1, otherwise ignored.

3. Treated as edge triggered when Level bit is set to 1; treated as “INIT Level Deassert” message when level bit is set to 0 (deassert). 
Only INIT level deassert messages are allowed to have the level bit set to 0. For all other messages the level bit must be set to 1.

4. X means the setting is ignored.

5. The behavior of the APIC is undefined.

Table 10-3 Valid Combinations for the Pentium 4 and Intel Xeon Processors’ 

Local xAPIC Interrupt Command Register (Contd.)

Destination 
Shorthand

Valid/
Invalid

Trigger 
Mode Delivery Mode

Destination Mode
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10.6.2 Determining IPI Destination

The destination of an IPI can be one, all, or a subset (group) of the processors on the system bus. The sender of 
the IPI specifies the destination of an IPI with the following APIC registers and fields within the registers:
• ICR Register — The following fields in the ICR register are used to specify the destination of an IPI:

— Destination Mode — Selects one of two destination modes (physical or logical).

— Destination Field — In physical destination mode, used to specify the APIC ID of the destination 
processor; in logical destination mode, used to specify a message destination address (MDA) that can be 
used to select specific processors in clusters.

— Destination Shorthand — A quick method of specifying all processors, all excluding self, or self as the 
destination.

— Delivery mode, Lowest Priority — Architecturally specifies that a lowest-priority arbitration mechanism 
be used to select a destination processor from a specified group of processors. The ability of a processor to 
send a lowest priority IPI is model specific and should be avoided by BIOS and operating system software.

• Local destination register (LDR) — Used in conjunction with the logical destination mode and MDAs to 
select the destination processors.

• Destination format register (DFR) — Used in conjunction with the logical destination mode and MDAs to 
select the destination processors.

How the ICR, LDR, and DFR are used to select an IPI destination depends on the destination mode used: physical, 
logical, broadcast/self, or lowest-priority delivery mode. These destination modes are described in the following 
sections.

Determination of IPI destinations in x2APIC mode is discussed in Section 10.12.10.

10.6.2.1  Physical Destination Mode

In physical destination mode, the destination processor is specified by its local APIC ID (see Section 10.4.6, “Local 
APIC ID”). For Pentium 4 and Intel Xeon processors, either a single destination (local APIC IDs 00H through FEH) 
or a broadcast to all APICs (the APIC ID is FFH) may be specified in physical destination mode. 

A broadcast IPI (bits 28-31 of the MDA are 1's) or I/O subsystem initiated interrupt with lowest priority delivery 
mode is not supported in physical destination mode and must not be configured by software. Also, for any non-
broadcast IPI or I/O subsystem initiated interrupt with lowest priority delivery mode, software must ensure that 
APICs defined in the interrupt address are present and enabled to receive interrupts. 

For the P6 family and Pentium processors, a single destination is specified in physical destination mode with a local 
APIC ID of 0H through 0EH, allowing up to 15 local APICs to be addressed on the APIC bus. A broadcast to all local 
APICs is specified with 0FH.

NOTE

The number of local APICs that can be addressed on the system bus may be restricted by 
hardware.

10.6.2.2  Logical Destination Mode

In logical destination mode, IPI destination is specified using an 8-bit message destination address (MDA), which 
is entered in the destination field of the ICR. Upon receiving an IPI message that was sent using logical destination 
mode, a local APIC compares the MDA in the message with the values in its LDR and DFR to determine if it should 
accept and handle the IPI. For both configurations of logical destination mode, when combined with lowest priority 
delivery mode, software is responsible for ensuring that all of the local APICs included in or addressed by the IPI or 
I/O subsystem interrupt are present and enabled to receive the interrupt.

Figure 10-13 shows the layout of the logical destination register (LDR). The 8-bit logical APIC ID field in this 
register is used to create an identifier that can be compared with the MDA.
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NOTE

The logical APIC ID should not be confused with the local APIC ID that is contained in the local APIC 
ID register.

Figure 10-14 shows the layout of the destination format register (DFR). The 4-bit model field in this register selects 
one of two models (flat or cluster) that can be used to interpret the MDA when using logical destination mode.

The interpretation of MDA for the two models is described in the following paragraphs.

1. Flat Model — This model is selected by programming DFR bits 28 through 31 to 1111. Here, a unique logical 
APIC ID can be established for up to 8 local APICs by setting a different bit in the logical APIC ID field of the LDR 
for each local APIC. A group of local APICs can then be selected by setting one or more bits in the MDA. 
Each local APIC performs a bit-wise AND of the MDA and its logical APIC ID. If a true condition is detected, the 
local APIC accepts the IPI message. A broadcast to all APICs is achieved by setting the MDA to 1s.

2. Cluster Model — This model is selected by programming DFR bits 28 through 31 to 0000. This model supports 
two basic destination schemes: flat cluster and hierarchical cluster.
The flat cluster destination model is only supported for P6 family and Pentium processors. Using this model, all 
APICs are assumed to be connected through the APIC bus. Bits 60 through 63 of the MDA contains the encoded 
address of the destination cluster and bits 56 through 59 identify up to four local APICs within the cluster (each 
bit is assigned to one local APIC in the cluster, as in the flat connection model). To identify one or more local 
APICs, bits 60 through 63 of the MDA are compared with bits 28 through 31 of the LDR to determine if a local 
APIC is part of the cluster. Bits 56 through 59 of the MDA are compared with Bits 24 through 27 of the LDR to 
identify a local APICs within the cluster. 
Sets of processors within a cluster can be specified by writing the target cluster address in bits 60 through 63 
of the MDA and setting selected bits in bits 56 through 59 of the MDA, corresponding to the chosen members 
of the cluster. In this mode, 15 clusters (with cluster addresses of 0 through 14) each having 4 local APICs can 
be specified in the message. For the P6 and Pentium processor’s local APICs, however, the APIC arbitration ID 
supports only 15 APIC agents. Therefore, the total number of processors and their local APICs supported in 
this mode is limited to 15. Broadcast to all local APICs is achieved by setting all destination bits to one. This 
guarantees a match on all clusters and selects all APICs in each cluster. A broadcast IPI or I/O subsystem 
broadcast interrupt with lowest priority delivery mode is not supported in cluster mode and must not be 
configured by software.
The hierarchical cluster destination model can be used with Pentium 4, Intel Xeon, P6 family, or Pentium 
processors. With this model, a hierarchical network can be created by connecting different flat clusters via 

Figure 10-13.  Logical Destination Register (LDR)

Figure 10-14.  Destination Format Register (DFR)
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independent system or APIC buses. This scheme requires a cluster manager within each cluster, which is 
responsible for handling message passing between system or APIC buses. One cluster contains up to 4 agents. 
Thus 15 cluster managers, each with 4 agents, can form a network of up to 60 APIC agents. Note that hierar-
chical APIC networks requires a special cluster manager device, which is not part of the local or the I/O APIC 
units.

NOTES

All processors that have their APIC software enabled (using the spurious vector enable/disable bit) 
must have their DFRs (Destination Format Registers) programmed identically.
The default mode for DFR is flat mode. If you are using cluster mode, DFRs must be programmed 
before the APIC is software enabled. Since some chipsets do not accurately track a system view of 
the logical mode, program DFRs as soon as possible after starting the processor.

10.6.2.3  Broadcast/Self Delivery Mode

The destination shorthand field of the ICR allows the delivery mode to be by-passed in favor of broadcasting the IPI 
to all the processors on the system bus and/or back to itself (see Section 10.6.1, “Interrupt Command Register 
(ICR)”). Three destination shorthands are supported: self, all excluding self, and all including self. The destination 
mode is ignored when a destination shorthand is used.

10.6.2.4  Lowest Priority Delivery Mode

With lowest priority delivery mode, the ICR is programmed to send an IPI to several processors on the system bus, 
using the logical or shorthand destination mechanism for selecting the processor. The selected processors then 
arbitrate with one another over the system bus or the APIC bus, with the lowest-priority processor accepting the 
IPI. 

For systems based on the Intel Xeon processor, the chipset bus controller accepts messages from the I/O APIC 
agents in the system and directs interrupts to the processors on the system bus. When using the lowest priority 
delivery mode, the chipset chooses a target processor to receive the interrupt out of the set of possible targets. The 
Pentium 4 processor provides a special bus cycle on the system bus that informs the chipset of the current task 
priority for each logical processor in the system. The chipset saves this information and uses it to choose the lowest 
priority processor when an interrupt is received.

For systems based on P6 family processors, the processor priority used in lowest-priority arbitration is contained in 
the arbitration priority register (APR) in each local APIC. Figure 10-15 shows the layout of the APR. 

The APR value is computed as follows:

IF (TPR[7:4] ≥ IRRV[7:4]) AND (TPR[7:4] > ISRV[7:4]) 

THEN 

APR[7:0] ← TPR[7:0]

ELSE 

APR[7:4] ← max(TPR[7:4] AND ISRV[7:4], IRRV[7:4])

APR[3:0] ← 0.

 

Figure 10-15.  Arbitration Priority Register (APR)

31 078

Reserved

Address: FEE0 0090H
Value after reset: 0H

Arbitration Priority Sub-Class
Arbitration Priority Class

4 3



10-26 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

Here, the TPR value is the task priority value in the TPR (see Figure 10-18), the IRRV value is the vector number 
for the highest priority bit that is set in the IRR (see Figure 10-20) or 00H (if no IRR bit is set), and the ISRV value 
is the vector number for the highest priority bit that is set in the ISR (see Figure 10-20). Following arbitration 
among the destination processors, the processor with the lowest value in its APR handles the IPI and the other 
processors ignore it.

(P6 family and Pentium processors.) For these processors, if a focus processor exists, it may accept the interrupt, 
regardless of its priority. A processor is said to be the focus of an interrupt if it is currently servicing that interrupt 
or if it has a pending request for that interrupt. For Intel Xeon processors, the concept of a focus processor is not 
supported.

In operating systems that use the lowest priority delivery mode but do not update the TPR, the TPR information 
saved in the chipset will potentially cause the interrupt to be always delivered to the same processor from the 
logical set. This behavior is functionally backward compatible with the P6 family processor but may result in unex-
pected performance implications.

10.6.3 IPI Delivery and Acceptance

When the low double-word of the ICR is written to, the local APIC creates an IPI message from the information 
contained in the ICR and sends the message out on the system bus (Pentium 4 and Intel Xeon processors) or the 
APIC bus (P6 family and Pentium processors). The manner in which these IPIs are handled after being issues in 
described in Section 10.8, “Handling Interrupts.”

10.7 SYSTEM AND APIC BUS ARBITRATION

When several local APICs and the I/O APIC are sending IPI and interrupt messages on the system bus (or APIC 
bus), the order in which the messages are sent and handled is determined through bus arbitration. 

For the Pentium 4 and Intel Xeon processors, the local and I/O APICs use the arbitration mechanism defined for the 
system bus to determine the order in which IPIs are handled. This mechanism is non-architectural and cannot be 
controlled by software.

For the P6 family and Pentium processors, the local and I/O APICs use an APIC-based arbitration mechanism to 
determine the order in which IPIs are handled. Here, each local APIC is given an arbitration priority of from 0 to 15, 
which the I/O APIC uses during arbitration to determine which local APIC should be given access to the APIC bus. 
The local APIC with the highest arbitration priority always wins bus access. Upon completion of an arbitration 
round, the winning local APIC lowers its arbitration priority to 0 and the losing local APICs each raise theirs by 1.

The current arbitration priority for a local APIC is stored in a 4-bit, software-transparent arbitration ID (Arb ID) 
register. During reset, this register is initialized to the APIC ID number (stored in the local APIC ID register). The 
INIT level-deassert IPI, which is issued with and ICR command, can be used to resynchronize the arbitration prior-
ities of the local APICs by resetting Arb ID register of each agent to its current APIC ID value. (The Pentium 4 and 
Intel Xeon processors do not implement the Arb ID register.)

Section 10.10, “APIC Bus Message Passing Mechanism and Protocol (P6 Family, Pentium Processors),” describes the 
APIC bus arbitration protocols and bus message formats, while Section 10.6.1, “Interrupt Command Register 
(ICR),” describes the INIT level de-assert IPI message. 

Note that except for the SIPI IPI (see Section 10.6.1, “Interrupt Command Register (ICR)”), all bus messages that 
fail to be delivered to their specified destination or destinations are automatically retried. Software should avoid 
situations in which IPIs are sent to disabled or nonexistent local APICs, causing the messages to be resent repeat-
edly.

10.8 HANDLING INTERRUPTS

When a local APIC receives an interrupt from a local source, an interrupt message from an I/O APIC, or and IPI, the 
manner in which it handles the message depends on processor implementation, as described in the following 
sections.



Vol. 3A 10-27

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

10.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon Processors

With the Pentium 4 and Intel Xeon processors, the local APIC handles the local interrupts, interrupt messages, and 
IPIs it receives as follows: 

1. It determines if it is the specified destination or not (see Figure 10-16). If it is the specified destination, it 
accepts the message; if it is not, it discards the message.

2. If the local APIC determines that it is the designated destination for the interrupt and if the interrupt request is 
an NMI, SMI, INIT, ExtINT, or SIPI, the interrupt is sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt but the interrupt request is 
not one of the interrupts given in step 2, the local APIC sets the appropriate bit in the IRR. 

4. When interrupts are pending in the IRR register, the local APIC dispatches them to the processor one at a time, 
based on their priority and the current processor priority in the PPR (see Section 10.8.3.1, “Task and Processor 
Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, the completion of the handler 
routine is indicated with an instruction in the instruction handler code that writes to the end-of-interrupt (EOI) 
register in the local APIC (see Section 10.8.5, “Signaling Interrupt Servicing Completion”). The act of writing to 
the EOI register causes the local APIC to delete the interrupt from its ISR queue and (for level-triggered 
interrupts) send a message on the bus indicating that the interrupt handling has been completed. (A write to 
the EOI register must not be included in the handler routine for an NMI, SMI, INIT, ExtINT, or SIPI.)

10.8.2 Interrupt Handling with the P6 Family and Pentium Processors

With the P6 family and Pentium processors, the local APIC handles the local interrupts, interrupt messages, and 
IPIs it receives as follows (see Figure 10-17).

1. (IPIs only) It examines the IPI message to determines if it is the specified destination for the IPI as described 
in Section 10.6.2, “Determining IPI Destination.” If it is the specified destination, it continues its acceptance 
procedure; if it is not the destination, it discards the IPI message. When the message specifies lowest-priority 
delivery mode, the local APIC will arbitrate with the other processors that were designated on recipients of the 
IPI message (see Section 10.6.2.4, “Lowest Priority Delivery Mode”).

2. If the local APIC determines that it is the designated destination for the interrupt and if the interrupt request is 
an NMI, SMI, INIT, ExtINT, or INIT-deassert interrupt, or one of the MP protocol IPI messages (BIPI, FIPI, and 
SIPI), the interrupt is sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt but the interrupt request is 
not one of the interrupts given in step 2, the local APIC looks for an open slot in one of its two pending interrupt 
queues contained in the IRR and ISR registers (see Figure 10-20). If a slot is available (see Section 10.8.4, 
“Interrupt Acceptance for Fixed Interrupts”), places the interrupt in the slot. If a slot is not available, it rejects 
the interrupt request and sends it back to the sender with a retry message.

4. When interrupts are pending in the IRR register, the local APIC dispatches them to the processor one at a time, 
based on their priority and the current processor priority in the PPR (see Section 10.8.3.1, “Task and Processor 
Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, the completion of the handler 
routine is indicated with an instruction in the instruction handler code that writes to the end-of-interrupt (EOI) 

Figure 10-16.  Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and Intel Xeon Processors)
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register in the local APIC (see Section 10.8.5, “Signaling Interrupt Servicing Completion”). The act of writing to 
the EOI register causes the local APIC to delete the interrupt from its queue and (for level-triggered interrupts) 
send a message on the bus indicating that the interrupt handling has been completed. (A write to the EOI 
register must not be included in the handler routine for an NMI, SMI, INIT, ExtINT, or SIPI.)

The following sections describe the acceptance of interrupts and their handling by the local APIC and processor in 
greater detail. 

10.8.3 Interrupt, Task, and Processor Priority

Each interrupt delivered to the processor through the local APIC has a priority based on its vector number. The local 
APIC uses this priority to determine when to service the interrupt relative to the other activities of the processor, 
including the servicing of other interrupts. 

Each interrupt vector is an 8-bit value. The interrupt-priority class is the value of bits 7:4 of the interrupt vector. 
The lowest interrupt-priority class is 1 and the highest is 15; interrupts with vectors in the range 0–15 (with inter-
rupt-priority class 0) are illegal and are never delivered. Because vectors 0–31 are reserved for dedicated uses by 
the Intel 64 and IA-32 architectures, software should configure interrupt vectors to use interrupt-priority classes in 
the range 2–15.

Each interrupt-priority class encompasses 16 vectors. The relative priority of interrupts within an interrupt-priority 
class is determined by the value of bits 3:0 of the vector number. The higher the value of those bits, the higher the 

Figure 10-17.  Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and Pentium Processors)
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priority within that interrupt-priority class. Thus, each interrupt vector comprises two parts, with the high 4 bits 
indicating its interrupt-priority class and the low 4 bits indicating its ranking within the interrupt-priority class.

10.8.3.1  Task and Processor Priorities

The local APIC also defines a task priority and a processor priority that determine the order in which interrupts 
are handled. The task-priority class is the value of bits 7:4 of the task-priority register (TPR), which can be 
written by software (TPR is a read/write register); see Figure 10-18. 

NOTE

In this discussion, the term “task” refers to a software defined task, process, thread, program, or 
routine that is dispatched to run on the processor by the operating system. It does not refer to an 
IA-32 architecture defined task as described in Chapter 7, “Task Management.”

The task priority allows software to set a priority threshold for interrupting the processor. This mechanism enables 
the operating system to temporarily block low priority interrupts from disturbing high-priority work that the 
processor is doing. The ability to block such interrupts using task priority results from the way that the TPR controls 
the value of the processor-priority register (PPR).5

The processor-priority class is a value in the range 0–15 that is maintained in bits 7:4 of the processor-priority 
register (PPR); see Figure 10-19. The PPR is a read-only register. The processor-priority class represents the 
current priority at which the processor is executing.

The value of the PPR is based on the value of TPR and the value ISRV; ISRV is the vector number of the highest 
priority bit that is set in the ISR or 00H if no bit is set in the ISR. (See Section 10.8.4 for more details on the ISR.) 
The value of PPR is determined as follows:
• PPR[7:4] (the processor-priority class) the maximum of TPR[7:4] (the task- priority class) and ISRV[7:4] (the 

priority of the highest priority interrupt in service).
• PPR[3:0] (the processor-priority sub-class) is determined as follows:

— If TPR[7:4] > ISRV[7:4], PPR[3:0] is TPR[3:0] (the task-priority sub-class).

— If TPR[7:4] < ISRV[7:4], PPR[3:0] is 0.

— If TPR[7:4] = ISRV[7:4], PPR[3:0] may be either TPR[3:0] or 0. The actual behavior is model-specific.

 

Figure 10-18.  Task-Priority Register (TPR)

5. The TPR also determines the arbitration priority of the local processor; see Section 10.6.2.4, “Lowest Priority Delivery Mode.”

 

Figure 10-19.  Processor-Priority Register (PPR)
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The processor-priority class determines the priority threshold for interrupting the processor. The processor will 
deliver only those interrupts that have an interrupt-priority class higher than the processor-priority class in the 
PPR. If the processor-priority class is 0, the PPR does not inhibit the delivery any interrupt; if it is 15, the processor 
inhibits the delivery of all interrupts. (The processor-priority mechanism does not affect the delivery of interrupts 
with the NMI, SMI, INIT, ExtINT, INIT-deassert, and start-up delivery modes.)

The processor does not use the processor-priority sub-class to determine which interrupts to delivery and which to 
inhibit. (The processor uses the processor-priority sub-class only to satisfy reads of the PPR.)

10.8.4 Interrupt Acceptance for Fixed Interrupts

The local APIC queues the fixed interrupts that it accepts in one of two interrupt pending registers: the interrupt 
request register (IRR) or in-service register (ISR). These two 256-bit read-only registers are shown in 
Figure 10-20. The 256 bits in these registers represent the 256 possible vectors; vectors 0 through 15 are reserved 
by the APIC (see also: Section 10.5.2, “Valid Interrupt Vectors”).

NOTE

All interrupts with an NMI, SMI, INIT, ExtINT, start-up, or INIT-deassert delivery mode bypass the 
IRR and ISR registers and are sent directly to the processor core for servicing.

The IRR contains the active interrupt requests that have been accepted, but not yet dispatched to the processor for 
servicing. When the local APIC accepts an interrupt, it sets the bit in the IRR that corresponds the vector of the 
accepted interrupt. When the processor core is ready to handle the next interrupt, the local APIC clears the highest 
priority IRR bit that is set and sets the corresponding ISR bit. The vector for the highest priority bit set in the ISR 
is then dispatched to the processor core for servicing. 

While the processor is servicing the highest priority interrupt, the local APIC can send additional fixed interrupts by 
setting bits in the IRR. When the interrupt service routine issues a write to the EOI register (see Section 10.8.5, 
“Signaling Interrupt Servicing Completion”), the local APIC responds by clearing the highest priority ISR bit that is 
set. It then repeats the process of clearing the highest priority bit in the IRR and setting the corresponding bit in 
the ISR. The processor core then begins executing the service routing for the highest priority bit set in the ISR.

If more than one interrupt is generated with the same vector number, the local APIC can set the bit for the vector 
both in the IRR and the ISR. This means that for the Pentium 4 and Intel Xeon processors, the IRR and ISR can 
queue two interrupts for each interrupt vector: one in the IRR and one in the ISR. Any additional interrupts issued 
for the same interrupt vector are collapsed into the single bit in the IRR.

For the P6 family and Pentium processors, the IRR and ISR registers can queue no more than two interrupts per 
interrupt vector and will reject other interrupts that are received within the same vector. 

If the local APIC receives an interrupt with an interrupt-priority class higher than that of the interrupt currently in 
service, and interrupts are enabled in the processor core, the local APIC dispatches the higher priority interrupt to 
the processor immediately (without waiting for a write to the EOI register). The currently executing interrupt 
handler is then interrupted so the higher-priority interrupt can be handled. When the handling of the higher-priority 
interrupt has been completed, the servicing of the interrupted interrupt is resumed.

 

Figure 10-20.  IRR, ISR and TMR Registers
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The trigger mode register (TMR) indicates the trigger mode of the interrupt (see Figure 10-20). Upon acceptance 
of an interrupt into the IRR, the corresponding TMR bit is cleared for edge-triggered interrupts and set for level-
triggered interrupts. If a TMR bit is set when an EOI cycle for its corresponding interrupt vector is generated, an 
EOI message is sent to all I/O APICs.

10.8.5 Signaling Interrupt Servicing Completion

For all interrupts except those delivered with the NMI, SMI, INIT, ExtINT, the start-up, or INIT-Deassert delivery 
mode, the interrupt handler must include a write to the end-of-interrupt (EOI) register (see Figure 10-21). This 
write must occur at the end of the handler routine, sometime before the IRET instruction. This action indicates that 
the servicing of the current interrupt is complete and the local APIC can issue the next interrupt from the ISR. 

Upon receiving an EOI, the APIC clears the highest priority bit in the ISR and dispatches the next highest priority 
interrupt to the processor. If the terminated interrupt was a level-triggered interrupt, the local APIC also sends an 
end-of-interrupt message to all I/O APICs. 
System software may prefer to direct EOIs to specific I/O APICs rather than having the local APIC send end-of-
interrupt messages to all I/O APICs.

Software can inhibit the broadcast of EOI message by setting bit 12 of the Spurious Interrupt Vector Register (see 
Section 10.9). If this bit is set, a broadcast EOI is not generated on an EOI cycle even if the associated TMR bit indi-
cates that the current interrupt was level-triggered. The default value for the bit is 0, indicating that EOI broadcasts 
are performed.

Bit 12 of the Spurious Interrupt Vector Register is reserved to 0 if the processor does not support suppression of 
EOI broadcasts. Support for EOI-broadcast suppression is reported in bit 24 in the Local APIC Version Register (see 
Section 10.4.8); the feature is supported if that bit is set to 1. When supported, the feature is available in both 
xAPIC mode and x2APIC mode.

System software desiring to perform directed EOIs for level-triggered interrupts should set bit 12 of the Spurious 
Interrupt Vector Register and follow each the EOI to the local xAPIC for a level triggered interrupt with a directed 
EOI to the I/O APIC generating the interrupt (this is done by writing to the I/O APIC’s EOI register). System soft-
ware performing directed EOIs must retain a mapping associating level-triggered interrupts with the I/O APICs in 
the system.

10.8.6 Task Priority in IA-32e Mode

In IA-32e mode, operating systems can manage the 16 interrupt-priority classes (see Section 10.8.3, “Interrupt, 
Task, and Processor Priority”) explicitly using the task priority register (TPR). Operating systems can use the TPR 
to temporarily block specific (low-priority) interrupts from interrupting a high-priority task. This is done by loading 
TPR with a value in which the task-priority class corresponds to the highest interrupt-priority class that is to be 
blocked. For example: 
• Loading the TPR with a task-priority class of 8 (01000B) blocks all interrupts with an interrupt-priority class of 

8 or less while allowing all interrupts with an interrupt-priority class of 9 or more to be recognized.
• Loading the TPR with a task-priority class of 0 enables all external interrupts. 
• Loading the TPR with a task-priority class of 0FH (01111B) disables all external interrupts. 

The TPR (shown in Figure 10-18) is cleared to 0 on reset. In 64-bit mode, software can read and write the TPR 
using an alternate interface, MOV CR8 instruction. The new task-priority class is established when the MOV CR8 

Figure 10-21.  EOI Register

31 0

Address: 0FEE0 00B0H
Value after reset: 0H
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instruction completes execution. Software does not need to force serialization after loading the TPR using MOV 
CR8. 

Use of the MOV CRn instruction requires a privilege level of 0. Programs running at privilege level greater than 0 
cannot read or write the TPR. An attempt to do so causes a general-protection exception. The TPR is abstracted 
from the interrupt controller (IC), which prioritizes and manages external interrupt delivery to the processor. The 
IC can be an external device, such as an APIC or 8259. Typically, the IC provides a priority mechanism similar or 
identical to the TPR. The IC, however, is considered implementation-dependent with the under-lying priority mech-
anisms subject to change. CR8, by contrast, is part of the Intel 64 architecture. Software can depend on this defi-
nition remaining unchanged. 

Figure 10-22 shows the layout of CR8; only the low four bits are used. The remaining 60 bits are reserved and must 
be written with zeros. Failure to do this causes a general-protection exception.

10.8.6.1  Interaction of Task Priorities between CR8 and APIC

The first implementation of Intel 64 architecture includes a local advanced programmable interrupt controller 
(APIC) that is similar to the APIC used with previous IA-32 processors. Some aspects of the local APIC affect the 
operation of the architecturally defined task priority register and the programming interface using CR8.

Notable CR8 and APIC interactions are:
• The processor powers up with the local APIC enabled.
• The APIC must be enabled for CR8 to function as the TPR. Writes to CR8 are reflected into the APIC Task Priority 

Register.
• APIC.TPR[bits 7:4] = CR8[bits 3:0], APIC.TPR[bits 3:0] = 0. A read of CR8 returns a 64-bit value which is the 

value of TPR[bits 7:4], zero extended to 64 bits.

There are no ordering mechanisms between direct updates of the APIC.TPR and CR8. Operating software should 
implement either direct APIC TPR updates or CR8 style TPR updates but not mix them. Software can use a serial-
izing instruction (for example, CPUID) to serialize updates between MOV CR8 and stores to the APIC.

10.9 SPURIOUS INTERRUPT

A special situation may occur when a processor raises its task priority to be greater than or equal to the level of the 
interrupt for which the processor INTR signal is currently being asserted. If at the time the INTA cycle is issued, the 
interrupt that was to be dispensed has become masked (programmed by software), the local APIC will deliver a 
spurious-interrupt vector. Dispensing the spurious-interrupt vector does not affect the ISR, so the handler for this 
vector should return without an EOI.

The vector number for the spurious-interrupt vector is specified in the spurious-interrupt vector register (see 
Figure 10-23). The functions of the fields in this register are as follows:
Spurious Vector Determines the vector number to be delivered to the processor when the local APIC generates 

a spurious vector. 
(Pentium 4 and Intel Xeon processors.) Bits 0 through 7 of the this field are programmable by 
software. 
(P6 family and Pentium processors). Bits 4 through 7 of the this field are programmable by 
software, and bits 0 through 3 are hardwired to logical ones. Software writes to bits 0 through 
3 have no effect.

APIC Software Enable/Disable

Figure 10-22.  CR8 Register

63 0

Value after reset: 0H

34

Reserved
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Allows software to temporarily enable (1) or disable (0) the local APIC (see Section 10.4.3, 
“Enabling or Disabling the Local APIC”).

Focus Processor Checking
Determines if focus processor checking is enabled (0) or disabled (1) when using the lowest-
priority delivery mode. In Pentium 4 and Intel Xeon processors, this bit is reserved and should 
be cleared to 0.

Suppress EOI Broadcasts
Determines whether an EOI for a level-triggered interrupt causes EOI messages to be broad-
cast to the I/O APICs (0) or not (1). See Section 10.8.5. The default value for this bit is 0, indi-
cating that EOI broadcasts are performed. This bit is reserved to 0 if the processor does not 
support EOI-broadcast suppression.

NOTE

Do not program an LVT or IOAPIC RTE with a spurious vector even if you set the mask bit. A 
spurious vector ISR does not do an EOI. If for some reason an interrupt is generated by an LVT or 
RTE entry, the bit in the in-service register will be left set for the spurious vector. This will mask all 
interrupts at the same or lower priority

10.10 APIC BUS MESSAGE PASSING MECHANISM AND
PROTOCOL (P6 FAMILY, PENTIUM PROCESSORS)

The Pentium 4 and Intel Xeon processors pass messages among the local and I/O APICs on the system bus, using 
the system bus message passing mechanism and protocol.

The P6 family and Pentium processors, pass messages among the local and I/O APICs on the serial APIC bus, as 
follows. Because only one message can be sent at a time on the APIC bus, the I/O APIC and local APICs employ a 
“rotating priority” arbitration protocol to gain permission to send a message on the APIC bus. One or more APICs 
may start sending their messages simultaneously. At the beginning of every message, each APIC presents the type 
of the message it is sending and its current arbitration priority on the APIC bus. This information is used for arbi-
tration. After each arbitration cycle (within an arbitration round), only the potential winners keep driving the bus. 

Figure 10-23.  Spurious-Interrupt Vector Register (SVR)

31 0

Reserved

7

Focus Processor Checking2

APIC Software Enable/Disable

8910

0: APIC Disabled
1: APIC Enabled
Spurious Vector3

Address: FEE0 00F0H
Value after reset: 0000 00FFH

0: Enabled
1: Disabled

1. Not supported on all processors.
2. Not supported in Pentium 4 and Intel Xeon processors.
3. For the P6 family and Pentium processors, bits 0 through 3

are always 0.

1112

EOI-Broadcast Suppression1

0: Disabled
1: Enabled
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By the time all arbitration cycles are completed, there will be only one APIC left driving the bus. Once a winner is 
selected, it is granted exclusive use of the bus, and will continue driving the bus to send its actual message.

After each successfully transmitted message, all APICs increase their arbitration priority by 1. The previous winner 
(that is, the one that has just successfully transmitted its message) assumes a priority of 0 (lowest). An agent 
whose arbitration priority was 15 (highest) during arbitration, but did not send a message, adopts the previous 
winner’s arbitration priority, increments by 1. 

Note that the arbitration protocol described above is slightly different if one of the APICs issues a special End-Of-
Interrupt (EOI). This high-priority message is granted the bus regardless of its sender’s arbitration priority, unless 
more than one APIC issues an EOI message simultaneously. In the latter case, the APICs sending the EOI 
messages arbitrate using their arbitration priorities.

If the APICs are set up to use “lowest priority” arbitration (see Section 10.6.2.4, “Lowest Priority Delivery Mode”) 
and multiple APICs are currently executing at the lowest priority (the value in the APR register), the arbitration 
priorities (unique values in the Arb ID register) are used to break ties. All 8 bits of the APR are used for the lowest 
priority arbitration.

10.10.1 Bus Message Formats

See Section 10.13, “APIC Bus Message Formats,” for a description of bus message formats used to transmit 
messages on the serial APIC bus.

10.11 MESSAGE SIGNALLED INTERRUPTS

The PCI Local Bus Specification, Rev 2.2 (www.pcisig.com) introduces the concept of message signalled interrupts. 
As the specification indicates:

“Message signalled interrupts (MSI) is an optional feature that enables PCI devices to request 
service by writing a system-specified message to a system-specified address (PCI DWORD memory 
write transaction). The transaction address specifies the message destination while the transaction 
data specifies the message. System software is expected to initialize the message destination and 
message during device configuration, allocating one or more non-shared messages to each MSI 
capable function.” 

The capabilities mechanism provided by the PCI Local Bus Specification is used to identify and configure MSI 
capable PCI devices. Among other fields, this structure contains a Message Data Register and a Message Address 
Register. To request service, the PCI device function writes the contents of the Message Data Register to the 
address contained in the Message Address Register (and the Message Upper Address register for 64-bit message 
addresses). 

Section 10.11.1 and Section 10.11.2 provide layout details for the Message Address Register and the Message Data 
Register. The operation issued by the device is a PCI write command to the Message Address Register with the 
Message Data Register contents. The operation follows semantic rules as defined for PCI write operations and is a 
DWORD operation.

10.11.1 Message Address Register Format

The format of the Message Address Register (lower 32-bits) is shown in Figure 10-24.

Figure 10-24.  Layout of the MSI Message Address Register

31 20 19 12 11 4 3 2 1 0

0FEEH Destination ID Reserved RH DM XX
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Fields in the Message Address Register are as follows:

1. Bits 31-20 — These bits contain a fixed value for interrupt messages (0FEEH). This value locates interrupts at 
the 1-MByte area with a base address of 4G – 18M. All accesses to this region are directed as interrupt 
messages. Care must to be taken to ensure that no other device claims the region as I/O space.

2. Destination ID — This field contains an 8-bit destination ID. It identifies the message’s target processor(s). 
The destination ID corresponds to bits 63:56 of the I/O APIC Redirection Table Entry if the IOAPIC is used to 
dispatch the interrupt to the processor(s).

3. Redirection hint indication (RH) — This bit indicates whether the message should be directed to the 
processor with the lowest interrupt priority among processors that can receive the interrupt. 

• When RH is 0, the interrupt is directed to the processor listed in the Destination ID field. 

• When RH is 1 and the physical destination mode is used, the Destination ID field must not be set to 
0xFF; it must point to a processor that is present and enabled to receive the interrupt.

• When RH is 1 and the logical destination mode is active in a system using a flat addressing model, the 
Destination ID field must be set so that bits set to 1 identify processors that are present and enabled to 
receive the interrupt.

• If RH is set to 1 and the logical destination mode is active in a system using cluster addressing model, 
then Destination ID field must not be set to 0xFF; the processors identified with this field must be 
present and enabled to receive the interrupt.

4. Destination mode (DM) — This bit indicates whether the Destination ID field should be interpreted as logical 
or physical APIC ID for delivery of the lowest priority interrupt. If RH is 1 and DM is 0, the Destination ID field 
is in physical destination mode and only the processor in the system that has the matching APIC ID is 
considered for delivery of that interrupt (this means no re-direction). If RH is 1 and DM is 1, the Destination ID 
Field is interpreted as in logical destination mode and the redirection is limited to only those processors that are 
part of the logical group of processors based on the processor’s logical APIC ID and the Destination ID field in 
the message. The logical group of processors consists of those identified by matching the 8-bit Destination ID 
with the logical destination identified by the Destination Format Register and the Logical Destination Register 
in each local APIC. The details are similar to those described in Section 10.6.2, “Determining IPI Destination.” 
If RH is 0, then the DM bit is ignored and the message is sent ahead independent of whether the physical or 
logical destination mode is used.

10.11.2 Message Data Register Format

The layout of the Message Data Register is shown in Figure 10-25.

Reserved fields are not assumed to be any value. Software must preserve their contents on writes. Other fields in 
the Message Data Register are described below.

1. Vector — This 8-bit field contains the interrupt vector associated with the message. Values range from 010H 
to 0FEH. Software must guarantee that the field is not programmed with vector 00H to 0FH.

2. Delivery Mode — This 3-bit field specifies how the interrupt receipt is handled. Delivery Modes operate only in 
conjunction with specified Trigger Modes. Correct Trigger Modes must be guaranteed by software. Restrictions 
are indicated below:

a. 000B (Fixed Mode) — Deliver the signal to all the agents listed in the destination. The Trigger Mode for
fixed delivery mode can be edge or level.

b. 001B (Lowest Priority) — Deliver the signal to the agent that is executing at the lowest priority of all 
agents listed in the destination field. The trigger mode can be edge or level.

c. 010B (System Management Interrupt or SMI) — The delivery mode is edge only. For systems that rely 
on SMI semantics, the vector field is ignored but must be programmed to all zeroes for future compatibility. 

d. 100B (NMI) — Deliver the signal to all the agents listed in the destination field. The vector information is 
ignored. NMI is an edge triggered interrupt regardless of the Trigger Mode Setting.
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e. 101B (INIT) — Deliver this signal to all the agents listed in the destination field. The vector information is 
ignored. INIT is an edge triggered interrupt regardless of the Trigger Mode Setting.

f. 111B (ExtINT) — Deliver the signal to the INTR signal of all agents in the destination field (as an interrupt 
that originated from an 8259A compatible interrupt controller). The vector is supplied by the INTA cycle 
issued by the activation of the ExtINT. ExtINT is an edge triggered interrupt.

3. Level — Edge triggered interrupt messages are always interpreted as assert messages. For edge triggered 
interrupts this field is not used. For level triggered interrupts, this bit reflects the state of the interrupt input.

4. Trigger Mode — This field indicates the signal type that will trigger a message. 

a. 0 — Indicates edge sensitive.

b. 1 — Indicates level sensitive.

10.12 EXTENDED XAPIC (X2APIC)

The x2APIC architecture extends the xAPIC architecture (described in Section 9.4) in a backward compatible 
manner and provides forward extendability for future Intel platform innovations. Specifically, the x2APIC architec-
ture does the following:
• Retains all key elements of compatibility to the xAPIC architecture:

— delivery modes,

— interrupt and processor priorities,

— interrupt sources,

— interrupt destination types;
• Provides extensions to scale processor addressability for both the logical and physical destination modes;
• Adds new features to enhance performance of interrupt delivery;

Figure 10-25.  Layout of the MSI Message Data Register

Reserved

Reserved Reserved Vector

Delivery Mode

001 - Lowest Priority
010 - SMI
011 - Reserved

101 - INIT
110 - Reserved
111 - ExtINT

Trigger Mode
0 - Edge
1 - Level

Level for Trigger Mode = 0
X - Don’t care

Level for Trigger Mode = 1
0 - Deassert
1 - Assert

000 - Fixed

100 - NMI

31 16  15 14 13 11 10 8 7 0

63 32
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• Reduces complexity of logical destination mode interrupt delivery on link based platform architectures.
• Uses MSR programming interface to access APIC registers in x2APIC mode instead of memory-mapped 

interfaces. Memory-mapped interface is supported when operating in xAPIC mode.

10.12.1 Detecting and Enabling x2APIC Mode

Processor support for x2APIC mode can be detected by executing CPUID with EAX=1 and then checking ECX, bit 
21 ECX. If CPUID.(EAX=1):ECX.21 is set , the processor supports the x2APIC capability and can be placed into the 
x2APIC mode. 

System software can place the local APIC in the x2APIC mode by setting the x2APIC mode enable bit (bit 10) in the 
IA32_APIC_BASE MSR at MSR address 01BH. The layout for the IA32_APIC_BASE MSR is shown in Figure 10-26.

Table 10-5, “x2APIC operating mode configurations” describe the possible combinations of the enable bit (EN - bit 
11) and the extended mode bit (EXTD - bit 10) in the IA32_APIC_BASE MSR.

Once the local APIC has been switched to x2APIC mode (EN = 1, EXTD = 1), switching back to xAPIC mode would 
require system software to disable the local APIC unit. Specifically, attempting to write a value to the 
IA32_APIC_BASE MSR that has (EN= 1, EXTD = 0) when the local APIC is enabled and in x2APIC mode causes a 
general-protection exception. Once bit 10 in IA32_APIC_BASE MSR is set, the only way to leave x2APIC mode 
using IA32_APIC_BASE would require a WRMSR to set both bit 11 and bit 10 to zero. Section 10.12.5, “x2APIC 
State Transitions” provides a detailed state diagram for the state transitions allowed for the local APIC.

10.12.1.1  Instructions to Access APIC Registers

In x2APIC mode, system software uses RDMSR and WRMSR to access the APIC registers. The MSR addresses for 
accessing the x2APIC registers are architecturally defined and specified in Section 10.12.1.2, “x2APIC Register 
Address Space”. Executing the RDMSR instruction with APIC register address specified in ECX returns the content 
of bits 0 through 31 of the APIC registers in EAX. Bits 32 through 63 are returned in register EDX - these bits are 
reserved if the APIC register being read is a 32-bit register. Similarly executing the WRMSR instruction with the 
APIC register address in ECX, writes bits 0 to 31 of register EAX to bits 0 to 31 of the specified APIC register. If the 
register is a 64-bit register then bits 0 to 31 of register EDX are written to bits 32 to 63 of the APIC register. The 
Interrupt Command Register is the only APIC register that is implemented as a 64-bit MSR. The semantics of 
handling reserved bits are defined in Section 10.12.1.3, “Reserved Bit Checking”.

Figure 10-26.  IA32_APIC_BASE MSR Supporting x2APIC

Table 10-5. x2APIC Operating Mode Configurations 

xAPIC global enable 
(IA32_APIC_BASE[11])

x2APIC enable 
(IA32_APIC_BASE[10]) Description

0 0 local APIC is disabled

0 1 Invalid

1 0 local APIC is enabled in xAPIC mode

1 1 local APIC is enabled in x2APIC mode

BSP—Processor is BSP

EN—xAPIC global enable/disable
APIC Base—Base physical address

63 071011 8912

Reserved

36 35

APIC BaseReserved

EXTD—Enable x2APIC mode
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10.12.1.2  x2APIC Register Address Space

The MSR address range 800H through BFFH is architecturally reserved and dedicated for accessing APIC registers 
in x2APIC mode. Table 10-6 lists the APIC registers that are available in x2APIC mode. When appropriate, the table 
also gives the offset at which each register is available on the page referenced by IA32_APIC_BASE[35:12] in 
xAPIC mode. 
There is a one-to-one mapping between the x2APIC MSRs and the legacy xAPIC register offsets with the following 
exceptions:
• The Destination Format Register (DFR): The DFR, supported at offset 0E0H in xAPIC mode, is not supported in 

x2APIC mode. There is no MSR with address 80EH.
• The Interrupt Command Register (ICR): The two 32-bit registers in xAPIC mode (at offsets 300H and 310H) are 

merged into a single 64-bit MSR in x2APIC mode (with MSR address 830H). There is no MSR with address 
831H.

• The SELF IPI register. This register is available only in x2APIC mode at address 83FH. In xAPIC mode, there is 
no register defined at offset 3F0H.

Addresses in the range 800H–BFFH that are not listed in Table 10-6 (including 80EH and 831H) are reserved. 
Executions of RDMSR and WRMSR that attempt to access such addresses cause general-protection exceptions.
The MSR address space is compressed to allow for future growth. Every 32 bit register on a 128-bit boundary in the 
legacy MMIO space is mapped to a single MSR in the local x2APIC MSR address space. The upper 32-bits of all 
x2APIC MSRs (except for the ICR) are reserved. 

Table 10-6. Local APIC Register Address Map Supported by x2APIC

MSR Address 
(x2APIC mode)

MMIO Offset 
(xAPIC mode)

Register Name
MSR R/W 
Semantics

Comments

 802H 020H Local APIC ID register Read-only1 See Section 10.12.5.1 for initial 
values.

803H 030H Local APIC Version register Read-only Same version used in xAPIC mode 
and x2APIC mode.

808H 080H Task Priority Register (TPR) Read/write Bits 31:8 are reserved.2

80AH 0A0H Processor Priority Register 
(PPR)

Read-only

80BH 0B0H EOI register Write-only3 WRMSR of a non-zero value causes 
#GP(0).

80DH 0D0H Logical Destination Register 
(LDR)

Read-only Read/write in xAPIC mode.

80FH 0F0H Spurious Interrupt Vector 
Register (SVR)

Read/write See Section 10.9 for reserved bits.

810H 100H In-Service Register (ISR); bits 
31:0

Read-only

811H 110H ISR bits 63:32 Read-only

812H 120H ISR bits 95:64 Read-only

813H 130H ISR bits 127:96 Read-only

814H 140H ISR bits 159:128 Read-only

815H 150H ISR bits 191:160 Read-only

816H 160H ISR bits 223:192 Read-only

817H 170H ISR bits 255:224 Read-only

818H 180H Trigger Mode Register (TMR); 
bits 31:0 

Read-only
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819H 190H TMR bits 63:32 Read-only

81AH 1A0H TMR bits 95:64 Read-only

81BH 1B0H TMR bits 127:96 Read-only

81CH 1C0H TMR bits 159:128 Read-only

81DH 1D0H TMR bits 191:160 Read-only

81EH 1E0H TMR bits 223:192 Read-only

81FH 1F0H TMR bits 255:224 Read-only

820H 200H Interrupt Request Register 
(IRR); bits 31:0

Read-only

821H 210H IRR bits 63:32 Read-only

822H 220H IRR bits 95:64 Read-only

823H 230H IRR bits 127:96 Read-only

824H 240H IRR bits 159:128 Read-only

825H 250H IRR bits 191:160 Read-only

826H 260H IRR bits 223:192 Read-only

827H 270H IRR bits 255:224 Read-only

828H 280H Error Status Register (ESR) Read/write WRMSR of a non-zero value causes 
#GP(0). See Section 10.5.3.

82FH 2F0H LVT CMCI register Read/write See Figure 10-8 for reserved bits.

830H4 300H and 310H Interrupt Command Register 
(ICR)

Read/write See Figure 10-28 for reserved bits

832H 320H LVT Timer register Read/write See Figure 10-8 for reserved bits.

833H 330H LVT Thermal Sensor register Read/write See Figure 10-8 for reserved bits.

834H 340H LVT Performance Monitoring 
register

Read/write See Figure 10-8 for reserved bits.

835H 350H LVT LINT0 register Read/write See Figure 10-8 for reserved bits.

836H 360H LVT LINT1 register Read/write See Figure 10-8 for reserved bits.

837H 370H LVT Error register Read/write See Figure 10-8 for reserved bits.

838H 380H Initial Count register (for 
Timer)

Read/write

839H 390H Current Count register (for 
Timer)

Read-only

83EH 3E0H Divide Configuration Register 
(DCR; for Timer)

Read/write See Figure 10-10 for reserved bits.

83FH Not available SELF IPI5 Write-only Available only in x2APIC mode.

NOTES:

1. WRMSR causes #GP(0) for read-only registers.

2. WRMSR causes #GP(0) for attempts to set a reserved bit to 1 in a read/write register (including bits 63:32 of each register).

3. RDMSR causes #GP(0) for write-only registers.

4. MSR 831H is reserved; read/write operations cause general-protection exceptions. The contents of the APIC register at MMIO offset 
310H are accessible in x2APIC mode through the MSR at address 830H.

Table 10-6. Local APIC Register Address Map Supported by x2APIC (Contd.)

MSR Address 
(x2APIC mode)

MMIO Offset 
(xAPIC mode)

Register Name
MSR R/W 
Semantics

Comments
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10.12.1.3  Reserved Bit Checking

Section 10.12.1.2 and Table 10-6 specifies the reserved bit definitions for the APIC registers in x2APIC mode. Non-
zero writes (by WRMSR instruction) to reserved bits to these registers will raise a general protection fault exception 
while reads return zeros (RsvdZ semantics).
In x2APIC mode, the local APIC ID register is increased to 32 bits wide. This enables 232–1 processors to be 
addressable in physical destination mode. This 32-bit value is referred to as “x2APIC ID”. A processor implementa-
tion may choose to support less than 32 bits in its hardware. System software should be agnostic to the actual 
number of bits that are implemented. All non-implemented bits will return zeros on reads by software. 
The APIC ID value of FFFF_FFFFH and the highest value corresponding to the implemented bit-width of the local 
APIC ID register in the system are reserved and cannot be assigned to any logical processor. 

In x2APIC mode, the local APIC ID register is a read-only register to system software and will be initialized by hard-
ware. It is accessed via the RDMSR instruction reading the MSR at address 0802H. 
Each logical processor in the system (including clusters with a communication fabric) must be configured with an 
unique x2APIC ID to avoid collisions of x2APIC IDs. On DP and high-end MP processors targeted to specific market 
segments and depending on the system configuration, it is possible that logical processors in different and “un-
connected” clusters power up initialized with overlapping x2APIC IDs. In these configurations, a model-specific 
means may be provided in those product segments to enable BIOS and/or platform firmware to re-configure the 
x2APIC IDs in some clusters to provide for unique and non-overlapping system wide IDs before configuring the 
disconnected components into a single system. 

10.12.2 x2APIC Register Availability

The local APIC registers can be accessed via the MSR interface only when the local APIC has been switched to the 
x2APIC mode as described in Section 10.12.1. Accessing any APIC register in the MSR address range 0800H 
through 0BFFH via RDMSR or WRMSR when the local APIC is not in x2APIC mode causes a general-protection 
exception. In x2APIC mode, the memory mapped interface is not available and any access to the MMIO interface 
will behave similar to that of a legacy xAPIC in globally disabled state. Table 10-7 provides the interactions between 
the legacy & extended modes and the legacy and register interfaces.

10.12.3 MSR Access in x2APIC Mode

To allow for efficient access to the APIC registers in x2APIC mode, the serializing semantics of WRMSR are relaxed 
when writing to the APIC registers. Thus, system software should not use “WRMSR to APIC registers in x2APIC 
mode” as a serializing instruction. Read and write accesses to the APIC registers will occur in program order. A 
WRMSR to an APIC register may complete before all preceding stores are globally visible; software can prevent this 
by inserting a serializing instruction, an SFENCE, or an MFENCE before the WRMSR.

The RDMSR instruction is not serializing and this behavior is unchanged when reading APIC registers in x2APIC 
mode. System software accessing the APIC registers using the RDMSR instruction should not expect a serializing 
behavior. (Note: The MMIO-based xAPIC interface is mapped by system software as an un-cached region. Conse-
quently, read/writes to the xAPIC-MMIO interface have serializing semantics in the xAPIC mode.)

5. SELF IPI register is supported only in x2APIC mode.

Table 10-7. MSR/MMIO Interface of a Local x2APIC in Different Modes of Operation

MMIO Interface MSR Interface

xAPIC mode Available General-protection exception

x2APIC mode Behavior identical to xAPIC in globally disabled state Available
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10.12.4 VM-Exit Controls for MSRs and x2APIC Registers

The VMX architecture allows a VMM to specify lists of MSRs to be loaded or stored on VMX transitions using the 
VMX-transition MSR areas (see VM-exit MSR-store address field, VM-exit MSR-load address field, and VM-entry 
MSR-load address field in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C).
The X2APIC MSRs cannot to be loaded and stored on VMX transitions. A VMX transition fails if the VMM has speci-
fied that the transition should access any MSRs in the address range from 0000_0800H to 0000_08FFH (the range 
used for accessing the X2APIC registers). Specifically, processing of an 128-bit entry in any of the VMX-transition 
MSR areas fails if bits 31:0 of that entry (represented as ENTRY_LOW_DW) satisfies the expression: 
“ENTRY_LOW_DW & FFFFF800H = 00000800H”. Such a failure causes an associated VM entry to fail (by reloading 
host state) and causes an associated VM exit to lead to VMX abort.

10.12.5 x2APIC State Transitions

This section provides a detailed description of the x2APIC states of a local x2APIC unit, transitions between these 
states as well as interactions of these states with INIT and reset. 

10.12.5.1  x2APIC States

The valid states for a local x2APIC unit is listed in Table 10-5:
• APIC disabled: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=0
• xAPIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=0
• x2APIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=1
• Invalid: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=1
The state corresponding to EXTD=1 and EN=0 is not valid and it is not possible to get into this state. An execution 
of WRMSR to the IA32_APIC_BASE_MSR that attempts a transition from a valid state to this invalid state causes a 
general-protection exception. Figure 10-27 shows the comprehensive state transition diagram for a local x2APIC 
unit. 
On coming out of reset, the local APIC unit is enabled and is in the xAPIC mode: IA32_APIC_BASE[EN]=1 and 
IA32_APIC_BASE[EXTD]=0. The APIC registers are initialized as:
• The local APIC ID is initialized by hardware with a 32 bit ID (x2APIC ID). The lowest 8 bits of the x2APIC ID is 

the legacy local xAPIC ID, and is stored in the upper 8 bits of the APIC register for access in xAPIC mode.
• The following APIC registers are reset to all zeros for those fields that are defined in the xAPIC mode:

— IRR, ISR, TMR, ICR, LDR, TPR, Divide Configuration Register (See Chapter 8 of “Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual“, Vol. 3B for details of individual APIC registers),

— Timer initial count and timer current count registers,
• The LVT registers are reset to 0s except for the mask bits; these are set to 1s.
• The local APIC version register is not affected.
• The Spurious Interrupt Vector Register is initialized to 000000FFH. 
• The DFR (available only in xAPIC mode) is reset to all 1s. 
• SELF IPI register is reset to zero.
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x2APIC After Reset

The valid transitions from the xAPIC mode state are:
• to the x2APIC mode by setting EXT to 1 (resulting EN=1, EXTD= 1). The physical x2APIC ID (see Figure 10-6) 

is preserved across this transition and the logical x2APIC ID (see Figure 10-29) is initialized by hardware during 
this transition as documented in Section 10.12.10.2. The state of the extended fields in other APIC registers, 
which was not initialized at reset, is not architecturally defined across this transition and system software 
should explicitly initialize those programmable APIC registers. 

• to the disabled state by setting EN to 0 (resulting EN=0, EXTD= 0).
The result of an INIT in the xAPIC state places the APIC in the state with EN= 1, EXTD= 0. The state of the local 
APIC ID register is preserved (the 8-bit xAPIC ID is in the upper 8 bits of the APIC ID register). All the other APIC 
registers are initialized as a result of INIT. 
A reset in this state places the APIC in the state with EN= 1, EXTD= 0. The state of the local APIC ID register is 
initialized as described in Section 10.12.5.1. All the other APIC registers are initialized described in Section 
10.12.5.1. 

x2APIC Transitions From x2APIC Mode

From the x2APIC mode, the only valid x2APIC transition using IA32_APIC_BASE is to the state where the x2APIC 
is disabled by setting EN to 0 and EXTD to 0. The x2APIC ID (32 bits) and the legacy local xAPIC ID (8 bits) are 
preserved across this transition. A transition from the x2APIC mode to xAPIC mode is not valid, and the corre-
sponding WRMSR to the IA32_APIC_BASE MSR causes a general-protection exception. 
A reset in this state places the x2APIC in xAPIC mode. All APIC registers (including the local APIC ID register) are 
initialized as described in Section 10.12.5.1. 
An INIT in this state keeps the x2APIC in the x2APIC mode. The state of the local APIC ID register is preserved (all 
32 bits). However, all the other APIC registers are initialized as a result of the INIT transition.

Figure 10-27.  Local x2APIC State Transitions with IA32_APIC_BASE, INIT, and Reset
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x2APIC Transitions From Disabled Mode

From the disabled state, the only valid x2APIC transition using IA32_APIC_BASE is to the xAPIC mode (EN= 1, 
EXTD = 0). Thus the only means to transition from x2APIC mode to xAPIC mode is a two-step process: 
• first transition from x2APIC mode to local APIC disabled mode (EN= 0, EXTD = 0),
• followed by another transition from disabled mode to xAPIC mode (EN= 1, EXTD= 0).
Consequently, all the APIC register states in the x2APIC, except for the x2APIC ID (32 bits), are not preserved 
across mode transitions. 
A reset in the disabled state places the x2APIC in the xAPIC mode. All APIC registers (including the local APIC ID 
register) are initialized as described in Section 10.12.5.1. 
An INIT in the disabled state keeps the x2APIC in the disabled state.

State Changes From xAPIC Mode to x2APIC Mode

After APIC register states have been initialized by software in xAPIC mode, a transition from xAPIC mode to x2APIC 
mode does not affect most of the APIC register states, except the following:
• The Logical Destination Register is not preserved.
• Any APIC ID value written to the memory-mapped local APIC ID register is not preserved.
• The high half of the Interrupt Command Register is not preserved. 

10.12.6 Routing of Device Interrupts in x2APIC Mode

The x2APIC architecture is intended to work with all existing IOxAPIC units as well as all PCI and PCI Express 
(PCIe) devices that support the capability for message-signaled interrupts (MSI). Support for x2APIC modifies only 
the following:
• the local APIC units;
• the interconnects joining IOxAPIC units to the local APIC units; and
• the interconnects joining MSI-capable PCI and PCIe devices to the local APIC units.

No modifications are required to MSI-capable PCI and PCIe devices. Similarly, no modifications are required to 
IOxAPIC units. This made possible through use of the interrupt-remapping architecture specified in the Intel® 
Virtualization Technology for Directed I/O, Revision 1.3 for the routing of interrupts from MSI-capable devices to 
local APIC units operating in x2APIC mode.

10.12.7 Initialization by System Software

Routing of device interrupts to local APIC units operating in x2APIC mode requires use of the interrupt-remapping 
architecture specified in the Intel® Virtualization Technology for Directed I/O, Revision 1.3. Because of this, BIOS 
must enumerate support for and software must enable this interrupt remapping with Extended Interrupt Mode 
Enabled before it enabling x2APIC mode in the local APIC units.

The ACPI interfaces for the x2APIC are described in Section 5.2, “ACPI System Description Tables,” of the Advanced 
Configuration and Power Interface Specification, Revision 4.0a (http://www.acpi.info/spec.htm). The default 
behavior for BIOS is to pass the control to the operating system with the local x2APICs in xAPIC mode if all APIC 
IDs reported by CPUID.0BH:EDX are less than 255, and in x2APIC mode if there are any logical processor reporting 
an APIC ID of 255 or greater.

10.12.8 CPUID Extensions And Topology Enumeration

For Intel 64 and IA-32 processors that support x2APIC, a value of 1 reported by CPUID.01H:ECX[21] indicates that 
the processor supports x2APIC and the extended topology enumeration leaf (CPUID.0BH). 
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The extended topology enumeration leaf can be accessed by executing CPUID with EAX = 0BH. Processors that do 
not support x2APIC may support CPUID leaf 0BH. Software can detect the availability of the extended topology 
enumeration leaf (0BH) by performing two steps:
• Check maximum input value for basic CPUID information by executing CPUID with EAX= 0. If CPUID.0H:EAX is 

greater than or equal or 11 (0BH), then proceed to next step
• Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero. 
If both of the above conditions are true, extended topology enumeration leaf is available. If available, the extended 
topology enumeration leaf is the preferred mechanism for enumerating topology. The presence of CPUID leaf 0BH 
in a processor does not guarantee support for x2APIC. If CPUID.EAX=0BH, ECX=0H:EBX returns zero and 
maximum input value for basic CPUID information is greater than 0BH, then CPUID.0BH leaf is not supported on 
that processor.
The extended topology enumeration leaf is intended to assist software with enumerating processor topology on 
systems that requires 32-bit x2APIC IDs to address individual logical processors. Details of CPUID leaf 0BH can be 
found in the reference pages of CPUID in Chapter 3 of Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A.
Processor topology enumeration algorithm for processors supporting the extended topology enumeration leaf of 
CPUID and processors that do not support CPUID leaf 0BH are treated in Section 8.9.4, “Algorithm for Three-Level 
Mappings of APIC_ID”.

10.12.8.1  Consistency of APIC IDs and CPUID

The consistency of physical x2APIC ID in MSR 802H in x2APIC mode and the 32-bit value returned in 
CPUID.0BH:EDX is facilitated by processor hardware. 
CPUID.0BH:EDX will report the full 32 bit ID, in xAPIC and x2APIC mode. This allows BIOS to determine if a system 
has processors with IDs exceeding the 8-bit initial APIC ID limit (CPUID.01H:EBX[31:24]). Initial APIC ID 
(CPUID.01H:EBX[31:24]) is always equal to CPUID.0BH:EDX[7:0]. 
If the values of CPUID.0BH:EDX reported by all logical processors in a system are less than 255, BIOS can transfer 
control to OS in xAPIC mode.
If the values of CPUID.0BH:EDX reported by some logical processors in a system are greater or equal than 255, 
BIOS must support two options to hand off to OS:
• If BIOS enables logical processors with x2APIC IDs greater than 255, then it should enable X2APIC in Boot 

Strap Processor (BSP) and all Application Processors (AP) before passing control to the OS. Application 
requiring processor topology information must use OS provided services based on x2APIC IDs or CPUID.0BH 
leaf.

• If a BIOS transfers control to OS in xAPIC mode, then the BIOS must ensure that only logical processors with 
CPUID.0BH.EDX value less than 255 are enabled. BIOS initialization on all logical processors with 
CPUID.0B.EDX values greater than or equal to 255 must (a) disable APIC and execute CLI in each logical 
processor, and (b) leave these logical processor in the lowest power state so that these processors do not 
respond to INIT IPI during OS boot. The BSP and all the enabled logical processor operate in xAPIC mode after 
BIOS passed control to OS. Application requiring processor topology information can use OS provided legacy 
services based on 8-bit initial APIC IDs or legacy topology information from CPUID.01H and CPUID 04H leaves. 
Even if the BIOS passes control in xAPIC mode, an OS can switch the processors to x2APIC mode later. BIOS 
SMM handler should always read the APIC_BASE_MSR, determine the APIC mode and use the corresponding 
access method.

10.12.9 ICR Operation in x2APIC Mode

In x2APIC mode, the layout of the Interrupt Command Register is shown in Figure 10-12. The lower 32 bits of ICR 
in x2APIC mode is identical to the lower half of the ICR in xAPIC mode, except the Delivery Status bit is removed 
since it is not needed in x2APIC mode. The destination ID field is expanded to 32 bits in x2APIC mode. 
To send an IPI using the ICR, software must set up the ICR to indicate the type of IPI message to be sent and the 
destination processor or processors. Self IPIs can also be sent using the SELF IPI register (see Section 10.12.11). 
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A single MSR write to the Interrupt Command Register is required for dispatching an interrupt in x2APIC mode. 
With the removal of the Delivery Status bit, system software no longer has a reason to read the ICR. It remains 
readable only to aid in debugging; however, software should not assume the value returned by reading the ICR is 
the last written value.
A destination ID value of FFFF_FFFFH is used for broadcast of interrupts in both logical destination and physical 
destination modes.

10.12.10 Determining IPI Destination in x2APIC Mode

10.12.10.1  Logical Destination Mode in x2APIC Mode

In x2APIC mode, the Logical Destination Register (LDR) is increased to 32 bits wide. It is a read-only register to 
system software. This 32-bit value is referred to as “logical x2APIC ID”. System software accesses this register via 
the RDMSR instruction reading the MSR at address 80DH. Figure 10-29 provides the layout of the Logical Destina-
tion Register in x2APIC mode. 

Figure 10-28.  Interrupt Command Register (ICR) in x2APIC Mode
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In the xAPIC mode, the Destination Format Register (DFR) through MMIO interface determines the choice of a flat 
logical mode or a clustered logical mode. Flat logical mode is not supported in the x2APIC mode. Hence the Desti-
nation Format Register (DFR) is eliminated in x2APIC mode. 
The 32-bit logical x2APIC ID field of LDR is partitioned into two sub-fields:
• Cluster ID (LDR[31:16]): is the address of the destination cluster
• Logical ID (LDR[15:0]): defines a logical ID of the individual local x2APIC within the cluster specified by 

LDR[31:16]. 
This layout enables 2^16-1 clusters each with up to 16 unique logical IDs - effectively providing an addressability 
of ((2^20) - 16) processors in logical destination mode. 
It is likely that processor implementations may choose to support less than 16 bits of the cluster ID or less than 16-
bits of the Logical ID in the Logical Destination Register. However system software should be agnostic to the 
number of bits implemented in the cluster ID and logical ID sub-fields. The x2APIC hardware initialization will 
ensure that the appropriately initialized logical x2APIC IDs are available to system software and reads of non-
implemented bits return zero. This is a read-only register that software must read to determine the logical x2APIC 
ID of the processor. Specifically, software can apply a 16-bit mask to the lowest 16 bits of the logical x2APIC ID to 
identify the logical address of a processor within a cluster without needing to know the number of implemented bits 
in cluster ID and Logical ID sub-fields. Similarly, software can create a message destination address for cluster 
model, by bit-Oring the Logical X2APIC ID (31:0) of processors that have matching Cluster ID(31:16).
To enable cluster ID assignment in a fashion that matches the system topology characteristics and to enable effi-
cient routing of logical mode lowest priority device interrupts in link based platform interconnects, the LDR are 
initialized by hardware based on the value of x2APIC ID upon x2APIC state transitions. Details of this initialization 
are provided in Section 10.12.10.2. 

10.12.10.2  Deriving Logical x2APIC ID from the Local x2APIC ID

In x2APIC mode, the 32-bit logical x2APIC ID, which can be read from LDR, is derived from the 32-bit local x2APIC 
ID. Specifically, the 16-bit logical ID sub-field is derived by shifting 1 by the lowest 4 bits of the x2APIC ID, i.e. 
Logical ID = 1 « x2APIC ID[3:0]. The remaining bits of the x2APIC ID then form the cluster ID portion of the logical 
x2APIC ID: 

Logical x2APIC ID = [(x2APIC ID[19:4] « 16) | (1 « x2APIC ID[3:0])]

The use of the lowest 4 bits in the x2APIC ID implies that at least 16 APIC IDs are reserved for logical processors 
within a socket in multi-socket configurations. If more than 16 APIC IDS are reserved for logical processors in a 
socket/package then multiple cluster IDs can exist within the package. 
The LDR initialization occurs whenever the x2APIC mode is enabled (see Section 10.12.5).

Figure 10-29.  Logical Destination Register in x2APIC Mode
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10.12.11 SELF IPI Register

SELF IPIs are used extensively by some system software. The x2APIC architecture introduces a new register inter-
face. This new register is dedicated to the purpose of sending self-IPIs with the intent of enabling a highly opti-
mized path for sending self-IPIs. 

Figure 10-30 provides the layout of the SELF IPI register. System software only specifies the vector associated with 
the interrupt to be sent. The semantics of sending a self-IPI via the SELF IPI register are identical to sending a self 
targeted edge triggered fixed interrupt with the specified vector. Specifically the semantics are identical to the 
following settings for an inter-processor interrupt sent via the ICR - Destination Shorthand (ICR[19:18] = 01 
(Self)), Trigger Mode (ICR[15] = 0 (Edge)), Delivery Mode (ICR[10:8] = 000 (Fixed)), Vector (ICR[7:0] = Vector).

The SELF IPI register is a write-only register. A RDMSR instruction with address of the SELF IPI register causes a 
general-protection exception. 
The handling and prioritization of a self-IPI sent via the SELF IPI register is architecturally identical to that for an 
IPI sent via the ICR from a legacy xAPIC unit. Specifically the state of the interrupt would be tracked via the Inter-
rupt Request Register (IRR) and In Service Register (ISR) and Trigger Mode Register (TMR) as if it were received 
from the system bus. Also sending the IPI via the Self Interrupt Register ensures that interrupt is delivered to the 
processor core. Specifically completion of the WRMSR instruction to the SELF IPI register implies that the interrupt 
has been logged into the IRR. As expected for edge triggered interrupts, depending on the processor priority and 
readiness to accept interrupts, it is possible that interrupts sent via the SELF IPI register or via the ICR with iden-
tical vectors can be combined.

10.13 APIC BUS MESSAGE FORMATS

This section describes the message formats used when transmitting messages on the serial APIC bus. The informa-
tion described here pertains only to the Pentium and P6 family processors.

10.13.1 Bus Message Formats

The local and I/O APICs transmit three types of messages on the serial APIC bus: EOI message, short message, 
and non-focused lowest priority message. The purpose of each type of message and its format are described 
below.

10.13.2 EOI Message

Local APICs send 14-cycle EOI messages to the I/O APIC to indicate that a level triggered interrupt has been 
accepted by the processor. This interrupt, in turn, is a result of software writing into the EOI register of the local 
APIC. Table 10-1 shows the cycles in an EOI message.

Figure 10-30.  SELF IPI register

Table 10-1.  EOI Message (14 Cycles)

Cycle Bit1 Bit0

1 1 1 11 = EOI

2 ArbID3 0 Arbitration ID bits 3 through 0

MSR Address: 083FH

31 8 7 0

Reserved Vector
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The checksum is computed for cycles 6 through 9. It is a cumulative sum of the 2-bit (Bit1:Bit0) logical data values. 
The carry out of all but the last addition is added to the sum. If any APIC computes a different checksum than the 
one appearing on the bus in cycle 10, it signals an error, driving 11 on the APIC bus during cycle 12. In this case, 
the APICs disregard the message. The sending APIC will receive an appropriate error indication (see Section 
10.5.3, “Error Handling”) and resend the message. The status cycles are defined in Table 10-4.

10.13.2.1  Short Message

Short messages (21-cycles) are used for sending fixed, NMI, SMI, INIT, start-up, ExtINT and lowest-priority-with-
focus interrupts. Table 10-2 shows the cycles in a short message.

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 V7 V6 Interrupt vector V7 - V0

7 V5 V4

8 V3 V2

9 V1 V0

10 C C Checksum for cycles 6 - 9

11 0 0

12 A A Status Cycle 0

13 A1 A1 Status Cycle 1

14 0 0 Idle

Table 10-2.  Short Message (21 Cycles)

Cycle Bit1 Bit0

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination Mode 

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

Table 10-1.  EOI Message (14 Cycles) (Contd.)

Cycle Bit1 Bit0
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If the physical delivery mode is being used, then cycles 15 and 16 represent the APIC ID and cycles 13 and 14 are 
considered don't care by the receiver. If the logical delivery mode is being used, then cycles 13 through 16 are the 
8-bit logical destination field. 

For shorthands of “all-incl-self” and “all-excl-self,” the physical delivery mode and an arbitration priority of 15 
(D0:D3 = 1111) are used. The agent sending the message is the only one required to distinguish between the two 
cases. It does so using internal information.

When using lowest priority delivery with an existing focus processor, the focus processor identifies itself by driving 
10 during cycle 19 and accepts the interrupt. This is an indication to other APICs to terminate arbitration. If the 
focus processor has not been found, the short message is extended on-the-fly to the non-focused lowest-priority 
message. Note that except for the EOI message, messages generating a checksum or an acceptance error (see 
Section 10.5.3, “Error Handling”) terminate after cycle 21.

10.13.2.2  Non-focused Lowest Priority Message

These 34-cycle messages (see Table 10-3) are used in the lowest priority delivery mode when a focus processor is 
not present. Cycles 1 through 20 are same as for the short message. If during the status cycle (cycle 19) the state 
of the (A:A) flags is 10B, a focus processor has been identified, and the short message format is used (see Table 
10-2). If the (A:A) flags are set to 00B, lowest priority arbitration is started and the 34-cycles of the non-focused 
lowest priority message are competed. For other combinations of status flags, refer to Section 10.13.2.3, “APIC 
Bus Status Cycles.”

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 0 0 Idle

Table 10-3.  Non-Focused Lowest Priority Message (34 Cycles)

Cycle Bit0 Bit1

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination mode 

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

Table 10-2.  Short Message (21 Cycles) (Contd.)

Cycle Bit1 Bit0
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Cycles 21 through 28 are used to arbitrate for the lowest priority processor. The processors participating in the 
arbitration drive their inverted processor priority on the bus. Only the local APICs having free interrupt slots partic-
ipate in the lowest priority arbitration. If no such APIC exists, the message will be rejected, requiring it to be tried 
at a later time.

Cycles 29 through 32 are also used for arbitration in case two or more processors have the same lowest priority. In 
the lowest priority delivery mode, all combinations of errors in cycle 33 (A2 A2) will set the “accept error” bit in the 
error status register (see Figure 10-9). Arbitration priority update is performed in cycle 20, and is not affected by 
errors detected in cycle 33. Only the local APIC that wins in the lowest priority arbitration, drives cycle 33. An error 
in cycle 33 will force the sender to resend the message.

10.13.2.3  APIC Bus Status Cycles

Certain cycles within an APIC bus message are status cycles. During these cycles the status flags (A:A) and 
(A1:A1) are examined. Table 10-4 shows how these status flags are interpreted, depending on the current delivery 
mode and existence of a focus processor.

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 P7 0 P7 - P0 = Inverted Processor Priority

22 P6 0

23 P5 0

24 P4 0

25 P3 0

26 P2 0

27 P1 0

28 P0 0

29 ArbID3 0 Arbitration ID 3 -0 

30 ArbID2 0

31 ArbID1 0

32 ArbID0 0

33 A2 A2 Status Cycle

34 0 0 Idle

Table 10-3.  Non-Focused Lowest Priority Message (34 Cycles) (Contd.)

Cycle Bit0 Bit1
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Table 10-4.  APIC Bus Status Cycles Interpretation

Delivery
Mode

A Status A1 Status A2 Status Update ArbID 
and Cycle#

Message 
Length

Retry

EOI 00: CS_OK 10: Accept XX: Yes, 13 14 Cycle No

00: CS_OK 11: Retry XX: Yes, 13 14 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 14 Cycle Yes

11: CS_Error XX: XX: No 14 Cycle Yes

10: Error XX: XX: No 14 Cycle Yes

01: Error XX: XX: No 14 Cycle Yes

Fixed 00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

NMI, SMI, INIT, 
ExtINT,
Start-Up

00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept Error XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

Lowest 00: CS_OK, NoFocus 11: Do Lowest 10: Accept Yes, 20 34 Cycle No

00: CS_OK, NoFocus 11: Do Lowest 11: Error Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 11: Do Lowest 0X: Error Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 10: End and Retry XX: Yes, 20 34 Cycle Yes

00: CS_OK, NoFocus 0X: Error XX: No 34 Cycle Yes

10: CS_OK, Focus XX: XX: Yes, 20 34 Cycle No

11: CS_Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes
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CHAPTER 11
MEMORY CACHE CONTROL

This chapter describes the memory cache and cache control mechanisms, the TLBs, and the store buffer in Intel 64 
and IA-32 processors. It also describes the memory type range registers (MTRRs) introduced in the P6 family 
processors and how they are used to control caching of physical memory locations.

11.1 INTERNAL CACHES, TLBS, AND BUFFERS

The Intel 64 and IA-32 architectures support cache, translation look aside buffers (TLBs), and a store buffer for 
temporary on-chip (and external) storage of instructions and data. (Figure 11-1 shows the arrangement of caches, 
TLBs, and the store buffer for the Pentium 4 and Intel Xeon processors.) Table 11-1 shows the characteristics of 
these caches and buffers for the Pentium 4, Intel Xeon, P6 family, and Pentium processors. The sizes and char-
acteristics of these units are machine specific and may change in future versions of the processor. The 
CPUID instruction returns the sizes and characteristics of the caches and buffers for the processor on which the 
instruction is executed. See “CPUID—CPU Identification” in Chapter 3, “Instruction Set Reference, A-M,” of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

Figure 11-1.  Cache Structure of the Pentium 4 and Intel Xeon Processors

Trace CacheInstruction Decoder

Bus Interface Unit

System Bus

Data Cache
Unit (L1)

 (External)

Physical
Memory

Store Buffer

Data TLBs

L2 Cache

Instruction
TLBs

L3 Cache†

† Intel Xeon processors only
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Figure 11-2 shows the cache arrangement of Intel Core i7 processor.

Figure 11-2.  Cache Structure of the Intel Core i7 Processors

Table 11-1.  Characteristics of the Caches, TLBs, Store Buffer, and 

Write Combining Buffer in Intel 64 and IA-32 Processors

Cache or Buffer Characteristics

Trace Cache1 • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst® microarchitecture): 12 Kµops, 8-way set 
associative.

• Intel Core i7, Intel Core 2 Duo, Intel® Atom™, Intel Core Duo, Intel Core Solo, Pentium M processor: not 
implemented.

• P6 family and Pentium processors: not implemented.

L1 Instruction Cache • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): not implemented.
• Intel Core i7 processor: 32-KByte, 4-way set associative.
• Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M processor: 32-KByte, 8-way set 

associative.
• P6 family and Pentium processors: 8- or 16-KByte, 4-way set associative, 32-byte cache line size; 2-way set 

associative for earlier Pentium processors.

L1 Data Cache • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): 8-KByte, 4-way set 
associative, 64-byte cache line size.

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): 16-KByte, 8-way set 
associative, 64-byte cache line size.

• Intel Atom processors: 24-KByte, 6-way set associative, 64-byte cache line size.
• Intel Core i7, Intel Core 2 Duo, Intel Core Duo, Intel Core Solo, Pentium M and Intel Xeon processors: 32-

KByte, 8-way set associative, 64-byte cache line size.
• P6 family processors: 16-KByte, 4-way set associative, 32-byte cache line size; 8-KBytes, 2-way set 

associative for earlier P6 family processors.
• Pentium processors: 16-KByte, 4-way set associative, 32-byte cache line size; 8-KByte, 2-way set 

associative for earlier Pentium processors.

Instruction Decoder and front end

Out-of-Order Engine

Chipset

Data Cache
Unit (L1)

Instruction
Cache
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L2 Unified Cache • Intel Core 2 Duo and Intel Xeon processors: up to 4-MByte (or 4MBx2 in quadcore processors), 16-way set 
associative, 64-byte cache line size.

• Intel Core 2 Duo and Intel Xeon processors: up to 6-MByte (or 6MBx2 in quadcore processors), 24-way set 
associative, 64-byte cache line size.

• Intel Core i7, i5, i3 processors: 256KBbyte, 8-way set associative, 64-byte cache line size.
• Intel Atom processors: 512-KByte, 8-way set associative, 64-byte cache line size.
• Intel Core Duo, Intel Core Solo processors: 2-MByte, 8-way set associative, 64-byte cache line size 
• Pentium 4 and Intel Xeon processors: 256, 512, 1024, or 2048-KByte, 8-way set associative, 64-byte cache 

line size, 128-byte sector size.
• Pentium M processor: 1 or 2-MByte, 8-way set associative, 64-byte cache line size.
• P6 family processors: 128-KByte, 256-KByte, 512-KByte, 1-MByte, or 2-MByte, 4-way set associative, 

32-byte cache line size.
• Pentium processor (external optional): System specific, typically 256- or 512-KByte, 4-way set associative, 

32-byte cache line size.

L3 Unified Cache • Intel Xeon processors: 512-KByte, 1-MByte, 2-MByte, or 4-MByte, 8-way set associative, 64-byte cache line 
size, 128-byte sector size.

• Intel Core i7 processor, Intel Xeon processor 5500: Up to 8MByte, 16-way set associative, 64-byte cache 
line size.

• Intel Xeon processor 5600: Up to 12MByte, 64-byte cache line size.
• Intel Xeon processor 7500: Up to 24MByte, 64-byte cache line size.

Instruction TLB
(4-KByte Pages)

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): 128 entries, 4-way set 
associative.

• Intel Atom processors: 32-entries, fully associative.
• Intel Core i7, i5, i3 processors: 64-entries per thread (128-entries per core), 4-way set associative.
• Intel Core 2 Duo, Intel Core Duo, Intel Core Solo processors, Pentium M processor: 128 entries, 4-way set 

associative.
• P6 family processors: 32 entries, 4-way set associative.
• Pentium processor: 32 entries, 4-way set associative; fully set associative for Pentium processors with MMX 

technology.

Data TLB (4-KByte 
Pages)

• Intel Core i7, i5, i3 processors, DTLB0: 64-entries, 4-way set associative.
• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 256 entries, 4 ways.
• Intel Atom processors: 16-entry-per-thread micro-TLB, fully associative; 64-entry DTLB, 4-way set 

associative; 16-entry PDE cache, fully associative.
• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst microarchitecture): 64 entry, fully set 

associative, shared with large page DTLB.
• Intel Core Duo, Intel Core Solo processors, Pentium M processor: 128 entries, 4-way set associative.
• Pentium and P6 family processors: 64 entries, 4-way set associative; fully set, associative for Pentium 

processors with MMX technology.

Instruction TLB 
(Large Pages)

• Intel Core i7, i5, i3 processors: 7-entries per thread, fully associative.
• Intel Core 2 Duo processors: 4 entries, 4 ways.
• Pentium 4 and Intel Xeon processors: large pages are fragmented.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 2 entries, fully associative.
• P6 family processors: 2 entries, fully associative.
• Pentium processor: Uses same TLB as used for 4-KByte pages.

Data TLB (Large 
Pages)

• Intel Core i7, i5, i3 processors, DTLB0: 32-entries, 4-way set associative.
• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 32 entries, 4 ways.
• Intel Atom processors: 8 entries, 4-way set associative.
• Pentium 4 and Intel Xeon processors: 64 entries, fully set associative; shared with small page data TLBs.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 8 entries, fully associative.
• P6 family processors: 8 entries, 4-way set associative.
• Pentium processor: 8 entries, 4-way set associative; uses same TLB as used for 4-KByte pages in Pentium 

processors with MMX technology.

Second-level Unified 
TLB (4-KByte 
Pages)

• Intel Core i7, i5, i3 processor, STLB: 512-entries, 4-way set associative.

Table 11-1.  Characteristics of the Caches, TLBs, Store Buffer, and 

Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics
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Intel 64 and IA-32 processors may implement four types of caches: the trace cache, the level 1 (L1) cache, the 
level 2 (L2) cache, and the level 3 (L3) cache. See Figure 11-1. Cache availability is described below:
• Intel Core i7, i5, i3 processor Family and Intel Xeon processor Family based on Intel® microarchi-

tecture code name Nehalem and Intel® microarchitecture code name Westmere — The L1 cache is 
divided into two sections: one section is dedicated to caching instructions (pre-decoded instructions) and the 
other caches data. The L2 cache is a unified data and instruction cache. Each processor core has its own L1 and 
L2. The L3 cache is an inclusive, unified data and instruction cache, shared by all processor cores inside a 
physical package. No trace cache is implemented.

• Intel® Core™ 2 processor family and Intel® Xeon® processor family based on Intel® Core™ micro-
architecture — The L1 cache is divided into two sections: one section is dedicated to caching instructions (pre-
decoded instructions) and the other caches data. The L2 cache is a unified data and instruction cache located 
on the processor chip; it is shared between two processor cores in a dual-core processor implementation. 
Quad-core processors have two L2, each shared by two processor cores. No trace cache is implemented.

• Intel® Atom™ processor — The L1 cache is divided into two sections: one section is dedicated to caching 
instructions (pre-decoded instructions) and the other caches data. The L2 cache is a unified data and 
instruction cache is located on the processor chip. No trace cache is implemented.

• Intel® Core™ Solo and Intel® Core™ Duo processors — The L1 cache is divided into two sections: one 
section is dedicated to caching instructions (pre-decoded instructions) and the other caches data. The L2 cache 
is a unified data and instruction cache located on the processor chip. It is shared between two processor cores 
in a dual-core processor implementation. No trace cache is implemented.

• Pentium® 4 and Intel® Xeon® processors Based on Intel NetBurst® microarchitecture — The trace 
cache caches decoded instructions (µops) from the instruction decoder and the L1 cache contains data. The L2 
and L3 caches are unified data and instruction caches located on the processor chip. Dualcore processors have 
two L2, one in each processor core. Note that the L3 cache is only implemented on some Intel Xeon processors.

• P6 family processors — The L1 cache is divided into two sections: one dedicated to caching instructions (pre-
decoded instructions) and the other to caching data. The L2 cache is a unified data and instruction cache 
located on the processor chip. P6 family processors do not implement a trace cache.

• Pentium® processors — The L1 cache has the same structure as on P6 family processors. There is no trace 
cache. The L2 cache is a unified data and instruction cache external to the processor chip on earlier Pentium 
processors and implemented on the processor chip in later Pentium processors. For Pentium processors where 
the L2 cache is external to the processor, access to the cache is through the system bus.

For Intel Core i7 processors and processors based on Intel Core, Intel Atom, and Intel NetBurst microarchitectures, 
Intel Core Duo, Intel Core Solo and Pentium M processors, the cache lines for the L1 and L2 caches (and L3 caches 
if supported) are 64 bytes wide. The processor always reads a cache line from system memory beginning on a 64-
byte boundary. (A 64-byte aligned cache line begins at an address with its 6 least-significant bits clear.) A cache 

Store Buffer • Intel Core i7, i5, i3 processors: 32entries.
• Intel Core 2 Duo processors: 20 entries.
• Intel Atom processors: 8 entries, used for both WC and store buffers.
• Pentium 4 and Intel Xeon processors: 24 entries.
• Pentium M processor: 16 entries.
• P6 family processors: 12 entries.
• Pentium processor: 2 buffers, 1 entry each (Pentium processors with MMX technology have 4 buffers for 4 

entries).

Write Combining 
(WC) Buffer

• Intel Core 2 Duo processors: 8 entries.
• Intel Atom processors: 8 entries, used for both WC and store buffers.
• Pentium 4 and Intel Xeon processors: 6 or 8 entries.
• Intel Core Duo, Intel Core Solo, Pentium M processors: 6 entries.
• P6 family processors: 4 entries.

NOTES:

1 Introduced to the IA-32 architecture in the Pentium 4 and Intel Xeon processors.

Table 11-1.  Characteristics of the Caches, TLBs, Store Buffer, and 

Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics
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line can be filled from memory with a 8-transfer burst transaction. The caches do not support partially-filled cache 
lines, so caching even a single doubleword requires caching an entire line.

The L1 and L2 cache lines in the P6 family and Pentium processors are 32 bytes wide, with cache line reads from 
system memory beginning on a 32-byte boundary (5 least-significant bits of a memory address clear.) A cache line 
can be filled from memory with a 4-transfer burst transaction. Partially-filled cache lines are not supported.

The trace cache in processors based on Intel NetBurst microarchitecture is available in all execution modes: 
protected mode, system management mode (SMM), and real-address mode. The L1,L2, and L3 caches are also 
available in all execution modes; however, use of them must be handled carefully in SMM (see Section 34.4.2, 
“SMRAM Caching”).

The TLBs store the most recently used page-directory and page-table entries. They speed up memory accesses 
when paging is enabled by reducing the number of memory accesses that are required to read the page tables 
stored in system memory. The TLBs are divided into four groups: instruction TLBs for 4-KByte pages, data TLBs for 
4-KByte pages; instruction TLBs for large pages (2-MByte, 4-MByte or 1-GByte pages), and data TLBs for large 
pages. The TLBs are normally active only in protected mode with paging enabled. When paging is disabled or the 
processor is in real-address mode, the TLBs maintain their contents until explicitly or implicitly flushed (see Section 
11.9, “Invalidating the Translation Lookaside Buffers (TLBs)”).

Processors based on Intel Core microarchitectures implement one level of instruction TLB and two levels of data 
TLB. Intel Core i7 processor provides a second-level unified TLB. 

The store buffer is associated with the processors instruction execution units. It allows writes to system memory 
and/or the internal caches to be saved and in some cases combined to optimize the processor’s bus accesses. The 
store buffer is always enabled in all execution modes.

The processor’s caches are for the most part transparent to software. When enabled, instructions and data flow 
through these caches without the need for explicit software control. However, knowledge of the behavior of these 
caches may be useful in optimizing software performance. For example, knowledge of cache dimensions and 
replacement algorithms gives an indication of how large of a data structure can be operated on at once without 
causing cache thrashing.

In multiprocessor systems, maintenance of cache consistency may, in rare circumstances, require intervention by 
system software. For these rare cases, the processor provides privileged cache control instructions for use in 
flushing caches and forcing memory ordering.

The Pentium III, Pentium 4, and Intel Xeon processors introduced several instructions that software can use to 
improve the performance of the L1, L2, and L3 caches, including the PREFETCHh and CLFLUSH instructions and the 
non-temporal move instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD). The use of these 
instructions are discussed in Section 11.5.5, “Cache Management Instructions.”

11.2 CACHING TERMINOLOGY

IA-32 processors (beginning with the Pentium processor) and Intel 64 processors use the MESI (modified, exclu-
sive, shared, invalid) cache protocol to maintain consistency with internal caches and caches in other processors 
(see Section 11.4, “Cache Control Protocol”).

When the processor recognizes that an operand being read from memory is cacheable, the processor reads an 
entire cache line into the appropriate cache (L1, L2, L3, or all). This operation is called a cache line fill. If the 
memory location containing that operand is still cached the next time the processor attempts to access the 
operand, the processor can read the operand from the cache instead of going back to memory. This operation is 
called a cache hit. 

When the processor attempts to write an operand to a cacheable area of memory, it first checks if a cache line for 
that memory location exists in the cache. If a valid cache line does exist, the processor (depending on the write 
policy currently in force) can write the operand into the cache instead of writing it out to system memory. This 
operation is called a write hit. If a write misses the cache (that is, a valid cache line is not present for area of 
memory being written to), the processor performs a cache line fill, write allocation. Then it writes the operand into 
the cache line and (depending on the write policy currently in force) can also write it out to memory. If the operand 
is to be written out to memory, it is written first into the store buffer, and then written from the store buffer to 
memory when the system bus is available. (Note that for the Pentium processor, write misses do not result in a 
cache line fill; they always result in a write to memory. For this processor, only read misses result in cache line fills.)
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When operating in an MP system, IA-32 processors (beginning with the Intel486 processor) and Intel 64 processors 
have the ability to snoop other processor’s accesses to system memory and to their internal caches. They use this 
snooping ability to keep their internal caches consistent both with system memory and with the caches in other 
processors on the bus. For example, in the Pentium and P6 family processors, if through snooping one processor 
detects that another processor intends to write to a memory location that it currently has cached in shared state, 
the snooping processor will invalidate its cache line forcing it to perform a cache line fill the next time it accesses 
the same memory location. 

Beginning with the P6 family processors, if a processor detects (through snooping) that another processor is trying 
to access a memory location that it has modified in its cache, but has not yet written back to system memory, the 
snooping processor will signal the other processor (by means of the HITM# signal) that the cache line is held in 
modified state and will preform an implicit write-back of the modified data. The implicit write-back is transferred 
directly to the initial requesting processor and snooped by the memory controller to assure that system memory 
has been updated. Here, the processor with the valid data may pass the data to the other processors without actu-
ally writing it to system memory; however, it is the responsibility of the memory controller to snoop this operation 
and update memory.

11.3 METHODS OF CACHING AVAILABLE

The processor allows any area of system memory to be cached in the L1, L2, and L3 caches. In individual pages or 
regions of system memory, it allows the type of caching (also called memory type) to be specified (see Section 
11.5). Memory types currently defined for the Intel 64 and IA-32 architectures are (see Table 11-2):
• Strong Uncacheable (UC) —System memory locations are not cached. All reads and writes appear on the 

system bus and are executed in program order without reordering. No speculative memory accesses, page-
table walks, or prefetches of speculated branch targets are made. This type of cache-control is useful for 
memory-mapped I/O devices. When used with normal RAM, it greatly reduces processor performance.

NOTE

The behavior of FP and SSE/SSE2 operations on operands in UC memory is implementation 
dependent. In some implementations, accesses to UC memory may occur more than once. To 
ensure predictable behavior, use loads and stores of general purpose registers to access UC 
memory that may have read or write side effects.

• Uncacheable (UC-) — Has same characteristics as the strong uncacheable (UC) memory type, except that 
this memory type can be overridden by programming the MTRRs for the WC memory type. This memory type 
is available in processor families starting from the Pentium III processors and can only be selected through the 
PAT.

Table 11-2.  Memory Types and Their Properties

Memory Type and 
Mnemonic

Cacheable Writeback 
Cacheable

Allows
Speculative 
Reads

Memory Ordering Model

Strong Uncacheable 
(UC)

No No No Strong Ordering

Uncacheable (UC-) No No No Strong Ordering. Can only be selected through the PAT. Can be 
overridden by WC in MTRRs.

Write Combining (WC) No No Yes Weak Ordering. Available by programming MTRRs or by selecting it 
through the PAT.

Write Through (WT) Yes No Yes Speculative Processor Ordering.

Write Back (WB) Yes Yes Yes Speculative Processor Ordering.

Write Protected (WP) Yes for 
reads; no for 
writes

No Yes Speculative Processor Ordering. Available by programming MTRRs.
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• Write Combining (WC) — System memory locations are not cached (as with uncacheable memory) and 
coherency is not enforced by the processor’s bus coherency protocol. Speculative reads are allowed. Writes 
may be delayed and combined in the write combining buffer (WC buffer) to reduce memory accesses. If the WC 
buffer is partially filled, the writes may be delayed until the next occurrence of a serializing event; such as, an 
SFENCE or MFENCE instruction, CPUID execution, a read or write to uncached memory, an interrupt 
occurrence, or a LOCK instruction execution. This type of cache-control is appropriate for video frame buffers, 
where the order of writes is unimportant as long as the writes update memory so they can be seen on the 
graphics display. See Section 11.3.1, “Buffering of Write Combining Memory Locations,” for more information 
about caching the WC memory type. This memory type is available in the Pentium Pro and Pentium II 
processors by programming the MTRRs; or in processor families starting from the Pentium III processors by 
programming the MTRRs or by selecting it through the PAT.

• Write-through (WT) — Writes and reads to and from system memory are cached. Reads come from cache 
lines on cache hits; read misses cause cache fills. Speculative reads are allowed. All writes are written to a 
cache line (when possible) and through to system memory. When writing through to memory, invalid cache 
lines are never filled, and valid cache lines are either filled or invalidated. Write combining is allowed. This type 
of cache-control is appropriate for frame buffers or when there are devices on the system bus that access 
system memory, but do not perform snooping of memory accesses. It enforces coherency between caches in 
the processors and system memory.

• Write-back (WB) — Writes and reads to and from system memory are cached. Reads come from cache lines 
on cache hits; read misses cause cache fills. Speculative reads are allowed. Write misses cause cache line fills 
(in processor families starting with the P6 family processors), and writes are performed entirely in the cache, 
when possible. Write combining is allowed. The write-back memory type reduces bus traffic by eliminating 
many unnecessary writes to system memory. Writes to a cache line are not immediately forwarded to system 
memory; instead, they are accumulated in the cache. The modified cache lines are written to system memory 
later, when a write-back operation is performed. Write-back operations are triggered when cache lines need to 
be deallocated, such as when new cache lines are being allocated in a cache that is already full. They also are 
triggered by the mechanisms used to maintain cache consistency. This type of cache-control provides the best 
performance, but it requires that all devices that access system memory on the system bus be able to snoop 
memory accesses to insure system memory and cache coherency.

• Write protected (WP) — Reads come from cache lines when possible, and read misses cause cache fills. 
Writes are propagated to the system bus and cause corresponding cache lines on all processors on the bus to 
be invalidated. Speculative reads are allowed. This memory type is available in processor families starting from 
the P6 family processors by programming the MTRRs (see Table 11-6).

Table 11-3 shows which of these caching methods are available in the Pentium, P6 Family, Pentium 4, and Intel 
Xeon processors.

11.3.1 Buffering of Write Combining Memory Locations

Writes to the WC memory type are not cached in the typical sense of the word cached. They are retained in an 
internal write combining buffer (WC buffer) that is separate from the internal L1, L2, and L3 caches and the store 

Table 11-3.  Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4, 

Intel Xeon, P6 Family, and Pentium Processors

Memory Type Intel Core 2 Duo, Intel Atom, Intel Core Duo, 
Pentium M, Pentium 4 and Intel Xeon Processors

P6 Family 
Processors

Pentium 
Processor

Strong Uncacheable (UC) Yes Yes Yes

Uncacheable (UC-) Yes Yes* No

Write Combining (WC) Yes Yes No

Write Through (WT) Yes Yes Yes

Write Back (WB) Yes Yes Yes

Write Protected (WP) Yes Yes No

NOTE:

* Introduced in the Pentium III processor; not available in the Pentium Pro or Pentium II processors
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buffer. The WC buffer is not snooped and thus does not provide data coherency. Buffering of writes to WC memory 
is done to allow software a small window of time to supply more modified data to the WC buffer while remaining as 
non-intrusive to software as possible. The buffering of writes to WC memory also causes data to be collapsed; that 
is, multiple writes to the same memory location will leave the last data written in the location and the other writes 
will be lost.

The size and structure of the WC buffer is not architecturally defined. For the Intel Core 2 Duo, Intel Atom, Intel 
Core Duo, Pentium M, Pentium 4 and Intel Xeon processors; the WC buffer is made up of several 64-byte WC 
buffers. For the P6 family processors, the WC buffer is made up of several 32-byte WC buffers. 

When software begins writing to WC memory, the processor begins filling the WC buffers one at a time. When one 
or more WC buffers has been filled, the processor has the option of evicting the buffers to system memory. The 
protocol for evicting the WC buffers is implementation dependent and should not be relied on by software for 
system memory coherency. When using the WC memory type, software must be sensitive to the fact that the 
writing of data to system memory is being delayed and must deliberately empty the WC buffers when system 
memory coherency is required.

Once the processor has started to evict data from the WC buffer into system memory, it will make a bus-transaction 
style decision based on how much of the buffer contains valid data. If the buffer is full (for example, all bytes are 
valid), the processor will execute a burst-write transaction on the bus. This results in all 32 bytes (P6 family proces-
sors) or 64 bytes (Pentium 4 and more recent processor) being transmitted on the data bus in a single burst trans-
action. If one or more of the WC buffer’s bytes are invalid (for example, have not been written by software), the 
processor will transmit the data to memory using “partial write” transactions (one chunk at a time, where a “chunk” 
is 8 bytes). 

This will result in a maximum of 4 partial write transactions (for P6 family processors) or 8 partial write transactions 
(for the Pentium 4 and more recent processors) for one WC buffer of data sent to memory. 

The WC memory type is weakly ordered by definition. Once the eviction of a WC buffer has started, the data is 
subject to the weak ordering semantics of its definition. Ordering is not maintained between the successive alloca-
tion/deallocation of WC buffers (for example, writes to WC buffer 1 followed by writes to WC buffer 2 may appear 
as buffer 2 followed by buffer 1 on the system bus). When a WC buffer is evicted to memory as partial writes there 
is no guaranteed ordering between successive partial writes (for example, a partial write for chunk 2 may appear 
on the bus before the partial write for chunk 1 or vice versa). 

The only elements of WC propagation to the system bus that are guaranteed are those provided by transaction 
atomicity. For example, with a P6 family processor, a completely full WC buffer will always be propagated as a 
single 32-bit burst transaction using any chunk order. In a WC buffer eviction where data will be evicted as partials, 
all data contained in the same chunk (0 mod 8 aligned) will be propagated simultaneously. Likewise, for more 
recent processors starting with those based on Intel NetBurst microarchitectures, a full WC buffer will always be 
propagated as a single burst transactions, using any chunk order within a transaction. For partial buffer propaga-
tions, all data contained in the same chunk will be propagated simultaneously.

11.3.2 Choosing a Memory Type

The simplest system memory model does not use memory-mapped I/O with read or write side effects, does not 
include a frame buffer, and uses the write-back memory type for all memory. An I/O agent can perform direct 
memory access (DMA) to write-back memory and the cache protocol maintains cache coherency.

A system can use strong uncacheable memory for other memory-mapped I/O, and should always use strong unca-
cheable memory for memory-mapped I/O with read side effects.

Dual-ported memory can be considered a write side effect, making relatively prompt writes desirable, because 
those writes cannot be observed at the other port until they reach the memory agent. A system can use strong 
uncacheable, uncacheable, write-through, or write-combining memory for frame buffers or dual-ported memory 
that contains pixel values displayed on a screen. Frame buffer memory is typically large (a few megabytes) and is 
usually written more than it is read by the processor. Using strong uncacheable memory for a frame buffer gener-
ates very large amounts of bus traffic, because operations on the entire buffer are implemented using partial writes 
rather than line writes. Using write-through memory for a frame buffer can displace almost all other useful cached 
lines in the processor's L2 and L3 caches and L1 data cache. Therefore, systems should use write-combining 
memory for frame buffers whenever possible.
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Software can use page-level cache control, to assign appropriate effective memory types when software will not 
access data structures in ways that benefit from write-back caching. For example, software may read a large data 
structure once and not access the structure again until the structure is rewritten by another agent. Such a large 
data structure should be marked as uncacheable, or reading it will evict cached lines that the processor will be 
referencing again. 

A similar example would be a write-only data structure that is written to (to export the data to another agent), but 
never read by software. Such a structure can be marked as uncacheable, because software never reads the values 
that it writes (though as uncacheable memory, it will be written using partial writes, while as write-back memory, 
it will be written using line writes, which may not occur until the other agent reads the structure and triggers 
implicit write-backs).

On the Pentium III, Pentium 4, and more recent processors, new instructions are provided that give software 
greater control over the caching, prefetching, and the write-back characteristics of data. These instructions allow 
software to use weakly ordered or processor ordered memory types to improve processor performance, but when 
necessary to force strong ordering on memory reads and/or writes. They also allow software greater control over 
the caching of data. For a description of these instructions and there intended use, see Section 11.5.5, “Cache 
Management Instructions.”

11.3.3 Code Fetches in Uncacheable Memory

Programs may execute code from uncacheable (UC) memory, but the implications are different from accessing 
data in UC memory. When doing code fetches, the processor never transitions from cacheable code to UC code 
speculatively. It also never speculatively fetches branch targets that result in UC code.

The processor may fetch the same UC cache line multiple times in order to decode an instruction once. It may 
decode consecutive UC instructions in a cacheline without fetching between each instruction. It may also fetch 
additional cachelines from the same or a consecutive 4-KByte page in order to decode one non-speculative UC 
instruction (this can be true even when the instruction is contained fully in one line).  

Because of the above and because cacheline sizes may change in future processors, software should avoid placing 
memory-mapped I/O with read side effects in the same page or in a subsequent page used to execute UC code.

11.4 CACHE CONTROL PROTOCOL

The following section describes the cache control protocol currently defined for the Intel 64 and IA-32 architec-
tures. 

In the L1 data cache and in the L2/L3 unified caches, the MESI (modified, exclusive, shared, invalid) cache protocol 
maintains consistency with caches of other processors. The L1 data cache and the L2/L3 unified caches have two 
MESI status flags per cache line. Each line can be marked as being in one of the states defined in Table 11-4. In 
general, the operation of the MESI protocol is transparent to programs.

The L1 instruction cache in P6 family processors implements only the “SI” part of the MESI protocol, because the 
instruction cache is not writable. The instruction cache monitors changes in the data cache to maintain consistency 

Table 11-4.  MESI Cache Line States

Cache Line State M (Modified) E (Exclusive) S (Shared) I (Invalid)

This cache line is valid? Yes Yes Yes No

The memory copy is… Out of date Valid Valid —

Copies exist in caches of other 
processors?

No No Maybe Maybe

A write to this line … Does not go to the 
system bus.

Does not go to the 
system bus.

Causes the processor to 
gain exclusive ownership 
of the line.

Goes directly to the 
system bus.
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between the caches when instructions are modified. See Section 11.6, “Self-Modifying Code,” for more information 
on the implications of caching instructions.

11.5 CACHE CONTROL

The Intel 64 and IA-32 architectures provide a variety of mechanisms for controlling the caching of data and 
instructions and for controlling the ordering of reads and writes between the processor, the caches, and memory. 
These mechanisms can be divided into two groups:
• Cache control registers and bits — The Intel 64 and IA-32 architectures define several dedicated registers 

and various bits within control registers and page- and directory-table entries that control the caching system 
memory locations in the L1, L2, and L3 caches. These mechanisms control the caching of virtual memory pages 
and of regions of physical memory.

• Cache control and memory ordering instructions — The Intel 64 and IA-32 architectures provide several 
instructions that control the caching of data, the ordering of memory reads and writes, and the prefetching of 
data. These instructions allow software to control the caching of specific data structures, to control memory 
coherency for specific locations in memory, and to force strong memory ordering at specific locations in a 
program.

The following sections describe these two groups of cache control mechanisms.

11.5.1 Cache Control Registers and Bits

Figure 11-3 depicts cache-control mechanisms in IA-32 processors. Other than for the matter of memory address 
space, these work the same in Intel 64 processors.

The Intel 64 and IA-32 architectures provide the following cache-control registers and bits for use in enabling or 
restricting caching to various pages or regions in memory:
• CD flag, bit 30 of control register CR0 — Controls caching of system memory locations (see Section 2.5, 

“Control Registers”). If the CD flag is clear, caching is enabled for the whole of system memory, but may be 
restricted for individual pages or regions of memory by other cache-control mechanisms. When the CD flag is 
set, caching is restricted in the processor’s caches (cache hierarchy) for the P6 and more recent processor 
families and prevented for the Pentium processor (see note below). With the CD flag set, however, the caches 
will still respond to snoop traffic. Caches should be explicitly flushed to insure memory coherency. For highest 
processor performance, both the CD and the NW flags in control register CR0 should be cleared. Table 11-5 
shows the interaction of the CD and NW flags.
The effect of setting the CD flag is somewhat different for processor families starting with P6 family than the 
Pentium processor (see Table 11-5). To insure memory coherency after the CD flag is set, the caches should 
be explicitly flushed (see Section 11.5.3, “Preventing Caching”). Setting the CD flag for the P6 and more 
recent processor families modify cache line fill and update behaviour. Also, setting the CD flag on these 
processors do not force strict ordering of memory accesses unless the MTRRs are disabled and/or all memory 
is referenced as uncached (see Section 8.2.5, “Strengthening or Weakening the Memory-Ordering Model”).
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Figure 11-3.  Cache-Control Registers and Bits Available in Intel 64 and IA-32 Processors
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Table 11-5.  Cache Operating Modes 

CD NW Caching and Read/Write Policy L1 L2/L31

0 0 Normal Cache Mode. Highest performance cache operation.

• Read hits access the cache; read misses may cause replacement.
• Write hits update the cache.
• Only writes to shared lines and write misses update system memory.

Yes
Yes
Yes

Yes
Yes
Yes

• Write misses cause cache line fills.
• Write hits can change shared lines to modified under control of the MTRRs and with associated 

read invalidation cycle.
• (Pentium processor only.) Write misses do not cause cache line fills.

Yes
Yes

Yes

Yes

• (Pentium processor only.) Write hits can change shared lines to exclusive under control of WB/WT#.
• Invalidation is allowed.
• External snoop traffic is supported.

Yes

Yes
Yes

Yes
Yes

0 1 Invalid setting.

Generates a general-protection exception (#GP) with an error code of 0. NA NA

1 0 No-fill Cache Mode. Memory coherency is maintained.3

• (Pentium 4 and later processor families.) State of processor after a power up or reset.
• Read hits access the cache; read misses do not cause replacement (see Pentium 4 and Intel Xeon 

processors reference below).
• Write hits update the cache. 
• Only writes to shared lines and write misses update system memory.

Yes

Yes

Yes
Yes

Yes

Yes

Yes
Yes

• Write misses access memory.
• Write hits can change shared lines to exclusive under control of the MTRRs and with associated 

read invalidation cycle.
• (Pentium processor only.) Write hits can change shared lines to exclusive under control of the 

WB/WT#.

Yes
Yes

Yes

Yes
Yes

• (P6 and later processor families only.) Strict memory ordering is not enforced unless the MTRRs are 
disabled and/or all memory is referenced as uncached (see Section 7.2.4., “Strengthening or 
Weakening the Memory Ordering Model”).

• Invalidation is allowed.
• External snoop traffic is supported.

Yes

Yes
Yes

Yes

Yes
Yes

1 1 Memory coherency is not maintained.2, 3

• (P6 family and Pentium processors.) State of the processor after a power up or reset.
• Read hits access the cache; read misses do not cause replacement.
• Write hits update the cache and change exclusive lines to modified.

Yes

Yes

Yes

Yes

Yes

Yes

• Shared lines remain shared after write hit.
• Write misses access memory.
• Invalidation is inhibited when snooping; but is allowed with INVD and WBINVD instructions.
• External snoop traffic is supported.

Yes
Yes
Yes

No

Yes
Yes
Yes

Yes

NOTES:

1. The L2/L3 column in this table is definitive for the Pentium 4, Intel Xeon, and P6 family processors. It is intended to represent what 
could be implemented in a system based on a Pentium processor with an external, platform specific, write-back L2 cache.

2. The Pentium 4 and more recent processor families do not support this mode; setting the CD and NW bits to 1 selects the no-fill 
cache mode.

3. Not supported In Intel Atom processors. If CD = 1 in an Intel Atom processor, caching is disabled.
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• NW flag, bit 29 of control register CR0 — Controls the write policy for system memory locations (see 
Section 2.5, “Control Registers”). If the NW and CD flags are clear, write-back is enabled for the whole of 
system memory, but may be restricted for individual pages or regions of memory by other cache-control 
mechanisms. Table 11-5 shows how the other combinations of CD and NW flags affects caching.

NOTES

For the Pentium 4 and Intel Xeon processors, the NW flag is a don’t care flag; that is, when the CD 
flag is set, the processor uses the no-fill cache mode, regardless of the setting of the NW flag.
For Intel Atom processors, the NW flag is a don’t care flag; that is, when the CD flag is set, the 
processor disables caching, regardless of the setting of the NW flag.
For the Pentium processor, when the L1 cache is disabled (the CD and NW flags in control register 
CR0 are set), external snoops are accepted in DP (dual-processor) systems and inhibited in unipro-
cessor systems. 
When snoops are inhibited, address parity is not checked and APCHK# is not asserted for a corrupt 
address; however, when snoops are accepted, address parity is checked and APCHK# is asserted 
for corrupt addresses.

• PCD and PWT flags in paging-structure entries — Control the memory type used to access paging 
structures and pages (see Section 4.9, “Paging and Memory Typing”).

• PCD and PWT flags in control register CR3 — Control the memory type used to access the first paging 
structure of the current paging-structure hierarchy (see Section 4.9, “Paging and Memory Typing”).

• G (global) flag in the page-directory and page-table entries (introduced to the IA-32 architecture in 
the P6 family processors) — Controls the flushing of TLB entries for individual pages. See Section 4.10, 
“Caching Translation Information,” for more information about this flag.

• PGE (page global enable) flag in control register CR4 — Enables the establishment of global pages with 
the G flag. See Section 4.10, “Caching Translation Information,” for more information about this flag.

• Memory type range registers (MTRRs) (introduced in P6 family processors) — Control the type of 
caching used in specific regions of physical memory. Any of the caching types described in Section 11.3, 
“Methods of Caching Available,” can be selected. See Section 11.11, “Memory Type Range Registers (MTRRs),” 
for a detailed description of the MTRRs.

• Page Attribute Table (PAT) MSR (introduced in the Pentium III processor) — Extends the memory 
typing capabilities of the processor to permit memory types to be assigned on a page-by-page basis (see 
Section 11.12, “Page Attribute Table (PAT)”).

• Third-Level Cache Disable flag, bit 6 of the IA32_MISC_ENABLE MSR (Available only in processors 
based on Intel NetBurst microarchitecture) — Allows the L3 cache to be disabled and enabled, indepen-
dently of the L1 and L2 caches. 

• KEN# and WB/WT# pins (Pentium processor) — Allow external hardware to control the caching method 
used for specific areas of memory. They perform similar (but not identical) functions to the MTRRs in the P6 
family processors.

• PCD and PWT pins (Pentium processor) — These pins (which are associated with the PCD and PWT flags in 
control register CR3 and in the page-directory and page-table entries) permit caching in an external L2 cache 
to be controlled on a page-by-page basis, consistent with the control exercised on the L1 cache of these 
processors. The P6 and more recent processor families do not provide these pins because the L2 cache in 
internal to the chip package.

11.5.2 Precedence of Cache Controls

The cache control flags and MTRRs operate hierarchically for restricting caching. That is, if the CD flag is set, 
caching is prevented globally (see Table 11-5). If the CD flag is clear, the page-level cache control flags and/or the 
MTRRs can be used to restrict caching. If there is an overlap of page-level and MTRR caching controls, the mecha-
nism that prevents caching has precedence. For example, if an MTRR makes a region of system memory uncache-
able, a page-level caching control cannot be used to enable caching for a page in that region. The converse is also 
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true; that is, if a page-level caching control designates a page as uncacheable, an MTRR cannot be used to make 
the page cacheable.

In cases where there is a overlap in the assignment of the write-back and write-through caching policies to a page 
and a region of memory, the write-through policy takes precedence. The write-combining policy (which can only be 
assigned through an MTRR or the PAT) takes precedence over either write-through or write-back.

The selection of memory types at the page level varies depending on whether PAT is being used to select memory 
types for pages, as described in the following sections.

On processors based on Intel NetBurst microarchitecture, the third-level cache can be disabled by bit 6 of the 
IA32_MISC_ENABLE MSR. Using IA32_MISC_ENABLE[bit 6] takes precedence over the CD flag, MTRRs, and PAT 
for the L3 cache in those processors. That is, when the third-level cache disable flag is set (cache disabled), the 
other cache controls have no affect on the L3 cache; when the flag is clear (enabled), the cache controls have the 
same affect on the L3 cache as they have on the L1 and L2 caches.

IA32_MISC_ENABLE[bit 6] is not supported in Intel Core i7 processors, nor processors based on Intel Core, and 
Intel Atom microarchitectures.

11.5.2.1  Selecting Memory Types for Pentium Pro and Pentium II Processors

The Pentium Pro and Pentium II processors do not support the PAT. Here, the effective memory type for a page is 
selected with the MTRRs and the PCD and PWT bits in the page-table or page-directory entry for the page. Table 
11-6 describes the mapping of MTRR memory types and page-level caching attributes to effective memory types, 
when normal caching is in effect (the CD and NW flags in control register CR0 are clear). Combinations that appear 
in gray are implementation-defined for the Pentium Pro and Pentium II processors. System designers are encour-
aged to avoid these implementation-defined combinations.

When normal caching is in effect, the effective memory type shown in Table 11-6 is determined using the following 
rules:

1. If the PCD and PWT attributes for the page are both 0, then the effective memory type is identical to the
MTRR-defined memory type.

Table 11-6.  Effective Page-Level Memory Type for Pentium Pro and Pentium II Processors 

MTRR Memory Type1 PCD Value PWT Value Effective Memory Type

UC X X UC

WC 0 0 WC

0 1 WC

1 0 WC

1 1 UC

WT 0 X WT

1 X UC

WP 0 0 WP

0 1 WP

1 0 WC

1 1 UC

WB 0 0 WB

0 1 WT

1 X UC

NOTE:

1. These effective memory types also apply to the Pentium 4, Intel Xeon, and Pentium III processors when the PAT bit is not used 
(set to 0) in page-table and page-directory entries.



Vol. 3A 11-15

MEMORY CACHE CONTROL

2. If the PCD flag is set, then the effective memory type is UC.

3. If the PCD flag is clear and the PWT flag is set, the effective memory type is WT for the WB memory type and 
the MTRR-defined memory type for all other memory types. 

4. Setting the PCD and PWT flags to opposite values is considered model-specific for the WP and WC memory 
types and architecturally-defined for the WB, WT, and UC memory types.

11.5.2.2  Selecting Memory Types for Pentium III and More Recent Processor Families

The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M, Pentium 4, Intel Xeon, and Pentium 
III processors use the PAT to select effective page-level memory types. Here, a memory type for a page is selected 
by the MTRRs and the value in a PAT entry that is selected with the PAT, PCD and PWT bits in a page-table or page-
directory entry (see Section 11.12.3, “Selecting a Memory Type from the PAT”). Table 11-7 describes the mapping 
of MTRR memory types and PAT entry types to effective memory types, when normal caching is in effect (the CD 
and NW flags in control register CR0 are clear).

Table 11-7.  Effective Page-Level Memory Types for Pentium III and More Recent Processor Families 

MTRR Memory Type PAT Entry Value Effective Memory Type

UC UC UC1

UC- UC1

WC WC

WT UC1

WB UC1

WP UC1

WC UC UC2

UC- WC

WC WC

WT UC2,3

WB WC

WP UC2,3

WT UC UC2

UC- UC2

WC WC

WT WT

WB WT

WP WP3

WB UC UC2

UC- UC2

WC WC

WT WT

WB WB

WP WP
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11.5.2.3  Writing Values Across Pages with Different Memory Types

If two adjoining pages in memory have different memory types, and a word or longer operand is written to a 
memory location that crosses the page boundary between those two pages, the operand might be written to 
memory twice. This action does not present a problem for writes to actual memory; however, if a device is mapped 
the memory space assigned to the pages, the device might malfunction.

11.5.3 Preventing Caching

To disable the L1, L2, and L3 caches after they have been enabled and have received cache fills, perform the 
following steps:

1. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and the NW flag to 0.

2. Flush all caches using the WBINVD instruction.

3. Disable the MTRRs and set the default memory type to uncached or set all MTRRs for the uncached memory 
type (see the discussion of the discussion of the TYPE field and the E flag in Section 11.11.2.1, 
“IA32_MTRR_DEF_TYPE MSR”).

The caches must be flushed (step 2) after the CD flag is set to insure system memory coherency. If the caches are 
not flushed, cache hits on reads will still occur and data will be read from valid cache lines.

The intent of the three separate steps listed above address three distinct requirements: (i) discontinue new data 
replacing existing data in the cache (ii) ensure data already in the cache are evicted to memory, (iii) ensure subse-
quent memory references observe UC memory type semantics. Different processor implementation of caching 
control hardware may allow some variation of software implementation of these three requirements. See note 
below.

NOTES

Setting the CD flag in control register CR0 modifies the processor’s caching behaviour as indicated 
in Table 11-5, but setting the CD flag alone may not be sufficient across all processor families to 
force the effective memory type for all physical memory to be UC nor does it force strict memory 
ordering, due to hardware implementation variations across different processor families. To force 
the UC memory type and strict memory ordering on all of physical memory, it is sufficient to either 
program the MTRRs for all physical memory to be UC memory type or disable all MTRRs.
For the Pentium 4 and Intel Xeon processors, after the sequence of steps given above has been 
executed, the cache lines containing the code between the end of the WBINVD instruction and 
before the MTRRS have actually been disabled may be retained in the cache hierarchy. Here, to 

WP UC UC2

UC- WC3

WC WC

WT WT3

WB WP

WP WP

NOTES: 

1. The UC attribute comes from the MTRRs and the processors are not required to snoop their caches since the data could never have 
been cached. This attribute is preferred for performance reasons.

2. The UC attribute came from the page-table or page-directory entry and processors are required to check their caches because the 
data may be cached due to page aliasing, which is not recommended.

3. These combinations were specified as “undefined” in previous editions of the Intel® 64 and IA-32 Architectures Software Devel-

oper’s Manual. However, all processors that support both the PAT and the MTRRs determine the effective page-level memory 
types for these combinations as given.

Table 11-7.  Effective Page-Level Memory Types for Pentium III and More Recent Processor Families  (Contd.)

MTRR Memory Type PAT Entry Value Effective Memory Type



Vol. 3A 11-17

MEMORY CACHE CONTROL

remove code from the cache completely, a second WBINVD instruction must be executed after the 
MTRRs have been disabled.
For Intel Atom processors, setting the CD flag forces all physical memory to observe UC semantics 
(without requiring memory type of physical memory to be set explicitly). Consequently, software 
does not need to issue a second WBINVD as some other processor generations might require. 

11.5.4 Disabling and Enabling the L3 Cache

On processors based on Intel NetBurst microarchitecture, the third-level cache can be disabled by bit 6 of the 
IA32_MISC_ENABLE MSR. The third-level cache disable flag (bit 6 of the IA32_MISC_ENABLE MSR) allows the L3 
cache to be disabled and enabled, independently of the L1 and L2 caches. Prior to using this control to disable or 
enable the L3 cache, software should disable and flush all the processor caches, as described earlier in Section 
11.5.3, “Preventing Caching,” to prevent of loss of information stored in the L3 cache. After the L3 cache has been 
disabled or enabled, caching for the whole processor can be restored.

Newer Intel 64 processor with L3 do not support IA32_MISC_ENABLE[bit 6], the procedure described in Section 
11.5.3, “Preventing Caching,” apply to the entire cache hierarchy.

11.5.5 Cache Management Instructions

The Intel 64 and IA-32 architectures provide several instructions for managing the L1, L2, and L3 caches. The 
INVD, WBINVD, and WBINVD instructions are system instructions that operate on the L1, L2, and L3 caches as a 
whole. The PREFETCHh and CLFLUSH instructions and the non-temporal move instructions (MOVNTI, MOVNTQ, 
MOVNTDQ, MOVNTPS, and MOVNTPD), which were introduced in SSE/SSE2 extensions, offer more granular 
control over caching.

The INVD and WBINVD instructions are used to invalidate the contents of the L1, L2, and L3 caches. The INVD 
instruction invalidates all internal cache entries, then generates a special-function bus cycle that indicates that 
external caches also should be invalidated. The INVD instruction should be used with care. It does not force a 
write-back of modified cache lines; therefore, data stored in the caches and not written back to system memory 
will be lost. Unless there is a specific requirement or benefit to invalidating the caches without writing back the 
modified lines (such as, during testing or fault recovery where cache coherency with main memory is not a 
concern), software should use the WBINVD instruction. 

The WBINVD instruction first writes back any modified lines in all the internal caches, then invalidates the contents 
of both the L1, L2, and L3 caches. It ensures that cache coherency with main memory is maintained regardless of 
the write policy in effect (that is, write-through or write-back). Following this operation, the WBINVD instruction 
generates one (P6 family processors) or two (Pentium and Intel486 processors) special-function bus cycles to indi-
cate to external cache controllers that write-back of modified data followed by invalidation of external caches 
should occur. The amount of time or cycles for WBINVD to complete will vary due to the size of different cache hier-
archies and other factors. As a consequence, the use of the WBINVD instruction can have an impact on inter-
rupt/event response time.

The PREFETCHh instructions allow a program to suggest to the processor that a cache line from a specified location 
in system memory be prefetched into the cache hierarchy (see Section 11.8, “Explicit Caching”).

The CLFLUSH instruction allow selected cache lines to be flushed from memory. This instruction give a program the 
ability to explicitly free up cache space, when it is known that cached section of system memory will not be 
accessed in the near future.

The non-temporal move instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD) allow data to be 
moved from the processor’s registers directly into system memory without being also written into the L1, L2, 
and/or L3 caches. These instructions can be used to prevent cache pollution when operating on data that is going 
to be modified only once before being stored back into system memory. These instructions operate on data in the 
general-purpose, MMX, and XMM registers.
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11.5.6 L1 Data Cache Context Mode

L1 data cache context mode is a feature of processors based on the Intel NetBurst microarchitecture that support 
Intel Hyper-Threading Technology. When CPUID.1:ECX[bit 10] = 1, the processor supports setting L1 data cache 
context mode using the L1 data cache context mode flag ( IA32_MISC_ENABLE[bit 24] ). Selectable modes are 
adaptive mode (default) and shared mode.

The BIOS is responsible for configuring the L1 data cache context mode.

11.5.6.1  Adaptive Mode

Adaptive mode facilitates L1 data cache sharing between logical processors. When running in adaptive mode, the 
L1 data cache is shared across logical processors in the same core if:
• CR3 control registers for logical processors sharing the cache are identical.
• The same paging mode is used by logical processors sharing the cache.

In this situation, the entire L1 data cache is available to each logical processor (instead of being competitively 
shared).

If CR3 values are different for the logical processors sharing an L1 data cache or the logical processors use different 
paging modes, processors compete for cache resources. This reduces the effective size of the cache for each logical 
processor. Aliasing of the cache is not allowed (which prevents data thrashing).

11.5.6.2  Shared Mode

In shared mode, the L1 data cache is competitively shared between logical processors. This is true even if the 
logical processors use identical CR3 registers and paging modes.

In shared mode, linear addresses in the L1 data cache can be aliased, meaning that one linear address in the cache 
can point to different physical locations. The mechanism for resolving aliasing can lead to thrashing. For this 
reason, IA32_MISC_ENABLE[bit 24] = 0 is the preferred configuration for processors based on the Intel NetBurst 
microarchitecture that support Intel Hyper-Threading Technology.

11.6 SELF-MODIFYING CODE

A write to a memory location in a code segment that is currently cached in the processor causes the associated 
cache line (or lines) to be invalidated. This check is based on the physical address of the instruction. In addition, 
the P6 family and Pentium processors check whether a write to a code segment may modify an instruction that has 
been prefetched for execution. If the write affects a prefetched instruction, the prefetch queue is invalidated. This 
latter check is based on the linear address of the instruction. For the Pentium 4 and Intel Xeon processors, a write 
or a snoop of an instruction in a code segment, where the target instruction is already decoded and resident in the 
trace cache, invalidates the entire trace cache. The latter behavior means that programs that self-modify code can 
cause severe degradation of performance when run on the Pentium 4 and Intel Xeon processors.

In practice, the check on linear addresses should not create compatibility problems among IA-32 processors. Appli-
cations that include self-modifying code use the same linear address for modifying and fetching the instruction. 
Systems software, such as a debugger, that might possibly modify an instruction using a different linear address 
than that used to fetch the instruction, will execute a serializing operation, such as a CPUID instruction, before the 
modified instruction is executed, which will automatically resynchronize the instruction cache and prefetch queue. 
(See Section 8.1.3, “Handling Self- and Cross-Modifying Code,” for more information about the use of self-modi-
fying code.)

For Intel486 processors, a write to an instruction in the cache will modify it in both the cache and memory, but if 
the instruction was prefetched before the write, the old version of the instruction could be the one executed. To 
prevent the old instruction from being executed, flush the instruction prefetch unit by coding a jump instruction 
immediately after any write that modifies an instruction.
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11.7 IMPLICIT CACHING (PENTIUM 4, INTEL XEON, 
AND P6 FAMILY PROCESSORS)

Implicit caching occurs when a memory element is made potentially cacheable, although the element may never 
have been accessed in the normal von Neumann sequence. Implicit caching occurs on the P6 and more recent 
processor families due to aggressive prefetching, branch prediction, and TLB miss handling. Implicit caching is an 
extension of the behavior of existing Intel386, Intel486, and Pentium processor systems, since software running 
on these processor families also has not been able to deterministically predict the behavior of instruction prefetch.

To avoid problems related to implicit caching, the operating system must explicitly invalidate the cache when 
changes are made to cacheable data that the cache coherency mechanism does not automatically handle. This 
includes writes to dual-ported or physically aliased memory boards that are not detected by the snooping mecha-
nisms of the processor, and changes to page- table entries in memory.

The code in Example 11-1 shows the effect of implicit caching on page-table entries. The linear address F000H 
points to physical location B000H (the page-table entry for F000H contains the value B000H), and the page-table 
entry for linear address F000 is PTE_F000.

Example 11-1.  Effect of Implicit Caching on Page-Table Entries

mov EAX, CR3; Invalidate the TLB

mov CR3, EAX; by copying CR3 to itself

mov PTE_F000, A000H; Change F000H to point to A000H

mov EBX, [F000H];

Because of speculative execution in the P6 and more recent processor families, the last MOV instruction performed 
would place the value at physical location B000H into EBX, rather than the value at the new physical address 
A000H. This situation is remedied by placing a TLB invalidation between the load and the store.

11.8 EXPLICIT CACHING

The Pentium III processor introduced four new instructions, the PREFETCHh instructions, that provide software with 
explicit control over the caching of data. These instructions provide “hints” to the processor that the data requested 
by a PREFETCHh instruction should be read into cache hierarchy now or as soon as possible, in anticipation of its 
use. The instructions provide different variations of the hint that allow selection of the cache level into which data 
will be read.

The PREFETCHh instructions can help reduce the long latency typically associated with reading data from memory 
and thus help prevent processor “stalls.” However, these instructions should be used judiciously. Overuse can lead 
to resource conflicts and hence reduce the performance of an application. Also, these instructions should only be 
used to prefetch data from memory; they should not be used to prefetch instructions. For more detailed informa-
tion on the proper use of the prefetch instruction, refer to Chapter 7, “Optimizing Cache Usage,” in the Intel® 64 
and IA-32 Architectures Optimization Reference Manual.

11.9 INVALIDATING THE TRANSLATION LOOKASIDE BUFFERS (TLBS)

The processor updates its address translation caches (TLBs) transparently to software. Several mechanisms are 
available, however, that allow software and hardware to invalidate the TLBs either explicitly or as a side effect of 
another operation. Most details are given in Section 4.10.4, “Invalidation of TLBs and Paging-Structure Caches.” In 
addition, the following operations invalidate all TLB entries, irrespective of the setting of the G flag:
• Asserting or de-asserting the FLUSH# pin.
• (Pentium 4, Intel Xeon, and later processors only.) Writing to an MTRR (with a WRMSR instruction).
• Writing to control register CR0 to modify the PG or PE flag.
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• (Pentium 4, Intel Xeon, and later processors only.) Writing to control register CR4 to modify the PSE, PGE, or 
PAE flag.

• Writing to control register CR4 to change the PCIDE flag from 1 to 0.

See Section 4.10, “Caching Translation Information,” for additional information about the TLBs.

11.10 STORE BUFFER

Intel 64 and IA-32 processors temporarily store each write (store) to memory in a store buffer. The store buffer 
improves processor performance by allowing the processor to continue executing instructions without having to 
wait until a write to memory and/or to a cache is complete. It also allows writes to be delayed for more efficient use 
of memory-access bus cycles.

In general, the existence of the store buffer is transparent to software, even in systems that use multiple proces-
sors. The processor ensures that write operations are always carried out in program order. It also insures that the 
contents of the store buffer are always drained to memory in the following situations:
• When an exception or interrupt is generated.
• (P6 and more recent processor families only) When a serializing instruction is executed.
• When an I/O instruction is executed.
• When a LOCK operation is performed.
• (P6 and more recent processor families only) When a BINIT operation is performed.
• (Pentium III, and more recent processor families only) When using an SFENCE instruction to order stores.
• (Pentium 4 and more recent processor families only) When using an MFENCE instruction to order stores.

The discussion of write ordering in Section 8.2, “Memory Ordering,” gives a detailed description of the operation of 
the store buffer.

11.11 MEMORY TYPE RANGE REGISTERS (MTRRS)

The following section pertains only to the P6 and more recent processor families.

The memory type range registers (MTRRs) provide a mechanism for associating the memory types (see Section 
11.3, “Methods of Caching Available”) with physical-address ranges in system memory. They allow the processor 
to optimize operations for different types of memory such as RAM, ROM, frame-buffer memory, and memory-
mapped I/O devices. They also simplify system hardware design by eliminating the memory control pins used for 
this function on earlier IA-32 processors and the external logic needed to drive them.

The MTRR mechanism allows up to 96 memory ranges to be defined in physical memory, and it defines a set of 
model-specific registers (MSRs) for specifying the type of memory that is contained in each range. Table 11-8 
shows the memory types that can be specified and their properties; Figure 11-4 shows the mapping of physical 
memory with MTRRs. See Section 11.3, “Methods of Caching Available,” for a more detailed description of each 
memory type.

Following a hardware reset, the P6 and more recent processor families disable all the fixed and variable MTRRs, 
which in effect makes all of physical memory uncacheable. Initialization software should then set the MTRRs to a 
specific, system-defined memory map. Typically, the BIOS (basic input/output system) software configures the 
MTRRs. The operating system or executive is then free to modify the memory map using the normal page-level 
cacheability attributes.

In a multiprocessor system using a processor in the P6 family or a more recent family, each processor MUST use 
the identical MTRR memory map so that software will have a consistent view of memory.

NOTE

In multiple processor systems, the operating system must maintain MTRR consistency between all 
the processors in the system (that is, all processors must use the same MTRR values). The P6 and 
more recent processor families provide no hardware support for maintaining this consistency.
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11.11.1 MTRR Feature Identification

The availability of the MTRR feature is model-specific. Software can determine if MTRRs are supported on a 
processor by executing the CPUID instruction and reading the state of the MTRR flag (bit 12) in the feature infor-
mation register (EDX).

If the MTRR flag is set (indicating that the processor implements MTRRs), additional information about MTRRs can 
be obtained from the 64-bit IA32_MTRRCAP MSR (named MTRRcap MSR for the P6 family processors). The 
IA32_MTRRCAP MSR is a read-only MSR that can be read with the RDMSR instruction. Figure 11-5 shows the 
contents of the IA32_MTRRCAP MSR. The functions of the flags and field in this register are as follows:

Table 11-8.  Memory Types That Can Be Encoded in MTRRs 

Memory Type and Mnemonic Encoding in MTRR

Uncacheable (UC) 00H

Write Combining (WC) 01H

Reserved* 02H

Reserved* 03H

Write-through (WT) 04H

Write-protected (WP) 05H

Writeback (WB) 06H

Reserved* 7H through FFH

NOTE:

* Use of these encodings results in a general-protection exception (#GP).

Figure 11-4.  Mapping Physical Memory With MTRRs
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• VCNT (variable range registers count) field, bits 0 through 7 — Indicates the number of variable ranges 
implemented on the processor.

• FIX (fixed range registers supported) flag, bit 8 — Fixed range MTRRs (IA32_MTRR_FIX64K_00000 
through IA32_MTRR_FIX4K_0F8000) are supported when set; no fixed range registers are supported when 
clear.

• WC (write combining) flag, bit 10 — The write-combining (WC) memory type is supported when set; the 
WC type is not supported when clear.

• SMRR (System-Management Range Register) flag, bit 11 — The system-management range register 
(SMRR) interface is supported when bit 11 is set; the SMRR interface is not supported when clear.

Bit 9 and bits 12 through 63 in the IA32_MTRRCAP MSR are reserved. If software attempts to write to the 
IA32_MTRRCAP MSR, a general-protection exception (#GP) is generated. 

Software must read IA32_MTRRCAP VCNT field to determine the number of variable MTRRs and query other 
feature bits in IA32_MTRRCAP to determine additional capabilities that are supported in a processor. For example, 
some processors may report a value of ‘8’ in the VCNT field, other processors may report VCNT with different 
values. 

11.11.2 Setting Memory Ranges with MTRRs

The memory ranges and the types of memory specified in each range are set by three groups of registers: the 
IA32_MTRR_DEF_TYPE MSR, the fixed-range MTRRs, and the variable range MTRRs. These registers can be read 
and written to using the RDMSR and WRMSR instructions, respectively. The IA32_MTRRCAP MSR indicates the 
availability of these registers on the processor (see Section 11.11.1, “MTRR Feature Identification”).

11.11.2.1  IA32_MTRR_DEF_TYPE MSR

The IA32_MTRR_DEF_TYPE MSR (named MTRRdefType MSR for the P6 family processors) sets the default proper-
ties of the regions of physical memory that are not encompassed by MTRRs. The functions of the flags and field in 
this register are as follows:
• Type field, bits 0 through 7 — Indicates the default memory type used for those physical memory address 

ranges that do not have a memory type specified for them by an MTRR (see Table 11-8 for the encoding of this 
field). The legal values for this field are 0, 1, 4, 5, and 6. All other values result in a general-protection 
exception (#GP) being generated. 
Intel recommends the use of the UC (uncached) memory type for all physical memory addresses where 
memory does not exist. To assign the UC type to nonexistent memory locations, it can either be specified as the 
default type in the Type field or be explicitly assigned with the fixed and variable MTRRs.

Figure 11-5.  IA32_MTRRCAP Register

VCNT — Number of variable range registers
FIX — Fixed range registers supported
WC — Write-combining memory type supported
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• FE (fixed MTRRs enabled) flag, bit 10 — Fixed-range MTRRs are enabled when set; fixed-range MTRRs are 
disabled when clear. When the fixed-range MTRRs are enabled, they take priority over the variable-range 
MTRRs when overlaps in ranges occur. If the fixed-range MTRRs are disabled, the variable-range MTRRs can 
still be used and can map the range ordinarily covered by the fixed-range MTRRs.

• E (MTRRs enabled) flag, bit 11 — MTRRs are enabled when set; all MTRRs are disabled when clear, and the 
UC memory type is applied to all of physical memory. When this flag is set, the FE flag can disable the fixed-
range MTRRs; when the flag is clear, the FE flag has no affect. When the E flag is set, the type specified in the 
default memory type field is used for areas of memory not already mapped by either a fixed or variable MTRR.

Bits 8 and 9, and bits 12 through 63, in the IA32_MTRR_DEF_TYPE MSR are reserved; the processor generates a 
general-protection exception (#GP) if software attempts to write nonzero values to them.

11.11.2.2  Fixed Range MTRRs

The fixed memory ranges are mapped with 11 fixed-range registers of 64 bits each. Each of these registers is 
divided into 8-bit fields that are used to specify the memory type for each of the sub-ranges the register controls:
• Register IA32_MTRR_FIX64K_00000 — Maps the 512-KByte address range from 0H to 7FFFFH. This range 

is divided into eight 64-KByte sub-ranges.
• Registers IA32_MTRR_FIX16K_80000 and IA32_MTRR_FIX16K_A0000 — Maps the two 128-KByte 

address ranges from 80000H to BFFFFH. This range is divided into sixteen 16-KByte sub-ranges, 8 ranges per 
register.

• Registers IA32_MTRR_FIX4K_C0000 through IA32_MTRR_FIX4K_F8000 — Maps eight 32-KByte 
address ranges from C0000H to FFFFFH. This range is divided into sixty-four 4-KByte sub-ranges, 8 ranges per 
register.

Table 11-9 shows the relationship between the fixed physical-address ranges and the corresponding fields of the 
fixed-range MTRRs; Table 11-8 shows memory type encoding for MTRRs.

For the P6 family processors, the prefix for the fixed range MTRRs is MTRRfix.

11.11.2.3  Variable Range MTRRs

The Pentium 4, Intel Xeon, and P6 family processors permit software to specify the memory type for m variable-
size address ranges, using a pair of MTRRs for each range. The number m of ranges supported is given in bits 7:0 
of the IA32_MTRRCAP MSR (see Figure 11-5 in Section 11.11.1).

The first entry in each pair (IA32_MTRR_PHYSBASEn) defines the base address and memory type for the range; 
the second entry (IA32_MTRR_PHYSMASKn) contains a mask used to determine the address range. The “n” suffix 
is in the range 0 through m–1 and identifies a specific register pair.

For P6 family processors, the prefixes for these variable range MTRRs are MTRRphysBase and MTRRphysMask.

Figure 11-6.  IA32_MTRR_DEF_TYPE MSR
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Figure 11-7 shows flags and fields in these registers. The functions of these flags and fields are:
• Type field, bits 0 through 7 — Specifies the memory type for the range (see Table 11-8 for the encoding of 

this field).
• PhysBase field, bits 12 through (MAXPHYADDR-1) — Specifies the base address of the address range. 

This 24-bit value, in the case where MAXPHYADDR is 36 bits, is extended by 12 bits at the low end to form the 
base address (this automatically aligns the address on a 4-KByte boundary).

• PhysMask field, bits 12 through (MAXPHYADDR-1) — Specifies a mask (24 bits if the maximum physical 
address size is 36 bits, 28 bits if the maximum physical address size is 40 bits). The mask determines the range 
of the region being mapped, according to the following relationships:

— Address_Within_Range AND PhysMask = PhysBase AND PhysMask

— This value is extended by 12 bits at the low end to form the mask value. For more information: see Section 
11.11.3, “Example Base and Mask Calculations.”

— The width of the PhysMask field depends on the maximum physical address size supported by the 
processor. 

CPUID.80000008H reports the maximum physical address size supported by the processor. If 
CPUID.80000008H is not available, software may assume that the processor supports a 36-bit physical 
address size (then PhysMask is 24 bits wide and the upper 28 bits of IA32_MTRR_PHYSMASKn are 
reserved). See the Note below.

• V (valid) flag, bit 11 — Enables the register pair when set; disables register pair when clear.

Table 11-9.  Address Mapping for Fixed-Range MTRRs

Address Range (hexadecimal) MTRR

63   56 55    48 47    40 39    32 31     24 23     16 15     8 7      0

70000-
7FFFF

60000-
6FFFF

50000-
5FFFF

40000-
4FFFF

30000-
3FFFF

20000-
2FFFF

10000-
1FFFF

00000-
0FFFF

IA32_MTRR_
FIX64K_00000

9C000
9FFFF

98000-
98FFF

94000-
97FFF

90000-
93FFF

8C000-
8FFFF

88000-
8BFFF

84000-
87FFF

80000-
83FFF

IA32_MTRR_
FIX16K_80000

BC000
BFFFF

B8000-
BBFFF

B4000-
B7FFF

B0000-
B3FFF

AC000-
AFFFF

A8000-
ABFFF

A4000-
A7FFF

A0000-
A3FFF

IA32_MTRR_
FIX16K_A0000

C7000
C7FFF

C6000-
C6FFF

C5000-
C5FFF

C4000-
C4FFF

C3000-
C3FFF

C2000-
C2FFF

C1000-
C1FFF

C0000-
C0FFF

IA32_MTRR_
FIX4K_C0000

CF000
CFFFF

CE000-
CEFFF

CD000-
CDFFF

CC000-
CCFFF

CB000-
CBFFF

CA000-
CAFFF

C9000-
C9FFF

C8000-
C8FFF

IA32_MTRR_
FIX4K_C8000

D7000
D7FFF

D6000-
D6FFF

D5000-
D5FFF

D4000-
D4FFF

D3000-
D3FFF

D2000-
D2FFF

D1000-
D1FFF

D0000-
D0FFF

IA32_MTRR_
FIX4K_D0000

DF000
DFFFF

DE000-
DEFFF

DD000-
DDFFF

DC000-
DCFFF

DB000-
DBFFF

DA000-
DAFFF

D9000-
D9FFF

D8000-
D8FFF

IA32_MTRR_
FIX4K_D8000

E7000
E7FFF

E6000-
E6FFF

E5000-
E5FFF

E4000-
E4FFF

E3000-
E3FFF

E2000-
E2FFF

E1000-
E1FFF

E0000-
E0FFF

IA32_MTRR_
FIX4K_E0000

EF000
EFFFF

EE000-
EEFFF

ED000-
EDFFF

EC000-
ECFFF

EB000-
EBFFF

EA000-
EAFFF

E9000-
E9FFF

E8000-
E8FFF

IA32_MTRR_
FIX4K_E8000

F7000
F7FFF

F6000-
F6FFF

F5000-
F5FFF

F4000-
F4FFF

F3000-
F3FFF

F2000-
F2FFF

F1000-
F1FFF

F0000-
F0FFF

IA32_MTRR_
FIX4K_F0000

FF000
FFFFF

FE000-
FEFFF

FD000-
FDFFF

FC000-
FCFFF

FB000-
FBFFF

FA000-
FAFFF

F9000-
F9FFF

F8000-
F8FFF

IA32_MTRR_
FIX4K_F8000



Vol. 3A 11-25

MEMORY CACHE CONTROL

All other bits in the IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn registers are reserved; the processor 
generates a general-protection exception (#GP) if software attempts to write to them.

Some mask values can result in ranges that are not continuous. In such ranges, the area not mapped by the mask 
value is set to the default memory type, unless some other MTRR specifies a type for that range. Intel does not 
encourage the use of “discontinuous” ranges.

NOTE

It is possible for software to parse the memory descriptions that BIOS provides by using the 
ACPI/INT15 e820 interface mechanism. This information then can be used to determine how 
MTRRs are initialized (for example: allowing the BIOS to define valid memory ranges and the 
maximum memory range supported by the platform, including the processor).

See Section 11.11.4.1, “MTRR Precedences,” for information on overlapping variable MTRR ranges.

11.11.2.4  System-Management Range Register Interface 

If IA32_MTRRCAP[bit 11] is set, the processor supports the SMRR interface to restrict access to a specified 
memory address range used by system-management mode (SMM) software (see Section 34.4.2.1). If the SMRR 
interface is supported, SMM software is strongly encouraged to use it to protect the SMI code and data stored by 
SMI handler in the SMRAM region.

The system-management range registers consist of a pair of MSRs (see Figure 11-8). The IA32_SMRR_PHYSBASE 
MSR defines the base address for the SMRAM memory range and the memory type used to access it in SMM. The 
IA32_SMRR_PHYSMASK MSR contains a valid bit and a mask that determines the SMRAM address range protected 
by the SMRR interface. These MSRs may be written only in SMM; an attempt to write them outside of SMM causes 
a general-protection exception.1

Figure 11-8 shows flags and fields in these registers. The functions of these flags and fields are the following:

Figure 11-7.  IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn Variable-Range Register Pair

1. For some processor models, these MSRs can be accessed by RDMSR and WRMSR only if the SMRR interface has been enabled using 
a model-specific bit in the IA32_FEATURE_CONTROL MSR.

V — Valid
PhysMask — Sets range mask

IA32_MTRR_PHYSMASKn Register
63 0

Reserved

101112

V Reserved

MAXPHYADDR

PhysMask

Type — Memory type for range
PhysBase — Base address of range

IA32_MTRR_PHYSBASEn Register
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Reserved

1112

Type

MAXPHYADDR

PhysBase
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Reserved

MAXPHYADDR: The bit position indicated by MAXPHYADDR depends on the maximum
physical address range supported by the processor. It is reported by CPUID leaf
function 80000008H. If CPUID does not support leaf 80000008H, the processor
supports 36-bit physical address size, then bit PhysMask consists of bits 35:12, and
bits 63:36 are reserved.



11-26 Vol. 3A

MEMORY CACHE CONTROL

• Type field, bits 0 through 7 — Specifies the memory type for the range (see Table 11-8 for the encoding of 
this field).

• PhysBase field, bits 12 through 31 — Specifies the base address of the address range. The address must be 
less than 4 GBytes and is automatically aligned on a 4-KByte boundary.

• PhysMask field, bits 12 through 31 — Specifies a mask that determines the range of the region being 
mapped, according to the following relationships:

— Address_Within_Range AND PhysMask = PhysBase AND PhysMask

— This value is extended by 12 bits at the low end to form the mask value. For more information: see Section 
11.11.3, “Example Base and Mask Calculations.”

• V (valid) flag, bit 11 — Enables the register pair when set; disables register pair when clear.

Before attempting to access these SMRR registers, software must test bit 11 in the IA32_MTRRCAP register. If 
SMRR is not supported, reads from or writes to registers cause general-protection exceptions.

When the valid flag in the IA32_SMRR_PHYSMASK MSR is 1, accesses to the specified address range are treated as 
follows:
• If the logical processor is in SMM, accesses uses the memory type in the IA32_SMRR_PHYSBASE MSR.
• If the logical processor is not in SMM, write accesses are ignored and read accesses return a fixed value for each 

byte. The uncacheable memory type (UC) is used in this case.

The above items apply even if the address range specified overlaps with a range specified by the MTRRs.

11.11.3 Example Base and Mask Calculations

The examples in this section apply to processors that support a maximum physical address size of 36 bits. The base 
and mask values entered in variable-range MTRR pairs are 24-bit values that the processor extends to 36-bits. 

For example, to enter a base address of 2 MBytes (200000H) in the IA32_MTRR_PHYSBASE3 register, the 12 least-
significant bits are truncated and the value 000200H is entered in the PhysBase field. The same operation must be 
performed on mask values. For example, to map the address range from 200000H to 3FFFFFH (2 MBytes to 4 
MBytes), a mask value of FFFE00000H is required. Again, the 12 least-significant bits of this mask value are trun-
cated, so that the value entered in the PhysMask field of IA32_MTRR_PHYSMASK3 is FFFE00H. This mask is chosen 
so that when any address in the 200000H to 3FFFFFH range is AND’d with the mask value, it will return the same 
value as when the base address is AND’d with the mask value (which is 200000H).

Figure 11-8.  IA32_SMRR_PHYSBASE and IA32_SMRR_PHYSMASK SMRR Pair

V — Valid
PhysMask — Sets range mask

IA32_SMRR_PHYSMASK Register
63 0

Reserved
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V Reserved
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IA32_SMRR_PHYSBASE Register
63 0
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Reserved
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To map the address range from 400000H to 7FFFFFH (4 MBytes to 8 MBytes), a base value of 000400H is entered 
in the PhysBase field and a mask value of FFFC00H is entered in the PhysMask field.

Example 11-2.  Setting-Up Memory for a System

Here is an example of setting up the MTRRs for an system. Assume that the system has the following characteris-
tics:
• 96 MBytes of system memory is mapped as write-back memory (WB) for highest system performance.
• A custom 4-MByte I/O card is mapped to uncached memory (UC) at a base address of 64 MBytes. This 

restriction forces the 96 MBytes of system memory to be addressed from 0 to 64 MBytes and from 68 MBytes 
to 100 MBytes, leaving a 4-MByte hole for the I/O card. 

• An 8-MByte graphics card is mapped to write-combining memory (WC) beginning at address A0000000H. 
• The BIOS area from 15 MBytes to 16 MBytes is mapped to UC memory.

The following settings for the MTRRs will yield the proper mapping of the physical address space for this system 
configuration.

IA32_MTRR_PHYSBASE0 =  0000 0000 0000 0006H

IA32_MTRR_PHYSMASK0 =  0000 000F FC00 0800H  

Caches 0-64 MByte as WB cache type.

IA32_MTRR_PHYSBASE1 =  0000 0000 0400 0006H

IA32_MTRR_PHYSMASK1 =  0000 000F FE00 0800H  

Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 =  0000 0000 0600 0006H

IA32_MTRR_PHYSMASK2 =  0000 000F FFC0 0800H  

Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 =  0000 0000 0400 0000H

IA32_MTRR_PHYSMASK3 =  0000 000F FFC0 0800H  

Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 =  0000 0000 00F0 0000H

IA32_MTRR_PHYSMASK4 =  0000 000F FFF0 0800H  

Caches 15-16 MByte as UC cache type.

IA32_MTRR_PHYSBASE5 =  0000 0000 A000 0001H

IA32_MTRR_PHYSMASK5 =  0000 000F FF80 0800H  

Caches A0000000-A0800000 as WC type.

This MTRR setup uses the ability to overlap any two memory ranges (as long as the ranges are mapped to WB and 
UC memory types) to minimize the number of MTRR registers that are required to configure the memory environ-
ment. This setup also fulfills the requirement that two register pairs are left for operating system usage.

11.11.3.1  Base and Mask Calculations for Greater-Than 36-bit Physical Address Support

For Intel 64 and IA-32 processors that support greater than 36 bits of physical address size, software should query 
CPUID.80000008H to determine the maximum physical address. See the example.

Example 11-3.  Setting-Up Memory for a System with a 40-Bit Address Size

If a processor supports 40-bits of physical address size, then the PhysMask field (in IA32_MTRR_PHYSMASKn 
registers) is 28 bits instead of 24 bits. For this situation, Example 11-2 should be modified as follows:

IA32_MTRR_PHYSBASE0 =  0000 0000 0000 0006H

IA32_MTRR_PHYSMASK0 =  0000 00FF FC00 0800H  

Caches 0-64 MByte as WB cache type.
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IA32_MTRR_PHYSBASE1 =  0000 0000 0400 0006H

IA32_MTRR_PHYSMASK1 =  0000 00FF FE00 0800H  

Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 =  0000 0000 0600 0006H

IA32_MTRR_PHYSMASK2 =  0000 00FF FFC0 0800H  

Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 =  0000 0000 0400 0000H

IA32_MTRR_PHYSMASK3 =  0000 00FF FFC0 0800H  

Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 =  0000 0000 00F0 0000H

IA32_MTRR_PHYSMASK4 =  0000 00FF FFF0 0800H  

Caches 15-16 MByte as UC cache type.

IA32_MTRR_PHYSBASE5 =  0000 0000 A000 0001H

IA32_MTRR_PHYSMASK5 =  0000 00FF FF80 0800H  

Caches A0000000-A0800000 as WC type.

11.11.4 Range Size and Alignment Requirement

A range that is to be mapped to a variable-range MTRR must meet the following “power of 2” size and alignment 
rules:

1. The minimum range size is 4 KBytes and the base address of the range must be on at least a 4-KByte
boundary.

2. For ranges greater than 4 KBytes, each range must be of length 2n and its base address must be aligned on a 
2n boundary, where n is a value equal to or greater than 12. The base-address alignment value cannot be less 
than its length. For example, an 8-KByte range cannot be aligned on a 4-KByte boundary. It must be aligned on 
at least an 8-KByte boundary.

11.11.4.1  MTRR Precedences

If the MTRRs are not enabled (by setting the E flag in the IA32_MTRR_DEF_TYPE MSR), then all memory accesses 
are of the UC memory type. If the MTRRs are enabled, then the memory type used for a memory access is deter-
mined as follows:

1. If the physical address falls within the first 1 MByte of physical memory and fixed MTRRs are enabled, the
processor uses the memory type stored for the appropriate fixed-range MTRR.

2. Otherwise, the processor attempts to match the physical address with a memory type set by the variable-range 
MTRRs:

— If one variable memory range matches, the processor uses the memory type stored in the 
IA32_MTRR_PHYSBASEn register for that range.

— If two or more variable memory ranges match and the memory types are identical, then that memory type 
is used.

— If two or more variable memory ranges match and one of the memory types is UC, the UC memory type 
used.

— If two or more variable memory ranges match and the memory types are WT and WB, the WT memory type 
is used.

— For overlaps not defined by the above rules, processor behavior is undefined.

3. If no fixed or variable memory range matches, the processor uses the default memory type.



Vol. 3A 11-29

MEMORY CACHE CONTROL

11.11.5 MTRR Initialization

On a hardware reset, the P6 and more recent processors clear the valid flags in variable-range MTRRs and clear the 
E flag in the IA32_MTRR_DEF_TYPE MSR to disable all MTRRs. All other bits in the MTRRs are undefined. 

Prior to initializing the MTRRs, software (normally the system BIOS) must initialize all fixed-range and variable-
range MTRR register fields to 0. Software can then initialize the MTRRs according to known types of memory, 
including memory on devices that it auto-configures. Initialization is expected to occur prior to booting the oper-
ating system.

See Section 11.11.8, “MTRR Considerations in MP Systems,” for information on initializing MTRRs in MP (multiple-
processor) systems.

11.11.6 Remapping Memory Types

A system designer may re-map memory types to tune performance or because a future processor may not imple-
ment all memory types supported by the Pentium 4, Intel Xeon, and P6 family processors. The following rules 
support coherent memory-type re-mappings:

1. A memory type should not be mapped into another memory type that has a weaker memory ordering model.
For example, the uncacheable type cannot be mapped into any other type, and the write-back, write-through,
and write-protected types cannot be mapped into the weakly ordered write-combining type.

2. A memory type that does not delay writes should not be mapped into a memory type that does delay writes, 
because applications of such a memory type may rely on its write-through behavior. Accordingly, the write-
back type cannot be mapped into the write-through type.

3. A memory type that views write data as not necessarily stored and read back by a subsequent read, such as 
the write-protected type, can only be mapped to another type with the same behaviour (and there are no 
others for the Pentium 4, Intel Xeon, and P6 family processors) or to the uncacheable type.

In many specific cases, a system designer can have additional information about how a memory type is used, 
allowing additional mappings. For example, write-through memory with no associated write side effects can be 
mapped into write-back memory.

11.11.7 MTRR Maintenance Programming Interface

The operating system maintains the MTRRs after booting and sets up or changes the memory types for memory-
mapped devices. The operating system should provide a driver and application programming interface (API) to 
access and set the MTRRs. The function calls MemTypeGet() and MemTypeSet() define this interface.

11.11.7.1  MemTypeGet() Function

The MemTypeGet() function returns the memory type of the physical memory range specified by the parameters 
base and size. The base address is the starting physical address and the size is the number of bytes for the memory 
range. The function automatically aligns the base address and size to 4-KByte boundaries. Pseudocode for the 
MemTypeGet() function is given in Example 11-4.
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Example 11-4.  MemTypeGet() Pseudocode

#define MIXED_TYPES -1     /* 0 < MIXED_TYPES || MIXED_TYPES > 256 */

IF CPU_FEATURES.MTRR /* processor supports MTRRs */

THEN

Align BASE and SIZE to 4-KByte boundary;

IF (BASE + SIZE) wrap 4-GByte address space 

THEN return INVALID;

FI;

IF MTRRdefType.E = 0

THEN return UC;

FI;

FirstType ¨ Get4KMemType (BASE);

/* Obtains memory type for first 4-KByte range. */

/* See Get4KMemType (4KByteRange) in Example 11-5. */

FOR each additional 4-KByte range specified in SIZE

NextType ¨ Get4KMemType (4KByteRange);

IF NextType ¼ FirstType

THEN return MixedTypes;

FI;

ROF;
return FirstType;

ELSE return UNSUPPORTED;

FI;

If the processor does not support MTRRs, the function returns UNSUPPORTED. If the MTRRs are not enabled, then 
the UC memory type is returned. If more than one memory type corresponds to the specified range, a status of 
MIXED_TYPES is returned. Otherwise, the memory type defined for the range (UC, WC, WT, WB, or WP) is 
returned.

The pseudocode for the Get4KMemType() function in Example 11-5 obtains the memory type for a single 4-KByte 
range at a given physical address. The sample code determines whether an PHY_ADDRESS falls within a fixed 
range by comparing the address with the known fixed ranges: 0 to 7FFFFH (64-KByte regions), 80000H to BFFFFH 
(16-KByte regions), and C0000H to FFFFFH (4-KByte regions). If an address falls within one of these ranges, the 
appropriate bits within one of its MTRRs determine the memory type.

Example 11-5.  Get4KMemType() Pseudocode

IF IA32_MTRRCAP.FIX AND MTRRdefType.FE /* fixed registers enabled */
THEN IF PHY_ADDRESS is within a fixed range

return IA32_MTRR_FIX.Type;

FI;

FOR each variable-range MTRR in IA32_MTRRCAP.VCNT

IF IA32_MTRR_PHYSMASK.V = 0

THEN continue;

FI;

IF (PHY_ADDRESS AND IA32_MTRR_PHYSMASK.Mask) =

(IA32_MTRR_PHYSBASE.Base 

AND IA32_MTRR_PHYSMASK.Mask)

THEN

return IA32_MTRR_PHYSBASE.Type;

FI;

ROF;

return MTRRdefType.Type;
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11.11.7.2  MemTypeSet() Function

The MemTypeSet() function in Example 11-6 sets a MTRR for the physical memory range specified by the parame-
ters base and size to the type specified by type. The base address and size are multiples of 4 KBytes and the size 
is not 0.

Example 11-6.  MemTypeSet Pseudocode

IF CPU_FEATURES.MTRR (* processor supports MTRRs *)
THEN

IF BASE and SIZE are not 4-KByte aligned or size is 0
THEN return INVALID; 

FI;
IF (BASE + SIZE) wrap 4-GByte address space

THEN return INVALID; 
FI;
IF TYPE is invalid for Pentium 4, Intel Xeon, and P6 family
processors

THEN return UNSUPPORTED; 
FI;
IF TYPE is WC and not supported

THEN return UNSUPPORTED; 
FI;
IF IA32_MTRRCAP.FIX is set AND range can be mapped using a
fixed-range MTRR

THEN
pre_mtrr_change();
update affected MTRR;
post_mtrr_change();

FI;

ELSE (* try to map using a variable MTRR pair *)
IF IA32_MTRRCAP.VCNT = 0

THEN return UNSUPPORTED; 
FI;
IF conflicts with current variable ranges 

THEN return RANGE_OVERLAP;
FI;
IF no MTRRs available

THEN return VAR_NOT_AVAILABLE; 
FI;
IF BASE and SIZE do not meet the power of 2 requirements for
variable MTRRs

THEN return INVALID_VAR_REQUEST; 
FI;
pre_mtrr_change();
Update affected MTRRs;
post_mtrr_change();

FI;

pre_mtrr_change()
BEGIN

disable interrupts;
Save current value of CR4;
disable and flush caches;
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flush TLBs;
disable MTRRs;
IF multiprocessing

THEN maintain consistency through IPIs;
FI;

END
post_mtrr_change()

BEGIN
flush caches and TLBs;
enable MTRRs;
enable caches;
restore value of CR4;
enable interrupts;

END

The physical address to variable range mapping algorithm in the MemTypeSet function detects conflicts with 
current variable range registers by cycling through them and determining whether the physical address in question 
matches any of the current ranges. During this scan, the algorithm can detect whether any current variable ranges 
overlap and can be concatenated into a single range.

The pre_mtrr_change() function disables interrupts prior to changing the MTRRs, to avoid executing code with a 
partially valid MTRR setup. The algorithm disables caching by setting the CD flag and clearing the NW flag in control 
register CR0. The caches are invalidated using the WBINVD instruction. The algorithm flushes all TLB entries either 
by clearing the page-global enable (PGE) flag in control register CR4 (if PGE was already set) or by updating control 
register CR3 (if PGE was already clear). Finally, it disables MTRRs by clearing the E flag in the 
IA32_MTRR_DEF_TYPE MSR.

After the memory type is updated, the post_mtrr_change() function re-enables the MTRRs and again invalidates 
the caches and TLBs. This second invalidation is required because of the processor's aggressive prefetch of both 
instructions and data. The algorithm restores interrupts and re-enables caching by setting the CD flag.

An operating system can batch multiple MTRR updates so that only a single pair of cache invalidations occur.

11.11.8 MTRR Considerations in MP Systems

In MP (multiple-processor) systems, the operating systems must maintain MTRR consistency between all the 
processors in the system. The Pentium 4, Intel Xeon, and P6 family processors provide no hardware support to 
maintain this consistency. In general, all processors must have the same MTRR values.

This requirement implies that when the operating system initializes an MP system, it must load the MTRRs of the 
boot processor while the E flag in register MTRRdefType is 0. The operating system then directs other processors to 
load their MTRRs with the same memory map. After all the processors have loaded their MTRRs, the operating 
system signals them to enable their MTRRs. Barrier synchronization is used to prevent further memory accesses 
until all processors indicate that the MTRRs are enabled. This synchronization is likely to be a shoot-down style 
algorithm, with shared variables and interprocessor interrupts.

Any change to the value of the MTRRs in an MP system requires the operating system to repeat the loading and 
enabling process to maintain consistency, using the following procedure:

1. Broadcast to all processors to execute the following code sequence.

2. Disable interrupts.

3. Wait for all processors to reach this point.

4. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and the NW flag to 0.)

5. Flush all caches using the WBINVD instructions. Note on a processor that supports self-snooping, CPUID 
feature flag bit 27, this step is unnecessary.

6. If the PGE flag is set in control register CR4, flush all TLBs by clearing that flag.
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7. If the PGE flag is clear in control register CR4, flush all TLBs by executing a MOV from control register CR3 to 
another register and then a MOV from that register back to CR3.

8. Disable all range registers (by clearing the E flag in register MTRRdefType). If only variable ranges are being 
modified, software may clear the valid bits for the affected register pairs instead.

9. Update the MTRRs.

10. Enable all range registers (by setting the E flag in register MTRRdefType). If only variable-range registers were 
modified and their individual valid bits were cleared, then set the valid bits for the affected ranges instead.

11. Flush all caches and all TLBs a second time. (The TLB flush is required for Pentium 4, Intel Xeon, and P6 family 
processors. Executing the WBINVD instruction is not needed when using Pentium 4, Intel Xeon, and P6 family 
processors, but it may be needed in future systems.)

12. Enter the normal cache mode to re-enable caching. (Set the CD and NW flags in control register CR0 to 0.)

13. Set PGE flag in control register CR4, if cleared in Step 6 (above).

14. Wait for all processors to reach this point.

15. Enable interrupts.

11.11.9 Large Page Size Considerations

The MTRRs provide memory typing for a limited number of regions that have a 4 KByte granularity (the same gran-
ularity as 4-KByte pages). The memory type for a given page is cached in the processor’s TLBs. When using large 
pages (2 MBytes, 4 MBytes, or 1 GBytes), a single page-table entry covers multiple 4-KByte granules, each with a 
single memory type. Because the memory type for a large page is cached in the TLB, the processor can behave in 
an undefined manner if a large page is mapped to a region of memory that MTRRs have mapped with multiple 
memory types. 

Undefined behavior can be avoided by insuring that all MTRR memory-type ranges within a large page are of the 
same type. If a large page maps to a region of memory containing different MTRR-defined memory types, the PCD 
and PWT flags in the page-table entry should be set for the most conservative memory type for that range. For 
example, a large page used for memory mapped I/O and regular memory is mapped as UC memory. Alternatively, 
the operating system can map the region using multiple 4-KByte pages each with its own memory type. 

The requirement that all 4-KByte ranges in a large page are of the same memory type implies that large pages with 
different memory types may suffer a performance penalty, since they must be marked with the lowest common 
denominator memory type. The same consideration apply to 1 GByte pages, each of which may consist of multiple 
2-Mbyte ranges. 

The Pentium 4, Intel Xeon, and P6 family processors provide special support for the physical memory range from 0 
to 4 MBytes, which is potentially mapped by both the fixed and variable MTRRs. This support is invoked when a 
Pentium 4, Intel Xeon, or P6 family processor detects a large page overlapping the first 1 MByte of this memory 
range with a memory type that conflicts with the fixed MTRRs. Here, the processor maps the memory range as 
multiple 4-KByte pages within the TLB. This operation insures correct behavior at the cost of performance. To avoid 
this performance penalty, operating-system software should reserve the large page option for regions of memory 
at addresses greater than or equal to 4 MBytes.

11.12 PAGE ATTRIBUTE TABLE (PAT)

The Page Attribute Table (PAT) extends the IA-32 architecture’s page-table format to allow memory types to be 
assigned to regions of physical memory based on linear address mappings. The PAT is a companion feature to the 
MTRRs; that is, the MTRRs allow mapping of memory types to regions of the physical address space, where the PAT 
allows mapping of memory types to pages within the linear address space. The MTRRs are useful for statically 
describing memory types for physical ranges, and are typically set up by the system BIOS. The PAT extends the 
functions of the PCD and PWT bits in page tables to allow all five of the memory types that can be assigned with the 
MTRRs (plus one additional memory type) to also be assigned dynamically to pages of the linear address space.

The PAT was introduced to IA-32 architecture on the Pentium III processor. It is also available in the Pentium 4 and 
Intel Xeon processors.
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11.12.1 Detecting Support for the PAT Feature

An operating system or executive can detect the availability of the PAT by executing the CPUID instruction with a 
value of 1 in the EAX register. Support for the PAT is indicated by the PAT flag (bit 16 of the values returned to EDX 
register). If the PAT is supported, the operating system or executive can use the IA32_PAT MSR to program the PAT. 
When memory types have been assigned to entries in the PAT, software can then use of the PAT-index bit (PAT) in 
the page-table and page-directory entries along with the PCD and PWT bits to assign memory types from the PAT 
to individual pages.

Note that there is no separate flag or control bit in any of the control registers that enables the PAT. The PAT is 
always enabled on all processors that support it, and the table lookup always occurs whenever paging is enabled, 
in all paging modes.

11.12.2 IA32_PAT MSR

The IA32_PAT MSR is located at MSR address 277H (see Chapter 35, “Model-Specific Registers (MSRs)”). Figure 
11-9. shows the format of the 64-bit IA32_PAT MSR.

The IA32_PAT MSR contains eight page attribute fields: PA0 through PA7. The three low-order bits of each field are 
used to specify a memory type. The five high-order bits of each field are reserved, and must be set to all 0s. Each 
of the eight page attribute fields can contain any of the memory type encodings specified in Table 11-10.

Note that for the P6 family processors, the IA32_PAT MSR is named the PAT MSR.

31 27 26 24 23 19 18 16 15 11 10 8 7 3 2 0

Reserved PA3 Reserved PA2 Reserved PA1 Reserved PA0

63 59 58 56 55 51 50 48 47 43 42 40 39 35 34 32

Reserved PA7 Reserved PA6 Reserved PA5 Reserved PA4

Figure 11-9.  IA32_PAT MSR

Table 11-10.  Memory Types That Can Be Encoded With PAT

Encoding Mnemonic

00H Uncacheable (UC)

01H Write Combining (WC)

02H Reserved*

03H Reserved*

04H Write Through (WT)

05H Write Protected (WP)

06H Write Back (WB)

07H Uncached (UC-)

08H - FFH Reserved*

NOTE:

* Using these encodings will result in a general-protection exception (#GP).
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11.12.3 Selecting a Memory Type from the PAT

To select a memory type for a page from the PAT, a 3-bit index made up of the PAT, PCD, and PWT bits must be 
encoded in the page-table or page-directory entry for the page. Table 11-11 shows the possible encodings of the 
PAT, PCD, and PWT bits and the PAT entry selected with each encoding. The PAT bit is bit 7 in page-table entries 
that point to 4-KByte pages and bit 12 in paging-structure entries that point to larger pages. The PCD and PWT bits 
are bits 4 and 3, respectively, in paging-structure entries that point to pages of any size.

The PAT entry selected for a page is used in conjunction with the MTRR setting for the region of physical memory 
in which the page is mapped to determine the effective memory type for the page, as shown in Table 11-7.

11.12.4 Programming the PAT

Table 11-12 shows the default setting for each PAT entry following a power up or reset of the processor. The setting 
remain unchanged following a soft reset (INIT reset). 

The values in all the entries of the PAT can be changed by writing to the IA32_PAT MSR using the WRMSR instruc-
tion. The IA32_PAT MSR is read and write accessible (use of the RDMSR and WRMSR instructions, respectively) to 
software operating at a CPL of 0. Table 11-10 shows the allowable encoding of the entries in the PAT. Attempting to 
write an undefined memory type encoding into the PAT causes a general-protection (#GP) exception to be gener-
ated.

The operating system is responsible for insuring that changes to a PAT entry occur in a manner that maintains the 
consistency of the processor caches and translation lookaside buffers (TLB). This is accomplished by following the 
procedure as specified in Section 11.11.8, “MTRR Considerations in MP Systems,” for changing the value of an 
MTRR in a multiple processor system. It requires a specific sequence of operations that includes flushing the 
processors caches and TLBs.

The PAT allows any memory type to be specified in the page tables, and therefore it is possible to have a single 
physical page mapped to two or more different linear addresses, each with different memory types. Intel does not 
support this practice because it may lead to undefined operations that can result in a system failure. In particular, 
a WC page must never be aliased to a cacheable page because WC writes may not check the processor caches.

Table 11-11.  Selection of PAT Entries with PAT, PCD, and PWT Flags

PAT PCD PWT PAT Entry

0 0 0 PAT0

0 0 1 PAT1

0 1 0 PAT2

0 1 1 PAT3

1 0 0 PAT4

1 0 1 PAT5

1 1 0 PAT6

1 1 1 PAT7

Table 11-12.  Memory Type Setting of PAT Entries Following a Power-up or Reset 

PAT Entry Memory Type Following Power-up or Reset

PAT0 WB

PAT1 WT

PAT2 UC-

PAT3 UC

PAT4 WB

PAT5 WT

PAT6 UC-

PAT7 UC
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When remapping a page that was previously mapped as a cacheable memory type to a WC page, an operating 
system can avoid this type of aliasing by doing the following:

1. Remove the previous mapping to a cacheable memory type in the page tables; that is, make them not
present.

2. Flush the TLBs of processors that may have used the mapping, even speculatively.

3. Create a new mapping to the same physical address with a new memory type, for instance, WC.

4. Flush the caches on all processors that may have used the mapping previously. Note on processors that support 
self-snooping, CPUID feature flag bit 27, this step is unnecessary.

Operating systems that use a page directory as a page table (to map large pages) and enable page size extensions 
must carefully scrutinize the use of the PAT index bit for the 4-KByte page-table entries. The PAT index bit for a 
page-table entry (bit 7) corresponds to the page size bit in a page-directory entry. Therefore, the operating system 
can only use PAT entries PA0 through PA3 when setting the caching type for a page table that is also used as a page 
directory. If the operating system attempts to use PAT entries PA4 through PA7 when using this memory as a page 
table, it effectively sets the PS bit for the access to this memory as a page directory.

For compatibility with earlier IA-32 processors that do not support the PAT, care should be taken in selecting the 
encodings for entries in the PAT (see Section 11.12.5, “PAT Compatibility with Earlier IA-32 Processors”).

11.12.5 PAT Compatibility with Earlier IA-32 Processors

For IA-32 processors that support the PAT, the IA32_PAT MSR is always active. That is, the PCD and PWT bits in 
page-table entries and in page-directory entries (that point to pages) are always select a memory type for a page 
indirectly by selecting an entry in the PAT. They never select the memory type for a page directly as they do in 
earlier IA-32 processors that do not implement the PAT (see Table 11-6).

To allow compatibility for code written to run on earlier IA-32 processor that do not support the PAT, the PAT mech-
anism has been designed to allow backward compatibility to earlier processors. This compatibility is provided 
through the ordering of the PAT, PCD, and PWT bits in the 3-bit PAT entry index. For processors that do not imple-
ment the PAT, the PAT index bit (bit 7 in the page-table entries and bit 12 in the page-directory entries) is reserved 
and set to 0. With the PAT bit reserved, only the first four entries of the PAT can be selected with the PCD and PWT 
bits. At power-up or reset (see Table 11-12), these first four entries are encoded to select the same memory types 
as the PCD and PWT bits would normally select directly in an IA-32 processor that does not implement the PAT. So, 
if encodings of the first four entries in the PAT are left unchanged following a power-up or reset, code written to run 
on earlier IA-32 processors that do not implement the PAT will run correctly on IA-32 processors that do implement 
the PAT.
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CHAPTER 12
INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING

This chapter describes those features of the Intel® MMX™ technology that must be considered when designing or 
enhancing an operating system to support MMX technology. It covers MMX instruction set emulation, the MMX 
state, aliasing of MMX registers, saving MMX state, task and context switching considerations, exception handling, 
and debugging.

12.1 EMULATION OF THE MMX INSTRUCTION SET

The IA-32 or Intel 64 architecture does not support emulation of the MMX instructions, as it does for x87 FPU 
instructions. The EM flag in control register CR0 (provided to invoke emulation of x87 FPU instructions) cannot be 
used for MMX instruction emulation. If an MMX instruction is executed when the EM flag is set, an invalid opcode 
exception (UD#) is generated. Table 12-1 shows the interaction of the EM, MP, and TS flags in control register CR0 
when executing MMX instructions.

12.2 THE MMX STATE AND MMX REGISTER ALIASING

The MMX state consists of eight 64-bit registers (MM0 through MM7). These registers are aliased to the low 64-bits 
(bits 0 through 63) of floating-point registers R0 through R7 (see Figure 12-1). Note that the MMX registers are 
mapped to the physical locations of the floating-point registers (R0 through R7), not to the relative locations of the 
registers in the floating-point register stack (ST0 through ST7). As a result, the MMX register mapping is fixed and 
is not affected by value in the Top Of Stack (TOS) field in the floating-point status word (bits 11 through 13).

Table 12-1.  Action Taken By MMX Instructions for Different Combinations of EM, MP and TS

CR0 Flags

EM MP* TS Action

0 1 0 Execute.

0 1 1 #NM exception.

1 1 0 #UD exception.

1 1 1 #UD exception.

NOTE:

* For processors that support the MMX instructions, the MP flag should be set.
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When a value is written into an MMX register using an MMX instruction, the value also appears in the corresponding 
floating-point register in bits 0 through 63. Likewise, when a floating-point value written into a floating-point 
register by a x87 FPU, the low 64 bits of that value also appears in a the corresponding MMX register.

The execution of MMX instructions have several side effects on the x87 FPU state contained in the floating-point 
registers, the x87 FPU tag word, and the x87 FPU status word. These side effects are as follows:
• When an MMX instruction writes a value into an MMX register, at the same time, bits 64 through 79 of the corre-

sponding floating-point register are set to all 1s.
• When an MMX instruction (other than the EMMS instruction) is executed, each of the tag fields in the x87 FPU 

tag word is set to 00B (valid). (See also Section 12.2.1, “Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR 
Instructions on the x87 FPU Tag Word.”)

• When the EMMS instruction is executed, each tag field in the x87 FPU tag word is set to 11B (empty).
• Each time an MMX instruction is executed, the TOS value is set to 000B.

Execution of MMX instructions does not affect the other bits in the x87 FPU status word (bits 0 through 10 and bits 
14 and 15) or the contents of the other x87 FPU registers that comprise the x87 FPU state (the x87 FPU control 
word, instruction pointer, data pointer, or opcode registers). 

Table 12-2 summarizes the effects of the MMX instructions on the x87 FPU state.

Figure 12-1.  Mapping of MMX Registers to Floating-Point Registers
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12.2.1 Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR
Instructions on the x87 FPU Tag Word

Table 12-3 summarizes the effect of MMX and x87 FPU instructions and the FXSAVE and FXRSTOR instructions on 
the tags in the x87 FPU tag word and the corresponding tags in an image of the tag word stored in memory.

The values in the fields of the x87 FPU tag word do not affect the contents of the MMX registers or the execution of 
MMX instructions. However, the MMX instructions do modify the contents of the x87 FPU tag word, as is described 
in Section 12.2, “The MMX State and MMX Register Aliasing.” These modifications may affect the operation of the 
x87 FPU when executing x87 FPU instructions, if the x87 FPU state is not initialized or restored prior to beginning 
x87 FPU instruction execution.

Note that the FSAVE, FXSAVE, and FSTENV instructions (which save x87 FPU state information) read the x87 FPU 
tag register and contents of each of the floating-point registers, determine the actual tag values for each register 
(empty, nonzero, zero, or special), and store the updated tag word in memory. After executing these instructions, 
all the tags in the x87 FPU tag word are set to empty (11B). Likewise, the EMMS instruction clears MMX state from 
the MMX/floating-point registers by setting all the tags in the x87 FPU tag word to 11B.

12.3 SAVING AND RESTORING THE MMX STATE AND REGISTERS

Because the MMX registers are aliased to the x87 FPU data registers, the MMX state can be saved to memory and 
restored from memory as follows:

Table 12-2.  Effects of MMX Instructions on x87 FPU State

MMX Instruction 
Type

x87 FPU Tag 
Word

TOS Field of x87 
FPU Status Word

Other x87 FPU 
Registers

Bits 64 Through 79 
of x87 FPU Data 
Registers

Bits 0 Through 63 
of x87 FPU Data 
Registers

Read from MMX 
register

All tags set to 00B 
(Valid)

000B Unchanged Unchanged Unchanged

Write to MMX 
register

All tags set to 00B 
(Valid)

000B Unchanged Set to all 1s Overwritten with 
MMX data

EMMS All fields set to 
11B (Empty)

000B Unchanged Unchanged Unchanged

Table 12-3.  Effect of the MMX, x87 FPU, and FXSAVE/FXRSTOR Instructions on the x87 FPU Tag Word

Instruction
Type

Instruction x87 FPU Tag Word Image of x87 FPU Tag Word Stored in 
Memory

MMX All (except EMMS) All tags are set to 00B (valid). Not affected.

MMX EMMS All tags are set to 11B (empty). Not affected.

x87 FPU All (except FSAVE, 
FSTENV, FRSTOR, 
FLDENV)

Tag for modified floating-point register is 
set to 00B or 11B.

Not affected.

x87 FPU and 
FXSAVE

FSAVE, FSTENV, FXSAVE Tags and register values are read and 
interpreted; then all tags are set to 11B.

Tags are set according to the actual 
values in the floating-point registers; 
that is, empty registers are marked 11B 
and valid registers are marked 00B 
(nonzero), 01B (zero), or 10B (special).

x87 FPU and 
FXRSTOR

FRSTOR, FLDENV, 
FXRSTOR

All tags marked 11B in memory are set 
to 11B; all other tags are set according 
to the value in the corresponding 
floating-point register: 00B (nonzero), 
01B (zero), or 10B (special).

Tags are read and interpreted, but not 
modified.
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• Execute an FSAVE, FNSAVE, or FXSAVE instruction to save the MMX state to memory. (The FXSAVE instruction 
also saves the state of the XMM and MXCSR registers.)

• Execute an FRSTOR or FXRSTOR instruction to restore the MMX state from memory. (The FXRSTOR instruction 
also restores the state of the XMM and MXCSR registers.)

The save and restore methods described above are required for operating systems (see Section 12.4, “Saving MMX 
State on Task or Context Switches”). Applications can in some cases save and restore only the MMX registers in the 
following way:
• Execute eight MOVQ instructions to save the contents of the MMX0 through MMX7 registers to memory. An 

EMMS instruction may then (optionally) be executed to clear the MMX state in the x87 FPU.
• Execute eight MOVQ instructions to read the saved contents of MMX registers from memory into the MMX0 

through MMX7 registers.

NOTE

The IA-32 architecture does not support scanning the x87 FPU tag word and then only saving valid 
entries.

12.4 SAVING MMX STATE ON TASK OR CONTEXT SWITCHES

When switching from one task or context to another, it is often necessary to save the MMX state. As a general rule, 
if the existing task switching code for an operating system includes facilities for saving the state of the x87 FPU, 
these facilities can also be relied upon to save the MMX state, without rewriting the task switch code. This reliance 
is possible because the MMX state is aliased to the x87 FPU state (see Section 12.2, “The MMX State and MMX 
Register Aliasing”).

With the introduction of the FXSAVE and FXRSTOR instructions and of SSE/SSE2/SSE3/SSSE3 extensions, it is 
possible (and more efficient) to create state saving facilities in the operating system or executive that save the x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3 state in one operation. Section 13.4, “Designing OS Facilities for Saving x87 
FPU,SSE AND EXTENDED States on Task or Context Switches,” describes how to design such facilities. The tech-
niques describes in this section can be adapted to saving only the MMX and x87 FPU state if needed.

12.5 EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING MMX INSTRUCTIONS

MMX instructions do not generate x87 FPU floating-point exceptions, nor do they affect the processor’s status flags 
in the EFLAGS register or the x87 FPU status word. The following exceptions can be generated during the execution 
of an MMX instruction:
• Exceptions during memory accesses:

— Stack-segment fault (#SS).

— General protection (#GP).

— Page fault (#PF).

— Alignment check (#AC), if alignment checking is enabled.
• System exceptions:

— Invalid Opcode (#UD), if the EM flag in control register CR0 is set when an MMX instruction is executed (see 
Section 12.1, “Emulation of the MMX Instruction Set”).

— Device not available (#NM), if an MMX instruction is executed when the TS flag in control register CR0 is 
set. (See Section 13.4.1, “Using the TS Flag to Control the Saving of the x87 FPU and SSE State.”)

• Floating-point error (#MF). (See Section 12.5.1, “Effect of MMX Instructions on Pending x87 Floating-Point 
Exceptions.”)

• Other exceptions can occur indirectly due to the faulty execution of the exception handlers for the above 
exceptions.
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12.5.1 Effect of MMX Instructions on Pending x87 Floating-Point Exceptions

If an x87 FPU floating-point exception is pending and the processor encounters an MMX instruction, the processor 
generates a x87 FPU floating-point error (#MF) prior to executing the MMX instruction, to allow the pending excep-
tion to be handled by the x87 FPU floating-point error exception handler. While this exception handler is executing, 
the x87 FPU state is maintained and is visible to the handler. Upon returning from the exception handler, the MMX 
instruction is executed, which will alter the x87 FPU state, as described in Section 12.2, “The MMX State and MMX 
Register Aliasing.” 

12.6 DEBUGGING MMX CODE

The debug facilities operate in the same manner when executing MMX instructions as when executing other IA-32 
or Intel 64 architecture instructions.

To correctly interpret the contents of the MMX or x87 FPU registers from the FSAVE/FNSAVE or FXSAVE image in 
memory, a debugger needs to take account of the relationship between the x87 FPU register’s logical locations 
relative to TOS and the MMX register’s physical locations.

In the x87 FPU context, STn refers to an x87 FPU register at location n relative to the TOS. However, the tags in the 
x87 FPU tag word are associated with the physical locations of the x87 FPU registers (R0 through R7). The MMX 
registers always refer to the physical locations of the registers (with MM0 through MM7 being mapped to R0 
through R7). Figure 12-2 shows this relationship. Here, the inner circle refers to the physical location of the x87 
FPU and MMX registers. The outer circle refers to the x87 FPU registers’s relative location to the current TOS.

When the TOS equals 0 (case A in Figure 12-2), ST0 points to the physical location R0 on the floating-point stack. 
MM0 maps to ST0, MM1 maps to ST1, and so on.

When the TOS equals 2 (case B in Figure 12-2), ST0 points to the physical location R2. MM0 maps to ST6, MM1 
maps to ST7, MM2 maps to ST0, and so on.

Figure 12-2.  Mapping of MMX Registers to x87 FPU Data Register Stack
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CHAPTER 13
SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND

PROCESSOR EXTENDED STATES

This chapter describes system programming features for instruction set extensions operating on the processor 
state extension known as the SSE state (XMM registers, MXCSR) and for other processor extended states. Instruc-
tion set extensions operating on the SSE state include the streaming SIMD extensions (SSE), streaming SIMD 
extensions 2 (SSE2), streaming SIMD extensions 3 (SSE3), Supplemental SSE3 (SSSE3), and SSE4. Collectively, 
these are called SSE extensions1 and the corresponding instructions SSE instructions. FXSAVE/FXRSTOR 
instructions can be used save/restore SSE state along with FP state. See Section 10.5 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1 for information about FXSAVE and FXRSTOR.

Sections 13.1 through 13.4 cover system programming requirements to enable the SSE extensions, providing 
operating system or executive support for the SSE extensions, SIMD floating-point exceptions, exception handling, 
and task (context) switching. These sections primarily discuss use of FXSAVE/FXRSTOR to save/restore SSE state.

XSAVE feature set refers to extensions to the Intel architecture that will allow system executives to implement 
support for multiple processor extended states along with FP/SSE states that may be introduced over time without 
requiring the system executive to be modified each time a new processor state extension is introduced. XSAVE 
feature set provide mechanisms to enumerate the supported extended states, enable some or all of them for soft-
ware use, instructions to save/restore the states and enumerate the layout of the states when saved to memory. 
XSAVE/XRSTOR instructions are part of the XSAVE feature set. These instructions are introduced after the intro-
duction of FP/SSE states but can be used to manage legacy FP/SSE state along with processor extended states. See 
CHAPTER 13 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 for information 
about XSAVE feature set.

System programming for managing processor extended states is described in sections 13.5 through 13.6. XSAVE 
feature set is designed to be compatible with FXSAVE/FXRSTOR and hence much of the material through sections 
13.1 to 13.4 related to SSE state also applies to XSAVE feature set with the exception of enumeration and 
saving/restoring state.

XSAVE Compaction is an XSAVE feature that allows operating systems to allocate space for only the states saved 
to conserve memory usage. A new instruction called XSAVEC is introduced to save extended states in compacted 
format and XRSTOR instruction is enhanced to comprehend compacted format. System programming for managing 
processor extended states in compacted format is also described in section 13.5.

Supervisor state is an extended state that can only be accessed in ring 0. XSAVE feature set has been enhanced 
to manage supervisor states. Two new ring 0 instructions, XSAVES/XRSTORS, are introduced to save/restore 
supervisor states along with other XSAVE managed states. They are privileged instruction and only operate in 
compacted format. System programming for managing supervisor states in described in section 13.7.

Each XSAVE managed features may have additional feature specific system programming requirements such as 
exception handlers etc. Feature specific system programming requirements for XSAVE managed features are 
described in section 13.8.

13.1 PROVIDING OPERATING SYSTEM SUPPORT FOR SSE EXTENSIONS

To use SSE extensions, the operating system or executive must provide support for initializing the processor to use 
these extensions, for handling SIMD floating-point exceptions, and for using FXSAVE and FXRSTOR (Section 10.5 
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1) to manage context. XSAVE 
features set can also be used to manage SSE state along with other processor extended states as described in 13.5. 
This section primarily focuses on using FXSAVE/FXRSTOR to manage SSE state. The following sections provide 
system programming guidelines for this support. Because SSE extensions share the same state, experience the 
same sets of non-numerical and numerical exception behavior, these guidelines that apply to SSE also apply to 

1. The collection also includes PCLMULQDQ and AES instructions operating on XMM state.
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other sets of SIMD extensions that operate on the same processor state and subject to the same sets of non-
numerical and numerical exception behavior. 

Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2),” and Chapter 12, “Programming with SSE3, 
SSSE3 and SSE4,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, discuss 
support for SSE/SSE2/SSE3/SSSE3/SSE4 from an applications point of view program.

13.1.1 Adding Support to an Operating System for SSE Extensions

The following guidelines describe functions that an operating system or executive must perform to support SSE 
extensions:

1. Check that the processor supports the SSE extensions.

2. Check that the processor supports the FXSAVE and FXRSTOR instructions or the XSAVE feature set.

3. Provide an initialization for the SSE states.

4. Provide support for the FXSAVE and FXRSTOR instructions or the XSAVE feature set.

5. Provide support (if necessary) in non-numeric exception handlers for exceptions generated by the SSE instruc-
tions.

6. Provide an exception handler for the SIMD floating-point exception (#XM).

The following sections describe how to implement each of these guidelines.

13.1.2 Checking for CPU Support

If the processor attempts to execute an unsupported SSE instruction, the processor generates an invalid-opcode 
exception (#UD). Before an operating system or executive attempts to use SSE extensions, it should check that 
support is present by confirming the following bit values returned by the CPUID instruction:
• CPUID.1:EDX.SSE[bit 25] = 1
• CPUID.1:EDX.SSE2[bit 26] = 1
• CPUID.1:ECX.SSE3[bit 0] = 1
• CPUID.1:ECX.SSSE3[bit 9] = 1
• CPUID.1:ECX.SSE4_1[bit 19] = 1
• CPUID.1:ECX.SSE4_2[bit 20] = 1

(To use POPCNT instruction, software must check CPUID.1:ECX.POPCNT[bit 23] = 1.)

Separate checks must be made to ensure that the processor supports either FXSAVE and FXRSTOR or the XSAVE 
feature set. See Section 10.5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 and 
Chapter 13 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, respectively.

13.1.3 Initialization of the SSE Extensions

The operating system or executive should carry out the following steps to set up SSE extensions for use by appli-
cation programs:

1. Set CR4.OSFXSR[bit 9] = 1. Setting this flag implies that the operating system provides facilities for saving 
and restoring SSE state using FXSAVE and FXRSTOR instructions or the XSAVE feature set. These instructions 
may be used to save the SSE state during task switches and when invoking the SIMD floating-point exception 
(#XM) handler (see Section 13.1.5, “Providing an Handler for the SIMD Floating-Point Exception (#XM)”). 
If the processor does not support the FXSAVE and FXRSTOR instructions, attempting to set the OSFXSR flag 
causes a general-protection exception (#GP) to be generated.

2. Set CR4.OSXMMEXCPT[bit 10] = 1. Setting this flag implies that the operating system provides an SIMD 
floating-point exception (#XM) handler (see Section 13.1.5, “Providing an Handler for the SIMD Floating-Point 
Exception (#XM)”). 
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NOTE

The OSFXSR and OSXMMEXCPT bits in control register CR4 must be set by the operating system. 
The processor has no other way of detecting operating-system support for the FXSAVE and 
FXRSTOR instructions or for handling SIMD floating-point exceptions.

3. Clear CR0.EM[bit 2] = 0. This action disables emulation of the x87 FPU, which is required when executing SSE 
instructions (see Section 2.5, “Control Registers”).

4. Set CR0.MP[bit 1] = 1. This setting is the required setting for Intel 64 and IA-32 processors that support the 
SSE extensions (see Section 9.2.1, “Configuring the x87 FPU Environment”).

Table 13-1 and Table 13-2 show the actions of the processor when an SSE instruction is executed, depending on 
the following: 
• OSFXSR and OSXMMEXCPT flags in control register CR4
• SSE/SSE2/SSE3/SSSE3/SSE4 feature flags returned by CPUID
• EM, MP, and TS flags in control register CR0

Table 13-1.  Action Taken for Combinations of OSFXSR, OSXMMEXCPT, SSE, SSE2, SSE3, EM, MP, and TS1

NOTES:

1. For execution of any SSE instruction except the PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, and CLFLUSH instructions.

CR4 CPUID CR0 Flags

OSFXSR OSXMMEXCPT SSE, SSE2, 
SSE32,

SSE4_13

2. Exception conditions due to CR4.OSFXSR or CR4.OSXMMEXCPT do not apply to FISTTP.

3. Only applies to DPPS, DPPD, ROUNDPS, ROUNDPD, ROUNDSS, ROUNDSD.

EM MP4

4. For processors that support the MMX instructions, the MP flag should be set.

TS Action

0 X5

5. X = Don’t care.

X X 1 X #UD exception.

1 X 0 X 1 X #UD exception.

1 X 1 1 1 X #UD exception.

1 0 1 0 1 0 Execute instruction; #UD exception if unmasked 
SIMD floating-point exception is detected.

1 1 1 0 1 0 Execute instruction; #XM exception if unmasked 
SIMD floating-point exception is detected.

1 X 1 0 1 1 #NM exception.

Table 13-2.  Action Taken for Combinations of OSFXSR, SSSE3, SSE4, EM, and TS

CR4 CPUID CR0 Flags

OSFXSR SSSE3
SSE4_11

SSE4_22

EM TS Action

0 X3 X X #UD exception.

1 0 X X #UD exception.

1 1 1 X #UD exception.

1 1 0 1 #NM exception.
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The SIMD floating-point exception mask bits (bits 7 through 12), the flush-to-zero flag (bit 15), the denormals-are-
zero flag (bit 6), and the rounding control field (bits 13 and 14) in the MXCSR register should be left in their default 
values of 0. This permits the application to determine how these features are to be used.

13.1.4 Providing Non-Numeric Exception Handlers for Exceptions Generated by the SSE 
Instructions

SSE instructions can generate the same type of memory-access exceptions (such as page faults and limit viola-
tions) and other non-numeric exceptions as other Intel 64 and IA-32 architecture instructions generate. 

Ordinarily, existing exception handlers can handle these and other non-numeric exceptions without code modifica-
tion. However, depending on the mechanisms used in existing exception handlers, some modifications might need 
to be made.

The SSE extensions can generate the non-numeric exceptions listed below:
• Memory Access Exceptions:

— Stack-segment fault (#SS).

— General protection exception (#GP). Executing most SSE instructions with an unaligned 128-bit memory 
reference generates a general-protection exception. (The MOVUPS and MOVUPD instructions allow 
unaligned a loads or stores of 128-bit memory locations, without generating a general-protection 
exception.) A 128-bit reference within the stack segment that is not aligned to a 16-byte boundary will also 
generate a general-protection exception, instead a stack-segment fault exception (#SS).

— Page fault (#PF).

— Alignment check (#AC). When enabled, this type of alignment check operates on operands that are less 
than 128-bits in size: 16-bit, 32-bit, and 64-bit. To enable the generation of alignment check exceptions, do 
the following:

• Set the AM flag (bit 18 of control register CR0)

• Set the AC flag (bit 18 of the EFLAGS register)

• CPL must be 3

If alignment check exceptions are enabled, 16-bit, 32-bit, and 64-bit misalignment will be detected for the 
MOVUPD and MOVUPS instructions; detection of 128-bit misalignment is not guaranteed and may vary 
with implementation.

• System Exceptions:

— Invalid-opcode exception (#UD). This exception is generated when executing SSE instructions under the 
following conditions:

• SSE/SSE2/SSE3/SSSE3/SSE4_1/SSE4_2 feature flags returned by CPUID are set to 0. This condition 
does not affect the CLFLUSH instruction, nor POPCNT.

• The CLFSH feature flag returned by the CPUID instruction is set to 0. This exception condition only 
pertains to the execution of the CLFLUSH instruction. 

• The POPCNT feature flag returned by the CPUID instruction is set to 0. This exception condition only 
pertains to the execution of the POPCNT instruction. 

• The EM flag (bit 2) in control register CR0 is set to 1, regardless of the value of TS flag (bit 3) of CR0. 
This condition does not affect the PAUSE, PREFETCHh, MOVNTI, SFENCE, LFENCE, MFENCE, CLFLUSH, 
CRC32 and POPCNT instructions.

NOTES:

1. Applies to SSE4_1 instructions except DPPS, DPPD, ROUNDPS, ROUNDPD, ROUNDSS, ROUNDSD.

2. Applies to SSE4_2 instructions except CRC32 and POPCNT.

3. X = Don’t care.
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• The OSFXSR flag (bit 9) in control register CR4 is set to 0. This condition does not affect the PSHUFW, 
MOVNTQ, MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, CLFLUSH, CRC32 and POPCNT 
instructions.

• Executing a instruction that causes a SIMD floating-point exception when the OSXMMEXCPT flag (bit 
10) in control register CR4 is set to 0. See Section 13.4.1, “Using the TS Flag to Control the Saving of 
the x87 FPU and SSE State.”

— Device not available (#NM). This exception is generated by executing a SSE instruction when the TS flag 
(bit 3) of CR0 is set to 1.

Other exceptions can occur during delivery of the above exceptions.

13.1.5 Providing an Handler for the SIMD Floating-Point Exception (#XM)

SSE instructions do not generate numeric exceptions on packed integer operations. They can generate the 
following numeric (SIMD floating-point) exceptions on packed and scalar single-precision and double-precision 
floating-point operations. 
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

These SIMD floating-point exceptions (with the exception of the denormal operand exception) are defined in the 
IEEE Standard 754 for Binary Floating-Point Arithmetic and represent the same conditions that cause x87 FPU 
floating-point error exceptions (#MF) to be generated for x87 FPU instructions.

Each of these exceptions can be masked, in which case the processor returns a reasonable result to the destination 
operand without invoking an exception handler. However, if any of these exceptions are left unmasked, detection 
of the exception condition results in a SIMD floating-point exception (#XM) being generated. See Chapter 6, 
“Interrupt 19—SIMD Floating-Point Exception (#XM).”

To handle unmasked SIMD floating-point exceptions, the operating system or executive must provide an exception 
handler. The section titled “SSE and SSE2 SIMD Floating-Point Exceptions” in Chapter 11, “Programming with 
Streaming SIMD Extensions 2 (SSE2),” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, describes the SIMD floating-point exception classes and gives suggestions for writing an exception 
handler to handle them.

To indicate that the operating system provides a handler for SIMD floating-point exceptions (#XM), the OSXM-
MEXCPT flag (bit 10) must be set in control register CR4.

13.1.5.1  Numeric Error flag and IGNNE#

SSE extensions ignore the NE flag in control register CR0 (that is, they treat it as if it were always set) and the 
IGNNE# pin. When an unmasked SIMD floating-point exception is detected, it is always reported by generating a 
SIMD floating-point exception (#XM).

13.2 EMULATION OF SSE EXTENSIONS 

The Intel 64 and IA-32 architectures do not support emulation of the SSE instructions, as they do for x87 FPU 
instructions.

The EM flag in control register CR0 (provided to invoke emulation of x87 FPU instructions) cannot be used to invoke 
emulation of SSE instructions. If an SSE instruction is executed when CR0.EM = 1, an invalid opcode exception 
(#UD) is generated. See Table 13-1.
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13.3 SAVING AND RESTORING SSE STATE

The SSE state consists of the state of the XMM and MXCSR registers. Intel recommends the following method for 
saving and restoring this state:
• Execute the FXSAVE instruction to save the state of the XMM and MXCSR registers to memory.
• Execute the FXRSTOR instruction to restore the state of the XMM and MXCSR registers from the image saved in 

memory earlier.

This save and restore method is required for all operating systems. XSAVE feature set can also be used to 
save/restore SSE state. See Section 13.5, “The XSAVE Feature Set and Processor Extended State Management.” 
for using the XSAVE feature set to save/restore SSe state.

In some cases, applications may choose to save only the XMM and MXCSR registers in the following manner:
• Execute MOVDQ instructions to save the contents of the XMM registers to memory. 
• Execute a STMXCSR instruction to save the state of the MXCSR register to memory.

Such applications must restore the XMM and MXCSR registers as follows:
• Execute MOVDQ instructions to load the saved contents of the XMM registers from memory into the XMM 

registers.
• Execute a LDMXCSR instruction to restore the state of the MXCSR register from memory.

13.4 DESIGNING OS FACILITIES FOR SAVING X87 FPU,SSE AND EXTENDED 
STATES ON TASK OR CONTEXT SWITCHES

The x87 FPU, SSE, and AVX state consist of the state of the x87 FPU, XMM, and MXCSR registers. The FXSAVE and 
FXRSTOR instructions provide a fast method for saving ad restoring this state, as does the XSAVE feature set.

Older operating systems may use FSAVE/FNSAVE and FRSTOR to save the x87 FPU state. These facilities can be 
extended to save and restore SSE state by substituting FXSAVE and FXRSTOR or the XSAVE feature set in place of 
FSAVE/FNSAVE and FRSTOR.

If task or content switching facilities are written from scratch, any of several approaches may be taken for using the 
FXSAVE and FXRSTOR instructions of the XSAVE feature set to save and restore x87 FPU and SSE state:
• The operating system can require applications that are intended to be run as tasks take responsibility for saving 

the states prior to a task suspension during a task switch and for restoring the states when the task is resumed. 
This approach is appropriate for cooperative multitasking operating systems, where the application has control 
over (or is able to determine) when a task switch is about to occur and can save state prior to the task switch.

• The operating system can take the responsibility for saving the states as part of the task switch process and 
restoring the state of the registers when a suspended task is resumed. This approach is appropriate for 
preemptive multitasking operating systems, where the application cannot know when it is going to be 
preempted and cannot prepare in advance for task switching. 

• The operating system can take the responsibility for saving the states as part of the task switch process, but 
delay the restoring of the states until an instruction operating on the states is actually executed by the new 
task. See Section 13.4.1, “Using the TS Flag to Control the Saving of the x87 FPU and SSE State,” for more 
information. This approach is called lazy restore.
The use of lazy restore mechanism in context switches is not recommended when XSAVE feature set is used to 
save/restore states for the following reasons.

— With XSAVE feature set, Intel processors have optimizations in place to avoid saving the state components 
that are in their initial configurations or when they have not been modified since it was restored last. These 
optimizations eliminate the need for lazy restore. See section 13.5.4 in Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1. 

— Intel processors have power optimizations when state components are in their initial configurations. Use of 
lazy restore retains the non-initial configuration of the last thread and is not power efficient.
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— Not all extended states support lazy restore mechanisms. As such, when one or more such states are 
enabled it becomes very inefficient to use lazy restore as it results in two separate state restore, one in 
context switch for the states that does not support lazy restore and one in the #NM handler for states that 
support lazy restore.

13.4.1 Using the TS Flag to Control the Saving of the x87 FPU and SSE State

The TS flag in control register CR0 is provided to allow the operating system to delay saving/restoring the x87 FPU 
and SSE state until an instruction that actually accesses this state is encountered in a new task. When the TS flag 
is set, the processor monitors the instruction stream for x87 FPU, MMX, SSE instructions. When the processor 
detects one of these instructions, it raises a device-not-available exception (#NM) prior to executing the instruc-
tion. The #NM exception handler can then be used to save the x87 FPU and SSE state for the previous task (using 
an FXSAVE, XSAVE, or XSAVEOPT instruction) and load the x87 FPU and SSE state for the current task (using an 
FXRSTOR or XRSOTR instruction). If the task never encounters an x87 FPU, MMX, or SSE instruction, the device-
not-available exception will not be raised and a task state will not be saved/restored unnecessarily.

NOTE

The CRC32 and POPCNT instructions do not operate on the x87 FPU or SSE state. They operate on 
the general-purpose registers and are not involved with the techniques described above.

The TS flag can be set either explicitly (by executing a MOV instruction to control register CR0) or implicitly (using 
the IA-32 architecture’s native task switching mechanism). When the native task switching mechanism is used, the 
processor automatically sets the TS flag on a task switch. After the device-not-available handler has saved the x87 
FPU and SSE state, it should execute the CLTS instruction to clear the TS flag.

13.5 THE XSAVE FEATURE SET AND PROCESSOR EXTENDED STATE 
MANAGEMENT 

The architecture of XSAVE feature set is described in CHAPTER 13 of Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1. The XSAVE feature set includes the following:
• An extensible data layout for existing and future processor state extensions. The layout of the XSAVE area 

extends from the 512-byte FXSAVE/FXRSTOR layout to provide compatibility and migration path from 
managing the legacy FXSAVE/FXRSTOR area. The XSAVE area is described in more detail in Section 13.4 of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

• CPUID enhancements for feature enumeration. See Section 13.2 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1.

• Control register enhancement and dedicated register for enabling each processor extended state. See Section 
13.3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

• Instructions to save state to and restore state from the XSAVE area. See Section 13.6 through Section 13.8 of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

Operating systems can utilize XSAVE feature set to manage both FP/SSE state and processor extended states. 
CPUID leaf 0DH enumerates XSAVE feature set related information. The following guide lines provide the steps an 
operating system needs to take to support legacy FP/SSE states and processor extended states.

1. Check that the processor supports the XSAVE feature set

2. Determine the set of XSAVE managed features that the operating system intends to enable and calculate the 
size of the buffer needed to save/restore the states during context switch and other flows

3. Enable use of XSAVE feature set and XSAVE managed features

4. Provide an initialization for the XSAVE managed feature state components

5. Provide (if necessary) required exception handlers for exceptions generated each of the XSAVE managed 
features.
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13.5.1 Checking the Support for XSAVE Feature Set

Support for XSAVE Feature set is enumerated in CPUID.1.ECX.XSAVE[bit 26]. Enumeration of this bit indicates that 
the processor supports XSAVE/XRSTOR instructions to manage state and XSETBV/XGETBV on XCR0 to enable and 
get enabled states. An operating system needs to enable XSAVE feature set as described later.
Additionally CPUID.(EAX=0DH, ECX=1).EAX enumerates additional XSAVE sub features such as optimized save, 
compaction and supervisor state support. The following table summarizes XSAVE sub features. Once an operating 
system enables XSAVE feature set, all the sub-features enumerated are also available. There is no need to enable 
each additional sub feature.

13.5.2 Determining the XSAVE Managed Feature States And The Required Buffer Size 

Each XSAVE managed feature has one or more state components associated with it. An operating system policy 
needs to determine the XSAVE managed features to support and determine the corresponding state components 
to enable. When determining the XSAVE managed features to support, operating system needs to take in account 
the dependencies between them (e.g. AVX feature depends on SSE feature). Similarly, when a XSAVE managed 
feature has more than one state components, all of them needs to be enabled. Each logical processor enumerates 
supported XSAVE state components in CPUID.(EAX=0DH, ECX=0).EDX:EAX. An operating system may enable all 
or a subset of the state components enumerated by the processor based on the OS policy.
The size of the memory buffer needed to save enabled XSAVE state components depends on whether the OS opts-
in to use compacted format or not. If the OS uses non-compacted format, then the size will be determined by the 
last state in the layout. This can be calculated as the largest offset + size of the states to be enabled. When 
compacted format is used, the OS may add up the sizes of all state components that intend to enable excluding 
FP/SSE states plus 576 bytes (legacy area 512 bytes + header 64 bytes) to arrive at required save area size. Note 
that the base of the save area must be 64-byte aligned in both cases.

13.5.3 Enable the Use Of XSAVE Feature Set And XSAVE State Components

Operating systems need to enable the use of XSAVE feature set by writing to CR4.OSXSAVE[bit 18] to enable 
XSETBV/XGETBV instructions to access XCR0 and to support processor extended state management using 
XSAVE/XRSTOR. When XSAVE feature set is enabled, all enumerated XSAVE sub features such as optimized save, 
compaction and supervisor state support are also enabled. Operating systems also need to enable the XSAVE state 
components in XCR0 using XSETBV instruction.

13.5.4 Provide an Initialization for the XSAVE State Components

The XSAVE header of a newly allocated XSAVE area should be initialized to all zeroes before saving context. An 
operating system may choose establish beginning state-component values for a task by executing XRSTOR from an 
XSAVE area that the OS has configured. If it is desired to begin state component i in its initial configuration, the OS 
should clear bit i in the XSTATE_BV field in the XSAVE header; otherwise, it should set that bit and place the desired 
beginning value in the appropriate location in the XSAVE area.

Table 13-3.   CPUID.(EAX=0DH, ECX=1) EAX Bit Assignment

EAX Bit Position Meaning

0 If set, indicates availability of the XSAVEOPT instruction.

1 If set, indicates availability of the XSAVEC instruction and the corresponding compaction enhancements 
to the legacy XRSTOR instruction.

2 If set, indicates support for execution of XGETBV with ECX=1. This execution returns the state-compo-
nent bitmap XINUSE. If XINUSE[i] = 0, state component i is in its initial configuration. Execution of 
XSETBV with ECX=1 causes a #GP.

3 If set, indicates support for XSAVES/XRSTORS and IA32_XSS MSR

31:4 Reserved
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When a buffer is allocated for compacted size, software must ensure that the XCOMP_BV field is setup correctly 
before restoring from the buffer. Bit 63 of the XCOMP_BV field indicates that the save area is in the compacted 
format and the remaining bits indicate the states that have space allocated in the save area. If the buffer was first 
used to save the state in compacted format, then the save instructions will setup the XCOMP_BV field appropri-
ately. If the buffer is first used to restore the state, then software must set up the XCOMP_BV field.

13.5.5 Providing the Required Exception Handlers

Instructions part of each XSAVE managed features may generate exceptions and operating system may need to 
enable such exceptions and provide handlers for them. Section 13.8 describes feature specific OS requirements for 
each XSAVE managed features.

13.6 INTEROPERABILITY OF THE XSAVE FEATURE SET AND FXSAVE/FXRSTOR

The FXSAVE instruction writes x87 FPU and SSE state information to a 512-byte FXSAVE save area. FXRSTOR 
restores the processor’s x87 FPU and SSE states from an FXSAVE area. The XSAVE features set supports x87 FPU 
and SSE states using the same layout as the FXSAVE area to provide interoperability of FXSAVE versus XSAVE, and 
FXRSTOR versus XRSTOR. The XSAVE feature set allows system software to manage SSE state independent of x87 
FPU states. Thus system software that had been using FXSAVE and FXRSTOR to manage x87 FPU and SSE states 
can transition to using the XSAVE feature set to manage x87 FPU, SSE and other processor extended states in a 
systematic and forward-looking manner. See Section 10.5 and Chapter 13 of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1 for more details.

System software can implement forward-looking processor extended state management using the XSAVE feature 
set. In this case, system software must specify the bit vector mask in EDX:EAX appropriately when executing 
XSAVE/XRSTOR instructions. 

For instance, the OS can supply instructions in the XSAVE feature set with a bit vector in EDX:EAX with the two 
least significant bits (corresponding to x87 FPU and SSE state) equal to 0. Then, the XSAVE instruction will not 
write the processor’s x87 FPU and SSE state into memory. Similarly, the XRSTOR instruction executed with a value 
in EDX:EAX with the least two significant bit equal to 0 will not restore nor initialize the processor’s x87 FPU and 
SSE state.

The processor’s action as a result of executing XRSTOR is given in Section 13.7 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1. The instruction may be used to initialized x87 FPU or XMM regis-
ters. When the MXCSR register is updated from memory, reserved bit checking is enforced. The saving/restoring of 
MXCSR is bound to the SSE state, independent of the x87 FPU state. The action of XSAVE is given in Section 13.6 
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

13.7 THE XSAVE FEATURE SET AND PROCESSOR SUPERVISOR STATE 
MANAGEMENT 

Supervisor state is a processor state that is only accessible in ring 0. An extension to XSAVE feature set, enumer-
ated by CPUID.(EAX=0DH, ECX=1).EAX[bit 3] allows the management of the supervisor states using XSAVE 
feature set. See Chapter 13 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 for the 
details of the supervisor state XSAVE feature set extension. The supervisor state extension includes the following:
• CPUID enhancements to enumerate the set of supervisor states and their sizes that can be managed by XSAVE 

feature set. 
• A new MSR IA32_XSS to enable XSAVE feature set to manage one or more enumerated supervisor states. 
• A new pair of privileged save/restore instructions, XSAVES and XRSTORS, to save/restore supervisor states 

along with other XSAVE managed feature states.

The guidelines to enable XSAVE feature set to manage supervisor state are very similar to the steps outlines in 
Section 13.6 with the differences outline below. The set of supervisor states that can be managed by XSAVE 
feature set is enumerated in (EAX=0DH, ECX=1).EDX:ECX. XSAVE managed supervisor states are enabled in 
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IA32_XSS MSR instead of XCR0 control register. There are semantic differences between user states enabled in 
XCR0 and supervisor state enabled in IA32_XSS MSR. A supervisor state enabled in IA32_XSS MSR:
• May be accessed via other mechanisms such as RDMSR/WRMSR even when they are not enabled in IA32_XSS 

MSR. Enabling a supervisor state in the IA32_XSS MSR merely indicates that the state can be saved/restored 
using XSAVES/XRSTORS instructions. 

• May have side effects when saving/restoring the state such as disabling/enabling feature associated with the 
state. This behavior is feature specific and will be documented along with the feature description. 

• May generate faults when saving/restoring the state. XSAVES/XRSTORS will follow the faulting behavior of 
RDMSR/WRMSR respectively if the corresponding state is also accessible using RDMSR/WRMSR. 

• XRSTORS may fault when restoring the state for supervisor features that are already enabled via feature 
specific mechanisms. This behavior is feature specific and will be documented along with the feature 
description.

When a supervisor state is disabled via a feature specific mechanism, the state does not automatically get marked 
as INIT. Hence XSAVES/XRSTORS will continue to save/restore the state subject to available optimizations. If the 
software does not intend to preserve the state when it disables the feature, it should initialize it to hardware INIT 
value with XRSTORS instruction so that XSAVES/XRSTORS perform optimally for that state.

13.8 SYSTEM PROGRAMMING FOR XSAVE MANAGED FEATURES

This section describes system programming requirement for each XSAVE managed features that are feature 
specific such as exception handling.

13.8.1 Intel Advanced Vector Extensions (Intel AVX) and YMM State

Intel AVX instructions comprises of 256-bit and 128-bit instructions that operates on 256-bit YMM registers. The 
XSAVE feature set allows software to save and restore the state of these registers. See Chapter 13 of the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1.

System software support requirements for 256-bit YMM states are described next:

For processors that support YMM states, the YMM state exists in all operating modes. However, the available 
instruction interfaces to access YMM states may vary in different modes. 
Operating systems must use the XSAVE feature set for YMM state management. The XSAVE feature set also 
provides flexible and efficient interface to manage XMM/MXCSR states and x87 FPU states in conjunction with 
newer processor extended states like YMM states. Operating systems may need to be aware of the following when 
supporting AVX.
• Saving/Restoring AVX state in non-compacted format without SSE state will also save/restore MXCSR even 

though MXCSR is not part of AVX state. This does not happen when compacted format is used. 
• Few AVX instructions such as VZEROUPPER/VZEROALL may operate on future expansion of YMM registers.

An operating system must enable its YMM state management to support AVX and any 256-bit extensions that 
operate on YMM registers. Otherwise, an attempt to execute an instruction in AVX extensions (including an 
enhanced 128-bit SIMD instructions using VEX encoding) will cause a #UD exception. 

AVX instructions may generate SIMD floating-point exceptions. An OS must enable SIMD floating-point exception 
support by setting CR4.OSXMMEXCPT[bit 10]=1.

The effect of CR4 setting that affects AVX enabling is listed in Table 13-4.

Table 13-4.   CR4 bits for AVX New Instructions technology support

Bit Meaning

CR4.OSXSAVE[bit 18] If set, the OS supports use of the XSAVE feature set to manage processor extended state. Must be set 
to ‘1’ to enable AVX.
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CR4.OSXMMEXCPT[bit 10] Must be set to 1 to enable SIMD floating-point exceptions. This applies to AVX operating on YMM 
states, and legacy 128-bit SIMD floating-point instructions operating on XMM states. 

CR4.OSFXSR[bit 9] Ignored by AVX instructions operating on YMM states. 
Must be set to 1 to enable SIMD instructions operating on XMM state. 

Table 13-4.   CR4 bits for AVX New Instructions technology support

Bit Meaning
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CHAPTER 14
POWER AND THERMAL MANAGEMENT

This chapter describes facilities of Intel 64 and IA-32 architecture used for power management and thermal moni-
toring.

14.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY

Enhanced Intel SpeedStep® Technology was introduced in the Pentium M processor. The technology enables the 
management of processor power consumption via performance state transitions. These states are defined as 
discrete operating points associated with different voltages and frequencies. 

Enhanced Intel SpeedStep Technology differs from previous generations of Intel SpeedStep Technology in two 
ways:
• Centralization of the control mechanism and software interface in the processor by using model-specific 

registers.
• Reduced hardware overhead; this permits more frequent performance state transitions.

Previous generations of the Intel SpeedStep Technology require processors to be a deep sleep state, holding off bus 
master transfers for the duration of a performance state transition. Performance state transitions under the 
Enhanced Intel SpeedStep Technology are discrete transitions to a new target frequency.

Support is indicated by CPUID, using ECX feature bit 07. Enhanced Intel SpeedStep Technology is enabled by 
setting IA32_MISC_ENABLE MSR, bit 16. On reset, bit 16 of IA32_MISC_ENABLE MSR is cleared. 

14.1.1 Software Interface For Initiating Performance State Transitions

State transitions are initiated by writing a 16-bit value to the IA32_PERF_CTL register, see Figure 14-2. If a transi-
tion is already in progress, transition to a new value will subsequently take effect. 

Reads of IA32_PERF_CTL determine the last targeted operating point. The current operating point can be read from 
IA32_PERF_STATUS. IA32_PERF_STATUS is updated dynamically.

The 16-bit encoding that defines valid operating points is model-specific. Applications and performance tools are 
not expected to use either IA32_PERF_CTL or IA32_PERF_STATUS and should treat both as reserved. Performance 
monitoring tools can access model-specific events and report the occurrences of state transitions.

14.2 P-STATE HARDWARE COORDINATION

The Advanced Configuration and Power Interface (ACPI) defines performance states (P-states) that are used to 
facilitate system software’s ability to manage processor power consumption. Different P-states correspond to 
different performance levels that are applied while the processor is actively executing instructions. Enhanced Intel 
SpeedStep Technology supports P-states by providing software interfaces that control the operating frequency and 
voltage of a processor. 

With multiple processor cores residing in the same physical package, hardware dependencies may exist for a 
subset of logical processors on a platform. These dependencies may impose requirements that impact the coordi-
nation of P-state transitions. As a result, multi-core processors may require an OS to provide additional software 
support for coordinating P-state transitions for those subsets of logical processors.

ACPI firmware can choose to expose P-states as dependent and hardware-coordinated to OS power management 
(OSPM) policy. To support OSPMs, multi-core processors must have additional built-in support for P-state hardware 
coordination and feedback.

Intel 64 and IA-32 processors with dependent P-states amongst a subset of logical processors permit hardware 
coordination of P-states and provide a hardware-coordination feedback mechanism using IA32_MPERF MSR and 
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IA32_APERF MSR. See Figure 14-1 for an overview of the two 64-bit MSRs and the bullets below for a detailed 
description:

• Use CPUID to check the P-State hardware coordination feedback capability bit. CPUID.06H.ECX[Bit 0] = 1 
indicates IA32_MPERF MSR and IA32_APERF MSR are present.

• IA32_MPERF MSR (0xE7) increments in proportion to a fixed frequency, which is configured when the processor 
is booted.

• IA32_APERF MSR (0xE8) increments in proportion to actual performance, while accounting for hardware 
coordination of P-state and TM1/TM2; or software initiated throttling.

• The MSRs are per logical processor; they measure performance only when the targeted processor is in the C0 
state.

• Only the IA32_APERF/IA32_MPERF ratio is architecturally defined; software should not attach meaning to the 
content of the individual of IA32_APERF or IA32_MPERF MSRs.

• When either MSR overflows, both MSRs are reset to zero and continue to increment.
• Both MSRs are full 64-bits counters. Each MSR can be written to independently. However, software should 

follow the guidelines illustrated in Example 14-1.

If P-states are exposed by the BIOS as hardware coordinated, software is expected to confirm processor support 
for P-state hardware coordination feedback and use the feedback mechanism to make P-state decisions. The OSPM 
is expected to either save away the current MSR values (for determination of the delta of the counter ratio at a later 
time) or reset both MSRs (execute WRMSR with 0 to these MSRs individually) at the start of the time window used 
for making the P-state decision. When not resetting the values, overflow of the MSRs can be detected by checking 
whether the new values read are less than the previously saved values. 

Example 14-1 demonstrates steps for using the hardware feedback mechanism provided by IA32_APERF MSR and 
IA32_MPERF MSR to determine a target P-state.

Example 14-1.  Determine Target P-state From Hardware Coordinated Feedback

DWORD PercentBusy; // Percentage of processor time not idle.

// Measure “PercentBusy“ during previous sampling window.

// Typically, “PercentBusy“ is measure over a time scale suitable for

// power management decisions

// 

// RDMSR of MCNT and ACNT should be performed without delay.

// Software needs to exercise care to avoid delays between 

// the two RDMSRs (for example, interrupts).

MCNT = RDMSR(IA32_MPERF);

ACNT = RDMSR(IA32_APERF);

// PercentPerformance indicates the percentage of the processor

// that is in use. The calculation is based on the PercentBusy, 

// that is the percentage of processor time not idle and the P-state

// hardware coordinated feedback using the ACNT/MCNT ratio.

// Note that both values need to be calculated over the same 

Figure 14-1.  IA32_MPERF MSR and IA32_APERF MSR for P-state Coordination
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// time window. 

PercentPerformance = PercentBusy * (ACNT/MCNT);

// This example does not cover the additional logic or algorithms

// necessary to coordinate multiple logical processors to a target P-state.

TargetPstate = FindPstate(PercentPerformance);

if (TargetPstate != currentPstate) {

SetPState(TargetPstate);

} 

// WRMSR of MCNT and ACNT should be performed without delay.

  // Software needs to exercise care to avoid delays between 

  // the two WRMSRs (for example, interrupts).

  WRMSR(IA32_MPERF, 0);

  WRMSR(IA32_APERF, 0);

14.3 SYSTEM SOFTWARE CONSIDERATIONS AND OPPORTUNISTIC PROCESSOR 
PERFORMANCE OPERATION

An Intel 64 processor may support a form of processor operation that takes advantage of design headroom to 
opportunistically increase performance. The Intel Turbo Boost Technology can convert thermal headroom into 
higher performance across multi-threaded and single-threaded workloads. The Intel Dynamic Acceleration feature 
can convert thermal headroom into higher performance if only one thread is active.

14.3.1 Intel Dynamic Acceleration

Intel Core 2 Duo processor T 7700 introduces Intel Dynamic Acceleration (IDA). IDA takes advantage of thermal 
design headroom and opportunistically allows a single core to operate at a higher performance level when the 
operating system requests increased performance. 

14.3.2 System Software Interfaces for Opportunistic Processor Performance Operation

Opportunistic processor operation, applicable to Intel Dynamic Acceleration and Intel Turbo Boost Technology, has 
the following characteristics:
• A transition from a normal state of operation (e.g. IDA/Turbo mode disengaged) to a target state is not 

guaranteed, but may occur opportunistically after the corresponding enable mechanism is activated, the 
headroom is available and certain criteria are met.

• The opportunistic processor performance operation is generally transparent to most application software.
• System software (BIOS and Operating system) must be aware of hardware support for opportunistic processor 

performance operation and may need to temporarily disengage opportunistic processor performance operation 
when it requires more predictable processor operation. 

• When opportunistic processor performance operation is engaged, the OS should use hardware coordination 
feedback mechanisms to prevent un-intended policy effects if it is activated during inappropriate situations.

14.3.2.1  Discover Hardware Support and Enabling of Opportunistic Processor Operation

If an Intel 64 processor has hardware support for opportunistic processor performance operation, the power-on 
default state of IA32_MISC_ENABLE[38] indicates the presence of such hardware support. For Intel 64 processors 
that support opportunistic processor performance operation, the default value is 1, indicating its presence. For 
processors that do not support opportunistic processor performance operation, the default value is 0. The power-
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on default value of IA32_MISC_ENABLE[38] allows BIOS to detect the presence of hardware support of opportu-
nistic processor performance operation. 

IA32_MISC_ENABLE[38] is shared across all logical processors in a physical package. It is written by BIOS during 
platform initiation to enable/disable opportunistic processor operation in conjunction of OS power management 
capabilities, see Section 14.3.2.2. BIOS can set IA32_MISC_ENABLE[38] with 1 to disable opportunistic processor 
performance operation; it must clear the default value of IA32_MISC_ENABLE[38] to 0 to enable opportunistic 
processor performance operation. OS and applications must use CPUID leaf 06H if it needs to detect processors 
that has opportunistic processor operation enabled.

When CPUID is executed with EAX = 06H on input, Bit 1 of EAX in Leaf 06H (i.e. CPUID.06H:EAX[1]) indicates 
opportunistic processor performance operation, such as IDA, has been enabled by BIOS. 

Opportunistic processor performance operation can be disabled by setting bit 38 of IA32_MISC_ENABLE. This 
mechanism is intended for BIOS only. If IA32_MISC_ENABLE[38] is set, CPUID.06H:EAX[1] will return 0. 

14.3.2.2  OS Control of Opportunistic Processor Performance Operation

There may be phases of software execution in which system software cannot tolerate the non-deterministic aspects 
of opportunistic processor performance operation. For example, when calibrating a real-time workload to make a 
CPU reservation request to the OS, it may be undesirable to allow the possibility of the processor delivering 
increased performance that cannot be sustained after the calibration phase. 

System software can temporarily disengage opportunistic processor performance operation by setting bit 32 of the 
IA32_PERF_CTL MSR (0199H), using a read-modify-write sequence on the MSR. The opportunistic processor 
performance operation can be re-engaged by clearing bit 32 in IA32_PERF_CTL MSR, using a read-modify-write 
sequence. The DISENAGE bit in IA32_PERF_CTL is not reflected in bit 32 of the IA32_PERF_STATUS MSR (0198H), 
and it is not shared between logical processors in a physical package. In order for OS to engage IDA/Turbo mode, 
the BIOS must 
• enable opportunistic processor performance operation, as described in Section 14.3.2.1,
• expose the operating points associated with IDA/Turbo mode to the OS.

14.3.2.3  Required Changes to OS Power Management P-state Policy

Intel Dynamic Acceleration (IDA) and Intel Turbo Boost Technology can provide opportunistic performance greater 
than the performance level corresponding to the maximum qualified frequency of the processor (see CPUID’s brand 
string information). System software can use a pair of MSRs to observe performance feedback. Software must 
query for the presence of IA32_APERF and IA32_MPERF (see Section 14.2). The ratio between IA32_APERF and 
IA32_MPERF is architecturally defined and a value greater than unity indicates performance increase occurred 
during the observation period due to IDA. Without incorporating such performance feedback, the target P-state 
evaluation algorithm can result in a non-optimal P-state target. 

There are other scenarios under which OS power management may want to disable IDA, some of these are listed 
below:
• When engaging ACPI defined passive thermal management, it may be more effective to disable IDA for the 

duration of passive thermal management.

Figure 14-2.  IA32_PERF_CTL Register
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• When the user has indicated a policy preference of power savings over performance, OS power management 
may want to disable IDA while that policy is in effect.

14.3.2.4  Application Awareness of Opportunistic Processor Operation (Optional)

There may be situations that an end user or application software wishes to be aware of turbo mode activity. It is 
possible for an application-level utility to periodically check the occurrences of opportunistic processor operation. 
The basic elements of an algorithm is described below, using the characteristics of Intel Turbo Boost Technology as 
example.

Using an OS-provided timer service, application software can periodically calculate the ratio between unhalted-
core-clockticks (UCC) relative to the unhalted-reference-clockticks (URC) on each logical processor to determine if 
that logical processor had been requested by OS to run at some frequency higher than the invariant TSC frequency, 
or the OS has determined system-level demand has reduced sufficiently to put that logical processor into a lower-
performance p-state or even lower-activity state. 

If an application software have access to information of the base operating ratio between the invariant TSC 
frequency and the base clock (133.33 MHz), it can convert the sampled ratio into a dynamic frequency estimate for 
each prior sampling period. The base operating ratio can be read from MSR_PLATFORM_INFO[15:8].

The periodic sampling technique is depicted in Figure 14-3 and described below:

• The sampling period chosen by the application (to program an OS timer service) should be sufficiently large to 
avoid excessive polling overhead to other applications or tasks managed by the OS. 

• When the OS timer service transfers control, the application can use RDPMC (with ECX = 4000_0001H) to read 
IA32_PERF_FIXED_CTR1 (MSR address 30AH) to record the unhalted core clocktick (UCC) value; followed by 
RDPMC (ECX=4000_0002H) to read IA32_PERF_FIXED_CTR2 (MSR address 30BH) to record the unhalted 
reference clocktick (URC) value. This pair of values is needed for each logical processor for each sampling 
period. 

• The application can calculate the Turbo activity ratio based on the difference of UCC between each sample 
period, over the difference of URC difference. The effective frequency of each sample period of the logical 
processor, i, can be estimated by:
(UCCn+1, i - UCC n, i)/(URCn+1, i - URC n, i)* Base_operating_ratio* 133.33MHz

It is possible that the OS had requested a lower-performance P-state during a sampling period. Thus the ratio 
(UCCn+1, i - UCC n, i)/(URCn+1, i - URC n, i) can reflect the average of Turbo activity (driving the ratio above unity) 
and some lower P-state transitions (causing the ratio to be < 1). 

Figure 14-3.  Periodic Query of Activity Ratio of Opportunistic Processor Operation
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It is also possible that the OS might request C-state transitions when the demand is low. The above ratio generally 
does not account for cycles when any logical processor was idle. An application can make use of the time stamp 
counter (IA-32_TSC) running at a constant frequency during C-states. Thus software can calculate ratios that can 
indicate fractions of sample period spent in the C0 state, using the unhalted reference clockticks and the invariant 
TSC. Note the estimate of fraction spent in C0 may be affected by SMM handler if the system software makes use 
of the “FREEZE_WHILE_SMM_EN” capability to freeze performance counter values while the SMM handler is 
servicing an SMI (see Chapter 19, “Performance Monitoring Events”).

14.3.3 Intel Turbo Boost Technology

Intel Turbo Boost Technology is supported in Intel Core i7 processors and Intel Xeon processors based on Intel® 
microarchitecture code name Nehalem. It uses the same principle of leveraging thermal headroom to dynamically 
increase processor performance for single-threaded and multi-threaded/multi-tasking environment. The program-
ming interface described in Section 14.3.2 also applies to Intel Turbo Boost Technology.

14.3.4 Performance and Energy Bias Hint support

Intel 64 processors may support additional software hint to guide the hardware heuristic of power management 
features to favor increasing dynamic performance or conserve energy consumption. 

Software can detect the processor's capability to support the performance-energy bias preference hint by exam-
ining bit 3 of ECX in CPUID leaf 6. The processor supports this capability if CPUID.06H:ECX.SETBH[bit 3] is set and 
it also implies the presence of a new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).

Software can program the lowest four bits of IA32_ENERGY_PERF_BIAS MSR with a value from 0 - 15. The values 
represent a sliding scale, where a value of 0 (the default reset value) corresponds to a hint preference for highest 
performance and a value of 15 corresponds to the maximum energy savings. A value of 7 roughly translates into a 
hint to balance performance with energy consumption.

The layout of IA32_ENERGY_PERF_BIAS is shown in Figure 14-4. The scope of IA32_ENERGY_PERF_BIAS is per 
logical processor, which means that each of the logical processors in the package can be programmed with a 
different value. This may be especially important in virtualization scenarios, where the performance / energy 
requirements of one logical processor may differ from the other. Conflicting “hints” from various logical processors 
at higher hierarchy level will be resolved in favor of performance over energy savings. 

Software can use whatever criteria it sees fit to program the MSR with an appropriate value. However, the value 
only serves as a hint to the hardware and the actual impact on performance and energy savings is model specific.

14.4 HARDWARE-CONTROLLED PERFORMANCE STATES (HWP)

Intel processors may contain support for Hardware-Controlled Performance States (HWP), which autonomously 
selects performance states while utilizing OS supplied performance guidance hints. The Enhanced Intel Speed-
Step® Technology provides a means for the OS to control discrete frequency-based operating points via the 
IA32_PERF_CTL and IA32_PERF_STATUS MSRs. 

Figure 14-4.  IA32_ENERGY_PERF_BIAS Register
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In contrast, HWP is an implementation of the ACPI-defined Collaborative Processor Performance Control (CPPC), 
which specifies that the platform enumerate a continuous, abstract unit-less, performance value scale that is not 
tied to a specific performance state / frequency by definition. While the enumerated scale is roughly linear in terms 
of a delivered integer workload performance result, the OS is required to characterize the performance value range 
to comprehend the delivered performance for an applied workload. 

When HWP is enabled, the processor autonomously selects performance states as deemed appropriate for the 
applied workload and with consideration of constraining hints that are programmed by the OS. These OS-provided 
hints include minimum and maximum performance limits, preference towards energy efficiency or performance, 
and the specification of a relevant workload history observation time window. The means for the OS to override 
HWP's autonomous selection of performance state with a specific desired performance target is also provided, 
however, the effective frequency delivered is subject to the result of energy efficiency and performance optimiza-
tions.

14.4.1 HWP Programming Interfaces 

The programming interfaces provided by HWP include the following:
• The CPUID instruction allows software to discover the presence of HWP support in an Intel processor. Specifi-

cally, execute CPUID instruction with EAX=06H as input will return 5 bit flags covering the following aspects in 
bits 7 through 11 of CPUID.06H:EAX:

— Availability of HWP baseline resource and capability, CPUID.06H:EAX[bit 7]: If this bit is set, HWP provides 
several new architectural MSRs: IA32_PM_ENABLE, IA32_HWP_CAPABILITIES, IA32_HWP_REQUEST, 
IA32_HWP_STATUS. 

— Availability of HWP Notification upon dynamic Guaranteed Performance change, CPUID.06H:EAX[bit 8]: If 
this bit is set, HWP provides IA32_HWP_INTERRUPT MSR to enable interrupt generation due to dynamic 
Performance changes and excursions.

— Availability of HWP Activity window control, CPUID.06H:EAX[bit 9]: If this bit is set, HWP allows software to 
program activity window in the IA32_HWP_REQUEST MSR.

— Availability of HWP energy/performance preference control, CPUID.06H:EAX[bit 10]: If this bit is set, HWP 
allows software to set an energy/performance preference hint in the IA32_HWP_REQUEST MSR.

— Availability of HWP package level control, CPUID.06H:EAX[bit 11]:If this bit is set, HWP provides the 
IA32_HWP_REQUEST_PKG MSR to convey OS Power Management’s control hints for all logical processors 
in the physical package.

Table 14-1.  Architectural and Non-Architectural MSRs Related to HWP

Address Archite
ctural

Register Name Description

770H Y IA32_PM_ENABLE Enable/Disable HWP.

771H Y IA32_HWP_CAPABILITIES Enumerates the HWP performance range (static and dynamic). 

772H Y IA32_HWP_REQUEST_PKG Conveys OSPM's control hints (Min, Max, Activity Window, Energy 
Performance Preference, Desired) for all logical processor in the physical 
package.

773H Y IA32_HWP_INTERRUPT Controls HWP native interrupt generation (Guaranteed Performance 
changes, excursions).

774H Y IA32_HWP_REQUEST Conveys OSPM's control hints (Min, Max, Activity Window, Energy 
Performance Preference, Desired) for a single logical processor.

777H Y IA32_HWP_STATUS Status bits indicating changes to Guaranteed Performance and 
excursions to Minimum Performance. 

19CH Y IA32_THERM_STATUS[bits 15:12] Conveys reasons for performance excursions

64EH N MSR_PPERF Productive Performance Count.
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• Additionally, HWP may provide a non-architectural MSR, MSR_PPERF, which provides a quantitative metric to 
software of hardware’s view of workload scalability. This hardware’s view of workload scalability is implemen-
tation specific.

14.4.2 Enabling HWP 

The layout of the IA32_PM_ENABLE MSR is shown in Figure 14-5. The bit fields are described below: 

• HWP_ENABLE (bit 0, R/W1Once) — Software sets this bit to enable HWP with autonomous selection. When 
set, the processor will disregard input from the legacy performance control interface (IA32_PERF_CTL). Note 
this bit can only be enabled once from the default value. Once set, writes to the HWP_ENABLE bit are ignored. 
Only RESET will clear this bit. Default = zero (0). 

• Bits 63:1 are reserved and must be zero.

After software queries CPUID and verifies the processor’s support of HWP, system software can write 1 to 
IA32_PM_ENABLE.HWP_ENABLE (bit 0) to enable hardware controlled performance states. The default value of 
IA32_PM_ENABLE MSR at power-on is 0, i.e. HWP is disabled.

Additional MSRs associated with HWP may only be accessed after HWP is enabled, with the exception of 
IA32_HWP_INTERRUPT and MSR_PPERF. Accessing the IA32_HWP_INTERRUPT MSR requires only HWP is present 
as enumerated by CPUID but does not require enabling HWP.

IA32_PM_ENABLE is a package level MSR, i.e. writing to it from any logical processor within a package affects all 
logical processors within that package.

14.4.3 HWP Performance Range and Dynamic Capabilities

The OS reads the IA32_HWP_CAPABILITIES MSR to comprehend the limits of the HWP-managed performance 
range as well as the dynamic capability, which may change during processor operation. The enumerated perfor-
mance range values reported by IA32_HWP_CAPABILITIES directly map to initial frequency targets (prior to work-
load-specific frequency optimizations of HWP). However the mapping is processor family specific. The enumerated 
performance range values for Intel Core processors correspond to 100MHz units. e.g. a field value of 8 = 800MHz.

The layout of the IA32_HWP_CAPABILITIES MSR is shown in Figure 14-6. The bit fields are described below: 

Figure 14-5.  IA32_PM_ENABLE MSR

Figure 14-6.  IA32_HWP_CAPABILITIES Register 
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• Highest_Performance (bits 7:0, RO) — Value for the maximum non-guaranteed performance level.
• Guaranteed_Performance (bits 15:8, RO) — Current value for the guaranteed performance level. This 

value can change dynamically as a result of internal or external constraints, e.g. thermal or power limits.
• Most_Efficient_Performance (bits 23:16, RO) — Current value of the most efficient performance level. 

This value can change dynamically as a result of workload characteristics.
• Lowest_Performance (bits 31:24, RO) — Value for the lowest performance level that software can program 

to IA32_HWP_REQUEST.
• Bits 63:32 are reserved and must be zero.

The value returned in the Guaranteed_Performance field is hardware's best-effort approximation of the avail-
able performance given current operating constraints. Changes to the Guaranteed_Performance value will 
primarily occur due to a shift in operational mode. This includes a power or other limit applied by an external agent, 
e.g. RAPL (see Figure 14.9.1), or the setting of a Configurable TDP level (see model-specific controls related to 
Programmable TDP Limit in Chapter 35, “Model-Specific Registers (MSRs)”). Notification of a change to the 
Guaranteed_Performance occurs via interrupt (if configured) and the IA32_HWP_Status MSR. Changes to 
Guaranteed_Performance are indicated when a macroscopically meaningful change in performance occurs i.e. 
sustained for greater than one second. Consequently, notification of a change in Guaranteed Performance will typi-
cally occur no more frequently than once per second. Rapid changes in platform configuration, e.g. docking / 
undocking, with corresponding changes to a Configurable TDP level could potentially cause more frequent notifica-
tions.

The value returned by the Most_Efficient_Performance field provides the OS with an indication of the practical 
lower limit for the IA32_HWP_REQUEST. The processor may not honor IA32_HWP_REQUEST.Maximum Perfor-
mance settings below this value.

14.4.4 Managing HWP 

Typically, the OS controls HWP operation for each logical processor via the writing of control hints / constraints to 
the IA32_HWP_REQUEST MSR. The layout of the IA32_HWP_REQUEST MSR is shown in Figure 14-7. The bit fields 
are described below: 

• Minimum_Performance (bits 7:0, RW) — Conveys a hint to the HWP hardware. The OS programs the 
minimum performance hint to achieve the required quality of service (QOS) or to meet a service level 
agreement (SLA) as needed. Note that an excursion below the level specified is possible due to hardware 
constraints. The default value of this field is IA32_HWP_CAPABILITIES.Lowest_Performance.

• Maximum_Performance (bits 15:8, RW) — Conveys a hint to the HWP hardware. The OS programs this 
field to limit the maximum performance that is expected to be supplied by the HWP hardware. Excursions 
above the limit requested by OS are possible due to hardware coordination between the processor cores and 
other components in the package. The default value of this field is 
IA32_HWP_CAPABILITIES.Highest_Performance.

• Desired_Performance (bits 23:16, RW) — Conveys a hint to the HWP hardware. When set to zero, 
hardware autonomous selection determines the performance target. When set to a non-zero value (between 

Figure 14-7.  IA32_HWP_REQUEST Register 
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the range of Lowest_Performance and Highest_Performance of IA32_HWP_CAPABILITIES) conveys an explicit 
performance request hint to the hardware; effectively disabling HW Autonomous selection. The 
Desired_Performance input is non-constraining in terms of Performance and Energy Efficiency optimizations, 
which are independently controlled. The default value of this field is 0.

• Energy_Performance_Preference (bits 31:24, RW) — Conveys a hint to the HWP hardware. The OS may 
write a range of values from 0 (performance preference) to 0FFH (energy efficiency preference) to influence the 
rate of performance increase /decrease and the result of the hardware's energy efficiency and performance 
optimizations. The default value of this field is 80H.

• Activity_Window (bits 41:32, RW) — Conveys a hint to the HWP hardware specifying a moving workload 
history observation window for performance/frequency optimizations. If 0, the hardware will determine the 
appropriate window size. When writing a non-zero value to this field, this field is encoded in the format of bits 
38:32 as a 7-bit mantissa and bits 41:39 as a 3-bit exponent value in powers of 10. The resultant value is in 
microseconds. Thus, the minimal/maximum activity window size is 1 microsecond/1270 seconds. Combined 
with the Energy_Performance_Preference input, Activity_Window influences the rate of performance increase / 
decrease. This non-zero hint only has meaning when Desired_Performance = 0. The default value of this field 
is 0.

• Package_Control (bit 42, RW) — When set causes this logical processor's IA32_HWP_REQUEST control 
inputs to be derived from IA32_HWP_REQUEST_PKG

• Bits 63:43 are reserved and must be zero.

The HWP hardware clips and resolves the field values as necessary to the valid range. Reads return the last value 
written not the clipped values.

Processors may support a subset of IA32_HWP_REQUEST fields as indicated by CPUID. Reads of non-supported 
fields will return 0. Writes to non-supported fields are ignored.

The OS may override HWP's autonomous selection of performance state with a specific performance target by 
setting the Desired_Performance field to a non zero value, however, the effective frequency delivered is subject to 
the result of energy efficiency and performance optimizations, which are influenced by the Energy Performance 
Preference field.

Software may disable all hardware optimizations by setting Minimum_Performance = Maximum_Performance 
(subject to package coordination).

Note: The processor may run below the Minimum_Performance level due to hardware constraints including: power, 
thermal, and package coordination constraints. The processor may also run below the Minimum_Performance level 
for short durations (few milliseconds) following C-state exit, and when Hardware Duty Cycling (see Section 14.5) is 
enabled.

The structure of the IA32_HWP_REQUEST_PKG MSR (package-level) is identical to the IA32_HWP_REQUEST MSR 
with the exception of the Package Control field, which does not exist. Field values written to this MSR apply to all 
logical processors within the physical package with the exception of logical processors whose 
IA32_HWP_REQUEST.Package Control field is clear (zero). Single P-state Control mode is only supported when 
IA32_HWP_REQUEST_PKG is not supported. 

Figure 14-8.  IA32_HWP_REQUEST_PKG Register 
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14.4.5 HWP Feedback

The processor provides several types of feedback to the OS during HWP operation. 

The IA32_MPERF MSR and IA32_APERF MSR mechanism (see Section 14.2) allows the OS to calculate the resul-
tant effective frequency delivered over a time period. Energy efficiency and performance optimizations directly 
impact the resultant effective frequency delivered.

The layout of the IA32_HWP_STATUS MSR is shown in Figure 14-9. It provides feedback regarding changes to 
IA32_HWP_CAPABILITIES.Guaranteed_Performance and excursions to 
IA32_HWP_CAPABILITIES.Minimum_Performance. The bit fields are described below: 
• Guaranteed_Performance_Change (bit 0, RWC0) — If set (1), a change to Guaranteed_Performance has 

occurred. Software should query IA32_HWP_CAPABILITIES.Guaranteed_Performance value to ascertain the 
new Guaranteed Performance value and to assess whether to re-adjust HWP hints via IA32_HWP_REQUEST. 
Software must clear this bit by writing a zero (0).

• Excursion_To_Minimum (bit 2, RWC0) — If set (1), an excursion to Minimum_Performance of 
IA32_HWP_REQUEST has occurred. Software must clear this bit by writing a zero (0).

• Bits 63:3, and bit 1 are reserved and must be zero.

The status bits of IA32_HWP_STATUS must be cleared (0) by software so that a new status condition change will 
cause the hardware to set the bit again and issue the notification. Status bits are not set for “normal” excursions 
e.g. running below Minimum Performance for short durations during C-state exit. Changes to 
Guaranteed_Performance and excursions to Minimum_Performance will occur no more than once per second.

The OS can determine the specific reasons for a Guaranteed_Performance change or an excursion to 
Minimum_Performance in IA32_HWP_REQUEST by examining the associated status and log bits reported in the 
IA32_THERM_STATUS MSR. The layout of the IA32_HWP_STATUS MSR that HWP uses to support software query 
of HWP feedback is shown in Figure 14-10. The bit fields of IA32_THERM_STATUS associated with HWP feedback 
are described below (Bit fields of IA32_THERM_STATUS unrelated to HWP can be found in Section 14.7.5.2).

Figure 14-9.  IA32_HWP_STATUS MSR
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• Bits 11:0, See Section 14.7.5.2.
• Current Limit Status (bit 12, RO) — If set (1), indicates an electrical current limit (e.g. Electrical Design 

Point/IccMax) is being exceeded and is adversely impacting energy efficiency optimizations.
• Current Limit Log (bit 13, RWC0) — If set (1), an electrical current limit has been exceeded that has 

adversely impacted energy efficiency optimizations since the last clearing of this bit or a reset. This bit is sticky, 
software may clear this bit by writing a zero (0).

• Cross-domain Limit Status (bit 14, RO) — If set (1), indicates another hardware domain (e.g. processor 
graphics) is currently limiting energy efficiency optimizations in the processor core domain.

• Cross-domain Limit Log (bit 15, RWC0) — If set (1), indicates another hardware domain (e.g. processor 
graphics) has limited energy efficiency optimizations in the processor core domain since the last clearing of this 
bit or a reset. This bit is sticky, software may clear this bit by writing a zero (0).

• Bits 63:16, See Section 14.7.5.2.

14.4.5.1  Non-Architectural HWP Feedback

The Productive Performance (MSR_PPERF) MSR (non-architectural) provides hardware's view of workload scal-
ability, which is a rough assessment of the relationship between frequency and workload performance, to software. 
The layout of the MSR_PPERF is shown in Figure 14-11. 

• PCNT (bits 63:0, RO) — Similar to IA32_APERF but only counts cycles perceived by hardware as contributing 
to instruction execution (e.g. unhalted and unstalled cycles). This counter increments at the same rate as 
IA32_APERF, where the ratio of (∆PCNT/∆ACNT) is an indicator of workload scalability (0% to 100%). Note that 
values in this register are valid even when HWP is not enabled. 

Figure 14-10.  IA32_THERM_STATUS Register With HWP Feedback

Figure 14-11.  MSR_PPERF MSR
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14.4.6 HWP Notifications

Processors may support interrupt-based notification of changes to HWP status as indicated by CPUID. If supported, 
the IA32_HWP_INTERRUPT MSR is used to enable interrupt-based notifications. Notification events, when enabled, 
are delivered using the existing thermal LVT entry. The layout of the IA32_HWP_INTERRUPT is shown in 
Figure 14-12. The bit fields are described below:

• EN_Guaranteed_Performance_Change (bit 0, RW) — When set (1), an HWP Interrupt will be generated 
whenever a change to the IA32_HWP_CAPABILITIES.Guaranteed_Performance occurs. The default value is 0 
(Interrupt generation is disabled). 

• EN_Excursion_Minimum (bit 1, RW) — When set (1), an HWP Interrupt will be generated whenever the 
HWP hardware is unable to meet the IA32_HWP_REQUEST.Minimum_Performance setting. The default value is 
0 (Interrupt generation is disabled). 

• Bits 63:2, and bit 1 are reserved and must be zero.

14.4.7 Recommendations for OS use of HWP Controls

Common Cases of Using HWP

The default HWP control field values are expected to be suitable for many applications. The OS can enable autono-
mous HWP for these common cases by
• Setting IA32_HWP_REQUEST.Desired Performance = 0 (hardware autonomous selection determines the 

performance target). Set IA32_HWP_REQUEST.Activity Window = 0 (enable HW dynamic selection of window 
size).

To maximize HWP benefit for the common cases, the OS should set 
• IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_CAPABILITIES.Lowest_Performance and 
• IA32_HWP_REQUEST.Maximum_Performance = IA32_HWP_CAPABILITIES.Highest_Performance. 

Setting IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_REQUEST.Maximum_Performance is function-
ally equivalent to using of the IA32_PERF_CTRL interface and is therefore not recommended (bypassing HWP).

Calibrating HWP for Application-Specific HWP Optimization

In some applications, the OS may have Quality of Service requirements that may not be met by the default values. 
The OS can characterize HWP by: 
• keeping IA32_HWP_REQUEST.Minimum_Performance = IA32_HWP_REQUEST.Maximum_Performance to 

prevent non-linearity in the characterization process,
• utilizing the range values enumerated from the IA32_HWP_CAPABILITIES MSR to program 

IA32_HWP_REQUEST while executing workloads of interest and observing the power and performance result.

The power and performance result of characterization is also influenced by the IA32_HWP_REQUEST.Energy 
Performance Preference field, which must also be characterized. 

Characterization can be used to set IA32_HWP_REQUEST.Minimum_Performance to achieve the required QOS in 
terms of performance. If IA32_HWP_REQUEST.Minimum_Performance is set higher than 

Figure 14-12.  IA32_HWP_INTERRUPT MSR
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IA32_HWP_CAPABILITIES.Guaranteed Performance then notification of excursions to Minimum Performance may 
be continuous.

If autonomous selection does not deliver the required workload performance, the OS should assess the current 
delivered effective frequency and for the duration of the specific performance requirement set 
IA32_HWP_REQUEST.Desired_Performance <> 0 and adjust 
IA32_HWP_REQUEST.Energy_Performance_Preference as necessary to achieve the required workload perfor-
mance. The MSR_PPERF.PCNT value can be used to better comprehend the potential performance result from 
adjustments to IA32_HWP_REQUEST.Desired_Performance. The OS should set 
IA32_HWP_REQUEST.Desired_Performance = 0 to re-enable autonomous selection. 

Tuning for Maximum Performance or Lowest Power Consumption

Maximum performance will be delivered by setting IA32_HWP_REQUEST.Minimum_Performance = 
IA32_HWP_REQUEST.Maximum_Performance = IA32_HWP_CAPABILITIES.Highest_Performance and setting 
IA32_HWP_REQUEST.Energy_Performance_Preference = 0 (performance preference).

Lowest power will be achieved by setting IA32_HWP_REQUEST.Minimum_Performance = 
IA32_HWP_REQUEST.Maximum_Performance = IA32_HWP_CAPABILITIES.Lowest_Performance and setting 
IA32_HWP_REQUEST.Energy_Performance_Preference = 0FFH (energy efficiency preference).

Additional Guidelines

Set IA32_HWP_REQUEST.Energy_Performance_Preference as appropriate for the platform's current mode of oper-
ation. For example, a mobile platforms' setting may be towards performance preference when on AC power and 
more towards energy efficiency when on DC power.

The use of the Running Average Power Limit (RAPL) processor capability (see section 14.7.1) is highly recom-
mended when HWP is enabled. Use of IA32_HWP_Request.Maximum_Performance for thermal control is subject to 
limitations and can adversely impact the performance of other processor components e.g. Graphics

If default values deliver undesirable performance latency in response to events, the OS should set 
IA32_HWP_REQUEST. Activity_Window to a low (non zero) value and 
IA32_HWP_REQUEST.Energy_Performance_Preference towards performance (0) for the event duration.

Similarly, for “real-time” threads, set IA32_HWP_REQUEST.Energy_Performance_Preference towards performance 
(0) and IA32_HWP_REQUEST. Activity_Window to a low value, e.g. 01H, for the duration of their execution.

When executing low priority work that may otherwise cause the hardware to deliver high performance, set 
IA32_HWP_REQUEST. Activity_Window to a longer value and reduce the 
IA32_HWP_Request.Maximum_Performance value as appropriate to control energy efficiency. Adjustments to 
IA32_HWP_REQUEST.Energy_Performance_Preference may also be necessary.

14.5 HARDWARE DUTY CYCLING (HDC)

Intel processors may contain support for Hardware Duty Cycling (HDC), which enables the processor to autono-
mously force its components inside the physical package into idle state. For example, the processor may selectively 
force only the processor cores into an idle state. 

HDC is disabled by default on processors that support it. System software can dynamically enable or disable HDC 
to force one or more components into an idle state or wake up those components previously forced into an idle 
state. Forced Idling (and waking up) of multiple components in a physical package can be done with one WRMSR 
to a packaged-scope MSR from any logical processor within the same package. 

HDC does not delay events such as timer expiration, but it may affect the latency of short (less than 1 msec) soft-
ware threads, e.g. if a thread is forced to idle state just before completion and entering a “natural idle”.

HDC forced idle operation can be thought of as operating at a lower effective frequency. The effective average 
frequency computed by software will include the impact of HDC forced idle. 

The primary use of HDC is enable system software to manage low active workloads to increase the package level 
C6 residency. Additionally, HDC can lower the effective average frequency in case or power or thermal limitation. 
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When HDC forces a logical processor, a processor core or a physical package to enter an idle state, its C-State is set 
to C3 or deeper. The deep “C-states” referred to in this section are processor-specific C-states.

14.5.1 Hardware Duty Cycling Programming Interfaces 

The programming interfaces provided by HDC include the following:
• The CPUID instruction allows software to discover the presence of HDC support in an Intel processor. Specifi-

cally, execute CPUID instruction with EAX=06H as input, bit 13 of EAX indicates the processor’s support of the 
following aspects of HDC.

— Availability of HDC baseline resource, CPUID.06H:EAX[bit 13]: If this bit is set, HDC provides the following 
architectural MSRs: IA32_PKG_HDC_CTL, IA32_PM_CTL1, and the IA32_THREAD_STALL MSRs.

• Additionally, HDC may provide several non-architectural MSR. 

14.5.2 Package level Enabling HDC

The layout of the IA32_PKG_HDC_CTL MSR is shown in Figure 14-13. IA32_PKG_HDC_CTL is a writable MSR from 
any logical processor in a package. The bit fields are described below: 

• HDC_PKG_Enable (bit 0, R/W) — Software sets this bit to enable HDC operation by allowing the processor 
to force to idle all “HDC-allowed” (see Figure 14.5.3) logical processors in the package. Clearing this bit 
disables HDC operation in the package by waking up all the processor cores that were forced into idle by a 
previous ‘0’-to-’1’ transition in IA32_PKG_HDC_CTL.HDC_PKG_Enable. This bit is writable only if 
CPUID.06H:EAX[bit 13] = 1. Default = zero (0). 

Table 14-2.  Architectural and non-Architecture MSRs Related to HDC

Address Architec
tural

Register Name Description

DB0H Y IA32_PKG_HDC_CTL Package Enable/Disable HDC.

DB1H Y IA32_PM_CTL1 Per-logical-processor select control to allow/block HDC forced idling. 

DB2H Y IA32_THREAD_STALL Accumulate stalled cycles on this logical processor due to HDC forced idling.

653H N MSR_CORE_HDC_RESIDENCY Core level stalled cycle counter due to HDC forced idling on one or more 
logical processor.

655H N MSR_PKG_HDC_SHALLOW_RE
SIDENCY

Accumulate the cycles the package was in C21 state and at least one logical 
processor was in forced idle

NOTES:

1. The package “C-states” referred to in this section are processor-specific C-states.

656H N MSR_PKG_HDC_DEEP_RESIDE
NCY

Accumulate the cycles the package was in the software specified Cx1 state 
and at least one logical processor was in forced idle. Cx is specified in 
MSR_PKG_HDC_CONFIG_CTL.

652H N MSR_PKG_HDC_CONFIG_CTL HDC configuration controls

Figure 14-13.  IA32_PKG_HDC_CTL MSR
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• Bits 63:1 are reserved and must be zero.

After processor support is determined via CPUID, system software can enable HDC operation by setting 
IA32_PKG_HDC_CTL.HDC_PKG_Enable to 1. At reset, IA32_PKG_HDC_CTL.HDC_PKG_Enable is cleared to 0. A 
'0'-to-'1' transition in HDC_PKG_Enable allows the processor to force to idle all HDC-allowed (indicated by the non-
zero state of IA32_PM_CTL1[bit 0]) logical processors in the package. A ‘1’-to-’0’ transition wakes up those HDC 
force-idled logical processors. 

Software can enable or disable HDC using this package level control multiple times from any logical processor in the 
package. Note the latency of writing a value to the package-visible IA32_PKG_HDC_CTL.HDC_PKG_Enable is 
longer than the latency of a WRMSR operation to a Logical Processor MSR (as opposed to package level MSR) such 
as: IA32_PM_CTL1 (described in Section 14.5.3). Propagation of the change in 
IA32_PKG_HDC_CTL.HDC_PKG_Enable and reaching all HDC idled logical processor to be woken up may take on 
the order of core C6 exit latency.

14.5.3 Logical-Processor Level HDC Control

The layout of the IA32_PM_CTL1 MSR is shown in Figure 14-14. Each logical processor in a package has its own 
IA32_PM_CTL1 MSR. The bit fields are described below: 

• HDC_Allow_Block (bit 0, R/W) — Software sets this bit to allow this logical processors to honor the 
package-level IA32_PKG_HDC_CTL.HDC_PKG_Enable control. Clearing this bit prevents this logical processor 
from using the HDC. This bit is writable only if CPUID.06H:EAX[bit 13] = 1. Default = one (1). 

• Bits 63:1 are reserved and must be zero.

Fine-grain OS control of HDC operation at the granularity of per-logical-processor is provided by IA32_PM_CTL1. At 
RESET, all logical processors are allowed to participate in HDC operation such that OS can manage HDC using the 
package-level IA32_PKG_HDC_CTL.

Writes to IA32_PM_CTL1 complete with the latency that is typical to WRMSR to a Logical Processor level MSR. 
When the OS chooses to manage HDC operation at per-logical-processor granularity, it can write to IA32_PM_CTL1 
on one or more logical processors as desired. Each write to IA32_PM_CTL1 must be done by code that executes on 
the logical processor targeted to be allowed into or blocked from HDC operation. 

Blocking one logical processor for HDC operation may have package level impact. For example, the processor may 
decide to stop duty cycling of all other Logical Processors as well. 

The propagation of IA32_PKG_HDC_CTL.HDC_PKG_Enable in a package takes longer than a WRMSR to 
IA32_PM_CTL1. The last completed write to IA32_PM_CTL1 on a logical processor will be honored when a ‘0’-to-’1’ 
transition of IA32_PKG_HDC_CTL.HDC_PKG_Enable arrives to a logical processor.

14.5.4 HDC Residency Counters

There is a collection of counters available for software to track various residency metrics related to HDC operation. 
In general, HDC residency time is defined as the time in HDC forced idle state at the granularity of per-logical-
processor, per-core, or package. At the granularity of per-core/package-level HDC residency, at least one of the 
logical processor in a core/package must be in the HDC forced idle state.

Figure 14-14.  IA32_PM_CTL1 MSR
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14.5.4.1  IA32_THREAD_STALL

Software can track per-logical-processor HDC residency using the architectural MSR IA32_THREAD_STALL.The 
layout of the IA32_THREAD_STALL MSR is shown in Figure 14-15. Each logical processor in a package has its own 
IA32_THREAD_STALL MSR. The bit fields are described below: 

• Stall_Cycle_Cnt (bits 63:0, R/O) — Stores accumulated HDC forced-idle cycle count of this processor core 
since last RESET. This counter increments at the same rate of the TSC. The count is updated only after the 
logical processor exits from the forced idled C-state. At each update, the number of cycles that the logical 
processor was stalled due to forced-idle will be added to the counter. This counter is available only if 
CPUID.06H:EAX[bit 13] = 1. Default = zero (0). 

A value of zero in IA32_THREAD_STALL indicates either HDC is not supported or the logical processor never 
serviced any forced HDC idle. A non-zero value in IA32_THREAD_STALL indicates the HDC forced-idle residency 
times of the logical processor. It also indicates the forced-idle cycles due to HDC that could appear as C0 time to 
traditional OS accounting mechanisms (e.g. time-stamping OS idle/exit events).

Software can read IA32_THREAD_STALL irrespective of the state of IA32_PKG_HDC_CTL and IA32_PM_CTL1, as 
long as CPUID.06H:EAX[bit 13] = 1.

14.5.4.2  Non-Architectural HDC Residency Counters

Processors that support HDC operation may provide the following model-specific HDC residency counters.

MSR_CORE_HDC_RESIDENCY

Software can track per-core HDC residency using the counter MSR_CORE_HDC_RESIDENCY. This counter incre-
ments when the core is in C3 state or deeper (all logical processors in this core are idle due to either HDC or other 
mechanisms) and at least one of the logical processors is in HDC forced idle state. The layout of the 
MSR_CORE_HDC_RESIDENCY is shown in Figure 14-16. Each processor core in a package has its own 
MSR_CORE_HDC_RESIDENCY MSR. The bit fields are described below: 

• Core_Cx_Duty_Cycle_Cnt (bits 63:0, R/O) — Stores accumulated HDC forced-idle cycle count of this 
processor core since last RESET. This counter increments at the same rate of the TSC. The count is updated 
only after core C-state exit from a forced idled C-state. At each update, the increment counts cycles when the 
core is in a Cx state (all its logical processor are idle) and at least one logical processor in this core was forced 
into idle state due to HDC. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR will cause a #GP fault. 
Default = zero (0). 

A value of zero in MSR_CORE_HDC_RESIDENCY indicates either HDC is not supported or this processor core never 
serviced any forced HDC idle. 

Figure 14-15.  IA32_THREAD_STALL MSR

Figure 14-16.  MSR_CORE_HDC_RESIDENCY MSR
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MSR_PKG_HDC_SHALLOW_RESIDENCY

The counter MSR_PKG_HDC_SHALLOW_RESIDENCY allows software to track HDC residency time when the 
package is in C2 state, all processor cores in the package are not active and at least one logical processor was 
forced into idle state due to HDC. The layout of the MSR_PKG_HDC_SHALLOW_RESIDENCY is shown in 
Figure 14-17. There is one MSR_PKG_HDC_SHALLOW_RESIDENCY per package. The bit fields are described 
below: 

• Pkg_Duty_Cycle_Cnt (bits 63:0, R/O) — Stores accumulated HDC forced-idle cycle count of this processor 
core since last RESET. This counter increments at the same rate of the TSC. Package shallow residency may be 
implementation specific. In the initial implementation, the threshold is package C2-state. The count is 
updated only after package C2-state exit from a forced idled C-state. At each update, the increment counts 
cycles when the package is in C2 state and at least one processor core in this package was forced into idle state 
due to HDC. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR may cause a #GP fault. Default = zero 
(0). 

A value of zero in MSR_PKG_HDC_SHALLOW_RESIDENCY indicates either HDC is not supported or this processor 
package never serviced any forced HDC idle. 

MSR_PKG_HDC_DEEP_RESIDENCY

The counter MSR_PKG_HDC_DEEP_RESIDENCY allows software to track HDC residency time when the package is 
in a software-specified package Cx state, all processor cores in the package are not active and at least one logical 
processor was forced into idle state due to HDC. Selection of a specific package Cx state can be configured using 
MSR_PKG_HDC_CONFIG. The layout of the MSR_PKG_HDC_DEEP_RESIDENCY is shown in Figure 14-18. There is 
one MSR_PKG_HDC_DEEP_RESIDENCY per package. The bit fields are described below: 

• Pkg_Cx_Duty_Cycle_Cnt (bits 63:0, R/O) — Stores accumulated HDC forced-idle cycle count of this 
processor core since last RESET. This counter increments at the same rate of the TSC. The count is updated only 
after package C-state exit from a forced idle state. At each update, the increment counts cycles when the 
package is in the software-configured Cx state and at least one processor core in this package was forced into 
idle state due to HDC. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR may cause a #GP fault. 
Default = zero (0). 

A value of zero in MSR_PKG_HDC_SHALLOW_RESIDENCY indicates either HDC is not supported or this processor 
package never serviced any forced HDC idle. 

MSR_PKG_HDC_CONFIG

MSR_PKG_HDC_CONFIG allows software to configure the package Cx state that the counter 
MSR_PKG_HDC_DEEP_RESIDENCY monitors. The layout of the MSR_PKG_HDC_CONFIG is shown in Figure 14-19. 
There is one MSR_PKG_HDC_CONFIG per package. The bit fields are described below: 

Figure 14-17.  MSR_PKG_HDC_SHALLOW_RESIDENCY MSR

Figure 14-18.  MSR_PKG_HDC_DEEP_RESIDENCY MSR
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• Pkg_Cx_Monitor (bits 2:0, R/W) — Selects which package C-state the MSR_HDC_DEEP_RESIDENCY 
counter will monitor. The encoding of the HDC_Cx_Monitor field are: 0: no-counting; 1: count package C2 only, 
2: count package C3 and deeper; 3: count package C6 and deeper; 4: count package C7 and deeper; other 
encodings are reserved. If CPUID.06H:EAX[bit 13] = 0, attempt to access this MSR may cause a #GP fault. 
Default = zero (0). 

• Bits 63:3 are reserved and must be zero.

14.5.5 MPERF and APERF Counters Under HDC

HDC operation can be thought of as an average effective frequency drop due to all or some of the Logical Proces-
sors enter an idle state period. 

By default, the IA32_MPERF counter counts during forced idle periods as if the logical processor was active. The 
IA32_APERF counter does not count during forced idle state. This counting convention allows the OS to compute 
the average effective frequency of the Logical Processor between the last MWAIT exit and the next MWAIT entry 
(OS visible C0) by ∆ACNT/∆MCNT * Nominal_ratio.

14.6 MWAIT EXTENSIONS FOR ADVANCED POWER MANAGEMENT

IA-32 processors may support a number of C-states1 that reduce power consumption for inactive states. Intel Core 
Solo and Intel Core Duo processors support both deeper C-state and MWAIT extensions that can be used by OS to 
implement power management policy.

Software should use CPUID to discover if a target processor supports the enumeration of MWAIT extensions. If 
CPUID.05H.ECX[Bit 0] = 1, the target processor supports MWAIT extensions and their enumeration (see Chapter 
3, “Instruction Set Reference, A-M,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A).

Figure 14-19.  MSR_PKG_HDC_CONFIG MSR

Figure 14-20.  Example of Effective Frequency Reduction and Forced Idle Period of HDC

1. The processor-specific C-states defined in MWAIT extensions can map to ACPI defined C-state types (C0, C1, C2, C3). The mapping 
relationship depends on the definition of a C-state by processor implementation and is exposed to OSPM by the BIOS using the ACPI 
defined _CST table.
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If CPUID.05H.ECX[Bit 1] = 1, the target processor supports using interrupts as break-events for MWAIT, even 
when interrupts are disabled. Use this feature to measure C-state residency as follows:
• Software can write to bit 0 in the MWAIT Extensions register (ECX) when issuing an MWAIT to enter into a 

processor-specific C-state or sub C-state.
• When a processor comes out of an inactive C-state or sub C-state, software can read a timestamp before an 

interrupt service routine (ISR) is potentially executed. 

CPUID.05H.EDX allows software to enumerate processor-specific C-states and sub C-states available for use with 
MWAIT extensions. IA-32 processors may support more than one C-state of a given C-state type. These are called 
sub C-states. Numerically higher C-state have higher power savings and latency (upon entering and exiting) than 
lower-numbered C-state. 

At CPL = 0, system software can specify desired C-state and sub C-state by using the MWAIT hints register (EAX). 
Processors will not go to C-state and sub C-state deeper than what is specified by the hint register. If CPL > 0 and 
if MONITOR/MWAIT is supported at CPL > 0, the processor will only enter C1-state (regardless of the C-state 
request in the hints register). 

Executing MWAIT generates an exception on processors operating at a privilege level where MONITOR/MWAIT are 
not supported.

NOTE

If MWAIT is used to enter a C-state (including sub C-state) that is numerically higher than C1, a 
store to the address range armed by MONITOR instruction will cause the processor to exit MWAIT if 
the store was originated by other processor agents. A store from non-processor agent may not 
cause the processor to exit MWAIT. 

14.7 THERMAL MONITORING AND PROTECTION

The IA-32 architecture provides the following mechanisms for monitoring temperature and controlling thermal 
power:

1. The catastrophic shutdown detector forces processor execution to stop if the processor’s core temperature 
rises above a preset limit.

2. Automatic and adaptive thermal monitoring mechanisms force the processor to reduce it’s power 
consumption in order to operate within predetermined temperature limits.

3. The software controlled clock modulation mechanism permits operating systems to implement power 
management policies that reduce power consumption; this is in addition to the reduction offered by automatic 
thermal monitoring mechanisms.

4. On-die digital thermal sensor and interrupt mechanisms permit the OS to manage thermal conditions 
natively without relying on BIOS or other system board components.

The first mechanism is not visible to software. The other three mechanisms are visible to software using processor 
feature information returned by executing CPUID with EAX = 1.

The second mechanism includes: 
• Automatic thermal monitoring provides two modes of operation. One mode modulates the clock duty cycle; 

the second mode changes the processor’s frequency. Both modes are used to control the core temperature of 
the processor.

• Adaptive thermal monitoring can provide flexible thermal management on processors made of multiple 
cores.

The third mechanism modulates the clock duty cycle of the processor. As shown in Figure 14-21, the phrase ‘duty 
cycle’ does not refer to the actual duty cycle of the clock signal. Instead it refers to the time period during which the 
clock signal is allowed to drive the processor chip. By using the stop clock mechanism to control how often the 
processor is clocked, processor power consumption can be modulated. 



Vol. 3B 14-21

POWER AND THERMAL MANAGEMENT

For previous automatic thermal monitoring mechanisms, software controlled mechanisms that changed processor 
operating parameters to impact changes in thermal conditions. Software did not have native access to the native 
thermal condition of the processor; nor could software alter the trigger condition that initiated software program 
control. 

The fourth mechanism (listed above) provides access to an on-die digital thermal sensor using a model-specific 
register and uses an interrupt mechanism to alert software to initiate digital thermal monitoring. 

14.7.1 Catastrophic Shutdown Detector

P6 family processors introduced a thermal sensor that acts as a catastrophic shutdown detector. This catastrophic 
shutdown detector was also implemented in Pentium 4, Intel Xeon and Pentium M processors. It is always enabled. 
When processor core temperature reaches a factory preset level, the sensor trips and processor execution is halted 
until after the next reset cycle.

14.7.2 Thermal Monitor

Pentium 4, Intel Xeon and Pentium M processors introduced a second temperature sensor that is factory-calibrated 
to trip when the processor’s core temperature crosses a level corresponding to the recommended thermal design 
envelop. The trip-temperature of the second sensor is calibrated below the temperature assigned to the cata-
strophic shutdown detector. 

14.7.2.1  Thermal Monitor 1

The Pentium 4 processor uses the second temperature sensor in conjunction with a mechanism called Thermal 
Monitor 1 (TM1) to control the core temperature of the processor. TM1 controls the processor’s temperature by 
modulating the duty cycle of the processor clock. Modulation of duty cycles is processor model specific. Note that 
the processors STPCLK# pin is not used here; the stop-clock circuitry is controlled internally.

Support for TM1 is indicated by CPUID.1:EDX.TM[bit 29] = 1.

TM1 is enabled by setting the thermal-monitor enable flag (bit 3) in IA32_MISC_ENABLE [see Chapter 35, “Model-
Specific Registers (MSRs),”]. Following a power-up or reset, the flag is cleared, disabling TM1. BIOS is required to 
enable only one automatic thermal monitoring modes. Operating systems and applications must not disable the 
operation of these mechanisms.

14.7.2.2  Thermal Monitor 2

An additional automatic thermal protection mechanism, called Thermal Monitor 2 (TM2), was introduced in the 
Intel Pentium M processor and also incorporated in newer models of the Pentium 4 processor family. Intel Core Duo 
and Solo processors, and Intel Core 2 Duo processor family all support TM1 and TM2. TM2 controls the core 
temperature of the processor by reducing the operating frequency and voltage of the processor and offers a higher 
performance level for a given level of power reduction than TM1.

Figure 14-21.  Processor Modulation Through Stop-Clock Mechanism
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TM2 is triggered by the same temperature sensor as TM1. The mechanism to enable TM2 may be implemented 
differently across various IA-32 processor families with different CPUID signatures in the family encoding value, but 
will be uniform within an IA-32 processor family. 

Support for TM2 is indicated by CPUID.1:ECX.TM2[bit 8] = 1.

14.7.2.3  Two Methods for Enabling TM2

On processors with CPUID family/model/stepping signature encoded as 0x69n or 0x6Dn (early Pentium M proces-
sors), TM2 is enabled if the TM_SELECT flag (bit 16) of the MSR_THERM2_CTL register is set to 1 (Figure 14-22) 
and bit 3 of the IA32_MISC_ENABLE register is set to 1. 

Following a power-up or reset, the TM_SELECT flag may be cleared. BIOS is required to enable either TM1 or TM2. 
Operating systems and applications must not disable mechanisms that enable TM1 or TM2. If bit 3 of the 
IA32_MISC_ENABLE register is set and TM_SELECT flag of the MSR_THERM2_CTL register is cleared, TM1 is 
enabled.

On processors introduced after the Pentium 4 processor (this includes most Pentium M processors), the method 
used to enable TM2 is different. TM2 is enable by setting bit 13 of IA32_MISC_ENABLE register to 1. This applies to 
Intel Core Duo, Core Solo, and Intel Core 2 processor family.

The target operating frequency and voltage for the TM2 transition after TM2 is triggered is specified by the value 
written to MSR_THERM2_CTL, bits 15:0 (Figure 14-23). Following a power-up or reset, BIOS is required to enable 
at least one of these two thermal monitoring mechanisms. If both TM1 and TM2 are supported, BIOS may choose 
to enable TM2 instead of TM1. Operating systems and applications must not disable the mechanisms that enable 
TM1or TM2; and they must not alter the value in bits 15:0 of the MSR_THERM2_CTL register.

14.7.2.4  Performance State Transitions and Thermal Monitoring

If the thermal control circuitry (TCC) for thermal monitor (TM1/TM2) is active, writes to the IA32_PERF_CTL will 
effect a new target operating point as follows:
• If TM1 is enabled and the TCC is engaged, the performance state transition can commence before the TCC is 

disengaged. 

Figure 14-22.  MSR_THERM2_CTL Register On Processors with CPUID Family/Model/Stepping Signature Encoded 
as 0x69n or 0x6Dn

Figure 14-23.  MSR_THERM2_CTL Register for Supporting TM2
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• If TM2 is enabled and the TCC is engaged, the performance state transition specified by a write to the 
IA32_PERF_CTL will commence after the TCC has disengaged. 

14.7.2.5  Thermal Status Information

The status of the temperature sensor that triggers the thermal monitor (TM1/TM2) is indicated through the 
thermal status flag and thermal status log flag in the IA32_THERM_STATUS MSR (see Figure 14-24). 

The functions of these flags are:
• Thermal Status flag, bit 0 — When set, indicates that the processor core temperature is currently at the trip 

temperature of the thermal monitor and that the processor power consumption is being reduced via either TM1 
or TM2, depending on which is enabled. When clear, the flag indicates that the core temperature is below the 
thermal monitor trip temperature. This flag is read only. 

• Thermal Status Log flag, bit 1 — When set, indicates that the thermal sensor has tripped since the last 
power-up or reset or since the last time that software cleared this flag. This flag is a sticky bit; once set it 
remains set until cleared by software or until a power-up or reset of the processor. The default state is clear.

After the second temperature sensor has been tripped, the thermal monitor (TM1/TM2) will remain engaged for a 
minimum time period (on the order of 1 ms). The thermal monitor will remain engaged until the processor core 
temperature drops below the preset trip temperature of the temperature sensor, taking hysteresis into account.

While the processor is in a stop-clock state, interrupts will be blocked from interrupting the processor. This holding 
off of interrupts increases the interrupt latency, but does not cause interrupts to be lost. Outstanding interrupts 
remain pending until clock modulation is complete. 

The thermal monitor can be programmed to generate an interrupt to the processor when the thermal sensor is 
tripped. The delivery mode, mask and vector for this interrupt can be programmed through the thermal entry in 
the local APIC’s LVT (see Section 10.5.1, “Local Vector Table”). The low-temperature interrupt enable and high-
temperature interrupt enable flags in the IA32_THERM_INTERRUPT MSR (see Figure 14-25) control when the 
interrupt is generated; that is, on a transition from a temperature below the trip point to above and/or vice-versa.

• High-Temperature Interrupt Enable flag, bit 0 — Enables an interrupt to be generated on the transition 
from a low-temperature to a high-temperature when set; disables the interrupt when clear.(R/W).

• Low-Temperature Interrupt Enable flag, bit 1 — Enables an interrupt to be generated on the transition 
from a high-temperature to a low-temperature when set; disables the interrupt when clear.

The thermal monitor interrupt can be masked by the thermal LVT entry. After a power-up or reset, the low-temper-
ature interrupt enable and high-temperature interrupt enable flags in the IA32_THERM_INTERRUPT MSR are 

Figure 14-24.  IA32_THERM_STATUS MSR

Figure 14-25.  IA32_THERM_INTERRUPT MSR

63 0

Reserved

12

Thermal Status
Thermal Status Log

63 0

Reserved

12

High-Temperature Interrupt Enable
Low-Temperature Interrupt Enable



14-24 Vol. 3B

POWER AND THERMAL MANAGEMENT

cleared (interrupts are disabled) and the thermal LVT entry is set to mask interrupts. This interrupt should be 
handled either by the operating system or system management mode (SMM) code.

Note that the operation of the thermal monitoring mechanism has no effect upon the clock rate of the processor's 
internal high-resolution timer (time stamp counter). 

14.7.2.6  Adaptive Thermal Monitor 

The Intel Core 2 Duo processor family supports enhanced thermal management mechanism, referred to as Adap-
tive Thermal Monitor (Adaptive TM). 

Unlike TM2, Adaptive TM is not limited to one TM2 transition target. During a thermal trip event, Adaptive TM (if 
enabled) selects an optimal target operating point based on whether or not the current operating point has effec-
tively cooled the processor.

Similar to TM2, Adaptive TM is enable by BIOS. The BIOS is required to test the TM1 and TM2 feature flags and 
enable all available thermal control mechanisms (including Adaptive TM) at platform initiation. 

Adaptive TM is available only to a subset of processors that support TM2.

In each chip-multiprocessing (CMP) silicon die, each core has a unique thermal sensor that triggers independently. 
These thermal sensor can trigger TM1 or TM2 transitions in the same manner as described in Section 14.7.2.1 and 
Section 14.7.2.2. The trip point of the thermal sensor is not programmable by software since it is set during the 
fabrication of the processor. 

Each thermal sensor in a processor core may be triggered independently to engage thermal management features. 
In Adaptive TM, both cores will transition to a lower frequency and/or lower voltage level if one sensor is triggered.

Triggering of this sensor is visible to software via the thermal interrupt LVT entry in the local APIC of a given core. 

14.7.3 Software Controlled Clock Modulation

Pentium 4, Intel Xeon and Pentium M processors also support software-controlled clock modulation. This provides 
a means for operating systems to implement a power management policy to reduce the power consumption of the 
processor. Here, the stop-clock duty cycle is controlled by software through the IA32_CLOCK_MODULATION MSR 
(see Figure 14-26). 

The IA32_CLOCK_MODULATION MSR contains the following flag and field used to enable software-controlled clock 
modulation and to select the clock modulation duty cycle:
• On-Demand Clock Modulation Enable, bit 4 — Enables on-demand software controlled clock modulation 

when set; disables software-controlled clock modulation when clear.
• On-Demand Clock Modulation Duty Cycle, bits 1 through 3 — Selects the on-demand clock modulation 

duty cycle (see Table 14-3). This field is only active when the on-demand clock modulation enable flag is set.

Note that the on-demand clock modulation mechanism (like the thermal monitor) controls the processor’s stop-
clock circuitry internally to modulate the clock signal. The STPCLK# pin is not used in this mechanism.

Figure 14-26.  IA32_CLOCK_MODULATION MSR

Table 14-3.  On-Demand Clock Modulation Duty Cycle Field Encoding
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The on-demand clock modulation mechanism can be used to control processor power consumption. Power 
management software can write to the IA32_CLOCK_MODULATION MSR to enable clock modulation and to select 
a modulation duty cycle. If on-demand clock modulation and TM1 are both enabled and the thermal status of the 
processor is hot (bit 0 of the IA32_THERM_STATUS MSR is set), clock modulation at the duty cycle specified by TM1 
takes precedence, regardless of the setting of the on-demand clock modulation duty cycle.

For Hyper-Threading Technology enabled processors, the IA32_CLOCK_MODULATION register is duplicated for 
each logical processor. In order for the On-demand clock modulation feature to work properly, the feature must be 
enabled on all the logical processors within a physical processor. If the programmed duty cycle is not identical for 
all the logical processors, the processor core clock will modulate to the highest duty cycle programmed for proces-
sors with any of the following CPUID DisplayFamily_DisplayModel signatures (see CPUID instruction in Chapter3, 
“Instruction Set Reference, A-L” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A): 06_1A, 06_1C, 06_1E, 06_1F, 06_25, 06_26, 06_27, 06_2C, 06_2E, 06_2F, 06_35, 06_36, and 0F_xx. For all 
other processors, if the programmed duty cycle is not identical for all logical processors in the same core, the 
processor core will modulate at the lowest programmed duty cycle. 

For multiple processor cores in a physical package, each processor core can modulate to a programmed duty cycle 
independently.

For the P6 family processors, on-demand clock modulation was implemented through the chipset, which controlled 
clock modulation through the processor’s STPCLK# pin.

14.7.3.1  Extension of Software Controlled Clock Modulation

Extension of the software controlled clock modulation facility supports on-demand clock modulation duty cycle with 
4-bit dynamic range (increased from 3-bit range). Granularity of clock modulation duty cycle is increased to 6.25% 
(compared to 12.5%).

Four bit dynamic range control is provided by using bit 0 in conjunction with bits 3:1 of the 
IA32_CLOCK_MODULATION MSR (see Figure 14-27).

Extension to software controlled clock modulation is supported only if CPUID.06H:EAX[Bit 5] = 1. If 
CPUID.06H:EAX[Bit 5] = 0, then bit 0 of IA32_CLOCK_MODULATION is reserved.

000B Reserved

001B 12.5% (Default)

010B 25.0%

011B 37.5%

100B 50.0%

101B 63.5%

110B 75%

111B 87.5%

Figure 14-27.  IA32_CLOCK_MODULATION MSR with Clock Modulation Extension

Table 14-3.  On-Demand Clock Modulation Duty Cycle Field Encoding
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14.7.4 Detection of Thermal Monitor and Software Controlled
Clock Modulation Facilities

The ACPI flag (bit 22) of the CPUID feature flags indicates the presence of the IA32_THERM_STATUS, 
IA32_THERM_INTERRUPT, IA32_CLOCK_MODULATION MSRs, and the xAPIC thermal LVT entry. 

The TM1 flag (bit 29) of the CPUID feature flags indicates the presence of the automatic thermal monitoring facili-
ties that modulate clock duty cycles.

14.7.4.1  Detection of Software Controlled Clock Modulation Extension

Processor’s support of software controlled clock modulation extension is indicated by CPUID.06H:EAX[Bit 5] = 1. 

14.7.5 On Die Digital Thermal Sensors

On die digital thermal sensor can be read using an MSR (no I/O interface). In Intel Core Duo processors, each core 
has a unique digital sensor whose temperature is accessible using an MSR. The digital thermal sensor is the 
preferred method for reading the die temperature because (a) it is located closer to the hottest portions of the die, 
(b) it enables software to accurately track the die temperature and the potential activation of thermal throttling.

14.7.5.1  Digital Thermal Sensor Enumeration

The processor supports a digital thermal sensor if CPUID.06H.EAX[0] = 1. If the processor supports digital thermal 
sensor, EBX[bits 3:0] determine the number of thermal thresholds that are available for use. 

Software sets thermal thresholds by using the IA32_THERM_INTERRUPT MSR. Software reads output of the digital 
thermal sensor using the IA32_THERM_STATUS MSR.

14.7.5.2  Reading the Digital Sensor

Unlike traditional analog thermal devices, the output of the digital thermal sensor is a temperature relative to the 
maximum supported operating temperature of the processor.

Temperature measurements returned by digital thermal sensors are always at or below TCC activation tempera-
ture. Critical temperature conditions are detected using the “Critical Temperature Status” bit. When this bit is set, 
the processor is operating at a critical temperature and immediate shutdown of the system should occur. Once the 
“Critical Temperature Status” bit is set, reliable operation is not guaranteed. 

See Figure 14-28 for the layout of IA32_THERM_STATUS MSR. Bit fields include:
• Thermal Status (bit 0, RO) — This bit indicates whether the digital thermal sensor high-temperature output 

signal (PROCHOT#) is currently active. Bit 0 = 1 indicates the feature is active. This bit may not be written by 
software; it reflects the state of the digital thermal sensor.

• Thermal Status Log (bit 1, R/WC0) — This is a sticky bit that indicates the history of the thermal sensor 
high temperature output signal (PROCHOT#). Bit 1 = 1 if PROCHOT# has been asserted since a previous 
RESET or the last time software cleared the bit. Software may clear this bit by writing a zero.

• PROCHOT# or FORCEPR# Event (bit 2, RO) — Indicates whether PROCHOT# or FORCEPR# is being 
asserted by another agent on the platform. 
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• PROCHOT# or FORCEPR# Log (bit 3, R/WC0) — Sticky bit that indicates whether PROCHOT# or 
FORCEPR# has been asserted by another agent on the platform since the last clearing of this bit or a reset. If 
bit 3 = 1, PROCHOT# or FORCEPR# has been externally asserted. Software may clear this bit by writing a zero. 
External PROCHOT# assertions are only acknowledged if the Bidirectional Prochot feature is enabled.

• Critical Temperature Status (bit 4, RO) — Indicates whether the critical temperature detector output signal 
is currently active. If bit 4 = 1, the critical temperature detector output signal is currently active.

• Critical Temperature Log (bit 5, R/WC0) — Sticky bit that indicates whether the critical temperature 
detector output signal has been asserted since the last clearing of this bit or reset. If bit 5 = 1, the output 
signal has been asserted. Software may clear this bit by writing a zero.

• Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the actual temperature is currently higher 
than or equal to the value set in Thermal Threshold #1. If bit 6 = 0, the actual temperature is lower. If 
bit 6 = 1, the actual temperature is greater than or equal to TT#1. Quantitative information of actual 
temperature can be inferred from Digital Readout, bits 22:16.

• Thermal Threshold #1 Log (bit 7, R/WC0) — Sticky bit that indicates whether the Thermal Threshold #1 
has been reached since the last clearing of this bit or a reset. If bit 7 = 1, the Threshold #1 has been reached. 
Software may clear this bit by writing a zero.

• Thermal Threshold #2 Status (bit 8, RO) — Indicates whether actual temperature is currently higher than 
or equal to the value set in Thermal Threshold #2. If bit 8 = 0, the actual temperature is lower. If bit 8 = 1, the 
actual temperature is greater than or equal to TT#2. Quantitative information of actual temperature can be 
inferred from Digital Readout, bits 22:16.

• Thermal Threshold #2 Log (bit 9, R/WC0) — Sticky bit that indicates whether the Thermal Threshold #2 
has been reached since the last clearing of this bit or a reset. If bit 9 = 1, the Thermal Threshold #2 has been 
reached. Software may clear this bit by writing a zero.

• Power Limitation Status (bit 10, RO) — Indicates whether the processor is currently operating below OS-
requested P-state (specified in IA32_PERF_CTL) or OS-requested clock modulation duty cycle (specified in 
IA32_CLOCK_MODULATION). This field is supported only if CPUID.06H:EAX[bit 4] = 1. Package level power 
limit notification can be delivered independently to IA32_PACKAGE_THERM_STATUS MSR.

• Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates the processor went below OS-
requested P-state or OS-requested clock modulation duty cycle since the last clearing of this or RESET. This 
field is supported only if CPUID.06H:EAX[bit 4] = 1. Package level power limit notification is indicated indepen-
dently in IA32_PACKAGE_THERM_STATUS MSR.

Figure 14-28.  IA32_THERM_STATUS Register 
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• Digital Readout (bits 22:16, RO) — Digital temperature reading in 1 degree Celsius relative to the TCC 
activation temperature. 
0: TCC Activation temperature, 
1: (TCC Activation - 1) , etc. See the processor’s data sheet for details regarding TCC activation.
A lower reading in the Digital Readout field (bits 22:16) indicates a higher actual temperature.

• Resolution in Degrees Celsius (bits 30:27, RO) — Specifies the resolution (or tolerance) of the digital 
thermal sensor. The value is in degrees Celsius. It is recommended that new threshold values be offset from the 
current temperature by at least the resolution + 1 in order to avoid hysteresis of interrupt generation.

• Reading Valid (bit 31, RO) — Indicates if the digital readout in bits 22:16 is valid. The readout is valid if 
bit 31 = 1.

Changes to temperature can be detected using two thresholds (see Figure 14-29); one is set above and the other 
below the current temperature. These thresholds have the capability of generating interrupts using the core's local 
APIC which software must then service. Note that the local APIC entries used by these thresholds are also used by 
the Intel® Thermal Monitor; it is up to software to determine the source of a specific interrupt.

See Figure 14-29 for the layout of IA32_THERM_INTERRUPT MSR. Bit fields include:
• High-Temperature Interrupt Enable (bit 0, R/W) — This bit allows the BIOS to enable the generation of 

an interrupt on the transition from low-temperature to a high-temperature threshold.  Bit 0 = 0 (default) 
disables interrupts; bit 0 = 1 enables interrupts.

• Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows the BIOS to enable the generation of an 
interrupt on the transition from high-temperature to a low-temperature (TCC de-activation). Bit 1 = 0 (default) 
disables interrupts; bit 1 = 1 enables interrupts.

• PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the BIOS or OS to enable the generation of an 
interrupt when PROCHOT# has been asserted by another agent on the platform and the Bidirectional Prochot 
feature is enabled. Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the interrupt.

• FORCEPR# Interrupt Enable (bit 3, R/W) — This bit allows the BIOS or OS to enable the generation of an 
interrupt when FORCEPR# has been asserted by another agent on the platform. Bit 3 = 0 disables the 
interrupt; bit 3 = 1 enables the interrupt.

• Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the generation of an interrupt when the 
Critical Temperature Detector has detected a critical thermal condition. The recommended response to this 
condition is a system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1 enables the interrupt.

• Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, encoded relative to the TCC Activation 
temperature (using the same format as the Digital Readout). This threshold is compared against the Digital 
Readout and is used to generate the Thermal Threshold #1 Status and Log bits as well as the Threshold #1 
thermal interrupt delivery.

Figure 14-29.  IA32_THERM_INTERRUPT Register 
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• Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the generation of an interrupt when the actual 
temperature crosses the Threshold #1 setting in any direction.  Bit 15 = 1 enables the interrupt; bit 15 = 0 
disables the interrupt.

• Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, encoded relative to the TCC Activation 
temperature (using the same format as the Digital Readout). This threshold is compared against the Digital 
Readout and is used to generate the Thermal Threshold #2 Status and Log bits as well as the Threshold #2 
thermal interrupt delivery.

• Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the generation of an interrupt when the actual 
temperature crosses the Threshold #2 setting in any direction.  Bit 23 = 1enables the interrupt; bit 23 = 0 
disables the interrupt.

• Power Limit Notification Enable (bit 24, R/W) — Enables the generation of power notification events when 
the processor went below OS-requested P-state or OS-requested clock modulation duty cycle. This field is 
supported only if CPUID.06H:EAX[bit 4] = 1. Package level power limit notification can be enabled indepen-
dently by IA32_PACKAGE_THERM_INTERRUPT MSR.

14.7.6 Power Limit Notification

Platform firmware may be capable of specifying a power limit to restrict power delivered to a platform component, 
such as a physical processor package. This constraint imposed by platform firmware may occasionally cause the 
processor to operate below OS-requested P or T-state. A power limit notification event can be delivered using the 
existing thermal LVT entry in the local APIC. 

Software can enumerate the presence of the processor’s support for power limit notification by verifying 
CPUID.06H:EAX[bit 4] = 1.

If CPUID.06H:EAX[bit 4] = 1, then IA32_THERM_INTERRUPT and IA32_THERM_STATUS provides the following 
facility to manage power limit notification:
• Bits 10 and 11 in IA32_THERM_STATUS informs software of the occurrence of processor operating below OS-

requested P-state or clock modulation duty cycle setting (see Figure 14-28).
• Bit 24 in IA32_THERM_INTERRUPT enables the local APIC to deliver a thermal event when the processor went 

below OS-requested P-state or clock modulation duty cycle setting (see Figure 14-29).

14.8 PACKAGE LEVEL THERMAL MANAGEMENT

The thermal management facilities like IA32_THERM_INTERRUPT and IA32_THERM_STATUS are often imple-
mented with a processor core granularity. To facilitate software manage thermal events from a package level gran-
ularity, two architectural MSR is provided for package level thermal management. The 
IA32_PACKAGE_THERM_STATUS and IA32_PACKAGE_THERM_INTERRUPT MSRs use similar interfaces as 
IA32_THERM_STATUS and IA32_THERM_INTERRUPT, but are shared in each physical processor package.

Software can enumerate the presence of the processor’s support for package level thermal management facility 
(IA32_PACKAGE_THERM_STATUS and IA32_PACKAGE_THERM_INTERRUPT) by verifying CPUID.06H:EAX[bit 6] = 
1.

The layout of IA32_PACKAGE_THERM_STATUS MSR is shown in Figure 14-30.
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• Package Thermal Status (bit 0, RO) — This bit indicates whether the digital thermal sensor high-
temperature output signal (PROCHOT#) for the package is currently active. Bit 0 = 1 indicates the feature is 
active. This bit may not be written by software; it reflects the state of the digital thermal sensor.

• Package Thermal Status Log (bit 1, R/WC0) — This is a sticky bit that indicates the history of the thermal 
sensor high temperature output signal (PROCHOT#) of the package. Bit 1 = 1 if package PROCHOT# has been 
asserted since a previous RESET or the last time software cleared the bit. Software may clear this bit by writing 
a zero.

• Package PROCHOT# Event (bit 2, RO) — Indicates whether package PROCHOT# is being asserted by 
another agent on the platform. 

• Package PROCHOT# Log (bit 3, R/WC0) — Sticky bit that indicates whether package PROCHOT# has been 
asserted by another agent on the platform since the last clearing of this bit or a reset. If bit 3 = 1, package 
PROCHOT# has been externally asserted. Software may clear this bit by writing a zero. 

• Package Critical Temperature Status (bit 4, RO) — Indicates whether the package critical temperature 
detector output signal is currently active. If bit 4 = 1, the package critical temperature detector output signal 
is currently active.

• Package Critical Temperature Log (bit 5, R/WC0) — Sticky bit that indicates whether the package critical 
temperature detector output signal has been asserted since the last clearing of this bit or reset. If bit 5 = 1, the 
output signal has been asserted. Software may clear this bit by writing a zero.

• Package Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the actual package temperature is 
currently higher than or equal to the value set in Package Thermal Threshold #1. If bit 6 = 0, the actual 
temperature is lower. If bit 6 = 1, the actual temperature is greater than or equal to PTT#1. Quantitative 
information of actual package temperature can be inferred from Package Digital Readout, bits 22:16.

• Package Thermal Threshold #1 Log (bit 7, R/WC0) — Sticky bit that indicates whether the Package 
Thermal Threshold #1 has been reached since the last clearing of this bit or a reset. If bit 7 = 1, the Package 
Threshold #1 has been reached. Software may clear this bit by writing a zero.

• Package Thermal Threshold #2 Status (bit 8, RO) — Indicates whether actual package temperature is 
currently higher than or equal to the value set in Package Thermal Threshold #2. If bit 8 = 0, the actual 
temperature is lower. If bit 8 = 1, the actual temperature is greater than or equal to PTT#2. Quantitative 
information of actual temperature can be inferred from Package Digital Readout, bits 22:16.

• Package Thermal Threshold #2 Log (bit 9, R/WC0) — Sticky bit that indicates whether the Package 
Thermal Threshold #2 has been reached since the last clearing of this bit or a reset. If bit 9 = 1, the Package 
Thermal Threshold #2 has been reached. Software may clear this bit by writing a zero.

Figure 14-30.  IA32_PACKAGE_THERM_STATUS Register 
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• Package Power Limitation Status (bit 10, RO) — Indicates package power limit is forcing one ore more 
processors to operate below OS-requested P-state. Note that package power limit violation may be caused by 
processor cores or by devices residing in the uncore. Software can examine IA32_THERM_STATUS to 
determine if the cause originates from a processor core (see Figure 14-28).

• Package Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates any processor in the package 
went below OS-requested P-state or OS-requested clock modulation duty cycle since the last clearing of this or 
RESET. 

• Package Digital Readout (bits 22:16, RO) — Package digital temperature reading in 1 degree Celsius 
relative to the package TCC activation temperature. 
0: Package TCC Activation temperature, 
1: (PTCC Activation - 1) , etc. See the processor’s data sheet for details regarding PTCC activation.
A lower reading in the Package Digital Readout field (bits 22:16) indicates a higher actual temperature.

The layout of IA32_PACKAGE_THERM_INTERRUPT MSR is shown in Figure 14-31.

• Package High-Temperature Interrupt Enable (bit 0, R/W) — This bit allows the BIOS to enable the 
generation of an interrupt on the transition from low-temperature to a package high-temperature threshold.  
Bit 0 = 0 (default) disables interrupts; bit 0 = 1 enables interrupts.

• Package Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows the BIOS to enable the 
generation of an interrupt on the transition from high-temperature to a low-temperature (TCC de-activation). 
Bit 1 = 0 (default) disables interrupts; bit 1 = 1 enables interrupts.

• Package PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the BIOS or OS to enable the 
generation of an interrupt when Package PROCHOT# has been asserted by another agent on the platform and 
the Bidirectional Prochot feature is enabled. Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the interrupt.

• Package Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the generation of an interrupt 
when the Package Critical Temperature Detector has detected a critical thermal condition. The recommended 
response to this condition is a system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1 enables the 
interrupt.

• Package Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, encoded relative to the 
Package TCC Activation temperature (using the same format as the Digital Readout). This threshold is 
compared against the Package Digital Readout and is used to generate the Package Thermal Threshold #1 
Status and Log bits as well as the Package Threshold #1 thermal interrupt delivery.

• Package Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the generation of an interrupt when the 
actual temperature crosses the Package Threshold #1 setting in any direction.  Bit 15 = 1 enables the 
interrupt; bit 15 = 0 disables the interrupt.

• Package Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, encoded relative to the PTCC 
Activation temperature (using the same format as the Package Digital Readout). This threshold is compared 

Figure 14-31.  IA32_PACKAGE_THERM_INTERRUPT Register 
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against the Package Digital Readout and is used to generate the Package Thermal Threshold #2 Status and Log 
bits as well as the Package Threshold #2 thermal interrupt delivery.

• Package Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the generation of an interrupt when the 
actual temperature crosses the Package Threshold #2 setting in any direction.  Bit 23 = 1 enables the interrupt; 
bit 23 = 0 disables the interrupt.

• Package Power Limit Notification Enable (bit 24, R/W) — Enables the generation of package power 
notification events.

14.8.1 Support for Passive and Active cooling

Passive and active cooling may be controlled by the OS power management agent through ACPI control methods. 
On platforms providing package level thermal management facility described in the previous section, it is recom-
mended that active cooling (FAN control) should be driven by measuring the package temperature using the 
IA32_PACKAGE_THERM_INTERRUPT MSR. 

Passive cooling (frequency throttling) should be driven by measuring (a) the core and package temperatures, or 
(b) only the package temperature. If measured package temperature led the power management agent to choose 
which core to execute passive cooling, then all cores need to execute passive cooling. Core temperature is 
measured using the IA32_THERMAL_STATUS and IA32_THERMAL_INTERRUPT MSRs. The exact implementation 
details depend on the platform firmware and possible solutions include defining two different thermal zones (one 
for core temperature and passive cooling and the other for package temperature and active cooling).

14.9 PLATFORM SPECIFIC POWER MANAGEMENT SUPPORT

This section covers power management interfaces that are not architectural but addresses the power management 
needs of several platform specific components. Specifically, RAPL (Running Average Power Limit) interfaces provide 
mechanisms to enforce power consumption limit. Power limiting usages have specific usages in client and server 
platforms. 

For client platform power limit control and for server platforms used in a data center, the following power and 
thermal related usages are desirable:
• Platform Thermal Management: Robust mechanisms to manage component, platform, and group-level 

thermals, either proactively or reactively (e.g., in response to a platform-level thermal trip point).
• Platform Power Limiting: More deterministic control over the system's power consumption, for example to meet 

battery life targets on rack- or container-level power consumption goals within a datacenter. 
• Power/Performance Budgeting: Efficient means to control the power consumed (and therefore the sustained 

performance delivered) within and across platforms.

The server and client usage models are addressed by RAPL interfaces, which exposes multiple domains of power 
rationing within each processor socket. Generally, these RAPL domains may be viewed to include hierarchically:
• Package domain is the processor die. 
• Memory domain include the directly-attached DRAM; additional power plane may constitutes a separate 

domain. 

In order to manage the power consumed across multiple sockets via RAPL, individual limits must be programmed 
for each processor complex. Programming specific RAPL domain across multiple sockets is not supported.

14.9.1 RAPL Interfaces

RAPL interfaces consist of non-architectural MSRs. Each RAPL domain supports the following set of capabilities, 
some of which are optional as stated below.
• Power limit - MSR interfaces to specify power limit, time window; lock bit, clamp bit etc.
• Energy Status - Power metering interface providing energy consumption information.
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• Perf Status (Optional) - Interface providing information on the performance effects (regression) due to power 
limits. It is defined as a duration metric that measures the power limit effect in the respective domain. The 
meaning of duration is domain specific.

• Power Info (Optional) - Interface providing information on the range of parameters for a given domain, 
minimum power, maximum power etc.

• Policy (Optional) - 4-bit priority information which is a hint to hardware for dividing budget between sub-
domains in a parent domain.

Each of the above capabilities requires specific units in order to describe them. Power is expressed in Watts, Time 
is expressed in Seconds and Energy is expressed in Joules. Scaling factors are supplied to each unit to make the 
information presented meaningful in a finite number of bits. Units for power, energy and time are exposed in the 
read-only MSR_RAPL_POWER_UNIT MSR. 

MSR_RAPL_POWER_UNIT (Figure 14-32) provides the following information across all RAPL domains:
• Power Units (bits 3:0): Power related information (in Watts) is based on the multiplier, 1/ 2^PU; where PU is 

an unsigned integer represented by bits 3:0. Default value is 0011b, indicating power unit is in 1/8 Watts 
increment.

• Energy Status Units (bits 12:8): Energy related information (in Joules) is based on the multiplier, 1/2^ESU; 
where ESU is an unsigned integer represented by bits 12:8. Default value is 10000b, indicating energy status 
unit is in 15.3 micro-Joules increment.

• Time Units (bits 19:16): Time related information (in Seconds) is based on the multiplier, 1/ 2^TU; where TU 
is an unsigned integer represented by bits 19:16. Default value is 1010b, indicating time unit is in 976 micro-
seconds increment.

14.9.2 RAPL Domains and Platform Specificity

The specific RAPL domains available in a platform varies across product segments. Platforms targeting client 
segment support the following RAPL domain hierarchy:
• Package
• Two power planes: PP0 and PP1 (PP1 may reflect to uncore devices)

Platforms targeting server segment support the following RAPL domain hierarchy:
• Package
• Power plane: PP0
• DRAM

Each level of the RAPL hierarchy provides respective set of RAPL interface MSRs. Table 14-4 lists the RAPL MSR 
interfaces available for each RAPL domain. The power limit MSR of each RAPL domain is located at offset 0 relative 
to an MSR base address which is non-architectural (see Chapter 35). The energy status MSR of each domain is 
located at offset 1 relative to the MSR base address of respective domain.

Figure 14-32.  MSR_RAPL_POWER_UNIT Register 
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The presence of the optional MSR interfaces (the three right-most columns of Table 14-4) may be model-specific. 
See Chapter 35 for detail.

14.9.3 Package RAPL Domain

The MSR interfaces defined for the package RAPL domain are:
• MSR_PKG_POWER_LIMIT allows software to set power limits for the package and measurement attributes 

associated with each limit,
• MSR_PKG_ENERGY_STATUS reports measured actual energy usage,
• MSR_PKG_POWER_INFO reports the package power range information for RAPL usage.

MSR_PKG_PERF_STATUS can report the performance impact of power limiting, but its availability may be model-
specific.

MSR_PKG_POWER_LIMIT allows a software agent to define power limitation for the package domain. Power limita-
tion is defined in terms of average power usage (Watts) over a time window specified in MSR_PKG_POWER_LIMIT. 
Two power limits can be specified, corresponding to time windows of different sizes. Each power limit provides 
independent clamping control that would permit the processor cores to go below OS-requested state to meet the 
power limits. A lock mechanism allow the software agent to enforce power limit settings. Once the lock bit is set, 
the power limit settings are static and un-modifiable until next RESET. 

The bit fields of MSR_PKG_POWER_LIMIT (Figure 14-33) are:
• Package Power Limit #1(bits 14:0): Sets the average power usage limit of the package domain corre-

sponding to time window # 1. The unit of this field is specified by the “Power Units” field of 
MSR_RAPL_POWER_UNIT.

• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.

Table 14-4.  RAPL MSR Interfaces and RAPL Domains

 Domain  Power Limit
(Offset 0)

 Energy Status (Offset 
1)

 Policy
(Offset 2)

 Perf Status
(Offset 3)

 Power Info
(Offset 4)

PKG MSR_PKG_POWER_
LIMIT

MSR_PKG_ENERGY_STA
TUS

RESERVED MSR_PKG_PERF_STATUS MSR_PKG_POWER_I
NFO

DRAM MSR_DRAM_POWER
_LIMIT

MSR_DRAM_ENERGY_S
TATUS

RESERVED MSR_DRAM_PERF_STATUS MSR_DRAM_POWER
_INFO

PP0 MSR_PP0_POWER_
LIMIT

MSR_PP0_ENERGY_STA
TUS

MSR_PP0_POLICY MSR_PP0_PERF_STATUS RESERVED

PP1 MSR_PP1_POWER_
LIMIT

MSR_PP1_ENERGY_STA
TUS

MSR_PP1_POLICY RESERVED RESERVED

Figure 14-33.  MSR_PKG_POWER_LIMIT Register
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• Package Clamping Limitation #1 (bit 16): Allow going below OS-requested P/T state setting during time 
window specified by bits 23:17.

• Time Window for Power Limit #1 (bits 23:17): Indicates the time window for power limit #1 
Time limit = 2^Y * (1.0 + Z/4.0) * Time_Unit 
Here “Y” is the unsigned integer value represented. by bits 21:17, “Z” is an unsigned integer represented by 
bits 23:22. “Time_Unit” is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Package Power Limit #2(bits 46:32): Sets the average power usage limit of the package domain corre-
sponding to time window # 2. The unit of this field is specified by the “Power Units” field of 
MSR_RAPL_POWER_UNIT.

• Enable Power Limit #2(bit 47): 0 = disabled; 1 = enabled.
• Package Clamping Limitation #2 (bit 48): Allow going below OS-requested P/T state setting during time 

window specified by bits 23:17.
• Time Window for Power Limit #2 (bits 55:49): Indicates the time window for power limit #2 

Time limit = 2^Y * (1.0 + Z/4.0) * Time_Unit 
Here “Y” is the unsigned integer value represented. by bits 53:49, “Z” is an unsigned integer represented by 
bits 55:54. “Time_Unit” is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT. This field may have 
a hard-coded value in hardware and ignores values written by software.

• Lock (bit 63): If set, all write attempts to this MSR are ignored until next RESET.

MSR_PKG_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for the package domain. This 
MSR is updated every ~1msec. It has a wraparound time of around 60 secs when power consumption is high, and 
may be longer otherwise.

• Total Energy Consumed (bits 31:0): The unsigned integer value represents the total amount of energy 
consumed since that last time this register is cleared. The unit of this field is specified by the “Energy Status 
Units” field of MSR_RAPL_POWER_UNIT. 

MSR_PKG_POWER_INFO is a read-only MSR. It reports the package power range information for RAPL usage. This 
MSR provides maximum/minimum values (derived from electrical specification), thermal specification power of the 
package domain. It also provides the largest possible time window for software to program the RAPL interface.

• Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent of thermal specification power 
of the package domain. The unit of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

Figure 14-34.  MSR_PKG_ENERGY_STATUS MSR

Figure 14-35.  MSR_PKG_POWER_INFO Register
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• Minimum Power (bits 30:16): The unsigned integer value is the equivalent of minimum power derived from 
electrical spec of the package domain. The unit of this field is specified by the “Power Units” field of 
MSR_RAPL_POWER_UNIT. 

• Maximum Power (bits 46:32): The unsigned integer value is the equivalent of maximum power derived from 
the electrical spec of the package domain. The unit of this field is specified by the “Power Units” field of 
MSR_RAPL_POWER_UNIT. 

• Maximum Time Window (bits 53:48): The unsigned integer value is the equivalent of largest acceptable 
value to program the time window of MSR_PKG_POWER_LIMIT. The unit of this field is specified by the “Time 
Units” field of MSR_RAPL_POWER_UNIT. 

MSR_PKG_PERF_STATUS is a read-only MSR. It reports the total time for which the package was throttled due to 
the RAPL power limits. Throttling in this context is defined as going below the OS-requested P-state or T-state. It 
has a wrap-around time of many hours. The availability of this MSR is platform specific (see Chapter 35).

• Accumulated Package Throttled Time (bits 31:0): The unsigned integer value represents the cumulative 
time (since the last time this register is cleared) that the package has throttled. The unit of this field is specified 
by the “Time Units” field of MSR_RAPL_POWER_UNIT. 

14.9.4 PP0/PP1 RAPL Domains

The MSR interfaces defined for the PP0 and PP1 domains are identical in layout. Generally, PP0 refers to the 
processor cores. The availability of PP1 RAPL domain interface is platform-specific. For a client platform, PP1 
domain refers to the power plane of a specific device in the uncore. For server platforms, PP1 domain is not 
supported, but its PP0 domain supports the MSR_PP0_PERF_STATUS interface.
• MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allow software to set power limits for the respective power 

plane domain.
• MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS report actual energy usage on a power plane.
• MSR_PP0_POLICY/MSR_PP1_POLICY allow software to adjust balance for respective power plane.

MSR_PP0_PERF_STATUS can report the performance impact of power limiting, but it is not available in client plat-
form.

Figure 14-36.  MSR_PKG_PERF_STATUS MSR

Figure 14-37.  MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT Register
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MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allows a software agent to define power limitation for the 
respective power plane domain. A lock mechanism in each power plane domain allow the software agent to enforce 
power limit settings independently. Once a lock bit is set, the power limit settings in that power plane are static and 
un-modifiable until next RESET. 

The bit fields of MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT (Figure 14-37) are:
• Power Limit (bits 14:0): Sets the average power usage limit of the respective power plane domain. The unit 

of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.
• Enable Power Limit (bit 15): 0 = disabled; 1 = enabled.
• Clamping Limitation (bit 16): Allow going below OS-requested P/T state setting during time window specified 

by bits 23:17.
• Time Window for Power Limit (bits 23:17): Indicates the length of time window over which the power limit 

#1 The numeric value encoded by bits 23:17 is represented by the product of 2^Y *F; where F is a single-digit 
decimal floating-point value between 1.0 and 1.3 with the fraction digit represented by bits 23:22, Y is an 
unsigned integer represented by bits 21:17. The unit of this field is specified by the “Time Units” field of 
MSR_RAPL_POWER_UNIT.

• Lock (bit 31): If set, all write attempts to the MSR and corresponding policy 
MSR_PP0_POLICY/MSR_PP1_POLICY are ignored until next RESET.

MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for 
the respective power plane domain. This MSR is updated every ~1msec. 

• Total Energy Consumed (bits 31:0): The unsigned integer value represents the total amount of energy 
consumed since that last time this register is cleared. The unit of this field is specified by the “Energy Status 
Units” field of MSR_RAPL_POWER_UNIT. 

MSR_PP0_POLICY/MSR_PP1_POLICY provide balance power policy control for each power plane by providing 
inputs to the power budgeting management algorithm. On the platform that supports PP0 (IA cores) and PP1 
(uncore graphic device), the default value give priority to the non-IA power plane. These MSRs enable the PCU to 
balance power consumption between the IA cores and uncore graphic device. 

• Priority Level (bits 4:0): Priority level input to the PCU for respective power plane. PP0 covers the IA 
processor cores, PP1 covers the uncore graphic device. The value 31 is considered highest priority.

MSR_PP0_PERF_STATUS is a read-only MSR. It reports the total time for which the PP0 domain was throttled due 
to the power limits. This MSR is supported only in server platform. Throttling in this context is defined as going 
below the OS-requested P-state or T-state. 

Figure 14-38.  MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS MSR

Figure 14-39.  MSR_PP0_POLICY/MSR_PP1_POLICY Register
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• Accumulated PP0 Throttled Time (bits 31:0): The unsigned integer value represents the cumulative time 
(since the last time this register is cleared) that the PP0 domain has throttled. The unit of this field is specified 
by the “Time Units” field of MSR_RAPL_POWER_UNIT. 

14.9.5 DRAM RAPL Domain

The MSR interfaces defined for the DRAM domain is supported only in the server platform. The MSR interfaces are:
• MSR_DRAM_POWER_LIMIT allows software to set power limits for the DRAM domain and measurement 

attributes associated with each limit,
• MSR_DRAM_ENERGY_STATUS reports measured actual energy usage,
• MSR_DRAM_POWER_INFO reports the DRAM domain power range information for RAPL usage.
• MSR_DRAM_PERF_STATUS can report the performance impact of power limiting.

MSR_DRAM_POWER_LIMIT allows a software agent to define power limitation for the DRAM domain. Power limita-
tion is defined in terms of average power usage (Watts) over a time window specified in 
MSR_DRAM_POWER_LIMIT. A power limit can be specified along with a time window. A lock mechanism allow the 
software agent to enforce power limit settings. Once the lock bit is set, the power limit settings are static and un-
modifiable until next RESET. 

The bit fields of MSR_DRAM_POWER_LIMIT (Figure 14-41) are:
• DRAM Power Limit #1(bits 14:0): Sets the average power usage limit of the DRAM domain corresponding to 

time window # 1. The unit of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.
• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.
• Time Window for Power Limit (bits 23:17): Indicates the length of time window over which the power limit 

The numeric value encoded by bits 23:17 is represented by the product of 2^Y *F; where F is a single-digit 
decimal floating-point value between 1.0 and 1.3 with the fraction digit represented by bits 23:22, Y is an 
unsigned integer represented by bits 21:17. The unit of this field is specified by the “Time Units” field of 
MSR_RAPL_POWER_UNIT.

• Lock (bit 31): If set, all write attempts to this MSR are ignored until next RESET.

Figure 14-40.  MSR_PP0_PERF_STATUS MSR

Figure 14-41.  MSR_DRAM_POWER_LIMIT Register
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MSR_DRAM_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for the DRAM domain. This MSR 
is updated every ~1msec. 

• Total Energy Consumed (bits 31:0): The unsigned integer value represents the total amount of energy 
consumed since that last time this register is cleared. The unit of this field is specified by the “Energy Status 
Units” field of MSR_RAPL_POWER_UNIT. 

MSR_DRAM_POWER_INFO is a read-only MSR. It reports the DRAM power range information for RAPL usage. This 
MSR provides maximum/minimum values (derived from electrical specification), thermal specification power of the 
DRAM domain. It also provides the largest possible time window for software to program the RAPL interface.

• Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent of thermal specification power 
of the DRAM domain. The unit of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

• Minimum Power (bits 30:16): The unsigned integer value is the equivalent of minimum power derived from 
electrical spec of the DRAM domain. The unit of this field is specified by the “Power Units” field of 
MSR_RAPL_POWER_UNIT. 

• Maximum Power (bits 46:32): The unsigned integer value is the equivalent of maximum power derived from 
the electrical spec of the DRAM domain. The unit of this field is specified by the “Power Units” field of 
MSR_RAPL_POWER_UNIT. 

• Maximum Time Window (bits 53:48): The unsigned integer value is the equivalent of largest acceptable 
value to program the time window of MSR_DRAM_POWER_LIMIT. The unit of this field is specified by the “Time 
Units” field of MSR_RAPL_POWER_UNIT. 

MSR_DRAM_PERF_STATUS is a read-only MSR. It reports the total time for which the package was throttled due to 
the RAPL power limits. Throttling in this context is defined as going below the OS-requested P-state or T-state. It 
has a wrap-around time of many hours. The availability of this MSR is platform specific (see Chapter 35).

Figure 14-42.  MSR_DRAM_ENERGY_STATUS MSR

Figure 14-43.  MSR_DRAM_POWER_INFO Register

Figure 14-44.  MSR_DRAM_PERF_STATUS MSR
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• Accumulated Package Throttled Time (bits 31:0): The unsigned integer value represents the cumulative 
time (since the last time this register is cleared) that the DRAM domain has throttled. The unit of this field is 
specified by the “Time Units” field of MSR_RAPL_POWER_UNIT. 
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CHAPTER 15
MACHINE-CHECK ARCHITECTURE

This chapter describes the machine-check architecture and machine-check exception mechanism found in the 
Pentium 4, Intel Xeon, Intel Atom, and P6 family processors. See Chapter 6, “Interrupt 18—Machine-Check Excep-
tion (#MC),” for more information on machine-check exceptions. A brief description of the Pentium processor’s 
machine check capability is also given.
Additionally, a signaling mechanism for software to respond to hardware corrected machine check error is covered.

15.1 MACHINE-CHECK ARCHITECTURE

The Pentium 4, Intel Xeon, Intel Atom, and P6 family processors implement a machine-check architecture that 
provides a mechanism for detecting and reporting hardware (machine) errors, such as: system bus errors, ECC 
errors, parity errors, cache errors, and TLB errors. It consists of a set of model-specific registers (MSRs) that are 
used to set up machine checking and additional banks of MSRs used for recording errors that are detected. 
The processor signals the detection of an uncorrected machine-check error by generating a machine-check excep-
tion (#MC), which is an abort class exception. The implementation of the machine-check architecture does not 
ordinarily permit the processor to be restarted reliably after generating a machine-check exception. However, the 
machine-check-exception handler can collect information about the machine-check error from the machine-check 
MSRs.
Starting with 45nm Intel 64 processor on which CPUID reports DisplayFamily_DisplayModel as 06H_1AH (see 
CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A), the processor can report information on corrected machine-check errors and 
deliver a programmable interrupt for software to respond to MC errors, referred to as corrected machine-check 
error interrupt (CMCI). See Section 15.5 for detail. 
Intel 64 processors supporting machine-check architecture and CMCI may also support an additional enhance-
ment, namely, support for software recovery from certain uncorrected recoverable machine check errors. See 
Section 15.6 for detail. 

15.2 COMPATIBILITY WITH PENTIUM PROCESSOR

The Pentium 4, Intel Xeon, Intel Atom, and P6 family processors support and extend the machine-check exception 
mechanism introduced in the Pentium processor. The Pentium processor reports the following machine-check 
errors:
• data parity errors during read cycles
• unsuccessful completion of a bus cycle
The above errors are reported using the P5_MC_TYPE and P5_MC_ADDR MSRs (implementation specific for the 
Pentium processor). Use the RDMSR instruction to read these MSRs. See Chapter 35, “Model-Specific Registers 
(MSRs),” for the addresses.
The machine-check error reporting mechanism that Pentium processors use is similar to that used in Pentium 4, 
Intel Xeon, Intel Atom, and P6 family processors. When an error is detected, it is recorded in P5_MC_TYPE and 
P5_MC_ADDR; the processor then generates a machine-check exception (#MC).
See Section 15.3.3, “Mapping of the Pentium Processor Machine-Check Errors to the Machine-Check Architecture,” 
and Section 15.10.2, “Pentium Processor Machine-Check Exception Handling,” for information on compatibility 
between machine-check code written to run on the Pentium processors and code written to run on P6 family 
processors.
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15.3 MACHINE-CHECK MSRS

Machine check MSRs in the Pentium 4, Intel Atom, Intel Xeon, and P6 family processors consist of a set of global 
control and status registers and several error-reporting register banks. See Figure 15-1.

Each error-reporting bank is associated with a specific hardware unit (or group of hardware units) in the processor. 
Use RDMSR and WRMSR to read and to write these registers. 

15.3.1 Machine-Check Global Control MSRs

The machine-check global control MSRs include the IA32_MCG_CAP, IA32_MCG_STATUS, and optionally 
IA32_MCG_CTL and IA32_MCG_EXT_CTL. See Chapter 35, “Model-Specific Registers (MSRs),” for the addresses of 
these registers. 

15.3.1.1  IA32_MCG_CAP MSR

The IA32_MCG_CAP MSR is a read-only register that provides information about the machine-check architecture of 
the processor. Figure 15-2 shows the layout of the register.

Figure 15-1.  Machine-Check MSRs

Figure 15-2.  IA32_MCG_CAP Register
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Where:
• Count field, bits 7:0 — Indicates the number of hardware unit error-reporting banks available in a particular 

processor implementation.
• MCG_CTL_P (control MSR present) flag, bit 8 — Indicates that the processor implements the 

IA32_MCG_CTL MSR when set; this register is absent when clear.
• MCG_EXT_P (extended MSRs present) flag, bit 9 — Indicates that the processor implements the extended 

machine-check state registers found starting at MSR address 180H; these registers are absent when clear.
• MCG_CMCI_P (Corrected MC error counting/signaling extension present) flag, bit 10 — Indicates 

(when set) that extended state and associated MSRs necessary to support the reporting of an interrupt on a 
corrected MC error event and/or count threshold of corrected MC errors, is present. When this bit is set, it does 
not imply this feature is supported across all banks. Software should check the availability of the necessary 
logic on a bank by bank basis when using this signaling capability (i.e. bit 30 settable in individual 
IA32_MCi_CTL2 register). 

• MCG_TES_P (threshold-based error status present) flag, bit 11 — Indicates (when set) that bits 56:53 
of the IA32_MCi_STATUS MSR are part of the architectural space. Bits 56:55 are reserved, and bits 54:53 are 
used to report threshold-based error status. Note that when MCG_TES_P is not set, bits 56:53 of the 
IA32_MCi_STATUS MSR are model-specific.

• MCG_EXT_CNT, bits 23:16 — Indicates the number of extended machine-check state registers present. This 
field is meaningful only when the MCG_EXT_P flag is set.

• MCG_SER_P (software error recovery support present) flag, bit 24— Indicates (when set) that the 
processor supports software error recovery (see Section 15.6), and IA32_MCi_STATUS MSR bits 56:55 are 
used to report the signaling of uncorrected recoverable errors and whether software must take recovery 
actions for uncorrected errors. Note that when MCG_TES_P is not set, bits 56:53 of the IA32_MCi_STATUS MSR 
are model-specific. If MCG_TES_P is set but MCG_SER_P is not set, bits 56:55 are reserved.

• MCG_ELOG_P (extended error logging) flag, bit 26 — Indicates (when set) that the processor allows 
platform firmware to be invoked when an error is detected so that it may provide additional platform specific 
information in an ACPI format “Generic Error Data Entry” that augments the data included in machine check 
bank registers.
For additional information about extended error logging interface, see 
http://www.intel.com/content/www/us/en/architecture-and-technology/enhanced-mca-logging-xeon-
paper.html

• MCG_LMCE_P (local machine check exception) flag, bit 27 — Indicates (when set) that the following 
interfaces are present:

— an extended state LMCE_S (located in bit 3 of IA32_MCG_STATUS), and

— the IA32_MCG_EXT_CTL MSR, necessary to support Local Machine Check Exception (LMCE). 
A non-zero MCG_LMCE_P indicates that, when LMCE is enabled as described in Section 15.3.1.5, some 
machine check errors may be delivered to only a single logical processor.

The effect of writing to the IA32_MCG_CAP MSR is undefined. 

15.3.1.2  IA32_MCG_STATUS MSR

The IA32_MCG_STATUS MSR describes the current state of the processor after a machine-check exception has 
occurred (see Figure 15-3).
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Where:
• RIPV (restart IP valid) flag, bit 0 — Indicates (when set) that program execution can be restarted reliably 

at the instruction pointed to by the instruction pointer pushed on the stack when the machine-check exception 
is generated. When clear, the program cannot be reliably restarted at the pushed instruction pointer.

• EIPV (error IP valid) flag, bit 1 — Indicates (when set) that the instruction pointed to by the instruction 
pointer pushed onto the stack when the machine-check exception is generated is directly associated with the 
error. When this flag is cleared, the instruction pointed to may not be associated with the error.

• MCIP (machine check in progress) flag, bit 2 — Indicates (when set) that a machine-check exception was 
generated. Software can set or clear this flag. The occurrence of a second Machine-Check Event while MCIP is 
set will cause the processor to enter a shutdown state. For information on processor behavior in the shutdown 
state, please refer to the description in Chapter 6, “Interrupt and Exception Handling”: “Interrupt 8—Double 
Fault Exception (#DF)”.

• LMCE_S (local machine check exception signaled), bit 3 — Indicates (when set) that a local machine-
check exception was generated. This indicates that the current machine-check event was delivered to only this 
logical processor.

Bits 63:04 in IA32_MCG_STATUS are reserved. An attempt to write to IA32_MCG_STATUS with any value other 
than 0 would result in #GP.

15.3.1.3  IA32_MCG_CTL MSR

The IA32_MCG_CTL MSR is present if the capability flag MCG_CTL_P is set in the IA32_MCG_CAP MSR. 
IA32_MCG_CTL controls the reporting of machine-check exceptions. If present, writing 1s to this register enables 
machine-check features and writing all 0s disables machine-check features. All other values are undefined and/or 
implementation specific.

15.3.1.4  IA32_MCG_EXT_CTL MSR

The IA32_MCG_EXT_CTL MSR is present if the capability flag MCG_LMCE_P is set in the IA32_MCG_CAP MSR.
IA32_MCG_EXT_CTL.LMCE_EN (bit 0) allows the processor to signal some MCEs to only a single logical processor 
in the system.
If MCG_LMCE_P is not set in IA32_MCG_CAP, or platform software has not enabled LMCE by setting 
IA32_FEATURE_CONTROL.LMCE_ON (bit 20), any attempt to write or read IA32_MCG_EXT_CTL will result in #GP. 
The IA32_MCG_EXT_CTL MSR is cleared on RESET.
Figure 15-4 shows the layout of the IA32_MCG_EXT_CTL register

Figure 15-3.  IA32_MCG_STATUS Register
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where
• LMCE_EN (local machine check exception enable) flag, bit 0 - System software sets this to allow 

hardware to signal some MCEs to only a single logical processor. System software can set LMCE_EN only if the 
platform software has configured IA32_FEATURE_CONTROL as described in Section 15.3.1.5. 

15.3.1.5  Enabling Local Machine Check

The intended usage of LMCE requires proper configuration by both platform software and system software. Plat-
form software can turn LMCE on by setting bit 20 (LMCE_ON) in IA32_FEATURE_CONTROL MSR (MSR address 
3AH). 
System software must ensure that both IA32_FEATURE_CONTROL.Lock (bit 0)and 
IA32_FEATURE_CONTROL.LMCE_ON (bit 20) are set before attempting to set IA32_MCG_EXT_CTL.LMCE_EN (bit 
0). When system software has enabled LMCE, then hardware will determine if a particular error can be delivered 
only to a single logical processor. Software should make no assumptions about the type of error that hardware can 
choose to deliver as LMCE. The severity and override rules stay the same as described in Table 15-7 to determine 
the recovery actions. 

15.3.2 Error-Reporting Register Banks

Each error-reporting register bank can contain the IA32_MCi_CTL, IA32_MCi_STATUS, IA32_MCi_ADDR, and 
IA32_MCi_MISC MSRs. The number of reporting banks is indicated by bits [7:0] of IA32_MCG_CAP MSR (address 
0179H). The first error-reporting register (IA32_MC0_CTL) always starts at address 400H. 
See Chapter 35, “Model-Specific Registers (MSRs),” for addresses of the error-reporting registers in the Pentium 4, 
Intel Atom, and Intel Xeon processors; and for addresses of the error-reporting registers P6 family processors. 

15.3.2.1  IA32_MCi_CTL MSRs

The IA32_MCi_CTL MSR controls error reporting for errors produced by a particular hardware unit (or group of 
hardware units). Each of the 64 flags (EEj) represents a potential error. Setting an EEj flag enables reporting of the 
associated error and clearing it disables reporting of the error. The processor does not write changes to bits that 
are not implemented. Figure 15-5 shows the bit fields of IA32_MCi_CTL.

Figure 15-4.  IA32_MCG_EXT_CTL Register

Figure 15-5.  IA32_MCi_CTL Register
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NOTE

For P6 family processors, processors based on Intel Core microarchitecture (excluding those on 
which on which CPUID reports DisplayFamily_DisplayModel as 06H_1AH and onward): the 
operating system or executive software must not modify the contents of the IA32_MC0_CTL MSR. 
This MSR is internally aliased to the EBL_CR_POWERON MSR and controls platform-specific error 
handling features. System specific firmware (the BIOS) is responsible for the appropriate initial-
ization of the IA32_MC0_CTL MSR. P6 family processors only allow the writing of all 1s or all 0s to 
the IA32_MCi_CTL MSR.

15.3.2.2  IA32_MCi_STATUS MSRS

Each IA32_MCi_STATUS MSR contains information related to a machine-check error if its VAL (valid) flag is set (see 
Figure 15-6). Software is responsible for clearing IA32_MCi_STATUS MSRs by explicitly writing 0s to them; writing 
1s to them causes a general-protection exception.

NOTE

Figure 15-6 depicts the IA32_MCi_STATUS MSR when IA32_MCG_CAP[24] = 1, 
IA32_MCG_CAP[11] = 1 and IA32_MCG_CAP[10] = 1. When IA32_MCG_CAP[24] = 0 and 
IA32_MCG_CAP[11] = 1, bits 56:55 is reserved and bits 54:53 for threshold-based error reporting. 
When IA32_MCG_CAP[11] = 0, bits 56:53 are part of the “Other Information” field. The use of bits 
54:53 for threshold-based error reporting began with Intel Core Duo processors, and is currently 
used for cache memory. See Section 15.4, “Enhanced Cache Error reporting,” for more information. 
When IA32_MCG_CAP[10] = 0, bits 52:38 are part of the “Other Information” field. The use of bits 
52:38 for corrected MC error count is introduced with Intel 64 processor on which CPUID reports 
DisplayFamily_DisplayModel as 06H_1AH. 

Where:
• MCA (machine-check architecture) error code field, bits 15:0 — Specifies the machine-check archi-

tecture-defined error code for the machine-check error condition detected. The machine-check architecture-
defined error codes are guaranteed to be the same for all IA-32 processors that implement the machine-check 
architecture. See Section 15.9, “Interpreting the MCA Error Codes,” and Chapter 16, “Interpreting Machine-
Check Error Codes”, for information on machine-check error codes. 

• Model-specific error code field, bits 31:16 — Specifies the model-specific error code that uniquely 
identifies the machine-check error condition detected. The model-specific error codes may differ among IA-32 

Figure 15-6.  IA32_MCi_STATUS Register
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* When IA32_MCG_CAP[11] (MCG_TES_P) is not set, these bits are model-specific 
 (part of “Other Information”).
** When IA32_MCG_CAP[11] or IA32_MCG_CAP[24] are not set, these bits are reserved, or
 model-specific (part of “Other Information”).
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processors for the same machine-check error condition. See Chapter 16, “Interpreting Machine-Check Error 
Codes”for information on model-specific error codes.

• Reserved, Error Status, and Other Information fields, bits 56:32 — 

• Bits 37:32 always contain “Other Information” that is implementation-specific and is not part of the 
machine-check architecture. Software that is intended to be portable among IA-32 processors should 
not rely on these values. 

• If IA32_MCG_CAP[10] is 0, bits 52:38 also contain “Other Information” (in the same sense as bits 
37:32).

• If IA32_MCG_CAP[10] is 1, bits 52:38 are architectural (not model-specific). In this case, bits 52:38 
reports the value of a 15 bit counter that increments each time a corrected error is observed by the MCA 
recording bank. This count value will continue to increment until cleared by software. The most 
significant bit, 52, is a sticky count overflow bit. 

• If IA32_MCG_CAP[11] is 0, bits 56:53 also contain “Other Information” (in the same sense).

• If IA32_MCG_CAP[11] is 1, bits 56:53 are architectural (not model-specific). In this case, bits 56:53 
have the following functionality:

• If IA32_MCG_CAP[24] is 0, bits 56:55 are reserved.

• If IA32_MCG_CAP[24] is 1, bits 56:55 are defined as follows: 

• S (Signaling) flag, bit 56 - Signals the reporting of UCR errors in this MC bank. See Section 15.6.2 
for additional detail. 

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA error code specific recovery 
action must be performed by system software at the time this error was signaled. See Section 
15.6.2 for additional detail.

• If the UC bit (Figure 15-6) is 1, bits 54:53 are undefined. 

• If the UC bit (Figure 15-6) is 0, bits 54:53 indicate the status of the hardware structure that 
reported the threshold-based error. See Table 15-1.

• PCC (processor context corrupt) flag, bit 57 — Indicates (when set) that the state of the processor might 
have been corrupted by the error condition detected and that reliable restarting of the processor may not be 
possible. When clear, this flag indicates that the error did not affect the processor’s state. Software restarting 
might be possible.

• ADDRV (IA32_MCi_ADDR register valid) flag, bit 58 — Indicates (when set) that the IA32_MCi_ADDR 
register contains the address where the error occurred (see Section 15.3.2.3, “IA32_MCi_ADDR MSRs”). When 
clear, this flag indicates that the IA32_MCi_ADDR register is either not implemented or does not contain the 
address where the error occurred. Do not read these registers if they are not implemented in the processor.

• MISCV (IA32_MCi_MISC register valid) flag, bit 59 — Indicates (when set) that the IA32_MCi_MISC 
register contains additional information regarding the error. When clear, this flag indicates that the 
IA32_MCi_MISC register is either not implemented or does not contain additional information regarding the 
error. Do not read these registers if they are not implemented in the processor.

• EN (error enabled) flag, bit 60 — Indicates (when set) that the error was enabled by the associated EEj bit 
of the IA32_MCi_CTL register.

Table 15-1.  Bits 54:53 in IA32_MCi_STATUS MSRs when IA32_MCG_CAP[11] = 1 and UC = 0

Bits 54:53 Meaning

00 No tracking - No hardware status tracking is provided for the structure reporting this event. 

01 Green - Status tracking is provided for the structure posting the event; the current status is green (below threshold). 
For more information, see Section 15.4, “Enhanced Cache Error reporting”. 

10 Yellow - Status tracking is provided for the structure posting the event; the current status is yellow (above threshold). 
For more information, see Section 15.4, “Enhanced Cache Error reporting”. 

11 Reserved
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• UC (error uncorrected) flag, bit 61 — Indicates (when set) that the processor did not or was not able to 
correct the error condition. When clear, this flag indicates that the processor was able to correct the error 
condition.

• OVER (machine check overflow) flag, bit 62 — Indicates (when set) that a machine-check error occurred 
while the results of a previous error were still in the error-reporting register bank (that is, the VAL bit was 
already set in the IA32_MCi_STATUS register). The processor sets the OVER flag and software is responsible for 
clearing it. In general, enabled errors are written over disabled errors, and uncorrected errors are written over 
corrected errors. Uncorrected errors are not written over previous valid uncorrected errors. For more infor-
mation, see Section 15.3.2.2.1, “Overwrite Rules for Machine Check Overflow”.

• VAL (IA32_MCi_STATUS register valid) flag, bit 63 — Indicates (when set) that the information within the 
IA32_MCi_STATUS register is valid. When this flag is set, the processor follows the rules given for the OVER flag 
in the IA32_MCi_STATUS register when overwriting previously valid entries. The processor sets the VAL flag 
and software is responsible for clearing it.

15.3.2.2.1  Overwrite Rules for Machine Check Overflow

Table 15-2 shows the overwrite rules for how to treat a second event if the cache has already posted an event to 
the MC bank – that is, what to do if the valid bit for an MC bank already is set to 1. When more than one structure 
posts events in a given bank, these rules specify whether a new event will overwrite a previous posting or not. 
These rules define a priority for uncorrected (highest priority), yellow, and green/unmonitored (lowest priority) 
status.
In Table 15-2, the values in the two left-most columns are IA32_MCi_STATUS[54:53]. 

If a second event overwrites a previously posted event, the information (as guarded by individual valid bits) in the 
MCi bank is entirely from the second event. Similarly, if a first event is retained, all of the information previously 
posted for that event is retained. In either case, the OVER bit (MCi_Status[62]) will be set to indicate an overflow. 
After software polls a posting and clears the register, the valid bit is no longer set and therefore the meaning of the 
rest of the bits, including the yellow/green/00 status field in bits 54:53, is undefined. The yellow/green indication 
will only be posted for events associated with monitored structures – otherwise the unmonitored (00) code will be 
posted in MCi_Status[54:53].

15.3.2.3  IA32_MCi_ADDR MSRs

The IA32_MCi_ADDR MSR contains the address of the code or data memory location that produced the machine-
check error if the ADDRV flag in the IA32_MCi_STATUS register is set (see Section 15-7, “IA32_MCi_ADDR MSR”). 
The IA32_MCi_ADDR register is either not implemented or contains no address if the ADDRV flag in the 
IA32_MCi_STATUS register is clear. When not implemented in the processor, all reads and writes to this MSR will 
cause a general protection exception. 
The address returned is an offset into a segment, linear address, or physical address. This depends on the error 
encountered. When these registers are implemented, these registers can be cleared by explicitly writing 0s to 
these registers. Writing 1s to these registers will cause a general-protection exception. See Figure 15-7.

Table 15-2.  Overwrite Rules for Enabled Errors

First Event Second Event UC bit Color MCA Info

00/green 00/green 0 00/green second

00/green yellow 0 yellow second error

yellow 00/green 0 yellow first error 

yellow yellow 0 yellow either

00/green/yellow UC 1 undefined second

UC 00/green/yellow 1 undefined first 
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15.3.2.4  IA32_MCi_MISC MSRs

The IA32_MCi_MISC MSR contains additional information describing the machine-check error if the MISCV flag in 
the IA32_MCi_STATUS register is set. The IA32_MCi_MISC_MSR is either not implemented or does not contain 
additional information if the MISCV flag in the IA32_MCi_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR will cause a general protection exception. 
When implemented in a processor, these registers can be cleared by explicitly writing all 0s to them; writing 1s to 
them causes a general-protection exception to be generated. This register is not implemented in any of the error-
reporting register banks for the P6 or Intel Atom family processors. 
If both MISCV and IA32_MCG_CAP[24] are set, the IA32_MCi_MISC_MSR is defined according to Figure 15-8 to 
support software recovery of uncorrected errors (see Section 15.6):

• Recoverable Address LSB (bits 5:0): The lowest valid recoverable address bit. Indicates the position of the least 
significant bit (LSB) of the recoverable error address. For example, if the processor logs bits [43:9] of the 
address, the LSB sub-field in IA32_MCi_MISC is 01001b (9 decimal). For this example, bits [8:0] of the 
recoverable error address in IA32_MCi_ADDR should be ignored. 

• Address Mode (bits 8:6): Address mode for the address logged in IA32_MCi_ADDR. The supported address 
modes are given in Table 15-3.

Figure 15-7.  IA32_MCi_ADDR MSR

Figure 15-8.  UCR Support in IA32_MCi_MISC Register

Table 15-3.  Address Mode in IA32_MCi_MISC[8:6] 

IA32_MCi_MISC[8:6] Encoding Definition

000 Segment Offset

001 Linear Address

010 Physical Address

Address

63 0

Reserved

3536

Address*

63 0

Processor Without Support For Intel 64 Architecture

Processor With Support for Intel 64 Architecture

* Useful bits in this field depend on the address methodology in use when the 
the register state is saved.

Address Mode

63 0

Model Specific Information

6 5

Recoverable Address LSB

89
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• Model Specific Information (bits 63:9): Not architecturally defined.

15.3.2.5  IA32_MCi_CTL2 MSRs

The IA32_MCi_CTL2 MSR provides the programming interface to use corrected MC error signaling capability that is 
indicated by IA32_MCG_CAP[10] = 1. Software must check for the presence of IA32_MCi_CTL2 on a per-bank 
basis. 
When IA32_MCG_CAP[10] = 1, the IA32_MCi_CTL2 MSR for each bank exists, i.e. reads and writes to these MSR 
are supported. However, signaling interface for corrected MC errors may not be supported in all banks. 
The layout of IA32_MCi_CTL2 is shown in Figure 15-9:

• Corrected error count threshold, bits 14:0 — Software must initialize this field. The value is compared with 
the corrected error count field in IA32_MCi_STATUS, bits 38 through 52. An overflow event is signaled to the 
CMCI LVT entry (see Table 10-1) in the APIC when the count value equals the threshold value. The new LVT 
entry in the APIC is at 02F0H offset from the APIC_BASE. If CMCI interface is not supported for a particular 
bank (but IA32_MCG_CAP[10] = 1), this field will always read 0.

• CMCI_EN (Corrected error interrupt enable/disable/indicator), bits 30 — Software sets this bit to 
enable the generation of corrected machine-check error interrupt (CMCI). If CMCI interface is not supported for 
a particular bank (but IA32_MCG_CAP[10] = 1), this bit is writeable but will always return 0 for that bank. This 
bit also indicates CMCI is supported or not supported in the corresponding bank. See Section 15.5 for details of 
software detection of CMCI facility.

Some microarchitectural sub-systems that are the source of corrected MC errors may be shared by more than one 
logical processors. Consequently, the facilities for reporting MC errors and controlling mechanisms may be shared 
by more than one logical processors. For example, the IA32_MCi_CTL2 MSR is shared between logical processors 
sharing a processor core. Software is responsible to program IA32_MCi_CTL2 MSR in a consistent manner with 
CMCI delivery and usage. 
After processor reset, IA32_MCi_CTL2 MSRs are zero’ed.

15.3.2.6  IA32_MCG Extended Machine Check State MSRs

The Pentium 4 and Intel Xeon processors implement a variable number of extended machine-check state MSRs. 
The MCG_EXT_P flag in the IA32_MCG_CAP MSR indicates the presence of these extended registers, and the 
MCG_EXT_CNT field indicates the number of these registers actually implemented. See Section 15.3.1.1, 
“IA32_MCG_CAP MSR.” Also see Table 15-4.

011 Memory Address

100 to 110 Reserved

111 Generic

Figure 15-9.  IA32_MCi_CTL2 Register

Table 15-3.  Address Mode in IA32_MCi_MISC[8:6] 

IA32_MCi_MISC[8:6] Encoding Definition

CMCI_EN—Enable/disable CMCI

63 15

Reserved

29

Corrected error count threshold

01431 30

Reserved
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In processors with support for Intel 64 architecture, 64-bit machine check state MSRs are aliased to the legacy 
MSRs. In addition, there may be registers beyond IA32_MCG_MISC. These may include up to five reserved MSRs 
(IA32_MCG_RESERVED[1:5]) and save-state MSRs for registers introduced in 64-bit mode. See Table 15-5. 

Table 15-4.  Extended Machine Check State MSRs
in Processors Without Support for Intel 64 Architecture

MSR Address Description

IA32_MCG_EAX 180H Contains state of the EAX register at the time of the machine-check error.

IA32_MCG_EBX 181H Contains state of the EBX register at the time of the machine-check error.

IA32_MCG_ECX 182H Contains state of the ECX register at the time of the machine-check error.

IA32_MCG_EDX 183H Contains state of the EDX register at the time of the machine-check error.

IA32_MCG_ESI 184H Contains state of the ESI register at the time of the machine-check error.

IA32_MCG_EDI 185H Contains state of the EDI register at the time of the machine-check error.

IA32_MCG_EBP 186H Contains state of the EBP register at the time of the machine-check error.

IA32_MCG_ESP 187H Contains state of the ESP register at the time of the machine-check error.

IA32_MCG_EFLAGS 188H Contains state of the EFLAGS register at the time of the machine-check error.

IA32_MCG_EIP 189H Contains state of the EIP register at the time of the machine-check error.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred during DS normal 
operation.

Table 15-5.  Extended Machine Check State MSRs 
In Processors With Support For Intel 64 Architecture

MSR Address Description

IA32_MCG_RAX 180H Contains state of the RAX register at the time of the machine-check error.

IA32_MCG_RBX 181H Contains state of the RBX register at the time of the machine-check error.

IA32_MCG_RCX 182H Contains state of the RCX register at the time of the machine-check error.

IA32_MCG_RDX 183H Contains state of the RDX register at the time of the machine-check error.

IA32_MCG_RSI 184H Contains state of the RSI register at the time of the machine-check error.

IA32_MCG_RDI 185H Contains state of the RDI register at the time of the machine-check error.

IA32_MCG_RBP 186H Contains state of the RBP register at the time of the machine-check error.

IA32_MCG_RSP 187H Contains state of the RSP register at the time of the machine-check error.

IA32_MCG_RFLAGS 188H Contains state of the RFLAGS register at the time of the machine-check error.

IA32_MCG_RIP 189H Contains state of the RIP register at the time of the machine-check error.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred during DS normal 
operation.

IA32_MCG_
RSERVED[1:5]

18BH-
18FH

These registers, if present, are reserved.

IA32_MCG_R8 190H Contains state of the R8 register at the time of the machine-check error.

IA32_MCG_R9 191H Contains state of the R9 register at the time of the machine-check error.

IA32_MCG_R10 192H Contains state of the R10 register at the time of the machine-check error.

IA32_MCG_R11 193H Contains state of the R11 register at the time of the machine-check error.

IA32_MCG_R12 194H Contains state of the R12 register at the time of the machine-check error.

IA32_MCG_R13 195H Contains state of the R13 register at the time of the machine-check error.

IA32_MCG_R14 196H Contains state of the R14 register at the time of the machine-check error.
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When a machine-check error is detected on a Pentium 4 or Intel Xeon processor, the processor saves the state of 
the general-purpose registers, the R/EFLAGS register, and the R/EIP in these extended machine-check state MSRs. 
This information can be used by a debugger to analyze the error.
These registers are read/write to zero registers. This means software can read them; but if software writes to 
them, only all zeros is allowed. If software attempts to write a non-zero value into one of these registers, a general-
protection (#GP) exception is generated. These registers are cleared on a hardware reset (power-up or RESET), 
but maintain their contents following a soft reset (INIT reset).

15.3.3 Mapping of the Pentium Processor Machine-Check Errors
to the Machine-Check Architecture

The Pentium processor reports machine-check errors using two registers: P5_MC_TYPE and P5_MC_ADDR. The 
Pentium 4, Intel Xeon, Intel Atom, and P6 family processors map these registers to the IA32_MCi_STATUS and 
IA32_MCi_ADDR in the error-reporting register bank. This bank reports on the same type of external bus errors 
reported in P5_MC_TYPE and P5_MC_ADDR. 
The information in these registers can then be accessed in two ways:
• By reading the IA32_MCi_STATUS and IA32_MCi_ADDR registers as part of a general machine-check exception 

handler written for Pentium 4, Intel Atom and P6 family processors.
• By reading the P5_MC_TYPE and P5_MC_ADDR registers using the RDMSR instruction.
The second capability permits a machine-check exception handler written to run on a Pentium processor to be run 
on a Pentium 4, Intel Xeon, Intel Atom, or P6 family processor. There is a limitation in that information returned by 
the Pentium 4, Intel Xeon, Intel Atom, and P6 family processors is encoded differently than information returned 
by the Pentium processor. To run a Pentium processor machine-check exception handler on a Pentium 4, Intel 
Xeon, Intel Atom, or P6 family processor; the handler must be written to interpret P5_MC_TYPE encodings 
correctly.

15.4 ENHANCED CACHE ERROR REPORTING

Starting with Intel Core Duo processors, cache error reporting was enhanced. In earlier Intel processors, cache 
status was based on the number of correction events that occurred in a cache. In the new paradigm, called 
“threshold-based error status”, cache status is based on the number of lines (ECC blocks) in a cache that incur 
repeated corrections. The threshold is chosen by Intel, based on various factors. If a processor supports threshold-
based error status, it sets IA32_MCG_CAP[11] (MCG_TES_P) to 1; if not, to 0. 
A processor that supports enhanced cache error reporting contains hardware that tracks the operating status of 
certain caches and provides an indicator of their “health”. The hardware reports a “green” status when the number 
of lines that incur repeated corrections is at or below a pre-defined threshold, and a “yellow” status when the 
number of affected lines exceeds the threshold. Yellow status means that the cache reporting the event is operating 
correctly, but you should schedule the system for servicing within a few weeks.
Intel recommends that you rely on this mechanism for structures supported by threshold-base error reporting. 
The CPU/system/platform response to a yellow event should be less severe than its response to an uncorrected 
error. An uncorrected error means that a serious error has actually occurred, whereas the yellow condition is a 
warning that the number of affected lines has exceeded the threshold but is not, in itself, a serious event: the error 
was corrected and system state was not compromised. 
The green/yellow status indicator is not a foolproof early warning for an uncorrected error resulting from the failure 
of two bits in the same ECC block. Such a failure can occur and cause an uncorrected error before the yellow 
threshold is reached. However, the chance of an uncorrected error increases as the number of affected lines 
increases. 

IA32_MCG_R15 197H Contains state of the R15 register at the time of the machine-check error.

Table 15-5.  Extended Machine Check State MSRs 
In Processors With Support For Intel 64 Architecture (Contd.)

MSR Address Description
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15.5 CORRECTED MACHINE CHECK ERROR INTERRUPT

Corrected machine-check error interrupt (CMCI) is an architectural enhancement to the machine-check architec-
ture. It provides capabilities beyond those of threshold-based error reporting (Section 15.4). With threshold-based 
error reporting, software is limited to use periodic polling to query the status of hardware corrected MC errors. 
CMCI provides a signaling mechanism to deliver a local interrupt based on threshold values that software can 
program using the IA32_MCi_CTL2 MSRs. 
CMCI is disabled by default. System software is required to enable CMCI for each IA32_MCi bank that support the 
reporting of hardware corrected errors if IA32_MCG_CAP[10] = 1.
System software use IA32_MCi_CTL2 MSR to enable/disable the CMCI capability for each bank and program 
threshold values into IA32_MCi_CTL2 MSR. CMCI is not affected by the CR4.MCE bit, and it is not affected by the 
IA32_MCi_CTL MSR’s.
To detect the existence of thresholding for a given bank, software writes only bits 14:0 with the threshold value. If 
the bits persist, then thresholding is available (and CMCI is available). If the bits are all 0's, then no thresholding 
exists. To detect that CMCI signaling exists, software writes a 1 to bit 30 of the MCi_CTL2 register. Upon subse-
quent read, If Bit 30 = 0, no CMCI is available for this bank. If Bit 30 = 1, then CMCI is available and enabled.

15.5.1 CMCI Local APIC Interface

The operation of CMCI is depicted in Figure 15-10. 

CMCI interrupt delivery is configured by writing to the LVT CMCI register entry in the local APIC register space at 
default address of APIC_BASE + 2F0H. A CMCI interrupt can be delivered to more than one logical processors if 
multiple logical processors are affected by the associated MC errors. For example, if a corrected bit error in a cache 
shared by two logical processors caused a CMCI, the interrupt will be delivered to both logical processors sharing 
that microarchitectural sub-system. Similarly, package level errors may cause CMCI to be delivered to all logical 
processors within the package. However, system level errors will not be handled by CMCI.
See Section 10.5.1, “Local Vector Table” for details regarding the LVT CMCI register.

15.5.2 System Software Recommendation for Managing CMCI and Machine Check Resources

System software must enable and manage CMCI, set up interrupt handlers to service CMCI interrupts delivered to 
affected logical processors, program CMCI LVT entry, and query machine check banks that are shared by more 
than one logical processors. 
This section describes techniques system software can implement to manage CMCI initialization, service CMCI 
interrupts in a efficient manner to minimize contentions to access shared MSR resources.

Figure 15-10.  CMCI Behavior
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15.5.2.1  CMCI Initialization

Although a CMCI interrupt may be delivered to more than one logical processors depending on the nature of the 
corrected MC error, only one instance of the interrupt service routine needs to perform the necessary service and 
make queries to the machine-check banks. The following steps describes a technique that limits the amount of 
work the system has to do in response to a CMCI.
• To provide maximum flexibility, system software should define per-thread data structure for each logical 

processor to allow equal-opportunity and efficient response to interrupt delivery. Specifically, the per-thread 
data structure should include a set of per-bank fields to track which machine check bank it needs to access in 
response to a delivered CMCI interrupt. The number of banks that needs to be tracked is determined by 
IA32_MCG_CAP[7:0].

• Initialization of per-thread data structure. The initialization of per-thread data structure must be done serially 
on each logical processor in the system. The sequencing order to start the per-thread initialization between 
different logical processor is arbitrary. But it must observe the following specific detail to satisfy the shared 
nature of specific MSR resources:

a. Each thread initializes its data structure to indicate that it does not own any MC bank registers.

b. Each thread examines IA32_MCi_CTL2[30] indicator for each bank to determine if another thread has 
already claimed ownership of that bank.

• If IA32_MCi_CTL2[30] had been set by another thread. This thread can not own bank i and should 
proceed to step b. and examine the next machine check bank until all of the machine check banks are 
exhausted. 

• If IA32_MCi_CTL2[30] = 0, proceed to step c.

c. Check whether writing a 1 into IA32_MCi_CTL2[30] can return with 1 on a subsequent read to determine 
this bank can support CMCI. 

• If IA32_MCi_CTL2[30] = 0, this bank does not support CMCI. This thread can not own bank i and should 
proceed to step b. and examine the next machine check bank until all of the machine check banks are 
exhausted.

• If IA32_MCi_CTL2[30] = 1, modify the per-thread data structure to indicate this thread claims 
ownership to the MC bank; proceed to initialize the error threshold count (bits 15:0) of that bank as 
described in Chapter 15, “CMCI Threshold Management”. Then proceed to step b. and examine the next 
machine check bank until all of the machine check banks are exhausted.

• After the thread has examined all of the machine check banks, it sees if it owns any MC banks to service CMCI. 
If any bank has been claimed by this thread:

— Ensure that the CMCI interrupt handler has been set up as described in Chapter 15, “CMCI Interrupt 
Handler”.

— Initialize the CMCI LVT entry, as described in Section 15.5.1, “CMCI Local APIC Interface”.

— Log and clear all of IA32_MCi_Status registers for the banks that this thread owns. This will allow new 
errors to be logged.

15.5.2.2  CMCI Threshold Management

The Corrected MC error threshold field, IA32_MCi_CTL2[15:0], is architecturally defined. Specifically, all these bits 
are writable by software, but different processor implementations may choose to implement less than 15 bits as 
threshold for the overflow comparison with IA32_MCi_STATUS[52:38]. The following describes techniques that 
software can manage CMCI threshold to be compatible with changes in implementation characteristics:
• Software can set the initial threshold value to 1 by writing 1 to IA32_MCi_CTL2[15:0]. This will cause overflow 

condition on every corrected MC error and generates a CMCI interrupt.
• To increase the threshold and reduce the frequency of CMCI servicing:

a. Find the maximum threshold value a given processor implementation supports. The steps are:

• Write 7FFFH to IA32_MCi_CTL2[15:0],
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• Read back IA32_MCi_CTL2[15:0], the lower 15 bits (14:0) is the maximum threshold supported by the 
processor.

b. Increase the threshold to a value below the maximum value discovered using step a.

15.5.2.3  CMCI Interrupt Handler

The following describes techniques system software may consider to implement a CMCI service routine:
• The service routine examines its private per-thread data structure to check which set of MC banks it has 

ownership. If the thread does not have ownership of a given MC bank, proceed to the next MC bank. Ownership 
is determined at initialization time which is described in Section [Cross Reference to 14.5.2.1].

• If the thread had claimed ownership to an MC bank,

— Check for valid MC errors by testing IA32_MCi_STATUS.VALID[63],

• Log MC errors,

• Clear the MSRs of this MC bank. 

— If no valid error, proceed to next MC bank.
• When all MC banks have been processed, exit service routine and return to original program execution.
This technique will allow each logical processors to handle corrected MC errors independently and requires no 
synchronization to access shared MSR resources.

15.6 RECOVERY OF UNCORRECTED RECOVERABLE (UCR) ERRORS 

Recovery of uncorrected recoverable machine check errors is an enhancement in machine-check architecture. The 
first processor that supports this feature is 45nm Intel 64 processor on which CPUID reports 
DisplayFamily_DisplayModel as 06H_2EH (see CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). This allow system software to 
perform recovery action on certain class of uncorrected errors and continue execution.

15.6.1 Detection of Software Error Recovery Support

Software must use bit 24 of IA32_MCG_CAP (MCG_SER_P) to detect the presence of software error recovery 
support (see Figure 15-2). When IA32_MCG_CAP[24] is set, this indicates that the processor supports software 
error recovery. When this bit is clear, this indicates that there is no support for error recovery from the processor 
and the primary responsibility of the machine check handler is logging the machine check error information and 
shutting down the system. 
The new class of architectural MCA errors from which system software can attempt recovery is called Uncorrected 
Recoverable (UCR) Errors. UCR errors are uncorrected errors that have been detected and signaled but have not 
corrupted the processor context. For certain UCR errors, this means that once system software has performed a 
certain recovery action, it is possible to continue execution on this processor. UCR error reporting provides an error 
containment mechanism for data poisoning. The machine check handler will use the error log information from the 
error reporting registers to analyze and implement specific error recovery actions for UCR errors. 

15.6.2 UCR Error Reporting and Logging

IA32_MCi_STATUS MSR is used for reporting UCR errors and existing corrected or uncorrected errors. The defini-
tions of IA32_MCi_STATUS, including bit fields to identify UCR errors, is shown in Figure 15-6. UCR errors can be 
signaled through either the corrected machine check interrupt (CMCI) or machine check exception (MCE) path 
depending on the type of the UCR error. 
When IA32_MCG_CAP[24] is set, a UCR error is indicated by the following bit settings in the IA32_MCi_STATUS 
register: 
• Valid (bit 63) = 1
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• UC (bit 61) = 1
• PCC (bit 57) = 0
Additional information from the IA32_MCi_MISC and the IA32_MCi_ADDR registers for the UCR error are available 
when the ADDRV and the MISCV flags in the IA32_MCi_STATUS register are set (see Section 15.3.2.4). The MCA 
error code field of the IA32_MCi_STATUS register indicates the type of UCR error. System software can interpret 
the MCA error code field to analyze and identify the necessary recovery action for the given UCR error.
In addition, the IA32_MCi_STATUS register bit fields, bits 56:55, are defined (see Figure 15-6) to provide addi-
tional information to help system software to properly identify the necessary recovery action for the UCR error:
• S (Signaling) flag, bit 56 - Indicates (when set) that a machine check exception was generated for the UCR 

error reported in this MC bank and system software needs to check the AR flag and the MCA error code fields in 
the IA32_MCi_STATUS register to identify the necessary recovery action for this error. When the S flag in the 
IA32_MCi_STATUS register is clear, this UCR error was not signaled via a machine check exception and instead 
was reported as a corrected machine check (CMC). System software is not required to take any recovery action 
when the S flag in the IA32_MCi_STATUS register is clear. 

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA error code specific recovery action must be 
performed by system software at the time this error was signaled. This recovery action must be completed 
successfully before any additional work is scheduled for this processor When the RIPV flag in the 
IA32_MCG_STATUS is clear, an alternative execution stream needs to be provided; when the MCA error code 
specific recovery specific recovery action cannot be successfully completed, system software must shut down 
the system. When the AR flag in the IA32_MCi_STATUS register is clear, system software may still take MCA 
error code specific recovery action but this is optional; system software can safely resume program execution 
at the instruction pointer saved on the stack from the machine check exception when the RIPV flag in the 
IA32_MCG_STATUS register is set. 

Both the S and the AR flags in the IA32_MCi_STATUS register are defined to be sticky bits, which mean that once 
set, the processor does not clear them. Only software and good power-on reset can clear the S and the AR-flags. 
Both the S and the AR flags are only set when the processor reports the UCR errors (MCG_CAP[24] is set).

15.6.3 UCR Error Classification

With the S and AR flag encoding in the IA32_MCi_STATUS register, UCR errors can be classified as:
• Uncorrected no action required (UCNA) - is a UCR error that is not signaled via a machine check exception and, 

instead, is reported to system software as a corrected machine check error. UCNA errors indicate that some 
data in the system is corrupted, but the data has not been consumed and the processor state is valid and you 
may continue execution on this processor. UCNA errors require no action from system software to continue 
execution. A UNCA error is indicated with UC=1, PCC=0, S=0 and AR=0 in the IA32_MCi_STATUS register.

• Software recoverable action optional (SRAO) - a UCR error is signaled via a machine check exception and a 
system software recovery action is optional and not required to continue execution from this machine check 
exception. SRAO errors indicate that some data in the system is corrupt, but the data has not been consumed 
and the processor state is valid. SRAO errors provide the additional error information for system software to 
perform a recovery action. An SRAO error is indicated with UC=1, PCC=0, S=1, EN=1 and AR=0 in the 
IA32_MCi_STATUS register. Recovery actions for SRAO errors are MCA error code specific. The MISCV and the 
ADDRV flags in the IA32_MCi_STATUS register are set when the additional error information is available from 
the IA32_MCi_MISC and the IA32_MCi_ADDR registers. System software needs to inspect the MCA error code 
fields in the IA32_MCi_STATUS register to identify the specific recovery action for a given SRAO error. If MISCV 
and ADDRV are not set, it is recommended that no system software error recovery be performed however, you 
can resume execution.

• Software recoverable action required (SRAR) - a UCR error that requires system software to take a recovery 
action on this processor before scheduling another stream of execution on this processor. SRAR errors indicate 
that the error was detected and raised at the point of the consumption in the execution flow. An SRAR error is 
indicated with UC=1, PCC=0, S=1, EN=1 and AR=1 in the IA32_MCi_STATUS register. Recovery actions are 
MCA error code specific. The MISCV and the ADDRV flags in the IA32_MCi_STATUS register are set when the 
additional error information is available from the IA32_MCi_MISC and the IA32_MCi_ADDR registers. System 
software needs to inspect the MCA error code fields in the IA32_MCi_STATUS register to identify the specific 
recovery action for a given SRAR error. If MISCV and ADDRV are not set, it is recommended that system 
software shutdown the system.
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Table 15-6 summarizes UCR, corrected, and uncorrected errors. 

15.6.4 UCR Error Overwrite Rules

In general, the overwrite rules are as follows:
• UCR errors will overwrite corrected errors. 
• Uncorrected (PCC=1) errors overwrite UCR (PCC=0) errors.   
• UCR errors are not written over previous UCR errors. 
• Corrected errors do not write over previous UCR errors. 
Regardless of whether the 1st error is retained or the 2nd error is overwritten over the 1st error, the OVER flag in 
the IA32_MCi_STATUS register will be set to indicate an overflow condition. As the S flag and AR flag in the 
IA32_MCi_STATUS register are defined to be sticky flags, a second event cannot clear these 2 flags once set, 
however the MC bank information may be filled in for the 2nd error. The table below shows the overwrite rules and 
how to treat a second error if the first event is already logged in a MC bank along with the resulting bit setting of 
the UC, PCC, and AR flags in the IA32_MCi_STATUS register. As UCNA and SRA0 errors do not require recovery 
action from system software to continue program execution, a system reset by system software is not required 
unless the AR flag or PCC flag is set for the UCR overflow case (OVER=1, VAL=1, UC=1, PCC=0). 
Table 15-7 lists overwrite rules for uncorrected errors, corrected errors, and uncorrected recoverable errors. 

Table 15-6.  MC Error Classifications

Type of Error1

NOTES:

1. VAL=1, EN=1 for UC=1 errors; OVER=0 for UC=1 and PCC=0 errors SRAR, SRAO and UCNA errors are supported by the processor only 
when IA32_MCG_CAP[24] (MCG_SER_P) is set. 

UC PCC S AR Signaling Software Action Example

Uncorrected Error (UC) 1 1 x x MCE Reset the system

SRAR 1 0 1 1 MCE For known MCACOD, take specific 
recovery action;

For unknown MCACOD, must 
bugcheck

Cache to processor load 
error

SRAO 1 0 1 0 MCE For known MCACOD, take specific 
recovery action;

For unknown MCACOD, OK to keep 
the system running

Patrol scrub and explicit 
writeback poison errors

UCNA 1 0 0 0 CMC Log the error and Ok to keep the 
system running

Poison detection error

Corrected Error (CE) 0 0 x x CMC Log the error and no corrective 
action required

ECC in caches and 
memory

Table 15-7.  Overwrite Rules for UC, CE, and UCR Errors

First Event Second Event UC PCC S AR MCA Bank Reset System

CE UCR 1 0 0 if UCNA, else 1 1 if SRAR, else 0 second yes, if AR=1

UCR CE 1 0 0 if UCNA, else 1 1 if SRAR, else 0 first  yes, if AR=1

UCNA UCNA 1 0 0 0 first no

UCNA SRAO 1 0 1 0 first no

UCNA SRAR 1 0 1 1 first yes

SRAO UCNA 1 0 1 0 first no

SRAO SRAO 1 0 1 0 first no

SRAO SRAR 1 0 1 1 first yes

SRAR UCNA 1 0 1 1 first yes

SRAR SRAO 1 0 1 1 first yes
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15.7 MACHINE-CHECK AVAILABILITY

The machine-check architecture and machine-check exception (#MC) are model-specific features. Software can 
execute the CPUID instruction to determine whether a processor implements these features. Following the execu-
tion of the CPUID instruction, the settings of the MCA flag (bit 14) and MCE flag (bit 7) in EDX indicate whether the 
processor implements the machine-check architecture and machine-check exception.

15.8 MACHINE-CHECK INITIALIZATION

To use the processors machine-check architecture, software must initialize the processor to activate the machine-
check exception and the error-reporting mechanism. 
Example 15-1 gives pseudocode for performing this initialization. This pseudocode checks for the existence of the 
machine-check architecture and exception; it then enables machine-check exception and the error-reporting 
register banks. The pseudocode shown is compatible with the Pentium 4, Intel Xeon, Intel Atom, P6 family, and 
Pentium processors. 
Following power up or power cycling, IA32_MCi_STATUS registers are not guaranteed to have valid data until after 
they are initially cleared to zero by software (as shown in the initialization pseudocode in Example 15-1). In addi-
tion, when using P6 family processors, software must set MCi_STATUS registers to zero when doing a soft-reset.

Example 15-1.  Machine-Check Initialization Pseudocode

Check CPUID Feature Flags for MCE and MCA support

IF CPU supports MCE

THEN

IF CPU supports MCA

THEN

IF (IA32_MCG_CAP.MCG_CTL_P = 1)

(* IA32_MCG_CTL register is present *)

THEN

IA32_MCG_CTL ← FFFFFFFFFFFFFFFFH;

(* enables all MCA features *)

FI

IF (IA32_MCG_CAP.MCG_LMCE_P = 1 and IA32_FEATURE_CONTROL.LOCK = 1 and IA32_FEATURE_CONTROL.LMCE_ON= 1)

(* IA32_MCG_EXT_CTL register is present and platform has enabled LMCE to permit system software to use LMCE *)

THEN

IA32_MCG_EXT_CTL ← IA32_MCG_EXT_CTL | 01H;

(* System software enables LMCE capability for hardware to signal MCE to a single logical processor*)

FI

(* Determine number of error-reporting banks supported *)

COUNT← IA32_MCG_CAP.Count;

MAX_BANK_NUMBER ← COUNT - 1;

IF (Processor Family is 6H and Processor EXTMODEL:MODEL is less than 1AH)

THEN

(* Enable logging of all errors except for MC0_CTL register *)

FOR error-reporting banks (1 through MAX_BANK_NUMBER)

DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;

SRAR SRAR 1 0 1 1 first yes

UCR UC 1 1 undefined undefined second yes

UC UCR 1 1 undefined undefined first yes 

Table 15-7.  Overwrite Rules for UC, CE, and UCR Errors

First Event Second Event UC PCC S AR MCA Bank Reset System
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OD

ELSE

(* Enable logging of all errors including MC0_CTL register *)

FOR error-reporting banks (0 through MAX_BANK_NUMBER)

DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;

OD

FI

(* BIOS clears all errors only on power-on reset *)

IF (BIOS detects Power-on reset)

THEN 

FOR error-reporting banks (0 through MAX_BANK_NUMBER)

DO

IA32_MCi_STATUS ← 0;

OD

ELSE

FOR error-reporting banks (0 through MAX_BANK_NUMBER)

DO

(Optional for BIOS and OS) Log valid errors

(OS only) IA32_MCi_STATUS ← 0;

OD

FI

FI

Setup the Machine Check Exception (#MC) handler for vector 18 in IDT

Set the MCE bit (bit 6) in CR4 register to enable Machine-Check Exceptions

FI

15.9 INTERPRETING THE MCA ERROR CODES

When the processor detects a machine-check error condition, it writes a 16-bit error code to the MCA error code 
field of one of the IA32_MCi_STATUS registers and sets the VAL (valid) flag in that register. The processor may also 
write a 16-bit model-specific error code in the IA32_MCi_STATUS register depending on the implementation of the 
machine-check architecture of the processor.
The MCA error codes are architecturally defined for Intel 64 and IA-32 processors. To determine the cause of a 
machine-check exception, the machine-check exception handler must read the VAL flag for each 
IA32_MCi_STATUS register. If the flag is set, the machine check-exception handler must then read the MCA error 
code field of the register. It is the encoding of the MCA error code field [15:0] that determines the type of error 
being reported and not the register bank reporting it.
There are two types of MCA error codes: simple error codes and compound error codes. 

15.9.1 Simple Error Codes

Table 15-8 shows the simple error codes. These unique codes indicate global error information.

Table 15-8.  IA32_MCi_Status [15:0] Simple Error Code Encoding 

Error Code Binary Encoding Meaning

No Error 0000 0000 0000 0000 No error has been reported to this bank of error-reporting 
registers.

Unclassified 0000 0000 0000 0001 This error has not been classified into the MCA error classes.

Microcode ROM Parity Error 0000 0000 0000 0010 Parity error in internal microcode ROM

External Error 0000 0000 0000 0011 The BINIT# from another processor caused this processor to 
enter machine check.1
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15.9.2 Compound Error Codes

Compound error codes describe errors related to the TLBs, memory, caches, bus and interconnect logic, and 
internal timer. A set of sub-fields is common to all of compound errors. These sub-fields describe the type of access, 
level in the cache hierarchy, and type of request. Table 15-9 shows the general form of the compound error codes. 

The “Interpretation” column in the table indicates the name of a compound error. The name is constructed by 
substituting mnemonics for the sub-field names given within curly braces. For example, the error code 
ICACHEL1_RD_ERR is constructed from the form: 

{TT}CACHE{LL}_{RRRR}_ERR,

where {TT} is replaced by I, {LL} is replaced by L1, and {RRRR} is replaced by RD.

For more information on the “Form” and “Interpretation” columns, see Sections Section 15.9.2.1, “Correction 
Report Filtering (F) Bit” through Section 15.9.2.5, “Bus and Interconnect Errors”.

15.9.2.1  Correction Report Filtering (F) Bit 

Starting with Intel Core Duo processors, bit 12 in the “Form” column in Table 15-9 is used to indicate that a partic-
ular posting to a log may be the last posting for corrections in that line/entry, at least for some time:
• 0 in bit 12 indicates “normal” filtering (original P6/Pentium4/Atom/Xeon processor meaning).
• 1 in bit 12 indicates “corrected” filtering (filtering is activated for the line/entry in the posting). Filtering means 

that some or all of the subsequent corrections to this entry (in this structure) will not be posted. The enhanced 
error reporting introduced with the Intel Core Duo processors is based on tracking the lines affected by 
repeated corrections (see Section 15.4, “Enhanced Cache Error reporting”). This capability is indicated by 
IA32_MCG_CAP[11]. Only the first few correction events for a line are posted; subsequent redundant 
correction events to the same line are not posted. Uncorrected events are always posted. 

The behavior of error filtering after crossing the yellow threshold is model-specific.

FRC Error 0000 0000 0000 0100 FRC (functional redundancy check) master/slave error

Internal Parity Error 0000 0000 0000 0101 Internal parity error.

SMM Handler Code Access 
Violation

0000 0000 0000 0110 An attempt was made by the SMM Handler to execute 
outside the ranges specified by SMRR.

Internal Timer Error 0000 0100 0000 0000 Internal timer error.

I/O Error 0000 1110 0000 1011 generic I/O error.

Internal Unclassified 0000 01xx xxxx xxxx Internal unclassified errors. 2

NOTES:

1. BINIT# assertion will cause a machine check exception if the processor (or any processor on the same external bus) has BINIT# 
observation enabled during power-on configuration (hardware strapping) and if machine check exceptions are enabled (by setting 
CR4.MCE = 1).

2. At least one X must equal one. Internal unclassified errors have not been classified. 

Table 15-9.  IA32_MCi_Status [15:0] Compound Error Code Encoding 

Type Form Interpretation

Generic Cache Hierarchy 000F 0000 0000 11LL Generic cache hierarchy error

TLB Errors 000F 0000 0001 TTLL {TT}TLB{LL}_ERR

Memory Controller Errors 000F 0000 1MMM CCCC {MMM}_CHANNEL{CCCC}_ERR

Cache Hierarchy Errors 000F 0001 RRRR TTLL {TT}CACHE{LL}_{RRRR}_ERR

Bus and Interconnect Errors 000F 1PPT RRRR IILL BUS{LL}_{PP}_{RRRR}_{II}_{T}_ERR

Table 15-8.  IA32_MCi_Status [15:0] Simple Error Code Encoding  (Contd.)
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15.9.2.2  Transaction Type (TT) Sub-Field

The 2-bit TT sub-field (Table 15-10) indicates the type of transaction (data, instruction, or generic). The sub-field 
applies to the TLB, cache, and interconnect error conditions. Note that interconnect error conditions are primarily 
associated with P6 family and Pentium processors, which utilize an external APIC bus separate from the system 
bus. The generic type is reported when the processor cannot determine the transaction type.

15.9.2.3  Level (LL) Sub-Field

The 2-bit LL sub-field (see Table 15-11) indicates the level in the memory hierarchy where the error occurred (level 
0, level 1, level 2, or generic). The LL sub-field also applies to the TLB, cache, and interconnect error conditions. 
The Pentium 4, Intel Xeon, Intel Atom, and P6 family processors support two levels in the cache hierarchy and one 
level in the TLBs. Again, the generic type is reported when the processor cannot determine the hierarchy level.

15.9.2.4  Request (RRRR) Sub-Field

The 4-bit RRRR sub-field (see Table 15-12) indicates the type of action associated with the error. Actions include 
read and write operations, prefetches, cache evictions, and snoops. Generic error is returned when the type of 
error cannot be determined. Generic read and generic write are returned when the processor cannot determine the 
type of instruction or data request that caused the error. Eviction and snoop requests apply only to the caches. All 
of the other requests apply to TLBs, caches and interconnects.

15.9.2.5  Bus and Interconnect Errors

The bus and interconnect errors are defined with the 2-bit PP (participation), 1-bit T (time-out), and 2-bit II 
(memory or I/O) sub-fields, in addition to the LL and RRRR sub-fields (see Table 15-13). The bus error conditions 
are implementation dependent and related to the type of bus implemented by the processor. Likewise, the inter-

Table 15-10.  Encoding for TT (Transaction Type) Sub-Field

Transaction Type Mnemonic Binary Encoding

Instruction I 00

Data D 01

Generic G 10

Table 15-11.  Level Encoding for LL (Memory Hierarchy Level) Sub-Field 

Hierarchy Level Mnemonic Binary Encoding

Level 0 L0 00

Level 1 L1 01

Level 2 L2 10

Generic LG 11

Table 15-12.  Encoding of Request (RRRR) Sub-Field 

Request Type Mnemonic Binary Encoding

Generic Error ERR 0000

Generic Read RD 0001

Generic Write WR 0010

Data Read DRD 0011

Data Write DWR 0100

Instruction Fetch IRD 0101

Prefetch PREFETCH 0110

Eviction EVICT 0111

Snoop SNOOP 1000
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connect error conditions are predicated on a specific implementation-dependent interconnect model that describes 
the connections between the different levels of the storage hierarchy. The type of bus is implementation depen-
dent, and as such is not specified in this document. A bus or interconnect transaction consists of a request involving 
an address and a response.

15.9.2.6  Memory Controller Errors

The memory controller errors are defined with the 3-bit MMM (memory transaction type), and 4-bit CCCC (channel) 
sub-fields. The encodings for MMM and CCCC are defined in Table 15-14.

15.9.3 Architecturally Defined UCR Errors 

Software recoverable compound error code are defined in this section.

15.9.3.1  Architecturally Defined SRAO Errors

The following two SRAO errors are architecturally defined. 
• UCR Errors detected by memory controller scrubbing; and
• UCR Errors detected during L3 cache (L3) explicit writebacks.

Table 15-13.  Encodings of PP, T, and II Sub-Fields 

Sub-Field Transaction Mnemonic Binary Encoding

PP (Participation) Local processor* originated request SRC 00

Local processor* responded to request RES 01

Local processor* observed error as third party OBS 10

Generic 11

T (Time-out) Request timed out TIMEOUT 1

Request did not time out NOTIMEOUT 0

II (Memory or I/O) Memory Access M 00

Reserved 01

I/O IO 10

Other transaction 11

NOTE:

* Local processor differentiates the processor reporting the error from other system components (including the APIC, other proces-
sors, etc.).

Table 15-14.  Encodings of MMM and CCCC Sub-Fields 

Sub-Field Transaction Mnemonic Binary Encoding

MMM Generic undefined request GEN 000

Memory read error RD 001

Memory write error WR 010

Address/Command Error AC 011

Memory Scrubbing Error MS 100

Reserved 101-111

CCCC Channel number CHN 0000-1110

Channel not specified 1111
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The MCA error code encodings for these two architecturally-defined UCR errors corresponds to sub-classes of 
compound MCA error codes (see Table 15-9). Their values and compound encoding format are given in Table 
15-15. 

Table 15-16 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally defined SRAO errors. 

For both the memory scrubbing and L3 explicit writeback errors, the ADDRV and MISCV flags in the 
IA32_MCi_STATUS register are set to indicate that the offending physical address information is available from the 
IA32_MCi_MISC and the IA32_MCi_ADDR registers.  For the memory scrubbing and L3 explicit writeback errors, 
the address mode in the IA32_MCi_MISC register should be set as physical address mode (010b) and the address 
LSB information in the IA32_MCi_MISC register should indicate the lowest valid address bit in the address informa-
tion provided from the IA32_MCi_ADDR register. 
MCE signal is broadcast to all logical processors as outlined in Section 15.10.4.1. If LMCE is supported and enabled, 
some errors (not limited to UCR errors) may be delivered to only a single logical processor. System software should 
consult IA32_MCG_STATUS.LMCE_S to determine if the MCE signaled is only to this logical processor. 
IA32_MCi_STATUS banks can be shared by logical processors within a core or within the same package. So several 
logical processors may find an SRAO error in the shared IA32_MCi_STATUS bank but other processors do not find 
it in any of the IA32_MCi_STATUS banks. Table 15-17 shows the RIPV and EIPV flag indication in the 
IA32_MCG_STATUS register for the memory scrubbing and L3 explicit writeback errors on both the reporting and 
non-reporting logical processors. 

15.9.3.2  Architecturally Defined SRAR Errors

The following two SRAR errors are architecturally defined. 
• UCR Errors detected on data load; and
• UCR Errors detected on instruction fetch.

Table 15-15.  MCA Compound Error Code Encoding for SRAO Errors

Type MCACOD Value MCA Error Code Encoding1

NOTES:

1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error is 0, indicating "normal" filtering. 

Memory Scrubbing 0xC0 - 0xCF 0000_0000_1100_CCCC

000F 0000 1MMM CCCC (Memory Controller Error), where

Memory subfield MMM = 100B (memory scrubbing)

Channel subfield CCCC = channel # or generic

L3 Explicit Writeback 0x17A 0000_0001_0111_1010

000F 0001 RRRR TTLL (Cache Hierarchy Error) where

Request subfields RRRR = 0111B (Eviction)

Transaction Type subfields TT = 10B (Generic)

Level subfields LL = 10B 

Table 15-16.  IA32_MCi_STATUS Values for SRAO Errors

SRAO Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Memory Scrubbing 1 0 1 1 1 1 0 1 0 0xC0-0xCF

L3 Explicit Writeback 1 0 1 1 1 1 0 1 0 0x17A

Table 15-17.  IA32_MCG_STATUS Flag Indication for SRAO Errors

SRAO Type Reporting Logical Processors Non-reporting Logical Processors

RIPV EIPV RIPV EIPV

Memory Scrubbing 1 0 1 0

L3 Explicit Writeback 1 0 1 0
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The MCA error code encodings for these two architecturally-defined UCR errors corresponds to sub-classes of 
compound MCA error codes (see Table 15-9). Their values and compound encoding format are given in Table 
15-18. 

Table 15-19 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally defined SRAR errors. 

For both the data load and instruction fetch errors, the ADDRV and MISCV flags in the IA32_MCi_STATUS register 
are set to indicate that the offending physical address information is available from the IA32_MCi_MISC and the 
IA32_MCi_ADDR registers.  For the memory scrubbing and L3 explicit writeback errors, the address mode in the 
IA32_MCi_MISC register should be set as physical address mode (010b) and the address LSB information in the 
IA32_MCi_MISC register should indicate the lowest valid address bit in the address information provided from the 
IA32_MCi_ADDR register. 
MCE signal is broadcast to all logical processors on the system on which the UCR errors are supported, except when 
the processor supports LMCE and LMCE is enabled by system software (see Section 15.3.1.5). The 
IA32_MCG_STATUS MSR allows system software to distinguish the affected logical processor of an SRAR error 
amongst logical processors that observed SRAR via MCi_STATUS bank.
Table 15-20 shows the RIPV and EIPV flag indication in the IA32_MCG_STATUS register for the data load and 
instruction fetch errors on both the reporting and non-reporting logical processors. The recoverable SRAR error 
reported by a processor may be continuable, where the system software can interpret the context of continuable 
as follows: the error was isolated, contained. If software can rectify the error condition in the current instruction 
stream, the execution context on that logical processor can be continued without loss of information.

Table 15-18.  MCA Compound Error Code Encoding for SRAR Errors

Type MCACOD Value MCA Error Code Encoding1

NOTES:

1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error is 0, indicating "normal" filtering. 

Data Load 0x134 0000_0001_0011_0100

000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0011B (Data Load)

Transaction Type subfield TT= 01B (Data)

Level subfield LL = 00B (Level 0)

Instruction Fetch 0x150 0000_0001_0101_0000

000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0101B (Instruction Fetch)

Transaction Type subfield TT= 00B (Instruction)

Level subfield LL = 00B (Level 0)

Table 15-19.  IA32_MCi_STATUS Values for SRAR Errors

SRAR Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Data Load 1 0 1 1 1 1 0 1 1 0x134

Instruction Fetch 1 0 1 1 1 1 0 1 1 0x150

Table 15-20.  IA32_MCG_STATUS Flag Indication for SRAR Errors

SRAR Type Affected Logical Processor Non-Affected Logical Processors

RIPV EIPV Continuable RIPV EIPV Continuable

Recoverable-
continuable

1 1 Yes1

NOTES:

1. see the definition of the context of “continuable” above and additional detail below.

1 0 YesRecoverable-not-
continuable

0 x No



Vol. 3B 15-25

MACHINE-CHECK ARCHITECTURE

SRAR Error And Affected Logical Processors

The affected logical processor is the one that has detected and raised an SRAR error at the point of the consump-
tion in the execution flow. The affected logical processor should find the Data Load or the Instruction Fetch error 
information in the IA32_MCi_STATUS register that is reporting the SRAR error. 
Table 15-20 list the actionable scenarios that system software can respond to an SRAR error on an affected logical 
processor according to RIPV and EIPV values:
• Recoverable-Continuable SRAR Error (RIPV=1, EIPV=1):

For Recoverable-Continuable SRAR errors, the affected logical processor should find that both the 
IA32_MCG_STATUS.RIPV and the IA32_MCG_STATUS.EIPV flags are set, indicating that system software may 
be able to restart execution from the interrupted context if it is able to rectify the error condition. If system 
software cannot rectify the error condition then it must treat the error as a recoverable error where restarting 
execution with the interrupted context is not possible. Restarting without rectifying the error condition will 
result in most cases with another SRAR error on the same instruction.

• Recoverable-not-continuable SRAR Error (RIPV=0, EIPV=x):
For Recoverable-not-continuable errors, the affected logical processor should find that either

— IA32_MCG_STATUS.RIPV= 0, IA32_MCG_STATUS.EIPV=1, or 

— IA32_MCG_STATUS.RIPV= 0, IA32_MCG_STATUS.EIPV=0.
In either case, this indicates that the error is detected at the instruction pointer saved on the stack for this 
machine check exception and restarting execution with the interrupted context is not possible. System 
software may take the following recovery actions for the affected logical processor: 

• The current executing thread cannot be continued. System software must terminate the interrupted 
stream of execution and provide a new stream of execution on return from the machine check handler 
for the affected logical processor.

SRAR Error And Non-Affected Logical Processors

The logical processors that observed but not affected by an SRAR error should find that the RIPV flag in the 
IA32_MCG_STATUS register is set and the EIPV flag in the IA32_MCG_STATUS register is cleared, indicating that it 
is safe to restart the execution at the instruction saved on the stack for the machine check exception on these 
processors after the recovery action is successfully taken by system software. 

15.9.4 Multiple MCA Errors 

When multiple MCA errors are detected within a certain detection window, the processor may aggregate the 
reporting of these errors together as a single event, i.e. a single machine exception condition.  If this occurs, 
system software may find multiple MCA errors logged in different MC banks on one logical processor or find 
multiple MCA errors logged across different processors for a single machine check broadcast event.  In order to 
handle multiple UCR errors reported from a single machine check event and possibly recover from multiple errors, 
system software may consider the following: 
• Whether it can recover from multiple errors is determined by the most severe error reported on the system.  If 

the most severe error is found to be an unrecoverable error (VAL=1, UC=1, PCC=1 and EN=1) after system 
software examines the MC banks of all processors to which the MCA signal is broadcast, recovery from the 
multiple errors is not possible and system software needs to reset the system. 

• When multiple recoverable errors are reported and no other fatal condition (e.g. overflowed condition for SRAR 
error) is found for the reported recoverable errors, it is possible for system software to recover from the 
multiple recoverable errors by taking necessary recovery action for each individual recoverable error. However, 
system software can no longer expect one to one relationship with the error information recorded in the 
IA32_MCi_STATUS register and the states of the RIPV and EIPV flags in the IA32_MCG_STATUS register as the 
states of the RIPV and the EIPV flags in the IA32_MCG_STATUS register may indicate the information for the 
most severe error recorded on the processor. System software is required to use the RIPV flag indication in the 
IA32_MCG_STATUS register to make a final decision of recoverability of the errors and find the restart-ability 
requirement after examining each IA32_MCi_STATUS register error information in the MC banks. 
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In certain cases where system software observes more than one SRAR error logged for a single logical 
processor, it can no longer rely on affected threads as specified in Table 15-20 above. System software is 
recommended to reset the system if this condition is observed. 

15.9.5 Machine-Check Error Codes Interpretation

Chapter 16, “Interpreting Machine-Check Error Codes,” provides information on interpreting the MCA error code, 
model-specific error code, and other information error code fields. For P6 family processors, information has been 
included on decoding external bus errors. For Pentium 4 and Intel Xeon processors; information is included on 
external bus, internal timer and cache hierarchy errors.

15.10 GUIDELINES FOR WRITING MACHINE-CHECK SOFTWARE

The machine-check architecture and error logging can be used in three different ways:
• To detect machine errors during normal instruction execution, using the machine-check exception (#MC).
• To periodically check and log machine errors.
• To examine recoverable UCR errors, determine software recoverability and perform recovery actions via a 

machine-check exception handler or a corrected machine-check interrupt handler.
To use the machine-check exception, the operating system or executive software must provide a machine-check 
exception handler. This handler may need to be designed specifically for each family of processors.
A special program or utility is required to log machine errors.
Guidelines for writing a machine-check exception handler or a machine-error logging utility are given in the 
following sections.

15.10.1 Machine-Check Exception Handler

The machine-check exception (#MC) corresponds to vector 18. To service machine-check exceptions, a trap gate 
must be added to the IDT. The pointer in the trap gate must point to a machine-check exception handler. Two 
approaches can be taken to designing the exception handler:

1. The handler can merely log all the machine status and error information, then call a debugger or shut down the 
system.

2. The handler can analyze the reported error information and, in some cases, attempt to correct the error and 
restart the processor.

For Pentium 4, Intel Xeon, Intel Atom, P6 family, and Pentium processors; virtually all machine-check conditions 
cannot be corrected (they result in abort-type exceptions). The logging of status and error information is therefore 
a baseline implementation requirement.
When recovery from a machine-check error may be possible, consider the following when writing a machine-check 
exception handler:
• To determine the nature of the error, the handler must read each of the error-reporting register banks. The 

count field in the IA32_MCG_CAP register gives number of register banks. The first register of register bank 0 
is at address 400H.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error information in the register 
is valid. If this flag is clear, the registers in that bank do not contain valid error information and do not need to 
be checked.

• To write a portable exception handler, only the MCA error code field in the IA32_MCi_STATUS register should be 
checked. See Section 15.9, “Interpreting the MCA Error Codes,” for information that can be used to write an 
algorithm to interpret this field.

• The RIPV, PCC, and OVER flags in each IA32_MCi_STATUS register indicate whether recovery from the error is 
possible. If PCC or OVER are set, recovery is not possible. If RIPV is not set, program execution can not be 
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restarted reliably. When recovery is not possible, the handler typically records the error information and signals 
an abort to the operating system.

• Correctable errors are corrected automatically by the processor. The UC flag in each IA32_MCi_STATUS register 
indicates whether the processor automatically corrected an error.

• The RIPV flag in the IA32_MCG_STATUS register indicates whether the program can be restarted at the 
instruction indicated by the instruction pointer (the address of the instruction pushed on the stack when the 
exception was generated). If this flag is clear, the processor may still be able to be restarted (for debugging 
purposes) but not without loss of program continuity.

• For unrecoverable errors, the EIPV flag in the IA32_MCG_STATUS register indicates whether the instruction 
indicated by the instruction pointer pushed on the stack (when the exception was generated) is related to the 
error. If the flag is clear, the pushed instruction may not be related to the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-check exception was generated. 
Before returning from the machine-check exception handler, software should clear this flag so that it can be 
used reliably by an error logging utility. The MCIP flag also detects recursion. The machine-check architecture 
does not support recursion. When the processor detects machine-check recursion, it enters the shutdown 
state.

Example 15-2 gives typical steps carried out by a machine-check exception handler.

Example 15-2.  Machine-Check Exception Handler Pseudocode

IF CPU supports MCE

THEN

IF CPU supports MCA

THEN

call errorlogging routine; (* returns restartability *)

FI;

ELSE (* Pentium(R) processor compatible *)

READ P5_MC_ADDR

READ P5_MC_TYPE;

report RESTARTABILITY to console;

FI;

IF error is not restartable

THEN

report RESTARTABILITY to console;

abort system;

FI;

CLEAR MCIP flag in IA32_MCG_STATUS;

15.10.2 Pentium Processor Machine-Check Exception Handling

Machine-check exception handler on P6 family, Intel Atom and later processor families, should follow the guidelines 
described in Section 15.10.1 and Example 15-2 that check the processor’s support of MCA.

NOTE

On processors that support MCA (CPUID.1.EDX.MCA = 1) reading the P5_MC_TYPE and 
P5_MC_ADDR registers may produce invalid data.

When machine-check exceptions are enabled for the Pentium processor (MCE flag is set in control register CR4), 
the machine-check exception handler uses the RDMSR instruction to read the error type from the P5_MC_TYPE 
register and the machine check address from the P5_MC_ADDR register. The handler then normally reports these 
register values to the system console before aborting execution (see Example 15-2).

15.10.3 Logging Correctable Machine-Check Errors

The error handling routine for servicing the machine-check exceptions is responsible for logging uncorrected 
errors.
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If a machine-check error is correctable, the processor does not generate a machine-check exception for it. To 
detect correctable machine-check errors, a utility program must be written that reads each of the machine-check 
error-reporting register banks and logs the results in an accounting file or data structure. This utility can be imple-
mented in either of the following ways.
• A system daemon that polls the register banks on an infrequent basis, such as hourly or daily.
• A user-initiated application that polls the register banks and records the exceptions. Here, the actual polling 

service is provided by an operating-system driver or through the system call interface.
• An interrupt service routine servicing CMCI can read the MC banks and log the error. 
Example 15-3 gives pseudocode for an error logging utility.

Example 15-3.  Machine-Check Error Logging Pseudocode

Assume that execution is restartable;

IF the processor supports MCA

THEN

FOR each bank of machine-check registers 

DO

READ IA32_MCi_STATUS;

IF VAL flag in IA32_MCi_STATUS = 1

THEN

IF ADDRV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_ADDR; 

FI;

IF MISCV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_MISC;

FI;

IF MCIP flag in IA32_MCG_STATUS = 1

(* Machine-check exception is in progress *) 

AND PCC flag in IA32_MCi_STATUS = 1

OR RIPV flag in IA32_MCG_STATUS = 0

(* execution is not restartable *)

THEN 

RESTARTABILITY = FALSE;

return RESTARTABILITY to calling procedure;

FI;

Save time-stamp counter and processor ID;

Set IA32_MCi_STATUS to all 0s;

Execute serializing instruction (i.e., CPUID);

FI;

OD;

FI;

If the processor supports the machine-check architecture, the utility reads through the banks of error-reporting 
registers looking for valid register entries. It then saves the values of the IA32_MCi_STATUS, IA32_MCi_ADDR, 
IA32_MCi_MISC and IA32_MCG_STATUS registers for each bank that is valid. The routine minimizes processing 
time by recording the raw data into a system data structure or file, reducing the overhead associated with polling. 
User utilities analyze the collected data in an off-line environment.
When the MCIP flag is set in the IA32_MCG_STATUS register, a machine-check exception is in progress and the 
machine-check exception handler has called the exception logging routine. 
Once the logging process has been completed the exception-handling routine must determine whether execution 
can be restarted, which is usually possible when damage has not occurred (The PCC flag is clear, in the 
IA32_MCi_STATUS register) and when the processor can guarantee that execution is restartable (the RIPV flag is 
set in the IA32_MCG_STATUS register). If execution cannot be restarted, the system is not recoverable and the 
exception-handling routine should signal the console appropriately before returning the error status to the Oper-
ating System kernel for subsequent shutdown.
The machine-check architecture allows buffering of exceptions from a given error-reporting bank although the 
Pentium 4, Intel Xeon, Intel Atom, and P6 family processors do not implement this feature. The error logging 
routine should provide compatibility with future processors by reading each hardware error-reporting bank's 
IA32_MCi_STATUS register and then writing 0s to clear the OVER and VAL flags in this register. The error logging 



Vol. 3B 15-29

MACHINE-CHECK ARCHITECTURE

utility should re-read the IA32_MCi_STATUS register for the bank ensuring that the valid bit is clear. The processor 
will write the next error into the register bank and set the VAL flags. 
Additional information that should be stored by the exception-logging routine includes the processor’s time-stamp 
counter value, which provides a mechanism to indicate the frequency of exceptions. A multiprocessing operating 
system stores the identity of the processor node incurring the exception using a unique identifier, such as the 
processor’s APIC ID (see Section 10.8, “Handling Interrupts”). 
The basic algorithm given in Example 15-3 can be modified to provide more robust recovery techniques. For 
example, software has the flexibility to attempt recovery using information unavailable to the hardware. Specifi-
cally, the machine-check exception handler can, after logging carefully analyze the error-reporting registers when 
the error-logging routine reports an error that does not allow execution to be restarted. These recovery techniques 
can use external bus related model-specific information provided with the error report to localize the source of the 
error within the system and determine the appropriate recovery strategy. 

15.10.4 Machine-Check Software Handler Guidelines for Error Recovery

15.10.4.1  Machine-Check Exception Handler for Error Recovery

When writing a machine-check exception (MCE) handler to support software recovery from Uncorrected Recover-
able (UCR) errors, consider the following: 
• When IA32_MCG_CAP [24] is zero, there are no recoverable errors supported and all machine-check are fatal 

exceptions. The logging of status and error information is therefore a baseline implementation requirement. 
• When IA32_MCG_CAP [24] is 1, certain uncorrected errors called uncorrected recoverable (UCR) errors may be 

software recoverable. The handler can analyze the reported error information, and in some cases attempt to 
recover from the uncorrected error and continue execution.

• For processors on which CPUID reports DisplayFamily_DisplayModel as 06H_0EH and onward, an MCA signal is 
broadcast to all logical processors in the system (see CPUID instruction in Chapter 3, “Instruction Set 
Reference, A-M” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). Due to the 
potentially shared machine check MSR resources among the logical processors on the same package/core, the 
MCE handler may be required to synchronize with the other processors that received a machine check error and 
serialize access to the machine check registers when analyzing, logging and clearing the information in the 
machine check registers.

— On processors that indicate ability for local machine-check exception (MCG_LMCE_P), hardware can choose 
to report the error to only a single logical processor if system software has enabled LMCE by setting 
IA32_MCG_EXT_CTL[LMCE_EN] = 1 as outlined in Section 15.3.1.5.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error information in the register 
is valid. If this flag is clear, the registers in that bank do not contain valid error information and should not be 
checked.

• The MCE handler is primarily responsible for processing uncorrected errors. The UC flag in each 
IA32_MCi_Status register indicates whether the reported error was corrected (UC=0) or uncorrected (UC=1).  
The MCE handler can optionally log and clear the corrected errors in the MC banks if it can implement software 
algorithm to avoid the undesired race conditions with the CMCI or CMC polling handler.

• For uncorrectable errors, the EIPV flag in the IA32_MCG_STATUS register indicates (when set) that the 
instruction pointed to by the instruction pointer pushed onto the stack when the machine-check exception is 
generated is directly associated with the error. When this flag is cleared, the instruction pointed to may not be 
associated with the error. 

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-check exception was generated. 
When a machine check exception is generated, it is expected that the MCIP flag in the IA32_MCG_STATUS 
register is set to 1. If it is not set, this machine check was generated by either an INT 18 instruction or some 
piece of hardware signaling an interrupt with vector 18. 

When IA32_MCG_CAP [24] is 1, the following rules can apply when writing a machine check exception (MCE) 
handler to support software recovery: 
• The PCC flag in each IA32_MCi_STATUS register indicates whether recovery from the error is possible for 

uncorrected errors (UC=1).  If the PCC flag is set for uncorrected errors (UC=1), recovery is not possible.  
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When recovery is not possible, the MCE handler typically records the error information and signals the 
operating system to reset the system. 

• The RIPV flag in the IA32_MCG_STATUS register indicates whether restarting the program execution from the 
instruction pointer saved on the stack for the machine check exception is possible.  When the RIPV is set, 
program execution can be restarted reliably when recovery is possible.  If the RIPV flag is not set, program 
execution cannot be restarted reliably. In this case the recovery algorithm may involve terminating the current 
program execution and resuming an alternate thread of execution upon return from the machine check handler 
when recovery is possible.  When recovery is not possible, the MCE handler signals the operating system to 
reset the system. 

• When the EN flag is zero but the VAL and UC flags are one in the IA32_MCi_STATUS register, the reported 
uncorrected error in this bank is not enabled. As uncorrected errors with the EN flag = 0 are not the source of 
machine check exceptions, the MCE handler should log and clear non-enabled errors when the S bit is set and 
should continue searching for enabled errors from the other IA32_MCi_STATUS registers. Note that when 
IA32_MCG_CAP [24] is 0, any uncorrected error condition (VAL =1 and UC=1) including the one with the EN 
flag cleared are fatal and the handler must signal the operating system to reset the system. For the errors that 
do not generate machine check exceptions, the EN flag has no meaning. See Chapter 19: Table 19-15 to find 
the errors that do not generate machine check exceptions. 

• When the VAL flag is one, the UC flag is one, the EN flag is one and the PCC flag is zero in the IA32_MCi_STATUS 
register, the error in this bank is an uncorrected recoverable (UCR) error. The MCE handler needs to examine 
the S flag and the AR flag to find the type of the UCR error for software recovery and determine if software error 
recovery is possible. 

• When both the S and the AR flags are clear in the IA32_MCi_STATUS register for the UCR error (VAL=1, UC=1, 
EN=x and PCC=0), the error in this bank is an uncorrected no-action required error (UCNA). UCNA errors are 
uncorrected but do not require any OS recovery action to continue execution.  These errors indicate that some 
data in the system is corrupt, but that data has not been consumed and may not be consumed.   If that data is 
consumed a non-UNCA machine check exception will be generated. UCNA errors are signaled in the same way 
as corrected machine check errors and the CMCI and CMC polling handler is primarily responsible for handling 
UCNA errors.  Like corrected errors, the MCA handler can optionally log and clear UCNA errors as long as it can 
avoid the undesired race condition with the CMCI or CMC polling handler.  As UCNA errors are not the source of 
machine check exceptions, the MCA handler should continue searching for uncorrected or software recoverable 
errors in all other MC banks. 

• When the S flag in the IA32_MCi_STATUS register is set for the UCR error ((VAL=1, UC=1, EN=1 and PCC=0), 
the error in this bank is software recoverable and it was signaled through a machine-check exception.  The AR 
flag in the IA32_MCi_STATUS register further clarifies the type of the software recoverable errors. 

• When the AR flag in the IA32_MCi_STATUS register is clear for the software recoverable error (VAL=1, UC=1, 
EN=1, PCC=0 and S=1), the error in this bank is a software recoverable action optional (SRAO) error. The MCE 
handler and the operating system can analyze the IA32_MCi_STATUS [15:0] to implement MCA error code 
specific optional recovery action, but this recovery action is optional. System software can resume the program 
execution from the instruction pointer saved on the stack for the machine check exception when the RIPV flag 
in the IA32_MCG_STATUS register is set. 

• When the OVER flag in the IA32_MCi_STATUS register is set for the SRAO error (VAL=1, UC=1, EN=1, PCC=0, 
S=1 and AR=0), the MCE handler cannot take recovery action as the information of the SRAO error in the 
IA32_MCi_STATUS register was potentially lost due to the overflow condition.  Since the recovery action for 
SRAO errors is optional, restarting the program execution from the instruction pointer saved on the stack for 
the machine check exception is still possible for the overflowed SRAO error if the RIPV flag in the 
IA32_MCG_STATUS is set. 

• When the AR flag in the IA32_MCi_STATUS register is set for the software recoverable error (VAL=1, UC=1, 
EN=1, PCC=0 and S=1), the error in this bank is a software recoverable action required (SRAR) error. The MCE 
handler and the operating system must take recovery action in order to continue execution after the machine-
check exception. The MCA handler and the operating system need to analyze the IA32_MCi_STATUS [15:0] to 
determine the MCA error code specific recovery action.  If no recovery action can be performed, the operating 
system must reset the system. 

• When the OVER flag in the IA32_MCi_STATUS register is set for the SRAR error (VAL=1, UC=1, EN=1, PCC=0, 
S=1 and AR=1), the MCE handler cannot take recovery action as the information of the SRAR error in the 
IA32_MCi_STATUS register was potentially lost due to the overflow condition. Since the recovery action for 
SRAR errors must be taken, the MCE handler must signal the operating system to reset the system. 
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• When the MCE handler cannot find any uncorrected (VAL=1, UC=1 and EN=1) or any software recoverable 
errors (VAL=1, UC=1, EN=1, PCC=0 and S=1) in any of the IA32_MCi banks of the processors, this is an 
unexpected condition for the MCE handler and the handler should signal the operating system to reset the 
system. 

• Before returning from the machine-check exception handler, software must clear the MCIP flag in the 
IA32_MCG_STATUS register. The MCIP flag is used to detect recursion. The machine-check architecture does 
not support recursion. When the processor receives a machine check when MCIP is set, it automatically enters 
the shutdown state.

Example 15-4 gives pseudocode for an MC exception handler that supports recovery of UCR.

Example 15-4.  Machine-Check Error Handler Pseudocode Supporting UCR

MACHINE CHECK HANDLER:  (* Called from INT 18 handler *)

NOERROR = TRUE;

ProcessorCount = 0;

IF CPU supports MCA

THEN

RESTARTABILITY = TRUE;

IF (Processor Family = 6 AND DisplayModel ≥ 0EH) OR (Processor Family > 6) 

THEN

IF ( MCG_LMCE = 1)

MCA_BROADCAST = FALSE;

ELSE

MCA_BROADCAST = TRUE;

FI;

Acquire SpinLock; 

ProcessorCount++;  (* Allowing one logical processor at a time to examine machine check registers *)

CALL MCA ERROR PROCESSING; (* returns RESTARTABILITY and NOERROR *)

ELSE 

MCA_BROADCAST = FALSE;

(* Implement a rendezvous mechanism with the other processors if necessary *)

CALL MCA ERROR PROCESSING;

FI;

ELSE (* Pentium(R) processor compatible *)

READ P5_MC_ADDR

READ P5_MC_TYPE;

RESTARTABILITY = FALSE;

FI;

IF NOERROR = TRUE

    THEN

IF NOT (MCG_RIPV = 1 AND MCG_EIPV = 0) 

THEN 

RESTARTABILITY = FALSE;

FI

FI;

IF RESTARTABILITY = FALSE

THEN 

Report RESTARTABILITY to console;

Reset system; 

FI;

IF MCA_BROADCAST = TRUE

THEN

IF ProcessorCount = MAX_PROCESSORS

    AND NOERROR = TRUE

THEN

Report RESTARTABILITY to console;

Reset system;

FI;

Release SpinLock; 

Wait till ProcessorCount = MAX_PROCESSRS on system; 
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(* implement a timeout and abort function if necessary *)

FI;

CLEAR IA32_MCG_STATUS;

RESUME Execution;

(* End of MACHINE CHECK HANDLER*)

MCA ERROR PROCESSING:    (* MCA Error Processing Routine called from MCA Handler *)

IF MCIP flag in IA32_MCG_STATUS = 0

THEN (* MCIP=0 upon MCA is unexpected *)

RESTARTABILITY = FALSE;

FI;

FOR each bank of machine-check registers 

DO

CLEAR_MC_BANK = FALSE;

READ IA32_MCi_STATUS;

IF VAL Flag in IA32_MCi_STATUS = 1

THEN

IF UC Flag in IA32_MCi_STATUS = 1

THEN 

IF Bit 24 in IA32_MCG_CAP = 0

THEN (* the processor does not support software error recovery *)

RESTARTABILITY = FALSE;

NOERROR = FALSE;

GOTO LOG MCA REGISTER;

FI;

(* the processor supports software error recovery *)

IF EN Flag in IA32_MCi_STATUS = 0 AND OVER Flag in IA32_MCi_STATUS=0

THEN (* It is a spurious MCA Log. Log and clear the register *)

CLEAR_MC_BANK = TRUE;

GOTO LOG MCA REGISTER;

FI;

IF PCC Flag in IA32_MCi_STATUS = 1

THEN (* processor context might have been corrupted *)

RESTARTABILITY = FALSE; 

ELSE (* It is a uncorrected recoverable (UCR) error *)

IF S Flag in IA32_MCi_STATUS = 0

THEN 

IF AR Flag in IA32_MCi_STATUS = 0

THEN (* It is a uncorrected no action required (UCNA) error *)

GOTO CONTINUE; (* let CMCI and CMC polling handler to process *)

ELSE

FESTARTABILITY = FALSE; (* S=0, AR=1 is illegal *)

FI

FI; 

IF RESTARTABILITY = FALSE

THEN (* no need to take recovery action if RESTARTABILITY is already false *)

NOERROR = FALSE;

GOTO LOG MCA REGISTER;

FI;

(* S in IA32_MCi_STATUS = 1 *) 

IF AR Flag in IA32_MCi_STATUS = 1

THEN (* It is a software recoverable and action required (SRAR) error *)

IF OVER Flag in IA32_MCi_STATUS = 1

THEN

RESTARTABILITY = FALSE;

NOERROR = FALSE;

GOTO LOG MCA REGISTER;

FI

IF MCACOD Value in IA32_MCi_STATUS is recognized

    AND Current Processor is an Affected Processor 

THEN

Implement MCACOD specific recovery action;

CLEAR_MC_BANK = TURE;  

ELSE 
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RESTARTABILITY = FALSE;

FI;

ELSE (* It is a software recoverable and action optional (SRAO) error *)

IF OVER Flag in IA32_MCi_STATUS = 0 AND

 MCACOD in IA32_MCi_STATUS is recognized

THEN

Implement MCACOD specific recovery action;

FI;

CLEAR_MC_BANK = TRUE;

FI; AR 

FI; PCC

NOERROR = FALSE;

GOTO LOG MCA REGISTER;

ELSE  (* It is a corrected error; continue to the next IA32_MCi_STATUS *) 

GOTO CONTINUE;

FI; UC

FI; VAL 

LOG MCA REGISTER:

SAVE IA32_MCi_STATUS;

If MISCV in IA32_MCi_STATUS 

THEN

SAVE IA32_MCi_MISC;

FI;

IF ADDRV in IA32_MCi_STATUS

THEN

SAVE IA32_MCi_ADDR;

FI;

IF CLEAR_MC_BANK = TRUE

THEN

SET all 0 to IA32_MCi_STATUS;

If MISCV in IA32_MCi_STATUS 

THEN

SET all 0 to IA32_MCi_MISC;

FI;

IF ADDRV in IA32_MCi_STATUS

THEN

SET all 0 to IA32_MCi_ADDR;

FI;

FI;

CONTINUE:

OD;

( *END FOR *)

RETURN;

(* End of MCA ERROR PROCESSING*)

15.10.4.2  Corrected Machine-Check Handler for Error Recovery

When writing a corrected machine check handler, which is invoked as a result of CMCI or called from an OS CMC 
Polling dispatcher, consider the following: 
• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error information in the register 

is valid. If this flag is clear, the registers in that bank does not contain valid error information and does not need 
to be checked.

• The CMCI or CMC polling handler is responsible for logging and clearing corrected errors. The UC flag in each 
IA32_MCi_Status register indicates whether the reported error was corrected (UC=0) or not (UC=1). 

• When IA32_MCG_CAP [24] is one, the CMC handler is also responsible for logging and clearing uncorrected no-
action required (UCNA) errors.  When the UC flag is one but the PCC, S, and AR flags are zero in the 
IA32_MCi_STATUS register, the reported error in this bank is an uncorrected no-action required (UCNA) error. 

• In addition to corrected errors and UCNA errors, the CMC handler optionally logs uncorrected (UC=1 and 
PCC=1), software recoverable machine check errors (UC=1, PCC=0 and S=1), but should avoid clearing those 
errors from the MC banks. Clearing these errors may result in accidentally removing these errors before these 
errors are actually handled and processed by the MCE handler for attempted software error recovery.
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Example 15-5 gives pseudocode for a CMCI handler with UCR support.

Example 15-5.  Corrected Error Handler Pseudocode with UCR Support

Corrected Error HANDLER:  (* Called from CMCI handler or OS CMC Polling Dispatcher*)

IF CPU supports MCA

THEN

FOR each bank of machine-check registers 

DO

READ IA32_MCi_STATUS;

IF VAL flag in IA32_MCi_STATUS = 1

THEN

IF UC Flag in IA32_MCi_STATUS = 0 (* It is a corrected error *)

THEN 

GOTO LOG CMC ERROR;

ELSE 

IF Bit 24 in IA32_MCG_CAP = 0

THEN

GOTO CONTINUE;

FI;

IF S Flag in IA32_MCi_STATUS = 0 AND AR Flag in IA32_MCi_STATUS = 0

THEN (* It is a uncorrected no action required error *)

GOTO LOG CMC ERROR

FI

IF EN Flag in IA32_MCi_STATUS = 0

THEN (* It is a spurious MCA error *)

GOTO LOG CMC ERROR

FI;

FI;

FI;

GOTO CONTINUE;

LOG CMC ERROR: 

SAVE IA32_MCi_STATUS;

If MISCV Flag in IA32_MCi_STATUS 

THEN

SAVE IA32_MCi_MISC;

SET all 0 to IA32_MCi_MISC;

FI;

IF ADDRV Flag in IA32_MCi_STATUS

THEN

SAVE IA32_MCi_ADDR;

SET all 0 to IA32_MCi_ADDR

FI;

SET all 0 to IA32_MCi_STATUS;

CONTINUE:

OD;

( *END FOR *)

FI;
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CHAPTER 16
INTERPRETING MACHINE-CHECK

ERROR CODES

Encoding of the model-specific and other information fields is different across processor families. The differences 
are documented in the following sections.

16.1 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 06H 
MACHINE ERROR CODES FOR MACHINE CHECK

Section 16.1 provides information for interpreting additional model-specific fields for external bus errors relating to 
processor family 06H. The references to processor family 06H refers to only IA-32 processors with CPUID signa-
tures listed in Table 16-1. 

These errors are reported in the IA32_MCi_STATUS MSRs. They are reported architecturally) as compound errors 
with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter 15 for information on the 
interpretation of compound error codes. Incremental decoding information is listed in Table 16-2.

Table 16-1.   CPUID DisplayFamily_DisplayModel Signatures for Processor Family 06H

DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_09H Intel Pentium M processor

06_7H, 06_08H, 06_0AH, 06_0BH Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor 

06_01H Intel Pentium Pro Processor 

Table 16-2.  Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

0-15

Model specific 
errors

16-18 Reserved Reserved

Model specific 
errors

19-24 Bus queue request 
type

000000 for BQ_DCU_READ_TYPE error

000010 for BQ_IFU_DEMAND_TYPE error

000011 for BQ_IFU_DEMAND_NC_TYPE error

000100 for BQ_DCU_RFO_TYPE error

000101 for BQ_DCU_RFO_LOCK_TYPE error

000110 for BQ_DCU_ITOM_TYPE error

001000 for BQ_DCU_WB_TYPE error

001010 for BQ_DCU_WCEVICT_TYPE error

001011 for BQ_DCU_WCLINE_TYPE error

001100 for BQ_DCU_BTM_TYPE error
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001101 for BQ_DCU_INTACK_TYPE error

001110 for BQ_DCU_INVALL2_TYPE error

001111 for BQ_DCU_FLUSHL2_TYPE error

010000 for BQ_DCU_PART_RD_TYPE error

010010 for BQ_DCU_PART_WR_TYPE error

010100 for BQ_DCU_SPEC_CYC_TYPE error

011000 for BQ_DCU_IO_RD_TYPE error

011001 for BQ_DCU_IO_WR_TYPE error

011100 for BQ_DCU_LOCK_RD_TYPE error

011110 for BQ_DCU_SPLOCK_RD_TYPE error

011101 for BQ_DCU_LOCK_WR_TYPE error

Model specific 
errors

27-25 Bus queue error type 000 for BQ_ERR_HARD_TYPE error

001 for BQ_ERR_DOUBLE_TYPE error

010 for BQ_ERR_AERR2_TYPE error

100 for BQ_ERR_SINGLE_TYPE error

101 for BQ_ERR_AERR1_TYPE error

Model specific 
errors

28 FRC error 1 if FRC error active

29 BERR 1 if BERR is driven

30 Internal BINIT 1 if BINIT driven for this processor

31 Reserved Reserved

Other 
information

32-34 Reserved Reserved

35 External BINIT 1 if BINIT is received from external bus.

36 Response parity error This bit is asserted in IA32_MCi_STATUS if this component has received a parity 
error on the RS[2:0]# pins for a response transaction. The RS signals are checked 
by the RSP# external pin.

37 Bus BINIT This bit is asserted in IA32_MCi_STATUS if this component has received a hard 
error response on a split transaction one access that has needed to be split across 
the 64-bit external bus interface into two accesses).

38 Timeout BINIT This bit is asserted in IA32_MCi_STATUS if this component has experienced a ROB 
time-out, which indicates that no micro-instruction has been retired for a 
predetermined period of time.

A ROB time-out occurs when the 15-bit ROB time-out counter carries a 1 out of its 
high order bit. 2 The timer is cleared when a micro-instruction retires, an exception 
is detected by the core processor, RESET is asserted, or when a ROB BINIT occurs.

The ROB time-out counter is prescaled by the 8-bit PIC timer which is a divide by 
128 of the bus clock the bus clock is 1:2, 1:3, 1:4 of the core clock). When a carry 
out of the 8-bit PIC timer occurs, the ROB counter counts up by one. While this bit 
is asserted, it cannot be overwritten by another error.

39-41 Reserved Reserved

42 Hard error This bit is asserted in IA32_MCi_STATUS if this component has initiated a bus 
transactions which has received a hard error response. While this bit is asserted, it 
cannot be overwritten.

Table 16-2.  Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check 

Type Bit No. Bit Function Bit Description
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16.2 INCREMENTAL DECODING INFORMATION: INTEL CORE 2 PROCESSOR 
FAMILY MACHINE ERROR CODES FOR MACHINE CHECK

Table 16-4 provides information for interpreting additional model-specific fields for external bus errors relating to 
processor based on Intel Core microarchitecture, which implements the P4 bus specification. Table 16-3 lists the 
CPUID signatures for Intel 64 processors that are covered by Table 16-4. These errors are reported in the 
IA32_MCi_STATUS MSRs. They are reported architecturally) as compound errors with a general form of 
0000 1PPT RRRR IILL in the MCA error code field. See Chapter 15 for information on the interpretation of 
compound error codes.

43 IERR This bit is asserted in IA32_MCi_STATUS if this component has experienced a 
failure that causes the IERR pin to be asserted. While this bit is asserted, it cannot 
be overwritten.

44 AERR This bit is asserted in IA32_MCi_STATUS if this component has initiated 2 failing 
bus transactions which have failed due to Address Parity Errors AERR asserted). 
While this bit is asserted, it cannot be overwritten.

45 UECC The Uncorrectable ECC error bit is asserted in IA32_MCi_STATUS for uncorrected 
ECC errors. While this bit is asserted, the ECC syndrome field will not be 
overwritten.

46 CECC The correctable ECC error bit is asserted in IA32_MCi_STATUS for corrected ECC 
errors.

47-54 ECC syndrome The ECC syndrome field in IA32_MCi_STATUS contains the 8-bit ECC syndrome only 
if the error was a correctable/uncorrectable ECC error and there wasn't a previous 
valid ECC error syndrome logged in IA32_MCi_STATUS. 

A previous valid ECC error in IA32_MCi_STATUS is indicated by 
IA32_MCi_STATUS.bit45 uncorrectable error occurred) being asserted. After 
processing an ECC error, machine-check handling software should clear 
IA32_MCi_STATUS.bit45 so that future ECC error syndromes can be logged.

55-56 Reserved Reserved.

Status register 
validity  
indicators1 

57-63

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

2. For processors with a CPUID signature of 06_0EH, a ROB time-out occurs when the 23-bit ROB time-out counter carries a 1 out of its 
high order bit.

Table 16-3.   CPUID DisplayFamily_DisplayModel Signatures for Processors Based on Intel Core Microarchitecture

DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_1DH Intel Xeon Processor 7400 series.

06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad processor Q9650.

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad, Intel Core 2 Extreme, 
Intel Core 2 Duo processors, Intel Pentium dual-core processors

Table 16-2.  Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check 

Type Bit No. Bit Function Bit Description
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Table 16-4.  Incremental Bus Error Codes of Machine Check for Processors 
Based on Intel Core Microarchitecture

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

0-15

Model specific 
errors

16-18 Reserved Reserved

Model specific 
errors

19-24 Bus queue request 
type

‘000001 for BQ_PREF_READ_TYPE error

000000 for BQ_DCU_READ_TYPE error

000010 for BQ_IFU_DEMAND_TYPE error

000011 for BQ_IFU_DEMAND_NC_TYPE error

000100 for BQ_DCU_RFO_TYPE error

000101 for BQ_DCU_RFO_LOCK_TYPE error

000110 for BQ_DCU_ITOM_TYPE error

001000 for BQ_DCU_WB_TYPE error

001010 for BQ_DCU_WCEVICT_TYPE error

001011 for BQ_DCU_WCLINE_TYPE error

001100 for BQ_DCU_BTM_TYPE error

001101 for BQ_DCU_INTACK_TYPE error

001110 for BQ_DCU_INVALL2_TYPE error

001111 for BQ_DCU_FLUSHL2_TYPE error

010000 for BQ_DCU_PART_RD_TYPE error

010010 for BQ_DCU_PART_WR_TYPE error

010100 for BQ_DCU_SPEC_CYC_TYPE error

011000 for BQ_DCU_IO_RD_TYPE error

011001 for BQ_DCU_IO_WR_TYPE error

011100 for BQ_DCU_LOCK_RD_TYPE error

011110 for BQ_DCU_SPLOCK_RD_TYPE error

011101 for BQ_DCU_LOCK_WR_TYPE error

100100 for BQ_L2_WI_RFO_TYPE error

100110 for BQ_L2_WI_ITOM_TYPE error

Model specific 
errors

27-25 Bus queue error type ‘001 for Address Parity Error

‘010 for Response Hard Error

‘011 for Response Parity Error

Model specific 
errors

28 MCE Driven 1 if MCE is driven

29 MCE Observed 1 if MCE is observed

30 Internal BINIT 1 if BINIT driven for this processor

31 BINIT Observed 1 if BINIT is observed for this processor

Other 
information

32-33 Reserved Reserved

34 PIC and FSB data 
parity

Data Parity detected on either PIC or FSB access

35 Reserved Reserved
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16.2.1  Model-Specific Machine Check Error Codes for Intel Xeon Processor 7400 Series

Intel Xeon processor 7400 series has machine check register banks that generally follows the description of 
Chapter 15 and Section 16.2. Additional error codes specific to Intel Xeon processor 7400 series is describe in this 
section.

MC4_STATUS[63:0] is the main error logging for the processor’s L3 and front side bus errors for Intel Xeon 
processor 7400 series. It supports the L3 Errors, Bus and Interconnect Errors Compound Error Codes in the MCA 
Error Code Field.

36 Response parity error This bit is asserted in IA32_MCi_STATUS if this component has received a parity 
error on the RS[2:0]# pins for a response transaction. The RS signals are checked 
by the RSP# external pin.

37 FSB address parity Address parity error detected:

1 = Address parity error detected

0 = No address parity error

38 Timeout BINIT This bit is asserted in IA32_MCi_STATUS if this component has experienced a ROB 
time-out, which indicates that no micro-instruction has been retired for a 
predetermined period of time.

A ROB time-out occurs when the 23-bit ROB time-out counter carries a 1 out of its 
high order bit. The timer is cleared when a micro-instruction retires, an exception is 
detected by the core processor, RESET is asserted, or when a ROB BINIT occurs.

The ROB time-out counter is prescaled by the 8-bit PIC timer which is a divide by 
128 of the bus clock the bus clock is 1:2, 1:3, 1:4 of the core clock). When a carry 
out of the 8-bit PIC timer occurs, the ROB counter counts up by one. While this bit 
is asserted, it cannot be overwritten by another error.

39-41 Reserved Reserved

42 Hard error This bit is asserted in IA32_MCi_STATUS if this component has initiated a bus 
transactions which has received a hard error response. While this bit is asserted, it 
cannot be overwritten.

43 IERR This bit is asserted in IA32_MCi_STATUS if this component has experienced a 
failure that causes the IERR pin to be asserted. While this bit is asserted, it cannot 
be overwritten.

44 Reserved Reserved

45 Reserved Reserved

46 Reserved Reserved

47-54 Reserved Reserved

55-56 Reserved Reserved.

Status register 
validity  
indicators1 

57-63

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Table 16-4.  Incremental Bus Error Codes of Machine Check for Processors 
Based on Intel Core Microarchitecture (Contd.)

Type Bit No. Bit Function Bit Description
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16.2.1.1  Processor Machine Check Status Register 
Incremental MCA Error Code Definition

Intel Xeon processor 7400 series use compound MCA Error Codes for logging its Bus internal machine check 
errors, L3 Errors, and Bus/Interconnect Errors. It defines incremental Machine Check error types 
(IA32_MC6_STATUS[15:0]) beyond those defined in Chapter 15. Table 16-5 lists these incremental MCA error 
code types that apply to IA32_MC6_STATUS. Error code details are specified in MC6_STATUS [31:16] (see 
Section 16.2.2), the “Model Specific Error Code” field. The information in the “Other_Info” field 
(MC4_STATUS[56:32]) is common to the three processor error types and contains a correctable event count and 
specifies the MC6_MISC register format.

The Bold faced binary encodings are the only encodings used by the processor for MC4_STATUS[15:0].

16.2.2  Intel Xeon Processor 7400 Model Specific Error Code Field

16.2.2.1  Processor Model Specific Error Code Field
Type B:  Bus and Interconnect Error

Note: The Model Specific Error Code field in MC6_STATUS (bits 31:16)

Table 16-5.  Incremental MCA Error Code Types for Intel Xeon Processor 7400 

Processor MCA_Error_Code (MC6_STATUS[15:0])

Type Error Code Binary Encoding Meaning

C Internal Error 0000 0100 0000 0000 Internal Error Type Code

B Bus and 
Interconnect

Error

0000 100x 0000 1111 Not used but this encoding is reserved for compatibility with other MCA 
implementations

0000 101x 0000 1111 Not used but this encoding is reserved for compatibility with other MCA 
implementations

0000 110x 0000 1111 Not used but this encoding is reserved for compatibility with other MCA 
implementations

0000 1110 0000 1111 Bus and Interconnection Error Type Code

0000 1111 0000 1111 Not used but this encoding is reserved for compatibility with other MCA 
implementations

Table 16-6.  Type B Bus and Interconnect Error Codes

Bit Num Sub-Field Name Description

16 FSB Request Parity Parity error detected during FSB request phase

19:17 Reserved

20 FSB Hard Fail Response “Hard Failure“ response received for a local transaction

21 FSB Response Parity Parity error on FSB response field detected

22 FSB Data Parity FSB data parity error on inbound data detected

31:23 --- Reserved
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16.2.2.2  Processor Model Specific Error Code Field
Type C:  Cache Bus Controller Error

16.3 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH 
CPUID DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_1AH, MACHINE 
ERROR CODES FOR MACHINE CHECK

Table 16-8 through Table 16-12 provide information for interpreting additional model-specific fields for memory 
controller errors relating to the processor family with CPUID DisplayFamily_DisplaySignature 06_1AH, which 
supports Intel QuickPath Interconnect links. Incremental MC error codes related to the Intel QPI links are reported 
in the register banks IA32_MC0 and IA32_MC1, incremental error codes for internal machine check is reported in 
the register bank IA32_MC7, and incremental error codes for the memory controller unit is reported in the register 
banks IA32_MC8.

Table 16-7.  Type C Cache Bus Controller Error Codes

MC4_STATUS[31:16] (MSCE) Value Error Description

0000_0000_0000_0001   0x0001 Inclusion Error from Core 0

0000_0000_0000_0010   0x0002 Inclusion Error from Core 1

0000_0000_0000_0011   0x0003 Write Exclusive Error from Core 0

0000_0000_0000_0100   0x0004 Write Exclusive Error from Core 1

0000_0000_0000_0101   0x0005 Inclusion Error from FSB

0000_0000_0000_0110   0x0006 SNP Stall Error from FSB

0000_0000_0000_0111   0x0007 Write Stall Error from FSB

0000_0000_0000_1000   0x0008 FSB Arb Timeout Error

0000_0000_0000_1010   0x000A Inclusion Error from Core 2

0000_0000_0000_1011   0x000B Write Exclusive Error from Core 2

0000_0010_0000_0000   0x0200 Internal Timeout error

0000_0011_0000_0000   0x0300 Internal Timeout Error

0000_0100_0000_0000   0x0400 Intel® Cache Safe Technology Queue Full Error or Disabled-ways-in-a-set overflow

0000_0101_0000_0000   0x0500 Quiet cycle Timeout Error (correctable)

1100_0000_0000_0010   0xC002 Correctable ECC event on outgoing Core 0 data

1100_0000_0000_0100   0xC004 Correctable ECC event on outgoing Core 1 data

1100_0000_0000_1000   0xC008 Correctable ECC event on outgoing Core 2 data

1110_0000_0000_0010   0xE002 Uncorrectable ECC error on outgoing Core 0 data

1110_0000_0000_0100   0xE004 Uncorrectable ECC error on outgoing Core 1 data

1110_0000_0000_1000   0xE008 Uncorrectable ECC error on outgoing Core 2 data

 — all other encodings — Reserved
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16.3.1  Intel QPI Machine Check Errors

Table 16-8.  Intel QPI Machine Check Error Codes for IA32_MC0_STATUS and IA32_MC1_STATUS

Table 16-9.  Intel QPI Machine Check Error Codes for IA32_MC0_MISC and IA32_MC1_MISC

16.3.2  Internal Machine Check Errors

Table 16-10.  Machine Check Error Codes for IA32_MC7_STATUS

Type Bit No. Bit Function Bit Description

MCA error codes1 

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific errors

16 Header Parity if 1, QPI Header had bad parity

17 Data Parity If 1, QPI Data packet had bad parity

18 Retries Exceeded If 1, number of QPI retries was exceeded

19 Received Poison if 1, Received a data packet that was marked as poisoned by the sender

21-20 Reserved Reserved

22 Unsupported 
Message

If 1, QPI received a message encoding it does not support

23 Unsupported Credit If 1, QPI credit type is not supported.

24 Receive Flit Overrun If 1, Sender sent too many QPI flits to the receiver.

25 Received Failed 
Response

If 1, Indicates that sender sent a failed response to receiver.

26 Receiver Clock Jitter If 1, clock jitter detected in the internal QPI clocking

56-27 Reserved Reserved

Status register 
validity  indicators1 

57-63

Type Bit No. Bit Function Bit Description

Model specific errors1

NOTES:

1. Which of these fields are valid depends on the error type.

7-0 QPI Opcode Message class and opcode from the packet with the error

13-8 RTId QPI Request Transaction ID

15-14 Reserved Reserved

18-16 RHNID QPI Requestor/Home Node ID

23-19 Reserved Reserved

24 IIB QPI Interleave/Head Indication Bit

Type Bit No. Bit Function Bit Description

MCA error codes1 0-15 MCACOD

Model specific errors
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16.3.3  Memory Controller Errors

23-16 Reserved Reserved

31-24 Reserved except for 
the following

00h - No Error

03h - Reset firmware did not complete

08h - Received an invalid CMPD

0Ah - Invalid Power Management Request

0Dh - Invalid S-state transition

11h - VID controller does not match POC controller selected

1Ah - MSID from POC does not match CPU MSID

56-32 Reserved Reserved

Status register validity  
indicators1 

57-63

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Table 16-11.  Incremental Memory Controller Error Codes of Machine Check for IA32_MC8_STATUS

Type Bit No. Bit Function Bit Description

MCA error codes1 

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

0-15 MCACOD Memory error format: 1MMMCCCC

Model specific errors

16 Read ECC error if 1, ECC occurred on a read

17 RAS ECC error If 1, ECC occurred on a scrub

18 Write parity error If 1, bad parity on a write

19 Redundancy loss if 1, Error in half of redundant memory

20 Reserved Reserved

21 Memory range error If 1, Memory access out of range

22 RTID out of range If 1, Internal ID invalid

23 Address parity error If 1, bad address parity 

24 Byte enable parity 
error

If 1, bad enable parity 

Other information 37-25 Reserved Reserved

52:38 CORE_ERR_CNT Corrected error count

56-53 Reserved Reserved

Status register validity  
indicators1 

57-63

Type Bit No. Bit Function Bit Description
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Table 16-12.  Incremental Memory Controller Error Codes of Machine Check for IA32_MC8_MISC

16.4 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID 
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_2DH, MACHINE ERROR 
CODES FOR MACHINE CHECK

Table 16-13 through Table 16-15 provide information for interpreting additional model-specific fields for memory 
controller errors relating to the processor family with CPUID DisplayFamily_DisplaySignature 06_2DH, which 
supports Intel QuickPath Interconnect links. Incremental MC error codes related to the Intel QPI links are reported 
in the register banks IA32_MC6 and IA32_MC7, incremental error codes for internal machine check error from PCU 
controller is reported in the register bank IA32_MC4, and incremental error codes for the memory controller unit is 
reported in the register banks IA32_MC8-IA32_MC11.

16.4.1  Internal Machine Check Errors

Table 16-13.  Machine Check Error Codes for IA32_MC4_STATUS

Type Bit No. Bit Function Bit Description

Model specific errors1

NOTES:

1. Which of these fields are valid depends on the error type.

7-0 RTId Transaction Tracker ID

15-8 Reserved Reserved

17-16 DIMM DIMM ID which got the error

19-18 Channel Channel ID which got the error

31-20 Reserved Reserved

63-32 Syndrome ECC Syndrome

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

0-15 MCACOD

Model specific 
errors

19:16 Reserved except for 
the following

0000b - No Error

0001b - Non_IMem_Sel

0010b - I_Parity_Error

0011b - Bad_OpCode

0100b - I_Stack_Underflow

0101b - I_Stack_Overflow

0110b - D_Stack_Underflow

0111b - D_Stack_Overflow

1000b - Non-DMem_Sel

1001b - D_Parity_Error
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16.4.2  Intel QPI Machine Check Errors

Table 16-14.  Intel QPI MC Error Codes for IA32_MC6_STATUS and IA32_MC7_STATUS

16.4.3  Integrated Memory Controller Machine Check Errors

MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC8_STATUS-
IA32_MC11_STATUS. The supported error codes are follows the architectural MCACOD definition type 1MMMCCCC 
(see Chapter 15, “Machine-Check Architecture,”). MSR_ERROR_CONTROL.[bit 1] can enable additional informa-

23-20 Reserved Reserved

31-24 Reserved except for 
the following

00h - No Error

0Dh - MC_IMC_FORCE_SR_S3_TIMEOUT

0Eh - MC_CPD_UNCPD_ST_TIMOUT

0Fh - MC_PKGS_SAFE_WP_TIMEOUT

43h - MC_PECI_MAILBOX_QUIESCE_TIMEOUT

5Ch - MC_MORE_THAN_ONE_LT_AGENT

60h - MC_INVALID_PKGS_REQ_PCH

61h - MC_INVALID_PKGS_REQ_QPI

62h - MC_INVALID_PKGS_RES_QPI

63h - MC_INVALID_PKGC_RES_PCH

64h - MC_INVALID_PKG_STATE_CONFIG

70h - MC_WATCHDG_TIMEOUT_PKGC_SLAVE

71h - MC_WATCHDG_TIMEOUT_PKGC_MASTER

72h - MC_WATCHDG_TIMEOUT_PKGS_MASTER

7ah - MC_HA_FAILSTS_CHANGE_DETECTED

81h - MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

56-32 Reserved Reserved

Status register 
validity  
indicators1 

57-63

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific 
errors

56-16 Reserved Reserved

Status register 
validity  
indicators1 

57-63

Type Bit No. Bit Function Bit Description
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tion logging of the IMC. The additional error information logged by the IMC is stored in IA32_MCi_STATUS and 
IA32_MCi_MISC; (i = 8, 11).

Table 16-15.  Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 8, 11)

Table 16-16.  Intel IMC MC Error Codes for IA32_MCi_MISC (i= 8, 11)

Type Bit No. Bit Function Bit Description

MCA error codes1 

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific 
errors

31:16 Reserved except for 
the following

0x001 - Address parity error

0x002 - HA Wrt buffer Data parity error

0x004 - HA Wrt byte enable parity error

0x008 - Corrected patrol scrub error

0x010 - Uncorrected patrol scrub error

0x020 - Corrected spare error

0x040 - Uncorrected spare error

Model specific 
errors

36-32 Other info When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first device 
error when corrected error is detected during normal read.

37 Reserved Reserved

56-38 See Chapter 15, “Machine-Check Architecture,”

Status register 
validity  indicators1 

57-63

Type Bit No. Bit Function Bit Description

MCA addr info1 0-8 See Chapter 15, “Machine-Check Architecture,”

Model specific 
errors

13:9 • When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second device 
error when corrected error is detected during normal read.

• Otherwise contain parity error if MCi_Status indicates HA_WB_Data or 
HA_W_BE parity error.

Model specific 
errors

29-14 ErrMask_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error bit 
mask.

Model specific 
errors

45-30 ErrMask_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error 
bit mask.

50:46 FailRank_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error 
failing rank.

55:51 FailRank_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error 
failing rank.

58:56 FailSlot_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error 
failing DIMM slot.

61-59 FailSlot_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error 
failing DIMM slot.

62 Valid_1stErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data 
from the first correctable error in a memory device.

63 Valid_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data due 
to a second correctable error in a memory device. Use this information only after 
there is valid first error info indicated by bit 62.
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16.5 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH 
CPUID DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_3EH, MACHINE 
ERROR CODES FOR MACHINE CHECK

Intel Xeon processor E5-2600 v2 product family is based on the Intel® microarchitecture code name Ivy Bridge-EP 
and can be identified with CPUID DisplayFamily_DisplaySignature 06_3EH. Incremental error codes for internal 
machine check error from PCU controller is reported in the register bank IA32_MC4, Table 16-17 lists model-
specific fields to interpret error codes applicable to IA32_MC4_STATUS. Incremental MC error codes related to the 
Intel QPI links are reported in the register banks IA32_MC5. Information listed in Table 16-14 for QPI MC error code 
apply to IA32_MC5_STATUS. Incremental error codes for the memory controller unit is reported in the register 
banks IA32_MC9-IA32_MC16. Table 16-18 lists model-specific error codes apply to IA32_MCi_STATUS, i = 9-16.

16.5.1  Internal Machine Check Errors

Table 16-17.  Machine Check Error Codes for IA32_MC4_STATUS

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Type Bit No. Bit Function Bit Description

MCA error codes1 0-15 MCACOD

Model specific errors 19:16 Reserved except for 
the following

0000b - No Error

0001b - Non_IMem_Sel

0010b - I_Parity_Error

0011b - Bad_OpCode

0100b - I_Stack_Underflow

0101b - I_Stack_Overflow

0110b - D_Stack_Underflow

0111b - D_Stack_Overflow

1000b - Non-DMem_Sel

1001b - D_Parity_Error

23-20 Reserved Reserved

31-24 Reserved except for 
the following

00h - No Error

0Dh - MC_IMC_FORCE_SR_S3_TIMEOUT

0Eh - MC_CPD_UNCPD_ST_TIMOUT

0Fh - MC_PKGS_SAFE_WP_TIMEOUT

43h - MC_PECI_MAILBOX_QUIESCE_TIMEOUT

44h - MC_CRITICAL_VR_FAILED

45h - MC_ICC_MAX-NOTSUPPORTED

5Ch - MC_MORE_THAN_ONE_LT_AGENT
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16.5.2  Integrated Memory Controller Machine Check Errors

MC error codes associated with integrated memory controllers are reported in the MSRs IA32_MC9_STATUS-
IA32_MC16_STATUS. The supported error codes are follows the architectural MCACOD definition type 1MMMCCCC 
(see Chapter 15, “Machine-Check Architecture,”). 

MSR_ERROR_CONTROL.[ bit 1] can enable additional information logging of the IMC. The additional error informa-
tion logged by the IMC is stored in IA32_MCi_STATUS and IA32_MCi_MISC; (i = 9, 16).

60h - MC_INVALID_PKGS_REQ_PCH

61h - MC_INVALID_PKGS_REQ_QPI

62h - MC_INVALID_PKGS_RES_QPI

63h - MC_INVALID_PKGC_RES_PCH

64h - MC_INVALID_PKG_STATE_CONFIG

70h - MC_WATCHDG_TIMEOUT_PKGC_SLAVE

71h - MC_WATCHDG_TIMEOUT_PKGC_MASTER

72h - MC_WATCHDG_TIMEOUT_PKGS_MASTER

7Ah - MC_HA_FAILSTS_CHANGE_DETECTED

7Bh - MC_PCIE_R2PCIE-RW_BLOCK_ACK_TIMEOUT

81h - MC_RECOVERABLE_DIE_THERMAL_TOO_HOT

56-32 Reserved Reserved

Status register 
validity  indicators1 

57-63

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

Type Bit No. Bit Function Bit Description
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Table 16-18.  Intel IMC MC Error Codes for IA32-MCi_STATUS (i= 9, 16)

Table 16-19.  Intel IMC MC Error Codes for IA32_MCi_MISC (i= 9, 16)

Type Bit No. Bit Function Bit Description

MCA error codes1 

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific 
errors

31:16 Reserved except for 
the following

0x001 - Address parity error

0x002 - HA Wrt buffer Data parity error

0x004 - HA Wrt byte enable parity error

0x008 - Corrected patrol scrub error

0x010 - Uncorrected patrol scrub error

0x020 - Corrected spare error

0x040 - Uncorrected spare error

0x080 - Corrected memory read error. (Only applicable with iMC’s “Additional 
Error logging” Mode-1 enabled.) 

0x100 - iMC, WDB, parity errors

36-32 Other info When MSR_ERROR_CONTROL.[1] is set, logs an encoded value from the first error 

device.

37 Reserved Reserved

56-38 See Chapter 15, “Machine-Check Architecture,”

Status register 
validity  indicators1 

57-63

Type Bit No. Bit Function Bit Description

MCA addr info1 

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

0-8 See Chapter 15, “Machine-Check Architecture,”

Model specific 
errors

13:9 If the error logged is MCWrDataPar error or MCWrBEPar error, this field is the WDB 
ID that has the parity error. OR if the second error logged is a correctable read 
error, MC logs the second error device in this field.

Model specific 
errors

29-14 ErrMask_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error bit 
mask.

Model specific 
errors

45-30 ErrMask_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error 
bit mask.

50:46 FailRank_1stErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log first-device error 
failing rank.

55:51 FailRank_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, allows the iMC to log second-device error 
failing rank.

61:56 Reserved

62 Valid_1stErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data 
from a correctable error from memory read associated with first error device.

63 Valid_2ndErrDev When MSR_ERROR_CONTROL.[1] is set, indicates the iMC has logged valid data due 
to a second correctable error in a memory device. Use this information only after 
there is valid first error info indicated by bit 62.
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16.6 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 0FH 
MACHINE ERROR CODES FOR MACHINE CHECK

Table 16-20 provides information for interpreting additional family 0FH model-specific fields for external bus errors. 
These errors are reported in the IA32_MCi_STATUS MSRs. They are reported architecturally) as compound errors 
with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter 15 for information on the 
interpretation of compound error codes.

Table 16-10 provides information on interpreting additional family 0FH, model specific fields for cache hierarchy 
errors. These errors are reported in one of the IA32_MCi_STATUS MSRs. These errors are reported, architecturally, 
as compound errors with a general form of 0000 0001 RRRR TTLL in the MCA error code field. See Chapter 15 for 
how to interpret the compound error code. 

16.6.1  Model-Specific Machine Check Error Codes for Intel Xeon Processor MP 7100 Series

Intel Xeon processor MP 7100 series has 5 register banks which contains information related to Machine Check 
Errors. MCi_STATUS[63:0] refers to all 5 register banks. MC0_STATUS[63:0] through MC3_STATUS[63:0] is the 
same as on previous generation of Intel Xeon processors within Family 0FH. MC4_STATUS[63:0] is the main error 

Table 16-20.  Incremental Decoding Information: Processor Family 0FH Machine Error Codes For Machine Check 

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

0-15

Model-specific 
error codes

16 FSB address parity Address parity error detected:

1 = Address parity error detected

0 = No address parity error

17 Response hard fail Hardware failure detected on response

18 Response parity Parity error detected on response

19 PIC and FSB data parity Data Parity detected on either PIC or FSB access

20 Processor Signature = 
00000F04H: Invalid PIC 
request

All other processors:

Reserved

Processor Signature = 00000F04H. Indicates error due to an invalid PIC 
request access was made to PIC space with WB memory):

1 = Invalid PIC request error

0 = No Invalid PIC request error

Reserved

21 Pad state machine The state machine that tracks P and N data-strobe relative timing has 
become unsynchronized or a glitch has been detected.

22 Pad strobe glitch Data strobe glitch

Type Bit No. Bit Function Bit Description

23 Pad address glitch Address strobe glitch

Other 
Information

24-56 Reserved Reserved

Status register 
validity  
indicators1 

57-63
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logging for the processor’s L3 and front side bus errors. It supports the L3 Errors, Bus and Interconnect Errors 
Compound Error Codes in the MCA Error Code Field.

16.6.1.1  Processor Machine Check Status Register 
MCA Error Code Definition

Intel Xeon processor MP 7100 series use compound MCA Error Codes for logging its CBC internal machine check 
errors, L3 Errors, and Bus/Interconnect Errors. It defines additional Machine Check error types 
(IA32_MC4_STATUS[15:0]) beyond those defined in Chapter 15. Table 16-22 lists these model-specific MCA error 
codes. Error code details are specified in MC4_STATUS [31:16] (see Section 16.6.3), the “Model Specific Error 
Code” field. The information in the “Other_Info” field (MC4_STATUS[56:32]) is common to the three processor 
error types and contains a correctable event count and specifies the MC4_MISC register format.

Table 16-21.  MCi_STATUS Register Bit Definition 

Bit Field Name Bits Description

MCA_Error_Code 15:0 Specifies the machine check architecture defined error code for the machine check error condition 
detected. The machine check architecture defined error codes are guaranteed to be the same for all 
Intel Architecture processors that implement the machine check architecture. See tables below 

Model_Specific_E
rror_Code

31:16 Specifies the model specific error code that uniquely identifies the machine check error condition 
detected. The model specific error codes may differ among Intel Architecture processors for the same 
Machine Check Error condition. See tables below

Other_Info 56:32 The functions of the bits in this field are implementation specific and are not part of the machine check 
architecture. Software that is intended to be portable among Intel Architecture processors should not 
rely on the values in this field.

PCC 57 Processor Context Corrupt flag indicates that the state of the processor might have been corrupted by 
the error condition detected and that reliable restarting of the processor may not be possible. When 
clear, this flag indicates that the error did not affect the processor's state. This bit will always be set for 
MC errors which are not corrected.

ADDRV 58 MC_ADDR register valid flag indicates that the MC_ADDR register contains the address where the error 
occurred. When clear, this flag indicates that the MC_ADDR register does not contain the address where 
the error occurred. The MC_ADDR register should not be read if the ADDRV bit is clear.

MISCV 59 MC_MISC register valid flag indicates that the MC_MISC register contains additional 
information regarding the error. When clear, this flag indicates that the MC_MISC register does not 
contain additional information regarding the error. MC_MISC should not be read if the MISCV bit is not 
set.  

EN 60 Error enabled flag indicates that reporting of the machine check exception for this error was enabled by 
the associated flag bit of the MC_CTL register. Note that correctable errors do not have associated 
enable bits in the MC_CTL register so the EN bit should be clear when a correctable error is logged.

UC 61 Error uncorrected flag indicates that the processor did not correct the error condition. When clear, this 
flag indicates that the processor was able to correct the event condition.

OVER 62 Machine check overflow flag indicates that a machine check error occurred while the results of a 
previous error were still in the register bank (i.e., the VAL bit was already set in the 
MC_STATUS register). The processor sets the OVER flag and software is responsible for clearing it.  
Enabled errors are written over disabled errors, and uncorrected errors are written over corrected 
events. Uncorrected errors are not written over previous valid uncorrected errors. 

VAL 63 MC_STATUS register valid flag indicates that the information within the MC_STATUS register is valid. 
When this flag is set, the processor follows the rules given for the OVER flag in the MC_STATUS register 
when overwriting previously valid entries. The processor sets the VAL flag and software is responsible 
for clearing it.
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The Bold faced binary encodings are the only encodings used by the processor for MC4_STATUS[15:0].

16.6.2  Other_Info Field (all MCA Error Types)

The MC4_STATUS[56:32] field is common to the processor's three MCA error types (A, B & C):

Table 16-22.  Incremental MCA Error Code for Intel Xeon Processor MP 7100 

Processor MCA_Error_Code (MC4_STATUS[15:0])

Type Error Code Binary Encoding Meaning

C Internal Error 0000 0100 0000 0000 Internal Error Type Code

A L3 Tag Error 0000 0001 0000 1011 L3 Tag Error Type Code

B Bus and 
Interconnect

Error

0000 100x 0000 1111 Not used but this encoding is reserved for compatibility with other MCA 
implementations

0000 101x 0000 1111 Not used but this encoding is reserved for compatibility with other MCA 
implementations

0000 110x 0000 1111 Not used but this encoding is reserved for compatibility with other MCA 
implementations

0000 1110 0000 1111 Bus and Interconnection Error Type Code

0000 1111 0000 1111 Not used but this encoding is reserved for compatibility with other MCA 
implementations

Table 16-23.  Other Information Field Bit Definition 

Bit Field Name Bits Description

39:32 8-bit Correctable 
Event Count

Holds a count of the number of correctable events since cold reset.  This is a saturating counter; 
the counter begins at 1 (with the first error) and saturates at a count of 255.

41:40 MC4_MISC 
format type

The value in this field specifies the format of information in the MC4_MISC register.  Currently, 
only two values are defined.  Valid only when MISCV is asserted.

43:42 – Reserved

51:44 ECC syndrome ECC syndrome value for a correctable ECC event when the “Valid ECC syndrome” bit is asserted

52 Valid ECC 
syndrome

Set when correctable ECC event supplies the ECC syndrome

54:53 Threshold-Based 
Error Status

00: No tracking - No hardware status tracking is provided for the structure reporting this event.

01: Green - Status tracking is provided for the structure posting the event; the current status is 
green (below threshold).

10: Yellow - Status tracking is provided for the structure posting the event; the current status is 
yellow (above threshold).

11: Reserved for future use

Valid only if Valid bit (bit 63) is set

Undefined if the UC bit (bit 61) is set

56:55 – Reserved
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16.6.3  Processor Model Specific Error Code Field

16.6.3.1  MCA Error Type A:  L3 Error

Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16)

16.6.3.2  Processor Model Specific Error Code Field Type B:  Bus and Interconnect Error

Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16)

Exactly one of the bits defined in the preceding table will be set for a Bus and Interconnect Error.  The Data ECC can 
be correctable or uncorrectable (the MC4_STATUS.UC bit, of course, distinguishes between correctable and uncor-
rectable cases with the Other_Info field possibly providing the ECC Syndrome for correctable errors).  All other 
errors for this processor MCA Error Type are uncorrectable.

Table 16-24.  Type A: L3 Error Codes

Bit 
Num

Sub-Field 
Name

Description Legal Value(s)

18:16 L3 Error 
Code

Describes the L3 
error 
encountered

000 - No error

001 - More than one way reporting a correctable event

010 - More than one way reporting an uncorrectable error

011 - More than one way reporting a tag hit

100 - No error

101 - One way reporting a correctable event 

110 - One way reporting an uncorrectable error

111 - One or more ways reporting a correctable event while one or more ways are 
reporting an uncorrectable error 

20:19 – Reserved 00 

31:21 – Fixed pattern 0010_0000_000

Table 16-25.  Type B Bus and Interconnect Error Codes

Bit Num Sub-Field Name Description

16 FSB Request Parity Parity error detected during FSB request phase

17 Core0 Addr Parity Parity error detected on Core 0 request’s address field

18 Core1 Addr Parity Parity error detected on Core 1 request’s address field

19 Reserved

20 FSB Response Parity Parity error on FSB response field detected

21 FSB Data Parity FSB data parity error on inbound data detected

22 Core0 Data Parity Data parity error on data received from Core 0 detected

23 Core1 Data Parity Data parity error on data received from Core 1 detected

24 IDS Parity Detected an Enhanced Defer parity error (phase A or phase B)

25 FSB Inbound Data ECC Data ECC event to error on inbound data (correctable or uncorrectable)

26 FSB Data Glitch Pad logic detected a data strobe ‘glitch’ (or sequencing error)

27 FSB Address Glitch Pad logic detected a request strobe ‘glitch’ (or sequencing error)

31:28 --- Reserved
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16.6.3.3  Processor Model Specific Error Code Field Type C:  Cache Bus Controller Error

Table 16-26.  Type C Cache Bus Controller Error Codes 

MC4_STATUS[31:16] (MSCE) Value Error Description

0000_0000_0000_0001   0x0001 Inclusion Error from Core 0

0000_0000_0000_0010   0x0002 Inclusion Error from Core 1

0000_0000_0000_0011   0x0003 Write Exclusive Error from Core 0

0000_0000_0000_0100   0x0004 Write Exclusive Error from Core 1

0000_0000_0000_0101   0x0005 Inclusion Error from FSB

0000_0000_0000_0110   0x0006 SNP Stall Error from FSB

0000_0000_0000_0111   0x0007 Write Stall Error from FSB

0000_0000_0000_1000   0x0008 FSB Arb Timeout Error

0000_0000_0000_1001   0x0009 CBC OOD Queue Underflow/overflow

0000_0001_0000_0000   0x0100 Enhanced Intel SpeedStep Technology TM1-TM2 Error

0000_0010_0000_0000   0x0200 Internal Timeout error

0000_0011_0000_0000   0x0300 Internal Timeout Error

0000_0100_0000_0000   0x0400 Intel® Cache Safe Technology Queue Full Error or Disabled-ways-in-a-set overflow

1100_0000_0000_0001   0xC001 Correctable ECC event on outgoing FSB data

1100_0000_0000_0010   0xC002 Correctable ECC event on outgoing Core 0 data

1100_0000_0000_0100   0xC004 Correctable ECC event on outgoing Core 1 data

1110_0000_0000_0001   0xE001 Uncorrectable ECC error on outgoing FSB data

1110_0000_0000_0010   0xE002 Uncorrectable ECC error on outgoing Core 0 data

1110_0000_0000_0100   0xE004 Uncorrectable ECC error on outgoing Core 1 data

 — all other encodings — Reserved
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All errors - except for the correctable ECC types - in this table are uncorrectable.  The correctable ECC events may 
supply the ECC syndrome in the Other_Info field of the MC4_STATUS MSR..

Table 16-27.  Decoding Family 0FH Machine Check Codes for Cache Hierarchy Errors

Type Bit No. Bit Function Bit Description

MCA error 
codes1

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for more information.

0-15

Model 
specific error 
codes

16-17 Tag Error Code Contains the tag error code for this machine check error:

00 = No error detected

01 = Parity error on tag miss with a clean line

10 = Parity error/multiple tag match on tag hit

11 = Parity error/multiple tag match on tag miss

18-19 Data Error Code Contains the data error code for this machine check error:

00 = No error detected

01 = Single bit error

10 = Double bit error on a clean line

11 = Double bit error on a modified line

20 L3 Error This bit is set if the machine check error originated in the L3 it can be ignored for 
invalid PIC request errors):

1 = L3 error

0 = L2 error

21 Invalid PIC Request Indicates error due to invalid PIC request access was made to PIC space with WB 
memory):

1 = Invalid PIC request error

0 = No invalid PIC request error

22-31 Reserved Reserved

Other 
Information

32-39 8-bit Error Count Holds a count of the number of errors since reset. The counter begins at 0 for the 
first error and saturates at a count of 255.

40-56 Reserved Reserved

Status 
register 
validity 
indicators1

57-63
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CHAPTER 17
DEBUG, BRANCH PROFILE, TSC, AND QUALITY OF SERVICE

Intel 64 and IA-32 architectures provide debug facilities for use in debugging code and monitoring performance. 
These facilities are valuable for debugging application software, system software, and multitasking operating 
systems. Debug support is accessed using debug registers (DR0 through DR7) and model-specific registers 
(MSRs): 
• Debug registers hold the addresses of memory and I/O locations called breakpoints. Breakpoints are user-

selected locations in a program, a data-storage area in memory, or specific I/O ports. They are set where a 
programmer or system designer wishes to halt execution of a program and examine the state of the processor 
by invoking debugger software. A debug exception (#DB) is generated when a memory or I/O access is made 
to a breakpoint address. 

• MSRs monitor branches, interrupts, and exceptions; they record addresses of the last branch, interrupt or 
exception taken and the last branch taken before an interrupt or exception.

• Time stamp counter is described in Section 17.13, “Time-Stamp Counter”.
• Platform Quality of Service Monitoring is described in Section 17.14, “Platform Quality-of-Service (Qos) 

Monitoring”.
• Platform Quality of Service Enforcement is described in Section 17.15, “Cache Quality-of-Service (Qos) 

Enforcement”.

17.1 OVERVIEW OF DEBUG SUPPORT FACILITIES

The following processor facilities support debugging and performance monitoring:
• Debug exception (#DB) — Transfers program control to a debug procedure or task when a debug event 

occurs.
• Breakpoint exception (#BP) — See breakpoint instruction (INT 3) below.
• Breakpoint-address registers (DR0 through DR3) — Specifies the addresses of up to 4 breakpoints.
• Debug status register (DR6) — Reports the conditions that were in effect when a debug or breakpoint 

exception was generated.
• Debug control register (DR7) — Specifies the forms of memory or I/O access that cause breakpoints to be 

generated.
• T (trap) flag, TSS — Generates a debug exception (#DB) when an attempt is made to switch to a task with 

the T flag set in its TSS.
• RF (resume) flag, EFLAGS register — Suppresses multiple exceptions to the same instruction.
• TF (trap) flag, EFLAGS register — Generates a debug exception (#DB) after every execution of an 

instruction.
• Breakpoint instruction (INT 3) — Generates a breakpoint exception (#BP) that transfers program control to 

the debugger procedure or task. This instruction is an alternative way to set code breakpoints. It is especially 
useful when more than four breakpoints are desired, or when breakpoints are being placed in the source code.

• Last branch recording facilities — Store branch records in the last branch record (LBR) stack MSRs for the 
most recent taken branches, interrupts, and/or exceptions in MSRs. A branch record consist of a branch-from 
and a branch-to instruction address. Send branch records out on the system bus as branch trace messages 
(BTMs).

These facilities allow a debugger to be called as a separate task or as a procedure in the context of the current 
program or task. The following conditions can be used to invoke the debugger:
• Task switch to a specific task.
• Execution of the breakpoint instruction.
• Execution of any instruction.
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• Execution of an instruction at a specified address.
• Read or write to a specified memory address/range.
• Write to a specified memory address/range.
• Input from a specified I/O address/range.
• Output to a specified I/O address/range.
• Attempt to change the contents of a debug register.

17.2 DEBUG REGISTERS

Eight debug registers (see Figure 17-1 for 32-bit operation and Figure 17-2 for 64-bit operation) control the debug 
operation of the processor. These registers can be written to and read using the move to/from debug register form 
of the MOV instruction. A debug register may be the source or destination operand for one of these instructions. 

Figure 17-1.  Debug Registers
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Debug registers are privileged resources; a MOV instruction that accesses these registers can only be executed in 
real-address mode, in SMM or in protected mode at a CPL of 0. An attempt to read or write the debug registers 
from any other privilege level generates a general-protection exception (#GP).

The primary function of the debug registers is to set up and monitor from 1 to 4 breakpoints, numbered 0 though 
3. For each breakpoint, the following information can be specified:
• The linear address where the breakpoint is to occur.
• The length of the breakpoint location: 1, 2, 4, or 8 bytes (refer to the notes in Section 17.2.4).
• The operation that must be performed at the address for a debug exception to be generated.
• Whether the breakpoint is enabled.
• Whether the breakpoint condition was present when the debug exception was generated.

The following paragraphs describe the functions of flags and fields in the debug 
registers.

17.2.1 Debug Address Registers (DR0-DR3)

Each of the debug-address registers (DR0 through DR3) holds the 32-bit linear address of a breakpoint (see 
Figure 17-1). Breakpoint comparisons are made before physical address translation occurs. The contents of debug 
register DR7 further specifies breakpoint conditions. 

17.2.2 Debug Registers DR4 and DR5

Debug registers DR4 and DR5 are reserved when debug extensions are enabled (when the DE flag in control 
register CR4 is set) and attempts to reference the DR4 and DR5 registers cause invalid-opcode exceptions (#UD). 
When debug extensions are not enabled (when the DE flag is clear), these registers are aliased to debug registers 
DR6 and DR7.

17.2.3 Debug Status Register (DR6)

The debug status register (DR6) reports debug conditions that were sampled at the time the last debug exception 
was generated (see Figure 17-1). Updates to this register only occur when an exception is generated. The flags in 
this register show the following information:
• B0 through B3 (breakpoint condition detected) flags (bits 0 through 3) — Indicates (when set) that its 

associated breakpoint condition was met when a debug exception was generated. These flags are set if the 
condition described for each breakpoint by the LENn, and R/Wn flags in debug control register DR7 is true. 
They may or may not be set if the breakpoint is not enabled by the Ln or the Gn flags in register DR7. Therefore 
on a #DB, a debug handler should check only those B0-B3 bits which correspond to an enabled breakpoint.

• BD (debug register access detected) flag (bit 13) — Indicates that the next instruction in the instruction 
stream accesses one of the debug registers (DR0 through DR7). This flag is enabled when the GD (general 
detect) flag in debug control register DR7 is set. See Section 17.2.4, “Debug Control Register (DR7),” for 
further explanation of the purpose of this flag. 

• BS (single step) flag (bit 14) — Indicates (when set) that the debug exception was triggered by the single-
step execution mode (enabled with the TF flag in the EFLAGS register). The single-step mode is the highest-
priority debug exception. When the BS flag is set, any of the other debug status bits also may be set.

• BT (task switch) flag (bit 15) — Indicates (when set) that the debug exception resulted from a task switch 
where the T flag (debug trap flag) in the TSS of the target task was set. See Section 7.2.1, “Task-State 
Segment (TSS),” for the format of a TSS. There is no flag in debug control register DR7 to enable or disable this 
exception; the T flag of the TSS is the only enabling flag.

Certain debug exceptions may clear bits 0-3. The remaining contents of the DR6 register are never cleared by the 
processor. To avoid confusion in identifying debug exceptions, debug handlers should clear the register before 
returning to the interrupted task.
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17.2.4 Debug Control Register (DR7)

The debug control register (DR7) enables or disables breakpoints and sets breakpoint conditions (see Figure 17-1). 
The flags and fields in this register control the following things:
• L0 through L3 (local breakpoint enable) flags (bits 0, 2, 4, and 6) — Enables (when set) the breakpoint 

condition for the associated breakpoint for the current task. When a breakpoint condition is detected and its 
associated Ln flag is set, a debug exception is generated. The processor automatically clears these flags on 
every task switch to avoid unwanted breakpoint conditions in the new task.

• G0 through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7) — Enables (when set) the 
breakpoint condition for the associated breakpoint for all tasks. When a breakpoint condition is detected and its 
associated Gn flag is set, a debug exception is generated. The processor does not clear these flags on a task 
switch, allowing a breakpoint to be enabled for all tasks.

• LE and GE (local and global exact breakpoint enable) flags (bits 8, 9) — This feature is not supported in 
the P6 family processors, later IA-32 processors, and Intel 64 processors. When set, these flags cause the 
processor to detect the exact instruction that caused a data breakpoint condition. For backward and forward 
compatibility with other Intel processors, we recommend that the LE and GE flags be set to 1 if exact 
breakpoints are required.

• GD (general detect enable) flag (bit 13) — Enables (when set) debug-register protection, which causes a 
debug exception to be generated prior to any MOV instruction that accesses a debug register. When such a 
condition is detected, the BD flag in debug status register DR6 is set prior to generating the exception. This 
condition is provided to support in-circuit emulators. 
When the emulator needs to access the debug registers, emulator software can set the GD flag to prevent 
interference from the program currently executing on the processor.
The processor clears the GD flag upon entering to the debug exception handler, to allow the handler access to 
the debug registers.

• R/W0 through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28, and 29) — Specifies the 
breakpoint condition for the corresponding breakpoint. The DE (debug extensions) flag in control register CR4 
determines how the bits in the R/Wn fields are interpreted. When the DE flag is set, the processor interprets 
bits as follows:

00 — Break on instruction execution only. 
01 — Break on data writes only.
10 — Break on I/O reads or writes.
11 — Break on data reads or writes but not instruction fetches.

When the DE flag is clear, the processor interprets the R/Wn bits the same as for the Intel386™ and Intel486™ 
processors, which is as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
10 — Undefined.
11 — Break on data reads or writes but not instruction fetches.

• LEN0 through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and 31) — Specify the size of the 
memory location at the address specified in the corresponding breakpoint address register (DR0 through DR3). 
These fields are interpreted as follows:

00 — 1-byte length.
01 — 2-byte length.
10 — Undefined (or 8 byte length, see note below).
11 — 4-byte length.

If the corresponding RWn field in register DR7 is 00 (instruction execution), then the LENn field should also be 00. 
The effect of using other lengths is undefined. See Section 17.2.5, “Breakpoint Field Recognition,” below.
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NOTES

For Pentium® 4 and Intel® Xeon® processors with a CPUID signature corresponding to family 15 
(model 3, 4, and 6), break point conditions permit specifying 8-byte length on data read/write with 
an of encoding 10B in the LENn field. 
Encoding 10B is also supported in processors based on Intel Core microarchitecture or enhanced 
Intel Core microarchitecture, the respective CPUID signatures corresponding to family 6, model 15, 
and family 6, DisplayModel value 23 (see CPUID instruction in Chapter 3, “Instruction Set 
Reference, A-M” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A). The Encoding 10B is supported in processors based on Intel® Atom™ microarchitecture, with 
CPUID signature of family 6, DisplayModel value 28. The encoding 10B is undefined for other 
processors.

17.2.5 Breakpoint Field Recognition

Breakpoint address registers (debug registers DR0 through DR3) and the LENn fields for each breakpoint define a 
range of sequential byte addresses for a data or I/O breakpoint. The LENn fields permit specification of a 1-, 2-, 4-
, or 8-byte range, beginning at the linear address specified in the corresponding debug register (DRn). Two-byte 
ranges must be aligned on word boundaries; 4-byte ranges must be aligned on doubleword boundaries. I/O 
addresses are zero-extended (from 16 to 32 bits, for comparison with the breakpoint address in the selected debug 
register). These requirements are enforced by the processor; it uses LENn field bits to mask the lower address bits 
in the debug registers. Unaligned data or I/O breakpoint addresses do not yield valid results.

A data breakpoint for reading or writing data is triggered if any of the bytes participating in an access is within the 
range defined by a breakpoint address register and its LENn field. Table 17-1 provides an example setup of debug 
registers and data accesses that would subsequently trap or not trap on the breakpoints.

A data breakpoint for an unaligned operand can be constructed using two breakpoints, where each breakpoint is 
byte-aligned and the two breakpoints together cover the operand. The breakpoints generate exceptions only for 
the operand, not for neighboring bytes.

Instruction breakpoint addresses must have a length specification of 1 byte (the LENn field is set to 00). Code 
breakpoints for other operand sizes are undefined. The processor recognizes an instruction breakpoint address 
only when it points to the first byte of an instruction. If the instruction has prefixes, the breakpoint address must 
point to the first prefix.

Table 17-1.  Breakpoint Examples

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn

DR0
DR1
DR2
DR3

R/W0 = 11 (Read/Write)
R/W1 = 01 (Write)
R/W2 = 11 (Read/Write)
R/W3 = 01 (Write)

A0001H
A0002H
B0002H
C0000H

LEN0 = 00 (1 byte)
LEN1 = 00 (1 byte)
LEN2 = 01) (2 bytes)
LEN3 = 11 (4 bytes)

Data Accesses

Operation Address Access Length 
(In Bytes)

Data operations that trap
- Read or write
- Read or write
- Write
- Write
- Read or write
- Read or write
- Read or write
- Write
- Write
- Write

A0001H
A0001H
A0002H
A0002H
B0001H
B0002H
B0002H
C0000H
C0001H
C0003H

1
2
1
2
4
1
2
4
2
1
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17.2.6 Debug Registers and Intel® 64 Processors

For Intel 64 architecture processors, debug registers DR0–DR7 are 64 bits. In 16-bit or 32-bit modes (protected 
mode and compatibility mode), writes to a debug register fill the upper 32 bits with zeros. Reads from a debug 
register return the lower 32 bits. In 64-bit mode, MOV DRn instructions read or write all 64 bits. Operand-size 
prefixes are ignored. 

In 64-bit mode, the upper 32 bits of DR6 and DR7 are reserved and must be written with zeros. Writing 1 to any of 
the upper 32 bits results in a #GP(0) exception (see Figure 17-2). All 64 bits of DR0–DR3 are writable by software. 
However, MOV DRn instructions do not check that addresses written to DR0–DR3 are in the linear-address limits of 
the processor implementation (address matching is supported only on valid addresses generated by the processor 
implementation). Break point conditions for 8-byte memory read/writes are supported in all modes.

Data operations that do not trap
- Read or write
- Read
- Read or write
- Read or write
- Read
- Read or write

A0000H
A0002H
A0003H
B0000H
C0000H
C0004H

1
1
4
2
2
4

Table 17-1.  Breakpoint Examples (Contd.)

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn
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17.3 DEBUG EXCEPTIONS

The Intel 64 and IA-32 architectures dedicate two interrupt vectors to handling debug exceptions: vector 1 (debug 
exception, #DB) and vector 3 (breakpoint exception, #BP). The following sections describe how these exceptions 
are generated and typical exception handler operations.

Figure 17-2.  DR6/DR7 Layout on Processors Supporting Intel® 64 Architecture
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17.3.1 Debug Exception (#DB)—Interrupt Vector 1

The debug-exception handler is usually a debugger program or part of a larger software system. The processor 
generates a debug exception for any of several conditions. The debugger checks flags in the DR6 and DR7 registers 
to determine which condition caused the exception and which other conditions might apply. Table 17-2 shows the 
states of these flags following the generation of each kind of breakpoint condition.

Instruction-breakpoint and general-detect condition (see Section 17.3.1.3, “General-Detect Exception Condition”) 
result in faults; other debug-exception conditions result in traps. The debug exception may report one or both at 
one time. The following sections describe each class of debug exception. 

See also: Chapter 6, “Interrupt 1—Debug Exception (#DB),” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A.

17.3.1.1  Instruction-Breakpoint Exception Condition

The processor reports an instruction breakpoint when it attempts to execute an instruction at an address specified 
in a breakpoint-address register (DR0 through DR3) that has been set up to detect instruction execution (R/W flag 
is set to 0). Upon reporting the instruction breakpoint, the processor generates a fault-class, debug exception 
(#DB) before it executes the target instruction for the breakpoint. 

Instruction breakpoints are the highest priority debug exceptions. They are serviced before any other exceptions 
detected during the decoding or execution of an instruction. However, if a code instruction breakpoint is placed on 
an instruction located immediately after a POP SS/MOV SS instruction, the breakpoint may not be triggered. In 
most situations, POP SS/MOV SS will inhibit such interrupts (see “MOV—Move” and “POP—Pop a Value from the 
Stack” in Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B).

Because the debug exception for an instruction breakpoint is generated before the instruction is executed, if the 
instruction breakpoint is not removed by the exception handler; the processor will detect the instruction breakpoint 
again when the instruction is restarted and generate another debug exception. To prevent looping on an instruction 
breakpoint, the Intel 64 and IA-32 architectures provide the RF flag (resume flag) in the EFLAGS register (see 
Section 2.3, “System Flags and Fields in the EFLAGS Register,” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A). When the RF flag is set, the processor ignores instruction breakpoints.

All Intel 64 and IA-32 processors manage the RF flag as follows. The RF Flag is cleared at the start of the instruction 
after the check for code breakpoint, CS limit violation and FP exceptions. Task Switches and IRETD/IRETQ instruc-
tions transfer the RF image from the TSS/stack to the EFLAGS register.

When calling an event handler, Intel 64 and IA-32 processors establish the value of the RF flag in the EFLAGS image 
pushed on the stack:

Table 17-2.  Debug Exception Conditions

Debug or Breakpoint Condition DR6 Flags Tested DR7 Flags Tested Exception Class

Single-step trap BS = 1 Trap

Instruction breakpoint, at addresses defined by DRn and 
LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 0 Fault

Data write breakpoint, at addresses defined by DRn and 
LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 1 Trap

I/O read or write breakpoint, at addresses defined by DRn 
and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 2 Trap

Data read or write (but not instruction fetches), at 
addresses defined by DRn and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 3 Trap

General detect fault, resulting from an attempt to modify 
debug registers (usually in conjunction with in-circuit 
emulation)

BD = 1 Fault

Task switch BT = 1 Trap
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• For any fault-class exception except a debug exception generated in response to an instruction breakpoint, the 
value pushed for RF is 1.

• For any interrupt arriving after any iteration of a repeated string instruction but the last iteration, the value 
pushed for RF is 1.

• For any trap-class exception generated by any iteration of a repeated string instruction but the last iteration, 
the value pushed for RF is 1.

• For other cases, the value pushed for RF is the value that was in EFLAG.RF at the time the event handler was 
called. This includes:

— Debug exceptions generated in response to instruction breakpoints

— Hardware-generated interrupts arriving between instructions (including those arriving after the last 
iteration of a repeated string instruction)

— Trap-class exceptions generated after an instruction completes (including those generated after the last 
iteration of a repeated string instruction)

— Software-generated interrupts (RF is pushed as 0, since it was cleared at the start of the software interrupt)

As noted above, the processor does not set the RF flag prior to calling the debug exception handler for debug 
exceptions resulting from instruction breakpoints. The debug exception handler can prevent recurrence of the 
instruction breakpoint by setting the RF flag in the EFLAGS image on the stack. If the RF flag in the EFLAGS image 
is set when the processor returns from the exception handler, it is copied into the RF flag in the EFLAGS register by 
IRETD/IRETQ or a task switch that causes the return. The processor then ignores instruction breakpoints for the 
duration of the next instruction. (Note that the POPF, POPFD, and IRET instructions do not transfer the RF image 
into the EFLAGS register.) Setting the RF flag does not prevent other types of debug-exception conditions (such as, 
I/O or data breakpoints) from being detected, nor does it prevent non-debug exceptions from being generated.

For the Pentium processor, when an instruction breakpoint coincides with another fault-type exception (such as a 
page fault), the processor may generate one spurious debug exception after the second exception has been 
handled, even though the debug exception handler set the RF flag in the EFLAGS image. To prevent a spurious 
exception with Pentium processors, all fault-class exception handlers should set the RF flag in the EFLAGS image.

17.3.1.2  Data Memory and I/O Breakpoint Exception Conditions

Data memory and I/O breakpoints are reported when the processor attempts to access a memory or I/O address 
specified in a breakpoint-address register (DR0 through DR3) that has been set up to detect data or I/O accesses 
(R/W flag is set to 1, 2, or 3). The processor generates the exception after it executes the instruction that made the 
access, so these breakpoint condition causes a trap-class exception to be generated. 

Because data breakpoints are traps, an instruction that writes memory overwrites the original data before the 
debug exception generated by a data breakpoint is generated. If a debugger needs to save the contents of a write 
breakpoint location, it should save the original contents before setting the breakpoint. The handler can report the 
saved value after the breakpoint is triggered. The address in the debug registers can be used to locate the new 
value stored by the instruction that triggered the breakpoint.

If a data breakpoint is detected during an iteration of a string instruction executed with fast-string operation (see 
Section 7.3.9.3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1), delivery of the 
resulting debug exception may be delayed until completion of the corresponding group of iterations.

Intel486 and later processors ignore the GE and LE flags in DR7. In Intel386 processors, exact data breakpoint 
matching does not occur unless it is enabled by setting the LE and/or the GE flags. 

For repeated INS and OUTS instructions that generate an I/O-breakpoint debug exception, the processor gener-
ates the exception after the completion of the first iteration. Repeated INS and OUTS instructions generate a data-
breakpoint debug exception after the iteration in which the memory address breakpoint location is accessed.

17.3.1.3  General-Detect Exception Condition

When the GD flag in DR7 is set, the general-detect debug exception occurs when a program attempts to access any 
of the debug registers (DR0 through DR7) at the same time they are being used by another application, such as an 
emulator or debugger. This protection feature guarantees full control over the debug registers when required. The 
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debug exception handler can detect this condition by checking the state of the BD flag in the DR6 register. The 
processor generates the exception before it executes the MOV instruction that accesses a debug register, which 
causes a fault-class exception to be generated. 

17.3.1.4  Single-Step Exception Condition

The processor generates a single-step debug exception if (while an instruction is being executed) it detects that the 
TF flag in the EFLAGS register is set. The exception is a trap-class exception, because the exception is generated 
after the instruction is executed. The processor will not generate this exception after the instruction that sets the 
TF flag. For example, if the POPF instruction is used to set the TF flag, a single-step trap does not occur until after 
the instruction that follows the POPF instruction.

The processor clears the TF flag before calling the exception handler. If the TF flag was set in a TSS at the time of 
a task switch, the exception occurs after the first instruction is executed in the new task.

The TF flag normally is not cleared by privilege changes inside a task. The INT n and INTO instructions, however, 
do clear this flag. Therefore, software debuggers that single-step code must recognize and emulate INT n or INTO 
instructions rather than executing them directly. To maintain protection, the operating system should check the 
CPL after any single-step trap to see if single stepping should continue at the current privilege level.

The interrupt priorities guarantee that, if an external interrupt occurs, single stepping stops. When both an external 
interrupt and a single-step interrupt occur together, the single-step interrupt is processed first. This operation 
clears the TF flag. After saving the return address or switching tasks, the external interrupt input is examined 
before the first instruction of the single-step handler executes. If the external interrupt is still pending, then it is 
serviced. The external interrupt handler does not run in single-step mode. To single step an interrupt handler, 
single step an INT n instruction that calls the interrupt handler.

17.3.1.5  Task-Switch Exception Condition

The processor generates a debug exception after a task switch if the T flag of the new task's TSS is set. This excep-
tion is generated after program control has passed to the new task, and prior to the execution of the first instruc-
tion of that task. The exception handler can detect this condition by examining the BT flag of the DR6 register.

If entry 1 (#DB) in the IDT is a task gate, the T bit of the corresponding TSS should not be set. Failure to observe 
this rule will put the processor in a loop.

17.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3

The breakpoint exception (interrupt 3) is caused by execution of an INT 3 instruction. See Chapter 6, “Interrupt 
3—Breakpoint Exception (#BP).” Debuggers use break exceptions in the same way that they use the breakpoint 
registers; that is, as a mechanism for suspending program execution to examine registers and memory locations. 
With earlier IA-32 processors, breakpoint exceptions are used extensively for setting instruction breakpoints.

With the Intel386 and later IA-32 processors, it is more convenient to set breakpoints with the breakpoint-address 
registers (DR0 through DR3). However, the breakpoint exception still is useful for breakpointing debuggers, 
because a breakpoint exception can call a separate exception handler. The breakpoint exception is also useful when 
it is necessary to set more breakpoints than there are debug registers or when breakpoints are being placed in the 
source code of a program under development.

17.4 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING OVERVIEW

P6 family processors introduced the ability to set breakpoints on taken branches, interrupts, and exceptions, and 
to single-step from one branch to the next. This capability has been modified and extended in the Pentium 4, Intel 
Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7 and Intel® Atom™ 
processors to allow logging of branch trace messages in a branch trace store (BTS) buffer in memory. 

See the following sections for processor specific implementation of last branch, interrupt and exception recording:
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— Section 17.5, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ 2 Duo and Intel® Atom™ 
Processor Family)”

— Section 17.6, “Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchi-
tecture code name Nehalem”

— Section 17.7, “Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchi-
tecture code name Sandy Bridge”

— Section 17.8, “Last Branch, Call Stack, Interrupt, and Exception Recording for Processors based on Intel® 
Microarchitecture Code Name Haswell”

— Section 17.9, “Last Branch, Interrupt, and Exception Recording (Processors based on Intel NetBurst® 
Microarchitecture)”

— Section 17.10, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ Solo and Intel® Core™ 

Duo Processors)”

— Section 17.11, “Last Branch, Interrupt, and Exception Recording (Pentium M Processors)”

— Section 17.12, “Last Branch, Interrupt, and Exception Recording (P6 Family Processors)”

The following subsections of Section 17.4 describe common features of profiling branches. These features are 
generally enabled using the IA32_DEBUGCTL MSR (older processor may have implemented a subset or model-
specific features, see definitions of MSR_DEBUGCTLA, MSR_DEBUGCTLB, MSR_DEBUGCTL).

17.4.1 IA32_DEBUGCTL MSR

The IA32_DEBUGCTL MSR provides bit field controls to enable debug trace interrupts, debug trace stores, trace 
messages enable, single stepping on branches, last branch record recording, and to control freezing of LBR stack 
or performance counters on a PMI request. IA32_DEBUGCTL MSR is located at register address 01D9H. 

See Figure 17-3 for the MSR layout and the bullets below for a description of the flags:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace of 

the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug exception 
being generated) in the last branch record (LBR) stack. For more information, see the Section 17.5.1, “LBR 
Stack” (Intel® Core™2 Duo and Intel® Atom™ Processor Family) and Section 17.6.1, “LBR Stack” (processors 
based on Intel® Microarchitecture code name Nehalem).

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS 
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism 
allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on Branches,” 
for more information about the BTF flag.

• TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the 
processor detects a taken branch, interrupt, or exception; it sends the branch record out on the system bus as 
a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” for more information about the 
TR flag.

• BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bit 8) — When set, the BTS facilities generate an interrupt when the 
BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5, “Branch 
Trace Store (BTS),” for a description of this mechanism.
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• BTS_OFF_OS (branch trace off in privileged code) flag (bit 9) — When set, BTS or BTM is skipped if CPL 
is 0. See Section 17.9.2.

• BTS_OFF_USR (branch trace off in user code) flag (bit 10) — When set, BTS or BTM is skipped if CPL is 
greater than 0. See Section 17.9.2.

• FREEZE_LBRS_ON_PMI flag (bit 11) — When set, the LBR stack is frozen on a hardware PMI request (e.g. 
when a counter overflows and is configured to trigger PMI). 

• FREEZE_PERFMON_ON_PMI flag (bit 12) — When set, a PMI request clears each of the “ENABLE” field of 
MSR_PERF_GLOBAL_CTRL MSR (see Figure 18-3) to disable all the counters. 

• FREEZE_WHILE_SMM_EN (bit 14) — If this bit is set, upon the delivery of an SMI, the processor will clear all 
the enable bits of IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and disable LBR, 
BTF, TR, and BTS fields of IA32_DEBUGCTL before transferring control to the SMI handler. Subsequently, the 
enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of IA32_DEBUGCTL prior to SMI 
delivery will be restored, after the SMI handler issues RSM to complete its service. Note that system software 
must check IA32_DEBUGCTL. to determine if the processor supports the FREEZE_WHILE_SMM_EN control bit. 
FREEZE_WHILE_SMM_EN is supported if IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 
1. See Section 18.15 for details of detecting the presence of IA32_PERF_CAPABILITIES MSR.

17.4.2 Monitoring Branches, Exceptions, and Interrupts

When the LBR flag (bit 0) in the IA32_DEBUGCTL MSR is set, the processor automatically begins recording branch 
records for taken branches, interrupts, and exceptions (except for debug exceptions) in the LBR stack MSRs.

When the processor generates a a debug exception (#DB), it automatically clears the LBR flag before executing the 
exception handler. This action does not clear previously stored LBR stack MSRs. The branch record for the last four 
taken branches, interrupts and/or exceptions are retained for analysis.

A debugger can use the linear addresses in the LBR stack to re-set breakpoints in the breakpoint address registers 
(DR0 through DR3). This allows a backward trace from the manifestation of a particular bug toward its source.

If the LBR flag is cleared and TR flag in the IA32_DEBUGCTL MSR remains set, the processor will continue to update 
LBR stack MSRs. This is because BTM information must be generated from entries in the LBR stack. A #DB does not 
automatically clear the TR flag.

Figure 17-3.  IA32_DEBUGCTL MSR for Processors based 
on Intel Core microarchitecture
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17.4.3 Single-Stepping on Branches

When software sets both the BTF flag (bit 1) in the IA32_DEBUGCTL MSR and the TF flag in the EFLAGS register, 
the processor generates a single-step debug exception only after instructions that cause a branch.1 This mecha-
nism allows a debugger to single-step on control transfers caused by branches. This “branch single stepping” helps 
isolate a bug to a particular block of code before instruction single-stepping further narrows the search. The 
processor clears the BTF flag when it generates a debug exception. The debugger must set the BTF flag before 
resuming program execution to continue single-stepping on branches.

17.4.4 Branch Trace Messages

Setting the TR flag (bit 6) in the IA32_DEBUGCTL MSR enables branch trace messages (BTMs). Thereafter, when 
the processor detects a branch, exception, or interrupt, it sends a branch record out on the system bus as a BTM. 
A debugging device that is monitoring the system bus can read these messages and synchronize operations with 
taken branch, interrupt, and exception events. 

When interrupts or exceptions occur in conjunction with a taken branch, additional BTMs are sent out on the bus, 
as described in Section 17.4.2, “Monitoring Branches, Exceptions, and Interrupts.”

For P6 processor family, Pentium M processor family, processors based on Intel Core microarchitecture, TR and LBR 
bits can not be set at the same time due to hardware limitation. The content of LBR stack is undefined when TR is 
set. 

For IA processor families based on Intel NetBurst microarchitecture, Intel microarchitecture code name Nehalem 
and Intel Atom processor family, the processor can collect branch records in the LBR stack and at the same time 
send/store BTMs when both the TR and LBR flags are set in the IA32_DEBUGCTL MSR (or the equivalent 
MSR_DEBUGCTLA, MSR_DEBUGCTLB).

The following exception applies:
• BTM may not be observable on Intel Atom processor family processors that do not provide an externally visible 

system bus.

17.4.4.1  Branch Trace Message Visibility

Branch trace message (BTM) visibility is implementation specific and limited to  systems with a front side bus 
(FSB). BTMs may not be visible to newer system link interfaces or a system bus that deviates from a traditional 
FSB.

17.4.5 Branch Trace Store (BTS)

A trace of taken branches, interrupts, and exceptions is useful for debugging code by providing a method of deter-
mining the decision path taken to reach a particular code location. The LBR flag (bit 0) of IA32_DEBUGCTL provides 
a mechanism for capturing records of taken branches, interrupts, and exceptions and saving them in the last 
branch record (LBR) stack MSRs, setting the TR flag for sending them out onto the system bus as BTMs. The branch 
trace store (BTS) mechanism provides the additional capability of saving the branch records in a memory-resident 
BTS buffer, which is part of the DS save area. The BTS buffer can be configured to be circular so that the most 
recent branch records are always available or it can be configured to generate an interrupt when the buffer is 
nearly full so that all the branch records can be saved. The BTINT flag (bit 8) can be used to enable the generation 
of interrupt when the BTS buffer is full. See Section 17.4.9.2, “Setting Up the DS Save Area.” for additional details.

Setting this flag (BTS) alone can greatly reduce the performance of the processor. CPL-qualified branch trace 
storing mechanism can help mitigate the performance impact of sending/logging branch trace messages.

1. Executions of CALL, IRET, and JMP that cause task switches never cause single-step debug exceptions (regardless of the value of the 
BTF flag). A debugger desiring debug exceptions on switches to a task should set the T flag (debug trap flag) in the TSS of that task. 
See Section 7.2.1, “Task-State Segment (TSS).”
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17.4.6 CPL-Qualified Branch Trace Mechanism

CPL-qualified branch trace mechanism is available to a subset of Intel 64 and IA-32 processors that support the 
branch trace storing mechanism. The processor supports the CPL-qualified branch trace mechanism if 
CPUID.01H:ECX[bit 4] = 1.

The CPL-qualified branch trace mechanism is described in Section 17.4.9.4. System software can selectively specify 
CPL qualification to not send/store Branch Trace Messages associated with a specified privilege level. Two bit fields, 
BTS_OFF_USR (bit 10) and BTS_OFF_OS (bit 9), are provided in the debug control register to specify the CPL of 
BTMs that will not be logged in the BTS buffer or sent on the bus.

17.4.7 Freezing LBR and Performance Counters on PMI 

Many issues may generate a performance monitoring interrupt (PMI); a PMI service handler will need to determine 
cause to handle the situation. Two capabilities that allow a PMI service routine to improve branch tracing and 
performance monitoring are:
• Freezing LBRs on PMI (bit 11)— The processor freezes LBRs on a PMI request by clearing the LBR bit (bit 0) 

in IA32_DEBUGCTL. Software must then re-enable IA32_DEBUGCTL.[0] to continue monitoring branches. 
When using this feature, software should be careful about writes to IA32_DEBUGCTL to avoid re-enabling LBRs 
by accident if they were just disabled.

• Freezing PMCs on PMI (bit 12) — The processor freezes the performance counters on a PMI request by 
clearing the MSR_PERF_GLOBAL_CTRL MSR (see Figure 18-3). The PMCs affected include both general-
purpose counters and fixed-function counters (see Section 18.4.1, “Fixed-function Performance Counters”). 
Software must re-enable counts by writing 1s to the corresponding enable bits in MSR_PERF_GLOBAL_CTRL 
before leaving a PMI service routine to continue counter operation.

Freezing LBRs and PMCs on PMIs occur when:
• A performance counter had an overflow and was programmed to signal a PMI in case of an overflow.

— For the general-purpose counters; this is done by setting bit 20 of the IA32_PERFEVTSELx register.

— For the fixed-function counters; this is done by setting the 3rd bit in the corresponding 4-bit control field of 
the MSR_PERF_FIXED_CTR_CTRL register (see Figure 18-1) or IA32_FIXED_CTR_CTRL MSR (see Figure 
18-2).

• The PEBS buffer is almost full and reaches the interrupt threshold.
• The BTS buffer is almost full and reaches the interrupt threshold.

17.4.8 LBR Stack 

The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across Intel 64 and IA-32 
processor families. However, the number of MSRs in the LBR stack and the valid range of TOS pointer value can 
vary between different processor families. Table 17-3 lists the LBR stack size and TOS pointer range for several 
processor families according to the CPUID signatures of DisplayFamily_DisplayModel encoding (see CPUID instruc-
tion in Chapter 3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). 

Table 17-3.   LBR Stack Size and TOS Pointer Range 

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_3CH, 06_45H, 06_46H, 06_3FH 16 0 to 15

06_2AH, 06_2DH, 06_3AH, 06_3EH 16 0 to 15

06_1AH, 06_1EH, 06_1FH, 06_2EH, 
06_25H, 06_2CH, 06_2FH

16 0 to 15

06_17H, 06_1DH 4 0 to 3

06_0FH 4 0 to 3

06_1CH 8 0 to 7
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The last branch recording mechanism tracks not only branch instructions (like JMP, Jcc, LOOP and CALL instruc-
tions), but also other operations that cause a change in the instruction pointer (like external interrupts, traps and 
faults). The branch recording mechanisms generally employs a set of MSRs, referred to as last branch record (LBR) 
stack. The size and exact locations of the LBR stack are generally model-specific (see Chapter 35, “Model-Specific 
Registers (MSRs)” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C for model-
specific MSR addresses). 
• Last Branch Record (LBR) Stack — The LBR consists of N pairs of MSRs (N is listed in the LBR stack size 

column of Table 17-3) that store source and destination address of recent branches (see Figure 17-3): 

— MSR_LASTBRANCH_0_FROM_IP (address is model specific) through the next consecutive (N-1) MSR 
address store source addresses

— MSR_LASTBRANCH_0_TO_IP (address is model specific ) through the next consecutive (N-1) MSR address 
store destination addresses.

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant M bits of the TOS Pointer MSR 
(MSR_LASTBRANCH_TOS, address is model specific) contains an M-bit pointer to the MSR in the LBR stack that 
contains the most recent branch, interrupt, or exception recorded. The valid range of the M-bit POS pointer is 
given in Table 17-3.

17.4.8.1  LBR Stack and Intel® 64 Processors 

LBR MSRs are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the address is recorded. If IA-32e mode 
is enabled, the processor writes 64-bit values into the MSR. 

In 64-bit mode, last branch records store 64-bit addresses; in compatibility mode, the upper 32-bits of last branch 
records are cleared.

Software should query an architectural MSR IA32_PERF_CAPABILITIES[5:0] about the format of the address that 
is stored in the LBR stack. Four formats are defined by the following encoding:

— 000000B (32-bit record format) — Stores 32-bit offset in current CS of respective source/destination,

— 000001B (64-bit LIP record format) — Stores 64-bit linear address of respective source/destination,

— 000010B (64-bit EIP record format) — Stores 64-bit offset (effective address) of respective 
source/destination.

— 000011B (64-bit EIP record format) and Flags — Stores 64-bit offset (effective address) of respective 
source/destination. LBR flags are supported in the upper bits of ‘FROM’ register in the LBR stack. See LBR 
stack details below for flag support and definition.

— 000011B (64-bit EIP record format), Flags and TSX — Stores 64-bit offset (effective address) of 
respective source/destination. LBR flags are supported in the upper bits of ‘FROM’ register in the LBR stack. 
TSX fields are also supported.

Processor’s support for the architectural MSR IA32_PERF_CAPABILITIES is provided by 
CPUID.01H:ECX[PERF_CAPAB_MSR] (bit 15).

Figure 17-4.  64-bit Address Layout of LBR MSR 
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Source Address

0
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Destination Address

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_(N-1)_FROM_IP

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_(N-1)_TO_IP
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17.4.8.2  LBR Stack and IA-32 Processors 

The LBR MSRs in IA-32 processors introduced prior to Intel 64 architecture store the 32-bit “To Linear Address” and 
“From Linear Address“ using the high and low half of each 64-bit MSR. 

17.4.8.3  Last Exception Records and Intel 64 Architecture

Intel 64 and IA-32 processors also provide MSRs that store the branch record for the last branch taken prior to an 
exception or an interrupt. The location of the last exception record (LER) MSRs are model specific. The MSRs that 
store last exception records are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the address is 
recorded. If IA-32e mode is enabled, the processor writes 64-bit values into the MSR. In 64-bit mode, last excep-
tion records store 64-bit addresses; in compatibility mode, the upper 32-bits of last exception records are cleared.

17.4.9 BTS and DS Save Area

The Debug store (DS) feature flag (bit 21), returned by CPUID.1:EDX[21] Indicates that the processor provides 
the debug store (DS) mechanism. This mechanism allows BTMs to be stored in a memory-resident BTS buffer. See 
Section 17.4.5, “Branch Trace Store (BTS).” Precise event-based sampling (PEBS, see Section 18.4.4, “Precise 
Event Based Sampling (PEBS),”) also uses the DS save area provided by debug store mechanism. When 
CPUID.1:EDX[21] is set, the following BTS facilities are available:
• The BTS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when clear) the availability of the BTS 

facilities, including the ability to set the BTS and BTINT bits in the MSR_DEBUGCTLA MSR.
• The IA32_DS_AREA MSR can be programmed to point to the DS save area. 

The debug store (DS) save area is a software-designated area of memory that is used to collect the following two 
types of information:
• Branch records — When the BTS flag in the IA32_DEBUGCTL MSR is set, a branch record is stored in the BTS 

buffer in the DS save area whenever a taken branch, interrupt, or exception is detected. 
• PEBS records — When a performance counter is configured for PEBS, a PEBS record is stored in the PEBS 

buffer in the DS save area after the counter overflow occurs. This record contains the architectural state of the 
processor (state of the 8 general purpose registers, EIP register, and EFLAGS register) at the next occurrence 
of the PEBS event that caused the counter to overflow. When the state information has been logged, the 
counter is automatically reset to a preselected value, and event counting begins again. 

NOTE

On processors based on Intel Core microarchitecture and for Intel Atom processor family, PEBS is 
supported only for a subset of the performance events. 

NOTES

DS save area and recording mechanism is not available in the SMM. The feature is disabled on 
transition to the SMM mode. Similarly DS recording is disabled on the generation of a machine 
check exception and is cleared on processor RESET and INIT. DS recording is available in real 
address mode.
The BTS and PEBS facilities may not be available on all processors. The availability of these facilities 
is indicated by the BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags, respectively, in the 
IA32_MISC_ENABLE MSR (see Chapter 35).

The DS save area is divided into three parts (see Figure 17-5): buffer management area, branch trace store (BTS) 
buffer, and PEBS buffer. The buffer management area is used to define the location and size of the BTS and PEBS 
buffers. The processor then uses the buffer management area to keep track of the branch and/or PEBS records in 
their respective buffers and to record the performance counter reset value. The linear address of the first byte of 
the DS buffer management area is specified with the IA32_DS_AREA MSR.

The fields in the buffer management area are as follows: 
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• BTS buffer base — Linear address of the first byte of the BTS buffer. This address should point to a natural 
doubleword boundary.

• BTS index — Linear address of the first byte of the next BTS record to be written to. Initially, this address 
should be the same as the address in the BTS buffer base field.

• BTS absolute maximum — Linear address of the next byte past the end of the BTS buffer. This address 
should be a multiple of the BTS record size (12 bytes) plus 1.

• BTS interrupt threshold — Linear address of the BTS record on which an interrupt is to be generated. This 
address must point to an offset from the BTS buffer base that is a multiple of the BTS record size. Also, it must 
be several records short of the BTS absolute maximum address to allow a pending interrupt to be handled prior 
to processor writing the BTS absolute maximum record.

• PEBS buffer base — Linear address of the first byte of the PEBS buffer. This address should point to a natural 
doubleword boundary.

• PEBS index — Linear address of the first byte of the next PEBS record to be written to. Initially, this address 
should be the same as the address in the PEBS buffer base field.

• PEBS absolute maximum — Linear address of the next byte past the end of the PEBS buffer. This address 
should be a multiple of the PEBS record size (40 bytes) plus 1.

• PEBS interrupt threshold — Linear address of the PEBS record on which an interrupt is to be generated. This 
address must point to an offset from the PEBS buffer base that is a multiple of the PEBS record size. Also, it 

Figure 17-5.  DS Save Area
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must be several records short of the PEBS absolute maximum address to allow a pending interrupt to be 
handled prior to processor writing the PEBS absolute maximum record.

• PEBS counter reset value — A 40-bit value that the counter is to be reset to after state information has 
collected following counter overflow. This value allows state information to be collected after a preset number 
of events have been counted. 

Figures 17-6 shows the structure of a 12-byte branch record in the BTS buffer. The fields in each record are as 
follows:
• Last branch from — Linear address of the instruction from which the branch, interrupt, or exception was 

taken.
• Last branch to — Linear address of the branch target or the first instruction in the interrupt or exception 

service routine.
• Branch predicted — Bit 4 of field indicates whether the branch that was taken was predicted (set) or not 

predicted (clear).

Figures 17-7 shows the structure of the 40-byte PEBS records. Nominally the register values are those at the 
beginning of the instruction that caused the event. However, there are cases where the registers may be logged in 
a partially modified state. The linear IP field shows the value in the EIP register translated from an offset into the 
current code segment to a linear address.

17.4.9.1  DS Save Area and IA-32e Mode Operation

When IA-32e mode is active (IA32_EFER.LMA = 1), the structure of the DS save area is shown in Figure 17-8. The 
organization of each field in IA-32e mode operation is similar to that of non-IA-32e mode operation. However, each 

Figure 17-6.  32-bit Branch Trace Record Format

Figure 17-7.  PEBS Record Format
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field now stores a 64-bit address. The IA32_DS_AREA MSR holds the 64-bit linear address of the first byte of the 
DS buffer management area. 

When IA-32e mode is active, the structure of a branch trace record is similar to that shown in Figure 17-6, but each 
field is 8 bytes in length. This makes each BTS record 24 bytes (see Figure 17-9). The structure of a PEBS record 
is similar to that shown in Figure 17-7, but each field is 8 bytes in length and architectural states include register 
R8 through R15. This makes the size of a PEBS record in 64-bit mode 144 bytes (see Figure 17-10).

Figure 17-8.  IA-32e Mode DS Save Area

Figure 17-9.  64-bit Branch Trace Record Format

BTS Buffer Base

BTS Index

BTS Absolute 

BTS Interrupt 

PEBS Absolute

PEBS Interrupt

PEBS 

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter Reset

Reserved

0H

8H

10H

18H

20H

28H

30H

38H

40H

48H

50H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR

Last Branch From

Last Branch To

Branch Predicted

0H

8H

10H

063 4



17-20 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND QUALITY OF SERVICE

Fields in the buffer management area of a DS save area are described in Section 17.4.9. 

The format of a branch trace record and a PEBS record are the same as the 64-bit record formats shown in Figures 
17-9 and Figures 17-10, with the exception that the branch predicted bit is not supported by Intel Core microarchi-
tecture or Intel Atom microarchitecture. The 64-bit record formats for BTS and PEBS apply to DS save area for all 
operating modes. 

The procedures used to program IA32_DEBUG_CTRL MSR to set up a BTS buffer or a CPL-qualified BTS are 
described in Section 17.4.9.3 and Section 17.4.9.4.

Required elements for writing a DS interrupt service routine are largely the same on processors that support using 
DS Save area for BTS or PEBS records. However, on processors based on Intel NetBurst® microarchitecture, re-
enabling counting requires writing to CCCRs. But a DS interrupt service routine on processors based on Intel Core 
or Intel Atom microarchitecture should:
• Re-enable the enable bits in IA32_PERF_GLOBAL_CTRL MSR if it is servicing an overflow PMI due to PEBS.
• Clear overflow indications by writing to IA32_PERF_GLOBAL_OVF_CTRL when a counting configuration is 

changed. This includes bit 62 (ClrOvfBuffer) and the overflow indication of counters used in either PEBS or 
general-purpose counting (specifically: bits 0 or 1; see Figures 18-3).

17.4.9.2  Setting Up the DS Save Area

To save branch records with the BTS buffer, the DS save area must first be set up in memory as described in the 
following procedure (See Section 18.4.4.1, “Setting up the PEBS Buffer,” for instructions for setting up a PEBS 
buffer, respectively, in the DS save area):

1. Create the DS buffer management information area in memory (see Section 17.4.9, “BTS and DS Save Area,” 
and Section 17.4.9.1, “DS Save Area and IA-32e Mode Operation”). Also see the additional notes in this 
section.

2. Write the base linear address of the DS buffer management area into the IA32_DS_AREA MSR. 

3. Set up the performance counter entry in the xAPIC LVT for fixed delivery and edge sensitive. See Section 
10.5.1, “Local Vector Table.”

Figure 17-10.  64-bit PEBS Record Format
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4. Establish an interrupt handler in the IDT for the vector associated with the performance counter entry in the 
xAPIC LVT.

5. Write an interrupt service routine to handle the interrupt. See Section 17.4.9.5, “Writing the DS Interrupt 
Service Routine.”

The following restrictions should be applied to the DS save area.
• The three DS save area sections should be allocated from a non-paged pool, and marked accessed and dirty. It 

is the responsibility of the operating system to keep the pages that contain the buffer present and to mark 
them accessed and dirty. The implication is that the operating system cannot do “lazy” page-table entry 
propagation for these pages.

• The DS save area can be larger than a page, but the pages must be mapped to contiguous linear addresses. 
The buffer may share a page, so it need not be aligned on a 4-KByte boundary. For performance reasons, the 
base of the buffer must be aligned on a doubleword boundary and should be aligned on a cache line boundary. 

• It is recommended that the buffer size for the BTS buffer and the PEBS buffer be an integer multiple of the 
corresponding record sizes.

• The precise event records buffer should be large enough to hold the number of precise event records that can 
occur while waiting for the interrupt to be serviced.

• The DS save area should be in kernel space. It must not be on the same page as code, to avoid triggering self-
modifying code actions.

• There are no memory type restrictions on the buffers, although it is recommended that the buffers be 
designated as WB memory type for performance considerations.

• Either the system must be prevented from entering A20M mode while DS save area is active, or bit 20 of all 
addresses within buffer bounds must be 0.

• Pages that contain buffers must be mapped to the same physical addresses for all processes, such that any 
change to control register CR3 will not change the DS addresses. 

• The DS save area is expected to used only on systems with an enabled APIC. The LVT Performance Counter 
entry in the APCI must be initialized to use an interrupt gate instead of the trap gate.

17.4.9.3  Setting Up the BTS Buffer

Three flags in the MSR_DEBUGCTLA MSR (see Table 17-4), IA32_DEBUGCTL (see Figure 17-3), or 
MSR_DEBUGCTLB (see Figure 17-16) control the generation of branch records and storing of them in the BTS 
buffer; these are TR, BTS, and BTINT. The TR flag enables the generation of BTMs. The BTS flag determines 
whether the BTMs are sent out on the system bus (clear) or stored in the BTS buffer (set). BTMs cannot be simul-
taneously sent to the system bus and logged in the BTS buffer. The BTINT flag enables the generation of an inter-
rupt when the BTS buffer is full. When this flag is clear, the BTS buffer is a circular buffer.

The following procedure describes how to set up a DS Save area to collect branch records in the BTS buffer:

1. Place values in the BTS buffer base, BTS index, BTS absolute maximum, and BTS interrupt threshold fields of 
the DS buffer management area to set up the BTS buffer in memory.

2. Set the TR and BTS flags in the IA32_DEBUGCTL for Intel Core Solo and Intel Core Duo processors or later 
processors (or MSR_DEBUGCTLA MSR for processors based on Intel NetBurst Microarchitecture; or 
MSR_DEBUGCTLB for Pentium M processors).

3. Clear the BTINT flag in the corresponding IA32_DEBUGCTL (or MSR_DEBUGCTLA MSR; or MSR_DEBUGCTLB) 
if a circular BTS buffer is desired.

Table 17-4.   IA32_DEBUGCTL Flag Encodings 

TR BTS BTINT Description

0 X X Branch trace messages (BTMs) off

1 0 X Generate BTMs

1 1 0 Store BTMs in the BTS buffer, used here as a circular buffer

1 1 1 Store BTMs in the BTS buffer, and generate an interrupt when the buffer is nearly full



17-22 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND QUALITY OF SERVICE

NOTES

If the buffer size is set to less than the minimum allowable value (i.e. BTS absolute maximum < 1 
+ size of BTS record), the results of BTS is undefined.
In order to prevent generating an interrupt, when working with circular BTS buffer, SW need to set 
BTS interrupt threshold to a value greater than BTS absolute maximum (fields of the DS buffer 
management area). It's not enough to clear the BTINT flag itself only. 

17.4.9.4  Setting Up CPL-Qualified BTS 

If the processor supports CPL-qualified last branch recording mechanism, the generation of branch records and 
storing of them in the BTS buffer are determined by: TR, BTS, BTS_OFF_OS, BTS_OFF_USR, and BTINT. The 
encoding of these five bits are shown in Table 17-5.

17.4.9.5  Writing the DS Interrupt Service Routine

The BTS, non-precise event-based sampling, and PEBS facilities share the same interrupt vector and interrupt 
service routine (called the debug store interrupt service routine or DS ISR). To handle BTS, non-precise event-
based sampling, and PEBS interrupts: separate handler routines must be included in the DS ISR. Use the following 
guidelines when writing a DS ISR to handle BTS, non-precise event-based sampling, and/or PEBS interrupts.
• The DS interrupt service routine (ISR) must be part of a kernel driver and operate at a current privilege level of 

0 to secure the buffer storage area.
• Because the BTS, non-precise event-based sampling, and PEBS facilities share the same interrupt vector, the 

DS ISR must check for all the possible causes of interrupts from these facilities and pass control on to the 
appropriate handler. 

BTS and PEBS buffer overflow would be the sources of the interrupt if the buffer index matches/exceeds the 
interrupt threshold specified. Detection of non-precise event-based sampling as the source of the interrupt is 
accomplished by checking for counter overflow.

• There must be separate save areas, buffers, and state for each processor in an MP system.
• Upon entering the ISR, branch trace messages and PEBS should be disabled to prevent race conditions during 

access to the DS save area. This is done by clearing TR flag in the IA32_DEBUGCTL (or MSR_DEBUGCTLA MSR) 
and by clearing the precise event enable flag in the MSR_PEBS_ENABLE MSR. These settings should be 
restored to their original values when exiting the ISR. 

• The processor will not disable the DS save area when the buffer is full and the circular mode has not been 
selected. The current DS setting must be retained and restored by the ISR on exit.

Table 17-5.  CPL-Qualified Branch Trace Store Encodings 

TR BTS BTS_OFF_OS BTS_OFF_USR BTINT Description

0 X X X X Branch trace messages (BTMs) off

1 0 X X X Generates BTMs but do not store BTMs

1 1 0 0 0 Store all BTMs in the BTS buffer, used here as a circular buffer

1 1 1 0 0 Store BTMs with CPL > 0 in the BTS buffer

1 1 0 1 0 Store BTMs with CPL = 0 in the BTS buffer

1 1 1 1 X Generate BTMs but do not store BTMs

1 1 0 0 1 Store all BTMs in the BTS buffer; generate an interrupt when the 
buffer is nearly full

1 1 1 0 1 Store BTMs with CPL > 0 in the BTS buffer; generate an interrupt 
when the buffer is nearly full

1 1 0 1 1 Store BTMs with CPL = 0 in the BTS buffer; generate an interrupt 
when the buffer is nearly full
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• After reading the data in the appropriate buffer, up to but not including the current index into the buffer, the ISR 
must reset the buffer index to the beginning of the buffer. Otherwise, everything up to the index will look like 
new entries upon the next invocation of the ISR.

• The ISR must clear the mask bit in the performance counter LVT entry.
• The ISR must re-enable the counters to count via IA32_PERF_GLOBAL_CTRL/IA32_PERF_GLOBAL_OVF_CTRL 

if it is servicing an overflow PMI due to PEBS (or via CCCR's ENABLE bit on processor based on Intel NetBurst 
microarchitecture).

• The Pentium 4 Processor and Intel Xeon Processor mask PMIs upon receiving an interrupt. Clear this condition 
before leaving the interrupt handler.

17.5 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™ 2 
DUO AND INTEL® ATOM™ PROCESSOR FAMILY)

The Intel Core 2 Duo processor family and Intel Xeon processors based on Intel Core microarchitecture or 
enhanced Intel Core microarchitecture provide last branch interrupt and exception recording. The facilities 
described in this section also apply to Intel Atom processor family. These capabilities are similar to those found in 
Pentium 4 processors, including support for the following facilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR provide bit fields for software to 

configure mechanisms related to debug trace, branch recording, branch trace store, and performance counter 
operations. See Section 17.4.1 for a description of the flags. See Figure 17-3 for the MSR layout.

• Last branch record (LBR) stack — There are a collection of MSR pairs that store the source and destination 
addresses related to recently executed branches. See Section 17.5.1. 

• Monitoring and single-stepping of branches, exceptions, and interrupts

— See Section 17.4.2 and Section 17.4.3. In addition, the ability to freeze the LBR stack on a PMI request is 
available.

— The Intel Atom processor family clears the TR flag when the FREEZE_LBRS_ON_PMI flag is set.
• Branch trace messages — See Section 17.4.4. 
• Last exception records — See Section 17.9.3. 
• Branch trace store and CPL-qualified BTS — See Section 17.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 17.4.7. 
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 17.4.7. 
• FREEZE_WHILE_SMM_EN (bit 14) — FREEZE_WHILE_SMM_EN is supported if 

IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 17.4.1.

17.5.1 LBR Stack 

The last branch record stack and top-of-stack (TOS) pointer MSRs are supported across Intel Core 2, Intel Xeon 
and Intel Atom processor families. 

Four pairs of MSRs are supported in the LBR stack for Intel Core 2 and Intel Xeon processor families:
• Last Branch Record (LBR) Stack 

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through MSR_LASTBRANCH_3_FROM_IP (address 43H) 
store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through MSR_LASTBRANCH_3_TO_IP (address 63H) store 
destination addresses

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 2 bits of the TOS Pointer MSR 
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the 
most recent branch, interrupt, or exception recorded.
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Eight pairs of MSRs are supported in the LBR stack for Intel Atom processors:
• Last Branch Record (LBR) Stack 

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through MSR_LASTBRANCH_7_FROM_IP (address 47H) 
store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through MSR_LASTBRANCH_7_TO_IP (address 67H) store 
destination addresses

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 3 bits of the TOS Pointer MSR 
(MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the LBR stack that contains the most 
recent branch, interrupt, or exception recorded.

For compatibility, the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) duplicate functions of the LastExcep-
tionToIP and LastExceptionFromIP MSRs found in P6 family processors.

17.6 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR 
PROCESSORS BASED ON INTEL® MICROARCHITECTURE CODE NAME 
NEHALEM

The processors based on Intel® microarchitecture code name Nehalem and Intel® microarchitecture code name 
Westmere support last branch interrupt and exception recording. These capabilities are similar to those found in 
Intel Core 2 processors and adds additional capabilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR provides bit fields for software to 

configure mechanisms related to debug trace, branch recording, branch trace store, and performance counter 
operations. See Section 17.4.1 for a description of the flags. See Figure 17-11 for the MSR layout. 

• Last branch record (LBR) stack — There are 16 MSR pairs that store the source and destination addresses 
related to recently executed branches. See Section 17.6.1.

• Monitoring and single-stepping of branches, exceptions, and interrupts — See Section 17.4.2 and 
Section 17.4.3. In addition, the ability to freeze the LBR stack on a PMI request is available.

• Branch trace messages — The IA32_DEBUGCTL MSR provides bit fields for software to enable each logical 
processor to generate branch trace messages. See Section 17.4.4. However, not all BTM messages are 
observable using the Intel® QPI link.

• Last exception records — See Section 17.9.3. 
• Branch trace store and CPL-qualified BTS — See Section 17.4.6 and Section 17.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 17.4.7. 
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 17.4.7. 
• UNCORE_PMI_EN (bit 13) — When set. this logical processor is enabled to receive an counter overflow 

interrupt form the uncore.
• FREEZE_WHILE_SMM_EN (bit 14) — FREEZE_WHILE_SMM_EN is supported if 

IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See Section 17.4.1.

Processors based on Intel microarchitecture code name Nehalem provide additional capabilities:
• Independent control of uncore PMI — The IA32_DEBUGCTL MSR provides a bit field (see Figure 17-11) for 

software to enable each logical processor to receive an uncore counter overflow interrupt.
• LBR filtering — Processors based on Intel microarchitecture code name Nehalem support filtering of LBR 

based on combination of CPL and branch type conditions. When LBR filtering is enabled, the LBR stack only 
captures the subset of branches that are specified by MSR_LBR_SELECT.
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17.6.1 LBR Stack

Processors based on Intel microarchitecture code name Nehalem provide 16 pairs of MSR to record last branch 
record information. The layout of each MSR pair is shown in Table 17-6 and Table 17-7.

Processors based on Intel microarchitecture code name Nehalem have an LBR MSR Stack as shown in Table 17-8.

Table 17-8.  LBR Stack Size and TOS Pointer Range

Figure 17-11.  IA32_DEBUGCTL MSR for Processors based 
on Intel microarchitecture code name Nehalem
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direction (taken/non-taken) was mispredicted; otherwise, the target branch was 
predicted.

Table 17-7.   IA32_LASTBRANCH_x_TO_IP 

Bit Field Bit Offset Access Description

Data 47:0 R/O The linear address of the target of the branch instruction itself, this is the “branch to“ 
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17.6.2 Filtering of Last Branch Records

MSR_LBR_SELECT is cleared to zero at RESET, and LBR filtering is disabled, i.e. all branches will be captured. 
MSR_LBR_SELECT provides bit fields to specify the conditions of subsets of branches that will not be captured in 
the LBR. The layout of MSR_LBR_SELECT is shown in Table 17-9.

17.7 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR 
PROCESSORS BASED ON INTEL® MICROARCHITECTURE CODE NAME 
SANDY BRIDGE

Generally, all of the last branch record, interrupt and exception recording facility described in Section 17.6, “Last 
Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name 
Nehalem”, apply to processors based on Intel microarchitecture code name Sandy Bridge. For processors based on 
Intel microarchitecture code name Ivy Bridge, the same holds true. 

One difference of note is that MSR_LBR_SELECT is shared between two logical processors in the same core. In Intel 
microarchitecture code name Sandy Bridge, each logical processor has its own MSR_LBR_SELECT. The filtering 
semantics for “Near_ind_jmp” and “Near_rel_jmp” has been enhanced, see Table 17-10.

Table 17-9.   MSR_LBR_SELECT for Intel microarchitecture code name Nehalem

Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches occurring in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches occurring in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps 

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero

Table 17-10.   MSR_LBR_SELECT for Intel® microarchitecture code name Sandy Bridge

Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches occurring in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches occurring in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except near relative calls.

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero
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17.8 LAST BRANCH, CALL STACK, INTERRUPT, AND EXCEPTION RECORDING 
FOR PROCESSORS BASED ON INTEL® MICROARCHITECTURE CODE NAME 
HASWELL

Generally, all of the last branch record, interrupt and exception recording facility described in Section 17.7, “Last 
Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name Sandy 
Bridge”, apply to next generation processors based on Intel microarchitecture code name Haswell. 

The LBR facility also supports an alternate capability to profile call stack profiles. Configuring the LBR facility to 
conduct call stack profiling is by writing 1 to the MSR_LBR_SELECT.EN_CALLSTACK[bit 9]; see Table 17-11. If 
MSR_LBR_SELECT.EN_CALLSTACK is clear, the LBR facility will capture branches normally as described in Section 
17.7.

The call stack profiling capability is an enhancement of the LBR facility. The LBR stack is a ring buffer typically used 
to profile control flow transitions resulting from branches. However, the finite depth of the LBR stack often become 
less effective when profiling certain high-level languages (e.g. C++), where a transition of the execution flow is 
accompanied by a large number of leaf function calls, each of which returns an individual parameter to form the list 
of parameters for the main execution function call. A long list of such parameters returned by the leaf functions 
would serve to flush the data captured in the LBR stack, often losing the main execution context. 

When the call stack feature is enabled, the LBR stack will capture unfiltered call data normally, but as return 
instructions are executed the last captured branch record is flushed from the on-chip registers in a last-in first-out 
(LIFO) manner. Thus, branch information relative to leaf functions will not be captured, while preserving the call 
stack information of the main line execution path.

The configuration of the call stack facility is summarized below:
• Set IA32_DEBUGCTL.LBR (bit 0) to enable the LBR stack to capture branch records. The source and target 

addresses of the call branches will be captured in the 16 pairs of From/To LBR MSRs that form the LBR stack.
• Program the Top of Stack (TOS) MSR that points to the last valid from/to pair. This register is incremented by 

1, modulo 16, before recording the next pair of addresses.
• Program the branch filtering bits of MSR_LBR_SELECT (bits 0:8) as desired.
• Program the MSR_LBR_SELECT to enable LIFO filtering of return instructions with:

— The following bits in MSR_LBR_SELECT must be set to ‘1’: JCC, NEAR_IND_JMP, NEAR_REL_JMP, 
FAR_BRANCH, EN_CALLSTACK;

— The following bits in MSR_LBR_SELECT must be cleared: NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET;

Table 17-11.   MSR_LBR_SELECT for Intel® microarchitecture code name Haswell

Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches occurring in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches occurring in ring >0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except near relative calls.

FAR_BRANCH 8 R/W When set, do not capture far branches

EN_CALLSTACK1

NOTES:

1. Must set valid combination of bits 0-8 in conjunction with bit 9, otherwise the counter result is undefined.

9 Enable LBR stack to use LIFO filtering to capture Call stack profile

Reserved 63:10 Must be zero
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— At most one of CPL_EQ_0, CPL_NEQ_0 is set.

Note that when call stack profiling is enabled, “zero length calls” are excluded from writing into the LBRs. (A “zero 
length call” uses the attribute of the call instruction to push the immediate instruction pointer on to the stack and 
then pops off that address into a register. This is accomplished without any matching return on the call.)

17.8.1 LBR Stack Enhancement

Processors based on Intel microarchitecture code name Haswell provide 16 pairs of MSR to record last branch 
record information. The layout of each MSR pair is enumerated by IA32_PERF_CAPABILITIES[5:0] = 04H, and is 
shown in Table 17-12 and Table 17-7.

17.9 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PROCESSORS 
BASED ON INTEL NETBURST® MICROARCHITECTURE)

Pentium 4 and Intel Xeon processors based on Intel NetBurst microarchitecture provide the following methods for 
recording taken branches, interrupts and exceptions:
• Store branch records in the last branch record (LBR) stack MSRs for the most recent taken branches, 

interrupts, and/or exceptions in MSRs. A branch record consist of a branch-from and a branch-to instruction 
address. 

• Send the branch records out on the system bus as branch trace messages (BTMs).
• Log BTMs in a memory-resident branch trace store (BTS) buffer.

To support these functions, the processor provides the following MSRs and related facilities:
• MSR_DEBUGCTLA MSR — Enables last branch, interrupt, and exception recording; single-stepping on taken 

branches; branch trace messages (BTMs); and branch trace store (BTS). This register is named DebugCtlMSR 
in the P6 family processors.

• Debug store (DS) feature flag (CPUID.1:EDX.DS[bit 21]) — Indicates that the processor provides the 
debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident BTS buffer.

• CPL-qualified debug store (DS) feature flag (CPUID.1:ECX.DS-CPL[bit 4]) — Indicates that the 
processor provides a CPL-qualified debug store (DS) mechanism, which allows software to selectively skip 
sending and storing BTMs, according to specified current privilege level settings, into a memory-resident BTS 
buffer.

• IA32_MISC_ENABLE MSR — Indicates that the processor provides the BTS facilities.
• Last branch record (LBR) stack — The LBR stack is a circular stack that consists of four MSRs 

(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3) for the Pentium 4 and Intel Xeon processor family 
[CPUID family 0FH, models 0H-02H]. The LBR stack consists of 16 MSR pairs 
(MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_15_FROM_IP and 

Table 17-12.   IA32_LASTBRANCH_x_FROM_IP with TSX Information

Bit Field Bit Offset Access Description

Data 47:0 R/O The linear address of the branch instruction itself, this is the “branch from“ address.

SIGN_EXT 60:48 R/0 Signed extension of bit 47 of this register.

TSX_ABORT 61 R/0 When set, indicates a TSX Abort entry
LBR_FROM: EIP at the time of the TSX Abort
LBR_TO: EIP of the start of HLE region, or EIP of the RTM Abort Handler

IN_TSX 62 R/0 When set, indicates the entry occurred in a TSX region

MISPRED 63 R/O When set, indicates either the target of the branch was mispredicted and/or the 
direction (taken/non-taken) was mispredicted; otherwise, the target branch was 
predicted.



Vol. 3B 17-29

DEBUG, BRANCH PROFILE, TSC, AND QUALITY OF SERVICE

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_15_TO_IP) for the Pentium 4 and Intel Xeon 
processor family [CPUID family 0FH, model 03H].

• Last branch record top-of-stack (TOS) pointer — The TOS Pointer MSR contains a 2-bit pointer (0-3) to 
the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded for the 
Pentium 4 and Intel Xeon processor family [CPUID family 0FH, models 0H-02H]. This pointer becomes a 4-bit 
pointer (0-15) for the Pentium 4 and Intel Xeon processor family [CPUID family 0FH, model 03H]. See also: 
Table 17-13, Figure 17-12, and Section 17.9.2, “LBR Stack for Processors Based on Intel NetBurst® Microar-
chitecture.”

• Last exception record — See Section 17.9.3, “Last Exception Records.”

17.9.1 MSR_DEBUGCTLA MSR 

The MSR_DEBUGCTLA MSR enables and disables the various last branch recording mechanisms described in the 
previous section. This register can be written to using the WRMSR instruction, when operating at privilege level 0 
or when in real-address mode. A protected-mode operating system procedure is required to provide user access to 
this register. Figure 17-12 shows the flags in the MSR_DEBUGCTLA MSR. The functions of these flags are as 
follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace of 

the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug exception 
being generated) in the last branch record (LBR) stack. Each branch, interrupt, or exception is recorded as a 
64-bit branch record. The processor clears this flag whenever a debug exception is generated (for example, 
when an instruction or data breakpoint or a single-step trap occurs). See Section 17.9.2, “LBR Stack for 
Processors Based on Intel NetBurst® Microarchitecture.”

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS 
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism 
allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on Branches.”

• TR (trace message enable) flag (bit 2) — When set, branch trace messages are enabled. Thereafter, when 
the processor detects a taken branch, interrupt, or exception, it sends the branch record out on the system bus 
as a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages.”

• BTS (branch trace store) flag (bit 3) — When set, enables the BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bits 4) — When set, the BTS facilities generate an interrupt when the 
BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5, “Branch 
Trace Store (BTS).”

• BTS_OFF_OS (disable ring 0 branch trace store) flag (bit 5) — When set, enables the BTS facilities to 
skip sending/logging CPL_0 BTMs to the memory-resident BTS buffer. See Section 17.9.2, “LBR Stack for 
Processors Based on Intel NetBurst® Microarchitecture.”

Figure 17-12.  MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

5 4 3 2 1 0

BTS — Branch trace store

Reserved

67

BTS_OFF_OS — Disable storing CPL_0 BTS
BTS_OFF_USR — Disable storing non-CPL_0 BTS
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• BTS_OFF_USR (disable ring 0 branch trace store) flag (bit 6) — When set, enables the BTS facilities to 
skip sending/logging non-CPL_0 BTMs to the memory-resident BTS buffer. See Section 17.9.2, “LBR Stack for 
Processors Based on Intel NetBurst® Microarchitecture.”

NOTE

The initial implementation of BTS_OFF_USR and BTS_OFF_OS in MSR_DEBUGCTLA is shown in 
Figure 17-12. The BTS_OFF_USR and BTS_OFF_OS fields may be implemented on other model-
specific debug control register at different locations.

See Chapter 35, “Model-Specific Registers (MSRs),” for a detailed description of each of the last branch recording 
MSRs.

17.9.2 LBR Stack for Processors Based on Intel NetBurst® Microarchitecture

The LBR stack is made up of LBR MSRs that are treated by the processor as a circular stack. The TOS pointer 
(MSR_LASTBRANCH_TOS MSR) points to the LBR MSR (or LBR MSR pair) that contains the most recent (last) 
branch record placed on the stack. Prior to placing a new branch record on the stack, the TOS is incremented by 1. 
When the TOS pointer reaches it maximum value, it wraps around to 0. See Table 17-13 and Figure 17-12.

Table 17-13.  LBR MSR Stack Size and TOS Pointer Range for the Pentium® 4 and the Intel® Xeon® Processor Family

The registers in the LBR MSR stack and the MSR_LASTBRANCH_TOS MSR are read-only and can be read using the 
RDMSR instruction.

Figure 17-13 shows the layout of a branch record in an LBR MSR (or MSR pair). Each branch record consists of two 
linear addresses, which represent the “from” and “to” instruction pointers for a branch, interrupt, or exception. The 
contents of the from and to addresses differ, depending on the source of the branch:
• Taken branch — If the record is for a taken branch, the “from” address is the address of the branch instruction 

and the “to” address is the target instruction of the branch. 
• Interrupt — If the record is for an interrupt, the “from” address the return instruction pointer (RIP) saved for 

the interrupt and the “to” address is the address of the first instruction in the interrupt handler routine. The RIP 
is the linear address of the next instruction to be executed upon returning from the interrupt handler.

• Exception — If the record is for an exception, the “from” address is the linear address of the instruction that 
caused the exception to be generated and the “to” address is the address of the first instruction in the exception 
handler routine.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

Family 0FH, Models 0H-02H; MSRs at locations 1DBH-1DEH. 4 0 to 3

Family 0FH, Models; MSRs at locations 680H-68FH. 16 0 to 15

Family 0FH, Model 03H; MSRs at locations 6C0H-6CFH. 16 0 to 15
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Additional information is saved if an exception or interrupt occurs in conjunction with a branch instruction. If a 
branch instruction generates a trap type exception, two branch records are stored in the LBR stack: a branch 
record for the branch instruction followed by a branch record for the exception.

If a branch instruction is immediately followed by an interrupt, a branch record is stored in the LBR stack for the 
branch instruction followed by a record for the interrupt. 

17.9.3 Last Exception Records

The Pentium 4, Intel Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7 
and Intel® Atom™ processors provide two MSRs (the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that 
duplicate the functions of the LastExceptionToIP and LastExceptionFromIP MSRs found in the P6 family processors. 
The MSR_LER_TO_LIP and MSR_LER_FROM_LIP MSRs contain a branch record for the last branch that the 
processor took prior to an exception or interrupt being generated.

17.10 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™ 
SOLO AND INTEL® CORE™ DUO PROCESSORS)

Intel Core Solo and Intel Core Duo processors provide last branch interrupt and exception recording. This capability 
is almost identical to that found in Pentium 4 and Intel Xeon processors. There are differences in the stack and in 
some MSR names and locations. 

Note the following:
• IA32_DEBUGCTL MSR — Enables debug trace interrupt, debug trace store, trace messages enable, 

performance monitoring breakpoint flags, single stepping on branches, and last branch. IA32_DEBUGCTL MSR 
is located at register address 01D9H. 
See Figure 17-14 for the layout and the entries below for a description of the flags:

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace 
of the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug 
exception being generated) in the last branch record (LBR) stack. For more information, see the “Last 
Branch Record (LBR) Stack” below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS 
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism 

Figure 17-13.  LBR MSR Branch Record Layout for the Pentium 4 
and Intel Xeon Processor Family

63

From Linear Address

0

To Linear Address

63

From Linear Address

0

063

To Linear Address

32 - 31
MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3 
CPUID Family 0FH, Models 0H-02H

Reserved

CPUID Family 0FH, Model 03H-04H

Reserved

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_15_FROM_IP

32 - 31

32 - 31

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_15_TO_IP



17-32 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND QUALITY OF SERVICE

allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on 
Branches,” for more information about the BTF flag.

— TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the 
processor detects a taken branch, interrupt, or exception; it sends the branch record out on the system bus 
as a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” for more information 
about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS facilities to log BTMs to a 
memory-resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS facilities generate an interrupt when 
the BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5, 
“Branch Trace Store (BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID instruction — Indicates that the 
processor provides the debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident 
BTS buffer. See Section 17.4.5, “Branch Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs (MSR_LASTBRANCH_0 through 
MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ address, bits 63-32 hold the ‘to’ address (MSR addresses start 
at 40H). See Figure 17-15.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a 3-bit pointer (bits 2-0) 
to the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded. For Intel 
Core Solo and Intel Core Duo processors, this MSR is located at register address 01C9H.

For compatibility, the Intel Core Solo and Intel Core Duo processors provide two 32-bit MSRs (the 
MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate functions of the LastExceptionToIP and Last-
ExceptionFromIP MSRs found in P6 family processors.

For details, see Section 17.9, “Last Branch, Interrupt, and Exception Recording (Processors based on Intel 
NetBurst® Microarchitecture),” and Section 35.15, “MSRs In Intel® Core™ Solo and Intel® Core™ Duo Processors”

Figure 17-14.  IA32_DEBUGCTL MSR for Intel Core Solo 
and Intel Core Duo Processors

Figure 17-15.  LBR Branch Record Layout for the Intel Core Solo 
and Intel Core Duo Processor
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17.11 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (PENTIUM M PROCESSORS)

Like the Pentium 4 and Intel Xeon processor family, Pentium M processors provide last branch interrupt and excep-
tion recording. The capability operates almost identically to that found in Pentium 4 and Intel Xeon processors. 
There are differences in the shape of the stack and in some MSR names and locations. Note the following:
• MSR_DEBUGCTLB MSR — Enables debug trace interrupt, debug trace store, trace messages enable, 

performance monitoring breakpoint flags, single stepping on branches, and last branch. For Pentium M 
processors, this MSR is located at register address 01D9H. See Figure 17-16 and the entries below for a 
description of the flags.

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records a running trace 
of the most recent branches, interrupts, and/or exceptions taken by the processor (prior to a debug 
exception being generated) in the last branch record (LBR) stack. For more information, see the “Last 
Branch Record (LBR) Stack” bullet below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS 
register as a “single-step on branches” flag rather than a “single-step on instructions” flag. This mechanism 
allows single-stepping the processor on taken branches. See Section 17.4.3, “Single-Stepping on 
Branches,” for more information about the BTF flag.

— PBi (performance monitoring/breakpoint pins) flags (bits 5-2) — When these flags are set, the 
performance monitoring/breakpoint pins on the processor (BP0#, BP1#, BP2#, and BP3#) report 
breakpoint matches in the corresponding breakpoint-address registers (DR0 through DR3). The processor 
asserts then deasserts the corresponding BPi# pin when a breakpoint match occurs. When a PBi flag is 
clear, the performance monitoring/breakpoint pins report performance events. Processor execution is not 
affected by reporting performance events.

— TR (trace message enable) flag (bit 6) — When set, branch trace messages are enabled. When the 
processor detects a taken branch, interrupt, or exception, it sends the branch record out on the system bus 
as a branch trace message (BTM). See Section 17.4.4, “Branch Trace Messages,” for more information 
about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, enables the BTS facilities to log BTMs to a memory-
resident BTS buffer that is part of the DS save area. See Section 17.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS facilities generate an interrupt when 
the BTS buffer is full. When clear, BTMs are logged to the BTS buffer in a circular fashion. See Section 17.4.5, 
“Branch Trace Store (BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID instruction — Indicates that the 
processor provides the debug store (DS) mechanism, which allows BTMs to be stored in a memory-resident 
BTS buffer. See Section 17.4.5, “Branch Trace Store (BTS).”

Figure 17-16.  MSR_DEBUGCTLB MSR for Pentium M Processors
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• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs (MSR_LASTBRANCH_0 through 
MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ address, bits 63-32 hold the ‘to’ address. For Pentium M 
Processors, these pairs are located at register addresses 040H-047H. See Figure 17-17.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR contains a 3-bit pointer (bits 2-0) 
to the MSR in the LBR stack that contains the most recent branch, interrupt, or exception recorded. For Pentium 
M Processors, this MSR is located at register address 01C9H.

For more detail on these capabilities, see Section 17.9.3, “Last Exception Records,” and Section 35.16, “MSRs In 
the Pentium M Processor.”

17.12 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (P6 FAMILY PROCESSORS)

The P6 family processors provide five MSRs for recording the last branch, interrupt, or exception taken by the 
processor: DEBUGCTLMSR, LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP. 
These registers can be used to collect last branch records, to set breakpoints on branches, interrupts, and excep-
tions, and to single-step from one branch to the next.

See Chapter 35, “Model-Specific Registers (MSRs),” for a detailed description of each of the last branch recording 
MSRs.

17.12.1 DEBUGCTLMSR Register

The version of the DEBUGCTLMSR register found in the P6 family processors enables last branch, interrupt, and 
exception recording; taken branch breakpoints; the breakpoint reporting pins; and trace messages. This register 
can be written to using the WRMSR instruction, when operating at privilege level 0 or when in real-address mode. 
A protected-mode operating system procedure is required to provide user access to this register. Figure 17-18 
shows the flags in the DEBUGCTLMSR register for the P6 family processors. The functions of these flags are as 
follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the processor records the source and 

target addresses (in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP 
MSRs) for the last branch and the last exception or interrupt taken by the processor prior to a debug exception 
being generated. The processor clears this flag whenever a debug exception, such as an instruction or data 
breakpoint or single-step trap occurs.

Figure 17-17.  LBR Branch Record Layout for the Pentium M Processor
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• BTF (single-step on branches) flag (bit 1) — When set, the processor treats the TF flag in the EFLAGS 
register as a “single-step on branches” flag. See Section 17.4.3, “Single-Stepping on Branches.”

• PBi (performance monitoring/breakpoint pins) flags (bits 2 through 5) — When these flags are set, 
the performance monitoring/breakpoint pins on the processor (BP0#, BP1#, BP2#, and BP3#) report 
breakpoint matches in the corresponding breakpoint-address registers (DR0 through DR3). The processor 
asserts then deasserts the corresponding BPi# pin when a breakpoint match occurs. When a PBi flag is clear, 
the performance monitoring/breakpoint pins report performance events. Processor execution is not affected by 
reporting performance events.

• TR (trace message enable) flag (bit 6) — When set, trace messages are enabled as described in Section 
17.4.4, “Branch Trace Messages.” Setting this flag greatly reduces the performance of the processor. When 
trace messages are enabled, the values stored in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, 
and LastExceptionFromIP MSRs are undefined.

17.12.2 Last Branch and Last Exception MSRs

The LastBranchToIP and LastBranchFromIP MSRs are 32-bit registers for recording the instruction pointers for the 
last branch, interrupt, or exception that the processor took prior to a debug exception being generated. When a 
branch occurs, the processor loads the address of the branch instruction into the LastBranchFromIP MSR and loads 
the target address for the branch into the LastBranchToIP MSR. 

When an interrupt or exception occurs (other than a debug exception), the address of the instruction that was 
interrupted by the exception or interrupt is loaded into the LastBranchFromIP MSR and the address of the excep-
tion or interrupt handler that is called is loaded into the LastBranchToIP MSR.

The LastExceptionToIP and LastExceptionFromIP MSRs (also 32-bit registers) record the instruction pointers for 
the last branch that the processor took prior to an exception or interrupt being generated. When an exception or 
interrupt occurs, the contents of the LastBranchToIP and LastBranchFromIP MSRs are copied into these registers 
before the to and from addresses of the exception or interrupt are recorded in the LastBranchToIP and LastBranch-
FromIP MSRs.

These registers can be read using the RDMSR instruction.

Note that the values stored in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP 
MSRs are offsets into the current code segment, as opposed to linear addresses, which are saved in last branch 
records for the Pentium 4 and Intel Xeon processors.

17.12.3 Monitoring Branches, Exceptions, and Interrupts

When the LBR flag in the DEBUGCTLMSR register is set, the processor automatically begins recording branches 
that it takes, exceptions that are generated (except for debug exceptions), and interrupts that are serviced. Each 
time a branch, exception, or interrupt occurs, the processor records the to and from instruction pointers in the 
LastBranchToIP and LastBranchFromIP MSRs. In addition, for interrupts and exceptions, the processor copies the 
contents of the LastBranchToIP and LastBranchFromIP MSRs into the LastExceptionToIP and LastExceptionFromIP 
MSRs prior to recording the to and from addresses of the interrupt or exception.

Figure 17-18.  DEBUGCTLMSR Register (P6 Family Processors)
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When the processor generates a debug exception (#DB), it automatically clears the LBR flag before executing the 
exception handler, but does not touch the last branch and last exception MSRs. The addresses for the last branch, 
interrupt, or exception taken are thus retained in the LastBranchToIP and LastBranchFromIP MSRs and the 
addresses of the last branch prior to an interrupt or exception are retained in the LastExceptionToIP, and LastEx-
ceptionFromIP MSRs.

The debugger can use the last branch, interrupt, and/or exception addresses in combination with code-segment 
selectors retrieved from the stack to reset breakpoints in the breakpoint-address registers (DR0 through DR3), 
allowing a backward trace from the manifestation of a particular bug toward its source. Because the instruction 
pointers recorded in the LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP MSRs are 
offsets into a code segment, software must determine the segment base address of the code segment associated 
with the control transfer to calculate the linear address to be placed in the breakpoint-address registers. The 
segment base address can be determined by reading the segment selector for the code segment from the stack 
and using it to locate the segment descriptor for the segment in the GDT or LDT. The segment base address can 
then be read from the segment descriptor.

Before resuming program execution from a debug-exception handler, the handler must set the LBR flag again to re-
enable last branch and last exception/interrupt recording.

17.13 TIME-STAMP COUNTER

The Intel 64 and IA-32 architectures (beginning with the Pentium processor) define a time-stamp counter mecha-
nism that can be used to monitor and identify the relative time occurrence of processor events. The counter’s archi-
tecture includes the following components:
• TSC flag — A feature bit that indicates the availability of the time-stamp counter. The counter is available in an 

if the function CPUID.1:EDX.TSC[bit 4] = 1.
• IA32_TIME_STAMP_COUNTER MSR (called TSC MSR in P6 family and Pentium processors) — The MSR used 

as the counter.
• RDTSC instruction — An instruction used to read the time-stamp counter.
• TSD flag — A control register flag is used to enable or disable the time-stamp counter (enabled if 

CR4.TSD[bit 2] = 1).

The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M, Pentium 4, Intel Xeon, Intel Core 
Solo and Intel Core Duo processors and later processors) is a 64-bit counter that is set to 0 following a RESET of 
the processor. Following a RESET, the counter increments even when the processor is halted by the HLT instruction 
or the external STPCLK# pin. Note that the assertion of the external DPSLP# pin may cause the time-stamp 
counter to stop.

Processor families increment the time-stamp counter differently:
• For Pentium M processors (family [06H], models [09H, 0DH]); for Pentium 4 processors, Intel Xeon processors 

(family [0FH], models [00H, 01H, or 02H]); and for P6 family processors: the time-stamp counter increments 
with every internal processor clock cycle. 
The internal processor clock cycle is determined by the current core-clock to bus-clock ratio. Intel® 
SpeedStep® technology transitions may also impact the processor clock.

• For Pentium 4 processors, Intel Xeon processors (family [0FH], models [03H and higher]); for Intel Core Solo 
and Intel Core Duo processors (family [06H], model [0EH]); for the Intel Xeon processor 5100 series and Intel 
Core 2 Duo processors (family [06H], model [0FH]); for Intel Core 2 and Intel Xeon processors (family [06H], 
DisplayModel [17H]); for Intel Atom processors (family [06H], 
DisplayModel [1CH]): the time-stamp counter increments at a constant rate. That rate may be set by the 
maximum core-clock to bus-clock ratio of the processor or may be set by the maximum resolved frequency at 
which the processor is booted. The maximum resolved frequency may differ from the maximum qualified 
frequency of the processor, see Section 18.14.5 for more detail. On certain processors, the TSC frequency may 
not be the same as the frequency in the brand string.
The specific processor configuration determines the behavior. Constant TSC behavior ensures that the duration 
of each clock tick is uniform and supports the use of the TSC as a wall clock timer even if the processor core 
changes frequency. This is the architectural behavior moving forward.
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NOTE

To determine average processor clock frequency, Intel recommends the use of performance 
monitoring logic to count processor core clocks over the period of time for which the average is 
required. See Section 18.14, “Counting Clocks,” and Chapter 19, “Performance-Monitoring Events,” 
for more information.

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a monotonically increasing 
unique value whenever executed, except for a 64-bit counter wraparound. Intel guarantees that the time-stamp 
counter will not wraparound within 10 years after being reset. The period for counter wrap is longer for Pentium 4, 
Intel Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures running at any privilege level and in 
virtual-8086 mode. The TSD flag allows use of this instruction to be restricted to programs and procedures running 
at privilege level 0. A secure operating system would set the TSD flag during system initialization to disable user 
access to the time-stamp counter. An operating system that disables user access to the time-stamp counter should 
emulate the instruction through a user-accessible programming interface.

The RDTSC instruction is not serializing or ordered with other instructions. It does not necessarily wait until all 
previous instructions have been executed before reading the counter. Similarly, subsequent instructions may begin 
execution before the RDTSC instruction operation is performed.

The RDMSR and WRMSR instructions read and write the time-stamp counter, treating the time-stamp counter as 
an ordinary MSR (address 10H). In the Pentium 4, Intel Xeon, and P6 family processors, all 64-bits of the time-
stamp counter are read using RDMSR (just as with RDTSC). When WRMSR is used to write the time-stamp counter 
on processors before family [0FH], models [03H, 04H]: only the low-order 32-bits of the time-stamp counter can 
be written (the high-order 32 bits are cleared to 0). For family [0FH], models [03H, 04H, 06H]; for family [06H]], 
model [0EH, 0FH]; for family [06H]], DisplayModel [17H, 1AH, 1CH, 1DH]: all 64 bits are writable.

17.13.1 Invariant TSC

The time stamp counter in newer processors may support an enhancement, referred to as invariant TSC. 
Processor’s support for invariant TSC is indicated by CPUID.80000007H:EDX[8]. 

The invariant TSC will run at a constant rate in all ACPI P-, C-. and T-states. This is the architectural behavior 
moving forward. On processors with invariant TSC support, the OS may use the TSC for wall clock timer services 
(instead of ACPI or HPET timers). TSC reads are much more efficient and do not incur the overhead associated with 
a ring transition or access to a platform resource.

17.13.2 IA32_TSC_AUX Register and RDTSCP Support

Processors based on Intel microarchitecture code name Nehalem provide an auxiliary TSC register, IA32_TSC_AUX 
that is designed to be used in conjunction with IA32_TSC. IA32_TSC_AUX provides a 32-bit field that is initialized 
by privileged software with a signature value (for example, a logical processor ID). 

The primary usage of IA32_TSC_AUX in conjunction with IA32_TSC is to allow software to read the 64-bit time 
stamp in IA32_TSC and signature value in IA32_TSC_AUX with the instruction RDTSCP in an atomic operation. 
RDTSCP returns the 64-bit time stamp in EDX:EAX and the 32-bit TSC_AUX signature value in ECX. The atomicity 
of RDTSCP ensures that no context switch can occur between the reads of the TSC and TSC_AUX values.

Support for RDTSCP is indicated by CPUID.80000001H:EDX[27]. As with RDTSC instruction, non-ring 0 access is 
controlled by CR4.TSD (Time Stamp Disable flag).

User mode software can use RDTSCP to detect if CPU migration has occurred between successive reads of the TSC. 
It can also be used to adjust for per-CPU differences in TSC values in a NUMA system.

17.13.3 Time-Stamp Counter Adjustment

Software can modify the value of the time-stamp counter (TSC) of a logical processor by using the WRMSR instruc-
tion to write to the IA32_TIME_STAMP_COUNTER MSR (address 10H). Because such a write applies only to that 
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logical processor, software seeking to synchronize the TSC values of multiple logical processors must perform these 
writes on each logical processor. It may be difficult for software to do this in a way than ensures that all logical 
processors will have the same value for the TSC at a given point in time.

The synchronization of TSC adjustment can be simplified by using the 64-bit IA32_TSC_ADJUST MSR (address 
3BH). Like the IA32_TIME_STAMP_COUNTER MSR, the IA32_TSC_ADJUST MSR is maintained separately for each 
logical processor. A logical processor maintains and uses the IA32_TSC_ADJUST MSR as follows:
• On RESET, the value of the IA32_TSC_ADJUST MSR is 0.
• If an execution of WRMSR to the IA32_TIME_STAMP_COUNTER MSR adds (or subtracts) value X from the TSC, 

the logical processor also adds (or subtracts) value X from the IA32_TSC_ADJUST MSR.
• If an execution of WRMSR to the IA32_TSC_ADJUST MSR adds (or subtracts) value X from that MSR, the logical 

processor also adds (or subtracts) value X from the TSC.

Unlike the TSC, the value of the IA32_TSC_ADJUST MSR changes only in response to WRMSR (either to the MSR 
itself, or to the IA32_TIME_STAMP_COUNTER MSR). Its value does not otherwise change as time elapses. Software 
seeking to adjust the TSC can do so by using WRMSR to write the same value to the IA32_TSC_ADJUST MSR on 
each logical processor.

Processor support for the IA32_TSC_ADJUST MSR is indicated by CPUID.(EAX=07H, ECX=0H):EBX.TSC_ADJUST 
(bit 1).

17.14 PLATFORM QUALITY-OF-SERVICE (QOS) MONITORING 

Future generations of Intel Xeon processor may offer monitoring capability in each logical processor to measure 
specific platform quality-of-service (PQoS) metric, for example, L3 cache occupancy. The programming interface 
for the PQoS Monitoring capability is described in this section. Two features within the PQoS Monitoring feature set 
are described - Cache QoS Monitoring and Memory Bandwidth Monitoring.

Cache QoS Monitoring (CQM) allows an Operating System, Hypervisor or similar system management agent to 
determine the usage of cache by applications running on the platform. The initial implementation is directed at L3 
cache monitoring (currently the last level cache in most server platforms).   

Memory Bandwidth Monitoring (MBM) builds on the CQM infrastructure to allow monitoring of bandwidth from one 
level of the cache hierarchy to the next - in this case focusing on the L3 cache, which is typically backed directly by 
system memory. As a result of this implementation, memory bandwidth can be monitored.

The PQoS Monitoring mechanisms provide the following key shared infrastructure features:
• A mechanism to enumerate the presence of the PQoS Monitoring capability within the platform (via a CPUID 

feature bit).
• A framework to enumerate the details of each sub-feature (including CQM and MBM, as discussed later, via 

CPUID leaves and sub-leaves). 
• A mechanism for the OS or Hypervisor to indicate a software-defined ID for each of the software threads (appli-

cations, virtual machines, etc.) that are scheduled to run on a logical processor. These identifiers are known as 
Resource Monitoring IDs (RMIDs). 

• Mechanisms in hardware to monitor cache occupancy and bandwidth statistics as applicable to a given product 
generation on a per software-id basis. 

• Mechanisms for the OS or Hypervisor to read back the collected metrics such as L3 occupancy or Memory 
Bandwidth for a given software ID at any point during runtime.

17.14.1 Overview of Cache QoS Monitoring and Memory Bandwidth Monitoring

Platform QoS Monitoring provides a layer of abstraction between applications and logical processors through the 
use of Resource Monitoring IDs (RMIDs). Each logical processor in the system can be assigned an RMID inde-
pendently, or multiple logical processors can be assigned to the same RMID value (e.g., to track an application with 
multiple threads). For each logical processor, only one RMID value is active at a time. This is enforced by the 
IA32_PQR_ASSOC MSR, which specifies the active RMID of a logical processor. Writing to this MSR by software 
changes the active RMID of the logical processor from an old value to a new value.
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The Platform QoS Monitoring hardware tracks cache utilization as a result of memory accesses according to the 
RMIDs and reports monitored data via a counter register (IA32_QM_CTR). Software must also configure an event 
selection MSR (IA32_QM_EVTSEL) to specify which QOS metric is to be reported, and which RMID for which the 
data should be returned. 

Processor support of the QoS Monitoring framework is reported via the CPUID instruction. The resource type avail-
able to the QoS Monitoring framework is enumerated via a new leaf function in CPUID. Reading and writing to the 
PQoS MSRs requires the RDMSR and WRMSR instructions.

The PQoS Monitoring feature provides the following unique mechanisms:
• A mechanism to enumerate the presence and details of the CQM feature as applicable to a given level of the 

cache hierarchy, independent of other PQoS Monitoring features. 
• CQM-specific event codes to read occupancy for a given level of the cache hierarchy.

The MBM feature provides the following unique mechanisms:
• A mechanism to enumerate the presence and details of the MBM feature as applicable to a given level of the 

cache hierarchy, independent of other PQoS Monitoring features.
• MBM-specific event codes to read bandwidth out to the next level of the hierarchy and various sub-event codes 

to read more specific metrics as discussed later (e.g., total bandwidth vs. bandwidth only from local memory 
controllers on the same package).

17.14.2 Enabling PQoS Monitoring Usage Flow

Figure 17-19 illustrates the key steps for OS/VMM to detect support of PQoS Monitoring (PQM) and enable resource 
monitoring for available resource types and monitoring events.

17.14.3 Enumeration and Detection Support of QoS Monitoring

Software can query processor support of QoS monitoring capabilities by executing CPUID instruction with EAX = 
07H, ECX = 0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] reports 1, the processor provides the 
following programming interfaces for Platform QoS Monitoring:
• CPUID leaf function 0FH (Platform QoS Monitoring Enumeration leaf) provides information on available 

resource types (see Section 17.14.4), and Platform QoS Monitoring capabilities for each resource type (see 
Section 17.14.5). Note CQM and MBM capabilities are enumerated as separate event vectors using shared 
enumeration infrastructure under a given resource type.

• IA32_PQR_ASSOC.RMID: The per-logical-processor MSR, IA32_PQR_ASSOC, that OS/VMM can use to assign 
an RMID to each logical processor, see Section 17.14.6.

• IA32_QM_EVTSEL: This MSR specifies an Event ID (EvtID) and an RMID which the platform uses to look up and 
provide monitoring data in the PQoS monitoring counter, IA32_QM_CTR, see Section 17.14.7. 

Figure 17-19.  Platform QoS Monitoring Usage Flow
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• IA32_QM_CTR: This MSR reports monitored QoS data when available along with bits to allow software to check 
for error conditions and verify data validity. 

Software must follow the following sequence of enumeration to discover Cache QoS Monitoring capabilities:

1. Execute CPUID with EAX=0 to discover the “cpuid_maxLeaf” supported in the processor;

2. If cpuid_maxLeaf >= 7, then execute CPUID with EAX=7, ECX= 0 to verify CPUID.(EAX=07H, 
ECX=0):EBX.PQM[bit 12] is set;

3. If CPUID.(EAX=07H, ECX=0):EBX.PQM[bit 12] = 1, then execute CPUID with EAX=0FH, ECX= 0 to query 
available resource types that support QoS monitoring;

4. If CPUID.(EAX=0FH, ECX=0):EDX.L3[bit 1] = 1, then execute CPUID with EAX=0FH, ECX= 1 to query the 
capability of L3 Cache QoS monitoring and memory bandwidth monitoring.

5. If CPUID.(EAX=0FH, ECX=0):EDX reports additional resource types supporting QoS monitoring, then execute 
CPUID with EAX=0FH, ECX set to a corresponding resource type ID (ResID) as enumerated by the bit position 
of CPUID.(EAX=0FH, ECX=0):EDX.

17.14.4 PQOS Monitoring Resource Type and Capability Enumeration

CPUID leaf function 0FH (Platform QoS Monitoring Enumeration leaf) provides one sub-leaf (sub-function 0) that 
reports shared enumeration infrastructure, and one or more sub-functions that report feature-specific enumeration 
data:
• Platform QoS Monitoring leaf sub-function 0 enumerates available resources that support PQoS monitoring, i.e. 

executing CPUID with EAX=0FH and ECX=0H. In the initial implementation, L3 cache QoS is the only resource 
type available. Each supported resource type is represented by a bit field in CPUID.(EAX=0FH, 
ECX=0):EDX[31:1]. The bit position corresponds to the sub-leaf index (ResID) that software must use to query 
details of the PQoS monitoring capability of that resource type (see Figure 17-21 and Figure 17-22). Reserved 
bit fields of CPUID.(EAX=0FH, ECX=0):EDX[31:2] correspond to unsupported sub-leaves of the CPUID.0FH 
leaf. Additionally, CPUID.(EAX=0FH, ECX=0H):EBX reports the highest RMID value of any resource type that 
supports PQoS Monitoring in the processor.

17.14.5 Feature-Specific Enumeration

Each additional sub-leaf of CPUID.(EAX=0FH, ECX=ResID) enumerates the specific details for software to program 
PQoS Monitoring MSRs using the resource type associated with the given ResID. 

Note that in future PQoS Monitoring implementations the meanings of the returned registers may vary in other 
sub-leaves that are not yet defined. The registers will be specified and defined on a per-ResID basis.

Figure 17-20.  CPUID.(EAX=0FH, ECX=0H) QoS Monitoring Resource Type Enumeration
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For each supported PQoS Monitoring resource type, hardware supports only a finite number of RMIDs. 
CPUID.(EAX=0FH, ECX=1H).ECX enumerates the highest RMID value that can be monitored with this resource 
type, see Figure 17-21. 

CPUID.(EAX=0FH, ECX=1H).EDX specifies a bit vector that is used to look up the EventID (See Figure 17-22 and 
Table 17-14) that software must program with IA32_QM_EVTSEL in order to retrieve event data. After software 
configures IA32_QMEVTSEL with the desired RMID and EventID, it can read QoS data from IA32_QM_CTR. The raw 
numerical value reported from IA32_QM_CTR can be converted to the final value (occupancy in bytes or bandwidth 
in bytes per sampled time period) by multiplying the counter value by the value from CPUID.(EAX=0FH, 
ECX=1H).EBX, see Figure 17-21. 

17.14.5.1  CQM

On processors that PQoS Monitoring only supports the L3 cache occupancy event, CPUID.(EAX=0FH, 
ECX=1H).EDX would return with only bit 0 set. The corresponding event ID can be looked up from Table 17-14. The 
L3 occupancy data accumulated in IA32_QM_CTR can be converted to total occupancy (in bytes) using 
CPUID.(EAX=0FH, ECX=1H).EBX.

Event codes for CQM are discussed in the next section.

17.14.5.2  MBM

On processors that PQoS monitoring supports memory bandwidth monitoring using ResID=1 (L3), two additional 
bits will be set in the vector at CPUID.(EAX=0FH, ECX=1H).EDX:
• CPUID.(EAX=0FH, ECX=1H).EDX[bit 1]: indicates the L3 total external bandwidth monitoring event is 

supported if set. This event monitors the L3 total external bandwidth to the next level of the cache hierarchy, 
including all demand and prefetch misses from the L3 to the next hierarchy of the memory system. In most 
platforms, this represents memory bandwidth.

• CPUID.(EAX=0FH, ECX=1H).EDX[bit 2]: indicates L3 local memory bandwidth monitoring event is supported if 
set. This event monitors the L3 external bandwidth satisfied by the local memory. In most platforms that 
supports this event, L3 requests are likely serviced by a memory system with non-uniform memory archi-
tecture. This allows bandwidth to off-package memory resources to be tracked by subtracting total from local 

Figure 17-21.  L3 QoS Monitoring Capability Enumeration Data (CPUID.(EAX=0FH, ECX=1H) )

Figure 17-22.  L3 QoS Monitoring Capability Enumeration Event Type Bit Vector (CPUID.(EAX=0FH, ECX=1H) )
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bandwidth (for instance, bandwidth over QPI to a memory controller on another physical processor could be 
tracked by subtraction). 

The corresponding Event ID can be looked up from Table 17-14. The L3 bandwidth data accumulated in 
IA32_QM_CTR can be converted to total bandwidth (in bytes) using CPUID.(EAX=0FH, ECX=1H).EBX.

Table 17-14.  PQoS Supported Event IDs

17.14.6 QOS Monitoring Resource RMID Association

After PQoS Monitoring and sub-features has been enumerated, software can begin using the monitoring features. 
The first step is to associate a given software thread (or multiple threads as part of an application, VM, group of 
applications or other abstraction) with an RMID. 

Note that the process of associating an RMID with a given software thread is the same for all PQoS Monitoring 
features, and a given RMID number has the same meaning from the viewpoint of any logical processors in a 
package. Stated another way, a thread may be associated in a 1:1 mapping with an RMID, and that RMID may 
allow cache occupancy, memory bandwidth information or other monitoring data to be read back later with PQoS 
Monitoring event codes (discussed in a subsequent section). 

The association of an application thread with an RMID requires an OS to program the per-logical-processor MSR 
IA32_PQR_ASSOC at context swap time (updates may also be made at any other arbitrary points during program 
execution such as application phase changes). The IA32_PQR_ASSOC MSR specifies the active RMID that QoS 
monitoring hardware will use to tag internal operations, such as L3 cache requests. The layout of the MSR is shown 
in Figure 17-23. Software specifies the active RMID to monitor in the IA32_PQR_ASSOC.RMID field. The width of 
the RMID field can vary from one implementation to another, and is derived from Ceil (LOG2 ( 1 + 
CPUID.(EAX=0FH, ECX=0):EBX[31:0])). The value of IA32_PQR_ASSOC after power-on is 0.

In the initial implementation, the width of the RMID field is up to 10 bits wide, zero-referenced and fully encoded. 
However, software must use CPUID to query the maximum RMID supported by the processor. If a value larger than 
the maximum RMID is written to IA32_PQR_ASSOC.RMID, a #GP(0) fault will be generated.

RMIDs have a global scope within the physical package- if an RMID is assigned to one logical processor then the 
same RMID can be used to read multiple thread attributes later (for example, L3 cache occupancy or external 
bandwidth from the L3 to the next level of the cache hierarchy). In a multiple LLC platform the RMIDs are to be 
reassigned by the OS or VMM scheduler when an application is migrated across LLCs. 

Note that in a situation where PQoS Monitoring supports multiple resource types, some upper range of RMIDs (e.g. 
RMID 31) may only be supported by one resource type but not by another resource type. 

Event Type Event ID Context

L3 Cache Occupancy 01H CQM

L3 Total External Bandwidth 02H MBM

L3 Local External Bandwidth 03H MBM

Reserved All other event codes N/A

Figure 17-23.  IA32_PQR_ASSOC MSR
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17.14.7 QOS Monitoring Resource Selection and Reporting Infrastructure

The reporting mechanism for CQM is architecturally exposed as an MSR pair that can be programmed and read to 
measure various metrics such as the L3 cache occupancy (CQM) and bandwidths (MBM) depending on the level of 
PQoS Monitoring support provided by the platform. Data is reported back on a per-RMID basis. These events do not 
trigger based on event counts or trigger APIC interrupts (e.g. no Performance Monitoring Interrupt occurs based on 
counts). Rather, they are used to sample counts explicitly. 

The MSR pair for PQoS Monitoring is architected in a similar style as the architectural performance monitoring (see 
Chapter 18). But these infrastructures are separate and not shared, meaning software can use PQoS Monitoring 
simultaneously with the Perfmon counters. 

Access to the aggregated PQoS Monitoring information is accomplished through the following programmable PQoS 
Monitoring MSRs:
• IA32_QM_EVTSEL: This MSR provides a role similar to the event select MSRs for programmable performance 

monitoring described in Chapter 18. The simplified layout of the MSR is shown in Figure 17-23. Bits 
IA32_QM_EVTSEL.EvtID (bits 7:0) specify an event code of a supported resource type for hardware to report 
QoS monitored data associated with IA32_QM_EVTSEL.RMID (bits 41:32). Software can configure 
IA32_QM_EVTSEL.RMID with any RMID that is active within the physical processor. The width of 
IA32_QM_EVTSEL.RMID matches that of IA32_PQR_ASSOC.RMID. Supported event codes for the 
IA32_QM_EVTSEL register are shown in Table 17-14. Note that valid event codes may not necessarily map 
directly to the bit position used to enumerate support for the resource via CPUID. 
Software can program an RMID / Event ID pair into the IA32_QM_EVTSEL MSR bit field to select an RMID to 
read a particular counter for a given resource. The currently supported list of PQoS Monitoring Event IDs is 
discussed in Section 17.14.5, which covers feature-specific details.
Thread access to the IA32_QM_EVTSEL and IA32_QM_CTR MSR pair should be serialized to avoid situations 
where one thread changes the RMID/EvtID just before another thread reads monitoring data from 
IA32_QM_CTR.

• IA32_QM_CTR: This MSR reports monitored QoS data when available. It contains three bit fields. If software 
configures an unsupported RMID or event type in IA32_QM_EVTSEL, then IA32_QM_CTR.Error (bit 63) will be 
set, indicating there is no valid data to report. If IA32_QM_CTR.Unavailable (bit 62) is set, it indicates QoS 
monitored data for the RMID is not available, and IA32_QM_CTR.data (bits 61:0) should be ignored. Therefore, 
IA32_QM_CTR.data (bits 61:0) is valid only if bit 63 and 62 are both clear. For Cache QoS monitoring, software 
can convert IA32_QM_CTR.data into cache occupancy or bandwidth metrics expressed in bytes by multiplying 
with the conversion factor from CPUID.(EAX=0FH, ECX=1H).EBX.

Figure 17-24.  IA32_QM_EVTSEL and IA32_QM_CTR MSRs
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17.14.8 PQoS Monitoring Programming Considerations

17.14.8.1  QoS Monitoring Dynamic Configuration 

Both the IA32_QM_EVTSEL and IA32_PQR_ASSOC registers are accessible and modifiable at any time during 
execution using RDMSR/WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated 
if any of the following conditions occur:
• A reserved bit is modified,
• An RMID exceeding the maxRMID is used,

17.14.8.2  PQM Operation With Power Saving Features

Note that some advanced power management features such as deep package C-states may shrink the L3 cache 
and cause CQM occupancy count to be reduced. MBM bandwidth counts may increase due to flushing cached data 
out of L3.

17.14.8.3  PQM Operation with Other Operating Modes

The states in IA32_PQR_ASSOC and QOS monitoring counter are unmodified across an SMI delivery. Thus, the 
execution of SMM handler code and SMM handler’s data can manifest as spurious contribution in the QOS moni-
tored data. 

It is possible for an SMM handler to minimize the impact on of spurious contribution in the QOS monitoring counters 
by reserving a dedicated RMID for monitoring the SMM handler. Such an SMM handler can save the previously 
configured QOS Monitoring state immediately upon entering SMM, and restoring the QOS monitoring state back to 
the prev-SMM RMID upon exit.

17.15 CACHE QUALITY-OF-SERVICE (QOS) ENFORCEMENT

Future generations of Intel Xeon processor may offer capabilities to configure and make use of the Cache Quality-
of-Service Enforcement (CQE) mechanisms. The programming interface for CQE and for the more general Platform 
QoS Enforcement (PQE) capability are described in the rest of this chapter. 

Cache QoS Enforcement (CQE) is a cache allocation control mechanism that allows an Operating System (OS), 
Hypervisor /Virtual Machine Manager (VMM) or similar system service management agent to specify the amount of 
cache space into which an application can fill (as a hint to hardware - certain features such as power management 
may override CQE settings). User-level implementations with minimal OS support are also possible, though not 
recommended (see Section 3.5 for examples and discussion). The initial implementation focuses on L3 cache allo-
cation, but the technology is designed to scale across multiple cache levels and technology generations.

The CQE mechanisms defined in this document provide the following key features:
• A mechanism to enumerate platform QOS Enforcement capability and available resource types that provides 

QOS Enforcement. For implementations that support Cache QOS Enforcement, CPUID provides enumeration 
support to query CQE capability on cache allocations, 

• A mechanism for the OS or Hypervisor to configure the amount of a resource available to a particular Class of 
Service via a list of enforcement bitmasks, 

• Mechanisms for the OS or Hypervisor to signal the Class of Service to which an application belongs, and
• Hardware mechanisms to guide and enforce the LLC fill policy when an application has been designated to 

belong to a specific Class of Service.

Note that an OS or Hypervisor should not expose CQE mechanisms to Ring3 software or virtualized guests.

The CQE architecture enables more cache resources (i.e. cache space) to be available for high priority applications 
based on guidance from the execution environment as shown in Figure 17-25. The architecture also allows 
dynamic resource reassignment during runtime to further optimize the performance of the high priority application 
with minimal degradation to the low priority app. Additionally, resources can be rebalanced for system throughput 
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benefit. This section describes the hardware and software support required in the platform including what is 
required of the execution environment (i.e. OS/VMM) to support such resource control. Note that in Figure 17-25 
the L3 Cache is shown as an example resource.

17.15.1 CQE Architecture Introduction

The fundamental goal of CQE is to enable resource allocation based on application priority or Class of Service (COS 
or CLOS). The processor exposes a set of Classes of Service into which applications (or individual threads) can be 
assigned. Cache allocation for the respective applications or threads is then restricted based on the class with 
which they are associated. Each Class of Service can be configured using bitmasks which represent capacity and 
indicate the degree of overlap and isolation between classes. For each logical processor there is a register exposed 
(referred to here as the IA32_PQR_ASSOC MSR or PQR) to allow the OS/VMM to specify a COS when an applica-
tion, thread or VM is scheduled. Cache QoS Enforcement for the indicated application/thread/VM is then controlled 
automatically by the hardware based on the class and the bitmask associated with that class. Bitmasks are config-
ured via the IA32_resourceType_QOS_MASK_n MSRs, where resourceType indicates a resource type (e.g. “L3” for 
the L3 cache) and n indicates a COS number. 

The basic ingredients of CQE are as follows:
• An architecturally exposed mechanism using CPUID to indicate whether PQoS Enforcement is supported, and 

what resource types are available for PQoS Enforcement,
• For each available resourceType, CPUID also enumerates the total number of Classes of Services and the length 

of the capacity bitmasks that can be used to enforce cache allocation to applications on the platform, 
• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to configure the behavior 

of different classes of service using the bitmasks available, 
• An architecturally exposed mechanism to allow the execution environment (OS/VMM) to assign a COS to an 

executing software thread (i.e. associating the active CR3 of a logical processor with the COS in 
IA32_PQR_ASSOC), 

• Implementation-dependent mechanisms to indicate which COS is associated with a memory access and to 
enforce the cache allocation on a per COS basis.

A capacity bitmask (CBM) provides a hint to the hardware indicating the cache space an application should be 
limited to as well as providing an indication of overlap and isolation in the CQE-capable cache from other applica-
tions contending for the cache. The bitlength of the capacity mask available generally depends on the configuration 
of the cache and is specified in the enumeration process for CQE in CPUID (this may vary between models in a 
processor family as well). 

Figure 17-25.  Enabling Class-based Cache Allocation
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Sample cache capacity bitmasks for a bitlength of 8 are shown in Figure 17-26. Please note that all (and only) 
contiguous '1' combinations are allowed (e.g. 0xFFFF, 0x0FF0, 0x003C, etc.). It is generally expected that in way-
based implementations, one capacity mask bit corresponds to some number of ways in cache, but the specific 
mapping is implementation-dependent. In all cases, a mask bit set to '1' specifies that a particular Class of Service 
can allocate into the cache subset represented by that bit. A value of '0' in a mask bit specifies that a Class of 
Service cannot allocate into the given cache subset. In general, allocating more cache to a given application is 
usually beneficial to its performance. 

Figure 17-26 also shows three examples of sets of Cache Capacity Bitmasks. For simplicity these are represented 
as 8-bit vectors, though this may vary depending on the implementation and how the mask is mapped to the avail-
able cache capacity. The first example shows the default case where all 4 Classes of Service (the total number of 
COS are implementation-dependent) have full access to the cache. The second case shows an overlapped case, 
which would allow some lower-priority threads share cache space with the highest priority threads. The third case 
shows various non-overlapped partitioning schemes. As a matter of software policy for extensibility COS0 should 
typically be considered and configured as the highest priority COS, followed by COS1, and so on, though there is 
no hardware restriction enforcing this mapping. When the system boots all threads are initialized to COS0, which 
has full access to the cache by default.

Though the representation of the CBMs looks similar to a way-based mapping they are independent of any specific 
enforcement implementation (e.g. way partitioning.) Rather, this is a convenient manner to represent capacity, 
overlap and isolation of cache space. For example, executing a POPCNT instruction (population count of set bits) on 
the capacity bitmask can provide the fraction of cache space that a class of service can allocate into. In addition to 
the fraction, the exact location of the bits also shows whether the class of service overlaps with other classes of 
service or is entirely isolated in terms of cache space used. 

Figure 17-26.  Examples of Cache Capacity Bitmasks
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Figure 17-27 shows how the Cache Capacity Bitmasks and the per-logical-processor Class of Service are logically 
used to enable CQE. All (and only) contiguous 1's in the CBM are permitted. The length of CBM may vary from 
resource to resource or between processor generations and can be enumerated using CPUID. From the available 
mask set and based on the goals of the OS/VMM (shared or isolated cache, etc.) bitmasks are selected and associ-
ated with different classes of service. For the available Classes of Service the associated CBMs can be programmed 
via the global set of QoS Configuration Registers (In the case of L3 Cache QoS Enforcement, via the 
IA32_L3_QOS_MASK_n MSRs, where “n” is the Class of Service, starting from zero). In all architectural implemen-
tations supporting CPUID it is possible to change the CBMs dynamically, during program execution, unless stated 
otherwise by Intel. 

The currently running application's Class of Service is communicated to the hardware through the per-logical-
processor PQR MSR (IA32_PQR_ASSOC MSR). When the OS schedules an application thread on a logical processor, 
the application thread is associated with a specific COS (i.e. the corresponding COS in the PQR) and all requests to 
the CQE-capable resource from that logical processor are tagged with that COS (in other words, the application 
thread is configured to belong to a specific COS). The cache subsystem uses this tagged request information to 
enforce QoS. The capacity bitmask may be mapped into a way bitmask (or a similar enforcement entity based on 
the implementation) at the cache before it is applied to the allocation policy. For example, the capacity bitmask can 
be an 8-bit mask and the enforcement may be accomplished using a 16-way bitmask for a cache enforcement 
implementation based on way partitioning.

17.15.2 Enabling CQE Usage Flow

Figure 17-28 illustrates the key steps for OS/VMM to detect support of CQE and enable priority-based resource 
allocation for a CQE-capable resource.

Figure 17-27.  Examples of Cache Capacity Bitmasks
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17.15.2.1  Enumeration and Detection Support of CQE

Availability of Platform QoS Enforcement can be detected by calling CPUID leaf 7 and sub leaf 0 (Set EAX=0x7, Set 
ECX=0, call CPUID). This function is used to enumerate the extended feature flags supported by the processor. It 
loads feature flags in EAX, ECX, EBX and EDX registers. Bit position 15 in the EBX (EBX[15]) register indicates 
support for Platform QoS Enforcement. If the value of this bit is set to 1 then it implies that the processor supports 
PQoS Enforcement. 

Software can query processor support of QoS Enforcement capabilities by executing CPUID instruction with EAX = 
07H, ECX = 0H as input. If CPUID.(EAX=07H, ECX=0):EBX.PQE[bit 15] reports 1, the processor supports PQoS 
Enforcement. Software must use CPUID leaf 10H to enumerate additional details of available resource types, 
classes of services and capability bitmasks. The programming interfaces provided by PQoS Enforcement include:
• CPUID leaf function 10H (PQoS Enforcement Enumeration leaf) and its sub-functions provide information on 

available resource types, and PQoS Enforcement capability for each resource type (see Section 17.15.2.2).
• IA32_L3_QOS_MASK_n: A range of MSRs is provided for each resource type, each MSR within that range 

specifying a software-configured capacity bitmask for each class of service. For L3 with CQE support, the CBM 
is specified using one of the IA32_L3_QOS_MASK_n MSR, where 'n' corresponds to a number within the 
supported range of COS, i.e. the range between 0 and CPUID.(EAX=10FH, ECX=ResID):EDX[15:0], inclusive. 
See Section 17.15.2.3 for details.

• IA32_PQR_ASSOC.CLOS: The IA32_PQR_ASSOC MSR provides a COS field that OS/VMM can use to assign a 
logical processor to an available COS. See Section 17.15.2.4 for details. 

17.15.2.2  QOS Enforcement Resource Type and Capability Enumeration

CPUID leaf function 10H (PQoS Enforcement Enumeration leaf) provides two or more sub-functions:
• PQoS Enforcement leaf sub-function 0 enumerates available resource types that support PQoS enforcement, 

i.e. by executing CPUID with EAX=10H and ECX=0H. In the initial implementation, L3 cache CQE is the only 
resource type available. Each supported resource type is represented by a bit field in CPUID.(EAX=10H, 
ECX=0):EBX[31:1]. The bit position of each set bit corresponds to a Resource ID (ResID). The ResID is also the 
sub-leaf index that software must use to query details of the PQoS Enforcement capability of that resource type 
(see Figure 17-29). 

Figure 17-28.  Cache QoS Enforcement Usage Flow
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• Sub-functions of CPUID.EAX=10H with a non-zero ECX input matching a supported ResID enumerate the 
specific enforcement details of the corresponding ResID. The capabilities enumerated include the length of the 
capacity bitmasks and the number of Classes of Service for a given ResID. Software must query the capability 
of each available ResID that supports PQoS Enforcement from a sub-leaf of leaf 10H using the sub-leaf index 
reported by the corresponding non-zero bit in CPUID.(EAX=10H, ECX=0):EBX[31:1]. CQE capability for L3 is 
enumerated by CPUID.(EAX=10H, ECX=1H), see Figure 17-30. The specific CQE capabilities reported by 
CPUID.(EAX=10H, ECX=1) are:

— CPUID.(EAX=10H, ECX=ResID=1):EAX[4:0] reports the length of the enforcement capacity bitmask 
length using minus-one notation, i.e. a value of 15 corresponds to the capability bitmask having length of 
16 bits. Bits 31:5 of EAX are reserved.

— CPUID.(EAX=10H, ECX=1):EBX[31:0] reports a bit mask. Each set bit within the length of the CBM 
indicates the corresponding unit of the L3 allocation may be used by other entities in the platform (e.g. an 
integrated graphics engine or hardware units outside the processor core and have direct access to L3). 
Each cleared bit within the length of the CBM indicates the corresponding allocation unit can be configured 
to implement a priority-based allocation scheme chosen by an OS/VMM without interference with other 
hardware agents in the system. Bits outside the length of the CBM are reserved.

— CPUID.(EAX=10H, ECX=1):ECX[1], if set, indicates that a processor does not support frequent changes to 
the Class of Service running on a thread. In such cases, software may experience a degradation in CQE 
performance if the COS on a thread is changed often. In such cases software may choose to either retain 
the flexibility of dynamic updates (albeit with reduced CQE performance) or affinitize a CLOS to a given 
logical thread. If affinitized, any thread from a given COS can be run on that logical core without 
degradation in CQE performance, but changing the COS value may cause a degradation in CQE perfor-
mance. Reiterated in simpler terms, if CPUID.(EAX=10H, ECX=1):ECX[1] is set, the processor does not 
support frequent requests of CLOS updates to a logical processor. In the latter case, OS/VMM that use CQE 

Figure 17-29.  CPUID.(EAX=10H, ECX=0H) Available Platform QoS Enforcement Resource Type Identification

Figure 17-30.  L3 Cache QoS Enforcement Enumeration (CPUID.(EAX=10H, ECX=1H) )
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to implement priority-based policy should affinitize a COS to a logical processor. In other words, any given 
logical processor should only execute software threads from the same COS if CPUID.(EAX=10H, 
ECX=1):ECX[1] is set. If software migrates Classes of Service when this bit is set the performance of the 
overall QoS Enforcement features may be reduced, reducing the effectiveness of PQoS in general. Bit 0, and 
31:2 are reserved.

— CPUID.(EAX=10H, ECX=1):EdX[15:0] reports the maximum COS supported for the resource (COS are 
zero-referenced, meaning a reported value of '15' would indicate 16 total supported COS). Bits 31:16 are 
reserved.

Note that in initial implementations CPUID.(EAX=10H, ECX=1):ECX[1] is not expected to be set, but software 
should make provision for possible future use. If CPUID.(EAX=10H, ECX=1):ECX[1] is set, software has the 
option to disregard this bit and maintain flexibility with dynamic COS migration across logical processors, but 
as mentioned, PQoS Enforcement performance may be reduced. Note that good scheduling practices already 
advocate a loose form of thread affinitization or 'lazy migration' to reduce cache warmup effects on cores when 
possible.

17.15.2.3  Cache Mask Configuration

After determining the length of the capacity bitmasks (CBM) and number of COS supported using CPUID (see 
Section 17.15.2.2), each COS needs to be programmed with a CBM to dictate its available cache via a write to the 
corresponding IA32_resourceType_QOS_MASK_n register, where 'n' corresponds to a number within the supported 
range of COS, i.e. the range between 0 and CPUID.(EAX=10FH, ECX=ResID):EDX[15:0], inclusive, and 
'resourceType' corresponds to a specific resource as enumerated by the set bits of CPUID.(EAX=10H, 
ECX=0):EAX[31:1]. 

A range of MSRs is reserved for PQoS Enforcement registers of the form IA32_resourceType_QOS_MASK_n, from 
0C90H through 0D8FH (inclusive), providing support for up to 256 Classes of Service or multiple resource types. In 
the first implementation the only supported resourceType is 'L3', corresponding to the L3 cache in a platform. All 
CQE configuration registers can be accessed using the standard RDMSR / WRMSR instructions. 

17.15.2.4  Cache Mask Association

After configuring the available classes of service with the preferred set of capacity bitmasks, the OS/VMM can set 
the IA32_PQR_ASSOC.COS of a logical processor to the class of service with the desired CBM when a thread 
context switch occurs. This allow the OS/VMM to indicate which class of service an executing thread/VM belongs to. 
Each logical processor contains an instance of the IA32_PQR_ASSOC register at MSR location 0C8FH, and Figure 
17-31 shows the bit field layout for this register. Bits[63:32] contain the COS field for each logical processor. 

Specifying a COS value in IA32_PQR_ASSOC.COS greater than the value reported by CPUID.(EAX=10FH, 
ECX=ResID):EDX[15:0] will cause a #GP(0). The value of IA32_PQR_ASSOC.COS after power-on is 0.

Figure 17-31.  IA32_PQR_ASSOC, IA32_L3_QOS_MASK_n MSRs
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Note that if the IA32_PQR_ASSOC.COS is never written then the CQE capability defaults to using COS 0, which in 
turn is set to the default mask in IA32_L3 QOS_MASK_0 - which is all “1”s (on reset). This essentially disables the 
enforcement feature by default or for legacy operating systems and software.

17.15.3 CQE Programming Considerations

17.15.3.1  CQE Dynamic Configuration 

Both the CQE masks and PQR registers are accessible and modifiable at any time during execution using 
RDMSR/WRMSR unless otherwise noted. When writing to these MSRs a #GP(0) will be generated if any of the 
following conditions occur:
• A reserved bit is modified,
• Accessing a QOS mask register outside the supported COS (the max COS number is specified in 

CPUID.(EAX=10FH, ECX=ResID):EDX[15:0]), or
• Writing a COS greater than the supported maximum (specified as the maximum value of CPUID.(EAX=10FH, 

ECX=ResID):EDX[15:0] for all valid ResID values) is written to the IA32_PQR_ASSOC.CLOS field.

When reading the IA32_PQR_ASSOC register the currently programmed COS on the core will be returned. 

When reading an IA32_resourceType_QOS_MASK_n register the current capacity bit mask for COS 'n' will be 
returned.

17.15.3.2  CQE Operation With Power Saving Features

Note that the CQE feature cannot be used to enforce cache coherency, and that some advanced power manage-
ment features such as C-states which may shrink or power off various caches within the system may interfere with 
CQE hints - in such cases the CQE bitmasks are ignored and the other features take precedence. If the highest 
possible level of CQE differentiation or determinism is required, disable any power-saving features which shrink the 
caches or power off caches. The details of the power management interfaces are typically implementation-specific, 
but can be found at Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C. 

If software requires differentiation between threads but not absolute determinism then in many cases it is possible 
to leave power-saving cache shrink features enabled, which can provide substantial power savings and increase 
battery life in mobile platforms. In such cases when the caches are powered off (e.g., package C-states) the entire 
cache of a portion thereof may be powered off. Upon resuming an active state any new incoming data to the cache 
will be filled subject to the cache capacity bitmasks. Any data in the cache prior to the cache shrink or power off 
may have been flushed to memory during the process of entering the idle state, however, and is not guaranteed to 
remain in the cache. If differentiation between threads is the goal of system software then this model allows 
substantial power savings while continuing to deliver performance differentiation. If system software needs 
optimal determinism then power saving modes which flush portions of the caches and power them off should be 
disabled.

NOTE

IA32_PQR_ASSOC is saved and restored across C6 entry/exit. Similarly, the mask register contents 
are saved across package c-state entry/exit and are not lost.

17.15.3.3  CQE Operation with Other Operating Modes

The states in IA32_PQR_ASSOC and QOS mask registers are unmodified across an SMI delivery. Thus, the execu-
tion of SMM handler code can interact with the CQE resource and manifest some degree of non-determinism to the 
non-SMM software stack. An SMM handler may also perform certain system-level or power management practices 
that affect CQE operation. 

It is possible for an SMM handler to minimize the impact on data determinism in the cache by reserving a COS with 
a dedicated partition in the cache. Such an SMM handler can switch to the dedicated COS immediately upon 
entering SMM, and switching back to the previously running COS upon exit.
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CHAPTER 18
PERFORMANCE MONITORING

Intel 64 and IA-32 architectures provide facilities for monitoring performance.

18.1 PERFORMANCE MONITORING OVERVIEW

Performance monitoring was introduced in the Pentium processor with a set of model-specific performance-moni-
toring counter MSRs. These counters permit selection of processor performance parameters to be monitored and 
measured. The information obtained from these counters can be used for tuning system and compiler perfor-
mance. 

In Intel P6 family of processors, the performance monitoring mechanism was enhanced to permit a wider selection 
of events to be monitored and to allow greater control events to be monitored. Next, Pentium 4 and Intel Xeon 
processors introduced a new performance monitoring mechanism and new set of performance events.

The performance monitoring mechanisms and performance events defined for the Pentium, P6 family, Pentium 4, 
and Intel Xeon processors are not architectural. They are all model specific (not compatible among processor fami-
lies). Intel Core Solo and Intel Core Duo processors support a set of architectural performance events and a set of 
non-architectural performance events. Processors based on Intel Core microarchitecture and Intel® Atom™ micro-
architecture support enhanced architectural performance events and non-architectural performance events.

Starting with Intel Core Solo and Intel Core Duo processors, there are two classes of performance monitoring capa-
bilities. The first class supports events for monitoring performance using counting or sampling usage. These events 
are non-architectural and vary from one processor model to another. They are similar to those available in Pentium 
M processors. These non-architectural performance monitoring events are specific to the microarchitecture and 
may change with enhancements. They are discussed in Section 18.3, “Performance Monitoring (Intel® Core™ Solo 
and Intel® Core™ Duo Processors).” Non-architectural events for a given microarchitecture can not be enumerated 
using CPUID; and they are listed in Chapter 19, “Performance-Monitoring Events.”

The second class of performance monitoring capabilities is referred to as architectural performance monitoring. 
This class supports the same counting and sampling usages, with a smaller set of available events. The visible 
behavior of architectural performance events is consistent across processor implementations. Availability of archi-
tectural performance monitoring capabilities is enumerated using the CPUID.0AH. These events are discussed in 
Section 18.2.

See also:

— Section 18.2, “Architectural Performance Monitoring”

— Section 18.3, “Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)”

— Section 18.4, “Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)”

— Section 18.5, “Performance Monitoring (Processors Based on Intel® Atom™ Microarchitecture)”

— Section 18.6, “Performance Monitoring (Processors Based on the Silvermont Microarchitecture)”

— Section 18.7, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name 
Nehalem”

— Section 18.8, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name 
Westmere”

— Section 18.9, “Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name Sandy 
Bridge”

— Section 18.9.8, “Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facility”

— Section 18.10, “3rd Generation Intel® Core™ Processor Performance Monitoring Facility”

— Section 18.11, “4th Generation Intel® Core™ Processor Performance Monitoring Facility”

— Section 18.12, “Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture)”
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— Section 18.13, “Performance Monitoring and Intel Hyper-Threading Technology in Processors Based on Intel 
NetBurst® Microarchitecture”

— Section 18.16, “Performance Monitoring and Dual-Core Technology”

— Section 18.17, “Performance Monitoring on 64-bit Intel Xeon Processor MP with Up to 8-MByte L3 Cache”

— Section 18.19, “Performance Monitoring (P6 Family Processor)”

— Section 18.20, “Performance Monitoring (Pentium Processors)”

18.2 ARCHITECTURAL PERFORMANCE MONITORING

Performance monitoring events are architectural when they behave consistently across microarchitectures. Intel 
Core Solo and Intel Core Duo processors introduced architectural performance monitoring. The feature provides a 
mechanism for software to enumerate performance events and provides configuration and counting facilities for 
events.

Architectural performance monitoring does allow for enhancement across processor implementations. The 
CPUID.0AH leaf provides version ID for each enhancement. Intel Core Solo and Intel Core Duo processors support 
base level functionality identified by version ID of 1. Processors based on Intel Core microarchitecture support, at 
a minimum, the base level functionality of architectural performance monitoring. Intel Core 2 Duo processor T 
7700 and newer processors based on Intel Core microarchitecture support both the base level functionality and 
enhanced architectural performance monitoring identified by version ID of 2.

Intel Atom processor family supports the base level functionality, enhanced architectural performance monitoring 
identified by version ID of 2 and version ID of 3 (including two general-purpose performance counters, IA32_PMC0, 
IA32_PMC1). Intel Core i7 processor family supports the base level functionality, enhanced architectural perfor-
mance monitoring identified by version ID of 2 and version ID of 3, (including four general-purpose performance 
counters, IA32_PMC0-IA32_PMC3). 

18.2.1 Architectural Performance Monitoring Version 1

Configuring an architectural performance monitoring event involves programming performance event select regis-
ters. There are a finite number of performance event select MSRs (IA32_PERFEVTSELx MSRs). The result of a 
performance monitoring event is reported in a performance monitoring counter (IA32_PMCx MSR). Performance 
monitoring counters are paired with performance monitoring select registers.

Performance monitoring select registers and counters are architectural in the following respects:
• Bit field layout of IA32_PERFEVTSELx is consistent across microarchitectures.
• Addresses of IA32_PERFEVTSELx MSRs remain the same across microarchitectures.
• Addresses of IA32_PMC MSRs remain the same across microarchitectures.
• Each logical processor has its own set of IA32_PERFEVTSELx and IA32_PMCx MSRs. Configuration facilities and 

counters are not shared between logical processors sharing a processor core.

Architectural performance monitoring provides a CPUID mechanism for enumerating the following information:
• Number of performance monitoring counters available in a logical processor (each IA32_PERFEVTSELx MSR is 

paired to the corresponding IA32_PMCx MSR)
• Number of bits supported in each IA32_PMCx 
• Number of architectural performance monitoring events supported in a logical processor

Software can use CPUID to discover architectural performance monitoring availability (CPUID.0AH). The architec-
tural performance monitoring leaf provides an identifier corresponding to the version number of architectural 
performance monitoring available in the processor.

The version identifier is retrieved by querying CPUID.0AH:EAX[bits 7:0] (see Chapter 3, “Instruction Set Refer-
ence, A-M,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). If the version 
identifier is greater than zero, architectural performance monitoring capability is supported. Software queries the 
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CPUID.0AH for the version identifier first; it then analyzes the value returned in CPUID.0AH.EAX, CPUID.0AH.EBX 
to determine the facilities available.

In the initial implementation of architectural performance monitoring; software can determine how many 
IA32_PERFEVTSELx/ IA32_PMCx MSR pairs are supported per core, the bit-width of PMC, and the number of archi-
tectural performance monitoring events available.

18.2.1.1  Architectural Performance Monitoring Version 1 Facilities

Architectural performance monitoring facilities include a set of performance monitoring counters and performance 
event select registers. These MSRs have the following properties:
• IA32_PMCx MSRs start at address 0C1H and occupy a contiguous block of MSR address space; the number of 

MSRs per logical processor is reported using CPUID.0AH:EAX[15:8].
• IA32_PERFEVTSELx MSRs start at address 186H and occupy a contiguous block of MSR address space. Each 

performance event select register is paired with a corresponding performance counter in the 0C1H address 
block.

• The bit width of an IA32_PMCx MSR is reported using the CPUID.0AH:EAX[23:16]. This the number of valid bits 
for read operation. On write operations, the lower-order 32 bits of the MSR may be written with any value, and 
the high-order bits are sign-extended from the value of bit 31. 

• Bit field layout of IA32_PERFEVTSELx MSRs is defined architecturally.

See Figure 18-1 for the bit field layout of IA32_PERFEVTSELx MSRs. The bit fields are:
• Event select field (bits 0 through 7) — Selects the event logic unit used to detect microarchitectural 

conditions (see Table 18-1, for a list of architectural events and their 8-bit codes). The set of values for this field 
is defined architecturally; each value corresponds to an event logic unit for use with an architectural 
performance event. The number of architectural events is queried using CPUID.0AH:EAX. A processor may 
support only a subset of pre-defined values.

• Unit mask (UMASK) field (bits 8 through 15) — These bits qualify the condition that the selected event 
logic unit detects. Valid UMASK values for each event logic unit are specific to the unit. For each architectural 
performance event, its corresponding UMASK value defines a specific microarchitectural condition. 
A pre-defined microarchitectural condition associated with an architectural event may not be applicable to a 
given processor. The processor then reports only a subset of pre-defined architectural events. Pre-defined 
architectural events are listed in Table 18-1; support for pre-defined architectural events is enumerated using 
CPUID.0AH:EBX. Architectural performance events available in the initial implementation are listed in Table 
19-1.

• USR (user mode) flag (bit 16) — Specifies that the selected microarchitectural condition is counted only 
when the logical processor is operating at privilege levels 1, 2 or 3. This flag can be used with the OS flag.

Figure 18-1.  Layout of IA32_PERFEVTSELx MSRs
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• OS (operating system mode) flag (bit 17) — Specifies that the selected microarchitectural condition is 
counted only when the logical processor is operating at privilege level 0. This flag can be used with the USR 
flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of the selected microarchitectural 
condition. The logical processor counts the number of deasserted to asserted transitions for any condition that 
can be expressed by the other fields. The mechanism does not permit back-to-back assertions to be distin-
guished. 
This mechanism allows software to measure not only the fraction of time spent in a particular state, but also the 
average length of time spent in such a state (for example, the time spent waiting for an interrupt to be 
serviced).

• PC (pin control) flag (bit 19) — When set, the logical processor toggles the PMi pins and increments the 
counter when performance-monitoring events occur; when clear, the processor toggles the PMi pins when the 
counter overflows. The toggling of a pin is defined as assertion of the pin for a single bus clock followed by 
deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the logical processor generates an exception 
through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — When set, performance counting is enabled in the corresponding 
performance-monitoring counter; when clear, the corresponding counter is disabled. The event logic unit for a 
UMASK must be disabled by setting IA32_PERFEVTSELx[bit 22] = 0, before writing to IA32_PMCx.

• INV (invert) flag (bit 23) — When set, inverts the counter-mask (CMASK) comparison, so that both greater 
than or equal to and less than comparisons can be made (0: greater than or equal; 1: less than). Note if 
counter-mask is programmed to zero, INV flag is ignored.

• Counter mask (CMASK) field (bits 24 through 31) — When this field is not zero, a logical processor 
compares this mask to the events count of the detected microarchitectural condition during a single cycle. If 
the event count is greater than or equal to this mask, the counter is incremented by one. Otherwise the counter 
is not incremented. 
This mask is intended for software to characterize microarchitectural conditions that can count multiple 
occurrences per cycle (for example, two or more instructions retired per clock; or bus queue occupations). If 
the counter-mask field is 0, then the counter is incremented each cycle by the event count associated with 
multiple occurrences.

18.2.2 Additional Architectural Performance Monitoring Extensions

The enhanced features provided by architectural performance monitoring version 2 include the following:
• Fixed-function performance counter register and associated control register — Three of the architec-

tural performance events are counted using three fixed-function MSRs (IA32_FIXED_CTR0 through 
IA32_FIXED_CTR2). Each of the fixed-function PMC can count only one architectural performance event. 
Configuring the fixed-function PMCs is done by writing to bit fields in the MSR (IA32_FIXED_CTR_CTRL) located 
at address 38DH. Unlike configuring performance events for general-purpose PMCs (IA32_PMCx) via UMASK 
field in (IA32_PERFEVTSELx), configuring, programming IA32_FIXED_CTR_CTRL for fixed-function PMCs do 
not require any UMASK.

• Simplified event programming — Most frequent operation in programming performance events are 
enabling/disabling event counting and checking the status of counter overflows. Architectural performance 
event version 2 provides three architectural MSRs:

— IA32_PERF_GLOBAL_CTRL allows software to enable/disable event counting of all or any combination of 
fixed-function PMCs (IA32_FIXED_CTRx) or any general-purpose PMCs via a single WRMSR.

— IA32_PERF_GLOBAL_STATUS allows software to query counter overflow conditions on any combination of 
fixed-function PMCs or general-purpose PMCs via a single RDMSR.

— IA32_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow conditions on any combination of 
fixed-function PMCs or general-purpose PMCs via a single WRMSR.
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18.2.2.1  Architectural Performance Monitoring Version 2 Facilities

The facilities provided by architectural performance monitoring version 2 can be queried from CPUID leaf 0AH by 
examining the content of register EDX:
• Bits 0 through 4 of CPUID.0AH.EDX indicates the number of fixed-function performance counters available per 

core,
• Bits 5 through 12 of CPUID.0AH.EDX indicates the bit-width of fixed-function performance counters. Bits 

beyond the width of the fixed-function counter are reserved and must be written as zeros.

NOTE
Early generation of processors based on Intel Core microarchitecture may report in 
CPUID.0AH:EDX of support for version 2 but indicating incorrect information of version 2 facilities.

The IA32_FIXED_CTR_CTRL MSR include multiple sets of 4-bit field, each 4 bit field controls the operation of a 
fixed-function performance counter. Figure 18-2 shows the layout of 4-bit controls for each fixed-function PMC. 
Two sub-fields are currently defined within each control. The definitions of the bit fields are:

• Enable field (lowest 2 bits within each 4-bit control) — When bit 0 is set, performance counting is 
enabled in the corresponding fixed-function performance counter to increment while the target condition 
associated with the architecture performance event occurred at ring 0. When bit 1 is set, performance counting 
is enabled in the corresponding fixed-function performance counter to increment while the target condition 
associated with the architecture performance event occurred at ring greater than 0. Writing 0 to both bits stops 
the performance counter. Writing a value of 11B enables the counter to increment irrespective of privilege 
levels.

• PMI field (the fourth bit within each 4-bit control) — When set, the logical processor generates an 
exception through its local APIC on overflow condition of the respective fixed-function counter.

IA32_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting of each performance counter. 
Figure 18-3 shows the layout of IA32_PERF_GLOBAL_CTRL. Each enable bit in IA32_PERF_GLOBAL_CTRL is 
AND’ed with the enable bits for all privilege levels in the respective IA32_PERFEVTSELx or 
IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective counters. Counting is enabled if the 
AND’ed results is true; counting is disabled when the result is false.

Figure 18-2.  Layout of IA32_FIXED_CTR_CTRL MSR
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The fixed-function performance counters supported by architectural performance version 2 is listed in Table 18-8, 
the pairing between each fixed-function performance counter to an architectural performance event is also shown.

IA32_PERF_GLOBAL_STATUS MSR provides single-bit status for software to query the overflow condition of each 
performance counter. The MSR also provides additional status bit to indicate overflow conditions when counters are 
programmed for precise-event-based sampling (PEBS). IA32_PERF_GLOBAL_STATUS MSR also provides a sticky 
bit to indicate changes to the state of performance monitoring hardware. Figure 18-4 shows the layout of 
IA32_PERF_GLOBAL_STATUS. A value of 1 in bits 0, 1, 32 through 34 indicates a counter overflow condition has 
occurred in the associated counter.

When a performance counter is configured for PEBS, overflow condition in the counter generates a performance-
monitoring interrupt signaling a PEBS event. On a PEBS event, the processor stores data records into the buffer 
area (see Section 18.15.5), clears the counter overflow status., and sets the “OvfBuffer” bit in 
IA32_PERF_GLOBAL_STATUS. 

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of any general-purpose or fixed-
function counters via a single WRMSR. Software should clear overflow indications when
• Setting up new values in the event select and/or UMASK field for counting or sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling.

The layout of IA32_PERF_GLOBAL_OVF_CTL is shown in Figure 18-5.

Figure 18-3.  Layout of IA32_PERF_GLOBAL_CTRL MSR

Figure 18-4.  Layout of IA32_PERF_GLOBAL_STATUS MSR
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18.2.2.2  Architectural Performance Monitoring Version 3 Facilities

The facilities provided by architectural performance monitoring version 1 and 2 are also supported by architectural 
performance monitoring version 3. Additionally version 3 provides enhancements to support a processor core 
comprising of more than one logical processor, i.e. a processor core supporting Intel Hyper-Threading Technology 
or simultaneous multi-threading capability. Specifically,
• CPUID leaf 0AH provides enumeration mechanisms to query:

— The number of general-purpose performance counters (IA32_PMCx) is reported in CPUID.0AH:EAX[15:8], 
the bit width of general-purpose performance counters (see also Section 18.2.1.1) is reported in 
CPUID.0AH:EAX[23:16].

— The bit vector representing the set of architectural performance monitoring events supported (see Section 
18.2.3)

— The number of fixed-function performance counters, the bit width of fixed-function performance counters 
(see also Section 18.2.2.1).

• Each general-purpose performance counter IA32_PMCx (starting at MSR address 0C1H) is associated with a 
corresponding IA32_PERFEVTSELx MSR (starting at MSR address 186H). The Bit field layout of 
IA32_PERFEVTSELx MSRs is defined architecturally in Figure 18-6.

Bit 21 (AnyThread) of IA32_PERFEVTSELx is supported in architectural performance monitoring version 3. 
When set to 1, it enables counting the associated event conditions (including matching the thread’s CPL with 
the OS/USR setting of IA32_PERFEVTSELx) occurring across all logical processors sharing a processor core. 
When bit 21 is 0, the counter only increments the associated event conditions (including matching the thread’s 
CPL with the OS/USR setting of IA32_PERFEVTSELx) occurring in the logical processor which programmed the 
IA32_PERFEVTSELx MSR.

Figure 18-5.  Layout of IA32_PERF_GLOBAL_OVF_CTRL MSR

Figure 18-6.  Layout of IA32_PERFEVTSELx MSRs Supporting Architectural Performance Monitoring Version 3
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• Each fixed-function performance counter IA32_FIXED_CTRx (starting at MSR address 309H) is configured by a 
4-bit control block in the IA32_PERF_FIXED_CTR_CTRL MSR. The control block also allow thread-specificity 
configuration using an AnyThread bit. The layout of IA32_PERF_FIXED_CTR_CTRL MSR is shown. 

Each control block for a fixed-function performance counter provides a AnyThread (bit position 2 + 4*N, N= 
0, 1, etc.) bit. When set to 1, it enables counting the associated event conditions (including matching the 
thread’s CPL with the ENABLE setting of the corresponding control block of IA32_PERF_FIXED_CTR_CTRL) 
occurring across all logical processors sharing a processor core. When an AnyThread bit is 0 in 
IA32_PERF_FIXED_CTR_CTRL, the corresponding fixed counter only increments the associated event 
conditions occurring in the logical processor which programmed the IA32_PERF_FIXED_CTR_CTRL MSR.

• The IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, IA32_PERF_GLOBAL_OVF_CTRL MSRs provide 
single-bit controls/status for each general-purpose and fixed-function performance counter. Figure 18-8 and 
Figure 18-9 show the layout of these MSRs for N general-purpose performance counters (where N is reported 
by CPUID.0AH:EAX[15:8]) and three fixed-function counters.
Note: The Intel Atom processor family supports two general-purpose performance monitoring counters (i.e. N 
=2 in Figure 18-9), other processor families in Intel 64 architecture may support a different value of N in Figure 
18-9. The number N is reported by CPUID.0AH:EAX[15:8]. The Intel Core i7 processor supports four general-
purpose performance monitoring counters (i.e. N =4 in Figure 18-9).

Figure 18-7.  Layout of IA32_FIXED_CTR_CTRL MSR Supporting Architectural Performance Monitoring Version 3
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18.2.2.3  Full-Width Writes to Performance Counter Registers

The general-purpose performance counter registers IA32_PMCx are writable via WRMSR instruction. However, the 
value written into IA32_PMCx by WRMSR is the signed extended 64-bit value of the EAX[31:0] input of WRMSR.

A processor that supports full-width writes to the general-purpose performance counters enumerated by 
CPUID.0AH:EAX[15:8] will set IA32_PERF_CAPABILITIES[13] to enumerate its full-width-write capability See 
Figure 18-43. 

If IA32_PERF_CAPABILITIES.FW_WRITE[bit 13] =1, each IA32_PMCi is accompanied by a corresponding alias 
address starting at 4C1H for IA32_A_PMC0. 

If IA32_A_PMCi is present, the 64-bit input value (EDX:EAX) of WRMSR to IA32_A_PMCi will cause IA32_PMCi to 
be updated by:

IA32_PMCi[63:32] ← SignExtend(EDX[N-32:0]);

IA32_PMCi[31:0] ← EAX[31:0];

18.2.3 Pre-defined Architectural Performance Events

Table 18-1 lists architecturally defined events.

Figure 18-9.  Global Performance Monitoring Overflow Status and Control MSRs

Table 18-1.  UMask and Event Select Encodings for Pre-Defined Architectural Performance Events
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A processor that supports architectural performance monitoring may not support all the predefined architectural 
performance events (Table 18-1). The non-zero bits in CPUID.0AH:EBX indicate the events that are not available. 

The behavior of each architectural performance event is expected to be consistent on all processors that support 
that event. Minor variations between microarchitectures are noted below:
• UnHalted Core Cycles — Event select 3CH, Umask 00H 

This event counts core clock cycles when the clock signal on a specific core is running (not halted). The counter 
does not advance in the following conditions: 

— an ACPI C-state other than C0 for normal operation

— HLT

— STPCLK# pin asserted 

— being throttled by TM1

— during the frequency switching phase of a performance state transition (see Chapter 14, “Power and 
Thermal Management”)

The performance counter for this event counts across performance state transitions using different core clock 
frequencies

• Instructions Retired — Event select C0H, Umask 00H 
This event counts the number of instructions at retirement. For instructions that consist of multiple micro-ops, 
this event counts the retirement of the last micro-op of the instruction. An instruction with a REP prefix counts 
as one instruction (not per iteration). Faults before the retirement of the last micro-op of a multi-ops instruction 
are not counted.
This event does not increment under VM-exit conditions. Counters continue counting during hardware 
interrupts, traps, and inside interrupt handlers. 

• UnHalted Reference Cycles — Event select 3CH, Umask 01H 
This event counts reference clock cycles while the clock signal on the core is running. The reference clock 
operates at a fixed frequency, irrespective of core frequency changes due to performance state transitions. 
Processors may implement this behavior differently. See Table 19-17 and Table 19-20 in Chapter 19, “Perfor-
mance-Monitoring Events.”

• Last Level Cache References — Event select 2EH, Umask 4FH 
This event counts requests originating from the core that reference a cache line in the last level cache. The 
event count includes speculation and cache line fills due to the first-level cache hardware prefetcher, but may 
exclude cache line fills due to other hardware-prefetchers. 
Because cache hierarchy, cache sizes and other implementation-specific characteristics; value comparison to 
estimate performance differences is not recommended. 

• Last Level Cache Misses — Event select 2EH, Umask 41H
This event counts each cache miss condition for references to the last level cache. The event count may include 
speculation and cache line fills due to the first-level cache hardware prefetcher, but may exclude cache line fills 
due to other hardware-prefetchers. 
Because cache hierarchy, cache sizes and other implementation-specific characteristics; value comparison to 
estimate performance differences is not recommended. 

• Branch Instructions Retired — Event select C4H, Umask 00H
This event counts branch instructions at retirement. It counts the retirement of the last micro-op of a branch 
instruction. 

• All Branch Mispredict Retired — Event select C5H, Umask 00H

4 LLC Misses 41H 2EH

5 Branch Instruction Retired 00H C4H

6 Branch Misses Retired 00H C5H

Table 18-1.  UMask and Event Select Encodings for Pre-Defined Architectural Performance Events



Vol. 3B 18-11

PERFORMANCE MONITORING

This event counts mispredicted branch instructions at retirement. It counts the retirement of the last micro-op 
of a branch instruction in the architectural path of execution and experienced misprediction in the branch 
prediction hardware. 
Branch prediction hardware is implementation-specific across microarchitectures; value comparison to 
estimate performance differences is not recommended. 

NOTE

Programming decisions or software precisians on functionality should not be based on the event 
values or dependent on the existence of performance monitoring events.

18.3 PERFORMANCE MONITORING (INTEL® CORE™ SOLO AND INTEL® CORE™ DUO 
PROCESSORS)

In Intel Core Solo and Intel Core Duo processors, non-architectural performance monitoring events are 
programmed using the same facilities (see Figure 18-1) used for architectural performance events.

Non-architectural performance events use event select values that are model-specific. Event mask (Umask) values 
are also specific to event logic units. Some microarchitectural conditions detectable by a Umask value may have 
specificity related to processor topology (see Section 8.6, “Detecting Hardware Multi-Threading Support and 
Topology,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). As a result, the unit 
mask field (for example, IA32_PERFEVTSELx[bits 15:8]) may contain sub-fields that specify topology information 
of processor cores.

The sub-field layout within the Umask field may support two-bit encoding that qualifies the relationship between a 
microarchitectural condition and the originating core. This data is shown in Table 18-2. The two-bit encoding for 
core-specificity is only supported for a subset of Umask values (see Chapter 19, “Performance Monitoring Events”) 
and for Intel Core Duo processors. Such events are referred to as core-specific events.

Some microarchitectural conditions allow detection specificity only at the boundary of physical processors. Some 
bus events belong to this category, providing specificity between the originating physical processor (a bus agent) 
versus other agents on the bus. Sub-field encoding for agent specificity is shown in Table 18-3.

Some microarchitectural conditions are detectable only from the originating core. In such cases, unit mask does 
not support core-specificity or agent-specificity encodings. These are referred to as core-only conditions.

Some microarchitectural conditions allow detection specificity that includes or excludes the action of hardware 
prefetches. A two-bit encoding may be supported to qualify hardware prefetch actions. Typically, this applies only 
to some L2 or bus events. The sub-field encoding for hardware prefetch qualification is shown in Table 18-4.

Table 18-2.  Core Specificity Encoding within a Non-Architectural Umask

IA32_PERFEVTSELx MSRs

Bit 15:14 Encoding Description

11B All cores

10B Reserved

01B This core

00B Reserved

Table 18-3.  Agent Specificity Encoding within a Non-Architectural Umask

IA32_PERFEVTSELx MSRs

Bit 13 Encoding Description

0 This agent

1 Include all agents
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Some performance events may (a) support none of the three event-specific qualification encodings (b) may 
support core-specificity and agent specificity simultaneously (c) or may support core-specificity and hardware 
prefetch qualification simultaneously. Agent-specificity and hardware prefetch qualification are mutually exclusive.

In addition, some L2 events permit qualifications that distinguish cache coherent states. The sub-field definition for 
cache coherency state qualification is shown in Table 18-5. If no bits in the MESI qualification sub-field are set for 
an event that requires setting MESI qualification bits, the event count will not increment.

18.4 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL® CORE™ 
MICROARCHITECTURE)

In addition to architectural performance monitoring, processors based on the Intel Core microarchitecture support 
non-architectural performance monitoring events.

Architectural performance events can be collected using general-purpose performance counters. Non-architectural 
performance events can be collected using general-purpose performance counters (coupled with two 
IA32_PERFEVTSELx MSRs for detailed event configurations), or fixed-function performance counters (see Section 
18.4.1). IA32_PERFEVTSELx MSRs are architectural; their layout is shown in Figure 18-1. Starting with Intel Core 
2 processor T 7700, fixed-function performance counters and associated counter control and status MSR becomes 
part of architectural performance monitoring version 2 facilities (see also Section 18.2.2). 

Non-architectural performance events in processors based on Intel Core microarchitecture use event select values 
that are model-specific. Valid event mask (Umask) bits are listed in Chapter 19. The UMASK field may contain sub-
fields identical to those listed in Table 18-2, Table 18-3, Table 18-4, and Table 18-5. One or more of these sub-
fields may apply to specific events on an event-by-event basis. Details are listed in Table 19-17 in Chapter 19, 
“Performance-Monitoring Events.”

In addition, the UMASK filed may also contain a sub-field that allows detection specificity related to snoop 
responses. Bits of the snoop response qualification sub-field are defined in Table 18-6.

Table 18-4.  HW Prefetch Qualification Encoding within a Non-Architectural Umask

IA32_PERFEVTSELx MSRs

Bit 13:12 Encoding Description

11B All inclusive

10B Reserved

01B Hardware prefetch only 

00B Exclude hardware prefetch

Table 18-5.  MESI Qualification Definitions within a Non-Architectural Umask

IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 Counts modified state

Bit 10 Counts exclusive state

Bit 9 Counts shared state

Bit 8 Counts Invalid state

Table 18-6.  Bus Snoop Qualification Definitions within a Non-Architectural Umask

IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 HITM response

Bit 10 Reserved 
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There are also non-architectural events that support qualification of different types of snoop operation. The corre-
sponding bit field for snoop type qualification are listed in Table 18-7.

No more than one sub-field of MESI, snoop response, and snoop type qualification sub-fields can be supported in a 
performance event.

NOTE

Software must write known values to the performance counters prior to enabling the counters. The 
content of general-purpose counters and fixed-function counters are undefined after INIT or 
RESET.

18.4.1 Fixed-function Performance Counters

Processors based on Intel Core microarchitecture provide three fixed-function performance counters. Bits beyond 
the width of the fixed counter are reserved and must be written as zeros. Model-specific fixed-function perfor-
mance counters on processors that support Architectural Perfmon version 1 are 40 bits wide.

Each of the fixed-function counter is dedicated to count a pre-defined performance monitoring events. The perfor-
mance monitoring events associated with fixed-function counters and the addresses of these counters are listed in 
Table 18-8. 

Programming the fixed-function performance counters does not involve any of the IA32_PERFEVTSELx MSRs, and 
does not require specifying any event masks. Instead, the MSR MSR_PERF_FIXED_CTR_CTRL provides multiple 
sets of 4-bit fields; each 4-bit field controls the operation of a fixed-function performance counter (PMC). See 
Figures 18-10. Two sub-fields are defined for each control. See Figure 18-10; bit fields are:
• Enable field (low 2 bits in each 4-bit control) — When bit 0 is set, performance counting is enabled in the 

corresponding fixed-function performance counter to increment when the target condition associated with the 
architecture performance event occurs at ring 0. 
When bit 1 is set, performance counting is enabled in the corresponding fixed-function performance counter to 
increment when the target condition associated with the architecture performance event occurs at ring greater 
than 0. 

Bit 9 HIT response

Bit 8 CLEAN response

Table 18-7.  Snoop Type Qualification Definitions within a Non-Architectural Umask

IA32_PERFEVTSELx MSRs

Bit Position 9:8 Description

Bit 9 CMP2I snoops

Bit 8 CMP2S snoops

Table 18-8.  Association of Fixed-Function Performance Counters with Architectural Performance Events

Event Name Fixed-Function PMC PMC Address

INST_RETIRED.ANY MSR_PERF_FIXED_CTR0/IA32_FIXED_CTR0 309H

CPU_CLK_UNHALTED.CORE MSR_PERF_FIXED_CTR1//IA32_FIXED_CTR1 30AH

CPU_CLK_UNHALTED.REF MSR_PERF_FIXED_CTR2//IA32_FIXED_CTR2 30BH

Table 18-6.  Bus Snoop Qualification Definitions within a Non-Architectural Umask

IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description
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Writing 0 to both bits stops the performance counter. Writing 11B causes the counter to increment irrespective 
of privilege levels.

• PMI field (fourth bit in each 4-bit control) — When set, the logical processor generates an exception 
through its local APIC on overflow condition of the respective fixed-function counter.

18.4.2 Global Counter Control Facilities

Processors based on Intel Core microarchitecture provides simplified performance counter control that simplifies 
the most frequent operations in programming performance events, i.e. enabling/disabling event counting and 
checking the status of counter overflows. This is done by the following three MSRs:
• MSR_PERF_GLOBAL_CTRL enables/disables event counting for all or any combination of fixed-function PMCs 

(MSR_PERF_FIXED_CTRx) or general-purpose PMCs via a single WRMSR.
• MSR_PERF_GLOBAL_STATUS allows software to query counter overflow conditions on any combination of 

fixed-function PMCs (MSR_PERF_FIXED_CTRx) or general-purpose PMCs via a single RDMSR.
• MSR_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow conditions on any combination of 

fixed-function PMCs (MSR_PERF_FIXED_CTRx) or general-purpose PMCs via a single WRMSR.

MSR_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting in each performance counter (see 
Figure 18-11). Each enable bit in MSR_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in 
the respective IA32_PERFEVTSELx or MSR_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective 
counters. Counting is enabled if the AND’ed results is true; counting is disabled when the result is false.

MSR_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query the overflow condition of 
each performance counter. The MSR also provides additional status bit to indicate overflow conditions when coun-

Figure 18-10.  Layout of MSR_PERF_FIXED_CTR_CTRL MSR

Figure 18-11.  Layout of MSR_PERF_GLOBAL_CTRL MSR

Cntr2 — Controls for MSR_PERF_FIXED_CTR2
Cntr1 — Controls for MSR_PERF_FIXED_CTR1
PMI — Enable PMI on overflow
Cntr0 — Controls for MSR_PERF_FIXED_CTR0

8 7 0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC1 enable

2 1 0

PMC0 enable

3132333435

Reserved

63
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ters are programmed for precise-event-based sampling (PEBS). The MSR_PERF_GLOBAL_STATUS MSR also 
provides a ‘sticky bit’ to indicate changes to the state of performance monitoring hardware (see Figure 18-12). A 
value of 1 in bits 34:32, 1, 0 indicates an overflow condition has occurred in the associated counter. 

When a performance counter is configured for PEBS, an overflow condition in the counter will arm PEBS. On the 
subsequent event following overflow, the processor will generate a PEBS event. On a PEBS event, the processor will 
perform bounds checks based on the parameters defined in the DS Save Area (see Section 17.4.9). Upon 
successful bounds checks, the processor will store the data record in the defined buffer area, clear the counter 
overflow status, and reload the counter. If the bounds checks fail, the PEBS will be skipped entirely. In the event 
that the PEBS buffer fills up, the processor will set the OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

MSR_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for general-purpose or fixed-
function counters via a single WRMSR (see Figure 18-13). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling

18.4.3 At-Retirement Events

Many non-architectural performance events are impacted by the speculative nature of out-of-order execution. A 
subset of non-architectural performance events on processors based on Intel Core microarchitecture are enhanced 
with a tagging mechanism (similar to that found in Intel NetBurst® microarchitecture) that exclude contributions 
that arise from speculative execution. The at-retirement events available in processors based on Intel Core micro-
architecture does not require special MSR programming control (see Section 18.12.6, “At-Retirement Counting”), 

Figure 18-12.  Layout of MSR_PERF_GLOBAL_STATUS MSR

Figure 18-13.  Layout of MSR_PERF_GLOBAL_OVF_CTRL MSR

62

FIXED_CTR2 Overflow
FIXED_CTR1 Overflow
FIXED_CTR0 Overflow
PMC1 Overflow

2 1 0

PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfBuffer

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC1 ClrOverflow

2 1 0

PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer
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but is limited to IA32_PMC0. See Table 18-9 for a list of events available to processors based on Intel Core micro-
architecture.

18.4.4 Precise Event Based Sampling (PEBS)

Processors based on Intel Core microarchitecture also support precise event based sampling (PEBS). This feature 
was introduced by processors based on Intel NetBurst microarchitecture.

PEBS uses a debug store mechanism and a performance monitoring interrupt to store a set of architectural state 
information for the processor. The information provides architectural state of the instruction executed after the 
instruction that caused the event (See Section 18.4.4.2). 

In cases where the same instruction causes BTS and PEBS to be activated, PEBS is processed before BTS are 
processed. The PMI request is held until the processor completes processing of PEBS and BTS.

For processors based on Intel Core microarchitecture, events that support precise sampling are listed in 
Table 18-10. The procedure for detecting availability of PEBS is the same as described in Section 18.12.7.1.

18.4.4.1  Setting up the PEBS Buffer

For processors based on Intel Core microarchitecture, PEBS is available using IA32_PMC0 only. Use the following 
procedure to set up the processor and IA32_PMC0 counter for PEBS: 

1. Set up the precise event buffering facilities. Place values in the precise event buffer base, precise event index, 
precise event absolute maximum, precise event interrupt threshold, and precise event counter reset fields of 
the DS buffer management area. In processors based on Intel Core microarchitecture, PEBS records consist of 
64-bit address entries. See Figure 17-8 to set up the precise event records buffer in memory.

2. Enable PEBS. Set the Enable PEBS on PMC0 flag (bit 0) in IA32_PEBS_ENABLE MSR.

3. Set up the IA32_PMC0 performance counter and IA32_PERFEVTSEL0 for an event listed in Table 18-10.

Table 18-9.  At-Retirement Performance Events for Intel Core Microarchitecture

Event Name UMask Event Select

ITLB_MISS_RETIRED 00H C9H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

Table 18-10.  PEBS Performance Events for Intel Core Microarchitecture

Event Name UMask Event Select

INSTR_RETIRED.ANY_P 00H C0H

X87_OPS_RETIRED.ANY FEH C1H

BR_INST_RETIRED.MISPRED 00H C5H

SIMD_INST_RETIRED.ANY 1FH C7H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH
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18.4.4.2  PEBS Record Format

The PEBS record format may be extended across different processor implementations. The 
IA32_PERF_CAPABILITES MSR defines a mechanism for software to handle the evolution of PEBS record format in 
processors that support architectural performance monitoring with version id equals 2 or higher. The bit fields of 
IA32_PERF_CAPABILITES are defined in Table 35-2 of Chapter 35, “Model-Specific Registers (MSRs)”. The relevant 
bit fields that governs PEBS are:
• PEBSTrap [bit 6]: When set, PEBS recording is trap-like. After the PEBS-enabled counter has overflowed, PEBS 

record is recorded for the next PEBS-able event at the completion of the sampled instruction causing the PEBS 
event. When clear, PEBS recording is fault-like. The PEBS record is recorded before the sampled instruction 
causing the PEBS event.

• PEBSSaveArchRegs [bit 7]: When set, PEBS will save architectural register and state information according to 
the encoded value of the PEBSRecordFormat field. On processors based on Intel Core microarchitecture, this bit 
is always 1

• PEBSRecordFormat [bits 11:8]: Valid encodings are:

— 0000B: Only general-purpose registers, instruction pointer and RFLAGS registers are saved in each PEBS 
record (seeSection 18.12.7). 

18.4.4.3  Writing a PEBS Interrupt Service Routine

The PEBS facilities share the same interrupt vector and interrupt service routine (called the DS ISR) with the non-
precise event-based sampling and BTS facilities. To handle PEBS interrupts, PEBS handler code must be included in 
the DS ISR. See Section 17.4.9.1, “DS Save Area and IA-32e Mode Operation,” for guidelines when writing the DS 
ISR.

The service routine can query MSR_PERF_GLOBAL_STATUS to determine which counter(s) caused of overflow 
condition. The service routine should clear overflow indicator by writing to MSR_PERF_GLOBAL_OVF_CTL. 

A comparison of the sequence of requirements to program PEBS for processors based on Intel Core and Intel 
NetBurst microarchitectures is listed in Table 18-11.

Table 18-11.  Requirements to Program PEBS

For Processors based on Intel Core 
microarchitecture

For Processors based on Intel NetBurst 
microarchitecture

Verify PEBS support of 
processor/OS 

• IA32_MISC_ENABLE.EMON_AVAILABE (bit 7) is set.
• IA32_MISC_ENABLE.PEBS_UNAVAILABE (bit 12) is clear.

Ensure counters are in disabled On initial set up or changing event 
configurations, write 
MSR_PERF_GLOBAL_CTRL MSR (0x38F) with 
0. 

On subsequent entries:

• Clear all counters if “Counter Freeze on PMI“ 
is not enabled.

• If IA32_DebugCTL.Freeze is enabled, 
counters are automatically disabled.

Counters MUST be stopped before writing.1

Optional

Disable PEBS. Clear ENABLE PMC0 bit in IA32_PEBS_ENABLE 
MSR (0x3F1).

Optional

Check overflow conditions. Check MSR_PERF_GLOBAL_STATUS MSR (0x 
38E) handle any overflow conditions.

Check OVF flag of each CCCR for overflow 
condition

Clear overflow status. Clear MSR_PERF_GLOBAL_STATUS MSR (0x 
38E) using IA32_PERF_GLOBAL_OVF_CTRL 
MSR (0x390).

Clear OVF flag of each CCCR.

Write “sample-after“ values. Configure the counter(s) with the sample after value.
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18.4.4.4  Re-configuring PEBS Facilities

When software needs to reconfigure PEBS facilities, it should allow a quiescent period between stopping the prior 
event counting and setting up a new PEBS event. The quiescent period is to allow any latent residual PEBS records 
to complete its capture at their previously specified buffer address (provided by IA32_DS_AREA).

18.5 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL® ATOM™ 
MICROARCHITECTURE)

Intel Atom processor family supports architectural performance monitoring capability with version ID 3 (see 
Section 18.2.2.2) and a host of non-architectural monitoring capabilities. The initial implementation of Intel Atom 
processor family provides two general-purpose performance counters (IA32_PMC0, IA32_PMC1) and three fixed-
function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1, IA32_FIXED_CTR2). 

Non-architectural performance monitoring in Intel Atom processor family uses the IA32_PERFEVTSELx MSR to 
configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events is listed in Table 19-19.

Architectural and non-architectural performance monitoring events in Intel Atom processor family support thread 
qualification using bit 21 of IA32_PERFEVTSELx MSR. 

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in Section 18.2.1.1 and 
Section 18.2.2.2. 

Valid event mask (Umask) bits are listed in Chapter 19. The UMASK field may contain sub-fields that provide the 
same qualifying actions like those listed in Table 18-2, Table 18-3, Table 18-4, and Table 18-5. One or more of 
these sub-fields may apply to specific events on an event-by-event basis. Details are listed in Table 19-19 in 
Chapter 19, “Performance-Monitoring Events.” Precise Event Based Monitoring is supported using IA32_PMC0 (see 
also Section 17.4.9, “BTS and DS Save Area”).

Configure specific counter 
configuration MSR.

• Set local enable bit 22 - 1.
• Do NOT set local counter PMI/INT bit, bit 20 

- 0.
• Event programmed must be PEBS capable. 

• Set appropriate OVF_PMI bits - 1.
• Only CCCR for MSR_IQ_COUNTER4 support 

PEBS.

Allocate buffer for PEBS states. Allocate a buffer in memory for the precise information.

Program the IA32_DS_AREA MSR. Program the IA32_DS_AREA MSR.

Configure the PEBS buffer 
management records.

Configure the PEBS buffer management records in the DS buffer management area.

Configure/Enable PEBS. Set Enable PMC0 bit in IA32_PEBS_ENABLE 
MSR (0x3F1).

Configure MSR_PEBS_ENABLE, 
MSR_PEBS_MATRIX_VERT and 
MSR_PEBS_MATRIX_HORZ as needed.

Enable counters. Set Enable bits in MSR_PERF_GLOBAL_CTRL 
MSR (0x38F).

Set each CCCR enable bit 12 - 1.

NOTES:

1. Counters read while enabled are not guaranteed to be precise with event counts that occur in timing proximity to the RDMSR.

Table 18-11.  Requirements to Program PEBS (Contd.)

For Processors based on Intel Core 
microarchitecture

For Processors based on Intel NetBurst 
microarchitecture



Vol. 3B 18-19

PERFORMANCE MONITORING

18.6 PERFORMANCE MONITORING (PROCESSORS BASED ON THE SILVERMONT 
MICROARCHITECTURE)

Intel processors based on the Silvermont microarchitecture support architectural performance monitoring capa-
bility with version ID 3 (see Section 18.2.2.2) and a host of non-architectural monitoring capabilities. Processors 
based on the Silvermont microarchitecture provide two general-purpose performance counters (IA32_PMC0, 
IA32_PMC1) and three fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1, 
IA32_FIXED_CTR2). 

Non-architectural performance monitoring in the Silvermont microarchitecture uses the IA32_PERFEVTSELx MSR 
to configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events is listed in Table 19-18.

The bit fields (except bit 21) within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in 
Section 18.2.1.1 and Section 18.2.2.2. Architectural and non-architectural performance monitoring events in the 
Silvermont microarchitecture ignore the AnyThread qualification regardless of its setting in IA32_PERFEVTSELx 
MSR. 

18.6.1 Enhancements of Performance Monitoring in the Processor Core

The notable enhancements in the monitoring of performance events in the processor core include:
• The width of counter reported by CPUID.0AH:EAX[23:16] is 40 bits. 
• Off-core response counting facility. This facility in the processor core allows software to count certain 

transaction responses between the processor core to sub-systems outside the processor core (uncore). 
Counting off-core response requires additional event qualification configuration facility in conjunction with 
IA32_PERFEVTSELx. Two off-core response MSRs are provided to use in conjunction with specific event codes 
that must be specified with IA32_PERFEVTSELx.

• Average request latency measurement. The off-core response counting facility can be combined to use two 
performance counters to count the occurrences and weighted cycles of transaction requests.

18.6.1.1  Precise Event Based Sampling (PEBS)

Processors based on the Silvermont microarchitecture support precise event based sampling (PEBS). PEBS is 
supported using IA32_PMC0 (see also Section 17.4.9, “BTS and DS Save Area”). 

PEBS uses a debug store mechanism to store a set of architectural state information for the processor. The infor-
mation provides architectural state of the instruction executed after the instruction that caused the event (See 
Section 18.4.4). 

The list of PEBS events supported in the Silvermont microarchitecture is shown in Table 18-12.

Table 18-12.  PEBS Performance Events for the Silvermont Microarchitecture

Event Name Event Select Sub-event UMask

BR_INST_RETIRED C4H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

CALL F9H

REL_CALL FDH

IND_CALL FBH

NON_RETURN_IND EBH

FAR_BRANCH BFH

RETURN F7H
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PEBS Record Format The PEBS record format supported by processors based on the Intel Silvermont microarchi-
tecture is shown in Table 18-13, and each field in the PEBS record is 64 bits long. 

18.6.2 Offcore Response Event

Event number 0B7H support offcore response monitoring using an associated configuration MSR, 
MSR_OFFCORE_RSP0 (address 0x1A6) in conjunction with umask value 01H or MSR_OFFCORE_RSP1 (address 
0x1A7) in conjunction with umask value 02H. Table 19-18 lists the event code, mask value and additional off-core 
configuration MSR that must be programmed to count off-core response events using IA32_PMCx. 

BR_MISP_RETIRED C5H ALL_BRANCHES 00H

JCC 7EH

TAKEN_JCC FEH

IND_CALL FBH

NON_RETURN_IND EBH

RETURN F7H

MEM_UOPS_RETIRED 04H L2_HIT_LOADS 02H

L2_MISS_LOADS 04H

DLTB_MISS_LOADS 08H

HITM 20H

REHABQ 03H LD_BLOCK_ST_FORWARD 01H

LD_SPLITS 08H

Table 18-13.  PEBS Record Format for the Silvermont Microarchitecture

Byte Offset Field Byte Offset Field

0x0 R/EFLAGS 0x60 R10

0x8 R/EIP 0x68 R11

0x10 R/EAX 0x70 R12

0x18 R/EBX 0x78 R13

0x20 R/ECX 0x80 R14

0x28 R/EDX 0x88 R15

0x30 R/ESI 0x90 IA32_PERF_GLOBAL_STATUS

0x38 R/EDI 0x98 Reserved

0x40 R/EBP 0xA0 Reserved

0x48 R/ESP 0xA8 Reserved

0x50 R8 0x80 EventingRIP

0x58 R9 0xB8 Reserved

Table 18-14.  OffCore Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-3 0xB7 0x01 MSR_OFFCORE_RSP0 (address 0x1A6)

Table 18-12.  PEBS Performance Events for the Silvermont Microarchitecture (Contd.)

Event Name Event Select Sub-event UMask
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The layout of MSR_OFFCORE_RSP0 and MSR_OFFCORE_RSP1 are shown in Figure 18-32 and Figure 18-33. Bits 
15:0 specifies the request type of a transaction request to the uncore. Bits 30:16 specifies supplier information, 
bits 37:31 specifies snoop response information. 

Additionally, MSR_OFFCORE_RSP0 provides bit 38 to enable measurement of average latency of specific type of 
offcore transaction requests using two programmable counter simultaneously, see Section 18.6.3 for details. 

PMC0-3 0xB7 0x02 MSR_OFFCORE_RSP1 (address 0x1A7)

Figure 18-14.  Request_Type Fields for MSR_OFFCORE_RSPx 

Table 18-15.  MSR_OFFCORE_RSPx Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads of full and partial 
cachelines as well as demand data page table entry cacheline reads. Does not count L2 data 
read prefetches or instruction fetches.

DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for ownership (RFO) requests 
generated by a write to data cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction cacheline reads. Does 
not count L2 code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive) transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 prefetchers.

PARTIAL_READ 7 (R/W). Counts the number of demand reads of partial cache lines (including UC and WC).

PARTIAL_WRITE 8 (R/W). Counts the number of demand RFO requests to write to partial cache lines (includes 
UC, WT and WP)

UC_IFETCH 9 (R/W). Counts the number of UC instruction fetches.

Table 18-14.  OffCore Response Event Encoding (Contd.)

Counter Event code UMask Required Off-core Response MSR

RESPONSE TYPE — Other (R/W)
REQUEST TYPE — PARTIAL_STRM_ST (R/W) 

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — UC_IFETCH (R/W)
REQUEST TYPE — PARTIAL_WRITE (R/W)
REQUEST TYPE — PARTIAL_READ (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 0x00000000_00000000

37

See Figure 18-30

REQUEST TYPE — PF_DATA_RD (R/W) 
REQUEST TYPE  — SW_PREFETCH (R/W)
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To properly program this extra register, software must set at least one request type bit and a valid response type 
pattern. Otherwise, the event count reported will be zero. It is permissible and useful to set multiple request and 
response type bits in order to obtain various classes of off-core response events. Although MSR_OFFCORE_RSPx 
allow an agent software to program numerous combinations that meet the above guideline, not all combinations 
produce meaningful data.

To specify a complete offcore response filter, software must properly program bits in the request and response type 
fields. A valid request type must have at least one bit set in the non-reserved bits of 15:0. A valid response type 
must be a non-zero value of the following expression:

ANY | [(‘OR’ of Supplier Info Bits) & (‘OR’ of Snoop Info Bits)]

If “ANY” bit is set, the supplier and snoop info bits are ignored.

BUS_LOCKS 10 (R/W). Bus lock and split lock requests

STRM_ST 11 (R/W). Streaming store requests

SW_PREFETCH 12 (R/W). Counts software prefetch requests

PF_DATA_RD 13 (R/W). Counts DCU hardware prefetcher data read requests

PARTIAL_STRM_ST 14 (R/W). Streaming store requests

OTHER 15 (R/W). Any other request that crosses IDI, including I/O.

Figure 18-15.  Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSPx 

Table 18-16.  MSR_OFFCORE_RSP_x Response Supplier Info Field Definition

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier 
Info

Reserved 17 Reserved

L2_HIT 18 (R/W). Cache reference hit L2 in either M/E/S states.

Reserved 30:19 Reserved

Table 18-15.  MSR_OFFCORE_RSPx Request_Type Field Definition (Contd.)

Bit Name Offset Description

RESPONSE TYPE — NON_DRAM (R/W)
RSPNS_SNOOP — HITM (R/W)

16

RESERVED

33 1934 17

Reserved

63 182031 212232353637

RSPNS_SNOOP — SNOOP_HIT (R/W)
RSPNS_SNOOP — SNOOP_MISS (R/W)
RESERVED
RSPNS_SNOOP — SNOOP_NONE (R/W)
RESERVED
RSPNS_SUPPLIER — L2_HIT (R/W)
RESERVED
RSPNS_SUPPLIER — ANY (R/W)

RESET Value — 0x00000000_00000000

38

AVG LATENCY — ENABLE AVG LATENCY(R/W)
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18.6.3 Average Offcore Request Latency Measurement

Measurement of average latency of offcore transaction requests can be enabled using MSR_OFFCORE_RSP0.[bit 
38] with the choice of request type specified in MSR_OFFCORE_RSP0.[bit 15:0] and MSR_OFFCORE_RSP0.[bit 
37:16] set to 0. 

When average latency measurement is enabled, e.g. with IA32_PERFEVTSEL0.[bits 15:0] = 0x01B7 and chosen 
value of MSR_OFFCORE_RSP0, IA32_PMC0 will accumulate weighted cycles of outstanding transaction requests 
for the specified transaction request type. At the same time, IA32_PMC1 should be configured to accumulate the 
number of occurrences each time a new transaction request of specified type is made.

18.7 PERFORMANCE MONITORING FOR PROCESSORS BASED ON INTEL® 

MICROARCHITECTURE CODE NAME NEHALEM

Intel Core i7 processor family1 supports architectural performance monitoring capability with version ID 3 (see 
Section 18.2.2.2) and a host of non-architectural monitoring capabilities. The Intel Core i7 processor family is 
based on Intel® microarchitecture code name Nehalem, and provides four general-purpose performance counters 
(IA32_PMC0, IA32_PMC1, IA32_PMC2, IA32_PMC3) and three fixed-function performance counters 
(IA32_FIXED_CTR0, IA32_FIXED_CTR1, IA32_FIXED_CTR2) in the processor core. 

Non-architectural performance monitoring in Intel Core i7 processor family uses the IA32_PERFEVTSELx MSR to 
configure a set of non-architecture performance monitoring events to be counted by the corresponding general-
purpose performance counter. The list of non-architectural performance monitoring events is listed in Table 19-19. 
Non-architectural performance monitoring events fall into two broad categories:
• Performance monitoring events in the processor core: These include many events that are similar to 

performance monitoring events available to processor based on Intel Core microarchitecture. Additionally, 
there are several enhancements in the performance monitoring capability for detecting microarchitectural 
conditions in the processor core or in the interaction of the processor core to the off-core sub-systems in the 

Table 18-17.  MSR_OFFCORE_RSPx Snoop Info Field Definition

Subtype Bit Name Offset Description

Snoop 
Info

SNP_NONE 31 (R/W). No details on snoop-related information

Reserved 32 Reserved

SNOOP_MISS 33 (R/W). Counts the number of snoop misses when L2 misses

SNOOP_HIT 34 (R/W). Counts the number of snoops hit in the other module where no modified 
copies were found

Reserved 35 Reserved

HITM 36 (R/W). Counts the number of snoops hit in the other module where modified 
copies were found in other core's L1 cache.

NON_DRAM 37 (R/W). Target was non-DRAM system address. This includes MMIO transactions.

AVG_LATENCY 38 (R/W). Enable average latency measurement by counting weighted cycles of 
outstanding offcore requests of the request type specified in bits 15:0 and any 
response (bits 37:16 cleared to 0). 

This bit is available in MSR_OFFCORE_RESP0. The weighted cycles is 
accumulated in the specified programmable counter IA32_PMCx and the 
occurrence of specified requests are counted in the other programmable 
counter.

1. Intel Xeon processor 5500 series and 3400 series are also based on Intel microarchitecture code name Nehalem, so the perfor-
mance monitoring facilities described in this section generally also apply.
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physical processor package. The off-core sub-systems in the physical processor package is loosely referred to 
as “uncore“.

• Performance monitoring events in the uncore: The uncore sub-system is shared by more than one processor 
cores in the physical processor package. It provides additional performance monitoring facility outside of 
IA32_PMCx and performance monitoring events that are specific to the uncore sub-system.

Architectural and non-architectural performance monitoring events in Intel Core i7 processor family support thread 
qualification using bit 21 of IA32_PERFEVTSELx MSR. 

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 18-6 and described in Section 18.2.1.1 and 
Section 18.2.2.2. 

18.7.1 Enhancements of Performance Monitoring in the Processor Core

The notable enhancements in the monitoring of performance events in the processor core include:
• Four general purpose performance counters, IA32_PMCx, associated counter configuration MSRs, 

IA32_PERFEVTSELx, and global counter control MSR supporting simplified control of four counters. Each of the 
four performance counter can support precise event based sampling (PEBS) and thread-qualification of archi-
tectural and non-architectural performance events. Width of IA32_PMCx supported by hardware has been 
increased. The width of counter reported by CPUID.0AH:EAX[23:16] is 48 bits. The PEBS facility in Intel micro-
architecture code name Nehalem has been enhanced to include new data format to capture additional infor-
mation, such as load latency.

• Load latency sampling facility. Average latency of memory load operation can be sampled using load-latency 
facility in processors based on Intel microarchitecture code name Nehalem. The facility can measure average 
latency of load micro-operations from dispatch to when data is globally observable (GO). This facility is used in 
conjunction with the PEBS facility.

• Off-core response counting facility. This facility in the processor core allows software to count certain 
transaction responses between the processor core to sub-systems outside the processor core (uncore). 
Counting off-core response requires additional event qualification configuration facility in conjunction with 
IA32_PERFEVTSELx. Two off-core response MSRs are provided to use in conjunction with specific event codes 
that must be specified with IA32_PERFEVTSELx.

Figure 18-16.  IA32_PERF_GLOBAL_STATUS MSR 

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O), if CCNT>7
OVF_PC6 (R/O), if CCNT>6
OVF_PC5 (R/O), if CCNT>5
OVF_PC4 (R/O), if CCNT>4
OVF_PC3 (R/O)
OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

RESET Value — 0x00000000_00000000

OVF_FC2 (R/O)
OVF_FC1 (R/O)

353433

OVF_FC0 (R/O)

CCNT: CPUID.AH:EAX[15:8]
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18.7.1.1  Precise Event Based Sampling (PEBS)

All four general-purpose performance counters, IA32_PMCx, can be used for PEBS if the performance event 
supports PEBS. Software uses IA32_MISC_ENABLE[7] and IA32_MISC_ENABLE[12] to detect whether the perfor-
mance monitoring facility and PEBS functionality are supported in the processor. The MSR IA32_PEBS_ENABLE 
provides 4 bits that software must use to enable which IA32_PMCx overflow condition will cause the PEBS record 
to be captured. 

Additionally, the PEBS record is expanded to allow latency information to be captured. The MSR 
IA32_PEBS_ENABLE provides 4 additional bits that software must use to enable latency data recording in the PEBS 
record upon the respective IA32_PMCx overflow condition. The layout of IA32_PEBS_ENABLE for processors based 
on Intel microarchitecture code name Nehalem is shown in Figure 18-17.

When a counter is enabled to capture machine state (PEBS_EN_PMCx = 1), the processor will write machine state 
information to a memory buffer specified by software as detailed below. When the counter IA32_PMCx overflows 
from maximum count to zero, the PEBS hardware is armed. 

Upon occurrence of the next PEBS event, the PEBS hardware triggers an assist and causes a PEBS record to be 
written. The format of the PEBS record is indicated by the bit field IA32_PERF_CAPABILITIES[11:8] (see 
Figure 18-43).

The behavior of PEBS assists is reported by IA32_PERF_CAPABILITIES[6] (see Figure 18-43). The return instruc-
tion pointer (RIP) reported in the PEBS record will point to the instruction after (+1) the instruction that causes the 
PEBS assist. The machine state reported in the PEBS record is the machine state after the instruction that causes 
the PEBS assist is retired. For instance, if the instructions:

mov eax, [eax] ; causes PEBS assist

nop

are executed, the PEBS record will report the address of the nop, and the value of EAX in the PEBS record will show 
the value read from memory, not the target address of the read operation.

The PEBS record format is shown in Table 18-18, and each field in the PEBS record is 64 bits long. The PEBS record 
format, along with debug/store area storage format, does not change regardless of IA-32e mode is active or not. 
CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-independent. 
When set, it uses 64-bit DS storage format.

Figure 18-17.  Layout of IA32_PEBS_ENABLE MSR 

Table 18-18.  PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field

0x0 R/EFLAGS 0x58 R9

0x8 R/EIP 0x60 R10

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 0x00000000_00000000
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In IA-32e mode, the full 64-bit value is written to the register. If the processor is not operating in IA-32e mode, 32-
bit value is written to registers with bits 63:32 zeroed.  Registers not defined when the processor is not in IA-32e 
mode are written to zero. 

Bytes 0xAF:0x90 are enhancement to the PEBS record format. Support for this enhanced PEBS record format is 
indicated by IA32_PERF_CAPABILITIES[11:8] encoding of 0001B.

The value written to bytes 0x97:0x90 is the state of the IA32_PERF_GLOBAL_STATUS register before the PEBS 
assist occurred. This value is written so software can determine which counters overflowed when this PEBS record 
was written. Note that this field indicates the overflow status for all counters, regardless of whether they were 
programmed for PEBS or not.

Programming PEBS Facility

Only a subset of non-architectural performance events in the processor support PEBS. The subset of precise events 
are listed in Table 18-10. In addition to using IA32_PERFEVTSELx to specify event unit/mask settings and setting 
the EN_PMCx bit in the IA32_PEBS_ENABLE register for the respective counter, the software must also initialize the 
DS_BUFFER_MANAGEMENT_AREA data structure in memory to support capturing PEBS records for precise events. 

NOTE

PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero: AnyThread, 
Edge, Invert, CMask.

The beginning linear address of the DS_BUFFER_MANAGEMENT_AREA data structure must be programmed into 
the IA32_DS_AREA register. The layout of the DS_BUFFER_MANAGEMENT_AREA is shown in Figure 18-18.
• PEBS Buffer Base: This field is programmed with the linear address of the first byte of the PEBS buffer 

allocated by software. The processor reads this field to determine the base address of the PEBS buffer. Software 
should allocate this memory from the non-paged pool.

0x10 R/EAX 0x68 R11

0x18 R/EBX 0x70 R12

0x20 R/ECX 0x78 R13

0x28 R/EDX 0x80 R14

0x30 R/ESI 0x88 R15

0x38 R/EDI 0x90 IA32_PERF_GLOBAL_STATUS

0x40 R/EBP 0x98 Data Linear Address

0x48 R/ESP 0xA0 Data Source Encoding

0x50 R8 0xA8 Latency value (core cycles)

Table 18-18.  PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field
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• PEBS Index: This field is initially programmed with the same value as the PEBS Buffer Base field, or the 
beginning linear address of the PEBS buffer. The processor reads this field to determine the location of the next 
PEBS record to write to. After a PEBS record has been written, the processor also updates this field with the 
address of the next PEBS record to be written. The figure above illustrates the state of PEBS Index after the 
first PEBS record is written.

• PEBS Absolute Maximum: This field represents the absolute address of the maximum length of the allocated 
PEBS buffer plus the starting address of the PEBS buffer. The processor will not write any PEBS record beyond 
the end of PEBS buffer, when PEBS Index equals PEBS Absolute Maximum. No signaling is generated when 
PEBS buffer is full. Software must reset the PEBS Index field to the beginning of the PEBS buffer address to 
continue capturing PEBS records.

• PEBS Interrupt Threshold: This field specifies the threshold value to trigger a performance interrupt and 
notify software that the PEBS buffer is nearly full. This field is programmed with the linear address of the first 
byte of the PEBS record within the PEBS buffer that represents the threshold record. After the processor writes 
a PEBS record and updates PEBS Index, if the PEBS Index reaches the threshold value of this field, the 
processor will generate a performance interrupt. This is the same interrupt that is generated by a performance 
counter overflow, as programmed in the Performance Monitoring Counters vector in the Local Vector Table of 
the Local APIC. When a performance interrupt due to PEBS buffer full is generated, the 
IA32_PERF_GLOBAL_STATUS.PEBS_Ovf bit will be set.

• PEBS CounterX Reset: This field allows software to set up PEBS counter overflow condition to occur at a rate 
useful for profiling workload, thereby generating multiple PEBS records to facilitate characterizing the profile 
the execution of test code. After each PEBS record is written, the processor checks each counter to see if it 
overflowed and was enabled for PEBS (the corresponding bit in IA32_PEBS_ENABLED was set). If these 
conditions are met, then the reset value for each overflowed counter is loaded from the DS Buffer Management 

Figure 18-18.  PEBS Programming Environment

BTS Buffer Base

BTS Index

BTS Absolute 

BTS Interrupt 

PEBS Absolute

PEBS Interrupt

PEBS 

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter0 Reset

Reserved

0H

8H

10H

18H

20H

28H

30H

38H

40H

48H

50H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n
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IA32_DS_AREA MSR
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Counter1 Reset
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Counter2 Reset
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Area. For example, if counter IA32_PMC0 caused a PEBS record to be written, then the value of “PEBS Counter 
0 Reset” would be written to counter IA32_PMC0. If a counter is not enabled for PEBS, its value will not be 
modified by the PEBS assist.

Performance Counter Prioritization

Performance monitoring interrupts are triggered by a counter transitioning from maximum count to zero (assuming 
IA32_PerfEvtSelX.INT is set). This same transition will cause PEBS hardware to arm, but not trigger. PEBS hard-
ware triggers upon detection of the first PEBS event after the PEBS hardware has been armed (a 0 to 1 transition 
of the counter). At this point, a PEBS assist will be undertaken by the processor.

Performance counters (fixed and general-purpose) are prioritized in index order. That is, counter IA32_PMC0 takes 
precedence over all other counters. Counter IA32_PMC1 takes precedence over counters IA32_PMC2 and 
IA32_PMC3, and so on. This means that if simultaneous overflows or PEBS assists occur, the appropriate action will 
be taken for the highest priority performance counter. For example, if IA32_PMC1 cause an overflow interrupt and 
IA32_PMC2 causes an PEBS assist simultaneously, then the overflow interrupt will be serviced first. 

The PEBS threshold interrupt is triggered by the PEBS assist, and is by definition prioritized lower than the PEBS 
assist. Hardware will not generate separate interrupts for each counter that simultaneously overflows. General-
purpose performance counters are prioritized over fixed counters.

If a counter is programmed with a precise (PEBS-enabled) event and programmed to generate a counter overflow 
interrupt, the PEBS assist is serviced before the counter overflow interrupt is serviced. If in addition the PEBS inter-
rupt threshold is met, the

threshold interrupt is generated after the PEBS assist completes, followed by the counter overflow interrupt (two 
separate interrupts are generated).

Uncore counters may be programmed to interrupt one or more processor cores (see Section 18.7.2). It is possible 
for interrupts posted from the uncore facility to occur coincident with counter overflow interrupts from the 
processor core. Software must check core and uncore status registers to determine the exact origin of counter 
overflow interrupts.

18.7.1.2  Load Latency Performance Monitoring Facility

The load latency facility provides software a means to characterize the average load latency to different levels of 
cache/memory hierarchy. This facility requires processor supporting enhanced PEBS record format in the PEBS 
buffer, see Table 18-18. The facility measures latency from micro-operation (uop) dispatch to when data is globally 
observable (GO).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit MEM_INST_RETIRED, and the 

LATENCY_ABOVE_THRESHOLD event mask must be specified (IA32_PerfEvtSelX[15:0] = 0x100H). The corre-
sponding counter IA32_PMCx will accumulate event counts for architecturally visible loads which exceed the 
programmed latency threshold specified separately in a MSR. Stores are ignored when this event is 
programmed. The CMASK or INV fields of the IA32_PerfEvtSelX register used for counting load latency must be 
0. Writing other values will result in undefined behavior. 

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired latency threshold in core clock 
cycles. Loads with latencies greater than this value are eligible for counting and latency data reporting. The 
minimum value that may be programmed in this register is 3 (the minimum detectable load latency is 4 core 
clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corresponding IA32_PMCx counter 
register. This means that both the PEBS_EN_CTRX and LL_EN_CTRX bits must be set for the counter(s) of 
interest. For example, to enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register must be 
programmed with the 64-bit value 0x00000001.00000001.

When the load-latency facility is enabled, load operations are randomly selected by hardware and tagged to carry 
information related to data source locality and latency. Latency and data source information of tagged loads are 
updated internally. 

When a PEBS assist occurs, the last update of latency and data source information are captured by the assist and 
written as part of the PEBS record. The PEBS sample after value (SAV), specified in PEBS CounterX Reset, operates 
orthogonally to the tagging mechanism. Loads are randomly tagged to collect latency data. The SAV controls the 
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number of tagged loads with latency information that will be written into the PEBS record field by the PEBS assists. 
The load latency data written to the PEBS record will be for the last tagged load operation which retired just before 
the PEBS assist was invoked.

The load-latency information written into a PEBS record (see Table 18-18, bytes AFH:98H) consists of:
• Data Linear Address: This is the linear address of the target of the load operation.
• Latency Value: This is the elapsed cycles of the tagged load operation between dispatch to GO, measured in 

processor core clock domain.
• Data Source: The encoded value indicates the origin of the data obtained by the load instruction. The 

encoding is shown in Table 18-19. In the descriptions local memory refers to system memory physically 
attached to a processor package, and remote memory referrals to system memory physically attached to 
another processor package. 

The layout of MSR_PEBS_LD_LAT_THRESHOLD is shown in Figure 18-19.

Table 18-19.  Data Source Encoding for Load Latency Record

Encoding Description

0x0 Unknown L3 cache miss

0x1 Minimal latency core cache hit. This request was satisfied by the L1 data cache.

0x2 Pending core cache HIT. Outstanding core cache miss to same cache-line address was already underway.

0x3 This data request was satisfied by the L2.

0x4 L3 HIT. Local or Remote home requests that hit L3 cache in the uncore with no coherency actions required (snooping).

0x5 L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by another processor core with a cross 
core snoop where no modified copies were found. (clean).

0x6 L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by another processor core with a cross 
core snoop where modified copies were found. (HITM).

0x71

NOTES:

1. Bit 7 is supported only for processor with CPUID DisplayFamily_DisplayModel signature of 06_2A, and 06_2E; otherwise it is 
reserved.

Reserved/LLC Snoop HitM. Local or Remote home requests that hit the last level cache and was serviced by another 
core with a cross core snoop where modified copies found

0x8 L3 MISS. Local homed requests that missed the L3 cache and was serviced by forwarded data following a cross 
package snoop where no modified copies found. (Remote home requests are not counted).

0x9 Reserved

0xA L3 MISS. Local home requests that missed the L3 cache and was serviced by local DRAM (go to shared state).

0xB L3 MISS. Remote home requests that missed the L3 cache and was serviced by remote DRAM (go to shared state).

0xC L3 MISS. Local home requests that missed the L3 cache and was serviced by local DRAM (go to exclusive state).

0xD L3 MISS. Remote home requests that missed the L3 cache and was serviced by remote DRAM (go to exclusive state).

0xE I/O, Request of input/output operation

0xF The request was to un-cacheable memory.
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Bits 15:0 specifies the threshold load latency in core clock cycles. Performance events with latencies greater than 
this value are counted in IA32_PMCx and their latency information is reported in the PEBS record. Otherwise, they 
are ignored. The minimum value that may be programmed in this field is 3.

18.7.1.3  Off-core Response Performance Monitoring in the Processor Core

Programming a performance event using the off-core response facility can choose any of the four 
IA32_PERFEVTSELx MSR with specific event codes and predefine mask bit value. Each event code for off-core 
response monitoring requires programming an associated configuration MSR, MSR_OFFCORE_RSP_0. There is only 
one off-core response configuration MSR. Table 18-20 lists the event code, mask value and additional off-core 
configuration MSR that must be programmed to count off-core response events using IA32_PMCx. 

The layout of MSR_OFFCORE_RSP_0 is shown in Figure 18-20. Bits 7:0 specifies the request type of a transaction 
request to the uncore. Bits 15:8 specifies the response of the uncore subsystem.

Figure 18-19.  Layout of MSR_PEBS_LD_LAT MSR 

Table 18-20.  Off-Core Response Event Encoding

Event code in 
IA32_PERFEVTSELx

Mask Value in 
IA32_PERFEVTSELx Required Off-core Response MSR

0xB7 0x01 MSR_OFFCORE_RSP_0 (address 0x1A6)

Figure 18-20.  Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to Configure Off-core Response Events

1615 0

Reserved

63

THRHLD - Load latency threshold

RESET Value — 0x00000000_00000000

RESPONSE TYPE — NON_DRAM (R/W)
RESPONSE TYPE — LOCAL_DRAM (R/W)
RESPONSE TYPE — REMOTE_DRAM (R/W)
RESPONSE TYPE — REMOTE_CACHE_FWD (R/W)

8 7 0

RESPONSE TYPE — RESERVED

11 312 1

Reserved

63 249 5610131415

RESPONSE TYPE — OTHER_CORE_HITM (R/W)
RESPONSE TYPE — OTHER_CORE_HIT_SNP (R/W)
RESPONSE TYPE — UNCORE_HIT (R/W)
REQUEST TYPE — OTHER (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 0x00000000_00000000
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18.7.2 Performance Monitoring Facility in the Uncore

The “uncore” in Intel microarchitecture code name Nehalem refers to subsystems in the physical processor 
package that are shared by multiple processor cores. Some of the sub-systems in the uncore include the L3 cache, 
Intel QuickPath Interconnect link logic, and integrated memory controller. The performance monitoring facilities 
inside the uncore operates in the same clock domain as the uncore (U-clock domain), which is usually different 
from the processor core clock domain. The uncore performance monitoring facilities described in this section apply 
to Intel Xeon processor 5500 series and processors with the following CPUID signatures: 06_1AH, 06_1EH, 06_1FH 
(see Chapter 35). An overview of the uncore performance monitoring facilities is described separately. 

The performance monitoring facilities available in the U-clock domain consist of:
• Eight General-purpose counters (MSR_UNCORE_PerfCntr0 through MSR_UNCORE_PerfCntr7). The counters 

are 48 bits wide. Each counter is associated with a configuration MSR, MSR_UNCORE_PerfEvtSelx, to specify 
event code, event mask and other event qualification fields. A set of global uncore performance counter 
enabling/overflow/status control MSRs are also provided for software.

• Performance monitoring in the uncore provides an address/opcode match MSR that provides event qualification 
control based on address value or QPI command opcode.

• One fixed-function counter, MSR_UNCORE_FixedCntr0. The fixed-function uncore counter increments at the 
rate of the U-clock when enabled.

Table 18-21.  MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads of full and partial cachelines as well 
as demand data page table entry cacheline reads. Does not count L2 data read prefetches or 
instruction fetches.

DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated 
by a write to data cacheline. Does not count L2 RFO.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction cacheline reads. Does not count L2 
code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive) transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 prefetchers.

OTHER 7 (R/W). Counts one of the following transaction types, including L3 invalidate, I/O, full or partial writes, 
WC or non-temporal stores, CLFLUSH, Fences, lock, unlock, split lock.

UNCORE_HIT 8 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the uncore with no coherency actions 
required (snooping).

OTHER_CORE_HI
T_SNP

9 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the uncore and was serviced by 
another core with a cross core snoop where no modified copies were found (clean).

OTHER_CORE_HI
TM

10 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the uncore and was serviced by 
another core with a cross core snoop where modified copies were found (HITM).

Reserved 11 Reserved

REMOTE_CACHE_
FWD

12 (R/W). L3 Miss: local homed requests that missed the L3 cache and was serviced by forwarded data 
following a cross package snoop where no modified copies found. (Remote home requests are not 
counted)

REMOTE_DRAM 13 (R/W). L3 Miss: remote home requests that missed the L3 cache and were serviced by remote DRAM.

LOCAL_DRAM 14 (R/W). L3 Miss: local home requests that missed the L3 cache and were serviced by local DRAM.

NON_DRAM 15 (R/W). Non-DRAM requests that were serviced by IOH.
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The frequency of the uncore clock domain can be determined from the uncore clock ratio which is available in 
the PCI configuration space register at offset C0H under device number 0 and Function 0. 

18.7.2.1  Uncore Performance Monitoring Management Facility

MSR_UNCORE_PERF_GLOBAL_CTRL provides bit fields to enable/disable general-purpose and fixed-function coun-
ters in the uncore. Figure 18-21 shows the layout of MSR_UNCORE_PERF_GLOBAL_CTRL for an uncore that is 
shared by four processor cores in a physical package. 
• EN_PCn (bit n, n = 0, 7): When set, enables counting for the general-purpose uncore counter 

MSR_UNCORE_PerfCntr n.
• EN_FC0 (bit 32): When set, enables counting for the fixed-function uncore counter MSR_UNCORE_FixedCntr0.
• EN_PMI_COREn (bit n, n = 0, 3 if four cores are present): When set, processor core n is programmed to receive 

an interrupt signal from any interrupt enabled uncore counter. PMI delivery due to an uncore counter overflow 
is enabled by setting IA32_DEBUG_CTL.Offcore_PMI_EN to 1.

• PMI_FRZ (bit 63): When set, all U-clock uncore counters are disabled when any one of them signals a 
performance interrupt. Software must explicitly re-enable the counter by setting the enable bits in 
MSR_UNCORE_PERF_GLOBAL_CTRL upon exit from the ISR.

MSR_UNCORE_PERF_GLOBAL_STATUS provides overflow status of the U-clock performance counters in the 
uncore. This is a read-only register. If an overflow status bit is set the corresponding counter has overflowed. The 
register provides a condition change bit (bit 63) which can be quickly checked by software to determine if a signif-
icant change has occurred since the last time the condition change status was cleared. Figure 18-22 shows the 
layout of MSR_UNCORE_PERF_GLOBAL_STATUS.
• OVF_PCn (bit n, n = 0, 7): When set, indicates general-purpose uncore counter MSR_UNCORE_PerfCntr n has 

overflowed.
• OVF_FC0 (bit 32): When set, indicates the fixed-function uncore counter MSR_UNCORE_FixedCntr0 has 

overflowed.
• OVF_PMI (bit 61): When set indicates that an uncore counter overflowed and generated an interrupt request. 
• CHG (bit 63): When set indicates that at least one status bit in MSR_UNCORE_PERF_GLOBAL_STATUS register 

has changed state.

MSR_UNCORE_PERF_GLOBAL_OVF_CTRL allows software to clear the status bits in the 
UNCORE_PERF_GLOBAL_STATUS register. This is a write-only register, and individual status bits in the global 

Figure 18-21.  Layout of MSR_UNCORE_PERF_GLOBAL_CTRL MSR 

PMI_FRZ (R/W)
EN_PMI_CORE3 (R/W)
EN_PMI_CORE2 (R/W)
EN_PMI_CORE1 (R/W)

8 7 0

EN_PMI_CORE0 (R/W)

32 348 1

Reserved

63 2431 5662 495051

EN_PC7 (R/W)
EN_PC6 (R/W)
EN_PC5 (R/W)
EN_PC4 (R/W)
EN_PC3 (R/W)
EN_PC2 (R/W)
EN_PC1 (R/W)
EN_PC0 (R/W)

EN_FC0 (R/W)

RESET Value — 0x00000000_00000000
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status register are cleared by writing a binary one to the corresponding bit in this register. Writing zero to any bit 
position in this register has no effect on the uncore PMU hardware. 

Figure 18-23 shows the layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL.

• CLR_OVF_PCn (bit n, n = 0, 7): Set this bit to clear the overflow status for general-purpose uncore counter 
MSR_UNCORE_PerfCntr n. Writing a value other than 1 is ignored.

• CLR_OVF_FC0 (bit 32): Set this bit to clear the overflow status for the fixed-function uncore counter 
MSR_UNCORE_FixedCntr0. Writing a value other than 1 is ignored.

• CLR_OVF_PMI (bit 61): Set this bit to clear the OVF_PMI flag in MSR_UNCORE_PERF_GLOBAL_STATUS. Writing 
a value other than 1 is ignored.

• CLR_CHG (bit 63): Set this bit to clear the CHG flag in MSR_UNCORE_PERF_GLOBAL_STATUS register. Writing 
a value other than 1 is ignored.

Figure 18-22.  Layout of MSR_UNCORE_PERF_GLOBAL_STATUS MSR 

Figure 18-23.  Layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL MSR 

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O)
OVF_PC6 (R/O)
OVF_PC5 (R/O)
OVF_PC4 (R/O)
OVF_PC3 (R/O)
OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

OVF_FC0 (R/O)

RESET Value — 0x00000000_00000000

CLR_CHG (WO1)
CLR_OVF_PMI (WO1)

8 7 032 3 1

Reserved

63 2431 5662 6061

CLR_OVF_PC7 (WO1)
CLR_OVF_PC6 (WO1)
CLR_OVF_PC5 (WO1)
CLR_OVF_PC4 (WO1)
CLR_OVF_PC3 (WO1)
CLR_OVF_PC2 (WO1)
CLR_OVF_PC1 (WO1)
CLR_OVF_PC0 (WO1)

CLR_OVF_FC0 (WO1)

RESET Value — 0x00000000_00000000
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18.7.2.2  Uncore Performance Event Configuration Facility

MSR_UNCORE_PerfEvtSel0 through MSR_UNCORE_PerfEvtSel7 are used to select performance event and 
configure the counting behavior of the respective uncore performance counter. Each uncore PerfEvtSel MSR is 
paired with an uncore performance counter. Each uncore counter must be locally configured using the corre-
sponding MSR_UNCORE_PerfEvtSelx and counting must be enabled using the respective EN_PCx bit in 
MSR_UNCORE_PERF_GLOBAL_CTRL. Figure 18-24 shows the layout of MSR_UNCORE_PERFEVTSELx.

• Event Select (bits 7:0): Selects the event logic unit used to detect uncore events.
• Unit Mask (bits 15:8) : Condition qualifiers for the event selection logic specified in the Event Select field.
• OCC_CTR_RST (bit17): When set causes the queue occupancy counter associated with this event to be cleared 

(zeroed). Writing a zero to this bit will be ignored. It will always read as a zero. 
• Edge Detect (bit 18): When set causes the counter to increment when a deasserted to asserted transition 

occurs for the conditions that can be expressed by any of the fields in this register.
• PMI (bit 20): When set, the uncore will generate an interrupt request when this counter overflowed. This 

request will be routed to the logical processors as enabled in the PMI enable bits (EN_PMI_COREx) in the 
register MSR_UNCORE_PERF_GLOBAL_CTRL.

• EN (bit 22): When clear, this counter is locally disabled. When set, this counter is locally enabled and counting 
starts when the corresponding EN_PCx bit in MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• INV (bit 23): When clear, the Counter Mask field is interpreted as greater than or equal to. When set, the 
Counter Mask field is interpreted as less than.

• Counter Mask (bits 31:24): When this field is clear, it has no effect on counting. When set to a value other than 
zero, the logical processor compares this field to the event counts on each core clock cycle. If INV is clear and 
the event counts are greater than or equal to this field, the counter is incremented by one. If INV is set and the 
event counts are less than this field, the counter is incremented by one. Otherwise the counter is not incre-
mented.

Figure 18-25 shows the layout of MSR_UNCORE_FIXED_CTR_CTRL.

Figure 18-24.  Layout of MSR_UNCORE_PERFEVTSELx MSRs 

Figure 18-25.  Layout of MSR_UNCORE_FIXED_CTR_CTRL MSR 

31

INV—Invert counter mask
EN—Enable counters

E—Edge detect
OCC_CTR_RST—Rest Queue Occ

8 7 0

Event Select
Counter Mask 

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

PMI—Enable PMI on overflow

RESET Value — 0x00000000_00000000

8 7 03 1

Reserved

63 2456

PMI - Generate PMI on overflow
EN - Enable

RESET Value — 0x00000000_00000000
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• EN (bit 0): When clear, the uncore fixed-function counter is locally disabled. When set, it is locally enabled and 
counting starts when the EN_FC0 bit in MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• PMI (bit 2): When set, the uncore will generate an interrupt request when the uncore fixed-function counter 
overflowed. This request will be routed to the logical processors as enabled in the PMI enable bits 
(EN_PMI_COREx) in the register MSR_UNCORE_PERF_GLOBAL_CTRL.

Both the general-purpose counters (MSR_UNCORE_PerfCntr) and the fixed-function counter 
(MSR_UNCORE_FixedCntr0) are 48 bits wide. They support both counting and sampling usages. The event logic 
unit can filter event counts to specific regions of code or transaction types incoming to the home node logic.

18.7.2.3  Uncore Address/Opcode Match MSR

The Event Select field [7:0] of MSR_UNCORE_PERFEVTSELx is used to select different uncore event logic unit. 
When the event “ADDR_OPCODE_MATCH” is selected in the Event Select field, software can filter uncore perfor-
mance events according to transaction address and certain transaction responses. The address filter and transac-
tion response filtering requires the use of MSR_UNCORE_ADDR_OPCODE_MATCH register. The layout is shown in 
Figure 18-26. 

• Addr (bits 39:3): The physical address to match if “MatchSel“ field is set to select address match. The uncore 
performance counter will increment if the lowest 40-bit incoming physical address (excluding bits 2:0) for a 
transaction request matches bits 39:3.

• Opcode (bits 47:40) : Bits 47:40 allow software to filter uncore transactions based on QPI link message 
class/packed header opcode. These bits are consists two sub-fields:

— Bits 43:40 specify the QPI packet header opcode,

— Bits 47:44 specify the QPI message classes.
Table 18-22 lists the encodings supported in the opcode field.

Figure 18-26.  Layout of MSR_UNCORE_ADDR_OPCODE_MATCH MSR 

Table 18-22.  Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH 

Opcode [43:40] QPI Message Class

Home Request

[47:44] = 0000B

Snoop Response

[47:44] = 0001B

Data Response

[47:44] = 1110B

1

DMND_IFETCH 2 2

WB 3 3

PF_DATA_RD 4 4

PF_RFO 5 5

PF_IFETCH 6 6

60

MatchSel—Select addr/Opcode
Opcode—Opcode and Message

3 2 040 394748

Reserved

ADDR

63

ADDR—Bits 39:4 of physical address

RESET Value — 0x00000000_00000000

Opcode
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• MatchSel (bits 63:61): Software specifies the match criteria according to the following encoding:

— 000B: Disable addr_opcode match hardware

— 100B: Count if only the address field matches,

— 010B: Count if only the opcode field matches

— 110B: Count if either opcode field matches or the address field matches

— 001B: Count only if both opcode and address field match

— Other encoding are reserved

18.7.3 Intel® Xeon® Processor 7500 Series Performance Monitoring Facility

The performance monitoring facility in the processor core of Intel® Xeon® processor 7500 series are the same as 
those supported in Intel Xeon processor 5500 series. The uncore subsystem in Intel Xeon processor 7500 series are 
significantly different The uncore performance monitoring facility consist of many distributed units associated with 
individual logic control units (referred to as boxes) within the uncore subsystem. A high level block diagram of the 
various box units of the uncore is shown in Figure 18-27.

Uncore PMUs are programmed via MSR interfaces. Each of the distributed uncore PMU units have several general-
purpose counters. Each counter requires an associated event select MSR, and may require additional MSRs to 
configure sub-event conditions. The uncore PMU MSRs associated with each box can be categorized based on its 
functional scope: per-counter, per-box, or global across the uncore. The number counters available in each box 
type are different. Each box generally provides a set of MSRs to enable/disable, check status/overflow of multiple 
counters within each box. 

OTHER 7 7

NON_DRAM 15 15

Figure 18-27.  Distributed Units of the Uncore of Intel® Xeon® Processor 7500 Series

Table 18-22.  Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH  (Contd.)

Opcode [43:40] QPI Message Class

PBox

L3 Cache

PBoxPBox PBox UBoxWBox

RBox BBoxBBoxMBox MBox PBoxPBox

SBox SBox

CBox CBoxCBoxCBox CBoxCBox CBoxCBox

4 Intel QPI Links

SMI Channels

SMI Channels
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Table 18-23 summarizes the number MSRs for uncore PMU for each box.

The W-Box provides 4 general-purpose counters, each requiring an event select configuration MSR, similar to the 
general-purpose counters in other boxes. There is also a fixed-function counter that increments clockticks in the 
uncore clock domain. 

For C,S,B,M,R, and W boxes, each box provides an MSR to enable/disable counting, configuring PMI of multiple 
counters within the same box, this is somewhat similar the “global control“ programming interface, 
IA32_PERF_GLOBAL_CTRL, offered in the core PMU. Similarly status information and counter overflow control for 
multiple counters within the same box are also provided in C,S,B,M,R, and W boxes.

In the U-Box, MSR_U_PMON_GLOBAL_CTL provides overall uncore PMU enable/disable and PMI configuration 
control. The scope of status information in the U-box is at per-box granularity, in contrast to the per-box status 
information MSR (in the C,S,B,M,R, and W boxes) providing status information of individual counter overflow. The 
difference in scope also apply to the overflow control MSR in the U-Box versus those in the other Boxes.

The individual MSRs that provide uncore PMU interfaces are listed in Chapter 35, Table 35-11 under the general 
naming style of MSR_%box#%_PMON_%scope_function%, where %box#% designates the type of box and zero-
based index if there are more the one box of the same type, %scope_function% follows the examples below:
• Multi-counter enabling MSRs: MSR_U_PMON_GLOBAL_CTL, MSR_S0_PMON_BOX_CTL, 

MSR_C7_PMON_BOX_CTL, etc.
• Multi-counter status MSRs: MSR_U_PMON_GLOBAL_STATUS, MSR_S0_PMON_BOX_STATUS, 

MSR_C7_PMON_BOX_STATUS, etc.
• Multi-counter overflow control MSRs: MSR_U_PMON_GLOBAL_OVF_CTL, MSR_S0_PMON_BOX_OVF_CTL, 

MSR_C7_PMON_BOX_OVF_CTL, etc.
• Performance counters MSRs: the scope is implicitly per counter, e.g. MSR_U_PMON_CTR, 

MSR_S0_PMON_CTR0, MSR_C7_PMON_CTR5, etc.
• Event select MSRs: the scope is implicitly per counter, e.g. MSR_U_PMON_EVNT_SEL, 

MSR_S0_PMON_EVNT_SEL0, MSR_C7_PMON_EVNT_SEL5, etc
• Sub-control MSRs: the scope is implicitly per-box granularity, e.g. MSR_M0_PMON_TIMESTAMP, 

MSR_R0_PMON_IPERF0_P1, MSR_S1_PMON_MATCH.

Details of uncore PMU MSR bit field definitions can be found in a separate document “Intel Xeon Processor 7500 
Series Uncore Performance Monitoring Guide“.

Table 18-23.  Uncore PMU MSR Summary

Box # of Boxes Counters per Box
Counter 
Width

General 
Purpose

Global 
Enable Sub-control MSRs

C-Box 8 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes

R-Box 1 16 ( 2 port, 8 per port) 48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None
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18.8 PERFORMANCE MONITORING FOR PROCESSORS BASED ON INTEL® 

MICROARCHITECTURE CODE NAME WESTMERE

All of the performance monitoring programming interfaces (architectural and non-architectural core PMU facilities, 
and uncore PMU) described in Section 18.7 also apply to processors based on Intel® microarchitecture code name 
Westmere. 

Table 18-20 describes a non-architectural performance monitoring event (event code 0B7H) and associated 
MSR_OFFCORE_RSP_0 (address 1A6H) in the core PMU. This event and a second functionally equivalent offcore 
response event using event code 0BBH and MSR_OFFCORE_RSP_1 (address 1A7H) are supported in processors 
based on Intel microarchitecture code name Westmere. The event code and event mask definitions of Non-archi-
tectural performance monitoring events are listed in Table 19-19. 

The load latency facility is the same as described in Section 18.7.1.2, but added enhancement to provide more 
information in the data source encoding field of each load latency record. The additional information relates to 
STLB_MISS and LOCK, see Table 18-28.

18.8.1 Intel® Xeon® Processor E7 Family Performance Monitoring Facility

The performance monitoring facility in the processor core of the Intel® Xeon® processor E7 family is the same as 
those supported in the Intel Xeon processor 5600 series2. The uncore subsystem in the Intel Xeon processor E7 
family is similar to those of the Intel Xeon processor 7500 series. The high level construction of the uncore sub-
system is similar to that shown in Figure 18-27, with the additional capability that up to 10 C-Box units are 
supported. 

Table 18-24 summarizes the number MSRs for uncore PMU for each box.

18.9 PERFORMANCE MONITORING FOR PROCESSORS BASED ON INTEL® 

MICROARCHITECTURE CODE NAME SANDY BRIDGE

Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series, and Intel® Xeon® processor 
E3-1200 family are based on Intel microarchitecture code name Sandy Bridge; this section describes the perfor-
mance monitoring facilities provided in the processor core. The core PMU supports architectural performance moni-
toring capability with version ID 3 (see Section 18.2.2.2) and a host of non-architectural monitoring capabilities. 

Architectural performance monitoring events and non-architectural monitoring events are programmed using fixed 
counters and programmable counters/event select MSRS described in Section 18.2.2.2. 

2. Exceptions are indicated for event code 0FH in Table 19-13; and valid bits of data source encoding field of each load 
latency record is limited to bits 5:4 of Table 18-28.

Table 18-24.  Uncore PMU MSR Summary for Intel® Xeon® Processor E7 Family

Box # of Boxes Counters per Box
Counter 
Width

General 
Purpose

Global 
Enable Sub-control MSRs

C-Box 10 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes

R-Box 1 16 ( 2 port, 8 per port) 48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None
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The core PMU’s capability is similar to those described in Section 18.7.1 and Section 18.8, with some differences 
and enhancements relative to Intel microarchitecture code name Westmere summarized in Table 18-25.

18.9.1 Global Counter Control Facilities In Intel® Microarchitecture Code Name Sandy Bridge

The number of general-purpose performance counters visible to a logical processor can vary across Processors 
based on Intel microarchitecture code name Sandy Bridge. Software must use CPUID to determine the number 
performance counters/event select registers (See Section 18.2.1.1). 

Table 18-25.  Core PMU Comparison

Box
Intel® microarchitecture code name 
Sandy Bridge

Intel® microarchitecture 
code name Westmere Comment

# of Fixed counters per 
thread

3 3 Use CPUID to enumerate # of 
counters.

# of general-purpose 
counters per core

8 8

Counter width (R,W) R:48 , W: 32/48 R:48, W:32 See Section 18.2.2.3.

# of programmable counters 
per thread

4 or (8 if a core not shared by two 
threads)

4 Use CPUID to enumerate # of 
counters.

Precise Event Based 
Sampling (PEBS) Events

See Table 18-27 See Table 18-10 IA32_PMC4-IA32_PMC7 do not 
support PEBS.

PEBS-Load Latency See Section 18.9.4.2;

Data source encoding,

STLB miss encoding,

Lock transaction encoding

Data source encoding 

PEBS-Precise Store Section 18.9.4.3 No

PEBS-PDIR yes (using precise 
INST_RETIRED.ALL)

No

Off-core Response Event MSR 1A6H and 1A7H; Extended 
request and response types

MSR 1A6H and 1A7H, 
limited response types

Nehalem supports 1A6H only.

Figure 18-28.  IA32_PERF_GLOBAL_CTRL MSR in Intel® Microarchitecture Code Name Sandy Bridge

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC7_EN (if PMC7 present)

2 1 0

PMC6_EN (if PMC6 present)

3132333435

Reserved

63

PMC5_EN (if PMC5 present)
PMC4_EN (if PMC4 present)
PMC3_EN
PMC2_EN
PMC1_EN

Valid if CPUID.0AH:EAX[15:8] = 8, else reserved.

PMC0_EN

8 7 6 5 4 3
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Figure 18-11 depicts the layout of IA32_PERF_GLOBAL_CTRL MSR. The enable bits (PMC4_EN, PMC5_EN, 
PMC6_EN, PMC7_EN) corresponding to IA32_PMC4-IA32_PMC7 are valid only if CPUID.0AH:EAX[15:8] reports a 
value of ‘8’. If CPUID.0AH:EAX[15:8] = 4, attempts to set the invalid bits will cause #GP. 

Each enable bit in IA32_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in the respective 
IA32_PERFEVTSELx or IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective counters. 
Counting is enabled if the AND’ed results is true; counting is disabled when the result is false.
IA32_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to query the overflow condition of 
each performance counter. The MSR also provides additional status bit to indicate overflow conditions when coun-
ters are programmed for precise-event-based sampling (PEBS). The IA32_PERF_GLOBAL_STATUS MSR also 
provides a ‘sticky bit’ to indicate changes to the state of performance monitoring hardware (see Figure 18-29). A 
value of 1 in each bit of the PMCx_OVF field indicates an overflow condition has occurred in the associated counter. 

When a performance counter is configured for PEBS, an overflow condition in the counter will arm PEBS. On the 
subsequent event following overflow, the processor will generate a PEBS event. On a PEBS event, the processor will 
perform bounds checks based on the parameters defined in the DS Save Area (see Section 17.4.9). Upon 
successful bounds checks, the processor will store the data record in the defined buffer area, clear the counter 
overflow status, and reload the counter. If the bounds checks fail, the PEBS will be skipped entirely. In the event 
that the PEBS buffer fills up, the processor will set the OvfBuffer bit in MSR_PERF_GLOBAL_STATUS.

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators for general-purpose or fixed-
function counters via a single WRMSR (see Figure 18-30). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling

Figure 18-29.  IA32_PERF_GLOBAL_STATUS MSR in Intel® Microarchitecture Code Name Sandy Bridge

62

FIXED_CTR2 Overflow (RO)
FIXED_CTR1 Overflow (RO)
FIXED_CTR0 Overflow (RO)
PMC7_OVF (RO, If PMC7 present)

2 1 0

PMC6_OVF (RO, If PMC6 present)

3132333435

Reserved

63

CondChgd
OvfBuffer

8 7 6 5 4 3

PMC5_OVF (RO, If PMC5 present)
PMC4_OVF (RO, If PMC4 present)
PMC3_OVF (RO)
PMC2_OVF (RO)
PMC1_OVF (RO)
PMC0_OVF (RO)

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved
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18.9.2 Counter Coalescence

In processors based on Intel microarchitecture code name Sandy Bridge, each processor core implements eight 
general-purpose counters. CPUID.0AH:EAX[15:8] will report either 4 or 8 depending specific processor’s product 
features. 

If a processor core is shared by two logical processors, each logical processors can access 4 counters (IA32_PMC0-
IA32_PMC3). This is the same as in the prior generation for processors based on Intel microarchitecture code name 
Nehalem.

If a processor core is not shared by two logical processors, all eight general-purpose counters are visible, and 
CPUID.0AH:EAX[15:8] reports 8. IA32_PMC4-IA32_PMC7 occupy MSR addresses 0C5H through 0C8H. Each 
counter is accompanied by an event select MSR (IA32_PERFEVTSEL4-IA32_PERFEVTSEL7).

If CPUID.0AH:EAX[15:8] report 4, access to IA32_PMC4-IA32_PMC7, IA32_PMC4-IA32_PMC7 will cause #GP. 
Writing 1’s to bit position 7:4 of IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, or 
IA32_PERF_GLOBAL_OVF_CTL will also cause #GP.

18.9.3 Full Width Writes to Performance Counters

Processors based on Intel microarchitecture code name Sandy Bridge support full-width writes to the general-
purpose counters, IA32_PMCx. Support of full-width writes are enumerated by 
IA32_PERF_CAPABILITIES.FW_WRITES[13] (see Section 18.2.2.3).

The default behavior of IA32_PMCx is unchanged, i.e. WRMSR to IA32_PMCx results in a sign-extended 32-bit 
value of the input EAX written into IA32_PMCx. Full-width writes must issue WRMSR to a dedicated alias MSR 
address for each IA32_PMCx.

Software must check the presence of full-width write capability and the presence of the alias address 
IA32_A_PMCx by testing IA32_PERF_CAPABILITIES[13].

18.9.4 PEBS Support in Intel® Microarchitecture Code Name Sandy Bridge

Processors based on Intel microarchitecture code name Sandy Bridge support PEBS, similar to those offered in 
prior generation, with several enhanced features. The key components and differences of PEBS facility relative to 
Intel microarchitecture code name Westmere is summarized in Table 18-26.

Figure 18-30.  IA32_PERF_GLOBAL_OVF_CTRL MSR in Intel microarchitecture code name Sandy Bridge

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC7_ClrOvf (if PMC7 present)

2 1 0

PMC6_ClrOvf (if PMC6 present)

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer

8 7 6 5 4 3

PMC5_ClrOvf (if PMC5 present)
PMC4_ClrOvf (if PMC4 present)
PMC3_ClrOvf
PMC2_ClrOvf
PMC1_ClrOvf
PMC0_ClrOvf

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved
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Only IA32_PMC0 through IA32_PMC3 support PEBS. 

NOTE

PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero: AnyThread, 
Edge, Invert, CMask.

In IA32_PEBS_ENABLE MSR, bit 63 is defined as PS_ENABLE: When set, this enables IA32_PMC3 to capture 
precise store information. Only IA32_PMC3 supports the precise store facility. In typical usage of PEBS, the bit 
fields in IA32_PEBS_ENABLE are written to when the agent software starts PEBS operation; the enabled bit fields 
should be modified only when re-programming another PEBS event or cleared when the agent uses the perfor-
mance counters for non-PEBS operations. 

Table 18-26.  PEBS Facility Comparison

Box
Intel® microarchitecture code name 
Sandy Bridge

Intel® microarchitecture 
code name Westmere Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7 

PEBS Buffer Programming  Section 18.7.1.1 Section 18.7.1.1 Unchanged

IA32_PEBS_ENABLE 
Layout

 Figure 18-31 Figure 18-17

PEBS record layout Physical Layout same as Table 18-18 Table 18-18 Enhanced fields at offsets 98H, 
A0H, A8H

PEBS Events See Table 18-27 See Table 18-10 IA32_PMC4-IA32_PMC7 do not 
support PEBS.

PEBS-Load Latency See Table 18-28 Table 18-19

PEBS-Precise Store yes; see Section 18.9.4.3 No IA32_PMC3 only

PEBS-PDIR yes No IA32_PMC1 only

PEBS skid from EventingIP 1 (or 2 if micro+macro fusion) 1

SAMPLING Restriction Small SAV(CountDown) value incur higher overhead than prior 
generation.

Figure 18-31.  Layout of IA32_PEBS_ENABLE MSR 

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 0x00000000_00000000

62

PS_EN (R/W)
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18.9.4.1  PEBS Record Format

The layout of PEBS records physically identical to those shown in Table 18-18, but the fields at offset 98H, A0H and 
A8H have been enhanced to support additional PEBS capabilities.
• Load/Store Data Linear Address (Offset 98H): This field will contain the linear address of the source of the load, 

or linear address of the destination of the store.
• Data Source /Store Status (Offset A0H):When load latency is enabled, this field will contain three piece of 

information (including an encoded value indicating the source which satisfied the load operation). The source 
field encodings are detailed in Table 18-19. When precise store is enabled, this field will contain information 
indicating the status of the store, as detailed in Table 19.

• Latency Value/0 (Offset A8H): When load latency is enabled, this field contains the latency in cycles to service 
the load. This field is not meaningful when precise store is enabled and will be written to zero in that case. Upon 
writing the PEBS record, microcode clears the overflow status bits in the IA32_PERF_GLOBAL_STATUS corre-
sponding to those counters that both overflowed and were enabled in the IA32_PEBS_ENABLE register. The 
status bits of other counters remain unaffected.

The number PEBS events has expanded. The list of PEBS events supported in Intel microarchitecture code name 
Sandy Bridge is shown in Table 18-27.

Table 18-27.  PEBS Performance Events for Intel® Microarchitecture Code Name Sandy Bridge

Event Name Event Select Sub-event UMask

INST_RETIRED C0H PREC_DIST 01H1

UOPS_RETIRED C2H All 01H

Retire_Slots 02H

BR_INST_RETIRED C4H Conditional 01H

Near_Call 02H

All_branches 04H

Near_Return 08H

Near_Taken 20H

BR_MISP_RETIRED C5H Conditional 01H

Near_Call 02H

All_branches 04H

Not_Taken 10H

Taken 20H

MEM_UOPS_RETIRED D0H STLB_MISS_LOADS 11H

STLB_MISS_STORE 12H

LOCK_LOADS 21H

SPLIT_LOADS 41H

SPLIT_STORES 42H

ALL_LOADS 81H

ALL_STORES 82H

MEM_LOAD_UOPS_RETIRED D1H L1_Hit 01H

L2_Hit 02H

L3_Hit 04H

Hit_LFB 40H
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18.9.4.2  Load Latency Performance Monitoring Facility

The load latency facility in Intel microarchitecture code name Sandy Bridge is similar to that in prior microarchitec-
ture. It provides software a means to characterize the average load latency to different levels of cache/memory 
hierarchy. This facility requires processor supporting enhanced PEBS record format in the PEBS buffer, see 
Table 18-18 and Section 18.9.4.1. The facility measures latency from micro-operation (uop) dispatch to when data 
is globally observable (GO).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit MEM_TRANS_RETIRED, and the 

LATENCY_ABOVE_THRESHOLD event mask must be specified (IA32_PerfEvtSelX[15:0] = 0x1CDH). The corre-
sponding counter IA32_PMCx will accumulate event counts for architecturally visible loads which exceed the 
programmed latency threshold specified separately in a MSR. Stores are ignored when this event is 
programmed. The CMASK or INV fields of the IA32_PerfEvtSelX register used for counting load latency must be 
0. Writing other values will result in undefined behavior. 

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired latency threshold in core clock 
cycles. Loads with latencies greater than this value are eligible for counting and latency data reporting. The 
minimum value that may be programmed in this register is 3 (the minimum detectable load latency is 4 core 
clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corresponding IA32_PMCx counter 
register. This means that both the PEBS_EN_CTRX and LL_EN_CTRX bits must be set for the counter(s) of 
interest. For example, to enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register must be 
programmed with the 64-bit value 0x00000001.00000001.

• When Load latency event is enabled, no other PEBS event can be configured with other counters.

When the load-latency facility is enabled, load operations are randomly selected by hardware and tagged to carry 
information related to data source locality and latency. Latency and data source information of tagged loads are 
updated internally. The MEM_TRANS_RETIRED event for load latency counts only tagged retired loads. If a load is 
cancelled it will not be counted and the internal state of the load latency facility will not be updated. In this case the 
hardware will tag the next available load.

When a PEBS assist occurs, the last update of latency and data source information are captured by the assist and 
written as part of the PEBS record. The PEBS sample after value (SAV), specified in PEBS CounterX Reset, operates 
orthogonally to the tagging mechanism. Loads are randomly tagged to collect latency data. The SAV controls the 
number of tagged loads with latency information that will be written into the PEBS record field by the PEBS assists. 
The load latency data written to the PEBS record will be for the last tagged load operation which retired just before 
the PEBS assist was invoked.

The physical layout of the PEBS records is the same as shown in Table 18-18. The specificity of Data Source entry 
at offset A0H has been enhanced to report three piece of information. 

MEM_LOAD_UOPS_LLC_HIT_RETIRED D2H XSNP_Miss 01H

XSNP_Hit 02H

XSNP_Hitm 04H

XSNP_None 08H

NOTES:

1. Only available on IA32_PMC1.

Table 18-28.  Layout of Data Source Field of Load Latency Record

Field Position Description

Source 3:0 See Table 18-19

Table 18-27.  PEBS Performance Events for Intel® Microarchitecture Code Name Sandy Bridge (Contd.)

Event Name Event Select Sub-event UMask
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The layout of MSR_PEBS_LD_LAT_THRESHOLD is the same as shown in Figure 18-19.

18.9.4.3  Precise Store Facility

Processors based on Intel microarchitecture code name Sandy Bridge offer a precise store capability that comple-
ments the load latency facility. It provides a means to profile store memory references in the system.

Precise stores leverage the PEBS facility and provide additional information about sampled stores. Having precise 
memory reference events with linear address information for both loads and stores can help programmers improve 
data structure layout, eliminate remote node references, and identify cache-line conflicts in NUMA systems.

Only IA32_PMC3 can be used to capture precise store information. After enabling this facility, counter overflows 
will initiate the generation of PEBS records as previously described in PEBS. Upon counter overflow hardware 
captures the linear address and other status information of the next store that retires. This information is then 
written to the PEBS record.

To enable the precise store facility, software must complete the following steps. Please note that the precise store 
facility relies on the PEBS facility, so the PEBS configuration requirements must be completed before attempting to 
capture precise store information.
• Complete the PEBS configuration steps.
• Program the MEM_TRANS_RETIRED.PRECISE_STORE event in IA32_PERFEVTSEL3. Only counter 3 

(IA32_PMC3) supports collection of precise store information. 
• Set IA32_PEBS_ENABLE[3] and IA32_PEBS_ENABLE[63]. This enables IA32_PMC3 as a PEBS counter and 

enables the precise store facility, respectively.

The precise store information written into a PEBS record affects entries at offset 98H, A0H and A8H of Table 18-18. 
The specificity of Data Source entry at offset A0H has been enhanced to report three piece of information. 

18.9.4.4  Precise Distribution of Instructions Retired (PDIR) 

Upon triggering a PEBS assist, there will be a finite delay between the time the counter overflows and when the 
microcode starts to carry out its data collection obligations. INST_RETIRED is a very common event that is used to 
sample where performance bottleneck happened and to help identify its location in instruction address space. Even 
if the delay is constant in core clock space, it invariably manifest as variable “skids” in instruction address space. 
This creates a challenge for programmers to profile a workload and pinpoint the location of bottlenecks.

STLB_MISS 4 0: The load did not miss the STLB (hit the DTLB or STLB).

1: The load missed the STLB.

Lock 5 0: The load was not part of a locked transaction.

1: The load was part of a locked transaction.

Reserved 63:6 Reserved

Table 18-29.  Layout of Precise Store Information In PEBS Record

Field Offset Description

Store Data 
Linear Address

98H The linear address of the destination of the store.

Store Status A0H L1D Hit (Bit 0): The store hit the data cache closest to the core (lowest latency cache) if this bit is set, 
otherwise the store missed the data cache.

STLB Miss (bit 4): The store missed the STLB if set, otherwise the store hit the STLB

Locked Access (bit 5): The store was part of a locked access if set, otherwise the store was not part of a 
locked access.

Reserved A8H Reserved

Table 18-28.  Layout of Data Source Field of Load Latency Record (Contd.)

Field Position Description
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The core PMU in processors based on Intel microarchitecture code name Sandy Bridge include a facility referred to 
as precise distribution of Instruction Retired (PDIR). 

The PDIR facility mitigates the “skid“ problem by providing an early indication of when the INST_RETIRED counter 
is about to overflow, allowing the machine to more precisely trap on the instruction that actually caused the counter 
overflow thus eliminating skid.

PDIR applies only to the INST_RETIRED.ALL precise event, and must use IA32_PMC1 with PerfEvtSel1 property 
configured and bit 1 in the IA32_PEBS_ENABLE set to 1. INST_RETIRED.ALL is a non-architectural performance 
event, it is not supported in prior generation microarchitectures. Additionally, on processors with CPUID 
DisplayFamily_DisplayModel signatures of 06_2A and 06_2D, the tool that programs PDIR should quiesce the rest 
of the programmable counters in the core when PDIR is active. 

18.9.5 Off-core Response Performance Monitoring 

The core PMU in processors based on Intel microarchitecture code name Sandy Bridge provides off-core response 
facility similar to prior generation. Off-core response can be programmed only with a specific pair of event select 
and counter MSR, and with specific event codes and predefine mask bit value in a dedicated MSR to specify attri-
butes of the off-core transaction. Two event codes are dedicated for off-core response event programming. Each 
event code for off-core response monitoring requires programming an associated configuration MSR, 
MSR_OFFCORE_RSP_x. Table 18-30 lists the event code, mask value and additional off-core configuration MSR 
that must be programmed to count off-core response events using IA32_PMCx. 

The layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 are shown in Figure 18-32 and Figure 18-33. Bits 
15:0 specifies the request type of a transaction request to the uncore. Bits 30:16 specifies supplier information, 
bits 37:31 specifies snoop response information.

Table 18-30.  Off-Core Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0-3 0xB7 0x01 MSR_OFFCORE_RSP_0 (address 0x1A6)

PMC0-3 0xBB 0x01 MSR_OFFCORE_RSP_1 (address 0x1A7)

Figure 18-32.  Request_Type Fields for MSR_OFFCORE_RSP_x 

RESPONSE TYPE — Other (R/W)
RESERVED 

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — PF_LLC_IFETCH (R/W)
REQUEST TYPE — PF_LLC_RFO (R/W)
REQUEST TYPE — PF_LLC_DATA_RD (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 0x00000000_00000000

37

See Figure 18-30
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To properly program this extra register, software must set at least one request type bit and a valid response type 
pattern.  Otherwise, the event count reported will be zero.  It is permissible and useful to set multiple request and 
response type bits in order to obtain various classes of off-core response events. Although MSR_OFFCORE_RSP_x 
allow an agent software to program numerous combinations that meet the above guideline, not all combinations 
produce meaningful data.

Table 18-31.  MSR_OFFCORE_RSP_x Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads of full and partial cachelines as well 
as demand data page table entry cacheline reads. Does not count L2 data read prefetches or instruction 
fetches.

DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated 
by a write to data cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction cacheline reads. Does not count L2 
code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive) transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 prefetchers.

PF_LLC_DATA_RD 7 (R/W). L2 prefetcher to L3 for loads.

PF_LLC_RFO 8 (R/W). RFO requests generated by L2 prefetcher 

PF_LLC_IFETCH 9 (R/W). L2 prefetcher to L3 for instruction fetches.

BUS_LOCKS 10 (R/W). Bus lock and split lock requests

STRM_ST 11 (R/W). Streaming store requests

OTHER 15 (R/W). Any other request that crosses IDI, including I/O.

Figure 18-33.  Response_Supplier and Snoop Info Fields for MSR_OFFCORE_RSP_x 

RESPONSE TYPE — NON_DRAM (R/W)
RSPNS_SNOOP — HITM (R/W)

16

RSPNS_SNOOP — HIT_FWD

33 1934 17

Reserved

63 182031 212232353637

RSPNS_SNOOP — HIT_NO_FWD (R/W)
RSPNS_SNOOP — SNP_MISS (R/W)
RSPNS_SNOOP — SNP_NOT_NEEDED (R/W)
RSPNS_SNOOP — SNPl_NONE (R/W)
RSPNS_SUPPLIER — RESERVED

RSPNS_SUPPLIER — LLC_HITF (R/W)
RSPNS_SUPPLIER — LLC_HITS (R/W)
RSPNS_SUPPLIER — LLC_HITE (R/W)
RSPNS_SUPPLIER — LLC_HITM (R/W)
RSPNS_SUPPLIER — No_SUPP (R/W)
RSPNS_SUPPLIER — ANY (R/W)

RESET Value — 0x00000000_00000000

RSPNS_SUPPLIER — Local
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To specify a complete offcore response filter, software must properly program bits in the request and response type 
fields. A valid request type must have at least one bit set in the non-reserved bits of 15:0. A valid response type 
must be a non-zero value of the following expression:

ANY | [(‘OR’ of Supplier Info Bits) & (‘OR’ of Snoop Info Bits)]

If “ANY“ bit is set, the supplier and snoop info bits are ignored.

Table 18-32.  MSR_OFFCORE_RSP_x Response Supplier Info Field Definition

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier 
Info

NO_SUPP 17 (R/W). No Supplier Information available

LLC_HITM 18 (R/W). M-state initial lookup stat in L3.

LLC_HITE 19 (R/W). E-state

LLC_HITS 20 (R/W). S-state

LLC_HITF 21 (R/W). F-state

LOCAL 22 (R/W). Local DRAM Controller

Reserved 30:23 Reserved

Table 18-33.  MSR_OFFCORE_RSP_x Snoop Info Field Definition

Subtype Bit Name Offset Description

Snoop 
Info

SNP_NONE 31 (R/W). No details on snoop-related information

SNP_NOT_NEEDED 32 (R/W). No snoop was needed to satisfy the request.

SNP_MISS 33 (R/W). A snoop was needed and it missed all snooped caches:

-For LLC Hit, ReslHitl was returned by all cores

-For LLC Miss, Rspl was returned by all sockets and data was returned from DRAM.

SNP_NO_FWD 34 (R/W). A snoop was needed and it hits in at least one snooped cache. Hit denotes a cache-
line was valid before snoop effect. This includes:

-Snoop Hit w/ Invalidation (LLC Hit, RFO)

-Snoop Hit, Left Shared (LLC Hit/Miss, IFetch/Data_RD)

-Snoop Hit w/ Invalidation and No Forward (LLC Miss, RFO Hit S)

In the LLC Miss case, data is returned from DRAM.

SNP_FWD 35 (R/W). A snoop was needed and data was forwarded from a remote socket. This includes:

-Snoop Forward Clean, Left Shared (LLC Hit/Miss, IFetch/Data_RD/RFT).

HITM 36 (R/W). A snoop was needed and it HitM-ed in local or remote cache. HitM denotes a cache-
line was in modified state before effect as a results of snoop. This includes:

-Snoop HitM w/ WB (LLC miss, IFetch/Data_RD)

-Snoop Forward Modified w/ Invalidation (LLC Hit/Miss, RFO)

-Snoop MtoS (LLC Hit, IFetch/Data_RD).

NON_DRAM 37 (R/W). Target was non-DRAM system address. This includes MMIO transactions.
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18.9.6 Uncore Performance Monitoring Facilities In Intel® Core™ i7-2xxx, Intel® Core™ i5-
2xxx, Intel® Core™ i3-2xxx Processor Series

The uncore sub-system in Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series 
provides a unified L3 that can support up to four processor cores. The L3 cache consists multiple slices, each slice 
interface with a processor via a coherence engine, referred to as a C-Box. Each C-Box provides dedicated facility of 
MSRs to select uncore performance monitoring events and each C-Box event select MSR is paired with a counter 
register, similar in style as those described in Section 18.7.2.2. The ARB unit in the uncore also provides its local 
performance counters and event select MSRs. The layout of the event select MSRs in the C-Boxes and the ARB unit 
are shown in Figure 18-34.

The bit fields of the uncore event select MSRs for a C-box unit or the ARB unit are summarized below:
• Event_Select (bits 7:0) and UMASK (bits 15:8): Specifies the microarchitectural condition to count in a local 

uncore PMU counter, see Table 19-10.
• E (bit 18): Enables edge detection filtering, if 1.
• OVF_EN (bit 20): Enables the overflow indicator from the uncore counter forwarded to 

MSR_UNC_PERF_GLOBAL_CTRL, if 1.
• EN (bit 22): Enables the local counter associated with this event select MSR.
• INV (bit 23): Event count increments with non-negative value if 0, with negated value if 1. 
• CMASK (bits 28:24): Specifies a positive threshold value to filter raw event count input.

At the uncore domain level, there is a master set of control MSRs that centrally manages all the performance moni-
toring facility of uncore units. Figure 18-35 shows the layout of the uncore domain global control. 

When an uncore counter overflows, a PMI can be routed to a processor core. Bits 3:0 of 
MSR_UNC_PERF_GLOBAL_CTRL can be used to select which processor core to handle the uncore PMI. Software 
must then write to bit 13 of IA32_DEBUG_CTL (at address 0x1D9) to enable this capability.
• PMI_SEL_Core#: Enables the forwarding of an uncore PMI request to a processor core, if 1. If bit 30 (WakePMI) 

is ‘1’, a wake request is sent to the respective processor core prior to sending the PMI.
• EN: Enables the fixed uncore counter, the ARB counters, and the CBO counters in the uncore PMU, if 1. This bit 

is cleared if bit 31 (FREEZE) is set and any enabled uncore counters overflow.
• WakePMI: Controls sending a wake request to any halted processor core before issuing the uncore PMI request. 

If a processor core was halted and not sent a wake request, the uncore PMI will not be serviced by the 
processor core.

• FREEZE: Provides the capability to freeze all uncore counters when an overflow condition occurs in a unit 
counter. When this bit is set, and a counter overflow occurs, the uncore PMU logic will clear the global enable 
bit (bit 29).

Figure 18-34.  Layout of Uncore PERFEVTSEL MSR for a C-Box Unit or the ARB Unit

28

INV—Invert counter mask
EN—Enable counter

E—Edge detect

8 7 0

Event Select
Counter Mask 

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

OVF_EN—Overflow forwarding

RESET Value — 0x00000000_00000000
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Additionally, there is also a fixed counter, counting uncore clockticks, for the uncore domain. Table 18-34 summa-
rizes the number MSRs for uncore PMU for each box.

18.9.6.1  Uncore Performance Monitoring Events

There are certain restrictions on the uncore performance counters in each C-Box. Specifically,
• Occupancy events are supported only with counter 0 but not counter 1.

Other uncore C-Box events can be programmed with either counter 0 or 1.

The C-Box uncore performance events described in Table 19-10 can collect performance characteristics of transac-
tions initiated by processor core. In that respect, they are similar to various sub-events in the 
OFFCORE_RESPONSE family of performance events in the core PMU. Information such as data supplier locality 
(LLC HIT/MISS) and snoop responses can be collected via OFFCORE_RESPONSE and qualified on a per-thread 
basis. 

On the other hand, uncore performance event logic can not associate its counts with the same level of per-thread 
qualification attributes as the core PMU events can. Therefore, whenever similar event programming capabilities 
are available from both core PMU and uncore PMU, the recommendation is that utilizing the core PMU events may 
be less affected by artifacts, complex interactions and other factors.

18.9.7 Intel® Xeon® Processor E5 Family Performance Monitoring Facility

The Intel® Xeon® Processor E5 Family (and Intel® Core™ i7-3930K Processor) are based on Intel microarchitec-
ture code name Sandy Bridge. While the processor cores share the same microarchitecture as those of the Intel® 
Xeon® Processor E3 Family and 2nd generation Intel Core i7-2xxx, Intel Core i5-2xxx, Intel Core i3-2xxx processor 
series, the uncore subsystems are different. An overview of the uncore performance monitoring facilities of the 
Intel Xeon processor E5 family (and Intel Core i7-3930K processor) is described in Section 18.9.8.

Figure 18-35.  Layout of MSR_UNC_PERF_GLOBAL_CTRL MSR for Uncore

Table 18-34.  Uncore PMU MSR Summary

Box # of Boxes
Counters per 
Box

Counter 
Width

General 
Purpose

Global 
Enable Comment

C-Box SKU specific 2 44 Yes Per-box Up to 4, seeTable 35-15 
MSR_UNC_CBO_CONFIG

ARB 1 2 44 Yes Uncore

Fixed 
Counter

N.A. N.A. 48 No Uncore

FREEZE—Freeze counters

EN—Enable all uncore counters

02829303132

Reserved

63

WakePMI—Wake cores on PMI

RESET Value — 0x00000000_00000000

4 3 2 1

PMI_Sel_Core3 — Uncore PMI to core 3
PMI_Sel_Core2 — Uncore PMI to core 2
PMI_Sel_Core1 — Uncore PMI to core 1
PMI_Sel_Core0 — Uncore PMI to core 0
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Thus, the performance monitoring facilities in the processor core generally are the same as those described in 
Section 18.9 through Section 18.9.5. However, the MSR_OFFCORE_RSP_0/MSR_OFFCORE_RSP_1 Response 
Supplier Info field shown in Table 18-32 applies to Intel Core Processors with CPUID signature of 
DisplayFamily_DisplayModel encoding of 06_2AH; Intel Xeon processor with CPUID signature of 
DisplayFamily_DisplayModel encoding of 06_2DH supports an additional field for remote DRAM controller shown in 
Table 18-35. Additionally, the are some small differences in the non-architectural performance monitoring events 
(see Table 19-8).

18.9.8 Intel® Xeon® Processor E5 Family Uncore Performance Monitoring Facility

The uncore subsystem in the Intel Xeon processor E5-2600 product family based on Intel microarchitecture Sandy 
Bridge has some similarities with those of the Intel Xeon processor E7 family based on Intel microarchitecture 
Sandy Bridge. Within the uncore subsystem, localized performance counter sets are provided at logic control unit 
scope. For example, each Cbox caching agent has a set of local performance counters, and the power controller 
unit (PCU) has its own local performance counters. Up to 8 C-Box units are supported in the uncore sub-system. 

Table 18-36 summarizes the uncore PMU facilities providing MSR interfaces.

18.10 3RD GENERATION INTEL® CORE™ PROCESSOR PERFORMANCE 
MONITORING FACILITY

The 3rd generation Intel® Core™ processor family and Intel® Xeon® processor E3-1200v2 product family are 
based on Intel® microarchitecture code name Ivy Bridge. The performance monitoring facilities in the processor 
core generally are the same as those described in Section 18.9 through Section 18.9.5. The non-architectural 
performance monitoring events supported by the processor core are listed in Table 19-8.

Table 18-35.  MSR_OFFCORE_RSP_x Supplier Info Field Definitions

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Supplier Info NO_SUPP 17 (R/W). No Supplier Information available

LLC_HITM 18 (R/W). M-state initial lookup stat in L3.

LLC_HITE 19 (R/W). E-state

LLC_HITS 20 (R/W). S-state

LLC_HITF 21 (R/W). F-state

LOCAL 22 (R/W). Local DRAM Controller

Remote 30:23 (R/W): Remote DRAM Controller (either all 0s or all 1s)

Table 18-36.  Uncore PMU MSR Summary for Intel® Xeon® Processor E5 Family

Box # of Boxes Counters per Box
Counter 
Width

General 
Purpose

Global 
Enable Sub-control MSRs

C-Box 8 4 44 Yes per-box None

PCU 1 4 48 Yes per-box Match/Mask

U-Box 1 2 44 Yes uncore None
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18.11 4TH GENERATION INTEL® CORE™ PROCESSOR PERFORMANCE 
MONITORING FACILITY

The 4th generation Intel® Core™ processor and Intel® Xeon® processor E3-1200 v3 product family are based on 
Intel microarchitecture code name Haswell. The core PMU supports architectural performance monitoring capability 
with version ID 3 (see Section 18.2.2.2) and a host of non-architectural monitoring capabilities. 

Architectural performance monitoring events and non-architectural monitoring events are programmed using fixed 
counters and programmable counters/event select MSRS as described in Section 18.2.2.2. 

The core PMU’s capability is similar to those described in Section 18.9 through Section 18.9.5, with some differ-
ences and enhancements summarized in Table 18-37. Additionally, the core PMU provides some enhancement to 
support performance monitoring when the target workload contains instruction streams using Intel® Transactional 
Synchronization Extensions (TSX), see Section 18.11.5. For details of Intel TSX, see Chapter 8 of Intel® Architecture 
Instruction Set Extensions Programming Reference.

18.11.1 Precise Event Based Sampling (PEBS) Facility 

The PEBS facility in the Next Generation Intel Core processor is similar to those in processors based on Intel micro-
architecture code name Sandy Bridge, with several enhanced features. The key components and differences of 
PEBS facility relative to Intel microarchitecture code name Sandy Bridge is summarized in Table 18-38.

Table 18-37.  Core PMU Comparison

Box
Intel® microarchitecture code 
name Haswell

Intel® microarchitecture code 
name Sandy Bridge Comment

# of Fixed counters per thread 3 3

# of general-purpose counters 
per core

8 8

Counter width (R,W) R:48 , W: 32/48 R:48 , W: 32/48 See Section 18.2.2.3.

# of programmable counters per 
thread

4 or (8 if a core not shared by two 
threads)

4 or (8 if a core not shared by 
two threads)

Use CPUID to enumerate 
# of counters.

Precise Event Based Sampling 
(PEBS) Events

See Table 18-27 See Table 18-27 IA32_PMC4-IA32_PMC7 
do not support PEBS.

PEBS-Load Latency See Section 18.9.4.2; See Section 18.9.4.2;

PEBS-Precise Store No, replaced by Data Address 
profiling

Section 18.9.4.3

PEBS-PDIR yes (using precise 
INST_RETIRED.ALL)

yes (using precise 
INST_RETIRED.ALL)

PEBS-EventingIP yes no

Data Address Profiling yes no

LBR Profiling yes yes

Call Stack Profiling yes, see Section 17.8 no Use LBR facility

Off-core Response Event MSR 1A6H and 1A7H; Extended 
request and response types

MSR 1A6H and 1A7H; Extended 
request and response types

Intel TSX support for Perfmon See Section 18.11.5; no
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Only IA32_PMC0 through IA32_PMC3 support PEBS. 

NOTE

PEBS events are only valid when the following fields of IA32_PERFEVTSELx are all zero: AnyThread, 
Edge, Invert, CMask.

18.11.2 PEBS Data Format

The PEBS record format for the Next Generation Intel Core processor is shown in Table 18-39. The PEBS record 
format, along with debug/store area storage format, does not change regardless of whether IA-32e mode is active 
or not. CPUID.01H:ECX.DTES64[bit 2] reports whether the processor's DS storage format support is mode-inde-
pendent. When set, it uses 64-bit DS storage format.

Table 18-38.  PEBS Facility Comparison

Box
Intel® microarchitecture code 
name Haswell

Intel® microarchitecture code 
name Sandy Bridge Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7 

PEBS Buffer Programming  Section 18.7.1.1 Section 18.7.1.1 Unchanged

IA32_PEBS_ENABLE Layout  Figure 18-17 Figure 18-31

PEBS record layout Table 18-39, Enhanced fields at 
offsets 98H, A0H, A8H, B0H

Table 18-18, Enhanced fields 
at offsets 98H, A0H, A8H

PEBS Events See Table 18-27 See Table 18-27 IA32_PMC4-IA32_PMC7 do not 
support PEBS.

PEBS-Load Latency See Table 18-28 Table 18-28

PEBS-Precise Store no, replaced by data address 
profiling

yes; see Section 18.9.4.3

PEBS-PDIR yes yes IA32_PMC1 only

PEBS skid from EventingIP 1 (or 2 if micro+macro fusion) 1

SAMPLING Restriction Small SAV(CountDown) value incur higher overhead than prior 
generation.

Table 18-39.  PEBS Record Format for Next Generation Intel Core Processor Family

Byte Offset Field Byte Offset Field

0x0 R/EFLAGS 0x60 R10

0x8 R/EIP 0x68 R11

0x10 R/EAX 0x70 R12

0x18 R/EBX 0x78 R13

0x20 R/ECX 0x80 R14

0x28 R/EDX 0x88 R15

0x30 R/ESI 0x90 IA32_PERF_GLOBAL_STATUS

0x38 R/EDI 0x98 Data Linear Address

0x40 R/EBP 0xA0 Data Source Encoding

0x48 R/ESP 0xA8 Latency value (core cycles)

0x50 R8 0xB0 EventingIP
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The layout of PEBS records are almost identical to those shown in Table 18-18. Offset 0xB0 is a new field that 
records the eventing IP address of the retired instruction that triggered the PEBS assist.

The PEBS records at offsets 0x98, 0xA0, and 0xAB record data gathered from three of the PEBS capabilities in prior 
processor generations: load latency facility (Section 18.9.4.2), PDIR (Section 18.9.4.4), and precise store (Section 
18.9.4.3).

In the core PMU of the next generation processor, load latency facility and PDIR capabilities are unchanged. 
However, precise store is replaced by an enhanced capability, data address profiling, that is not restricted to store 
address. Data address profiling also records information in PEBS records at offsets 0x98, 0xA0, and 0xAB.

18.11.3 PEBS Data Address Profiling

The Data Linear Address facility is also abbreviated as DataLA. The facility is a replacement or extension of the 
precise store facility in previous processor generations. The DataLA facility complements the load latency facility by 
providing a means to profile load and store memory references in the system, leverages the PEBS facility, and 
provides additional information about sampled loads and stores.  Having precise memory reference events with 
linear address information for both loads and stores provides information to improve data structure layout, elimi-
nate remote node references, and identify cache-line conflicts in NUMA systems.

The DataLA facility in the next generation processor supports the following events configured to use PEBS:

DataLA can use any one of the IA32_PMC0-IA32_PMC3 counters. Counter overflows will initiate the generation of 
PEBS records. Upon counter overflow, hardware captures the linear address and possible other status information 
of the retiring memory uop. This information is then written to the PEBS record that is subsequently generated.

To enable the DataLA facility, software must complete the following steps. Please note that the DataLA facility relies 
on the PEBS facility, so the PEBS configuration requirements must be completed before attempting to capture 
DataLA information.
• Complete the PEBS configuration steps.

0x58 R9 0xB8 TX Abort Information (Section 18.11.5.1 )

Table 18-40.  Precise Events That Supports Data Linear Address Profiling

Event Name Event Name

MEM_UOPS_RETIRED.STLB_MISS_LOADS MEM_UOPS_RETIRED.STLB_MISS_STORES

MEM_UOPS_RETIRED.LOCK_LOADS MEM_UOPS_RETIRED.LOCK_STORES

MEM_UOPS_RETIRED.SPLIT_LOADS MEM_UOPS_RETIRED.SPLIT_STORES

MEM_UOPS_RETIRED.ALL_LOADS MEM_UOPS_RETIRED.ALL_STORES

MEM_LOAD_UOPS_RETIRED.L1_HIT MEM_LOAD_UOPS_RETIRED.L2_HIT

MEM_LOAD_UOPS_RETIRED.LLC_HIT MEM_LOAD_UOPS_RETIRED.L1_MISS

MEM_LOAD_UOPS_RETIRED.L2_MISS MEM_LOAD_UOPS_RETIRED.LLC_MISS

MEM_LOAD_UOPS_RETIRED.HIT_LFB MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_MISS

MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HIT MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM

UOPS_RETIRED.ALL (if load or store is tagged) MEM_LOAD_UOPS_MISC_RETIRED.UC

MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_NONE MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM

MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM_SNP_HIT MEM_LOAD_UOPS_LLC_MISS_RETIRED.REMOTE_DRAM

MEM_LOAD_UOPS_LLC_MISS_RETIRED.REMOTE_DRAM_SNP_HIT MEM_LOAD_UOPS_LLC_MISS_RETIRED.REMOTE_HITM

MEM_LOAD_UOPS_LLC_MISS_RETIRED.REMOTE_FWD MEM_LOAD_UOPS_MISC_RETIRED.NON_DRAM

MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS

Table 18-39.  PEBS Record Format for Next Generation Intel Core Processor Family

Byte Offset Field Byte Offset Field
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• Program the an event listed in Table 18-40 using any one of IA32_PERFEVTSEL0-IA32_PERFEVTSEL3. 
• Set the corresponding IA32_PEBS_ENABLE.PEBS_EN_CTRx bit. This enables the corresponding IA32_PMCx as 

a PEBS counter and enables the DataLA facility.

When the DataLA facility is enabled, the relevant information written into a PEBS record affects entries at offsets 
98H, A0H and A8H, as shown in Table 18-41. 

18.11.3.1  EventingIP Record

The PEBS record layout for processors based on Intel microarchitecture code name Haswell adds a new field at 
offset 0B0H. This is the eventingIP field that records the IP address of the retired instruction that triggered the 
PEBS assist. The EIP/RIP field at offset 08H records the IP address of the next instruction to be executed following 
the PEBS assist.

18.11.4 Off-core Response Performance Monitoring 

The core PMU facility to collect off-core response events are similar to those described in Section 18.9.5. The event 
codes are listed in Table 18-30. Each event code for off-core response monitoring requires programming an asso-
ciated configuration MSR, MSR_OFFCORE_RSP_x. Software must program MSR_OFFCORE_RSP_x according to:
• Transaction request type encoding (bits 15:0): see Table 18-42.
• Supplier information (bits 30:16): see Table 18-32.
• Snoop response information (bits 37:31): see Table 18-33.

Table 18-41.  Layout of Data Linear Address Information In PEBS Record

Field Offset Description

Data Linear 
Address

98H The linear address of the load or the destination of the store.

Store Status A0H • DCU Hit (Bit 0): The store hit the data cache closest to the core (L1 cache) if this bit is set, otherwise 
the store missed the data cache. This information is valid only for the following store events: 
UOPS_RETIRED.ALL (if store is tagged),
MEM_UOPS_RETIRED.STLB_MISS_STORES,
MEM_UOPS_RETIRED.LOCK_STORES,
MEM_UOPS_RETIRED.SPLIT_STORES, MEM_UOPS_RETIRED.ALL_STORES

• Other bits are zero, The STLB_MISS, LOCK bit information can be obtained by programming the 
corresponding store event in Table 18-40.

Reserved A8H Always zero

Table 18-42.  MSR_OFFCORE_RSP_x Request_Type Definition (Intel® microarchitecture code name Haswell)

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads of full and partial cachelines as well 
as demand data page table entry cacheline reads. Does not count L2 data read prefetches or instruction 
fetches.

DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for ownership (RFO) requests generated 
by a write to data cacheline. Does not count L2 RFO prefetches.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction cacheline reads. Does not count L2 
code read prefetches.

Reserved 3 Reserved

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 prefetchers.
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18.11.5 Performance Monitoring and Intel® TSX

Chapter 15 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 describes the details of 
Intel® Transactional Synchronization Extensions (Intel TSX). This section describes performance monitoring 
support for Intel TSX. 

If a processor supports Intel TSX, the core PMU enhances it’s IA32_PERFEVTSELx MSR with two additional bit fields 
for event filtering. Support for Intel TSX is indicated by either (a) CPUID.(EAX=7, ECX=0):RTM[bit 11]=1, or (b) if 
CPUID.07H.EBX.HLE [bit 4] = 1. The TSX-enhanced layout of IA32_PERFEVTSELx is shown in Figure 18-36. The 
two additional bit fields are:
• IN_TX (bit 32): When set, the counter will only include counts that occurred inside a transactional region, 

regardless of whether that region was aborted or committed. This bit may only be set if the processor supports 
HLE or RTM.

• IN_TXCP (bit 33): When set, the counter will not include counts that occurred inside of an aborted transac-
tional region. This bit may only be set if the processor supports HLE or RTM. This bit may only be set for 
IA32_PERFEVTSEL2. 

When the IA32_PERFEVTSELx MSR is programmed with both IN_TX=0 and IN_TXCP=0 on a processor that 
supports Intel TSX, the result in a counter may include detectable conditions associated with a transaction code 
region for its aborted execution (if any) and completed execution. 

In the initial implementation, software may need to take pre-caution when using the IN_TXCP bit. see Table 35-20.

A common usage of setting IN_TXCP=1 is to capture the number of events that were discarded due to a transac-
tional abort. With IA32_PMC2 configured to count in such a manner, then when a transactional region aborts, the 
value for that counter is restored to the value it had prior to the aborted transactional region. As a result, any 
updates performed to the counter during the aborted transactional region are discarded.

On the other hand, setting IN_TX=1 can be used to drill down on the performance characteristics of transactional 
code regions. When a PMCx is configured with the corresponding IA32_PERFEVTSELx.IN_TX=1, only eventing 
conditions that occur inside transactional code regions are propagated to the event logic and reflected in the 
counter result. Eventing conditions specified by IA32_PERFEVTSELx but occurring outside a transactional region 

Reserved 7-14 Reserved

OTHER 15 (R/W). Any other request that crosses IDI, including I/O.

Figure 18-36.  Layout of IA32_PERFEVTSELx MSRs Supporting Intel TSX

Table 18-42.  MSR_OFFCORE_RSP_x Request_Type Definition (Contd.)(Intel® microarchitecture code name 

Bit Name Offset Description

31

INV—Invert counter mask
EN—Enable counters

INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode

USR—User Mode

Counter Mask 
EE

N

I
N
T

19 1618 15172021222324

Reserved
I
N
V

P
C

U
S
R

O
S Unit Mask (UMASK)(CMASK)

63

ANY—Any Thread

A
N
Y

34

IN_TX—In Trans. Rgn
IN_TXCP—In Tx exclude abort (PERFEVTSEL2 Only)
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are discarded. The following example illustrates using three counters to drill down cycles spent inside and outside 
of transactional regions:
• Program IA32_PERFEVTSEL2 to count Unhalted_Core_Cycles with (IN_TXCP=1, IN_TX=0), such that 

IA32_PMC2 will count cycles spent due to aborted TSX transactions;
• Program IA32_PERFEVTSEL0 to count Unhalted_Core_Cycles with (IN_TXCP=0, IN_TX=1), such that 

IA32_PMC0 will count cycles spent by the transactional code regions;
• Program IA32_PERFEVTSEL1 to count Unhalted_Core_Cycles with (IN_TXCP=0, IN_TX=0), such that 

IA32_PMC1 will count total cycles spent by the non-transactional code and transactional code regions.

Additionally, a number of performance events are solely focused on characterizing the execution of Intel TSX trans-
actional code, they are listed in Table 19-3.

18.11.5.1  Intel TSX and PEBS Support

If a PEBS event would have occurred inside a transactional region, then the transactional region first aborts, and 
then the PEBS event is processed.

Two of the TSX performance monitoring events in Table 19-3 also support using PEBS facility to capture additional 
information. They are:
• HLE_RETIRED.ABORT ED (encoding 0xc8 mask 0x4),
• RTM_RETIRED.ABORTED (encoding 0xc9 mask 0x4).

A transactional abort (HLE_RETIRED.ABORTED,RTM_RETIRED.ABORTED) can also be programmed to cause PEBS 
events. In this scenario, a PEBS event is processed following the abort.

Pending a PEBS record inside of a transactional region will cause a transactional abort. If a PEBS record was pended 
at the time of the abort or on an overflow of the TSX PEBS events listed above, only the following PEBS entries will 
be valid (enumerated by PEBS entry offset 0xB8 bits[33:32] to indicate an HLE abort or an RTM abort):
• Offset B0H: EventingIP, 
• Offset B8H: TX Abort Information

These fields are set for all PEBS events.
• Offset 0x08 (RIP/EIP) corresponds to the instruction following the outermost XACQUIRE in HLE or the first 

instruction of the fallback handler of the outermost XBEGIN instruction in RTM. This is useful to identify the 
aborted transactional region.

In the case of HLE, an aborted transaction will restart execution deterministically at the start of the HLE region. In 
the case of RTM, an aborted transaction will transfer execution to the RTM fallback handler.

The layout of the TX Abort Information field is given in Table 18-43.

Table 18-43.  TX Abort Information Field Definition

Bit Name Offset Description

Cycles_Last_TX 31:0 The number of cycles in the last TSX region, regardless of whether that region had aborted or 
committed. 

HLE_Abort 32 If set, the abort information corresponds to an aborted HLE execution

RTM_Abort 33 If set, the abort information corresponds to an aborted RTM execution

Instruction_Abort 34 If set, the abort was associated with the instruction corresponding to the eventing IP (offset 
0B0H) within the transactional region.

Non_Instruction_Abort 35 If set, the instruction corresponding to the eventing IP may not necessarily be related to the 
transactional abort.

Retry 36 If set, retrying the transactional execution may have succeeded. 

Data_Conflict 37 If set, another logical processor conflicted with a memory address that was part of the 
transactional region that aborted. 
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18.11.6 Uncore Performance Monitoring Facilities in Next Generation Intel® Core™ Processors

The uncore sub-system in the Next Generation Intel® Core™ processors provides its own performance monitoring 
facility. The uncore PMU facility provides dedicated MSRs to select uncore performance monitoring events in a 
similar manner as those described in Section 18.9.6. 

The ARB unit and each C-Box provide local pairs of event select MSR and counter register. The layout of the event 
select MSRs in the C-Boxes are identical as shown in Figure 18-34.

At the uncore domain level, there is a master set of control MSRs that centrally manages all the performance moni-
toring facility of uncore units. Figure 18-35 shows the layout of the uncore domain global control. 

Additionally, there is also a fixed counter, counting uncore clockticks, for the uncore domain. Table 18-34 summa-
rizes the number MSRs for uncore PMU for each box.

The uncore performance events for the C-Box and ARB units are listed in Table 19-4.

18.12 PERFORMANCE MONITORING (PROCESSORS 
BASED ON INTEL NETBURST® MICROARCHITECTURE)

The performance monitoring mechanism provided in Pentium 4 and Intel Xeon processors is different from that 
provided in the P6 family and Pentium processors. While the general concept of selecting, filtering, counting, and 
reading performance events through the WRMSR, RDMSR, and RDPMC instructions is unchanged, the setup mech-
anism and MSR layouts are incompatible with the P6 family and Pentium processor mechanisms. Also, the RDPMC 
instruction has been enhanced to read the the additional performance counters provided in the Pentium 4 and Intel 
Xeon processors and to allow faster reading of counters.

The event monitoring mechanism provided with the Pentium 4 and Intel Xeon processors (based on Intel NetBurst 
microarchitecture) consists of the following facilities:
• The IA32_MISC_ENABLE MSR, which indicates the availability in an Intel 64 or IA-32 processor of the 

performance monitoring and precise event-based sampling (PEBS) facilities.
• Event selection control (ESCR) MSRs for selecting events to be monitored with specific performance counters. 

The number available differs by family and model (43 to 45).
• 18 performance counter MSRs for counting events.
• 18 counter configuration control (CCCR) MSRs, with one CCCR associated with each performance counter. 

CCCRs sets up an associated performance counter for a specific method of counting.

Capacity Writes 38 If set, the transactional region aborted due to exceeding resources for transactional writes.

Capacity Reads 39 If set, the transactional region aborted due to exceeding resources for transactional reads.

Reserved 63:40 Reserved

Table 18-44.  Uncore PMU MSR Summary

Box # of Boxes
Counters per 
Box

Counter 
Width

General 
Purpose

Global 
Enable Comment

C-Box SKU specific 2 44 Yes Per-box Up to 4, seeTable 35-15 
MSR_UNC_CBO_CONFIG

ARB 1 2 44 Yes Uncore

Fixed 
Counter

N.A. N.A. 48 No Uncore

Table 18-43.  TX Abort Information Field Definition (Contd.)

Bit Name Offset Description
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• A debug store (DS) save area in memory for storing PEBS records.
• The IA32_DS_AREA MSR, which establishes the location of the DS save area.
• The debug store (DS) feature flag (bit 21) returned by the CPUID instruction, which indicates the availability of 

the DS mechanism.
• The MSR_PEBS_ENABLE MSR, which enables the PEBS facilities and replay tagging used in at-retirement event 

counting.
• A set of predefined events and event metrics that simplify the setting up of the performance counters to count 

specific events.

Table 18-45 lists the performance counters and their associated CCCRs, along with the ESCRs that select events to 
be counted for each performance counter. Predefined event metrics and events are listed in Chapter 19, “Perfor-
mance-Monitoring Events.”

Table 18-45.  Performance Counter MSRs and Associated CCCR and 
ESCR MSRs (Pentium 4 and Intel Xeon Processors)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr

MSR_BPU_COUNTER0 0 300H MSR_BPU_CCCR0 360H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER1 1 301H MSR_BPU_CCCR1 361H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER2 2 302H MSR_BPU_CCCR2 362H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_BPU_COUNTER3 3 303H MSR_BPU_CCCR3 363H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_MS_COUNTER0 4 304H MSR_MS_CCCR0 364H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER1 5 305H MSR_MS_CCCR1 365H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER2 6 306H MSR_MS_CCCR2 366H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H



18-60 Vol. 3B

PERFORMANCE MONITORING

MSR_MS_COUNTER3 7 307H MSR_MS_CCCR3 367H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_FLAME_COUNTER0 8 308H MSR_FLAME_CCCR0 368H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_COUNTER1 9 309H MSR_FLAME_CCCR1 369H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_COUNTER2 10 30AH MSR_FLAME_CCCR2 36AH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_FLAME_COUNTER3 11 30BH MSR_FLAME_CCCR3 36BH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_IQ_COUNTER0 12 30CH MSR_IQ_CCCR0 36CH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER1 13 30DH MSR_IQ_CCCR1 36DH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER2 14 30EH MSR_IQ_CCCR2 36EH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

MSR_IQ_COUNTER3 15 30FH MSR_IQ_CCCR3 36FH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
 0

2
1

3B9H
3CDH
3E1H
3BBH

3BDH
3CBH

MSR_IQ_COUNTER4 16 310H MSR_IQ_CCCR4 370H MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

Table 18-45.  Performance Counter MSRs and Associated CCCR and 
ESCR MSRs (Pentium 4 and Intel Xeon Processors) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
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The types of events that can be counted with these performance monitoring facilities are divided into two classes: 
non-retirement events and at-retirement events.
• Non-retirement events (see Table 19-21) are events that occur any time during instruction execution (such as 

bus transactions or cache transactions).
• At-retirement events (see Table 19-22) are events that are counted at the retirement stage of instruction 

execution, which allows finer granularity in counting events and capturing machine state. 
The at-retirement counting mechanism includes facilities for tagging µops that have encountered a particular 
performance event during instruction execution. Tagging allows events to be sorted between those that 
occurred on an execution path that resulted in architectural state being committed at retirement as well as 
events that occurred on an execution path where the results were eventually cancelled and never committed to 
architectural state (such as, the execution of a mispredicted branch).

The Pentium 4 and Intel Xeon processor performance monitoring facilities support the three usage models 
described below. The first two models can be used to count both non-retirement and at-retirement events; the 
third model is used to count a subset of at-retirement events:
• Event counting — A performance counter is configured to count one or more types of events. While the 

counter is counting, software reads the counter at selected intervals to determine the number of events that 
have been counted between the intervals.

• Non-precise event-based sampling — A performance counter is configured to count one or more types of 
events and to generate an interrupt when it overflows. To trigger an overflow, the counter is preset to a 
modulus value that will cause the counter to overflow after a specific number of events have been counted. 
When the counter overflows, the processor generates a performance monitoring interrupt (PMI). The interrupt 
service routine for the PMI then records the return instruction pointer (RIP), resets the modulus, and restarts 
the counter. Code performance can be analyzed by examining the distribution of RIPs with a tool like the 
VTune™ Performance Analyzer.

• Precise event-based sampling (PEBS) — This type of performance monitoring is similar to non-precise 
event-based sampling, except that a memory buffer is used to save a record of the architectural state of the 
processor whenever the counter overflows. The records of architectural state provide additional information for 
use in performance tuning. Precise event-based sampling can be used to count only a subset of at-retirement 
events.

The following sections describe the MSRs and data structures used for performance monitoring in the Pentium 4 
and Intel Xeon processors.

18.12.1 ESCR MSRs

The 45 ESCR MSRs (see Table 18-45) allow software to select specific events to be countered. Each ESCR is usually 
associated with a pair of performance counters (see Table 18-45) and each performance counter has several ESCRs 
associated with it (allowing the events counted to be selected from a variety of events).

Figure 18-37 shows the layout of an ESCR MSR. The functions of the flags and fields are:

MSR_IQ_COUNTER5 17 311H MSR_IQ_CCCR5 371H MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

NOTES:

1. MSR_IQ_ESCR0 and MSR_IQ_ESCR1 are available only on early processor builds (family 0FH, models 01H-02H). These MSRs are not 
available on later versions.

Table 18-45.  Performance Counter MSRs and Associated CCCR and 
ESCR MSRs (Pentium 4 and Intel Xeon Processors) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
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• USR flag, bit 2 — When set, events are counted when the processor is operating at a current privilege level 
(CPL) of 1, 2, or 3. These privilege levels are generally used by application code and unprotected operating 
system code.

• OS flag, bit 3 — When set, events are counted when the processor is operating at CPL of 0. This privilege level 
is generally reserved for protected operating system code. (When both the OS and USR flags are set, events 
are counted at all privilege levels.)

• Tag enable, bit 4 — When set, enables tagging of µops to assist in at-retirement event counting; when clear, 
disables tagging. See Section 18.12.6, “At-Retirement Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a µop to assist in at-retirement 
event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the event class selected with the 
event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be counted. The events within this 
class that are counted are selected with the event mask field.

When setting up an ESCR, the event select field is used to select a specific class of events to count, such as retired 
branches. The event mask field is then used to select one or more of the specific events within the class to be 
counted. For example, when counting retired branches, four different events can be counted: branch not taken 
predicted, branch not taken mispredicted, branch taken predicted, and branch taken mispredicted. The OS and 
USR flags allow counts to be enabled for events that occur when operating system code and/or application code are 
being executed. If neither the OS nor USR flag is set, no events will be counted.

The ESCRs are initialized to all 0s on reset. The flags and fields of an ESCR are configured by writing to the ESCR 
using the WRMSR instruction. Table 18-45 gives the addresses of the ESCR MSRs. 

Writing to an ESCR MSR does not enable counting with its associated performance counter; it only selects the event 
or events to be counted. The CCCR for the selected performance counter must also be configured. Configuration of 
the CCCR includes selecting the ESCR and enabling the counter.

18.12.2 Performance Counters

The performance counters in conjunction with the counter configuration control registers (CCCRs) are used for 
filtering and counting the events selected by the ESCRs. The Pentium 4 and Intel Xeon processors provide 18 
performance counters organized into 9 pairs. A pair of performance counters is associated with a particular subset 
of events and ESCR’s (see Table 18-45). The counter pairs are partitioned into four groups:
• The BPU group, includes two performance counter pairs:

— MSR_BPU_COUNTER0 and MSR_BPU_COUNTER1.

— MSR_BPU_COUNTER2 and MSR_BPU_COUNTER3.

Figure 18-37.  Event Selection Control Register (ESCR) for Pentium 4 
and Intel Xeon Processors without Intel HT Technology Support
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• The MS group, includes two performance counter pairs:

— MSR_MS_COUNTER0 and MSR_MS_COUNTER1.

— MSR_MS_COUNTER2 and MSR_MS_COUNTER3.
• The FLAME group, includes two performance counter pairs:

— MSR_FLAME_COUNTER0 and MSR_FLAME_COUNTER1.

— MSR_FLAME_COUNTER2 and MSR_FLAME_COUNTER3.
• The IQ group, includes three performance counter pairs:

— MSR_IQ_COUNTER0 and MSR_IQ_COUNTER1.

— MSR_IQ_COUNTER2 and MSR_IQ_COUNTER3.

— MSR_IQ_COUNTER4 and MSR_IQ_COUNTER5.

The MSR_IQ_COUNTER4 counter in the IQ group provides support for the PEBS. 

Alternate counters in each group can be cascaded: the first counter in one pair can start the first counter in the 
second pair and vice versa. A similar cascading is possible for the second counters in each pair. For example, within 
the BPU group of counters, MSR_BPU_COUNTER0 can start MSR_BPU_COUNTER2 and vice versa, and 
MSR_BPU_COUNTER1 can start MSR_BPU_COUNTER3 and vice versa (see Section 18.12.5.6, “Cascading Coun-
ters”). The cascade flag in the CCCR register for the performance counter enables the cascading of counters.

Each performance counter is 40-bits wide (see Figure 18-38). The RDPMC instruction has been enhanced in the 
Pentium 4 and Intel Xeon processors to allow reading of either the full counter-width (40-bits) or the low 32-bits of 
the counter. Reading the low 32-bits is faster than reading the full counter width and is appropriate in situations 
where the count is small enough to be contained in 32 bits.

The RDPMC instruction can be used by programs or procedures running at any privilege level and in virtual-8086 
mode to read these counters. The PCE flag in control register CR4 (bit 8) allows the use of this instruction to be 
restricted to only programs and procedures running at privilege level 0.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it does not necessarily wait until 
all previous instructions have been executed before reading the counter. Similarly, subsequent instructions may 
begin execution before the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the performance counters, using 
the RDMSR and WRMSR instructions. A secure operating system would clear the PCE flag during system initializa-
tion to disable direct user access to the performance-monitoring counters, but provide a user-accessible program-
ming interface that emulates the RDPMC instruction.

Some uses of the performance counters require the counters to be preset before counting begins (that is, before 
the counter is enabled). This can be accomplished by writing to the counter using the WRMSR instruction. To set a 
counter to a specified number of counts before overflow, enter a 2s complement negative integer in the counter. 
The counter will then count from the preset value up to -1 and overflow. Writing to a performance counter in a 
Pentium 4 or Intel Xeon processor with the WRMSR instruction causes all 40 bits of the counter to be written.

Figure 18-38.  Performance Counter (Pentium 4 and Intel Xeon Processors)
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18.12.3 CCCR MSRs

Each of the 18 performance counters in a Pentium 4 or Intel Xeon processor has one CCCR MSR associated with it 
(see Table 18-45). The CCCRs control the filtering and counting of events as well as interrupt generation. 
Figure 18-39 shows the layout of an CCCR MSR. The functions of the flags and fields are as follows:
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is disabled. This flag is cleared on 

reset.
• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to select events to be counted with 

the counter associated with the CCCR.
• Compare flag, bit 18 — When set, enables filtering of the event count; when clear, disables filtering. The 

filtering method is selected with the threshold, complement, and edge flags.
• Complement flag, bit 19 — Selects how the incoming event count is compared with the threshold value. 

When set, event counts that are less than or equal to the threshold value result in a single count being delivered 
to the performance counter; when clear, counts greater than the threshold value result in a count being 
delivered to the performance counter (see Section 18.12.5.2, “Filtering Events”). The complement flag is not 
active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used for comparisons. The 
processor examines this field only when the compare flag is set, and uses the complement flag setting to 
determine the type of threshold comparison to be made. The useful range of values that can be entered in this 
field depend on the type of event being counted (see Section 18.12.5.2, “Filtering Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge detection of the threshold comparison 
output for filtering event counts; when clear, rising edge detection is disabled. This flag is active only when the 
compare flag is set.

• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every counter increment; when clear, 
overflow only occurs when the counter actually overflows.

• OVF_PMI flag, bit 26 — When set, causes a performance monitor interrupt (PMI) to be generated when the 
counter overflows occurs; when clear, disables PMI generation. Note that the PMI is generated on the next 
event count after the counter has overflowed.

• Cascade flag, bit 30 — When set, enables counting on one counter of a counter pair when its alternate 
counter in the other the counter pair in the same counter group overflows (see Section 18.12.2, “Performance 
Counters,” for further details); when clear, disables cascading of counters.

Figure 18-39.  Counter Configuration Control Register (CCCR)

63 32

Reserved

Reserved

Reserved: Must be set to 11B
Compare

Enable

31 24 23 20 19 16 15 12 11 017182526272930

Edge
FORCE_OVF

OVF_PMI

Threshold

Cascade
OVF

Complement

Reserved

13

ESCR
Select

Reserved



Vol. 3B 18-65

PERFORMANCE MONITORING

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag is a sticky flag that must be 
explicitly cleared by software.

The CCCRs are initialized to all 0s on reset. 

The events that an enabled performance counter actually counts are selected and filtered by the following flags and 
fields in the ESCR and CCCR registers and in the qualification order given:

1. The event select and event mask fields in the ESCR select a class of events to be counted and one or more 
event types within the class, respectively.

2. The OS and USR flags in the ESCR selected the privilege levels at which events will be counted.

3. The ESCR select field of the CCCR selects the ESCR. Since each counter has several ESCRs associated with it, 
one ESCR must be chosen to select the classes of events that may be counted.

4. The compare and complement flags and the threshold field of the CCCR select an optional threshold to be used 
in qualifying an event count.

5. The edge flag in the CCCR allows events to be counted only on rising-edge transitions.

The qualification order in the above list implies that the filtered output of one “stage” forms the input for the next. 
For instance, events filtered using the privilege level flags can be further qualified by the compare and complement 
flags and the threshold field, and an event that matched the threshold criteria, can be further qualified by edge 
detection.

The uses of the flags and fields in the CCCRs are discussed in greater detail in Section 18.12.5, “Programming the 
Performance Counters for Non-Retirement Events.”

18.12.4 Debug Store (DS) Mechanism

The debug store (DS) mechanism was introduced in the Pentium 4 and Intel Xeon processors to allow various types 
of information to be collected in memory-resident buffers for use in debugging and tuning programs. For the 
Pentium 4 and Intel Xeon processors, the DS mechanism is used to collect two types of information: branch records 
and precise event-based sampling (PEBS) records. The availability of the DS mechanism in a processor is indicated 
with the DS feature flag (bit 21) returned by the CPUID instruction. 

See Section 17.4.5, “Branch Trace Store (BTS),” and Section 18.12.7, “Precise Event-Based Sampling (PEBS),” for 
a description of these facilities. Records collected with the DS mechanism are saved in the DS save area. See 
Section 17.4.9, “BTS and DS Save Area.”

18.12.5 Programming the Performance Counters 
for Non-Retirement Events

The basic steps to program a performance counter and to count events include the following:

1. Select the event or events to be counted.

2. For each event, select an ESCR that supports the event using the values in the ESCR restrictions row in Table 
19-21, Chapter 19.

3. Match the CCCR Select value and ESCR name in Table 19-21 to a value listed in Table 18-45; select a CCCR and 
performance counter.

4. Set up an ESCR for the specific event or events to be counted and the privilege levels at which the are to be 
counted.

5. Set up the CCCR for the performance counter by selecting the ESCR and the desired event filters.

6. Set up the CCCR for optional cascading of event counts, so that when the selected counter overflows its 
alternate counter starts.

7. Set up the CCCR to generate an optional performance monitor interrupt (PMI) when the counter overflows. If 
PMI generation is enabled, the local APIC must be set up to deliver the interrupt to the processor and a handler 
for the interrupt must be in place.

8. Enable the counter to begin counting.
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18.12.5.1  Selecting Events to Count

Table 19-22 in Chapter 19 lists a set of at-retirement events for the Pentium 4 and Intel Xeon processors. For each 
event listed in Table 19-22, setup information is provided. Table 18-46 gives an example of one of the events.

For Table 19-21 and Table 19-22, Chapter 19, the name of the event is listed in the Event Name column and param-
eters that define the event and other information are listed in the Event Parameters column. The Parameter Value 
and Description columns give specific parameters for the event and additional description information. Entries in 
the Event Parameters column are described below.
• ESCR restrictions — Lists the ESCRs that can be used to program the event. Typically only one ESCR is 

needed to count an event. 
• Counter numbers per ESCR — Lists which performance counters are associated with each ESCR. Table 18-45 

gives the name of the counter and CCCR for each counter number. Typically only one counter is needed to count 
the event.

• ESCR event select — Gives the value to be placed in the event select field of the ESCR to select the event.
• ESCR event mask — Gives the value to be placed in the Event Mask field of the ESCR to select sub-events to 

be counted. The parameter value column defines the documented bits with relative bit position offset starting 
from 0, where the absolute bit position of relative offset 0 is bit 9 of the ESCR. All undocumented bits are 
reserved and should be set to 0.

• CCCR select — Gives the value to be placed in the ESCR select field of the CCCR associated with the counter 
to select the ESCR to be used to define the event. This value is not the address of the ESCR; it is the number of 
the ESCR from the Number column in Table 18-45.

• Event specific notes — Gives additional information about the event, such as the name of the same or a 
similar event defined for the P6 family processors.

• Can support PEBS — Indicates if PEBS is supported for the event (only supplied for at-retirement events listed 
in Table 19-22.)

• Requires additional MSR for tagging — Indicates which if any additional MSRs must be programmed to 
count the events (only supplied for the at-retirement events listed in Table 19-22.)

Table 18-46.  Event Example 

Event Name Event Parameters  Parameter Value Description

branch_retired Counts the retirement of a branch. Specify one or more mask bits to select 
any combination of branch taken, not-taken, predicted and mispredicted. 

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 15-3 for the addresses of the ESCR MSRs

Counter numbers per 
ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated with each ESCR are provided. The 
performance counters and corresponding CCCRs can be obtained from 
Table 15-3.

ESCR Event Select 06H ESCR[31:25]

ESCR Event Mask

Bit 0: MMNP

     1: MMNM

     2: MMTP

     3: MMTM

ESCR[24:9],

Branch Not-taken Predicted, 

Branch Not-taken Mispredicted,

Branch Taken Predicted,

Branch Taken Mispredicted.

CCCR Select 05H CCCR[15:13]

Event Specific Notes P6: EMON_BR_INST_RETIRED

Can Support PEBS No

Requires Additional 
MSRs for Tagging

No
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NOTE

The performance-monitoring events listed in Chapter 19, “Performance-Monitoring Events,” are 
intended to be used as guides for performance tuning. The counter values reported are not 
guaranteed to be absolutely accurate and should be used as a relative guide for tuning. Known 
discrepancies are documented where applicable.

The following procedure shows how to set up a performance counter for basic counting; that is, the counter is set 
up to count a specified event indefinitely, wrapping around whenever it reaches its maximum count. This procedure 
is continued through the following four sections.

Using information in Table 19-21, Chapter 19, an event to be counted can be selected as follows:

1. Select the event to be counted.

2. Select the ESCR to be used to select events to be counted from the ESCRs field.

3. Select the number of the counter to be used to count the event from the Counter Numbers Per ESCR field.

4. Determine the name of the counter and the CCCR associated with the counter, and determine the MSR 
addresses of the counter, CCCR, and ESCR from Table 18-45.

5. Use the WRMSR instruction to write the ESCR Event Select and ESCR Event Mask values into the appropriate 
fields in the ESCR. At the same time set or clear the USR and OS flags in the ESCR as desired.

6. Use the WRMSR instruction to write the CCCR Select value into the appropriate field in the CCCR.

NOTE

Typically all the fields and flags of the CCCR will be written with one WRMSR instruction; however, 
in this procedure, several WRMSR writes are used to more clearly demonstrate the uses of the 
various CCCR fields and flags.

This setup procedure is continued in the next section, Section 18.12.5.2, “Filtering Events.”

18.12.5.2  Filtering Events

Each counter receives up to 4 input lines from the processor hardware from which it is counting events. The 
counter treats these inputs as binary inputs (input 0 has a value of 1, input 1 has a value of 2, input 3 has a value 
of 4, and input 3 has a value of 8). When a counter is enabled, it adds this binary input value to the counter value 
on each clock cycle. For each clock cycle, the value added to the counter can then range from 0 (no event) to 15. 

For many events, only the 0 input line is active, so the counter is merely counting the clock cycles during which the 
0 input is asserted. However, for some events two or more input lines are used. Here, the counters threshold 
setting can be used to filter events. The compare, complement, threshold, and edge fields control the filtering of 
counter increments by input value.

If the compare flag is set, then a “greater than” or a “less than or equal to” comparison of the input value vs. a 
threshold value can be made. The complement flag selects “less than or equal to” (flag set) or “greater than” (flag 
clear). The threshold field selects a threshold value of from 0 to 15. For example, if the complement flag is cleared 
and the threshold field is set to 6, than any input value of 7 or greater on the 4 inputs to the counter will cause the 
counter to be incremented by 1, and any value less than 7 will cause an increment of 0 (or no increment) of the 
counter. Conversely, if the complement flag is set, any value from 0 to 6 will increment the counter and any value 
from 7 to 15 will not increment the counter. Note that when a threshold condition has been satisfied, the input to 
the counter is always 1, not the input value that is presented to the threshold filter. 

The edge flag provides further filtering of the counter inputs when a threshold comparison is being made. The edge 
flag is only active when the compare flag is set. When the edge flag is set, the resulting output from the threshold 
filter (a value of 0 or 1) is used as an input to the edge filter. Each clock cycle, the edge filter examines the last and 
current input values and sends a count to the counter only when it detects a “rising edge” event; that is, a false-
to-true transition. Figure 18-40 illustrates rising edge filtering.
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The following procedure shows how to configure a CCCR to filter events using the threshold filter and the edge filter. 
This procedure is a continuation of the setup procedure introduced in Section 18.12.5.1, “Selecting Events to 
Count.”

7. (Optional) To set up the counter for threshold filtering, use the WRMSR instruction to write values in the CCCR 
compare and complement flags and the threshold field:

— Set the compare flag.

— Set or clear the complement flag for less than or equal to or greater than comparisons, respectively.

— Enter a value from 0 to 15 in the threshold field.

8. (Optional) Select rising edge filtering by setting the CCCR edge flag.

This setup procedure is continued in the next section, Section 18.12.5.3, “Starting Event Counting.”

18.12.5.3  Starting Event Counting

Event counting by a performance counter can be initiated in either of two ways. The typical way is to set the enable 
flag in the counter’s CCCR. Following the instruction to set the enable flag, event counting begins and continues 
until it is stopped (see Section 18.12.5.5, “Halting Event Counting”). 

The following procedural step shows how to start event counting. This step is a continuation of the setup procedure 
introduced in Section 18.12.5.2, “Filtering Events.”

9. To start event counting, use the WRMSR instruction to set the CCCR enable flag for the performance counter.

This setup procedure is continued in the next section, Section 18.12.5.4, “Reading a Performance Counter’s Count.”

The second way that a counter can be started by using the cascade feature. Here, the overflow of one counter auto-
matically starts its alternate counter (see Section 18.12.5.6, “Cascading Counters”).

18.12.5.4  Reading a Performance Counter’s Count

The Pentium 4 and Intel Xeon processors’ performance counters can be read using either the RDPMC or RDMSR 
instructions. The enhanced functions of the RDPMC instruction (including fast read) are described in Section 
18.12.2, “Performance Counters.” These instructions can be used to read a performance counter while it is counting 
or when it is stopped.

The following procedural step shows how to read the event counter. This step is a continuation of the setup proce-
dure introduced in Section 18.12.5.3, “Starting Event Counting.”

10. To read a performance counters current event count, execute the RDPMC instruction with the counter number 
obtained from Table 18-45 used as an operand.

This setup procedure is continued in the next section, Section 18.12.5.5, “Halting Event Counting.”

18.12.5.5  Halting Event Counting

After a performance counter has been started (enabled), it continues counting indefinitely. If the counter overflows 
(goes one count past its maximum count), it wraps around and continues counting. When the counter wraps 

Figure 18-40.  Effects of Edge Filtering
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around, it sets its OVF flag to indicate that the counter has overflowed. The OVF flag is a sticky flag that indicates 
that the counter has overflowed at least once since the OVF bit was last cleared. 

To halt counting, the CCCR enable flag for the counter must be cleared.

The following procedural step shows how to stop event counting. This step is a continuation of the setup procedure 
introduced in Section 18.12.5.4, “Reading a Performance Counter’s Count.”

11. To stop event counting, execute a WRMSR instruction to clear the CCCR enable flag for the performance 
counter.

To halt a cascaded counter (a counter that was started when its alternate counter overflowed), either clear the 
Cascade flag in the cascaded counter’s CCCR MSR or clear the OVF flag in the alternate counter’s CCCR MSR.

18.12.5.6  Cascading Counters

As described in Section 18.12.2, “Performance Counters,” eighteen performance counters are implemented in 
pairs. Nine pairs of counters and associated CCCRs are further organized as four blocks: BPU, MS, FLAME, and IQ 
(see Table 18-45). The first three blocks contain two pairs each. The IQ block contains three pairs of counters (12 
through 17) with associated CCCRs (MSR_IQ_CCCR0 through MSR_IQ_CCCR5).

The first 8 counter pairs (0 through 15) can be programmed using ESCRs to detect performance monitoring events. 
Pairs of ESCRs in each of the four blocks allow many different types of events to be counted. The cascade flag in 
the CCCR MSR allows nested monitoring of events to be performed by cascading one counter to a second counter 
located in another pair in the same block (see Figure 18-39 for the location of the flag).

Counters 0 and 1 form the first pair in the BPU block. Either counter 0 or 1 can be programmed to detect an event 
via MSR_MO B_ESCR0. Counters 0 and 2 can be cascaded in any order, as can counters 1 and 3. It’s possible to set 
up 4 counters in the same block to cascade on two pairs of independent events. The pairing described also applies 
to subsequent blocks. Since the IQ PUB has two extra counters, cascading operates somewhat differently if 16 and 
17 are involved. In the IQ block, counter 16 can only be cascaded from counter 14 (not from 12); counter 14 
cannot be cascaded from counter 16 using the CCCR cascade bit mechanism. Similar restrictions apply to counter 
17.

Example 18-1.  Counting Events

Assume a scenario where counter X is set up to count 200 occurrences of event A; then counter Y is set up to count 
400 occurrences of event B. Each counter is set up to count a specific event and overflow to the next counter. In 
the above example, counter X is preset for a count of -200 and counter Y for a count of -400; this setup causes the 
counters to overflow on the 200th and 400th counts respectively.

Continuing this scenario, counter X is set up to count indefinitely and wraparound on overflow. This is described in 
the basic performance counter setup procedure that begins in Section 18.12.5.1, “Selecting Events to Count.” 
Counter Y is set up with the cascade flag in its associated CCCR MSR set to 1 and its enable flag set to 0.

To begin the nested counting, the enable bit for the counter X is set. Once enabled, counter X counts until it over-
flows. At this point, counter Y is automatically enabled and begins counting. Thus counter X overflows after 200 
occurrences of event A. Counter Y then starts, counting 400 occurrences of event B before overflowing. When 
performance counters are cascaded, the counter Y would typically be set up to generate an interrupt on overflow. 
This is described in Section 18.12.5.8, “Generating an Interrupt on Overflow.” 

The cascading counters mechanism can be used to count a single event. The counting begins on one counter then 
continues on the second counter after the first counter overflows. This technique doubles the number of event 
counts that can be recorded, since the contents of the two counters can be added together.

18.12.5.7  EXTENDED CASCADING 

Extended cascading is a model-specific feature in the Intel NetBurst microarchitecture. The feature is available to 
Pentium 4 and Xeon processor family with family encoding of 15 and model encoding greater than or equal to 2. 
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This feature uses bit 11 in CCCRs associated with the IQ block. See Table 18-47. 

The extended cascading feature can be adapted to the sampling usage model for performance monitoring. 
However, it is known that performance counters do not generate PMI in cascade mode or extended cascade mode 
due to an erratum. This erratum applies to Pentium 4 and Intel Xeon processors with model encoding of 2. For 
Pentium 4 and Intel Xeon processors with model encoding of 0 and 1, the erratum applies to processors with step-
ping encoding greater than 09H. 

Counters 16 and 17 in the IQ block are frequently used in precise event-based sampling or at-retirement counting 
of events indicating a stalled condition in the pipeline. Neither counter 16 or 17 can initiate the cascading of counter 
pairs using the cascade bit in a CCCR.

Extended cascading permits performance monitoring tools to use counters 16 and 17 to initiate cascading of two 
counters in the IQ block. Extended cascading from counter 16 and 17 is conceptually similar to cascading other 
counters, but instead of using CASCADE bit of a CCCR, one of the four CASCNTxINTOy bits is used. 

Example 18-2.  Scenario for Extended Cascading

A usage scenario for extended cascading is to sample instructions retired on logical processor 1 after the first 4096 
instructions retired on logical processor 0. A procedure to program extended cascading in this scenario is outlined 
below:

1. Write the value 0 to counter 12. 

2. Write the value 04000603H to MSR_CRU_ESCR0 (corresponding to selecting the NBOGNTAG and NBOGTAG 
event masks with qualification restricted to logical processor 1).

3. Write the value 04038800H to MSR_IQ_CCCR0. This enables CASCNT4INTO0 and OVF_PMI. An ISR can sample 
on instruction addresses in this case (do not set ENABLE, or CASCADE).

4. Write the value FFFFF000H into counter 16.1.

5. Write the value 0400060CH to MSR_CRU_ESCR2 (corresponding to selecting the NBOGNTAG and NBOGTAG 
event masks with qualification restricted to logical processor 0).

6. Write the value 00039000H to MSR_IQ_CCCR4 (set ENABLE bit, but not OVF_PMI).

Another use for cascading is to locate stalled execution in a multithreaded application. Assume MOB replays in 
thread B cause thread A to stall. Getting a sample of the stalled execution in this scenario could be accomplished 
by:

1. Set up counter B to count MOB replays on thread B.

2. Set up counter A to count resource stalls on thread A; set its force overflow bit and the appropriate CASCNTx-
INTOy bit.

3. Use the performance monitoring interrupt to capture the program execution data of the stalled thread.

18.12.5.8  Generating an Interrupt on Overflow

Any performance counter can be configured to generate a performance monitor interrupt (PMI) if the counter over-
flows. The PMI interrupt service routine can then collect information about the state of the processor or program 

Table 18-47.  CCR Names and Bit Positions 

CCCR Name:Bit Position Bit Name Description

MSR_IQ_CCCR1|2:11 Reserved

MSR_IQ_CCCR0:11 CASCNT4INTO0 Allow counter 4 to cascade into counter 0

MSR_IQ_CCCR3:11 CASCNT5INTO3 Allow counter 5 to cascade into counter 3

MSR_IQ_CCCR4:11 CASCNT5INTO4 Allow counter 5 to cascade into counter 4

MSR_IQ_CCCR5:11 CASCNT4INTO5 Allow counter 4 to cascade into counter 5
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when overflow occurred. This information can then be used with a tool like the Intel VTune™ Performance 
Analyzer to analyze and tune program performance.

To enable an interrupt on counter overflow, the OVR_PMI flag in the counter’s associated CCCR MSR must be set. 
When overflow occurs, a PMI is generated through the local APIC. (Here, the performance counter entry in the local 
vector table [LVT] is set up to deliver the interrupt generated by the PMI to the processor.)

The PMI service routine can use the OVF flag to determine which counter overflowed when multiple counters have 
been configured to generate PMIs. Also, note that these processors mask PMIs upon receiving an interrupt. Clear 
this condition before leaving the interrupt handler.

When generating interrupts on overflow, the performance counter being used should be preset to value that will 
cause an overflow after a specified number of events are counted plus 1. The simplest way to select the preset 
value is to write a negative number into the counter, as described in Section 18.12.5.6, “Cascading Counters.” 
Here, however, if an interrupt is to be generated after 100 event counts, the counter should be preset to minus 100 
plus 1 (-100 + 1), or -99. The counter will then overflow after it counts 99 events and generate an interrupt on the 
next (100th) event counted. The difference of 1 for this count enables the interrupt to be generated immediately 
after the selected event count has been reached, instead of waiting for the overflow to be propagation through the 
counter.

Because of latency in the microarchitecture between the generation of events and the generation of interrupts on 
overflow, it is sometimes difficult to generate an interrupt close to an event that caused it. In these situations, the 
FORCE_OVF flag in the CCCR can be used to improve reporting. Setting this flag causes the counter to overflow on 
every counter increment, which in turn triggers an interrupt after every counter increment.

18.12.5.9  Counter Usage Guideline

There are some instances where the user must take care to configure counting logic properly, so that it is not 
powered down. To use any ESCR, even when it is being used just for tagging, (any) one of the counters that the 
particular ESCR (or its paired ESCR) can be connected to should be enabled. If this is not done, 0 counts may 
result. Likewise, to use any counter, there must be some event selected in a corresponding ESCR (other than 
no_event, which generally has a select value of 0). 

18.12.6 At-Retirement Counting

At-retirement counting provides a means counting only events that represent work committed to architectural 
state and ignoring work that was performed speculatively and later discarded.

The Intel NetBurst microarchitecture used in the Pentium 4 and Intel Xeon processors performs many speculative 
activities in an attempt to increase effective processing speeds. One example of this speculative activity is branch 
prediction. The Pentium 4 and Intel Xeon processors typically predict the direction of branches and then decode 
and execute instructions down the predicted path in anticipation of the actual branch decision. When a branch 
misprediction occurs, the results of instructions that were decoded and executed down the mispredicted path are 
canceled. If a performance counter was set up to count all executed instructions, the count would include instruc-
tions whose results were canceled as well as those whose results committed to architectural state.

To provide finer granularity in event counting in these situations, the performance monitoring facilities provided in 
the Pentium 4 and Intel Xeon processors provide a mechanism for tagging events and then counting only those 
tagged events that represent committed results. This mechanism is called “at-retirement counting.” 

Tables 19-22 through 19-26 list predefined at-retirement events and event metrics that can be used to for tagging 
events when using at retirement counting. The following terminology is used in describing at-retirement counting:
• Bogus, non-bogus, retire — In at-retirement event descriptions, the term “bogus” refers to instructions or 

µops that must be canceled because they are on a path taken from a mispredicted branch. The terms “retired” 
and “non-bogus” refer to instructions or µops along the path that results in committed architectural state 
changes as required by the program being executed. Thus instructions and µops are either bogus or non-
bogus, but not both. Several of the Pentium 4 and Intel Xeon processors’ performance monitoring events (such 
as, Instruction_Retired and Uops_Retired in Table 19-22) can count instructions or µops that are retired based 
on the characterization of bogus” versus non-bogus.
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• Tagging — Tagging is a means of marking µops that have encountered a particular performance event so they 
can be counted at retirement. During the course of execution, the same event can happen more than once per 
µop and a direct count of the event would not provide an indication of how many µops encountered that event. 
The tagging mechanisms allow a µop to be tagged once during its lifetime and thus counted once at retirement. 
The retired suffix is used for performance metrics that increment a count once per µop, rather than once per 
event. For example, a µop may encounter a cache miss more than once during its life time, but a “Miss Retired” 
metric (that counts the number of retired µops that encountered a cache miss) will increment only once for that 
µop. A “Miss Retired” metric would be useful for characterizing the performance of the cache hierarchy for a 
particular instruction sequence. Details of various performance metrics and how these can be constructed using 
the Pentium 4 and Intel Xeon processors performance events are provided in the Intel Pentium 4 Processor 
Optimization Reference Manual (see Section 1.4, “Related Literature”). 

• Replay — To maximize performance for the common case, the Intel NetBurst microarchitecture aggressively 
schedules µops for execution before all the conditions for correct execution are guaranteed to be satisfied. In 
the event that all of these conditions are not satisfied, µops must be reissued. The mechanism that the Pentium 
4 and Intel Xeon processors use for this reissuing of µops is called replay. Some examples of replay causes are 
cache misses, dependence violations, and unforeseen resource constraints. In normal operation, some number 
of replays is common and unavoidable. An excessive number of replays is an indication of a performance 
problem.

• Assist — When the hardware needs the assistance of microcode to deal with some event, the machine takes 
an assist. One example of this is an underflow condition in the input operands of a floating-point operation. The 
hardware must internally modify the format of the operands in order to perform the computation. Assists clear 
the entire machine of µops before they begin and are costly.

18.12.6.1  Using At-Retirement Counting

The Pentium 4 and Intel Xeon processors allow counting both events and µops that encountered a specified event. 
For a subset of the at-retirement events listed in Table 19-22, a µop may be tagged when it encounters that event. 
The tagging mechanisms can be used in non-precise event-based sampling, and a subset of these mechanisms can 
be used in PEBS. There are four independent tagging mechanisms, and each mechanism uses a different event to 
count µops tagged with that mechanism: 
• Front-end tagging — This mechanism pertains to the tagging of µops that encountered front-end events (for 

example, trace cache and instruction counts) and are counted with the Front_end_event event
• Execution tagging — This mechanism pertains to the tagging of µops that encountered execution events (for 

example, instruction types) and are counted with the Execution_Event event.
• Replay tagging — This mechanism pertains to tagging of µops whose retirement is replayed (for example, a 

cache miss) and are counted with the Replay_event event. Branch mispredictions are also tagged with this 
mechanism.

• No tags — This mechanism does not use tags. It uses the Instr_retired and the Uops_ retired events.

Each tagging mechanism is independent from all others; that is, a µop that has been tagged using one mechanism 
will not be detected with another mechanism’s tagged-µop detector. For example, if µops are tagged using the 
front-end tagging mechanisms, the Replay_event will not count those as tagged µops unless they are also tagged 
using the replay tagging mechanism. However, execution tags allow up to four different types of µops to be counted 
at retirement through execution tagging.

The independence of tagging mechanisms does not hold when using PEBS. When using PEBS, only one tagging 
mechanism should be used at a time. 

Certain kinds of µops that cannot be tagged, including I/O, uncacheable and locked accesses, returns, and far 
transfers.

Table 19-22 lists the performance monitoring events that support at-retirement counting: specifically the 
Front_end_event, Execution_event, Replay_event, Inst_retired and Uops_retired events. The following sections 
describe the tagging mechanisms for using these events to tag µop and count tagged µops.

18.12.6.2  Tagging Mechanism for Front_end_event

The Front_end_event counts µops that have been tagged as encountering any of the following events:
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• µop decode events — Tagging µops for µop decode events requires specifying bits in the ESCR associated with 
the performance-monitoring event, Uop_type. 

• Trace cache events — Tagging µops for trace cache events may require specifying certain bits in the 
MSR_TC_PRECISE_EVENT MSR (see Table 19-24).

Table 19-22 describes the Front_end_event and Table 19-24 describes metrics that are used to set up a 
Front_end_event count.

The MSRs specified in the Table 19-22 that are supported by the front-end tagging mechanism must be set and one 
or both of the NBOGUS and BOGUS bits in the Front_end_event event mask must be set to count events. None of 
the events currently supported requires the use of the MSR_TC_PRECISE_EVENT MSR. 

18.12.6.3  Tagging Mechanism For Execution_event

Table 19-22 describes the Execution_event and Table 19-25 describes metrics that are used to set up an 
Execution_event count.

The execution tagging mechanism differs from other tagging mechanisms in how it causes tagging. One upstream 
ESCR is used to specify an event to detect and to specify a tag value (bits 5 through 8) to identify that event. A 
second downstream ESCR is used to detect µops that have been tagged with that tag value identifier using 
Execution_event for the event selection. 

The upstream ESCR that counts the event must have its tag enable flag (bit 4) set and must have an appropriate 
tag value mask entered in its tag value field. The 4-bit tag value mask specifies which of tag bits should be set for 
a particular µop. The value selected for the tag value should coincide with the event mask selected in the down-
stream ESCR. For example, if a tag value of 1 is set, then the event mask of NBOGUS0 should be enabled, corre-
spondingly in the downstream ESCR. The downstream ESCR detects and counts tagged µops. The normal (not tag 
value) mask bits in the downstream ESCR specify which tag bits to count. If any one of the tag bits selected by the 
mask is set, the related counter is incremented by one. This mechanism is summarized in the Table 19-25 metrics 
that are supported by the execution tagging mechanism. The tag enable and tag value bits are irrelevant for the 
downstream ESCR used to select the Execution_event.

The four separate tag bits allow the user to simultaneously but distinctly count up to four execution events at 
retirement. (This applies for non-precise event-based sampling. There are additional restrictions for PEBS as noted 
in Section 18.12.7.3, “Setting Up the PEBS Buffer.”) It is also possible to detect or count combinations of events by 
setting multiple tag value bits in the upstream ESCR or multiple mask bits in the downstream ESCR. For example, 
use a tag value of 3H in the upstream ESCR and use NBOGUS0/NBOGUS1 in the downstream ESCR event mask.

18.12.6.4  Tagging Mechanism for Replay_event

Table 19-22 describes the Replay_event and Table 19-26 describes metrics that are used to set up an Replay_event 
count.

The replay mechanism enables tagging of µops for a subset of all replays before retirement. Use of the replay 
mechanism requires selecting the type of µop that may experience the replay in the MSR_PEBS_MATRIX_VERT 
MSR and selecting the type of event in the MSR_PEBS_ENABLE MSR. Replay tagging must also be enabled with the 
UOP_Tag flag (bit 24) in the MSR_PEBS_ENABLE MSR. 

The Table 19-26 lists the metrics that are support the replay tagging mechanism and the at-retirement events that 
use the replay tagging mechanism, and specifies how the appropriate MSRs need to be configured. The replay tags 
defined in Table A-5 also enable Precise Event-Based Sampling (PEBS, see Section 15.9.8). Each of these replay 
tags can also be used in normal sampling by not setting Bit 24 nor Bit 25 in IA_32_PEBS_ENABLE_MSR. Each of 
these metrics requires that the Replay_Event (see Table 19-22) be used to count the tagged µops.

18.12.7 Precise Event-Based Sampling (PEBS)

The debug store (DS) mechanism in processors based on Intel NetBurst microarchitecture allow two types of infor-
mation to be collected for use in debugging and tuning programs: PEBS records and BTS records. See Section 
17.4.5, “Branch Trace Store (BTS),” for a description of the BTS mechanism.
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PEBS permits the saving of precise architectural information associated with one or more performance events in 
the precise event records buffer, which is part of the DS save area (see Section 17.4.9, “BTS and DS Save Area”). 
To use this mechanism, a counter is configured to overflow after it has counted a preset number of events. After 
the counter overflows, the processor copies the current state of the general-purpose and EFLAGS registers and 
instruction pointer into a record in the precise event records buffer. The processor then resets the count in the 
performance counter and restarts the counter. When the precise event records buffer is nearly full, an interrupt is 
generated, allowing the precise event records to be saved. A circular buffer is not supported for precise event 
records.

PEBS is supported only for a subset of the at-retirement events: Execution_event, Front_end_event, and 
Replay_event. Also, PEBS can only be carried out using the one performance counter, the MSR_IQ_COUNTER4 
MSR.

In processors based on Intel Core microarchitecture, a similar PEBS mechanism is also supported using IA32_PMC0 
and IA32_PERFEVTSEL0 MSRs (See Section 18.4.4).

18.12.7.1  Detection of the Availability of the PEBS Facilities

The DS feature flag (bit 21) returned by the CPUID instruction indicates (when set) the availability of the DS mech-
anism in the processor, which supports the PEBS (and BTS) facilities. When this bit is set, the following PEBS facil-
ities are available:
• The PEBS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when clear) the availability of the 

PEBS facilities, including the MSR_PEBS_ENABLE MSR. 
• The enable PEBS flag (bit 24) in the MSR_PEBS_ENABLE MSR allows PEBS to be enabled (set) or disabled 

(clear).
• The IA32_DS_AREA MSR can be programmed to point to the DS save area. 

18.12.7.2  Setting Up the DS Save Area

Section 17.4.9.2, “Setting Up the DS Save Area,” describes how to set up and enable the DS save area. This proce-
dure is common for PEBS and BTS.

18.12.7.3  Setting Up the PEBS Buffer

Only the MSR_IQ_COUNTER4 performance counter can be used for PEBS. Use the following procedure to set up the 
processor and this counter for PEBS: 

1. Set up the precise event buffering facilities. Place values in the precise event buffer base, precise event index, 
precise event absolute maximum, and precise event interrupt threshold, and precise event counter reset fields 
of the DS buffer management area (see Figure 17-5) to set up the precise event records buffer in memory.

2. Enable PEBS. Set the Enable PEBS flag (bit 24) in MSR_PEBS_ENABLE MSR.

3. Set up the MSR_IQ_COUNTER4 performance counter and its associated CCCR and one or more ESCRs for PEBS 
as described in Tables 19-22 through 19-26.

18.12.7.4  Writing a PEBS Interrupt Service Routine 

The PEBS facilities share the same interrupt vector and interrupt service routine (called the DS ISR) with the non-
precise event-based sampling and BTS facilities. To handle PEBS interrupts, PEBS handler code must be included in 
the DS ISR. See Section 17.4.9.5, “Writing the DS Interrupt Service Routine,” for guidelines for writing the DS ISR.

18.12.7.5  Other DS Mechanism Implications

The DS mechanism is not available in the SMM. It is disabled on transition to the SMM mode. Similarly the DS 
mechanism is disabled on the generation of a machine check exception and is cleared on processor RESET and INIT. 

The DS mechanism is available in real address mode.
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18.12.8 Operating System Implications

The DS mechanism can be used by the operating system as a debugging extension to facilitate failure analysis. 
When using this facility, a 25 to 30 times slowdown can be expected due to the effects of the trace store occurring 
on every taken branch. 

Depending upon intended usage, the instruction pointers that are part of the branch records or the PEBS records 
need to have an association with the corresponding process. One solution requires the ability for the DS specific 
operating system module to be chained to the context switch. A separate buffer can then be maintained for each 
process of interest and the MSR pointing to the configuration area saved and setup appropriately on each context 
switch. 

If the BTS facility has been enabled, then it must be disabled and state stored on transition of the system to a sleep 
state in which processor context is lost. The state must be restored on return from the sleep state.

It is required that an interrupt gate be used for the DS interrupt as opposed to a trap gate to prevent the generation 
of an endless interrupt loop.

Pages that contain buffers must have mappings to the same physical address for all processes/logical processors, 
such that any change to CR3 will not change DS addresses. If this requirement cannot be satisfied (that is, the 
feature is enabled on a per thread/process basis), then the operating system must ensure that the feature is 
enabled/disabled appropriately in the context switch code.

18.13 PERFORMANCE MONITORING AND INTEL HYPER-THREADING 
TECHNOLOGY IN PROCESSORS BASED ON INTEL NETBURST® 
MICROARCHITECTURE

The performance monitoring capability of processors based on Intel NetBurst microarchitecture and supporting 
Intel Hyper-Threading Technology is similar to that described in Section 18.12. However, the capability is extended 
so that:
• Performance counters can be programmed to select events qualified by logical processor IDs. 
• Performance monitoring interrupts can be directed to a specific logical processor within the physical processor. 

The sections below describe performance counters, event qualification by logical processor ID, and special purpose 
bits in ESCRs/CCCRs. They also describe MSR_PEBS_ENABLE, MSR_PEBS_MATRIX_VERT, and 
MSR_TC_PRECISE_EVENT. 

18.13.1 ESCR MSRs 

Figure 18-41 shows the layout of an ESCR MSR in processors supporting Intel Hyper-Threading Technology. 

The functions of the flags and fields are as follows:
• T1_USR flag, bit 0 — When set, events are counted when thread 1 (logical processor 1) is executing at a 

current privilege level (CPL) of 1, 2, or 3. These privilege levels are generally used by application code and 
unprotected operating system code.
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• T1_OS flag, bit 1 — When set, events are counted when thread 1 (logical processor 1) is executing at CPL of 
0. This privilege level is generally reserved for protected operating system code. (When both the T1_OS and 
T1_USR flags are set, thread 1 events are counted at all privilege levels.)

• T0_USR flag, bit 2 — When set, events are counted when thread 0 (logical processor 0) is executing at a CPL 
of 1, 2, or 3. 

• T0_OS flag, bit 3 — When set, events are counted when thread 0 (logical processor 0) is executing at CPL of 
0. (When both the T0_OS and T0_USR flags are set, thread 0 events are counted at all privilege levels.)

• Tag enable, bit 4 — When set, enables tagging of µops to assist in at-retirement event counting; when clear, 
disables tagging. See Section 18.12.6, “At-Retirement Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a µop to assist in at-retirement 
event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the event class selected with the 
event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be counted. The events within this 
class that are counted are selected with the event mask field.

The T0_OS and T0_USR flags and the T1_OS and T1_USR flags allow event counting and sampling to be specified 
for a specific logical processor (0 or 1) within an Intel Xeon processor MP (See also: Section 8.4.5, “Identifying 
Logical Processors in an MP System,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A).

Not all performance monitoring events can be detected within an Intel Xeon processor MP on a per logical processor 
basis (see Section 18.13.4, “Performance Monitoring Events”). Some sub-events (specified by an event mask bits) 
are counted or sampled without regard to which logical processor is associated with the detected event. 

18.13.2 CCCR MSRs

Figure 18-42 shows the layout of a CCCR MSR in processors supporting Intel Hyper-Threading Technology. The 
functions of the flags and fields are as follows:
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is disabled. This flag is cleared on 

reset
• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to select events to be counted with 

the counter associated with the CCCR.
• Active thread field, bits 16 and 17 — Enables counting depending on which logical processors are active 

(executing a thread). This field enables filtering of events based on the state (active or inactive) of the logical 
processors. The encodings of this field are as follows:

Figure 18-41.  Event Selection Control Register (ESCR) for the Pentium 4 Processor, Intel Xeon Processor and Intel 
Xeon Processor MP Supporting Hyper-Threading Technology
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00 — None. Count only when neither logical processor is active.
01 — Single. Count only when one logical processor is active (either 0 or 1).
10 — Both. Count only when both logical processors are active.
11 — Any. Count when either logical processor is active.
A halted logical processor or a logical processor in the “wait for SIPI” state is considered inactive. 

• Compare flag, bit 18 — When set, enables filtering of the event count; when clear, disables filtering. The 
filtering method is selected with the threshold, complement, and edge flags.

• Complement flag, bit 19 — Selects how the incoming event count is compared with the threshold value. 
When set, event counts that are less than or equal to the threshold value result in a single count being 
delivered to the performance counter; when clear, counts greater than the threshold value result in a count 
being delivered to the performance counter (see Section 18.12.5.2, “Filtering Events”). The compare flag is not 
active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used for comparisons. The 
processor examines this field only when the compare flag is set, and uses the complement flag setting to 
determine the type of threshold comparison to be made. The useful range of values that can be entered in this 
field depend on the type of event being counted (see Section 18.12.5.2, “Filtering Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge detection of the threshold comparison 
output for filtering event counts; when clear, rising edge detection is disabled. This flag is active only when the 
compare flag is set.

• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every counter increment; when clear, 
overflow only occurs when the counter actually overflows.

• OVF_PMI_T0 flag, bit 26 — When set, causes a performance monitor interrupt (PMI) to be sent to logical 
processor 0 when the counter overflows occurs; when clear, disables PMI generation for logical processor 0. 
Note that the PMI is generate on the next event count after the counter has overflowed.

• OVF_PMI_T1 flag, bit 27 — When set, causes a performance monitor interrupt (PMI) to be sent to logical 
processor 1 when the counter overflows occurs; when clear, disables PMI generation for logical processor 1. 
Note that the PMI is generate on the next event count after the counter has overflowed.

Figure 18-42.  Counter Configuration Control Register (CCCR)
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• Cascade flag, bit 30 — When set, enables counting on one counter of a counter pair when its alternate 
counter in the other the counter pair in the same counter group overflows (see Section 18.12.2, “Performance 
Counters,” for further details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag is a sticky flag that must be 
explicitly cleared by software.

18.13.3 IA32_PEBS_ENABLE MSR

In a processor supporting Intel Hyper-Threading Technology and based on the Intel NetBurst microarchitecture, 
PEBS is enabled and qualified with two bits in the MSR_PEBS_ENABLE MSR: bit 25 (ENABLE_PEBS_MY_THR) and 
26 (ENABLE_PEBS_OTH_THR) respectively. These bits do not explicitly identify a specific logical processor by logic 
processor ID(T0 or T1); instead, they allow a software agent to enable PEBS for subsequent threads of execution 
on the same logical processor on which the agent is running (“my thread”) or for the other logical processor in the 
physical package on which the agent is not running (“other thread”).

PEBS is supported for only a subset of the at-retirement events: Execution_event, Front_end_event, and 
Replay_event. Also, PEBS can be carried out only with two performance counters: MSR_IQ_CCCR4 (MSR address 
370H) for logical processor 0 and MSR_IQ_CCCR5 (MSR address 371H) for logical processor 1.

Performance monitoring tools should use a processor affinity mask to bind the kernel mode components that need 
to modify the ENABLE_PEBS_MY_THR and ENABLE_PEBS_OTH_THR bits in the MSR_PEBS_ENABLE MSR to a 
specific logical processor. This is to prevent these kernel mode components from migrating between different 
logical processors due to OS scheduling.   

18.13.4 Performance Monitoring Events

All of the events listed in Table 19-21 and 19-22 are available in an Intel Xeon processor MP. When Intel Hyper-
Threading Technology is active, many performance monitoring events can be can be qualified by the logical 
processor ID, which corresponds to bit 0 of the initial APIC ID. This allows for counting an event in any or all of the 
logical processors. However, not all the events have this logic processor specificity, or thread specificity. 

Here, each event falls into one of two categories: 
• Thread specific (TS) — The event can be qualified as occurring on a specific logical processor.
• Thread independent (TI) — The event cannot be qualified as being associated with a specific logical 

processor. 

Table 19-27 gives logical processor specific information (TS or TI) for each of the events described in Tables 19-21 
and 19-22. If for example, a TS event occurred in logical processor T0, the counting of the event (as shown in Table 
18-48) depends only on the setting of the T0_USR and T0_OS flags in the ESCR being used to set up the event 
counter. The T1_USR and T1_OS flags have no effect on the count.

Table 18-48.  Effect of Logical Processor and CPL Qualification 
for Logical-Processor-Specific (TS) Events

T1_OS/T1_USR = 00 T1_OS/T1_USR = 01 T1_OS/T1_USR = 11 T1_OS/T1_USR = 10

T0_OS/T0_USR = 00 Zero count Counts while T1 in USR Counts while T1 in OS or 
USR

Counts while T1 in OS

T0_OS/T0_USR = 01 Counts while T0 in USR Counts while T0 in USR 
or T1 in USR

Counts while (a) T0 in 
USR or (b) T1 in OS or (c) 
T1 in USR

Counts while (a) T0 in OS 
or (b) T1 in OS

T0_OS/T0_USR = 11 Counts while T0 in OS or 
USR

Counts while (a) T0 in OS 
or (b) T0 in USR or (c) T1 
in USR

Counts irrespective of 
CPL, T0, T1

Counts while (a) T0 in OS 
or (b) or T0 in USR or (c) 
T1 in OS

T0_OS/T0_USR = 10 Counts T0 in OS Counts T0 in OS or T1 in 
USR

Counts while (a)T0 in Os 
or (b) T1 in OS or (c) T1 
in USR

Counts while (a) T0 in OS 
or (b) T1 in OS
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When a bit in the event mask field is TI, the effect of specifying bit-0-3 of the associated ESCR are described in 
Table 15-6. For events that are marked as TI in Chapter 19, the effect of selectively specifying T0_USR, T0_OS, 
T1_USR, T1_OS bits is shown in Table 18-49. 

18.14 COUNTING CLOCKS

The count of cycles, also known as clockticks, forms a the basis for measuring how long a program takes to 
execute. Clockticks are also used as part of efficiency ratios like cycles per instruction (CPI). Processor clocks may 
stop ticking under circumstances like the following:
• The processor is halted when there is nothing for the CPU to do. For example, the processor may halt to save 

power while the computer is servicing an I/O request. When Intel Hyper-Threading Technology is enabled, both 
logical processors must be halted for performance-monitoring counters to be powered down.

• The processor is asleep as a result of being halted or because of a power-management scheme. There are 
different levels of sleep. In the some deep sleep levels, the time-stamp counter stops counting.

In addition, processor core clocks may undergo transitions at different ratios relative to the processor’s bus clock 
frequency. Some of the situations that can cause processor core clock to undergo frequency transitions include:
• TM2 transitions
• Enhanced Intel SpeedStep Technology transitions (P-state transitions)

For Intel processors that support Intel Dynamic Acceleration or XE operation, the processor core clocks may 
operate at a frequency that differs from the maximum qualified frequency (as indicated by brand string information 
reported by CPUID instruction). See Section 18.14.5 for more detail.

There are several ways to count processor clock cycles to monitor performance. These are:
• Non-halted clockticks — Measures clock cycles in which the specified logical processor is not halted and is 

not in any power-saving state. When Intel Hyper-Threading Technology is enabled, ticks can be measured on a 
per-logical-processor basis. There are also performance events on dual-core processors that measure 
clockticks per logical processor when the processor is not halted.

• Non-sleep clockticks — Measures clock cycles in which the specified physical processor is not in a sleep mode 
or in a power-saving state. These ticks cannot be measured on a logical-processor basis.

• Time-stamp counter — Measures clock cycles in which the physical processor is not in deep sleep. These ticks 
cannot be measured on a logical-processor basis.

• Reference clockticks — TM2 or Enhanced Intel SpeedStep technology are two examples of processor 
features that can cause processor core clockticks to represent non-uniform tick intervals due to change of bus 
ratios. Performance events that counts clockticks of a constant reference frequency was introduced Intel Core 
Duo and Intel Core Solo processors. The mechanism is further enhanced on processors based on Intel Core 
microarchitecture.

Some processor models permit clock cycles to be measured when the physical processor is not in deep sleep (by 
using the time-stamp counter and the RDTSC instruction). Note that such ticks cannot be measured on a per-
logical-processor basis. See Section 17.13, “Time-Stamp Counter,” for detail on processor capabilities.

Table 18-49.  Effect of Logical Processor and CPL Qualification 
for Non-logical-Processor-specific (TI) Events

T1_OS/T1_USR = 00 T1_OS/T1_USR = 01 T1_OS/T1_USR = 11 T1_OS/T1_USR = 10 

T0_OS/T0_USR = 00 Zero count Counts while (a) T0 in 
USR or (b) T1 in USR

Counts irrespective of 
CPL, T0, T1

Counts while (a) T0 in OS 
or (b) T1 in OS 

T0_OS/T0_USR = 01 Counts while (a) T0 in 
USR or (b) T1 in USR

Counts while (a) T0 in 
USR or (b) T1 in USR

Counts irrespective of 
CPL, T0, T1

Counts irrespective of 
CPL, T0, T1 

T0_OS/T0_USR = 11 Counts irrespective of 
CPL, T0, T1

Counts irrespective of 
CPL, T0, T1

Counts irrespective of 
CPL, T0, T1

Counts irrespective of 
CPL, T0, T1 

T0_OS/T0_USR = 0 Counts while (a) T0 in OS 
or (b) T1 in OS

Counts irrespective of 
CPL, T0, T1

Counts irrespective of 
CPL, T0, T1

Counts while (a) T0 in OS 
or (b) T1 in OS
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The first two methods use performance counters and can be set up to cause an interrupt upon overflow (for 
sampling). They may also be useful where it is easier for a tool to read a performance counter than to use a time 
stamp counter (the timestamp counter is accessed using the RDTSC instruction). 

For applications with a significant amount of I/O, there are two ratios of interest:
• Non-halted CPI — Non-halted clockticks/instructions retired measures the CPI for phases where the CPU was 

being used. This ratio can be measured on a logical-processor basis when Intel Hyper-Threading Technology is 
enabled.

• Nominal CPI — Time-stamp counter ticks/instructions retired measures the CPI over the duration of a 
program, including those periods when the machine halts while waiting for I/O.

18.14.1 Non-Halted Clockticks

Use the following procedure to program ESCRs and CCCRs to obtain non-halted clockticks on processors based on 
Intel NetBurst microarchitecture: 

1. Select an ESCR for the global_power_events and specify the RUNNING sub-event mask and the desired 
T0_OS/T0_USR/T1_OS/T1_USR bits for the targeted processor.

2. Select an appropriate counter.

3. Enable counting in the CCCR for that counter by setting the enable bit.

18.14.2 Non-Sleep Clockticks

Performance monitoring counters can be configured to count clockticks whenever the performance monitoring 
hardware is not powered-down. To count Non-sleep Clockticks with a performance-monitoring counter, do the 
following:

1. Select one of the 18 counters.

2. Select any of the ESCRs whose events the selected counter can count. Set its event select to anything other 
than no_event. This may not seem necessary, but the counter may be disabled if this is not done.

3. Turn threshold comparison on in the CCCR by setting the compare bit to 1.

4. Set the threshold to 15 and the complement to 1 in the CCCR. Since no event can exceed this threshold, the 
threshold condition is met every cycle and the counter counts every cycle. Note that this overrides any qualifi-
cation (e.g. by CPL) specified in the ESCR.

5. Enable counting in the CCCR for the counter by setting the enable bit.

In most cases, the counts produced by the non-halted and non-sleep metrics are equivalent if the physical package 
supports one logical processor and is not placed in a power-saving state. Operating systems may execute an HLT 
instruction and place a physical processor in a power-saving state.

On processors that support Intel Hyper-Threading Technology (Intel HT Technology), each physical package can 
support two or more logical processors. Current implementation of Intel HT Technology provides two logical proces-
sors for each physical processor. While both logical processors can execute two threads simultaneously, one logical 
processor may halt to allow the other logical processor to execute without sharing execution resources between 
two logical processors. 

Non-halted Clockticks can be set up to count the number of processor clock cycles for each logical processor when-
ever the logical processor is not halted (the count may include some portion of the clock cycles for that logical 
processor to complete a transition to a halted state). Physical processors that support Intel HT Technology enter 
into a power-saving state if all logical processors halt.

The Non-sleep Clockticks mechanism uses a filtering mechanism in CCCRs. The mechanism will continue to incre-
ment as long as one logical processor is not halted or in a power-saving state. Applications may cause a processor 
to enter into a power-saving state by using an OS service that transfers control to an OS’s idle loop. The idle loop 
then may place the processor into a power-saving state after an implementation-dependent period if there is no 
work for the processor.
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18.14.3 Incrementing the Time-Stamp Counter

The time-stamp counter increments when the clock signal on the system bus is active and when the sleep pin is not 
asserted. The counter value can be read with the RDTSC instruction.

The time-stamp counter and the non-sleep clockticks count may not agree in all cases and for all processors. See 
Section 17.13, “Time-Stamp Counter,” for more information on counter operation.

18.14.4 Non-Halted Reference Clockticks

Software can use either processor-specific performance monitor events (for example: CPU_CLK_UNHALTED.BUS 
on processors based on the Intel Core microarchitecture, and equivalent event specifications on the Intel Core Duo 
and Intel Core Solo processors) to count non-halted reference clockticks.

These events count reference clock cycles whenever the specified processor is not halted. The counter counts 
reference cycles associated with a fixed-frequency clock source irrespective of P-state, TM2, or frequency transi-
tions that may occur to the processor.

18.14.5 Cycle Counting and Opportunistic Processor Operation

As a result of the state transitions due to opportunistic processor performance operation (see Chapter 14, “Power 
and Thermal Management”), a logical processor or a processor core can operate at frequency different from that 
indicated by the processor’s maximum qualified frequency. 

The following items are expected to hold true irrespective of when opportunistic processor operation causes state 
transitions:
• The time stamp counter operates at a fixed-rate frequency of the processor.
• The IA32_MPERF counter increments at the same TSC frequency irrespective of any transitions caused by 

opportunistic processor operation.
• The IA32_FIXED_CTR2 counter increments at the same TSC frequency irrespective of any transitions caused 

by opportunistic processor operation.
• The Local APIC timer operation is unaffected by opportunistic processor operation.
• The TSC, IA32_MPERF, and IA32_FIXED_CTR2 operate at the same, maximum-resolved frequency of the 

platform, which is equal to the product of scalable bus frequency and maximum resolved bus ratio. 

For processors based on Intel Core microarchitecture, the scalable bus frequency is encoded in the bit field 
MSR_FSB_FREQ[2:0] at (0CDH), see Chapter 35, “Model-Specific Registers (MSRs)”. The maximum resolved bus 
ratio can be read from the following bit field:
• If XE operation is disabled, the maximum resolved bus ratio can be read in MSR_PLATFORM_ID[12:8]. It 

corresponds to the maximum qualified frequency.
• IF XE operation is enabled, the maximum resolved bus ratio is given in MSR_PERF_STAT[44:40], it corresponds 

to the maximum XE operation frequency configured by BIOS.

XE operation of an Intel 64 processor is implementation specific. XE operation can be enabled only by BIOS. If 
MSR_PERF_STAT[31] is set, XE operation is enabled. The MSR_PERF_STAT[31] field is read-only.

18.15 PERFORMANCE MONITORING, BRANCH PROFILING AND SYSTEM EVENTS

When performance monitoring facilities and/or branch profiling facilities (see Section 17.5, “Last Branch, Interrupt, 
and Exception Recording (Intel® Core™ 2 Duo and Intel® Atom™ Processor Family)”) are enabled, these facilities 
capture event counts, branch records and branch trace messages occurring in a logical processor. The occurrence 
of interrupts, instruction streams due to various interrupt handlers all contribute to the results recorded by these 
facilities.

If CPUID.01H:ECX.PDCM[bit 15] is 1, the processor supports the IA32_PERF_CAPABILITIES MSR. If 
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is 1, the processor supports the ability for system soft-
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ware using performance monitoring and/or branch profiling facilities to filter out the effects of servicing system 
management interrupts. 

If the FREEZE_WHILE_SMM capability is enabled on a logical processor and after an SMI is delivered, the processor 
will clear all the enable bits of IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and 
disable LBR, BTF, TR, and BTS fields of IA32_DEBUGCTL before transferring control to the SMI handler. 

The enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of IA32_DEBUGCTL prior to SMI 
delivery will be restored , after the SMI handler issues RSM to complete its servicing. 

It is the responsibility of the SMM code to ensure the state of the performance monitoring and branch profiling facil-
ities are preserved upon entry or until prior to exiting the SMM. If any of this state is modified due to actions by the 
SMM code, the SMM code is required to restore such state to the values present at entry to the SMM handler.

System software is allowed to set IA32_DEBUGCTL.FREEZE_WHILE_SMM_EN[bit 14] to 1 only supported as indi-
cated by IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] reporting 1.

18.16 PERFORMANCE MONITORING AND DUAL-CORE TECHNOLOGY

The performance monitoring capability of dual-core processors duplicates the microarchitectural resources of a 
single-core processor implementation. Each processor core has dedicated performance monitoring resources.

In the case of Pentium D processor, each logical processor is associated with dedicated resources for performance 
monitoring. In the case of Pentium processor Extreme edition, each processor core has dedicated resources, but 
two logical processors in the same core share performance monitoring resources (see Section 18.13, “Performance 
Monitoring and Intel Hyper-Threading Technology in Processors Based on Intel NetBurst® Microarchitecture”). 

18.17 PERFORMANCE MONITORING ON 64-BIT INTEL XEON PROCESSOR MP 
WITH UP TO 8-MBYTE L3 CACHE

The 64-bit Intel Xeon processor MP with up to 8-MByte L3 cache has a CPUID signature of family [0FH], model [03H 
or 04H]. Performance monitoring capabilities available to Pentium 4 and Intel Xeon processors with the same 
values (see Section 18.1 and Section 18.13) apply to the 64-bit Intel Xeon processor MP with an L3 cache. 

The level 3 cache is connected between the system bus and IOQ through additional control logic. See Figure 18-44.

Figure 18-43.  Layout of IA32_PERF_CAPABILITIES MSR 
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Additional performance monitoring capabilities and facilities unique to 64-bit Intel Xeon processor MP with an L3 
cache are described in this section. The facility for monitoring events consists of a set of dedicated model-specific 
registers (MSRs), each dedicated to a specific event. Programming of these MSRs requires using RDMSR/WRMSR 
instructions with 64-bit values.

The lower 32-bits of the MSRs at addresses 107CC through 107D3 are treated as 32 bit performance counter regis-
ters. These performance counters can be accessed using RDPMC instruction with the index starting from 18 
through 25. The EDX register returns zero when reading these 8 PMCs.

The performance monitoring capabilities consist of four events. These are:
• IBUSQ event — This event detects the occurrence of micro-architectural conditions related to the iBUSQ unit. 

It provides two MSRs: MSR_IFSB_IBUSQ0 and MSR_IFSB_IBUSQ1. Configure sub-event qualification and 
enable/disable functions using the high 32 bits of these MSRs. The low 32 bits act as a 32-bit event counter. 
Counting starts after software writes a non-zero value to one or more of the upper 32 bits. See Figure 18-45.

• ISNPQ event — This event detects the occurrence of microarchitectural conditions related to the iSNPQ unit. 
It provides two MSRs: MSR_IFSB_ISNPQ0 and MSR_IFSB_ISNPQ1. Configure sub-event qualifications and 
enable/disable functions using the high 32 bits of the MSRs. The low 32-bits act as a 32-bit event counter. 
Counting starts after software writes a non-zero value to one or more of the upper 32-bits. See Figure 18-46.

Figure 18-44.  Block Diagram of 64-bit Intel Xeon Processor MP with 8-MByte L3

Figure 18-45.  MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH
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• EFSB event — This event can detect the occurrence of micro-architectural conditions related to the iFSB unit 
or system bus. It provides two MSRs: MSR_EFSB_DRDY0 and MSR_EFSB_DRDY1. Configure sub-event qualifi-
cations and enable/disable functions using the high 32 bits of the 64-bit MSR. The low 32-bit act as a 32-bit 
event counter. Counting starts after software writes a non-zero value to one or more of the qualification bits in 
the upper 32-bits of the MSR. See Figure 18-47.

• IBUSQ Latency event — This event accumulates weighted cycle counts for latency measurement of transac-
tions in the iBUSQ unit. The count is enabled by setting MSR_IFSB_CTRL6[bit 26] to 1; the count freezes after 
software sets MSR_IFSB_CTRL6[bit 26] to 0. MSR_IFSB_CNTR7 acts as a 64-bit event counter for this event. 
See Figure 18-48.

Figure 18-46.  MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH

Figure 18-47.  MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H
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18.18 PERFORMANCE MONITORING ON L3 AND CACHING BUS CONTROLLER 
SUB-SYSTEMS

The Intel Xeon processor 7400 series and Dual-Core Intel Xeon processor 7100 series employ a distinct L3/caching 
bus controller sub-system. These sub-system have a unique set of performance monitoring capability and 
programming interfaces that are largely common between these two processor families. 

Intel Xeon processor 7400 series are based on 45nm enhanced Intel Core microarchitecture. The CPUID signature 
is indicated by DisplayFamily_DisplayModel value of 06_1DH (see CPUID instruction in Chapter 3, “Instruction Set 
Reference, A-M” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). Intel Xeon 
processor 7400 series have six processor cores that share an L3 cache. 

Dual-Core Intel Xeon processor 7100 series are based on Intel NetBurst microarchitecture, have a CPUID signature 
of family [0FH], model [06H] and a unified L3 cache shared between two cores. Each core in an Intel Xeon 
processor 7100 series supports Intel Hyper-Threading Technology, providing two logical processors per core. 

Both Intel Xeon processor 7400 series and Intel Xeon processor 7100 series support multi-processor configurations 
using system bus interfaces. In Intel Xeon processor 7400 series, the L3/caching bus controller sub-system 
provides three Simple Direct Interface (SDI) to service transactions originated the XQ-replacement SDI logic in 
each dual-core modules. In Intel Xeon processor 7100 series, the IOQ logic in each processor core is replaced with 
a Simple Direct Interface (SDI) logic. The L3 cache is connected between the system bus and the SDI through 
additional control logic. See Figure 18-49 for the block configuration of six processor cores and the L3/Caching bus 
controller sub-system in Intel Xeon processor 7400 series. Figure 18-49 shows the block configuration of two 
processor cores (four logical processors) and the L3/Caching bus controller sub-system in Intel Xeon processor 
7100 series.

Figure 18-48.  MSR_IFSB_CTL6, Address: 107D2H; 
MSR_IFSB_CNTR7, Address: 107D3H
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Almost all of the performance monitoring capabilities available to processor cores with the same CPUID signatures 
(see Section 18.1 and Section 18.13) apply to Intel Xeon processor 7100 series. The MSRs used by performance 
monitoring interface are shared between two logical processors in the same processor core.

The performance monitoring capabilities available to processor with DisplayFamily_DisplayModel signature 06_17H 
also apply to Intel Xeon processor 7400 series. Each processor core provides its own set of MSRs for performance 
monitoring interface.

The IOQ_allocation and IOQ_active_entries events are not supported in Intel Xeon processor 7100 series and 7400 
series. Additional performance monitoring capabilities applicable to the L3/caching bus controller sub-system are 
described in this section. 

Figure 18-49.  Block Diagram of Intel Xeon Processor 7400 Series

Figure 18-50.  Block Diagram of Intel Xeon Processor 7100 Series
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18.18.1 Overview of Performance Monitoring with L3/Caching Bus Controller 

The facility for monitoring events consists of a set of dedicated model-specific registers (MSRs). There are eight 
event select/counting MSRs that are dedicated to counting events associated with specified microarchitectural 
conditions. Programming of these MSRs requires using RDMSR/WRMSR instructions with 64-bit values. In addition, 
an MSR MSR_EMON_L3_GL_CTL provides simplified interface to control freezing, resetting, re-enabling operation 
of any combination of these event select/counting MSRs. 

The eight MSRs dedicated to count occurrences of specific conditions are further divided to count three sub-classes 
of microarchitectural conditions:
• Two MSRs (MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1) are dedicated to counting GBSQ 

events. Up to two GBSQ events can be programmed and counted simultaneously. 
• Two MSRs (MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3) are dedicated to counting GSNPQ 

events. Up to two GBSQ events can be programmed and counted simultaneously. 
• Four MSRs (MSR_EMON_L3_CTR_CTL4, MSR_EMON_L3_CTR_CTL5, MSR_EMON_L3_CTR_CTL6, and 

MSR_EMON_L3_CTR_CTL7) are dedicated to counting external bus operations.

The bit fields in each of eight MSRs share the following common characteristics:
• Bits 63:32 is the event control field that includes an event mask and other bit fields that control counter 

operation. The event mask field specifies details of the microarchitectural condition, and its definition differs 
across GBSQ, GSNPQ, FSB. 

• Bits 31:0 is the event count field. If the specified condition is met during each relevant clock domain of the 
event logic, the matched condition signals the counter logic to increment the associated event count field. The 
lower 32-bits of these 8 MSRs at addresses 107CC through 107D3 are treated as 32 bit performance counter 
registers. 

In Dual-Core Intel Xeon processor 7100 series, the uncore performance counters can be accessed using RDPMC 
instruction with the index starting from 18 through 25. The EDX register returns zero when reading these 8 PMCs. 

In Intel Xeon processor 7400 series, RDPMC with ECX between 2 and 9 can be used to access the eight uncore 
performance counter/control registers. 

18.18.2 GBSQ Event Interface

The layout of MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1 is given in Figure 18-51. Counting starts 
after software writes a non-zero value to one or more of the upper 32 bits. 

The event mask field (bits 58:32) consists of the following eight attributes:
• Agent_Select (bits 35:32): The definition of this field differs slightly between Intel Xeon processor 7100 and 

7400. 
For Intel Xeon processor 7100 series, each bit specifies a logical processor in the physical package. The lower 
two bits corresponds to two logical processors in the first processor core, the upper two bits corresponds to two 
logical processors in the second processor core. 0FH encoding matches transactions from any logical processor.
For Intel Xeon processor 7400 series, each bit of [34:32] specifies the SDI logic of a dual-core module as the 
originator of the transaction. A value of 0111B in bits [35:32] specifies transaction from any processor core.
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• Data_Flow (bits 37:36): Bit 36 specifies demand transactions, bit 37 specifies prefetch transactions.
• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event count will include all 

transaction types.
• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position) clean snoop result, HIT snoop 

result, and HITM snoop results respectively.
• L3_State (bits 53:47): Each bit specifies an L2 coherency state. 
• Core_Module_Select (bits 55:54): The valid encodings for L3 lookup differ slightly between Intel Xeon 

processor 7100 and 7400. 
For Intel Xeon processor 7100 series, 

— 00B: Match transactions from any core in the physical package

— 01B: Match transactions from this core only

— 10B: Match transactions from the other core in the physical package

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series, 

— 00B: Match transactions from any dual-core module in the physical package

— 01B: Match transactions from this dual-core module only

— 10B: Match transactions from either one of the other two dual-core modules in the physical package

— 11B: Match transaction from more than one dual-core modules in the physical package
• Fill_Eviction (bits 57:56): The valid encodings are

— 00B: Match any transactions 

— 01B: Match transactions that fill L3

— 10B: Match transactions that fill L3 without an eviction

— 11B: Match transaction fill L3 with an eviction
• Cross_Snoop (bit 58): The encodings are \

— 0B: Match any transactions 

— 1B: Match cross snoop transactions

Figure 18-51.  MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH
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For each counting clock domain, if all eight attributes match, event logic signals to increment the event count field.

18.18.3 GSNPQ Event Interface

The layout of MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3 is given in Figure 18-52. Counting starts 
after software writes a non-zero value to one or more of the upper 32 bits. 

The event mask field (bits 58:32) consists of the following six attributes:
• Agent_Select (bits 37:32): The definition of this field differs slightly between Intel Xeon processor 7100 and 

7400. 
• For Intel Xeon processor 7100 series, each of the lowest 4 bits specifies a logical processor in the physical 

package. The lowest two bits corresponds to two logical processors in the first processor core, the next two bits 
corresponds to two logical processors in the second processor core. Bit 36 specifies other symmetric agent 
transactions. Bit 37 specifies central agent transactions. 3FH encoding matches transactions from any logical 
processor.
For Intel Xeon processor 7400 series, each of the lowest 3 bits specifies a dual-core module in the physical 
package. Bit 37 specifies central agent transactions. 

• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event count will include any 
transaction types.

• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position) clean snoop result, HIT snoop 
result, and HITM snoop results respectively.

• L2_State (bits 53:47): Each bit specifies an L3 coherency state. 
• Core_Module_Select (bits 56:54): Bit 56 enables Core_Module_Select matching. If bit 56 is clear, 

Core_Module_Select encoding is ignored. The valid encodings for the lower two bits (bit 55, 54) differ slightly 
between Intel Xeon processor 7100 and 7400.
For Intel Xeon processor 7100 series, if bit 56 is set, the valid encodings for the lower two bits (bit 55, 54) are

— 00B: Match transactions from only one core (irrespective which core) in the physical package

— 01B: Match transactions from this core and not the other core

— 10B: Match transactions from the other core in the physical package, but not this core

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series, if bit 56 is set, the valid encodings for the lower two bits (bit 55, 54) are

— 00B: Match transactions from only one dual-core module (irrespective which module) in the physical 
package

— 01B: Match transactions from one or more dual-core modules.

— 10B: Match transactions from two or more dual-core modules.

— 11B: Match transaction from all three dual-core modules in the physical package
• Block_Snoop (bit 57): specifies blocked snoop.

For each counting clock domain, if all six attributes match, event logic signals to increment the event count field.
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18.18.4 FSB Event Interface

The layout of MSR_EMON_L3_CTR_CTL4 through MSR_EMON_L3_CTR_CTL7 is given in Figure 18-53. Counting 
starts after software writes a non-zero value to one or more of the upper 32 bits. 

The event mask field (bits 58:32) is organized as follows:
• Bit 58: must set to 1.
• FSB_Submask (bits 57:32): Specifies FSB-specific sub-event mask.

The FSB sub-event mask defines a set of independent attributes. The event logic signals to increment the associ-
ated event count field if one of the attribute matches. Some of the sub-event mask bit counts durations. A duration 
event increments at most once per cycle.

18.18.4.1  FSB Sub-Event Mask Interface

• FSB_type (bit 37:32): Specifies different FSB transaction types originated from this physical package
• FSB_L_clear (bit 38): Count clean snoop results from any source for transaction originated from this physical 

package
• FSB_L_hit (bit 39): Count HIT snoop results from any source for transaction originated from this physical 

package

Figure 18-52.  MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH

Figure 18-53.  MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H
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• FSB_L_hitm (bit 40): Count HITM snoop results from any source for transaction originated from this physical 
package

• FSB_L_defer (bit 41): Count DEFER responses to this processor’s transactions
• FSB_L_retry (bit 42): Count RETRY responses to this processor’s transactions
• FSB_L_snoop_stall (bit 43): Count snoop stalls to this processor’s transactions
• FSB_DBSY (bit 44): Count DBSY assertions by this processor (without a concurrent DRDY)
• FSB_DRDY (bit 45): Count DRDY assertions by this processor
• FSB_BNR (bit 46): Count BNR assertions by this processor
• FSB_IOQ_empty (bit 47): Counts each bus clocks when the IOQ is empty
• FSB_IOQ_full (bit 48): Counts each bus clocks when the IOQ is full
• FSB_IOQ_active (bit 49): Counts each bus clocks when there is at least one entry in the IOQ
• FSB_WW_data (bit 50): Counts back-to-back write transaction’s data phase.
• FSB_WW_issue (bit 51): Counts back-to-back write transaction request pairs issued by this processor.
• FSB_WR_issue (bit 52): Counts back-to-back write-read transaction request pairs issued by this processor.
• FSB_RW_issue (bit 53): Counts back-to-back read-write transaction request pairs issued by this processor.
• FSB_other_DBSY (bit 54): Count DBSY assertions by another agent (without a concurrent DRDY)
• FSB_other_DRDY (bit 55): Count DRDY assertions by another agent
• FSB_other_snoop_stall (bit 56): Count snoop stalls on the FSB due to another agent
• FSB_other_BNR (bit 57): Count BNR assertions from another agent

18.18.5 Common Event Control Interface

The MSR_EMON_L3_GL_CTL MSR provides simplified access to query overflow status of the GBSQ, GSNPQ, FSB 
event counters. It also provides control bit fields to freeze, unfreeze, or reset those counters. The following bit 
fields are supported:
• GL_freeze_cmd (bit 0): Freeze the event counters specified by the GL_event_select field.
• GL_unfreeze_cmd (bit 1): Unfreeze the event counters specified by the GL_event_select field.
• GL_reset_cmd (bit 2): Clear the event count field of the event counters specified by the GL_event_select field. 

The event select field is not affected.
• GL_event_select (bit 23:16): Selects one or more event counters to subject to specified command operations 

indicated by bits 2:0. Bit 16 corresponds to MSR_EMON_L3_CTR_CTL0, bit 23 corresponds to 
MSR_EMON_L3_CTR_CTL7.

• GL_event_status (bit 55:48): Indicates the overflow status of each event counters. Bit 48 corresponds to 
MSR_EMON_L3_CTR_CTL0, bit 55 corresponds to MSR_EMON_L3_CTR_CTL7.

In the event control field (bits 63:32) of each MSR, if the saturate control (bit 59, see Figure 18-51 for example) is 
set, the event logic forces the value FFFF_FFFFH into the event count field instead of incrementing it. 

18.19 PERFORMANCE MONITORING (P6 FAMILY PROCESSOR)

The P6 family processors provide two 40-bit performance counters, allowing two types of events to be monitored 
simultaneously. These can either count events or measure duration. When counting events, a counter increments 
each time a specified event takes place or a specified number of events takes place. When measuring duration, it 
counts the number of processor clocks that occur while a specified condition is true. The counters can count events 
or measure durations that occur at any privilege level. 

Table 19-30, Chapter 19, lists the events that can be counted with the P6 family performance monitoring counters.
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NOTE

The performance-monitoring events listed in Chapter 19 are intended to be used as guides for 
performance tuning. Counter values reported are not guaranteed to be accurate and should be 
used as a relative guide for tuning. Known discrepancies are documented where applicable.

The performance-monitoring counters are supported by four MSRs: the performance event select MSRs 
(PerfEvtSel0 and PerfEvtSel1) and the performance counter MSRs (PerfCtr0 and PerfCtr1). These registers can be 
read from and written to using the RDMSR and WRMSR instructions, respectively. They can be accessed using 
these instructions only when operating at privilege level 0. The PerfCtr0 and PerfCtr1 MSRs can be read from any 
privilege level using the RDPMC (read performance-monitoring counters) instruction.

NOTE

The PerfEvtSel0, PerfEvtSel1, PerfCtr0, and PerfCtr1 MSRs and the events listed in Table 19-30 are 
model-specific for P6 family processors. They are not guaranteed to be available in other IA-32 
processors.

18.19.1 PerfEvtSel0 and PerfEvtSel1 MSRs

The PerfEvtSel0 and PerfEvtSel1 MSRs control the operation of the performance-monitoring counters, with one 
register used to set up each counter. They specify the events to be counted, how they should be counted, and the 
privilege levels at which counting should take place. Figure 18-54 shows the flags and fields in these MSRs.

The functions of the flags and fields in the PerfEvtSel0 and PerfEvtSel1 MSRs are as follows:
• Event select field (bits 0 through 7) — Selects the event logic unit to detect certain microarchitectural 

conditions (see Table 19-30, for a list of events and their 8-bit codes).
• Unit mask (UMASK) field (bits 8 through 15) — Further qualifies the event logic unit selected in the event 

select field to detect a specific microarchitectural condition. For example, for some cache events, the mask is 
used as a MESI-protocol qualifier of cache states (see Table 19-30).

• USR (user mode) flag (bit 16) — Specifies that events are counted only when the processor is operating at 
privilege levels 1, 2 or 3. This flag can be used in conjunction with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that events are counted only when the processor is 
operating at privilege level 0. This flag can be used in conjunction with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of events. The processor counts the 
number of deasserted to asserted transitions of any condition that can be expressed by the other fields. The 
mechanism is limited in that it does not permit back-to-back assertions to be distinguished. This mechanism 
allows software to measure not only the fraction of time spent in a particular state, but also the average length 
of time spent in such a state (for example, the time spent waiting for an interrupt to be serviced).

Figure 18-54.  PerfEvtSel0 and PerfEvtSel1 MSRs
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• PC (pin control) flag (bit 19) — When set, the processor toggles the PMi pins and increments the counter 
when performance-monitoring events occur; when clear, the processor toggles the PMi pins when the counter 
overflows. The toggling of a pin is defined as assertion of the pin for a single bus clock followed by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the processor generates an exception through its 
local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — This flag is only present in the PerfEvtSel0 MSR. When set, 
performance counting is enabled in both performance-monitoring counters; when clear, both counters are 
disabled.

• INV (invert) flag (bit 23) — When set, inverts the counter-mask (CMASK) comparison, so that both greater 
than or equal to and less than comparisons can be made (0: greater than or equal; 1: less than). Note if 
counter-mask is programmed to zero, INV flag is ignored.

• Counter mask (CMASK) field (bits 24 through 31) — When nonzero, the processor compares this mask to 
the number of events counted during a single cycle. If the event count is greater than or equal to this mask, the 
counter is incremented by one. Otherwise the counter is not incremented. This mask can be used to count 
events only if multiple occurrences happen per clock (for example, two or more instructions retired per clock). 
If the counter-mask field is 0, then the counter is incremented each cycle by the number of events that 
occurred that cycle.

18.19.2 PerfCtr0 and PerfCtr1 MSRs

The performance-counter MSRs (PerfCtr0 and PerfCtr1) contain the event or duration counts for the selected 
events being counted. The RDPMC instruction can be used by programs or procedures running at any privilege level 
and in virtual-8086 mode to read these counters. The PCE flag in control register CR4 (bit 8) allows the use of this 
instruction to be restricted to only programs and procedures running at privilege level 0.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it does not necessarily wait until 
all previous instructions have been executed before reading the counter. Similarly, subsequent instructions may 
begin execution before the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the performance counters, using 
the RDMSR and WRMSR instructions. A secure operating system would clear the PCE flag during system initializa-
tion to disable direct user access to the performance-monitoring counters, but provide a user-accessible program-
ming interface that emulates the RDPMC instruction.

The WRMSR instruction cannot arbitrarily write to the performance-monitoring counter MSRs (PerfCtr0 and 
PerfCtr1). Instead, the lower-order 32 bits of each MSR may be written with any value, and the high-order 8 bits 
are sign-extended according to the value of bit 31. This operation allows writing both positive and negative values 
to the performance counters.

18.19.3 Starting and Stopping the Performance-Monitoring Counters

The performance-monitoring counters are started by writing valid setup information in the PerfEvtSel0 and/or 
PerfEvtSel1 MSRs and setting the enable counters flag in the PerfEvtSel0 MSR. If the setup is valid, the counters 
begin counting following the execution of a WRMSR instruction that sets the enable counter flag. The counters can 
be stopped by clearing the enable counters flag or by clearing all the bits in the PerfEvtSel0 and PerfEvtSel1 MSRs. 
Counter 1 alone can be stopped by clearing the PerfEvtSel1 MSR.

18.19.4 Event and Time-Stamp Monitoring Software

To use the performance-monitoring counters and time-stamp counter, the operating system needs to provide an 
event-monitoring device driver. This driver should include procedures for handling the following operations:
• Feature checking
• Initialize and start counters
• Stop counters
• Read the event counters



18-94 Vol. 3B

PERFORMANCE MONITORING

• Read the time-stamp counter

The event monitor feature determination procedure must check whether the current processor supports the perfor-
mance-monitoring counters and time-stamp counter. This procedure compares the family and model of the 
processor returned by the CPUID instruction with those of processors known to support performance monitoring. 
(The Pentium and P6 family processors support performance counters.) The procedure also checks the MSR and 
TSC flags returned to register EDX by the CPUID instruction to determine if the MSRs and the RDTSC instruction are 
supported.

The initialize and start counters procedure sets the PerfEvtSel0 and/or PerfEvtSel1 MSRs for the events to be 
counted and the method used to count them and initializes the counter MSRs (PerfCtr0 and PerfCtr1) to starting 
counts. The stop counters procedure stops the performance counters (see Section 18.19.3, “Starting and Stopping 
the Performance-Monitoring Counters”).

The read counters procedure reads the values in the PerfCtr0 and PerfCtr1 MSRs, and a read time-stamp counter 
procedure reads the time-stamp counter. These procedures would be provided in lieu of enabling the RDTSC and 
RDPMC instructions that allow application code to read the counters. 

18.19.5 Monitoring Counter Overflow

The P6 family processors provide the option of generating a local APIC interrupt when a performance-monitoring 
counter overflows. This mechanism is enabled by setting the interrupt enable flag in either the PerfEvtSel0 or the 
PerfEvtSel1 MSR. The primary use of this option is for statistical performance sampling. 

To use this option, the operating system should do the following things on the processor for which performance 
events are required to be monitored:
• Provide an interrupt vector for handling the counter-overflow interrupt.
• Initialize the APIC PERF local vector entry to enable handling of performance-monitor counter overflow events.
• Provide an entry in the IDT that points to a stub exception handler that returns without executing any instruc-

tions.
• Provide an event monitor driver that provides the actual interrupt handler and modifies the reserved IDT entry 

to point to its interrupt routine.

When interrupted by a counter overflow, the interrupt handler needs to perform the following actions:
• Save the instruction pointer (EIP register), code-segment selector, TSS segment selector, counter values and 

other relevant information at the time of the interrupt.
• Reset the counter to its initial setting and return from the interrupt.

An event monitor application utility or another application program can read the information collected for analysis 
of the performance of the profiled application.

18.20 PERFORMANCE MONITORING (PENTIUM PROCESSORS)

The Pentium processor provides two 40-bit performance counters, which can be used to count events or measure 
duration. The counters are supported by three MSRs: the control and event select MSR (CESR) and the perfor-
mance counter MSRs (CTR0 and CTR1). These can be read from and written to using the RDMSR and WRMSR 
instructions, respectively. They can be accessed using these instructions only when operating at privilege level 0. 

Each counter has an associated external pin (PM0/BP0 and PM1/BP1), which can be used to indicate the state of the 
counter to external hardware.

NOTES

The CESR, CTR0, and CTR1 MSRs and the events listed in Table 19-31 are model-specific for the 
Pentium processor.
The performance-monitoring events listed in Chapter 19 are intended to be used as guides for 
performance tuning. Counter values reported are not guaranteed to be accurate and should be 
used as a relative guide for tuning. Known discrepancies are documented where applicable.
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18.20.1 Control and Event Select Register (CESR)

The 32-bit control and event select MSR (CESR) controls the operation of performance-monitoring counters CTR0 
and CTR1 and the associated pins (see Figure 18-55). To control each counter, the CESR register contains a 6-bit 
event select field (ES0 and ES1), a pin control flag (PC0 and PC1), and a 3-bit counter control field (CC0 and CC1). 
The functions of these fields are as follows:
• ES0 and ES1 (event select) fields (bits 0-5, bits 16-21) — Selects (by entering an event code in the field) 

up to two events to be monitored. See Table 19-31 for a list of available event codes.

• CC0 and CC1 (counter control) fields (bits 6-8, bits 22-24) — Controls the operation of the counter. 
Control codes are as follows:

000 — Count nothing (counter disabled)

001 — Count the selected event while CPL is 0, 1, or 2

010 — Count the selected event while CPL is 3

011 — Count the selected event regardless of CPL

100 — Count nothing (counter disabled)

101 — Count clocks (duration) while CPL is 0, 1, or 2

110 — Count clocks (duration) while CPL is 3

111 — Count clocks (duration) regardless of CPL
The highest order bit selects between counting events and counting clocks (duration); the middle bit enables 
counting when the CPL is 3; and the low-order bit enables counting when the CPL is 0, 1, or 2.

• PC0 and PC1 (pin control) flags (bits 9, 25) — Selects the function of the external performance-monitoring 
counter pin (PM0/BP0 and PM1/BP1). Setting one of these flags to 1 causes the processor to assert its 
associated pin when the counter has overflowed; setting the flag to 0 causes the pin to be asserted when the 
counter has been incremented. These flags permit the pins to be individually programmed to indicate the 
overflow or incremented condition. The external signalling of the event on the pins will lag the internal event by 
a few clocks as the signals are latched and buffered.

While a counter need not be stopped to sample its contents, it must be stopped and cleared or preset before 
switching to a new event. It is not possible to set one counter separately. If only one event needs to be changed, 
the CESR register must be read, the appropriate bits modified, and all bits must then be written back to CESR. At 
reset, all bits in the CESR register are cleared.

18.20.2 Use of the Performance-Monitoring Pins

When performance-monitor pins PM0/BP0 and/or PM1/BP1 are configured to indicate when the performance-
monitor counter has incremented and an “occurrence event” is being counted, the associated pin is asserted (high) 
each time the event occurs. When a “duration event” is being counted, the associated PM pin is asserted for the 

Figure 18-55.  CESR MSR (Pentium Processor Only)
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entire duration of the event. When the performance-monitor pins are configured to indicate when the counter has 
overflowed, the associated PM pin is asserted when the counter has overflowed.

When the PM0/BP0 and/or PM1/BP1 pins are configured to signal that a counter has incremented, it should be 
noted that although the counters may increment by 1 or 2 in a single clock, the pins can only indicate that the event 
occurred. Moreover, since the internal clock frequency may be higher than the external clock frequency, a single 
external clock may correspond to multiple internal clocks.

A “count up to” function may be provided when the event pin is programmed to signal an overflow of the counter. 
Because the counters are 40 bits, a carry out of bit 39 indicates an overflow. A counter may be preset to a specific 
value less then 240 − 1. After the counter has been enabled and the prescribed number of events has transpired, 
the counter will overflow. 

Approximately 5 clocks later, the overflow is indicated externally and appropriate action, such as signaling an inter-
rupt, may then be taken.

The PM0/BP0 and PM1/BP1 pins also serve to indicate breakpoint matches during in-circuit emulation, during which 
time the counter increment or overflow function of these pins is not available. After RESET, the PM0/BP0 and 
PM1/BP1 pins are configured for performance monitoring, however a hardware debugger may reconfigure these 
pins to indicate breakpoint matches.

18.20.3 Events Counted

Events that performance-monitoring counters can be set to count and record (using CTR0 and CTR1) are divided in 
two categories: occurrence and duration:
• Occurrence events — Counts are incremented each time an event takes place. If PM0/BP0 or PM1/BP1 pins 

are used to indicate when a counter increments, the pins are asserted each clock counters increment. But if an 
event happens twice in one clock, the counter increments by 2 (the pins are asserted only once).

• Duration events — Counters increment the total number of clocks that the condition is true. When used to 
indicate when counters increment, PM0/BP0 and/or PM1/BP1 pins are asserted for the duration.
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CHAPTER 19
PERFORMANCE-MONITORING EVENTS

This chapter lists the performance-monitoring events that can be monitored with the Intel 64 or IA-32 processors. 
The ability to monitor performance events and the events that can be monitored in these processors are mostly 
model-specific, except for architectural performance events, described in Section 19.1. 

Non-architectural performance events (i.e. model-specific events) are listed for each generation of microarchitec-
ture:
• Section 19.2 - Processors based on Intel® microarchitecture code name Haswell
• Section 19.3 - Processors based on Intel® microarchitecture code name Ivy Bridge
• Section 19.4 - Processors based on Intel® microarchitecture code name Sandy Bridge
• Section 19.5 - Processors based on Intel® microarchitecture code name Nehalem
• Section 19.6 - Processors based on Intel® microarchitecture code name Westmere
• Section 19.7 - Processors based on Enhanced Intel® Core™ microarchitecture
• Section 19.8 - Processors based on Intel® Core™ microarchitecture
• Section 19.9 - Processors based on the Silvermont microarchitecture
• Section 19.10 - Processors based on Intel® Atom™ microarchitecture
• Section 19.11 - Intel® Core™ Solo and Intel® Core™ Duo processors
• Section 19.12 - Processors based on Intel NetBurst® microarchitecture
• Section 19.13 - Pentium® M family processors
• Section 19.14 - P6 family processors
• Section 19.15 - Pentium® processors

NOTE

These performance-monitoring events are intended to be used as guides for performance tuning. 
The counter values reported by the performance-monitoring events are approximate and believed 
to be useful as relative guides for tuning software. Known discrepancies are documented where 
applicable. 
All performance event encodings not documented in the appropriate tables for the given processor 
are considered reserved, and their use will result in undefined counter updates with associated 
overflow actions.

19.1 ARCHITECTURAL PERFORMANCE-MONITORING EVENTS

Architectural performance events are introduced in Intel Core Solo and Intel Core Duo processors. They are also 
supported on processors based on Intel Core microarchitecture. Table 19-1 lists pre-defined architectural perfor-
mance events that can be configured using general-purpose performance counters and associated event-select 
registers.

Table 19-1.  Architectural Performance Events

Event
Num. Event Mask Mnemonic

Umask
Value Description Comment

3CH UnHalted Core Cycles 00H Unhalted core cycles

3CH UnHalted Reference Cycles 01H Unhalted reference cycles Measures bus 
cycle1

C0H Instruction Retired 00H Instruction retired
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19.2 PERFORMANCE MONITORING EVENTS FOR THE 4TH GENERATION 
INTEL® CORE™ PROCESSORS 

4th generation Intel® Core™ processors and Intel Xeon processor E3-1200 v3 product family are based on Intel 
microarchitecture code name Haswell. They support the architectural performance-monitoring events listed in 
Table 19-1. Non-architectural performance-monitoring events in the processor core are listed in Table 19-2. The 
events in Table 19-2 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the 
following values: 06_3CH, 06_45H and 06_46H. Table 19-3 lists performance events focused on supporting Intel 
TSX (see Section 18.11.5).

Additional information on event specifics (e.g. derivative events using specific IA32_PERFEVTSELx modifiers, limi-
tations, special notes and recommendations) can be found at http://software.intel.com/en-us/forums/software-
tuning-performance-optimization-platform-monitoring.

2EH LLC Reference 4FH Longest latency cache references

2EH LLC Misses 41H Longest latency cache misses

C4H Branch Instruction Retired 00H Branch instruction at retirement

C5H Branch Misses Retired 00H Mispredicted Branch Instruction at retirement

NOTES:

1. Implementation of this event in Intel Core 2 processor family, Intel Core Duo, and Intel Core Solo processors measures bus clocks.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of 
4th Generation Intel® Core™ Processors

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD loads blocked by overlapping with store buffer that 
cannot be forwarded .

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are 
temporarily blocked because all resources for 
handling the split accesses are in use.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to 
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops 
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS
_ALIAS

False dependencies in MOB due to partial compare 
on address.

08H 01H DTLB_LOAD_MISSES.MISS_CAUS
ES_A_WALK

Misses in all TLB levels that cause a page walk of any 
page size.

08H 02H DTLB_LOAD_MISSES.WALK_COM
PLETED_4K

Completed page walks due to demand load misses 
that caused 4K page walks in any TLB levels.

08H 04H DTLB_LOAD_MISSES.WALK_COM
PLETED_2M_4M

Completed page walks due to demand load misses 
that caused 2M/4M page walks in any TLB levels.

08H 0EH DTLB_LOAD_MISSES.WALK_COM
PLETED

Completed page walks in any TLB of any page size 
due to demand load misses 

08H 10H DTLB_LOAD_MISSES.WALK_DUR
ATION

Cycle PMH is busy with a walk.

Table 19-1.  Architectural Performance Events

Event
Num. Event Mask Mnemonic

Umask
Value Description Comment
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08H 20H DTLB_LOAD_MISSES.STLB_HIT_
4K

Load misses that missed DTLB but hit STLB (4K).

08H 40H DTLB_LOAD_MISSES.STLB_HIT_
2M

Load misses that missed DTLB but hit STLB (2M).

08H 60H DTLB_LOAD_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

08H 80H DTLB_LOAD_MISSES.PDE_CACH
E_MISS

DTLB demand load misses with low part of linear-to-
physical address translation missed

0DH 03H INT_MISC.RECOVERY_CYCLES Cycles waiting to recover after Machine Clears 
except JEClear. Set Cmask= 1.

Set Edge to count 
occurrences

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the 
RAT to RS. 

Set Cmask = 1, Inv = 1, Any= 1to count stalled cycles 
of this core.

Set Cmask = 1, Inv = 1to 
count stalled cycles

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops 
adds delay.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such 
uop has 3 sources (e.g. 2 sources + immediate) 
regardless if as a result of LEA instruction or not.

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision 
uops allocated.

24H 21H L2_RQSTS.DEMAND_DATA_RD_
MISS

Demand Data Read requests that missed L2, no 
rejects.

24H 41H L2_RQSTS.DEMAND_DATA_RD_
HIT

Demand Data Read requests that hit L2 cache.

24H E1H L2_RQSTS.ALL_DEMAND_DATA
_RD

Counts any demand and L1 HW prefetch data load 
requests to L2. 

24H 42H L2_RQSTS.RFO_HIT Counts the number of store RFO requests that hit 
the L2 cache. 

24H 22H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss 
the L2 cache. 

24H E2H L2_RQSTS.ALL_RFO Counts all L2 store RFO requests. 

24H 44H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache. 

24H 24H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2 
cache. 

24H 27H L2_RQSTS.ALL_DEMAND_MISS Demand requests that miss L2 cache. 

24H E7H L2_RQSTS.ALL_DEMAND_REFE
RENCES

Demand requests to L2 cache. 

24H E4H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 50H L2_RQSTS.L2_PF_HIT Counts all L2 HW prefetcher requests that hit L2.

24H 30H L2_RQSTS.L2_PF_MISS Counts all L2 HW prefetcher requests that missed 
L2.

24H F8H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

24H 3FH L2_RQSTS.MISS All requests that missed L2.

24H FFH L2_RQSTS.REFERENCES All requests to L2 cache. 

Table 19-2.  Non-Architectural Performance Events In the Processor Core of 
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment
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27H 50H L2_DEMAND_RQSTS.WB_HIT Not rejected writebacks that hit L2 cache

2EH 4FH LONGEST_LAT_CACHE.REFEREN
CE

This event counts requests originating from the core 
that reference a cache line in the last level cache. 

see Table 19-1

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for 
references to the last level cache. 

see Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD_
P

Counts the number of thread cycles while the thread 
is not in a halt state. The thread enters the halt state 
when it is running the HLT instruction. The core 
frequency may change from time to time due to 
power or thermal throttling. 

see Table 19-1

3CH 01H CPU_CLK_THREAD_UNHALTED.
REF_XCLK

Increments at the frequency of XCLK (100 MHz) 
when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses 
every cycle. Set Cmaks = 1 and Edge =1 to count 
occurrences.

Counter 2 only;

Set Cmask = 1 to count 
cycles. 

49H 01H DTLB_STORE_MISSES.MISS_CAU
SES_A_WALK

Miss in all TLB levels causes an page walk of any 
page size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED_4K

Completed page walks due to store misses in one or 
more TLB levels of 4K page structure.

49H 04H DTLB_STORE_MISSES.WALK_CO
MPLETED_2M_4M

Completed page walks due to store misses in one or 
more TLB levels of 2M/4M page structure.

49H 0EH DTLB_STORE_MISSES.WALK_CO
MPLETED

Completed page walks due to store miss in any TLB 
levels of any page size (4K/2M/4M/1G).

49H 10H DTLB_STORE_MISSES.WALK_DU
RATION

Cycles PMH is busy with this walk.

49H 20H DTLB_STORE_MISSES.STLB_HIT
_4K

Store misses that missed DTLB but hit STLB (4K).

49H 40H DTLB_STORE_MISSES.STLB_HIT
_2M

Store misses that missed DTLB but hit STLB (2M).

49H 60H DTLB_STORE_MISSES.STLB_HIT Store operations that miss the first TLB level but hit 
the second and do not cause page walks.

49H 80H DTLB_STORE_MISSES.PDE_CAC
HE_MISS

DTLB store misses with low part of linear-to-physical 
address translation missed.

4CH 01H LOAD_HIT_PRE.SW_PF Non-SW-prefetch load dispatches that hit fill buffer 
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer 
allocated for H/W prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data 
cache.

58H 04H MOVE_ELIMINATION.INT_NOT_E
LIMINATED

Number of integer Move Elimination candidate uops 
that were not eliminated.

58H 08H MOVE_ELIMINATION.SIMD_NOT_
ELIMINATED

Number of SIMD Move Elimination candidate uops 
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMIN
ATED

Number of integer Move Elimination candidate uops 
that were eliminated.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of 
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment
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58H 02H MOVE_ELIMINATION.SIMD_ELIMI
NATED

Number of SIMD Move Elimination candidate uops 
that were eliminated.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count 
transition

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring 0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read transactions 
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is off

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Offcore outstanding Demand code Read transactions 
in SQ to uncore. Set Cmask=1 to count cycles.

Use only when HTT is off

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to 
uncore. Set Cmask=1 to count cycles.

Use only when HTT is off

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Offcore outstanding cacheable data read 
transactions in SQ to uncore. Set Cmask=1 to count 
cycles.

Use only when HTT is off

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC_
LOCK_DURATION

Cycles in which the L1D and L2  are locked, due to a 
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_DU
RATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ from 
MITE path. 

Set Cmask = 1 to count cycles.

Can combine Umask 04H 
and 20H 

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ 
from DSB path. 

Set Cmask = 1 to count cycles.

Can combine Umask 08H 
and 10H 

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ 
when MS_busy by DSB. Set Cmask = 1 to count 
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H, 
08H 

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ 
when MS_busy by MITE. Set Cmask = 1 to count 
cycles.

Can combine Umask 04H, 
08H 

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ from 
MS by either DSB or MITE. Set Cmask = 1 to count 
cycles.

Can combine Umask 04H, 
08H 

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UO
PS

Counts cycles DSB is delivered at least one uops. Set 
Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts cycles DSB is delivered four uops. Set Cmask 
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UO
PS

Counts cycles MITE is delivered at least one uops. Set 
Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. Set Cmask 
= 4.

79H 3CH IDQ.MITE_ALL_UOPS # of uops delivered to IDQ from any path. 

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and 
Victim Cache Misses. Includes UC accesses.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of 
4th Generation Intel® Core™ Processors (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment
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85H 01H ITLB_MISSES.MISS_CAUSES_A_
WALK

Misses in ITLB that causes a page walk of any page 
size.

85H 02H ITLB_MISSES.WALK_COMPLETE
D_4K

Completed page walks due to misses in ITLB 4K page 
entries.

85H 04H ITLB_MISSES.WALK_COMPLETE
D_2M_4M

Completed page walks due to misses in ITLB 2M/4M 
page entries.

85H 0EH ITLB_MISSES.WALK_COMPLETE
D

Completed page walks in ITLB of any page size.

85H 10H ITLB_MISSES.WALK_DURATION Cycle PMH is busy with a walk.

85H 20H ITLB_MISSES.STLB_HIT_4K ITLB misses that hit STLB (4K).

85H 40H ITLB_MISSES.STLB_HIT_2M ITLB misses that hit STLB (2M).

85H 60H ITLB_MISSES.STLB_HIT ITLB misses that hit STLB. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the 
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions 
executed, but not necessarily retired.

Must combine with 
umask 40H, 80H

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions 
excluding calls and indirect branches.

Must combine with 
umask 80H

88H 04H BR_INST_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify executed indirect near branch instructions 
that are not calls nor returns.

Must combine with 
umask 80H

88H 08H BR_INST_EXEC.RETURN_NEAR Qualify indirect near branches that have a return 
mnemonic.

Must combine with 
umask 80H

88H 10H BR_INST_EXEC.DIRECT_NEAR_C
ALL

Qualify unconditional near call branch instructions, 
excluding non call branch, executed. 

Must combine with 
umask 80H

88H 20H BR_INST_EXEC.INDIRECT_NEAR
_CALL

Qualify indirect near calls, including both register and 
memory indirect, executed.

Must combine with 
umask 80H

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H 
only

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must combine 
with 01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily 
retired). 

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions 
mispredicted.

Must combine with 
umask 40H, 80H

89H 04H BR_MISP_EXEC.INDIRECT_JMP_
NON_CALL_RET

Qualify mispredicted indirect near branch 
instructions that are not calls nor returns.

Must combine with 
umask 80H

89H 08H BR_MISP_EXEC.RETURN_NEAR Qualify mispredicted indirect near branches that 
have a return mnemonic.

Must combine with 
umask 80H

89H 10H BR_MISP_EXEC.DIRECT_NEAR_C
ALL

Qualify mispredicted unconditional near call branch 
instructions, excluding non call branch, executed. 

Must combine with 
umask 80H

89H 20H BR_MISP_EXEC.INDIRECT_NEAR
_CALL

Qualify mispredicted indirect near calls, including 
both register and memory indirect, executed.

Must combine with 
umask 80H

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches 
executed. 

Applicable to umask 01H 
only

Table 19-2.  Non-Architectural Performance Events In the Processor Core of 
4th Generation Intel® Core™ Processors (Contd.)
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Value Event Mask Mnemonic Description Comment
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89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed. 
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily 
retired). 

9CH 01H IDQ_UOPS_NOT_DELIVERED.CO
RE

Count number of non-delivered uops to RAT per 
thread. 

Use Cmask to qualify uop 
b/w

A1H 01H UOPS_EXECUTED_PORT.PORT_
0

Cycles which a Uop is dispatched on port 0 in this 
thread.

Set AnyThread to count 
per core

A1H 02H UOPS_EXECUTED_PORT.PORT_
1

Cycles which a Uop is dispatched on port 1 in this 
thread.

Set AnyThread to count 
per core

A1H 04H UOPS_EXECUTED_PORT.PORT_
2

Cycles which a uop is dispatched on port 2 in this 
thread.

Set AnyThread to count 
per core

A1H 08H UOPS_EXECUTED_PORT.PORT_
3

Cycles which a uop is dispatched on port 3 in this 
thread.

Set AnyThread to count 
per core

A1H 10H UOPS_EXECUTED_PORT.PORT_
4

Cycles which a uop is dispatched on port 4 in this 
thread.

Set AnyThread to count 
per core

A1H 20H UOPS_EXECUTED_PORT.PORT_
5

Cycles which a uop is dispatched on port 5 in this 
thread.

Set AnyThread to count 
per core

A1H 40H UOPS_EXECUTED_PORT.PORT_
6

Cycles which a Uop is dispatched on port 6 in this 
thread.

Set AnyThread to count 
per core

A1H 80H UOPS_EXECUTED_PORT.PORT_
7

Cycles which a Uop is dispatched on port 7 in this 
thread

Set AnyThread to count 
per core

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related 
reason. 

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available. 

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not 
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_PE
NDING

Cycles with pending L2 miss loads. Set Cmask=2 to 
count cycle.

Use only when HTT is off

A3H 02H CYCLE_ACTIVITY.CYCLES_LDM_
PENDING

Cycles with pending memory loads. Set Cmask=2 to 
count cycle.

A3H 05H CYCLE_ACTIVITY.STALLS_L2_PE
NDING

Number of loads missed L2. Use only when HTT is off

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_P
ENDING

Cycles with pending L1 data cache miss loads. Set 
Cmask=8 to count cycle.

PMC2 only

A3H 0CH CYCLE_ACTIVITY.STALLS_L1D_P
ENDING

Execution stalls due to L1 data cache miss loads. Set 
Cmask=0CH.

PMC2 only

A8H 01H LSD.UOPS Number of Uops delivered by the LSD.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes 
4k/2M/4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_
DATA_RD

Demand data read requests sent to uncore. Use only when HTT is off

B0H 02H OFFCORE_REQUESTS.DEMAND_
CODE_RD

Demand code read requests sent to uncore. Use only when HTT is off

Table 19-2.  Non-Architectural Performance Events In the Processor Core of 
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B0H 04H OFFCORE_REQUESTS.DEMAND_
RFO

Demand RFO read requests sent to uncore, including 
regular RFOs, locks, ItoM.

Use only when HTT is off

B0H 08H OFFCORE_REQUESTS.ALL_DATA
_RD

Data read requests sent to uncore (demand and 
prefetch).

Use only when HTT is off

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-core 
each cycle.

Do not need to set ANY

B7H 01H OFF_CORE_RESPONSE_0 see Section 18.9.5, “Off-core Response Performance 
Monitoring”.

Requires MSR 01A6H

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.9.5, “Off-core Response Performance 
Monitoring”.

Requires MSR 01A7H

BCH 11H PAGE_WALKER_LOADS.DTLB_L1 Number of DTLB page walker loads that hit in the 
L1+FB.

BCH 21H PAGE_WALKER_LOADS.ITLB_L1 Number of ITLB page walker loads that hit in the 
L1+FB.

BCH 12H PAGE_WALKER_LOADS.DTLB_L2 Number of DTLB page walker loads that hit in the L2.

BCH 22H PAGE_WALKER_LOADS.ITLB_L2 Number of ITLB page walker loads that hit in the L2.

BCH 14H PAGE_WALKER_LOADS.DTLB_L3 Number of DTLB page walker loads that hit in the L3.

BCH 24H PAGE_WALKER_LOADS.ITLB_L3 Number of ITLB page walker loads that hit in the L3.

BCH 18H PAGE_WALKER_LOADS.DTLB_M
EMORY

Number of DTLB page walker loads from memory.

BCH 28H PAGE_WALKER_LOADS.ITLB_ME
MORY

Number of ITLB page walker loads from memory.

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1

C0H 01H INST_RETIRED.ALL Precise instruction retired event with HW to reduce 
effect of PEBS shadow in IP distribution.

PMC1 only; 

C1H 08H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE 
when penalty applicable.

C1H 10H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when 
penalty applicable.

C1H 40H OTHER_ASSISTS.ANY_WB_ASSI
ST

Number of microcode assists invoked by HW upon 
uop writeback.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use 
cmask=1 and invert to count active cycles or stalled 
cycles.

Supports PEBS, use 
Any=1 for core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each 
cycle.

Supports PEBS

C3H 02H MACHINE_CLEARS.MEMORY_OR
DERING

Counts the number of machine clears due to memory 
order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears 
detected.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load 
operations that refer to an illegal address range with 
the mask bits set to 0. 

Table 19-2.  Non-Architectural Performance Events In the Processor Core of 
4th Generation Intel® Core™ Processors (Contd.)
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C4H 00H BR_INST_RETIRED.ALL_BRANC
HES

Branch instructions at retirement. See Table 19-1 

C4H 01H BR_INST_RETIRED.CONDITIONA
L

Counts the number of conditional branch instructions 
retired. 

Supports PEBS

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS

C4H 04H BR_INST_RETIRED.ALL_BRANC
HES

Counts the number of branch instructions retired. Supports PEBS

C4H 08H BR_INST_RETIRED.NEAR_RETU
RN

Counts the number of near return instructions 
retired.

Supports PEBS

C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions 
retired. 

C4H 20H BR_INST_RETIRED.NEAR_TAKE
N

Number of near taken branches retired. Supports PEBS

C4H 40H BR_INST_RETIRED.FAR_BRANC
H

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted branch instructions at retirement See Table 19-1 

C5H 01H BR_MISP_RETIRED.CONDITIONA
L

Mispredicted conditional branch instructions retired. Supports PEBS

C5H 04H BR_MISP_RETIRED.ALL_BRANC
HES

Mispredicted macro branch instructions retired. Supports PEBS

C5H 20H BR_MISP_RETIRED.NEAR_TAKE
N

Number of near branch instructions retired that 
were taken but mispredicted.

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to Output values.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to Output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSER
TS

Count cases of saving new LBR records by hardware. 

CDH 01H MEM_TRANS_RETIRED.LOAD_L
ATENCY

Randomly sampled loads whose latency is above a 
user defined threshold. A small fraction of the overall 
loads are sampled due to randomization.

Specify threshold in MSR 
0x3F6

D0H 01H MEM_UOPS_RETIRED.LOADS Qualify retired memory uops that are loads. Combine 
with umask 10H, 20H, 40H, 80H.

Supports PEBS and 
DataLA

D0H 10H MEM_UOPS_RETIRED.STLB_MIS
S

Qualify retired memory uops with STLB miss. Must 
combine with umask 01H, 02H, to produce counts.

Supports PEBS and 
DataLA

D0H 40H MEM_UOPS_RETIRED.SPLIT Qualify retired memory uops with line split. Must 
combine with umask 01H, 02H, to produce counts.

Supports PEBS and 
DataLA

D0H 80H MEM_UOPS_RETIRED.ALL Qualify any retired memory uops. Must combine with 
umask 01H, 02H, to produce counts.

Supports PEBS and 
DataLA

D1H 01H MEM_LOAD_UOPS_RETIRED.L1_
HIT

Retired load uops with L1 cache hits as data sources. Supports PEBS and 
DataLA

D1H 02H MEM_LOAD_UOPS_RETIRED.L2_
HIT

Retired load uops with L2 cache hits as data sources. Supports PEBS and 
DataLA

Table 19-2.  Non-Architectural Performance Events In the Processor Core of 
4th Generation Intel® Core™ Processors (Contd.)

Event
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Umask
Value Event Mask Mnemonic Description Comment
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D1H 04H MEM_LOAD_UOPS_RETIRED.L3_
HIT

Retired load uops with L3 cache hits as data sources. Supports PEBS and 
DataLA

D1H 08H MEM_LOAD_UOPS_RETIRED.L1_
MISS

Retired load uops missed L1 cache as data sources. Supports PEBS and 
DataLA

D1H 10H MEM_LOAD_UOPS_RETIRED.L2_
MISS

Retired load uops missed L2. Unknown data source 
excluded.

Supports PEBS and 
DataLA

D1H 20H MEM_LOAD_UOPS_RETIRED.L3_
MISS

Retired load uops missed L3. Excludes unknown data 
source .

Supports PEBS and 
DataLA

D1H 40H MEM_LOAD_UOPS_RETIRED.HIT
_LFB

Retired load uops which data sources were load uops 
missed L1 but hit FB due to preceding miss to the 
same cache line with data not ready.

D2H 01H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_MISS

Retired load uops which data sources were L3 hit 
and cross-core snoop missed in on-pkg core cache.

Supports PEBS and 
DataLA

D2H 02H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HIT

Retired load uops which data sources were L3 and 
cross-core snoop hits in on-pkg core cache.

Supports PEBS and 
DataLA

D2H 04H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_HITM

Retired load uops which data sources were HitM 
responses from shared L3.

Supports PEBS and 
DataLA

D2H 08H MEM_LOAD_UOPS_L3_HIT_RETI
RED.XSNP_NONE

Retired load uops which data sources were hits in L3 
without snoops required.

Supports PEBS and 
DataLA

D3H 01H MEM_LOAD_UOPS_L3_MISS_RE
TIRED.LOCAL_DRAM

Retired load uops which data sources missed L3 but 
serviced from local dram. 

Supports PEBS and 
DataLA.

E6H 1FH BACLEARS.ANY Number of front end re-steers due to BPU 
misprediction.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF Any MLC or L3 HW prefetch accessing L2, including 
rejects. 

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover 
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover 
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover 
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover 
rejects.

F2H 05H L2_LINES_OUT.DEMAND_CLEAN Clean L2 cache lines evicted by demand.

F2H 06H L2_LINES_OUT.DEMAND_DIRTY Dirty L2 cache lines evicted by demand.

Table 19-2.  Non-Architectural Performance Events In the Processor Core of 
4th Generation Intel® Core™ Processors (Contd.)
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Table 19-3.  Intel TSX Performance Events

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

54H 01H TX_MEM.ABORT_CONFLICT Number of times a transactional abort was signaled due 
to a data conflict on a transactionally accessed address

54H 02H TX_MEM.ABORT_CAPACITY_W
RITE

Number of times a transactional abort was signaled due 
to a data capacity limitation for transactional writes

54H 04H TX_MEM.ABORT_HLE_STORE_
TO_ELIDED_LOCK

Number of times a HLE transactional region aborted due 
to a non XRELEASE prefixed instruction writing to an 
elided lock in the elision buffer

54H 08H TX_MEM.ABORT_HLE_ELISION
_BUFFER_NOT_EMPTY

Number of times an HLE transactional execution aborted 
due to NoAllocatedElisionBuffer being non-zero.

54H 10H TX_MEM.ABORT_HLE_ELISION
_BUFFER_MISMATCH

Number of times an HLE transactional execution aborted 
due to XRELEASE lock not satisfying the address and 
value requirements in the elision buffer.

54H 20H TX_MEM.ABORT_HLE_ELISION
_BUFFER_UNSUPPORTED_ALI
GNMENT

Number of times an HLE transactional execution aborted 
due to an unsupported read alignment from the elision 
buffer.

54H 40H TX_MEM.HLE_ELISION_BUFFE
R_FULL

Number of times HLE lock could not be elided due to 
ElisionBufferAvailable being zero.

5DH 01H TX_EXEC.MISC1 Counts the number of times a class of instructions that 
may cause a transactional abort was executed. Since this 
is the count of execution, it may not always cause a 
transactional abort.

5DH 02H TX_EXEC.MISC2 Counts the number of times a class of instructions (e.g. 
vzeroupper) that may cause a transactional abort was 
executed inside a transactional region

5DH 04H TX_EXEC.MISC3 Counts the number of times an instruction execution 
caused the transactional nest count supported to be 
exceeded

5DH 08H TX_EXEC.MISC4 Counts the number of times an XBEGIN instruction was 
executed inside an HLE transactional region

5DH 10H TX_EXEC.MISC5 Counts the number of times an instruction with HLE-
XACQUIRE semantic was executed inside an RTM 
transactional region
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Non-architectural performance monitoring events that are located in the uncore sub-system are implementation 
specific between different platforms using processors based on Intel microarchitecture code name Haswell. Proces-
sors with CPUID signature of DisplayFamily_DisplayModel 06_3CH and 06_45H support performance events listed 
in Table 19-4.

C8H 01H HLE_RETIRED.START Number of times an HLE execution started. IF HLE is supported

C8H 02H HLE_RETIRED.COMMIT Number of times an HLE execution successfully 
committed

C8H 04H HLE_RETIRED.ABORTED Number of times an HLE execution aborted due to any 
reasons (multiple categories may count as one). Supports 
PEBS

C8H 08H HLE_RETIRED.ABORTED_MISC
1

Number of times an HLE execution aborted due to 
various memory events (e.g. read/write capacity and 
conflicts)

C8H 10H HLE_RETIRED.ABORTED_MISC
2

Number of times an HLE execution aborted due to 
uncommon conditions

C8H 20H HLE_RETIRED.ABORTED_MISC
3

Number of times an HLE execution aborted due to HLE-
unfriendly instructions

C8H 40H HLE_RETIRED.ABORTED_MISC
4

Number of times an HLE execution aborted due to 
incompatible memory type

C8H 80H HLE_RETIRED.ABORTED_MISC
5

Number of times an HLE execution aborted due to none 
of the previous 4 categories (e.g. interrupts)

C9H 01H RTM_RETIRED.START Number of times an RTM execution started. IF RTM is supported

C9H 02H RTM_RETIRED.COMMIT Number of times an RTM execution successfully 
committed

C9H 04H RTM_RETIRED.ABORTED Number of times an RTM execution aborted due to any 
reasons (multiple categories may count as one). Supports 
PEBS

C9H 08H RTM_RETIRED.ABORTED_MISC
1

Number of times an RTM execution aborted due to 
various memory events (e.g. read/write capacity and 
conflicts)

IF RTM is supported

C9H 10H RTM_RETIRED.ABORTED_MISC
2

Number of times an RTM execution aborted due to 
uncommon conditions

C9H 20H RTM_RETIRED.ABORTED_MISC
3

Number of times an RTM execution aborted due to HLE-
unfriendly instructions

C9H 40H RTM_RETIRED.ABORTED_MISC
4

Number of times an RTM execution aborted due to 
incompatible memory type

C9H 80H RTM_RETIRED.ABORTED_MISC
5

Number of times an RTM execution aborted due to none 
of the previous 4 categories (e.g. interrupt)

Table 19-3.  Intel TSX Performance Events (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment
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Table 19-4.  Non-Architectural Uncore Performance Events In the 4th Generation Intel® Core™ Processors

Event
Num.1

Umask
Value Event Mask Mnemonic Description Comment

22H 01H UNC_CBO_XSNP_RESPONSE.M
ISS

A snoop misses in some processor core. Must combine with 
one of the umask 
values of 20H, 40H, 
80H

22H 02H UNC_CBO_XSNP_RESPONSE.I
NVAL

A snoop invalidates a non-modified line in some 
processor core.

22H 04H UNC_CBO_XSNP_RESPONSE.H
IT

A snoop hits a non-modified line in some processor 
core.

22H 08H UNC_CBO_XSNP_RESPONSE.H
ITM

A snoop hits a modified line in some processor core.

22H 10H UNC_CBO_XSNP_RESPONSE.I
NVAL_M

A snoop invalidates a modified line in some processor 
core.

22H 20H UNC_CBO_XSNP_RESPONSE.E
XTERNAL_FILTER

Filter on cross-core snoops initiated by this Cbox due 
to external snoop request. 

Must combine with at 
least one of 01H, 02H, 
04H, 08H, 10H22H 40H UNC_CBO_XSNP_RESPONSE.X

CORE_FILTER
Filter on cross-core snoops initiated by this Cbox due 
to processor core memory request. 

22H 80H UNC_CBO_XSNP_RESPONSE.E
VICTION_FILTER

Filter on cross-core snoops initiated by this Cbox due 
to L3 eviction. 

34H 01H UNC_CBO_CACHE_LOOKUP.M L3 lookup request that access cache and found line in 
M-state.

Must combine with 
one of the umask 
values of 10H, 20H, 
40H, 80H

34H 06H UNC_CBO_CACHE_LOOKUP.ES L3 lookup request that access cache and found line in E 
or S state.

34H 08H UNC_CBO_CACHE_LOOKUP.I L3 lookup request that access cache and found line in I-
state.

34H 10H UNC_CBO_CACHE_LOOKUP.RE
AD_FILTER

Filter on processor core initiated cacheable read 
requests. Must combine with at least one of 01H, 02H, 
04H, 08H.

34H 20H UNC_CBO_CACHE_LOOKUP.WR
ITE_FILTER

Filter on processor core initiated cacheable write 
requests. Must combine with at least one of 01H, 02H, 
04H, 08H.

34H 40H UNC_CBO_CACHE_LOOKUP.EX
TSNP_FILTER

Filter on external snoop requests. Must combine with 
at least one of 01H, 02H, 04H, 08H.

34H 80H UNC_CBO_CACHE_LOOKUP.AN
Y_REQUEST_FILTER

Filter on any IRQ or IPQ initiated requests including 
uncacheable, non-coherent requests. Must combine 
with at least one of 01H, 02H, 04H, 08H.

80H 01H UNC_ARB_TRK_OCCUPANCY.A
LL

Counts cycles weighted by the number of requests 
waiting for data returning from the memory controller. 
Accounts for coherent and non-coherent requests 
initiated by IA cores, processor graphic units, or L3.

Counter 0 only

81H 01H UNC_ARB_TRK_REQUEST.ALL Counts the number of coherent and in-coherent 
requests initiated by IA cores, processor graphic units, 
or L3.

81H 20H UNC_ARB_TRK_REQUEST.WRI
TES

Counts the number of allocated write entries, include 
full, partial, and L3 evictions. 

81H 80H UNC_ARB_TRK_REQUEST.EVIC
TIONS

Counts the number of L3 evictions allocated. 
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19.3 PERFORMANCE MONITORING EVENTS FOR 3RD GENERATION 
INTEL® CORE™ PROCESSORS 

3rd generation Intel® Core™ processors and Intel Xeon processor E3-1200 v2 product family are based on Intel 
microarchitecture code name Ivy Bridge. They support architectural performance-monitoring events listed in Table 
19-1. Non-architectural performance-monitoring events in the processor core are listed in Table 19-5. The events 
in Table 19-5 apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following 
values: 06_3AH. 

Additional informations on event specifics (e.g. derivative events using specific IA32_PERFEVTSELx modifiers, limi-
tations, special notes and recommendations) can be found at http://software.intel.com/en-us/forums/software-
tuning-performance-optimization-platform-monitoring.

83H 01H UNC_ARB_COH_TRK_OCCUPA
NCY.ALL

Cycles weighted by number of requests pending in 
Coherency Tracker.

Counter 0 only

84H 01H UNC_ARB_COH_TRK_REQUES
T.ALL

Number of requests allocated in Coherency Tracker.

NOTES:

1. The uncore events must be programmed using MSRs located in specific performance monitoring units in the uncore. UNC_CBO* 
events are supported using MSR_UNC_CBO* MSRs; UNC_ARB* events are supported using MSR_UNC_ARB*MSRs.

Table 19-5.  Non-Architectural Performance Events In the Processor Core of 
3rd Generation Intel® Core™ i7, i5, i3 Processors

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LD_BLOCKS.STORE_FORWARD loads blocked by overlapping with store buffer that 
cannot be forwarded .

03H 08H LD_BLOCKS.NO_SR The number of times that split load operations are 
temporarily blocked because all resources for 
handling the split accesses are in use.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to 
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops 
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRESS_
ALIAS

False dependencies in MOB due to partial compare 
on address.

08H 81H DTLB_LOAD_MISSES.MISS_CAUSE
S_A_WALK

Misses in all TLB levels that cause a page walk of 
any page size from demand loads.

08H 82H DTLB_LOAD_MISSES.WALK_COM
PLETED

Misses in all TLB levels that caused page walk 
completed of any size by demand loads.

08H 84H DTLB_LOAD_MISSES.WALK_DUR
ATION

Cycle PMH is busy with a walk due to demand loads.

08H 88H DTLB_LOAD_MISSES.LARGE_PAG
E_WALK_DURATION

 Page walk for a large page completed for Demand 
load 

Table 19-4.  Non-Architectural Uncore Performance Events In the 4th Generation Intel® Core™ Processors (Contd.)

Event
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Value Event Mask Mnemonic Description Comment
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0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the 
RAT to RS. 

Set Cmask = 1, Inv = 1, Any= 1to count stalled 
cycles of this core.

Set Cmask = 1, Inv = 1to 
count stalled cycles

0EH 10H UOPS_ISSUED.FLAGS_MERGE Number of flags-merge uops allocated. Such uops 
adds delay.

0EH 20H UOPS_ISSUED.SLOW_LEA Number of slow LEA or similar uops allocated. Such 
uop has 3 sources (e.g. 2 sources + immediate) 
regardless if as a result of LEA instruction or not.

0EH 40H UOPS_ISSUED.SiNGLE_MUL Number of multiply packed/scalar single precision 
uops allocated.

10H 01H FP_COMP_OPS_EXE.X87 Counts number of X87 uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_PAC
KED_DOUBLE

Counts number of SSE* or AVX-128 double 
precision FP packed uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_SCA
LAR_SINGLE

Counts number of SSE* or AVX-128 single precision 
FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_PACKED 
SINGLE

Counts number of SSE* or AVX-128 single precision 
FP packed uops executed.

10H 80H FP_COMP_OPS_EXE.SSE_SCALAR
_DOUBLE

Counts number of SSE* or AVX-128 double 
precision FP scalar uops executed.

11H 01H SIMD_FP_256.PACKED_SINGLE Counts 256-bit packed single-precision floating-
point instructions.

11H 02H SIMD_FP_256.PACKED_DOUBLE Counts 256-bit packed double-precision floating-
point instructions.

14H 01H ARITH.FPU_DIV_ACTIVE Cycles that the divider is active, includes INT and FP. 
Set 'edge =1, cmask=1' to count the number of 
divides.

24H 01H L2_RQSTS.DEMAND_DATA_RD_H
IT

Demand Data Read requests that hit L2 cache

24H 03H L2_RQSTS.ALL_DEMAND_DATA_
RD

Counts any demand and L1 HW prefetch data load 
requests to L2. 

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO requests that hit 
the L2 cache. 

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss 
the L2 cache. 

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests. 

24H 10H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache. 

24H 20H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2 
cache. 

24H 30H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Counts all L2 HW prefetcher requests that hit L2.

24H 80H L2_RQSTS.PF_MISS Counts all L2 HW prefetcher requests that missed 
L2.

24H C0H L2_RQSTS.ALL_PF Counts all L2 HW prefetcher requests.

27H 01H L2_STORE_LOCK_RQSTS.MISS RFOs that miss cache lines 

Table 19-5.  Non-Architectural Performance Events In the Processor Core of 
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)
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27H 08H L2_STORE_LOCK_RQSTS.HIT_M RFOs that hit cache lines in M state

27H 0FH L2_STORE_LOCK_RQSTS.ALL RFOs that access cache lines in any state

28H 01H L2_L1D_WB_RQSTS.MISS Not rejected writebacks that missed LLC.

28H 04H L2_L1D_WB_RQSTS.HIT_E Not rejected writebacks from L1D to L2 cache lines 
in E state.

28H 08H L2_L1D_WB_RQSTS.HIT_M Not rejected writebacks from L1D to L2 cache lines 
in M state.

28H 0FH L2_L1D_WB_RQSTS.ALL Not rejected writebacks from L1D to L2 cache lines 
in any state.

2EH 4FH LONGEST_LAT_CACHE.REFERENC
E

This event counts requests originating from the 
core that reference a cache line in the last level 
cache. 

see Table 19-1

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for 
references to the last level cache. 

see Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD_P Counts the number of thread cycles while the 
thread is not in a halt state. The thread enters the 
halt state when it is running the HLT instruction. 
The core frequency may change from time to time 
due to power or thermal throttling. 

see Table 19-1

3CH 01H CPU_CLK_THREAD_UNHALTED.R
EF_XCLK

Increments at the frequency of XCLK (100 MHz) 
when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses 
every cycle. Set Cmaks = 1 and Edge =1 to count 
occurrences.

PMC2 only;

Set Cmask = 1 to count 
cycles. 

49H 01H DTLB_STORE_MISSES.MISS_CAUS
ES_A_WALK

Miss in all TLB levels causes an page walk of any 
page size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_CO
MPLETED

Miss in all TLB levels causes a page walk that 
completes of any page size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSES.WALK_DUR
ATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSES.STLB_HIT Store operations that miss the first TLB level but hit 
the second and do not cause page walks

4CH 01H LOAD_HIT_PRE.SW_PF Non-SW-prefetch load dispatches that hit fill buffer 
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Non-SW-prefetch load dispatches that hit fill buffer 
allocated for H/W prefetch.

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data 
cache.

58H 04H MOVE_ELIMINATION.INT_NOT_EL
IMINATED

Number of integer Move Elimination candidate uops 
that were not eliminated.

58H 08H MOVE_ELIMINATION.SIMD_NOT_E
LIMINATED

Number of SIMD Move Elimination candidate uops 
that were not eliminated.

58H 01H MOVE_ELIMINATION.INT_ELIMINA
TED

Number of integer Move Elimination candidate uops 
that were eliminated.

58H 02H MOVE_ELIMINATION.SIMD_ELIMIN
ATED

Number of SIMD Move Elimination candidate uops 
that were eliminated.

Table 19-5.  Non-Architectural Performance Events In the Processor Core of 
3rd Generation Intel® Core™ i7, i5, i3 Processors (Contd.)
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5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count 
transition

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring 
0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

5FH 04H DTLB_LOAD_MISSES.STLB_HIT Counts load operations that missed 1st level DTLB 
but hit the 2nd level.

60H 01H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read 
transactions in SQ to uncore. Set Cmask=1 to count 
cycles.

60H 02H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_CODE_RD

Offcore outstanding Demand Code Read 
transactions in SQ to uncore. Set Cmask=1 to count 
cycles.

60H 04H OFFCORE_REQUESTS_OUTSTAN
DING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to 
uncore. Set Cmask=1 to count cycles.

60H 08H OFFCORE_REQUESTS_OUTSTAN
DING.ALL_DATA_RD

Offcore outstanding cacheable data read 
transactions in SQ to uncore. Set Cmask=1 to count 
cycles.

63H 01H LOCK_CYCLES.SPLIT_LOCK_UC_L
OCK_DURATION

Cycles in which the L1D and L2  are locked, due to a 
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_DUR
ATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ 
from MITE path. 

Set Cmask = 1 to count cycles.

Can combine Umask 04H 
and 20H 

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ 
from DSB path. 

Set Cmask = 1 to count cycles.

Can combine Umask 08H 
and 10H 

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ 
when MS_busy by DSB. Set Cmask = 1 to count 
cycles. Add Edge=1 to count # of delivery.

Can combine Umask 04H, 
08H 

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ 
when MS_busy by MITE. Set Cmask = 1 to count 
cycles.

Can combine Umask 04H, 
08H 

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ 
from MS by either DSB or MITE. Set Cmask = 1 to 
count cycles.

Can combine Umask 04H, 
08H 

79H 18H IDQ.ALL_DSB_CYCLES_ANY_UOP
S

Counts cycles DSB is delivered at least one uops. 
Set Cmask = 1.

79H 18H IDQ.ALL_DSB_CYCLES_4_UOPS Counts cycles DSB is delivered four uops. Set Cmask 
= 4.

79H 24H IDQ.ALL_MITE_CYCLES_ANY_UOP
S

Counts cycles MITE is delivered at least one uops. 
Set Cmask = 1.

79H 24H IDQ.ALL_MITE_CYCLES_4_UOPS Counts cycles MITE is delivered four uops. Set 
Cmask = 4.

Table 19-5.  Non-Architectural Performance Events In the Processor Core of 
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79H 3CH IDQ.MITE_ALL_UOPS # of uops delivered to IDQ from any path. 

80H 04H ICACHE.IFETCH_STALL Cycles where a code-fetch stalled due to L1 
instruction-cache miss or an iTLB miss

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and 
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A_W
ALK

Misses in all ITLB levels that cause page walks

85H 02H ITLB_MISSES.WALK_COMPLETED Misses in all ITLB levels that cause completed page 
walks

85H 04H ITLB_MISSES.WALK_DURATION Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the 
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch instructions 
executed, but not necessarily retired.

Must combine with 
umask 40H, 80H

88H 02H BR_INST_EXEC.DIRECT_JMP Qualify all unconditional near branch instructions 
excluding calls and indirect branches.

Must combine with 
umask 80H

88H 04H BR_INST_EXEC.INDIRECT_JMP_N
ON_CALL_RET

Qualify executed indirect near branch instructions 
that are not calls nor returns.

Must combine with 
umask 80H

88H 08H BR_INST_EXEC.RETURN_NEAR Qualify indirect near branches that have a return 
mnemonic.

Must combine with 
umask 80H

88H 10H BR_INST_EXEC.DIRECT_NEAR_C
ALL

Qualify unconditional near call branch instructions, 
excluding non call branch, executed. 

Must combine with 
umask 80H

88H 20H BR_INST_EXEC.INDIRECT_NEAR_
CALL

Qualify indirect near calls, including both register 
and memory indirect, executed.

Must combine with 
umask 80H

88H 40H BR_INST_EXEC.NONTAKEN Qualify non-taken near branches executed. Applicable to umask 01H 
only

88H 80H BR_INST_EXEC.TAKEN Qualify taken near branches executed. Must 
combine with 01H,02H, 04H, 08H, 10H, 20H.

88H FFH BR_INST_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily 
retired). 

89H 01H BR_MISP_EXEC.COND Qualify conditional near branch instructions 
mispredicted.

Must combine with 
umask 40H, 80H

89H 04H BR_MISP_EXEC.INDIRECT_JMP_N
ON_CALL_RET

Qualify mispredicted indirect near branch 
instructions that are not calls nor returns.

Must combine with 
umask 80H

89H 08H BR_MISP_EXEC.RETURN_NEAR Qualify mispredicted indirect near branches that 
have a return mnemonic.

Must combine with 
umask 80H

89H 10H BR_MISP_EXEC.DIRECT_NEAR_C
ALL

Qualify mispredicted unconditional near call branch 
instructions, excluding non call branch, executed. 

Must combine with 
umask 80H

89H 20H BR_MISP_EXEC.INDIRECT_NEAR_
CALL

Qualify mispredicted indirect near calls, including 
both register and memory indirect, executed.

Must combine with 
umask 80H

89H 40H BR_MISP_EXEC.NONTAKEN Qualify mispredicted non-taken near branches 
executed. 

Applicable to umask 01H 
only
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89H 80H BR_MISP_EXEC.TAKEN Qualify mispredicted taken near branches executed. 
Must combine with 01H,02H, 04H, 08H, 10H, 20H.

89H FFH BR_MISP_EXEC.ALL_BRANCHES Counts all near executed branches (not necessarily 
retired). 

9CH 01H IDQ_UOPS_NOT_DELIVERED.COR
E

Count number of non-delivered uops to RAT per 
thread. 

Use Cmask to qualify uop 
b/w

A1H 01H UOPS_DISPATCHED_PORT.PORT_
0

Cycles which a Uop is dispatched on port 0.

A1H 02H UOPS_DISPATCHED_PORT.PORT_
1

Cycles which a Uop is dispatched on port 1

A1H 0CH UOPS_DISPATCHED_PORT.PORT_
2

Cycles which a Uop is dispatched on port 2.

A1H 30H UOPS_DISPATCHED_PORT.PORT_
3

Cycles which a Uop is dispatched on port 3.

A1H 40H UOPS_DISPATCHED_PORT.PORT_
4

Cycles which a Uop is dispatched on port 4.

A1H 80H UOPS_DISPATCHED_PORT.PORT_
5

Cycles which a Uop is dispatched on port 5.

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related 
reason. 

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available. 

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available (not 
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_PEN
DING

Cycles with pending L2 miss loads. Set AnyThread 
to count per core.

A3H 02H CYCLE_ACTIVITY.CYCLES_LDM_P
ENDING

Cycles with pending memory loads. Set AnyThread 
to count per core.

PMC0-3 only.

A3H 08H CYCLE_ACTIVITY.CYCLES_L1D_PE
NDING

Cycles with pending L1 cache miss loads. Set 
AnyThread to count per core.

PMC2 only

A3H 04H CYCLE_ACTIVITY.CYCLES_NO_EX
ECUTE

Cycles of dispatch stalls. Set AnyThread to count 
per core.

A8H 01H LSD.UOPS Number of Uops delivered by the LSD.

ABH 01H DSB2MITE_SWITCHES.COUNT Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHES.PENALTY_
CYCLES

Cycles DSB to MITE switches caused delay.

ACH 08H DSB_FILL.EXCEED_DSB_LINES DSB Fill encountered > 3 DSB lines.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes 
4k/2M/4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND_D
ATA_RD

Demand data read requests sent to uncore. 

B0H 02H OFFCORE_REQUESTS.DEMAND_C
ODE_RD

Demand code read requests sent to uncore. 

B0H 04H OFFCORE_REQUESTS.DEMAND_R
FO

Demand RFO read requests sent to uncore, 
including regular RFOs, locks, ItoM
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B0H 08H OFFCORE_REQUESTS.ALL_DATA_
RD

Data read requests sent to uncore (demand and 
prefetch).

B1H 01H UOPS_EXECUTED.THREAD Counts total number of uops to be executed per-
thread each cycle. Set Cmask = 1, INV =1 to count 
stall cycles.

B1H 02H UOPS_EXECUTED.CORE Counts total number of uops to be executed per-
core each cycle.

Do not need to set ANY

B7H 01H OFFCORE_RESPONSE_0 see Section 18.9.5, “Off-core Response 
Performance Monitoring”.

Requires MSR 01A6H

BBH 01H OFFCORE_RESPONSE_1 See Section 18.9.5, “Off-core Response 
Performance Monitoring”.

Requires MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1

C0H 01H INST_RETIRED.ALL Precise instruction retired event with HW to reduce 
effect of PEBS shadow in IP distribution.

PMC1 only

C1H 08H OTHER_ASSISTS.AVX_STORE Number of assists associated with 256-bit AVX 
store operations.

C1H 10H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE 
when penalty applicable.

C1H 20H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when 
penalty applicable.

C1H 80H OTHER_ASSISTS.WB Number of times microcode assist is invoked by 
hardware upon uop writeback

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use 
cmask=1 and invert to count active cycles or stalled 
cycles.

Supports PEBS, use 
Any=1 for core granular.

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each 
cycle.

Supports PEBS

C3H 02H MACHINE_CLEARS.MEMORY_ORD
ERING

Counts the number of machine clears due to 
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Number of self-modifying-code machine clears 
detected.

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load 
operations that refer to an illegal address range 
with the mask bits set to 0. 

C4H 00H BR_INST_RETIRED.ALL_BRANCH
ES

Branch instructions at retirement. See Table 19-1 

C4H 01H BR_INST_RETIRED.CONDITIONAL Counts the number of conditional branch 
instructions retired. 

Supports PEBS

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS

C4H 04H BR_INST_RETIRED.ALL_BRANCH
ES

Counts the number of branch instructions retired. Supports PEBS

C4H 08H BR_INST_RETIRED.NEAR_RETUR
N

Counts the number of near return instructions 
retired.

Supports PEBS
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C4H 10H BR_INST_RETIRED.NOT_TAKEN Counts the number of not taken branch instructions 
retired. 

Supports PEBS

C4H 20H BR_INST_RETIRED.NEAR_TAKEN Number of near taken branches retired. Supports PEBS

C4H 40H BR_INST_RETIRED.FAR_BRANCH Number of far branches retired. Supports PEBS

C5H 00H BR_MISP_RETIRED.ALL_BRANCH
ES

Mispredicted branch instructions at retirement. See Table 19-1 

C5H 01H BR_MISP_RETIRED.CONDITIONAL Mispredicted conditional branch instructions retired. Supports PEBS

C5H 04H BR_MISP_RETIRED.ALL_BRANCH
ES

Mispredicted macro branch instructions retired. Supports PEBS

C5H 20H BR_MISP_RETIRED.NEAR_TAKEN Mispredicted taken branch instructions retired. Supports PEBS

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 FP assists due to Output values. Supports PEBS

CAH 04H FP_ASSIST.X87_INPUT Number of X87 FP assists due to input values. Supports PEBS

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to Output values. Supports PEBS

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSERT
S

Count cases of saving new LBR records by 
hardware. 

CDH 01H MEM_TRANS_RETIRED.LOAD_LA
TENCY

Randomly sampled loads whose latency is above a 
user defined threshold. A small fraction of the 
overall loads are sampled due to randomization.

Specify threshold in MSR 
0x3F6

CDH 02H MEM_TRANS_RETIRED.PRECISE_
STORE

Sample stores and collect precise store operation 
via PEBS record. PMC3 only.

See Section 18.9.4.3

D0H 01H MEM_UOPS_RETIRED.LOADS Qualify retired memory uops that are loads. 
Combine with umask 10H, 20H, 40H, 80H.

Supports PEBS

D0H 10H MEM_UOPS_RETIRED.STLB_MISS Qualify retired memory uops with STLB miss. Must 
combine with umask 01H, 02H, to produce counts.

Supports PEBS

D0H 40H MEM_UOPS_RETIRED.SPLIT Qualify retired memory uops with line split. Must 
combine with umask 01H, 02H, to produce counts.

Supports PEBS

D0H 80H MEM_UOPS_RETIRED.ALL Qualify any retired memory uops. Must combine 
with umask 01H, 02H, to produce counts.

Supports PEBS

D1H 01H MEM_LOAD_UOPS_RETIRED.L1_
HIT

Retired load uops with L1 cache hits as data 
sources.

Supports PEBS

D1H 02H MEM_LOAD_UOPS_RETIRED.L2_
HIT

Retired load uops with L2 cache hits as data 
sources.

Supports PEBS

D1H 04H MEM_LOAD_UOPS_RETIRED.LLC_
HIT

Retired load uops whose data source was LLC hit 
with no snoop required.

Supports PEBS

D1H 08H MEM_LOAD_UOPS_RETIRED.L1_
MISS

Retired load uops whose data source followed an 
L1 miss

Supports PEBS

D1H 10H MEM_LOAD_UOPS_RETIRED.L2_
MISS

Retired load uops that missed L2, excluding 
unknown sources

Supports PEBS

D1H 20H MEM_LOAD_UOPS_RETIRED.LLC_
MISS

Retired load uops whose data source is LLC miss Supports PEBS

D1H 40H MEM_LOAD_UOPS_RETIRED.HIT_
LFB

Retired load uops which data sources were load 
uops missed L1 but hit FB due to preceding miss to 
the same cache line with data not ready.

Supports PEBS
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Non-architecture performance monitoring events in the processor core that are applicable only to next generation 
Intel Xeon processor family based on Intel microarchitecture code name Ivy Bridge, with CPUID signature of 
DisplayFamily_DisplayModel 06_3EH, are listed in Table 19-6.

D2H 01H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_MISS

Retired load uops whose data source was an on-
package core cache LLC hit and cross-core snoop 
missed.

Supports PEBS

D2H 02H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_HIT

Retired load uops whose data source was an on-
package LLC hit and cross-core snoop hits.

Supports PEBS

D2H 04H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_HITM

Retired load uops whose data source was an on-
package core cache with HitM responses.

Supports PEBS

D2H 08H MEM_LOAD_UOPS_LLC_HIT_RETI
RED.XSNP_NONE

Retired load uops whose data source was LLC hit 
with no snoop required.

Supports PEBS

D3H 01H MEM_LOAD_UOPS_LLC_MISS_RE
TIRED.LOCAL_DRAM

Retired load uops whose data source was local 
memory (cross-socket snoop not needed or missed). 

Supports PEBS.

E6H 1FH BACLEARS.ANY Number of front end re-steers due to BPU 
misprediction.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF Any MLC or LLC HW prefetch accessing L2, including 
rejects. 

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover 
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover 
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover 
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover 
rejects.

F2H 01H L2_LINES_OUT.DEMAND_CLEAN Clean L2 cache lines evicted by demand.

F2H 02H L2_LINES_OUT.DEMAND_DIRTY Dirty L2 cache lines evicted by demand.

F2H 04H L2_LINES_OUT.PF_CLEAN Clean L2 cache lines evicted by the MLC prefetcher.

F2H 08H L2_LINES_OUT.PF_DIRTY Dirty L2 cache lines evicted by the MLC prefetcher.

F2H 0AH L2_LINES_OUT.DIRTY_ALL Dirty L2 cache lines filling the L2. Counting does not cover 
rejects.
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19.4 PERFORMANCE MONITORING EVENTS FOR 2ND GENERATION  
INTEL® CORE™ I7-2XXX, INTEL® CORE™ I5-2XXX, INTEL® CORE™ I3-2XXX 
PROCESSOR SERIES

2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series, and Intel 
Xeon processor E3-1200 product family are based on the Intel microarchitecture code name Sandy Bridge. They 
support architectural performance-monitoring events listed in Table 19-1. Non-architectural performance-moni-
toring events in the processor core are listed in Table 19-7, Table 19-8, and Table 19-9. The events in Table 19-7 
apply to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 
06_2AH and 06_2DH. The events in Table 19-8 apply to processors with CPUID signature 06_2AH. The events in 
Table 19-9 apply to processors with CPUID signature 06_2DH.

Additional informations on event specifics (e.g. derivative events using specific IA32_PERFEVTSELx modifiers, limi-
tations, special notes and recommendations) can be found at http://software.intel.com/en-us/forums/software-
tuning-performance-optimization-platform-monitoring.

Table 19-6.  Non-Architectural Performance Events Applicable only to the Processor Core of 
Next Generation Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

D3H 03H MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.LOCAL_DRAM

Retired load uops whose data sources was local DRAM 
(snoop not needed, Snoop Miss, or Snoop Hit data not 
forwarded).

Supports PEBS

D3H 0CH MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.REMOTE_DRAM

Retired load uops whose data source was remote 
DRAM (snoop not needed, Snoop Miss, or Snoop Hit 
data not forwarded).

Supports PEBS

D3H 10H MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.REMOTE_HITM

Retired load uops whose data sources was remote 
HITM.

Supports PEBS

D3H 20H MEM_LOAD_UOPS_LLC_MISS_R
ETIRED.REMOTE_FWD

Retired load uops whose data sources was forwards 
from a remote cache.

Supports PEBS

Table 19-7.  Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ 
i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 01H LD_BLOCKS.DATA_UNKNOWN blocked loads due to store buffer blocks with 
unknown data. 

03H 02H LD_BLOCKS.STORE_FORWARD loads blocked by overlapping with store buffer that 
cannot be forwarded .

03H 08H LD_BLOCKS.NO_SR # of Split loads blocked due to resource not 
available. 

03H 10H LD_BLOCKS.ALL_BLOCK Number of cases where any load is blocked but has 
no DCU miss.

05H 01H MISALIGN_MEM_REF.LOADS Speculative cache-line split load uops dispatched to 
L1D.

05H 02H MISALIGN_MEM_REF.STORES Speculative cache-line split Store-address uops 
dispatched to L1D.

07H 01H LD_BLOCKS_PARTIAL.ADDRES
S_ALIAS

False dependencies in MOB due to partial compare 
on address.
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07H 08H LD_BLOCKS_PARTIAL.ALL_STA
_BLOCK

The number of times that load operations are 
temporarily blocked because of older stores, with 
addresses that are not yet known. A load operation 
may incur more than one block of this type. 

08H 01H DTLB_LOAD_MISSES.MISS_CA
USES_A_WALK

Misses in all TLB levels that cause a page walk of 
any page size.

08H 02H DTLB_LOAD_MISSES.WALK_CO
MPLETED

Misses in all TLB levels that caused page walk 
completed of any size.

08H 04H DTLB_LOAD_MISSES.WALK_DU
RATION

Cycle PMH is busy with a walk.

08H 10H DTLB_LOAD_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

0DH 03H INT_MISC.RECOVERY_CYCLES Cycles waiting to recover after Machine Clears or 
JEClear. Set Cmask= 1.

Set Edge to count 
occurrences

0DH 40H INT_MISC.RAT_STALL_CYCLES Cycles RAT external stall is sent to IDQ for this 
thread. 

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops issued by the 
RAT to RS. 

Set Cmask = 1, Inv = 1, Any= 1to count stalled cycles 
of this core.

Set Cmask = 1, Inv = 1to 
count stalled cycles

10H 01H FP_COMP_OPS_EXE.X87 Counts number of X87 uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_P
ACKED_DOUBLE

Counts number of SSE* double precision FP packed 
uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_S
CALAR_SINGLE

Counts number of SSE* single precision FP scalar 
uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_PACK
ED SINGLE

Counts number of SSE* single precision FP packed 
uops executed.

10H 80H FP_COMP_OPS_EXE.SSE_SCAL
AR_DOUBLE

Counts number of SSE* double precision FP scalar 
uops executed.

11H 01H SIMD_FP_256.PACKED_SINGLE Counts 256-bit packed single-precision floating-
point instructions.

11H 02H SIMD_FP_256.PACKED_DOUBL
E

Counts 256-bit packed double-precision floating-
point instructions.

14H 01H ARITH.FPU_DIV_ACTIVE Cycles that the divider is active, includes INT and FP. 
Set 'edge =1, cmask=1' to count the number of 
divides.

17H 01H INSTS_WRITTEN_TO_IQ.INSTS Counts the number of instructions written into the 
IQ every cycle. 

24H 01H L2_RQSTS.DEMAND_DATA_RD
_HIT

Demand Data Read requests that hit L2 cache.

24H 03H L2_RQSTS.ALL_DEMAND_DAT
A_RD

Counts any demand and L1 HW prefetch data load 
requests to L2. 

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO requests that hit 
the L2 cache. 

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss 
the L2 cache. 

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests. 

Table 19-7.  Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ 
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24H 10H L2_RQSTS.CODE_RD_HIT Number of instruction fetches that hit the L2 cache. 

24H 20H L2_RQSTS.CODE_RD_MISS Number of instruction fetches that missed the L2 
cache. 

24H 30H L2_RQSTS.ALL_CODE_RD Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Requests from L2 Hardware prefetcher that hit L2.

24H 80H L2_RQSTS.PF_MISS Requests from L2 Hardware prefetcher that missed 
L2.

24H C0H L2_RQSTS.ALL_PF Any requests from L2 Hardware prefetchers.

27H 01H L2_STORE_LOCK_RQSTS.MISS RFOs that miss cache lines.

27H 04H L2_STORE_LOCK_RQSTS.HIT_
E

RFOs that hit cache lines in E state.

27H 08H L2_STORE_LOCK_RQSTS.HIT_
M

RFOs that hit cache lines in M state.

27H 0FH L2_STORE_LOCK_RQSTS.ALL RFOs that access cache lines in any state.

28H 01H L2_L1D_WB_RQSTS.MISS Not rejected writebacks from L1D to L2 cache lines 
that missed L2.

28H 02H L2_L1D_WB_RQSTS.HIT_S Not rejected writebacks from L1D to L2 cache lines 
in S state.

28H 04H L2_L1D_WB_RQSTS.HIT_E Not rejected writebacks from L1D to L2 cache lines 
in E state.

28H 08H L2_L1D_WB_RQSTS.HIT_M Not rejected writebacks from L1D to L2 cache lines 
in M state.

28H 0FH L2_L1D_WB_RQSTS.ALL Not rejected writebacks from L1D to L2 cache.

2EH 4FH LONGEST_LAT_CACHE.REFERE
NCE

This event counts requests originating from the 
core that reference a cache line in the last level 
cache. 

see Table 19-1

2EH 41H LONGEST_LAT_CACHE.MISS This event counts each cache miss condition for 
references to the last level cache. 

see Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD
_P

Counts the number of thread cycles while the 
thread is not in a halt state. The thread enters the 
halt state when it is running the HLT instruction. 
The core frequency may change from time to time 
due to power or thermal throttling. 

see Table 19-1

3CH 01H CPU_CLK_THREAD_UNHALTED
.REF_XCLK

Increments at the frequency of XCLK (100 MHz) 
when not halted.

see Table 19-1

48H 01H L1D_PEND_MISS.PENDING Increments the number of outstanding L1D misses 
every cycle. Set Cmaks = 1 and Edge =1 to count 
occurrences.

PMC2 only;

Set Cmask = 1 to count 
cycles. 

49H 01H DTLB_STORE_MISSES.MISS_CA
USES_A_WALK

Miss in all TLB levels causes an page walk of any 
page size (4K/2M/4M/1G).

49H 02H DTLB_STORE_MISSES.WALK_C
OMPLETED

Miss in all TLB levels causes a page walk that 
completes of any page size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSES.WALK_D
URATION

Cycles PMH is busy with this walk.
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49H 10H DTLB_STORE_MISSES.STLB_HI
T

Store operations that miss the first TLB level but hit 
the second and do not cause page walks.

4CH 01H LOAD_HIT_PRE.SW_PF Not SW-prefetch load dispatches that hit fill buffer 
allocated for S/W prefetch.

4CH 02H LOAD_HIT_PRE.HW_PF Not SW-prefetch load  dispatches that hit fill buffer 
allocated for H/W prefetch.

4EH 02H HW_PRE_REQ.DL1_MISS Hardware Prefetch requests that miss the L1D 
cache. A request is being counted each time it 
access the cache & miss it, including if a block is 
applicable or if hit the Fill Buffer for example.

This accounts for both L1 
streamer and IP-based 
(IPP) HW prefetchers. 

51H 01H L1D.REPLACEMENT Counts the number of lines brought into the L1 data 
cache.

51H 02H L1D.ALLOCATED_IN_M Counts the number of allocations of modified L1D 
cache lines. 

51H 04H L1D.EVICTION Counts the number of modified lines evicted from 
the L1 data cache  due to replacement. 

51H 08H L1D.ALL_M_REPLACEMENT Cache lines in M state evicted out of L1D due to 
Snoop HitM or dirty line replacement.

59H 20H PARTIAL_RAT_STALLS.FLAGS_
MERGE_UOP

Increments the number of flags-merge uops in flight 
each cycle.

Set Cmask = 1 to count cycles.

59H 40H PARTIAL_RAT_STALLS.SLOW_
LEA_WINDOW

Cycles with at least one slow LEA uop allocated.

59H 80H PARTIAL_RAT_STALLS.MUL_SI
NGLE_UOP

Number of Multiply packed/scalar single precision 
uops allocated.

5BH 0CH RESOURCE_STALLS2.ALL_FL_
EMPTY

Cycles stalled due to free list empty. PMC0-3 only regardless 
HTT

5BH 0FH RESOURCE_STALLS2.ALL_PRF
_CONTROL

Cycles stalled due to control structures full for 
physical registers.

5BH 40H RESOURCE_STALLS2.BOB_FUL
L

Cycles Allocator is stalled due Branch Order Buffer. 

5BH 4FH RESOURCE_STALLS2.OOO_RS
RC

Cycles stalled due to out of order resources full.

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the thread is in ring 0. Use Edge to count 
transition

5CH 02H CPL_CYCLES.RING123 Unhalted core cycles when the thread is not in ring 
0.

5EH 01H RS_EVENTS.EMPTY_CYCLES Cycles the RS is empty for the thread.

60H 01H OFFCORE_REQUESTS_OUTSTA
NDING.DEMAND_DATA_RD

Offcore outstanding Demand Data Read 
transactions in SQ to uncore. Set Cmask=1 to count 
cycles.

60H 04H OFFCORE_REQUESTS_OUTSTA
NDING.DEMAND_RFO

Offcore outstanding RFO store transactions in SQ to 
uncore. Set Cmask=1 to count cycles.

60H 08H OFFCORE_REQUESTS_OUTSTA
NDING.ALL_DATA_RD

Offcore outstanding cacheable data read 
transactions in SQ to uncore. Set Cmask=1 to count 
cycles.
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63H 01H LOCK_CYCLES.SPLIT_LOCK_UC
_LOCK_DURATION

Cycles in which the L1D and L2  are locked, due to a 
UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE_LOCK_D
URATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops delivered to IDQ 
from MITE path. 

Set Cmask = 1 to count cycles.

Can combine Umask 04H 
and 20H 

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops delivered to IDQ 
from DSB path. 

Set Cmask = 1 to count cycles.

Can combine Umask 08H 
and 10H 

79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops delivered to IDQ 
when MS busy by DSB. Set Cmask = 1 to count 
cycles MS is busy. Set Cmask=1 and Edge =1 to 
count MS activations.

Can combine Umask 08H 
and 10H 

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops delivered to IDQ 
when MS is busy by MITE. Set Cmask = 1 to count 
cycles.

Can combine Umask 04H 
and 20H 

79H 30H IDQ.MS_UOPS Increment each cycle # of uops delivered to IDQ 
from MS by either DSB or MITE. Set Cmask = 1 to 
count cycles.

Can combine Umask 04H, 
08H and 30H 

80H 02H ICACHE.MISSES Number of Instruction Cache, Streaming Buffer and 
Victim Cache Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_CAUSES_A
_WALK

Misses in all ITLB levels that cause page walks.

85H 02H ITLB_MISSES.WALK_COMPLET
ED

Misses in all ITLB levels that cause completed page 
walks.

85H 04H ITLB_MISSES.WALK_DURATIO
N

Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_HIT Number of cache load STLB hits. No page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix length of the 
instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 41H BR_INST_EXEC.NONTAKEN_CO
NDITIONAL

Not-taken macro conditional branches

88H 81H BR_INST_EXEC.TAKEN_CONDI
TIONAL

Taken speculative and retired conditional branches

88H 82H BR_INST_EXEC.TAKEN_DIRECT
_JUMP

Taken speculative and retired conditional branches 
excluding calls and indirects

88H 84H BR_INST_EXEC.TAKEN_INDIRE
CT_JUMP_NON_CALL_RET

Taken speculative and retired indirect branches 
excluding calls and returns

88H 88H BR_INST_EXEC.TAKEN_INDIRE
CT_NEAR_RETURN

Taken speculative and retired indirect branches that 
are returns

88H 90H BR_INST_EXEC.TAKEN_DIRECT
_NEAR_CALL

Taken speculative and retired direct near calls
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88H A0H BR_INST_EXEC.TAKEN_INDIRE
CT_NEAR_CALL

Taken speculative and retired indirect near calls

88H C1H BR_INST_EXEC.ALL_CONDITIO
NAL

Speculative and retired conditional branches

88H C2H BR_INST_EXEC.ALL_DIRECT_J
UMP

Speculative and retired conditional branches 
excluding calls and indirects

88H C4H BR_INST_EXEC.ALL_INDIRECT
_JUMP_NON_CALL_RET

Speculative and retired indirect branches excluding 
calls and returns

88H C8H BR_INST_EXEC.ALL_INDIRECT
_NEAR_RETURN

Speculative and retired indirect branches that are 
returns

88H D0H BR_INST_EXEC.ALL_NEAR_CA
LL

Speculative and retired direct near calls

88H FFH BR_INST_EXEC.ALL_BRANCHE
S

Speculative and retired branches

89H 41H BR_MISP_EXEC.NONTAKEN_CO
NDITIONAL

Not-taken mispredicted macro conditional branches

89H 81H BR_MISP_EXEC.TAKEN_CONDI
TIONAL

Taken speculative and retired mispredicted 
conditional branches

89H 84H BR_MISP_EXEC.TAKEN_INDIRE
CT_JUMP_NON_CALL_RET

Taken speculative and retired mispredicted indirect 
branches excluding calls and returns

89H 88H BR_MISP_EXEC.TAKEN_RETUR
N_NEAR

Taken speculative and retired mispredicted indirect 
branches that are returns

89H 90H BR_MISP_EXEC.TAKEN_DIRECT
_NEAR_CALL

Taken speculative and retired mispredicted direct 
near calls

89H A0H BR_MISP_EXEC.TAKEN_INDIRE
CT_NEAR_CALL

Taken speculative and retired mispredicted indirect 
near calls

89H C1H BR_MISP_EXEC.ALL_CONDITIO
NAL

Speculative and retired mispredicted conditional 
branches

89H C4H BR_MISP_EXEC.ALL_INDIRECT
_JUMP_NON_CALL_RET

Speculative and retired mispredicted indirect 
branches excluding calls and returns

89H D0H BR_MISP_EXEC.ALL_NEAR_CA
LL

Speculative and retired mispredicted direct near 
calls

89H FFH BR_MISP_EXEC.ALL_BRANCHE
S

Speculative and retired mispredicted branches

9CH 01H IDQ_UOPS_NOT_DELIVERED.C
ORE

Count number of non-delivered uops to RAT per 
thread. 

Use Cmask to qualify uop 
b/w

A1H 01H UOPS_DISPATCHED_PORT.POR
T_0

Cycles which a Uop is dispatched on port 0.

A1H 02H UOPS_DISPATCHED_PORT.POR
T_1

Cycles which a Uop is dispatched on port 1.

A1H 0CH UOPS_DISPATCHED_PORT.POR
T_2

Cycles which a Uop is dispatched on port 2.

A1H 30H UOPS_DISPATCHED_PORT.POR
T_3

Cycles which a Uop is dispatched on port 3.

A1H 40H UOPS_DISPATCHED_PORT.POR
T_4

Cycles which a Uop is dispatched on port 4.
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A1H 80H UOPS_DISPATCHED_PORT.POR
T_5

Cycles which a Uop is dispatched on port 5.

A2H 01H RESOURCE_STALLS.ANY Cycles Allocation is stalled due to Resource Related 
reason. 

A2H 02H RESOURCE_STALLS.LB Counts the cycles of stall due to lack of load buffers.

A2H 04H RESOURCE_STALLS.RS Cycles stalled due to no eligible RS entry available. 

A2H 08H RESOURCE_STALLS.SB Cycles stalled due to no store buffers available. (not 
including draining form sync).

A2H 10H RESOURCE_STALLS.ROB Cycles stalled due to re-order buffer full.

A2H 20H RESOURCE_STALLS.FCSW Cycles stalled due to writing the FPU control word.

A3H 02H CYCLE_ACTIVITY.CYCLES_L1D_
PENDING

Cycles with pending L1 cache miss loads.Set 
AnyThread to count per core.

PMC2 only

A3H 01H CYCLE_ACTIVITY.CYCLES_L2_P
ENDING

Cycles with pending L2 miss loads. Set AnyThread 
to count per core.

A3H 04H CYCLE_ACTIVITY.CYCLES_NO_
DISPATCH

Cycles of dispatch stalls. Set AnyThread to count per 
core.

PMC0-3 only

A8H 01H LSD.UOPS Number of Uops delivered by the LSD.

ABH 01H DSB2MITE_SWITCHES.COUNT Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHES.PENALT
Y_CYCLES

Cycles DSB to MITE switches caused delay.

ACH 02H DSB_FILL.OTHER_CANCEL Cases of cancelling valid DSB fill not because of 
exceeding way limit.

ACH 08H DSB_FILL.EXCEED_DSB_LINES DSB Fill encountered > 3 DSB lines.

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, includes 
4k/2M/4M pages.

B0H 01H OFFCORE_REQUESTS.DEMAND
_DATA_RD

Demand data read requests sent to uncore. 

B0H 04H OFFCORE_REQUESTS.DEMAND
_RFO

Demand RFO read requests sent to uncore, including 
regular RFOs, locks, ItoM.

B0H 08H OFFCORE_REQUESTS.ALL_DAT
A_RD

Data read requests sent to uncore (demand and 
prefetch).

B1H 01H UOPS_DISPATCHED.THREAD Counts total number of uops to be dispatched per-
thread each cycle. Set Cmask = 1, INV =1 to count 
stall cycles.

PMC0-3 only regardless 
HTT

B1H 02H UOPS_DISPATCHED.CORE Counts total number of uops to be dispatched per-
core each cycle.

Do not need to set ANY

B2H 01H OFFCORE_REQUESTS_BUFFER
.SQ_FULL

Offcore requests buffer cannot take more entries 
for this thread core.

B6H 01H AGU_BYPASS_CANCEL.COUNT Counts executed load operations with all the 
following traits: 1. addressing of the format [base + 
offset], 2. the offset is between 1 and 2047, 3. the 
address specified in the base register is in one page 
and the address [base+offset] is in another page.

B7H 01H OFF_CORE_RESPONSE_0 see Section 18.9.5, “Off-core Response 
Performance Monitoring”.

Requires MSR 01A6H
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BBH 01H OFF_CORE_RESPONSE_1 See Section 18.9.5, “Off-core Response 
Performance Monitoring”.

Requires MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_THREAD DTLB flush attempts of the thread-specific entries.

BDH 20H TLB_FLUSH.STLB_ANY Count number of STLB flush attempts.

BFH 05H L1D_BLOCKS.BANK_CONFLICT
_CYCLES

Cycles when dispatched loads are cancelled due to 
L1D bank conflicts with other load ports.

cmask=1 

C0H 00H INST_RETIRED.ANY_P Number of instructions at retirement. See Table 19-1

C0H 01H INST_RETIRED.ALL Precise instruction retired event with HW to reduce 
effect of PEBS shadow in IP distribution.

PMC1 only; Must quiesce 
other PMCs.

C1H 02H OTHER_ASSISTS.ITLB_MISS_R
ETIRED

Instructions that experienced an ITLB miss.

C1H 08H OTHER_ASSISTS.AVX_STORE Number of assists associated with 256-bit AVX 
store operations.

C1H 10H OTHER_ASSISTS.AVX_TO_SSE Number of transitions from AVX-256 to legacy SSE 
when penalty applicable.

C1H 20H OTHER_ASSISTS.SSE_TO_AVX Number of transitions from SSE to AVX-256 when 
penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops retired, Use 
cmask=1 and invert to count active cycles or stalled 
cycles.

Supports PEBS

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each 
cycle.

Supports PEBS

C3H 02H MACHINE_CLEARS.MEMORY_O
RDERING

Counts the number of machine clears due to 
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Counts the number of times that a program writes 
to a code section. 

C3H 20H MACHINE_CLEARS.MASKMOV Counts the number of executed AVX masked load 
operations that refer to an illegal address range 
with the mask bits set to 0. 

C4H 00H BR_INST_RETIRED.ALL_BRAN
CHES

Branch instructions at retirement. See Table 19-1 

C4H 01H BR_INST_RETIRED.CONDITION
AL

Counts the number of conditional branch 
instructions retired. 

Supports PEBS

C4H 02H BR_INST_RETIRED.NEAR_CALL Direct and indirect near call instructions retired. Supports PEBS

C4H 04H BR_INST_RETIRED.ALL_BRAN
CHES

Counts the number of branch instructions retired. Supports PEBS

C4H 08H BR_INST_RETIRED.NEAR_RET
URN

Counts the number of near return instructions 
retired.

Supports PEBS

C4H 10H BR_INST_RETIRED.NOT_TAKE
N

Counts the number of not taken branch instructions 
retired. 

C4H 20H BR_INST_RETIRED.NEAR_TAK
EN

Number of near taken branches retired. Supports PEBS

C4H 40H BR_INST_RETIRED.FAR_BRAN
CH

Number of far branches retired.
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C5H 00H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted branch instructions at retirement. See Table 19-1 

C5H 01H BR_MISP_RETIRED.CONDITION
AL

Mispredicted conditional branch instructions retired. Supports PEBS

C5H 02H BR_MISP_RETIRED.NEAR_CAL
L

Direct and indirect mispredicted near call 
instructions retired. 

Supports PEBS

C5H 04H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted macro branch instructions retired. Supports PEBS

C5H 10H BR_MISP_RETIRED.NOT_TAKE
N

Mispredicted not taken branch instructions retired. Supports PEBS

C5H 20H BR_MISP_RETIRED.TAKEN Mispredicted taken branch instructions retired. Supports PEBS

CAH 02H FP_ASSIST.X87_OUTPUT Number of X87 assists due to output value.

CAH 04H FP_ASSIST.X87_INPUT Number of X87 assists due to input value.

CAH 08H FP_ASSIST.SIMD_OUTPUT Number of SIMD FP assists due to output values.

CAH 10H FP_ASSIST.SIMD_INPUT Number of SIMD FP assists due to input values.

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* or FP assists.

CCH 20H ROB_MISC_EVENTS.LBR_INSE
RTS

Count cases of saving new LBR records by 
hardware. 

CDH 01H MEM_TRANS_RETIRED.LOAD_
LATENCY

Randomly sampled loads whose latency is above a 
user defined threshold. A small fraction of the 
overall loads are sampled due to randomization. 
PMC3 only.

Specify threshold in MSR 
0x3F6

CDH 02H MEM_TRANS_RETIRED.PRECIS
E_STORE

Sample stores and collect precise store operation 
via PEBS record. PMC3 only.

See Section 18.9.4.3

D0H 11H MEM_UOP_RETIRED.STLB_MIS
S_LOADS

Load uops with true STLB miss retired to 
architectural path.

Supports PEBS. PMC0-3 
only regardless HTT.

D0H 12H MEM_UOP_RETIRED.STLB_MIS
S_STORES

Store uops with true STLB miss retired to 
architectural path.

Supports PEBS. PMC0-3 
only regardless HTT.

D0H 21H MEM_UOP_RETIRED.LOCK_LO
ADS

Load uops with lock access retired to architectural 
path.

Supports PEBS. PMC0-3 
only regardless HTT.

D0H 22H MEM_UOP_RETIRED.LOCK_ST
ORES

Store uops with lock access retired to architectural 
path.

Supports PEBS. PMC0-3 
only regardless HTT.

D0H 41H MEM_UOP_RETIRED.SPLIT_LO
ADS

Load uops with cacheline split retired to 
architectural path.

Supports PEBS. PMC0-3 
only regardless HTT.

D0H 42H MEM_UOP_RETIRED.SPLIT_ST
ORES

Store uops with cacheline split retired to 
architectural path.

Supports PEBS. PMC0-3 
only regardless HTT.

D0H 81H MEM_UOP_RETIRED.ALL_LOA
DS

ALL Load uops retired to architectural path. Supports PEBS. PMC0-3 
only regardless HTT.

D0H 82H MEM_UOP_RETIRED.ALL_STO
RES

ALL Store uops retired to architectural path. Supports PEBS. PMC0-3 
only regardless HTT.

D0H 80H MEM_UOP_RETIRED.ALL Qualify any retired memory uops. Must combine 
with umask 01H, 02H, to produce counts.

D1H 01H MEM_LOAD_UOPS_RETIRED.L
1_HIT

Retired load uops with L1 cache hits as data 
sources.

Supports PEBS. PMC0-3 
only regardless HTT
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D1H 02H MEM_LOAD_UOPS_RETIRED.L
2_HIT

Retired load uops with L2 cache hits as data 
sources.

Supports PEBS

D1H 04H MEM_LOAD_UOPS_RETIRED.LL
C_HIT

Retired load uops which data sources were data hits 
in LLC without snoops required.

Supports PEBS

D1H 20H MEM_LOAD_UOPS_RETIRED.LL
C_MISS

Retired load uops which data sources were data 
missed LLC (excluding unknown data source).

D1H 40H MEM_LOAD_UOPS_RETIRED.HI
T_LFB

Retired load uops which data sources were load 
uops missed L1 but hit FB due to preceding miss to 
the same cache line with data not ready.

Supports PEBS

D2H 01H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_MISS

Retired load uops whose data source was an on-
package core cache LLC hit and cross-core snoop 
missed.

Supports PEBS

D2H 02H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HIT

Retired load uops whose data source was an on-
package LLC hit and cross-core snoop hits.

Supports PEBS

D2H 04H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HITM

Retired load uops whose data source was an on-
package core cache with HitM responses.

Supports PEBS

D2H 08H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_NONE

Retired load uops whose data source was LLC hit 
with no snoop required.

Supports PEBS

E6H 01H BACLEARS.ANY Counts the number of times the front end is re-
steered, mainly when the BPU cannot provide a 
correct prediction and this is corrected by other 
branch handling mechanisms at the front end.

F0H 01H L2_TRANS.DEMAND_DATA_RD Demand Data Read requests that access L2 cache.

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache.

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching instructions.

F0H 08H L2_TRANS.ALL_PF L2 or LLC HW prefetches that access L2 cache. including rejects

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 cache.

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache.

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache.

F0H 80H L2_TRANS.ALL_REQUESTS Transactions accessing L2 pipe.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2. Counting does not cover 
rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2. Counting does not cover 
rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2. Counting does not cover 
rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2. Counting does not cover 
rejects.

F2H 01H L2_LINES_OUT.DEMAND_CLEA
N

Clean L2 cache lines evicted by demand.

F2H 02H L2_LINES_OUT.DEMAND_DIRT
Y

Dirty L2 cache lines evicted by demand.

F2H 04H L2_LINES_OUT.PF_CLEAN Clean L2 cache lines evicted by L2 prefetch.

F2H 08H L2_LINES_OUT.PF_DIRTY Dirty L2 cache lines evicted by L2 prefetch.

Table 19-7.  Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ 
i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family 

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment
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Non-architecture performance monitoring events in the processor core that are applicable only to Intel processor 
with CPUID signature of DisplayFamily_DisplayModel 06_2AH are listed in Table 19-8.

F2H 0AH L2_LINES_OUT.DIRTY_ALL Dirty L2 cache lines filling the L2. Counting does not cover 
rejects.

F4H 10H SQ_MISC.SPLIT_LOCK Split locks in SQ.

Table 19-8.  Non-Architectural Performance Events applicable only to the Processor core for 2nd Generation Intel® 
Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

D2H 01H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_MISS

Retired load uops which data sources were LLC hit and 
cross-core snoop missed in on-pkg core cache.

Supports PEBS. PMC0-
3 only regardless HTT

D2H 02H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HIT

Retired load uops which data sources were LLC and 
cross-core snoop hits in on-pkg core cache.

D2H 04H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HITM

Retired load uops which data sources were HitM 
responses from shared LLC.

D2H 08H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_NONE

Retired load uops which data sources were hits in LLC 
without snoops required.

D4H 02H MEM_LOAD_UOPS_MISC_RETI
RED.LLC_MISS

Retired load uops with unknown information as data 
source in cache serviced the load. 

Supports PEBS. PMC0-
3 only regardless HTT

B7H/BBH 01H OFF_CORE_RESPONSE_N Sub-events of OFF_CORE_RESPONSE_N (suffix N = 0, 
1) programmed using MSR 01A6H/01A7H with values 
shown in the comment column.

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT_N 0x10003C0244

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 0x1003C0244

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.SNOOP_MISS_N 0x2003C0244

OFFCORE_RESPONSE.ALL_CODE_RD.LLC_HIT.MISS_DRAM_N 0x300400244

OFFCORE_RESPONSE.ALL_DATA_RD.LLC_HIT.ANY_RESPONSE_N 0x3F803C0091

OFFCORE_RESPONSE.ALL_DATA_RD.LLC_MISS.DRAM_N 0x300400091

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.ANY_RESPONSE_N 0x3F803C0240

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 0x4003C0240

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.HITM_OTHER_CORE_N 0x10003C0240

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 0x1003C0240

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_HIT.SNOOP_MISS_N 0x2003C0240

OFFCORE_RESPONSE.ALL_PF_CODE_RD.LLC_MISS.DRAM_N 0x300400240

OFFCORE_RESPONSE.ALL_PF_DATA_RD.LLC_MISS.DRAM_N 0x300400090

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.ANY_RESPONSE_N 0x3F803C0120

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 0x4003C0120

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.HITM_OTHER_CORE_N 0x10003C0120

OFFCORE_RESPONSE.ALL_PF_RfO.LLC_HIT.NO_SNOOP_NEEDED_N 0x1003C0120

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0120

OFFCORE_RESPONSE.ALL_PF_RFO.LLC_MISS.DRAM_N 0x300400120

Table 19-7.  Non-Architectural Performance Events In the Processor Core Common to 2nd Generation Intel® Core™ 
i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series and Intel® Xeon® Processors E3 and E5 Family 

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment
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OFFCORE_RESPONSE.ALL_READS.LLC_MISS.DRAM_N 0x3004003F7

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.ANY_RESPONSE_N 0x3F803C0122

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 0x4003C0122

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.HITM_OTHER_CORE_N 0x10003C0122

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.NO_SNOOP_NEEDED_N 0x1003C0122

OFFCORE_RESPONSE.ALL_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0122

OFFCORE_RESPONSE.ALL_RFO.LLC_MISS.DRAM_N 0x300400122

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 0x4003C0004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.HITM_OTHER_CORE_N 0x10003C0004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 0x1003C0004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_HIT.SNOOP_MISS_N 0x2003C0004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.DRAM_N 0x300400004

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.DRAM_N 0x300400001

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.ANY_RESPONSE_N 0x3F803C0002

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 0x4003C0002

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HITM_OTHER_CORE_N 0x10003C0002

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.NO_SNOOP_NEEDED_N 0x1003C0002

OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0002

OFFCORE_RESPONSE.DEMAND_RFO.LLC_MISS.DRAM_N 0x300400002

OFFCORE_RESPONSE.OTHER.ANY_RESPONSE_N 0x18000

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 0x4003C0040

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.HITM_OTHER_CORE_N 0x10003C0040

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 0x1003C0040

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_HIT.SNOOP_MISS_N 0x2003C0040

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.DRAM_N 0x300400040

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.DRAM_N 0x300400010

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.ANY_RESPONSE_N 0x3F803C0020

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 0x4003C0020

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.HITM_OTHER_CORE_N 0x10003C0020

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.NO_SNOOP_NEEDED_N 0x1003C0020

OFFCORE_RESPONSE.PF_L2_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0020

OFFCORE_RESPONSE.PF_L2_RFO.LLC_MISS.DRAM_N 0x300400020

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 0x4003C0200

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.HITM_OTHER_CORE_N 0x10003C0200

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.NO_SNOOP_NEEDED_N 0x1003C0200

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_HIT.SNOOP_MISS_N 0x2003C0200

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.DRAM_N 0x300400200

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.DRAM_N 0x300400080

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.ANY_RESPONSE_N 0x3F803C0100

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.HIT_OTHER_CORE_NO_FWD_N 0x4003C0100

Table 19-8.  Non-Architectural Performance Events applicable only to the Processor core for 2nd Generation Intel® 
Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment
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Non-architecture performance monitoring events in the processor core that are applicable only to Intel Xeon 
processor E5 family (and Intel Core i7-3930 processor) based on Intel microarchitecture code name Sandy Bridge, 
with CPUID signature of DisplayFamily_DisplayModel 06_2DH, are listed in Table 19-9.

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.HITM_OTHER_CORE_N 0x10003C0100

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.NO_SNOOP_NEEDED_N 0x1003C0100

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_HIT.SNOOP_MISS_N 0x2003C0100

OFFCORE_RESPONSE.PF_LLC_RFO.LLC_MISS.DRAM_N 0x300400100

Table 19-9.  Non-Architectural Performance Events Applicable only to the Processor Core of 
Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

CDH 01H MEM_TRANS_RETIRED.LOAD_
LATENCY

Additional Configuration: Disable BL bypass and direct2core, and if the memory 
is remotely homed. The count is not reliable If the memory is locally homed. 

D1H 04H MEM_LOAD_UOPS_RETIRED.LL
C_HIT

Additional Configuration: Disable BL bypass. Supports PEBS.

D1H 20H MEM_LOAD_UOPS_RETIRED.LL
C_MISS

Additional Configuration: Disable BL bypass and direct2core. Supports PEBS.

D2H 01H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_MISS

Additional Configuration: Disable bypass. Supports PEBS.

D2H 02H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HIT

Additional Configuration: Disable bypass. Supports PEBS.

D2H 04H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_HITM

Additional Configuration: Disable bypass. Supports PEBS.

D2H 08H MEM_LOAD_UOPS_LLC_HIT_R
ETIRED.XSNP_NONE

Additional Configuration: Disable bypass. Supports PEBS.

D3H 01H MEM_LOAD_UOPS_LLC_MISS_
RETIRED.LOCAL_DRAM

Retired load uops which data sources were data 
missed LLC but serviced by local DRAM.

Disable BL bypass and 
direct2core (see MSR 
0x3C9)

D3H 04H MEM_LOAD_UOPS_LLC_MISS_
RETIRED.REMOTE_DRAM

Retired load uops which data sources were data 
missed LLC but serviced by remote DRAM.

Disable BL bypass and 
direct2core (see MSR 
0x3C9)

B7H/BB
H

01H OFF_CORE_RESPONSE_N Sub-events of OFF_CORE_RESPONSE_N (suffix N = 0, 
1) programmed using MSR 01A6H/01A7H with values 
shown in the comment column.

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.ANY_RESPONSE_N 0x3FFFC00004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.LOCAL_DRAM_N 0x600400004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE_DRAM_N 0x67F800004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE_HIT_FWD_N 0x87F800004

OFFCORE_RESPONSE.DEMAND_CODE_RD.LLC_MISS.REMOTE_HITM_N 0x107FC00004

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_DRAM_N 0x67FC00001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.ANY_RESPONSE_N 0x3F803C0001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.LOCAL_DRAM_N 0x600400001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE_DRAM_N 0x67F800001

Table 19-8.  Non-Architectural Performance Events applicable only to the Processor core for 2nd Generation Intel® 
Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment
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Non-architectural Performance monitoring events that are located in the uncore sub-system are implementation 
specific between different platforms using processors based on Intel microarchitecture code name Sandy Bridge. 
Processors with CPUID signature of DisplayFamily_DisplayModel 06_2AH support performance events listed in 
Table 19-10.

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE_HIT_FWD_N 0x87F800001

OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE_HITM_N 0x107FC00001

OFFCORE_RESPONSE.PF_L2_CODE_RD.LLC_MISS.ANY_RESPONSE_N 0x3F803C0040

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_DRAM_N 0x67FC00010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.ANY_RESPONSE_N 0x3F803C0010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.LOCAL_DRAM_N 0x600400010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_DRAM_N 0x67F800010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HIT_FWD_N 0x87F800010

OFFCORE_RESPONSE.PF_L2_DATA_RD.LLC_MISS.REMOTE_HITM_N 0x107FC00010

OFFCORE_RESPONSE.PF_LLC_CODE_RD.LLC_MISS.ANY_RESPONSE_N 0x3FFFC00200

OFFCORE_RESPONSE.PF_LLC_DATA_RD.LLC_MISS.ANY_RESPONSE_N 0x3FFFC00080

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 2nd Generation 
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series

Event
Num.1

Umask
Value Event Mask Mnemonic Description Comment

22H 01H UNC_CBO_XSNP_RESPONSE.M
ISS

A snoop misses in some processor core. Must combine with 
one of the umask 
values of 20H, 40H, 
80H

22H 02H UNC_CBO_XSNP_RESPONSE.I
NVAL

A snoop invalidates a non-modified line in some 
processor core.

22H 04H UNC_CBO_XSNP_RESPONSE.H
IT

A snoop hits a non-modified line in some processor 
core.

22H 08H UNC_CBO_XSNP_RESPONSE.H
ITM

A snoop hits a modified line in some processor core.

22H 10H UNC_CBO_XSNP_RESPONSE.I
NVAL_M

A snoop invalidates a modified line in some processor 
core.

22H 20H UNC_CBO_XSNP_RESPONSE.E
XTERNAL_FILTER

Filter on cross-core snoops initiated by this Cbox due 
to external snoop request. 

Must combine with at 
least one of 01H, 02H, 
04H, 08H, 10H22H 40H UNC_CBO_XSNP_RESPONSE.X

CORE_FILTER
Filter on cross-core snoops initiated by this Cbox due 
to processor core memory request. 

22H 80H UNC_CBO_XSNP_RESPONSE.E
VICTION_FILTER

Filter on cross-core snoops initiated by this Cbox due 
to LLC eviction. 

Table 19-9.  Non-Architectural Performance Events Applicable only to the Processor Core of 
Intel® Xeon® Processor E5 Family

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment
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19.5 PERFORMANCE MONITORING EVENTS FOR  INTEL® CORE™ I7 PROCESSOR 
FAMILY AND INTEL® XEON® PROCESSOR FAMILY

Processors based on the Intel microarchitecture code name Nehalem support the architectural and non-architec-
tural performance-monitoring events listed in Table 19-1 and Table 19-11. The events in Table 19-11 generally 
applies to processors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 
06_1AH, 06_1EH, 06_1FH, and 06_2EH. However, Intel Xeon processors with CPUID signature of 

34H 01H UNC_CBO_CACHE_LOOKUP.M LLC lookup request that access cache and found line in 
M-state.

Must combine with 
one of the umask 
values of 10H, 20H, 
40H, 80H

34H 02H UNC_CBO_CACHE_LOOKUP.E LLC lookup request that access cache and found line in 
E-state.

34H 04H UNC_CBO_CACHE_LOOKUP.S LLC lookup request that access cache and found line in 
S-state.

34H 08H UNC_CBO_CACHE_LOOKUP.I LLC lookup request that access cache and found line in 
I-state.

34H 10H UNC_CBO_CACHE_LOOKUP.RE
AD_FILTER

Filter on processor core initiated cacheable read 
requests. Must combine with at least one of 01H, 02H, 
04H, 08H.

34H 20H UNC_CBO_CACHE_LOOKUP.WR
ITE_FILTER

Filter on processor core initiated cacheable write 
requests. Must combine with at least one of 01H, 02H, 
04H, 08H.

34H 40H UNC_CBO_CACHE_LOOKUP.EX
TSNP_FILTER

Filter on external snoop requests. Must combine with 
at least one of 01H, 02H, 04H, 08H.

34H 80H UNC_CBO_CACHE_LOOKUP.AN
Y_REQUEST_FILTER

Filter on any IRQ or IPQ initiated requests including 
uncacheable, non-coherent requests. Must combine 
with at least one of 01H, 02H, 04H, 08H.

80H 01H UNC_ARB_TRK_OCCUPANCY.A
LL

Counts cycles weighted by the number of requests 
waiting for data returning from the memory controller. 
Accounts for coherent and non-coherent requests 
initiated by IA cores, processor graphic units, or LLC.

Counter 0 only

81H 01H UNC_ARB_TRK_REQUEST.ALL Counts the number of coherent and in-coherent 
requests initiated by IA cores, processor graphic units, 
or LLC.

81H 20H UNC_ARB_TRK_REQUEST.WRI
TES

Counts the number of allocated write entries, include 
full, partial, and LLC evictions. 

81H 80H UNC_ARB_TRK_REQUEST.EVIC
TIONS

Counts the number of LLC evictions allocated. 

83H 01H UNC_ARB_COH_TRK_OCCUPA
NCY.ALL

Cycles weighted by number of requests pending in 
Coherency Tracker.

Counter 0 only

84H 01H UNC_ARB_COH_TRK_REQUES
T.ALL

Number of requests allocated in Coherency Tracker.

NOTES:

1. The uncore events must be programmed using MSRs located in specific performance monitoring units in the uncore. UNC_CBO* 
events are supported using MSR_UNC_CBO* MSRs; UNC_ARB* events are supported using MSR_UNC_ARB*MSRs.

Table 19-10.  Non-Architectural Performance Events In the Processor Uncore for 2nd Generation 
Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx Processor Series (Contd.)

Event
Num.1

Umask
Value Event Mask Mnemonic Description Comment
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DisplayFamily_DisplayModel 06_2EH have a small number of events that are not supported in processors with 
CPUID signature 06_1AH, 06_1EH, and 06_1FH. These events are noted in the comment column.

In addition, these processors (CPUID signature of DisplayFamily_DisplayModel 06_1AH, 06_1EH, 06_1FH) also 
support the following non-architectural, product-specific uncore performance-monitoring events listed in Table 
19-12. 

Fixed counters in the core PMU support the architecture events defined in Table 19-16.

Table 19-11.  Non-Architectural Performance Events In the Processor Core for 
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

04H 07H SB_DRAIN.ANY Counts the number of store buffer drains.

06H 04H STORE_BLOCKS.AT_RET Counts number of loads delayed with at-Retirement 
block code. The following loads need to be executed 
at retirement and wait for all senior stores on the 
same thread to be drained: load splitting across 4K 
boundary (page split), load accessing uncacheable 
(UC or USWC) memory, load lock, and load with page 
table in UC or USWC memory region.

06H 08H STORE_BLOCKS.L1D_BLOCK Cacheable  loads delayed with L1D block code.

07H 01H PARTIAL_ADDRESS_ALIAS Counts false dependency due to partial address 
aliasing.

08H 01H DTLB_LOAD_MISSES.ANY Counts all load misses that cause a page walk.

08H 02H DTLB_LOAD_MISSES.WALK_CO
MPLETED

Counts number of completed page walks due to load 
miss in the STLB.

08H 10H DTLB_LOAD_MISSES.STLB_HIT Number of cache load STLB hits.

08H 20H DTLB_LOAD_MISSES.PDE_MIS
S

Number of DTLB cache load misses where the low 
part of the linear to physical address translation 
was missed.

08H 80H DTLB_LOAD_MISSES.LARGE_W
ALK_COMPLETED

Counts number of completed large page walks due 
to load miss in the STLB.

0BH 01H MEM_INST_RETIRED.LOADS Counts the number of instructions with an 
architecturally-visible load retired on the 
architected path.

0BH 02H MEM_INST_RETIRED.STORES Counts the number of instructions with an 
architecturally-visible store retired on the 
architected path.

0BH 10H MEM_INST_RETIRED.LATENCY
_ABOVE_THRESHOLD

Counts the number of instructions exceeding the 
latency specified with ld_lat facility.

In conjunction with ld_lat 
facility

0CH 01H MEM_STORE_RETIRED.DTLB_
MISS

The event counts the number of retired stores that 
missed the DTLB. The DTLB miss is not counted if 
the store operation causes a fault. Does not counter 
prefetches. Counts both primary and secondary 
misses to the TLB.

0EH 01H UOPS_ISSUED.ANY Counts the number of Uops issued by the Register 
Allocation Table to the Reservation Station, i.e. the 
UOPs issued from the front end to the back end. 

0EH 01H UOPS_ISSUED.STALLED_CYCLE
S

Counts the number of cycles no Uops issued by the 
Register Allocation Table to the Reservation 
Station, i.e. the UOPs issued from the front end to 
the back end. 

set “invert=1, cmask = 1“



Vol. 3B 19-39

PERFORMANCE-MONITORING EVENTS

0EH 02H UOPS_ISSUED.FUSED Counts the number of fused Uops that were issued 
from the Register Allocation Table to the 
Reservation Station.

0FH 01H MEM_UNCORE_RETIRED.L3_D
ATA_MISS_UNKNOWN

Counts number of memory load instructions retired 
where the memory reference missed L3 and data 
source is unknown. 

Available only for CPUID 
signature 06_2EH

0FH 02H MEM_UNCORE_RETIRED.OTHE
R_CORE_L2_HITM

Counts number of memory load instructions retired 
where the memory reference hit modified data in a 
sibling core residing on the same socket. 

0FH 08H MEM_UNCORE_RETIRED.REMO
TE_CACHE_LOCAL_HOME_HIT

Counts number of memory load instructions retired 
where the memory reference missed the L1, L2 and 
L3 caches and HIT in a remote socket's cache. Only 
counts locally homed lines.

0FH 10H MEM_UNCORE_RETIRED.REMO
TE_DRAM

Counts number of memory load instructions retired 
where the memory reference missed the L1, L2 and 
L3 caches and was remotely homed. This includes 
both DRAM access and HITM in a remote socket's 
cache for remotely homed lines.

0FH 20H MEM_UNCORE_RETIRED.LOCA
L_DRAM

Counts number of memory load instructions retired 
where the memory reference missed the L1, L2 and 
L3 caches and required a local socket memory 
reference. This includes locally homed cachelines 
that were in a modified state in another socket.

0FH 80H MEM_UNCORE_RETIRED.UNCA
CHEABLE

Counts number of memory load instructions retired 
where the memory reference missed the L1, L2 and 
L3 caches and to perform I/O. 

Available only for CPUID 
signature 06_2EH

10H 01H FP_COMP_OPS_EXE.X87 Counts the number of FP Computational Uops 
Executed. The number of FADD, FSUB, FCOM, 
FMULs, integer MULsand IMULs, FDIVs, FPREMs, 
FSQRTS, integer DIVs, and IDIVs. This event does 
not distinguish an FADD used in the middle of a 
transcendental flow from a separate FADD 
instruction.

10H 02H FP_COMP_OPS_EXE.MMX Counts number of MMX Uops executed.

10H 04H FP_COMP_OPS_EXE.SSE_FP Counts number of SSE and SSE2 FP uops executed.

10H 08H FP_COMP_OPS_EXE.SSE2_INT
EGER

Counts number of SSE2 integer uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_P
ACKED

Counts number of SSE FP packed uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_S
CALAR

Counts number of SSE FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_SING
LE_PRECISION

Counts number of SSE* FP single precision uops 
executed.

10H 80H FP_COMP_OPS_EXE.SSE_DOU
BLE_PRECISION

Counts number of SSE* FP double precision uops 
executed.

12H 01H SIMD_INT_128.PACKED_MPY Counts number of 128 bit SIMD integer multiply 
operations.
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12H 02H SIMD_INT_128.PACKED_SHIFT Counts number of 128 bit SIMD integer shift 
operations.

12H 04H SIMD_INT_128.PACK Counts number of 128 bit SIMD integer pack 
operations.

12H 08H SIMD_INT_128.UNPACK Counts number of 128 bit SIMD integer unpack 
operations.

12H 10H SIMD_INT_128.PACKED_LOGIC
AL

Counts number of 128 bit SIMD integer logical  
operations.

12H 20H SIMD_INT_128.PACKED_ARITH Counts number of 128 bit SIMD integer arithmetic 
operations.

12H 40H SIMD_INT_128.SHUFFLE_MOV
E

Counts number of 128 bit SIMD integer shuffle and 
move operations.

13H 01H LOAD_DISPATCH.RS Counts number of loads dispatched from the 
Reservation Station that bypass the Memory Order 
Buffer.

13H 02H LOAD_DISPATCH.RS_DELAYED Counts the number of delayed RS dispatches at the 
stage latch. If an RS dispatch can not bypass to LB, 
it has another chance to dispatch from the one-
cycle delayed staging latch before it is written into 
the LB.

13H 04H LOAD_DISPATCH.MOB Counts the number of loads dispatched from the 
Reservation Station to the Memory Order Buffer.

13H 07H LOAD_DISPATCH.ANY Counts all loads dispatched from the Reservation 
Station.

14H 01H ARITH.CYCLES_DIV_BUSY Counts the number of cycles the divider is busy 
executing divide or square root operations. The 
divide can be integer, X87 or Streaming SIMD 
Extensions (SSE). The square root operation can be 
either X87 or SSE. 

Set 'edge =1, invert=1, cmask=1' to count the 
number of divides.

Count may be incorrect 
When SMT is on.

14H 02H ARITH.MUL Counts the number of multiply operations executed. 
This includes integer as well as floating point 
multiply operations but excludes DPPS mul and 
MPSAD.

Count may be incorrect 
When SMT is on

17H 01H INST_QUEUE_WRITES Counts the number of instructions written into the 
instruction queue every cycle. 

18H 01H INST_DECODED.DEC0 Counts number of instructions that require  decoder 
0 to be decoded.  Usually, this means that the 
instruction maps to more than 1 uop.

19H 01H TWO_UOP_INSTS_DECODED An instruction that generates two uops was 
decoded.
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1EH 01H INST_QUEUE_WRITE_CYCLES This event counts the number of cycles during 
which instructions are written to the instruction 
queue.  Dividing this counter by the number of 
instructions written to the instruction queue 
(INST_QUEUE_WRITES) yields the average number 
of instructions decoded each cycle. If this number is  
less than four and the pipe stalls, this indicates that 
the decoder is failing to decode enough instructions 
per cycle to sustain the 4-wide pipeline. 

If SSE* instructions that 
are 6 bytes or longer 
arrive one after another, 
then front end 
throughput may limit 
execution speed.  In such 
case, 

20H 01H LSD_OVERFLOW Counts number of loops that can’t stream from the 
instruction queue.

24H 01H L2_RQSTS.LD_HIT Counts number of loads that hit the L2 cache. L2 
loads include both L1D demand misses as well as 
L1D prefetches.  L2 loads can be rejected for 
various reasons.  Only non rejected loads are 
counted.

24H 02H L2_RQSTS.LD_MISS Counts the number of loads that miss the L2 cache. 
L2 loads include both L1D demand misses as well as 
L1D prefetches. 

24H 03H L2_RQSTS.LOADS Counts all L2 load requests. L2 loads include both 
L1D demand misses as well as L1D prefetches. 

24H 04H L2_RQSTS.RFO_HIT Counts the number of store RFO requests that hit 
the L2 cache. L2 RFO requests include both L1D 
demand RFO misses as well as L1D RFO prefetches. 
Count includes WC memory requests, where the 
data is not fetched but the permission to write the 
line is required.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss 
the L2 cache. L2 RFO requests include both L1D 
demand RFO misses as well as L1D RFO prefetches.

24H 0CH L2_RQSTS.RFOS Counts all L2 store RFO requests. L2 RFO requests 
include both L1D demand RFO misses as well as 
L1D RFO prefetches.

24H 10H L2_RQSTS.IFETCH_HIT Counts number of instruction fetches that hit the 
L2 cache. L2 instruction fetches include both L1I 
demand misses as well as L1I instruction 
prefetches.

24H 20H L2_RQSTS.IFETCH_MISS Counts number of instruction fetches that miss the 
L2 cache. L2 instruction fetches include both L1I 
demand misses as well as L1I instruction 
prefetches.

24H 30H L2_RQSTS.IFETCHES Counts all instruction fetches. L2 instruction fetches 
include both L1I demand misses as well as L1I 
instruction prefetches.

24H 40H L2_RQSTS.PREFETCH_HIT Counts L2 prefetch hits for both code and data.

24H 80H L2_RQSTS.PREFETCH_MISS Counts L2 prefetch misses for both code and data.

24H C0H L2_RQSTS.PREFETCHES Counts all L2 prefetches for both code and data.

24H AAH L2_RQSTS.MISS Counts all L2 misses for both code and data.
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24H FFH L2_RQSTS.REFERENCES Counts all L2 requests for both code and data.

26H 01H L2_DATA_RQSTS.DEMAND.I_S
TATE

Counts number of L2 data demand loads where the 
cache line to be loaded is in the I (invalid) state, i.e. a 
cache miss. L2 demand loads are both L1D demand 
misses and L1D prefetches.

26H 02H L2_DATA_RQSTS.DEMAND.S_S
TATE

Counts number of L2 data demand loads where the 
cache line to be loaded is in the S (shared) state. L2 
demand loads are both L1D demand misses and L1D 
prefetches.

26H 04H L2_DATA_RQSTS.DEMAND.E_S
TATE

Counts number of L2 data demand loads where the 
cache line to be loaded is in the E (exclusive) state. 
L2 demand loads are both L1D demand misses and 
L1D prefetches.

26H 08H L2_DATA_RQSTS.DEMAND.M_
STATE

Counts number of L2 data demand loads where the 
cache line to be loaded is in the M (modified) state. 
L2 demand loads are both L1D demand misses and 
L1D prefetches.

26H 0FH L2_DATA_RQSTS.DEMAND.ME
SI

Counts all L2 data demand requests. L2 demand 
loads are both L1D demand misses and L1D 
prefetches.

26H 10H L2_DATA_RQSTS.PREFETCH.I_
STATE

Counts number of L2 prefetch data loads where the 
cache line to be loaded is in the I (invalid) state, i.e. a 
cache miss.

26H 20H L2_DATA_RQSTS.PREFETCH.S
_STATE

Counts number of L2 prefetch data loads where the 
cache line to be loaded is in the S (shared) state. A 
prefetch RFO will miss on an S state line, while a 
prefetch read will hit on an S state line.

26H 40H L2_DATA_RQSTS.PREFETCH.E
_STATE

Counts number of L2 prefetch data loads where the 
cache line to be loaded is in the E (exclusive) state.

26H 80H L2_DATA_RQSTS.PREFETCH.M
_STATE

Counts number of L2 prefetch data loads where the 
cache line to be loaded is in the M (modified) state.

26H F0H L2_DATA_RQSTS.PREFETCH.M
ESI

Counts all L2 prefetch requests.

26H FFH L2_DATA_RQSTS.ANY Counts all L2 data requests.

27H 01H L2_WRITE.RFO.I_STATE Counts number of L2 demand store RFO requests 
where the cache line to be loaded is in the I (invalid) 
state, i.e, a cache miss. The L1D prefetcher does not 
issue a RFO prefetch.

This is a demand RFO 
request

27H 02H L2_WRITE.RFO.S_STATE Counts number of L2 store RFO requests where the 
cache line to be loaded is in the S (shared) state. 
The L1D prefetcher does not issue a RFO prefetch,.

This is a demand RFO 
request

27H 08H L2_WRITE.RFO.M_STATE Counts number of L2 store RFO requests where the 
cache line to be loaded is in the M (modified) state. 
The L1D prefetcher does not issue a RFO prefetch.

This is a demand RFO 
request

27H 0EH L2_WRITE.RFO.HIT Counts number of L2 store RFO requests where the 
cache line to be loaded is in either the S, E or M 
states. The L1D prefetcher does not issue a RFO 
prefetch.

This is a demand RFO 
request

Table 19-11.  Non-Architectural Performance Events In the Processor Core for 
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment



Vol. 3B 19-43

PERFORMANCE-MONITORING EVENTS

27H 0FH L2_WRITE.RFO.MESI Counts all L2 store RFO requests.The L1D 
prefetcher does not issue a RFO prefetch.

This is a demand RFO 
request

27H 10H L2_WRITE.LOCK.I_STATE Counts number of L2 demand lock RFO requests 
where the cache line to be loaded is in the I (invalid) 
state, i.e. a cache miss. 

27H 20H L2_WRITE.LOCK.S_STATE Counts number of L2 lock RFO requests where the 
cache line to be loaded is in the S (shared) state.

27H 40H L2_WRITE.LOCK.E_STATE Counts number of L2 demand lock RFO requests 
where the cache line to be loaded is in the E 
(exclusive) state.

27H 80H L2_WRITE.LOCK.M_STATE Counts number of L2 demand lock RFO requests 
where the cache line to be loaded is in the M 
(modified) state.

27H E0H L2_WRITE.LOCK.HIT Counts number of L2 demand lock RFO requests 
where the cache line to be loaded is in either the S, 
E, or M state.

27H F0H L2_WRITE.LOCK.MESI Counts all L2 demand lock RFO requests.

28H 01H L1D_WB_L2.I_STATE Counts number of L1 writebacks to the L2 where 
the cache line to be written is in the I (invalid) state, 
i.e. a cache miss.

28H 02H L1D_WB_L2.S_STATE Counts number of L1 writebacks to the L2 where 
the cache line to be written is in the S state.

28H 04H L1D_WB_L2.E_STATE Counts number of L1 writebacks to the L2 where 
the cache line to be written is in the E (exclusive) 
state.

28H 08H L1D_WB_L2.M_STATE Counts number of L1 writebacks to the L2 where 
the cache line to be written is in the M (modified) 
state.

28H 0FH L1D_WB_L2.MESI Counts all L1 writebacks to the L2 .

2EH 4FH L3_LAT_CACHE.REFERENCE This event counts requests originating from the 
core that reference a cache line in the last level 
cache. The event count includes speculative traffic 
but excludes cache line fills due to a L2 hardware-
prefetch. Because cache hierarchy, cache sizes and 
other implementation-specific characteristics; value 
comparison to estimate performance differences is 
not recommended. 

see Table 19-1

2EH 41H L3_LAT_CACHE.MISS This event counts each cache miss condition for 
references to the last level cache. The event count 
may include speculative traffic but excludes cache 
line fills due to L2 hardware-prefetches. Because 
cache hierarchy, cache sizes and other 
implementation-specific characteristics; value 
comparison to estimate performance differences is 
not recommended. 

see Table 19-1
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3CH 00H CPU_CLK_UNHALTED.THREAD
_P

Counts the number of thread cycles while the 
thread is not in a halt state. The thread enters the 
halt state when it is running the HLT instruction. 
The core frequency may change from time to time 
due to power or thermal throttling. 

see Table 19-1

3CH 01H CPU_CLK_UNHALTED.REF_P Increments at the frequency of TSC when not 
halted.

see Table 19-1

40H 01H L1D_CACHE_LD.I_STATE Counts L1 data cache read requests where the 
cache line to be loaded is in the I (invalid) state, i.e. 
the read request missed the cache.

Counter 0, 1 only

40H 02H L1D_CACHE_LD.S_STATE Counts L1 data cache read requests where the 
cache line to be loaded is in the S (shared) state.

Counter 0, 1 only

40H 04H L1D_CACHE_LD.E_STATE Counts L1 data cache read requests where the 
cache line to be loaded is in the E (exclusive) state.

Counter 0, 1 only

40H 08H L1D_CACHE_LD.M_STATE Counts L1 data cache read requests where the 
cache line to be loaded is in the M (modified) state.

Counter 0, 1 only

40H 0FH L1D_CACHE_LD.MESI Counts L1 data cache read requests. Counter 0, 1 only

41H 02H L1D_CACHE_ST.S_STATE Counts L1 data cache store RFO requests where the 
cache line to be loaded is in the S (shared) state.

Counter 0, 1 only

41H 04H L1D_CACHE_ST.E_STATE Counts L1 data cache store RFO requests where the 
cache line to be loaded is in the E (exclusive) state.

Counter 0, 1 only

41H 08H L1D_CACHE_ST.M_STATE Counts L1 data cache store RFO requests where 
cache line to be loaded is in the M (modified) state.

Counter 0, 1 only

42H 01H L1D_CACHE_LOCK.HIT Counts retired load locks that hit in the L1 data 
cache or hit in an already allocated fill buffer.   The 
lock portion of the load lock transaction must hit in 
the L1D. 

The initial load will pull 
the lock into the L1 data 
cache. Counter 0, 1 only

42H 02H L1D_CACHE_LOCK.S_STATE Counts L1 data cache retired load locks that hit the 
target cache line in the shared state. 

Counter 0, 1 only

42H 04H L1D_CACHE_LOCK.E_STATE Counts L1 data cache retired load locks that hit the 
target cache line in the exclusive state. 

Counter 0, 1 only

42H 08H L1D_CACHE_LOCK.M_STATE Counts L1 data cache retired load locks that hit the 
target cache line in the modified state. 

Counter 0, 1 only

43H 01H L1D_ALL_REF.ANY Counts all references (uncached, speculated and 
retired) to the L1 data cache, including all loads and 
stores with any memory types. The event counts 
memory accesses only when they are actually 
performed. For example, a load blocked by unknown 
store address and later performed is only counted 
once. 

The event does not 
include non-memory 
accesses, such as I/O 
accesses. Counter 0, 1 
only

43H 02H L1D_ALL_REF.CACHEABLE Counts all data reads and writes (speculated and 
retired) from cacheable memory, including locked 
operations.

Counter 0, 1 only

49H 01H DTLB_MISSES.ANY Counts the number of misses in the STLB which 
causes a page walk.

49H 02H DTLB_MISSES.WALK_COMPLET
ED

Counts number of misses in the STLB which 
resulted in a completed page walk.
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49H 10H DTLB_MISSES.STLB_HIT Counts the number of DTLB first level misses that 
hit in the second level TLB.  This event is only 
relevant if the core contains multiple DTLB levels.

49H 20H DTLB_MISSES.PDE_MISS Number of DTLB misses caused by low part of 
address, includes references to 2M pages because 
2M pages do not use the PDE. 

49H 80H DTLB_MISSES.LARGE_WALK_C
OMPLETED

Counts number of misses in the STLB which 
resulted in a completed page walk for large pages.

4CH 01H LOAD_HIT_PRE Counts load operations sent to the L1 data cache 
while a previous SSE prefetch instruction to the 
same cache line has started prefetching but has not 
yet finished.

4EH 01H L1D_PREFETCH.REQUESTS Counts number of hardware prefetch requests 
dispatched out of the prefetch FIFO.

4EH 02H L1D_PREFETCH.MISS Counts number of hardware prefetch requests that 
miss the L1D.  There are two prefetchers in the 
L1D.  A streamer, which predicts lines sequentially 
after this one should be fetched, and the IP 
prefetcher that remembers access patterns for the 
current instruction.  The streamer prefetcher stops 
on an L1D hit,  while the IP prefetcher does not.

4EH 04H L1D_PREFETCH.TRIGGERS Counts number of prefetch requests triggered by 
the Finite State Machine and pushed into the 
prefetch FIFO. Some of the prefetch requests are 
dropped due to overwrites or competition between 
the IP index prefetcher and streamer prefetcher.  
The prefetch FIFO contains 4 entries.

51H 01H L1D.REPL Counts the number of lines brought into the L1 data 
cache.

Counter 0, 1 only

51H 02H L1D.M_REPL Counts the number of modified lines brought into 
the L1 data cache. 

Counter 0, 1 only

51H 04H L1D.M_EVICT Counts the number of modified lines evicted from 
the L1 data cache  due to replacement. 

Counter 0, 1 only

51H 08H L1D.M_SNOOP_EVICT Counts the number of modified lines evicted from 
the L1 data cache due to snoop HITM intervention.

Counter 0, 1 only

52H 01H L1D_CACHE_PREFETCH_LOCK
_FB_HIT

Counts the number of cacheable load lock 
speculated instructions accepted into the fill buffer.

53H 01H L1D_CACHE_LOCK_FB_HIT Counts the number of cacheable load lock 
speculated or retired instructions accepted into the 
fill buffer.

63H 01H CACHE_LOCK_CYCLES.L1D_L2 Cycle count during which the L1D and L2 are locked.  
A lock is asserted when there is a locked memory 
access, due to uncacheable memory, a locked 
operation that spans two cache lines, or a page walk 
from an uncacheable page table.

Counter 0, 1 only. L1D 
and L2 locks have a very 
high performance 
penalty and it is highly 
recommended to avoid 
such accesses.

63H 02H CACHE_LOCK_CYCLES.L1D Counts the number of cycles that cacheline in the 
L1 data cache unit is locked.

Counter 0, 1 only.
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6CH 01H IO_TRANSACTIONS Counts the number of completed I/O transactions.

80H 01H L1I.HITS Counts all instruction fetches that hit the L1 
instruction cache.

80H 02H L1I.MISSES Counts all instruction fetches that miss the L1I 
cache. This includes instruction cache misses,  
streaming buffer misses, victim cache misses and 
uncacheable fetches.  An instruction fetch miss is 
counted only once and not once for every cycle it is 
outstanding.

80H 03H L1I.READS Counts all instruction fetches, including uncacheable 
fetches that bypass the L1I.

80H 04H L1I.CYCLES_STALLED Cycle counts for which an instruction fetch stalls 
due to a L1I cache miss, ITLB miss or ITLB fault.

82H 01H LARGE_ITLB.HIT Counts number of large ITLB hits.

85H 01H ITLB_MISSES.ANY Counts the number of misses in all levels of the ITLB 
which causes a page walk.

85H 02H ITLB_MISSES.WALK_COMPLET
ED

Counts number of misses in all levels of the ITLB 
which resulted in a completed page walk.

87H 01H ILD_STALL.LCP Cycles Instruction Length Decoder stalls due to 
length changing prefixes: 66, 67 or REX.W (for 
EM64T) instructions which change the length of the 
decoded instruction.

87H 02H ILD_STALL.MRU Instruction Length Decoder stall cycles due to Brand 
Prediction Unit (PBU) Most Recently Used (MRU) 
bypass.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to a full instruction queue.

87H 08H ILD_STALL.REGEN Counts the number of regen stalls.

87H 0FH ILD_STALL.ANY Counts any cycles the Instruction Length Decoder is 
stalled.

88H 01H BR_INST_EXEC.COND Counts the number of conditional near branch 
instructions executed, but not necessarily retired.

88H 02H BR_INST_EXEC.DIRECT Counts all unconditional near branch instructions 
excluding calls and indirect branches.

88H 04H BR_INST_EXEC.INDIRECT_NON
_CALL

Counts the number of executed indirect near 
branch instructions that are not calls.

88H 07H BR_INST_EXEC.NON_CALLS Counts all non call near branch instructions 
executed, but not necessarily retired.

88H 08H BR_INST_EXEC.RETURN_NEA
R

Counts indirect near branches that have a return 
mnemonic.

88H 10H BR_INST_EXEC.DIRECT_NEAR
_CALL

Counts unconditional near call branch instructions, 
excluding non call branch, executed. 

88H 20H BR_INST_EXEC.INDIRECT_NEA
R_CALL

Counts indirect near calls, including both register 
and memory indirect, executed.

88H 30H BR_INST_EXEC.NEAR_CALLS Counts all near call branches executed,  but not 
necessarily retired.

Table 19-11.  Non-Architectural Performance Events In the Processor Core for 
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment



Vol. 3B 19-47

PERFORMANCE-MONITORING EVENTS

88H 40H BR_INST_EXEC.TAKEN Counts taken near branches executed, but not 
necessarily retired.

88H 7FH BR_INST_EXEC.ANY Counts all near executed branches (not necessarily 
retired). This includes only instructions and not 
micro-op branches. Frequent branching is not 
necessarily a major performance issue. However 
frequent branch mispredictions may be a problem.

89H 01H BR_MISP_EXEC.COND Counts the number of mispredicted conditional near 
branch instructions executed, but not necessarily 
retired.

89H 02H BR_MISP_EXEC.DIRECT Counts mispredicted macro unconditional near 
branch instructions, excluding calls and indirect 
branches (should always be 0).

89H 04H BR_MISP_EXEC.INDIRECT_NO
N_CALL

Counts the number of executed mispredicted 
indirect near branch instructions that are not calls.

89H 07H BR_MISP_EXEC.NON_CALLS Counts mispredicted non call near branches 
executed,  but not necessarily retired.

89H 08H BR_MISP_EXEC.RETURN_NEA
R

Counts mispredicted indirect branches that have a 
rear return mnemonic.

89H 10H BR_MISP_EXEC.DIRECT_NEAR
_CALL

Counts mispredicted non-indirect near calls 
executed, (should always be 0).

89H 20H BR_MISP_EXEC.INDIRECT_NEA
R_CALL

Counts mispredicted indirect near calls exeucted, 
including both register and memory indirect.

89H 30H BR_MISP_EXEC.NEAR_CALLS Counts all mispredicted near call branches executed, 
but not necessarily retired.

89H 40H BR_MISP_EXEC.TAKEN Counts executed mispredicted near branches that 
are taken, but not necessarily retired.

89H 7FH BR_MISP_EXEC.ANY Counts the number of mispredicted near branch 
instructions that were executed, but not 
necessarily retired.

A2H 01H RESOURCE_STALLS.ANY Counts the number of Allocator resource related 
stalls. Includes register renaming buffer entries, 
memory buffer entries. In addition to resource 
related stalls, this event counts some other events. 
Includes stalls arising during branch misprediction 
recovery, such as if retirement of the mispredicted 
branch is delayed and stalls arising while store 
buffer is draining from synchronizing operations.

Does not include stalls 
due to SuperQ (off core) 
queue full, too many 
cache misses, etc.

A2H 02H RESOURCE_STALLS.LOAD Counts the cycles of stall due to lack of load buffer 
for load operation.

A2H 04H RESOURCE_STALLS.RS_FULL This event counts the number of cycles when the 
number of instructions in the pipeline waiting for 
execution reaches the limit the processor can 
handle. A high count of this event indicates that 
there are long latency operations in the pipe 
(possibly load and store operations that miss the L2 
cache, or instructions dependent upon instructions 
further down the pipeline that have yet to retire. 

When RS is full, new 
instructions can not 
enter the reservation 
station and start 
execution.
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A2H 08H RESOURCE_STALLS.STORE This event counts the number of cycles that a 
resource related stall will occur due to the number 
of store instructions reaching the limit of the 
pipeline, (i.e. all store buffers are used). The stall 
ends when a store instruction commits its data to 
the cache or memory.

A2H 10H RESOURCE_STALLS.ROB_FULL Counts the cycles of stall due to re-order buffer full.

A2H 20H RESOURCE_STALLS.FPCW Counts the number of cycles while execution was 
stalled due to writing the floating-point unit (FPU) 
control word.

A2H 40H RESOURCE_STALLS.MXCSR Stalls due to the MXCSR register rename occurring 
to close to a previous MXCSR rename.  The MXCSR 
provides control and status for the MMX registers.

A2H 80H RESOURCE_STALLS.OTHER Counts the number of cycles while execution was 
stalled due to other resource issues.

A6H 01H MACRO_INSTS.FUSIONS_DECO
DED

Counts the number of instructions decoded that are 
macro-fused but not necessarily executed or 
retired.

A7H 01H BACLEAR_FORCE_IQ Counts number of times a BACLEAR was forced by 
the Instruction Queue.  The IQ is also responsible for 
providing conditional branch prediciton direction 
based on a static scheme and dynamic data 
provided by the L2 Branch Prediction Unit. If the 
conditional branch target is not found in the Target 
Array and the IQ predicts that the branch is taken, 
then the IQ will force the Branch Address Calculator 
to issue a BACLEAR. Each BACLEAR asserted by the 
BAC generates approximately an 8 cycle bubble in 
the instruction fetch pipeline.

A8H 01H LSD.UOPS Counts the number of micro-ops delivered by loop 
stream detector.

Use cmask=1 and invert 
to count cycles

AEH 01H ITLB_FLUSH Counts the number of ITLB flushes.

B0H 40H OFFCORE_REQUESTS.L1D_WR
ITEBACK

Counts number of L1D writebacks to the uncore. 

B1H 01H UOPS_EXECUTED.PORT0 Counts number of Uops executed that were issued 
on port 0.  Port 0 handles integer arithmetic, SIMD 
and FP add Uops.

B1H 02H UOPS_EXECUTED.PORT1 Counts number of Uops executed that were issued 
on port 1. Port 1 handles integer arithmetic, SIMD, 
integer shift, FP multiply and FP divide Uops.

B1H 04H UOPS_EXECUTED.PORT2_COR
E

Counts number of Uops executed that were issued 
on port 2.  Port 2 handles the load Uops. This is a 
core count only and can not be collected per thread.

B1H 08H UOPS_EXECUTED.PORT3_COR
E

Counts number of Uops executed that were issued 
on port 3. Port 3 handles store Uops.  This is a core 
count only and can not be collected per thread.
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B1H 10H UOPS_EXECUTED.PORT4_COR
E

Counts number of Uops executed that where issued 
on port  4.  Port 4 handles the value to be stored for 
the store Uops issued on port 3. This is a core count 
only and can not be collected per thread.

B1H 1FH UOPS_EXECUTED.CORE_ACTIV
E_CYCLES_NO_PORT5

Counts cycles when the Uops executed were issued 
from any ports except port 5. Use Cmask=1 for 
active cycles; Cmask=0 for weighted cycles; Use 
CMask=1, Invert=1 to count P0-4 stalled cycles Use 
Cmask=1, Edge=1, Invert=1 to count P0-4 stalls.

B1H 20H UOPS_EXECUTED.PORT5 Counts number of Uops executed that where issued 
on port 5. 

B1H 3FH UOPS_EXECUTED.CORE_ACTIV
E_CYCLES

Counts cycles when the Uops are executing . Use 
Cmask=1 for active cycles; Cmask=0 for weighted 
cycles; Use CMask=1, Invert=1 to count P0-4 stalled 
cycles Use Cmask=1, Edge=1, Invert=1 to count P0-
4 stalls.

B1H 40H UOPS_EXECUTED.PORT015 Counts number of Uops executed that where issued 
on port  0, 1, or 5.

use cmask=1, invert=1 to 
count stall cycles

B1H 80H UOPS_EXECUTED.PORT234 Counts number of Uops executed that where issued 
on port 2, 3, or 4.

B2H 01H OFFCORE_REQUESTS_SQ_FUL
L

Counts number of cycles the SQ is full to handle off-
core requests. 

B7H 01H OFF_CORE_RESPONSE_0 see Section 18.7.1.3, “Off-core Response 
Performance Monitoring in the Processor Core”.

Requires programming 
MSR 01A6H

B8H 01H SNOOP_RESPONSE.HIT Counts HIT snoop response sent by this thread in 
response to a snoop request.

B8H 02H SNOOP_RESPONSE.HITE Counts HIT E snoop response sent by this thread in 
response to a snoop request.

B8H 04H SNOOP_RESPONSE.HITM Counts HIT M snoop response sent by this thread in 
response to a snoop request.

BBH 01H OFF_CORE_RESPONSE_1 See Section 18.8, “Performance Monitoring for 
Processors Based on Intel® Microarchitecture Code 
Name Westmere”.

Requires programming 
MSR 01A7H

C0H 00H INST_RETIRED.ANY_P See Table 19-1
Notes: INST_RETIRED.ANY is counted by a 
designated fixed counter. INST_RETIRED.ANY_P is 
counted by a programmable counter and is an 
architectural performance event.  Event is 
supported if CPUID.A.EBX[1] = 0.

Counting: Faulting 
executions of 
GETSEC/VM entry/VM 
Exit/MWait will not count 
as retired instructions. 

C0H 02H INST_RETIRED.X87 Counts the number of MMX instructions retired.

C0H 04H INST_RETIRED.MMX Counts the number of floating point computational 
operations retired: floating point computational 
operations executed by the assist handler and sub-
operations of complex floating point instructions 
like transcendental instructions.
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C2H 01H UOPS_RETIRED.ANY Counts the number of micro-ops retired, (macro-
fused=1, micro-fused=2, others=1; maximum count 
of 8 per cycle). Most instructions are composed of 
one or two micro-ops. Some instructions are 
decoded into longer sequences such as repeat 
instructions, floating point transcendental 
instructions, and assists.

Use cmask=1 and invert 
to count active cycles or 
stalled cycles

C2H 02H UOPS_RETIRED.RETIRE_SLOTS Counts the number of retirement slots used each 
cycle.

C2H 04H UOPS_RETIRED.MACRO_FUSE
D

Counts number of macro-fused uops retired.

C3H 01H MACHINE_CLEARS.CYCLES Counts the cycles machine clear is asserted.

C3H 02H MACHINE_CLEARS.MEM_ORDE
R

Counts the number of machine clears due to 
memory order conflicts.

C3H 04H MACHINE_CLEARS.SMC Counts the number of times that a program writes 
to a code section. Self-modifying code causes a 
sever penalty in all Intel 64 and IA-32 processors.  
The modified cache line is written back to the L2 
and L3caches.

C4H 00H BR_INST_RETIRED.ALL_BRAN
CHES

 Branch instructions at retirement See Table 19-1 

C4H 01H BR_INST_RETIRED.CONDITION
AL

Counts the number of conditional branch 
instructions retired. 

C4H 02H BR_INST_RETIRED.NEAR_CAL
L

Counts the number of direct & indirect near 
unconditional calls retired.

C5H 00H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted branch instructions at retirement See Table 19-1 

C5H 02H BR_MISP_RETIRED.NEAR_CAL
L

Counts mispredicted direct & indirect near 
unconditional retired calls. 

C7H 01H SSEX_UOPS_RETIRED.PACKED
_SINGLE

Counts SIMD packed single-precision floating point 
Uops retired.

C7H 02H SSEX_UOPS_RETIRED.SCALAR
_SINGLE

Counts SIMD calar single-precision floating point 
Uops retired.

C7H 04H SSEX_UOPS_RETIRED.PACKED
_DOUBLE

Counts SIMD packed double-precision floating point 
Uops retired.

C7H 08H SSEX_UOPS_RETIRED.SCALAR
_DOUBLE

Counts SIMD scalar double-precision floating point 
Uops retired.

C7H 10H SSEX_UOPS_RETIRED.VECTOR
_INTEGER

Counts 128-bit SIMD vector integer Uops retired.

C8H 20H ITLB_MISS_RETIRED Counts the number of retired instructions that 
missed the ITLB when the instruction was fetched.

CBH 01H MEM_LOAD_RETIRED.L1D_HIT Counts number of retired loads that hit the L1 data 
cache. 

CBH 02H MEM_LOAD_RETIRED.L2_HIT Counts number of retired loads that hit the L2 data 
cache.

CBH 04H MEM_LOAD_RETIRED.L3_UNS
HARED_HIT

Counts number of retired loads that hit their own, 
unshared lines in the L3 cache.
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CBH 08H MEM_LOAD_RETIRED.OTHER_
CORE_L2_HIT_HITM

Counts number of retired loads that hit in a sibling 
core's L2 (on die core).  Since the L3 is inclusive of 
all cores on the package, this is an L3 hit. This 
counts both clean or modified hits.

CBH 10H MEM_LOAD_RETIRED.L3_MISS Counts number of retired loads that miss the L3 
cache.  The load was satisfied by a remote socket, 
local memory or an IOH.

CBH 40H MEM_LOAD_RETIRED.HIT_LFB Counts number of retired loads that miss the L1D 
and the address is located in an allocated line fill 
buffer and will soon be committed to cache.  This is 
counting secondary L1D misses.

CBH 80H MEM_LOAD_RETIRED.DTLB_MI
SS

Counts the number of retired loads that missed the 
DTLB. The DTLB miss is not counted if the load 
operation causes a fault.  This event counts loads 
from cacheable memory only. The event does not 
count loads by software prefetches. Counts both 
primary and secondary misses to the TLB.

CCH 01H FP_MMX_TRANS.TO_FP Counts the first floating-point instruction following 
any MMX instruction. You can use this event to 
estimate the penalties for the transitions between 
floating-point and MMX technology states.

CCH 02H FP_MMX_TRANS.TO_MMX Counts the first MMX instruction following a 
floating-point instruction. You can use this event to 
estimate the penalties for the transitions between 
floating-point and MMX technology states.

CCH 03H FP_MMX_TRANS.ANY Counts all transitions from floating point to MMX 
instructions and from MMX instructions to floating 
point instructions.  You can use this event to 
estimate the penalties for the transitions between 
floating-point and MMX technology states.

D0H 01H MACRO_INSTS.DECODED Counts the number of instructions decoded, (but 
not necessarily executed or retired).

D1H 02H UOPS_DECODED.MS Counts the number of Uops decoded by the 
Microcode Sequencer, MS.  The MS delivers uops 
when the instruction is more than 4 uops long or a 
microcode assist is occurring. 

D1H 04H UOPS_DECODED.ESP_FOLDING Counts number of stack pointer (ESP) instructions 
decoded: push , pop , call , ret, etc.  ESP instructions 
do not generate a Uop to increment or decrement 
ESP.  Instead, they update an ESP_Offset register 
that keeps track of the delta to the current value of 
the ESP register.

D1H 08H UOPS_DECODED.ESP_SYNC Counts number of stack pointer (ESP) sync 
operations where an ESP instruction is corrected  
by adding the ESP offset register to the current 
value of the ESP register.
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D2H 01H RAT_STALLS.FLAGS Counts the number of cycles during which 
execution stalled due to several reasons, one of 
which is a partial flag register stall. A partial register 
stall may occur when two conditions are met: 1) an 
instruction modifies some, but not all, of the flags in 
the flag register and 2) the next instruction, which 
depends on flags, depends on flags that were not 
modified by this instruction.

D2H 02H RAT_STALLS.REGISTERS This event counts the number of cycles instruction 
execution latency became longer than the defined 
latency because the instruction used a register that 
was partially written by previous instruction.

D2H 04H RAT_STALLS.ROB_READ_POR
T

Counts the number of cycles when ROB read port 
stalls occurred, which did not allow new micro-ops 
to enter the out-of-order pipeline. Note that, at this 
stage in the pipeline, additional stalls may occur at 
the same cycle and prevent the stalled micro-ops 
from entering the pipe. In such a case, micro-ops 
retry entering the execution pipe in the next cycle 
and the ROB-read port stall is counted again.

D2H 08H RAT_STALLS.SCOREBOARD Counts the cycles where we stall due to 
microarchitecturally required serialization. 
Microcode scoreboarding stalls.

D2H 0FH RAT_STALLS.ANY Counts all Register Allocation Table stall cycles due 
to:  Cycles when ROB read port stalls occurred, 
which did not allow new micro-ops to enter the 
execution pipe.  Cycles when partial register stalls 
occurred  Cycles when flag stalls occurred  Cycles 
floating-point unit (FPU) status word stalls occurred. 
To count each of these conditions separately use 
the events: RAT_STALLS.ROB_READ_PORT, 
RAT_STALLS.PARTIAL, RAT_STALLS.FLAGS, and 
RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_STALLS Counts the number of stall cycles due to the lack of 
renaming resources for the ES, DS, FS, and GS 
segment registers. If a segment is renamed but not 
retired and a second update to the same segment 
occurs, a stall occurs in the front-end of the pipeline 
until the renamed segment retires.

D5H 01H ES_REG_RENAMES Counts the number of times the ES segment 
register is renamed.

DBH 01H UOP_UNFUSION Counts unfusion events due to floating point 
exception to a fused uop.

E0H 01H BR_INST_DECODED Counts the number of branch instructions decoded. 

E5H 01H BPU_MISSED_CALL_RET Counts number of times the Branch Prediction Unit 
missed predicting a call or return branch.
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E6H 01H BACLEAR.CLEAR Counts the number of times the front end is 
resteered, mainly when the Branch Prediction Unit 
cannot provide a correct prediction and this is 
corrected by the Branch Address Calculator at the 
front end. This can occur if the code has many 
branches such that they cannot be consumed by 
the BPU. Each BACLEAR asserted by the BAC 
generates approximately an 8 cycle bubble in the 
instruction fetch pipeline. The effect on total 
execution time depends on the surrounding code.

E6H 02H BACLEAR.BAD_TARGET Counts number of Branch Address Calculator clears 
(BACLEAR) asserted due to conditional branch 
instructions in which there was a target hit but the 
direction was wrong.  Each BACLEAR asserted by 
the BAC generates approximately an 8 cycle bubble 
in the instruction fetch pipeline.

E8H 01H BPU_CLEARS.EARLY Counts early (normal) Branch Prediction Unit clears: 
BPU predicted a taken branch after incorrectly 
assuming that it was not taken. 

The BPU clear leads to 2 
cycle bubble in the Front 
End.

E8H 02H BPU_CLEARS.LATE Counts late Branch Prediction Unit clears due to 
Most Recently Used conflicts.  The PBU clear leads 
to a 3 cycle bubble in the Front End.

F0H 01H L2_TRANSACTIONS.LOAD Counts L2 load operations due to HW prefetch or 
demand loads.

F0H 02H L2_TRANSACTIONS.RFO Counts L2 RFO operations due to HW prefetch or 
demand RFOs.

F0H 04H L2_TRANSACTIONS.IFETCH Counts L2 instruction fetch operations due to HW 
prefetch or demand ifetch.

F0H 08H L2_TRANSACTIONS.PREFETCH Counts L2 prefetch operations.

F0H 10H L2_TRANSACTIONS.L1D_WB Counts L1D writeback operations to the L2.

F0H 20H L2_TRANSACTIONS.FILL Counts L2 cache line fill operations due to load, RFO, 
L1D writeback or prefetch.

F0H 40H L2_TRANSACTIONS.WB Counts L2 writeback operations to the L3.

F0H 80H L2_TRANSACTIONS.ANY Counts all L2 cache operations.

F1H 02H L2_LINES_IN.S_STATE Counts the number of cache lines allocated in the 
L2 cache in the S (shared) state. 

F1H 04H L2_LINES_IN.E_STATE Counts the number of cache lines allocated in the 
L2 cache in the E (exclusive) state. 

F1H 07H L2_LINES_IN.ANY Counts the number of cache lines allocated in the 
L2 cache. 

F2H 01H L2_LINES_OUT.DEMAND_CLEA
N

Counts L2 clean cache lines evicted by a demand 
request.

F2H 02H L2_LINES_OUT.DEMAND_DIRT
Y

Counts L2 dirty (modified) cache lines evicted by a 
demand request.

F2H 04H L2_LINES_OUT.PREFETCH_CLE
AN

Counts L2 clean cache line evicted by a prefetch 
request.
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Non-architectural Performance monitoring events that are located in the uncore sub-system are implementation 
specific between different platforms using processors based on Intel microarchitecture code name Nehalem. 
Processors with CPUID signature of DisplayFamily_DisplayModel 06_1AH, 06_1EH, and 06_1FH support perfor-
mance events listed in Table 19-12.

F2H 08H L2_LINES_OUT.PREFETCH_DIR
TY

Counts L2 modified cache line evicted by a prefetch 
request.

F2H 0FH L2_LINES_OUT.ANY Counts all L2 cache lines evicted for any reason.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of SQ lock splits across a cache 
line.

F6H 01H SQ_FULL_STALL_CYCLES Counts cycles the Super Queue is full.  Neither of 
the threads on this core will be able to access the 
uncore.

F7H 01H FP_ASSIST.ALL Counts the number of floating point operations 
executed that required micro-code assist 
intervention. Assists are required in the following 
cases: SSE instructions, (Denormal input when the 
DAZ flag is off or Underflow result when the FTZ 
flag is off): x87 instructions, (NaN or denormal are 
loaded to a register or used as input from memory, 
Division by 0 or Underflow output).

F7H 02H FP_ASSIST.OUTPUT Counts number of floating point micro-code assist 
when the output value (destination register) is 
invalid.

F7H 04H FP_ASSIST.INPUT Counts number of floating point micro-code assist 
when the input value (one of the source operands 
to an FP instruction) is invalid.

FDH 01H SIMD_INT_64.PACKED_MPY Counts number of SID integer 64 bit packed multiply 
operations.

FDH 02H SIMD_INT_64.PACKED_SHIFT Counts number of SID integer 64 bit packed shift 
operations.

FDH 04H SIMD_INT_64.PACK Counts number of SID integer 64 bit pack 
operations.

FDH 08H SIMD_INT_64.UNPACK Counts number of SID integer 64 bit unpack 
operations.

FDH 10H SIMD_INT_64.PACKED_LOGICA
L

Counts number of SID integer 64 bit logical 
operations.

FDH 20H SIMD_INT_64.PACKED_ARITH Counts number of SID integer 64 bit arithmetic 
operations.

FDH 40H SIMD_INT_64.SHUFFLE_MOVE Counts number of SID integer 64 bit shift or move 
operations.
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Table 19-12.  Non-Architectural Performance Events In the Processor Uncore for 
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

00H 01H UNC_GQ_CYCLES_FULL.READ_
TRACKER

Uncore cycles Global Queue read tracker is full.

00H 02H UNC_GQ_CYCLES_FULL.WRITE
_TRACKER

Uncore cycles Global Queue write tracker is full.

00H 04H UNC_GQ_CYCLES_FULL.PEER_
PROBE_TRACKER

Uncore cycles Global Queue peer probe tracker is full. 
The peer probe tracker queue tracks snoops from the 
IOH and remote sockets.

01H 01H UNC_GQ_CYCLES_NOT_EMPTY
.READ_TRACKER

Uncore cycles were Global Queue read tracker has at 
least one valid entry.

01H 02H UNC_GQ_CYCLES_NOT_EMPTY
.WRITE_TRACKER

Uncore cycles were Global Queue write tracker has at 
least one valid entry.

01H 04H UNC_GQ_CYCLES_NOT_EMPTY
.PEER_PROBE_TRACKER

Uncore cycles were Global Queue peer probe tracker 
has at least one valid entry. The peer probe tracker 
queue tracks IOH and remote socket snoops.

03H 01H UNC_GQ_ALLOC.READ_TRACK
ER

Counts the number of tread tracker allocate to 
deallocate entries. The GQ read tracker allocate to 
deallocate occupancy count is divided by the count to 
obtain the average read tracker latency. 

03H 02H UNC_GQ_ALLOC.RT_L3_MISS Counts the number GQ read tracker entries for which a 
full cache line read has missed the L3. The GQ read 
tracker L3 miss to fill occupancy count is divided by 
this count to obtain the average cache line read L3 
miss latency. The latency represents the time after 
which the L3 has determined that the cache line has 
missed.  The time between a GQ read tracker 
allocation and the L3 determining that the cache line 
has missed is the average L3 hit latency. The total L3 
cache line read miss latency is the hit latency + L3 
miss latency.

03H 04H UNC_GQ_ALLOC.RT_TO_L3_RE
SP

Counts the number of GQ read tracker entries that are 
allocated in the read tracker queue that hit or miss the 
L3.  The GQ read tracker L3 hit occupancy count is 
divided by this count to obtain the average L3 hit 
latency. 

03H 08H UNC_GQ_ALLOC.RT_TO_RTID_
ACQUIRED

Counts the number of GQ read tracker entries that are 
allocated in the read tracker, have missed in the L3 
and have not acquired a Request Transaction ID.   The 
GQ  read tracker L3 miss to RTID acquired occupancy 
count is divided by this count to obtain the average 
latency for a read L3 miss to acquire an RTID.

03H 10H UNC_GQ_ALLOC.WT_TO_RTID
_ACQUIRED

Counts the number of GQ write tracker entries that 
are allocated in the write tracker, have missed in the 
L3 and have not acquired a Request Transaction ID.   
The GQ write tracker L3 miss to RTID occupancy count 
is divided by this count to obtain the average latency 
for a write L3 miss to acquire an RTID.
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03H 20H UNC_GQ_ALLOC.WRITE_TRAC
KER

Counts the number of GQ write tracker entries that 
are allocated in the write tracker queue that miss the 
L3.  The GQ write tracker occupancy count is divided 
by the this count to obtain the average L3 write miss 
latency. 

03H 40H UNC_GQ_ALLOC.PEER_PROBE
_TRACKER

Counts the number of GQ peer probe tracker (snoop) 
entries that are allocated in the peer probe tracker 
queue that miss the L3.  The GQ peer probe occupancy 
count is divided by this count to obtain the average L3 
peer probe miss latency. 

04H 01H UNC_GQ_DATA.FROM_QPI Cycles Global Queue Quickpath Interface input data 
port is busy importing data from the Quickpath 
Interface.  Each cycle the input port can transfer 8  or 
16 bytes of data.

04H 02H UNC_GQ_DATA.FROM_QMC Cycles Global Queue Quickpath Memory Interface input 
data port is busy importing data from the Quickpath 
Memory Interface. Each cycle the input port can 
transfer 8  or 16 bytes of data.

04H 04H UNC_GQ_DATA.FROM_L3 Cycles GQ L3 input data port is busy importing data 
from the Last Level Cache. Each cycle the input port 
can transfer 32 bytes of data.

04H 08H UNC_GQ_DATA.FROM_CORES_
02

Cycles GQ Core 0 and 2 input data port is busy 
importing data from processor cores 0 and 2. Each 
cycle the input port can transfer 32 bytes of data.

04H 10H UNC_GQ_DATA.FROM_CORES_
13

Cycles GQ Core 1 and 3 input data port is busy 
importing data from processor cores 1 and 3. Each 
cycle the input port can transfer 32 bytes of data.

05H 01H UNC_GQ_DATA.TO_QPI_QMC Cycles GQ QPI and QMC output data port is busy 
sending data to the Quickpath Interface or Quickpath 
Memory Interface. Each cycle the output port can 
transfer 32 bytes of data.

05H 02H UNC_GQ_DATA.TO_L3 Cycles GQ L3 output data port is busy sending data to 
the Last Level Cache. Each cycle the output port can 
transfer 32 bytes of data.

05H 04H UNC_GQ_DATA.TO_CORES Cycles GQ Core output data port is busy sending data 
to the Cores. Each cycle the output port can transfer 
32 bytes of data.

06H 01H UNC_SNP_RESP_TO_LOCAL_H
OME.I_STATE

Number of snoop responses to the local home that L3 
does not have the referenced cache line. 

06H 02H UNC_SNP_RESP_TO_LOCAL_H
OME.S_STATE

Number of snoop responses to the local home that L3 
has the referenced line cached in the S state.

06H 04H UNC_SNP_RESP_TO_LOCAL_H
OME.FWD_S_STATE

Number of responses to code or data read snoops to 
the local home that the L3 has the referenced cache 
line in the E state. The L3 cache line state is changed 
to the S state and the line is forwarded to the local 
home in the S state.

Table 19-12.  Non-Architectural Performance Events In the Processor Uncore for 
Intel® Core™ i7 Processor and Intel® Xeon® Processor 5500 Series (Contd.)

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment



Vol. 3B 19-57

PERFORMANCE-MONITORING EVENTS

06H 08H UNC_SNP_RESP_TO_LOCAL_H
OME.FWD_I_STATE

Number of responses to read invalidate snoops to the 
local home that the L3 has the referenced cache line in 
the M state. The L3 cache line state is invalidated and 
the line is forwarded to the local home in the M state.

06H 10H UNC_SNP_RESP_TO_LOCAL_H
OME.CONFLICT

Number of conflict snoop responses sent to the local 
home.

06H 20H UNC_SNP_RESP_TO_LOCAL_H
OME.WB

Number of responses to code or data read snoops to 
the local home that the L3 has the referenced line 
cached in the M state. 

07H 01H UNC_SNP_RESP_TO_REMOTE
_HOME.I_STATE

Number of snoop responses to a remote home that L3 
does not have the referenced cache line. 

07H 02H UNC_SNP_RESP_TO_REMOTE
_HOME.S_STATE

Number of snoop responses to a remote home that L3 
has the referenced line cached in the S state.

07H 04H UNC_SNP_RESP_TO_REMOTE
_HOME.FWD_S_STATE

Number of responses to code or data read snoops to a 
remote home that the L3 has the referenced cache 
line in the E state. The L3 cache line state is changed 
to the S state and the line is forwarded to the remote 
home in the S state.

07H 08H UNC_SNP_RESP_TO_REMOTE
_HOME.FWD_I_STATE

Number of responses to read invalidate snoops to a 
remote home that the L3 has the referenced cache 
line in the M state. The L3 cache line state is 
invalidated and the line is forwarded to the remote 
home in the M state.

07H 10H UNC_SNP_RESP_TO_REMOTE
_HOME.CONFLICT

Number of conflict snoop responses sent to the local 
home.

07H 20H UNC_SNP_RESP_TO_REMOTE
_HOME.WB

Number of responses to code or data read snoops to a 
remote home that the L3 has the referenced line 
cached in the M state. 

07H 24H UNC_SNP_RESP_TO_REMOTE
_HOME.HITM

Number of HITM snoop responses to a remote home

08H 01H UNC_L3_HITS.READ Number of code read, data read and RFO requests that 
hit in the L3

08H 02H UNC_L3_HITS.WRITE Number of writeback requests that hit in the L3. 
Writebacks from the cores will always result in L3 hits 
due to the inclusive property of the L3.

08H 04H UNC_L3_HITS.PROBE Number of snoops from IOH or remote sockets that hit 
in the L3.

08H 03H UNC_L3_HITS.ANY Number of reads and writes that hit the L3. 

09H 01H UNC_L3_MISS.READ Number of code read, data read and RFO requests that 
miss the L3.

09H 02H UNC_L3_MISS.WRITE Number of writeback requests that miss the L3. 
Should always be zero as writebacks from the cores 
will always result in L3 hits due to the inclusive 
property of the L3.

09H 04H UNC_L3_MISS.PROBE Number of snoops from IOH or remote sockets that 
miss the L3.

09H 03H UNC_L3_MISS.ANY Number of reads and writes that miss the L3. 
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0AH 01H UNC_L3_LINES_IN.M_STATE Counts the number of L3 lines allocated in M state.  
The only time a cache line is allocated in the M state is 
when the line was forwarded in M state is forwarded 
due to a Snoop Read Invalidate Own request.

0AH 02H UNC_L3_LINES_IN.E_STATE Counts the number of L3 lines allocated in E state.

0AH 04H UNC_L3_LINES_IN.S_STATE Counts the number of L3 lines allocated in S state.

0AH 08H UNC_L3_LINES_IN.F_STATE Counts the number of L3 lines allocated in F state.

0AH 0FH UNC_L3_LINES_IN.ANY Counts the number of L3 lines allocated in any state. 

0BH 01H UNC_L3_LINES_OUT.M_STATE Counts the number of L3 lines victimized that were in 
the M state. When the victim cache line is in M state, 
the line is written to its home cache agent which can 
be either local or remote.

0BH 02H UNC_L3_LINES_OUT.E_STATE Counts the number of L3 lines victimized that were in 
the E state.

0BH 04H UNC_L3_LINES_OUT.S_STATE Counts the number of L3 lines victimized that were in 
the S state.

0BH 08H UNC_L3_LINES_OUT.I_STATE Counts the number of L3 lines victimized that were in 
the I state.

0BH 10H UNC_L3_LINES_OUT.F_STATE Counts the number of L3 lines victimized that were in 
the F state.

0BH 1FH UNC_L3_LINES_OUT.ANY Counts the number of L3 lines victimized in any state.

20H 01H UNC_QHL_REQUESTS.IOH_RE
ADS

Counts number of Quickpath Home Logic read 
requests from the IOH.

20H 02H UNC_QHL_REQUESTS.IOH_WR
ITES

Counts number of Quickpath Home Logic write 
requests from the IOH.

20H 04H UNC_QHL_REQUESTS.REMOTE
_READS

Counts number of Quickpath Home Logic read 
requests from  a remote socket.

20H 08H UNC_QHL_REQUESTS.REMOTE
_WRITES

Counts number of Quickpath Home Logic write 
requests from a remote socket.

20H 10H UNC_QHL_REQUESTS.LOCAL_
READS

Counts number of Quickpath Home Logic read 
requests from  the local socket.

20H 20H UNC_QHL_REQUESTS.LOCAL_
WRITES

Counts number of Quickpath Home Logic write 
requests from  the local socket.

21H 01H UNC_QHL_CYCLES_FULL.IOH Counts uclk cycles all entries in the Quickpath Home 
Logic IOH are full.

21H 02H UNC_QHL_CYCLES_FULL.REM
OTE

Counts uclk cycles all entries in the Quickpath Home 
Logic remote tracker are full.

21H 04H UNC_QHL_CYCLES_FULL.LOCA
L

Counts uclk cycles all entries in the Quickpath Home 
Logic local tracker are full.

22H 01H UNC_QHL_CYCLES_NOT_EMPT
Y.IOH

Counts uclk cycles all entries in the Quickpath Home 
Logic IOH is busy.

22H 02H UNC_QHL_CYCLES_NOT_EMPT
Y.REMOTE

Counts uclk cycles all entries in the Quickpath Home 
Logic remote tracker is busy.

22H 04H UNC_QHL_CYCLES_NOT_EMPT
Y.LOCAL

Counts uclk cycles all entries in the Quickpath Home 
Logic local tracker is busy.
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23H 01H UNC_QHL_OCCUPANCY.IOH QHL IOH tracker allocate to deallocate read occupancy.

23H 02H UNC_QHL_OCCUPANCY.REMOT
E

QHL remote tracker allocate to deallocate read 
occupancy.

23H 04H UNC_QHL_OCCUPANCY.LOCAL QHL local tracker allocate to deallocate read 
occupancy.

24H 02H UNC_QHL_ADDRESS_CONFLIC
TS.2WAY

Counts number of QHL Active Address Table (AAT) 
entries that saw a max of 2 conflicts. The AAT is a 
structure that tracks requests that are in conflict. The 
requests themselves are in the home tracker entries. 
The count is reported when an AAT entry deallocates.

24H 04H UNC_QHL_ADDRESS_CONFLIC
TS.3WAY

Counts number of QHL Active Address Table (AAT) 
entries that saw a max of 3 conflicts. The AAT is a 
structure that tracks requests that are in conflict. The 
requests themselves are in the home tracker entries. 
The count is reported when an AAT entry deallocates.

25H 01H UNC_QHL_CONFLICT_CYCLES.I
OH

Counts cycles the Quickpath Home Logic IOH Tracker 
contains two or more requests with an address 
conflict. A max of 3 requests can be in conflict.

25H 02H UNC_QHL_CONFLICT_CYCLES.
REMOTE

Counts cycles the Quickpath Home Logic Remote 
Tracker contains two or more requests with an 
address conflict. A max of 3 requests can be in conflict.

25H 04H UNC_QHL_CONFLICT_CYCLES.
LOCAL

Counts cycles the Quickpath Home Logic Local Tracker 
contains two or more requests with an address 
conflict.  A max of 3 requests can be in conflict.

26H 01H UNC_QHL_TO_QMC_BYPASS Counts number or requests to the Quickpath Memory 
Controller that bypass the Quickpath Home Logic. All 
local accesses can be bypassed. For remote requests, 
only read requests can be bypassed.

27H 01H UNC_QMC_NORMAL_FULL.RE
AD.CH0

Uncore cycles all the entries in the DRAM channel 0 
medium or low priority queue are occupied with read 
requests.

27H 02H UNC_QMC_NORMAL_FULL.RE
AD.CH1

Uncore cycles all the entries in the DRAM channel 1 
medium or low priority queue are occupied with read 
requests.

27H 04H UNC_QMC_NORMAL_FULL.RE
AD.CH2

Uncore cycles all the entries in the DRAM channel 2 
medium or low priority queue are occupied with read 
requests.

27H 08H UNC_QMC_NORMAL_FULL.WRI
TE.CH0

Uncore cycles all the entries in the DRAM channel 0 
medium or low priority queue are occupied with write 
requests.

27H 10H UNC_QMC_NORMAL_FULL.WRI
TE.CH1

Counts cycles all the entries in the DRAM channel 1 
medium or low priority queue are occupied with write 
requests.

27H 20H UNC_QMC_NORMAL_FULL.WRI
TE.CH2

Uncore cycles all the entries in the DRAM channel 2 
medium or low priority queue are occupied with write 
requests.
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28H 01H UNC_QMC_ISOC_FULL.READ.C
H0

Counts cycles all the entries in the DRAM channel 0 
high priority queue are occupied with isochronous 
read requests.

28H 02H UNC_QMC_ISOC_FULL.READ.C
H1

Counts cycles all the entries in the DRAM channel 
1high priority queue are occupied with isochronous 
read requests.

28H 04H UNC_QMC_ISOC_FULL.READ.C
H2

Counts cycles all the entries in the DRAM channel 2 
high priority queue are occupied with isochronous 
read requests.

28H 08H UNC_QMC_ISOC_FULL.WRITE.C
H0

Counts cycles all the entries in the DRAM channel 0 
high priority queue are occupied with isochronous 
write requests.

28H 10H UNC_QMC_ISOC_FULL.WRITE.C
H1

Counts cycles all the entries in the DRAM channel 1 
high priority queue are occupied with isochronous 
write requests.

28H 20H UNC_QMC_ISOC_FULL.WRITE.C
H2

Counts cycles all the entries in the DRAM channel 2 
high priority queue are occupied with isochronous 
write requests.

29H 01H UNC_QMC_BUSY.READ.CH0 Counts cycles where Quickpath Memory Controller has 
at least 1 outstanding read request to  DRAM channel 
0.

29H 02H UNC_QMC_BUSY.READ.CH1 Counts cycles where Quickpath Memory Controller has 
at least 1 outstanding read request to  DRAM channel 
1.

29H 04H UNC_QMC_BUSY.READ.CH2 Counts cycles where Quickpath Memory Controller has 
at least 1 outstanding read request to  DRAM channel 
2.

29H 08H UNC_QMC_BUSY.WRITE.CH0 Counts cycles where Quickpath Memory Controller has 
at least 1 outstanding write request to  DRAM channel 
0.

29H 10H UNC_QMC_BUSY.WRITE.CH1 Counts cycles where Quickpath Memory Controller has 
at least 1 outstanding write request to  DRAM channel 
1.

29H 20H UNC_QMC_BUSY.WRITE.CH2 Counts cycles where Quickpath Memory Controller has 
at least 1 outstanding write request to  DRAM channel 
2.

2AH 01H UNC_QMC_OCCUPANCY.CH0 IMC channel 0 normal read request occupancy.

2AH 02H UNC_QMC_OCCUPANCY.CH1 IMC channel 1 normal read request occupancy.

2AH 04H UNC_QMC_OCCUPANCY.CH2 IMC channel 2 normal read request occupancy.

2BH 01H UNC_QMC_ISSOC_OCCUPANCY.
CH0

IMC channel 0 issoc read request occupancy.

2BH 02H UNC_QMC_ISSOC_OCCUPANCY.
CH1

IMC channel 1 issoc read request occupancy.

2BH 04H UNC_QMC_ISSOC_OCCUPANCY.
CH2

IMC channel 2 issoc read request occupancy.

2BH 07H UNC_QMC_ISSOC_READS.ANY IMC issoc read request occupancy.
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2CH 01H UNC_QMC_NORMAL_READS.C
H0

Counts the number of Quickpath Memory Controller 
channel 0 medium and low priority read requests. The 
QMC channel 0 normal read occupancy divided by this 
count provides the average QMC channel 0 read 
latency. 

2CH 02H UNC_QMC_NORMAL_READS.C
H1

Counts the number of Quickpath Memory Controller 
channel 1 medium and low priority read requests. The 
QMC channel 1 normal read occupancy divided by this 
count provides the average QMC channel 1 read 
latency. 

2CH 04H UNC_QMC_NORMAL_READS.C
H2

Counts the number of Quickpath Memory Controller 
channel 2 medium and low priority read requests. The 
QMC channel 2 normal read occupancy divided by this 
count provides the average QMC channel 2 read 
latency. 

2CH 07H UNC_QMC_NORMAL_READS.A
NY

Counts the number of Quickpath Memory Controller 
medium and low priority read requests. The QMC 
normal read occupancy divided by this count provides 
the average QMC read latency. 

2DH 01H UNC_QMC_HIGH_PRIORITY_RE
ADS.CH0

Counts the number of Quickpath Memory Controller 
channel 0 high priority isochronous read requests. 

2DH 02H UNC_QMC_HIGH_PRIORITY_RE
ADS.CH1

Counts the number of Quickpath Memory Controller 
channel 1 high priority isochronous read requests. 

2DH 04H UNC_QMC_HIGH_PRIORITY_RE
ADS.CH2

Counts the number of Quickpath Memory Controller 
channel 2 high priority isochronous read requests. 

2DH 07H UNC_QMC_HIGH_PRIORITY_RE
ADS.ANY

Counts the number of Quickpath Memory Controller 
high priority isochronous read requests. 

2EH 01H UNC_QMC_CRITICAL_PRIORIT
Y_READS.CH0

Counts the number of Quickpath Memory Controller 
channel 0 critical priority isochronous read requests. 

2EH 02H UNC_QMC_CRITICAL_PRIORIT
Y_READS.CH1

Counts the number of Quickpath Memory Controller 
channel 1 critical priority isochronous read requests. 

2EH 04H UNC_QMC_CRITICAL_PRIORIT
Y_READS.CH2

Counts the number of Quickpath Memory Controller 
channel 2 critical priority isochronous read requests. 

2EH 07H UNC_QMC_CRITICAL_PRIORIT
Y_READS.ANY

Counts the number of Quickpath Memory Controller 
critical priority isochronous read requests. 

2FH 01H UNC_QMC_WRITES.FULL.CH0 Counts number of full cache line writes to DRAM 
channel 0.

2FH 02H UNC_QMC_WRITES.FULL.CH1 Counts number of full cache line writes to DRAM 
channel 1.

2FH 04H UNC_QMC_WRITES.FULL.CH2 Counts number of full cache line writes to DRAM 
channel 2.

2FH 07H UNC_QMC_WRITES.FULL.ANY Counts number of full cache line writes to DRAM.

2FH 08H UNC_QMC_WRITES.PARTIAL.C
H0

Counts number of partial cache line writes to DRAM 
channel 0.

2FH 10H UNC_QMC_WRITES.PARTIAL.C
H1

Counts number of partial cache line writes to DRAM 
channel 1.
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2FH 20H UNC_QMC_WRITES.PARTIAL.C
H2

Counts number of partial cache line writes to DRAM 
channel 2.

2FH 38H UNC_QMC_WRITES.PARTIAL.A
NY

Counts number of partial cache line writes to DRAM.

30H 01H UNC_QMC_CANCEL.CH0 Counts number of DRAM channel 0 cancel requests.

30H 02H UNC_QMC_CANCEL.CH1 Counts number of DRAM channel 1 cancel requests.

30H 04H UNC_QMC_CANCEL.CH2 Counts number of DRAM channel 2 cancel requests.

30H 07H UNC_QMC_CANCEL.ANY Counts number of DRAM cancel requests.

31H 01H UNC_QMC_PRIORITY_UPDATE
S.CH0

Counts number of DRAM channel 0 priority updates. A 
priority update occurs when an ISOC high or critical 
request is received by the QHL and there is a matching 
request with normal priority that has already been 
issued to the QMC.  In this instance, the QHL will send 
a priority update to QMC to expedite the request.

31H 02H UNC_QMC_PRIORITY_UPDATE
S.CH1

Counts number of DRAM channel 1 priority updates. A 
priority update occurs when an ISOC high or critical 
request is received by the QHL and there is a matching 
request with normal priority that has already been 
issued to the QMC.  In this instance, the QHL will send 
a priority update to QMC to expedite the request.

31H 04H UNC_QMC_PRIORITY_UPDATE
S.CH2

Counts number of DRAM channel 2 priority updates. A 
priority update occurs when an ISOC high or critical 
request is received by the QHL and there is a matching 
request with normal priority that has already been 
issued to the QMC.  In this instance, the QHL will send 
a priority update to QMC to expedite the request.

31H 07H UNC_QMC_PRIORITY_UPDATE
S.ANY

Counts number of DRAM priority updates. A priority 
update occurs when an ISOC high or critical request is 
received by the QHL and there is a matching request 
with normal priority that has already been issued to 
the QMC.  In this instance, the QHL will send a priority 
update to QMC to expedite the request.

33H 04H UNC_QHL_FRC_ACK_CNFLTS.L
OCAL

Counts number of Force Acknowledge Conflict 
messages sent by the Quickpath Home Logic to the 
local home.

40H 01H UNC_QPI_TX_STALLED_SINGL
E_FLIT.HOME.LINK_0

Counts cycles the Quickpath outbound link 0 HOME 
virtual channel is stalled due to lack of a VNA and VN0 
credit. Note that this event does not filter out when a 
flit would not have been selected for arbitration 
because another virtual channel is getting arbitrated.

40H 02H UNC_QPI_TX_STALLED_SINGL
E_FLIT.SNOOP.LINK_0

Counts cycles the Quickpath outbound link 0 SNOOP 
virtual channel is stalled due to lack of a VNA and VN0 
credit. Note that this event does not filter out when a 
flit would not have been selected for arbitration 
because another virtual channel is getting arbitrated.
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40H 04H UNC_QPI_TX_STALLED_SINGL
E_FLIT.NDR.LINK_0

Counts cycles the Quickpath outbound link 0 non-data 
response virtual channel is stalled due to lack of a VNA 
and VN0 credit. Note that this event does not filter out 
when a flit would not have been selected for 
arbitration because another virtual channel is getting 
arbitrated.

40H 08H UNC_QPI_TX_STALLED_SINGL
E_FLIT.HOME.LINK_1

Counts cycles the Quickpath outbound link 1 HOME 
virtual channel is stalled due to lack of a VNA and VN0 
credit. Note that this event does not filter out when a 
flit would not have been selected for arbitration 
because another virtual channel is getting arbitrated.

40H 10H UNC_QPI_TX_STALLED_SINGL
E_FLIT.SNOOP.LINK_1

Counts cycles the Quickpath outbound link 1 SNOOP 
virtual channel is stalled due to lack of a VNA and VN0 
credit. Note that this event does not filter out when a 
flit would not have been selected for arbitration 
because another virtual channel is getting arbitrated.

40H 20H UNC_QPI_TX_STALLED_SINGL
E_FLIT.NDR.LINK_1

Counts cycles the Quickpath outbound link 1 non-data 
response virtual channel is stalled due to lack of a VNA 
and VN0 credit. Note that this event does not filter out 
when a flit would not have been selected for 
arbitration because another virtual channel is getting 
arbitrated.

40H 07H UNC_QPI_TX_STALLED_SINGL
E_FLIT.LINK_0

Counts cycles the Quickpath outbound link 0 virtual 
channels are stalled due to lack of a VNA and VN0 
credit. Note that this event does not filter out when a 
flit would not have been selected for arbitration 
because another virtual channel is getting arbitrated.

40H 38H UNC_QPI_TX_STALLED_SINGL
E_FLIT.LINK_1

Counts cycles the Quickpath outbound link 1 virtual 
channels are stalled due to lack of a VNA and VN0 
credit. Note that this event does not filter out when a 
flit would not have been selected for arbitration 
because another virtual channel is getting arbitrated.

41H 01H UNC_QPI_TX_STALLED_MULTI
_FLIT.DRS.LINK_0

Counts cycles the Quickpath outbound link 0 Data 
ResponSe virtual channel is stalled due to lack of VNA 
and VN0 credits. Note that this event does not filter 
out when a flit would not have been selected for 
arbitration because another virtual channel is getting 
arbitrated.

41H 02H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCB.LINK_0

Counts cycles the Quickpath outbound link 0 Non-
Coherent Bypass virtual channel is stalled due to lack 
of VNA and VN0 credits. Note that this event does not 
filter out when a flit would not have been selected for 
arbitration because another virtual channel is getting 
arbitrated.

41H 04H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCS.LINK_0

Counts cycles the Quickpath outbound link 0 Non-
Coherent Standard virtual channel is stalled due to lack 
of VNA and VN0 credits. Note that this event does not 
filter out when a flit would not have been selected for 
arbitration because another virtual channel is getting 
arbitrated.
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41H 08H UNC_QPI_TX_STALLED_MULTI
_FLIT.DRS.LINK_1

Counts cycles the Quickpath outbound link 1 Data 
ResponSe virtual channel is stalled due to lack of VNA 
and VN0 credits. Note that this event does not filter 
out when a flit would not have been selected for 
arbitration because another virtual channel is getting 
arbitrated.

41H 10H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCB.LINK_1

Counts cycles the Quickpath outbound link 1 Non-
Coherent Bypass virtual channel is stalled due to lack 
of VNA and VN0 credits. Note that this event does not 
filter out when a flit would not have been selected for 
arbitration because another virtual channel is getting 
arbitrated.

41H 20H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCS.LINK_1

Counts cycles the Quickpath outbound link 1 Non-
Coherent Standard virtual channel is stalled due to lack 
of VNA and VN0 credits. Note that this event does not 
filter out when a flit would not have been selected for 
arbitration because another virtual channel is getting 
arbitrated.

41H 07H UNC_QPI_TX_STALLED_MULTI
_FLIT.LINK_0

Counts cycles the Quickpath outbound link 0 virtual 
channels are stalled due to lack of VNA and VN0 
credits. Note that this event does not filter out when a 
flit would not have been selected for arbitration 
because another virtual channel is getting arbitrated.

41H 38H UNC_QPI_TX_STALLED_MULTI
_FLIT.LINK_1

Counts cycles the Quickpath outbound link 1 virtual 
channels are stalled due to lack of VNA and VN0 
credits. Note that this event does not filter out when a 
flit would not have been selected for arbitration 
because another virtual channel is getting arbitrated.

42H 02H UNC_QPI_TX_HEADER.BUSY.LI
NK_0

Number of cycles that the header buffer in the 
Quickpath Interface outbound link 0 is busy.

42H 08H UNC_QPI_TX_HEADER.BUSY.LI
NK_1

Number of cycles that the header buffer in the 
Quickpath Interface outbound link 1 is busy.

43H 01H UNC_QPI_RX_NO_PPT_CREDI
T.STALLS.LINK_0

Number of cycles that snoop packets incoming to the 
Quickpath Interface link 0 are stalled and not sent to 
the GQ because the GQ Peer Probe Tracker (PPT) does 
not have any available entries.

43H 02H UNC_QPI_RX_NO_PPT_CREDI
T.STALLS.LINK_1

Number of cycles that snoop packets incoming to the 
Quickpath Interface link 1 are stalled and not sent to 
the GQ because the GQ Peer Probe Tracker (PPT) does 
not have any available entries.

60H 01H UNC_DRAM_OPEN.CH0 Counts number of DRAM Channel 0 open commands 
issued either for read or write. To read or write data, 
the referenced DRAM page must first be opened.

60H 02H UNC_DRAM_OPEN.CH1 Counts number of DRAM Channel 1 open commands 
issued either for read or write. To read or write data, 
the referenced DRAM page must first be opened.

60H 04H UNC_DRAM_OPEN.CH2 Counts number of DRAM Channel 2 open commands 
issued either for read or write. To read or write data, 
the referenced DRAM page must first be opened.
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61H 01H UNC_DRAM_PAGE_CLOSE.CH0 DRAM channel 0 command issued to CLOSE a page due 
to page idle timer expiration. Closing a page is done by 
issuing a precharge.

61H 02H UNC_DRAM_PAGE_CLOSE.CH1 DRAM channel 1 command issued to CLOSE a page due 
to page idle timer expiration. Closing a page is done by 
issuing a precharge.

61H 04H UNC_DRAM_PAGE_CLOSE.CH2 DRAM channel 2 command issued to CLOSE a page due 
to page idle timer expiration. Closing a page is done by 
issuing a precharge.

62H 01H UNC_DRAM_PAGE_MISS.CH0 Counts the number of precharges (PRE) that were 
issued to DRAM channel 0 because there was a page 
miss. A page miss refers to a situation in which a page 
is currently open and another page from the same 
bank needs to be opened. The new page experiences a 
page miss. Closing of the old page is done by issuing a 
precharge.

62H 02H UNC_DRAM_PAGE_MISS.CH1 Counts the number of precharges (PRE) that were 
issued to DRAM channel 1 because there was a page 
miss. A page miss refers to a situation in which a page 
is currently open and another page from the same 
bank needs to be opened. The new page experiences a 
page miss. Closing of the old page is done by issuing a 
precharge.

62H 04H UNC_DRAM_PAGE_MISS.CH2 Counts the number of precharges (PRE) that were 
issued to DRAM channel 2 because there was a page 
miss. A page miss refers to a situation in which a page 
is currently open and another page from the same 
bank needs to be opened. The new page experiences a 
page miss. Closing of the old page is done by issuing a 
precharge.

63H 01H UNC_DRAM_READ_CAS.CH0 Counts the number of times a read CAS command was 
issued on DRAM channel 0.

63H 02H UNC_DRAM_READ_CAS.AUTO
PRE_CH0

Counts the number of times a read CAS command was 
issued on DRAM channel 0 where the command issued 
used the auto-precharge (auto page close) mode.

63H 04H UNC_DRAM_READ_CAS.CH1 Counts the number of times a read CAS command was 
issued on DRAM channel 1.

63H 08H UNC_DRAM_READ_CAS.AUTO
PRE_CH1

Counts the number of times a read CAS command was 
issued on DRAM channel 1 where the command issued 
used the auto-precharge (auto page close) mode.

63H 10H UNC_DRAM_READ_CAS.CH2 Counts the number of times a read CAS command was 
issued on DRAM channel 2.

63H 20H UNC_DRAM_READ_CAS.AUTO
PRE_CH2

Counts the number of times a read CAS command was 
issued on DRAM channel 2 where the command issued 
used the auto-precharge (auto page close) mode.

64H 01H UNC_DRAM_WRITE_CAS.CH0 Counts the number of times a write CAS command was 
issued on DRAM channel 0.
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Intel Xeon processors with CPUID signature of DisplayFamily_DisplayModel 06_2EH have a distinct uncore sub-
system that is significantly different from the uncore found in processors with CPUID signature 06_1AH, 06_1EH, 
and 06_1FH. Non-architectural Performance monitoring events for its uncore will be available in future documen-
tation.

64H 02H UNC_DRAM_WRITE_CAS.AUTO
PRE_CH0

Counts the number of times a write CAS command was 
issued on DRAM channel 0 where the command issued 
used the auto-precharge (auto page close) mode.

64H 04H UNC_DRAM_WRITE_CAS.CH1 Counts the number of times a write CAS command was 
issued on DRAM channel 1.

64H 08H UNC_DRAM_WRITE_CAS.AUTO
PRE_CH1

Counts the number of times a write CAS command was 
issued on DRAM channel 1 where the command issued 
used the auto-precharge (auto page close) mode.

64H 10H UNC_DRAM_WRITE_CAS.CH2 Counts the number of times a write CAS command was 
issued on DRAM channel 2.

64H 20H UNC_DRAM_WRITE_CAS.AUTO
PRE_CH2

Counts the number of times a write CAS command was 
issued on DRAM channel 2 where the command issued 
used the auto-precharge (auto page close) mode.

65H 01H UNC_DRAM_REFRESH.CH0 Counts number of DRAM channel 0 refresh commands. 
DRAM loses data content over time. In order to keep 
correct data content, the data values have to be 
refreshed periodically.

65H 02H UNC_DRAM_REFRESH.CH1 Counts number of DRAM channel 1 refresh commands. 
DRAM loses data content over time. In order to keep 
correct data content, the data values have to be 
refreshed periodically.

65H 04H UNC_DRAM_REFRESH.CH2 Counts number of DRAM channel 2 refresh commands. 
DRAM loses data content over time. In order to keep 
correct data content, the data values have to be 
refreshed periodically.

66H 01H UNC_DRAM_PRE_ALL.CH0 Counts number of DRAM Channel 0 precharge-all 
(PREALL) commands that close all open pages in a 
rank. PREALL is issued when the DRAM needs to be 
refreshed or needs to go into a power down mode.

66H 02H UNC_DRAM_PRE_ALL.CH1 Counts number of DRAM Channel 1 precharge-all 
(PREALL) commands that close all open pages in a 
rank. PREALL is issued when the DRAM needs to be 
refreshed or needs to go into a power down mode.

66H 04H UNC_DRAM_PRE_ALL.CH2 Counts number of DRAM Channel 2 precharge-all 
(PREALL) commands that close all open pages in a 
rank. PREALL is issued when the DRAM needs to be 
refreshed or needs to go into a power down mode.
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19.6 PERFORMANCE MONITORING EVENTS FOR PROCESSORS BASED ON 
INTEL® MICROARCHITECTURE CODE NAME WESTMERE

Intel 64 processors based on Intel® microarchitecture code name Westmere support the architectural and non-
architectural performance-monitoring events listed in Table 19-1 and Table 19-13. Table 19-13 applies to proces-
sors with CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 06_25H, 06_2CH. In 
addition, these processors (CPUID signature of DisplayFamily_DisplayModel 06_25H, 06_2CH) also support the 
following non-architectural, product-specific uncore performance-monitoring events listed in Table 19-14. Fixed 
counters support the architecture events defined in Table 19-16.

Table 19-13.  Non-Architectural Performance Events In the Processor Core for 
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

03H 02H LOAD_BLOCK.OVERLAP_STOR
E

Loads that partially overlap an earlier store.

04H 07H SB_DRAIN.ANY All Store buffer stall cycles.

05H 02H MISALIGN_MEMORY.STORE All store referenced with misaligned address.

06H 04H STORE_BLOCKS.AT_RET Counts number of loads delayed with at-Retirement 
block code. The following loads need to be executed 
at retirement and wait for all senior stores on the 
same thread to be drained: load splitting across 4K 
boundary (page split), load accessing uncacheable 
(UC or USWC) memory, load lock, and load with page 
table in UC or USWC memory region.

06H 08H STORE_BLOCKS.L1D_BLOCK Cacheable  loads delayed with L1D block code.

07H 01H PARTIAL_ADDRESS_ALIAS Counts false dependency due to partial address 
aliasing.

08H 01H DTLB_LOAD_MISSES.ANY Counts all load misses that cause a page walk.

08H 02H DTLB_LOAD_MISSES.WALK_C
OMPLETED

Counts number of completed page walks due to load 
miss in the STLB.

08H 04H DTLB_LOAD_MISSES.WALK_CY
CLES

Cycles PMH is busy with a page walk due to a load 
miss in the STLB. 

08H 10H DTLB_LOAD_MISSES.STLB_HI
T

Number of cache load STLB hits.

08H 20H DTLB_LOAD_MISSES.PDE_MIS
S

Number of DTLB cache load misses where the low 
part of the linear to physical address translation 
was missed.

0BH 01H MEM_INST_RETIRED.LOADS Counts the number of instructions with an 
architecturally-visible load retired on the 
architected path.

0BH 02H MEM_INST_RETIRED.STORES Counts the number of instructions with an 
architecturally-visible store retired on the 
architected path.

0BH 10H MEM_INST_RETIRED.LATENCY
_ABOVE_THRESHOLD

Counts the number of instructions exceeding the 
latency specified with ld_lat facility.

In conjunction with ld_lat 
facility

0CH 01H MEM_STORE_RETIRED.DTLB_
MISS

The event counts the number of retired stores that 
missed the DTLB. The DTLB miss is not counted if 
the store operation causes a fault. Does not counter 
prefetches. Counts both primary and secondary 
misses to the TLB.
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0EH 01H UOPS_ISSUED.ANY Counts the number of Uops issued by the Register 
Allocation Table to the Reservation Station, i.e. the 
UOPs issued from the front end to the back end. 

0EH 01H UOPS_ISSUED.STALLED_CYCL
ES

Counts the number of cycles no Uops issued by the 
Register Allocation Table to the Reservation 
Station, i.e. the UOPs issued from the front end to 
the back end. 

set “invert=1, cmask = 1“

0EH 02H UOPS_ISSUED.FUSED Counts the number of fused Uops that were issued 
from the Register Allocation Table to the 
Reservation Station.

0FH 01H MEM_UNCORE_RETIRED.UNK
NOWN_SOURCE

Load instructions retired with unknown LLC miss 
(Precise Event).

Applicable to one and 
two sockets

0FH 02H MEM_UNCORE_RETIRED.OHTE
R_CORE_L2_HIT

Load instructions retired that HIT modified data in 
sibling core (Precise Event).

Applicable to one and 
two sockets

0FH 04H MEM_UNCORE_RETIRED.REMO
TE_HITM

Load instructions retired that HIT modified data in 
remote socket (Precise Event).

Applicable to two 
sockets only

0FH 08H MEM_UNCORE_RETIRED.LOCA
L_DRAM_AND_REMOTE_CACH
E_HIT

Load instructions retired local dram and remote 
cache HIT data sources (Precise Event).

Applicable to one and 
two sockets

0FH 10H MEM_UNCORE_RETIRED.REMO
TE_DRAM

Load instructions retired remote DRAM and remote 
home-remote cache HITM (Precise Event).

Applicable to two 
sockets only

0FH 20H MEM_UNCORE_RETIRED.OTHE
R_LLC_MISS

Load instructions retired other LLC miss (Precise 
Event).

Applicable to two 
sockets only

0FH 80H MEM_UNCORE_RETIRED.UNCA
CHEABLE

Load instructions retired I/O (Precise Event). Applicable to one and 
two sockets

10H 01H FP_COMP_OPS_EXE.X87 Counts the number of FP Computational Uops 
Executed. The number of FADD, FSUB, FCOM, 
FMULs, integer MULsand IMULs, FDIVs, FPREMs, 
FSQRTS, integer DIVs, and IDIVs. This event does 
not distinguish an FADD used in the middle of a 
transcendental flow from a separate FADD 
instruction.

10H 02H FP_COMP_OPS_EXE.MMX Counts number of MMX Uops executed.

10H 04H FP_COMP_OPS_EXE.SSE_FP Counts number of SSE and SSE2 FP uops executed.

10H 08H FP_COMP_OPS_EXE.SSE2_INT
EGER

Counts number of SSE2 integer uops executed.

10H 10H FP_COMP_OPS_EXE.SSE_FP_P
ACKED

Counts number of SSE FP packed uops executed.

10H 20H FP_COMP_OPS_EXE.SSE_FP_S
CALAR

Counts number of SSE FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.SSE_SING
LE_PRECISION

Counts number of SSE* FP single precision uops 
executed.

10H 80H FP_COMP_OPS_EXE.SSE_DOU
BLE_PRECISION

Counts number of SSE* FP double precision uops 
executed.

12H 01H SIMD_INT_128.PACKED_MPY Counts number of 128 bit SIMD integer multiply 
operations.
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12H 02H SIMD_INT_128.PACKED_SHIFT Counts number of 128 bit SIMD integer shift 
operations.

12H 04H SIMD_INT_128.PACK Counts number of 128 bit SIMD integer pack 
operations.

12H 08H SIMD_INT_128.UNPACK Counts number of 128 bit SIMD integer unpack 
operations.

12H 10H SIMD_INT_128.PACKED_LOGIC
AL

Counts number of 128 bit SIMD integer logical  
operations.

12H 20H SIMD_INT_128.PACKED_ARIT
H

Counts number of 128 bit SIMD integer arithmetic 
operations.

12H 40H SIMD_INT_128.SHUFFLE_MOV
E

Counts number of 128 bit SIMD integer shuffle and 
move operations.

13H 01H LOAD_DISPATCH.RS Counts number of loads dispatched from the 
Reservation Station that bypass the Memory Order 
Buffer.

13H 02H LOAD_DISPATCH.RS_DELAYED Counts the number of delayed RS dispatches at the 
stage latch. If an RS dispatch can not bypass to LB, 
it has another chance to dispatch from the one-
cycle delayed staging latch before it is written into 
the LB.

13H 04H LOAD_DISPATCH.MOB Counts the number of loads dispatched from the 
Reservation Station to the Memory Order Buffer.

13H 07H LOAD_DISPATCH.ANY Counts all loads dispatched from the Reservation 
Station.

14H 01H ARITH.CYCLES_DIV_BUSY Counts the number of cycles the divider is busy 
executing divide or square root operations. The 
divide can be integer, X87 or Streaming SIMD 
Extensions (SSE). The square root operation can be 
either X87 or SSE. 

Set 'edge =1, invert=1, cmask=1' to count the 
number of divides.

Count may be incorrect 
When SMT is on

14H 02H ARITH.MUL Counts the number of multiply operations executed. 
This includes integer as well as floating point 
multiply operations but excludes DPPS mul and 
MPSAD.

Count may be incorrect 
When SMT is on

17H 01H INST_QUEUE_WRITES Counts the number of instructions written into the 
instruction queue every cycle. 

18H 01H INST_DECODED.DEC0 Counts number of instructions that require  decoder 
0 to be decoded.  Usually, this means that the 
instruction maps to more than 1 uop.

19H 01H TWO_UOP_INSTS_DECODED An instruction that generates two uops was 
decoded.
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1EH 01H INST_QUEUE_WRITE_CYCLES This event counts the number of cycles during 
which instructions are written to the instruction 
queue.  Dividing this counter by the number of 
instructions written to the instruction queue 
(INST_QUEUE_WRITES) yields the average number 
of instructions decoded each cycle. If this number is  
less than four and the pipe stalls, this indicates that 
the decoder is failing to decode enough instructions 
per cycle to sustain the 4-wide pipeline. 

If SSE* instructions that 
are 6 bytes or longer 
arrive one after another, 
then front end 
throughput may limit 
execution speed. 

20H 01H LSD_OVERFLOW Number of loops that can not stream from the 
instruction queue.

24H 01H L2_RQSTS.LD_HIT Counts number of loads that hit the L2 cache. L2 
loads include both L1D demand misses as well as 
L1D prefetches.  L2 loads can be rejected for 
various reasons.  Only non rejected loads are 
counted.

24H 02H L2_RQSTS.LD_MISS Counts the number of loads that miss the L2 cache. 
L2 loads include both L1D demand misses as well as 
L1D prefetches. 

24H 03H L2_RQSTS.LOADS Counts all L2 load requests. L2 loads include both 
L1D demand misses as well as L1D prefetches. 

24H 04H L2_RQSTS.RFO_HIT Counts the number of store RFO requests that hit 
the L2 cache. L2 RFO requests include both L1D 
demand RFO misses as well as L1D RFO prefetches. 
Count includes WC memory requests, where the 
data is not fetched but the permission to write the 
line is required.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO requests that miss 
the L2 cache. L2 RFO requests include both L1D 
demand RFO misses as well as L1D RFO prefetches.

24H 0CH L2_RQSTS.RFOS Counts all L2 store RFO requests. L2 RFO requests 
include both L1D demand RFO misses as well as L1D 
RFO prefetches..

24H 10H L2_RQSTS.IFETCH_HIT Counts number of instruction fetches that hit the 
L2 cache. L2 instruction fetches include both L1I 
demand misses as well as L1I instruction 
prefetches.

24H 20H L2_RQSTS.IFETCH_MISS Counts number of instruction fetches that miss the 
L2 cache. L2 instruction fetches include both L1I 
demand misses as well as L1I instruction 
prefetches.

24H 30H L2_RQSTS.IFETCHES Counts all instruction fetches. L2 instruction fetches 
include both L1I demand misses as well as L1I 
instruction prefetches.

24H 40H L2_RQSTS.PREFETCH_HIT Counts L2 prefetch hits for both code and data.

24H 80H L2_RQSTS.PREFETCH_MISS Counts L2 prefetch misses for both code and data.

24H C0H L2_RQSTS.PREFETCHES Counts all L2 prefetches for both code and data.

24H AAH L2_RQSTS.MISS Counts all L2 misses for both code and data.
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24H FFH L2_RQSTS.REFERENCES Counts all L2 requests for both code and data.

26H 01H L2_DATA_RQSTS.DEMAND.I_S
TATE

Counts number of L2 data demand loads where the 
cache line to be loaded is in the I (invalid) state, i.e. a 
cache miss. L2 demand loads are both L1D demand 
misses and L1D prefetches.

26H 02H L2_DATA_RQSTS.DEMAND.S_
STATE

Counts number of L2 data demand loads where the 
cache line to be loaded is in the S (shared) state. L2 
demand loads are both L1D demand misses and L1D 
prefetches.

26H 04H L2_DATA_RQSTS.DEMAND.E_
STATE

Counts number of L2 data demand loads where the 
cache line to be loaded is in the E (exclusive) state. 
L2 demand loads are both L1D demand misses and 
L1D prefetches.

26H 08H L2_DATA_RQSTS.DEMAND.M_
STATE

Counts number of L2 data demand loads where the 
cache line to be loaded is in the M (modified) state. 
L2 demand loads are both L1D demand misses and 
L1D prefetches.

26H 0FH L2_DATA_RQSTS.DEMAND.ME
SI

Counts all L2 data demand requests. L2 demand 
loads are both L1D demand misses and L1D 
prefetches.

26H 10H L2_DATA_RQSTS.PREFETCH.I_
STATE

Counts number of L2 prefetch data loads where the 
cache line to be loaded is in the I (invalid) state, i.e. a 
cache miss.

26H 20H L2_DATA_RQSTS.PREFETCH.S
_STATE

Counts number of L2 prefetch data loads where the 
cache line to be loaded is in the S (shared) state. A 
prefetch RFO will miss on an S state line, while a 
prefetch read will hit on an S state line.

26H 40H L2_DATA_RQSTS.PREFETCH.E
_STATE

Counts number of L2 prefetch data loads where the 
cache line to be loaded is in the E (exclusive) state.

26H 80H L2_DATA_RQSTS.PREFETCH.M
_STATE

Counts number of L2 prefetch data loads where the 
cache line to be loaded is in the M (modified) state.

26H F0H L2_DATA_RQSTS.PREFETCH.M
ESI

Counts all L2 prefetch requests.

26H FFH L2_DATA_RQSTS.ANY Counts all L2 data requests.

27H 01H L2_WRITE.RFO.I_STATE Counts number of L2 demand store RFO requests 
where the cache line to be loaded is in the I (invalid) 
state, i.e, a cache miss. The L1D prefetcher does not 
issue a RFO prefetch.

This is a demand RFO 
request

27H 02H L2_WRITE.RFO.S_STATE Counts number of L2 store RFO requests where the 
cache line to be loaded is in the S (shared) state. 
The L1D prefetcher does not issue a RFO prefetch,.

This is a demand RFO 
request

27H 08H L2_WRITE.RFO.M_STATE Counts number of L2 store RFO requests where the 
cache line to be loaded is in the M (modified) state. 
The L1D prefetcher does not issue a RFO prefetch.

This is a demand RFO 
request

27H 0EH L2_WRITE.RFO.HIT Counts number of L2 store RFO requests where the 
cache line to be loaded is in either the S, E or M 
states. The L1D prefetcher does not issue a RFO 
prefetch.

This is a demand RFO 
request
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27H 0FH L2_WRITE.RFO.MESI Counts all L2 store RFO requests.The L1D 
prefetcher does not issue a RFO prefetch.

This is a demand RFO 
request

27H 10H L2_WRITE.LOCK.I_STATE Counts number of L2 demand lock RFO requests 
where the cache line to be loaded is in the I (invalid) 
state, i.e. a cache miss. 

27H 20H L2_WRITE.LOCK.S_STATE Counts number of L2 lock RFO requests where the 
cache line to be loaded is in the S (shared) state.

27H 40H L2_WRITE.LOCK.E_STATE Counts number of L2 demand lock RFO requests 
where the cache line to be loaded is in the E 
(exclusive) state.

27H 80H L2_WRITE.LOCK.M_STATE Counts number of L2 demand lock RFO requests 
where the cache line to be loaded is in the M 
(modified) state.

27H E0H L2_WRITE.LOCK.HIT Counts number of L2 demand lock RFO requests 
where the cache line to be loaded is in either the S, 
E, or M state.

27H F0H L2_WRITE.LOCK.MESI Counts all L2 demand lock RFO requests.

28H 01H L1D_WB_L2.I_STATE Counts number of L1 writebacks to the L2 where 
the cache line to be written is in the I (invalid) state, 
i.e. a cache miss.

28H 02H L1D_WB_L2.S_STATE Counts number of L1 writebacks to the L2 where 
the cache line to be written is in the S state.

28H 04H L1D_WB_L2.E_STATE Counts number of L1 writebacks to the L2 where 
the cache line to be written is in the E (exclusive) 
state.

28H 08H L1D_WB_L2.M_STATE Counts number of L1 writebacks to the L2 where 
the cache line to be written is in the M (modified) 
state.

28H 0FH L1D_WB_L2.MESI Counts all L1 writebacks to the L2 .

2EH 41H L3_LAT_CACHE.MISS Counts uncore Last Level Cache misses. Because 
cache hierarchy, cache sizes and other 
implementation-specific characteristics; value 
comparison to estimate performance differences is 
not recommended. 

see Table 19-1

2EH 4FH L3_LAT_CACHE.REFERENCE Counts uncore Last Level Cache references. 
Because cache hierarchy, cache sizes and other 
implementation-specific characteristics; value 
comparison to estimate performance differences is 
not recommended. 

see Table 19-1

3CH 00H CPU_CLK_UNHALTED.THREAD
_P

Counts the number of thread cycles while the 
thread is not in a halt state. The thread enters the 
halt state when it is running the HLT instruction. 
The core frequency may change from time to time 
due to power or thermal throttling. 

see Table 19-1

3CH 01H CPU_CLK_UNHALTED.REF_P Increments at the frequency of TSC when not 
halted.

see Table 19-1

49H 01H DTLB_MISSES.ANY Counts the number of misses in the STLB which 
causes a page walk.
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49H 02H DTLB_MISSES.WALK_COMPLE
TED

Counts number of misses in the STLB which 
resulted in a completed page walk.

49H 04H DTLB_MISSES.WALK_CYCLES Counts cycles of page walk due to misses in the 
STLB.

49H 10H DTLB_MISSES.STLB_HIT Counts the number of DTLB first level misses that 
hit in the second level TLB.  This event is only 
relevant if the core contains multiple DTLB levels.

49H 20H DTLB_MISSES.PDE_MISS Number of DTLB misses caused by low part of 
address, includes references to 2M pages because 
2M pages do not use the PDE. 

49H 80H DTLB_MISSES.LARGE_WALK_C
OMPLETED

Counts number of completed large page walks due 
to misses in the STLB.

4CH 01H LOAD_HIT_PRE Counts load operations sent to the L1 data cache 
while a previous SSE prefetch instruction to the 
same cache line has started prefetching but has not 
yet finished.

Counter 0, 1 only

4EH 01H L1D_PREFETCH.REQUESTS Counts number of hardware prefetch requests 
dispatched out of the prefetch FIFO.

Counter 0, 1 only

4EH 02H L1D_PREFETCH.MISS Counts number of hardware prefetch requests that 
miss the L1D.  There are two prefetchers in the 
L1D.  A streamer, which predicts lines sequentially 
after this one should be fetched, and the IP 
prefetcher that remembers access patterns for the 
current instruction.  The streamer prefetcher stops 
on an L1D hit,  while the IP prefetcher does not.

Counter 0, 1 only

4EH 04H L1D_PREFETCH.TRIGGERS Counts number of prefetch requests triggered by 
the Finite State Machine and pushed into the 
prefetch FIFO. Some of the prefetch requests are 
dropped due to overwrites or competition between 
the IP index prefetcher and streamer prefetcher.  
The prefetch FIFO contains 4 entries.

Counter 0, 1 only

4FH 10H EPT.WALK_CYCLES Counts Extended Page walk cycles.

51H 01H L1D.REPL Counts the number of lines brought into the L1 data 
cache.

Counter 0, 1 only

51H 02H L1D.M_REPL Counts the number of modified lines brought into 
the L1 data cache. 

Counter 0, 1 only

51H 04H L1D.M_EVICT Counts the number of modified lines evicted from 
the L1 data cache  due to replacement. 

Counter 0, 1 only

51H 08H L1D.M_SNOOP_EVICT Counts the number of modified lines evicted from 
the L1 data cache due to snoop HITM intervention.

Counter 0, 1 only

52H 01H L1D_CACHE_PREFETCH_LOCK
_FB_HIT

Counts the number of cacheable load lock 
speculated instructions accepted into the fill buffer.

60H 01H OFFCORE_REQUESTS_OUTST
ANDING.DEMAND.READ_DATA

Counts weighted cycles of offcore demand data 
read requests. Does not include L2 prefetch 
requests.

counter 0

60H 02H OFFCORE_REQUESTS_OUTST
ANDING.DEMAND.READ_CODE

Counts weighted cycles of offcore demand code 
read requests. Does not include L2 prefetch 
requests.

counter 0
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60H 04H OFFCORE_REQUESTS_OUTST
ANDING.DEMAND.RFO

Counts weighted cycles of offcore demand RFO 
requests. Does not include L2 prefetch requests.

counter 0

60H 08H OFFCORE_REQUESTS_OUTST
ANDING.ANY.READ

Counts weighted cycles of offcore read requests of 
any kind. Include L2 prefetch requests.

counter 0

63H 01H CACHE_LOCK_CYCLES.L1D_L2 Cycle count during which the L1D and L2 are locked.  
A lock is asserted when there is a locked memory 
access, due to uncacheable memory, a locked 
operation that spans two cache lines, or a page walk 
from an uncacheable page table. This event does 
not cause locks, it merely detects them.

Counter 0, 1 only. L1D 
and L2 locks have a very 
high performance 
penalty and it is highly 
recommended to avoid 
such accesses.

63H 02H CACHE_LOCK_CYCLES.L1D Counts the number of cycles that cacheline in the 
L1 data cache unit is locked.

Counter 0, 1 only.

6CH 01H IO_TRANSACTIONS Counts the number of completed I/O transactions.

80H 01H L1I.HITS Counts all instruction fetches that hit the L1 
instruction cache.

80H 02H L1I.MISSES Counts all instruction fetches that miss the L1I 
cache. This includes instruction cache misses,  
streaming buffer misses, victim cache misses and 
uncacheable fetches.  An instruction fetch miss is 
counted only once and not once for every cycle it is 
outstanding.

80H 03H L1I.READS Counts all instruction fetches, including uncacheable 
fetches that bypass the L1I.

80H 04H L1I.CYCLES_STALLED Cycle counts for which an instruction fetch stalls 
due to a L1I cache miss, ITLB miss or ITLB fault.

82H 01H LARGE_ITLB.HIT Counts number of large ITLB hits.

85H 01H ITLB_MISSES.ANY Counts the number of misses in all levels of the ITLB 
which causes a page walk.

85H 02H ITLB_MISSES.WALK_COMPLET
ED

Counts number of misses in all levels of the ITLB 
which resulted in a completed page walk.

85H 04H ITLB_MISSES.WALK_CYCLES Counts ITLB miss page walk cycles.

85H 10H ITLB_MISSES.STLB_HIT Counts number of ITLB first level miss but second 
level hits

85H 80H ITLB_MISSES.LARGE_WALK_C
OMPLETED

Counts number of completed large page walks due 
to misses in the STLB.

87H 01H ILD_STALL.LCP Cycles Instruction Length Decoder stalls due to 
length changing prefixes: 66, 67 or REX.W (for 
EM64T) instructions which change the length of the 
decoded instruction.

87H 02H ILD_STALL.MRU Instruction Length Decoder stall cycles due to Brand 
Prediction Unit (PBU) Most Recently Used (MRU) 
bypass.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to a full instruction queue.

87H 08H ILD_STALL.REGEN Counts the number of regen stalls.

87H 0FH ILD_STALL.ANY Counts any cycles the Instruction Length Decoder is 
stalled.
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88H 01H BR_INST_EXEC.COND Counts the number of conditional near branch 
instructions executed, but not necessarily retired.

88H 02H BR_INST_EXEC.DIRECT Counts all unconditional near branch instructions 
excluding calls and indirect branches.

88H 04H BR_INST_EXEC.INDIRECT_NO
N_CALL

Counts the number of executed indirect near branch 
instructions that are not calls.

88H 07H BR_INST_EXEC.NON_CALLS Counts all non call near branch instructions 
executed, but not necessarily retired.

88H 08H BR_INST_EXEC.RETURN_NEA
R

Counts indirect near branches that have a return 
mnemonic.

88H 10H BR_INST_EXEC.DIRECT_NEAR
_CALL

Counts unconditional near call branch instructions, 
excluding non call branch, executed. 

88H 20H BR_INST_EXEC.INDIRECT_NEA
R_CALL

Counts indirect near calls, including both register 
and memory indirect, executed.

88H 30H BR_INST_EXEC.NEAR_CALLS Counts all near call branches executed,  but not 
necessarily retired.

88H 40H BR_INST_EXEC.TAKEN Counts taken near branches executed, but not 
necessarily retired.

88H 7FH BR_INST_EXEC.ANY Counts all near executed branches (not necessarily 
retired). This includes only instructions and not 
micro-op branches. Frequent branching is not 
necessarily a major performance issue. However 
frequent branch mispredictions may be a problem.

89H 01H BR_MISP_EXEC.COND Counts the number of mispredicted conditional near 
branch instructions executed, but not necessarily 
retired.

89H 02H BR_MISP_EXEC.DIRECT Counts mispredicted macro unconditional near 
branch instructions, excluding calls and indirect 
branches (should always be 0).

89H 04H BR_MISP_EXEC.INDIRECT_NO
N_CALL

Counts the number of executed mispredicted 
indirect near branch instructions that are not calls.

89H 07H BR_MISP_EXEC.NON_CALLS Counts mispredicted non call near branches 
executed,  but not necessarily retired.

89H 08H BR_MISP_EXEC.RETURN_NEA
R

Counts mispredicted indirect branches that have a 
rear return mnemonic.

89H 10H BR_MISP_EXEC.DIRECT_NEAR
_CALL

Counts mispredicted non-indirect near calls 
executed, (should always be 0).

89H 20H BR_MISP_EXEC.INDIRECT_NE
AR_CALL

Counts mispredicted indirect near calls exeucted, 
including both register and memory indirect.

89H 30H BR_MISP_EXEC.NEAR_CALLS Counts all mispredicted near call branches executed, 
but not necessarily retired.

89H 40H BR_MISP_EXEC.TAKEN Counts executed mispredicted near branches that 
are taken, but not necessarily retired.

89H 7FH BR_MISP_EXEC.ANY Counts the number of mispredicted near branch 
instructions that were executed, but not 
necessarily retired.
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A2H 01H RESOURCE_STALLS.ANY Counts the number of Allocator resource related 
stalls. Includes register renaming buffer entries, 
memory buffer entries. In addition to resource 
related stalls, this event counts some other events. 
Includes stalls arising during branch misprediction 
recovery, such as if retirement of the mispredicted 
branch is delayed and stalls arising while store 
buffer is draining from synchronizing operations.

Does not include stalls 
due to SuperQ (off core) 
queue full, too many 
cache misses, etc.

A2H 02H RESOURCE_STALLS.LOAD Counts the cycles of stall due to lack of load buffer 
for load operation.

A2H 04H RESOURCE_STALLS.RS_FULL This event counts the number of cycles when the 
number of instructions in the pipeline waiting for 
execution reaches the limit the processor can 
handle. A high count of this event indicates that 
there are long latency operations in the pipe 
(possibly load and store operations that miss the L2 
cache, or instructions dependent upon instructions 
further down the pipeline that have yet to retire. 

When RS is full, new 
instructions can not 
enter the reservation 
station and start 
execution.

A2H 08H RESOURCE_STALLS.STORE This event counts the number of cycles that a 
resource related stall will occur due to the number 
of store instructions reaching the limit of the 
pipeline, (i.e. all store buffers are used). The stall 
ends when a store instruction commits its data to 
the cache or memory.

A2H 10H RESOURCE_STALLS.ROB_FULL Counts the cycles of stall due to re-order buffer full.

A2H 20H RESOURCE_STALLS.FPCW Counts the number of cycles while execution was 
stalled due to writing the floating-point unit (FPU) 
control word.

A2H 40H RESOURCE_STALLS.MXCSR Stalls due to the MXCSR register rename occurring 
to close to a previous MXCSR rename.  The MXCSR 
provides control and status for the MMX registers.

A2H 80H RESOURCE_STALLS.OTHER Counts the number of cycles while execution was 
stalled due to other resource issues.

A6H 01H MACRO_INSTS.FUSIONS_DECO
DED

Counts the number of instructions decoded that are 
macro-fused but not necessarily executed or 
retired.

A7H 01H BACLEAR_FORCE_IQ Counts number of times a BACLEAR was forced by 
the Instruction Queue.  The IQ is also responsible for 
providing conditional branch prediciton direction 
based on a static scheme and dynamic data 
provided by the L2 Branch Prediction Unit. If the 
conditional branch target is not found in the Target 
Array and the IQ predicts that the branch is taken, 
then the IQ will force the Branch Address Calculator 
to issue a BACLEAR. Each BACLEAR asserted by the 
BAC generates approximately an 8 cycle bubble in 
the instruction fetch pipeline.

A8H 01H LSD.UOPS Counts the number of micro-ops delivered by loop 
stream detector.

Use cmask=1 and invert 
to count cycles

AEH 01H ITLB_FLUSH Counts the number of ITLB flushes.
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B0H 01H OFFCORE_REQUESTS.DEMAN
D.READ_DATA

Counts number of offcore demand data read 
requests.  Does not count L2 prefetch requests.

B0H 02H OFFCORE_REQUESTS.DEMAN
D.READ_CODE

Counts number of offcore demand code read 
requests.  Does not count L2 prefetch requests.

B0H 04H OFFCORE_REQUESTS.DEMAN
D.RFO

Counts number of offcore demand RFO requests. 
Does not count L2 prefetch requests.

B0H 08H OFFCORE_REQUESTS.ANY.REA
D

Counts number of offcore read requests. Includes 
L2 prefetch requests.

B0H 10H OFFCORE_REQUESTS.ANY.RFO Counts number of offcore RFO requests. Includes L2 
prefetch requests.

B0H 40H OFFCORE_REQUESTS.L1D_WR
ITEBACK

Counts number of L1D writebacks to the uncore. 

B0H 80H OFFCORE_REQUESTS.ANY Counts all offcore requests.

B1H 01H UOPS_EXECUTED.PORT0 Counts number of Uops executed that were issued 
on port 0.  Port 0 handles integer arithmetic, SIMD 
and FP add Uops.

B1H 02H UOPS_EXECUTED.PORT1 Counts number of Uops executed that were issued 
on port 1. Port 1 handles integer arithmetic, SIMD, 
integer shift, FP multiply and FP divide Uops.

B1H 04H UOPS_EXECUTED.PORT2_COR
E

Counts number of Uops executed that were issued 
on port 2.  Port 2 handles the load Uops. This is a 
core count only and can not be collected per thread.

B1H 08H UOPS_EXECUTED.PORT3_COR
E

Counts number of Uops executed that were issued 
on port 3. Port 3 handles store Uops.  This is a core 
count only and can not be collected per thread.

B1H 10H UOPS_EXECUTED.PORT4_COR
E

Counts number of Uops executed that where issued 
on port  4.  Port 4 handles the value to be stored for 
the store Uops issued on port 3. This is a core count 
only and can not be collected per thread.

B1H 1FH UOPS_EXECUTED.CORE_ACTI
VE_CYCLES_NO_PORT5

Counts number of cycles there are one or more 
uops being executed and were issued on ports 0-4. 
This is a core count only and can not be collected 
per thread.

B1H 20H UOPS_EXECUTED.PORT5 Counts number of Uops executed that where issued 
on port 5. 

B1H 3FH UOPS_EXECUTED.CORE_ACTI
VE_CYCLES

Counts number of cycles there are one or more 
uops being executed on any ports. This is a core 
count only and can not be collected per thread.

B1H 40H UOPS_EXECUTED.PORT015 Counts number of Uops executed that where issued 
on port  0, 1, or 5.

use cmask=1, invert=1 
to count stall cycles

B1H 80H UOPS_EXECUTED.PORT234 Counts number of Uops executed that where issued 
on port 2, 3, or 4.

B2H 01H OFFCORE_REQUESTS_SQ_FUL
L

Counts number of cycles the SQ is full to handle off-
core requests. 

B3H 01H SNOOPQ_REQUESTS_OUTSTA
NDING.DATA

Counts weighted cycles of snoopq requests for 
data. Counter 0 only.

Use cmask=1 to count 
cycles not empty. 
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B3H 02H SNOOPQ_REQUESTS_OUTSTA
NDING.INVALIDATE

Counts weighted cycles of snoopq invalidate 
requests. Counter 0 only.

Use cmask=1 to count 
cycles not empty. 

B3H 04H SNOOPQ_REQUESTS_OUTSTA
NDING.CODE

Counts weighted cycles of snoopq requests for 
code. Counter 0 only.

Use cmask=1 to count 
cycles not empty. 

B4H 01H SNOOPQ_REQUESTS.CODE Counts the number of snoop code requests.

B4H 02H SNOOPQ_REQUESTS.DATA Counts the number of snoop data requests.

B4H 04H SNOOPQ_REQUESTS.INVALID
ATE

Counts the number of snoop invalidate requests.

B7H 01H OFF_CORE_RESPONSE_0 see Section 18.7.1.3, “Off-core Response 
Performance Monitoring in the Processor Core”

Requires programming 
MSR 01A6H

B8H 01H SNOOP_RESPONSE.HIT Counts HIT snoop response sent by this thread in 
response to a snoop request.

B8H 02H SNOOP_RESPONSE.HITE Counts HIT E snoop response sent by this thread in 
response to a snoop request.

B8H 04H SNOOP_RESPONSE.HITM Counts HIT M snoop response sent by this thread in 
response to a snoop request.

BBH 01H OFF_CORE_RESPONSE_1 see Section 18.7.1.3, “Off-core Response 
Performance Monitoring in the Processor Core”

Use MSR 01A7H

C0H 00H INST_RETIRED.ANY_P See Table 19-1
Notes: INST_RETIRED.ANY is counted by a 
designated fixed counter. INST_RETIRED.ANY_P is 
counted by a programmable counter and is an 
architectural performance event.  Event is 
supported if CPUID.A.EBX[1] = 0.

Counting: Faulting 
executions of 
GETSEC/VM entry/VM 
Exit/MWait will not count 
as retired instructions. 

C0H 02H INST_RETIRED.X87 Counts the number of floating point computational 
operations retired: floating point computational 
operations executed by the assist handler and sub-
operations of complex floating point instructions 
like transcendental instructions.

C0H 04H INST_RETIRED.MMX Counts the number of retired: MMX instructions.

C2H 01H UOPS_RETIRED.ANY Counts the number of micro-ops retired, (macro-
fused=1, micro-fused=2, others=1; maximum count 
of 8 per cycle). Most instructions are composed of 
one or two micro-ops. Some instructions are 
decoded into longer sequences such as repeat 
instructions, floating point transcendental 
instructions, and assists.

Use cmask=1 and invert 
to count active cycles or 
stalled cycles

C2H 02H UOPS_RETIRED.RETIRE_SLOT
S

Counts the number of retirement slots used each 
cycle

C2H 04H UOPS_RETIRED.MACRO_FUSE
D

Counts number of macro-fused uops retired.

C3H 01H MACHINE_CLEARS.CYCLES Counts the cycles machine clear is asserted.

C3H 02H MACHINE_CLEARS.MEM_ORDE
R

Counts the number of machine clears due to 
memory order conflicts.
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C3H 04H MACHINE_CLEARS.SMC Counts the number of times that a program writes 
to a code section. Self-modifying code causes a 
sever penalty in all Intel 64 and IA-32 processors.  
The modified cache line is written back to the L2 
and L3caches.

C4H 00H BR_INST_RETIRED.ALL_BRAN
CHES

Branch instructions at retirement See Table 19-1 

C4H 01H BR_INST_RETIRED.CONDITION
AL

Counts the number of conditional branch 
instructions retired. 

C4H 02H BR_INST_RETIRED.NEAR_CAL
L

Counts the number of direct & indirect near 
unconditional calls retired.

C5H 00H BR_MISP_RETIRED.ALL_BRAN
CHES

Mispredicted branch instructions at retirement See Table 19-1 

C5H 01H BR_MISP_RETIRED.CONDITION
AL

Counts mispredicted conditional retired calls. 

C5H 02H BR_MISP_RETIRED.NEAR_CAL
L

Counts mispredicted direct & indirect near 
unconditional retired calls. 

C5H 04H BR_MISP_RETIRED.ALL_BRAN
CHES

Counts all mispredicted retired calls. 

C7H 01H SSEX_UOPS_RETIRED.PACKED
_SINGLE

Counts SIMD packed single-precision floating point 
Uops retired.

C7H 02H SSEX_UOPS_RETIRED.SCALAR
_SINGLE

Counts SIMD calar single-precision floating point 
Uops retired.

C7H 04H SSEX_UOPS_RETIRED.PACKED
_DOUBLE

Counts SIMD packed double-precision floating point 
Uops retired.

C7H 08H SSEX_UOPS_RETIRED.SCALAR
_DOUBLE

Counts SIMD scalar double-precision floating point 
Uops retired.

C7H 10H SSEX_UOPS_RETIRED.VECTOR
_INTEGER

Counts 128-bit SIMD vector integer Uops retired.

C8H 20H ITLB_MISS_RETIRED Counts the number of retired instructions that 
missed the ITLB when the instruction was fetched.

CBH 01H MEM_LOAD_RETIRED.L1D_HIT Counts number of retired loads that hit the L1 data 
cache. 

CBH 02H MEM_LOAD_RETIRED.L2_HIT Counts number of retired loads that hit the L2 data 
cache.

CBH 04H MEM_LOAD_RETIRED.L3_UNS
HARED_HIT

Counts number of retired loads that hit their own, 
unshared lines in the L3 cache.

CBH 08H MEM_LOAD_RETIRED.OTHER_
CORE_L2_HIT_HITM

Counts number of retired loads that hit in a sibling 
core's L2 (on die core).  Since the L3 is inclusive of 
all cores on the package, this is an L3 hit. This 
counts both clean or modified hits.

CBH 10H MEM_LOAD_RETIRED.L3_MISS Counts number of retired loads that miss the L3 
cache.  The load was satisfied by a remote socket, 
local memory or an IOH.
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CBH 40H MEM_LOAD_RETIRED.HIT_LFB Counts number of retired loads that miss the L1D 
and the address is located in an allocated line fill 
buffer and will soon be committed to cache.  This is 
counting secondary L1D misses.

CBH 80H MEM_LOAD_RETIRED.DTLB_MI
SS

Counts the number of retired loads that missed the 
DTLB. The DTLB miss is not counted if the load 
operation causes a fault.  This event counts loads 
from cacheable memory only. The event does not 
count loads by software prefetches. Counts both 
primary and secondary misses to the TLB.

CCH 01H FP_MMX_TRANS.TO_FP Counts the first floating-point instruction following 
any MMX instruction. You can use this event to 
estimate the penalties for the transitions between 
floating-point and MMX technology states.

CCH 02H FP_MMX_TRANS.TO_MMX Counts the first MMX instruction following a 
floating-point instruction. You can use this event to 
estimate the penalties for the transitions between 
floating-point and MMX technology states.

CCH 03H FP_MMX_TRANS.ANY Counts all transitions from floating point to MMX 
instructions and from MMX instructions to floating 
point instructions.  You can use this event to 
estimate the penalties for the transitions between 
floating-point and MMX technology states.

D0H 01H MACRO_INSTS.DECODED Counts the number of instructions decoded, (but not 
necessarily executed or retired).

D1H 01H UOPS_DECODED.STALL_CYCLE
S

Counts the cycles of decoder stalls. INV=1, Cmask= 
1

D1H 02H UOPS_DECODED.MS Counts the number of Uops decoded by the 
Microcode Sequencer, MS.  The MS delivers uops 
when the instruction is more than 4 uops long or a 
microcode assist is occurring. 

D1H 04H UOPS_DECODED.ESP_FOLDIN
G

Counts number of stack pointer (ESP) instructions 
decoded: push , pop , call , ret, etc.  ESP instructions 
do not generate a Uop to increment or decrement 
ESP.  Instead, they update an ESP_Offset register 
that keeps track of the delta to the current value of 
the ESP register.

D1H 08H UOPS_DECODED.ESP_SYNC Counts number of stack pointer (ESP) sync 
operations where an ESP instruction is corrected  by 
adding the ESP offset register to the current value 
of the ESP register.

D2H 01H RAT_STALLS.FLAGS Counts the number of cycles during which 
execution stalled due to several reasons, one of 
which is a partial flag register stall. A partial register 
stall may occur when two conditions are met: 1) an 
instruction modifies some, but not all, of the flags in 
the flag register and 2) the next instruction, which 
depends on flags, depends on flags that were not 
modified by this instruction.
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D2H 02H RAT_STALLS.REGISTERS This event counts the number of cycles instruction 
execution latency became longer than the defined 
latency because the instruction used a register that 
was partially written by previous instruction.

D2H 04H RAT_STALLS.ROB_READ_POR
T

Counts the number of cycles when ROB read port 
stalls occurred, which did not allow new micro-ops 
to enter the out-of-order pipeline. Note that, at this 
stage in the pipeline, additional stalls may occur at 
the same cycle and prevent the stalled micro-ops 
from entering the pipe. In such a case, micro-ops 
retry entering the execution pipe in the next cycle 
and the ROB-read port stall is counted again.

D2H 08H RAT_STALLS.SCOREBOARD Counts the cycles where we stall due to 
microarchitecturally required serialization. 
Microcode scoreboarding stalls.

D2H 0FH RAT_STALLS.ANY Counts all Register Allocation Table stall cycles due 
to:  Cycles when ROB read port stalls occurred, 
which did not allow new micro-ops to enter the 
execution pipe.  Cycles when partial register stalls 
occurred  Cycles when flag stalls occurred  Cycles 
floating-point unit (FPU) status word stalls occurred. 
To count each of these conditions separately use 
the events: RAT_STALLS.ROB_READ_PORT, 
RAT_STALLS.PARTIAL, RAT_STALLS.FLAGS, and 
RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_STALLS Counts the number of stall cycles due to the lack of 
renaming resources for the ES, DS, FS, and GS 
segment registers. If a segment is renamed but not 
retired and a second update to the same segment 
occurs, a stall occurs in the front-end of the pipeline 
until the renamed segment retires.

D5H 01H ES_REG_RENAMES Counts the number of times the ES segment 
register is renamed.

DBH 01H UOP_UNFUSION Counts unfusion events due to floating point 
exception to a fused uop.

E0H 01H BR_INST_DECODED Counts the number of branch instructions decoded. 

E5H 01H BPU_MISSED_CALL_RET Counts number of times the Branch Prediciton Unit 
missed predicting a call or return branch.

E6H 01H BACLEAR.CLEAR Counts the number of times the front end is 
resteered, mainly when the Branch Prediction Unit 
cannot provide a correct prediction and this is 
corrected by the Branch Address Calculator at the 
front end. This can occur if the code has many 
branches such that they cannot be consumed by 
the BPU. Each BACLEAR asserted by the BAC 
generates approximately an 8 cycle bubble in the 
instruction fetch pipeline. The effect on total 
execution time depends on the surrounding code.
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E6H 02H BACLEAR.BAD_TARGET Counts number of Branch Address Calculator clears 
(BACLEAR) asserted due to conditional branch 
instructions in which there was a target hit but the 
direction was wrong.  Each BACLEAR asserted by 
the BAC generates approximately an 8 cycle bubble 
in the instruction fetch pipeline.

E8H 01H BPU_CLEARS.EARLY Counts early (normal) Branch Prediction Unit clears: 
BPU predicted a taken branch after incorrectly 
assuming that it was not taken. 

The BPU clear leads to 2 
cycle bubble in the Front 
End.

E8H 02H BPU_CLEARS.LATE Counts late Branch Prediction Unit clears due to 
Most Recently Used conflicts.  The PBU clear leads 
to a 3 cycle bubble in the Front End.

ECH 01H THREAD_ACTIVE Counts cycles threads are active.

F0H 01H L2_TRANSACTIONS.LOAD Counts L2 load operations due to HW prefetch or 
demand loads.

F0H 02H L2_TRANSACTIONS.RFO Counts L2 RFO operations due to HW prefetch or 
demand RFOs.

F0H 04H L2_TRANSACTIONS.IFETCH Counts L2 instruction fetch operations due to HW 
prefetch or demand ifetch.

F0H 08H L2_TRANSACTIONS.PREFETC
H

Counts L2 prefetch operations.

F0H 10H L2_TRANSACTIONS.L1D_WB Counts L1D writeback operations to the L2.

F0H 20H L2_TRANSACTIONS.FILL Counts L2 cache line fill operations due to load, RFO, 
L1D writeback or prefetch.

F0H 40H L2_TRANSACTIONS.WB Counts L2 writeback operations to the L3.

F0H 80H L2_TRANSACTIONS.ANY Counts all L2 cache operations.

F1H 02H L2_LINES_IN.S_STATE Counts the number of cache lines allocated in the L2 
cache in the S (shared) state. 

F1H 04H L2_LINES_IN.E_STATE Counts the number of cache lines allocated in the L2 
cache in the E (exclusive) state. 

F1H 07H L2_LINES_IN.ANY Counts the number of cache lines allocated in the L2 
cache. 

F2H 01H L2_LINES_OUT.DEMAND_CLEA
N

Counts L2 clean cache lines evicted by a demand 
request.

F2H 02H L2_LINES_OUT.DEMAND_DIRT
Y

Counts L2 dirty (modified) cache lines evicted by a 
demand request.

F2H 04H L2_LINES_OUT.PREFETCH_CL
EAN

Counts L2 clean cache line evicted by a prefetch 
request.

F2H 08H L2_LINES_OUT.PREFETCH_DIR
TY

Counts L2 modified cache line evicted by a prefetch 
request.

F2H 0FH L2_LINES_OUT.ANY Counts all L2 cache lines evicted for any reason.

F4H 04H SQ_MISC.LRU_HINTS Counts number of Super Queue LRU hints sent to 
L3.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of SQ lock splits across a cache 
line.
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F6H 01H SQ_FULL_STALL_CYCLES Counts cycles the Super Queue is full.  Neither of 
the threads on this core will be able to access the 
uncore.

F7H 01H FP_ASSIST.ALL Counts the number of floating point operations 
executed that required micro-code assist 
intervention. Assists are required in the following 
cases: SSE instructions, (Denormal input when the 
DAZ flag is off or Underflow result when the FTZ 
flag is off): x87 instructions, (NaN or denormal are 
loaded to a register or used as input from memory, 
Division by 0 or Underflow output).

F7H 02H FP_ASSIST.OUTPUT Counts number of floating point micro-code assist 
when the output value (destination register) is 
invalid.

F7H 04H FP_ASSIST.INPUT Counts number of floating point micro-code assist 
when the input value (one of the source operands 
to an FP instruction) is invalid.

FDH 01H SIMD_INT_64.PACKED_MPY Counts number of SID integer 64 bit packed multiply 
operations.

FDH 02H SIMD_INT_64.PACKED_SHIFT Counts number of SID integer 64 bit packed shift 
operations.

FDH 04H SIMD_INT_64.PACK Counts number of SID integer 64 bit pack 
operations.

FDH 08H SIMD_INT_64.UNPACK Counts number of SID integer 64 bit unpack 
operations.

FDH 10H SIMD_INT_64.PACKED_LOGICA
L

Counts number of SID integer 64 bit logical 
operations.

FDH 20H SIMD_INT_64.PACKED_ARITH Counts number of SID integer 64 bit arithmetic 
operations.

FDH 40H SIMD_INT_64.SHUFFLE_MOVE Counts number of SID integer 64 bit shift or move 
operations.
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Non-architectural Performance monitoring events of the uncore sub-system for Processors with CPUID signature of 
DisplayFamily_DisplayModel 06_25H, 06_2CH, and 06_1FH support performance events listed in Table 19-14.

Table 19-14.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel® Microarchitecture Code Name Westmere

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

00H 01H UNC_GQ_CYCLES_FULL.READ_
TRACKER

Uncore cycles Global Queue read tracker is full.

00H 02H UNC_GQ_CYCLES_FULL.WRITE
_TRACKER

Uncore cycles Global Queue write tracker is full.

00H 04H UNC_GQ_CYCLES_FULL.PEER_
PROBE_TRACKER

Uncore cycles Global Queue peer probe tracker is full. 
The peer probe tracker queue tracks snoops from the 
IOH and remote sockets.

01H 01H UNC_GQ_CYCLES_NOT_EMPTY
.READ_TRACKER

Uncore cycles were Global Queue read tracker has at 
least one valid entry.

01H 02H UNC_GQ_CYCLES_NOT_EMPTY
.WRITE_TRACKER

Uncore cycles were Global Queue write tracker has at 
least one valid entry.

01H 04H UNC_GQ_CYCLES_NOT_EMPTY
.PEER_PROBE_TRACKER

Uncore cycles were Global Queue peer probe tracker 
has at least one valid entry. The peer probe tracker 
queue tracks IOH and remote socket snoops.

02H 01H UNC_GQ_OCCUPANCY.READ_T
RACKER

Increments the number of queue entries (code read, 
data read, and RFOs) in the tread tracker. The GQ read 
tracker allocate to deallocate occupancy count is 
divided by the count to obtain the average read tracker 
latency. 

03H 01H UNC_GQ_ALLOC.READ_TRACK
ER

Counts the number of tread tracker allocate to 
deallocate entries. The GQ read tracker allocate to 
deallocate occupancy count is divided by the count to 
obtain the average read tracker latency. 

03H 02H UNC_GQ_ALLOC.RT_L3_MISS Counts the number GQ read tracker entries for which a 
full cache line read has missed the L3. The GQ read 
tracker L3 miss to fill occupancy count is divided by 
this count to obtain the average cache line read L3 
miss latency. The latency represents the time after 
which the L3 has determined that the cache line has 
missed.  The time between a GQ read tracker allocation 
and the L3 determining that the cache line has missed 
is the average L3 hit latency. The total L3 cache line 
read miss latency is the hit latency + L3 miss latency.

03H 04H UNC_GQ_ALLOC.RT_TO_L3_RE
SP

Counts the number of GQ read tracker entries that are 
allocated in the read tracker queue that hit or miss the 
L3.  The GQ read tracker L3 hit occupancy count is 
divided by this count to obtain the average L3 hit 
latency. 

03H 08H UNC_GQ_ALLOC.RT_TO_RTID_
ACQUIRED

Counts the number of GQ read tracker entries that are 
allocated in the read tracker, have missed in the L3 and 
have not acquired a Request Transaction ID.   The GQ  
read tracker L3 miss to RTID acquired occupancy count 
is divided by this count to obtain the average latency 
for a read L3 miss to acquire an RTID.
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03H 10H UNC_GQ_ALLOC.WT_TO_RTID_
ACQUIRED

Counts the number of GQ write tracker entries that are 
allocated in the write tracker, have missed in the L3 
and have not acquired a Request Transaction ID.   The 
GQ write tracker L3 miss to RTID occupancy count is 
divided by this count to obtain the average latency for 
a write L3 miss to acquire an RTID.

03H 20H UNC_GQ_ALLOC.WRITE_TRAC
KER

Counts the number of GQ write tracker entries that are 
allocated in the write tracker queue that miss the L3.  
The GQ write tracker occupancy count is divided by the 
this count to obtain the average L3 write miss latency. 

03H 40H UNC_GQ_ALLOC.PEER_PROBE
_TRACKER

Counts the number of GQ peer probe tracker (snoop) 
entries that are allocated in the peer probe tracker 
queue that miss the L3.  The GQ peer probe occupancy 
count is divided by this count to obtain the average L3 
peer probe miss latency. 

04H 01H UNC_GQ_DATA.FROM_QPI Cycles Global Queue Quickpath Interface input data 
port is busy importing data from the Quickpath 
Interface.  Each cycle the input port can transfer 8  or 
16 bytes of data.

04H 02H UNC_GQ_DATA.FROM_QMC Cycles Global Queue Quickpath Memory Interface input 
data port is busy importing data from the Quickpath 
Memory Interface. Each cycle the input port can 
transfer 8  or 16 bytes of data.

04H 04H UNC_GQ_DATA.FROM_L3 Cycles GQ L3 input data port is busy importing data 
from the Last Level Cache. Each cycle the input port 
can transfer 32 bytes of data.

04H 08H UNC_GQ_DATA.FROM_CORES_
02

Cycles GQ Core 0 and 2 input data port is busy 
importing data from processor cores 0 and 2. Each 
cycle the input port can transfer 32 bytes of data.

04H 10H UNC_GQ_DATA.FROM_CORES_
13

Cycles GQ Core 1 and 3 input data port is busy 
importing data from processor cores 1 and 3. Each 
cycle the input port can transfer 32 bytes of data.

05H 01H UNC_GQ_DATA.TO_QPI_QMC Cycles GQ QPI and QMC output data port is busy 
sending data to the Quickpath Interface or Quickpath 
Memory Interface. Each cycle the output port can 
transfer 32 bytes of data.

05H 02H UNC_GQ_DATA.TO_L3 Cycles GQ L3 output data port is busy sending data to 
the Last Level Cache. Each cycle the output port can 
transfer 32 bytes of data.

05H 04H UNC_GQ_DATA.TO_CORES Cycles GQ Core output data port is busy sending data 
to the Cores. Each cycle the output port can transfer 
32 bytes of data.

06H 01H UNC_SNP_RESP_TO_LOCAL_H
OME.I_STATE

Number of snoop responses to the local home that L3 
does not have the referenced cache line. 

06H 02H UNC_SNP_RESP_TO_LOCAL_H
OME.S_STATE

Number of snoop responses to the local home that L3 
has the referenced line cached in the S state.
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06H 04H UNC_SNP_RESP_TO_LOCAL_H
OME.FWD_S_STATE

Number of responses to code or data read snoops to 
the local home that the L3 has the referenced cache 
line in the E state. The L3 cache line state is changed 
to the S state and the line is forwarded to the local 
home in the S state.

06H 08H UNC_SNP_RESP_TO_LOCAL_H
OME.FWD_I_STATE

Number of responses to read invalidate snoops to the 
local home that the L3 has the referenced cache line in 
the M state. The L3 cache line state is invalidated and 
the line is forwarded to the local home in the M state.

06H 10H UNC_SNP_RESP_TO_LOCAL_H
OME.CONFLICT

Number of conflict snoop responses sent to the local 
home.

06H 20H UNC_SNP_RESP_TO_LOCAL_H
OME.WB

Number of responses to code or data read snoops to 
the local home that the L3 has the referenced line 
cached in the M state. 

07H 01H UNC_SNP_RESP_TO_REMOTE_
HOME.I_STATE

Number of snoop responses to a remote home that L3 
does not have the referenced cache line. 

07H 02H UNC_SNP_RESP_TO_REMOTE_
HOME.S_STATE

Number of snoop responses to a remote home that L3 
has the referenced line cached in the S state.

07H 04H UNC_SNP_RESP_TO_REMOTE_
HOME.FWD_S_STATE

Number of responses to code or data read snoops to a 
remote home that the L3 has the referenced cache 
line in the E state. The L3 cache line state is changed 
to the S state and the line is forwarded to the remote 
home in the S state.

07H 08H UNC_SNP_RESP_TO_REMOTE_
HOME.FWD_I_STATE

Number of responses to read invalidate snoops to a 
remote home that the L3 has the referenced cache 
line in the M state. The L3 cache line state is 
invalidated and the line is forwarded to the remote 
home in the M state.

07H 10H UNC_SNP_RESP_TO_REMOTE_
HOME.CONFLICT

Number of conflict snoop responses sent to the local 
home.

07H 20H UNC_SNP_RESP_TO_REMOTE_
HOME.WB

Number of responses to code or data read snoops to a 
remote home that the L3 has the referenced line 
cached in the M state. 

07H 24H UNC_SNP_RESP_TO_REMOTE_
HOME.HITM

Number of HITM snoop responses to a remote home

08H 01H UNC_L3_HITS.READ Number of code read, data read and RFO requests that 
hit in the L3

08H 02H UNC_L3_HITS.WRITE Number of writeback requests that hit in the L3. 
Writebacks from the cores will always result in L3 hits 
due to the inclusive property of the L3.

08H 04H UNC_L3_HITS.PROBE Number of snoops from IOH or remote sockets that hit 
in the L3.

08H 03H UNC_L3_HITS.ANY Number of reads and writes that hit the L3. 

09H 01H UNC_L3_MISS.READ Number of code read, data read and RFO requests that 
miss the L3.
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09H 02H UNC_L3_MISS.WRITE Number of writeback requests that miss the L3. 
Should always be zero as writebacks from the cores 
will always result in L3 hits due to the inclusive 
property of the L3.

09H 04H UNC_L3_MISS.PROBE Number of snoops from IOH or remote sockets that 
miss the L3.

09H 03H UNC_L3_MISS.ANY Number of reads and writes that miss the L3. 

0AH 01H UNC_L3_LINES_IN.M_STATE Counts the number of L3 lines allocated in M state.  
The only time a cache line is allocated in the M state is 
when the line was forwarded in M state is forwarded 
due to a Snoop Read Invalidate Own request.

0AH 02H UNC_L3_LINES_IN.E_STATE Counts the number of L3 lines allocated in E state.

0AH 04H UNC_L3_LINES_IN.S_STATE Counts the number of L3 lines allocated in S state.

0AH 08H UNC_L3_LINES_IN.F_STATE Counts the number of L3 lines allocated in F state.

0AH 0FH UNC_L3_LINES_IN.ANY Counts the number of L3 lines allocated in any state. 

0BH 01H UNC_L3_LINES_OUT.M_STATE Counts the number of L3 lines victimized that were in 
the M state. When the victim cache line is in M state, 
the line is written to its home cache agent which can 
be either local or remote.

0BH 02H UNC_L3_LINES_OUT.E_STATE Counts the number of L3 lines victimized that were in 
the E state.

0BH 04H UNC_L3_LINES_OUT.S_STATE Counts the number of L3 lines victimized that were in 
the S state.

0BH 08H UNC_L3_LINES_OUT.I_STATE Counts the number of L3 lines victimized that were in 
the I state.

0BH 10H UNC_L3_LINES_OUT.F_STATE Counts the number of L3 lines victimized that were in 
the F state.

0BH 1FH UNC_L3_LINES_OUT.ANY Counts the number of L3 lines victimized in any state.

0CH 01H UNC_GQ_SNOOP.GOTO_S Counts the number of remote snoops that have 
requested a cache line be set to the S state.

0CH 02H UNC_GQ_SNOOP.GOTO_I Counts the number of remote snoops that have 
requested a cache line be set to the I state.

0CH 04H UNC_GQ_SNOOP.GOTO_S_HIT_
E

Counts the number of remote snoops that have 
requested a cache line be set to the S state from E 
state.

Requires writing MSR 
301H with mask = 2H

0CH 04H UNC_GQ_SNOOP.GOTO_S_HIT_
F

Counts the number of remote snoops that have 
requested a cache line be set to the S state from F 
(forward) state.

Requires writing MSR 
301H with mask = 8H

0CH 04H UNC_GQ_SNOOP.GOTO_S_HIT_
M

Counts the number of remote snoops that have 
requested a cache line be set to the S state from M 
state.

Requires writing MSR 
301H with mask = 1H

0CH 04H UNC_GQ_SNOOP.GOTO_S_HIT_
S

Counts the number of remote snoops that have 
requested a cache line be set to the S state from S 
state.

Requires writing MSR 
301H with mask = 4H

0CH 08H UNC_GQ_SNOOP.GOTO_I_HIT_
E

Counts the number of remote snoops that have 
requested a cache line be set to the I state from E 
state.

Requires writing MSR 
301H with mask = 2H
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0CH 08H UNC_GQ_SNOOP.GOTO_I_HIT_
F

Counts the number of remote snoops that have 
requested a cache line be set to the I state from F 
(forward) state.

Requires writing MSR 
301H with mask = 8H

0CH 08H UNC_GQ_SNOOP.GOTO_I_HIT_
M

Counts the number of remote snoops that have 
requested a cache line be set to the I state from M 
state.

Requires writing MSR 
301H with mask = 1H

0CH 08H UNC_GQ_SNOOP.GOTO_I_HIT_
S

Counts the number of remote snoops that have 
requested a cache line be set to the I state from S 
state.

Requires writing MSR 
301H with mask = 4H

20H 01H UNC_QHL_REQUESTS.IOH_RE
ADS

Counts number of Quickpath Home Logic read requests 
from the IOH.

20H 02H UNC_QHL_REQUESTS.IOH_WRI
TES

Counts number of Quickpath Home Logic write 
requests from the IOH.

20H 04H UNC_QHL_REQUESTS.REMOTE
_READS

Counts number of Quickpath Home Logic read requests 
from  a remote socket.

20H 08H UNC_QHL_REQUESTS.REMOTE
_WRITES

Counts number of Quickpath Home Logic write 
requests from a remote socket.

20H 10H UNC_QHL_REQUESTS.LOCAL_
READS

Counts number of Quickpath Home Logic read requests 
from  the local socket.

20H 20H UNC_QHL_REQUESTS.LOCAL_
WRITES

Counts number of Quickpath Home Logic write 
requests from  the local socket.

21H 01H UNC_QHL_CYCLES_FULL.IOH Counts uclk cycles all entries in the Quickpath Home 
Logic IOH are full.

21H 02H UNC_QHL_CYCLES_FULL.REMO
TE

Counts uclk cycles all entries in the Quickpath Home 
Logic remote tracker are full.

21H 04H UNC_QHL_CYCLES_FULL.LOCA
L

Counts uclk cycles all entries in the Quickpath Home 
Logic local tracker are full.

22H 01H UNC_QHL_CYCLES_NOT_EMPT
Y.IOH

Counts uclk cycles all entries in the Quickpath Home 
Logic IOH is busy.

22H 02H UNC_QHL_CYCLES_NOT_EMPT
Y.REMOTE

Counts uclk cycles all entries in the Quickpath Home 
Logic remote tracker is busy.

22H 04H UNC_QHL_CYCLES_NOT_EMPT
Y.LOCAL

Counts uclk cycles all entries in the Quickpath Home 
Logic local tracker is busy.

23H 01H UNC_QHL_OCCUPANCY.IOH QHL IOH tracker allocate to deallocate read occupancy.

23H 02H UNC_QHL_OCCUPANCY.REMOT
E

QHL remote tracker allocate to deallocate read 
occupancy.

23H 04H UNC_QHL_OCCUPANCY.LOCAL QHL local tracker allocate to deallocate read 
occupancy.

24H 02H UNC_QHL_ADDRESS_CONFLIC
TS.2WAY

Counts number of QHL Active Address Table (AAT) 
entries that saw a max of 2 conflicts. The AAT is a 
structure that tracks requests that are in conflict. The 
requests themselves are in the home tracker entries. 
The count is reported when an AAT entry deallocates.
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24H 04H UNC_QHL_ADDRESS_CONFLIC
TS.3WAY

Counts number of QHL Active Address Table (AAT) 
entries that saw a max of 3 conflicts. The AAT is a 
structure that tracks requests that are in conflict. The 
requests themselves are in the home tracker entries. 
The count is reported when an AAT entry deallocates.

25H 01H UNC_QHL_CONFLICT_CYCLES.I
OH

Counts cycles the Quickpath Home Logic IOH Tracker 
contains two or more requests with an address 
conflict. A max of 3 requests can be in conflict.

25H 02H UNC_QHL_CONFLICT_CYCLES.
REMOTE

Counts cycles the Quickpath Home Logic Remote 
Tracker contains two or more requests with an 
address conflict. A max of 3 requests can be in conflict.

25H 04H UNC_QHL_CONFLICT_CYCLES.L
OCAL

Counts cycles the Quickpath Home Logic Local Tracker 
contains two or more requests with an address 
conflict.  A max of 3 requests can be in conflict.

26H 01H UNC_QHL_TO_QMC_BYPASS Counts number or requests to the Quickpath Memory 
Controller that bypass the Quickpath Home Logic. All 
local accesses can be bypassed. For remote requests, 
only read requests can be bypassed.

28H 01H UNC_QMC_ISOC_FULL.READ.C
H0

Counts cycles all the entries in the DRAM channel 0 
high priority queue are occupied with isochronous read 
requests.

28H 02H UNC_QMC_ISOC_FULL.READ.C
H1

Counts cycles all the entries in the DRAM channel 
1high priority queue are occupied with isochronous 
read requests.

28H 04H UNC_QMC_ISOC_FULL.READ.C
H2

Counts cycles all the entries in the DRAM channel 2 
high priority queue are occupied with isochronous read 
requests.

28H 08H UNC_QMC_ISOC_FULL.WRITE.C
H0

Counts cycles all the entries in the DRAM channel 0 
high priority queue are occupied with isochronous 
write requests.

28H 10H UNC_QMC_ISOC_FULL.WRITE.C
H1

Counts cycles all the entries in the DRAM channel 1 
high priority queue are occupied with isochronous 
write requests.

28H 20H UNC_QMC_ISOC_FULL.WRITE.C
H2

Counts cycles all the entries in the DRAM channel 2 
high priority queue are occupied with isochronous 
write requests.

29H 01H UNC_QMC_BUSY.READ.CH0 Counts cycles where Quickpath Memory Controller has 
at least 1 outstanding read request to  DRAM channel 
0.

29H 02H UNC_QMC_BUSY.READ.CH1 Counts cycles where Quickpath Memory Controller has 
at least 1 outstanding read request to  DRAM channel 
1.

29H 04H UNC_QMC_BUSY.READ.CH2 Counts cycles where Quickpath Memory Controller has 
at least 1 outstanding read request to  DRAM channel 
2.

29H 08H UNC_QMC_BUSY.WRITE.CH0 Counts cycles where Quickpath Memory Controller has 
at least 1 outstanding write request to  DRAM channel 
0.
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29H 10H UNC_QMC_BUSY.WRITE.CH1 Counts cycles where Quickpath Memory Controller has 
at least 1 outstanding write request to  DRAM channel 
1.

29H 20H UNC_QMC_BUSY.WRITE.CH2 Counts cycles where Quickpath Memory Controller has 
at least 1 outstanding write request to  DRAM channel 
2.

2AH 01H UNC_QMC_OCCUPANCY.CH0 IMC channel 0 normal read request occupancy.

2AH 02H UNC_QMC_OCCUPANCY.CH1 IMC channel 1 normal read request occupancy.

2AH 04H UNC_QMC_OCCUPANCY.CH2 IMC channel 2 normal read request occupancy.

2AH 07H UNC_QMC_OCCUPANCY.ANY Normal read request occupancy for any channel.

2BH 01H UNC_QMC_ISSOC_OCCUPANCY.
CH0

IMC channel 0 issoc read request occupancy.

2BH 02H UNC_QMC_ISSOC_OCCUPANCY.
CH1

IMC channel 1 issoc read request occupancy.

2BH 04H UNC_QMC_ISSOC_OCCUPANCY.
CH2

IMC channel 2 issoc read request occupancy.

2BH 07H UNC_QMC_ISSOC_READS.ANY IMC issoc read request occupancy.

2CH 01H UNC_QMC_NORMAL_READS.C
H0

Counts the number of Quickpath Memory Controller 
channel 0 medium and low priority read requests. The 
QMC channel 0 normal read occupancy divided by this 
count provides the average QMC channel 0 read 
latency. 

2CH 02H UNC_QMC_NORMAL_READS.C
H1

Counts the number of Quickpath Memory Controller 
channel 1 medium and low priority read requests. The 
QMC channel 1 normal read occupancy divided by this 
count provides the average QMC channel 1 read 
latency. 

2CH 04H UNC_QMC_NORMAL_READS.C
H2

Counts the number of Quickpath Memory Controller 
channel 2 medium and low priority read requests. The 
QMC channel 2 normal read occupancy divided by this 
count provides the average QMC channel 2 read 
latency. 

2CH 07H UNC_QMC_NORMAL_READS.A
NY

Counts the number of Quickpath Memory Controller 
medium and low priority read requests. The QMC 
normal read occupancy divided by this count provides 
the average QMC read latency. 

2DH 01H UNC_QMC_HIGH_PRIORITY_RE
ADS.CH0

Counts the number of Quickpath Memory Controller 
channel 0 high priority isochronous read requests. 

2DH 02H UNC_QMC_HIGH_PRIORITY_RE
ADS.CH1

Counts the number of Quickpath Memory Controller 
channel 1 high priority isochronous read requests. 

2DH 04H UNC_QMC_HIGH_PRIORITY_RE
ADS.CH2

Counts the number of Quickpath Memory Controller 
channel 2 high priority isochronous read requests. 

2DH 07H UNC_QMC_HIGH_PRIORITY_RE
ADS.ANY

Counts the number of Quickpath Memory Controller 
high priority isochronous read requests. 

2EH 01H UNC_QMC_CRITICAL_PRIORITY
_READS.CH0

Counts the number of Quickpath Memory Controller 
channel 0 critical priority isochronous read requests. 
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2EH 02H UNC_QMC_CRITICAL_PRIORITY
_READS.CH1

Counts the number of Quickpath Memory Controller 
channel 1 critical priority isochronous read requests. 

2EH 04H UNC_QMC_CRITICAL_PRIORITY
_READS.CH2

Counts the number of Quickpath Memory Controller 
channel 2 critical priority isochronous read requests. 

2EH 07H UNC_QMC_CRITICAL_PRIORITY
_READS.ANY

Counts the number of Quickpath Memory Controller 
critical priority isochronous read requests. 

2FH 01H UNC_QMC_WRITES.FULL.CH0 Counts number of full cache line writes to DRAM 
channel 0.

2FH 02H UNC_QMC_WRITES.FULL.CH1 Counts number of full cache line writes to DRAM 
channel 1.

2FH 04H UNC_QMC_WRITES.FULL.CH2 Counts number of full cache line writes to DRAM 
channel 2.

2FH 07H UNC_QMC_WRITES.FULL.ANY Counts number of full cache line writes to DRAM.

2FH 08H UNC_QMC_WRITES.PARTIAL.C
H0

Counts number of partial cache line writes to DRAM 
channel 0.

2FH 10H UNC_QMC_WRITES.PARTIAL.C
H1

Counts number of partial cache line writes to DRAM 
channel 1.

2FH 20H UNC_QMC_WRITES.PARTIAL.C
H2

Counts number of partial cache line writes to DRAM 
channel 2.

2FH 38H UNC_QMC_WRITES.PARTIAL.A
NY

Counts number of partial cache line writes to DRAM.

30H 01H UNC_QMC_CANCEL.CH0 Counts number of DRAM channel 0 cancel requests.

30H 02H UNC_QMC_CANCEL.CH1 Counts number of DRAM channel 1 cancel requests.

30H 04H UNC_QMC_CANCEL.CH2 Counts number of DRAM channel 2 cancel requests.

30H 07H UNC_QMC_CANCEL.ANY Counts number of DRAM cancel requests.

31H 01H UNC_QMC_PRIORITY_UPDATE
S.CH0

Counts number of DRAM channel 0 priority updates. A 
priority update occurs when an ISOC high or critical 
request is received by the QHL and there is a matching 
request with normal priority that has already been 
issued to the QMC.  In this instance, the QHL will send a 
priority update to QMC to expedite the request.

31H 02H UNC_QMC_PRIORITY_UPDATE
S.CH1

Counts number of DRAM channel 1 priority updates. A 
priority update occurs when an ISOC high or critical 
request is received by the QHL and there is a matching 
request with normal priority that has already been 
issued to the QMC.  In this instance, the QHL will send a 
priority update to QMC to expedite the request.

31H 04H UNC_QMC_PRIORITY_UPDATE
S.CH2

Counts number of DRAM channel 2 priority updates. A 
priority update occurs when an ISOC high or critical 
request is received by the QHL and there is a matching 
request with normal priority that has already been 
issued to the QMC.  In this instance, the QHL will send a 
priority update to QMC to expedite the request.
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31H 07H UNC_QMC_PRIORITY_UPDATE
S.ANY

Counts number of DRAM priority updates. A priority 
update occurs when an ISOC high or critical request is 
received by the QHL and there is a matching request 
with normal priority that has already been issued to 
the QMC.  In this instance, the QHL will send a priority 
update to QMC to expedite the request.

32H 01H UNC_IMC_RETRY.CH0 Counts number of IMC DRAM channel 0 retries. DRAM 
retry only occurs when configured in RAS mode.

32H 02H UNC_IMC_RETRY.CH1 Counts number of IMC DRAM channel 1 retries. DRAM 
retry only occurs when configured in RAS mode.

32H 04H UNC_IMC_RETRY.CH2 Counts number of IMC DRAM channel 2 retries. DRAM 
retry only occurs when configured in RAS mode.

32H 07H UNC_IMC_RETRY.ANY Counts number of IMC DRAM retries from any channel. 
DRAM retry only occurs when configured in RAS mode.

33H 01H UNC_QHL_FRC_ACK_CNFLTS.I
OH

Counts number of Force Acknowledge Conflict 
messages sent by the Quickpath Home Logic to the 
IOH.

33H 02H UNC_QHL_FRC_ACK_CNFLTS.R
EMOTE

Counts number of Force Acknowledge Conflict 
messages sent by the Quickpath Home Logic to the 
remote home.

33H 04H UNC_QHL_FRC_ACK_CNFLTS.L
OCAL

Counts number of Force Acknowledge Conflict 
messages sent by the Quickpath Home Logic to the 
local home.

33H 07H UNC_QHL_FRC_ACK_CNFLTS.A
NY

Counts number of Force Acknowledge Conflict 
messages sent by the Quickpath Home Logic.

34H 01H UNC_QHL_SLEEPS.IOH_ORDER Counts number of occurrences a request was put to 
sleep due to IOH ordering (write after read) conflicts. 
While in the sleep state, the request is not eligible to 
be scheduled to the QMC.

34H 02H UNC_QHL_SLEEPS.REMOTE_O
RDER

Counts number of occurrences a request was put to 
sleep due to remote socket ordering (write after read) 
conflicts. While in the sleep state, the request is not 
eligible to be scheduled to the QMC.

34H 04H UNC_QHL_SLEEPS.LOCAL_ORD
ER

Counts number of occurrences a request was put to 
sleep due to local socket ordering (write after read) 
conflicts. While in the sleep state, the request is not 
eligible to be scheduled to the QMC.

34H 08H UNC_QHL_SLEEPS.IOH_CONFLI
CT

Counts number of occurrences a request was put to 
sleep due to IOH address conflicts. While in the sleep 
state, the request is not eligible to be scheduled to the 
QMC.

34H 10H UNC_QHL_SLEEPS.REMOTE_C
ONFLICT

Counts number of occurrences a request was put to 
sleep due to remote socket address conflicts. While in 
the sleep state, the request is not eligible to be 
scheduled to the QMC.

34H 20H UNC_QHL_SLEEPS.LOCAL_CON
FLICT

Counts number of occurrences a request was put to 
sleep due to local socket address conflicts. While in the 
sleep state, the request is not eligible to be scheduled 
to the QMC.
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35H 01H UNC_ADDR_OPCODE_MATCH.I
OH

Counts number of requests from the IOH, 
address/opcode of request is qualified by mask value 
written to MSR 396H. The following mask values are 
supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match opcode/address 
by writing MSR 396H 
with mask supported 
mask value

35H 02H UNC_ADDR_OPCODE_MATCH.R
EMOTE

Counts number of requests from the remote socket, 
address/opcode of request is qualified by mask value 
written to MSR 396H. The following mask values are 
supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match opcode/address 
by writing MSR 396H 
with mask supported 
mask value

35H 04H UNC_ADDR_OPCODE_MATCH.L
OCAL

Counts number of requests from the local socket, 
address/opcode of request is qualified by mask value 
written to MSR 396H. The following mask values are 
supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match opcode/address 
by writing MSR 396H 
with mask supported 
mask value

40H 01H UNC_QPI_TX_STALLED_SINGL
E_FLIT.HOME.LINK_0

Counts cycles the Quickpath outbound link 0 HOME 
virtual channel is stalled due to lack of a VNA and VN0 
credit. Note that this event does not filter out when a 
flit would not have been selected for arbitration 
because another virtual channel is getting arbitrated.

40H 02H UNC_QPI_TX_STALLED_SINGL
E_FLIT.SNOOP.LINK_0

Counts cycles the Quickpath outbound link 0 SNOOP 
virtual channel is stalled due to lack of a VNA and VN0 
credit. Note that this event does not filter out when a 
flit would not have been selected for arbitration 
because another virtual channel is getting arbitrated.

40H 04H UNC_QPI_TX_STALLED_SINGL
E_FLIT.NDR.LINK_0

Counts cycles the Quickpath outbound link 0 non-data 
response virtual channel is stalled due to lack of a VNA 
and VN0 credit. Note that this event does not filter out 
when a flit would not have been selected for 
arbitration because another virtual channel is getting 
arbitrated.

40H 08H UNC_QPI_TX_STALLED_SINGL
E_FLIT.HOME.LINK_1

Counts cycles the Quickpath outbound link 1 HOME 
virtual channel is stalled due to lack of a VNA and VN0 
credit. Note that this event does not filter out when a 
flit would not have been selected for arbitration 
because another virtual channel is getting arbitrated.
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40H 10H UNC_QPI_TX_STALLED_SINGL
E_FLIT.SNOOP.LINK_1

Counts cycles the Quickpath outbound link 1 SNOOP 
virtual channel is stalled due to lack of a VNA and VN0 
credit. Note that this event does not filter out when a 
flit would not have been selected for arbitration 
because another virtual channel is getting arbitrated.

40H 20H UNC_QPI_TX_STALLED_SINGL
E_FLIT.NDR.LINK_1

Counts cycles the Quickpath outbound link 1 non-data 
response virtual channel is stalled due to lack of a VNA 
and VN0 credit. Note that this event does not filter out 
when a flit would not have been selected for 
arbitration because another virtual channel is getting 
arbitrated.

40H 07H UNC_QPI_TX_STALLED_SINGL
E_FLIT.LINK_0

Counts cycles the Quickpath outbound link 0 virtual 
channels are stalled due to lack of a VNA and VN0 
credit. Note that this event does not filter out when a 
flit would not have been selected for arbitration 
because another virtual channel is getting arbitrated.

40H 38H UNC_QPI_TX_STALLED_SINGL
E_FLIT.LINK_1

Counts cycles the Quickpath outbound link 1 virtual 
channels are stalled due to lack of a VNA and VN0 
credit. Note that this event does not filter out when a 
flit would not have been selected for arbitration 
because another virtual channel is getting arbitrated.

41H 01H UNC_QPI_TX_STALLED_MULTI
_FLIT.DRS.LINK_0

Counts cycles the Quickpath outbound link 0 Data 
ResponSe virtual channel is stalled due to lack of VNA 
and VN0 credits. Note that this event does not filter 
out when a flit would not have been selected for 
arbitration because another virtual channel is getting 
arbitrated.

41H 02H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCB.LINK_0

Counts cycles the Quickpath outbound link 0 Non-
Coherent Bypass virtual channel is stalled due to lack 
of VNA and VN0 credits. Note that this event does not 
filter out when a flit would not have been selected for 
arbitration because another virtual channel is getting 
arbitrated.

41H 04H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCS.LINK_0

Counts cycles the Quickpath outbound link 0 Non-
Coherent Standard virtual channel is stalled due to lack 
of VNA and VN0 credits. Note that this event does not 
filter out when a flit would not have been selected for 
arbitration because another virtual channel is getting 
arbitrated.

41H 08H UNC_QPI_TX_STALLED_MULTI
_FLIT.DRS.LINK_1

Counts cycles the Quickpath outbound link 1 Data 
ResponSe virtual channel is stalled due to lack of VNA 
and VN0 credits. Note that this event does not filter 
out when a flit would not have been selected for 
arbitration because another virtual channel is getting 
arbitrated.

41H 10H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCB.LINK_1

Counts cycles the Quickpath outbound link 1 Non-
Coherent Bypass virtual channel is stalled due to lack 
of VNA and VN0 credits. Note that this event does not 
filter out when a flit would not have been selected for 
arbitration because another virtual channel is getting 
arbitrated.
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41H 20H UNC_QPI_TX_STALLED_MULTI
_FLIT.NCS.LINK_1

Counts cycles the Quickpath outbound link 1 Non-
Coherent Standard virtual channel is stalled due to lack 
of VNA and VN0 credits. Note that this event does not 
filter out when a flit would not have been selected for 
arbitration because another virtual channel is getting 
arbitrated.

41H 07H UNC_QPI_TX_STALLED_MULTI
_FLIT.LINK_0

Counts cycles the Quickpath outbound link 0 virtual 
channels are stalled due to lack of VNA and VN0 
credits. Note that this event does not filter out when a 
flit would not have been selected for arbitration 
because another virtual channel is getting arbitrated.

41H 38H UNC_QPI_TX_STALLED_MULTI
_FLIT.LINK_1

Counts cycles the Quickpath outbound link 1 virtual 
channels are stalled due to lack of VNA and VN0 
credits. Note that this event does not filter out when a 
flit would not have been selected for arbitration 
because another virtual channel is getting arbitrated.

42H 01H UNC_QPI_TX_HEADER.FULL.LI
NK_0

Number of cycles that the header buffer in the 
Quickpath Interface outbound link 0 is full.

42H 02H UNC_QPI_TX_HEADER.BUSY.LI
NK_0

Number of cycles that the header buffer in the 
Quickpath Interface outbound link 0 is busy.

42H 04H UNC_QPI_TX_HEADER.FULL.LI
NK_1

Number of cycles that the header buffer in the 
Quickpath Interface outbound link 1 is full.

42H 08H UNC_QPI_TX_HEADER.BUSY.LI
NK_1

Number of cycles that the header buffer in the 
Quickpath Interface outbound link 1 is busy.

43H 01H UNC_QPI_RX_NO_PPT_CREDI
T.STALLS.LINK_0

Number of cycles that snoop packets incoming to the 
Quickpath Interface link 0 are stalled and not sent to 
the GQ because the GQ Peer Probe Tracker (PPT) does 
not have any available entries.

43H 02H UNC_QPI_RX_NO_PPT_CREDI
T.STALLS.LINK_1

Number of cycles that snoop packets incoming to the 
Quickpath Interface link 1 are stalled and not sent to 
the GQ because the GQ Peer Probe Tracker (PPT) does 
not have any available entries.

60H 01H UNC_DRAM_OPEN.CH0 Counts number of DRAM Channel 0 open commands 
issued either for read or write. To read or write data, 
the referenced DRAM page must first be opened.

60H 02H UNC_DRAM_OPEN.CH1 Counts number of DRAM Channel 1 open commands 
issued either for read or write. To read or write data, 
the referenced DRAM page must first be opened.

60H 04H UNC_DRAM_OPEN.CH2 Counts number of DRAM Channel 2 open commands 
issued either for read or write. To read or write data, 
the referenced DRAM page must first be opened.

61H 01H UNC_DRAM_PAGE_CLOSE.CH0 DRAM channel 0 command issued to CLOSE a page due 
to page idle timer expiration. Closing a page is done by 
issuing a precharge.

61H 02H UNC_DRAM_PAGE_CLOSE.CH1 DRAM channel 1 command issued to CLOSE a page due 
to page idle timer expiration. Closing a page is done by 
issuing a precharge.
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61H 04H UNC_DRAM_PAGE_CLOSE.CH2 DRAM channel 2 command issued to CLOSE a page due 
to page idle timer expiration. Closing a page is done by 
issuing a precharge.

62H 01H UNC_DRAM_PAGE_MISS.CH0 Counts the number of precharges (PRE) that were 
issued to DRAM channel 0 because there was a page 
miss. A page miss refers to a situation in which a page 
is currently open and another page from the same 
bank needs to be opened. The new page experiences a 
page miss. Closing of the old page is done by issuing a 
precharge.

62H 02H UNC_DRAM_PAGE_MISS.CH1 Counts the number of precharges (PRE) that were 
issued to DRAM channel 1 because there was a page 
miss. A page miss refers to a situation in which a page 
is currently open and another page from the same 
bank needs to be opened. The new page experiences a 
page miss. Closing of the old page is done by issuing a 
precharge.

62H 04H UNC_DRAM_PAGE_MISS.CH2 Counts the number of precharges (PRE) that were 
issued to DRAM channel 2 because there was a page 
miss. A page miss refers to a situation in which a page 
is currently open and another page from the same 
bank needs to be opened. The new page experiences a 
page miss. Closing of the old page is done by issuing a 
precharge.

63H 01H UNC_DRAM_READ_CAS.CH0 Counts the number of times a read CAS command was 
issued on DRAM channel 0.

63H 02H UNC_DRAM_READ_CAS.AUTO
PRE_CH0

Counts the number of times a read CAS command was 
issued on DRAM channel 0 where the command issued 
used the auto-precharge (auto page close) mode.

63H 04H UNC_DRAM_READ_CAS.CH1 Counts the number of times a read CAS command was 
issued on DRAM channel 1.

63H 08H UNC_DRAM_READ_CAS.AUTO
PRE_CH1

Counts the number of times a read CAS command was 
issued on DRAM channel 1 where the command issued 
used the auto-precharge (auto page close) mode.

63H 10H UNC_DRAM_READ_CAS.CH2 Counts the number of times a read CAS command was 
issued on DRAM channel 2.

63H 20H UNC_DRAM_READ_CAS.AUTO
PRE_CH2

Counts the number of times a read CAS command was 
issued on DRAM channel 2 where the command issued 
used the auto-precharge (auto page close) mode.

64H 01H UNC_DRAM_WRITE_CAS.CH0 Counts the number of times a write CAS command was 
issued on DRAM channel 0.

64H 02H UNC_DRAM_WRITE_CAS.AUTO
PRE_CH0

Counts the number of times a write CAS command was 
issued on DRAM channel 0 where the command issued 
used the auto-precharge (auto page close) mode.

64H 04H UNC_DRAM_WRITE_CAS.CH1 Counts the number of times a write CAS command was 
issued on DRAM channel 1.

64H 08H UNC_DRAM_WRITE_CAS.AUTO
PRE_CH1

Counts the number of times a write CAS command was 
issued on DRAM channel 1 where the command issued 
used the auto-precharge (auto page close) mode.
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64H 10H UNC_DRAM_WRITE_CAS.CH2 Counts the number of times a write CAS command was 
issued on DRAM channel 2.

64H 20H UNC_DRAM_WRITE_CAS.AUTO
PRE_CH2

Counts the number of times a write CAS command was 
issued on DRAM channel 2 where the command issued 
used the auto-precharge (auto page close) mode.

65H 01H UNC_DRAM_REFRESH.CH0 Counts number of DRAM channel 0 refresh commands. 
DRAM loses data content over time. In order to keep 
correct data content, the data values have to be 
refreshed periodically.

65H 02H UNC_DRAM_REFRESH.CH1 Counts number of DRAM channel 1 refresh commands. 
DRAM loses data content over time. In order to keep 
correct data content, the data values have to be 
refreshed periodically.

65H 04H UNC_DRAM_REFRESH.CH2 Counts number of DRAM channel 2 refresh commands. 
DRAM loses data content over time. In order to keep 
correct data content, the data values have to be 
refreshed periodically.

66H 01H UNC_DRAM_PRE_ALL.CH0 Counts number of DRAM Channel 0 precharge-all 
(PREALL) commands that close all open pages in a rank. 
PREALL is issued when the DRAM needs to be 
refreshed or needs to go into a power down mode.

66H 02H UNC_DRAM_PRE_ALL.CH1 Counts number of DRAM Channel 1 precharge-all 
(PREALL) commands that close all open pages in a rank. 
PREALL is issued when the DRAM needs to be 
refreshed or needs to go into a power down mode.

66H 04H UNC_DRAM_PRE_ALL.CH2 Counts number of DRAM Channel 2 precharge-all 
(PREALL) commands that close all open pages in a rank. 
PREALL is issued when the DRAM needs to be 
refreshed or needs to go into a power down mode.

67H 01H UNC_DRAM_THERMAL_THROT
TLED

Uncore cycles DRAM was throttled due to its 
temperature being above the thermal throttling 
threshold.

80H 01H UNC_THERMAL_THROTTLING_
TEMP.CORE_0

Cycles that the PCU records that core 0 is above the 
thermal throttling threshold temperature.

80H 02H UNC_THERMAL_THROTTLING_
TEMP.CORE_1

Cycles that the PCU records that core 1 is above the 
thermal throttling threshold temperature.

80H 04H UNC_THERMAL_THROTTLING_
TEMP.CORE_2

Cycles that the PCU records that core 2 is above the 
thermal throttling threshold temperature.

80H 08H UNC_THERMAL_THROTTLING_
TEMP.CORE_3

Cycles that the PCU records that core 3 is above the 
thermal throttling threshold temperature.

81H 01H UNC_THERMAL_THROTTLED_
TEMP.CORE_0

Cycles that the PCU records that core 0 is in the power 
throttled state due to core’s temperature being above 
the thermal throttling threshold.

81H 02H UNC_THERMAL_THROTTLED_
TEMP.CORE_1

Cycles that the PCU records that core 1 is in the power 
throttled state due to core’s temperature being above 
the thermal throttling threshold.
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81H 04H UNC_THERMAL_THROTTLED_
TEMP.CORE_2

Cycles that the PCU records that core 2 is in the power 
throttled state due to core’s temperature being above 
the thermal throttling threshold.

81H 08H UNC_THERMAL_THROTTLED_
TEMP.CORE_3

Cycles that the PCU records that core 3 is in the power 
throttled state due to core’s temperature being above 
the thermal throttling threshold.

82H 01H UNC_PROCHOT_ASSERTION Number of system assertions of PROCHOT indicating 
the entire processor has exceeded the thermal limit.

83H 01H UNC_THERMAL_THROTTLING_
PROCHOT.CORE_0

Cycles that the PCU records that core 0 is a low power 
state due to the system asserting PROCHOT the entire 
processor has exceeded the thermal limit.

83H 02H UNC_THERMAL_THROTTLING_
PROCHOT.CORE_1

Cycles that the PCU records that core 1 is a low power 
state due to the system asserting PROCHOT the entire 
processor has exceeded the thermal limit.

83H 04H UNC_THERMAL_THROTTLING_
PROCHOT.CORE_2

Cycles that the PCU records that core 2 is a low power 
state due to the system asserting PROCHOT the entire 
processor has exceeded the thermal limit.

83H 08H UNC_THERMAL_THROTTLING_
PROCHOT.CORE_3

Cycles that the PCU records that core 3 is a low power 
state due to the system asserting PROCHOT the entire 
processor has exceeded the thermal limit.

84H 01H UNC_TURBO_MODE.CORE_0 Uncore cycles that core 0 is operating in turbo mode.

84H 02H UNC_TURBO_MODE.CORE_1 Uncore cycles that core 1 is operating in turbo mode.

84H 04H UNC_TURBO_MODE.CORE_2 Uncore cycles that core 2 is operating in turbo mode.

84H 08H UNC_TURBO_MODE.CORE_3 Uncore cycles that core 3 is operating in turbo mode.

85H 02H UNC_CYCLES_UNHALTED_L3_
FLL_ENABLE

Uncore cycles that at least one core is unhalted and all 
L3 ways are enabled.

86H 01H UNC_CYCLES_UNHALTED_L3_
FLL_DISABLE

Uncore cycles that at least one core is unhalted and all 
L3 ways are disabled.
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19.7 PERFORMANCE MONITORING EVENTS FOR INTEL® XEON® PROCESSOR 
5200, 5400 SERIES AND INTEL® CORE™2 EXTREME PROCESSORS QX 
9000 SERIES

Processors based on the Enhanced Intel Core microarchitecture support the architectural and non-architectural 
performance-monitoring events listed in Table 19-1 and Table 19-17. In addition, they also support the following 
non-architectural performance-monitoring events listed in Table 19-15. Fixed counters support the architecture 
events defined in Table 19-16.

19.8 PERFORMANCE MONITORING EVENTS FOR INTEL® XEON® PROCESSOR 
3000, 3200, 5100, 5300 SERIES AND INTEL® CORE™2 DUO PROCESSORS

Processors based on the Intel® Core™ microarchitecture support architectural and non-architectural performance-
monitoring events. 

Fixed-function performance counters are introduced first on processors based on Intel Core microarchitecture. 
Table 19-16 lists pre-defined performance events that can be counted using fixed-function performance counters.

Table 19-15.  Non-Architectural Performance Events for Processors Based on Enhanced Intel Core 
Microarchitecture

Event
Num.

Umask
Value Event Mask Mnemonic Description Comment

C0H 08H INST_RETIRED.VM_HOST Instruction retired while in VMX root operations.

D2H 10H RAT_STAALS.OTHER_SERIALIZ
ATION_STALLS

This events counts the number of stalls due to other 
RAT resource serialization not counted by Umask 
value 0FH. 

Table 19-16.  Fixed-Function Performance Counter and Pre-defined Performance Events

Fixed-Function Performance 
Counter Address Event Mask Mnemonic Description

MSR_PERF_FIXED_
CTR0/IA32_PERF_FIXED_CTR0

309H Inst_Retired.Any This event counts the number of instructions that 
retire execution. For instructions that consist of 
multiple micro-ops, this event counts the retirement 
of the last micro-op of the instruction. The counter 
continue counting during hardware interrupts, traps, 
and inside interrupt handlers.

MSR_PERF_FIXED_
CTR1/IA32_PERF_FIXED_CTR1

30AH CPU_CLK_UNHALTED.CORE This event counts the number of core cycles while the 
core is not in a halt state. The core enters the halt 
state when it is running the HLT instruction. This 
event is a component in many key event ratios. 

The core frequency may change from time to time 
due to transitions associated with Enhanced Intel 
SpeedStep Technology or TM2. For this reason this 
event may have a changing ratio with regards to time. 

When the core frequency is constant, this event can 
approximate elapsed time while the core was not in 
halt state. 

MSR_PERF_FIXED_
CTR2/IA32_PERF_FIXED_CTR2

30BH CPU_CLK_UNHALTED.REF This event counts the number of reference cycles 
when the core is not in a halt state and not in a TM 
stop-clock state. The core enters the halt state when 
it is running the HLT instruction or the MWAIT 
instruction. 
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Table 19-17 lists general-purpose non-architectural performance-monitoring events supported in processors based 
on Intel® Core™ microarchitecture. For convenience, Table 19-17 also includes architectural events and describes 
minor model-specific behavior where applicable. Software must use a general-purpose performance counter to 
count events listed in Table 19-17.

This event is not affected by core frequency changes 
(e.g., P states) but counts at the same frequency as 
the time stamp counter. This event can approximate 
elapsed time while the core was not in halt state and 
not in a TM stop-clock state. 

This event has a constant ratio with the 
CPU_CLK_UNHALTED.BUS event. 

Table 19-17.  Non-Architectural Performance Events in Processors Based on Intel® Core™ Microarchitecture

Event 
Num

Umask
Value Event Name Definition

Description and
Comment

03H 02H LOAD_BLOCK.STA Loads blocked by a 
preceding store with 
unknown address 

This event indicates that loads are blocked by preceding 
stores. A load is blocked when there is a preceding store to 
an address that is not yet calculated. The number of events 
is greater or equal to the number of load operations that 
were blocked. 

If the load and the store are always to different addresses, 
check why the memory disambiguation mechanism is not 
working. To avoid such blocks, increase the distance 
between the store and the following load so that the store 
address is known at the time the load is dispatched.

03H 04H LOAD_BLOCK.STD Loads blocked by a 
preceding store with 
unknown data

This event indicates that loads are blocked by preceding 
stores. A load is blocked when there is a preceding store to 
the same address and the stored data value is not yet 
known. The number of events is greater or equal to the 
number of load operations that were blocked. 

To avoid such blocks, increase the distance between the 
store and the dependant load, so that the store data is 
known at the time the load is dispatched.

03H 08H LOAD_BLOCK.
OVERLAP_STORE

Loads that partially 
overlap an earlier 
store, or 4-Kbyte 
aliased with a previous 
store

This event indicates that loads are blocked due to a variety 
of reasons. Some of the triggers for this event are when a 
load is blocked by a preceding store, in one of the following:  

• Some of the loaded byte locations are written by the 
preceding store and some are not.  

• The load is from bytes written by the preceding store, 
the store is aligned to its size and either:

• The load’s data size is one or two bytes and it is not 
aligned to the store.  

• The load’s data size is of four or eight bytes and the load 
is misaligned. 

Table 19-16.  Fixed-Function Performance Counter and Pre-defined Performance Events (Contd.)

Fixed-Function Performance 
Counter Address Event Mask Mnemonic Description
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• The load is from bytes written by the preceding store, 
the store is misaligned and the load is not aligned on the 
beginning of the store.  

• The load is split over an eight byte boundary (excluding 
16-byte loads). 

• The load and store have the same offset relative to the 
beginning of different 4-KByte pages. This case is also 
called 4-KByte aliasing. 

• In all these cases the load is blocked until after the 
blocking store retires and the stored data is committed to 
the cache hierarchy.

03H 10H LOAD_BLOCK.
UNTIL_RETIRE

Loads blocked until 
retirement

This event indicates that load operations were blocked until 
retirement. The number of events is greater or equal to the 
number of load operations that were blocked. 
This includes mainly uncacheable loads and split loads (loads 
that cross the cache line boundary) but may include other 
cases where loads are blocked until retirement.

03H 20H LOAD_BLOCK.L1D Loads blocked by the 
L1 data cache

This event indicates that loads are blocked due to one or 
more reasons.  Some triggers for this event are:  

• The number of L1 data cache misses exceeds the 
maximum number of outstanding misses supported by 
the processor. This includes misses generated as result of 
demand fetches, software prefetches or hardware 
prefetches.  

• Cache line split loads. 
• Partial reads, such as reads to un-cacheable memory, I/O 

instructions and more. 
• A locked load operation is in progress. The number of 

events is greater or equal to the number of load 
operations that were blocked.

04H 01H SB_DRAIN_
CYCLES

Cycles while stores are 
blocked due to store 
buffer drain

This event counts every cycle during which the store buffer 
is draining. This includes: 

• Serializing operations such as CPUID 
• Synchronizing operations such as XCHG 
• Interrupt acknowledgment 
• Other conditions, such as cache flushing

04H 02H STORE_BLOCK.
ORDER

Cycles while store is 
waiting for a 
preceding store to be 
globally observed

This event counts the total duration, in number of cycles, 
which stores are waiting for a preceding stored cache line to 
be observed by other cores. 
This situation happens as a result of the strong store 
ordering behavior, as defined in “Memory Ordering,” Chapter 
8, Intel® 64 and IA-32 Architectures Software Developer’s 

Manual, Volume 3A. 

The stall may occur and be noticeable if there are many 
cases when a store either misses the L1 data cache or hits a 
cache line in the Shared state. If the store requires a bus 
transaction to read the cache line then the stall ends when 
snoop response for the bus transaction arrives.

04H 08H STORE_BLOCK.
SNOOP

A store is blocked due 
to a conflict with an 
external or internal 
snoop.

This event counts the number of cycles the store port was 
used for snooping the L1 data cache and a store was stalled 
by the snoop. The store is typically resubmitted one cycle 
later.

Table 19-17.  Non-Architectural Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
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06H 00H SEGMENT_REG_
LOADS

Number of segment 
register loads

This event counts the number of segment register load 
operations. Instructions that load new values into segment 
registers cause a penalty. 

This event indicates performance issues in 16-bit code. If 
this event occurs frequently, it may be useful to calculate 
the number of instructions retired per segment register 
load. If the resulting calculation is low (on average a small 
number of instructions are executed between segment 
register loads), then the code’s segment register usage 
should be optimized. 

As a result of branch misprediction, this event is speculative 
and may include segment register loads that do not actually 
occur. However, most segment register loads are internally 
serialized and such speculative effects are minimized.

07H 00H SSE_PRE_EXEC.
NTA

Streaming SIMD 
Extensions (SSE) 
Prefetch NTA 
instructions executed

This event counts the number of times the SSE instruction 
prefetchNTA is executed. 

This instruction prefetches the data to the L1 data cache.

07H 01H SSE_PRE_EXEC.L1 Streaming SIMD 
Extensions (SSE) 
PrefetchT0 
instructions executed

This event counts the number of times the SSE instruction 
prefetchT0 is executed. This instruction prefetches the data 
to the L1 data cache and L2 cache.

07H 02H SSE_PRE_EXEC.L2  Streaming SIMD 
Extensions (SSE) 
PrefetchT1 and 
PrefetchT2 
instructions executed

This event counts the number of times the SSE instructions 
prefetchT1 and prefetchT2 are executed. These 
instructions prefetch the data to the L2 cache.

07H 03H SSE_PRE_
EXEC.STORES

Streaming SIMD 
Extensions (SSE) 
Weakly-ordered store 
instructions executed

This event counts the number of times SSE non-temporal 
store instructions are executed.

08H 01H DTLB_MISSES.
ANY

Memory accesses that 
missed the DTLB

This event counts the number of Data Table Lookaside 
Buffer (DTLB) misses. The count includes misses detected 
as a result of speculative accesses. 

Typically a high count for this event indicates that the code 
accesses a large number of data pages.

08H 02H DTLB_MISSES
.MISS_LD

DTLB misses due to 
load operations

This event counts the number of Data Table Lookaside 
Buffer (DTLB) misses due to load operations. 

This count includes misses detected as a result of 
speculative accesses.

08H 04H DTLB_MISSES.L0_MISS_LD L0 DTLB misses due to 
load operations

This event counts the number of level 0 Data Table 
Lookaside Buffer (DTLB0) misses due to load operations. 

This count includes misses detected as a result of 
speculative accesses. Loads that miss that DTLB0 and hit 
the DTLB1 can incur two-cycle penalty.

Table 19-17.  Non-Architectural Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
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08H 08H DTLB_MISSES.
MISS_ST

TLB misses due to 
store operations

This event counts the number of Data Table Lookaside 
Buffer (DTLB) misses due to store operations. 

This count includes misses detected as a result of 
speculative accesses. Address translation for store 
operations is performed in the DTLB1.

09H 01H MEMORY_
DISAMBIGUATION.RESET

Memory 
disambiguation reset 
cycles

This event counts the number of cycles during which 
memory disambiguation misprediction occurs. As a result 
the execution pipeline is cleaned and execution of the 
mispredicted load instruction and all succeeding instructions 
restarts. 

This event occurs when the data address accessed by a load 
instruction, collides infrequently with preceding stores, but 
usually there is no collision. It happens rarely, and may have 
a penalty of about 20 cycles.

09H 02H MEMORY_DISAMBIGUATIO
N.SUCCESS

Number of loads 
successfully 
disambiguated.

This event counts the number of load operations that were 
successfully disambiguated. Loads are preceded by a store 
with an unknown address, but they are not blocked.

0CH 01H PAGE_WALKS
.COUNT

Number of page-walks 
executed

This event counts the number of page-walks executed due 
to either a DTLB or ITLB miss. 

The page walk duration, PAGE_WALKS.CYCLES, divided by 
number of page walks is the average duration of a page 
walk. The average can hint whether most of the page-walks 
are satisfied by the caches or cause an L2 cache miss.

0CH 02H PAGE_WALKS.
CYCLES

Duration of page-
walks in core cycles 

This event counts the duration of page-walks in core cycles. 
The paging mode in use typically affects the duration of 
page walks. 

Page walk duration divided by number of page walks is the 
average duration of page-walks. The average can hint at 
whether most of the page-walks are satisfied by the caches 
or cause an L2 cache miss.

10H 00H FP_COMP_OPS
_EXE

Floating point 
computational micro-
ops executed

This event counts the number of floating point 
computational micro-ops executed.

Use IA32_PMC0 only.

11H 00H FP_ASSIST Floating point assists This event counts the number of floating point operations 
executed that required micro-code assist intervention. 
Assists are required in the following cases:  

• Streaming SIMD Extensions (SSE) instructions: 

• Denormal input when the DAZ (Denormals Are Zeros) flag 
is off 

• Underflow result when the FTZ (Flush To Zero) flag is off 
• X87 instructions: 
• NaN or denormal are loaded to a register or used as input 

from memory 
• Division by 0  
• Underflow output
Use IA32_PMC1 only.

12H 00H MUL Multiply operations 
executed

This event counts the number of multiply operations 
executed. This includes integer as well as floating point 
multiply operations.

Use IA32_PMC1 only.

Table 19-17.  Non-Architectural Performance Events in Processors Based on Intel® Core™ Microarchitecture (Contd.)
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13H 00H DIV Divide operations 
executed

This event counts the number of divide operations 
executed. This includes integer divides, floating point 
divides and square-root operations executed.

Use IA32_PMC1 only.

14H 00H CYCLES_DIV
_BUSY

Cycles the divider 
busy

This event counts the number of cycles the divider is busy 
executing divide or square root operations. The divide can 
be integer, X87 or Streaming SIMD Extensions (SSE). The 
square root operation can be either X87 or SSE.

Use IA32_PMC0 only.

18H 00H IDLE_DURING
_DIV

Cycles the divider is 
busy and all other 
execution units are 
idle.

This event counts the number of cycles the divider is busy 
(with a divide or a square root operation) and no other 
execution unit or load operation is in progress. 

Load operations are assumed to hit the L1 data cache. This 
event considers only micro-ops dispatched after the divider 
started operating.

Use IA32_PMC0 only.

19H 00H DELAYED_
BYPASS.FP

Delayed bypass to FP 
operation

This event counts the number of times floating point 
operations use data immediately after the data was 
generated by a non-floating point execution unit. Such cases 
result in one penalty cycle due to data bypass between the 
units.

Use IA32_PMC1 only.

19H 01H DELAYED_
BYPASS.SIMD

Delayed bypass to 
SIMD operation

This event counts the number of times SIMD operations use 
data immediately after the data was generated by a non-
SIMD execution unit. Such cases result in one penalty cycle 
due to data bypass between the units.

Use IA32_PMC1 only.

19H 02H DELAYED_
BYPASS.LOAD

Delayed bypass to 
load operation

This event counts the number of delayed bypass penalty 
cycles that a load operation incurred. 

When load operations use data immediately after the data 
was generated by an integer execution unit, they may 
(pending on certain dynamic internal conditions) incur one 
penalty cycle due to delayed data bypass between the units.

Use IA32_PMC1 only.

21H See 
Table 
18-2

L2_ADS.(Core) Cycles L2 address bus 
is in use

This event counts the number of cycles the L2 address bus 
is being used for accesses to the L2 cache or bus queue. It 
can count occurrences for this core or both cores.

23H See 
Table 
18-2

L2_DBUS_BUSY
_RD.(Core)

Cycles the L2 
transfers data to the 
core

This event counts the number of cycles during which the L2 
data bus is busy transferring data from the L2 cache to the 
core. It counts for all L1 cache misses (data and instruction) 
that hit the L2 cache. 

This event can count occurrences for this core or both cores.
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24H Com-
bined 
mask 
from 
Table 
18-2 
and 
Table 
18-4

L2_LINES_IN.
(Core, Prefetch)

L2 cache misses This event counts the number of cache lines allocated in the 
L2 cache. Cache lines are allocated in the L2 cache as a 
result of requests from the L1 data and instruction caches 
and the L2 hardware prefetchers to cache lines that are 
missing in the L2 cache. 

This event can count occurrences for this core or both cores. 
It can also count demand requests and L2 hardware 
prefetch requests together or separately.

25H See 
Table 
18-2

L2_M_LINES_IN.
(Core)

L2 cache line 
modifications

This event counts whenever a modified cache line is written 
back from the L1 data cache to the L2 cache. 

This event can count occurrences for this core or both cores.

26H See 
Table 
18-2 
and 
Table 
18-4

L2_LINES_OUT.
(Core, Prefetch)

L2 cache lines evicted This event counts the number of L2 cache lines evicted. 

This event can count occurrences for this core or both cores. 
It can also count evictions due to demand requests and L2 
hardware prefetch requests together or separately.

27H See 
Table 
18-2 
and 
Table 
18-4

L2_M_LINES_OUT.(Core, 
Prefetch)

Modified lines evicted 
from the L2 cache

This event counts the number of L2 modified cache lines 
evicted. These lines are written back to memory unless they 
also exist in a modified-state in one of the L1 data caches. 

This event can count occurrences for this core or both cores. 
It can also count evictions due to demand requests and L2 
hardware prefetch requests together or separately.

28H Com-
bined 
mask 
from 
Table 
18-2 
and 
Table 
18-5

L2_IFETCH.(Core, Cache 
Line State)

L2 cacheable 
instruction fetch 
requests

This event counts the number of instruction cache line 
requests from the IFU. It does not include fetch requests 
from uncacheable memory. It does not include ITLB miss 
accesses.  

This event can count occurrences for this core or both cores. 
It can also count accesses to cache lines at different MESI 
states.

29H Combin
ed mask 
from 
Table 
18-2, 
Table 
18-4, 
and 
Table 
18-5

L2_LD.(Core, Prefetch, 
Cache Line State)

L2 cache reads This event counts L2 cache read requests coming from the 
L1 data cache and L2 prefetchers.  

The event can count occurrences:

• for this core or both cores
• due to demand requests and L2 hardware prefetch 

requests together or separately
• of accesses to cache lines at different MESI states

2AH See 
Table 
18-2 
and 
Table 
18-5

L2_ST.(Core, Cache Line 
State)

L2 store requests This event counts all store operations that miss the L1 data 
cache and request the data from the L2 cache.  

The event can count occurrences for this core or both cores. 
It can also count accesses to cache lines at different MESI 
states.
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2BH See 
Table 
18-2 
and 
Table 
18-5

L2_LOCK.(Core, Cache Line 
State)

L2 locked accesses This event counts all locked accesses to cache lines that 
miss the L1 data cache. 

The event can count occurrences for this core or both cores. 
It can also count accesses to cache lines at different MESI 
states.

2EH See 
Table 
18-2, 
Table 
18-4, 
and 
Table 
18-5

L2_RQSTS.(Core, Prefetch, 
Cache Line State)

L2 cache requests This event counts all completed L2 cache requests. This 
includes L1 data cache reads, writes, and locked accesses, 
L1 data prefetch requests, instruction fetches, and all L2 
hardware prefetch requests.  

This event can count occurrences:

• for this core or both cores.
• due to demand requests and L2 hardware prefetch 

requests together, or separately
• of accesses to cache lines at different MESI states

2EH 41H L2_RQSTS.SELF.
DEMAND.I_STATE

L2 cache demand 
requests from this 
core that missed the 
L2

This event counts all completed L2 cache demand requests 
from this core that miss the L2 cache. This includes L1 data 
cache reads, writes, and locked accesses, L1 data prefetch 
requests, and instruction fetches. 

This is an architectural performance event.

2EH 4FH L2_RQSTS.SELF.
DEMAND.MESI

L2 cache demand 
requests from this 
core

This event counts all completed L2 cache demand requests 
from this core. This includes L1 data cache reads, writes, 
and locked accesses, L1 data prefetch requests, and 
instruction fetches. 

This is an architectural performance event.

30H See 
Table 
18-2, 
Table 
18-4, 
and 
Table 
18-5

L2_REJECT_BUSQ.(Core, 
Prefetch, Cache Line State)

Rejected L2 cache 
requests

This event indicates that a pending L2 cache request that 
requires a bus transaction is delayed from moving to the bus 
queue. Some of the reasons for this event are: 

• The bus queue is full. 
• The bus queue already holds an entry for a cache line in 

the same set. 
The number of events is greater or equal to the number of 
requests that were rejected. 

• for this core or both cores. 
• due to demand requests and L2 hardware prefetch 

requests together, or separately. 
• of accesses to cache lines at different MESI states.

32H See 
Table 
18-2

L2_NO_REQ.(Core) Cycles no L2 cache 
requests are pending

This event counts the number of cycles that no L2 cache 
requests were pending from a core. When using the 
BOTH_CORE modifier, the event counts only if none of the 
cores have a pending request. The event counts also when 
one core is halted and the other is not halted. 

The event can count occurrences for this core or both cores.

3AH 00H EIST_TRANS Number of Enhanced 
Intel SpeedStep 
Technology (EIST) 
transitions

This event counts the number of transitions that include a 
frequency change, either with or without voltage change. 
This includes Enhanced Intel SpeedStep Technology (EIST) 
and TM2 transitions.

The event is incremented only while the counting core is in 
C0 state. Since transitions to higher-numbered CxE states 
and TM2 transitions include a frequency change or voltage 
transition, the event is incremented accordingly. 
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3BH C0H THERMAL_TRIP Number of thermal 
trips

This event counts the number of thermal trips. A thermal 
trip occurs whenever the processor temperature exceeds 
the thermal trip threshold temperature.

Following a thermal trip, the processor automatically 
reduces frequency and voltage. The processor checks the 
temperature every millisecond and returns to normal when 
the temperature falls below the thermal trip threshold 
temperature. 

3CH 00H CPU_CLK_
UNHALTED.
CORE_P

Core cycles when core 
is not halted

This event counts the number of core cycles while the core 
is not in a halt state. The core enters the halt state when it 
is running the HLT instruction. This event is a component in 
many key event ratios.  

The core frequency may change due to transitions 
associated with Enhanced Intel SpeedStep Technology or 
TM2. For this reason, this event may have a changing ratio in 
regard to time. 

When the core frequency is constant, this event can give 
approximate elapsed time while the core not in halt state.

This is an architectural performance event. 

3CH 01H CPU_CLK_
UNHALTED.BUS

Bus cycles when core 
is not halted

This event counts the number of bus cycles while the core is 
not in the halt state. This event can give a measurement of 
the elapsed time while the core was not in the halt state. 
The core enters the halt state when it is running the HLT 
instruction. 

The event also has a constant ratio with 
CPU_CLK_UNHALTED.REF event, which is the maximum bus 
to processor frequency ratio.  

Non-halted bus cycles are a component in many key event 
ratios.

3CH 02H CPU_CLK_
UNHALTED.NO
_OTHER

Bus cycles when core 
is active and the other 
is halted

This event counts the number of bus cycles during which 
the core remains non-halted and the other core on the 
processor is halted. 

This event can be used to determine the amount of 
parallelism exploited by an application or a system. Divide 
this event count by the bus frequency to determine the 
amount of time that only one core was in use.

40H See 
Table 
18-5 

L1D_CACHE_LD.
(Cache Line State)

L1 cacheable data 
reads

This event counts the number of data reads from cacheable 
memory. Locked reads are not counted.

41H See 
Table 
18-5

L1D_CACHE_ST.
(Cache Line State)

L1 cacheable data 
writes

This event counts the number of data writes to cacheable 
memory. Locked writes are not counted.

42H See 
Table 
18-5

L1D_CACHE_
LOCK.(Cache Line State)

L1 data cacheable 
locked reads

This event counts the number of locked data reads from 
cacheable memory.
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42H 10H L1D_CACHE_
LOCK_DURATION

Duration of L1 data 
cacheable locked 
operation

This event counts the number of cycles during which any 
cache line is locked by any locking instruction. 

Locking happens at retirement and therefore the event does 
not occur for instructions that are speculatively executed. 
Locking duration is shorter than locked instruction execution 
duration.

43H 01H L1D_ALL_REF All references to the 
L1 data cache

This event counts all references to the L1 data cache, 
including all loads and stores with any memory types. 

The event counts memory accesses only when they are 
actually performed. For example, a load blocked by unknown 
store address and later performed is only counted once. 

The event includes non-cacheable accesses, such as I/O 
accesses.

43H 02H L1D_ALL_
CACHE_REF

L1 Data cacheable 
reads and writes

This event counts the number of data reads and writes from 
cacheable memory, including locked operations. 

This event is a sum of:

• L1D_CACHE_LD.MESI
• L1D_CACHE_ST.MESI
• L1D_CACHE_LOCK.MESI

45H 0FH L1D_REPL Cache lines allocated 
in the L1 data cache

This event counts the number of lines brought into the L1 
data cache.

46H 00H L1D_M_REPL Modified cache lines 
allocated in the L1 
data cache

This event counts the number of modified lines brought into 
the L1 data cache. 

47H 00H L1D_M_EVICT Modified cache lines 
evicted from the L1 
data cache

This event counts the number of modified lines evicted from 
the L1 data cache, whether due to replacement or by snoop 
HITM intervention.

48H 00H L1D_PEND_
MISS

Total number of 
outstanding L1 data 
cache misses at any 
cycle

This event counts the number of outstanding L1 data cache 
misses at any cycle. An L1 data cache miss is outstanding 
from the cycle on which the miss is determined until the 
first chunk of data is available. This event counts: 

• all cacheable demand requests
• L1 data cache hardware prefetch requests
• requests to write through memory
• requests to write combine memory 

Uncacheable requests are not counted. The count of this 
event divided by the number of L1 data cache misses, 
L1D_REPL, is the average duration in core cycles of an L1 
data cache miss.

49H 01H L1D_SPLIT.LOADS Cache line split loads 
from the L1 data 
cache

This event counts the number of load operations that span 
two cache lines. Such load operations are also called split 
loads. Split load operations are executed at retirement. 

49H 02H L1D_SPLIT.
STORES

Cache line split stores 
to the L1 data cache

This event counts the number of store operations that span 
two cache lines.

4BH 00H SSE_PRE_
MISS.NTA

Streaming SIMD 
Extensions (SSE) 
Prefetch NTA 
instructions missing all 
cache levels

This event counts the number of times the SSE instructions 
prefetchNTA were executed and missed all cache levels. 

Due to speculation an executed instruction might not retire. 
This instruction prefetches the data to the L1 data cache.
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4BH 01H SSE_PRE_
MISS.L1

Streaming SIMD 
Extensions (SSE) 
PrefetchT0 
instructions missing all 
cache levels

This event counts the number of times the SSE instructions 
prefetchT0 were executed and missed all cache levels. 

Due to speculation executed instruction might not retire. 
The prefetchT0 instruction prefetches data to the L2 cache 
and L1 data cache.

4BH 02H SSE_PRE_
MISS.L2

Streaming SIMD 
Extensions (SSE) 
PrefetchT1 and 
PrefetchT2 
instructions missing all 
cache levels

This event counts the number of times the SSE instructions 
prefetchT1 and prefetchT2 were executed and missed all 
cache levels. 

Due to speculation, an executed instruction might not retire. 
The prefetchT1 and PrefetchNT2 instructions prefetch data 
to the L2 cache.

4CH 00H LOAD_HIT_PRE Load operations 
conflicting with a 
software prefetch to 
the same address

This event counts load operations sent to the L1 data cache 
while a previous Streaming SIMD Extensions (SSE) prefetch 
instruction to the same cache line has started prefetching 
but has not yet finished.

4EH 10H L1D_PREFETCH.
REQUESTS

L1 data cache prefetch 
requests

This event counts the number of times the L1 data cache 
requested to prefetch a data cache line. Requests can be 
rejected when the L2 cache is busy and resubmitted later or 
lost. 

All requests are counted, including those that are rejected.

60H See 
Table 
18-2 
and 
Table 
18-3

BUS_REQUEST_
OUTSTANDING.
(Core and Bus Agents)

Outstanding cacheable 
data read bus 
requests duration

This event counts the number of pending full cache line read 
transactions on the bus occurring in each cycle. A read 
transaction is pending from the cycle it is sent on the bus 
until the full cache line is received by the processor.

The event counts only full-line cacheable read requests from 
either the L1 data cache or the L2 prefetchers. It does not 
count Read for Ownership transactions, instruction byte 
fetch transactions, or any other bus transaction. 

61H See 
Table 
18-3.

BUS_BNR_DRV.
(Bus Agents)

Number of Bus Not 
Ready signals 
asserted

This event counts the number of Bus Not Ready (BNR) 
signals that the processor asserts on the bus to suspend 
additional bus requests by other bus agents. 

A bus agent asserts the BNR signal when the number of 
data and snoop transactions is close to the maximum that 
the bus can handle. To obtain the number of bus cycles 
during which the BNR signal is asserted, multiply the event 
count by two. 

While this signal is asserted, new transactions cannot be 
submitted on the bus. As a result, transaction latency may 
have higher impact on program performance.

62H See 
Table 
18-3

BUS_DRDY_
CLOCKS.(Bus Agents)

Bus cycles when data 
is sent on the bus

This event counts the number of bus cycles during which 
the DRDY (Data Ready) signal is asserted on the bus. The 
DRDY signal is asserted when data is sent on the bus. With 
the 'THIS_AGENT' mask this event counts the number of bus 
cycles during which this agent (the processor) writes data 
on the bus back to memory or to other bus agents. This 
includes all explicit and implicit data writebacks, as well as 
partial writes. 

With the 'ALL_AGENTS' mask, this event counts the number 
of bus cycles during which any bus agent sends data on the 
bus. This includes all data reads and writes on the bus.
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63H See 
Table 
18-2 
and 
Table 
18-3

BUS_LOCK_
CLOCKS.(Core and Bus 
Agents)

Bus cycles when a 
LOCK signal asserted

This event counts the number of bus cycles, during which 
the LOCK signal is asserted on the bus. A LOCK signal is 
asserted when there is a locked memory access, due to: 

• uncacheable memory 
• locked operation that spans two cache lines 
• page-walk from an uncacheable page table

Bus locks have a very high performance penalty and it is 
highly recommended to avoid such accesses.

64H See 
Table 
18-2

BUS_DATA_
RCV.(Core)

Bus cycles while 
processor receives 
data

This event counts the number of bus cycles during which 
the processor is busy receiving data. 

65H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_BRD.(Core 
and Bus Agents)

Burst read bus 
transactions

This event counts the number of burst read transactions 
including: 

• L1 data cache read misses (and L1 data cache hardware 
prefetches) 

• L2 hardware prefetches by the DPL and L2 streamer 
• IFU read misses of cacheable lines. 

It does not include RFO transactions.

66H See 
Table 
18-2 
and 
Table 
18-3.

BUS_TRANS_RFO.(Core 
and Bus Agents)

RFO bus transactions This event counts the number of Read For Ownership (RFO) 
bus transactions, due to store operations that miss the L1 
data cache and the L2 cache. It also counts RFO bus 
transactions due to locked operations.

67H See 
Table 
18-2 
and 
Table 
18-3.

BUS_TRANS_WB.
(Core and Bus Agents)

Explicit writeback bus 
transactions

This event counts all explicit writeback bus transactions due 
to dirty line evictions. It does not count implicit writebacks 
due to invalidation by a snoop request.

68H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
IFETCH.(Core and Bus 
Agents)

Instruction-fetch bus 
transactions

This event counts all instruction fetch full cache line bus 
transactions.

69H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
INVAL.(Core and Bus 
Agents)

Invalidate bus 
transactions

This event counts all invalidate transactions. Invalidate 
transactions are generated when: 

• A store operation hits a shared line in the L2 cache. 
• A full cache line write misses the L2 cache or hits a 

shared line in the L2 cache.

6AH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
PWR.(Core and Bus Agents)

Partial write bus 
transaction

This event counts partial write bus transactions.
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6BH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS
_P.(Core and Bus Agents)

Partial bus 
transactions

This event counts all (read and write) partial bus 
transactions.

6CH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_IO.(Core and 
Bus Agents)

IO bus transactions This event counts the number of completed I/O bus 
transactions as a result of IN and OUT instructions. The 
count does not include memory mapped IO.

6DH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
DEF.(Core and Bus Agents)

Deferred bus 
transactions

This event counts the number of deferred transactions. 

6EH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
BURST.(Core and Bus 
Agents)

Burst (full cache-line) 
bus transactions

This event counts burst (full cache line) transactions 
including: 

• Burst reads 
• RFOs 
• Explicit writebacks 
• Write combine lines

6FH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
MEM.(Core and Bus Agents)

Memory bus 
transactions

This event counts all memory bus transactions including: 

• Burst transactions
• Partial reads and writes - invalidate transactions 

The BUS_TRANS_MEM count is the sum of 
BUS_TRANS_BURST, BUS_TRANS_P and BUS_TRANS_IVAL.

70H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_
ANY.(Core and Bus Agents)

All bus transactions This event counts all bus transactions. This includes: 

• Memory transactions 
• IO transactions (non memory-mapped) 
• Deferred transaction completion 
• Other less frequent transactions, such as interrupts

77H See 
Table 
18-2 
and 
Table 
18-6

EXT_SNOOP.
(Bus Agents, Snoop 
Response)

External snoops This event counts the snoop responses to bus transactions. 
Responses can be counted separately by type and by bus 
agent. 

With the 'THIS_AGENT' mask, the event counts snoop 
responses from this processor to bus transactions sent by 
this processor. With the 'ALL_AGENTS' mask the event 
counts all snoop responses seen on the bus.

78H See 
Table 
18-2 
and 
Table 
18-7

CMP_SNOOP.(Core, Snoop 
Type)

L1 data cache 
snooped by other core

This event counts the number of times the L1 data cache is 
snooped for a cache line that is needed by the other core in 
the same processor. The cache line is either missing in the 
L1 instruction or data caches of the other core, or is 
available for reading only and the other core wishes to write 
the cache line. 
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The snoop operation may change the cache line state. If the 
other core issued a read request that hit this core in E state, 
typically the state changes to S state in this core. If the 
other core issued a read for ownership request (due a write 
miss or hit to S state) that hits this core's cache line in E or S 
state, this typically results in invalidation of the cache line in 
this core.  If the snoop hits a line in M state, the state is 
changed at a later opportunity. 

These snoops are performed through the L1 data cache 
store port. Therefore, frequent snoops may conflict with 
extensive stores to the L1 data cache, which may increase 
store latency and impact performance.

7AH See 
Table 
18-3 

BUS_HIT_DRV.

(Bus Agents)

HIT signal asserted This event counts the number of bus cycles during which 
the processor drives the HIT# pin to signal HIT snoop 
response. 

7BH See 
Table 
18-3

BUS_HITM_DRV.

(Bus Agents)

HITM signal asserted This event counts the number of bus cycles during which 
the processor drives the HITM# pin to signal HITM snoop 
response.

7DH See 
Table 
18-2

BUSQ_EMPTY.

(Core)

Bus queue empty This event counts the number of cycles during which the 
core did not have any pending transactions in the bus queue. 
It also counts when the core is halted and the other core is 
not halted. 

This event can count occurrences for this core or both cores.

7EH See 
Table 
18-2 
and 
Table 
18-3

SNOOP_STALL_
DRV.(Core and Bus Agents)

Bus stalled for snoops This event counts the number of times that the bus snoop 
stall signal is asserted. To obtain the number of bus cycles 
during which snoops on the bus are prohibited, multiply the 
event count by two. 

During the snoop stall cycles, no new bus transactions 
requiring a snoop response can be initiated on the bus. A 
bus agent asserts a snoop stall signal if it cannot response 
to a snoop request within three bus cycles.

7FH See 
Table 
18-2 

BUS_IO_WAIT.
(Core)

IO requests waiting in 
the bus queue

This event counts the number of core cycles during which IO 
requests wait in the bus queue. With the SELF modifier this 
event counts IO requests per core.

With the BOTH_CORE modifier, this event increments by one 
for any cycle for which there is a request from either core.

80H 00H L1I_READS Instruction fetches This event counts all instruction fetches, including 
uncacheable fetches that bypass the Instruction Fetch Unit 
(IFU).

81H 00H L1I_MISSES Instruction Fetch Unit 
misses

This event counts all instruction fetches that miss the 
Instruction Fetch Unit (IFU) or produce memory requests. 
This includes uncacheable fetches. 

An instruction fetch miss is counted only once and not once 
for every cycle it is outstanding.

82H 02H ITLB.SMALL_MISS ITLB small page 
misses

This event counts the number of instruction fetches from 
small pages that miss the ITLB.

82H 10H ITLB.LARGE_MISS ITLB large page misses This event counts the number of instruction fetches from 
large pages that miss the ITLB.
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82H 40H ITLB.FLUSH ITLB flushes This event counts the number of ITLB flushes. This usually 
happens upon CR3 or CR0 writes, which are executed by 
the operating system during process switches.

82H 12H ITLB.MISSES ITLB misses This event counts the number of instruction fetches from 
either small or large pages that miss the ITLB.

83H 02H INST_QUEUE.FULL Cycles during which 
the instruction queue 
is full

This event counts the number of cycles during which the 
instruction queue is full. In this situation, the core front-end 
stops fetching more instructions. This is an indication of 
very long stalls in the back-end pipeline stages.

86H 00H CYCLES_L1I_
MEM_STALLED

Cycles during which 
instruction fetches 
stalled

This event counts the number of cycles for which an 
instruction fetch stalls, including stalls due to any of the 
following reasons: 

• instruction Fetch Unit cache misses 
• instruction TLB misses 
• instruction TLB faults

87H 00H ILD_STALL Instruction Length 
Decoder stall cycles 
due to a length 
changing prefix

This event counts the number of cycles during which the 
instruction length decoder uses the slow length decoder. 
Usually, instruction length decoding is done in one cycle. 
When the slow decoder is used, instruction decoding 
requires 6 cycles. 

The slow decoder is used in the following cases: 

• operand override prefix (66H) preceding an instruction 
with immediate data 

• address override prefix (67H) preceding an instruction 
with a modr/m in real, big real, 16-bit protected or 32-bit 
protected modes

To avoid instruction length decoding stalls, generate code 
using imm8 or imm32 values instead of imm16 values. If 
you must use an imm16 value, store the value in a register 
using “mov reg, imm32” and use the register format of the 
instruction.

88H 00H BR_INST_EXEC Branch instructions 
executed

This event counts all executed branches (not necessarily 
retired). This includes only instructions and not micro-op 
branches. 

Frequent branching is not necessarily a major performance 
issue. However frequent branch mispredictions may be a 
problem.

89H 00H BR_MISSP_EXEC Mispredicted branch 
instructions executed

This event counts the number of mispredicted branch 
instructions that were executed.

8AH 00H BR_BAC_
MISSP_EXEC

Branch instructions 
mispredicted at 
decoding

This event counts the number of branch instructions that 
were mispredicted at decoding.

8BH 00H BR_CND_EXEC Conditional branch 
instructions executed.

This event counts the number of conditional branch 
instructions executed, but not necessarily retired. 

8CH 00H BR_CND_
MISSP_EXEC

Mispredicted 
conditional branch 
instructions executed

This event counts the number of mispredicted conditional 
branch instructions that were executed.

8DH 00H BR_IND_EXEC Indirect branch 
instructions executed

This event counts the number of indirect branch instructions 
that were executed.
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8EH 00H BR_IND_MISSP
_EXEC

Mispredicted indirect 
branch instructions 
executed

This event counts the number of mispredicted indirect 
branch instructions that were executed.

8FH 00H BR_RET_EXEC RET instructions 
executed

This event counts the number of RET instructions that were 
executed.

90H 00H BR_RET_
MISSP_EXEC

Mispredicted RET 
instructions executed

This event counts the number of mispredicted RET 
instructions that were executed.

91H 00H BR_RET_BAC_
MISSP_EXEC

RET instructions 
executed mispredicted 
at decoding

This event counts the number of RET instructions that were 
executed and were mispredicted at decoding.

92H 00H BR_CALL_EXEC CALL instructions 
executed

This event counts the number of CALL instructions 
executed.

93H 00H BR_CALL_
MISSP_EXEC

Mispredicted CALL 
instructions executed

This event counts the number of mispredicted CALL 
instructions that were executed.

94H 00H BR_IND_CALL_
EXEC

Indirect CALL 
instructions executed

This event counts the number of indirect CALL instructions 
that were executed.

97H 00H BR_TKN_
BUBBLE_1

Branch predicted 
taken with bubble 1

The events BR_TKN_BUBBLE_1 and BR_TKN_BUBBLE_2 
together count the number of times a taken branch 
prediction incurred a one-cycle penalty. The penalty incurs 
when: 

• Too many taken branches are placed together. To avoid 
this, unroll loops and add a non-taken branch in the 
middle of the taken sequence. 

• The branch target is unaligned. To avoid this, align the 
branch target.

98H 00H BR_TKN_
BUBBLE_2

Branch predicted 
taken with bubble 2

The events BR_TKN_BUBBLE_1 and BR_TKN_BUBBLE_2 
together count the number of times a taken branch 
prediction incurred a one-cycle penalty. The penalty incurs 
when: 

• Too many taken branches are placed together. To avoid 
this, unroll loops and add a non-taken branch in the 
middle of the taken sequence. 

• The branch target is unaligned. To avoid this, align the 
branch target.

A0H 00H RS_UOPS_
DISPATCHED

Micro-ops dispatched 
for execution

This event counts the number of micro-ops dispatched for 
execution. Up to six micro-ops can be dispatched in each 
cycle. 

A1H 01H RS_UOPS_
DISPATCHED.PORT0

Cycles micro-ops 
dispatched for 
execution on port 0

This event counts the number of cycles for which micro-ops 
dispatched for execution. Each cycle, at most one micro-op 
can be dispatched on the port. Issue Ports are described in 
Intel® 64 and IA-32 Architectures Optimization Reference 

Manual. Use IA32_PMC0 only.

A1H 02H RS_UOPS_
DISPATCHED.PORT1

Cycles micro-ops 
dispatched for 
execution on port 1

This event counts the number of cycles for which micro-ops 
dispatched for execution. Each cycle, at most one micro-op 
can be dispatched on the port. Use IA32_PMC0 only.

A1H 04H RS_UOPS_
DISPATCHED.PORT2

Cycles micro-ops 
dispatched for 
execution on port 2

This event counts the number of cycles for which micro-ops 
dispatched for execution. Each cycle, at most one micro-op 
can be dispatched on the port. Use IA32_PMC0 only.
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A1H 08H RS_UOPS_
DISPATCHED.PORT3

Cycles micro-ops 
dispatched for 
execution on port 3

This event counts the number of cycles for which micro-ops 
dispatched for execution. Each cycle, at most one micro-op 
can be dispatched on the port. Use IA32_PMC0 only.

A1H 10H RS_UOPS_
DISPATCHED.PORT4

Cycles micro-ops 
dispatched for 
execution on port 4

This event counts the number of cycles for which micro-ops 
dispatched for execution. Each cycle, at most one micro-op 
can be dispatched on the port. Use IA32_PMC0 only.

A1H 20H RS_UOPS_
DISPATCHED.PORT5

Cycles micro-ops 
dispatched for 
execution on port 5

This event counts the number of cycles for which micro-ops 
dispatched for execution. Each cycle, at most one micro-op 
can be dispatched on the port. Use IA32_PMC0 only.

AAH 01H MACRO_INSTS.
DECODED

Instructions decoded This event counts the number of instructions decoded (but 
not necessarily executed or retired). 

AAH 08H MACRO_INSTS.
CISC_DECODED

CISC Instructions 
decoded

This event counts the number of complex instructions 
decoded. Complex instructions usually have more than four 
micro-ops. Only one complex instruction can be decoded at a 
time. 

ABH 01H ESP.SYNCH ESP register content 
synchron-ization

This event counts the number of times that the ESP register 
is explicitly used in the address expression of a load or store 
operation, after it is implicitly used, for example by a push or 
a pop instruction.

ESP synch micro-op uses resources from the rename pipe-
stage and up to retirement.  The expected ratio of this 
event divided by the number of ESP implicit changes is 0,2. 
If the ratio is higher, consider rearranging your code to avoid 
ESP synchronization events.

ABH 02H ESP.ADDITIONS ESP register automatic 
additions

This event counts the number of ESP additions performed 
automatically by the decoder. A high count of this event is 
good, since each automatic addition performed by the 
decoder saves a micro-op from the execution units. 

To maximize the number of ESP additions performed 
automatically by the decoder, choose instructions that 
implicitly use the ESP, such as PUSH, POP, CALL, and RET 
instructions whenever possible.

B0H 00H SIMD_UOPS_EXEC SIMD micro-ops 
executed (excluding 
stores)

This event counts all the SIMD micro-ops executed. It does 
not count MOVQ and MOVD stores from register to memory.

B1H 00H SIMD_SAT_UOP_
EXEC

SIMD saturated 
arithmetic micro-ops 
executed

This event counts the number of SIMD saturated arithmetic 
micro-ops executed.

B3H 01H SIMD_UOP_
TYPE_EXEC.MUL

SIMD packed multiply 
micro-ops executed

This event counts the number of SIMD packed multiply 
micro-ops executed.

B3H 02H SIMD_UOP_TYPE_EXEC.SHI
FT

SIMD packed shift 
micro-ops executed

This event counts the number of SIMD packed shift micro-
ops executed.

B3H 04H SIMD_UOP_TYPE_EXEC.PA
CK

SIMD pack micro-ops 
executed

This event counts the number of SIMD pack micro-ops 
executed.

B3H 08H SIMD_UOP_TYPE_EXEC.UN
PACK

SIMD unpack micro-
ops executed

This event counts the number of SIMD unpack micro-ops 
executed.

B3H 10H SIMD_UOP_TYPE_EXEC.LO
GICAL

SIMD packed logical 
micro-ops executed

This event counts the number of SIMD packed logical micro-
ops executed.
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B3H 20H SIMD_UOP_TYPE_EXEC.ARI
THMETIC

SIMD packed 
arithmetic micro-ops 
executed

This event counts the number of SIMD packed arithmetic 
micro-ops executed.

C0H 00H INST_RETIRED.
ANY_P

Instructions retired This event counts the number of instructions that retire 
execution. For instructions that consist of multiple micro-
ops, this event counts the retirement of the last micro-op of 
the instruction. The counter continue counting during 
hardware interrupts, traps, and inside interrupt handlers. 

INST_RETIRED.ANY_P is an architectural performance 
event. 

C0H 01H INST_RETIRED.
LOADS

Instructions retired, 
which contain a load

This event counts the number of instructions retired that 
contain a load operation.

C0H 02H INST_RETIRED.
STORES

Instructions retired, 
which contain a store

This event counts the number of instructions retired that 
contain a store operation.

C0H 04H INST_RETIRED.
OTHER

Instructions retired, 
with no load or store 
operation

This event counts the number of instructions retired that do 
not contain a load or a store operation.

C1H 01H X87_OPS_
RETIRED.FXCH

FXCH instructions 
retired

This event counts the number of FXCH instructions retired. 
Modern compilers generate more efficient code and are less 
likely to use this instruction. If you obtain a high count for 
this event consider recompiling the code.

C1H FEH X87_OPS_
RETIRED.ANY

Retired floating-point 
computational 
operations (precise 
event)

This event counts the number of floating-point 
computational operations retired. It counts: 

• floating point computational operations executed by the 
assist handler 

• sub-operations of complex floating-point instructions like 
transcendental instructions 

This event does not count: 

• floating-point computational operations that cause traps 
or assists. 

• floating-point loads and stores. 

When this event is captured with the precise event 
mechanism, the collected samples contain the address of 
the instruction that was executed immediately after the 
instruction that caused the event.

C2H 01H UOPS_RETIRED.
LD_IND_BR

Fused load+op or 
load+indirect branch 
retired

This event counts the number of retired micro-ops that 
fused a load with another operation. This includes: 

• Fusion of a load and an arithmetic operation, such as with 
the following instruction: ADD EAX, [EBX] where the 
content of the memory location specified by EBX register 
is loaded, added to EXA register, and the result is stored 
in EAX.

• Fusion of a load and a branch in an indirect branch 
operation, such as with the following instructions:

• JMP [RDI+200] 
• RET 
• Fusion decreases the number of micro-ops in the 

processor pipeline. A high value for this event count 
indicates that the code is using the processor resources 
effectively.
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C2H 02H UOPS_RETIRED.
STD_STA

Fused store address + 
data retired

This event counts the number of store address calculations 
that are fused with store data emission into one micro-op. 
Traditionally, each store operation required two micro-ops. 

This event counts fusion of retired micro-ops only. Fusion 
decreases the number of micro-ops in the processor 
pipeline. A high value for this event count indicates that the 
code is using the processor resources effectively.

C2H 04H UOPS_RETIRED.
MACRO_FUSION

Retired instruction 
pairs fused into one 
micro-op

This event counts the number of times CMP or TEST 
instructions were fused with a conditional branch 
instruction into one micro-op. It counts fusion by retired 
micro-ops only. 

Fusion decreases the number of micro-ops in the processor 
pipeline. A high value for this event count indicates that the 
code uses the processor resources more effectively.

C2H 07H UOPS_RETIRED.
FUSED

Fused micro-ops 
retired

This event counts the total number of retired fused micro-
ops. The counts include the following fusion types: 

• Fusion of load operation with an arithmetic operation or 
with an indirect branch (counted by event 
UOPS_RETIRED.LD_IND_BR) 

• Fusion of store address and data (counted by event 
UOPS_RETIRED.STD_STA) 

• Fusion of CMP or TEST instruction with a conditional 
branch instruction (counted by event 
UOPS_RETIRED.MACRO_FUSION) 

Fusion decreases the number of micro-ops in the processor 
pipeline. A high value for this event count indicates that the 
code is using the processor resources effectively.

C2H 08H UOPS_RETIRED.
NON_FUSED

Non-fused micro-ops 
retired

This event counts the number of micro-ops retired that 
were not fused.

C2H 0FH UOPS_RETIRED.
ANY

Micro-ops retired This event counts the number of micro-ops retired. The 
processor decodes complex macro instructions into a 
sequence of simpler micro-ops. Most instructions are 
composed of one or two micro-ops. 

Some instructions are decoded into longer sequences such 
as repeat instructions, floating point transcendental 
instructions, and assists. In some cases micro-op sequences 
are fused or whole instructions are fused into one micro-op.

See other UOPS_RETIRED events for differentiating retired 
fused and non-fused micro-ops. 

C3H 01H MACHINE_
NUKES.SMC

Self-Modifying Code 
detected

This event counts the number of times that a program 
writes to a code section. Self-modifying code causes a sever 
penalty in all Intel 64 and IA-32 processors.
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C3H 04H MACHINE_NUKES.MEM_OR
DER

Execution pipeline 
restart due to memory 
ordering conflict or 
memory 
disambiguation 
misprediction

This event counts the number of times the pipeline is 
restarted due to either multi-threaded memory ordering 
conflicts or memory disambiguation misprediction.

A multi-threaded memory ordering conflict occurs when a 
store, which is executed in another core, hits a load that is 
executed out of order in this core but not yet retired. As a 
result, the load needs to be restarted to satisfy the memory 
ordering model. 

See Chapter 8, “Multiple-Processor Management” in the 
Intel® 64 and IA-32 Architectures Software Developer’s 

Manual, Volume 3A.

To count memory disambiguation mispredictions, use the 
event MEMORY_DISAMBIGUATION.RESET.

C4H 00H BR_INST_RETIRED.ANY Retired branch 
instructions

This event counts the number of branch instructions retired. 
This is an architectural performance event.

C4H 01H BR_INST_RETIRED.PRED_N
OT_
TAKEN

Retired branch 
instructions that were 
predicted not-taken

This event counts the number of branch instructions retired 
that were correctly predicted to be not-taken.

C4H 02H BR_INST_RETIRED.MISPRE
D_NOT_
TAKEN

Retired branch 
instructions that were 
mispredicted not-
taken

This event counts the number of branch instructions retired 
that were mispredicted and not-taken.

C4H 04H BR_INST_RETIRED.PRED_T
AKEN

Retired branch 
instructions that were 
predicted taken

This event counts the number of branch instructions retired 
that were correctly predicted to be taken.

C4H 08H BR_INST_RETIRED.MISPRE
D_TAKEN

Retired branch 
instructions that were 
mispredicted taken

This event counts the number of branch instructions retired 
that were mispredicted and taken.

C4H 0CH BR_INST_RETIRED.TAKEN Retired taken branch 
instructions

This event counts the number of branches retired that were 
taken.

C5H 00H BR_INST_RETIRED.MISPRE
D

Retired mispredicted 
branch instructions. 
(precise event)

This event counts the number of retired branch instructions 
that were mispredicted by the processor. A branch 
misprediction occurs when the processor predicts that the 
branch would be taken, but it is not, or vice-versa. 

This is an architectural performance event.

C6H 01H CYCLES_INT_
MASKED

Cycles during which 
interrupts are disabled

This event counts the number of cycles during which 
interrupts are disabled.

C6H 02H CYCLES_INT_
PENDING_AND
_MASKED

Cycles during which 
interrupts are pending 
and disabled

This event counts the number of cycles during which there 
are pending interrupts but interrupts are disabled.

C7H 01H SIMD_INST_
RETIRED.PACKED_SINGLE

Retired SSE packed-
single instructions

This event counts the number of SSE packed-single 
instructions retired.

C7H 02H SIMD_INST_
RETIRED.SCALAR_SINGLE

Retired SSE scalar-
single instructions

This event counts the number of SSE scalar-single 
instructions retired.

C7H 04H SIMD_INST_
RETIRED.PACKED_DOUBLE

Retired SSE2 packed-
double instructions

This event counts the number of SSE2 packed-double 
instructions retired. 

C7H 08H SIMD_INST_
RETIRED.SCALAR_DOUBLE

Retired SSE2 scalar-
double instructions

This event counts the number of SSE2 scalar-double 
instructions retired.
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C7H 10H SIMD_INST_
RETIRED.VECTOR

Retired SSE2 vector 
integer instructions

This event counts the number of SSE2 vector integer 
instructions retired.

C7H 1FH SIMD_INST_
RETIRED.ANY

Retired Streaming 
SIMD instructions  
(precise event)

This event counts the overall number of retired SIMD 
instructions that use XMM registers. To count each type of 
SIMD instruction separately, use the following events:

• SIMD_INST_RETIRED.PACKED_SINGLE
• SIMD_INST_RETIRED.SCALAR_SINGLE
• SIMD_INST_RETIRED.PACKED_DOUBLE
• SIMD_INST_RETIRED.SCALAR_DOUBLE
• and SIMD_INST_RETIRED.VECTOR

When this event is captured with the precise event 
mechanism, the collected samples contain the address of 
the instruction that was executed immediately after the 
instruction that caused the event.

C8H 00H HW_INT_RCV Hardware interrupts 
received

This event counts the number of hardware interrupts 
received by the processor.

C9H 00H ITLB_MISS_
RETIRED

Retired instructions 
that missed the ITLB

This event counts the number of retired instructions that 
missed the ITLB when they were fetched.

CAH 01H SIMD_COMP_
INST_RETIRED.
PACKED_SINGLE

Retired computational 
SSE packed-single 
instructions

This event counts the number of computational SSE packed-
single instructions retired. Computational instructions 
perform arithmetic computations (for example: add, multiply 
and divide).

Instructions that perform load and store operations or 
logical operations, like XOR, OR, and AND are not counted by 
this event.

CAH 02H SIMD_COMP_
INST_RETIRED.
SCALAR_SINGLE

Retired computational 
SSE scalar-single 
instructions

This event counts the number of computational SSE scalar-
single instructions retired. Computational instructions 
perform arithmetic computations (for example: add, multiply 
and divide). 

Instructions that perform load and store operations or 
logical operations, like XOR, OR, and AND are not counted by 
this event.

CAH 04H SIMD_COMP_
INST_RETIRED.
PACKED_DOUBLE

Retired computational 
SSE2 packed-double 
instructions

This event counts the number of computational SSE2 
packed-double instructions retired. Computational 
instructions perform arithmetic computations (for example: 
add, multiply and divide). 

Instructions that perform load and store operations or 
logical operations, like XOR, OR, and AND are not counted by 
this event.

CAH 08H SIMD_COMP_INST_RETIRE
D.SCALAR_DOUBLE

Retired computational 
SSE2 scalar-double 
instructions

This event counts the number of computational SSE2 scalar-
double instructions retired. Computational instructions 
perform arithmetic computations (for example: add, multiply 
and divide). 

Instructions that perform load and store operations or 
logical operations, like XOR, OR, and AND are not counted by 
this event.
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CBH 01H MEM_LOAD_
RETIRED.L1D
_MISS

Retired loads that miss 
the L1 data cache 
(precise event)

This event counts the number of retired load operations 
that missed the L1 data cache. This includes loads from 
cache lines that are currently being fetched, due to a 
previous L1 data cache miss to the same cache line.  

This event counts loads from cacheable memory only. The 
event does not count loads by software prefetches. 

When this event is captured with the precise event 
mechanism, the collected samples contain the address of 
the instruction that was executed immediately after the 
instruction that caused the event.

Use IA32_PMC0 only.

CBH 02H MEM_LOAD_
RETIRED.L1D_
LINE_MISS

L1 data cache line 
missed by retired 
loads (precise event)

This event counts the number of load operations that miss 
the L1 data cache and send a request to the L2 cache to 
fetch the missing cache line. That is the missing cache line 
fetching has not yet started. 

The event count is equal to the number of cache lines 
fetched from the L2 cache by retired loads. 

This event counts loads from cacheable memory only. The 
event does not count loads by software prefetches. 

The event might not be counted if the load is blocked (see 
LOAD_BLOCK events).

When this event is captured with the precise event 
mechanism, the collected samples contain the address of 
the instruction that was executed immediately after the 
instruction that caused the event.

Use IA32_PMC0 only.

CBH 04H MEM_LOAD_
RETIRED.L2_MISS

Retired loads that miss 
the L2 cache (precise 
event)

This event counts the number of retired load operations 
that missed the L2 cache.   

This event counts loads from cacheable memory only. It 
does not count loads by software prefetches.

When this event is captured with the precise event 
mechanism, the collected samples contain the address of 
the instruction that was executed immediately after the 
instruction that caused the event.

Use IA32_PMC0 only.
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CBH 08H MEM_LOAD_
RETIRED.L2_LINE_MISS

L2 cache line missed 
by retired loads 
(precise event)

This event counts the number of load operations that miss 
the L2 cache and result in a bus request to fetch the missing 
cache line. That is the missing cache line fetching has not 
yet started.

This event count is equal to the number of cache lines 
fetched from memory by retired loads. 

This event counts loads from cacheable memory only. The 
event does not count loads by software prefetches. 

The event might not be counted if the load is blocked (see 
LOAD_BLOCK events).

When this event is captured with the precise event 
mechanism, the collected samples contain the address of 
the instruction that was executed immediately after the 
instruction that caused the event.

Use IA32_PMC0 only.

CBH 10H MEM_LOAD_
RETIRED.DTLB_
MISS

Retired loads that miss 
the DTLB (precise 
event)

This event counts the number of retired loads that missed 
the DTLB. The DTLB miss is not counted if the load 
operation causes a fault.

This event counts loads from cacheable memory only. The 
event does not count loads by software prefetches. 

When this event is captured with the precise event 
mechanism, the collected samples contain the address of 
the instruction that was executed immediately after the 
instruction that caused the event. 

Use IA32_PMC0 only.

CCH 01H FP_MMX_TRANS_TO_MMX Transitions from 
Floating Point to MMX 
Instructions

This event counts the first MMX instructions following a 
floating-point instruction. Use this event to estimate the 
penalties for the transitions between floating-point and 
MMX states.

CCH 02H FP_MMX_TRANS_TO_FP Transitions from MMX 
Instructions to 
Floating Point 
Instructions

This event counts the first floating-point instructions 
following any MMX instruction. Use this event to estimate 
the penalties for the transitions between floating-point and 
MMX states.

CDH 00H SIMD_ASSIST SIMD assists invoked This event counts the number of SIMD assists invoked. SIMD 
assists are invoked when an EMMS instruction is executed, 
changing the MMX state in the floating point stack.

CEH 00H SIMD_INSTR_
RETIRED

SIMD Instructions 
retired

This event counts the number of retired SIMD instructions 
that use MMX registers.

CFH 00H SIMD_SAT_INSTR_RETIRED Saturated arithmetic 
instructions retired

This event counts the number of saturated arithmetic SIMD 
instructions that retired.

D2H 01H RAT_STALLS.
ROB_READ_PORT

ROB read port stalls 
cycles

This event counts the number of cycles when ROB read port 
stalls occurred, which did not allow new micro-ops to enter 
the out-of-order pipeline. 

Note that, at this stage in the pipeline, additional stalls may 
occur at the same cycle and prevent the stalled micro-ops 
from entering the pipe. In such a case, micro-ops retry 
entering the execution pipe in the next cycle and the ROB-
read-port stall is counted again.
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D2H 02H RAT_STALLS.
PARTIAL_CYCLES

Partial register stall 
cycles

This event counts the number of cycles instruction 
execution latency became longer than the defined latency 
because the instruction uses a register that was partially 
written by previous instructions. 

D2H 04H RAT_STALLS.
FLAGS

Flag stall cycles This event counts the number of cycles during which 
execution stalled due to several reasons, one of which is a 
partial flag register stall. 

A partial register stall may occur when two conditions are 
met: 

• an instruction modifies some, but not all, of the flags in 
the flag register

• the next instruction, which depends on flags, depends on 
flags that were not modified by this instruction

D2H 08H RAT_STALLS.
FPSW

FPU status word stall This event indicates that the FPU status word (FPSW) is 
written. To obtain the number of times the FPSW is written 
divide the event count by 2.

The FPSW is written by instructions with long latency; a 
small count may indicate a high penalty.

D2H 0FH RAT_STALLS.
ANY

All RAT stall cycles This event counts the number of stall cycles due to 
conditions described by: 

• RAT_STALLS.ROB_READ_PORT
• RAT_STALLS.PARTIAL
• RAT_STALLS.FLAGS
• RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_
STALLS.ES

Segment rename stalls 
- ES

This event counts the number of stalls due to the lack of 
renaming resources for the ES segment register. If a 
segment is renamed, but not retired and a second update to 
the same segment occurs, a stall occurs in the front-end of 
the pipeline until the renamed segment retires. 

D4H 02H SEG_RENAME_
STALLS.DS

Segment rename stalls 
- DS

This event counts the number of stalls due to the lack of 
renaming resources for the DS segment register. If a 
segment is renamed, but not retired and a second update to 
the same segment occurs, a stall occurs in the front-end of 
the pipeline until the renamed segment retires. 

D4H 04H SEG_RENAME_
STALLS.FS

Segment rename stalls 
- FS

This event counts the number of stalls due to the lack of 
renaming resources for the FS segment register. 

If a segment is renamed, but not retired and a second 
update to the same segment occurs, a stall occurs in the 
front-end of the pipeline until the renamed segment retires. 

D4H 08H SEG_RENAME_
STALLS.GS

Segment rename stalls 
- GS

This event counts the number of stalls due to the lack of 
renaming resources for the GS segment register. 

If a segment is renamed, but not retired and a second 
update to the same segment occurs, a stall occurs in the 
front-end of the pipeline until the renamed segment retires. 

D4H 0FH SEG_RENAME_
STALLS.ANY

Any (ES/DS/FS/GS) 
segment rename stall

This event counts the number of stalls due to the lack of 
renaming resources for the ES, DS, FS, and GS segment 
registers.

If a segment is renamed but not retired and a second update 
to the same segment occurs, a stall occurs in the front-end 
of the pipeline until the renamed segment retires. 
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D5H 01H SEG_REG_
RENAMES.ES

Segment renames - ES This event counts the number of times the ES segment 
register is renamed.

D5H 02H SEG_REG_
RENAMES.DS

Segment renames - DS This event counts the number of times the DS segment 
register is renamed.

D5H 04H SEG_REG_
RENAMES.FS

Segment renames - FS This event counts the number of times the FS segment 
register is renamed.

D5H 08H SEG_REG_
RENAMES.GS

Segment renames - GS This event counts the number of times the GS segment 
register is renamed.

D5H 0FH SEG_REG_
RENAMES.ANY

Any (ES/DS/FS/GS) 
segment rename

This event counts the number of times any of the four 
segment registers (ES/DS/FS/GS) is renamed.

DCH 01H RESOURCE_
STALLS.ROB_FULL

Cycles during which 
the ROB full

This event counts the number of cycles when the number of 
instructions in the pipeline waiting for retirement reaches 
the limit the processor can handle. 

A high count for this event indicates that there are long 
latency operations in the pipe (possibly load and store 
operations that miss the L2 cache, and other instructions 
that depend on these cannot execute until the former 
instructions complete execution). In this situation new 
instructions can not enter the pipe and start execution.

DCH 02H RESOURCE_
STALLS.RS_FULL

Cycles during which 
the RS full

This event counts the number of cycles when the number of 
instructions in the pipeline waiting for execution reaches 
the limit the processor can handle. 

A high count of this event indicates that there are long 
latency operations in the pipe (possibly load and store 
operations that miss the L2 cache, and other instructions 
that depend on these cannot execute until the former 
instructions complete execution). In this situation new 
instructions can not enter the pipe and start execution.

DCH 04 RESOURCE_
STALLS.LD_ST

Cycles during which 
the pipeline has 
exceeded load or store 
limit or waiting to 
commit all stores

This event counts the number of cycles while resource-
related stalls occur due to:  

• The number of load instructions in the pipeline reached 
the limit the processor can handle. The stall ends when a 
loading instruction retires. 

• The number of store instructions in the pipeline reached 
the limit the processor can handle. The stall ends when a 
storing instruction commits its data to the cache or 
memory. 

• There is an instruction in the pipe that can be executed 
only when all previous stores complete and their data is 
committed in the caches or memory. For example, the 
SFENCE and MFENCE instructions require this behavior.

DCH 08H RESOURCE_
STALLS.FPCW

Cycles stalled due to 
FPU control word 
write

This event counts the number of cycles while execution was 
stalled due to writing the floating-point unit (FPU) control 
word.

DCH 10H RESOURCE_
STALLS.BR_MISS_CLEAR

Cycles stalled due to 
branch misprediction

This event counts the number of cycles after a branch 
misprediction is detected at execution until the branch and 
all older micro-ops retire. During this time new micro-ops 
cannot enter the out-of-order pipeline.
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DCH 1FH RESOURCE_
STALLS.ANY

Resource related stalls This event counts the number of cycles while resource-
related stalls occurs for any conditions described by the 
following events:

• RESOURCE_STALLS.ROB_FULL
• RESOURCE_STALLS.RS_FULL
• RESOURCE_STALLS.LD_ST
• RESOURCE_STALLS.FPCW
• RESOURCE_STALLS.BR_MISS_CLEAR

E0H 00H BR_INST_
DECODED

Branch instructions 
decoded

This event counts the number of branch instructions 
decoded.

E4H 00H BOGUS_BR Bogus branches This event counts the number of byte sequences that were 
mistakenly detected as taken branch instructions.

This results in a BACLEAR event. This occurs mainly after 
task switches.

E6H 00H BACLEARS BACLEARS asserted This event counts the number of times the front end is 
resteered, mainly when the BPU cannot provide a correct 
prediction and this is corrected by other branch handling 
mechanisms at the front and. This can occur if the code has 
many branches such that they cannot be consumed by the 
BPU. 

Each BACLEAR asserted costs approximately 7 cycles of 
instruction fetch. The effect on total execution time 
depends on the surrounding code.

F0 00H PREF_RQSTS_UP Upward prefetches 
issued from DPL

This event counts the number of upward prefetches issued 
from the Data Prefetch Logic (DPL) to the L2 cache. A 
prefetch request issued to the L2 cache cannot be cancelled 
and the requested cache line is fetched to the L2 cache. 

F8 00H PREF_RQSTS_DN Downward prefetches 
issued from DPL.

This event counts the number of downward prefetches 
issued from the Data Prefetch Logic (DPL) to the L2 cache. A 
prefetch request issued to the L2 cache cannot be cancelled 
and the requested cache line is fetched to the L2 cache.
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19.9 PERFORMANCE MONITORING EVENTS FOR PROCESSORS BASED ON THE 
SILVERMONT MICROARCHITECTURE

Processors based on the Silvermont microarchitecture support the architectural performance-monitoring events 
listed in Table 19-1 and fixed-function performance events using fixed counter. In addition, they also support the 
following non-architectural performance-monitoring events listed in Table 19-18. 

Table 19-18.  Performance Events for Silvermont Microarchitecture 

Event
Num.

Umask
Value Event Name Definition Description and Comment

03H 01H REHABQ.LD_BLOCK_S
T_FORWARD

Loads blocked due to 
store forward 
restriction

This event counts the number of retired loads that were 
prohibited from receiving forwarded data from the store 
because of address mismatch.

03H 02H REHABQ.LD_BLOCK_S
TD_NOTREADY

Loads blocked due to 
store data not ready

This event counts the cases where a forward was technically 
possible, but did not occur because the store data was not 
available at the right time

03H 04H REHABQ.ST_SPLITS Store uops that split 
cache line boundary

This event counts the number of retire stores that experienced 
cache line boundary splits

03H 08H REHABQ.LD_SPLITS Load uops that split 
cache line boundary

This event counts the number of retire loads that experienced 
cache line boundary splits

03H 10H REHABQ.LOCK Uops with lock 
semantics

This event counts the number of retired memory operations 
with lock semantics. These are either implicit locked instructions 
such as the XCHG instruction or instructions with an explicit 
LOCK prefix (0xF0).

03H 20H REHABQ.STA_FULL Store address buffer 
full

This event counts the number of retired stores that are delayed 
because there is not a store address buffer available.

03H 40H REHABQ.ANY_LD Any reissued load uops This event counts the number of load uops reissued from 
Rehabq

03H 80H REHABQ.ANY_ST Any reissued store 
uops

This event counts the number of store uops reissued from 
Rehabq

REAHBQ is an internal queue in the Silvermont microarchitecture that holds memory reference micro-ops which cannot complete for 
one reason or another. The micro-ops remain in the REHABQ until they can be re-issued and successfully completed.

Examples of bottlenecks that cause micro-ops to go into REHABQ include, but are not limited to: cache line splits, blocked store forward 
and data not ready. There are many other conditions that might cause a load or store to be sent to the REHABQ-- for instance, if an 
older store has an unknown address, all subsequent stores must be sent to the REHABQ until that older stores address becomes 
known

04H 01H MEM_UOPS_RETIRED.L
1_MISS_LOADS

Loads retired that 
missed L1 data cache

This event counts the number of load ops retired that miss in L1 
Data cache. Note that prefetch misses will not be counted. 

04H 02H MEM_UOPS_RETIRED.L
2_HIT_LOADS

Loads retired that hit 
L2

This event counts the number of load micro-ops retired that hit 
L2. 

04H 04H MEM_UOPS_RETIRED.L
2_MISS_LOADS

Loads retired that 
missed L2

This event counts the number of load micro-ops retired that 
missed L2. 

04H 08H MEM_UOPS_RETIRED.
DTLB_MISS_LOADS

Loads missed DTLB This event counts the number of load ops retired that had DTLB 
miss. 

04H 10H MEM_UOPS_RETIRED.
UTLB_MISS

Loads missed UTLB This event counts the number of load ops retired that had UTLB 
miss. 

04H 20H MEM_UOPS_RETIRED.
HITM

Cross core or cross 
module hitm

This event counts the number of load ops retired that got data 
from the other core or from the other module. 

04H 40H MEM_UOPS_RETIRED.
ALL_LOADS

All Loads This event counts the number of load ops retired 
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04H 80H MEM_UOP_RETIRED.A
LL_STORES

All Stores This event counts the number of store ops retired 

05H 01H PAGE_WALKS.D_SIDE_
CYCLES

Duration of D-side 
page-walks in core 
cycles

This event counts every cycle when a D-side (walks due to a 
load) page walk is in progress. Page walk duration divided by 
number of page walks is the average duration of page-walks. 

Edge trigger bit must be cleared. Set Edge to count the number 
of page walks.

05H 02H PAGE_WALKS.I_SIDE_C
YCLES

Duration of I-side page-
walks in core cycles

This event counts every cycle when a I-side (walks due to an 
instruction fetch) page walk is in progress. Page walk duration 
divided by number of page walks is the average duration of 
page-walks. 

Edge trigger bit must be cleared. Set Edge to count the number 
of page walks.

05H 03H PAGE_WALKS.WALKS Total number of page-
walks that are 
completed (I-side and 
D-side)

This event counts when a data (D) page walk or an instruction (I) 
page walk is completed or started. Since a page walk implies a 
TLB miss, the number of TLB misses can be counted by counting 
the number of pagewalks.

Edge trigger bit must be set. Clear Edge to count the number of 
cycles.

2EH 41H LONGEST_LAT_CACHE.
MISS

L2 cache request 
misses

This event counts the total number of L2 cache references and 
the number of L2 cache misses respectively. 

L3 is not supported in Silvermont microarchitecture.

2EH 4FH LONGEST_LAT_CACHE.
REFERENCE

L2 cache requests 
from this core

This event counts requests originating from the core that 
references a cache line in the L2 cache.

L3 is not supported in Silvermont microarchitecture.

30H 00H L2_REJECT_XQ.ALL Counts the number of 
request from the L2 
that were not accepted 
into the XQ 

This event counts the number of demand and prefetch 
transactions that the L2 XQ rejects due to a full or near full 
condition which likely indicates back pressure from the IDI link. 
The XQ may reject transactions from the L2Q (non-cacheable 
requests), BBS (L2 misses) and WOB (L2 write-back victims)

When a memory reference misses the 1st level cache, the request goes to the L2 Queue (L2Q). If the request also misses the 2nd level 
cache, the request is sent to the XQ, where it waits for an opportunity to be issued to memory across the IDI link. Note that since the 
L2 is shared between a pair of processor cores, a single L2Q is shared between those two cores. Similarly, there is a single XQ for a pair 
of processors, situated between the L2Q and the IDI link.

The XQ will fill up when the response rate from the IDI link is smaller than the rate at which new requests arrive at the XQ.   The event 
L2_reject_XQ indicates that a request is unable to move from the L2 Queue to the XQ because the XQ is full, and thus indicates that 
the memory system is oversubscribed

31H 00H CORE_REJECT_L2Q.ALL Counts the number of 
request that were not 
accepted into the L2Q 
because the L2Q is 
FULL. 

This event counts the number of demand and L1 prefetcher 
requests rejected by the L2Q due to a full or nearly full condition 
which likely indicates back pressure from L2Q. It also counts 
requests that would have gone directly to the XQ, but are 
rejected due to a full or nearly full condition, indicating back 
pressure from the IDI link. The L2Q may also reject transactions 
from a core to insure fairness between cores, or to delay a core's 
dirty eviction when the address conflicts incoming external 
snoops. (Note that L2 prefetcher requests that are dropped are 
not counted by this event.).
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The core_reject event indicates that a request from the core cannot be accepted at the L2Q. However, there are several additional 
reasons why a request might be rejected from the L2Q. Beyond rejecting a request because the L2Q is full, a request from one core 
can be rejected to maintain fairness to the other core. That is, one core is not permitted to monopolize the shared connection to the 
L2Q/cache/XQ/IDI links, and might have its requests rejected even when there is room available in the L2Q. In addition, if the request 
from the core is a dirty L1 cache eviction, the hardware must insure that this eviction does not conflict with any pending request in the 
L2Q. (pending requests can include an external snoop). In the event of a conflict, the dirty eviction request might be rejected even 
when there is room in the L2Q.

Thus, while the L2_reject_XQ event indicates that the request rate to memory from both cores exceeds the response rate of the 
memory, the Core_reject event is more subtle. It can indicate that the request rate to the L2Q exceeds the response rate from the XQ, 
or it can indicate the request rate to the L2Q exceeds the response rate from the L2, or it can indicate that one core is attempting to 
request more than its fair share of response from the L2Q. Or, it can be an indicator of conflict between dirty evictions and other 
pending requests. 

In short, the L2_reject_XQ event indicates memory oversubscription.   The Core_reject event can indicate either (1) memory 
oversubscription, (2) L2 oversubscription, (3) rejecting one cores requests to insure fairness to the other core, or (4) a conflict between 
dirty evictions and other pending requests.

3CH 00H CPU_CLK_UNHALTED.C
ORE_P

Core cycles when core 
is not halted

This event counts the number of core cycles while the core is not 
in a halt state. The core enters the halt state when it is running 
the HLT instruction. In mobile systems the core frequency may 
change from time to time. For this reason this event may have a 
changing ratio with regards to time. 

N/A 01H CPU_CLK_UNHALTED.C
ORE

Instructions retired This uses the fixed counter 1 to count the same condition as 
CPU_CLK_UNHALTED.CORE_P does.

3CH 01H CPU_CLK_UNHALTED.R
EF_P

Reference cycles when 
core is not halted

This event counts the number of reference cycles that the core 
is not in a halt state. The core enters the halt state when it is 
running the HLT instruction. 

In mobile systems the core frequency may change from time. 
This event is not affected by core frequency changes but counts 
as if the core is running at the maximum frequency all the time. 

N/A 02H CPU_CLK_UNHALTED.R
EF_TSC

Instructions retired This uses the fixed counter 2 to count the same condition as 
CPU_CLK_UNHALTED.REF_P does.

80H 01H ICACHE.HIT Instruction fetches 
from Icache

This event counts all instruction fetches from the instruction 
cache.

80H 02H ICACHE.MISSES Icache miss This event counts all instruction fetches that miss the 
Instruction cache or produce memory requests. This includes 
uncacheable fetches. An instruction fetch miss is counted only 
once and not once for every cycle it is outstanding.

80H 03H ICACHE.ACCESSES Instruction fetches This event counts all instruction fetches, including uncacheable 
fetches.

B6H 04H NIP_STALL.ICACHE_MI
SS

Counts the number of 
cycles the NIP stalls 
because of an icache 
miss.

Counts the number of cycles the NIP stalls because of an icache 
miss. This is a cumulative count of cycles the NIP stalled for all 
icache misses

B7H 01H OFFCORE_RESPONSE_
0

see Section 18.6.2 Requires MSR_OFFCORE_RESP0 to specify request type and 
response.

B7H 02H OFFCORE_RESPONSE_
1

see Section 18.6.2 Requires MSR_OFFCORE_RESP1 to specify request type and 
response.

Table 19-18.  Performance Events for Silvermont Microarchitecture 

Event
Num.

Umask
Value Event Name Definition Description and Comment



19-128 Vol. 3B

PERFORMANCE-MONITORING EVENTS

C0H 00H INST_RETIRED.ANY_P Instructions retired 
(PEBS supported with 
IA32_PMC0).

This event counts the number of instructions that retire 
execution. For instructions that consist of multiple micro-ops, 
this event counts the retirement of the last micro-op of the 
instruction. The counter continues counting during hardware 
interrupts, traps, and inside interrupt handlers.

N/A 00H INST_RETIRED.ANY Instructions retired This uses the fixed counter 0 to count the same condition as 
INST_RETIRED.ANY_P does.

C2H 01H UOPS_RETIRED.MS MSROM micro-ops 
retired

This event counts the number of micro-ops retired that were 
supplied from MSROM. 

C2H 10H UOPS_RETIRED.ALL Micro-ops retired This event counts the number of micro-ops retired. 

The processor decodes complex macro instructions into a sequence of simpler micro-ops. Most instructions are composed of one or two 
micro-ops. Some instructions are decoded into longer sequences such as repeat instructions, floating point transcendental instructions, 
and assists. In some cases micro-op sequences are fused or whole instructions are fused into one micro-op. See other UOPS_RETIRED 
events for differentiating retired fused and non-fused micro-ops.

C3H 01H MACHINE_CLEARS.SMC Self-Modifying Code 
detected

This event counts the number of times that a program writes to 
a code section. Self-modifying code causes a severe penalty in all 
Intel® architecture processors.

C3H 02H MACHINE_CLEARS.ME
MORY_ORDERING

Stalls due to Memory 
ordering 

This event counts the number of times that pipeline was cleared 
due to memory ordering issues. 

C3H 04H MACHINE_CLEARS.FP_
ASSIST

Stalls due to FP assists This event counts the number of times that pipeline stalled due 
to FP operations needing assists. 

C3H 08H MACHINE_CLEARS.ALL Stalls due to any 
causes

This event counts the number of times that pipeline stalled due 
to due to any causes (including SMC, MO, FP assist, etc). 

There are many conditions that might cause a machine clear (including the receipt of an interrupt, or a trap or a fault). All those 
conditions (including but not limited to MO, SMC and FP) are captured in the ANY event. In addition, some conditions can be specifically 
counted (i.e. SMC, MO, FP). However, the sum of SMC, MO and FP machine clears will not necessarily equal the number of ANY.

FP Assist: Most of the time, the floating point execute unit can properly produce the correct output bits. On rare occasions, it needs a 
little help. When help is needed, a machine clear is asserted against the instruction. After this machine clear (as described above), the 
front end of the machine begins to deliver instructions that will figure out exactly what FP operation was asked for, and they will do 
the extra work to produce the correct FP result (for instance, if the result was a floating point denormal, sometimes the hardware asks 
the help to produce the correctly rounded IEEE compliant result).

SMC: (Self modifying code) The SMC happens when the machine fears that an instruction “in flight” is being changed. For instance, if 
you wrote a piece of code that wrote to the instruction stream ahead of where you were executing. In the Silvermont 
microarchitecture, the detection works in a 1K aligned region.

If you write to memory within 1K of where you are executing, the hardware may get concerned that an instruction is being modified 
and a machine clear might be signaled. Since the machine clear allows the store pipeline to drain, when front end restart occurs the 
correct instructions (after the write) will be executed.

MO: (Memory order) The MO machine clear happens when a snoop request occurs and the machine is uncertain if memory ordering will 
be preserved. For instance, suppose you have two loads, one to address X followed by another to address Y in the program order. Both 
loads have been issued; however, load to Y completes first and all the dependent ops on this load continue with the data loaded by this 
load. Load to X is still waiting for the data. Suppose that at the same time another processor writes to the same address Y and causes 
a snoop to address Y.

This presents a problem: the load to Y got the old value, but we have not yet finished loading X. So the other processor saw the loads 
in a different order by not consuming the latest value from the store to address Y. So we need to un-do everything from the load to 
address Y so that we will see the post-write data. Note we do not have to un-do load Y if there were no other pending reads-- the fact 
that the load to X is not yet finished causes this ordering problem.

C4H 00H BR_INST_RETIRED.ALL
_BRANCHES

Retired branch 
instructions

This event counts the number of branch instructions retired. 
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C4H 7EH BR_INST_RETIRED.JCC Retired branch 
instructions that were 
conditional jumps

This event counts the number of branch instructions retired that 
were conditional jumps.

C4H BFH BR_INST_RETIRED.FAR
_BRANCH

Retired far branch 
instructions

This event counts the number of far branch instructions retired.

C4H EBH BR_INST_RETIRED.NO
N_RETURN_IND

Retired instructions of 
near indirect Jmp or call

This event counts the number of branch instructions retired that 
were near indirect call or near indirect jmp.

C4H F7H BR_INST_RETIRED.RET
URN

Retired near return 
instructions 

This event counts the number of near RET branch instructions 
retired

C4H F9H BR_INST_RETIRED.CAL
L

Retired near call 
instructions 

This event counts the number of near CALL branch instructions 
retired

C4H FBH BR_INST_RETIRED.IND
_CALL

Retired near indirect 
call instructions 

This event counts the number of near indirect CALL branch 
instructions retired

C4H FDH BR_INST_RETIRED.REL
_CALL

Retired near relative 
call instructions 

This event counts the number of near relative CALL branch 
instructions retired

C4H FEH BR_INST_RETIRED.TAK
EN_JCC

Retired conditional 
jumps that were 
predicted taken

This event counts the number of branch instructions retired that 
were conditional jumps and predicted taken.

C5H 00H BR_MISP_RETIRED.ALL
_BRANCHES

Retired mispredicted 
branch instructions

This event counts the number of mispredicted branch 
instructions retired. 

C5H 7EH BR_MISP_RETIRED.JCC Retired mispredicted 
conditional jumps

This event counts the number of mispredicted branch 
instructions retired that were conditional jumps.

C5H BFH BR_MISP_RETIRED.FA
R

Retired mispredicted 
far branch instructions

This event counts the number of mispredicted far branch 
instructions retired.

C5H EBH BR_MISP_RETIRED.NO
N_RETURN_IND

Retired mispredicted 
instructions of near 
indirect Jmp or call

This event counts the number of mispredicted branch 
instructions retired that were near indirect call or near indirect 
jmp.

C5H F7H BR_MISP_RETIRED.RE
TURN

Retired mispredicted 
near return 
instructions 

This event counts the number of mispredicted near RET branch 
instructions retired

C5H F9H BR_MISP_RETIRED.CAL
L

Retired mispredicted 
near call instructions 

This event counts the number of mispredicted near CALL branch 
instructions retired

C5H FBH BR_MISP_RETIRED.IND
_CALL

Retired mispredicted 
near indirect call 
instructions 

This event counts the number of mispredicted near indirect CALL 
branch instructions retired

C5H FDH BR_MISP_RETIRED.REL
_CALL

Retired mispredicted 
near relative call 
instructions 

This event counts the number of mispredicted near relative CALL 
branch instructions retired

C5H FEH BR_MISP_RETIRED.TA
KEN_JCC

Retired mispredicted 
conditional jumps that 
were predicted taken

This event counts the number of mispredicted branch 
instructions retired that were conditional jumps and predicted 
taken.

CAH 01H NO_ALLOC_CYCLES.RO
B_FULL

Counts the number of 
cycles when no uops 
are allocated and the 
ROB is full (less than 2 
entries available)

Counts the number of cycles when no uops are allocated and the 
ROB is full (less than 2 entries available)
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CAH 20H NO_ALLOC_CYCLES.RA
T_STALL

Counts the number of 
cycles when no uops 
are allocated and a 
RATstall is asserted. 

Counts the number of cycles when no uops are allocated and a 
RATstall is asserted. 

CAH 3FH NO_ALLOC_CYCLES.AL
L

Front end not 
delivering

This event counts the number of cycles when the front-end does 
not provide any instructions to be allocated for any reason

CAH 50H NO_ALLOC_CYCLES.NO
T_DELIVERED

Front end not 
delivering backend not 
stalled

This event counts the number of cycles when the front-end does 
not provide any instructions to be allocated but the back end is 
not stalled

The front-end is responsible for fetching the instruction, decoding into micro-ops (uops) and putting them into a micro-op queue to be 
consumed by back end. The back-end then takes these micro-ops, allocates the required resources. When all resources are ready, 
micro-ops are executed. If the back-end is not ready to accept micro-ops from the front-end, then we do not want to count these as 
front-end bottlenecks. However, whenever we have bottlenecks in the back-end, we will have allocation unit stalls and eventually 
forcing the front-end to wait until the back-end is ready to receive more UOPS. This event counts the cycles only when back-end is 
requesting more micro-uops and front-end is not able to provide them.

CBH 01H RS_FULL_STALL.MEC MEC RS full This event counts the number of cycles the allocation pipe line 
stalled due to the RS for the MEC cluster is full

CBH 1FH RS_FULL_STALL.ALL Any RS full This event counts the number of cycles that the allocation pipe 
line stalled due to any one of the RS is full

The Silvermont microarchitecture has an allocation pipeline (AKA the RAT) that moves UOPS from the front end to the backend. At the 
end of the allocate pipe a UOP needs to be written into one of 6 reservation stations (the RS). Each RS holds UOPS that are to be sent 
to a specific execution (or memory) cluster. Each RS has a finite capacity, and it may accumulate UOPS when it is unable to send a UOP 
to its execution cluster. Typical reasons why an RS may fill include, but are not limited to, execution of long latency UOPS like divide, or 
inability to schedule UOPS due to dependencies, or too many outstanding memory references. When the RS becomes full, it is unable to 
accept more UOPS, and it will stall the allocation pipeline. The RS_FULL_STALL.ANY event will be asserted on any cycle when the 
allocation is stalled for any one of the RSs being full and not for other reasons. (i.e. the allocate pipeline might be stalled for some other 
reason, but if RS is not full, the RS_FULL_STALL.ANY will not count) The subevents allow discovery of exactly which RS (or RSs) that 
are full that prevent further allocation.

CDH 01H CYCLES_DIV_BUSY.AN
Y

Divider Busy This event counts the number of cycles the divider is busy.

This event counts the cycles when the divide unit is unable to accept a new divide UOP because it is busy processing a previously 
dispatched UOP. The cycles will be counted irrespective of whether or not another divide UOP is waiting to enter the divide unit (from 
the RS). This event will count cycles while a divide is in progress even if the RS is empty.

E6H 01H BACLEARS.ALL BACLEARS asserted for 
any branch

This event counts the number of baclears for any type of branch.

E6H 08H BACLEARS.RETURN BACLEARS asserted for 
return branch

This event counts the number of baclears for return branches.

E6H 10H BACLEARS.COND BACLEARS asserted for 
conditional branch

This event counts the number of baclears for conditional 
branches.

E7H 01H MS_DECODED.MS_ENT
RY

MS Decode starts This event counts the number of times the MSROM starts a flow 
of UOPS.
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19.10 PERFORMANCE MONITORING EVENTS FOR INTEL® ATOM™ PROCESSORS

Processors based on the Intel® Atom™ microarchitecture support the architectural performance-monitoring events 
listed in Table 19-1 and fixed-function performance events using fixed counter listed in Table 19-16. In addition, 
they also support the following non-architectural performance-monitoring events listed in Table 19-19. 

Table 19-19.  Non-Architectural Performance Events for Intel® Atom™ Processors

Event
Num.

Umask
Value Event Name Definition Description and Comment

02H 81H STORe_FORWARDS.GO
OD

Good store forwards This event counts the number of times store data was 
forwarded directly to a load.

06H 00H SEGMENT_REG_
LOADS.ANY

Number of segment 
register loads

This event counts the number of segment register load 
operations. Instructions that load new values into segment 
registers cause a penalty. This event indicates performance 
issues in 16-bit code. If this event occurs frequently, it may be 
useful to calculate the number of instructions retired per 
segment register load. If the resulting calculation is low (on 
average a small number of instructions are executed between 
segment register loads), then the code’s segment register 
usage should be optimized. 

As a result of branch misprediction, this event is speculative and 
may include segment register loads that do not actually occur. 
However, most segment register loads are internally serialized 
and such speculative effects are minimized. 

07H 01H PREFETCH.PREFETCHT
0

Streaming SIMD 
Extensions (SSE) 
PrefetchT0 
instructions executed.

This event counts the number of times the SSE instruction 
prefetchT0 is executed. This instruction prefetches the data to 
the L1 data cache and L2 cache.

07H 06H PREFETCH.SW_L2 Streaming SIMD 
Extensions (SSE) 
PrefetchT1 and 
PrefetchT2 
instructions executed

This event counts the number of times the SSE instructions 
prefetchT1 and prefetchT2 are executed. These instructions 
prefetch the data to the L2 cache.

07H 08H PREFETCH.PREFETCHN
TA

Streaming SIMD 
Extensions (SSE) 
Prefetch NTA 
instructions executed

This event counts the number of times the SSE instruction 
prefetchNTA is executed. This instruction prefetches the data 
to the L1 data cache. 

08H 07H DATA_TLB_MISSES.DT
LB_MISS

Memory accesses that 
missed the DTLB

This event counts the number of Data Table Lookaside Buffer 
(DTLB) misses. The count includes misses detected as a result 
of speculative accesses. Typically a high count for this event 
indicates that the code accesses a large number of data pages.

08H 05H DATA_TLB_MISSES.DT
LB_MISS_LD

DTLB misses due to 
load operations

This event counts the number of Data Table Lookaside Buffer 
(DTLB) misses due to load operations. This count includes 
misses detected as a result of speculative accesses.

08H 09H DATA_TLB_MISSES.L0
_DTLB_MISS_LD

L0_DTLB misses due to 
load operations

This event counts the number of L0_DTLB misses due to load 
operations. This count includes misses detected as a result of 
speculative accesses.

08H 06H DATA_TLB_MISSES.DT
LB_MISS_ST

DTLB misses due to 
store operations

This event counts the number of Data Table Lookaside Buffer 
(DTLB) misses due to store operations. This count includes 
misses detected as a result of speculative accesses. 
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0CH 03H PAGE_WALKS.WALKS Number of page-walks 
executed

This event counts the number of page-walks executed due to 
either a DTLB or ITLB miss. The page walk duration, 
PAGE_WALKS.CYCLES, divided by number of page walks is the 
average duration of a page walk. This can hint to whether most 
of the page-walks are satisfied by the caches or cause an L2 
cache miss.

Edge trigger bit must be set.

0CH 03H PAGE_WALKS.CYCLES Duration of page-walks 
in core cycles

This event counts the duration of page-walks in core cycles. The 
paging mode in use typically affects the duration of page walks. 
Page walk duration divided by number of page walks is the 
average duration of page-walks. This can hint at whether most 
of the page-walks are satisfied by the caches or cause an L2 
cache miss. 

Edge trigger bit must be cleared.

10H 01H X87_COMP_OPS_EXE.
ANY.S

Floating point 
computational micro-
ops executed

This event counts the number of x87 floating point 
computational micro-ops executed.

10H 81H X87_COMP_OPS_EXE.
ANY.AR

Floating point 
computational micro-
ops retired

This event counts the number of x87 floating point 
computational micro-ops retired.

11H 01H FP_ASSIST Floating point assists This event counts the number of floating point operations 
executed that required micro-code assist intervention. These 
assists are required in the following cases: 

X87 instructions:

1. NaN or denormal are loaded to a register or used as input 
from memory

2. Division by 0 

3. Underflow output

11H 81H FP_ASSIST.AR Floating point assists This event counts the number of floating point operations 
executed that required micro-code assist intervention. These 
assists are required in the following cases: 

X87 instructions:

1. NaN or denormal are loaded to a register or used as input 
from memory

2. Division by 0 

3. Underflow output

12H 01H MUL.S Multiply operations 
executed

This event counts the number of multiply operations executed. 
This includes integer as well as floating point multiply 
operations.

12H 81H MUL.AR Multiply operations 
retired

This event counts the number of multiply operations retired. 
This includes integer as well as floating point multiply 
operations.

13H 01H DIV.S Divide operations 
executed

This event counts the number of divide operations executed. 
This includes integer divides, floating point divides and square-
root operations executed.

13H 81H DIV.AR Divide operations 
retired

This event counts the number of divide operations retired. This 
includes integer divides, floating point divides and square-root 
operations executed.
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14H 01H CYCLES_DIV_BUSY Cycles the driver is 
busy

This event counts the number of cycles the divider is busy 
executing divide or square root operations. The divide can be 
integer, X87 or Streaming SIMD Extensions (SSE). The square 
root operation can be either X87 or SSE. 

21H See 
Table 
18-2

L2_ADS Cycles L2 address bus 
is in use

This event counts the number of cycles the L2 address bus is 
being used for accesses to the L2 cache or bus queue. 

This event can count occurrences for this core or both cores. 

22H See 
Table 
18-2

L2_DBUS_BUSY Cycles the L2 cache 
data bus is busy

This event counts core cycles during which the L2 cache data 
bus is busy transferring data from the L2 cache to the core.   It 
counts for all L1 cache misses (data and instruction) that hit the 
L2 cache.   The count will increment by two for a full cache-line 
request. 

24H See 
Table 
18-2 
and 
Table 
18-4

L2_LINES_IN L2 cache misses This event counts the number of cache lines allocated in the L2 
cache. Cache lines are allocated in the L2 cache as a result of 
requests from the L1 data and instruction caches and the L2 
hardware prefetchers to cache lines that are missing in the L2 
cache.

This event can count occurrences for this core or both cores. 
This event can also count demand requests and L2 hardware 
prefetch requests together or separately.

25H See 
Table 
18-2

L2_M_LINES_IN L2 cache line 
modifications

This event counts whenever a modified cache line is written 
back from the L1 data cache to the L2 cache.

This event can count occurrences for this core or both cores.

26H See 
Table 
18-2 
and 
Table 
18-4

L2_LINES_OUT L2 cache lines evicted This event counts the number of L2 cache lines evicted.

This event can count occurrences for this core or both cores. 
This event can also count evictions due to demand requests and 
L2 hardware prefetch requests together or separately.

27H See 
Table 
18-2 
and 
Table 
18-4

L2_M_LINES_OUT Modified lines evicted 
from the L2 cache

This event counts the number of L2 modified cache lines 
evicted. These lines are written back to memory unless they 
also exist in a shared-state in one of the L1 data caches.

This event can count occurrences for this core or both cores. 
This event can also count evictions due to demand requests and 
L2 hardware prefetch requests together or separately.

28H See 
Table 
18-2 
and 
Table 
18-5

L2_IFETCH L2 cacheable 
instruction fetch 
requests

This event counts the number of instruction cache line requests 
from the ICache. It does not include fetch requests from 
uncacheable memory. It does not include ITLB miss accesses. 

This event can count occurrences for this core or both cores. 
This event can also count accesses to cache lines at different 
MESI states.
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29H See 
Table 
18-2, 
Table 
18-4 
and 
Table 
18-5

L2_LD L2 cache reads This event counts L2 cache read requests coming from the L1 
data cache and L2 prefetchers. 

This event can count occurrences for this core or both cores. 
This event can count occurrences

- for this core or both cores.

- due to demand requests and L2 hardware prefetch requests 
together or separately.

- of accesses to cache lines at different MESI states.

2AH See 
Table 
18-2 
and 
Table 
18-5

L2_ST L2 store requests This event counts all store operations that miss the L1 data 
cache and request the data 

from the L2 cache. 

This event can count occurrences for this core or both cores. 
This event can also count accesses to cache lines at different 
MESI states.

2BH See 
Table 
18-2 
and 
Table 
18-5

L2_LOCK L2 locked accesses This event counts all locked accesses to cache lines that miss 
the L1 data cache.

This event can count occurrences for this core or both cores. 
This event can also count accesses to cache lines at different 
MESI states.

2EH See 
Table 
18-2, 
Table 
18-4 
and 
Table 
18-5

L2_RQSTS L2 cache requests This event counts all completed L2 cache requests. This 
includes L1 data cache reads, writes, and locked accesses, L1 
data prefetch requests, instruction fetches, and all L2 hardware 
prefetch requests. 

This event can count occurrences

- for this core or both cores.

- due to demand requests and L2 hardware prefetch requests 
together, or separately.

- of accesses to cache lines at different MESI states.

2EH 41H L2_RQSTS.SELF.DEMA
ND.I_STATE

L2 cache demand 
requests from this core 
that missed the L2

This event counts all completed L2 cache demand requests 
from this core that miss the L2 cache. This includes L1 data 
cache reads, writes, and locked accesses, L1 data prefetch 
requests, and instruction fetches. 

This is an architectural performance event.

2EH 4FH L2_RQSTS.SELF.DEMA
ND.MESI

L2 cache demand 
requests from this core

This event counts all completed L2 cache demand requests 
from this core. This includes L1 data cache reads, writes, and 
locked accesses, L1 data prefetch requests, and instruction 
fetches. 

This is an architectural performance event.
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30H See 
Table 
18-2, 
Table 
18-4 
and 
Table 
18-5

L2_REJECT_BUSQ Rejected L2 cache 
requests

This event indicates that a pending L2 cache request that 
requires a bus transaction is delayed from moving to the bus 
queue. Some of the reasons for this event are:

- The bus queue is full.

- The bus queue already holds an entry for a cache line in the 
same set.

The number of events is greater or equal to the number of 
requests that were rejected.

- for this core or both cores.

- due to demand requests and L2 hardware prefetch requests 
together, or separately.

- of accesses to cache lines at different MESI states.

32H See 
Table 
18-2

L2_NO_REQ Cycles no L2 cache 
requests are pending

This event counts the number of cycles that no L2 cache 
requests are pending.

3AH 00H EIST_TRANS Number of Enhanced 
Intel SpeedStep(R) 
Technology (EIST) 
transitions

This event counts the number of Enhanced Intel SpeedStep(R) 
Technology (EIST) transitions that include a frequency change, 
either with or without VID change. This event is incremented 
only while the counting core is in C0 state. In situations where 
an EIST transition was caused by hardware as a result of CxE 
state transitions, those EIST transitions will also be registered 
in this event.

Enhanced Intel Speedstep Technology transitions are commonly 
initiated by OS, but can be initiated by HW internally. For 
example: CxE states are C-states (C1,C2,C3…) which not only 
place the CPU into a sleep state by turning off the clock and 
other components, but also lower the voltage (which reduces 
the leakage power consumption). The same is true for thermal 
throttling transition which uses Enhanced Intel Speedstep 
Technology internally.

3BH C0H THERMAL_TRIP Number of thermal 
trips

This event counts the number of thermal trips. A thermal trip 
occurs whenever the processor temperature exceeds the 
thermal trip threshold temperature. Following a thermal trip, 
the processor automatically reduces frequency and voltage. 
The processor checks the temperature every millisecond, and 
returns to normal when the temperature falls below the 
thermal trip threshold temperature.
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3CH 00H CPU_CLK_UNHALTED.C
ORE_P

Core cycles when core 
is not halted

This event counts the number of core cycles while the core is 
not in a halt state. The core enters the halt state when it is 
running the HLT instruction. This event is a component in many 
key event ratios. 

In mobile systems the core frequency may change from time to 
time. For this reason this event may have a changing ratio with 
regards to time. In systems with a constant core frequency, this 
event can give you a measurement of the elapsed time while 
the core was not in halt state by dividing the event count by the 
core frequency.

-This is an architectural performance event.

- The event CPU_CLK_UNHALTED.CORE_P is counted by a 
programmable counter.

- The event CPU_CLK_UNHALTED.CORE is counted by a 
designated fixed counter, leaving the two programmable 
counters available for other events.

3CH 01H CPU_CLK_UNHALTED.B
US

Bus cycles when core is 
not halted

This event counts the number of bus cycles while the core is not 
in the halt state. This event can give you a measurement of the 
elapsed time while the core was not in the halt state, by 
dividing the event count by the bus frequency. The core enters 
the halt state when it is running the HLT instruction.

The event also has a constant ratio with 
CPU_CLK_UNHALTED.REF event, which is the maximum bus to 
processor frequency ratio. 

Non-halted bus cycles are a component in many key event 
ratios. 

3CH 02H CPU_CLK_UNHALTED.
NO_OTHER

Bus cycles when core is 
active and the other is 
halted

This event counts the number of bus cycles during which the 
core remains non-halted, and the other core on the processor is 
halted. 

This event can be used to determine the amount of parallelism 
exploited by an application or a system. Divide this event count 
by the bus frequency to determine the amount of time that 
only one core was in use.

40H 21H L1D_CACHE.LD L1 Cacheable Data 
Reads

This event counts the number of data reads from cacheable 
memory.

40H 22H L1D_CACHE.ST L1 Cacheable Data 
Writes

This event counts the number of data writes to cacheable 
memory.

60H See 
Table 
18-2 
and 
Table 
18-3

BUS_REQUEST_OUTST
ANDING

Outstanding cacheable 
data read bus requests 
duration

This event counts the number of pending full cache line read 
transactions on the bus occurring in each cycle. A read 
transaction is pending from the cycle it is sent on the bus until 
the full cache line is received by the processor. NOTE: This 
event is thread-independent and will not provide a count per 
logical processor when AnyThr is disabled.

Table 19-19.  Non-Architectural Performance Events for Intel® Atom™ Processors (Contd.)

Event
Num.

Umask
Value Event Name Definition Description and Comment



Vol. 3B 19-137

PERFORMANCE-MONITORING EVENTS

61H See 
Table 
18-3

BUS_BNR_DRV Number of Bus Not 
Ready signals asserted

This event counts the number of Bus Not Ready (BNR) signals 
that the processor asserts on the bus to suspend additional bus 
requests by other bus agents. A bus agent asserts the BNR 
signal when the number of data and snoop transactions is close 
to the maximum that the bus can handle. 

While this signal is asserted, new transactions cannot be 
submitted on the bus. As a result, transaction latency may have 
higher impact on program performance. NOTE: This event is 
thread-independent and will not provide a count per logical 
processor when AnyThr is disabled.

62H See 
Table 
18-3

BUS_DRDY_CLOCKS Bus cycles when data 
is sent on the bus

This event counts the number of bus cycles during which the 
DRDY (Data Ready) signal is asserted on the bus. The DRDY 
signal is asserted when data is sent on the bus.

This event counts the number of bus cycles during which this 
agent (the processor) writes data on the bus back to memory or 
to other bus agents. This includes all explicit and implicit data 
writebacks, as well as partial writes.
NOTE: This event is thread-independent and will not provide a 
count per logical processor when AnyThr is disabled.

63H See 
Table 
18-2 
and 
Table 
18-3

BUS_LOCK_CLOCKS Bus cycles when a 
LOCK signal is asserted.

This event counts the number of bus cycles, during which the 
LOCK signal is asserted on the bus. A LOCK signal is asserted 
when there is a locked memory access, due to:

- Uncacheable memory

- Locked operation that spans two cache lines

- Page-walk from an uncacheable page table.

Bus locks have a very high performance penalty and it is highly 
recommended to avoid such accesses. NOTE: This event is 
thread-independent and will not provide a count per logical 
processor when AnyThr is disabled.

64H See 
Table 
18-2

BUS_DATA_RCV Bus cycles while 
processor receives 
data

This event counts the number of cycles during which the 
processor is busy receiving data. NOTE: This event is thread-
independent and will not provide a count per logical processor 
when AnyThr is disabled.

65H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_BRD Burst read bus 
transactions

This event counts the number of burst read transactions 
including:

- L1 data cache read misses (and L1 data cache hardware 
prefetches)

- L2 hardware prefetches by the DPL and L2 streamer

- IFU read misses of cacheable lines.

It does not include RFO transactions.

66H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_RFO RFO bus transactions This event counts the number of Read For Ownership (RFO) bus 
transactions, due to store operations that miss the L1 data 
cache and the L2 cache. This event also counts RFO bus 
transactions due to locked operations.
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67H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_WB Explicit writeback bus 
transactions

This event counts all explicit writeback bus transactions due to 
dirty line evictions. It does not count implicit writebacks due to 
invalidation by a snoop request.

68H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_IFETCH Instruction-fetch bus 
transactions.

This event counts all instruction fetch full cache line bus 
transactions.

69H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_INVAL Invalidate bus 
transactions

This event counts all invalidate transactions. Invalidate 
transactions are generated when:

- A store operation hits a shared line in the L2 cache.

- A full cache line write misses the L2 cache or hits a shared line 
in the L2 cache.

6AH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_PWR Partial write bus 
transaction.

This event counts partial write bus transactions.

6BH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_P Partial bus 
transactions

This event counts all (read and write) partial bus transactions.

6CH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_IO IO bus transactions This event counts the number of completed I/O bus 
transactions as a result of IN and OUT instructions. The count 
does not include memory mapped IO.

6DH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_DEF Deferred bus 
transactions

This event counts the number of deferred transactions. 

6EH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_BURST Burst (full cache-line) 
bus transactions.

This event counts burst (full cache line) transactions including:

- Burst reads

- RFOs

- Explicit writebacks

- Write combine lines
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6FH See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_MEM Memory bus 
transactions

This event counts all memory bus transactions including:

- burst transactions

- partial reads and writes

- invalidate transactions

The BUS_TRANS_MEM count is the sum of 
BUS_TRANS_BURST, BUS_TRANS_P and BUS_TRANS_INVAL.

70H See 
Table 
18-2 
and 
Table 
18-3

BUS_TRANS_ANY All bus transactions This event counts all bus transactions. This includes:

- Memory transactions

- IO transactions (non memory-mapped)

- Deferred transaction completion

- Other less frequent transactions, such as interrupts

77H See 
Table 
18-2 
and 
Table 
18-5

EXT_SNOOP External snoops This event counts the snoop responses to bus transactions. 
Responses can be counted separately by type and by bus agent. 
NOTE: This event is thread-independent and will not provide a 
count per logical processor when AnyThr is disabled.

7AH See 
Table 
18-3

BUS_HIT_DRV HIT signal asserted This event counts the number of bus cycles during which the 
processor drives the HIT# pin to signal HIT snoop response. 
NOTE: This event is thread-independent and will not provide a 
count per logical processor when AnyThr is disabled.

7BH See 
Table 
18-3

BUS_HITM_DRV HITM signal asserted This event counts the number of bus cycles during which the 
processor drives the HITM# pin to signal HITM snoop response. 
NOTE: This event is thread-independent and will not provide a 
count per logical processor when AnyThr is disabled.

7DH See 
Table 
18-2

BUSQ_EMPTY Bus queue is empty This event counts the number of cycles during which the core 
did not have any pending transactions in the bus queue. 

NOTE: This event is thread-independent and will not provide a 
count per logical processor when AnyThr is disabled.

7EH See 
Table 
18-2 
and 
Table 
18-3

SNOOP_STALL_DRV Bus stalled for snoops This event counts the number of times that the bus snoop stall 
signal is asserted. During the snoop stall cycles no new bus 
transactions requiring a snoop response can be initiated on the 
bus. NOTE: This event is thread-independent and will not 
provide a count per logical processor when AnyThr is disabled.

7FH See 
Table 
18-2

BUS_IO_WAIT IO requests waiting in 
the bus queue

This event counts the number of core cycles during which IO 
requests wait in the bus queue. This event counts IO requests 
from the core.

80H 03H ICACHE.ACCESSES Instruction fetches This event counts all instruction fetches, including uncacheable 
fetches.

80H 02H ICACHE.MISSES Icache miss This event counts all instruction fetches that miss the 
Instruction cache or produce memory requests. This includes 
uncacheable fetches. An instruction fetch miss is counted only 
once and not once for every cycle it is outstanding.

82H 04H ITLB.FLUSH ITLB flushes This event counts the number of ITLB flushes.

82H 02H ITLB.MISSES ITLB misses This event counts the number of instruction fetches that miss 
the ITLB. 
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AAH 02H MACRO_INSTS.CISC_DE
CODED

CISC macro instructions 
decoded

This event counts the number of complex instructions decoded, 
but not necessarily executed or retired. Only one complex 
instruction can be decoded at a time.

AAH 03H MACRO_INSTS.ALL_DE
CODED

All Instructions 
decoded

This event counts the number of instructions decoded.

B0H 00H SIMD_UOPS_EXEC.S SIMD micro-ops 
executed (excluding 
stores)

This event counts all the SIMD micro-ops executed. This event 
does not count MOVQ and MOVD stores from register to 
memory.

B0H 80H SIMD_UOPS_EXEC.AR SIMD micro-ops retired 
(excluding stores)

This event counts the number of SIMD saturated arithmetic 
micro-ops executed.

B1H 00H SIMD_SAT_UOP_EXEC.
S

SIMD saturated 
arithmetic micro-ops 
executed

This event counts the number of SIMD saturated arithmetic 
micro-ops executed.

B1H 80H SIMD_SAT_UOP_EXEC.
AR

SIMD saturated 
arithmetic micro-ops 
retired

This event counts the number of SIMD saturated arithmetic 
micro-ops retired.

B3H 01H SIMD_UOP_TYPE_EXE
C.MUL.S

SIMD packed multiply 
micro-ops executed

This event counts the number of SIMD packed multiply micro-
ops executed.

B3H 81H SIMD_UOP_TYPE_EXE
C.MUL.AR

SIMD packed multiply 
micro-ops retired

This event counts the number of SIMD packed multiply micro-
ops retired.

B3H 02H SIMD_UOP_TYPE_EXE
C.SHIFT.S

SIMD packed shift 
micro-ops executed

This event counts the number of SIMD packed shift micro-ops 
executed.

B3H 82H SIMD_UOP_TYPE_EXE
C.SHIFT.AR

SIMD packed shift 
micro-ops retired

This event counts the number of SIMD packed shift micro-ops 
retired.

B3H 04H SIMD_UOP_TYPE_EXE
C.PACK.S

SIMD pack micro-ops 
executed

This event counts the number of SIMD pack micro-ops executed.

B3H 84H SIMD_UOP_TYPE_EXE
C.PACK.AR

SIMD pack micro-ops 
retired

This event counts the number of SIMD pack micro-ops retired.

B3H 08H SIMD_UOP_TYPE_EXE
C.UNPACK.S

SIMD unpack micro-ops 
executed

This event counts the number of SIMD unpack micro-ops 
executed.

B3H 88H SIMD_UOP_TYPE_EXE
C.UNPACK.AR

SIMD unpack micro-ops 
retired

This event counts the number of SIMD unpack micro-ops retired.

B3H 10H SIMD_UOP_TYPE_EXE
C.LOGICAL.S

SIMD packed logical 
micro-ops executed

This event counts the number of SIMD packed logical micro-ops 
executed.

B3H 90H SIMD_UOP_TYPE_EXE
C.LOGICAL.AR

SIMD packed logical 
micro-ops retired

This event counts the number of SIMD packed logical micro-ops 
retired.

B3H 20H SIMD_UOP_TYPE_EXE
C.ARITHMETIC.S

SIMD packed arithmetic 
micro-ops executed

This event counts the number of SIMD packed arithmetic micro-
ops executed.

B3H A0H SIMD_UOP_TYPE_EXE
C.ARITHMETIC.AR

SIMD packed arithmetic 
micro-ops retired

This event counts the number of SIMD packed arithmetic micro-
ops retired.

C0H 00H INST_RETIRED.ANY_P Instructions retired 
(precise event).

This event counts the number of instructions that retire 
execution. For instructions that consist of multiple micro-ops, 
this event counts the retirement of the last micro-op of the 
instruction. The counter continues counting during hardware 
interrupts, traps, and inside interrupt handlers.
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N/A 00H INST_RETIRED.ANY Instructions retired This event counts the number of instructions that retire 
execution. For instructions that consist of multiple micro-ops, 
this event counts the retirement of the last micro-op of the 
instruction. The counter continues counting during hardware 
interrupts, traps, and inside interrupt handlers.

C2H 10H UOPS_RETIRED.ANY Micro-ops retired This event counts the number of micro-ops retired. The 
processor decodes complex macro instructions into a sequence 
of simpler micro-ops. Most instructions are composed of one or 
two micro-ops. Some instructions are decoded into longer 
sequences such as repeat instructions, floating point 
transcendental instructions, and assists. In some cases micro-op 
sequences are fused or whole instructions are fused into one 
micro-op. See other UOPS_RETIRED events for differentiating 
retired fused and non-fused micro-ops.

C3H 01H MACHINE_CLEARS.SMC Self-Modifying Code 
detected

This event counts the number of times that a program writes to 
a code section. Self-modifying code causes a severe penalty in 
all Intel® architecture processors.

C4H 00H BR_INST_RETIRED.AN
Y

Retired branch 
instructions

This event counts the number of branch instructions retired. 

This is an architectural performance event. 

C4H 01H BR_INST_RETIRED.PRE
D_NOT_TAKEN

Retired branch 
instructions that were 
predicted not-taken

This event counts the number of branch instructions retired 
that were correctly predicted to be not-taken.

C4H 02H BR_INST_RETIRED.MIS
PRED_NOT_TAKEN

Retired branch 
instructions that were 
mispredicted not-taken

This event counts the number of branch instructions retired 
that were mispredicted and not-taken.

C4H 04H BR_INST_RETIRED.PRE
D_TAKEN

Retired branch 
instructions that were 
predicted taken

This event counts the number of branch instructions retired 
that were correctly predicted to be taken.

C4H 08H BR_INST_RETIRED.MIS
PRED_TAKEN

Retired branch 
instructions that were 
mispredicted taken

This event counts the number of branch instructions retired 
that were mispredicted and taken.

C4H 0AH BR_INST_RETIRED.MIS
PRED

Retired mispredicted 
branch instructions 
(precise event)

This event counts the number of retired branch instructions 
that were mispredicted by the processor. A branch 
misprediction occurs when the processor predicts that the 
branch would be taken, but it is not, or vice-versa. Mispredicted 
branches degrade the performance because the processor 
starts executing instructions along a wrong path it predicts. 
When the misprediction is discovered, all the instructions 
executed in the wrong path must be discarded, and the 
processor must start again on the correct path. 

Using the Profile-Guided Optimization (PGO) features of the 
Intel® C++ compiler may help reduce branch mispredictions. See 
the compiler documentation for more information on this 
feature. 
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To determine the branch misprediction ratio, divide the 
BR_INST_RETIRED.MISPRED event count by the number of 
BR_INST_RETIRED.ANY event count. To determine the number 
of mispredicted branches per instruction, divide the number of 
mispredicted branches by the INST_RETIRED.ANY event count. 
To measure the impact of the branch mispredictions use the 
event RESOURCE_STALLS.BR_MISS_CLEAR. 

Tips:

- See the optimization guide for tips on reducing branch 
mispredictions.

- PGO's purpose is to have straight line code for the most 
frequent execution paths, reducing branches taken and 
increasing the "basic block" size, possibly also reducing the code 
footprint or working-set.

C4H 0CH BR_INST_RETIRED.TAK
EN

Retired taken branch 
instructions

This event counts the number of branches retired that were 
taken.

C4H 0FH BR_INST_RETIRED.AN
Y1

Retired branch 
instructions

This event counts the number of branch instructions retired 
that were mispredicted. This event is a duplicate of 
BR_INST_RETIRED.MISPRED.

C5H 00H BR_INST_RETIRED.MIS
PRED

Retired mispredicted 
branch instructions 
(precise event).

This event counts the number of retired branch instructions 
that were mispredicted by the processor. A branch 
misprediction occurs when the processor predicts that the 
branch would be taken, but it is not, or vice-versa. Mispredicted 
branches degrade the performance because the processor 
starts executing instructions along a wrong path it predicts. 
When the misprediction is discovered, all the instructions 
executed in the wrong path must be discarded, and the 
processor must start again on the correct path. 

Using the Profile-Guided Optimization (PGO) features of the 
Intel® C++ compiler may help reduce branch mispredictions. See 
the compiler documentation for more information on this 
feature. 

To determine the branch misprediction ratio, divide the 
BR_INST_RETIRED.MISPRED event count by the number of 
BR_INST_RETIRED.ANY event count. To determine the number 
of mispredicted branches per instruction, divide the number of 
mispredicted branches by the INST_RETIRED.ANY event count. 
To measure the impact of the branch mispredictions use the 
event RESOURCE_STALLS.BR_MISS_CLEAR. 

Tips:

- See the optimization guide for tips on reducing branch 
mispredictions.

- PGO's purpose is to have straight line code for the most 
frequent execution paths, reducing branches taken and 
increasing the "basic block" size, possibly also reducing the code 
footprint or working-set.

C6H 01H CYCLES_INT_MASKED.
CYCLES_INT_MASKED

Cycles during which 
interrupts are disabled

This event counts the number of cycles during which interrupts 
are disabled.

C6H 02H CYCLES_INT_MASKED.
CYCLES_INT_PENDING
_AND_MASKED

Cycles during which 
interrupts are pending 
and disabled

This event counts the number of cycles during which there are 
pending interrupts but interrupts are disabled.
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C7H 01H SIMD_INST_RETIRED.P
ACKED_SINGLE

Retired Streaming 
SIMD Extensions (SSE) 
packed-single 
instructions

This event counts the number of SSE packed-single instructions 
retired.

C7H 02H SIMD_INST_RETIRED.S
CALAR_SINGLE

Retired Streaming 
SIMD Extensions (SSE) 
scalar-single 
instructions

This event counts the number of SSE scalar-single instructions 
retired.

C7H 04H SIMD_INST_RETIRED.P
ACKED_DOUBLE

Retired Streaming 
SIMD Extensions 2 
(SSE2) packed-double 
instructions

This event counts the number of SSE2 packed-double 
instructions retired.

C7H 08H SIMD_INST_RETIRED.S
CALAR_DOUBLE

Retired Streaming 
SIMD Extensions 2 
(SSE2) scalar-double 
instructions.

This event counts the number of SSE2 scalar-double 
instructions retired.

C7H 10H SIMD_INST_RETIRED.V
ECTOR

Retired Streaming 
SIMD Extensions 2 
(SSE2) vector 
instructions.

This event counts the number of SSE2 vector instructions 
retired.

C7H 1FH SIMD_INST_RETIRED.A
NY

Retired Streaming 
SIMD instructions

This event counts the overall number of SIMD instructions 
retired. To count each type of SIMD instruction separately, use 
the following events:

SIMD_INST_RETIRED.PACKED_SINGLE, 
SIMD_INST_RETIRED.SCALAR_SINGLE, 
SIMD_INST_RETIRED.PACKED_DOUBLE, 
SIMD_INST_RETIRED.SCALAR_DOUBLE, and 
SIMD_INST_RETIRED.VECTOR.

C8H 00H HW_INT_RCV Hardware interrupts 
received

This event counts the number of hardware interrupts received 
by the processor. This event will count twice for dual-pipe 
micro-ops.

CAH 01H SIMD_COMP_INST_RET
IRED.PACKED_SINGLE

Retired computational 
Streaming SIMD 
Extensions (SSE) 
packed-single 
instructions.

This event counts the number of computational SSE packed-
single instructions retired. Computational instructions perform 
arithmetic computations, like add, multiply and divide. 
Instructions that perform load and store operations or logical 
operations, like XOR, OR, and AND are not counted by this 
event.

CAH 02H SIMD_COMP_INST_RET
IRED.SCALAR_SINGLE

Retired computational 
Streaming SIMD 
Extensions (SSE) 
scalar-single 
instructions.

This event counts the number of computational SSE scalar-
single instructions retired. Computational instructions perform 
arithmetic computations, like add, multiply and divide. 
Instructions that perform load and store operations or logical 
operations, like XOR, OR, and AND are not counted by this 
event.

CAH 04H SIMD_COMP_INST_RET
IRED.PACKED_DOUBLE

Retired computational 
Streaming SIMD 
Extensions 2 (SSE2) 
packed-double 
instructions.

This event counts the number of computational SSE2 packed-
double instructions retired. Computational instructions perform 
arithmetic computations, like add, multiply and divide. 
Instructions that perform load and store operations or logical 
operations, like XOR, OR, and AND are not counted by this 
event.
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CAH 08H SIMD_COMP_INST_RET
IRED.SCALAR_DOUBLE

Retired computational 
Streaming SIMD 
Extensions 2 (SSE2) 
scalar-double 
instructions

This event counts the number of computational SSE2 scalar-
double instructions retired. Computational instructions perform 
arithmetic computations, like add, multiply and divide. 
Instructions that perform load and store operations or logical 
operations, like XOR, OR, and AND are not counted by this 
event.

CBH 01H MEM_LOAD_RETIRED.L
2_HIT

Retired loads that hit 
the L2 cache (precise 
event)

This event counts the number of retired load operations that 
missed the L1 data cache and hit the L2 cache.

CBH 02H MEM_LOAD_RETIRED.L
2_MISS

Retired loads that miss 
the L2 cache (precise 
event)

This event counts the number of retired load operations that 
missed the L2 cache.

CBH 04H MEM_LOAD_RETIRED.D
TLB_MISS

Retired loads that miss 
the DTLB (precise 
event)

This event counts the number of retired loads that missed the 
DTLB. The DTLB miss is not counted if the load operation causes 
a fault. 

CDH 00H SIMD_ASSIST SIMD assists invoked This event counts the number of SIMD assists invoked. SIMD 
assists are invoked when an EMMS instruction is executed after 
MMX™ technology code has changed the MMX state in the 
floating point stack. For example, these assists are required in 
the following cases: 

Streaming SIMD Extensions (SSE) instructions: 

1. Denormal input when the DAZ (Denormals Are Zeros) flag is 
off 

2. Underflow result when the FTZ (Flush To Zero) flag is off 

CEH 00H SIMD_INSTR_RETIRED SIMD Instructions 
retired

This event counts the number of SIMD instructions that retired.

CFH 00H SIMD_SAT_INSTR_RETI
RED

Saturated arithmetic 
instructions retired

This event counts the number of saturated arithmetic SIMD 
instructions that retired.

E0H 01H BR_INST_DECODED Branch instructions 
decoded

This event counts the number of branch instructions decoded.

E4H 01H BOGUS_BR Bogus branches This event counts the number of byte sequences that were 
mistakenly detected as taken branch instructions. This results 
in a BACLEAR event and the BTB is flushed. This occurs mainly 
after task switches.

E6H 01H BACLEARS.ANY BACLEARS asserted This event counts the number of times the front end is 
redirected for a branch prediction, mainly when an early branch 
prediction is corrected by other branch handling mechanisms in 
the front-end. This can occur if the code has many branches 
such that they cannot be consumed by the branch predictor.   
Each Baclear asserted costs approximately 7 cycles. The effect 
on total execution time depends on the surrounding code.

Table 19-19.  Non-Architectural Performance Events for Intel® Atom™ Processors (Contd.)

Event
Num.

Umask
Value Event Name Definition Description and Comment
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19.11 PERFORMANCE MONITORING EVENTS FOR INTEL® CORE™ SOLO AND 
INTEL® CORE™ DUO PROCESSORS

Table 19-20 lists non-architectural performance events for Intel® Core™ Duo processors. If a non-architectural 
event requires qualification in core specificity, it is indicated in the comment column. Table 19-20 also applies to 
Intel® Core™ Solo processors; bits in the unit mask corresponding to core-specificity are reserved and should be 
00B.

Table 19-20.  Non-Architectural Performance Events in Intel® Core™ Solo and Intel® Core™ Duo Processors

Event
Num.

Event Mask 
Mnemonic

Umask
Value Description Comment

03H LD_Blocks 00H Load operations delayed due to store buffer blocks. 

The preceding store may be blocked due to 
unknown address, unknown data, or conflict due to 
partial overlap between the load and store. 

04H SD_Drains 00H Cycles while draining store buffers.

05H Misalign_Mem_Ref 00H Misaligned data memory references (MOB splits of 
loads and stores).

06H Seg_Reg_Loads 00H Segment register loads.

07H SSE_PrefNta_Ret 00H SSE software prefetch instruction PREFETCHNTA 
retired.

07H SSE_PrefT1_Ret 01H SSE software prefetch instruction PREFETCHT1 
retired.

07H SSE_PrefT2_Ret 02H SSE software prefetch instruction PREFETCHT2 
retired.

07H SSE_NTStores_Ret 03H SSE streaming store instruction  retired.

10H FP_Comps_Op_Exe 00H FP computational Instruction executed. FADD, 
FSUB, FCOM, FMULs, MUL, IMUL, FDIVs, DIV, IDIV, 
FPREMs, FSQRT are included; but exclude FADD or 
FMUL used in the middle of a transcendental 
instruction.

11H FP_Assist 00H FP exceptions experienced microcode assists. IA32_PMC1 only.

12H Mul 00H Multiply operations (a speculative count, including 
FP and integer multiplies).

IA32_PMC1 only.

13H Div 00H Divide operations (a speculative count, including FP 
and integer divisions).

IA32_PMC1 only.

14H Cycles_Div_Busy 00H Cycles the divider is busy. IA32_PMC0 only.

21H L2_ADS 00H L2 Address strobes. Requires core-specificity

22H Dbus_Busy 00H Core cycle during which data bus was busy 
(increments by 4).

Requires core-specificity

23H Dbus_Busy_Rd 00H Cycles data bus is busy transferring data to a core 
(increments by 4).

Requires core-specificity

24H L2_Lines_In 00H L2 cache lines allocated. Requires core-specificity 
and HW prefetch 
qualification

25H L2_M_Lines_In 00H L2 Modified-state cache lines allocated. Requires core-specificity

26H L2_Lines_Out 00H L2 cache lines evicted. Requires core-specificity 
and HW prefetch 
qualification

27H L2_M_Lines_Out 00H L2 Modified-state cache lines evicted.
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28H L2_IFetch Requires MESI 
qualification

L2 instruction fetches from instruction fetch unit 
(includes speculative fetches).

Requires core-specificity

29H L2_LD Requires MESI 
qualification

L2 cache reads. Requires core-specificity

2AH L2_ST Requires MESI 
qualification

L2 cache writes (includes speculation). Requires core-specificity

2EH L2_Rqsts Requires MESI 
qualification

L2 cache reference requests. Requires core-
specificity, HW prefetch 
qualification30H L2_Reject_Cycles Requires MESI 

qualification
Cycles L2 is busy and rejecting new requests.

32H L2_No_Request_
Cycles

Requires MESI 
qualification

Cycles there is no request to access L2.

3AH EST_Trans_All 00H Any Intel Enhanced SpeedStep(R) Technology 
transitions.

3AH EST_Trans_All 10H Intel Enhanced SpeedStep Technology frequency 
transitions.

3BH Thermal_Trip C0H Duration in a thermal trip based on the current core 
clock.

Use edge trigger to 
count occurrence

3CH NonHlt_Ref_Cycles 01H Non-halted bus cycles.

3CH Serial_Execution_
Cycles

02H Non-halted bus cycles of this core executing code 
while the other core is halted.

40H DCache_Cache_LD Requires MESI 
qualification

L1 cacheable data read operations.

41H DCache_Cache_ST Requires MESI 
qualification

L1 cacheable data write operations.

42H DCache_Cache_
Lock

Requires MESI 
qualification

L1 cacheable lock read operations to invalid state.

43H Data_Mem_Ref 01H L1 data read and writes of cacheable and non-
cacheable types.

44H Data_Mem_Cache_
Ref

02H L1 data cacheable read and write operations.

45H DCache_Repl 0FH L1 data cache line replacements.

46H DCache_M_Repl 00H L1 data M-state cache line allocated.

47H DCache_M_Evict 00H L1 data M-state cache line evicted.

48H DCache_Pend_Miss 00H Weighted cycles of L1 miss outstanding. Use Cmask =1 to count 
duration.

49H Dtlb_Miss 00H Data references that missed TLB.

4BH SSE_PrefNta_Miss 00H PREFETCHNTA missed all caches.

4BH SSE_PrefT1_Miss 01H PREFETCHT1 missed all caches.

4BH SSE_PrefT2_Miss 02H PREFETCHT2 missed all caches.

4BH SSE_NTStores_
Miss

03H SSE streaming store instruction  missed all caches.

4FH L1_Pref_Req 00H L1 prefetch requests due to DCU cache misses. May overcount if 
request re-submitted

Table 19-20.  Non-Architectural Performance Events in Intel® Core™ Solo and Intel® Core™ Duo Processors (Contd.)

Event
Num.

Event Mask 
Mnemonic

Umask
Value Description Comment
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60H Bus_Req_
Outstanding

00; Requires core-
specificity, and agent 
specificity

Weighted cycles of cacheable bus data read 
requests. This event counts full-line read request 
from DCU or HW prefetcher, but not RFO, write, 
instruction fetches, or others.

Use Cmask =1 to count 
duration.

Use Umask bit 12 to 
include HWP or exclude 
HWP separately.

61H Bus_BNR_Clocks 00H External bus cycles while BNR asserted.

62H Bus_DRDY_Clocks 00H External bus cycles while DRDY asserted. Requires agent 
specificity

63H Bus_Locks_Clocks 00H External bus cycles while bus lock signal asserted. Requires core specificity 

64H Bus_Data_Rcv 40H Number of data chunks received by this processor.

65H Bus_Trans_Brd See comment. Burst read bus transactions (data or code). Requires core specificity 

66H Bus_Trans_RFO See comment. Completed read for ownership (RFO) transactions. Requires agent 
specificity

Requires core specificity

Each transaction counts 
its address strobe

Retried  transaction may 
be counted more than 
once

68H Bus_Trans_Ifetch See comment. Completed instruction fetch transactions.

69H Bus_Trans_Inval See comment. Completed invalidate transactions.

6AH Bus_Trans_Pwr See comment. Completed partial write transactions.

6BH Bus_Trans_P See comment. Completed partial transactions (include partial read 
+ partial write + line write).

6CH Bus_Trans_IO See comment. Completed I/O transactions (read and write).

6DH Bus_Trans_Def 20H Completed defer transactions. Requires core specificity

Retried  transaction may 
be counted more than 
once

67H Bus_Trans_WB C0H Completed writeback transactions from DCU (does 
not include L2 writebacks).

Requires agent 
specificity

Each transaction counts 
its address strobe

Retried  transaction may 
be counted more than 
once

6EH Bus_Trans_Burst C0H Completed burst transactions (full line transactions 
include reads, write, RFO, and writebacks).

6FH Bus_Trans_Mem C0H Completed memory transactions. This includes 
Bus_Trans_Burst + Bus_Trans_P+Bus_Trans_Inval.

70H Bus_Trans_Any C0H Any completed bus transactions.

77H Bus_Snoops 00H Counts any snoop on the bus. Requires MESI 
qualification

Requires agent 
specificity

78H DCU_Snoop_To_
Share

01H DCU snoops to share-state L1 cache line due to L1 
misses.

Requires core specificity

7DH Bus_Not_In_Use 00H Number of cycles there is no transaction from the 
core.

Requires core specificity

7EH Bus_Snoop_Stall 00H Number of bus cycles while bus snoop is stalled.

80H ICache_Reads 00H Number of instruction fetches from ICache, 
streaming buffers (both cacheable and uncacheable 
fetches).

81H ICache_Misses 00H Number of instruction fetch misses from ICache, 
streaming buffers.

85H ITLB_Misses 00H Number of iITLB misses.

Table 19-20.  Non-Architectural Performance Events in Intel® Core™ Solo and Intel® Core™ Duo Processors (Contd.)

Event
Num.

Event Mask 
Mnemonic

Umask
Value Description Comment
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86H IFU_Mem_Stall 00H Cycles IFU is stalled while waiting for data from 
memory.

87H ILD_Stall 00H Number of instruction length decoder stalls (Counts 
number of LCP stalls).

88H Br_Inst_Exec 00H Branch instruction executed (includes speculation).

89H Br_Missp_Exec 00H Branch instructions executed and mispredicted at 
execution  (includes branches that do not have 
prediction or mispredicted).

8AH Br_BAC_Missp_
Exec

00H Branch instructions executed that were 
mispredicted at front end.

8BH Br_Cnd_Exec 00H Conditional branch instructions executed.

8CH Br_Cnd_Missp_
Exec

00H Conditional branch instructions executed that were 
mispredicted.

8DH Br_Ind_Exec 00H Indirect branch instructions executed.

8EH Br_Ind_Missp_Exec 00H Indirect branch instructions executed that were 
mispredicted.

8FH Br_Ret_Exec 00H Return branch instructions executed.

90H Br_Ret_Missp_Exec 00H Return branch instructions executed that were 
mispredicted.

91H Br_Ret_BAC_Missp_
Exec

00H Return branch instructions executed that were 
mispredicted at the front end.

92H Br_Call_Exec 00H Return call instructions executed.

93H Br_Call_Missp_Exec 00H Return call instructions executed that were 
mispredicted.

94H Br_Ind_Call_Exec 00H Indirect call branch instructions executed.

A2H Resource_Stall 00H Cycles while there is a resource related stall 
(renaming, buffer entries) as seen by allocator.

B0H MMX_Instr_Exec 00H Number of MMX instructions executed (does not 
include MOVQ and MOVD stores).

B1H SIMD_Int_Sat_Exec 00H Number of SIMD Integer saturating instructions 
executed.

B3H SIMD_Int_Pmul_
Exec

01H Number of SIMD Integer packed multiply 
instructions executed.

B3H SIMD_Int_Psft_Exec 02H Number of SIMD Integer packed shift instructions 
executed.

B3H SIMD_Int_Pck_Exec 04H Number of SIMD Integer pack operations instruction 
executed.

B3H SIMD_Int_Upck_
Exec

08H Number of SIMD Integer unpack instructions 
executed.

B3H SIMD_Int_Plog_
Exec

10H Number of SIMD Integer packed logical instructions 
executed.

B3H SIMD_Int_Pari_Exec 20H Number of SIMD Integer packed arithmetic 
instructions executed.

C0H Instr_Ret 00H Number of instruction retired (Macro fused 
instruction count as 2).

Table 19-20.  Non-Architectural Performance Events in Intel® Core™ Solo and Intel® Core™ Duo Processors (Contd.)

Event
Num.

Event Mask 
Mnemonic

Umask
Value Description Comment
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C1H FP_Comp_Instr_Ret 00H Number of FP compute instructions retired (X87 
instruction or instruction that contain X87 
operations).

Use IA32_PMC0 only.

C2H Uops_Ret 00H Number of micro-ops retired (include fused uops).

C3H SMC_Detected 00H Number of times self-modifying code condition 
detected.

C4H Br_Instr_Ret 00H Number of branch instructions retired.

C5H Br_MisPred_Ret 00H Number of mispredicted branch instructions retired.

C6H Cycles_Int_Masked 00H Cycles while interrupt is disabled.

C7H Cycles_Int_Pedning_
Masked

00H Cycles while interrupt is disabled and interrupts are 
pending.

C8H HW_Int_Rx 00H Number of hardware interrupts received.

C9H Br_Taken_Ret 00H Number of taken branch instruction retired.

CAH Br_MisPred_Taken_
Ret

00H Number of taken and mispredicted branch 
instructions retired.

CCH MMX_FP_Trans 00H Number of transitions from MMX to X87.

CCH FP_MMX_Trans 01H Number of transitions from X87 to MMX.

CDH MMX_Assist 00H Number of EMMS executed.

CEH MMX_Instr_Ret 00H Number of MMX instruction retired.

D0H Instr_Decoded 00H Number of instruction decoded.

D7H ESP_Uops 00H Number of ESP folding instruction decoded.

D8H SIMD_FP_SP_Ret 00H Number of SSE/SSE2 single precision instructions 
retired (packed and scalar).

D8H SIMD_FP_SP_S_
Ret

01H Number of SSE/SSE2 scalar single precision 
instructions retired.

D8H SIMD_FP_DP_P_
Ret

02H Number of SSE/SSE2 packed double precision 
instructions retired.

D8H SIMD_FP_DP_S_
Ret

03H Number of SSE/SSE2 scalar double precision 
instructions retired.

D8H SIMD_Int_128_Ret 04H Number of SSE2 128 bit integer  instructions 
retired.

D9H SIMD_FP_SP_P_
Comp_Ret

00H Number of SSE/SSE2 packed single precision 
compute instructions retired (does not include AND, 
OR, XOR).

D9H SIMD_FP_SP_S_
Comp_Ret

01H Number of SSE/SSE2 scalar single precision 
compute instructions retired (does not include AND, 
OR, XOR).

D9H SIMD_FP_DP_P_
Comp_Ret

02H Number of SSE/SSE2 packed double precision 
compute instructions retired (does not include AND, 
OR, XOR).

D9H SIMD_FP_DP_S_
Comp_Ret

03H Number of SSE/SSE2 scalar double precision 
compute instructions retired (does not include AND, 
OR, XOR).

DAH Fused_Uops_Ret 00H All fused uops retired.

Table 19-20.  Non-Architectural Performance Events in Intel® Core™ Solo and Intel® Core™ Duo Processors (Contd.)

Event
Num.

Event Mask 
Mnemonic

Umask
Value Description Comment
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19.12 PENTIUM® 4 AND INTEL® XEON® PROCESSOR PERFORMANCE-
MONITORING EVENTS

Tables 19-21, 19-22 and  list performance-monitoring events that can be counted or sampled on processors based 
on Intel NetBurst® microarchitecture. Table 19-21 lists the non-retirement events, and Table 19-22 lists the at-
retirement events. Tables 19-24, 19-25, and 19-26 describes three sets of parameters that are available for three 
of the at-retirement counting events defined in Table 19-22. Table 19-27 shows which of the non-retirement and at 
retirement events are logical processor specific (TS) (see Section 18.13.4, “Performance Monitoring Events”) and 
which are non-logical processor specific (TI).

Some of the Pentium 4 and Intel Xeon processor performance-monitoring events may be available only to specific 
models. The performance-monitoring events listed in Tables 19-21 and 19-22 apply to processors with CPUID 
signature that matches family encoding 15, model encoding 0, 1, 2 3, 4, or 6. Table  applies to processors with a 
CPUID signature that matches family encoding 15, model encoding 3, 4 or 6.

The functionality of performance-monitoring events in Pentium 4 and Intel Xeon processors is also available when 
IA-32e mode is enabled. 

DAH Fused_Ld_Uops_
Ret

01H Fused load uops retired.

DAH Fused_St_Uops_Ret 02H Fused store uops retired.

DBH Unfusion 00H Number of unfusion events in the ROB (due to 
exception).

E0H Br_Instr_Decoded 00H Branch instructions decoded.

E2H BTB_Misses 00H Number of branches the BTB did not produce a 
prediction.

E4H Br_Bogus 00H Number of bogus branches.

E6H BAClears 00H Number of BAClears asserted.

F0H Pref_Rqsts_Up 00H Number of hardware prefetch requests issued in 
forward streams.

F8H Pref_Rqsts_Dn 00H Number of hardware prefetch requests issued in 
backward streams.

Table 19-21.  Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture 
for Non-Retirement Counting

Event Name Event Parameters  Parameter Value Description

TC_deliver_mode This event counts the duration (in clock cycles) of the operating 
modes of the trace cache and decode engine in the processor 
package. The mode is specified by one or more of the event mask 
bits.

ESCR restrictions MSR_TC_ESCR0

MSR_TC_ESCR1

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 01H ESCR[31:25]

Table 19-20.  Non-Architectural Performance Events in Intel® Core™ Solo and Intel® Core™ Duo Processors (Contd.)

Event
Num.

Event Mask 
Mnemonic

Umask
Value Description Comment
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ESCR Event Mask

Bit 

0: DD

1: DB

2: DI

ESCR[24:9]

Both logical processors are in deliver mode.

Logical processor 0 is in deliver mode and logical processor 1 is in 
build mode.

Logical processor 0 is in deliver mode and logical processor 1 is 
either halted, under a machine clear condition or transitioning to a 
long microcode flow. 

3: BD

4: BB

Logical processor 0 is in build mode and logical processor 1 is in 
deliver mode.

Both logical processors are in build mode. 

5: BI Logical processor 0 is in build mode and logical processor 1 is either 
halted, under a machine clear condition or transitioning to a long 
microcode flow.

6: ID

7: IB

Logical processor 0 is either halted, under a machine clear condition 
or transitioning to a long microcode flow. Logical processor 1 is in 
deliver mode.

Logical processor 0 is either halted, under a machine clear condition 
or transitioning to a long microcode flow. Logical processor 1 is in 
build mode. 

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If only one logical processor is available from a physical processor 
package, the event mask should be interpreted as logical processor 1 
is halted. Event mask bit 2 was previously known as “DELIVER”, bit 5 
was previously known as “BUILD”.

BPU_fetch_
request 

This event counts instruction fetch requests of specified request 
type by the Branch Prediction unit. Specify one or more mask bits to 
qualify the request type(s).

ESCR restrictions MSR_BPU_ESCR0
MSR_BPU_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 0: TCMISS

ESCR[24:9]

Trace cache lookup miss

CCCR Select 00H CCCR[15:13]

ITLB_reference This event counts translations using the Instruction Translation 
Look-aside Buffer (ITLB). 

Table 19-21.  Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture 
for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
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ESCR restrictions MSR_ITLB_ESCR0

MSR_ITLB_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 18H ESCR[31:25]

ESCR Event Mask

Bit 

0: HIT

1: MISS

2: HIT_UC 

ESCR[24:9]

ITLB hit

ITLB miss

Uncacheable ITLB hit

CCCR Select 03H CCCR[15:13]

Event Specific 
Notes

All page references regardless of the page size are looked up as 
actual 4-KByte pages. Use the page_walk_type event with the 
ITMISS mask for a more conservative count.

memory_cancel This event counts the canceling of various type of request in the 
Data cache Address Control unit (DAC). Specify one or more mask 
bits to select the type of requests that are canceled.

ESCR restrictions MSR_DAC_ESCR0

MSR_DAC_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 

2: ST_RB_FULL

3: 64K_CONF

ESCR[24:9]

Replayed because no store request buffer is available

Conflicts due to 64-KByte aliasing

CCCR Select 05H CCCR[15:13]

Event Specific 
Notes

All_CACHE_MISS includes uncacheable memory in count.

memory_
complete 

This event counts the completion of a load split, store split, 
uncacheable (UC) split, or UC load. Specify one or more mask bits to 
select the operations to be counted.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 08H ESCR[31:25]

Table 19-21.  Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture 
for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
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ESCR Event Mask

Bit 

0: LSC

1: SSC

ESCR[24:9]

Load split completed, excluding UC/WC loads

Any split stores completed

CCCR Select 02H CCCR[15:13]

load_port_replay This event counts replayed events at the load port. Specify one or 
more mask bits to select the cause of the replay.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 04H ESCR[31:25]

ESCR Event Mask

Bit 1: SPLIT_LD

ESCR[24:9]

Split load.

CCCR Select 02H CCCR[15:13]

Event Specific 
Notes

Must use ESCR1 for at-retirement counting.

store_port_replay This event counts replayed events at the store port. Specify one or 
more mask bits to select the cause of the replay.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask

Bit 1: SPLIT_ST

ESCR[24:9]

Split store

CCCR Select 02H CCCR[15:13]

Event Specific 
Notes

Must use ESCR1 for at-retirement counting.

MOB_load_replay This event triggers if the memory order buffer (MOB) caused a load 
operation to be replayed. Specify one or more mask bits to select the 
cause of the replay.

ESCR restrictions MSR_MOB_ESCR0

MSR_MOB_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

Table 19-21.  Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture 
for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
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ESCR Event Mask

Bit 

1: NO_STA

3: NO_STD

ESCR[24:9]

Replayed because of unknown store address.

Replayed because of unknown store data.

4: PARTIAL_DATA

5: UNALGN_ADDR 

Replayed because of partially overlapped data access between the 
load and store operations.

Replayed because the lower 4 bits of the linear address do not 
match between the load and store operations.

CCCR Select 02H CCCR[15:13]

page_walk_type This event counts various types of page walks that the page miss 
handler (PMH) performs.

ESCR restrictions MSR_PMH_
ESCR0

MSR_PMH_
ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit 

0: DTMISS

1: ITMISS

ESCR[24:9]

Page walk for a data TLB miss (either load or store).

Page walk for an instruction TLB miss.

CCCR Select 04H CCCR[15:13]

BSQ_cache
_reference 

This event counts cache references (2nd level cache or 3rd level 
cache) as seen by the bus unit. 

Specify one or more mask bit to select an access according to the 
access type (read type includes both load and RFO, write type 
includes writebacks and evictions) and the access result (hit, misses).

ESCR restrictions MSR_BSU_
ESCR0

MSR_BSU_
ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 0CH ESCR[31:25]

Table 19-21.  Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture 
for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
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Bit

0: RD_2ndL_HITS 

1: RD_2ndL_HITE

2: RD_2ndL_HITM

3: RD_3rdL_HITS

ESCR[24:9]

Read 2nd level cache hit Shared (includes load and RFO)

Read 2nd level cache hit Exclusive (includes load and RFO)

Read 2nd level cache hit Modified (includes load and RFO)

Read 3rd level cache hit Shared (includes load and RFO)

4: RD_3rdL_HITE

5: RD_3rdL_HITM

Read 3rd level cache hit Exclusive (includes load and RFO)

Read 3rd level cache hit Modified (includes load and RFO)

ESCR Event Mask 8: RD_2ndL_MISS

9: RD_3rdL_MISS

10: WR_2ndL_MISS

Read 2nd level cache miss (includes load and RFO)

Read 3rd level cache miss (includes load and RFO)

A Writeback lookup from DAC misses the 2nd level cache (unlikely to 
happen)

CCCR Select 07H CCCR[15:13]

Event Specific 
Notes

1: The implementation of this event in current Pentium 4 and Xeon 
processors treats either a load operation or a request for 
ownership (RFO) request as a “read” type operation. 

2: Currently this event causes both over and undercounting by as 
much as a factor of two due to an erratum.

3:  It is possible for a transaction that is started as a prefetch to 
change the transaction's internal status, making it no longer a 
prefetch. or change the access result status (hit, miss) as seen by 
this event. 

IOQ_allocation This event counts the various types of transactions on the bus. A 
count is generated each time a transaction is allocated into the IOQ 
that matches the specified mask bits. An allocated entry can be a 
sector (64 bytes) or a chunks of 8 bytes. 

Requests are counted once per retry. The event mask bits constitute 
4 bit fields. A transaction type is specified by interpreting the values 
of each bit field. 

Specify one or more event mask bits in a bit field to select the value 
of the bit field.

Each field (bits 0-4 are one field) are independent of and can be 
ORed with the others. The request type field is further combined 
with bit 5 and 6 to form a binary expression. Bits 7 and 8 form a bit 
field to specify the memory type of the target address. 

Bits 13 and 14 form a bit field to specify the source agent of the 
request. Bit 15 affects read operation only. The event is triggered by 
evaluating the logical expression: (((Request type) OR Bit 5 OR Bit 6) 
OR (Memory type)) AND (Source agent).
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ESCR restrictions MSR_FSB_ESCR0, 
MSR_FSB_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1;

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bits 

0-4 (single field)

 5:  ALL_READ

 6:  ALL_WRITE

 7:  MEM_UC

 8:  MEM_WC

ESCR[24:9]

Bus request type (use 00001 for invalid or default)

Count read entries

Count write entries

Count UC memory access entries

Count WC memory access entries

 9:  MEM_WT

10: MEM_WP

Count write-through (WT) memory access entries.

Count write-protected (WP) memory access entries 

11: MEM_WB 

13: OWN

Count WB memory access entries. 

Count all store requests driven by processor, as opposed to other 
processor or DMA.

14: OTHER

15: PREFETCH

Count all requests driven by other processors or DMA.

Include HW and SW prefetch requests in the count.

CCCR Select 06H CCCR[15:13]

Event Specific 
Notes

1: If PREFETCH bit is cleared, sectors fetched using prefetch are 
excluded in the counts. If PREFETCH bit is set, all sectors or chunks 
read are counted. 

2: Specify the edge trigger in CCCR to avoid double counting.

3: The mapping of interpreted bit field values to transaction types 
may differ with different processor model implementations of the 
Pentium 4 processor family. Applications that program 
performance monitoring events should use CPUID to determine 
processor models when using this event. The logic equations that 
trigger the event are model-specific (see 4a and 4b below).

4a:For Pentium 4 and Xeon Processors starting with CPUID Model 
field encoding equal to 2 or greater, this event is triggered by 
evaluating the logical expression ((Request type) and (Bit 5 or Bit 
6) and (Memory type) and (Source agent)).

4b:For Pentium 4 and Xeon Processors with CPUID Model field 
encoding less than 2, this event is triggered by evaluating the 
logical expression [((Request type) or Bit 5 or Bit 6) or (Memory 
type)] and (Source agent). Note that event mask bits for memory 
type are ignored if either ALL_READ or ALL_WRITE is specified.
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5: This event is known to ignore CPL in early implementations of 
Pentium 4 and Xeon Processors. Both user requests and OS 
requests are included in the count. This behavior is fixed starting 
with Pentium 4 and Xeon Processors with CPUID signature 0xF27 
(Family 15, Model 2, Stepping 7). 

6: For write-through (WT) and write-protected (WP) memory types, 
this event counts reads as the number of 64-byte sectors. Writes 
are counted by individual chunks.

7: For uncacheable (UC) memory types, this events counts the 
number of 8-byte chunks allocated.

8: For Pentium 4 and Xeon Processors with CPUID Signature less 
than 0xf27, only MSR_FSB_ESCR0 is available.

IOQ_active_
entries

This event counts the number of entries (clipped at 15) in the IOQ 
that are active. An allocated entry can be a sector (64 bytes) or a 
chunks of 8 bytes.

The event must be programmed in conjunction with IOQ_allocation. 
Specify one or more event mask bits to select the transactions that 
is counted. 

ESCR restrictions MSR_FSB_ESCR1

Counter numbers 
per ESCR

ESCR1: 2, 3 

ESCR Event Select 01AH ESCR[30:25]

ESCR Event Mask

Bits 

0-4 (single field)

5:  ALL_READ

6:  ALL_WRITE

7:  MEM_UC

8:  MEM_WC

ESCR[24:9]

Bus request type (use 00001 for invalid or default).

Count read entries.

Count write entries.

Count UC memory access entries.

Count WC memory access entries.

9:  MEM_WT

10: MEM_WP

Count write-through (WT) memory access entries.

Count write-protected (WP) memory access entries.

11: MEM_WB 

13: OWN

Count WB memory access entries. 

Count all store requests driven by processor, as opposed to other 
processor or DMA.

14: OTHER

15: PREFETCH

Count all requests driven by other processors or DMA.

Include HW and SW prefetch requests in the count.

CCCR Select 06H CCCR[15:13]

Event Specific 
Notes

1: Specified desired mask bits in ESCR0 and ESCR1. 
2: See the ioq_allocation event for descriptions of the mask bits.

3: Edge triggering should not be used when counting cycles. 
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4: The mapping of interpreted bit field values to transaction types 
may differ across different processor model implementations of 
the Pentium 4 processor family. Applications that programs 
performance monitoring events should use the CPUID instruction 
to detect processor models when using this event. The logical 
expression that triggers this event as describe below:

5a:For Pentium 4 and Xeon Processors starting with CPUID MODEL 
field encoding equal to 2 or greater, this event is triggered by 
evaluating the logical expression ((Request type) and (Bit 5 or Bit 
6) and (Memory type) and (Source agent)). 

5b:For Pentium 4 and Xeon Processors starting with CPUID MODEL 
field encoding less than 2, this event is triggered by evaluating 
the logical expression [((Request type) or Bit 5 or Bit 6) or 
(Memory type)] and (Source agent). Event mask bits for memory 
type are ignored if either ALL_READ or ALL_WRITE is specified. 

5c: This event is known to ignore CPL in the current implementations 
of Pentium 4 and Xeon Processors Both user requests and OS 
requests are included in the count.

6: An allocated entry can be a full line (64 bytes) or in individual 
chunks of 8 bytes.

FSB_data_
activity 

This event increments once for each DRDY or DBSY event that 
occurs on the front side bus. The event allows selection of a specific 
DRDY or DBSY event.

ESCR restrictions MSR_FSB_ESCR0
MSR_FSB_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 17H ESCR[31:25]

ESCR Event Mask

Bit 0: 

ESCR[24:9]

DRDY_DRV Count when this processor drives data onto the bus - includes writes 
and implicit writebacks.

Asserted two processor clock cycles for partial writes and 4 
processor clocks (usually in consecutive bus clocks) for full line 
writes. 

1: DRDY_OWN Count when this processor reads data from the bus - includes loads 
and some PIC transactions. Asserted two processor clock cycles for 
partial reads and 4 processor clocks (usually in consecutive bus 
clocks) for full line reads.

Count DRDY events that we drive.

Count DRDY events sampled that we own.

2: DRDY_OTHER Count when data is on the bus but not being sampled by the 
processor. It may or may not be being driven by this processor.

Asserted two processor clock cycles for partial transactions and 4 
processor clocks (usually in consecutive bus clocks) for full line 
transactions. 
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3: DBSY_DRV Count when this processor reserves the bus for use in the next bus 
cycle in order to drive data. Asserted for two processor clock cycles 
for full line writes and not at all for partial line writes.

May be asserted multiple times (in consecutive bus clocks) if we stall 
the bus waiting for a cache lock to complete.

4: DBSY_OWN Count when some agent reserves the bus for use in the next bus 
cycle to drive data that this processor will sample. 

Asserted for two processor clock cycles for full line writes and not at 
all for partial line writes. May be asserted multiple times (all one bus 
clock apart) if we stall the bus for some reason. 

5:DBSY_OTHER Count when some agent reserves the bus for use in the next bus 
cycle to drive data that this processor will NOT sample. It may or may 
not be being driven by this processor. 

Asserted two processor clock cycles for partial transactions and 4 
processor clocks (usually in consecutive bus clocks) for full line 
transactions. 

CCCR Select 06H CCCR[15:13]

Event Specific 
Notes

Specify edge trigger in the CCCR MSR to avoid double counting.

DRDY_OWN and DRDY_OTHER are mutually exclusive; similarly for 
DBSY_OWN and DBSY_OTHER.

BSQ_allocation This event counts allocations in the Bus Sequence Unit (BSQ) 
according to the specified mask bit encoding. The event mask bits 
consist of four sub-groups: 

• request type, 
• request length
• memory type
• and sub-group consisting mostly of independent bits (bits 5, 6, 7, 

8, 9, and 10) 
Specify an encoding for each sub-group.

ESCR restrictions MSR_BSU_ESCR0 

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask Bit 

0: REQ_TYPE0
1: REQ_TYPE1

ESCR[24:9]

Request type encoding (bit 0 and 1) are: 

0 – Read (excludes read invalidate)
1 – Read invalidate
2 – Write (other than writebacks)
3 – Writeback (evicted from cache). (public)

2: REQ_LEN0
3: REQ_LEN1

Request length encoding (bit 2, 3) are: 

0 – 0 chunks
1 – 1 chunks
3 – 8 chunks

Table 19-21.  Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture 
for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description



19-160 Vol. 3B

PERFORMANCE-MONITORING EVENTS

5: REQ_IO_TYPE

6: REQ_LOCK_
     TYPE

7: REQ_CACHE_
     TYPE

Request type is input or output.

Request type is bus lock.

Request type is cacheable.

8: REQ_SPLIT_
    TYPE

9: REQ_DEM_TYPE

10: REQ_ORD_
       TYPE

Request type is a bus 8-byte chunk split across 8-byte boundary.

Request type is a demand if set. Request type is HW.SW prefetch 
if 0.

Request is an ordered type.

11: MEM_TYPE0
12: MEM_TYPE1
13: MEM_TYPE2

Memory type encodings (bit 11-13) are: 

0 – UC
1 – WC
4 – WT
5 – WP
6 – WB

CCCR Select 07H CCCR[15:13]

Event Specific 
Notes

1: Specify edge trigger in CCCR to avoid double counting.
2: A writebacks to 3rd level cache from 2nd level cache counts as a 

separate entry, this is in additional to the entry allocated for a 
request to the bus. 

3: A read request to WB memory type results in a request to the 
64-byte sector, containing the target address, followed by a 
prefetch request to an adjacent sector. 

4: For Pentium 4 and Xeon processors with CPUID model encoding 
value equals to 0 and 1, an allocated BSQ entry includes both the 
demand sector and prefetched 2nd sector.

5: An allocated BSQ entry for a data chunk is any request less than 
64 bytes. 

6a:This event may undercount for requests of split type transactions 
if the data address straddled across modulo-64 byte boundary.

6b:This event may undercount for requests of read request of 
16-byte operands from WC or UC address.

6c: This event may undercount WC partial requests originated from 
store operands that are 
dwords. 

bsq_active_
entries 

This event represents the number 
of BSQ entries (clipped at 15) currently active (valid) which meet the 
subevent mask criteria during allocation in the BSQ. Active request 
entries are allocated on the BSQ until de-allocated. 

De-allocation of an entry does not necessarily imply the request is 
filled. This event must be programmed in conjunction with 
BSQ_allocation. Specify one or more event mask bits to select the 
transactions that is counted.

ESCR restrictions ESCR1
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Counter numbers 
per ESCR

ESCR1: 2, 3 

ESCR Event Select 06H ESCR[30:25]

ESCR Event Mask ESCR[24:9]

CCCR Select 07H CCCR[15:13]

Event Specific 
Notes

1: Specified desired mask bits in ESCR0 and ESCR1. 
2: See the BSQ_allocation event for descriptions of the mask bits. 
3: Edge triggering should not be used when counting cycles.

4: This event can be used to estimate the latency of a transaction 
from allocation to de-allocation in the BSQ. The latency observed 
by BSQ_allocation includes the latency of FSB, plus additional 
overhead. 

5: Additional overhead may include the time it takes to issue two 
requests (the sector by demand and the adjacent sector via 
prefetch). Since adjacent sector prefetches have lower priority 
that demand fetches, on a heavily used system there is a high 
probability that the adjacent sector prefetch will have to wait 
until the next bus arbitration.

6: For Pentium 4 and Xeon processors with CPUID model encoding 
value less than 3, this event is updated every clock. 

7: For Pentium 4 and Xeon processors with CPUID model encoding 
value equals to 3 or 4, this event is updated every other clock. 

SSE_input_assist This event counts the number of times an assist is requested to 
handle problems with input operands for SSE/SSE2/SSE3 operations; 
most notably denormal source operands when the DAZ bit is not set. 
Set bit 15 of the event mask to use this event.

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 34H ESCR[31:25]

ESCR Event Mask

15: ALL 

ESCR[24:9]

Count assists for SSE/SSE2/SSE3 µops.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

1: Not all requests for assists are actually taken. This event is known 
to overcount in that it counts requests for assists from 
instructions on the non-retired path that do not incur a 
performance penalty. An assist is actually taken only for non-
bogus µops. Any appreciable counts for this event are an 
indication that the DAZ or FTZ bit should be set and/or the source 
code should be changed to eliminate the condition.
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2: Two common situations for an SSE/SSE2/SSE3 operation needing 
an assist are: (1) when a denormal constant is used as an input and 
the Denormals-Are-Zero (DAZ) mode is not set, (2) when the input 
operand uses the underflowed result of a previous 
SSE/SSE2/SSE3 operation and neither the DAZ nor Flush-To-Zero 
(FTZ) modes are set.

3: Enabling the DAZ mode prevents SSE/SSE2/SSE3 operations from 
needing assists in the first situation. Enabling the FTZ mode 
prevents SSE/SSE2/SSE3 operations from needing assists in the 
second situation.

packed_SP_uop This event increments for each packed single-precision µop, 
specified through the event mask for detection. 

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all µops operating on packed single-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

1: If an instruction contains more than one packed SP µops, each 
packed SP µop that is specified by the event mask will be counted. 

2: This metric counts instances of packed memory µops in a repeat 
move string.

packed_DP_uop This event increments for each packed double-precision µop, 
specified through the event mask for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0CH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all µops operating on packed double-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If an instruction contains more than one packed DP µops, each 
packed DP µop that is specified by the event mask will be counted.

scalar_SP_uop This event increments for each scalar single-precision µop, specified 
through the event mask for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0AH ESCR[31:25]
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ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all µops operating on scalar single-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If an instruction contains more than one scalar SP µops, each scalar 
SP µop that is specified by the event mask will be counted.

scalar_DP_uop This event increments for each scalar double-precision µop, specified 
through the event mask for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0EH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all µops operating on scalar double-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If an instruction contains more than one scalar DP µops, each scalar 
DP µop that is specified by the event mask is counted.

64bit_MMX_uop This event increments for each MMX instruction, which operate on 
64-bit SIMD operands. 

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all µops operating on 64- bit SIMD integer operands in memory 
or MMX registers.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If an instruction contains more than one 64-bit MMX µops, each 64-
bit MMX µop that is specified by the event mask will be counted.

128bit_MMX_uop This event increments for each integer SIMD SSE2 instruction, which 
operate on 128-bit SIMD operands. 

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 1AH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all µops operating on 128-bit SIMD integer operands in 
memory or XMM registers.

Table 19-21.  Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture 
for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description



19-164 Vol. 3B

PERFORMANCE-MONITORING EVENTS

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If an instruction contains more than one 128-bit MMX µops, each 
128-bit MMX µop that is specified by the event mask will be counted.

x87_FP_uop This event increments for each x87 floating-point µop, specified 
through the event mask for detection. 

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 04H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all x87 FP µops.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

1: If an instruction contains more than one x87 FP µops, each x87 
FP µop that is specified by the event mask will be counted. 

2: This event does not count x87 FP µop for load, store, move 
between registers.

TC_misc This event counts miscellaneous events detected by the TC. The 
counter will count twice for each occurrence. 

ESCR restrictions MSR_TC_ESCR0
MSR_TC_ESCR1

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 06H ESCR[31:25]

CCCR Select 01H CCCR[15:13]

ESCR Event Mask

Bit 4: FLUSH

ESCR[24:9]

Number of flushes

global_power
_events 

This event accumulates the time during which a processor is not 
stopped.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 013H ESCR[31:25]

ESCR Event Mask Bit 0: Running ESCR[24:9]

The processor is active (includes the handling of HLT STPCLK and 
throttling.

CCCR Select 06H CCCR[15:13]

tc_ms_xfer This event counts the number of times that uop delivery changed 
from TC to MS ROM.

ESCR restrictions MSR_MS_ESCR0

MSR_MS_ESCR1
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Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask

Bit 0: CISC

ESCR[24:9]

A TC to MS transfer occurred.

CCCR Select 0H CCCR[15:13]

uop_queue_
writes 

This event counts the number of valid uops written to the uop 
queue. Specify one or more mask bits to select the source type of 
writes.

ESCR restrictions MSR_MS_ESCR0

MSR_MS_ESCR1

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 09H ESCR[31:25]

ESCR Event Mask

Bit 

0: FROM_TC_
BUILD

ESCR[24:9]

The uops being written are from TC build mode.

1: FROM_TC_
DELIVER

2: FROM_ROM

The uops being written are from TC deliver mode.

The uops being written are from microcode ROM.

CCCR Select 0H CCCR[15:13]

retired_mispred

_branch_type

This event counts retiring mispredicted branches by type.

ESCR restrictions MSR_TBPU_ESCR0

MSR_TBPU_ESCR1 

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 05H ESCR[30:25]

ESCR Event Mask

Bit

1: CONDITIONAL

2: CALL

ESCR[24:9]

Conditional jumps.

Indirect call branches.

3: RETURN

4: INDIRECT

Return branches.

Returns, indirect calls, or indirect jumps.

CCCR Select 02H CCCR[15:13]

Event Specific 
Notes

This event may overcount conditional branches if:

• Mispredictions cause the trace cache and delivery engine to build 
new traces.

• When the processor's pipeline is being cleared. 

retired_branch

_type

This event counts retiring branches by type. Specify one or more 
mask bits to qualify the branch by its type.
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ESCR restrictions MSR_TBPU_ESCR0

MSR_TBPU_ESCR1 

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 04H ESCR[30:25]

ESCR Event Mask

Bit

1: CONDITIONAL

2: CALL

ESCR[24:9]

Conditional jumps.

Direct or indirect calls.

3: RETURN

4: INDIRECT

Return branches.

Returns, indirect calls, or indirect jumps.

CCCR Select 02H CCCR[15:13]

Event Specific 
Notes

This event may overcount conditional branches if :

• Mispredictions cause the trace cache and delivery engine to build 
new traces.

• When the processor's pipeline is being cleared. 

resource_stall This event monitors the occurrence or latency of stalls in the 
Allocator.

ESCR restrictions MSR_ALF_ESCR0

MSR_ALF_ESCR1 

Counter numbers 
per ESCR

ESCR0: 12, 13, 16 
ESCR1: 14, 15, 17 

ESCR Event Select 01H ESCR[30:25]

Event Masks

Bit

ESCR[24:9]

5: SBFULL A Stall due to lack of store buffers.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

This event may not be supported in all models of the processor 
family.

WC_Buffer This event counts Write Combining Buffer operations that are 
selected by the event mask.

ESCR restrictions MSR_DAC_ESCR0

MSR_DAC_ESCR1 

Counter numbers 
per ESCR

ESCR0: 8, 9 

ESCR1: 10, 11 

ESCR Event Select 05H ESCR[30:25]

Event Masks

Bit

ESCR[24:9]

0: WCB_EVICTS WC Buffer evictions of all causes.

1: WCB_FULL_
    EVICT

WC Buffer eviction: no WC buffer is available.
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CCCR Select 05H CCCR[15:13]

Event Specific 
Notes

This event is useful for detecting the subset of 64K aliasing cases 
that are more costly (i.e. 64K aliasing cases involving stores) as long 
as there are no significant contributions due to write combining 
buffer full or hit-modified conditions.

b2b_cycles This event can be configured to count the number back-to-back bus 
cycles using sub-event mask bits 1 through 6.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1 

Counter numbers 
per ESCR

ESCR0: 0, 1 

ESCR1: 2, 3 

ESCR Event Select 016H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific 
Notes

This event may not be supported in all models of the processor 
family.

bnr This event can be configured to count bus not ready conditions using 
sub-event mask bits 0 through 2.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1 

Counter numbers 
per ESCR

ESCR0: 0, 1 

ESCR1: 2, 3 

ESCR Event Select 08H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific 
Notes

This event may not be supported in all models of the processor 
family.

snoop This event can be configured to count snoop hit modified bus traffic 
using sub-event mask bits 2, 6 and 7.

ESCR restrictions MSR_FSB_ESCR0 
MSR_FSB_ESCR1 

Counter numbers 
per ESCR

ESCR0: 0, 1 

ESCR1: 2, 3 

ESCR Event Select 06H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific 
Notes

This event may not be supported in all models of the processor 
family.

Response This event can be configured to count different types of responses 
using sub-event mask bits 1,2, 8, and 9.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1 

Table 19-21.  Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture 
for Non-Retirement Counting (Contd.)
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Counter numbers 
per ESCR

ESCR0: 0, 1 

ESCR1: 2, 3 

ESCR Event Select 04H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific 
Notes

This event may not be supported in all models of the processor 
family.

Table 19-22.  Performance Monitoring Events For Intel NetBurst® Microarchitecture 
for At-Retirement Counting

Event Name Event Parameters  Parameter Value Description

front_end_event This event counts the retirement of tagged µops, which are specified 
through the front-end tagging mechanism. The event mask specifies 
bogus or non-bogus µops.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit 

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked µops are not bogus.

The marked µops are bogus.

CCCR Select 05H CCCR[15:13]

Can Support PEBS Yes

Require Additional 
MSRs for tagging

Selected ESCRs 
and/or MSR_TC_
PRECISE_EVENT

See list of metrics supported by Front_end tagging in Table A-3

execution_event This event counts the retirement of tagged µops, which are specified 
through the execution tagging mechanism. 

The event mask allows from one to four types of µops to be 
specified as either bogus or non-bogus µops to be tagged. 

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 0CH ESCR[31:25]

Table 19-21.  Performance Monitoring Events Supported by Intel NetBurst® Microarchitecture 
for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
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ESCR Event Mask

Bit 

0: NBOGUS0

1: NBOGUS1

2: NBOGUS2

3: NBOGUS3

4: BOGUS0

5: BOGUS1

6: BOGUS2

7: BOGUS3

ESCR[24:9]

The marked µops are not bogus.

The marked µops are not bogus.

The marked µops are not bogus.

The marked µops are not bogus.

The marked µops are bogus.

The marked µops are bogus.

The marked µops are bogus.

The marked µops are bogus.

CCCR Select 05H CCCR[15:13]

Event Specific 
Notes

Each of the 4 slots to specify the bogus/non-bogus µops must be 
coordinated with the 4 TagValue bits in the ESCR (for example, 
NBOGUS0 must accompany a ‘1’ in the lowest bit of the TagValue 
field in ESCR, NBOGUS1 must accompany a ‘1’ in the next but lowest 
bit of the TagValue field).

Can Support PEBS Yes

Require Additional 
MSRs for tagging

An ESCR for an 
upstream event

See list of metrics supported by execution tagging in Table A-4.

replay_event This event counts the retirement of tagged µops, which are specified 
through the replay tagging mechanism. The event mask specifies 
bogus or non-bogus µops.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 09H ESCR[31:25]

ESCR Event Mask

Bit 

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked µops are not bogus.

The marked µops are bogus.

CCCR Select 05H CCCR[15:13]

Event Specific 
Notes

Supports counting tagged µops with additional MSRs.

Can Support PEBS Yes

Require Additional 
MSRs for tagging

IA32_PEBS_
ENABLE

MSR_PEBS_
MATRIX_VERT

Selected ESCR

See list of metrics supported by replay tagging in Table A-5.

instr_retired This event counts instructions that are retired during a clock cycle.

Mask bits specify bogus or non-bogus (and whether they are tagged 
using the front-end tagging mechanism).

Table 19-22.  Performance Monitoring Events For Intel NetBurst® Microarchitecture 
for At-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
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ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers 
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 

0: NBOGUSNTAG

1: NBOGUSTAG

ESCR[24:9]

Non-bogus instructions that are not tagged.

Non-bogus instructions that are tagged. 

2: BOGUSNTAG

3: BOGUSTAG

Bogus instructions that are not tagged.

Bogus instructions that are tagged.

CCCR Select 04H CCCR[15:13]

Event Specific 
Notes

1: The event count may vary depending on the microarchitectural 
states of the processor when the event detection is enabled. 

2: The event may count more than once for some instructions with 
complex uop flows and were interrupted before retirement.

Can Support PEBS No

uops_retired This event counts µops that are retired during a clock cycle. Mask bits 
specify bogus or non-bogus.

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers 
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit 

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked µops are not bogus.

The marked µops are bogus.

CCCR Select 04H CCCR[15:13]

Event Specific 
Notes

P6: EMON_UOPS_RETIRED

Can Support PEBS No

uop_type This event is used in conjunction with the front-end at-retirement 
mechanism to tag load and store µops.

ESCR restrictions MSR_RAT_ESCR0

MSR_RAT_ESCR1

Counter numbers 
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

Table 19-22.  Performance Monitoring Events For Intel NetBurst® Microarchitecture 
for At-Retirement Counting (Contd.)
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ESCR Event Mask

Bit 

1: TAGLOADS

2: TAGSTORES

ESCR[24:9]

The µop is a load operation.

The µop is a store operation.

CCCR Select 02H CCCR[15:13]

Event Specific 
Notes

Setting the TAGLOADS and TAGSTORES mask bits does not cause a 
counter to increment. They are only used to tag uops.

Can Support PEBS No

branch_retired This event counts the retirement of a branch. Specify one or more 
mask bits to select any combination of taken, not-taken, predicted 
and mispredicted. 

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 18-45 for the addresses of the ESCR MSRs

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated with each ESCR are provided. The 
performance counters and corresponding CCCRs can be obtained 
from Table 18-45.

ESCR Event Select 06H ESCR[31:25]

ESCR Event Mask

Bit 

0: MMNP

1: MMNM

2: MMTP

3: MMTM

ESCR[24:9]

Branch not-taken predicted

Branch not-taken mispredicted

Branch taken predicted

Branch taken mispredicted

CCCR Select 05H CCCR[15:13]

Event Specific 
Notes

P6: EMON_BR_INST_RETIRED

Can Support PEBS No

mispred_branch_
retired 

This event represents the retirement of mispredicted branch 
instructions. 

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers 
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 0: NBOGUS

ESCR[24:9]

The retired instruction is not bogus.

CCCR Select 04H CCCR[15:13]

Can Support PEBS No

x87_assist This event counts the retirement of x87 instructions that required 
special handling. 

Specifies one or more event mask bits to select the type of 
assistance.

Table 19-22.  Performance Monitoring Events For Intel NetBurst® Microarchitecture 
for At-Retirement Counting (Contd.)
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ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 

0: FPSU

1: FPSO

ESCR[24:9]

Handle FP stack underflow

Handle FP stack overflow

2: POAO

3: POAU

4: PREA

Handle x87 output overflow

Handle x87 output underflow

Handle x87 input assist

CCCR Select 05H CCCR[15:13]

Can Support PEBS No

machine_clear This event increments according to the mask bit specified while the 
entire pipeline of the machine is cleared. Specify one of the mask bit 
to select the cause.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 

0: CLEAR

ESCR[24:9]

Counts for a portion of the many cycles while the machine is cleared 
for any cause. Use Edge triggering for this bit only to get a count of 
occurrence versus a duration.

2:  MOCLEAR

6: SMCLEAR

Increments each time the machine is cleared due to memory ordering 
issues.

Increments each time the machine is cleared due to self-modifying 
code issues.

CCCR Select 05H CCCR[15:13]

Can Support PEBS No

Table 19-22.  Performance Monitoring Events For Intel NetBurst® Microarchitecture 
for At-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description



Vol. 3B 19-173

PERFORMANCE-MONITORING EVENTS

Table 19-23.  Intel NetBurst® Microarchitecture Model-Specific Performance Monitoring Events 
(For Model Encoding 3, 4 or 6)

Event Name Event Parameters  Parameter Value Description

instr_completed This event counts instructions that have completed and retired 
during a clock cycle. Mask bits specify whether the instruction is 
bogus or non-bogus and whether they are:

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers 
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 07H ESCR[31:25]

ESCR Event Mask

Bit 

0: NBOGUS

1: BOGUS

ESCR[24:9]

Non-bogus instructions

Bogus instructions

CCCR Select 04H CCCR[15:13]

Event Specific 
Notes

This metric differs from instr_retired, since it counts instructions 
completed, rather than the number of times that instructions started.

Can Support PEBS No

Table 19-24.  List of Metrics Available for Front_end Tagging (For Front_end Event Only)

Front-end metric1

NOTES:

1. There may be some undercounting of front end events when there is an overflow or underflow of the floating point stack.

MSR_ 
TC_PRECISE_EVENT 
MSR Bit field

 Additional MSR Event mask value for 
Front_end_event

memory_loads None Set TAGLOADS bit in ESCR corresponding to 
event Uop_Type.

NBOGUS

memory_stores None Set TAGSTORES bit in the ESCR corresponding 
to event Uop_Type.

NBOGUS

Table 19-25.  List of Metrics Available for Execution Tagging (For Execution Event Only)

Execution metric Upstream ESCR TagValue in 
Upstream ESCR

Event mask value for 
execution_event 

packed_SP_retired Set ALL bit in event mask, TagUop bit in ESCR of 
packed_SP_uop.

1 NBOGUS0

packed_DP_retired Set ALL bit in event mask, TagUop bit in ESCR of 
packed_DP_uop.

1 NBOGUS0

scalar_SP_retired Set ALL bit in event mask, TagUop bit in ESCR of 
scalar_SP_uop.

1 NBOGUS0

scalar_DP_retired Set ALL bit in event mask, TagUop bit in ESCR of 
scalar_DP_uop.

1 NBOGUS0

128_bit_MMX_retired Set ALL bit in event mask, TagUop bit in ESCR of 
128_bit_MMX_uop.

1 NBOGUS0

64_bit_MMX_retired Set ALL bit in event mask, TagUop bit in ESCR of 
64_bit_MMX_uop.

1 NBOGUS0
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X87_FP_retired Set ALL bit in event mask, TagUop bit in ESCR of 
x87_FP_uop.

1 NBOGUS0

X87_SIMD_memory_m
oves_retired

Set ALLP0, ALLP2 bits in event mask, TagUop bit in 
ESCR of X87_SIMD_ moves_uop. 

1 NBOGUS0

Table 19-26.  List of Metrics Available for Replay Tagging (For Replay Event Only)

Replay metric1

NOTES:

1. Certain kinds of µops cannot be tagged. These include I/O operations, UC and locked accesses, returns, and far transfers.

IA32_PEBS_
ENABLE Field 
to Set

MSR_PEBS_
MATRIX_VERT Bit 
Field to Set

Additional MSR/ Event 
Event Mask Value for 
Replay_event

1stL_cache_load
_miss_retired

Bit 0, Bit 24, 
Bit 25

Bit 0 None NBOGUS

2ndL_cache_load
_miss_retired2

2. 2nd-level misses retired does not count all 2nd-level misses. It only includes those references that are found to be misses by the fast 
detection logic and not those that are later found to be misses.

Bit 1, Bit 24, 
Bit 25

Bit 0 None NBOGUS

DTLB_load_miss
_retired

Bit 2, Bit 24, 
Bit 25

Bit 0 None NBOGUS

DTLB_store_miss
_retired

Bit 2, Bit 24, 
Bit 25

Bit 1 None NBOGUS

DTLB_all_miss
_retired

Bit 2, Bit 24, 
Bit 25

Bit 0, Bit 1 None NBOGUS

Tagged_mispred_
branch

Bit 15, Bit 16, Bit 24, 
Bit 25

Bit 4 None NBOGUS

MOB_load
_replay_retired3

3. While there are several causes for a MOB replay, the event counted with this event mask setting is the case where the data from a 
load that would otherwise be forwarded is not an aligned subset of the data from a preceding store.

Bit 9, Bit 24, 
Bit 25

Bit 0 Select MOB_load_replay 
event and set 
PARTIAL_DATA and 
UNALGN_ADDR bit. 

NBOGUS

split_load_retired Bit 10, Bit 24, 
Bit 25

Bit 0 Select load_port_replay 
event with the 
MSR_SAAT_ESCR1 MSR 
and set the SPLIT_LD mask 
bit.

NBOGUS

split_store_retired Bit 10, Bit 24, 
Bit 25

Bit 1 Select store_port_replay 
event with the 
MSR_SAAT_ESCR0 MSR 
and set the SPLIT_ST mask 
bit.

NBOGUS

Table 19-25.  List of Metrics Available for Execution Tagging (For Execution Event Only) (Contd.)

Execution metric Upstream ESCR TagValue in 
Upstream ESCR

Event mask value for 
execution_event 
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Table 19-27.  Event Mask Qualification for Logical Processors

Event Type Event Name Event Masks, ESCR[24:9] TS or TI

Non-Retirement BPU_fetch_request Bit 0: TCMISS TS

Non-Retirement BSQ_allocation Bit

0: REQ_TYPE0 TS

1: REQ_TYPE1 TS

2: REQ_LEN0 TS

3: REQ_LEN1 TS

5: REQ_IO_TYPE TS

6: REQ_LOCK_TYPE TS

7: REQ_CACHE_TYPE TS

8: REQ_SPLIT_TYPE TS

9: REQ_DEM_TYPE TS

10: REQ_ORD_TYPE TS

11: MEM_TYPE0 TS

12: MEM_TYPE1 TS

13: MEM_TYPE2 TS

Non-Retirement BSQ_cache_reference Bit

0: RD_2ndL_HITS TS

1: RD_2ndL_HITE TS

2: RD_2ndL_HITM TS

3: RD_3rdL_HITS TS

4: RD_3rdL_HITE TS

5: RD_3rdL_HITM TS

6: WR_2ndL_HIT TS

7: WR_3rdL_HIT TS

8: RD_2ndL_MISS TS

9: RD_3rdL_MISS TS

10: WR_2ndL_MISS TS

11: WR_3rdL_MISS TS

Non-Retirement memory_cancel Bit

2: ST_RB_FULL TS

3: 64K_CONF TS

Non-Retirement SSE_input_assist Bit 15: ALL TI

Non-Retirement 64bit_MMX_uop Bit 15: ALL TI

Non-Retirement packed_DP_uop Bit 15: ALL TI

Non-Retirement packed_SP_uop Bit 15: ALL TI

Non-Retirement scalar_DP_uop Bit 15: ALL TI

Non-Retirement scalar_SP_uop Bit 15: ALL TI

Non-Retirement 128bit_MMX_uop Bit 15: ALL TI

Non-Retirement x87_FP_uop Bit 15: ALL TI
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Non-Retirement x87_SIMD_moves_uop Bit

3: ALLP0 TI

4: ALLP2 TI

Non-Retirement FSB_data_activity Bit

0: DRDY_DRV TI

1: DRDY_OWN TI

2: DRDY_OTHER TI

3: DBSY_DRV TI

4: DBSY_OWN TI

5: DBSY_OTHER TI

Non-Retirement IOQ_allocation Bit

0: ReqA0 TS

1: ReqA1 TS

2: ReqA2 TS

3: ReqA3 TS

4: ReqA4 TS

5: ALL_READ TS

6: ALL_WRITE TS

7: MEM_UC TS

8: MEM_WC TS

9: MEM_WT TS

10: MEM_WP TS

11: MEM_WB TS

13: OWN TS

14: OTHER TS

15: PREFETCH TS

Non-Retirement IOQ_active_entries Bit

0: ReqA0

TS

1:ReqA1 TS

2: ReqA2 TS

3: ReqA3 TS

4: ReqA4 TS

5: ALL_READ TS

6: ALL_WRITE TS

7: MEM_UC TS

8: MEM_WC TS

9: MEM_WT TS

10: MEM_WP TS

11: MEM_WB TS

Table 19-27.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
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13: OWN TS

14: OTHER TS

15: PREFETCH TS

Non-Retirement global_power_events Bit 0: RUNNING TS

Non-Retirement ITLB_reference Bit

0: HIT TS

1: MISS TS

2: HIT_UC TS

Non-Retirement MOB_load_replay Bit

1: NO_STA TS

3: NO_STD TS

4: PARTIAL_DATA TS

5: UNALGN_ADDR TS

Non-Retirement page_walk_type Bit

0: DTMISS TI

1: ITMISS TI

Non-Retirement uop_type Bit

1: TAGLOADS TS

2: TAGSTORES TS

Non-Retirement load_port_replay Bit 1: SPLIT_LD TS

Non-Retirement store_port_replay Bit 1: SPLIT_ST TS

Non-Retirement memory_complete Bit

0: LSC TS

1: SSC TS

2: USC TS

3: ULC TS

Non-Retirement retired_mispred_branch_
type

Bit

0: UNCONDITIONAL TS

1: CONDITIONAL TS

2: CALL TS

3: RETURN TS

4: INDIRECT TS

Non-Retirement retired_branch_type Bit 

0: UNCONDITIONAL TS

1: CONDITIONAL TS

2: CALL TS

3: RETURN TS

4: INDIRECT TS

Table 19-27.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
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Non-Retirement tc_ms_xfer Bit

0: CISC TS

Non-Retirement tc_misc Bit

4: FLUSH TS

Non-Retirement TC_deliver_mode Bit

0: DD TI

1: DB TI

2: DI TI

3: BD TI

4: BB TI

5: BI TI

6: ID TI

7: IB TI

Non-Retirement uop_queue_writes Bit

0: FROM_TC_BUILD TS

1: FROM_TC_DELIVER TS

2: FROM_ROM TS

Non-Retirement resource_stall Bit 5: SBFULL TS

Non-Retirement WC_Buffer Bit TI

0: WCB_EVICTS TI

1: WCB_FULL_EVICT TI

2: WCB_HITM_EVICT TI

At Retirement instr_retired Bit

0: NBOGUSNTAG TS

1: NBOGUSTAG TS

2: BOGUSNTAG TS

3: BOGUSTAG TS

At Retirement machine_clear Bit

0: CLEAR TS

2: MOCLEAR TS

6: SMCCLEAR TS

At Retirement front_end_event Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement replay_event Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement execution_event Bit

0: NONBOGUS0 TS

1: NONBOGUS1 TS

Table 19-27.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
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19.13 PERFORMANCE MONITORING EVENTS FOR INTEL® PENTIUM® M 
PROCESSORS

The Pentium M processor’s performance-monitoring events are based on monitoring events for the P6 family of 
processors. All of these performance events are model specific for the Pentium M processor and are not available 
in this form in other processors. Table 19-28 lists the Performance-Monitoring events that were added in the 
Pentium M processor.

2: NONBOGUS2 TS

3: NONBOGUS3 TS

4: BOGUS0 TS

5: BOGUS1 TS

6: BOGUS2 TS

7: BOGUS3 TS

At Retirement x87_assist Bit

0: FPSU TS

1: FPSO TS

2: POAO TS

3: POAU TS

4: PREA TS

At Retirement branch_retired Bit

0: MMNP TS

1: MMNM TS

2: MMTP TS

3: MMTM TS

At Retirement mispred_branch_retired Bit 0: NBOGUS TS

At Retirement uops_retired Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement instr_completed Bit

0: NBOGUS TS

1: BOGUS TS

Table 19-27.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
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Table 19-28.  Performance Monitoring Events on Intel® Pentium® M Processors

Name Hex Values Descriptions

Power Management

EMON_EST_TRANS 58H Number of Enhanced Intel SpeedStep technology transitions:

Mask = 00H - All transitions

Mask = 02H - Only Frequency transitions

EMON_THERMAL_TRIP 59H Duration/Occurrences in thermal trip; to count number of thermal trips: bit 
22 in PerfEvtSel0/1 needs to be set to enable edge detect.

BPU

BR_INST_EXEC 88H Branch instructions that were executed (not necessarily retired).

BR_MISSP_EXEC 89H Branch instructions executed that were mispredicted at execution.

BR_BAC_MISSP_EXEC 8AH Branch instructions executed that were mispredicted at front end (BAC).

BR_CND_EXEC 8BH Conditional branch instructions that were executed.

BR_CND_MISSP_EXEC 8CH Conditional branch instructions executed that were mispredicted.

BR_IND_EXEC 8DH Indirect branch instructions executed.

BR_IND_MISSP_EXEC 8EH Indirect branch instructions executed that were mispredicted.

BR_RET_EXEC 8FH Return branch instructions executed.

BR_RET_MISSP_EXEC 90H Return branch instructions executed that were mispredicted at execution.

BR_RET_BAC_MISSP_EXEC 91H Return branch instructions executed that were mispredicted at front end 
(BAC).

BR_CALL_EXEC 92H CALL instruction executed.

BR_CALL_MISSP_EXEC 93H CALL instruction executed and miss predicted.

BR_IND_CALL_EXEC 94H Indirect CALL instructions executed.

Decoder

EMON_SIMD_INSTR_RETIRED CEH Number of retired MMX instructions.

EMON_SYNCH_UOPS D3H Sync micro-ops

EMON_ESP_UOPS D7H Total number of micro-ops

EMON_FUSED_UOPS_RET DAH Number of retired fused micro-ops:

Mask = 0   - Fused micro-ops

Mask = 1   -  Only load+Op micro-ops

Mask = 2   -  Only std+sta micro-ops

EMON_UNFUSION DBH Number of unfusion events in the ROB, happened on a FP exception to a 
fused µop.

Prefetcher

EMON_PREF_RQSTS_UP F0H Number of upward prefetches issued

EMON_PREF_RQSTS_DN F8H Number of downward prefetches issued
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A number of P6 family processor performance monitoring events are modified for the Pentium M processor. Table 
19-29 lists the performance monitoring events that were changed in the Pentium M processor, and differ from 
performance monitoring events for the P6 family of processors.

19.14 P6 FAMILY PROCESSOR PERFORMANCE-MONITORING EVENTS

Table 19-30 lists the events that can be counted with the performance-monitoring counters and read with the 
RDPMC instruction for the P6 family processors. The unit column gives the microarchitecture or bus unit that 
produces the event; the event number column gives the hexadecimal number identifying the event; the mnemonic 
event name column gives the name of the event; the unit mask column gives the unit mask required (if any); the 
description column describes the event; and the comments column gives additional information about the event.

All of these performance events are model specific for the P6 family processors and are not available in this form in 
the Pentium 4 processors or the Pentium processors. Some events (such as those added in later generations of the 
P6 family processors) are only available in specific processors in the P6 family. All performance event encodings not 
listed in Table 19-30 are reserved and their use will result in undefined counter results.

See the end of the table for notes related to certain entries in the table.

Table 19-29.  Performance Monitoring Events Modified on Intel® Pentium® M Processors

Name Hex 
Values

Descriptions

CPU_CLK_UNHALTED 79H Number of cycles during which the processor is not halted, and not in a thermal trip.

EMON_SSE_SSE2_INST_
RETIRED

D8H Streaming SIMD Extensions Instructions Retired:

Mask = 0  –  SSE packed single and scalar single

Mask = 1  –  SSE scalar-single

Mask = 2  –  SSE2 packed-double

Mask = 3  –  SSE2 scalar-double

EMON_SSE_SSE2_COMP_INST_
RETIRED

D9H Computational SSE Instructions Retired:

Mask = 0 – SSE packed single

Mask = 1 – SSE Scalar-single

Mask = 2 – SSE2 packed-double

Mask = 3 – SSE2 scalar-double

L2_LD 29H L2 data loads Mask[0] = 1  –  count I state lines

Mask[1] = 1  –  count S state lines

Mask[2] = 1  –  count E state lines

Mask[3] = 1  –  count M state lines

Mask[5:4]:

00H – Excluding hardware-prefetched lines

01H - Hardware-prefetched lines only

02H/03H – All (HW-prefetched lines and non HW --
Prefetched lines)

L2_LINES_IN 24H L2 lines allocated

L2_LINES_OUT 26H L2 lines evicted

L2_M_LINES_OUT 27H Lw M-state lines evicted
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Table 19-30.  Events That Can Be Counted with the P6 Family Performance-Monitoring Counters

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments

Data Cache 
Unit (DCU)

43H DATA_MEM_REFS 00H All loads from any memory type. All stores 
to any memory type. Each part of a split is 
counted separately. The internal logic counts 
not only memory loads and stores, but also 
internal retries.

80-bit floating-point accesses are double 
counted, since they are decomposed into a 
16-bit exponent load and a 64-bit mantissa 
load. Memory accesses are only counted 
when they are actually performed (such as a 
load that gets squashed because a previous 
cache miss is outstanding to the same 
address, and which finally gets performed, is 
only counted once).

Does not include I/O accesses, or other 
nonmemory accesses.

45H DCU_LINES_IN 00H Total lines allocated in DCU.

46H DCU_M_LINES_IN 00H Number of M state lines allocated in DCU.

47H DCU_M_LINES_
OUT

00H Number of M state lines evicted from DCU.

This includes evictions via snoop HITM, 
intervention or replacement.

48H DCU_MISS_
OUTSTANDING

00H Weighted number of cycles while a DCU miss 
is outstanding, incremented by the number 
of outstanding cache misses at any 
particular time.

Cacheable read requests only are 
considered.

Uncacheable requests are excluded.

Read-for-ownerships are counted, as well as 
line fills, invalidates, and stores.

An access that also misses the L2 
is short-changed by 2 cycles (i.e., if 
counts N cycles, should be N+2 
cycles).

Subsequent loads to the same 
cache line will not result in any 
additional counts.

Count value not precise, but still 
useful.

Instruction 
Fetch Unit 
(IFU)

80H IFU_IFETCH 00H Number of instruction fetches, both 
cacheable and noncacheable, including UC 
fetches.

81H IFU_IFETCH_
MISS

00H Number of instruction fetch misses

All instruction fetches that do not hit the IFU 
(i.e., that produce memory requests). This 
includes UC accesses.

85H ITLB_MISS 00H Number of ITLB misses.

86H IFU_MEM_STALL 00H Number of cycles instruction fetch is stalled, 
for any reason.

Includes IFU cache misses, ITLB misses, ITLB 
faults, and other minor stalls.

87H ILD_STALL 00H Number of cycles that the instruction length 
decoder is stalled.

L2 Cache1 28H L2_IFETCH MESI
0FH

Number of L2 instruction fetches.

This event indicates that a normal 
instruction fetch was received by the L2.
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The count includes only L2 cacheable 
instruction fetches; it does not include UC 
instruction fetches.

It does not include ITLB miss accesses.

29H L2_LD MESI
0FH

Number of L2 data loads.

This event indicates that a normal, unlocked, 
load memory access was received by the L2.

It includes only L2 cacheable memory 
accesses; it does not include I/O accesses, 
other nonmemory accesses, or memory 
accesses such as UC/WT memory accesses.

It does include L2 cacheable TLB miss 
memory accesses.

2AH L2_ST MESI
0FH

Number of L2 data stores.

This event indicates that a normal, unlocked, 
store memory access was received by the 
L2.

it indicates that the DCU sent a read-for-
ownership request to the L2. It also includes 
Invalid to Modified requests sent by the DCU 
to the L2.

It includes only L2 cacheable memory 
accesses; it does not include I/O accesses, 
other nonmemory accesses, or memory 
accesses such as UC/WT memory accesses.

It includes TLB miss memory accesses.

24H L2_LINES_IN 00H Number of lines allocated in the L2.

26H L2_LINES_OUT 00H Number of lines removed from the L2 for 
any reason.

25H L2_M_LINES_INM 00H Number of modified lines allocated in the L2.

27H L2_M_LINES_
OUTM

00H Number of modified lines removed from the 
L2 for any reason.

2EH L2_RQSTS MESI
0FH

Total number of L2 requests.

21H L2_ADS 00H Number of L2 address strobes.

22H L2_DBUS_BUSY 00H Number of cycles during which the L2 cache 
data bus was busy.

23H L2_DBUS_BUSY_
RD

00H Number of cycles during which the data bus 
was busy transferring read data from L2 to 
the processor.

External 
Bus Logic 
(EBL)2

62H BUS_DRDY_
CLOCKS

00H 
(Self)

20H 
(Any)

Number of clocks during which DRDY# is 
asserted.

Utilization of the external system data bus 
during data transfers.

Unit Mask = 00H counts bus clocks 
when the processor is driving 
DRDY#.

Unit Mask = 20H counts in 
processor clocks when any agent is 
driving DRDY#.

Table 19-30.  Events That Can Be Counted with the P6 Family Performance-Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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63H BUS_LOCK_
CLOCKS

00H 
(Self)

20H 
(Any)

Number of clocks during which LOCK# is 
asserted on the external system bus.3

Always counts in processor clocks.

60H BUS_REQ_
OUTSTANDING

00H 
(Self)

Number of bus requests outstanding.

This counter is incremented by the number 
of cacheable read bus requests outstanding 
in any given cycle.

Counts only DCU full-line cacheable 
reads, not RFOs, writes, instruction 
fetches, or anything else. Counts 
“waiting for bus to complete” (last 
data chunk received).

65H BUS_TRAN_BRD 00H 
(Self)

20H 
(Any)

Number of burst read transactions. 

66H BUS_TRAN_RFO 00H 
(Self)

20H 
(Any)

Number of completed read for ownership 
transactions.

67H BUS_TRANS_WB 00H 
(Self)

20H 
(Any)

Number of completed write back 
transactions.

68H BUS_TRAN_
IFETCH

00H 
(Self)

20H 
(Any)

Number of completed instruction fetch 
transactions.

69H BUS_TRAN_INVA
L

00H 
(Self)

20H 
(Any)

Number of completed invalidate 
transactions.

6AH BUS_TRAN_PWR 00H 
(Self)

20H 
(Any)

Number of completed partial write 
transactions.

6BH BUS_TRANS_P 00H 
(Self)

20H 
(Any)

Number of completed partial transactions.

6CH BUS_TRANS_IO 00H 
(Self)

20H 
(Any)

Number of completed I/O transactions.

6DH BUS_TRAN_DEF 00H 
(Self)

20H 
(Any)

Number of completed deferred transactions.

Table 19-30.  Events That Can Be Counted with the P6 Family Performance-Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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6EH BUS_TRAN_
BURST

00H 
(Self)

20H 
(Any)

Number of completed burst transactions.

70H BUS_TRAN_ANY 00H 
(Self)

20H 
(Any)

Number of all completed bus transactions.

Address bus utilization can be calculated 
knowing the minimum address bus 
occupancy.

Includes special cycles, etc.

6FH BUS_TRAN_MEM 00H 
(Self)

20H 
(Any)

Number of completed memory transactions.

64H BUS_DATA_RCV 00H 
(Self)

Number of bus clock cycles during which this 
processor is receiving data.

61H BUS_BNR_DRV 00H 
(Self)

Number of bus clock cycles during which this 
processor is driving the BNR# pin.

7AH BUS_HIT_DRV 00H 
(Self)

Number of bus clock cycles during which this 
processor is driving the HIT# pin.

Includes cycles due to snoop stalls.

The event counts correctly, but 
BPMi (breakpoint monitor) pins 
function as follows based on the 
setting of the PC bits (bit 19 in the 
PerfEvtSel0 and PerfEvtSel1 
registers):

• If the core-clock-to- bus-clock 
ratio is 2:1 or 3:1, and a PC bit is 
set, the BPMi pins will be 
asserted for a single clock when 
the counters overflow.

• If the PC bit is clear, the 
processor toggles the BPMi pins 
when the counter overflows.

• If the clock ratio is not 2:1 or 3:1, 
the BPMi pins will not function 
for these performance-
monitoring counter events.

7BH BUS_HITM_DRV 00H 
(Self)

Number of bus clock cycles during which this 
processor is driving the HITM# pin.

Includes cycles due to snoop stalls.

The event counts correctly, but 
BPMi (breakpoint monitor) pins 
function as follows based on the 
setting of the PC bits (bit 19 in the 
PerfEvtSel0 and PerfEvtSel1 
registers):

• If the core-clock-to- bus-clock 
ratio is 2:1 or 3:1, and a PC bit is 
set, the BPMi pins will be 
asserted for a single clock when 
the counters overflow.

Table 19-30.  Events That Can Be Counted with the P6 Family Performance-Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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• If the PC bit is clear, the 
processor toggles the BPMipins 
when the counter overflows.

• If the clock ratio is not 2:1 or 3:1, 
the BPMi pins will not function 
for these performance-
monitoring counter events.

7EH BUS_SNOOP_
STALL

00H 
(Self)

Number of clock cycles during which the bus 
is snoop stalled.

Floating- 
Point Unit

C1H FLOPS 00H Number of computational floating-point 
operations retired.

Excludes floating-point computational 
operations that cause traps or assists.

Includes floating-point computational 
operations executed by the assist handler.

Includes internal sub-operations for complex 
floating-point instructions like 
transcendentals.

Excludes floating-point loads and stores.

Counter 0 only.

10H FP_COMP_OPS_
EXE

00H Number of computational floating-point 
operations executed.

The number of FADD, FSUB, FCOM, FMULs, 
integer MULs and IMULs, FDIVs, FPREMs, 
FSQRTS, integer DIVs, and IDIVs.

This number does not include the number of 
cycles, but the number of operations.

This event does not distinguish an FADD 
used in the middle of a transcendental flow 
from a separate FADD instruction.

Counter 0 only.

11H FP_ASSIST 00H Number of floating-point exception cases 
handled by microcode.

Counter 1 only.

This event includes counts due to 
speculative execution.

12H MUL 00H Number of multiplies.

This count includes integer as well as FP 
multiplies and is speculative.

Counter 1 only.

13H DIV 00H Number of divides.

This count includes integer as well as FP 
divides and is speculative.

Counter 1 only.

14H CYCLES_DIV_
BUSY

00H Number of cycles during which the divider is 
busy, and cannot accept new divides.

This includes integer and FP divides, FPREM, 
FPSQRT, etc. and is speculative.

Counter 0 only.

Table 19-30.  Events That Can Be Counted with the P6 Family Performance-Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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Memory 
Ordering

03H LD_BLOCKS 00H Number of load operations delayed due to 
store buffer blocks.

Includes counts caused by preceding stores 
whose addresses are unknown, preceding 
stores whose addresses are known but 
whose data is unknown, and preceding 
stores that conflicts with the load but which 
incompletely overlap the load.

04H SB_DRAINS 00H Number of store buffer drain cycles.

Incremented every cycle the store buffer is 
draining.

Draining is caused by serializing operations 
like CPUID, synchronizing operations like 
XCHG, interrupt acknowledgment, as well as 
other conditions (such as cache flushing).

05H MISALIGN_
MEM_REF

00H Number of misaligned data memory 
references.

Incremented by 1 every cycle, during which 
either the processor’s load or store pipeline 
dispatches a misaligned µop.

Counting is performed if it is the first or 
second half, or if it is blocked, squashed, or 
missed.

In this context, misaligned means crossing a 
64-bit boundary.

MISALIGN_MEM_
REF is only an approximation to the 
true number of misaligned memory 
references.

The value returned is roughly 
proportional to the number of 
misaligned memory accesses (the 
size of the problem).

07H EMON_KNI_PREF
_DISPATCHED

Number of Streaming SIMD extensions 
prefetch/weakly-ordered instructions 
dispatched (speculative prefetches are 
included in counting):

Counters 0 and 1. Pentium III 
processor only.

00H

01H

02H

03H

0: prefetch NTA

1: prefetch T1

2: prefetch T2

3: weakly ordered stores

4BH EMON_KNI_PREF
_MISS

Number of prefetch/weakly-ordered 
instructions that miss all caches:

Counters 0 and 1. Pentium III 
processor only.

00H

01H

02H

03H

0: prefetch NTA

1: prefetch T1

2: prefetch T2

3: weakly ordered stores

Instruction 
Decoding 
and 
Retirement

C0H INST_RETIRED 00H Number of instructions retired. A hardware interrupt received 
during/after the last iteration of 
the REP STOS flow causes the 
counter to undercount by 1 
instruction.

An SMI received while executing a 
HLT instruction will cause the 
performance counter to not count 
the RSM instruction and 
undercount by 1.

Table 19-30.  Events That Can Be Counted with the P6 Family Performance-Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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C2H UOPS_RETIRED 00H Number of µops retired.

D0H INST_DECODED 00H Number of instructions decoded.

D8H EMON_KNI_INST_
RETIRED

00H

01H

Number of Streaming SIMD extensions 
retired:

0: packed & scalar

1: scalar

Counters 0 and 1. Pentium III 
processor only.

D9H EMON_KNI_
COMP_
INST_RET

00H

01H

Number of Streaming SIMD extensions 
computation instructions retired:

0: packed and scalar

1: scalar

Counters 0 and 1. Pentium III 
processor only.

Interrupts C8H HW_INT_RX 00H Number of hardware interrupts received.

C6H CYCLES_INT_
MASKED

00H Number of processor cycles for which 
interrupts are disabled.

C7H CYCLES_INT_
PENDING_
AND_MASKED

00H Number of processor cycles for which 
interrupts are disabled and interrupts are 
pending.

Branches C4H BR_INST_
RETIRED

00H Number of branch instructions retired.

C5H BR_MISS_PRED_
RETIRED

00H Number of mispredicted branches retired.

C9H BR_TAKEN_
RETIRED

00H Number of taken branches retired.

CAH BR_MISS_PRED_
TAKEN_RET

00H Number of taken mispredictions branches 
retired.

E0H BR_INST_
DECODED

00H Number of branch instructions decoded.

E2H BTB_MISSES 00H Number of branches for which the BTB did 
not produce a prediction.

E4H BR_BOGUS 00H Number of bogus branches. 

E6H BACLEARS 00H Number of times BACLEAR is asserted.

This is the number of times that a static 
branch prediction was made, in which the 
branch decoder decided to make a branch 
prediction because the BTB did not.

Stalls A2H RESOURCE_
STALLS

00H Incremented by 1 during every cycle for 
which there is a resource related stall.

Includes register renaming buffer entries, 
memory buffer entries.

Table 19-30.  Events That Can Be Counted with the P6 Family Performance-Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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Does not include stalls due to bus queue full, 
too many cache misses, etc.

In addition to resource related stalls, this 
event counts some other events.

Includes stalls arising during branch 
misprediction recovery, such as if retirement 
of the mispredicted branch is delayed and 
stalls arising while store buffer is draining 
from synchronizing operations.

D2H PARTIAL_RAT_
STALLS

00H Number of cycles or events for partial stalls. 
This includes flag partial stalls.

Segment 
Register 
Loads

06H SEGMENT_REG_
LOADS

00H Number of segment register loads.

Clocks 79H CPU_CLK_
UNHALTED

00H Number of cycles during which the 
processor is not halted.

MMX Unit B0H MMX_INSTR_
EXEC

00H Number of MMX Instructions Executed. Available in Intel Celeron, Pentium II 
and Pentium II Xeon processors 
only.

Does not account for MOVQ and 
MOVD stores from register to 
memory.

B1H MMX_SAT_
INSTR_EXEC

00H Number of MMX Saturating Instructions 
Executed.

Available in Pentium II and Pentium 

III processors only.

B2H MMX_UOPS_
EXEC

0FH Number of MMX µops Executed. Available in Pentium II and Pentium 

III processors only.

B3H MMX_INSTR_
TYPE_EXEC

01H

02H

04H

MMX packed multiply instructions executed.

MMX packed shift instructions executed.

MMX pack operation instructions executed.

Available in Pentium II and Pentium 

III processors only.

08H

10H

20H

MMX unpack operation instructions 
executed.

MMX packed logical instructions executed.

MMX packed arithmetic instructions 
executed.

CCH FP_MMX_TRANS 00H

01H

Transitions from MMX instruction to 
floating-point instructions.

Transitions from floating-point instructions 
to MMX instructions.

Available in Pentium II and Pentium 

III processors only.

CDH MMX_ASSIST 00H Number of MMX Assists (that is, the number 
of EMMS instructions executed).

Available in Pentium II and Pentium 

III processors only.

CEH MMX_INSTR_RET 00H Number of MMX Instructions Retired. Available in Pentium II processors 
only.

Segment 
Register 
Renaming

D4H SEG_RENAME_
STALLS

Number of Segment Register Renaming 
Stalls:

Available in Pentium II and Pentium 

III processors only.

Table 19-30.  Events That Can Be Counted with the P6 Family Performance-Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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19.15 PENTIUM PROCESSOR PERFORMANCE-MONITORING EVENTS

Table 19-31 lists the events that can be counted with the performance-monitoring counters for the Pentium 
processor. The Event Number column gives the hexadecimal code that identifies the event and that is entered in 
the ES0 or ES1 (event select) fields of the CESR MSR. The Mnemonic Event Name column gives the name of the 
event, and the Description and Comments columns give detailed descriptions of the events. Most events can be 
counted with either counter 0 or counter 1; however, some events can only be counted with only counter 0 or only 
counter 1 (as noted).

NOTE

The events in the table that are shaded are implemented only in the Pentium processor with MMX 
technology.

02H

04H

08H

0FH

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers 
ES + DS + FS + GS

D5H SEG_REG_
RENAMES

Number of Segment Register Renames: Available in Pentium II and Pentium 

III processors only.

01H

02H

04H

08H

0FH

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers 
ES + DS + FS + GS

D6H RET_SEG_
RENAMES

00H Number of segment register rename events 
retired.

Available in Pentium II and Pentium 

III processors only.

NOTES:

1. Several L2 cache events, where noted, can be further qualified using the Unit Mask (UMSK) field in the PerfEvtSel0 and 
PerfEvtSel1 registers. The lower 4 bits of the Unit Mask field are used in conjunction with L2 events to indicate the cache state or 
cache states involved. 

The P6 family processors identify cache states using the “MESI” protocol and consequently each bit in the Unit Mask field repre-
sents one of the four states: UMSK[3] = M (8H) state, UMSK[2] = E (4H) state, UMSK[1] = S (2H) state, and UMSK[0] = I (1H) state. 
UMSK[3:0] = MESI” (FH) should be used to collect data for all states; UMSK = 0H, for the applicable events, will result in nothing 
being counted.

2. All of the external bus logic (EBL) events, except where noted, can be further qualified using the Unit Mask (UMSK) field in the 
PerfEvtSel0 and PerfEvtSel1 registers. 

Bit 5 of the UMSK field is used in conjunction with the EBL events to indicate whether the processor should count transactions that 
are self- generated (UMSK[5] = 0) or transactions that result from any processor on the bus (UMSK[5] = 1). 

3. L2 cache locks, so it is possible to have a zero count. 

Table 19-30.  Events That Can Be Counted with the P6 Family Performance-Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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Table 19-31.  Events That Can Be Counted with Pentium Processor Performance-Monitoring Counters

Event
Num.

Mnemonic Event 
Name Description Comments

00H DATA_READ Number of memory data reads 
(internal data cache hit and miss 
combined).

Split cycle reads are counted individually. Data Memory 
Reads that are part of TLB miss processing are not 
included. These events may occur at a maximum of two 
per clock. I/O is not included.

01H DATA_WRITE Number of memory data writes 
(internal data cache hit and miss 
combined); I/O not included.

Split cycle writes are counted individually. These events 
may occur at a maximum of two per clock. I/O is not 
included.

0H2 DATA_TLB_MISS Number of misses to the data cache 
translation look-aside buffer.

03H DATA_READ_MISS Number of memory read accesses that 
miss the internal data cache whether 
or not the access is cacheable or 
noncacheable.

Additional reads to the same cache line after the first 
BRDY# of the burst line fill is returned but before the final 
(fourth) BRDY# has been returned, will not cause the 
counter to be incremented additional times.

Data accesses that are part of TLB miss processing are 
not included. Accesses directed to I/O space are not 
included.

04H DATA WRITE MISS Number of memory write accesses 
that miss the internal data cache 
whether or not the access is cacheable 
or noncacheable.

Data accesses that are part of TLB miss processing are 
not included. Accesses directed to I/O space are not 
included.

05H WRITE_HIT_TO_
M-_OR_E-
STATE_LINES

Number of write hits to exclusive or 
modified lines in the data cache.

These are the writes that may be held up if EWBE# is 
inactive. These events may occur a maximum of two per 
clock.

06H DATA_CACHE_
LINES_ 
WRITTEN_BACK

Number of dirty lines (all) that are 
written back, regardless of the cause.

Replacements and internal and external snoops can all 
cause writeback and are counted.

07H EXTERNAL_ 
SNOOPS

Number of accepted external snoops 
whether they hit in the code cache or 
data cache or neither.

Assertions of EADS# outside of the sampling interval are 
not counted, and no internal snoops are counted.

08H EXTERNAL_DATA_
CACHE_SNOOP_
HITS

Number of external snoops to the data 
cache.

Snoop hits to a valid line in either the data cache, the data 
line fill buffer, or one of the write back buffers are all 
counted as hits.

09H MEMORY ACCESSES 
IN BOTH PIPES

Number of data memory reads or 
writes that are paired in both pipes of 
the pipeline.

These accesses are not necessarily run in parallel due to 
cache misses, bank conflicts, etc.

0AH BANK CONFLICTS Number of actual bank conflicts.

0BH MISALIGNED DATA 
MEMORY OR I/O 
REFERENCES

Number of memory or I/O reads or 
writes that are misaligned.

A 2- or 4-byte access is misaligned when it crosses a 4-
byte boundary; an 8-byte access is misaligned when it 
crosses an 8-byte boundary. Ten byte accesses are 
treated as two separate accesses of 8 and 2 bytes each.

0CH CODE READ Number of instruction reads; whether 
the read is cacheable or noncacheable.

Individual 8-byte noncacheable instruction reads are 
counted.

0DH CODE TLB MISS Number of instruction reads that miss 
the code TLB whether the read is 
cacheable or noncacheable.

Individual 8-byte noncacheable instruction reads are 
counted.

0EH CODE CACHE MISS Number of instruction reads that miss 
the internal code cache; whether the 
read is cacheable or noncacheable.

Individual 8-byte noncacheable instruction reads are 
counted.
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0FH ANY SEGMENT 
REGISTER LOADED

Number of writes into any segment 
register in real or protected mode 
including the LDTR, GDTR, IDTR, and 
TR.

Segment loads are caused by explicit segment register 
load instructions, far control transfers, and task switches. 
Far control transfers and task switches causing a privilege 
level change will signal this event twice. Interrupts and 
exceptions may initiate a far control transfer.

10H Reserved

11H Reserved

12H Branches Number of taken and not taken 
branches, including: conditional 
branches, jumps, calls, returns, 
software interrupts, and interrupt 
returns.

 Also counted as taken branches are serializing 
instructions, VERR and VERW instructions, some segment 
descriptor loads, hardware interrupts (including FLUSH#), 
and programmatic exceptions that invoke a trap or fault 
handler. The pipe is not necessarily flushed. 

The number of branches actually executed is measured, 
not the number of predicted branches.

13H BTB_HITS Number of BTB hits that occur. Hits are counted only for those instructions that are 
actually executed.

14H TAKEN_BRANCH_
OR_BTB_HIT

Number of taken branches or BTB hits 
that occur.

This event type is a logical OR of taken branches and BTB 
hits. It represents an event that may cause a hit in the 
BTB. Specifically, it is either a candidate for a space in the 
BTB or it is already in the BTB.

15H PIPELINE FLUSHES Number of pipeline flushes that occur

Pipeline flushes are caused by BTB 
misses on taken branches, 
mispredictions, exceptions, interrupts, 
and some segment descriptor loads. 

The counter will not be incremented for serializing 
instructions (serializing instructions cause the prefetch 
queue to be flushed but will not trigger the Pipeline 
Flushed event counter) and software interrupts (software 
interrupts do not flush the pipeline).

16H INSTRUCTIONS_
EXECUTED

Number of instructions executed (up 
to two per clock).

Invocations of a fault handler are considered instructions. 
All hardware and software interrupts and exceptions will 
also cause the count to be incremented. Repeat prefixed 
string instructions will only increment this counter once 
despite the fact that the repeat loop executes the same 
instruction multiple times until the loop criteria is 
satisfied. 

This applies to all the Repeat string instruction prefixes 
(i.e., REP, REPE, REPZ, REPNE, and REPNZ). This counter 
will also only increment once per each HLT instruction 
executed regardless of how many cycles the processor 
remains in the HALT state.

17H INSTRUCTIONS_ 
EXECUTED_ V PIPE

Number of instructions executed in 
the V_pipe.

The event indicates the number of 
instructions that were paired.

This event is the same as the 16H event except it only 
counts the number of instructions actually executed in 
the V-pipe.

18H BUS_CYCLE_
DURATION

Number of clocks while a bus cycle is in 
progress.

This event measures bus use.

The count includes HLDA, AHOLD, and BOFF# clocks.

19H WRITE_BUFFER_
FULL_STALL_
DURATION

Number of clocks while the pipeline is 
stalled due to full write buffers.

Full write buffers stall data memory read misses, data 
memory write misses, and data memory write hits to S-
state lines. Stalls on I/O accesses are not included.

Table 19-31.  Events That Can Be Counted with Pentium Processor Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
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1AH WAITING_FOR_
DATA_MEMORY_
READ_STALL_
DURATION

Number of clocks while the pipeline is 
stalled while waiting for data memory 
reads.

Data TLB Miss processing is also included in the count. The 
pipeline stalls while a data memory read is in progress 
including attempts to read that are not bypassed while a 
line is being filled.

1BH STALL ON WRITE 
TO AN E- OR M-
STATE LINE

Number of stalls on writes to E- or M-
state lines.

1CH LOCKED BUS CYCLE Number of locked bus cycles that occur 
as the result of the LOCK prefix or 
LOCK instruction, page-table updates, 
and descriptor table updates.

Only the read portion of the locked read-modify-write is 
counted. Split locked cycles (SCYC active) count as two 
separate accesses. Cycles restarted due to BOFF# are not 
re-counted.

1DH I/O READ OR WRITE 
CYCLE 

Number of bus cycles directed to I/O 
space.

Misaligned I/O accesses will generate two bus cycles. Bus 
cycles restarted due to BOFF# are not re-counted.

1EH NONCACHEABLE_
MEMORY_READS

Number of noncacheable instruction or 
data memory read bus cycles.

The count includes read cycles caused 
by TLB misses, but does not include 
read cycles to I/O space. 

Cycles restarted due to BOFF# are not re-counted.

1FH PIPELINE_AGI_
STALLS

Number of address generation 
interlock (AGI) stalls.

An AGI occurring in both the U- and V- 
pipelines in the same clock signals this 
event twice.

An AGI occurs when the instruction in the execute stage 
of either of U- or V-pipelines is writing to either the index 
or base address register of an instruction in the D2 
(address generation) stage of either the U- or V- pipelines.

20H Reserved

21H Reserved

22H FLOPS Number of floating-point operations 
that occur.

Number of floating-point adds, subtracts, multiplies, 
divides, remainders, and square roots are counted. The 
transcendental instructions consist of multiple adds and 
multiplies and will signal this event multiple times. 
Instructions generating the divide-by-zero, negative 
square root, special operand, or stack exceptions will not 
be counted.

Instructions generating all other floating-point exceptions 
will be counted. The integer multiply instructions and 
other instructions which use the x87 FPU will be counted.

23H BREAKPOINT 
MATCH ON DR0 
REGISTER

Number of matches on register DR0 
breakpoint.

The counters is incremented regardless if the breakpoints 
are enabled or not. However, if breakpoints are not 
enabled, code breakpoint matches will not be checked for 
instructions executed in the V-pipe and will not cause this 
counter to be incremented. (They are checked on 
instruction executed in the U-pipe only when breakpoints 
are not enabled.) 

These events correspond to the signals driven on the 
BP[3:0] pins. Refer to Chapter 17, “Debug, Branch Profile, 
TSC, and Quality of Service” for more information.

24H BREAKPOINT 
MATCH ON DR1 
REGISTER

Number of matches on register DR1 
breakpoint.

See comment for 23H event.

Table 19-31.  Events That Can Be Counted with Pentium Processor Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
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25H BREAKPOINT 
MATCH ON DR2 
REGISTER

Number of matches on register DR2 
breakpoint.

See comment for 23H event.

26H BREAKPOINT 
MATCH ON DR3 
REGISTER

Number of matches on register DR3 
breakpoint.

See comment for 23H event.

27H HARDWARE 
INTERRUPTS 

Number of taken INTR and NMI 
interrupts.

28H DATA_READ_OR_
WRITE

Number of memory data reads and/or 
writes (internal data cache hit and 
miss combined).

Split cycle reads and writes are counted individually. Data 
Memory Reads that are part of TLB miss processing are 
not included. These events may occur at a maximum of 
two per clock. I/O is not included.

29H DATA_READ_MISS 
OR_WRITE MISS

Number of memory read and/or write 
accesses that miss the internal data 
cache, whether or not the access is 
cacheable or noncacheable.

Additional reads to the same cache line after the first 
BRDY# of the burst line fill is returned but before the final 
(fourth) BRDY# has been returned, will not cause the 
counter to be incremented additional times.

Data accesses that are part of TLB miss processing are 
not included. Accesses directed to I/O space are not 
included.

2AH BUS_OWNERSHIP_
LATENCY 
(Counter 0)

The time from LRM bus ownership 
request to bus ownership granted 
(that is, the time from the earlier of a 
PBREQ (0), PHITM# or HITM# 
assertion to a PBGNT assertion)

The ratio of the 2AH events counted on counter 0 and 
counter 1 is the average stall time due to bus ownership 
conflict.

2AH BUS OWNERSHIP 
TRANSFERS 
(Counter 1)

The number of buss ownership 
transfers (that is, the number of 
PBREQ (0) assertions

The ratio of the 2AH events counted on counter 0 and 
counter 1 is the average stall time due to bus ownership 
conflict.

2BH MMX_
INSTRUCTIONS_
EXECUTED_
U-PIPE (Counter 0)

Number of MMX instructions executed 
in the U-pipe

2BH MMX_
INSTRUCTIONS_
EXECUTED_
V-PIPE (Counter 1)

Number of MMX instructions executed 
in the V-pipe

2CH CACHE_M-
STATE_LINE_
SHARING 
(Counter 0)

Number of times a processor identified 
a hit to a modified line due to a 
memory access in the other processor 
(PHITM (O))

If the average memory latencies of the system are known, 
this event enables the user to count the Write Backs on 
PHITM(O) penalty and the Latency on Hit Modified(I) 
penalty.

2CH CACHE_LINE_
SHARING 
(Counter 1)

Number of shared data lines in the L1 
cache (PHIT (O))

2DH EMMS_
INSTRUCTIONS_
EXECUTED (Counter 
0)

Number of EMMS instructions 
executed

Table 19-31.  Events That Can Be Counted with Pentium Processor Performance-Monitoring Counters (Contd.)
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2DH TRANSITIONS_
BETWEEN_MMX_ 
AND_FP_
INSTRUCTIONS 
(Counter 1)

Number of transitions between MMX 
and floating-point instructions or vice 
versa

An even count indicates the processor 
is in MMX state. an odd count indicates 
it is in FP state.

This event counts the first floating-point instruction 
following an MMX instruction or first MMX instruction 
following a floating-point instruction.

The count may be used to estimate the penalty in 
transitions between floating-point state and MMX state.

2EH BUS_UTILIZATION_ 
DUE_TO_ 
PROCESSOR_ 
ACTIVITY 
(Counter 0)

Number of clocks the bus is busy due 
to the processor’s own activity (the 
bus activity that is caused by the 
processor)

2EH WRITES_TO_
NONCACHEABLE_
MEMORY 
(Counter 1)

Number of write accesses to 
noncacheable memory

The count includes write cycles caused by TLB misses and 
I/O write cycles. 

Cycles restarted due to BOFF# are not re-counted.

2FH SATURATING_
MMX_
INSTRUCTIONS_
EXECUTED (Counter 
0)

Number of saturating MMX 
instructions executed, independently 
of whether they actually saturated.

2FH SATURATIONS_
PERFORMED 
(Counter 1)

Number of MMX instructions that used 
saturating arithmetic when at least 
one of its results actually saturated

If an MMX instruction operating on 4 doublewords 
saturated in three out of the four results, the counter will 
be incremented by one only.

30H NUMBER_OF_
CYCLES_NOT_IN_ 
HALT_STATE 
(Counter 0)

Number of cycles the processor is not 
idle due to HLT instruction

This event will enable the user to calculate “net CPI”. Note 
that during the time that the processor is executing the 
HLT instruction, the Time-Stamp Counter is not disabled. 
Since this event is controlled by the Counter Controls CC0, 
CC1 it can be used to calculate the CPI at CPL=3, which 
the TSC cannot provide.

30H DATA_CACHE_
TLB_MISS_
STALL_DURATION
(Counter 1)

Number of clocks the pipeline is stalled 
due to a data cache translation look-
aside buffer (TLB) miss

31H MMX_
INSTRUCTION_
DATA_READS
(Counter 0)

Number of MMX instruction data reads

31H MMX_
INSTRUCTION_
DATA_READ_
MISSES 
(Counter 1)

Number of MMX instruction data read 
misses

32H FLOATING_POINT_S
TALLS_DURATION
(Counter 0)

Number of clocks while pipe is stalled 
due to a floating-point freeze

32H TAKEN_BRANCHES 
(Counter 1)

Number of taken branches

Table 19-31.  Events That Can Be Counted with Pentium Processor Performance-Monitoring Counters (Contd.)
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33H D1_STARVATION_
AND_FIFO_IS_
EMPTY 
(Counter 0)

Number of times D1 stage cannot 
issue ANY instructions since the FIFO 
buffer is empty

The D1 stage can issue 0, 1, or 2 instructions per clock if 
those are available in an instructions FIFO buffer. 

33H D1_STARVATION_
AND_ONLY_ONE_
INSTRUCTION_IN_
FIFO
(Counter 1)

Number of times the D1 stage issues a 
single instruction (since the FIFO 
buffer had just one instruction ready) 

The D1 stage can issue 0, 1, or 2 instructions per clock if 
those are available in an instructions FIFO buffer. 

When combined with the previously defined events, 
Instruction Executed (16H) and Instruction Executed in 
the V-pipe (17H), this event enables the user to calculate 
the numbers of time pairing rules prevented issuing of 
two instructions.

34H MMX_
INSTRUCTION_
DATA_WRITES 
(Counter 0)

Number of data writes caused by MMX 
instructions

34H MMX_
INSTRUCTION_
DATA_WRITE_
MISSES 
(Counter 1)

Number of data write misses caused 
by MMX instructions

35H PIPELINE_ 
FLUSHES_DUE_
TO_WRONG_
BRANCH_
PREDICTIONS 
(Counter 0)

Number of pipeline flushes due to 
wrong branch predictions resolved in 
either the E-stage or the WB-stage

The count includes any pipeline flush due to a branch that 
the pipeline did not follow correctly. It includes cases 
where a branch was not in the BTB, cases where a branch 
was in the BTB but was mispredicted, and cases where a 
branch was correctly predicted but to the wrong address.

Branches are resolved in either the Execute stage 
(E-stage) or the Writeback stage (WB-stage). In the later 
case, the misprediction penalty is larger by one clock. The 
difference between the 35H event count in counter 0 and 
counter 1 is the number of E-stage resolved branches.

35H PIPELINE_ 
FLUSHES_DUE_
TO_WRONG_
BRANCH_
PREDICTIONS_
RESOLVED_IN_
WB-STAGE 
(Counter 1)

Number of pipeline flushes due to 
wrong branch predictions resolved in 
the WB-stage

See note for event 35H (Counter 0).

36H MISALIGNED_
DATA_MEMORY_
REFERENCE_ON_
MMX_
INSTRUCTIONS 
(Counter 0)

Number of misaligned data memory 
references when executing MMX 
instructions

36H PIPELINE_
ISTALL_FOR_MMX_
INSTRUCTION_
DATA_MEMORY_
READS
(Counter 1)

Number clocks during pipeline stalls 
caused by waits form MMX instruction 
data memory reads

T3:

Table 19-31.  Events That Can Be Counted with Pentium Processor Performance-Monitoring Counters (Contd.)
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37H MISPREDICTED_
OR_
UNPREDICTED_
RETURNS
(Counter 1)

Number of returns predicted 
incorrectly or not predicted at all

The count is the difference between the total number of 
executed returns and the number of returns that were 
correctly predicted. Only RET instructions are counted (for 
example, IRET instructions are not counted).

37H PREDICTED_
RETURNS
(Counter 1)

Number of predicted returns (whether 
they are predicted correctly and 
incorrectly

Only RET instructions are counted (for example, IRET 
instructions are not counted).

38H MMX_MULTIPLY_
UNIT_INTERLOCK 
(Counter 0)

Number of clocks the pipe is stalled 
since the destination of previous MMX 
multiply instruction is not ready yet

The counter will not be incremented if there is another 
cause for a stall. For each occurrence of a multiply 
interlock, this event will be counted twice (if the stalled 
instruction comes on the next clock after the multiply) or 
by once (if the stalled instruction comes two clocks after 
the multiply).

38H MOVD/MOVQ_
STORE_STALL_
DUE_TO_
PREVIOUS_MMX_
OPERATION 
(Counter 1)

Number of clocks a MOVD/MOVQ 
instruction store is stalled in D2 stage 
due to a previous MMX operation with 
a destination to be used in the store 
instruction.

39H RETURNS 
(Counter 0)

Number or returns executed. Only RET instructions are counted; IRET instructions are 
not counted. Any exception taken on a RET instruction 
and any interrupt recognized by the processor on the 
instruction boundary prior to the execution of the RET 
instruction will also cause this counter to be incremented.

39H Reserved

3AH BTB_FALSE_
ENTRIES 
(Counter 0)

Number of false entries in the Branch 
Target Buffer

False entries are causes for misprediction other than a 
wrong prediction.

3AH BTB_MISS_
PREDICTION_ON_
NOT-TAKEN_
BRANCH 
(Counter 1)

Number of times the BTB predicted a 
not-taken branch as taken

3BH FULL_WRITE_
BUFFER_STALL_
DURATION_
WHILE_
EXECUTING_MMX_I
NSTRUCTIONS 
(Counter 0)

Number of clocks while the pipeline is 
stalled due to full write buffers while 
executing MMX instructions

3BH STALL_ON_MMX_
INSTRUCTION_
WRITE_TO E-_OR_
M-STATE_LINE 
(Counter 1)

Number of clocks during stalls on MMX 
instructions writing to E- or M-state 
lines

Table 19-31.  Events That Can Be Counted with Pentium Processor Performance-Monitoring Counters (Contd.)
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CHAPTER 20
8086 EMULATION

IA-32 processors (beginning with the Intel386 processor) provide two ways to execute new or legacy programs 
that are assembled and/or compiled to run on an Intel 8086 processor: 
• Real-address mode.
• Virtual-8086 mode.

Figure 2-3 shows the relationship of these operating modes to protected mode and system management mode 
(SMM). 

When the processor is powered up or reset, it is placed in the real-address mode. This operating mode almost 
exactly duplicates the execution environment of the Intel 8086 processor, with some extensions. Virtually any 
program assembled and/or compiled to run on an Intel 8086 processor will run on an IA-32 processor in this mode.

When running in protected mode, the processor can be switched to virtual-8086 mode to run 8086 programs. This 
mode also duplicates the execution environment of the Intel 8086 processor, with extensions. In virtual-8086 
mode, an 8086 program runs as a separate protected-mode task. Legacy 8086 programs are thus able to run 
under an operating system (such as Microsoft Windows*) that takes advantage of protected mode and to use 
protected-mode facilities, such as the protected-mode interrupt- and exception-handling facilities. Protected-mode 
multitasking permits multiple virtual-8086 mode tasks (with each task running a separate 8086 program) to be run 
on the processor along with other non-virtual-8086 mode tasks.

This section describes both the basic real-address mode execution environment and the virtual-8086-mode execu-
tion environment, available on the IA-32 processors beginning with the Intel386 processor. 

20.1 REAL-ADDRESS MODE

The IA-32 architecture’s real-address mode runs programs written for the Intel 8086, Intel 8088, Intel 80186, and 
Intel 80188 processors, or for the real-address mode of the Intel 286, Intel386, Intel486, Pentium, P6 family, 
Pentium 4, and Intel Xeon processors.

The execution environment of the processor in real-address mode is designed to duplicate the execution environ-
ment of the Intel 8086 processor. To an 8086 program, a processor operating in real-address mode behaves like a 
high-speed 8086 processor. The principal features of this architecture are defined in Chapter 3, “Basic Execution 
Environment”, of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

The following is a summary of the core features of the real-address mode execution environment as would be seen 
by a program written for the 8086:
• The processor supports a nominal 1-MByte physical address space (see Section 20.1.1, “Address Translation in 

Real-Address Mode”, for specific details). This address space is divided into segments, each of which can be up 
to 64 KBytes in length. The base of a segment is specified with a 16-bit segment selector, which is zero 
extended to form a 20-bit offset from address 0 in the address space. An operand within a segment is 
addressed with a 16-bit offset from the base of the segment. A physical address is thus formed by adding the 
offset to the 20-bit segment base (see Section 20.1.1, “Address Translation in Real-Address Mode”).

• All operands in “native 8086 code” are 8-bit or 16-bit values. (Operand size override prefixes can be used to 
access 32-bit operands.)

• Eight 16-bit general-purpose registers are provided: AX, BX, CX, DX, SP, BP, SI, and DI. The extended 32 bit 
registers (EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI) are accessible to programs that explicitly perform a size 
override operation.

• Four segment registers are provided: CS, DS, SS, and ES. (The FS and GS registers are accessible to programs 
that explicitly access them.) The CS register contains the segment selector for the code segment; the DS and 
ES registers contain segment selectors for data segments; and the SS register contains the segment selector 
for the stack segment.

• The 8086 16-bit instruction pointer (IP) is mapped to the lower 16-bits of the EIP register. Note this register is 
a 32-bit register and unintentional address wrapping may occur.
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• The 16-bit FLAGS register contains status and control flags. (This register is mapped to the 16 least significant 
bits of the 32-bit EFLAGS register.)

• All of the Intel 8086 instructions are supported (see Section 20.1.3, “Instructions Supported in Real-Address 
Mode”).

• A single, 16-bit-wide stack is provided for handling procedure calls and invocations of interrupt and exception 
handlers. This stack is contained in the stack segment identified with the SS register. The SP (stack pointer) 
register contains an offset into the stack segment. The stack grows down (toward lower segment offsets) from 
the stack pointer. The BP (base pointer) register also contains an offset into the stack segment that can be used 
as a pointer to a parameter list. When a CALL instruction is executed, the processor pushes the current 
instruction pointer (the 16 least-significant bits of the EIP register and, on far calls, the current value of the CS 
register) onto the stack. On a return, initiated with a RET instruction, the processor pops the saved instruction 
pointer from the stack into the EIP register (and CS register on far returns). When an implicit call to an interrupt 
or exception handler is executed, the processor pushes the EIP, CS, and EFLAGS (low-order 16-bits only) 
registers onto the stack. On a return from an interrupt or exception handler, initiated with an IRET instruction, 
the processor pops the saved instruction pointer and EFLAGS image from the stack into the EIP, CS, and 
EFLAGS registers.

• A single interrupt table, called the “interrupt vector table” or “interrupt table,” is provided for handling 
interrupts and exceptions (see Figure 20-2). The interrupt table (which has 4-byte entries) takes the place of 
the interrupt descriptor table (IDT, with 8-byte entries) used when handling protected-mode interrupts and 
exceptions. Interrupt and exception vector numbers provide an index to entries in the interrupt table. Each 
entry provides a pointer (called a “vector”) to an interrupt- or exception-handling procedure. See Section 
20.1.4, “Interrupt and Exception Handling”, for more details. It is possible for software to relocate the IDT by 
means of the LIDT instruction on IA-32 processors beginning with the Intel386 processor.

• The x87 FPU is active and available to execute x87 FPU instructions in real-address mode. Programs written to 
run on the Intel 8087 and Intel 287 math coprocessors can be run in real-address mode without modification.

The following extensions to the Intel 8086 execution environment are available in the IA-32 architecture’s real-
address mode. If backwards compatibility to Intel 286 and Intel 8086 processors is required, these features should 
not be used in new programs written to run in real-address mode.
• Two additional segment registers (FS and GS) are available.
• Many of the integer and system instructions that have been added to later IA-32 processors can be executed in 

real-address mode (see Section 20.1.3, “Instructions Supported in Real-Address Mode”). 
• The 32-bit operand prefix can be used in real-address mode programs to execute the 32-bit forms of instruc-

tions. This prefix also allows real-address mode programs to use the processor’s 32-bit general-purpose 
registers.

• The 32-bit address prefix can be used in real-address mode programs, allowing 32-bit offsets.

The following sections describe address formation, registers, available instructions, and interrupt and exception 
handling in real-address mode. For information on I/O in real-address mode, see Chapter 16, “Input/Output”, of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. 

20.1.1 Address Translation in Real-Address Mode

In real-address mode, the processor does not interpret segment selectors as indexes into a descriptor table; 
instead, it uses them directly to form linear addresses as the 8086 processor does. It shifts the segment selector 
left by 4 bits to form a 20-bit base address (see Figure 20-1). The offset into a segment is added to the base 
address to create a linear address that maps directly to the physical address space. 

When using 8086-style address translation, it is possible to specify addresses larger than 1 MByte. For example, 
with a segment selector value of FFFFH and an offset of FFFFH, the linear (and physical) address would be 10FFEFH 
(1 megabyte plus 64 KBytes). The 8086 processor, which can form addresses only up to 20 bits long, truncates the 
high-order bit, thereby “wrapping” this address to FFEFH. When operating in real-address mode, however, the 
processor does not truncate such an address and uses it as a physical address. (Note, however, that for IA-32 
processors beginning with the Intel486 processor, the A20M# signal can be used in real-address mode to mask 
address line A20, thereby mimicking the 20-bit wrap-around behavior of the 8086 processor.) Care should be take 
to ensure that A20M# based address wrapping is handled correctly in multiprocessor based system.
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The IA-32 processors beginning with the Intel386 processor can generate 32-bit offsets using an address override 
prefix; however, in real-address mode, the value of a 32-bit offset may not exceed FFFFH without causing an 
exception. 

For full compatibility with Intel 286 real-address mode, pseudo-protection faults (interrupt 12 or 13) occur if a 32-
bit offset is generated outside the range 0 through FFFFH.

20.1.2 Registers Supported in Real-Address Mode

The register set available in real-address mode includes all the registers defined for the 8086 processor plus the 
new registers introduced in later IA-32 processors, such as the FS and GS segment registers, the debug registers, 
the control registers, and the floating-point unit registers. The 32-bit operand prefix allows a real-address mode 
program to use the 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI).

20.1.3 Instructions Supported in Real-Address Mode

The following instructions make up the core instruction set for the 8086 processor. If backwards compatibility to 
the Intel 286 and Intel 8086 processors is required, only these instructions should be used in a new program 
written to run in real-address mode.
• Move (MOV) instructions that move operands between general-purpose registers, segment registers, and 

between memory and general-purpose registers.
• The exchange (XCHG) instruction.
• Load segment register instructions LDS and LES.
• Arithmetic instructions ADD, ADC, SUB, SBB, MUL, IMUL, DIV, IDIV, INC, DEC, CMP, and NEG.
• Logical instructions AND, OR, XOR, and NOT.
• Decimal instructions DAA, DAS, AAA, AAS, AAM, and AAD.
• Stack instructions PUSH and POP (to general-purpose registers and segment registers).
• Type conversion instructions CWD, CDQ, CBW, and CWDE.
• Shift and rotate instructions SAL, SHL, SHR, SAR, ROL, ROR, RCL, and RCR.
• TEST instruction.
• Control instructions JMP, Jcc, CALL, RET, LOOP, LOOPE, and LOOPNE.
• Interrupt instructions INT n, INTO, and IRET.
• EFLAGS control instructions STC, CLC, CMC, CLD, STD, LAHF, SAHF, PUSHF, and POPF.
• I/O instructions IN, INS, OUT, and OUTS.
• Load effective address (LEA) instruction, and translate (XLATB) instruction.

Figure 20-1.  Real-Address Mode Address Translation
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• LOCK prefix.
• Repeat prefixes REP, REPE, REPZ, REPNE, and REPNZ.
• Processor halt (HLT) instruction.
• No operation (NOP) instruction.

The following instructions, added to later IA-32 processors (some in the Intel 286 processor and the remainder in 
the Intel386 processor), can be executed in real-address mode, if backwards compatibility to the Intel 8086 
processor is not required.
• Move (MOV) instructions that operate on the control and debug registers.
• Load segment register instructions LSS, LFS, and LGS.
• Generalized multiply instructions and multiply immediate data.
• Shift and rotate by immediate counts.
• Stack instructions PUSHA, PUSHAD, POPA and POPAD, and PUSH immediate data.
• Move with sign extension instructions MOVSX and MOVZX.
• Long-displacement Jcc instructions.
• Exchange instructions CMPXCHG, CMPXCHG8B, and XADD. 
• String instructions MOVS, CMPS, SCAS, LODS, and STOS. 
• Bit test and bit scan instructions BT, BTS, BTR, BTC, BSF, and BSR; the byte-set-on condition instruction SETcc; 

and the byte swap (BSWAP) instruction.
• Double shift instructions SHLD and SHRD.
• EFLAGS control instructions PUSHF and POPF.
• ENTER and LEAVE control instructions.
• BOUND instruction.
• CPU identification (CPUID) instruction.
• System instructions CLTS, INVD, WINVD, INVLPG, LGDT, SGDT, LIDT, SIDT, LMSW, SMSW, RDMSR, WRMSR, 

RDTSC, and RDPMC.

Execution of any of the other IA-32 architecture instructions (not given in the previous two lists) in real-address 
mode result in an invalid-opcode exception (#UD) being generated.

20.1.4 Interrupt and Exception Handling

When operating in real-address mode, software must provide interrupt and exception-handling facilities that are 
separate from those provided in protected mode. Even during the early stages of processor initialization when the 
processor is still in real-address mode, elementary real-address mode interrupt and exception-handling facilities 
must be provided to insure reliable operation of the processor, or the initialization code must insure that no inter-
rupts or exceptions will occur.

The IA-32 processors handle interrupts and exceptions in real-address mode similar to the way they handle them 
in protected mode. When a processor receives an interrupt or generates an exception, it uses the vector number of 
the interrupt or exception as an index into the interrupt table. (In protected mode, the interrupt table is called the 
interrupt descriptor table (IDT), but in real-address mode, the table is usually called the interrupt vector 
table, or simply the interrupt table.) The entry in the interrupt vector table provides a pointer to an interrupt- or 
exception-handler procedure. (The pointer consists of a segment selector for a code segment and a 16-bit offset 
into the segment.) The processor performs the following actions to make an implicit call to the selected handler:

1. Pushes the current values of the CS and EIP registers onto the stack. (Only the 16 least-significant bits of the 
EIP register are pushed.)

2. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF, RC, and AC flags, in the EFLAGS register.
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5. Transfers program control to the location specified in the interrupt vector table.

An IRET instruction at the end of the handler procedure reverses these steps to return program control to the inter-
rupted program. Exceptions do not return error codes in real-address mode.

The interrupt vector table is an array of 4-byte entries (see Figure 20-2). Each entry consists of a far pointer to a 
handler procedure, made up of a segment selector and an offset. The processor scales the interrupt or exception 
vector by 4 to obtain an offset into the interrupt table. Following reset, the base of the interrupt vector table is 
located at physical address 0 and its limit is set to 3FFH. In the Intel 8086 processor, the base address and limit of 
the interrupt vector table cannot be changed. In the later IA-32 processors, the base address and limit of the inter-
rupt vector table are contained in the IDTR register and can be changed using the LIDT instruction. 

(For backward compatibility to Intel 8086 processors, the default base address and limit of the interrupt vector 
table should not be changed.)

Table 20-1 shows the interrupt and exception vectors that can be generated in real-address mode and virtual-8086 
mode, and in the Intel 8086 processor. See Chapter 6, “Interrupt and Exception Handling”, for a description of the 
exception conditions.

20.2 VIRTUAL-8086 MODE

Virtual-8086 mode is actually a special type of a task that runs in protected mode. When the operating-system or 
executive switches to a virtual-8086-mode task, the processor emulates an Intel 8086 processor. The execution 
environment of the processor while in the 8086-emulation state is the same as is described in Section 20.1, “Real-
Address Mode” for real-address mode, including the extensions. The major difference between the two modes is 
that in virtual-8086 mode the 8086 emulator uses some protected-mode services (such as the protected-mode 
interrupt and exception-handling and paging facilities).

Figure 20-2.  Interrupt Vector Table in Real-Address Mode
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As in real-address mode, any new or legacy program that has been assembled and/or compiled to run on an Intel 
8086 processor will run in a virtual-8086-mode task. And several 8086 programs can be run as virtual-8086-mode 
tasks concurrently with normal protected-mode tasks, using the processor’s multitasking facilities.

20.2.1 Enabling Virtual-8086 Mode

The processor runs in virtual-8086 mode when the VM (virtual machine) flag in the EFLAGS register is set. This flag 
can only be set when the processor switches to a new protected-mode task or resumes virtual-8086 mode via an 
IRET instruction.

System software cannot change the state of the VM flag directly in the EFLAGS register (for example, by using the 
POPFD instruction). Instead it changes the flag in the image of the EFLAGS register stored in the TSS or on the 
stack following a call to an interrupt- or exception-handler procedure. For example, software sets the VM flag in the 
EFLAGS image in the TSS when first creating a virtual-8086 task.

The processor tests the VM flag under three general conditions:
• When loading segment registers, to determine whether to use 8086-style address translation.
• When decoding instructions, to determine which instructions are not supported in virtual-8086 mode and which 

instructions are sensitive to IOPL.

Table 20-1.  Real-Address Mode Exceptions and Interrupts

Vector 
No.

Description Real-Address Mode Virtual-8086 Mode Intel 8086 Processor

 0 Divide Error (#DE) Yes Yes Yes

 1 Debug Exception (#DB) Yes Yes No

 2 NMI Interrupt Yes Yes Yes

 3 Breakpoint (#BP) Yes Yes Yes

 4 Overflow (#OF) Yes Yes Yes

 5 BOUND Range Exceeded (#BR) Yes Yes Reserved

 6 Invalid Opcode (#UD) Yes Yes Reserved

 7 Device Not Available (#NM) Yes Yes Reserved

 8 Double Fault (#DF) Yes Yes Reserved

 9 (Intel reserved. Do not use.) Reserved Reserved Reserved

10 Invalid TSS (#TS) Reserved Yes Reserved

11 Segment Not Present (#NP) Reserved Yes Reserved

12 Stack Fault (#SS) Yes Yes Reserved

13 General Protection (#GP)* Yes Yes Reserved

14 Page Fault (#PF) Reserved Yes Reserved

15 (Intel reserved. Do not use.) Reserved Reserved Reserved

16 Floating-Point Error (#MF) Yes Yes Reserved

17 Alignment Check (#AC) Reserved Yes Reserved

18 Machine Check (#MC) Yes Yes Reserved

19-31 (Intel reserved. Do not use.) Reserved Reserved Reserved

32-255 User Defined Interrupts Yes Yes Yes

NOTE:

* In the real-address mode, vector 13 is the segment overrun exception. In protected and virtual-8086 modes, this exception cov-
ers all general-protection error conditions, including traps to the virtual-8086 monitor from virtual-8086 mode.



Vol. 3B 20-7

8086 EMULATION

• When checking privileged instructions, on page accesses, or when performing other permission checks. 
(Virtual-8086 mode always executes at CPL 3.)

20.2.2 Structure of a Virtual-8086 Task

A virtual-8086-mode task consists of the following items:
• A 32-bit TSS for the task.
• The 8086 program.
• A virtual-8086 monitor.
• 8086 operating-system services.

The TSS of the new task must be a 32-bit TSS, not a 16-bit TSS, because the 16-bit TSS does not load the most-
significant word of the EFLAGS register, which contains the VM flag. All TSS’s, stacks, data, and code used to handle 
exceptions when in virtual-8086 mode must also be 32-bit segments.

The processor enters virtual-8086 mode to run the 8086 program and returns to protected mode to run the virtual-
8086 monitor.

The virtual-8086 monitor is a 32-bit protected-mode code module that runs at a CPL of 0. The monitor consists of 
initialization, interrupt- and exception-handling, and I/O emulation procedures that emulate a personal computer 
or other 8086-based platform. Typically, the monitor is either part of or closely associated with the protected-mode 
general-protection (#GP) exception handler, which also runs at a CPL of 0. As with any protected-mode code 
module, code-segment descriptors for the virtual-8086 monitor must exist in the GDT or in the task’s LDT. The 
virtual-8086 monitor also may need data-segment descriptors so it can examine the IDT or other parts of the 8086 
program in the first 1 MByte of the address space. The linear addresses above 10FFEFH are available for the 
monitor, the operating system, and other system software.

The 8086 operating-system services consists of a kernel and/or operating-system procedures that the 8086 
program makes calls to. These services can be implemented in either of the following two ways:
• They can be included in the 8086 program. This approach is desirable for either of the following reasons:

— The 8086 program code modifies the 8086 operating-system services.

— There is not sufficient development time to merge the 8086 operating-system services into main operating 
system or executive.

• They can be implemented or emulated in the virtual-8086 monitor. This approach is desirable for any of the 
following reasons:

— The 8086 operating-system procedures can be more easily coordinated among several virtual-8086 tasks.

— Memory can be saved by not duplicating 8086 operating-system procedure code for several virtual-8086 
tasks.

— The 8086 operating-system procedures can be easily emulated by calls to the main operating system or 
executive.

The approach chosen for implementing the 8086 operating-system services may result in different virtual-8086-
mode tasks using different 8086 operating-system services.

20.2.3 Paging of Virtual-8086 Tasks

Even though a program running in virtual-8086 mode can use only 20-bit linear addresses, the processor converts 
these addresses into 32-bit linear addresses before mapping them to the physical address space. If paging is being 
used, the 8086 address space for a program running in virtual-8086 mode can be paged and located in a set of 
pages in physical address space. If paging is used, it is transparent to the program running in virtual-8086 mode 
just as it is for any task running on the processor.

Paging is not necessary for a single virtual-8086-mode task, but paging is useful or necessary in the following situ-
ations:
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• When running multiple virtual-8086-mode tasks. Here, paging allows the lower 1 MByte of the linear address 
space for each virtual-8086-mode task to be mapped to a different physical address location.

• When emulating the 8086 address-wraparound that occurs at 1 MByte. When using 8086-style address trans-
lation, it is possible to specify addresses larger than 1 MByte. These addresses automatically wraparound in the 
Intel 8086 processor (see Section 20.1.1, “Address Translation in Real-Address Mode”). If any 8086 programs 
depend on address wraparound, the same effect can be achieved in a virtual-8086-mode task by mapping the 
linear addresses between 100000H and 110000H and linear addresses between 0 and 10000H to the same 
physical addresses.

• When sharing the 8086 operating-system services or ROM code that is common to several 8086 programs 
running as different 8086-mode tasks.

• When redirecting or trapping references to memory-mapped I/O devices.

20.2.4 Protection within a Virtual-8086 Task

Protection is not enforced between the segments of an 8086 program. Either of the following techniques can be 
used to protect the system software running in a virtual-8086-mode task from the 8086 program:
• Reserve the first 1 MByte plus 64 KBytes of each task’s linear address space for the 8086 program. An 8086 

processor task cannot generate addresses outside this range.
• Use the U/S flag of page-table entries to protect the virtual-8086 monitor and other system software in the 

virtual-8086 mode task space. When the processor is in virtual-8086 mode, the CPL is 3. Therefore, an 8086 
processor program has only user privileges. If the pages of the virtual-8086 monitor have supervisor privilege, 
they cannot be accessed by the 8086 program.

20.2.5 Entering Virtual-8086 Mode

Figure 20-3 summarizes the methods of entering and leaving virtual-8086 mode. The processor switches to 
virtual-8086 mode in either of the following situations:
• Task switch when the VM flag is set to 1 in the EFLAGS register image stored in the TSS for the task. Here the 

task switch can be initiated in either of two ways:

— A CALL or JMP instruction.

— An IRET instruction, where the NT flag in the EFLAGS image is set to 1.
• Return from a protected-mode interrupt or exception handler when the VM flag is set to 1 in the EFLAGS 

register image on the stack.

When a task switch is used to enter virtual-8086 mode, the TSS for the virtual-8086-mode task must be a 32-bit 
TSS. (If the new TSS is a 16-bit TSS, the upper word of the EFLAGS register is not in the TSS, causing the processor 
to clear the VM flag when it loads the EFLAGS register.) The processor updates the VM flag prior to loading the 
segment registers from their images in the new TSS. The new setting of the VM flag determines whether the 
processor interprets the contents of the segment registers as 8086-style segment selectors or protected-mode 
segment selectors. When the VM flag is set, the segment registers are loaded from the TSS, using 8086-style 
address translation to form base addresses. 

See Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode”, for information on entering virtual-
8086 mode on a return from an interrupt or exception handler.
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20.2.6 Leaving Virtual-8086 Mode

The processor can leave the virtual-8086 mode only through an interrupt or exception. The following are situations 
where an interrupt or exception will lead to the processor leaving virtual-8086 mode (see Figure 20-3):
• The processor services a hardware interrupt generated to signal the suspension of execution of the virtual-

8086 application. This hardware interrupt may be generated by a timer or other external mechanism. Upon 
receiving the hardware interrupt, the processor enters protected mode and switches to a protected-mode (or 
another virtual-8086 mode) task either through a task gate in the protected-mode IDT or through a trap or 
interrupt gate that points to a handler that initiates a task switch. A task switch from a virtual-8086 task to 
another task loads the EFLAGS register from the TSS of the new task. The value of the VM flag in the new 
EFLAGS determines if the new task executes in virtual-8086 mode or not.

• The processor services an exception caused by code executing the virtual-8086 task or services a hardware 
interrupt that “belongs to” the virtual-8086 task. Here, the processor enters protected mode and services the 

Figure 20-3.  Entering and Leaving Virtual-8086 Mode
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exception or hardware interrupt through the protected-mode IDT (normally through an interrupt or trap gate) 
and the protected-mode exception- and interrupt-handlers. The processor may handle the exception or 
interrupt within the context of the virtual 8086 task and return to virtual-8086 mode on a return from the 
handler procedure. The processor may also execute a task switch and handle the exception or interrupt in the 
context of another task.

• The processor services a software interrupt generated by code executing in the virtual-8086 task (such as a 
software interrupt to call a MS-DOS* operating system routine). The processor provides several methods of 
handling these software interrupts, which are discussed in detail in Section 20.3.3, “Class 3—Software 
Interrupt Handling in Virtual-8086 Mode”. Most of them involve the processor entering protected mode, often 
by means of a general-protection (#GP) exception. In protected mode, the processor can send the interrupt to 
the virtual-8086 monitor for handling and/or redirect the interrupt back to the application program running in 
virtual-8086 mode task for handling.
IA-32 processors that incorporate the virtual mode extension (enabled with the VME flag in control register 
CR4) are capable of redirecting software-generated interrupts back to the program’s interrupt handlers without 
leaving virtual-8086 mode. See Section 20.3.3.4, “Method 5: Software Interrupt Handling”, for more 
information on this mechanism.

• A hardware reset initiated by asserting the RESET or INIT pin is a special kind of interrupt. When a RESET or 
INIT is signaled while the processor is in virtual-8086 mode, the processor leaves virtual-8086 mode and enters 
real-address mode.

• Execution of the HLT instruction in virtual-8086 mode will cause a general-protection (GP#) fault, which the 
protected-mode handler generally sends to the virtual-8086 monitor. The virtual-8086 monitor then 
determines the correct execution sequence after verifying that it was entered as a result of a HLT execution.

See Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode”, for information on leaving virtual-8086 
mode to handle an interrupt or exception generated in virtual-8086 mode.

20.2.7 Sensitive Instructions

When an IA-32 processor is running in virtual-8086 mode, the CLI, STI, PUSHF, POPF, INT n, and IRET instructions 
are sensitive to IOPL. The IN, INS, OUT, and OUTS instructions, which are sensitive to IOPL in protected mode, are 
not sensitive in virtual-8086 mode.

The CPL is always 3 while running in virtual-8086 mode; if the IOPL is less than 3, an attempt to use the IOPL-
sensitive instructions listed above triggers a general-protection exception (#GP). These instructions are sensitive 
to IOPL to give the virtual-8086 monitor a chance to emulate the facilities they affect.

20.2.8 Virtual-8086 Mode I/O

Many 8086 programs written for non-multitasking systems directly access I/O ports. This practice may cause prob-
lems in a multitasking environment. If more than one program accesses the same port, they may interfere with 
each other. Most multitasking systems require application programs to access I/O ports through the operating 
system. This results in simplified, centralized control.

The processor provides I/O protection for creating I/O that is compatible with the environment and transparent to 
8086 programs. Designers may take any of several possible approaches to protecting I/O ports:
• Protect the I/O address space and generate exceptions for all attempts to perform I/O directly.
• Let the 8086 program perform I/O directly.
• Generate exceptions on attempts to access specific I/O ports.
• Generate exceptions on attempts to access specific memory-mapped I/O ports.

The method of controlling access to I/O ports depends upon whether they are I/O-port mapped or memory 
mapped.
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20.2.8.1  I/O-Port-Mapped I/O

The I/O permission bit map in the TSS can be used to generate exceptions on attempts to access specific I/O port 
addresses. The I/O permission bit map of each virtual-8086-mode task determines which I/O addresses generate 
exceptions for that task. Because each task may have a different I/O permission bit map, the addresses that 
generate exceptions for one task may be different from the addresses for another task. This differs from protected 
mode in which, if the CPL is less than or equal to the IOPL, I/O access is allowed without checking the I/O permis-
sion bit map. See Chapter 16, “Input/Output”, in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, for more information about the I/O permission bit map.

20.2.8.2  Memory-Mapped I/O

In systems which use memory-mapped I/O, the paging facilities of the processor can be used to generate excep-
tions for attempts to access I/O ports. The virtual-8086 monitor may use paging to control memory-mapped I/O in 
these ways:
• Map part of the linear address space of each task that needs to perform I/O to the physical address space 

where I/O ports are placed. By putting the I/O ports at different addresses (in different pages), the paging 
mechanism can enforce isolation between tasks.

• Map part of the linear address space to pages that are not-present. This generates an exception whenever a 
task attempts to perform I/O to those pages. System software then can interpret the I/O operation being 
attempted.

Software emulation of the I/O space may require too much operating system intervention under some conditions. 
In these cases, it may be possible to generate an exception for only the first attempt to access I/O. The system 
software then may determine whether a program can be given exclusive control of I/O temporarily, the protection 
of the I/O space may be lifted, and the program allowed to run at full speed.

20.2.8.3  Special I/O Buffers

Buffers of intelligent controllers (for example, a bit-mapped frame buffer) also can be emulated using page 
mapping. The linear space for the buffer can be mapped to a different physical space for each virtual-8086-mode 
task. The virtual-8086 monitor then can control which virtual buffer to copy onto the real buffer in the physical 
address space.

20.3 INTERRUPT AND EXCEPTION HANDLING IN VIRTUAL-8086 MODE

When the processor receives an interrupt or detects an exception condition while in virtual-8086 mode, it invokes 
an interrupt or exception handler, just as it does in protected or real-address mode. The interrupt or exception 
handler that is invoked and the mechanism used to invoke it depends on the class of interrupt or exception that has 
been detected or generated and the state of various system flags and fields.

In virtual-8086 mode, the interrupts and exceptions are divided into three classes for the purposes of handling:
• Class 1 — All processor-generated exceptions and all hardware interrupts, including the NMI interrupt and the 

hardware interrupts sent to the processor’s external interrupt delivery pins. All class 1 exceptions and 
interrupts are handled by the protected-mode exception and interrupt handlers.

• Class 2 — Special case for maskable hardware interrupts (Section 6.3.2, “Maskable Hardware Interrupts”) 
when the virtual mode extensions are enabled.

• Class 3 — All software-generated interrupts, that is interrupts generated with the INT n instruction1.

The method the processor uses to handle class 2 and 3 interrupts depends on the setting of the following flags and 
fields:
• IOPL field (bits 12 and 13 in the EFLAGS register) — Controls how class 3 software interrupts are handled 

when the processor is in virtual-8086 mode (see Section 2.3, “System Flags and Fields in the EFLAGS 

1. The INT 3 instruction is a special case (see the description of the INT n instruction in Chapter 3, “Instruction Set Reference, A-M”, of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).
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Register”). This field also controls the enabling of the VIF and VIP flags in the EFLAGS register when the VME 
flag is set. The VIF and VIP flags are provided to assist in the handling of class 2 maskable hardware interrupts.

• VME flag (bit 0 in control register CR4) — Enables the virtual mode extension for the processor when set 
(see Section 2.5, “Control Registers”).

• Software interrupt redirection bit map (32 bytes in the TSS, see Figure 20-5) — Contains 256 flags 
that indicates how class 3 software interrupts should be handled when they occur in virtual-8086 mode. A 
software interrupt can be directed either to the interrupt and exception handlers in the currently running 8086 
program or to the protected-mode interrupt and exception handlers.

• The virtual interrupt flag (VIF) and virtual interrupt pending flag (VIP) in the EFLAGS register — 
Provides virtual interrupt support for the handling of class 2 maskable hardware interrupts (see Section 
20.3.2, “Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt 
Mechanism”). 

NOTE

The VME flag, software interrupt redirection bit map, and VIF and VIP flags are only available in IA-
32 processors that support the virtual mode extensions. These extensions were introduced in the 
IA-32 architecture with the Pentium processor.

The following sections describe the actions that processor takes and the possible actions of interrupt and exception 
handlers for the two classes of interrupts described in the previous paragraphs. These sections describe three 
possible types of interrupt and exception handlers:
• Protected-mode interrupt and exceptions handlers — These are the standard handlers that the processor 

calls through the protected-mode IDT.
• Virtual-8086 monitor interrupt and exception handlers — These handlers are resident in the virtual-8086 

monitor, and they are commonly accessed through a general-protection exception (#GP, interrupt 13) that is 
directed to the protected-mode general-protection exception handler.

• 8086 program interrupt and exception handlers — These handlers are part of the 8086 program that is 
running in virtual-8086 mode.

The following sections describe how these handlers are used, depending on the selected class and method of inter-
rupt and exception handling.

20.3.1 Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 Mode

In virtual-8086 mode, the Pentium, P6 family, Pentium 4, and Intel Xeon processors handle hardware interrupts 
and exceptions in the same manner as they are handled by the Intel486 and Intel386 processors. They invoke the 
protected-mode interrupt or exception handler that the interrupt or exception vector points to in the IDT. Here, the 
IDT entry must contain either a 32-bit trap or interrupt gate or a task gate. The following sections describe various 
ways that a virtual-8086 mode interrupt or exception can be handled after the protected-mode handler has been 
invoked.

See Section 20.3.2, “Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Inter-
rupt Mechanism”, for a description of the virtual interrupt mechanism that is available for handling maskable hard-
ware interrupts while in virtual-8086 mode. When this mechanism is either not available or not enabled, maskable 
hardware interrupts are handled in the same manner as exceptions, as described in the following sections.

20.3.1.1  Handling an Interrupt or Exception Through a Protected-Mode Trap or Interrupt Gate

When an interrupt or exception vector points to a 32-bit trap or interrupt gate in the IDT, the gate must in turn 
point to a nonconforming, privilege-level 0, code segment. When accessing this code segment, processor performs 
the following steps.

1. Switches to 32-bit protected mode and privilege level 0.

2. Saves the state of the processor on the privilege-level 0 stack. The states of the EIP, CS, EFLAGS, ESP, SS, ES, 
DS, FS, and GS registers are saved (see Figure 20-4).
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3. Clears the segment registers. Saving the DS, ES, FS, and GS registers on the stack and then clearing the 
registers lets the interrupt or exception handler safely save and restore these registers regardless of the type 
segment selectors they contain (protected-mode or 8086-style). The interrupt and exception handlers, which 
may be called in the context of either a protected-mode task or a virtual-8086-mode task, can use the same 
code sequences for saving and restoring the registers for any task. Clearing these registers before execution of 
the IRET instruction does not cause a trap in the interrupt handler. Interrupt procedures that expect values in 
the segment registers or that return values in the segment registers must use the register images saved on the 
stack for privilege level 0.

4. Clears VM, NT, RF and TF flags (in the EFLAGS register). If the gate is an interrupt gate, clears the IF flag.

5. Begins executing the selected interrupt or exception handler.

If the trap or interrupt gate references a procedure in a conforming segment or in a segment at a privilege level 
other than 0, the processor generates a general-protection exception (#GP). Here, the error code is the segment 
selector of the code segment to which a call was attempted.

Interrupt and exception handlers can examine the VM flag on the stack to determine if the interrupted procedure 
was running in virtual-8086 mode. If so, the interrupt or exception can be handled in one of three ways:
• The protected-mode interrupt or exception handler that was called can handle the interrupt or exception.
• The protected-mode interrupt or exception handler can call the virtual-8086 monitor to handle the interrupt or 

exception.
• The virtual-8086 monitor (if called) can in turn pass control back to the 8086 program’s interrupt and exception 

handler.

If the interrupt or exception is handled with a protected-mode handler, the handler can return to the interrupted 
program in virtual-8086 mode by executing an IRET instruction. This instruction loads the EFLAGS and segment 
registers from the images saved in the privilege level 0 stack (see Figure 20-4). A set VM flag in the EFLAGS image 
causes the processor to switch back to virtual-8086 mode. The CPL at the time the IRET instruction is executed 
must be 0, otherwise the processor does not change the state of the VM flag.

Figure 20-4.  Privilege Level 0 Stack After Interrupt or 
Exception in Virtual-8086 Mode
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The virtual-8086 monitor runs at privilege level 0, like the protected-mode interrupt and exception handlers. It is 
commonly closely tied to the protected-mode general-protection exception (#GP, vector 13) handler. If the 
protected-mode interrupt or exception handler calls the virtual-8086 monitor to handle the interrupt or exception, 
the return from the virtual-8086 monitor to the interrupted virtual-8086 mode program requires two return 
instructions: a RET instruction to return to the protected-mode handler and an IRET instruction to return to the 
interrupted program.

The virtual-8086 monitor has the option of directing the interrupt and exception back to an interrupt or exception 
handler that is part of the interrupted 8086 program, as described in Section 20.3.1.2, “Handling an Interrupt or 
Exception With an 8086 Program Interrupt or Exception Handler”.

20.3.1.2  Handling an Interrupt or Exception With an 8086 Program Interrupt or Exception Handler

Because it was designed to run on an 8086 processor, an 8086 program running in a virtual-8086-mode task 
contains an 8086-style interrupt vector table, which starts at linear address 0. If the virtual-8086 monitor correctly 
directs an interrupt or exception vector back to the virtual-8086-mode task it came from, the handlers in the 8086 
program can handle the interrupt or exception. The virtual-8086 monitor must carry out the following steps to send 
an interrupt or exception back to the 8086 program:

1. Use the 8086 interrupt vector to locate the appropriate handler procedure in the 8086 program interrupt table.

2. Store the EFLAGS (low-order 16 bits only), CS and EIP values of the 8086 program on the privilege-level 3 
stack. This is the stack that the virtual-8086-mode task is using. (The 8086 handler may use or modify this 
information.)

3. Change the return link on the privilege-level 0 stack to point to the privilege-level 3 handler procedure.

4. Execute an IRET instruction to pass control to the 8086 program handler.

5. When the IRET instruction from the privilege-level 3 handler triggers a general-protection exception (#GP) and 
thus effectively again calls the virtual-8086 monitor, restore the return link on the privilege-level 0 stack to 
point to the original, interrupted, privilege-level 3 procedure.

6. Copy the low order 16 bits of the EFLAGS image from the privilege-level 3 stack to the privilege-level 0 stack 
(because some 8086 handlers modify these flags to return information to the code that caused the interrupt). 

7. Execute an IRET instruction to pass control back to the interrupted 8086 program.

Note that if an operating system intends to support all 8086 MS-DOS-based programs, it is necessary to use the 
actual 8086 interrupt and exception handlers supplied with the program. The reason for this is that some programs 
modify their own interrupt vector table to substitute (or hook in series) their own specialized interrupt and excep-
tion handlers.

20.3.1.3  Handling an Interrupt or Exception Through a Task Gate

When an interrupt or exception vector points to a task gate in the IDT, the processor performs a task switch to the 
selected interrupt- or exception-handling task. The following actions are carried out as part of this task switch:

1. The EFLAGS register with the VM flag set is saved in the current TSS.

2. The link field in the TSS of the called task is loaded with the segment selector of the TSS for the interrupted 
virtual-8086-mode task.

3. The EFLAGS register is loaded from the image in the new TSS, which clears the VM flag and causes the 
processor to switch to protected mode.

4. The NT flag in the EFLAGS register is set.

5. The processor begins executing the selected interrupt- or exception-handler task.

When an IRET instruction is executed in the handler task and the NT flag in the EFLAGS register is set, the proces-
sors switches from a protected-mode interrupt- or exception-handler task back to a virtual-8086-mode task. Here, 
the EFLAGS and segment registers are loaded from images saved in the TSS for the virtual-8086-mode task. If the 
VM flag is set in the EFLAGS image, the processor switches back to virtual-8086 mode on the task switch. The CPL 
at the time the IRET instruction is executed must be 0, otherwise the processor does not change the state of the 
VM flag. 
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20.3.2 Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the 
Virtual Interrupt Mechanism

Maskable hardware interrupts are those interrupts that are delivered through the INTR# pin or through an inter-
rupt request to the local APIC (see Section 6.3.2, “Maskable Hardware Interrupts”). These interrupts can be inhib-
ited (masked) from interrupting an executing program or task by clearing the IF flag in the EFLAGS register.

When the VME flag in control register CR4 is set and the IOPL field in the EFLAGS register is less than 3, two addi-
tional flags are activated in the EFLAGS register:
• VIF (virtual interrupt) flag, bit 19 of the EFLAGS register.
• VIP (virtual interrupt pending) flag, bit 20 of the EFLAGS register.

These flags provide the virtual-8086 monitor with more efficient control over handling maskable hardware inter-
rupts that occur during virtual-8086 mode tasks. They also reduce interrupt-handling overhead, by eliminating the 
need for all IF related operations (such as PUSHF, POPF, CLI, and STI instructions) to trap to the virtual-8086 
monitor. The purpose and use of these flags are as follows.

NOTE

The VIF and VIP flags are only available in IA-32 processors that support the virtual mode 
extensions. These extensions were introduced in the IA-32 architecture with the Pentium 
processor. When this mechanism is either not available or not enabled, maskable hardware 
interrupts are handled as class 1 interrupts. Here, if VIF and VIP flags are needed, the virtual-8086 
monitor can implement them in software.

Existing 8086 programs commonly set and clear the IF flag in the EFLAGS register to enable and disable maskable 
hardware interrupts, respectively; for example, to disable interrupts while handling another interrupt or an excep-
tion. This practice works well in single task environments, but can cause problems in multitasking and multiple-
processor environments, where it is often desirable to prevent an application program from having direct control 
over the handling of hardware interrupts. When using earlier IA-32 processors, this problem was often solved by 
creating a virtual IF flag in software. The IA-32 processors (beginning with the Pentium processor) provide hard-
ware support for this virtual IF flag through the VIF and VIP flags.

The VIF flag is a virtualized version of the IF flag, which an application program running from within a virtual-8086 
task can used to control the handling of maskable hardware interrupts. When the VIF flag is enabled, the CLI and 
STI instructions operate on the VIF flag instead of the IF flag. When an 8086 program executes the CLI instruction, 
the processor clears the VIF flag to request that the virtual-8086 monitor inhibit maskable hardware interrupts 
from interrupting program execution; when it executes the STI instruction, the processor sets the VIF flag 
requesting that the virtual-8086 monitor enable maskable hardware interrupts for the 8086 program. But actually 
the IF flag, managed by the operating system, always controls whether maskable hardware interrupts are enabled. 
Also, if under these circumstances an 8086 program tries to read or change the IF flag using the PUSHF or POPF 
instructions, the processor will change the VIF flag instead, leaving IF unchanged.

The VIP flag provides software a means of recording the existence of a deferred (or pending) maskable hardware 
interrupt. This flag is read by the processor but never explicitly written by the processor; it can only be written by 
software. 

If the IF flag is set and the VIF and VIP flags are enabled, and the processor receives a maskable hardware inter-
rupt (interrupt vector 0 through 255), the processor performs and the interrupt handler software should perform 
the following operations:

1. The processor invokes the protected-mode interrupt handler for the interrupt received, as described in the 
following steps. These steps are almost identical to those described for method 1 interrupt and exception 
handling in Section 20.3.1.1, “Handling an Interrupt or Exception Through a Protected-Mode Trap or Interrupt 
Gate”:

a. Switches to 32-bit protected mode and privilege level 0.

b. Saves the state of the processor on the privilege-level 0 stack. The states of the EIP, CS, EFLAGS, ESP, SS, 
ES, DS, FS, and GS registers are saved (see Figure 20-4).

c. Clears the segment registers.
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d. Clears the VM flag in the EFLAGS register.

e. Begins executing the selected protected-mode interrupt handler.

2. The recommended action of the protected-mode interrupt handler is to read the VM flag from the EFLAGS 
image on the stack. If this flag is set, the handler makes a call to the virtual-8086 monitor.

3. The virtual-8086 monitor should read the VIF flag in the EFLAGS register. 

— If the VIF flag is clear, the virtual-8086 monitor sets the VIP flag in the EFLAGS image on the stack to 
indicate that there is a deferred interrupt pending and returns to the protected-mode handler.

— If the VIF flag is set, the virtual-8086 monitor can handle the interrupt if it “belongs” to the 8086 program 
running in the interrupted virtual-8086 task; otherwise, it can call the protected-mode interrupt handler to 
handle the interrupt.

4. The protected-mode handler executes a return to the program executing in virtual-8086 mode.

5. Upon returning to virtual-8086 mode, the processor continues execution of the 8086 program.

When the 8086 program is ready to receive maskable hardware interrupts, it executes the STI instruction to set the 
VIF flag (enabling maskable hardware interrupts). Prior to setting the VIF flag, the processor automatically checks 
the VIP flag and does one of the following, depending on the state of the flag:
• If the VIP flag is clear (indicating no pending interrupts), the processor sets the VIF flag. 
• If the VIP flag is set (indicating a pending interrupt), the processor generates a general-protection exception 

(#GP).

The recommended action of the protected-mode general-protection exception handler is to then call the virtual-
8086 monitor and let it handle the pending interrupt. After handling the pending interrupt, the typical action of the 
virtual-8086 monitor is to clear the VIP flag and set the VIF flag in the EFLAGS image on the stack, and then 
execute a return to the virtual-8086 mode. The next time the processor receives a maskable hardware interrupt, it 
will then handle it as described in steps 1 through 5 earlier in this section.

If the processor finds that both the VIF and VIP flags are set at the beginning of an instruction, it generates a 
general-protection exception. This action allows the virtual-8086 monitor to handle the pending interrupt for the 
virtual-8086 mode task for which the VIF flag is enabled. Note that this situation can only occur immediately 
following execution of a POPF or IRET instruction or upon entering a virtual-8086 mode task through a task switch.

Note that the states of the VIF and VIP flags are not modified in real-address mode or during transitions between 
real-address and protected modes.

NOTE

The virtual interrupt mechanism described in this section is also available for use in protected 
mode, see Section 20.4, “Protected-Mode Virtual Interrupts”.

20.3.3 Class 3—Software Interrupt Handling in Virtual-8086 Mode

When the processor receives a software interrupt (an interrupt generated with the INT n instruction) while in 
virtual-8086 mode, it can use any of six different methods to handle the interrupt. The method selected depends 
on the settings of the VME flag in control register CR4, the IOPL field in the EFLAGS register, and the software inter-
rupt redirection bit map in the TSS. Table 20-2 lists the six methods of handling software interrupts in virtual-8086 
mode and the respective settings of the VME flag, IOPL field, and the bits in the interrupt redirection bit map for 
each method. The table also summarizes the various actions the processor takes for each method. 

The VME flag enables the virtual mode extensions for the Pentium and later IA-32 processors. When this flag is 
clear, the processor responds to interrupts and exceptions in virtual-8086 mode in the same manner as an Intel386 
or Intel486 processor does. When this flag is set, the virtual mode extension provides the following enhancements 
to virtual-8086 mode:
• Speeds up the handling of software-generated interrupts in virtual-8086 mode by allowing the processor to 

bypass the virtual-8086 monitor and redirect software interrupts back to the interrupt handlers that are part of 
the currently running 8086 program.

• Supports virtual interrupts for software written to run on the 8086 processor.
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The IOPL value interacts with the VME flag and the bits in the interrupt redirection bit map to determine how 
specific software interrupts should be handled.

The software interrupt redirection bit map (see Figure 20-5) is a 32-byte field in the TSS. This map is located 
directly below the I/O permission bit map in the TSS. Each bit in the interrupt redirection bit map is mapped to an 
interrupt vector. Bit 0 in the interrupt redirection bit map (which maps to vector zero in the interrupt table) is 
located at the I/O base map address in the TSS minus 32 bytes. When a bit in this bit map is set, it indicates that 
the associated software interrupt (interrupt generated with an INT n instruction) should be handled through the 
protected-mode IDT and interrupt and exception handlers. When a bit in this bit map is clear, the processor redi-
rects the associated software interrupt back to the interrupt table in the 8086 program (located at linear address 0 
in the program’s address space). 

NOTE

The software interrupt redirection bit map does not affect hardware generated interrupts and 
exceptions. Hardware generated interrupts and exceptions are always handled by the protected-
mode interrupt and exception handlers.

Table 20-2.  Software Interrupt Handling Methods While in Virtual-8086 Mode

Method VME IOPL

Bit in 
Redir. 

Bitmap* Processor Action

1 0 3 X Interrupt directed to a protected-mode interrupt handler:

• Switches to privilege-level 0 stack
• Pushes GS, FS, DS and ES onto privilege-level 0 stack
• Pushes SS, ESP, EFLAGS, CS and EIP of interrupted task onto privilege-level 0 stack
• Clears VM, RF, NT, and TF flags
• If serviced through interrupt gate, clears IF flag
• Clears GS, FS, DS and ES to 0
• Sets CS and EIP from interrupt gate

2 0  < 3 X Interrupt directed to protected-mode general-protection exception (#GP) handler.

3 1 < 3 1 Interrupt directed to a protected-mode general-protection exception (#GP) handler; VIF and VIP 
flag support for handling class 2 maskable hardware interrupts.

4 1 3 1 Interrupt directed to protected-mode interrupt handler: (see method 1 processor action).

5 1 3 0 Interrupt redirected to 8086 program interrupt handler:

• Pushes EFLAGS 
• Pushes CS and EIP (lower 16 bits only)
• Clears IF flag
• Clears TF flag
• Loads CS and EIP (lower 16 bits only) from selected entry in the interrupt vector table of the 

current virtual-8086 task

6 1 < 3 0 Interrupt redirected to 8086 program interrupt handler; VIF and VIP flag support for handling class 
2 maskable hardware interrupts:

• Pushes EFLAGS with IOPL set to 3 and VIF copied to IF
• Pushes CS and EIP (lower 16 bits only)
• Clears the VIF flag
• Clears TF flag
• Loads CS and EIP (lower 16 bits only) from selected entry in the interrupt vector table of the 

current virtual-8086 task

NOTE:

* When set to 0, software interrupt is redirected back to the 8086 program interrupt handler; when set to 1, interrupt is directed to 
protected-mode handler.
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Redirecting software interrupts back to the 8086 program potentially speeds up interrupt handling because a 
switch back and forth between virtual-8086 mode and protected mode is not required. This latter interrupt-
handling technique is particularly useful for 8086 operating systems (such as MS-DOS) that use the INT n instruc-
tion to call operating system procedures.

The CPUID instruction can be used to verify that the virtual mode extension is implemented on the processor. Bit 1 
of the feature flags register (EDX) indicates the availability of the virtual mode extension (see “CPUID—CPU Iden-
tification” in Chapter 3, “Instruction Set Reference, A-M”, of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A).

The following sections describe the six methods (or mechanisms) for handling software interrupts in virtual-8086 
mode. See Section 20.3.2, “Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual 
Interrupt Mechanism”, for a description of the use of the VIF and VIP flags in the EFLAGS register for handling 
maskable hardware interrupts.

20.3.3.1  Method 1: Software Interrupt Handling

When the VME flag in control register CR4 is clear and the IOPL field is 3, a Pentium or later IA-32 processor 
handles software interrupts in the same manner as they are handled by an Intel386 or Intel486 processor. It 
executes an implicit call to the interrupt handler in the protected-mode IDT pointed to by the interrupt vector. See 
Section 20.3.1, “Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 Mode”, for a complete 
description of this mechanism and its possible uses.

20.3.3.2  Methods 2 and 3: Software Interrupt Handling

When a software interrupt occurs in virtual-8086 mode and the method 2 or 3 conditions are present, the processor 
generates a general-protection exception (#GP). Method 2 is enabled when the VME flag is set to 0 and the IOPL 
value is less than 3. Here the IOPL value is used to bypass the protected-mode interrupt handlers and cause any 
software interrupt that occurs in virtual-8086 mode to be treated as a protected-mode general-protection excep-
tion (#GP). The general-protection exception handler calls the virtual-8086 monitor, which can then emulate an 
8086-program interrupt handler or pass control back to the 8086 program’s handler, as described in Section 
20.3.1.2, “Handling an Interrupt or Exception With an 8086 Program Interrupt or Exception Handler”.

Method 3 is enabled when the VME flag is set to 1, the IOPL value is less than 3, and the corresponding bit for the 
software interrupt in the software interrupt redirection bit map is set to 1. Here, the processor performs the same 

Figure 20-5.  Software Interrupt Redirection Bit Map in TSS
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operation as it does for method 2 software interrupt handling. If the corresponding bit for the software interrupt in 
the software interrupt redirection bit map is set to 0, the interrupt is handled using method 6 (see Section 
20.3.3.5, “Method 6: Software Interrupt Handling”).

20.3.3.3  Method 4: Software Interrupt Handling

Method 4 handling is enabled when the VME flag is set to 1, the IOPL value is 3, and the bit for the interrupt vector 
in the redirection bit map is set to 1. Method 4 software interrupt handling allows method 1 style handling when the 
virtual mode extension is enabled; that is, the interrupt is directed to a protected-mode handler (see Section 
20.3.3.1, “Method 1: Software Interrupt Handling”).

20.3.3.4  Method 5: Software Interrupt Handling

Method 5 software interrupt handling provides a streamlined method of redirecting software interrupts (invoked 
with the INT n instruction) that occur in virtual 8086 mode back to the 8086 program’s interrupt vector table and 
its interrupt handlers. Method 5 handling is enabled when the VME flag is set to 1, the IOPL value is 3, and the bit 
for the interrupt vector in the redirection bit map is set to 0. The processor performs the following actions to make 
an implicit call to the selected 8086 program interrupt handler:

1. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

2. Pushes the current values of the CS and EIP registers onto the current stack. (Only the 16 least-significant bits 
of the EIP register are pushed and no stack switch occurs.)

3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF flag, in the EFLAGS register.

5. Locates the 8086 program interrupt vector table at linear address 0 for the 8086-mode task.

6. Loads the CS and EIP registers with values from the interrupt vector table entry pointed to by the interrupt 
vector number. Only the 16 low-order bits of the EIP are loaded and the 16 high-order bits are set to 0. The 
interrupt vector table is assumed to be at linear address 0 of the current virtual-8086 task.

7. Begins executing the selected interrupt handler.

An IRET instruction at the end of the handler procedure reverses these steps to return program control to the inter-
rupted 8086 program.

Note that with method 5 handling, a mode switch from virtual-8086 mode to protected mode does not occur. The 
processor remains in virtual-8086 mode throughout the interrupt-handling operation.

The method 5 handling actions are virtually identical to the actions the processor takes when handling software 
interrupts in real-address mode. The benefit of using method 5 handling to access the 8086 program handlers is 
that it avoids the overhead of methods 2 and 3 handling, which requires first going to the virtual-8086 monitor, 
then to the 8086 program handler, then back again to the virtual-8086 monitor, before returning to the interrupted 
8086 program (see Section 20.3.1.2, “Handling an Interrupt or Exception With an 8086 Program Interrupt or 
Exception Handler”). 

NOTE

Methods 1 and 4 handling can handle a software interrupt in a virtual-8086 task with a regular 
protected-mode handler, but this approach requires all virtual-8086 tasks to use the same software 
interrupt handlers, which generally does not give sufficient latitude to the programs running in the 
virtual-8086 tasks, particularly MS-DOS programs.

20.3.3.5  Method 6: Software Interrupt Handling

Method 6 handling is enabled when the VME flag is set to 1, the IOPL value is less than 3, and the bit for the inter-
rupt or exception vector in the redirection bit map is set to 0. With method 6 interrupt handling, software interrupts 
are handled in the same manner as was described for method 5 handling (see Section 20.3.3.4, “Method 5: Soft-
ware Interrupt Handling”).
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Method 6 differs from method 5 in that with the IOPL value set to less than 3, the VIF and VIP flags in the EFLAGS 
register are enabled, providing virtual interrupt support for handling class 2 maskable hardware interrupts (see 
Section 20.3.2, “Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt 
Mechanism”). These flags provide the virtual-8086 monitor with an efficient means of handling maskable hardware 
interrupts that occur during a virtual-8086 mode task. Also, because the IOPL value is less than 3 and the VIF flag 
is enabled, the information pushed on the stack by the processor when invoking the interrupt handler is slightly 
different between methods 5 and 6 (see Table 20-2).

20.4 PROTECTED-MODE VIRTUAL INTERRUPTS

The IA-32 processors (beginning with the Pentium processor) also support the VIF and VIP flags in the EFLAGS 
register in protected mode by setting the PVI (protected-mode virtual interrupt) flag in the CR4 register. Setting 
the PVI flag allows applications running at privilege level 3 to execute the CLI and STI instructions without causing 
a general-protection exception (#GP) or affecting hardware interrupts. 

When the PVI flag is set to 1, the CPL is 3, and the IOPL is less than 3, the STI and CLI instructions set and clear 
the VIF flag in the EFLAGS register, leaving IF unaffected. In this mode of operation, an application running in 
protected mode and at a CPL of 3 can inhibit interrupts in the same manner as is described in Section 20.3.2, “Class 
2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt Mechanism”, for a 
virtual-8086 mode task. When the application executes the CLI instruction, the processor clears the VIF flag. If the 
processor receives a maskable hardware interrupt, the processor invokes the protected-mode interrupt handler. 
This handler checks the state of the VIF flag in the EFLAGS register. If the VIF flag is clear (indicating that the active 
task does not want to have interrupts handled now), the handler sets the VIP flag in the EFLAGS image on the stack 
and returns to the privilege-level 3 application, which continues program execution. When the application executes 
a STI instruction to set the VIF flag, the processor automatically invokes the general-protection exception handler, 
which can then handle the pending interrupt. After handing the pending interrupt, the handler typically sets the VIF 
flag and clears the VIP flag in the EFLAGS image on the stack and executes a return to the application program. The 
next time the processor receives a maskable hardware interrupt, the processor will handle it in the normal manner 
for interrupts received while the processor is operating at a CPL of 3.

As with the virtual mode extension (enabled with the VME flag in the CR4 register), the protected-mode virtual 
interrupt extension only affects maskable hardware interrupts (interrupt vectors 32 through 255). NMI interrupts 
and exceptions are handled in the normal manner.

When protected-mode virtual interrupts are disabled (that is, when the PVI flag in control register CR4 is set to 0, 
the CPL is less than 3, or the IOPL value is 3), then the CLI and STI instructions execute in a manner compatible 
with the Intel486 processor. That is, if the CPL is greater (less privileged) than the I/O privilege level (IOPL), a 
general-protection exception occurs. If the IOPL value is 3, CLI and STI clear or set the IF flag, respectively.

PUSHF, POPF, IRET and INT are executed like in the Intel486 processor, regardless of whether protected-mode 
virtual interrupts are enabled.

It is only possible to enter virtual-8086 mode through a task switch or the execution of an IRET instruction, and it 
is only possible to leave virtual-8086 mode by faulting to a protected-mode interrupt handler (typically the general-
protection exception handler, which in turn calls the virtual 8086-mode monitor). In both cases, the EFLAGS 
register is saved and restored. This is not true, however, in protected mode when the PVI flag is set and the 
processor is not in virtual-8086 mode. Here, it is possible to call a procedure at a different privilege level, in which 
case the EFLAGS register is not saved or modified. However, the states of VIF and VIP flags are never examined by 
the processor when the CPL is not 3.
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CHAPTER 21
MIXING 16-BIT AND 32-BIT CODE

Program modules written to run on IA-32 processors can be either 16-bit modules or 32-bit modules. Table 21-1 
shows the characteristic of 16-bit and 32-bit modules.

The IA-32 processors function most efficiently when executing 32-bit program modules. They can, however, also 
execute 16-bit program modules, in any of the following ways:
• In real-address mode.
• In virtual-8086 mode.
• System management mode (SMM).
• As a protected-mode task, when the code, data, and stack segments for the task are all configured as a 16-bit 

segments.
• By integrating 16-bit and 32-bit segments into a single protected-mode task.
• By integrating 16-bit operations into 32-bit code segments.

Real-address mode, virtual-8086 mode, and SMM are native 16-bit modes. A legacy program assembled and/or 
compiled to run on an Intel 8086 or Intel 286 processor should run in real-address mode or virtual-8086 mode 
without modification. Sixteen-bit program modules can also be written to run in real-address mode for handling 
system initialization or to run in SMM for handling system management functions. See Chapter 20, “8086 Emula-
tion,” for detailed information on real-address mode and virtual-8086 mode; see Chapter 34, “System Manage-
ment Mode,” for information on SMM.

This chapter describes how to integrate 16-bit program modules with 32-bit program modules when operating in 
protected mode and how to mix 16-bit and 32-bit code within 32-bit code segments.

21.1 DEFINING 16-BIT AND 32-BIT PROGRAM MODULES

The following IA-32 architecture mechanisms are used to distinguish between and support 16-bit and 32-bit 
segments and operations:
• The D (default operand and address size) flag in code-segment descriptors.
• The B (default stack size) flag in stack-segment descriptors.
• 16-bit and 32-bit call gates, interrupt gates, and trap gates.
• Operand-size and address-size instruction prefixes.
• 16-bit and 32-bit general-purpose registers.

The D flag in a code-segment descriptor determines the default operand-size and address-size for the instructions 
of a code segment. (In real-address mode and virtual-8086 mode, which do not use segment descriptors, the 
default is 16 bits.) A code segment with its D flag set is a 32-bit segment; a code segment with its D flag clear is a 
16-bit segment.

Table 21-1.  Characteristics of 16-Bit and 32-Bit Program Modules

Characteristic 16-Bit Program Modules 32-Bit Program Modules

Segment Size 0 to 64 KBytes 0 to 4 GBytes

Operand Sizes 8 bits and 16 bits 8 bits and 32 bits

Pointer Offset Size (Address Size) 16 bits 32 bits

Stack Pointer Size 16 Bits 32 Bits

Control Transfers Allowed to Code Segments 
of This Size

16 Bits 32 Bits
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The B flag in the stack-segment descriptor specifies the size of stack pointer (the 32-bit ESP register or the 16-bit 
SP register) used by the processor for implicit stack references. The B flag for all data descriptors also controls 
upper address range for expand down segments.

When transferring program control to another code segment through a call gate, interrupt gate, or trap gate, the 
operand size used during the transfer is determined by the type of gate used (16-bit or 32-bit), (not by the D-flag 
or prefix of the transfer instruction). The gate type determines how return information is saved on the stack (or 
stacks).

For most efficient and trouble-free operation of the processor, 32-bit programs or tasks should have the D flag in 
the code-segment descriptor and the B flag in the stack-segment descriptor set, and 16-bit programs or tasks 
should have these flags clear. Program control transfers from 16-bit segments to 32-bit segments (and vice versa) 
are handled most efficiently through call, interrupt, or trap gates.

Instruction prefixes can be used to override the default operand size and address size of a code segment. These 
prefixes can be used in real-address mode as well as in protected mode and virtual-8086 mode. An operand-size or 
address-size prefix only changes the size for the duration of the instruction.

21.2 MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A CODE SEGMENT

The following two instruction prefixes allow mixing of 32-bit and 16-bit operations within one segment:
• The operand-size prefix (66H)
• The address-size prefix (67H)

These prefixes reverse the default size selected by the D flag in the code-segment descriptor. For example, the 
processor can interpret the (MOV mem, reg) instruction in any of four ways:
• In a 32-bit code segment:

— Moves 32 bits from a 32-bit register to memory using a 32-bit effective address.

— If preceded by an operand-size prefix, moves 16 bits from a 16-bit register to memory using a 32-bit 
effective address.

— If preceded by an address-size prefix, moves 32 bits from a 32-bit register to memory using a 16-bit 
effective address.

— If preceded by both an address-size prefix and an operand-size prefix, moves 16 bits from a 16-bit register 
to memory using a 16-bit effective address.

• In a 16-bit code segment:

— Moves 16 bits from a 16-bit register to memory using a 16-bit effective address.

— If preceded by an operand-size prefix, moves 32 bits from a 32-bit register to memory using a 16-bit 
effective address.

— If preceded by an address-size prefix, moves 16 bits from a 16-bit register to memory using a 32-bit 
effective address.

— If preceded by both an address-size prefix and an operand-size prefix, moves 32 bits from a 32-bit register 
to memory using a 32-bit effective address.

The previous examples show that any instruction can generate any combination of operand size and address size 
regardless of whether the instruction is in a 16- or 32-bit segment. The choice of the 16- or 32-bit default for a code 
segment is normally based on the following criteria:
• Performance — Always use 32-bit code segments when possible. They run much faster than 16-bit code 

segments on P6 family processors, and somewhat faster on earlier IA-32 processors.
• The operating system the code segment will be running on — If the operating system is a 16-bit 

operating system, it may not support 32-bit program modules.
• Mode of operation — If the code segment is being designed to run in real-address mode, virtual-8086 mode, 

or SMM, it must be a 16-bit code segment.
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• Backward compatibility to earlier IA-32 processors — If a code segment must be able to run on an Intel 
8086 or Intel 286 processor, it must be a 16-bit code segment.

21.3 SHARING DATA AMONG MIXED-SIZE CODE SEGMENTS

Data segments can be accessed from both 16-bit and 32-bit code segments. When a data segment that is larger 
than 64 KBytes is to be shared among 16- and 32-bit code segments, the data that is to be accessed from the 16-
bit code segments must be located within the first 64 KBytes of the data segment. The reason for this is that 16-
bit pointers by definition can only point to the first 64 KBytes of a segment. 

A stack that spans less than 64 KBytes can be shared by both 16- and 32-bit code segments. This class of stacks 
includes:
• Stacks in expand-up segments with the G (granularity) and B (big) flags in the stack-segment descriptor clear.
• Stacks in expand-down segments with the G and B flags clear.
• Stacks in expand-up segments with the G flag set and the B flag clear and where the stack is contained 

completely within the lower 64 KBytes. (Offsets greater than FFFFH can be used for data, other than the stack, 
which is not shared.)

See Section 3.4.5, “Segment Descriptors,” for a description of the G and B flags and the expand-down stack type.

The B flag cannot, in general, be used to change the size of stack used by a 16-bit code segment. This flag controls 
the size of the stack pointer only for implicit stack references such as those caused by interrupts, exceptions, and 
the PUSH, POP, CALL, and RET instructions. It does not control explicit stack references, such as accesses to 
parameters or local variables. A 16-bit code segment can use a 32-bit stack only if the code is modified so that all 
explicit references to the stack are preceded by the 32-bit address-size prefix, causing those references to use 32-
bit addressing and explicit writes to the stack pointer are preceded by a 32-bit operand-size prefix.

In 32-bit, expand-down segments, all offsets may be greater than 64 KBytes; therefore, 16-bit code cannot use 
this kind of stack segment unless the code segment is modified to use 32-bit addressing.

21.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE SEGMENTS

There are three ways for a procedure in a 16-bit code segment to safely make a call to a 32-bit code segment:
• Make the call through a 32-bit call gate.
• Make a 16-bit call to a 32-bit interface procedure. The interface procedure then makes a 32-bit call to the 

intended destination.
• Modify the 16-bit procedure, inserting an operand-size prefix before the call, to change it to a 32-bit call.

Likewise, there are three ways for procedure in a 32-bit code segment to safely make a call to a 16-bit code 
segment:
• Make the call through a 16-bit call gate. Here, the EIP value at the CALL instruction cannot exceed FFFFH.
• Make a 32-bit call to a 16-bit interface procedure. The interface procedure then makes a 16-bit call to the 

intended destination.
• Modify the 32-bit procedure, inserting an operand-size prefix before the call, changing it to a 16-bit call. Be 

certain that the return offset does not exceed FFFFH.

These methods of transferring program control overcome the following architectural limitations imposed on calls 
between 16-bit and 32-bit code segments:
• Pointers from 16-bit code segments (which by default can only be 16 bits) cannot be used to address data or 

code located beyond FFFFH in a 32-bit segment.
• The operand-size attributes for a CALL and its companion RETURN instruction must be the same to maintain 

stack coherency. This is also true for implicit calls to interrupt and exception handlers and their companion IRET 
instructions.

• A 32-bit parameters (particularly a pointer parameter) greater than FFFFH cannot be squeezed into a 16-bit 
parameter location on a stack.
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• The size of the stack pointer (SP or ESP) changes when switching between 16-bit and 32-bit code segments.

These limitations are discussed in greater detail in the following sections.

21.4.1 Code-Segment Pointer Size

For control-transfer instructions that use a pointer to identify the next instruction (that is, those that do not use 
gates), the operand-size attribute determines the size of the offset portion of the pointer. The implications of this 
rule are as follows:
• A JMP, CALL, or RET instruction from a 32-bit segment to a 16-bit segment is always possible using a 32-bit 

operand size, providing the 32-bit pointer does not exceed FFFFH.
• A JMP, CALL, or RET instruction from a 16-bit segment to a 32-bit segment cannot address a destination greater 

than FFFFH, unless the instruction is given an operand-size prefix.

See Section 21.4.5, “Writing Interface Procedures,” for an interface procedure that can transfer program control 
from 16-bit segments to destinations in 32-bit segments beyond FFFFH.

21.4.2 Stack Management for Control Transfer

Because the stack is managed differently for 16-bit procedure calls than for 32-bit calls, the operand-size attribute 
of the RET instruction must match that of the CALL instruction (see Figure 21-1). On a 16-bit call, the processor 
pushes the contents of the 16-bit IP register and (for calls between privilege levels) the 16-bit SP register. The 
matching RET instruction must also use a 16-bit operand size to pop these 16-bit values from the stack into the 16-
bit registers. 

A 32-bit CALL instruction pushes the contents of the 32-bit EIP register and (for inter-privilege-level calls) the 32-
bit ESP register. Here, the matching RET instruction must use a 32-bit operand size to pop these 32-bit values from 
the stack into the 32-bit registers. If the two parts of a CALL/RET instruction pair do not have matching operand 
sizes, the stack will not be managed correctly and the values of the instruction pointer and stack pointer will not be 
restored to correct values. 
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While executing 32-bit code, if a call is made to a 16-bit code segment which is at the same or a more privileged 
level (that is, the DPL of the called code segment is less than or equal to the CPL of the calling code segment) 
through a 16-bit call gate, then the upper 16-bits of the ESP register may be unreliable upon returning to the 32-
bit code segment (that is, after executing a RET in the 16-bit code segment).

When the CALL instruction and its matching RET instruction are in code segments that have D flags with the same 
values (that is, both are 32-bit code segments or both are 16-bit code segments), the default settings may be 
used. When the CALL instruction and its matching RET instruction are in segments which have different D-flag 
settings, an operand-size prefix must be used.

21.4.2.1  Controlling the Operand-Size Attribute For a Call

Three things can determine the operand-size of a call:
• The D flag in the segment descriptor for the calling code segment.
• An operand-size instruction prefix.
• The type of call gate (16-bit or 32-bit), if a call is made through a call gate.

When a call is made with a pointer (rather than a call gate), the D flag for the calling code segment determines the 
operand-size for the CALL instruction. This operand-size attribute can be overridden by prepending an operand-
size prefix to the CALL instruction. So, for example, if the D flag for a code segment is set for 16 bits and the 
operand-size prefix is used with a CALL instruction, the processor will cause the information stored on the stack to 

Figure 21-1.  Stack after Far 16- and 32-Bit Calls
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be stored in 32-bit format. If the call is to a 32-bit code segment, the instructions in that code segment will be able 
to read the stack coherently. Also, a RET instruction from the 32-bit code segment without an operand-size prefix 
will maintain stack coherency with the 16-bit code segment being returned to.

When a CALL instruction references a call-gate descriptor, the type of call is determined by the type of call gate (16-
bit or 32-bit). The offset to the destination in the code segment being called is taken from the gate descriptor; 
therefore, if a 32-bit call gate is used, a procedure in a 16-bit code segment can call a procedure located more than 
64 KBytes from the base of a 32-bit code segment, because a 32-bit call gate uses a 32-bit offset.

Note that regardless of the operand size of the call and how it is determined, the size of the stack pointer used (SP 
or ESP) is always controlled by the B flag in the stack-segment descriptor currently in use (that is, when B is clear, 
SP is used, and when B is set, ESP is used).

An unmodified 16-bit code segment that has run successfully on an 8086 processor or in real-mode on a later IA-
32 architecture processor will have its D flag clear and will not use operand-size override prefixes. As a result, all 
CALL instructions in this code segment will use the 16-bit operand-size attribute. Procedures in these code 
segments can be modified to safely call procedures to 32-bit code segments in either of two ways:
• Relink the CALL instruction to point to 32-bit call gates (see Section 21.4.2.2, “Passing Parameters With a 

Gate”).
• Add a 32-bit operand-size prefix to each CALL instruction.

21.4.2.2  Passing Parameters With a Gate

When referencing 32-bit gates with 16-bit procedures, it is important to consider the number of parameters passed 
in each procedure call. The count field of the gate descriptor specifies the size of the parameter string to copy from 
the current stack to the stack of a more privileged (numerically lower privilege level) procedure. The count field of 
a 16-bit gate specifies the number of 16-bit words to be copied, whereas the count field of a 32-bit gate specifies 
the number of 32-bit doublewords to be copied. The count field for a 32-bit gate must thus be half the size of the 
number of words being placed on the stack by a 16-bit procedure. Also, the 16-bit procedure must use an even 
number of words as parameters.

21.4.3 Interrupt Control Transfers

A program-control transfer caused by an exception or interrupt is always carried out through an interrupt or trap 
gate (located in the IDT). Here, the type of the gate (16-bit or 32-bit) determines the operand-size attribute used 
in the implicit call to the exception or interrupt handler procedure in another code segment.

A 32-bit interrupt or trap gate provides a safe interface to a 32-bit exception or interrupt handler when the excep-
tion or interrupt occurs in either a 32-bit or a 16-bit code segment. It is sometimes impractical, however, to place 
exception or interrupt handlers in 16-bit code segments, because only 16-bit return addresses are saved on the 
stack. If an exception or interrupt occurs in a 32-bit code segment when the EIP was greater than FFFFH, the 16-
bit handler procedure cannot provide the correct return address.

21.4.4 Parameter Translation

When segment offsets or pointers (which contain segment offsets) are passed as parameters between 16-bit and 
32-bit procedures, some translation is required. If a 32-bit procedure passes a pointer to data located beyond 64 
KBytes to a 16-bit procedure, the 16-bit procedure cannot use it. Except for this limitation, interface code can 
perform any format conversion between 32-bit and 16-bit pointers that may be needed.

Parameters passed by value between 32-bit and 16-bit code also may require translation between 32-bit and 16-
bit formats. The form of the translation is application-dependent.

21.4.5 Writing Interface Procedures

Placing interface code between 32-bit and 16-bit procedures can be the solution to the following interface prob-
lems:
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• Allowing procedures in 16-bit code segments to call procedures with offsets greater than FFFFH in 32-bit code 
segments.

• Matching operand-size attributes between companion CALL and RET instructions.
• Translating parameters (data), including managing parameter strings with a variable count or an odd number 

of 16-bit words.
• The possible invalidation of the upper bits of the ESP register.

The interface procedure is simplified where these rules are followed.

1. The interface procedure must reside in a 32-bit code segment (the D flag for the code-segment descriptor is 
set).

2. All procedures that may be called by 16-bit procedures must have offsets not greater than FFFFH.

3. All return addresses saved by 16-bit procedures must have offsets not greater than FFFFH.

The interface procedure becomes more complex if any of these rules are violated. For example, if a 16-bit proce-
dure calls a 32-bit procedure with an entry point beyond FFFFH, the interface procedure will need to provide the 
offset to the entry point. The mapping between 16- and 32-bit addresses is only performed automatically when a 
call gate is used, because the gate descriptor for a call gate contains a 32-bit address. When a call gate is not used, 
the interface code must provide the 32-bit address.

The structure of the interface procedure depends on the types of calls it is going to support, as follows:
• Calls from 16-bit procedures to 32-bit procedures — Calls to the interface procedure from a 16-bit code 

segment are made with 16-bit CALL instructions (by default, because the D flag for the calling code-segment 
descriptor is clear), and 16-bit operand-size prefixes are used with RET instructions to return from the interface 
procedure to the calling procedure. Calls from the interface procedure to 32-bit procedures are performed with 
32-bit CALL instructions (by default, because the D flag for the interface procedure’s code segment is set), and 
returns from the called procedures to the interface procedure are performed with 32-bit RET instructions (also 
by default).

• Calls from 32-bit procedures to 16-bit procedures — Calls to the interface procedure from a 32-bit code 
segment are made with 32-bit CALL instructions (by default), and returns to the calling procedure from the 
interface procedure are made with 32-bit RET instructions (also by default). Calls from the interface procedure 
to 16-bit procedures require the CALL instructions to have the operand-size prefixes, and returns from the 
called procedures to the interface procedure are performed with 16-bit RET instructions (by default).
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CHAPTER 22
ARCHITECTURE COMPATIBILITY

Intel 64 and IA-32 processors are binary compatible. Compatibility means that, within limited constraints, 
programs that execute on previous generations of processors will produce identical results when executed on later 
processors. The compatibility constraints and any implementation differences between the Intel 64 and IA-32 
processors are described in this chapter.

Each new processor has enhanced the software visible architecture from that found in earlier Intel 64 and IA-32 
processors. Those enhancements have been defined with consideration for compatibility with previous and future 
processors. This chapter also summarizes the compatibility considerations for those extensions.

22.1 PROCESSOR FAMILIES AND CATEGORIES

IA-32 processors are referred to in several different ways in this chapter, depending on the type of compatibility 
information being related, as described in the following:
• IA-32 Processors — All the Intel processors based on the Intel IA-32 Architecture, which include the 

8086/88, Intel 286, Intel386, Intel486, Pentium, Pentium Pro, Pentium II, Pentium III, Pentium 4, and Intel 
Xeon processors.

• 32-bit Processors — All the IA-32 processors that use a 32-bit architecture, which include the Intel386, 
Intel486, Pentium, Pentium Pro, Pentium II, Pentium III, Pentium 4, and Intel Xeon processors.

• 16-bit Processors — All the IA-32 processors that use a 16-bit architecture, which include the 8086/88 and 
Intel 286 processors.

• P6 Family Processors — All the IA-32 processors that are based on the P6 microarchitecture, which include 
the Pentium Pro, Pentium II, and Pentium III processors.

• Pentium® 4 Processors — A family of IA-32 and Intel 64 processors that are based on the Intel NetBurst® 
microarchitecture.

• Intel® Pentium® M Processors — A family of IA-32 processors that are based on the Intel Pentium M 
processor microarchitecture.

• Intel® Core™ Duo and Solo Processors — Families of IA-32 processors that are based on an improved Intel 
Pentium M processor microarchitecture.

• Intel® Xeon® Processors — A family of IA-32 and Intel 64 processors that are based on the Intel NetBurst 
microarchitecture. This family includes the Intel Xeon processor and the Intel Xeon processor MP based on the 
Intel NetBurst microarchitecture. Intel Xeon processors 3000, 3100, 3200, 3300, 3200, 5100, 5200, 5300, 
5400, 7200, 7300 series are based on Intel Core microarchitectures and support Intel 64 architecture.

• Pentium® D Processors — A family of dual-core Intel 64 processors that provides two processor cores in a 
physical package. Each core is based on the Intel NetBurst microarchitecture.

• Pentium® Processor Extreme Editions — A family of dual-core Intel 64 processors that provides two 
processor cores in a physical package. Each core is based on the Intel NetBurst microarchitecture and supports 
Intel Hyper-Threading Technology.

• Intel® Core™ 2 Processor family— A family of Intel 64 processors that are based on the Intel Core microar-
chitecture. Intel Pentium Dual-Core processors are also based on the Intel Core microarchitecture.

• Intel® Atom™ Processors — A family of IA-32 and Intel 64 processors that are based on the Intel Atom 
microarchitecture. 

22.2 RESERVED BITS

Throughout this manual, certain bits are marked as reserved in many register and memory layout descriptions. 
When bits are marked as undefined or reserved, it is essential for compatibility with future processors that software 
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treat these bits as having a future, though unknown effect. Software should follow these guidelines in dealing with 
reserved bits:
• Do not depend on the states of any reserved bits when testing the values of registers or memory locations that 

contain such bits. Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing them to memory or to a register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated in the documentation, if any, or 

reload them with values previously read from the same register.

Software written for existing IA-32 processor that handles reserved bits correctly will port to future IA-32 proces-
sors without generating protection exceptions.

22.3 ENABLING NEW FUNCTIONS AND MODES

Most of the new control functions defined for the P6 family and Pentium processors are enabled by new mode flags 
in the control registers (primarily register CR4). This register is undefined for IA-32 processors earlier than the 
Pentium processor. Attempting to access this register with an Intel486 or earlier IA-32 processor results in an 
invalid-opcode exception (#UD). Consequently, programs that execute correctly on the Intel486 or earlier IA-32 
processor cannot erroneously enable these functions. Attempting to set a reserved bit in register CR4 to a value 
other than its original value results in a general-protection exception (#GP). So, programs that execute on the P6 
family and Pentium processors cannot erroneously enable functions that may be implemented in future IA-32 
processors. 

The P6 family and Pentium processors do not check for attempts to set reserved bits in model-specific registers; 
however these bits may be checked on more recent processors. It is the obligation of the software writer to enforce 
this discipline. These reserved bits may be used in future Intel processors.

22.4 DETECTING THE PRESENCE OF NEW FEATURES THROUGH SOFTWARE

Software can check for the presence of new architectural features and extensions in either of two ways:

1. Test for the presence of the feature or extension. Software can test for the presence of new flags in the EFLAGS 
register and control registers. If these flags are reserved (meaning not present in the processor executing the 
test), an exception is generated. Likewise, software can attempt to execute a new instruction, which results in 
an invalid-opcode exception (#UD) being generated if it is not supported.

2. Execute the CPUID instruction. The CPUID instruction (added to the IA-32 in the Pentium processor) indicates 
the presence of new features directly.

See Chapter 17, “Processor Identification and Feature Determination,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for detailed information on detecting new processor features and exten-
sions.

22.5 INTEL MMX TECHNOLOGY

The Pentium processor with MMX technology introduced the MMX technology and a set of MMX instructions to the 
IA-32. The MMX instructions are described in Chapter 9, “Programming with Intel® MMX™ Technology,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, and in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volumes 2A, 2B & 2C. The MMX technology and MMX instructions are also 
included in the Pentium II, Pentium III, Pentium 4, and Intel Xeon processors.



Vol. 3B 22-3

ARCHITECTURE COMPATIBILITY

22.6 STREAMING SIMD EXTENSIONS (SSE)

The Streaming SIMD Extensions (SSE) were introduced in the Pentium III processor. The SSE extensions consist of 
a new set of instructions and a new set of registers. The new registers include the eight 128-bit XMM registers and 
the 32-bit MXCSR control and status register. These instructions and registers are designed to allow SIMD compu-
tations to be made on single-precision floating-point numbers. Several of these new instructions also operate in the 
MMX registers. SSE instructions and registers are described in Section 10, “Programming with Streaming SIMD 
Extensions (SSE),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, and in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B & 2C. 

22.7 STREAMING SIMD EXTENSIONS 2 (SSE2)

The Streaming SIMD Extensions 2 (SSE2) were introduced in the Pentium 4 and Intel Xeon processors. They 
consist of a new set of instructions that operate on the XMM and MXCSR registers and perform SIMD operations on 
double-precision floating-point values and on integer values. Several of these new instructions also operate in the 
MMX registers. SSE2 instructions and registers are described in Chapter 11, “Programming with Streaming SIMD 
Extensions 2 (SSE2),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, and in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B & 2C.

22.8 STREAMING SIMD EXTENSIONS 3 (SSE3)

The Streaming SIMD Extensions 3 (SSE3) were introduced in Pentium 4 processors supporting Intel Hyper-
Threading Technology and Intel Xeon processors. SSE3 extensions include 13 instructions. Ten of these 13 instruc-
tions support the single instruction multiple data (SIMD) execution model used with SSE/SSE2 extensions. One 
SSE3 instruction accelerates x87 style programming for conversion to integer. The remaining two instructions 
(MONITOR and MWAIT) accelerate synchronization of threads. SSE3 instructions are described in Chapter 12, 
“Programming with SSE3, SSSE3 and SSE4,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, and in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B 
& 2C.

22.9 ADDITIONAL STREAMING SIMD EXTENSIONS

The Supplemental Streaming SIMD Extensions 3 (SSSE3) were introduced in the Intel Core 2 processor and Intel 
Xeon processor 5100 series. Streaming SIMD Extensions 4 provided 54 new instructions introduced in 45nm Intel 
Xeon processors and Intel Core 2 processors. SSSE3, SSE4.1 and SSE4.2 instructions are described in Chapter 12, 
“Programming with SSE3, SSSE3 and SSE4,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, and in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B 
& 2C.

22.10 INTEL HYPER-THREADING TECHNOLOGY

Intel Hyper-Threading Technology provides two logical processors that can execute two separate code streams 
(called threads) concurrently by using shared resources in a single processor core or in a physical package. 

This feature was introduced in the Intel Xeon processor MP and later steppings of the Intel Xeon processor, and 
Pentium 4 processors supporting Intel Hyper-Threading Technology. The feature is also found in the Pentium 
processor Extreme Edition. See also: Section 8.7, “Intel® Hyper-Threading Technology Architecture.”

Intel Atom processors also support Intel Hyper-Threading Technology.
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22.11 MULTI-CORE TECHNOLOGY

The Pentium D processor and Pentium processor Extreme Edition provide two processor cores in each physical 
processor package. See also: Section 8.5, “Intel® Hyper-Threading Technology and Intel® Multi-Core Technology,” 
and Section 8.8, “Multi-Core Architecture.” Intel Core 2 Duo, Intel Pentium Dual-Core processors, Intel Xeon 
processors 3000, 3100, 5100, 5200 series provide two processor cores in each physical processor package. Intel 
Core 2 Extreme, Intel Core 2 Quad processors, Intel Xeon processors 3200, 3300, 5300, 5400, 7300 series provide 
two processor cores in each physical processor package.

22.12 SPECIFIC FEATURES OF DUAL-CORE PROCESSOR 

Dual-core processors may have some processor-specific features. Use CPUID feature flags to detect the availability 
features. Note the following:
• CPUID Brand String — On Pentium processor Extreme Edition, the process will report the correct brand string 

only after the correct microcode updates are loaded.
• Enhanced Intel SpeedStep Technology — This feature is supported in Pentium D processor but not in 

Pentium processor Extreme Edition. 

22.13 NEW INSTRUCTIONS IN THE PENTIUM AND LATER IA-32 PROCESSORS

Table 22-1 identifies the instructions introduced into the IA-32 in the Pentium processor and later IA-32 processors.

22.13.1 Instructions Added Prior to the Pentium Processor

The following instructions were added in the Intel486 processor:
• BSWAP (byte swap) instruction.
• XADD (exchange and add) instruction.
• CMPXCHG (compare and exchange) instruction.
• ΙNVD (invalidate cache) instruction.
• WBINVD (write-back and invalidate cache) instruction.
• INVLPG (invalidate TLB entry) instruction.

Table 22-1.  New Instruction in the Pentium Processor and Later IA-32 Processors

Instruction CPUID Identification Bits Introduced In

CMOVcc (conditional move) EDX, Bit 15 Pentium Pro processor

FCMOVcc (floating-point conditional move) EDX, Bits 0 and 15

FCOMI (floating-point compare and set EFLAGS) EDX, Bits 0 and 15

RDPMC (read performance monitoring counters) EAX, Bits 8-11, set to 6H; 
see Note 1

UD2 (undefined) EAX, Bits 8-11, set to 6H

CMPXCHG8B (compare and exchange 8 bytes) EDX, Bit 8 Pentium processor

CPUID (CPU identification) None; see Note 2

RDTSC (read time-stamp counter) EDX, Bit 4

RDMSR (read model-specific register) EDX, Bit 5

WRMSR (write model-specific register) EDX, Bit 5

MMX Instructions EDX, Bit 23
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The following instructions were added in the Intel386 processor:
• LSS, LFS, and LGS (load SS, FS, and GS registers).
• Long-displacement conditional jumps.
• Single-bit instructions.
• Bit scan instructions.
• Double-shift instructions.
• Byte set on condition instruction.
• Move with sign/zero extension.
• Generalized multiply instruction.
• MOV to and from control registers.
• MOV to and from test registers (now obsolete).
• MOV to and from debug registers.
• RSM (resume from SMM). This instruction was introduced in the Intel386 SL and Intel486 SL processors.

The following instructions were added in the Intel 387 math coprocessor:
• FPREM1.
• FUCOM, FUCOMP, and FUCOMPP.

22.14 OBSOLETE INSTRUCTIONS

The MOV to and from test registers instructions were removed from the Pentium processor and future IA-32 
processors. Execution of these instructions generates an invalid-opcode exception (#UD).

22.15 UNDEFINED OPCODES

All new instructions defined for IA-32 processors use binary encodings that were reserved on earlier-generation 
processors. Attempting to execute a reserved opcode always results in an invalid-opcode (#UD) exception being 
generated. Consequently, programs that execute correctly on earlier-generation processors cannot erroneously 
execute these instructions and thereby produce unexpected results when executed on later IA-32 processors.

22.16 NEW FLAGS IN THE EFLAGS REGISTER

The section titled “EFLAGS Register” in Chapter 3, “Basic Execution Environment,” of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, shows the configuration of flags in the EFLAGS register for 
the P6 family processors. No new flags have been added to this register in the P6 family processors. The flags 
added to this register in the Pentium and Intel486 processors are described in the following sections.

The following flags were added to the EFLAGS register in the Pentium processor:
• VIF (virtual interrupt flag), bit 19.
• VIP (virtual interrupt pending), bit 20. 

NOTES:

1. The RDPMC instruction was introduced in the P6 family of processors and added to later model Pentium processors. This instruc-
tion is model specific in nature and not architectural.

2. The CPUID instruction is available in all Pentium and P6 family processors and in later models of the Intel486 processors. The ability 
to set and clear the ID flag (bit 21) in the EFLAGS register indicates the availability of the CPUID instruction.

Table 22-1.  New Instruction in the Pentium Processor and Later IA-32 Processors (Contd.)

Instruction CPUID Identification Bits Introduced In
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• ID (identification flag), bit 21. 

The AC flag (bit 18) was added to the EFLAGS register in the Intel486 processor.

22.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 Processors

The following bits in the EFLAGS register that can be used to differentiate between the 32-bit IA-32 processors:
• Bit 18 (the AC flag) can be used to distinguish an Intel386 processor from the P6 family, Pentium, and Intel486 

processors. Since it is not implemented on the Intel386 processor, it will always be clear.
• Bit 21 (the ID flag) indicates whether an application can execute the CPUID instruction. The ability to set and 

clear this bit indicates that the processor is a P6 family or Pentium processor. The CPUID instruction can then 
be used to determine which processor. 

• Bits 19 (the VIF flag) and 20 (the VIP flag) will always be zero on processors that do not support virtual mode 
extensions, which includes all 32-bit processors prior to the Pentium processor.

See Chapter 17, “Processor Identification and Feature Determination,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for more information on identifying processors.

22.17 STACK OPERATIONS

This section identifies the differences in stack implementation between the various IA-32 processors.

22.17.1 PUSH SP

The P6 family, Pentium, Intel486, Intel386, and Intel 286 processors push a different value on the stack for a PUSH 
SP instruction than the 8086 processor. The 32-bit processors push the value of the SP register before it is decre-
mented as part of the push operation; the 8086 processor pushes the value of the SP register after it is decre-
mented. If the value pushed is important, replace PUSH SP instructions with the following three instructions:

PUSH BP

MOV  BP, SP

XCHG BP, [BP] 

This code functions as the 8086 processor PUSH SP instruction on the P6 family, Pentium, Intel486, Intel386, and 
Intel 286 processors.

22.17.2 EFLAGS Pushed on the Stack

The setting of the stored values of bits 12 through 15 (which includes the IOPL field and the NT flag) in the EFLAGS 
register by the PUSHF instruction, by interrupts, and by exceptions is different with the 32-bit IA-32 processors 
than with the 8086 and Intel 286 processors. The differences are as follows:
• 8086 processor—bits 12 through 15 are always set.
• Intel 286 processor—bits 12 through 15 are always cleared in real-address mode. 
• 32-bit processors in real-address mode—bit 15 (reserved) is always cleared, and bits 12 through 14 have the 

last value loaded into them.

22.18 X87 FPU

This section addresses the issues that must be faced when porting floating-point software designed to run on 
earlier IA-32 processors and math coprocessors to a Pentium 4, Intel Xeon, P6 family, or Pentium processor with 
integrated x87 FPU. To software, a Pentium 4, Intel Xeon, or P6 family processor looks very much like a Pentium 
processor. Floating-point software which runs on a Pentium or Intel486 DX processor, or on an Intel486 SX 
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processor/Intel 487 SX math coprocessor system or an Intel386 processor/Intel 387 math coprocessor system, 
will run with at most minor modifications on a Pentium 4, Intel Xeon, or P6 family processor. To port code directly 
from an Intel 286 processor/Intel 287 math coprocessor system or an Intel 8086 processor/8087 math copro-
cessor system to a Pentium 4, Intel Xeon, P6 family, or Pentium processor, certain additional issues must be 
addressed. 

In the following sections, the term “32-bit x87 FPUs” refers to the P6 family, Pentium, and Intel486 DX processors, 
and to the Intel 487 SX and Intel 387 math coprocessors; the term “16-bit IA-32 math coprocessors” refers to the 
Intel 287 and 8087 math coprocessors.

22.18.1 Control Register CR0 Flags

The ET, NE, and MP flags in control register CR0 control the interface between the integer unit of an IA-32 processor 
and either its internal x87 FPU or an external math coprocessor. The effect of these flags in the various IA-32 
processors are described in the following paragraphs.

The ET (extension type) flag (bit 4 of the CR0 register) is used in the Intel386 processor to indicate whether the 
math coprocessor in the system is an Intel 287 math coprocessor (flag is clear) or an Intel 387 DX math copro-
cessor (flag is set). This bit is hardwired to 1 in the P6 family, Pentium, and Intel486 processors.

The NE (Numeric Exception) flag (bit 5 of the CR0 register) is used in the P6 family, Pentium, and Intel486 proces-
sors to determine whether unmasked floating-point exceptions are reported internally through interrupt vector 16 
(flag is set) or externally through an external interrupt (flag is clear). On a hardware reset, the NE flag is initialized 
to 0, so software using the automatic internal error-reporting mechanism must set this flag to 1. This flag is nonex-
istent on the Intel386 processor.

As on the Intel 286 and Intel386 processors, the MP (monitor coprocessor) flag (bit 1 of register CR0) determines 
whether the WAIT/FWAIT instructions or waiting-type floating-point instructions trap when the context of the x87 
FPU is different from that of the currently-executing task. If the MP and TS flag are set, then a WAIT/FWAIT instruc-
tion and waiting instructions will cause a device-not-available exception (interrupt vector 7). The MP flag is used on 
the Intel 286 and Intel386 processors to support the use of a WAIT/FWAIT instruction to wait on a device other 
than a math coprocessor. The device reports its status through the BUSY# pin. Since the P6 family, Pentium, and 
Intel486 processors do not have such a pin, the MP flag has no relevant use and should be set to 1 for normal oper-
ation.

22.18.2 x87 FPU Status Word

This section identifies differences to the x87 FPU status word for the different IA-32 processors and math coproces-
sors, the reason for the differences, and their impact on software.

22.18.2.1  Condition Code Flags (C0 through C3)

The following information pertains to differences in the use of the condition code flags (C0 through C3) located in 
bits 8, 9, 10, and 14 of the x87 FPU status word.

After execution of an FINIT instruction or a hardware reset on a 32-bit x87 FPU, the condition code flags are set to 
0. The same operations on a 16-bit IA-32 math coprocessor leave these flags intact (they contain their prior value). 
This difference in operation has no impact on software and provides a consistent state after reset.

Transcendental instruction results in the core range of the P6 family and Pentium processors may differ from the 
Intel486 DX processor and Intel 487 SX math coprocessor by 2 to 3 units in the last place (ulps)—(see “Transcen-
dental Instruction Accuracy” in Chapter 8, “Programming with the x87 FPU,” of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1). As a result, the value saved in the C1 flag may also differ.

After an incomplete FPREM/FPREM1 instruction, the C0, C1, and C3 flags are set to 0 on the 32-bit x87 FPUs. After 
the same operation on a 16-bit IA-32 math coprocessor, these flags are left intact. 

On the 32-bit x87 FPUs, the C2 flag serves as an incomplete flag for the FTAN instruction. On the 16-bit IA-32 math 
coprocessors, the C2 flag is undefined for the FPTAN instruction. This difference has no impact on software, 
because Intel 287 or 8087 programs do not check C2 after an FPTAN instruction. The use of this flag on later 
processors allows fast checking of operand range.
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22.18.2.2  Stack Fault Flag

When unmasked stack overflow or underflow occurs on a 32-bit x87 FPU, the IE flag (bit 0) and the SF flag (bit 6) 
of the x87 FPU status word are set to indicate a stack fault and condition code flag C1 is set or cleared to indicate 
overflow or underflow, respectively. When unmasked stack overflow or underflow occurs on a 16-bit IA-32 math 
coprocessor, only the IE flag is set. Bit 6 is reserved on these processors. The addition of the SF flag on a 32-bit x87 
FPU has no impact on software. Existing exception handlers need not change, but may be upgraded to take advan-
tage of the additional information.

22.18.3 x87 FPU Control Word

Only affine closure is supported for infinity control on a 32-bit x87 FPU. The infinity control flag (bit 12 of the x87 
FPU control word) remains programmable on these processors, but has no effect. This change was made to 
conform to the IEEE Standard 754 for Binary Floating-Point Arithmetic. On a 16-bit IA-32 math coprocessor, both 
affine and projective closures are supported, as determined by the setting of bit 12. After a hardware reset, the 
default value of bit 12 is projective. Software that requires projective infinity arithmetic may give different results.

22.18.4 x87 FPU Tag Word

When loading the tag word of a 32-bit x87 FPU, using an FLDENV, FRSTOR, or FXRSTOR (Pentium III processor only) 
instruction, the processor examines the incoming tag and classifies the location only as empty or non-empty. Thus, 
tag values of 00, 01, and 10 are interpreted by the processor to indicate a non-empty location. The tag value of 11 
is interpreted by the processor to indicate an empty location. Subsequent operations on a non-empty register 
always examine the value in the register, not the value in its tag. The FSTENV, FSAVE, and FXSAVE (Pentium III 
processor only) instructions examine the non-empty registers and put the correct values in the tags before storing 
the tag word.

The corresponding tag for a 16-bit IA-32 math coprocessor is checked before each register access to determine the 
class of operand in the register; the tag is updated after every change to a register so that the tag always reflects 
the most recent status of the register. Software can load a tag with a value that disagrees with the contents of a 
register (for example, the register contains a valid value, but the tag says special). Here, the 16-bit IA-32 math 
coprocessors honor the tag and do not examine the register. 

Software written to run on a 16-bit IA-32 math coprocessor may not operate correctly on a 16-bit x87 FPU, if it uses 
the FLDENV, FRSTOR, or FXRSTOR instructions to change tags to values (other than to empty) that are different 
from actual register contents.

The encoding in the tag word for the 32-bit x87 FPUs for unsupported data formats (including pseudo-zero and 
unnormal) is special (10B), to comply with IEEE Standard 754. The encoding in the 16-bit IA-32 math coprocessors 
for pseudo-zero and unnormal is valid (00B) and the encoding for other unsupported data formats is special (10B). 
Code that recognizes the pseudo-zero or unnormal format as valid must therefore be changed if it is ported to a 32-
bit x87 FPU.

22.18.5 Data Types

This section discusses the differences of data types for the various x87 FPUs and math coprocessors.

22.18.5.1  NaNs

The 32-bit x87 FPUs distinguish between signaling NaNs (SNaNs) and quiet NaNs (QNaNs). These x87 FPUs only 
generate QNaNs and normally do not generate an exception upon encountering a QNaN. An invalid-operation 
exception (#I) is generated only upon encountering a SNaN, except for the FCOM, FIST, and FBSTP instructions, 
which also generates an invalid-operation exceptions for a QNaNs. This behavior matches IEEE Standard 754.

The 16-bit IA-32 math coprocessors only generate one kind of NaN (the equivalent of a QNaN), but the raise an 
invalid-operation exception upon encountering any kind of NaN.
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When porting software written to run on a 16-bit IA-32 math coprocessor to a 32-bit x87 FPU, uninitialized memory 
locations that contain QNaNs should be changed to SNaNs to cause the x87 FPU or math coprocessor to fault when 
uninitialized memory locations are referenced.

22.18.5.2  Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal Formats

The 32-bit x87 FPUs neither generate nor support the pseudo-zero, pseudo-NaN, pseudo-infinity, and unnormal 
formats. Whenever they encounter them in an arithmetic operation, they raise an invalid-operation exception. The 
16-bit IA-32 math coprocessors define and support special handling for these formats. Support for these formats 
was dropped to conform with IEEE Standard 754 for Binary Floating-Point Arithmetic.

This change should not impact software ported from 16-bit IA-32 math coprocessors to 32-bit x87 FPUs. The 32-
bit x87 FPUs do not generate these formats, and therefore will not encounter them unless software explicitly loads 
them in the data registers. The only affect may be in how software handles the tags in the tag word (see also: 
Section 22.18.4, “x87 FPU Tag Word”).

22.18.6 Floating-Point Exceptions

This section identifies the implementation differences in exception handling for floating-point instructions in the 
various x87 FPUs and math coprocessors.

22.18.6.1  Denormal Operand Exception (#D)

When the denormal operand exception is masked, the 32-bit x87 FPUs automatically normalize denormalized 
numbers when possible; whereas, the 16-bit IA-32 math coprocessors return a denormal result. A program written 
to run on a 16-bit IA-32 math coprocessor that uses the denormal exception solely to normalize denormalized 
operands is redundant when run on the 32-bit x87 FPUs. If such a program is run on 32-bit x87 FPUs, performance 
can be improved by masking the denormal exception. Floating-point programs run faster when the FPU performs 
normalization of denormalized operands.

The denormal operand exception is not raised for transcendental instructions and the FXTRACT instruction on the 
16-bit IA-32 math coprocessors. This exception is raised for these instructions on the 32-bit x87 FPUs. The excep-
tion handlers ported to these latter processors need to be changed only if the handlers gives special treatment to 
different opcodes.

22.18.6.2  Numeric Overflow Exception (#O)

On the 32-bit x87 FPUs, when the numeric overflow exception is masked and the rounding mode is set to chop 
(toward 0), the result is the largest positive or smallest negative number. The 16-bit IA-32 math coprocessors do 
not signal the overflow exception when the masked response is not ∞; that is, they signal overflow only when the 
rounding control is not set to round to 0. If rounding is set to chop (toward 0), the result is positive or negative ∞. 
Under the most common rounding modes, this difference has no impact on existing software. 

If rounding is toward 0 (chop), a program on a 32-bit x87 FPU produces, under overflow conditions, a result that is 
different in the least significant bit of the significand, compared to the result on a 16-bit IA-32 math coprocessor. 
The reason for this difference is IEEE Standard 754 compatibility.

When the overflow exception is not masked, the precision exception is flagged on the 32-bit x87 FPUs. When the 
result is stored in the stack, the significand is rounded according to the precision control (PC) field of the FPU 
control word or according to the opcode. On the 16-bit IA-32 math coprocessors, the precision exception is not 
flagged and the significand is not rounded. The impact on existing software is that if the result is stored on the 
stack, a program running on a 32-bit x87 FPU produces a different result under overflow conditions than on a 16-
bit IA-32 math coprocessor. The difference is apparent only to the exception handler. This difference is for IEEE 
Standard 754 compatibility.
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22.18.6.3  Numeric Underflow Exception (#U)

When the underflow exception is masked on the 32-bit x87 FPUs, the underflow exception is signaled when both 
the result is tiny and denormalization results in a loss of accuracy. When the underflow exception is unmasked and 
the instruction is supposed to store the result on the stack, the significand is rounded to the appropriate precision 
(according to the PC flag in the FPU control word, for those instructions controlled by PC, otherwise to extended 
precision), after adjusting the exponent.

When the underflow exception is masked on the 16-bit IA-32 math coprocessors and rounding is toward 0, the 
underflow exception flag is raised on a tiny result, regardless of loss of accuracy. When the underflow exception is 
not masked and the destination is the stack, the significand is not rounded, but instead is left as is. 

When the underflow exception is masked, this difference has no impact on existing software. The underflow excep-
tion occurs less often when rounding is toward 0.

When the underflow exception not masked. A program running on a 32-bit x87 FPU produces a different result 
during underflow conditions than on a 16-bit IA-32 math coprocessor if the result is stored on the stack. The differ-
ence is only in the least significant bit of the significand and is apparent only to the exception handler.

22.18.6.4  Exception Precedence

There is no difference in the precedence of the denormal-operand exception on the 32-bit x87 FPUs, whether it be 
masked or not. When the denormal-operand exception is not masked on the 16-bit IA-32 math coprocessors, it 
takes precedence over all other exceptions. This difference causes no impact on existing software, but some 
unneeded normalization of denormalized operands is prevented on the Intel486 processor and Intel 387 math 
coprocessor.

22.18.6.5  CS and EIP For FPU Exceptions

On the Intel 32-bit x87 FPUs, the values from the CS and EIP registers saved for floating-point exceptions point to 
any prefixes that come before the floating-point instruction. On the 8087 math coprocessor, the saved CS and IP 
registers points to the floating-point instruction.

22.18.6.6  FPU Error Signals

The floating-point error signals to the P6 family, Pentium, and Intel486 processors do not pass through an interrupt 
controller; an INT# signal from an Intel 387, Intel 287 or 8087 math coprocessors does. If an 8086 processor uses 
another exception for the 8087 interrupt, both exception vectors should call the floating-point-error exception 
handler. Some instructions in a floating-point-error exception handler may need to be deleted if they use the inter-
rupt controller. The P6 family, Pentium, and Intel486 processors have signals that, with the addition of external 
logic, support reporting for emulation of the interrupt mechanism used in many personal computers.

On the P6 family, Pentium, and Intel486 processors, an undefined floating-point opcode will cause an invalid-
opcode exception (#UD, interrupt vector 6). Undefined floating-point opcodes, like legal floating-point opcodes, 
cause a device not available exception (#NM, interrupt vector 7) when either the TS or EM flag in control register 
CR0 is set. The P6 family, Pentium, and Intel486 processors do not check for floating-point error conditions on 
encountering an undefined floating-point opcode.

22.18.6.7  Assertion of the FERR# Pin

When using the MS-DOS compatibility mode for handing floating-point exceptions, the FERR# pin must be 
connected to an input to an external interrupt controller. An external interrupt is then generated when the FERR# 
output drives the input to the interrupt controller and the interrupt controller in turn drives the INTR pin on the 
processor. 

For the P6 family and Intel386 processors, an unmasked floating-point exception always causes the FERR# pin to 
be asserted upon completion of the instruction that caused the exception. For the Pentium and Intel486 proces-
sors, an unmasked floating-point exception may cause the FERR# pin to be asserted either at the end of the 
instruction causing the exception or immediately before execution of the next floating-point instruction. (Note that 
the next floating-point instruction would not be executed until the pending unmasked exception has been handled.) 
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See Appendix D, “Guidelines for Writing x87 FPU Extension Handlers,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for a complete description of the required mechanism for handling 
floating-point exceptions using the MS-DOS compatibility mode.

Using FERR# and IGNNE# to handle floating-point exception is deprecated by modern operating systems; this 
approach also limits newer processors to operate with one logical processor active.

22.18.6.8  Invalid Operation Exception On Denormals 

An invalid-operation exception is not generated on the 32-bit x87 FPUs upon encountering a denormal value when 
executing a FSQRT, FDIV, or FPREM instruction or upon conversion to BCD or to integer. The operation proceeds by 
first normalizing the value. On the 16-bit IA-32 math coprocessors, upon encountering this situation, the invalid-
operation exception is generated. This difference has no impact on existing software. Software running on the 32-
bit x87 FPUs continues to execute in cases where the 16-bit IA-32 math coprocessors trap. The reason for this 
change was to eliminate an exception from being raised.

22.18.6.9  Alignment Check Exceptions (#AC)

If alignment checking is enabled, a misaligned data operand on the P6 family, Pentium, and Intel486 processors 
causes an alignment check exception (#AC) when a program or procedure is running at privilege-level 3, except 
for the stack portion of the FSAVE/FNSAVE, FXSAVE, FRSTOR, and FXRSTOR instructions.

22.18.6.10  Segment Not Present Exception During FLDENV

On the Intel486 processor, when a segment not present exception (#NP) occurs in the middle of an FLDENV 
instruction, it can happen that part of the environment is loaded and part not. In such cases, the FPU control word 
is left with a value of 007FH. The P6 family and Pentium processors ensure the internal state is correct at all times 
by attempting to read the first and last bytes of the environment before updating the internal state.

22.18.6.11  Device Not Available Exception (#NM)

The device-not-available exception (#NM, interrupt 7) will occur in the P6 family, Pentium, and Intel486 processors 
as described in Section 2.5, “Control Registers,” Table 2-2, and Chapter 6, “Interrupt 7—Device Not Available 
Exception (#NM).”

22.18.6.12  Coprocessor Segment Overrun Exception

The coprocessor segment overrun exception (interrupt 9) does not occur in the P6 family, Pentium, and Intel486 
processors. In situations where the Intel 387 math coprocessor would cause an interrupt 9, the P6 family, Pentium, 
and Intel486 processors simply abort the instruction. To avoid undetected segment overruns, it is recommended 
that the floating-point save area be placed in the same page as the TSS. This placement will prevent the FPU envi-
ronment from being lost if a page fault occurs during the execution of an FLDENV, FRSTOR, or FXRSTOR instruction 
while the operating system is performing a task switch.

22.18.6.13  General Protection Exception (#GP)

A general-protection exception (#GP, interrupt 13) occurs if the starting address of a floating-point operand falls 
outside a segment’s size. An exception handler should be included to report these programming errors.

22.18.6.14  Floating-Point Error Exception (#MF)

In real mode and protected mode (not including virtual-8086 mode), interrupt vector 16 must point to the floating-
point exception handler. In virtual 8086 mode, the virtual-8086 monitor can be programmed to accommodate a 
different location of the interrupt vector for floating-point exceptions.
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22.18.7 Changes to Floating-Point Instructions

This section identifies the differences in floating-point instructions for the various Intel FPU and math coprocessor 
architectures, the reason for the differences, and their impact on software.

22.18.7.1  FDIV, FPREM, and FSQRT Instructions

The 32-bit x87 FPUs support operations on denormalized operands and, when detected, an underflow exception 
can occur, for compatibility with the IEEE Standard 754. The 16-bit IA-32 math coprocessors do not operate on 
denormalized operands or return underflow results. Instead, they generate an invalid-operation exception when 
they detect an underflow condition. An existing underflow exception handler will require change only if it gives 
different treatment to different opcodes. Also, it is possible that fewer invalid-operation exceptions will occur.

22.18.7.2  FSCALE Instruction

With the 32-bit x87 FPUs, the range of the scaling operand is not restricted. If (0 < | ST(1) < 1), the scaling factor 
is 0; therefore, ST(0) remains unchanged. If the rounded result is not exact or if there was a loss of accuracy 
(masked underflow), the precision exception is signaled. With the 16-bit IA-32 math coprocessors, the range of the 
scaling operand is restricted. If (0 < | ST(1) | < 1), the result is undefined and no exception is signaled. The 
impact of this difference on exiting software is that different results are delivered on the 32-bit and 16-bit FPUs and 
math coprocessors when (0 < | ST(1) | < 1).

22.18.7.3  FPREM1 Instruction

The 32-bit x87 FPUs compute a partial remainder according to IEEE Standard 754. This instruction does not exist 
on the 16-bit IA-32 math coprocessors. The availability of the FPREM1 instruction has is no impact on existing soft-
ware.

22.18.7.4  FPREM Instruction

On the 32-bit x87 FPUs, the condition code flags C0, C3, C1 in the status word correctly reflect the three low-order 
bits of the quotient following execution of the FPREM instruction. On the 16-bit IA-32 math coprocessors, the 
quotient bits are incorrect when performing a reduction of (64N + M) when (N ≥ 1) and M is 1 or 2. This difference 
does not affect existing software; software that works around the bug should not be affected.

22.18.7.5  FUCOM, FUCOMP, and FUCOMPP Instructions

When executing the FUCOM, FUCOMP, and FUCOMPP instructions, the 32-bit x87 FPUs perform unordered compare 
according to IEEE Standard 754. These instructions do not exist on the 16-bit IA-32 math coprocessors. The avail-
ability of these new instructions has no impact on existing software.

22.18.7.6  FPTAN Instruction

On the 32-bit x87 FPUs, the range of the operand for the FPTAN instruction is much less restricted (| ST(0) | < 263) 
than on earlier math coprocessors. The instruction reduces the operand internally using an internal π/4 constant 
that is more accurate. The range of the operand is restricted to (| ST(0) | < π/4) on the 16-bit IA-32 math copro-
cessors; the operand must be reduced to this range using FPREM. This change has no impact on existing software.

22.18.7.7  Stack Overflow

On the 32-bit x87 FPUs, if an FPU stack overflow occurs when the invalid-operation exception is masked, the FPU 
returns the real, integer, or BCD-integer indefinite value to the destination operand, depending on the instruction 
being executed. On the 16-bit IA-32 math coprocessors, the original operand remains unchanged following a stack 
overflow, but it is loaded into register ST(1). This difference has no impact on existing software.
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22.18.7.8  FSIN, FCOS, and FSINCOS Instructions

On the 32-bit x87 FPUs, these instructions perform three common trigonometric functions. These instructions do 
not exist on the 16-bit IA-32 math coprocessors. The availability of these instructions has no impact on existing 
software, but using them provides a performance upgrade.

22.18.7.9  FPATAN Instruction

On the 32-bit x87 FPUs, the range of operands for the FPATAN instruction is unrestricted. On the 16-bit IA-32 math 
coprocessors, the absolute value of the operand in register ST(0) must be smaller than the absolute value of the 
operand in register ST(1). This difference has impact on existing software.

22.18.7.10  F2XM1 Instruction

The 32-bit x87 FPUs support a wider range of operands (–1 < ST (0) < + 1) for the F2XM1 instruction. The 
supported operand range for the 16-bit IA-32 math coprocessors is (0 ≤ ST(0) ≤ 0.5). This difference has no impact 
on existing software.

22.18.7.11  FLD Instruction

On the 32-bit x87 FPUs, when using the FLD instruction to load an extended-real value, a denormal-operand 
exception is not generated because the instruction is not arithmetic. The 16-bit IA-32 math coprocessors do report 
a denormal-operand exception in this situation. This difference does not affect existing software.

On the 32-bit x87 FPUs, loading a denormal value that is in single- or double-real format causes the value to be 
converted to extended-real format. Loading a denormal value on the 16-bit IA-32 math coprocessors causes the 
value to be converted to an unnormal. If the next instruction is FXTRACT or FXAM, the 32-bit x87 FPUs will give a 
different result than the 16-bit IA-32 math coprocessors. This change was made for IEEE Standard 754 compati-
bility.

On the 32-bit x87 FPUs, loading an SNaN that is in single- or double-real format causes the FPU to generate an 
invalid-operation exception. The 16-bit IA-32 math coprocessors do not raise an exception when loading a 
signaling NaN. The invalid-operation exception handler for 16-bit math coprocessor software needs to be updated 
to handle this condition when porting software to 32-bit FPUs. This change was made for IEEE Standard 754 
compatibility.

22.18.7.12  FXTRACT Instruction

On the 32-bit x87 FPUs, if the operand is 0 for the FXTRACT instruction, the divide-by-zero exception is reported 
and –∞ is delivered to register ST(1). If the operand is +∞, no exception is reported. If the operand is 0 on the 16-
bit IA-32 math coprocessors, 0 is delivered to register ST(1) and no exception is reported. If the operand is +∞, the 
invalid-operation exception is reported. These differences have no impact on existing software. Software usually 
bypasses 0 and ∞. This change is due to the IEEE Standard 754 recommendation to fully support the “logb” func-
tion.

22.18.7.13  Load Constant Instructions

On 32-bit x87 FPUs, rounding control is in effect for the load constant instructions. Rounding control is not in effect 
for the 16-bit IA-32 math coprocessors. Results for the FLDPI, FLDLN2, FLDLG2, and FLDL2E instructions are the 
same as for the 16-bit IA-32 math coprocessors when rounding control is set to round to nearest or round to +∞. 
They are the same for the FLDL2T instruction when rounding control is set to round to nearest, round to –∞, or 
round to zero. Results are different from the 16-bit IA-32 math coprocessors in the least significant bit of the 
mantissa if rounding control is set to round to –∞ or round to 0 for the FLDPI, FLDLN2, FLDLG2, and FLDL2E instruc-
tions; they are different for the FLDL2T instruction if round to +∞ is specified. These changes were implemented for 
compatibility with IEEE Standard 754 for Floating-Point Arithmetic recommendations.
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22.18.7.14  FSETPM Instruction

With the 32-bit x87 FPUs, the FSETPM instruction is treated as NOP (no operation). This instruction informs the 
Intel 287 math coprocessor that the processor is in protected mode. This change has no impact on existing soft-
ware. The 32-bit x87 FPUs handle all addressing and exception-pointer information, whether in protected mode or 
not.

22.18.7.15  FXAM Instruction

With the 32-bit x87 FPUs, if the FPU encounters an empty register when executing the FXAM instruction, it not 
generate combinations of C0 through C3 equal to 1101 or 1111. The 16-bit IA-32 math coprocessors may generate 
these combinations, among others. This difference has no impact on existing software; it provides a performance 
upgrade to provide repeatable results.

22.18.7.16  FSAVE and FSTENV Instructions

With the 32-bit x87 FPUs, the address of a memory operand pointer stored by FSAVE or FSTENV is undefined if the 
previous floating-point instruction did not refer to memory

22.18.8 Transcendental Instructions

The floating-point results of the P6 family and Pentium processors for transcendental instructions in the core range 
may differ from the Intel486 processors by about 2 or 3 ulps (see “Transcendental Instruction Accuracy” in Chapter 
8, “Programming with the x87 FPU,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1). Condition code flag C1 of the status word may differ as a result. The exact threshold for underflow and 
overflow will vary by a few ulps. The P6 family and Pentium processors’ results will have a worst case error of less 
than 1 ulp when rounding to the nearest-even and less than 1.5 ulps when rounding in other modes. The transcen-
dental instructions are guaranteed to be monotonic, with respect to the input operands, throughout the domain 
supported by the instruction.

Transcendental instructions may generate different results in the round-up flag (C1) on the 32-bit x87 FPUs. The 
round-up flag is undefined for these instructions on the 16-bit IA-32 math coprocessors. This difference has no 
impact on existing software.

22.18.9 Obsolete Instructions

The 8087 math coprocessor instructions FENI and FDISI and the Intel 287 math coprocessor instruction FSETPM 
are treated as integer NOP instructions in the 32-bit x87 FPUs. If these opcodes are detected in the instruction 
stream, no specific operation is performed and no internal states are affected.

22.18.10 WAIT/FWAIT Prefix Differences

On the Intel486 processor, when a WAIT/FWAIT instruction precedes a floating-point instruction (one which itself 
automatically synchronizes with the previous floating-point instruction), the WAIT/FWAIT instruction is treated as 
a no-op. Pending floating-point exceptions from a previous floating-point instruction are processed not on the 
WAIT/FWAIT instruction but on the floating-point instruction following the WAIT/FWAIT instruction. In such a case, 
the report of a floating-point exception may appear one instruction later on the Intel486 processor than on a P6 
family or Pentium FPU, or on Intel 387 math coprocessor.

22.18.11 Operands Split Across Segments and/or Pages

On the P6 family, Pentium, and Intel486 processor FPUs, when the first half of an operand to be written is inside a 
page or segment and the second half is outside, a memory fault can cause the first half to be stored but not the 
second half. In this situation, the Intel 387 math coprocessor stores nothing.
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22.18.12 FPU Instruction Synchronization

On the 32-bit x87 FPUs, all floating-point instructions are automatically synchronized; that is, the processor auto-
matically waits until the previous floating-point instruction has completed before completing the next floating-point 
instruction. No explicit WAIT/FWAIT instructions are required to assure this synchronization. For the 8087 math 
coprocessors, explicit waits are required before each floating-point instruction to ensure synchronization. Although 
8087 programs having explicit WAIT instructions execute perfectly on the 32-bit IA-32 processors without reas-
sembly, these WAIT instructions are unnecessary.

22.19 SERIALIZING INSTRUCTIONS

Certain instructions have been defined to serialize instruction execution to ensure that modifications to flags, regis-
ters and memory are completed before the next instruction is executed (or in P6 family processor terminology 
“committed to machine state”). Because the P6 family processors use branch-prediction and out-of-order execu-
tion techniques to improve performance, instruction execution is not generally serialized until the results of an 
executed instruction are committed to machine state (see Chapter 2, “Intel® 64 and IA-32 Architectures,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1). 

As a result, at places in a program or task where it is critical to have execution completed for all previous instruc-
tions before executing the next instruction (for example, at a branch, at the end of a procedure, or in multipro-
cessor dependent code), it is useful to add a serializing instruction. See Section 8.3, “Serializing Instructions,” for 
more information on serializing instructions.

22.20 FPU AND MATH COPROCESSOR INITIALIZATION

Table 9-1 shows the states of the FPUs in the P6 family, Pentium, Intel486 processors and of the Intel 387 math 
coprocessor and Intel 287 coprocessor following a power-up, reset, or INIT, or following the execution of an 
FINIT/FNINIT instruction. The following is some additional compatibility information concerning the initialization of 
x87 FPUs and math coprocessors.

22.20.1 Intel® 387 and Intel® 287 Math Coprocessor Initialization

Following an Intel386 processor reset, the processor identifies its coprocessor type (Intel® 287 or Intel® 387 DX 
math coprocessor) by sampling its ERROR# input some time after the falling edge of RESET# signal and before 
execution of the first floating-point instruction. The Intel 287 coprocessor keeps its ERROR# output in inactive 
state after hardware reset; the Intel 387 coprocessor keeps its ERROR# output in active state after hardware 
reset. 

Upon hardware reset or execution of the FINIT/FNINIT instruction, the Intel 387 math coprocessor signals an error 
condition. The P6 family, Pentium, and Intel486 processors, like the Intel 287 coprocessor, do not.

22.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor Initialization

When initializing an Intel486 SX processor and an Intel 487 SX math coprocessor, the initialization routine should 
check the presence of the math coprocessor and should set the FPU related flags (EM, MP, and NE) in control 
register CR0 accordingly (see Section 2.5, “Control Registers,” for a complete description of these flags). Table 
22-2 gives the recommended settings for these flags when the math coprocessor is present. The FSTCW instruction 
will give a value of FFFFH for the Intel486 SX microprocessor and 037FH for the Intel 487 SX math coprocessor.
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The EM and MP flags in register CR0 are interpreted as shown in Table 22-3. 

Following is an example code sequence to initialize the system and check for the presence of Intel486 SX 
processor/Intel 487 SX math coprocessor.

fninit

fstcw mem_loc

mov ax, mem_loc

cmp ax, 037fh

jz Intel487_SX_Math_CoProcessor_present ;ax=037fh

jmp Intel486_SX_microprocessor_present ;ax=ffffh

If the Intel 487 SX math coprocessor is not present, the following code can be run to set the CR0 register for the 
Intel486 SX processor.

mov eax, cr0

and eax, fffffffdh ;make MP=0

or eax, 0024h ;make EM=1, NE=1

mov cr0, eax

This initialization will cause any floating-point instruction to generate a device not available exception (#NH), inter-
rupt 7. The software emulation will then take control to execute these instructions. This code is not required if an 
Intel 487 SX math coprocessor is present in the system. In that case, the typical initialization routine for the 
Intel486 SX microprocessor will be adequate.

Also, when designing an Intel486 SX processor based system with an Intel 487 SX math coprocessor, timing loops 
should be independent of clock speed and clocks per instruction. One way to attain this is to implement these loops 
in hardware and not in software (for example, BIOS).

22.21 CONTROL REGISTERS

The following sections identify the new control registers and control register flags and fields that were introduced 
to the 32-bit IA-32 in various processor families. See Figure 2-7 for the location of these flags and fields in the 
control registers.

Table 22-2.  Recommended Values of the EM, MP, and NE Flags for Intel486 SX Microprocessor/Intel 487 SX Math 
Coprocessor System

CR0 Flags Intel486 SX Processor Only Intel 487 SX Math Coprocessor Present

EM 1 0

MP 0 1

NE 1 0, for MS-DOS* systems
1, for user-defined exception handler

Table 22-3.  EM and MP Flag Interpretation

EM MP Interpretation

0 0 Floating-point instructions are passed to FPU; WAIT/FWAIT and other waiting-type instructions 
ignore TS.

0 1 Floating-point instructions are passed to FPU; WAIT/FWAIT and other waiting-type instructions 
test TS.

1 0 Floating-point instructions trap to emulator; WAIT/FWAIT and other waiting-type instructions 
ignore TS.

1 1 Floating-point instructions trap to emulator; WAIT/FWAIT and other waiting-type instructions 
test TS.
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The Pentium III processor introduced one new control flag in control register CR4:
• OSXMMEXCPT (bit 10) — The OS will set this bit if it supports unmasked SIMD floating-point exceptions.

The Pentium II processor introduced one new control flag in control register CR4:
• OSFXSR (bit 9) — The OS supports saving and restoring the Pentium III processor state during context 

switches.

The Pentium Pro processor introduced three new control flags in control register CR4:
• PAE (bit 5) — Physical address extension. Enables paging mechanism to reference extended physical addresses 

when set; restricts physical addresses to 32 bits when clear (see also: Section 22.22.1.1, “Physical Memory 
Addressing Extension”).

• PGE (bit 7) — Page global enable. Inhibits flushing of frequently-used or shared pages on CR3 writes (see also: 
Section 22.22.1.2, “Global Pages”). 

• PCE (bit 8) — Performance-monitoring counter enable. Enables execution of the RDPMC instruction at any 
protection level.

The content of CR4 is 0H following a hardware reset.

Control register CR4 was introduced in the Pentium processor. This register contains flags that enable certain new 
extensions provided in the Pentium processor:
• VME — Virtual-8086 mode extensions. Enables support for a virtual interrupt flag in virtual-8086 mode (see 

Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode”).
• PVI — Protected-mode virtual interrupts. Enables support for a virtual interrupt flag in protected mode (see 

Section 20.4, “Protected-Mode Virtual Interrupts”).
• TSD — Time-stamp disable. Restricts the execution of the RDTSC instruction to procedures running at 

privileged level 0.
• DE — Debugging extensions. Causes an undefined opcode (#UD) exception to be generated when debug 

registers DR4 and DR5 are references for improved performance (see Section 22.23.3, “Debug Registers DR4 
and DR5”).

• PSE — Page size extensions. Enables 4-MByte pages with 32-bit paging when set (see Section 4.3, “32-Bit 
Paging”).

• MCE — Machine-check enable. Enables the machine-check exception, allowing exception handling for certain 
hardware error conditions (see Chapter 15, “Machine-Check Architecture”). 

The Intel486 processor introduced five new flags in control register CR0:
• NE — Numeric error. Enables the normal mechanism for reporting floating-point numeric errors.
• WP — Write protect. Write-protects read-only pages against supervisor-mode accesses.
• AM — Alignment mask. Controls whether alignment checking is performed. Operates in conjunction with the AC 

(Alignment Check) flag.
• NW — Not write-through. Enables write-throughs and cache invalidation cycles when clear and disables invali-

dation cycles and write-throughs that hit in the cache when set. 
• CD — Cache disable. Enables the internal cache when clear and disables the cache when set.

The Intel486 processor introduced two new flags in control register CR3:
• PCD — Page-level cache disable. The state of this flag is driven on the PCD# pin during bus cycles that are not 

paged, such as interrupt acknowledge cycles, when paging is enabled.   The PCD# pin is used to control caching 
in an external cache on a cycle-by-cycle basis.

• PWT — Page-level write-through. The state of this flag is driven on the PWT# pin during bus cycles that are not 
paged, such as interrupt acknowledge cycles, when paging is enabled. The PWT# pin is used to control write 
through in an external cache on a cycle-by-cycle basis. 
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22.22 MEMORY MANAGEMENT FACILITIES

The following sections describe the new memory management facilities available in the various IA-32 processors 
and some compatibility differences.

22.22.1 New Memory Management Control Flags

The Pentium Pro processor introduced three new memory management features: physical memory addressing 
extension, the global bit in page-table entries, and general support for larger page sizes. These features are only 
available when operating in protected mode.

22.22.1.1  Physical Memory Addressing Extension

The new PAE (physical address extension) flag in control register CR4, bit 5, may enable additional address lines on 
the processor, allowing extended physical addresses. This option can only be used when paging is enabled, using a 
new page-table mechanism provided to support the larger physical address range (see Section 4.1, “Paging Modes 
and Control Bits”).

22.22.1.2  Global Pages

The new PGE (page global enable) flag in control register CR4, bit 7, provides a mechanism for preventing 
frequently used pages from being flushed from the translation lookaside buffer (TLB). When this flag is set, 
frequently used pages (such as pages containing kernel procedures or common data tables) can be marked global 
by setting the global flag in a page-directory or page-table entry. 

On a task switch or a write to control register CR3 (which normally causes the TLBs to be flushed), the entries in 
the TLB marked global are not flushed. Marking pages global in this manner prevents unnecessary reloading of the 
TLB due to TLB misses on frequently used pages. See Section 4.10, “Caching Translation Information” for a detailed 
description of this mechanism.

22.22.1.3  Larger Page Sizes

The P6 family processors support large page sizes. For 32-bit paging, this facility is enabled with the PSE (page size 
extension) flag in control register CR4, bit 4. When this flag is set, the processor supports either 4-KByte or 4-
MByte page sizes. PAE paging and IA-32e paging support 2-MByte pages regardless of the value of CR4.PSE (see 
Section 4.4, “PAE Paging” and Section 4.5, “IA-32e Paging”). See Chapter 4, “Paging,” for more information about 
large page sizes.

22.22.2 CD and NW Cache Control Flags

The CD and NW flags in control register CR0 were introduced in the Intel486 processor. In the P6 family and 
Pentium processors, these flags are used to implement a writeback strategy for the data cache; in the Intel486 
processor, they implement a write-through strategy. See Table 11-5 for a comparison of these bits on the P6 family, 
Pentium, and Intel486 processors. For complete information on caching, see Chapter 11, “Memory Cache Control.”

22.22.3 Descriptor Types and Contents

Operating-system code that manages space in descriptor tables often contains an invalid value in the access-rights 
field of descriptor-table entries to identify unused entries. Access rights values of 80H and 00H remain invalid for 
the P6 family, Pentium, Intel486, Intel386, and Intel 286 processors. Other values that were invalid on the Intel 
286 processor may be valid on the 32-bit processors because uses for these bits have been defined.
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22.22.4 Changes in Segment Descriptor Loads

On the Intel386 processor, loading a segment descriptor always causes a locked read and write to set the accessed 
bit of the descriptor. On the P6 family, Pentium, and Intel486 processors, the locked read and write occur only if the 
bit is not already set.

22.23 DEBUG FACILITIES

The P6 family and Pentium processors include extensions to the Intel486 processor debugging support for break-
points. To use the new breakpoint features, it is necessary to set the DE flag in control register CR4.

22.23.1 Differences in Debug Register DR6

It is not possible to write a 1 to reserved bit 12 in debug status register DR6 on the P6 family and Pentium proces-
sors; however, it is possible to write a 1 in this bit on the Intel486 processor. See Table 9-1 for the different setting 
of this register following a power-up or hardware reset.

22.23.2 Differences in Debug Register DR7

The P6 family and Pentium processors determines the type of breakpoint access by the R/W0 through R/W3 fields 
in debug control register DR7 as follows: 

00 Break on instruction execution only.

01 Break on data writes only.

10 Undefined if the DE flag in control register CR4 is cleared; break on I/O reads or writes but not instruction 
fetches if the DE flag in control register CR4 is set.

11 Break on data reads or writes but not instruction fetches.

On the P6 family and Pentium processors, reserved bits 11, 12, 14 and 15 are hard-wired to 0. On the Intel486 
processor, however, bit 12 can be set. See Table 9-1 for the different settings of this register following a power-up 
or hardware reset.

22.23.3 Debug Registers DR4 and DR5

Although the DR4 and DR5 registers are documented as reserved, previous generations of processors aliased 
references to these registers to debug registers DR6 and DR7, respectively. When debug extensions are not 
enabled (the DE flag in control register CR4 is cleared), the P6 family and Pentium processors remain compatible 
with existing software by allowing these aliased references. When debug extensions are enabled (the DE flag is 
set), attempts to reference registers DR4 or DR5 will result in an invalid-opcode exception (#UD).

22.24 RECOGNITION OF BREAKPOINTS

For the Pentium processor, it is recommended that debuggers execute the LGDT instruction before returning to the 
program being debugged to ensure that breakpoints are detected. This operation does not need to be performed 
on the P6 family, Intel486, or Intel386 processors. 

The implementation of test registers on the Intel486 processor used for testing the cache and TLB has been rede-
signed using MSRs on the P6 family and Pentium processors. (Note that MSRs used for this function are different 
on the P6 family and Pentium processors.) The MOV to and from test register instructions generate invalid-opcode 
exceptions (#UD) on the P6 family processors.
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22.25 EXCEPTIONS AND/OR EXCEPTION CONDITIONS

This section describes the new exceptions and exception conditions added to the 32-bit IA-32 processors and 
implementation differences in existing exception handling. See Chapter 6, “Interrupt and Exception Handling,” for 
a detailed description of the IA-32 exceptions.

The Pentium III processor introduced new state with the XMM registers. Computations involving data in these regis-
ters can produce exceptions. A new MXCSR control/status register is used to determine which exception or excep-
tions have occurred. When an exception associated with the XMM registers occurs, an interrupt is generated.
• SIMD floating-point exception (#XF, interrupt 19) — New exceptions associated with the SIMD floating-point 

registers and resulting computations.

No new exceptions were added with the Pentium Pro and Pentium II processors. The set of available exceptions is 
the same as for the Pentium processor. However, the following exception condition was added to the IA-32 with the 
Pentium Pro processor:
• Machine-check exception (#MC, interrupt 18) — New exception conditions. Many exception conditions have 

been added to the machine-check exception and a new architecture has been added for handling and reporting 
on hardware errors. See Chapter 15, “Machine-Check Architecture,” for a detailed description of the new 
conditions.

The following exceptions and/or exception conditions were added to the IA-32 with the Pentium processor:
• Machine-check exception (#MC, interrupt 18) — New exception. This exception reports parity and other 

hardware errors. It is a model-specific exception and may not be implemented or implemented differently in 
future processors. The MCE flag in control register CR4 enables the machine-check exception. When this bit is 
clear (which it is at reset), the processor inhibits generation of the machine-check exception.

• General-protection exception (#GP, interrupt 13) — New exception condition added. An attempt to write a 1 to 
a reserved bit position of a special register causes a general-protection exception to be generated.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. When a 1 is detected in any of the 
reserved bit positions of a page-table entry, page-directory entry, or page-directory pointer during address 
translation, a page-fault exception is generated. 

The following exception was added to the Intel486 processor:
• Alignment-check exception (#AC, interrupt 17) — New exception. Reports unaligned memory references when 

alignment checking is being performed. 

The following exceptions and/or exception conditions were added to the Intel386 processor:
• Divide-error exception (#DE, interrupt 0)

— Change in exception handling. Divide-error exceptions on the Intel386 processors always leave the saved 
CS:IP value pointing to the instruction that failed. On the 8086 processor, the CS:IP value points to the next 
instruction.

— Change in exception handling. The Intel386 processors can generate the largest negative number as a 
quotient for the IDIV instruction (80H and 8000H). The 8086 processor generates a divide-error exception 
instead.

• Invalid-opcode exception (#UD, interrupt 6) — New exception condition added. Improper use of the LOCK 
instruction prefix can generate an invalid-opcode exception.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. If paging is enabled in a 16-bit 
program, a page-fault exception can be generated as follows. Paging can be used in a system with 16-bit tasks 
if all tasks use the same page directory. Because there is no place in a 16-bit TSS to store the PDBR register, 
switching to a 16-bit task does not change the value of the PDBR register. Tasks ported from the Intel 286 
processor should be given 32-bit TSSs so they can make full use of paging.

• General-protection exception (#GP, interrupt 13) — New exception condition added. The Intel386 processor 
sets a limit of 15 bytes on instruction length. The only way to violate this limit is by putting redundant prefixes 
before an instruction. A general-protection exception is generated if the limit on instruction length is violated. 
The 8086 processor has no instruction length limit.
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22.25.1 Machine-Check Architecture

The Pentium Pro processor introduced a new architecture to the IA-32 for handling and reporting on machine-
check exceptions. This machine-check architecture (described in detail in Chapter 15, “Machine-
Check Architecture”) greatly expands the ability of the processor to report on internal hardware errors.

22.25.2 Priority of Exceptions

The priority of exceptions are broken down into several major categories:

1. Traps on the previous instruction

2. External interrupts

3. Faults on fetching the next instruction

4. Faults in decoding the next instruction

5. Faults on executing an instruction

There are no changes in the priority of these major categories between the different processors, however, excep-
tions within these categories are implementation dependent and may change from processor to processor.

22.25.3 Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers

MMX instructions and a subset of SSE, SSE2, SSSE3 instructions operate on MMX registers. The exception condi-
tions of these instructions are described in the following tables.

Table 22-4.  Exception Conditions for Legacy SIMD/MMX Instructions with FP Exception and 16-Byte Alignment
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Cause of Exception

Invalid Opcode, 
#UD

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. 

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protec-
tion, #GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH

#PF(fault-code) X X X For a page fault

#XM X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1

Applicable 
Instructions

CVTPD2PI, CVTTPD2PI
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Table 22-5.  Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP Exception
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Cause of Exception

Invalid Opcode, #UD

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 0. 

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH

#PF(fault-code) X X X For a page fault

Alignment Check 
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made while 
the current privilege level is 3.

SIMD Floating-point 
Exception, #XM

X X X X If an unmasked SIMD floating-point exception and CR4.OSXMMEXCPT[bit 10] = 1

Applicable Instruc-
tions

CVTPI2PS, CVTPS2PI, CVTTPS2PI
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Table 22-6.  Exception Conditions for Legacy SIMD/MMX Instructions with XMM and without FP Exception
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Cause of Exception

Invalid Opcode, #UD

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF1

NOTES:

1. Applies to “CVTPI2PD xmm, mm” but not “CVTPI2PD xmm, m64”.

X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective address space from 0 to 
FFFFH

 #PF(fault-code) X X X For a page fault

Alignment Check 
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made 
while the current privilege level is 3.

Applicable Instruc-
tions

CVTPI2PD
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Table 22-7.  Exception Conditions for SIMD/MMX Instructions with Memory Reference
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Cause of Exception

Invalid Opcode, #UD

X X X X If CR0.EM[bit 2] = 1.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

General Protection, 
#GP(0)

X
For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

Alignment Check 
#AC(0)

X X X
If alignment checking is enabled and an unaligned memory reference is made while 
the current privilege level is 3.

Applicable Instruc-
tions

PABSB, PABSD, PABSW, PACKSSWB, PACKSSDW, PACKUSWB, PADDB, PADDD, PADDQ, PADDW, PADDSB, 
PADDSW, PADDUSB, PADDUSW, PALIGNR, PAND, PANDN, PAVGB, PAVGW, PCMPEQB, PCMPEQD, PCMPEQW, 
PCMPGTB, PCMPGTD, PCMPGTW, PHADDD, PHADDW, PHADDSW, PHSUBD, PHSUBW, PHSUBSW, PINSRW, 
PMADDUBSW, PMADDWD, PMAXSW, PMAXUB, PMINSW, PMINUB, PMULHRSW, PMULHUW, PMULHW, PMULLW, 
PMULUDQ, PSADBW, PSHUFB, PSHUFW, PSIGNB PSIGND PSIGNW, PSLLW, PSLLD, PSLLQ, PSRAD, PSRAW, 
PSRLW, PSRLD, PSRLQ, PSUBB, PSUBD, PSUBQ, PSUBW, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, 
PUNPCKHBW, PUNPCKHWD, PUNPCKHDQ, PUNPCKLBW, PUNPCKLWD, PUNPCKLDQ, PXOR
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Table 22-8.  Exception Conditions for Legacy SIMD/MMX Instructions without FP Exception
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Cause of Exception

Invalid Opcode, #UD

X X X X
If CR0.EM[bit 2] = 1.

If ModR/M.mod != 11b1

NOTES:

1. Applies to MASKMOVQ only.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)
X For an illegal address in the SS segment

X If a memory address referencing the SS segment is in a non-canonical form

#GP(0)

X

For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

If the destination operand is in a non-writable segment.2

If the DS, ES, FS, or GS register contains a NULL segment selector.3

2. Applies to MASKMOVQ and MOVQ (mmreg) only.

3. Applies to MASKMOVQ only.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

#AC(0) X X X
If alignment checking is enabled and an unaligned memory reference is made while 
the current privilege level is 3.

Applicable Instruc-
tions

MASKMOVQ, MOVNTQ, “MOVQ (mmreg)”
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22.26 INTERRUPTS

The following differences in handling interrupts are found among the IA-32 
processors.

22.26.1 Interrupt Propagation Delay

External hardware interrupts may be recognized on different instruction boundaries on the P6 family, Pentium, 
Intel486, and Intel386 processors, due to the superscaler designs of the P6 family and Pentium processors. There-
fore, the EIP pushed onto the stack when servicing an interrupt may be different for the P6 family, Pentium, 
Intel486, and Intel386 processors.   

22.26.2 NMI Interrupts

After an NMI interrupt is recognized by the P6 family, Pentium, Intel486, Intel386, and Intel 286 processors, the 
NMI interrupt is masked until the first IRET instruction is executed, unlike the 8086 processor.

22.26.3 IDT Limit

The LIDT instruction can be used to set a limit on the size of the IDT. A double-fault exception (#DF) is generated 
if an interrupt or exception attempts to read a vector beyond the limit. Shutdown then occurs on the 32-bit IA-32 
processors if the double-fault handler vector is beyond the limit. (The 8086 processor does not have a shutdown 
mode nor a limit.)

22.27 ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in this book as the local APIC, was intro-
duced into the IA-32 processors with the Pentium processor (beginning with the 735/90 and 815/100 models) and 
is included in the Pentium 4, Intel Xeon, and P6 family processors. The features and functions of the local APIC are 
derived from the Intel 82489DX external APIC, which was used with the Intel486 and early Pentium processors. 
Additional refinements of the local APIC architecture were incorporated in the Pentium 4 and Intel Xeon processors.

Table 22-9.  Exception Conditions for Legacy SIMD/MMX Instructions without Memory Reference
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Cause of Exception

Invalid Opcode, #UD

X X X X If CR0.EM[bit 2] = 1.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X If CR0.TS[bit 3]=1

Applicable Instruc-
tions

PEXTRW, PMOVMSKB
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22.27.1 Software Visible Differences Between the Local APIC and the 82489DX

The following features in the local APIC features differ from those found in the 82489DX external APIC:
• When the local APIC is disabled by clearing the APIC software enable/disable flag in the spurious-interrupt 

vector MSR, the state of its internal registers are unaffected, except that the mask bits in the LVT are all set to 
block local interrupts to the processor. Also, the local APIC ceases accepting IPIs except for INIT, SMI, NMI, and 
start-up IPIs. In the 82489DX, when the local unit is disabled, all the internal registers including the IRR, ISR 
and TMR are cleared and the mask bits in the LVT are set. In this state, the 82489DX local unit will accept only 
the reset deassert message.

• In the local APIC, NMI and INIT (except for INIT deassert) are always treated as edge triggered interrupts, 
even if programmed otherwise. In the 82489DX, these interrupts are always level triggered. 

• In the local APIC, IPIs generated through the ICR are always treated as edge triggered (except INIT Deassert). 
In the 82489DX, the ICR can be used to generate either edge or level triggered IPIs. 

• In the local APIC, the logical destination register supports 8 bits; in the 82489DX, it supports 32 bits. 
• In the local APIC, the APIC ID register is 4 bits wide; in the 82489DX, it is 8 bits wide.
• The remote read delivery mode provided in the 82489DX and local APIC for Pentium processors is not 

supported in the local APIC in the Pentium 4, Intel Xeon, and P6 family processors.
• For the 82489DX, in the lowest priority delivery mode, all the target local APICs specified by the destination 

field participate in the lowest priority arbitration. For the local APIC, only those local APICs which have free 
interrupt slots will participate in the lowest priority arbitration.

22.27.2 New Features Incorporated in the Local APIC for the P6 Family and Pentium 
Processors

The local APIC in the Pentium and P6 family processors have the following new features not found in the 82489DX 
external APIC.
• Cluster addressing is supported in logical destination mode.
• Focus processor checking can be enabled/disabled.
• Interrupt input signal polarity can be programmed for the LINT0 and LINT1 pins.
• An SMI IPI is supported through the ICR and I/O redirection table.
• An error status register is incorporated into the LVT to log and report APIC errors.

In the P6 family processors, the local APIC incorporates an additional LVT register to handle performance moni-
toring counter interrupts.

22.27.3 New Features Incorporated in the Local APIC of the Pentium 4 and Intel Xeon 
Processors

The local APIC in the Pentium 4 and Intel Xeon processors has the following new features not found in the P6 family 
and Pentium processors and in the 82489DX.
• The local APIC ID is extended to 8 bits.
• An thermal sensor register is incorporated into the LVT to handle thermal sensor interrupts. 
• The the ability to deliver lowest-priority interrupts to a focus processor is no longer supported.
• The flat cluster logical destination mode is not supported.

22.28 TASK SWITCHING AND TSS

This section identifies the implementation differences of task switching, additions to the TSS and the handling of 
TSSs and TSS segment selectors.
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22.28.1 P6 Family and Pentium Processor TSS

When the virtual mode extensions are enabled (by setting the VME flag in control register CR4), the TSS in the P6 
family and Pentium processors contain an interrupt redirection bit map, which is used in virtual-8086 mode to redi-
rect interrupts back to an 8086 program.

22.28.2 TSS Selector Writes

During task state saves, the Intel486 processor writes 2-byte segment selectors into a 32-bit TSS, leaving the 
upper 16 bits undefined. For performance reasons, the P6 family and Pentium processors write 4-byte segment 
selectors into the TSS, with the upper 2 bytes being 0. For compatibility reasons, code should not depend on the 
value of the upper 16 bits of the selector in the TSS.

22.28.3 Order of Reads/Writes to the TSS

The order of reads and writes into the TSS is processor dependent. The P6 family and Pentium processors may 
generate different page-fault addresses in control register CR2 in the same TSS area than the Intel486 and 
Intel386 processors, if a TSS crosses a page boundary (which is not recommended).

22.28.4 Using A 16-Bit TSS with 32-Bit Constructs

Task switches using 16-bit TSSs should be used only for pure 16-bit code. Any new code written using 32-bit 
constructs (operands, addressing, or the upper word of the EFLAGS register) should use only 32-bit TSSs. This is 
due to the fact that the 32-bit processors do not save the upper 16 bits of EFLAGS to a 16-bit TSS. A task switch 
back to a 16-bit task that was executing in virtual mode will never re-enable the virtual mode, as this flag was not 
saved in the upper half of the EFLAGS value in the TSS. Therefore, it is strongly recommended that any code using 
32-bit constructs use a 32-bit TSS to ensure correct behavior in a multitasking environment.

22.28.5 Differences in I/O Map Base Addresses

The Intel486 processor considers the TSS segment to be a 16-bit segment and wraps around the 64K boundary. 
Any I/O accesses check for permission to access this I/O address at the I/O base address plus the I/O offset. If the 
I/O map base address exceeds the specified limit of 0DFFFH, an I/O access will wrap around and obtain the permis-
sion for the I/O address at an incorrect location within the TSS. A TSS limit violation does not occur in this situation 
on the Intel486 processor. However, the P6 family and Pentium processors consider the TSS to be a 32-bit segment 
and a limit violation occurs when the I/O base address plus the I/O offset is greater than the TSS limit. By following 
the recommended specification for the I/O base address to be less than 0DFFFH, the Intel486 processor will not 
wrap around and access incorrect locations within the TSS for I/O port validation and the P6 family and Pentium 
processors will not experience general-protection exceptions (#GP). Figure 22-1 demonstrates the different areas 
accessed by the Intel486 and the P6 family and Pentium processors. 
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22.29 CACHE MANAGEMENT

The P6 family processors include two levels of internal caches: L1 (level 1) and L2 (level 2). The L1 cache is divided 
into an instruction cache and a data cache; the L2 cache is a general-purpose cache. See Section 11.1, “Internal 
Caches, TLBs, and Buffers,” for a description of these caches. (Note that although the Pentium II processor L2 
cache is physically located on a separate chip in the cassette, it is considered an internal cache.)

The Pentium processor includes separate level 1 instruction and data caches. The data cache supports a writeback 
(or alternatively write-through, on a line by line basis) policy for memory updates.

The Intel486 processor includes a single level 1 cache for both instructions and data. 

The meaning of the CD and NW flags in control register CR0 have been redefined for the P6 family and Pentium 
processors. For these processors, the recommended value (00B) enables writeback for the data cache of the 
Pentium processor and for the L1 data cache and L2 cache of the P6 family processors. In the Intel486 processor, 
setting these flags to (00B) enables write-through for the cache.

External system hardware can force the Pentium processor to disable caching or to use the write-through cache 
policy should that be required. In the P6 family processors, the MTRRs can be used to override the CD and NW flags 
(see Table 11-6).

The P6 family and Pentium processors support page-level cache management in the same manner as the Intel486 
processor by using the PCD and PWT flags in control register CR3, the page-directory entries, and the page-table 
entries. The Intel486 processor, however, is not affected by the state of the PWT flag since the internal cache of the 
Intel486 processor is a write-through cache.

22.29.1 Self-Modifying Code with Cache Enabled

On the Intel486 processor, a write to an instruction in the cache will modify it in both the cache and memory. If the 
instruction was prefetched before the write, however, the old version of the instruction could be the one executed. 
To prevent this problem, it is necessary to flush the instruction prefetch unit of the Intel486 processor by coding a 
jump instruction immediately after any write that modifies an instruction. The P6 family and Pentium processors, 
however, check whether a write may modify an instruction that has been prefetched for execution. This check is 
based on the linear address of the instruction. If the linear address of an instruction is found to be present in the 

Figure 22-1.  I/O Map Base Address Differences
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prefetch queue, the P6 family and Pentium processors flush the prefetch queue, eliminating the need to code a 
jump instruction after any writes that modify an instruction. 

Because the linear address of the write is checked against the linear address of the instructions that have been 
prefetched, special care must be taken for self-modifying code to work correctly when the physical addresses of the 
instruction and the written data are the same, but the linear addresses differ. In such cases, it is necessary to 
execute a serializing operation to flush the prefetch queue after the write and before executing the modified 
instruction. See Section 8.3, “Serializing Instructions,” for more information on serializing instructions.

NOTE

The check on linear addresses described above is not in practice a concern for compatibility. Appli-
cations that include self-modifying code use the same linear address for modifying and fetching the 
instruction. System software, such as a debugger, that might possibly modify an instruction using 
a different linear address than that used to fetch the instruction must execute a serializing 
operation, such as IRET, before the modified instruction is executed.

22.29.2 Disabling the L3 Cache

A unified third-level (L3) cache in processors based on Intel NetBurst microarchitecture (see Section 11.1, 
“Internal Caches, TLBs, and Buffers”) provides the third-level cache disable flag, bit 6 of the IA32_MISC_ENABLE 
MSR. The third-level cache disable flag allows the L3 cache to be disabled and enabled, independently of the L1 and 
L2 caches (see Section 11.5.4, “Disabling and Enabling the L3 Cache”). The third-level cache disable flag applies 
only to processors based on Intel NetBurst microarchitecture. Processors with L3 and based on other microarchi-
tectures do not support the third-level cache disable flag. 

22.30 PAGING

This section identifies enhancements made to the paging mechanism and implementation differences in the paging 
mechanism for various IA-32 processors.

22.30.1 Large Pages

The Pentium processor extended the memory management/paging facilities of the IA-32 to allow large (4 MBytes) 
pages sizes (see Section 4.3, “32-Bit Paging”). The first P6 family processor (the Pentium Pro processor) added a 2 
MByte page size to the IA-32 in conjunction with the physical address extension (PAE) feature (see Section 4.4, 
“PAE Paging”). 

The availability of large pages with 32-bit paging on any IA-32 processor can be determined via feature bit 3 (PSE) 
of register EDX after the CPUID instruction has been execution with an argument of 1. (Large pages are always 
available with PAE paging and IA-32e paging.) Intel processors that do not support the CPUID instruction support 
only 32-bit paging and do not support page size enhancements. (See “CPUID—CPU Identification” in Chapter 3, 
“Instruction Set Reference, A-M,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2A, and AP-485, Intel Processor Identification and the CPUID Instruction, for more information on the CPUID 
instruction.)

22.30.2 PCD and PWT Flags

The PCD and PWT flags were introduced to the IA-32 in the Intel486 processor to control the caching of pages:
• PCD (page-level cache disable) flag—Controls caching on a page-by-page basis.
• PWT (page-level write-through) flag—Controls the write-through/writeback caching policy on a page-by-page 

basis. Since the internal cache of the Intel486 processor is a write-through cache, it is not affected by the state 
of the PWT flag.   
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22.30.3 Enabling and Disabling Paging

Paging is enabled and disabled by loading a value into control register CR0 that modifies the PG flag. For backward 
and forward compatibility with all IA-32 processors, Intel recommends that the following operations be performed 
when enabling or disabling paging:

1. Execute a MOV CR0, REG instruction to either set (enable paging) or clear (disable paging) the PG flag. 

2. Execute a near JMP instruction.

The sequence bounded by the MOV and JMP instructions should be identity mapped (that is, the instructions should 
reside on a page whose linear and physical addresses are identical).

For the P6 family processors, the MOV CR0, REG instruction is serializing, so the jump operation is not required. 
However, for backwards compatibility, the JMP instruction should still be included.

22.31 STACK OPERATIONS

This section identifies the differences in the stack mechanism for the various IA-32 processors.

22.31.1 Selector Pushes and Pops

When pushing a segment selector onto the stack, the Pentium 4, Intel Xeon, P6 family, and Intel486 processors 
decrement the ESP register by the operand size and then write 2 bytes. If the operand size is 32-bits, the upper 
two bytes of the write are not modified. The Pentium processor decrements the ESP register by the operand size 
and determines the size of the write by the operand size. If the operand size is 32-bits, the upper two bytes are 
written as 0s. 

When popping a segment selector from the stack, the Pentium 4, Intel Xeon, P6 family, and Intel486 processors 
read 2 bytes and increment the ESP register by the operand size of the instruction. The Pentium processor deter-
mines the size of the read from the operand size and increments the ESP register by the operand size.

It is possible to align a 32-bit selector push or pop such that the operation generates an exception on a Pentium 
processor and not on an Pentium 4, Intel Xeon, P6 family, or Intel486 processor. This could occur if the third and/or 
fourth byte of the operation lies beyond the limit of the segment or if the third and/or fourth byte of the operation 
is locate on a non-present or inaccessible page.

For a POP-to-memory instruction that meets the following conditions:
• The stack segment size is 16-bit.
• Any 32-bit addressing form with the SIB byte specifying ESP as the base register.
• The initial stack pointer is FFFCH (32-bit operand) or FFFEH (16-bit operand) and will wrap around to 0H as a 

result of the POP operation.

The result of the memory write is implementation-specific. For example, in P6 family processors, the result of the 
memory write is SS:0H plus any scaled index and displacement. In Pentium processors, the result of the memory 
write may be either a stack fault (real mode or protected mode with stack segment size of 64 KByte), or write to 
SS:10000H plus any scaled index and displacement (protected mode and stack segment size exceeds 64 KByte).

22.31.2 Error Code Pushes

The Intel486 processor implements the error code pushed on the stack as a 16-bit value. When pushed onto a 32-
bit stack, the Intel486 processor only pushes 2 bytes and updates ESP by 4. The P6 family and Pentium processors’ 
error code is a full 32 bits with the upper 16 bits set to zero. The P6 family and Pentium processors, therefore, push 
4 bytes and update ESP by 4. Any code that relies on the state of the upper 16 bits may produce inconsistent 
results.
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22.31.3 Fault Handling Effects on the Stack 

During the handling of certain instructions, such as CALL and PUSHA, faults may occur in different sequences for 
the different processors. For example, during far calls, the Intel486 processor pushes the old CS and EIP before a 
possible branch fault is resolved. A branch fault is a fault from a branch instruction occurring from a segment limit 
or access rights violation. If a branch fault is taken, the Intel486 and P6 family processors will have corrupted 
memory below the stack pointer. However, the ESP register is backed up to make the instruction restartable. The 
P6 family processors issue the branch before the pushes. Therefore, if a branch fault does occur, these processors 
do not corrupt memory below the stack pointer. This implementation difference, however, does not constitute a 
compatibility problem, as only values at or above the stack pointer are considered to be valid. Other operations that 
encounter faults may also corrupt memory below the stack pointer and this behavior may vary on different imple-
mentations.

22.31.4 Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate

If a call or interrupt is made from a 32-bit stack environment through a 16-bit gate, only 16 bits of the old ESP can 
be pushed onto the stack. On the subsequent RET/IRET, the 16-bit ESP is popped but the full 32-bit ESP is updated 
since control is being resumed in a 32-bit stack environment. The Intel486 processor writes the SS selector into the 
upper 16 bits of ESP. The P6 family and Pentium processors write zeros into the upper 16 bits.     

22.32 MIXING 16- AND 32-BIT SEGMENTS

The features of the 16-bit Intel 286 processor are an object-code compatible subset of those of the 32-bit IA-32 
processors. The D (default operation size) flag in segment descriptors indicates whether the processor treats a 
code or data segment as a 16-bit or 32-bit segment; the B (default stack size) flag in segment descriptors indicates 
whether the processor treats a stack segment as a 16-bit or 32-bit segment.

The segment descriptors used by the Intel 286 processor are supported by the 32-bit IA-32 processors if the Intel-
reserved word (highest word) of the descriptor is clear. On the 32-bit IA-32 processors, this word includes the 
upper bits of the base address and the segment limit.

The segment descriptors for data segments, code segments, local descriptor tables (there are no descriptors for 
global descriptor tables), and task gates are the same for the 16- and 32-bit processors. Other 16-bit descriptors 
(TSS segment, call gate, interrupt gate, and trap gate) are supported by the 32-bit processors. 

The 32-bit processors also have descriptors for TSS segments, call gates, interrupt gates, and trap gates that 
support the 32-bit architecture. Both kinds of descriptors can be used in the same system.

For those segment descriptors common to both 16- and 32-bit processors, clear bits in the reserved word cause the 
32-bit processors to interpret these descriptors exactly as an Intel 286 processor does, that is:
• Base Address — The upper 8 bits of the 32-bit base address are clear, which limits base addresses to 24 bits.
• Limit — The upper 4 bits of the limit field are clear, restricting the value of the limit field to 64 KBytes.
• Granularity bit — The G (granularity) flag is clear, indicating the value of the 16-bit limit is interpreted in units 

of 1 byte.
• Big bit — In a data-segment descriptor, the B flag is clear in the segment descriptor used by the 32-bit 

processors, indicating the segment is no larger than 64 KBytes.
• Default bit — In a code-segment descriptor, the D flag is clear, indicating 16-bit addressing and operands are 

the default. In a stack-segment descriptor, the D flag is clear, indicating use of the SP register (instead of the 
ESP register) and a 64-KByte maximum segment limit.

For information on mixing 16- and 32-bit code in applications, see Chapter 21, “Mixing 16-Bit and 32-Bit Code.”

22.33 SEGMENT AND ADDRESS WRAPAROUND

This section discusses differences in segment and address wraparound between the P6 family, Pentium, Intel486, 
Intel386, Intel 286, and 8086 processors.
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22.33.1 Segment Wraparound

On the 8086 processor, an attempt to access a memory operand that crosses offset 65,535 or 0FFFFH or offset 0 
(for example, moving a word to offset 65,535 or pushing a word when the stack pointer is set to 1) causes the 
offset to wrap around modulo 65,536 or 010000H. With the Intel 286 processor, any base and offset combination 
that addresses beyond 16 MBytes wraps around to the 1 MByte of the address space. The P6 family, Pentium, 
Intel486, and Intel386 processors in real-address mode generate an exception in these cases: 
• A general-protection exception (#GP) if the segment is a data segment (that is, if the CS, DS, ES, FS, or GS 

register is being used to address the segment).
• A stack-fault exception (#SS) if the segment is a stack segment (that is, if the SS register is being used). 

An exception to this behavior occurs when a stack access is data aligned, and the stack pointer is pointing to the 
last aligned piece of data that size at the top of the stack (ESP is FFFFFFFCH). When this data is popped, no 
segment limit violation occurs and the stack pointer will wrap around to 0. 

The address space of the P6 family, Pentium, and Intel486 processors may wraparound at 1 MByte in real-address 
mode. An external A20M# pin forces wraparound if enabled. On Intel 8086 processors, it is possible to specify 
addresses greater than 1 MByte. For example, with a selector value FFFFH and an offset of FFFFH, the effective 
address would be 10FFEFH (1 MByte plus 65519 bytes). The 8086 processor, which can form addresses up to 20 
bits long, truncates the uppermost bit, which “wraps” this address to FFEFH. However, the P6 family, Pentium, and 
Intel486 processors do not truncate this bit if A20M# is not enabled. 

If a stack operation wraps around the address limit, shutdown occurs. (The 8086 processor does not have a shut-
down mode or a limit.) 

The behavior when executing near the limit of a 4-GByte selector (limit=0xFFFFFFFF) is different between the 
Pentium Pro and the Pentium 4 family of processors. On the Pentium Pro, instructions which cross the limit -- for 
example, a two byte instruction such as INC EAX that is encoded as 0xFF 0xC0 starting exactly at the limit faults 
for a segment violation (a one byte instruction at 0xFFFFFFFF does not cause an exception). Using the Pentium 4 
microprocessor family, neither of these situations causes a fault.

Segment wraparound and the functionality of A20M# is used primarily by older operating systems and not used by 
modern operating systems. On newer Intel 64 processors, A20M# may be absent. 

22.34 STORE BUFFERS AND MEMORY ORDERING

The Pentium 4, Intel Xeon, and P6 family processors provide a store buffer for temporary storage of writes (stores) 
to memory (see Section 11.10, “Store Buffer”). Writes stored in the store buffer(s) are always written to memory 
in program order, with the exception of “fast string” store operations (see Section 8.2.4, “Fast-String Operation and 
Out-of-Order Stores”).

The Pentium processor has two store buffers, one corresponding to each of the pipelines. Writes in these buffers 
are always written to memory in the order they were generated by the processor core.

It should be noted that only memory writes are buffered and I/O writes are not. The Pentium 4, Intel Xeon, P6 
family, Pentium, and Intel486 processors do not synchronize the completion of memory writes on the bus and 
instruction execution after a write. An I/O, locked, or serializing instruction needs to be executed to synchronize 
writes with the next instruction (see Section 8.3, “Serializing Instructions”).

The Pentium 4, Intel Xeon, and P6 family processors use processor ordering to maintain consistency in the order 
that data is read (loaded) and written (stored) in a program and the order the processor actually carries out the 
reads and writes. With this type of ordering, reads can be carried out speculatively and in any order, reads can pass 
buffered writes, and writes to memory are always carried out in program order. (See Section 8.2, “Memory 
Ordering,” for more information about processor ordering.) The Pentium III processor introduced a new instruction 
to serialize writes and make them globally visible. Memory ordering issues can arise between a producer and a 
consumer of data. The SFENCE instruction provides a performance-efficient way of ensuring ordering between 
routines that produce weakly-ordered results and routines that consume this data.

No re-ordering of reads occurs on the Pentium processor, except under the condition noted in Section 8.2.1, 
“Memory Ordering in the Intel® Pentium® and Intel486™ Processors,” and in the following paragraph describing 
the Intel486 processor. 
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Specifically, the store buffers are flushed before the IN instruction is executed. No reads (as a result of cache miss) 
are reordered around previously generated writes sitting in the store buffers. The implication of this is that the 
store buffers will be flushed or emptied before a subsequent bus cycle is run on the external bus.

On both the Intel486 and Pentium processors, under certain conditions, a memory read will go onto the external 
bus before the pending memory writes in the buffer even though the writes occurred earlier in the program execu-
tion. A memory read will only be reordered in front of all writes pending in the buffers if all writes pending in the 
buffers are cache hits and the read is a cache miss. Under these conditions, the Intel486 and Pentium processors 
will not read from an external memory location that needs to be updated by one of the pending writes. 

During a locked bus cycle, the Intel486 processor will always access external memory, it will never look for the 
location in the on-chip cache. All data pending in the Intel486 processor's store buffers will be written to memory 
before a locked cycle is allowed to proceed to the external bus. Thus, the locked bus cycle can be used for elimi-
nating the possibility of reordering read cycles on the Intel486 processor. The Pentium processor does check its 
cache on a read-modify-write access and, if the cache line has been modified, writes the contents back to memory 
before locking the bus. The P6 family processors write to their cache on a read-modify-write operation (if the 
access does not split across a cache line) and does not write back to system memory. If the access does split across 
a cache line, it locks the bus and accesses system memory.

I/O reads are never reordered in front of buffered memory writes on an IA-32 processor. This ensures an update of 
all memory locations before reading the status from an I/O device.

22.35 BUS LOCKING

The Intel 286 processor performs the bus locking differently than the Intel P6 family, Pentium, Intel486, and 
Intel386 processors. Programs that use forms of memory locking specific to the Intel 286 processor may not run 
properly when run on later processors.

A locked instruction is guaranteed to lock only the area of memory defined by the destination operand, but may 
lock a larger memory area. For example, typical 8086 and Intel 286 configurations lock the entire physical memory 
space. Programmers should not depend on this.

On the Intel 286 processor, the LOCK prefix is sensitive to IOPL. If the CPL is greater than the IOPL, a general-
protection exception (#GP) is generated. On the Intel386 DX, Intel486, and Pentium, and P6 family processors, no 
check against IOPL is performed.

The Pentium processor automatically asserts the LOCK# signal when acknowledging external interrupts. After 
signaling an interrupt request, an external interrupt controller may use the data bus to send the interrupt vector to 
the processor. After receiving the interrupt request signal, the processor asserts LOCK# to insure that no other 
data appears on the data bus until the interrupt vector is received. This bus locking does not occur on the P6 family 
processors.

22.36 BUS HOLD

Unlike the 8086 and Intel 286 processors, but like the Intel386 and Intel486 processors, the P6 family and Pentium 
processors respond to requests for control of the bus from other potential bus masters, such as DMA controllers, 
between transfers of parts of an unaligned operand, such as two words which form a doubleword. Unlike the 
Intel386 processor, the P6 family, Pentium and Intel486 processors respond to bus hold during reset initialization.

22.37 MODEL-SPECIFIC EXTENSIONS TO THE IA-32

Certain extensions to the IA-32 are specific to a processor or family of IA-32 processors and may not be imple-
mented or implemented in the same way in future processors. The following sections describe these model-specific 
extensions. The CPUID instruction indicates the availability of some of the model-specific features.
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22.37.1 Model-Specific Registers

The Pentium processor introduced a set of model-specific registers (MSRs) for use in controlling hardware func-
tions and performance monitoring. To access these MSRs, two new instructions were added to the IA-32 architec-
ture: read MSR (RDMSR) and write MSR (WRMSR). The MSRs in the Pentium processor are not guaranteed to be 
duplicated or provided in the next generation IA-32 processors.

The P6 family processors greatly increased the number of MSRs available to software. See Chapter 35, “Model-
Specific Registers (MSRs),” for a complete list of the available MSRs. The new registers control the debug exten-
sions, the performance counters, the machine-check exception capability, the machine-check architecture, and the 
MTRRs. These registers are accessible using the RDMSR and WRMSR instructions. Specific information on some of 
these new MSRs is provided in the following sections. As with the Pentium processor MSR, the P6 family processor 
MSRs are not guaranteed to be duplicated or provided in the next generation IA-32 processors.

22.37.2 RDMSR and WRMSR Instructions

The RDMSR (read model-specific register) and WRMSR (write model-specific register) instructions recognize a 
much larger number of model-specific registers in the P6 family processors. (See “RDMSR—Read from Model 
Specific Register” and “WRMSR—Write to Model Specific Register” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volumes 2A, 2B & 2C for more information.)

22.37.3 Memory Type Range Registers

Memory type range registers (MTRRs) are a new feature introduced into the IA-32 in the Pentium Pro processor. 
MTRRs allow the processor to optimize memory operations for different types of memory, such as RAM, ROM, 
frame buffer memory, and memory-mapped I/O.

MTRRs are MSRs that contain an internal map of how physical address ranges are mapped to various types of 
memory. The processor uses this internal memory map to determine the cacheability of various physical memory 
locations and the optimal method of accessing memory locations. For example, if a memory location is specified in 
an MTRR as write-through memory, the processor handles accesses to this location as follows. It reads data from 
that location in lines and caches the read data or maps all writes to that location to the bus and updates the cache 
to maintain cache coherency. In mapping the physical address space with MTRRs, the processor recognizes five 
types of memory: uncacheable (UC), uncacheable, speculatable, write-combining (WC), write-through (WT), 
write-protected (WP), and writeback (WB).

Earlier IA-32 processors (such as the Intel486 and Pentium processors) used the KEN# (cache enable) pin and 
external logic to maintain an external memory map and signal cacheable accesses to the processor. The MTRR 
mechanism simplifies hardware designs by eliminating the KEN# pin and the external logic required to drive it.

See Chapter 9, “Processor Management and Initialization,” and Chapter 35, “Model-Specific Registers (MSRs),” for 
more information on the MTRRs.

22.37.4 Machine-Check Exception and Architecture

The Pentium processor introduced a new exception called the machine-check exception (#MC, interrupt 18). This 
exception is used to detect hardware-related errors, such as a parity error on a read cycle. 

The P6 family processors extend the types of errors that can be detected and that generate a machine-check 
exception. It also provides a new machine-check architecture for recording information about a machine-check 
error and provides extended recovery capability.

The machine-check architecture provides several banks of reporting registers for recording machine-check errors. 
Each bank of registers is associated with a specific hardware unit in the processor. The primary focus of the 
machine checks is on bus and interconnect operations; however, checks are also made of translation lookaside 
buffer (TLB) and cache operations.

The machine-check architecture can correct some errors automatically and allow for reliable restart of instruction 
execution. It also collects sufficient information for software to use in correcting other machine errors not corrected 
by hardware.
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See Chapter 15, “Machine-Check Architecture,” for more information on the machine-check exception and the 
machine-check architecture.

22.37.5 Performance-Monitoring Counters

The P6 family and Pentium processors provide two performance-monitoring counters for use in monitoring internal 
hardware operations. The number of performance monitoring counters and associated programming interfaces 
may be implementation specific for Pentium 4 processors, Pentium M processors. Later processors may have 
implemented these as part of an architectural performance monitoring feature. The architectural and non-architec-
tural performance monitoring interfaces for different processor families are described in Chapter 18, “Performance 
Monitoring,”. Chapter 19, “Performance Monitoring Events.” lists all the events that can be counted for architectural 
performance monitoring events and non-architectural events. The counters are set up, started, and stopped using 
two MSRs and the RDMSR and WRMSR instructions. For the P6 family processors, the current count for a particular 
counter can be read using the new RDPMC instruction.

The performance-monitoring counters are useful for debugging programs, optimizing code, diagnosing system fail-
ures, or refining hardware designs. See Chapter 18, “Performance Monitoring,” for more information on these 
counters.

22.38 TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS

When porting 16-bit programs to run on 32-bit IA-32 processors, there are two approaches to consider:
• Porting an entire 16-bit software system to a 32-bit processor, complete with the old operating system, loader, 

and system builder. Here, all tasks will have 16-bit TSSs. The 32-bit processor is being used as if it were a faster 
version of the 16-bit processor.

• Porting selected 16-bit applications to run in a 32-bit processor environment with a 32-bit operating system, 
loader, and system builder. Here, the TSSs used to represent 286 tasks should be changed to 32-bit TSSs. It is 
possible to mix 16 and 32-bit TSSs, but the benefits are small and the problems are great. All tasks in a 32-bit 
software system should have 32-bit TSSs. It is not necessary to change the 16-bit object modules themselves; 
TSSs are usually constructed by the operating system, by the loader, or by the system builder. See Chapter 21, 
“Mixing 16-Bit and 32-Bit Code,” for more detailed information about mixing 16-bit and 32-bit code.

Because the 32-bit processors use the contents of the reserved word of 16-bit segment descriptors, 16-bit 
programs that place values in this word may not run correctly on the 32-bit processors.
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CHAPTER 23
INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

23.1 OVERVIEW

This chapter describes the basics of virtual machine architecture and an overview of the virtual-machine extensions 
(VMX) that support virtualization of processor hardware for multiple software environments.

Information about VMX instructions is provided in Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2B. Other aspects of VMX and system programming considerations are described in chapters of Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3B.

23.2 VIRTUAL MACHINE ARCHITECTURE

Virtual-machine extensions define processor-level support for virtual machines on IA-32 processors. Two principal 
classes of software are supported:
• Virtual-machine monitors (VMM) — A VMM acts as a host and has full control of the processor(s) and other 

platform hardware. A VMM presents guest software (see next paragraph) with an abstraction of a virtual 
processor and allows it to execute directly on a logical processor. A VMM is able to retain selective control of 
processor resources, physical memory, interrupt management, and I/O.

• Guest software — Each virtual machine (VM) is a guest software environment that supports a stack consisting 
of operating system (OS) and application software. Each operates independently of other virtual machines and 
uses on the same interface to processor(s), memory, storage, graphics, and I/O provided by a physical 
platform. The software stack acts as if it were running on a platform with no VMM. Software executing in a 
virtual machine must operate with reduced privilege so that the VMM can retain control of platform resources.

23.3 INTRODUCTION TO VMX OPERATION

Processor support for virtualization is provided by a form of processor operation called VMX operation. There are 
two kinds of VMX operation: VMX root operation and VMX non-root operation. In general, a VMM will run in VMX 
root operation and guest software will run in VMX non-root operation. Transitions between VMX root operation and 
VMX non-root operation are called VMX transitions. There are two kinds of VMX transitions. Transitions into VMX 
non-root operation are called VM entries. Transitions from VMX non-root operation to VMX root operation are called 
VM exits.

Processor behavior in VMX root operation is very much as it is outside VMX operation. The principal differences are 
that a set of new instructions (the VMX instructions) is available and that the values that can be loaded into certain 
control registers are limited (see Section 23.8). 

Processor behavior in VMX non-root operation is restricted and modified to facilitate virtualization. Instead of their 
ordinary operation, certain instructions (including the new VMCALL instruction) and events cause VM exits to the 
VMM. Because these VM exits replace ordinary behavior, the functionality of software in VMX non-root operation is 
limited. It is this limitation that allows the VMM to retain control of processor resources.

There is no software-visible bit whose setting indicates whether a logical processor is in VMX non-root operation. 
This fact may allow a VMM to prevent guest software from determining that it is running in a virtual machine. 

Because VMX operation places restrictions even on software running with current privilege level (CPL) 0, guest 
software can run at the privilege level for which it was originally designed. This capability may simplify the devel-
opment of a VMM.
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23.4 LIFE CYCLE OF VMM SOFTWARE

Figure 23-1 illustrates the life cycle of a VMM and its guest software as well as the interactions between them. The 
following items summarize that life cycle:
• Software enters VMX operation by executing a VMXON instruction.
• Using VM entries, a VMM can then enter guests into virtual machines (one at a time). The VMM effects a 

VM entry using instructions VMLAUNCH and VMRESUME; it regains control using VM exits. 
• VM exits transfer control to an entry point specified by the VMM. The VMM can take action appropriate to the 

cause of the VM exit and can then return to the virtual machine using a VM entry.
• Eventually, the VMM may decide to shut itself down and leave VMX operation. It does so by executing the 

VMXOFF instruction.

23.5 VIRTUAL-MACHINE CONTROL STRUCTURE

VMX non-root operation and VMX transitions are controlled by a data structure called a virtual-machine control 
structure (VMCS).

Access to the VMCS is managed through a component of processor state called the VMCS pointer (one per logical 
processor). The value of the VMCS pointer is the 64-bit address of the VMCS. The VMCS pointer is read and written 
using the instructions VMPTRST and VMPTRLD. The VMM configures a VMCS using the VMREAD, VMWRITE, and 
VMCLEAR instructions.

A VMM could use a different VMCS for each virtual machine that it supports. For a virtual machine with multiple 
logical processors (virtual processors), the VMM could use a different VMCS for each virtual processor.

23.6 DISCOVERING SUPPORT FOR VMX

Before system software enters into VMX operation, it must discover the presence of VMX support in the processor. 
System software can determine whether a processor supports VMX operation using CPUID. If 
CPUID.1:ECX.VMX[bit 5] = 1, then VMX operation is supported. See Chapter 3, “Instruction Set Reference, A-M” of 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

The VMX architecture is designed to be extensible so that future processors in VMX operation can support addi-
tional features not present in first-generation implementations of the VMX architecture. The availability of exten-
sible VMX features is reported to software using a set of VMX capability MSRs (see Appendix A, “VMX Capability 
Reporting Facility”).

Figure 23-1.  Interaction of a Virtual-Machine Monitor and Guests
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23.7 ENABLING AND ENTERING VMX OPERATION

Before system software can enter VMX operation, it enables VMX by setting CR4.VMXE[bit 13] = 1. VMX operation 
is then entered by executing the VMXON instruction. VMXON causes an invalid-opcode exception (#UD) if executed 
with CR4.VMXE = 0. Once in VMX operation, it is not possible to clear CR4.VMXE (see Section 23.8). System soft-
ware leaves VMX operation by executing the VMXOFF instruction. CR4.VMXE can be cleared outside of VMX opera-
tion after executing of VMXOFF.

VMXON is also controlled by the IA32_FEATURE_CONTROL MSR (MSR address 3AH). This MSR is cleared to zero 
when a logical processor is reset. The relevant bits of the MSR are:
• Bit 0 is the lock bit. If this bit is clear, VMXON causes a general-protection exception. If the lock bit is set, 

WRMSR to this MSR causes a general-protection exception; the MSR cannot be modified until a power-up reset 
condition. System BIOS can use this bit to provide a setup option for BIOS to disable support for VMX. To 
enable VMX support in a platform, BIOS must set bit 1, bit 2, or both (see below), as well as the lock bit.

• Bit 1 enables VMXON in SMX operation. If this bit is clear, execution of VMXON in SMX operation causes a 
general-protection exception. Attempts to set this bit on logical processors that do not support both VMX 
operation (see Section 23.6) and SMX operation (see Chapter 6, “Safer Mode Extensions Reference,” in Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 2B) cause general-protection exceptions.

• Bit 2 enables VMXON outside SMX operation. If this bit is clear, execution of VMXON outside SMX 
operation causes a general-protection exception. Attempts to set this bit on logical processors that do not 
support VMX operation (see Section 23.6) cause general-protection exceptions.

NOTE

A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last 
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER] 
has not been executed or if GETSEC[SEXIT] was executed after the last execution of 
GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2B.

Before executing VMXON, software should allocate a naturally aligned 4-KByte region of memory that a logical 
processor may use to support VMX operation.1 This region is called the VMXON region. The address of the VMXON 
region (the VMXON pointer) is provided in an operand to VMXON. Section 24.11.5, “VMXON Region,” details how 
software should initialize and access the VMXON region.

23.8 RESTRICTIONS ON VMX OPERATION

VMX operation places restrictions on processor operation. These are detailed below:
• In VMX operation, processors may fix certain bits in CR0 and CR4 to specific values and not support other 

values. VMXON fails if any of these bits contains an unsupported value (see “VMXON—Enter VMX Operation” in 
Chapter 30). Any attempt to set one of these bits to an unsupported value while in VMX operation (including 
VMX root operation) using any of the CLTS, LMSW, or MOV CR instructions causes a general-protection 
exception. VM entry or VM exit cannot set any of these bits to an unsupported value.2

NOTES

The first processors to support VMX operation require that the following bits be 1 in VMX operation: 
CR0.PE, CR0.NE, CR0.PG, and CR4.VMXE. The restrictions on CR0.PE and CR0.PG imply that VMX 
operation is supported only in paged protected mode (including IA-32e mode). Therefore, guest 
software cannot be run in unpaged protected mode or in real-address mode. See Section 31.2, 

1. Future processors may require that a different amount of memory be reserved. If so, this fact is reported to software using the 
VMX capability-reporting mechanism.

2. Software should consult the VMX capability MSRs IA32_VMX_CR0_FIXED0 and IA32_VMX_CR0_FIXED1 to determine how bits in 
CR0 are set. (see Appendix A.7). For CR4, software should consult the VMX capability MSRs IA32_VMX_CR4_FIXED0 and 
IA32_VMX_CR4_FIXED1 (see Appendix A.8).
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“Supporting Processor Operating Modes in Guest Environments,” for a discussion of how a VMM 
might support guest software that expects to run in unpaged protected mode or in real-address 
mode.
Later processors support a VM-execution control called “unrestricted guest” (see Section 24.6.2). 
If this control is 1, CR0.PE and CR0.PG may be 0 in VMX non-root operation (even if the capability 
MSR IA32_VMX_CR0_FIXED0 reports otherwise).1 Such processors allow guest software to run in 
unpaged protected mode or in real-address mode.

• VMXON fails if a logical processor is in A20M mode (see “VMXON—Enter VMX Operation” in Chapter 30). Once 
the processor is in VMX operation, A20M interrupts are blocked. Thus, it is impossible to be in A20M mode in 
VMX operation.

• The INIT signal is blocked whenever a logical processor is in VMX root operation. It is not blocked in VMX non-
root operation. Instead, INITs cause VM exits (see Section 25.2, “Other Causes of VM Exits”).

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VMX non-root operation functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.
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CHAPTER 24
VIRTUAL-MACHINE CONTROL STRUCTURES

24.1 OVERVIEW

A logical processor uses virtual-machine control data structures (VMCSs) while it is in VMX operation. These 
manage transitions into and out of VMX non-root operation (VM entries and VM exits) as well as processor behavior 
in VMX non-root operation. This structure is manipulated by the new instructions VMCLEAR, VMPTRLD, VMREAD, 
and VMWRITE.

A VMM can use a different VMCS for each virtual machine that it supports. For a virtual machine with multiple 
logical processors (virtual processors), the VMM can use a different VMCS for each virtual processor.

A logical processor associates a region in memory with each VMCS. This region is called the VMCS region.1 Soft-
ware references a specific VMCS using the 64-bit physical address of the region (a VMCS pointer). VMCS pointers 
must be aligned on a 4-KByte boundary (bits 11:0 must be zero). These pointers must not set bits beyond the 
processor’s physical-address width.2,3

A logical processor may maintain a number of VMCSs that are active. The processor may optimize VMX operation 
by maintaining the state of an active VMCS in memory, on the processor, or both. At any given time, at most one 
of the active VMCSs is the current VMCS. (This document frequently uses the term “the VMCS” to refer to the 
current VMCS.) The VMLAUNCH, VMREAD, VMRESUME, and VMWRITE instructions operate only on the current 
VMCS.

The following items describe how a logical processor determines which VMCSs are active and which is current:
• The memory operand of the VMPTRLD instruction is the address of a VMCS. After execution of the instruction, 

that VMCS is both active and current on the logical processor. Any other VMCS that had been active remains so, 
but no other VMCS is current.

• The VMCS link pointer field in the current VMCS (see Section 24.4.2) is itself the address of a VMCS. If VM entry 
is performed successfully with the 1-setting of the “VMCS shadowing” VM-execution control, the VMCS 
referenced by the VMCS link pointer field becomes active on the logical processor. The identity of the current 
VMCS does not change.

• The memory operand of the VMCLEAR instruction is also the address of a VMCS. After execution of the 
instruction, that VMCS is neither active nor current on the logical processor. If the VMCS had been current on 
the logical processor, the logical processor no longer has a current VMCS.

The VMPTRST instruction stores the address of the logical processor’s current VMCS into a specified memory loca-
tion (it stores the value FFFFFFFF_FFFFFFFFH if there is no current VMCS).

The launch state of a VMCS determines which VM-entry instruction should be used with that VMCS: the 
VMLAUNCH instruction requires a VMCS whose launch state is “clear”; the VMRESUME instruction requires a VMCS 
whose launch state is “launched”. A logical processor maintains a VMCS’s launch state in the corresponding VMCS 
region. The following items describe how a logical processor manages the launch state of a VMCS:
• If the launch state of the current VMCS is “clear”, successful execution of the VMLAUNCH instruction changes 

the launch state to “launched”.
• The memory operand of the VMCLEAR instruction is the address of a VMCS. After execution of the instruction, 

the launch state of that VMCS is “clear”.
• There are no other ways to modify the launch state of a VMCS (it cannot be modified using VMWRITE) and there 

is no direct way to discover it (it cannot be read using VMREAD).

1. The amount of memory required for a VMCS region is at most 4 KBytes. The exact size is implementation specific and can be deter-
mined by consulting the VMX capability MSR IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix A.1).

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, these pointers must not set any bits in the range 63:32; see Appendix A.1.
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Figure 24-1 illustrates the different states of a VMCS. It uses “X” to refer to the VMCS and “Y” to refer to any other 
VMCS. Thus: “VMPTRLD X” always makes X current and active; “VMPTRLD Y” always makes X not current (because 
it makes Y current); VMLAUNCH makes the launch state of X “launched” if X was current and its launch state was 
“clear”; and VMCLEAR X always makes X inactive and not current and makes its launch state “clear”.

The figure does not illustrate operations that do not modify the VMCS state relative to these parameters (e.g., 
execution of VMPTRLD X when X is already current). Note that VMCLEAR X makes X “inactive, not current, and 
clear,” even if X’s current state is not defined (e.g., even if X has not yet been initialized). See Section 24.11.3.

Because a shadow VMCS (see Section 24.10) cannot be used for VM entry, the launch state of a shadow VMCS is 
not meaningful. Figure 24-1 does not illustrate all the ways in which a shadow VMCS may be made active.

24.2 FORMAT OF THE VMCS REGION

A VMCS region comprises up to 4-KBytes.1 The format of a VMCS region is given in Table 24-1.

The first 4 bytes of the VMCS region contain the VMCS revision identifier at bits 30:0.2 Processors that maintain 
VMCS data in different formats (see below) use different VMCS revision identifiers. These identifiers enable soft-

Figure 24-1.  States of VMCS X

Table 24-1.  Format of the VMCS Region

Byte Offset Contents

0 Bits 30:0: VMCS revision identifier

Bit 31: shadow-VMCS indicator (see Section 24.10)

4 VMX-abort indicator

8 VMCS data (implementation-specific format)

1. The exact size is implementation specific and can be determined by consulting the VMX capability MSR IA32_VMX_BASIC to deter-
mine the size of the VMCS region (see Appendix A.1).
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ware to avoid using a VMCS region formatted for one processor on a processor that uses a different format.1 Bit 31 
of this 4-byte region indicates whether the VMCS is a shadow VMCS (see Section 24.10).

Software should write the VMCS revision identifier to the VMCS region before using that region for a VMCS. The 
VMCS revision identifier is never written by the processor; VMPTRLD fails if its operand references a VMCS region 
whose VMCS revision identifier differs from that used by the processor. (VMPTRLD also fails if the shadow-VMCS 
indicator is 1 and the processor does not support the 1-setting of the “VMCS shadowing” VM-execution control; see 
Section 24.6.2) Software can discover the VMCS revision identifier that a processor uses by reading the VMX capa-
bility MSR IA32_VMX_BASIC (see Appendix A.1).

Software should clear or set the shadow-VMCS indicator depending on whether the VMCS is to be an ordinary 
VMCS or a shadow VMCS (see Section 24.10). VMPTRLD fails if the shadow-VMCS indicator is set and the processor 
does not support the 1-setting of the “VMCS shadowing” VM-execution control. Software can discover support for 
this setting by reading the VMX capability MSR IA32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3).

The next 4 bytes of the VMCS region are used for the VMX-abort indicator. The contents of these bits do not 
control processor operation in any way. A logical processor writes a non-zero value into these bits if a VMX abort 
occurs (see Section 27.7). Software may also write into this field.

The remainder of the VMCS region is used for VMCS data (those parts of the VMCS that control VMX non-root 
operation and the VMX transitions). The format of these data is implementation-specific. VMCS data are discussed 
in Section 24.3 through Section 24.9. To ensure proper behavior in VMX operation, software should maintain the 
VMCS region and related structures (enumerated in Section 24.11.4) in writeback cacheable memory. Future 
implementations may allow or require a different memory type2. Software should consult the VMX capability MSR 
IA32_VMX_BASIC (see Appendix A.1).

24.3 ORGANIZATION OF VMCS DATA

The VMCS data are organized into six logical groups:
• Guest-state area. Processor state is saved into the guest-state area on VM exits and loaded from there on 

VM entries.
• Host-state area. Processor state is loaded from the host-state area on VM exits.
• VM-execution control fields. These fields control processor behavior in VMX non-root operation. They 

determine in part the causes of VM exits.
• VM-exit control fields. These fields control VM exits.
• VM-entry control fields. These fields control VM entries.
• VM-exit information fields. These fields receive information on VM exits and describe the cause and the 

nature of VM exits. On some processors, these fields are read-only.3

The VM-execution control fields, the VM-exit control fields, and the VM-entry control fields are sometimes referred 
to collectively as VMX controls.

2. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field. For all processors produced prior to this 
change, bit 31 of the VMCS revision identifier was 0.

1. Logical processors that use the same VMCS revision identifier use the same size for VMCS regions.

2. Alternatively, software may map any of these regions or structures with the UC memory type. Doing so is strongly discouraged 
unless necessary as it will cause the performance of transitions using those structures to suffer significantly. In addition, the pro-
cessor will continue to use the memory type reported in the VMX capability MSR IA32_VMX_BASIC with exceptions noted in Appen-
dix A.1.

3.  Software can discover whether these fields can be written by reading the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).
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24.4 GUEST-STATE AREA

This section describes fields contained in the guest-state area of the VMCS. As noted earlier, processor state is 
loaded from these fields on every VM entry (see Section 26.3.2) and stored into these fields on every VM exit (see 
Section 27.3).

24.4.1 Guest Register State

The following fields in the guest-state area correspond to processor registers:
• Control registers CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel 64 archi-

tecture).
• Debug register DR7 (64 bits; 32 bits on processors that do not support Intel 64 architecture).
• RSP, RIP, and RFLAGS (64 bits each; 32 bits on processors that do not support Intel 64 architecture).1

• The following fields for each of the registers CS, SS, DS, ES, FS, GS, LDTR, and TR:

— Selector (16 bits).

— Base address (64 bits; 32 bits on processors that do not support Intel 64 architecture). The base-address 
fields for CS, SS, DS, and ES have only 32 architecturally-defined bits; nevertheless, the corresponding 
VMCS fields have 64 bits on processors that support Intel 64 architecture.

— Segment limit (32 bits). The limit field is always a measure in bytes.

— Access rights (32 bits). The format of this field is given in Table 24-2 and detailed as follows:

• The low 16 bits correspond to bits 23:8 of the upper 32 bits of a 64-bit segment descriptor. While bits 
19:16 of code-segment and data-segment descriptors correspond to the upper 4 bits of the segment 
limit, the corresponding bits (bits 11:8) are reserved in this VMCS field.

• Bit 16 indicates an unusable segment. Attempts to use such a segment fault except in 64-bit mode. 
In general, a segment register is unusable if it has been loaded with a null selector.2

• Bits 31:17 are reserved.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit 
forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32 
bits of the indicated register.

2. There are a few exceptions to this statement. For example, a segment with a non-null selector may be unusable following a task 
switch that fails after its commit point; see “Interrupt 10—Invalid TSS Exception (#TS)” in Section 6.14, “Exception and Interrupt 
Handling in 64-bit Mode,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In contrast, the TR reg-
ister is usable after processor reset despite having a null selector; see Table 10-1 in the Intel® 64 and IA-32 Architectures Software 

Developer’s Manual, Volume 3A.

Table 24-2.  Format of Access Rights 

Bit Position(s) Field

3:0 Segment type

4 S — Descriptor type (0 = system; 1 = code or data)

6:5 DPL — Descriptor privilege level

7 P — Segment present

11:8 Reserved

12 AVL — Available for use by system software
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The base address, segment limit, and access rights compose the “hidden” part (or “descriptor cache”) of each 
segment register. These data are included in the VMCS because it is possible for a segment register’s descriptor 
cache to be inconsistent with the segment descriptor in memory (in the GDT or the LDT) referenced by the 
segment register’s selector.
The value of the DPL field for SS is always equal to the logical processor’s current privilege level (CPL).1

• The following fields for each of the registers GDTR and IDTR:

— Base address (64 bits; 32 bits on processors that do not support Intel 64 architecture).

— Limit (32 bits). The limit fields contain 32 bits even though these fields are specified as only 16 bits in the 
architecture.

• The following MSRs:

— IA32_DEBUGCTL (64 bits)

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on processors that do not support Intel 64 
architecture)

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on processors that support the 1-setting 
of the “load IA32_PERF_GLOBAL_CTRL” VM-entry control.

— IA32_PAT (64 bits). This field is supported only on processors that support either the 1-setting of the “load 
IA32_PAT” VM-entry control or that of the “save IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on processors that support either the 1-setting of the “load 
IA32_EFER” VM-entry control or that of the “save IA32_EFER” VM-exit control.

• The register SMBASE (32 bits). This register contains the base address of the logical processor’s SMRAM image.

24.4.2 Guest Non-Register State

In addition to the register state described in Section 24.4.1, the guest-state area includes the following fields that 
characterize guest state but which do not correspond to processor registers:
• Activity state (32 bits). This field identifies the logical processor’s activity state. When a logical processor is 

executing instructions normally, it is in the active state. Execution of certain instructions and the occurrence 
of certain events may cause a logical processor to transition to an inactive state in which it ceases to execute 
instructions.
The following activity states are defined:2

— 0: Active. The logical processor is executing instructions normally.

13 Reserved (except for CS)
L — 64-bit mode active (for CS only)

14 D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

15 G — Granularity

16 Segment unusable (0 = usable; 1 = unusable)

31:17 Reserved

1. In protected mode, CPL is also associated with the RPL field in the CS selector. However, the RPL fields are not meaningful in real-
address mode or in virtual-8086 mode.

2. Execution of the MWAIT instruction may put a logical processor into an inactive state. However, this VMCS field never reflects this 
state. See Section 27.1.

Table 24-2.  Format of Access Rights  (Contd.)

Bit Position(s) Field
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— 1: HLT. The logical processor is inactive because it executed the HLT instruction.

— 2: Shutdown. The logical processor is inactive because it incurred a triple fault1 or some other serious 
error.

— 3: Wait-for-SIPI. The logical processor is inactive because it is waiting for a startup-IPI (SIPI).
Future processors may include support for other activity states. Software should read the VMX capability MSR 
IA32_VMX_MISC (see Appendix A.6) to determine what activity states are supported.

• Interruptibility state (32 bits). The IA-32 architecture includes features that permit certain events to be 
blocked for a period of time. This field contains information about such blocking. Details and the format of this 
field are given in Table 24-3.

• Pending debug exceptions (64 bits; 32 bits on processors that do not support Intel 64 architecture). IA-32 
processors may recognize one or more debug exceptions without immediately delivering them.2 This field 
contains information about such exceptions. This field is described in Table 24-4.

1. A triple fault occurs when a logical processor encounters an exception while attempting to deliver a double fault.

Table 24-3.  Format of Interruptibility State

Bit 
Position(s)

Bit Name Notes

0 Blocking by STI See the “STI—Set Interrupt Flag” section in Chapter 4 of the Intel® 64 and IA-32 Architectures 

Software Developer’s Manual, Volume 2B.

Execution of STI with RFLAGS.IF = 0 blocks interrupts (and, optionally, other events) for one 
instruction after its execution. Setting this bit indicates that this blocking is in effect.

1 Blocking by 
MOV SS

See the “MOV—Move a Value from the Stack” from Chapter 3 of the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 2A, and “POP—Pop a Value from the 
Stack” from Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 2B, and Section 6.8.3 in the Intel® 64 and IA-32 Architectures Software Developer’s 

Manual, Volume 3A.

Execution of a MOV to SS or a POP to SS blocks interrupts for one instruction after its 
execution. In addition, certain debug exceptions are inhibited between a MOV to SS or a POP to 
SS and a subsequent instruction. Setting this bit indicates that the blocking of all these events 
is in effect. This document uses the term “blocking by MOV SS,” but it applies equally to POP SS.

2 Blocking by SMI See Section 34.2. System-management interrupts (SMIs) are disabled while the processor is in 
system-management mode (SMM). Setting this bit indicates that blocking of SMIs is in effect.

3 Blocking by NMI See Section 6.7.1 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 3A and Section 34.8.

Delivery of a non-maskable interrupt (NMI) or a system-management interrupt (SMI) blocks 
subsequent NMIs until the next execution of IRET. See Section 25.3 for how this behavior of 
IRET may change in VMX non-root operation. Setting this bit indicates that blocking of NMIs is 
in effect. Clearing this bit does not imply that NMIs are not (temporarily) blocked for other 
reasons.

If the “virtual NMIs” VM-execution control (see Section 24.6.1) is 1, this bit does not control the 
blocking of NMIs. Instead, it refers to “virtual-NMI blocking” (the fact that guest software is not 
ready for an NMI).

31:4 Reserved VM entry will fail if these bits are not 0. See Section 26.3.1.5.

2. For example, execution of a MOV to SS or a POP to SS may inhibit some debug exceptions for one instruction. See Section 6.8.3 of 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In addition, certain events incident to an instruction (for 
example, an INIT signal) may take priority over debug traps generated by that instruction. See Table 6-2 in the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3A.
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• VMCS link pointer (64 bits). This field is included for future expansion. Software should set this field to 
FFFFFFFF_FFFFFFFFH to avoid VM-entry failures (see Section 26.3.1.5).

• VMX-preemption timer value (32 bits). This field is supported only on processors that support the 1-setting 
of the “activate VMX-preemption timer” VM-execution control. This field contains the value that the VMX-
preemption timer will use following the next VM entry with that setting. See Section 25.5.1 and Section 26.6.4.

• Page-directory-pointer-table entries (PDPTEs; 64 bits each). These four (4) fields (PDPTE0, PDPTE1, 
PDPTE2, and PDPTE3) are supported only on processors that support the 1-setting of the “enable EPT” VM-
execution control. They correspond to the PDPTEs referenced by CR3 when PAE paging is in use (see Section 
4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). They are used only if 
the “enable EPT” VM-execution control is 1.

• Guest interrupt status (16 bits). This field is supported only on processors that support the 1-setting of the 
“virtual-interrupt delivery” VM-execution control. It characterizes part of the guest’s virtual-APIC state and 
does not correspond to any processor or APIC registers. It comprises two 8-bit subfields:

— Requesting virtual interrupt (RVI). This is the low byte of the guest interrupt status. The processor 
treats this value as the vector of the highest priority virtual interrupt that is requesting service. (The value 
0 implies that there is no such interrupt.)

— Servicing virtual interrupt (SVI). This is the high byte of the guest interrupt status. The processor 
treats this value as the vector of the highest priority virtual interrupt that is in service. (The value 0 implies 
that there is no such interrupt.)

See Chapter 29 for more information on the use of this field.

24.5 HOST-STATE AREA

This section describes fields contained in the host-state area of the VMCS. As noted earlier, processor state is 
loaded from these fields on every VM exit (see Section 27.5).

All fields in the host-state area correspond to processor registers:
• CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel 64 architecture).
• RSP and RIP (64 bits each; 32 bits on processors that do not support Intel 64 architecture).
• Selector fields (16 bits each) for the segment registers CS, SS, DS, ES, FS, GS, and TR. There is no field in the 

host-state area for the LDTR selector.
• Base-address fields for FS, GS, TR, GDTR, and IDTR (64 bits each; 32 bits on processors that do not support 

Intel 64 architecture).
• The following MSRs:

Table 24-4.  Format of Pending-Debug-Exceptions

Bit 
Position(s)

Bit Name Notes

3:0 B3 – B0 When set, each of these bits indicates that the corresponding breakpoint condition was met. 
Any of these bits may be set even if the corresponding enabling bit in DR7 is not set.

11:4 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5.

12 Enabled 
breakpoint

When set, this bit indicates that at least one data or I/O breakpoint was met and was enabled in 
DR7.

13 Reserved VM entry fails if this bit is not 0. See Section 26.3.1.5.

14 BS When set, this bit indicates that a debug exception would have been triggered by single-step 
execution mode.

63:15 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5. Bits 63:32 exist only on processors 
that support Intel 64 architecture.
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— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on processors that do not support Intel 64 
architecture).

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on processors that support the 1-setting of 
the “load IA32_PERF_GLOBAL_CTRL” VM-exit control.

— IA32_PAT (64 bits). This field is supported only on processors that support either the 1-setting of the “load 
IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on processors that support either the 1-setting of the “load 
IA32_EFER” VM-exit control.

In addition to the state identified here, some processor state components are loaded with fixed values on every 
VM exit; there are no fields corresponding to these components in the host-state area. See Section 27.5 for details 
of how state is loaded on VM exits.

24.6 VM-EXECUTION CONTROL FIELDS

The VM-execution control fields govern VMX non-root operation. These are described in Section 24.6.1 through 
Section 24.6.8.

24.6.1 Pin-Based VM-Execution Controls

The pin-based VM-execution controls constitute a 32-bit vector that governs the handling of asynchronous events 
(for example: interrupts).1 Table 24-5 lists the controls. See Chapter 27 for how these controls affect processor 
behavior in VMX non-root operation.

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs 
IA32_VMX_PINBASED_CTLS and IA32_VMX_TRUE_PINBASED_CTLS (see Appendix A.3.1) to determine how to set 
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 1, 2, and 4. The 
VMX capability MSR IA32_VMX_PINBASED_CTLS will always report that these bits must be 1. Logical processors 
that support the 0-settings of any of these bits will support the VMX capability MSR 

1. Some asynchronous events cause VM exits regardless of the settings of the pin-based VM-execution controls (see Section 25.2).

Table 24-5.  Definitions of Pin-Based VM-Execution Controls

Bit Position(s) Name Description

0 External-interrupt 
exiting

If this control is 1, external interrupts cause VM exits. Otherwise, they are delivered normally 
through the guest interrupt-descriptor table (IDT). If this control is 1, the value of RFLAGS.IF 
does not affect interrupt blocking.

3 NMI exiting If this control is 1, non-maskable interrupts (NMIs) cause VM exits. Otherwise, they are 
delivered normally using descriptor 2 of the IDT. This control also determines interactions 
between IRET and blocking by NMI (see Section 25.3).

5 Virtual NMIs If this control is 1, NMIs are never blocked and the “blocking by NMI” bit (bit 3) in the 
interruptibility-state field indicates “virtual-NMI blocking” (see Table 24-3). This control also 
interacts with the “NMI-window exiting” VM-execution control (see Section 24.6.2).

6 Activate VMX-
preemption timer

If this control is 1, the VMX-preemption timer counts down in VMX non-root operation; see 
Section 25.5.1. A VM exit occurs when the timer counts down to zero; see Section 25.2.

7 Process posted 
interrupts

If this control is 1, the processor treats interrupts with the posted-interrupt notification vector 
(see Section 24.6.8) specially, updating the virtual-APIC page with posted-interrupt requests 
(see Section 29.6).
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IA32_VMX_TRUE_PINBASED_CTLS MSR, and software should consult this MSR to discover support for the 0-
settings of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

24.6.2 Processor-Based VM-Execution Controls

The processor-based VM-execution controls constitute two 32-bit vectors that govern the handling of synchronous 
events, mainly those caused by the execution of specific instructions.1 These are the primary processor-based 
VM-execution controls and the secondary processor-based VM-execution controls.

Table 24-6 lists the primary processor-based VM-execution controls. See Chapter 27 for more details of how these 
controls affect processor behavior in VMX non-root operation.

1. Some instructions cause VM exits regardless of the settings of the processor-based VM-execution controls (see Section 25.1.2), as 
do task switches (see Section 25.2).

Table 24-6.  Definitions of Primary Processor-Based VM-Execution Controls

Bit Position(s) Name Description

2 Interrupt-window 
exiting

If this control is 1, a VM exit occurs at the beginning of any instruction if RFLAGS.IF = 1 and 
there are no other blocking of interrupts (see Section 24.4.2).

3 Use TSC offsetting This control determines whether executions of RDTSC, executions of RDTSCP, and executions 
of RDMSR that read from the IA32_TIME_STAMP_COUNTER MSR return a value modified by 
the TSC offset field (see Section 24.6.5 and Section 25.3).

7 HLT exiting This control determines whether executions of HLT cause VM exits.

9 INVLPG exiting This determines whether executions of INVLPG cause VM exits.

10 MWAIT exiting This control determines whether executions of MWAIT cause VM exits.

11 RDPMC exiting This control determines whether executions of RDPMC cause VM exits.

12 RDTSC exiting This control determines whether executions of RDTSC and RDTSCP cause VM exits.

15 CR3-load exiting In conjunction with the CR3-target controls (see Section 24.6.7), this control determines 
whether executions of MOV to CR3 cause VM exits. See Section 25.1.3.

The first processors to support the virtual-machine extensions supported only the 1-setting 
of this control.

16 CR3-store exiting This control determines whether executions of MOV from CR3 cause VM exits.

The first processors to support the virtual-machine extensions supported only the 1-setting 
of this control.

19 CR8-load exiting This control determines whether executions of MOV to CR8 cause VM exits.

20 CR8-store exiting This control determines whether executions of MOV from CR8 cause VM exits.

21 Use TPR shadow Setting this control to 1 enables TPR virtualization and other APIC-virtualization features. See 
Chapter 29.

22 NMI-window 
exiting

If this control is 1, a VM exit occurs at the beginning of any instruction if there is no virtual-
NMI blocking (see Section 24.4.2).

23 MOV-DR exiting This control determines whether executions of MOV DR cause VM exits.

24 Unconditional I/O 
exiting

This control determines whether executions of I/O instructions (IN, INS/INSB/INSW/INSD, OUT, 
and OUTS/OUTSB/OUTSW/OUTSD) cause VM exits.

25 Use I/O bitmaps This control determines whether I/O bitmaps are used to restrict executions of I/O instructions 
(see Section 24.6.4 and Section 25.1.3).

For this control, “0” means “do not use I/O bitmaps” and “1” means “use I/O bitmaps.” If the I/O 
bitmaps are used, the setting of the “unconditional I/O exiting” control is ignored.

27 Monitor trap flag If this control is 1, the monitor trap flag debugging feature is enabled. See Section 25.5.2.
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All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs 
IA32_VMX_PROCBASED_CTLS and IA32_VMX_TRUE_PROCBASED_CTLS (see Appendix A.3.2) to determine how 
to set reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 
26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 1, 4–6, 8, 13–
16, and 26. The VMX capability MSR IA32_VMX_PROCBASED_CTLS will always report that these bits must be 1. 
Logical processors that support the 0-settings of any of these bits will support the VMX capability MSR 
IA32_VMX_TRUE_PROCBASED_CTLS MSR, and software should consult this MSR to discover support for the 0-
settings of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

Bit 31 of the primary processor-based VM-execution controls determines whether the secondary processor-based 
VM-execution controls are used. If that bit is 0, VM entry and VMX non-root operation function as if all the 
secondary processor-based VM-execution controls were 0. Processors that support only the 0-setting of bit 31 of 
the primary processor-based VM-execution controls do not support the secondary processor-based VM-execution 
controls.

Table 24-7 lists the secondary processor-based VM-execution controls. See Chapter 27 for more details of how 
these controls affect processor behavior in VMX non-root operation.

28 Use MSR bitmaps This control determines whether MSR bitmaps are used to control execution of the RDMSR 
and WRMSR instructions (see Section 24.6.9 and Section 25.1.3).

For this control, “0” means “do not use MSR bitmaps” and “1” means “use MSR bitmaps.” If the 
MSR bitmaps are not used, all executions of the RDMSR and WRMSR instructions cause 
VM exits.

29 MONITOR exiting This control determines whether executions of MONITOR cause VM exits.

30 PAUSE exiting This control determines whether executions of PAUSE cause VM exits.

31 Activate secondary 
controls

This control determines whether the secondary processor-based VM-execution controls are 
used. If this control is 0, the logical processor operates as if all the secondary processor-based 
VM-execution controls were also 0.

Table 24-7.  Definitions of Secondary Processor-Based VM-Execution Controls

Bit Position(s) Name Description

0 Virtualize APIC 
accesses

If this control is 1, the logical processor treats specially accesses to the page with the APIC-
access address. See Section 29.4.

1 Enable EPT If this control is 1, extended page tables (EPT) are enabled. See Section 28.2.

2 Descriptor-table 
exiting

This control determines whether executions of LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, and 
STR cause VM exits.

3 Enable RDTSCP If this control is 0, any execution of RDTSCP causes an invalid-opcode exception (#UD).

4 Virtualize x2APIC 
mode

If this control is 1, the logical processor treats specially RDMSR and WRMSR to APIC MSRs (in 
the range 800H–8FFH). See Section 29.5.

5 Enable VPID If this control is 1, cached translations of linear addresses are associated with a virtual-
processor identifier (VPID). See Section 28.1.

6 WBINVD exiting This control determines whether executions of WBINVD cause VM exits.

7 Unrestricted guest This control determines whether guest software may run in unpaged protected mode or in real-
address mode.

8 APIC-register 
virtualization

If this control is 1, the logical processor virtualizes certain APIC accesses. See Section 29.4 and 
Section 29.5.

9 Virtual-interrupt 
delivery

This controls enables the evaluation and delivery of pending virtual interrupts as well as the 
emulation of writes to the APIC registers that control interrupt prioritization.

10 PAUSE-loop exiting This control determines whether a series of executions of PAUSE can cause a VM exit (see 
Section 24.6.13 and Section 25.1.3).

Table 24-6.  Definitions of Primary Processor-Based VM-Execution Controls (Contd.)

Bit Position(s) Name Description
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All other bits in this field are reserved to 0. Software should consult the VMX capability MSR 
IA32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3) to determine which bits may be set to 1. Failure to clear 
reserved bits causes subsequent VM entries to fail (see Section 26.2.1.1).

24.6.3 Exception Bitmap

The exception bitmap is a 32-bit field that contains one bit for each exception. When an exception occurs, its 
vector is used to select a bit in this field. If the bit is 1, the exception causes a VM exit. If the bit is 0, the exception 
is delivered normally through the IDT, using the descriptor corresponding to the exception’s vector.

Whether a page fault (exception with vector 14) causes a VM exit is determined by bit 14 in the exception bitmap 
as well as the error code produced by the page fault and two 32-bit fields in the VMCS (the page-fault error-code 
mask and page-fault error-code match). See Section 25.2 for details.

24.6.4 I/O-Bitmap Addresses

The VM-execution control fields include the 64-bit physical addresses of I/O bitmaps A and B (each of which are 
4 KBytes in size). I/O bitmap A contains one bit for each I/O port in the range 0000H through 7FFFH; I/O bitmap B 
contains bits for ports in the range 8000H through FFFFH.

A logical processor uses these bitmaps if and only if the “use I/O bitmaps” control is 1. If the bitmaps are used, 
execution of an I/O instruction causes a VM exit if any bit in the I/O bitmaps corresponding to a port it accesses is 
1. See Section 25.1.3 for details. If the bitmaps are used, their addresses must be 4-KByte aligned.

24.6.5 Time-Stamp Counter Offset

VM-execution control fields include a 64-bit TSC-offset field. If the “RDTSC exiting” control is 0 and the “use TSC 
offsetting” control is 1, this field controls executions of the RDTSC and RDTSCP instructions. It also controls execu-
tions of the RDMSR instruction that read from the IA32_TIME_STAMP_COUNTER MSR. For all of these, the signed 
value of the TSC offset is combined with the contents of the time-stamp counter (using signed addition) and the 
sum is reported to guest software in EDX:EAX. See Chapter 27 for a detailed treatment of the behavior of RDTSC, 
RDTSCP, and RDMSR in VMX non-root operation.

24.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4

VM-execution control fields include guest/host masks and read shadows for the CR0 and CR4 registers. These 
fields control executions of instructions that access those registers (including CLTS, LMSW, MOV CR, and SMSW). 
They are 64 bits on processors that support Intel 64 architecture and 32 bits on processors that do not.

In general, bits set to 1 in a guest/host mask correspond to bits “owned” by the host:

11 RDRAND exiting This control determines whether executions of RDRAND cause VM exits.

12 Enable INVPCID If this control is 0, any execution of INVPCID causes a #UD.

13 Enable 
VM functions

Setting this control to 1 enables use of the VMFUNC instruction in VMX non-root operation. See 
Section 25.5.5.

14 VMCS shadowing If this control is 1, executions of VMREAD and VMWRITE in VMX non-root operation may access 
a shadow VMCS (instead of causing VM exits). See Section 24.10 and Section 30.3.

18 EPT-violation #VE If this control is 1, EPT violations may cause virtualization exceptions (#VE) instead of VM exits. 
See Section 25.5.6.

20 Enable 
XSAVES/XRSTORS

If this control is 0, any execution of XSAVES or XRSTORS causes a #UD.

Table 24-7.  Definitions of Secondary Processor-Based VM-Execution Controls (Contd.)

Bit Position(s) Name Description
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• Guest attempts to set them (using CLTS, LMSW, or MOV to CR) to values differing from the corresponding bits 
in the corresponding read shadow cause VM exits.

• Guest reads (using MOV from CR or SMSW) return values for these bits from the corresponding read shadow.

Bits cleared to 0 correspond to bits “owned” by the guest; guest attempts to modify them succeed and guest reads 
return values for these bits from the control register itself.

See Chapter 27 for details regarding how these fields affect VMX non-root operation.

24.6.7 CR3-Target Controls

The VM-execution control fields include a set of 4 CR3-target values and a CR3-target count. The CR3-target 
values each have 64 bits on processors that support Intel 64 architecture and 32 bits on processors that do not. The 
CR3-target count has 32 bits on all processors.

An execution of MOV to CR3 in VMX non-root operation does not cause a VM exit if its source operand matches one 
of these values. If the CR3-target count is n, only the first n CR3-target values are considered; if the CR3-target 
count is 0, MOV to CR3 always causes a VM exit

There are no limitations on the values that can be written for the CR3-target values. VM entry fails (see Section 
26.2) if the CR3-target count is greater than 4.

Future processors may support a different number of CR3-target values. Software should read the VMX capability 
MSR IA32_VMX_MISC (see Appendix A.6) to determine the number of values supported.

24.6.8 Controls for APIC Virtualization

There are three mechanisms by which software accesses registers of the logical processor’s local APIC:
• If the local APIC is in xAPIC mode, it can perform memory-mapped accesses to addresses in the 4-KByte page 

referenced by the physical address in the IA32_APIC_BASE MSR (see Section 10.4.4, “Local APIC Status and 
Location” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A and Intel® 64 
Architecture Processor Topology Enumeration).1

• If the local APIC is in x2APIC mode, it can accesses the local APIC’s registers using the RDMSR and WRMSR 
instructions (see Intel® 64 Architecture Processor Topology Enumeration).

• In 64-bit mode, it can access the local APIC’s task-priority register (TPR) using the MOV CR8 instruction.

There are five processor-based VM-execution controls (see Section 24.6.2) that control such accesses. There are 
“use TPR shadow”, “virtualize APIC accesses”, “virtualize x2APIC mode”, “virtual-interrupt delivery”, and “APIC-
register virtualization”. These controls interact with the following fields:
• APIC-access address (64 bits). This field contains the physical address of the 4-KByte APIC-access page. 

If the “virtualize APIC accesses” VM-execution control is 1, access to this page may cause VM exits or be 
virtualized by the processor. See Section 29.4.
The APIC-access address exists only on processors that support the 1-setting of the “virtualize APIC accesses” 
VM-execution control.

• Virtual-APIC address (64 bits). This field contains the physical address of the 4-KByte virtual-APIC page. 
The processor uses the virtual-APIC page to virtualize certain accesses to APIC registers and to manage virtual 
interrupts; see Chapter 29.
Depending on the setting of the controls indicated earlier, the virtual-APIC page may be accessed by the 
following operations:

— The MOV CR8 instructions (see Section 29.3).

— Accesses to the APIC-access page if, in addition, the “virtualize APIC accesses” VM-execution control is 1 
(see Section 29.4).

— The RDMSR and WRMSR instructions if, in addition, the value of ECX is in the range 800H–8FFH (indicating 
an APIC MSR) and the “virtualize x2APIC mode” VM-execution control is 1 (see Section 29.5).

1. If the local APIC does not support x2APIC mode, it is always in xAPIC mode.
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If the “use TPR shadow” VM-execution control is 1, VM entry ensures that the virtual-APIC address is 4-KByte 
aligned. The virtual-APIC address exists only on processors that support the 1-setting of the “use TPR shadow” 
VM-execution control.

• TPR threshold (32 bits). Bits 3:0 of this field determine the threshold below which bits 7:4 of VTPR (see 
Section 29.1.1) cannot fall. If the “virtual-interrupt delivery” VM-execution control is 0, a VM exit occurs after 
an operation (e.g., an execution of MOV to CR8) that reduces the value of those bits below the TPR threshold. 
See Section 29.1.2.
The TPR threshold exists only on processors that support the 1-setting of the “use TPR shadow” VM-execution 
control.

• EOI-exit bitmap (4 fields; 64 bits each). These fields are supported only on processors that support the 1-
setting of the “virtual-interrupt delivery” VM-execution control. They are used to determine which virtualized 
writes to the APIC’s EOI register cause VM exits:

— EOI_EXIT0 contains bits for vectors from 0 (bit 0) to 63 (bit 63).

— EOI_EXIT1 contains bits for vectors from 64 (bit 0) to 127 (bit 63).

— EOI_EXIT2 contains bits for vectors from 128 (bit 0) to 191 (bit 63).

— EOI_EXIT3 contains bits for vectors from 192 (bit 0) to 255 (bit 63).
See Section 29.1.4 for more information on the use of this field.

• Posted-interrupt notification vector (16 bits). This field is supported only on processors that support the 1-
setting of the “process posted interrupts” VM-execution control. Its low 8 bits contain the interrupt vector that 
is used to notify a logical processor that virtual interrupts have been posted. See Section 29.6 for more 
information on the use of this field.

• Posted-interrupt descriptor address (64 bits). This field is supported only on processors that support the 
1-setting of the “process posted interrupts” VM-execution control. It is the physical address of a 64-byte 
aligned posted interrupt descriptor. See Section 29.6 for more information on the use of this field.

24.6.9 MSR-Bitmap Address

On processors that support the 1-setting of the “use MSR bitmaps” VM-execution control, the VM-execution control 
fields include the 64-bit physical address of four contiguous MSR bitmaps, which are each 1-KByte in size. This 
field does not exist on processors that do not support the 1-setting of that control. The four bitmaps are:
• Read bitmap for low MSRs (located at the MSR-bitmap address). This contains one bit for each MSR address 

in the range 00000000H to 00001FFFH. The bit determines whether an execution of RDMSR applied to that 
MSR causes a VM exit.

• Read bitmap for high MSRs (located at the MSR-bitmap address plus 1024). This contains one bit for each 
MSR address in the range C0000000H toC0001FFFH. The bit determines whether an execution of RDMSR 
applied to that MSR causes a VM exit.

• Write bitmap for low MSRs (located at the MSR-bitmap address plus 2048). This contains one bit for each 
MSR address in the range 00000000H to 00001FFFH. The bit determines whether an execution of WRMSR 
applied to that MSR causes a VM exit.

• Write bitmap for high MSRs (located at the MSR-bitmap address plus 3072). This contains one bit for each 
MSR address in the range C0000000H toC0001FFFH. The bit determines whether an execution of WRMSR 
applied to that MSR causes a VM exit.

A logical processor uses these bitmaps if and only if the “use MSR bitmaps” control is 1. If the bitmaps are used, an 
execution of RDMSR or WRMSR causes a VM exit if the value of RCX is in neither of the ranges covered by the 
bitmaps or if the appropriate bit in the MSR bitmaps (corresponding to the instruction and the RCX value) is 1. See 
Section 25.1.3 for details. If the bitmaps are used, their address must be 4-KByte aligned.
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24.6.10 Executive-VMCS Pointer

The executive-VMCS pointer is a 64-bit field used in the dual-monitor treatment of system-management interrupts 
(SMIs) and system-management mode (SMM). SMM VM exits save this field as described in Section 34.15.2. 
VM entries that return from SMM use this field as described in Section 34.15.4.

24.6.11 Extended-Page-Table Pointer (EPTP)

The extended-page-table pointer (EPTP) contains the address of the base of EPT PML4 table (see Section 
28.2.2), as well as other EPT configuration information. The format of this field is shown in Table 24-8.

The EPTP exists only on processors that support the 1-setting of the “enable EPT” VM-execution control.

24.6.12 Virtual-Processor Identifier (VPID)

The virtual-processor identifier (VPID) is a 16-bit field. It exists only on processors that support the 1-setting of 
the “enable VPID” VM-execution control. See Section 28.1 for details regarding the use of this field.

24.6.13 Controls for PAUSE-Loop Exiting

On processors that support the 1-setting of the “PAUSE-loop exiting” VM-execution control, the VM-execution 
control fields include the following 32-bit fields:
• PLE_Gap. Software can configure this field as an upper bound on the amount of time between two successive 

executions of PAUSE in a loop.
• PLE_Window. Software can configure this field as an upper bound on the amount of time a guest is allowed to 

execute in a PAUSE loop.

Table 24-8.  Format of Extended-Page-Table Pointer 

Bit 
Position(s)

Field

2:0 EPT paging-structure memory type (see Section 28.2.5):

0 = Uncacheable (UC)
6 = Write-back (WB)

Other values are reserved.1

NOTES:

1. Software should read the VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine what EPT paging-struc-
ture memory types are supported.

5:3 This value is 1 less than the EPT page-walk length (see Section 28.2.2)

6 Setting this control to 1 enables accessed and dirty flags for EPT (see Section 28.2.4)2

2. Not all processors support accessed and dirty flags for EPT. Software should read the VMX capability MSR 
IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether the processor supports this feature.

11:7 Reserved

N–1:12 Bits N–1:12 of the physical address of the 4-KByte aligned EPT PML4 table3

3. N is the physical-address width supported by the logical processor. Software can determine a processor’s physical-address width by 
executing CPUID with 80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

63:N Reserved
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These fields measure time based on a counter that runs at the same rate as the timestamp counter (TSC). See 
Section 25.1.3 for more details regarding PAUSE-loop exiting.

24.6.14 VM-Function Controls

The VM-function controls constitute a 64-bit vector that governs use of the VMFUNC instruction in VMX non-root 
operation. This field is supported only on processors that support the 1-settings of both the “activate secondary 
controls” primary processor-based VM-execution control and the “enable VM functions” secondary processor-
based VM-execution control.

Table 24-9 lists the VM-function controls. See Section 25.5.5 for more details of how these controls affect 
processor behavior in VMX non-root operation.

All other bits in this field are reserved to 0. Software should consult the VMX capability MSR IA32_VMX_VMFUNC 
(see Appendix A.11) to determine which bits are reserved. Failure to clear reserved bits causes subsequent 
VM entries to fail (see Section 26.2.1.1).

Processors that support the 1-setting of the “EPTP switching” VM-function control also support a 64-bit field called 
the EPTP-list address. This field contains the physical address of the 4-KByte EPTP list. The EPTP list comprises 
512 8-Byte entries (each an EPTP value) and is used by the EPTP-switching VM function (see Section 25.5.5.3).

24.6.15 VMCS Shadowing Bitmap Addresses

On processors that support the 1-setting of the “VMCS shadowing” VM-execution control, the VM-execution control 
fields include the 64-bit physical addresses of the VMREAD bitmap and the VMWRITE bitmap. Each bitmap is 4 
KBytes in size and thus contains 32 KBits. The addresses are the VMREAD-bitmap address and the VMWRITE-
bitmap address.

If the “VMCS shadowing” VM-execution control is 1, executions of VMREAD and VMWRITE may consult these 
bitmaps (see Section 24.10 and Section 30.3).

24.6.16 Controls for Virtualization Exceptions

On processors that support the 1-setting of the “EPT-violation #VE” VM-execution control, the VM-execution 
control fields include the following:
• Virtualization-exception information address (64 bits). This field contains the physical address of the 

virtualization-exception information area. When a logical processor encounters a virtualization exception, 
it saves virtualization-exception information at the virtualization-exception information address; see Section 
25.5.6.2.

• EPTP index (16 bits). When an EPT violation causes a virtualization exception, the processor writes the value 
of this field to the virtualization-exception information area. The EPTP-switching VM function updates this field 
(see Section 25.5.5.3).

24.6.17 XSS-Exiting Bitmap

On processors that support the 1-setting of the “enable XSAVES/XRSTORS” VM-execution control, the VM-execu-
tion control fields include a 64-bit XSS-exiting bitmap. If the “enable XSAVES/XRSTORS” VM-execution control is 
1, executions of XSAVES and XRSTORS may consult this bitmap (see Section 25.1.3 and Section 25.3).

Table 24-9.  Definitions of VM-Function Controls

Bit Position(s) Name Description

0 EPTP switching The EPTP-switching VM function changes the EPT pointer to a value chosen from the EPTP list. 
See Section 25.5.5.3.
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24.7 VM-EXIT CONTROL FIELDS

The VM-exit control fields govern the behavior of VM exits. They are discussed in Section 24.7.1 and Section 
24.7.2.

24.7.1 VM-Exit Controls

The VM-exit controls constitute a 32-bit vector that governs the basic operation of VM exits. Table 24-10 lists the 
controls supported. See Chapter 27 for complete details of how these controls affect VM exits. 

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs 
IA32_VMX_EXIT_CTLS and IA32_VMX_TRUE_EXIT_CTLS (see Appendix A.4) to determine how it should set the 
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 26.2.1.2).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 0–8, 10, 11, 
13, 14, 16, and 17. The VMX capability MSR IA32_VMX_EXIT_CTLS always reports that these bits must be 1. 
Logical processors that support the 0-settings of any of these bits will support the VMX capability MSR 
IA32_VMX_TRUE_EXIT_CTLS MSR, and software should consult this MSR to discover support for the 0-settings of 
these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

Table 24-10.  Definitions of VM-Exit Controls

Bit Position(s) Name Description

2 Save debug 
controls

This control determines whether DR7 and the IA32_DEBUGCTL MSR are saved on VM exit.

The first processors to support the virtual-machine extensions supported only the 1-setting 
of this control.

9 Host address-
space size

On processors that support Intel 64 architecture, this control determines whether a logical 
processor is in 64-bit mode after the next VM exit. Its value is loaded into CS.L, 
IA32_EFER.LME, and IA32_EFER.LMA on every VM exit.1

This control must be 0 on processors that do not support Intel 64 architecture.

NOTES:

1. Since Intel 64 architecture specifies that IA32_EFER.LMA is always set to the logical-AND of CR0.PG and IA32_EFER.LME, and since 
CR0.PG is always 1 in VMX operation, IA32_EFER.LMA is always identical to IA32_EFER.LME in VMX operation.

12 Load 
IA32_PERF_GLOB
AL_CTRL

This control determines whether the IA32_PERF_GLOBAL_CTRL MSR is loaded on VM exit.

15 Acknowledge 
interrupt on exit

This control affects VM exits due to external interrupts:

• If such a VM exit occurs and this control is 1, the logical processor acknowledges the 
interrupt controller, acquiring the interrupt’s vector. The vector is stored in the VM-exit 
interruption-information field, which is marked valid.

• If such a VM exit occurs and this control is 0, the interrupt is not acknowledged and the 
VM-exit interruption-information field is marked invalid.

18 Save IA32_PAT This control determines whether the IA32_PAT MSR is saved on VM exit.

19 Load IA32_PAT This control determines whether the IA32_PAT MSR is loaded on VM exit.

20 Save IA32_EFER This control determines whether the IA32_EFER MSR is saved on VM exit.

21 Load IA32_EFER This control determines whether the IA32_EFER MSR is loaded on VM exit.

22 Save VMX-
preemption timer 
value

This control determines whether the value of the VMX-preemption timer is saved on VM exit.



Vol. 3C 24-17

VIRTUAL-MACHINE CONTROL STRUCTURES

24.7.2 VM-Exit Controls for MSRs

A VMM may specify lists of MSRs to be stored and loaded on VM exits. The following VM-exit control fields deter-
mine how MSRs are stored on VM exits:

• VM-exit MSR-store count (32 bits). This field specifies the number of MSRs to be stored on VM exit. It is 
recommended that this count not exceed 512 bytes.1 Otherwise, unpredictable processor behavior (including 
a machine check) may result during VM exit.

• VM-exit MSR-store address (64 bits). This field contains the physical address of the VM-exit MSR-store area. 
The area is a table of entries, 16 bytes per entry, where the number of entries is given by the VM-exit MSR-
store count. The format of each entry is given in Table 24-11. If the VM-exit MSR-store count is not zero, the 
address must be 16-byte aligned.

See Section 27.4 for how this area is used on VM exits.

The following VM-exit control fields determine how MSRs are loaded on VM exits:
• VM-exit MSR-load count (32 bits). This field contains the number of MSRs to be loaded on VM exit. It is 

recommended that this count not exceed 512 bytes. Otherwise, unpredictable processor behavior (including a 
machine check) may result during VM exit.2

• VM-exit MSR-load address (64 bits). This field contains the physical address of the VM-exit MSR-load area. 
The area is a table of entries, 16 bytes per entry, where the number of entries is given by the VM-exit MSR-load 
count (see Table 24-11). If the VM-exit MSR-load count is not zero, the address must be 16-byte aligned.

See Section 27.6 for how this area is used on VM exits.

24.8 VM-ENTRY CONTROL FIELDS

The VM-entry control fields govern the behavior of VM entries. They are discussed in Sections 24.8.1 through 
24.8.3.

24.8.1 VM-Entry Controls

The VM-entry controls constitute a 32-bit vector that governs the basic operation of VM entries. Table 24-12 lists 
the controls supported. See Chapter 24 for how these controls affect VM entries.

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs 
IA32_VMX_ENTRY_CTLS and IA32_VMX_TRUE_ENTRY_CTLS (see Appendix A.5) to determine how it should set 
the reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 26.2.1.3).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 0–8 and 12. 
The VMX capability MSR IA32_VMX_ENTRY_CTLS always reports that these bits must be 1. Logical processors that 
support the 0-settings of any of these bits will support the VMX capability MSR IA32_VMX_TRUE_ENTRY_CTLS 

1. Future implementations may allow more MSRs to be stored reliably. Software should consult the VMX capability MSR 
IA32_VMX_MISC to determine the number supported (see Appendix A.6).

Table 24-11.  Format of an MSR Entry

Bit Position(s) Contents

31:0 MSR index

63:32 Reserved

127:64 MSR data

2. Future implementations may allow more MSRs to be loaded reliably. Software should consult the VMX capability MSR 
IA32_VMX_MISC to determine the number supported (see Appendix A.6).
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MSR, and software should consult this MSR to discover support for the 0-settings of these bits. Software that is not 
aware of the functionality of any one of these bits should set that bit to 1.

24.8.2 VM-Entry Controls for MSRs

A VMM may specify a list of MSRs to be loaded on VM entries. The following VM-entry control fields manage this 
functionality:
• VM-entry MSR-load count (32 bits). This field contains the number of MSRs to be loaded on VM entry. It is 

recommended that this count not exceed 512 bytes. Otherwise, unpredictable processor behavior (including a 
machine check) may result during VM entry.1

• VM-entry MSR-load address (64 bits). This field contains the physical address of the VM-entry MSR-load 
area. The area is a table of entries, 16 bytes per entry, where the number of entries is given by the VM-entry 
MSR-load count. The format of entries is described in Table 24-11. If the VM-entry MSR-load count is not zero, 
the address must be 16-byte aligned.

See Section 26.4 for details of how this area is used on VM entries.

24.8.3 VM-Entry Controls for Event Injection

VM entry can be configured to conclude by delivering an event through the IDT (after all guest state and MSRs have 
been loaded). This process is called event injection and is controlled by the following three VM-entry control 
fields:
• VM-entry interruption-information field (32 bits). This field provides details about the event to be injected. 

Table 24-13 describes the field.

Table 24-12.  Definitions of VM-Entry Controls

Bit Position(s) Name Description

2 Load debug 
controls

This control determines whether DR7 and the IA32_DEBUGCTL MSR are loaded on VM exit.

The first processors to support the virtual-machine extensions supported only the 1-setting of 
this control.

9 IA-32e mode guest On processors that support Intel 64 architecture, this control determines whether the logical 
processor is in IA-32e mode after VM entry. Its value is loaded into IA32_EFER.LMA as part of 
VM entry.1

This control must be 0 on processors that do not support Intel 64 architecture.

10 Entry to SMM This control determines whether the logical processor is in system-management mode (SMM) 
after VM entry. This control must be 0 for any VM entry from outside SMM.

11 Deactivate dual-
monitor treatment

If set to 1, the default treatment of SMIs and SMM is in effect after the VM entry (see Section 
34.15.7). This control must be 0 for any VM entry from outside SMM.

13 Load 
IA32_PERF_GLOBA
L_CTRL

This control determines whether the IA32_PERF_GLOBAL_CTRL MSR is loaded on VM entry.

14 Load IA32_PAT This control determines whether the IA32_PAT MSR is loaded on VM entry.

15 Load IA32_EFER This control determines whether the IA32_EFER MSR is loaded on VM entry.

NOTES:

1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting of the “unrestricted guest” VM-
execution control. If it is read as 1, every VM exit stores the value of IA32_EFER.LMA into the “IA-32e mode guest” VM-entry control 
(see Section 27.2).

1. Future implementations may allow more MSRs to be loaded reliably. Software should consult the VMX capability MSR 
IA32_VMX_MISC to determine the number supported (see Appendix A.6).
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— The vector (bits 7:0) determines which entry in the IDT is used or which other event is injected.

— The interruption type (bits 10:8) determines details of how the injection is performed. In general, a VMM 
should use the type hardware exception for all exceptions other than breakpoint exceptions (#BP; 
generated by INT3) and overflow exceptions (#OF; generated by INTO); it should use the type software 
exception for #BP and #OF. The type other event is used for injection of events that are not delivered 
through the IDT.

— For exceptions, the deliver-error-code bit (bit 11) determines whether delivery pushes an error code on 
the guest stack.

— VM entry injects an event if and only if the valid bit (bit 31) is 1. The valid bit in this field is cleared on 
every VM exit (see Section 27.2).

• VM-entry exception error code (32 bits). This field is used if and only if the valid bit (bit 31) and the deliver-
error-code bit (bit 11) are both set in the VM-entry interruption-information field.

• VM-entry instruction length (32 bits). For injection of events whose type is software interrupt, software 
exception, or privileged software exception, this field is used to determine the value of RIP that is pushed on 
the stack.

See Section 26.5 for details regarding the mechanics of event injection, including the use of the interruption type 
and the VM-entry instruction length.

VM exits clear the valid bit (bit 31) in the VM-entry interruption-information field.

24.9 VM-EXIT INFORMATION FIELDS

The VMCS contains a section of fields that contain information about the most recent VM exit.

On some processors, attempts to write to these fields with VMWRITE fail (see “VMWRITE—Write Field to Virtual-
Machine Control Structure” in Chapter 30).1

24.9.1 Basic VM-Exit Information

The following VM-exit information fields provide basic information about a VM exit:

Table 24-13.  Format of the VM-Entry Interruption-Information Field

Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Reserved
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Other event

11 Deliver error code (0 = do not deliver; 1 = deliver)

30:12 Reserved

31 Valid

1.  Software can discover whether these fields can be written by reading the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).
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• Exit reason (32 bits). This field encodes the reason for the VM exit and has the structure given in Table 24-14.

— Bits 15:0 provide basic information about the cause of the VM exit (if bit 31 is clear) or of the VM-entry 
failure (if bit 31 is set). Appendix C enumerates the basic exit reasons.

— Bit 28 is set only by an SMM VM exit (see Section 34.15.2) that took priority over an MTF VM exit (see 
Section 25.5.2) that would have occurred had the SMM VM exit not occurred. See Section 34.15.2.3.

— Bit 29 is set if and only if the processor was in VMX root operation at the time the VM exit occurred. This can 
happen only for SMM VM exits. See Section 34.15.2.

— Because some VM-entry failures load processor state from the host-state area (see Section 26.7), software 
must be able to distinguish such cases from true VM exits. Bit 31 is used for that purpose.

• Exit qualification (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field contains 
additional information about the cause of VM exits due to the following: debug exceptions; page-fault 
exceptions; start-up IPIs (SIPIs); task switches; INVEPT; INVLPG;INVVPID; LGDT; LIDT; LLDT; LTR; SGDT; 
SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; control-register accesses; 
MOV DR; I/O instructions; and MWAIT. The format of the field depends on the cause of the VM exit. See Section 
27.2.1 for details.

• Guest-linear address (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field is 
used in the following cases:

— VM exits due to attempts to execute LMSW with a memory operand.

— VM exits due to attempts to execute INS or OUTS.

— VM exits due to system-management interrupts (SMIs) that arrive immediately after retirement of I/O 
instructions.

— Certain VM exits due to EPT violations
See Section 27.2.1 and Section 34.15.2.3 for details of when and how this field is used.

• Guest-physical address (64 bits). This field is used VM exits due to EPT violations and EPT misconfigurations. 
See Section 27.2.1 for details of when and how this field is used.

24.9.2 Information for VM Exits Due to Vectored Events

Event-specific information is provided for VM exits due to the following vectored events: exceptions (including 
those generated by the instructions INT3, INTO, BOUND, and UD2); external interrupts that occur while the 
“acknowledge interrupt on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). This information is 
provided in the following fields:
• VM-exit interruption information (32 bits). This field receives basic information associated with the event 

causing the VM exit. Table 24-15 describes this field.

Table 24-14.  Format of Exit Reason

Bit Position(s) Contents

15:0 Basic exit reason

27:16 Reserved (cleared to 0)

28 Pending MTF VM exit

29 VM exit from VMX root operation

30 Reserved (cleared to 0)

31 VM-entry failure (0 = true VM exit; 1 = VM-entry failure)



Vol. 3C 24-21

VIRTUAL-MACHINE CONTROL STRUCTURES

• VM-exit interruption error code (32 bits). For VM exits caused by hardware exceptions that would have 
delivered an error code on the stack, this field receives that error code.

Section 27.2.2 provides details of how these fields are saved on VM exits.

24.9.3 Information for VM Exits That Occur During Event Delivery

Additional information is provided for VM exits that occur during event delivery in VMX non-root operation.1 This 
information is provided in the following fields:
• IDT-vectoring information (32 bits). This field receives basic information associated with the event that was 

being delivered when the VM exit occurred. Table 24-16 describes this field.

• IDT-vectoring error code (32 bits). For VM exits the occur during delivery of hardware exceptions that would 
have delivered an error code on the stack, this field receives that error code.

See Section 27.2.3 provides details of how these fields are saved on VM exits.

Table 24-15.  Format of the VM-Exit Interruption-Information Field

Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4 – 5: Not used
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 NMI unblocking due to IRET

30:13 Reserved (cleared to 0)

31 Valid

1. This includes cases in which the event delivery was caused by event injection as part of VM entry; see Section 26.5.1.2.

Table 24-16.  Format of the IDT-Vectoring Information Field

Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 Undefined

30:13 Reserved (cleared to 0)

31 Valid
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24.9.4 Information for VM Exits Due to Instruction Execution

The following fields are used for VM exits caused by attempts to execute certain instructions in VMX non-root oper-
ation:
• VM-exit instruction length (32 bits). For VM exits resulting from instruction execution, this field receives the 

length in bytes of the instruction whose execution led to the VM exit.1 See Section 27.2.4 for details of when 
and how this field is used.

• VM-exit instruction information (32 bits). This field is used for VM exits due to attempts to execute INS, 
INVEPT, INVVPID, LIDT, LGDT, LLDT, LTR, OUTS, SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST, 
VMREAD, VMWRITE, or VMXON.2 The format of the field depends on the cause of the VM exit. See Section 
27.2.4 for details.

The following fields (64 bits each; 32 bits on processors that do not support Intel 64 architecture) are used only for 
VM exits due to SMIs that arrive immediately after retirement of I/O instructions. They provide information about 
that I/O instruction:
• I/O RCX. The value of RCX before the I/O instruction started.
• I/O RSI. The value of RSI before the I/O instruction started.
• I/O RDI. The value of RDI before the I/O instruction started.
• I/O RIP. The value of RIP before the I/O instruction started (the RIP that addressed the I/O instruction).

24.9.5 VM-Instruction Error Field

The 32-bit VM-instruction error field does not provide information about the most recent VM exit. In fact, it is 
not modified on VM exits. Instead, it provides information about errors encountered by a non-faulting execution of 
one of the VMX instructions.

24.10 VMCS TYPES: ORDINARY AND SHADOW

Every VMCS is either an ordinary VMCS or a shadow VMCS. A VMCS’s type is determined by the shadow-VMCS 
indicator in the VMCS region (this is the value of bit 31 of the first 4 bytes of the VMCS region; see Table 24-1): 0 
indicates an ordinary VMCS, while 1 indicates a shadow VMCS. Shadow VMCSs are supported only on processors 
that support the 1-setting of the “VMCS shadowing” VM-execution control (see Section 24.6.2).

A shadow VMCS differs from an ordinary VMCS in two ways:
• An ordinary VMCS can be used for VM entry but a shadow VMCS cannot. Attempts to perform VM entry when 

the current VMCS is a shadow VMCS fail (see Section 26.1).
• The VMREAD and VMWRITE instructions can be used in VMX non-root operation to access a shadow VMCS but 

not an ordinary VMCS. This fact results from the following:

— If the “VMCS shadowing” VM-execution control is 0, execution of the VMREAD and VMWRITE instructions in 
VMX non-root operation always cause VM exits (see Section 25.1.3).

— If the “VMCS shadowing” VM-execution control is 1, execution of the VMREAD and VMWRITE instructions in 
VMX non-root operation can access the VMCS referenced by the VMCS link pointer (see Section 30.3).

— If the “VMCS shadowing” VM-execution control is 1, VM entry ensures that any VMCS referenced by the 
VMCS link pointer is a shadow VMCS (see Section 26.3.1.5).

In VMX root operation, both types of VMCSs can be accessed with the VMREAD and VMWRITE instructions.

Software should not modify the shadow-VMCS indicator in the VMCS region of a VMCS that is active. Doing so may 
cause the VMCS to become corrupted (see Section 24.11.1). Before modifying the shadow-VMCS indicator, soft-
ware should execute VMCLEAR for the VMCS to ensure that it is not active.

1. This field is also used for VM exits that occur during the delivery of a software interrupt or software exception.

2. Whether the processor provides this information on VM exits due to attempts to execute INS or OUTS can be determined by consult-
ing the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1).
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24.11 SOFTWARE USE OF THE VMCS AND RELATED STRUCTURES

This section details guidelines that software should observe when using a VMCS and related structures. It also 
provides descriptions of consequences for failing to follow guidelines.

24.11.1 Software Use of Virtual-Machine Control Structures

To ensure proper processor behavior, software should observe certain guidelines when using an active VMCS.

No VMCS should ever be active on more than one logical processor. If a VMCS is to be “migrated” from one logical 
processor to another, the first logical processor should execute VMCLEAR for the VMCS (to make it inactive on that 
logical processor and to ensure that all VMCS data are in memory) before the other logical processor executes 
VMPTRLD for the VMCS (to make it active on the second logical processor).1 A VMCS that is made active on more 
than one logical processor may become corrupted (see below).

Software should not modify the shadow-VMCS indicator (see Table 24-1) in the VMCS region of a VMCS that is 
active. Doing so may cause the VMCS to become corrupted. Before modifying the shadow-VMCS indicator, software 
should execute VMCLEAR for the VMCS to ensure that it is not active.

Software should use the VMREAD and VMWRITE instructions to access the different fields in the current VMCS (see 
Section 24.11.2). Software should never access or modify the VMCS data of an active VMCS using ordinary 
memory operations, in part because the format used to store the VMCS data is implementation-specific and not 
architecturally defined, and also because a logical processor may maintain some VMCS data of an active VMCS on 
the processor and not in the VMCS region. The following items detail some of the hazards of accessing VMCS data 
using ordinary memory operations:
• Any data read from a VMCS with an ordinary memory read does not reliably reflect the state of the VMCS. 

Results may vary from time to time or from logical processor to logical processor.
• Writing to a VMCS with an ordinary memory write is not guaranteed to have a deterministic effect on the VMCS. 

Doing so may cause the VMCS to become corrupted (see below).

(Software can avoid these hazards by removing any linear-address mappings to a VMCS region before executing a 
VMPTRLD for that region and by not remapping it until after executing VMCLEAR for that region.)

If a logical processor leaves VMX operation, any VMCSs active on that logical processor may be corrupted (see 
below). To prevent such corruption of a VMCS that may be used either after a return to VMX operation or on 
another logical processor, software should execute VMCLEAR for that VMCS before executing the VMXOFF instruc-
tion or removing power from the processor (e.g., as part of a transition to the S3 and S4 power states).

This section has identified operations that may cause a VMCS to become corrupted. These operations may cause 
the VMCS’s data to become undefined. Behavior may be unpredictable if that VMCS used subsequently on any 
logical processor. The following items detail some hazards of VMCS corruption:
• VM entries may fail for unexplained reasons or may load undesired processor state.
• The processor may not correctly support VMX non-root operation as documented in Chapter 27 and may 

generate unexpected VM exits.
• VM exits may load undesired processor state, save incorrect state into the VMCS, or cause the logical processor 

to transition to a shutdown state.

24.11.2 VMREAD, VMWRITE, and Encodings of VMCS Fields

Every field of the VMCS is associated with a 32-bit value that is its encoding. The encoding is provided in an 
operand to VMREAD and VMWRITE when software wishes to read or write that field. These instructions fail if given, 
in 64-bit mode, an operand that sets an encoding bit beyond bit 32. See Chapter 30 for a description of these 
instructions.

1. As noted in Section 24.1, execution of the VMPTRLD instruction makes a VMCS is active. In addition, VM entry makes active any 
shadow VMCS referenced by the VMCS link pointer in the current VMCS. If a shadow VMCS is made active by VM entry, it is neces-
sary to execute VMCLEAR for that VMCS before allowing that VMCS to become active on another logical processor.
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The structure of the 32-bit encodings of the VMCS components is determined principally by the width of the fields 
and their function in the VMCS. See Table 24-17.

The following items detail the meaning of the bits in each encoding:
• Field width. Bits 14:13 encode the width of the field.

— A value of 0 indicates a 16-bit field.

— A value of 1 indicates a 64-bit field.

— A value of 2 indicates a 32-bit field.

— A value of 3 indicates a natural-width field. Such fields have 64 bits on processors that support Intel 64 
architecture and 32 bits on processors that do not.

Fields whose encodings use value 1 are specially treated to allow 32-bit software access to all 64 bits of the 
field. Such access is allowed by defining, for each such field, an encoding that allows direct access to the high 
32 bits of the field. See below.

• Field type. Bits 11:10 encode the type of VMCS field: control, guest-state, host-state, or VM-exit information. 
(The last category also includes the VM-instruction error field.)

• Index. Bits 9:1 distinguish components with the same field width and type.
• Access type. Bit 0 must be 0 for all fields except for 64-bit fields (those with field-width 1; see above). A 

VMREAD or VMWRITE using an encoding with this bit cleared to 0 accesses the entire field. For a 64-bit field 
with field-width 1, a VMREAD or VMWRITE using an encoding with this bit set to 1 accesses only the high 32 bits 
of the field.

Appendix B gives the encodings of all fields in the VMCS.

The following describes the operation of VMREAD and VMWRITE based on processor mode, VMCS-field width, and 
access type:
• 16-bit fields:

— A VMREAD returns the value of the field in bits 15:0 of the destination operand; other bits of the destination 
operand are cleared to 0.

— A VMWRITE writes the value of bits 15:0 of the source operand into the VMCS field; other bits of the source 
operand are not used.

• 32-bit fields:

Table 24-17.  Structure of VMCS Component Encoding

Bit Position(s) Contents

0 Access type (0 = full; 1 = high); must be full for 16-bit, 32-bit, and natural-width fields

9:1 Index

11:10 Type:

0: control
1: VM-exit information
2: guest state
3: host state

12 Reserved (must be 0)

14:13 Width:

0: 16-bit
1: 64-bit
2: 32-bit
3: natural-width

31:15 Reserved (must be 0)
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— A VMREAD returns the value of the field in bits 31:0 of the destination operand; in 64-bit mode, bits 63:32 
of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand into the VMCS field; in 64-bit mode, 
bits 63:32 of the source operand are not used.

• 64-bit fields and natural-width fields using the full access type outside IA-32e mode.

— A VMREAD returns the value of bits 31:0 of the field in its destination operand; bits 63:32 of the field are 
ignored.

— A VMWRITE writes the value of its source operand to bits 31:0 of the field and clears bits 63:32 of the field.
• 64-bit fields and natural-width fields using the full access type in 64-bit mode (only on processors that support 

Intel 64 architecture).

— A VMREAD returns the value of the field in bits 63:0 of the destination operand

— A VMWRITE writes the value of bits 63:0 of the source operand into the VMCS field.
• 64-bit fields using the high access type.

— A VMREAD returns the value of bits 63:32 of the field in bits 31:0 of the destination operand; in 64-bit 
mode, bits 63:32 of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand to bits 63:32 of the field; in 64-bit mode, 
bits 63:32 of the source operand are not used.

Software seeking to read a 64-bit field outside IA-32e mode can use VMREAD with the full access type (reading 
bits 31:0 of the field) and VMREAD with the high access type (reading bits 63:32 of the field); the order of the two 
VMREAD executions is not important. Software seeking to modify a 64-bit field outside IA-32e mode should first 
use VMWRITE with the full access type (establishing bits 31:0 of the field while clearing bits 63:32) and then use 
VMWRITE with the high access type (establishing bits 63:32 of the field).

24.11.3 Initializing a VMCS

Software should initialize fields in a VMCS (using VMWRITE) before using the VMCS for VM entry. Failure to do so 
may result in unpredictable behavior; for example, a VM entry may fail for unexplained reasons, or a successful 
transition (VM entry or VM exit) may load processor state with unexpected values.

It is not necessary to initialize fields that the logical processor will not use. (For example, it is not necessary to 
unitize the MSR-bitmap address if the “use MSR bitmaps” VM-execution control is 0.)

A processor maintains some VMCS information that cannot be modified with the VMWRITE instruction; this 
includes a VMCS’s launch state (see Section 24.1). Such information may be stored in the VMCS data portion of a 
VMCS region. Because the format of this information is implementation-specific, there is no way for software to 
know, when it first allocates a region of memory for use as a VMCS region, how the processor will determine this 
information from the contents of the memory region.

In addition to its other functions, the VMCLEAR instruction initializes any implementation-specific information in 
the VMCS region referenced by its operand. To avoid the uncertainties of implementation-specific behavior, soft-
ware should execute VMCLEAR on a VMCS region before making the corresponding VMCS active with VMPTRLD for 
the first time. (Figure 24-1 illustrates how execution of VMCLEAR puts a VMCS into a well-defined state.)

The following software usage is consistent with these limitations:
• VMCLEAR should be executed for a VMCS before it is used for VM entry for the first time.
• VMLAUNCH should be used for the first VM entry using a VMCS after VMCLEAR has been executed for that 

VMCS.
• VMRESUME should be used for any subsequent VM entry using a VMCS (until the next execution of VMCLEAR 

for the VMCS).

It is expected that, in general, VMRESUME will have lower latency than VMLAUNCH. Since “migrating” a VMCS from 
one logical processor to another requires use of VMCLEAR (see Section 24.11.1), which sets the launch state of the 
VMCS to “clear”, such migration requires the next VM entry to be performed using VMLAUNCH. Software devel-
opers can avoid the performance cost of increased VM-entry latency by avoiding unnecessary migration of a VMCS 
from one logical processor to another.
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24.11.4 Software Access to Related Structures

In addition to data in the VMCS region itself, VMX non-root operation can be controlled by data structures that are 
referenced by pointers in a VMCS (for example, the I/O bitmaps). While the pointers to these data structures are 
parts of the VMCS, the data structures themselves are not. They are not accessible using VMREAD and VMWRITE 
but by ordinary memory writes.

Software should ensure that each such data structure is modified only when no logical processor with a current 
VMCS that references it is in VMX non-root operation. Doing otherwise may lead to unpredictable behavior 
(including behaviors identified in Section 24.11.1).

24.11.5 VMXON Region

Before executing VMXON, software allocates a region of memory (called the VMXON region)1 that the logical 
processor uses to support VMX operation. The physical address of this region (the VMXON pointer) is provided in 
an operand to VMXON. The VMXON pointer is subject to the limitations that apply to VMCS pointers:
• The VMXON pointer must be 4-KByte aligned (bits 11:0 must be zero).
• The VMXON pointer must not set any bits beyond the processor’s physical-address width.2,3

Before executing VMXON, software should write the VMCS revision identifier (see Section 24.2) to the VMXON 
region. (Specifically, it should write the 31-bit VMCS revision identifier to bits 30:0 of the first 4 bytes of the VMXON 
region; bit 31 should be cleared to 0.) It need not initialize the VMXON region in any other way. Software should 
use a separate region for each logical processor and should not access or modify the VMXON region of a logical 
processor between execution of VMXON and VMXOFF on that logical processor. Doing otherwise may lead to unpre-
dictable behavior (including behaviors identified in Section 24.11.1).

1. The amount of memory required for the VMXON region is the same as that required for a VMCS region. This size is implementation 
specific and can be determined by consulting the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1).

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, the VMXON pointer must not set any bits in the range 63:32; see Appendix A.1.
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CHAPTER 25
VMX NON-ROOT OPERATION

In a virtualized environment using VMX, the guest software stack typically runs on a logical processor in VMX non-
root operation. This mode of operation is similar to that of ordinary processor operation outside of the virtualized 
environment. This chapter describes the differences between VMX non-root operation and ordinary processor oper-
ation with special attention to causes of VM exits (which bring a logical processor from VMX non-root operation to 
root operation). The differences between VMX non-root operation and ordinary processor operation are described 
in the following sections:
• Section 25.1, “Instructions That Cause VM Exits”
• Section 25.2, “Other Causes of VM Exits”
• Section 25.3, “Changes to Instruction Behavior in VMX Non-Root Operation”
• Section 25.4, “Other Changes in VMX Non-Root Operation” 
• Section 25.5, “Features Specific to VMX Non-Root Operation”
• Section 25.6, “Unrestricted Guests”

Chapter 26, “VM Entries,” describes the data control structures that govern VMX non-root operation. Chapter 26, 
“VM Entries,” describes the operation of VM entries by which the processor transitions from VMX root operation to 
VMX non-root operation. Chapter 25, “VMX Non-Root Operation,” describes the operation of VM exits by which the 
processor transitions from VMX non-root operation to VMX root operation.

Chapter 28, “VMX Support for Address Translation,” describes two features that support address translation in VMX 
non-root operation. Chapter 29, “APIC Virtualization and Virtual Interrupts,” describes features that support virtu-
alization of interrupts and the Advanced Programmable Interrupt Controller (APIC) in VMX non-root operation.

25.1 INSTRUCTIONS THAT CAUSE VM EXITS

Certain instructions may cause VM exits if executed in VMX non-root operation. Unless otherwise specified, such 
VM exits are “fault-like,” meaning that the instruction causing the VM exit does not execute and no processor state 
is updated by the instruction. Section 27.1 details architectural state in the context of a VM exit.

Section 25.1.1 defines the prioritization between faults and VM exits for instructions subject to both. Section 
25.1.2 identifies instructions that cause VM exits whenever they are executed in VMX non-root operation (and thus 
can never be executed in VMX non-root operation). Section 25.1.3 identifies instructions that cause VM exits 
depending on the settings of certain VM-execution control fields (see Section 24.6).

25.1.1 Relative Priority of Faults and VM Exits

The following principles describe the ordering between existing faults and VM exits:
• Certain exceptions have priority over VM exits. These include invalid-opcode exceptions, faults based on 

privilege level,1 and general-protection exceptions that are based on checking I/O permission bits in the task-
state segment (TSS). For example, execution of RDMSR with CPL = 3 generates a general-protection exception 
and not a VM exit.2

• Faults incurred while fetching instruction operands have priority over VM exits that are conditioned based on 
the contents of those operands (see LMSW in Section 25.1.3).

• VM exits caused by execution of the INS and OUTS instructions (resulting either because the “unconditional I/O 
exiting” VM-execution control is 1 or because the “use I/O bitmaps control is 1) have priority over the following 
faults: 

1. These include faults generated by attempts to execute, in virtual-8086 mode, privileged instructions that are not recognized in that 
mode.

2. MOV DR is an exception to this rule; see Section 25.1.3.
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— A general-protection fault due to the relevant segment (ES for INS; DS for OUTS unless overridden by an 
instruction prefix) being unusable

— A general-protection fault due to an offset beyond the limit of the relevant segment

— An alignment-check exception
• Fault-like VM exits have priority over exceptions other than those mentioned above. For example, RDMSR of a 

non-existent MSR with CPL = 0 generates a VM exit and not a general-protection exception.

When Section 25.1.2 or Section 25.1.3 (below) identify an instruction execution that may lead to a VM exit, it is 
assumed that the instruction does not incur a fault that takes priority over a VM exit.

25.1.2 Instructions That Cause VM Exits Unconditionally

The following instructions cause VM exits when they are executed in VMX non-root operation: CPUID, GETSEC,1 
INVD, and XSETBV. This is also true of instructions introduced with VMX, which include: INVEPT, INVVPID, 
VMCALL,2 VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMRESUME, VMXOFF, and VMXON.

25.1.3 Instructions That Cause VM Exits Conditionally

Certain instructions cause VM exits in VMX non-root operation depending on the setting of the VM-execution 
controls. The following instructions can cause “fault-like” VM exits based on the conditions described:3

• CLTS. The CLTS instruction causes a VM exit if the bits in position 3 (corresponding to CR0.TS) are set in both 
the CR0 guest/host mask and the CR0 read shadow.

• HLT. The HLT instruction causes a VM exit if the “HLT exiting” VM-execution control is 1.
• IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD. The behavior of each of these instruc-

tions is determined by the settings of the “unconditional I/O exiting” and “use I/O bitmaps” VM-execution 
controls:

— If both controls are 0, the instruction executes normally.

— If the “unconditional I/O exiting” VM-execution control is 1 and the “use I/O bitmaps” VM-execution control 
is 0, the instruction causes a VM exit.

— If the “use I/O bitmaps” VM-execution control is 1, the instruction causes a VM exit if it attempts to access 
an I/O port corresponding to a bit set to 1 in the appropriate I/O bitmap (see Section 24.6.4). If an I/O 
operation “wraps around” the 16-bit I/O-port space (accesses ports FFFFH and 0000H), the I/O instruction 
causes a VM exit (the “unconditional I/O exiting” VM-execution control is ignored if the “use I/O bitmaps” 
VM-execution control is 1).

See Section 25.1.1 for information regarding the priority of VM exits relative to faults that may be caused by 
the INS and OUTS instructions.

• INVLPG. The INVLPG instruction causes a VM exit if the “INVLPG exiting” VM-execution control is 1.
• INVPCID. The INVPCID instruction causes a VM exit if the “INVLPG exiting” and “enable INVPCID” 

VM-execution controls are both 1.
• LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR. These instructions cause VM exits if the “descriptor-table 

exiting” VM-execution control is 1.
• LMSW. In general, the LMSW instruction causes a VM exit if it would write, for any bit set in the low 4 bits of 

the CR0 guest/host mask, a value different than the corresponding bit in the CR0 read shadow. LMSW never 
clears bit 0 of CR0 (CR0.PE); thus, LMSW causes a VM exit if either of the following are true:

1. An execution of GETSEC in VMX non-root operation causes a VM exit if CR4.SMXE[Bit 14] = 1 regardless of the value of CPL or RAX. 
An execution of GETSEC causes an invalid-opcode exception (#UD) if CR4.SMXE[Bit 14] = 0.

2. Under the dual-monitor treatment of SMIs and SMM, executions of VMCALL cause SMM VM exits in VMX root operation outside SMM. 
See Section 34.15.2.

3. Many of the items in this section refer to secondary processor-based VM-execution controls. If bit 31 of the primary processor-
based VM-execution controls is 0, VMX non-root operation functions as if these controls were all 0. See Section 24.6.2.
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— The bits in position 0 (corresponding to CR0.PE) are set in both the CR0 guest/mask and the source 
operand, and the bit in position 0 is clear in the CR0 read shadow.

— For any bit position in the range 3:1, the bit in that position is set in the CR0 guest/mask and the values of 
the corresponding bits in the source operand and the CR0 read shadow differ.

• MONITOR. The MONITOR instruction causes a VM exit if the “MONITOR exiting” VM-execution control is 1.
• MOV from CR3. The MOV from CR3 instruction causes a VM exit if the “CR3-store exiting” VM-execution 

control is 1. The first processors to support the virtual-machine extensions supported only the 1-setting of this 
control.

• MOV from CR8. The MOV from CR8 instruction causes a VM exit if the “CR8-store exiting” VM-execution 
control is 1.

• MOV to CR0. The MOV to CR0 instruction causes a VM exit unless the value of its source operand matches, for 
the position of each bit set in the CR0 guest/host mask, the corresponding bit in the CR0 read shadow. (If every 
bit is clear in the CR0 guest/host mask, MOV to CR0 cannot cause a VM exit.)

• MOV to CR3. The MOV to CR3 instruction causes a VM exit unless the “CR3-load exiting” VM-execution control 
is 0 or the value of its source operand is equal to one of the CR3-target values specified in the VMCS. If the 
CR3-target count in n, only the first n CR3-target values are considered; if the CR3-target count is 0, MOV to 
CR3 always causes a VM exit.
The first processors to support the virtual-machine extensions supported only the 1-setting of the “CR3-load
exiting” VM-execution control. These processors always consult the CR3-target controls to determine whether
an execution of MOV to CR3 causes a VM exit.

• MOV to CR4. The MOV to CR4 instruction causes a VM exit unless the value of its source operand matches, for 
the position of each bit set in the CR4 guest/host mask, the corresponding bit in the CR4 read shadow.

• MOV to CR8. The MOV to CR8 instruction causes a VM exit if the “CR8-load exiting” VM-execution control is 1.
• MOV DR. The MOV DR instruction causes a VM exit if the “MOV-DR exiting” VM-execution control is 1. Such 

VM exits represent an exception to the principles identified in Section 25.1.1 in that they take priority over the 
following: general-protection exceptions based on privilege level; and invalid-opcode exceptions that occur 
because CR4.DE=1 and the instruction specified access to DR4 or DR5.

• MWAIT. The MWAIT instruction causes a VM exit if the “MWAIT exiting” VM-execution control is 1. If this 
control is 0, the behavior of the MWAIT instruction may be modified (see Section 25.3).

• PAUSE.The behavior of each of this instruction depends on CPL and the settings of the “PAUSE exiting” and 
“PAUSE-loop exiting” VM-execution controls:

— CPL = 0.

• If the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls are both 0, the PAUSE 
instruction executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction causes a VM exit (the “PAUSE-
loop exiting” VM-execution control is ignored if CPL = 0 and the “PAUSE exiting” VM-execution control 
is 1).

• If the “PAUSE exiting” VM-execution control is 0 and the “PAUSE-loop exiting” VM-execution control is 
1, the following treatment applies.

The processor determines the amount of time between this execution of PAUSE and the previous 
execution of PAUSE at CPL 0. If this amount of time exceeds the value of the VM-execution control field 
PLE_Gap, the processor considers this execution to be the first execution of PAUSE in a loop. (It also 
does so for the first execution of PAUSE at CPL 0 after VM entry.)

Otherwise, the processor determines the amount of time since the most recent execution of PAUSE that 
was considered to be the first in a loop. If this amount of time exceeds the value of the VM-execution 
control field PLE_Window, a VM exit occurs.

For purposes of these computations, time is measured based on a counter that runs at the same rate as 
the timestamp counter (TSC).

— CPL > 0.

• If the “PAUSE exiting” VM-execution control is 0, the PAUSE instruction executes normally.
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• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction causes a VM exit.

The “PAUSE-loop exiting” VM-execution control is ignored if CPL > 0.
• RDMSR. The RDMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the ranges 00000000H – 00001FFFH and C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in read bitmap for low MSRs is 1, where 
n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in read bitmap for high MSRs is 1, 
where n is the value of ECX & 00001FFFH.

See Section 24.6.9 for details regarding how these bitmaps are identified.
• RDPMC. The RDPMC instruction causes a VM exit if the “RDPMC exiting” VM-execution control is 1.
• RDRAND. The RDRAND instruction causes a VM exit if the “RDRAND exiting” VM-execution control is 1.
• RDTSC. The RDTSC instruction causes a VM exit if the “RDTSC exiting” VM-execution control is 1.
• RDTSCP. The RDTSCP instruction causes a VM exit if the “RDTSC exiting” and “enable RDTSCP” VM-execution 

controls are both 1.
• RSM. The RSM instruction causes a VM exit if executed in system-management mode (SMM).1

• VMREAD. The VMREAD instruction causes a VM exit if any of the following are true:

— The “VMCS shadowing” VM-execution control is 0.

— Bits 63:15 (bits 31:15 outside 64-bit mode) of the register source operand are not all 0.

— Bit n in VMREAD bitmap is 1, where n is the value of bits 14:0 of the register source operand. See Section 
24.6.15 for details regarding how the VMREAD bitmap is identified.

If the VMREAD instruction does not cause a VM exit, it reads from the VMCS referenced by the VMCS link
pointer. See Chapter 30, “VMREAD—Read Field from Virtual-Machine Control Structure” for details of the
operation of the VMREAD instruction.

• VMWRITE. The VMWRITE instruction causes a VM exit if any of the following are true:

— The “VMCS shadowing” VM-execution control is 0.

— Bits 63:15 (bits 31:15 outside 64-bit mode) of the register source operand are not all 0.

— Bit n in VMWRITE bitmap is 1, where n is the value of bits 14:0 of the register source operand. See Section 
24.6.15 for details regarding how the VMWRITE bitmap is identified.

If the VMWRITE instruction does not cause a VM exit, it writes to the VMCS referenced by the VMCS link
pointer. See Chapter 30, “VMWRITE—Write Field to Virtual-Machine Control Structure” for details of the
operation of the VMWRITE instruction.

• WBINVD. The WBINVD instruction causes a VM exit if the “WBINVD exiting” VM-execution control is 1.
• WRMSR. The WRMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the ranges 00000000H – 00001FFFH and C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in write bitmap for low MSRs is 1, 
where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in write bitmap for high MSRs is 1, 
where n is the value of ECX & 00001FFFH.

See Section 24.6.9 for details regarding how these bitmaps are identified.

1. Execution of the RSM instruction outside SMM causes an invalid-opcode exception regardless of whether the processor is in VMX 
operation. It also does so in VMX root operation in SMM; see Section 34.15.3.
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• XRSTORS. The XRSTORS instruction causes a VM exit if the “enable XSAVES/XRSTORS” VM-execution control 
is 1and any bit is set in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the 
XSS-exiting bitmap (see Section 24.6.17).

• XSAVES. The XSAVES instruction causes a VM exit if the “enable XSAVES/XRSTORS” VM-execution control is 
1and any bit is set in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-
exiting bitmap (see Section 24.6.17).

25.2 OTHER CAUSES OF VM EXITS

In addition to VM exits caused by instruction execution, the following events can cause VM exits:
• Exceptions. Exceptions (faults, traps, and aborts) cause VM exits based on the exception bitmap (see Section 

24.6.3). If an exception occurs, its vector (in the range 0–31) is used to select a bit in the exception bitmap. If 
the bit is 1, a VM exit occurs; if the bit is 0, the exception is delivered normally through the guest IDT. This use 
of the exception bitmap applies also to exceptions generated by the instructions INT3, INTO, BOUND, and UD2.
Page faults (exceptions with vector 14) are specially treated. When a page fault occurs, a processor consults 
(1) bit 14 of the exception bitmap; (2) the error code produced with the page fault [PFEC]; (3) the page-fault 
error-code mask field [PFEC_MASK]; and (4) the page-fault error-code match field [PFEC_MATCH]. It checks if 
PFEC & PFEC_MASK = PFEC_MATCH. If there is equality, the specification of bit 14 in the exception bitmap is 
followed (for example, a VM exit occurs if that bit is set). If there is inequality, the meaning of that bit is 
reversed (for example, a VM exit occurs if that bit is clear).
Thus, if software desires VM exits on all page faults, it can set bit 14 in the exception bitmap to 1 and set the 
page-fault error-code mask and match fields each to 00000000H. If software desires VM exits on no page 
faults, it can set bit 14 in the exception bitmap to 1, the page-fault error-code mask field to 00000000H, and 
the page-fault error-code match field to FFFFFFFFH.

• Triple fault. A VM exit occurs if the logical processor encounters an exception while attempting to call the 
double-fault handler and that exception itself does not cause a VM exit due to the exception bitmap. This 
applies to the case in which the double-fault exception was generated within VMX non-root operation, the case 
in which the double-fault exception was generated during event injection by VM entry, and to the case in which 
VM entry is injecting a double-fault exception.

• External interrupts. An external interrupt causes a VM exit if the “external-interrupt exiting” VM-execution 
control is 1. Otherwise, the interrupt is delivered normally through the IDT. (If a logical processor is in the 
shutdown state or the wait-for-SIPI state, external interrupts are blocked. The interrupt is not delivered 
through the IDT and no VM exit occurs.)

• Non-maskable interrupts (NMIs). An NMI causes a VM exit if the “NMI exiting” VM-execution control is 1. 
Otherwise, it is delivered using descriptor 2 of the IDT. (If a logical processor is in the wait-for-SIPI state, NMIs 
are blocked. The NMI is not delivered through the IDT and no VM exit occurs.)

• INIT signals. INIT signals cause VM exits. A logical processor performs none of the operations normally 
associated with these events. Such exits do not modify register state or clear pending events as they would 
outside of VMX operation. (If a logical processor is in the wait-for-SIPI state, INIT signals are blocked. They do 
not cause VM exits in this case.)

• Start-up IPIs (SIPIs). SIPIs cause VM exits. If a logical processor is not in the wait-for-SIPI activity state 
when a SIPI arrives, no VM exit occurs and the SIPI is discarded. VM exits due to SIPIs do not perform any of 
the normal operations associated with those events: they do not modify register state as they would outside of 
VMX operation. (If a logical processor is not in the wait-for-SIPI state, SIPIs are blocked. They do not cause 
VM exits in this case.)

• Task switches. Task switches are not allowed in VMX non-root operation. Any attempt to effect a task switch 
in VMX non-root operation causes a VM exit. See Section 25.4.2.

• System-management interrupts (SMIs). If the logical processor is using the dual-monitor treatment of 
SMIs and system-management mode (SMM), SMIs cause SMM VM exits. See Section 34.15.2.1

1. Under the dual-monitor treatment of SMIs and SMM, SMIs also cause SMM VM exits if they occur in VMX root operation outside SMM. 
If the processor is using the default treatment of SMIs and SMM, SMIs are delivered as described in Section 34.14.1.
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• VMX-preemption timer. A VM exit occurs when the timer counts down to zero. See Section 25.5.1 for details 
of operation of the VMX-preemption timer.
Debug-trap exceptions and higher priority events take priority over VM exits caused by the VMX-preemption 
timer. VM exits caused by the VMX-preemption timer take priority over VM exits caused by the “NMI-window 
exiting” VM-execution control and lower priority events. 
These VM exits wake a logical processor from the same inactive states as would a non-maskable interrupt. 
Specifically, they wake a logical processor from the shutdown state and from the states entered using the HLT 
and MWAIT instructions. These VM exits do not occur if the logical processor is in the wait-for-SIPI state.

In addition, there are controls that cause VM exits based on the readiness of guest software to receive interrupts:
• If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs before execution of any instruction 

if RFLAGS.IF = 1 and there is no blocking of events by STI or by MOV SS (see Table 24-3). Such a VM exit 
occurs immediately after VM entry if the above conditions are true (see Section 26.6.5).
Non-maskable interrupts (NMIs) and higher priority events take priority over VM exits caused by this control. 
VM exits caused by this control take priority over external interrupts and lower priority events. 
These VM exits wake a logical processor from the same inactive states as would an external interrupt. Specifi-
cally, they wake a logical processor from the states entered using the HLT and MWAIT instructions. These 
VM exits do not occur if the logical processor is in the shutdown state or the wait-for-SIPI state.

• If the “NMI-window exiting” VM-execution control is 1, a VM exit occurs before execution of any instruction if 
there is no virtual-NMI blocking and there is no blocking of events by MOV SS (see Table 24-3). (A logical 
processor may also prevent such a VM exit if there is blocking of events by STI.) Such a VM exit occurs 
immediately after VM entry if the above conditions are true (see Section 26.6.6).
VM exits caused by the VMX-preemption timer and higher priority events take priority over VM exits caused by 
this control. VM exits caused by this control take priority over non-maskable interrupts (NMIs) and lower 
priority events. 
These VM exits wake a logical processor from the same inactive states as would an NMI. Specifically, they wake 
a logical processor from the shutdown state and from the states entered using the HLT and MWAIT instructions. 
These VM exits do not occur if the logical processor is in the wait-for-SIPI state.

25.3 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATION

The behavior of some instructions is changed in VMX non-root operation. Some of these changes are determined 
by the settings of certain VM-execution control fields. The following items detail such changes:1

• CLTS. Behavior of the CLTS instruction is determined by the bits in position 3 (corresponding to CR0.TS) in the 
CR0 guest/host mask and the CR0 read shadow:

— If bit 3 in the CR0 guest/host mask is 0, CLTS clears CR0.TS normally (the value of bit 3 in the CR0 read 
shadow is irrelevant in this case), unless CR0.TS is fixed to 1 in VMX operation (see Section 23.8), in which 
case CLTS causes a general-protection exception.

— If bit 3 in the CR0 guest/host mask is 1 and bit 3 in the CR0 read shadow is 0, CLTS completes but does not 
change the contents of CR0.TS.

— If the bits in position 3 in the CR0 guest/host mask and the CR0 read shadow are both 1, CLTS causes a 
VM exit.

• INVPCID. Behavior of the INVPCID instruction is determined first by the setting of the “enable INVPCID” 
VM-execution control:

— If the “enable INVPCID” VM-execution control is 0, INVPCID causes an invalid-opcode exception (#UD).

— If the “enable INVPCID” VM-execution control is 1, treatment is based on the setting of the “INVLPG 
exiting” VM-execution control:

• If the “INVLPG exiting” VM-execution control is 0, INVPCID operates normally.

1. Some of the items in this section refer to secondary processor-based VM-execution controls. If bit 31 of the primary processor-
based VM-execution controls is 0, VMX non-root operation functions as if these controls were all 0. See Section 24.6.2.
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• If the “INVLPG exiting” VM-execution control is 1, INVPCID causes a VM exit.
• IRET. Behavior of IRET with regard to NMI blocking (see Table 24-3) is determined by the settings of the “NMI 

exiting” and “virtual NMIs” VM-execution controls:

— If the “NMI exiting” VM-execution control is 0, IRET operates normally and unblocks NMIs. (If the “NMI 
exiting” VM-execution control is 0, the “virtual NMIs” control must be 0; see Section 26.2.1.1.)

— If the “NMI exiting” VM-execution control is 1, IRET does not affect blocking of NMIs. If, in addition, the 
“virtual NMIs” VM-execution control is 1, the logical processor tracks virtual-NMI blocking. In this case, 
IRET removes any virtual-NMI blocking.

The unblocking of NMIs or virtual NMIs specified above occurs even if IRET causes a fault.
• LMSW. Outside of VMX non-root operation, LMSW loads its source operand into CR0[3:0], but it does not clear 

CR0.PE if that bit is set. In VMX non-root operation, an execution of LMSW that does not cause a VM exit (see 
Section 25.1.3) leaves unmodified any bit in CR0[3:0] corresponding to a bit set in the CR0 guest/host mask. 
An attempt to set any other bit in CR0[3:0] to a value not supported in VMX operation (see Section 23.8) 
causes a general-protection exception. Attempts to clear CR0.PE are ignored without fault.

• MOV from CR0. The behavior of MOV from CR0 is determined by the CR0 guest/host mask and the CR0 read 
shadow. For each position corresponding to a bit clear in the CR0 guest/host mask, the destination operand is 
loaded with the value of the corresponding bit in CR0. For each position corresponding to a bit set in the CR0 
guest/host mask, the destination operand is loaded with the value of the corresponding bit in the CR0 read 
shadow. Thus, if every bit is cleared in the CR0 guest/host mask, MOV from CR0 reads normally from CR0; if 
every bit is set in the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read shadow.
Depending on the contents of the CR0 guest/host mask and the CR0 read shadow, bits may be set in the 
destination that would never be set when reading directly from CR0.

• MOV from CR3. If the “enable EPT” VM-execution control is 1 and an execution of MOV from CR3 does not 
cause a VM exit (see Section 25.1.3), the value loaded from CR3 is a guest-physical address; see Section 
28.2.1.

• MOV from CR4. The behavior of MOV from CR4 is determined by the CR4 guest/host mask and the CR4 read 
shadow. For each position corresponding to a bit clear in the CR4 guest/host mask, the destination operand is 
loaded with the value of the corresponding bit in CR4. For each position corresponding to a bit set in the CR4 
guest/host mask, the destination operand is loaded with the value of the corresponding bit in the CR4 read 
shadow. Thus, if every bit is cleared in the CR4 guest/host mask, MOV from CR4 reads normally from CR4; if 
every bit is set in the CR4 guest/host mask, MOV from CR4 returns the value of the CR4 read shadow.
Depending on the contents of the CR4 guest/host mask and the CR4 read shadow, bits may be set in the 
destination that would never be set when reading directly from CR4.

• MOV from CR8. If the MOV from CR8 instruction does not cause a VM exit (see Section 25.1.3), its behavior 
is modified if the “use TPR shadow” VM-execution control is 1; see Section 29.3.

• MOV to CR0. An execution of MOV to CR0 that does not cause a VM exit (see Section 25.1.3) leaves 
unmodified any bit in CR0 corresponding to a bit set in the CR0 guest/host mask. Treatment of attempts to 
modify other bits in CR0 depends on the setting of the “unrestricted guest” VM-execution control:

— If the control is 0, MOV to CR0 causes a general-protection exception if it attempts to set any bit in CR0 to 
a value not supported in VMX operation (see Section 23.8).

— If the control is 1, MOV to CR0 causes a general-protection exception if it attempts to set any bit in CR0 
other than bit 0 (PE) or bit 31 (PG) to a value not supported in VMX operation. It remains the case, 
however, that MOV to CR0 causes a general-protection exception if it would result in CR0.PE = 0 and 
CR0.PG = 1 or if it would result in CR0.PG = 1, CR4.PAE = 0, and IA32_EFER.LME = 1.

• MOV to CR3. If the “enable EPT” VM-execution control is 1 and an execution of MOV to CR3 does not cause a 
VM exit (see Section 25.1.3), the value loaded into CR3 is treated as a guest-physical address; see Section 
28.2.1.

— If PAE paging is not being used, the instruction does not use the guest-physical address to access memory 
and it does not cause it to be translated through EPT.1

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3A.
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— If PAE paging is being used, the instruction translates the guest-physical address through EPT and uses the 
result to load the four (4) page-directory-pointer-table entries (PDPTEs). The instruction does not use the 
guest-physical addresses the PDPTEs to access memory and it does not cause them to be translated 
through EPT.

• MOV to CR4. An execution of MOV to CR4 that does not cause a VM exit (see Section 25.1.3) leaves 
unmodified any bit in CR4 corresponding to a bit set in the CR4 guest/host mask. Such an execution causes a 
general-protection exception if it attempts to set any bit in CR4 (not corresponding to a bit set in the CR4 
guest/host mask) to a value not supported in VMX operation (see Section 23.8).

• MOV to CR8. If the MOV to CR8 instruction does not cause a VM exit (see Section 25.1.3), its behavior is 
modified if the “use TPR shadow” VM-execution control is 1; see Section 29.3.

• MWAIT.  Behavior of the MWAIT instruction (which always causes an invalid-opcode exception—#UD—if 
CPL > 0) is determined by the setting of the “MWAIT exiting” VM-execution control:

— If the “MWAIT exiting” VM-execution control is 1, MWAIT causes a VM exit.

— If the “MWAIT exiting” VM-execution control is 0, MWAIT does not cause the processor to enter an imple-
mentation-dependent optimized state if (1) ECX[0] = 1; and (2) either (a) the “interrupt-window exiting” 
VM-execution control is 0; or (b) the logical processor has recognized a pending virtual interrupt (see 
Section 29.2.1). Instead, control passes to the instruction following the MWAIT instruction.

• RDMSR. Section 25.1.3 identifies when executions of the RDMSR instruction cause VM exits. If such an 
execution causes neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified for 
certain values of ECX:

— If ECX contains 10H (indicating the IA32_TIME_STAMP_COUNTER MSR), the value returned by the 
instruction is determined by the setting of the “use TSC offsetting” VM-execution control as well as the TSC 
offset:

• If the control is 0, the instruction operates normally, loading EAX:EDX with the value of the 
IA32_TIME_STAMP_COUNTER MSR.

• If the control is 1, the instruction loads EAX:EDX with the sum (using signed addition) of the value of 
the IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset (interpreted as a signed value).

The 1-setting of the “use TSC-offsetting” VM-execution control does not effect executions of RDMSR if ECX 
contains 6E0H (indicating the IA32_TSC_DEADLINE MSR). Such executions return the APIC-timer deadline 
relative to the actual timestamp counter without regard to the TSC offset.

— If ECX is in the range 800H–8FFH (indicating an APIC MSR), instruction behavior may be modified if the 
“virtualize x2APIC mode” VM-execution control is 1; see Section 29.5.

• RDTSC. Behavior of the RDTSC instruction is determined by the settings of the “RDTSC exiting” and “use TSC 
offsetting” VM-execution controls as well as the TSC offset:

— If both controls are 0, RDTSC operates normally.

— If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” VM-execution control is 1, 
RDTSC loads EAX:EDX with the sum (using signed addition) of the value of the 
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset (interpreted as a signed value).

— If the “RDTSC exiting” VM-execution control is 1, RDTSC causes a VM exit.
• RDTSCP. Behavior of the RDTSCP instruction is determined first by the setting of the “enable RDTSCP” 

VM-execution control:

— If the “enable RDTSCP” VM-execution control is 0, RDTSCP causes an invalid-opcode exception (#UD).

— If the “enable RDTSCP” VM-execution control is 1, treatment is based on the settings of the “RDTSC exiting” 
and “use TSC offsetting” VM-execution controls as well as the TSC offset:

• If both controls are 0, RDTSCP operates normally.

• If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” VM-execution control is 1, 
RDTSCP loads EAX:EDX with the sum (using signed addition) of the value of the 
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset (interpreted as a signed value); it 
also loads ECX with the value of bits 31:0 of the IA32_TSC_AUX MSR.

• If the “RDTSC exiting” VM-execution control is 1, RDTSCP causes a VM exit.



Vol. 3C 25-9

VMX NON-ROOT OPERATION

• SMSW. The behavior of SMSW is determined by the CR0 guest/host mask and the CR0 read shadow. For each 
position corresponding to a bit clear in the CR0 guest/host mask, the destination operand is loaded with the 
value of the corresponding bit in CR0. For each position corresponding to a bit set in the CR0 guest/host mask, 
the destination operand is loaded with the value of the corresponding bit in the CR0 read shadow. Thus, if every 
bit is cleared in the CR0 guest/host mask, MOV from CR0 reads normally from CR0; if every bit is set in the CR0 
guest/host mask, MOV from CR0 returns the value of the CR0 read shadow.
Note the following: (1) for any memory destination or for a 16-bit register destination, only the low 16 bits of 
the CR0 guest/host mask and the CR0 read shadow are used (bits 63:16 of a register destination are left 
unchanged); (2) for a 32-bit register destination, only the low 32 bits of the CR0 guest/host mask and the CR0 
read shadow are used (bits 63:32 of the destination are cleared); and (3) depending on the contents of the 
CR0 guest/host mask and the CR0 read shadow, bits may be set in the destination that would never be set 
when reading directly from CR0.

• WRMSR. Section 25.1.3 identifies when executions of the WRMSR instruction cause VM exits. If such an 
execution neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified for certain 
values of ECX:

— If ECX contains 79H (indicating IA32_BIOS_UPDT_TRIG MSR), no microcode update is loaded, and control 
passes to the next instruction. This implies that microcode updates cannot be loaded in VMX non-root 
operation.

— If ECX contains 808H (indicating the TPR MSR), 80BH (the EOI MSR), or 83FH (self-IPI MSR), instruction 
behavior may modified if the “virtualize x2APIC mode” VM-execution control is 1; see Section 29.5.

• XRSTORS. Behavior of the XRSTORS instruction is determined first by the setting of the “enable 
XSAVES/XRSTORS” VM-execution control:

— If the “enable XSAVES/XRSTORS” VM-execution control is 0, XRSTORS causes an invalid-opcode exception 
(#UD).

— If the “enable XSAVES/XRSTORS” VM-execution control is 1, treatment is based on the value of the XSS-
exiting bitmap (see Section 24.6.17):

• XRSTORS causes a VM exit if any bit is set in the logical-AND of the following three values: EDX:EAX, 
the IA32_XSS MSR, and the XSS-exiting bitmap.

• Otherwise, XRSTORS operates normally.
• XSAVES. Behavior of the XSAVES instruction is determined first by the setting of the “enable 

XSAVES/XRSTORS” VM-execution control:

— If the “enable XSAVES/XRSTORS” VM-execution control is 0, XSAVES causes an invalid-opcode exception 
(#UD).

— If the “enable XSAVES/XRSTORS” VM-execution control is 1, treatment is based on the value of the XSS-
exiting bitmap (see Section 24.6.17):

• XSAVES causes a VM exit if any bit is set in the logical-AND of the following three values: EDX:EAX, the 
IA32_XSS MSR, and the XSS-exiting bitmap.

• Otherwise, XSAVES operates normally.

25.4 OTHER CHANGES IN VMX NON-ROOT OPERATION

Treatments of event blocking and of task switches differ in VMX non-root operation as described in the following 
sections.

25.4.1 Event Blocking

Event blocking is modified in VMX non-root operation as follows:
• If the “external-interrupt exiting” VM-execution control is 1, RFLAGS.IF does not control the blocking of 

external interrupts. In this case, an external interrupt that is not blocked for other reasons causes a VM exit 
(even if RFLAGS.IF = 0).
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• If the “external-interrupt exiting” VM-execution control is 1, external interrupts may or may not be blocked by 
STI or by MOV SS (behavior is implementation-specific).

• If the “NMI exiting” VM-execution control is 1, non-maskable interrupts (NMIs) may or may not be blocked by 
STI or by MOV SS (behavior is implementation-specific).

25.4.2 Treatment of Task Switches

Task switches are not allowed in VMX non-root operation. Any attempt to effect a task switch in VMX non-root oper-
ation causes a VM exit. However, the following checks are performed (in the order indicated), possibly resulting in 
a fault, before there is any possibility of a VM exit due to task switch:

1. If a task gate is being used, appropriate checks are made on its P bit and on the proper values of the relevant 
privilege fields. The following cases detail the privilege checks performed:

a. If CALL, INT n, or JMP accesses a task gate in IA-32e mode, a general-protection exception occurs.

b. If CALL, INT n, INT3, INTO, or JMP accesses a task gate outside IA-32e mode, privilege-levels checks are 
performed on the task gate but, if they pass, privilege levels are not checked on the referenced task-state 
segment (TSS) descriptor.

c. If CALL or JMP accesses a TSS descriptor directly in IA-32e mode, a general-protection exception occurs.

d. If CALL or JMP accesses a TSS descriptor directly outside IA-32e mode, privilege levels are checked on the 
TSS descriptor.

e. If a non-maskable interrupt (NMI), an exception, or an external interrupt accesses a task gate in the IDT in 
IA-32e mode, a general-protection exception occurs.

f. If a non-maskable interrupt (NMI), an exception other than breakpoint exceptions (#BP) and overflow 
exceptions (#OF), or an external interrupt accesses a task gate in the IDT outside IA-32e mode, no 
privilege checks are performed.

g. If IRET is executed with RFLAGS.NT = 1 in IA-32e mode, a general-protection exception occurs.

h. If IRET is executed with RFLAGS.NT = 1 outside IA-32e mode, a TSS descriptor is accessed directly and no 
privilege checks are made.

2. Checks are made on the new TSS selector (for example, that is within GDT limits).

3. The new TSS descriptor is read. (A page fault results if a relevant GDT page is not present).

4. The TSS descriptor is checked for proper values of type (depends on type of task switch), P bit, S bit, and limit.

Only if checks 1–4 all pass (do not generate faults) might a VM exit occur. However, the ordering between a VM exit 
due to a task switch and a page fault resulting from accessing the old TSS or the new TSS is implementation-
specific. Some processors may generate a page fault (instead of a VM exit due to a task switch) if accessing either 
TSS would cause a page fault. Other processors may generate a VM exit due to a task switch even if accessing 
either TSS would cause a page fault.

If an attempt at a task switch through a task gate in the IDT causes an exception (before generating a VM exit due 
to the task switch) and that exception causes a VM exit, information about the event whose delivery that accessed 
the task gate is recorded in the IDT-vectoring information fields and information about the exception that caused 
the VM exit is recorded in the VM-exit interruption-information fields. See Section 27.2. The fact that a task gate 
was being accessed is not recorded in the VMCS.

If an attempt at a task switch through a task gate in the IDT causes VM exit due to the task switch, information 
about the event whose delivery accessed the task gate is recorded in the IDT-vectoring fields of the VMCS. Since 
the cause of such a VM exit is a task switch and not an interruption, the valid bit for the VM-exit interruption infor-
mation field is 0. See Section 27.2.
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25.5 FEATURES SPECIFIC TO VMX NON-ROOT OPERATION

Some VM-execution controls support features that are specific to VMX non-root operation. These are the VMX-
preemption timer (Section 25.5.1) and the monitor trap flag (Section 25.5.2), translation of guest-physical 
addresses (Section 25.5.3), VM functions (Section 25.5.5), and virtualization exceptions (Section 25.5.6).

25.5.1 VMX-Preemption Timer

If the last VM entry was performed with the 1-setting of “activate VMX-preemption timer” VM-execution control, 
the VMX-preemption timer counts down (from the value loaded by VM entry; see Section 26.6.4) in VMX non-
root operation. When the timer counts down to zero, it stops counting down and a VM exit occurs (see Section 
25.2).

The VMX-preemption timer counts down at rate proportional to that of the timestamp counter (TSC). Specifically, 
the timer counts down by 1 every time bit X in the TSC changes due to a TSC increment. The value of X is in the 
range 0–31 and can be determined by consulting the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).

The VMX-preemption timer operates in the C-states C0, C1, and C2; it also operates in the shutdown and wait-for-
SIPI states. If the timer counts down to zero in any state other than the wait-for SIPI state, the logical processor 
transitions to the C0 C-state and causes a VM exit; the timer does not cause a VM exit if it counts down to zero in 
the wait-for-SIPI state. The timer is not decremented in C-states deeper than C2.

Treatment of the timer in the case of system management interrupts (SMIs) and system-management mode 
(SMM) depends on whether the treatment of SMIs and SMM:
• If the default treatment of SMIs and SMM (see Section 34.14) is active, the VMX-preemption timer counts 

across an SMI to VMX non-root operation, subsequent execution in SMM, and the return from SMM via the RSM 
instruction. However, the timer can cause a VM exit only from VMX non-root operation. If the timer expires 
during SMI, in SMM, or during RSM, a timer-induced VM exit occurs immediately after RSM with its normal 
priority unless it is blocked based on activity state (Section 25.2).

• If the dual-monitor treatment of SMIs and SMM (see Section 34.15) is active, transitions into and out of SMM 
are VM exits and VM entries, respectively. The treatment of the VMX-preemption timer by those transitions is 
mostly the same as for ordinary VM exits and VM entries; Section 34.15.2 and Section 34.15.4 detail some 
differences.

25.5.2 Monitor Trap Flag

The monitor trap flag is a debugging feature that causes VM exits to occur on certain instruction boundaries in 
VMX non-root operation. Such VM exits are called MTF VM exits. An MTF VM exit may occur on an instruction 
boundary in VMX non-root operation as follows:
• If the “monitor trap flag” VM-execution control is 1 and VM entry is injecting a vectored event (see Section 

26.5.1), an MTF VM exit is pending on the instruction boundary before the first instruction following the 
VM entry.

• If VM entry is injecting a pending MTF VM exit (see Section 26.5.2), an MTF VM exit is pending on the 
instruction boundary before the first instruction following the VM entry. This is the case even if the “monitor 
trap flag” VM-execution control is 0.

• If the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and a pending event 
(e.g., debug exception or interrupt) is delivered before an instruction can execute, an MTF VM exit is pending 
on the instruction boundary following delivery of the event (or any nested exception).

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and the first 
instruction following VM entry is a REP-prefixed string instruction:

— If the first iteration of the instruction causes a fault, an MTF VM exit is pending on the instruction boundary 
following delivery of the fault (or any nested exception).

— If the first iteration of the instruction does not cause a fault, an MTF VM exit is pending on the instruction 
boundary after that iteration.
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• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and the first 
instruction following VM entry is not a REP-prefixed string instruction:

— If the instruction causes a fault, an MTF VM exit is pending on the instruction boundary following delivery of 
the fault (or any nested exception).1

— If the instruction does not cause a fault, an MTF VM exit is pending on the instruction boundary following 
execution of that instruction. If the instruction is INT3 or INTO, this boundary follows delivery of any 
software exception. If the instruction is INT n, this boundary follows delivery of a software interrupt. If the 
instruction is HLT, the MTF VM exit will be from the HLT activity state.

No MTF VM exit occurs if another VM exit occurs before reaching the instruction boundary on which an MTF VM exit 
would be pending (e.g., due to an exception or triple fault).

An MTF VM exit occurs on the instruction boundary on which it is pending unless a higher priority event takes 
precedence or the MTF VM exit is blocked due to the activity state:
• System-management interrupts (SMIs), INIT signals, and higher priority events take priority over MTF 

VM exits. MTF VM exits take priority over debug-trap exceptions and lower priority events.
• No MTF VM exit occurs if the processor is in either the shutdown activity state or wait-for-SIPI activity state. If 

a non-maskable interrupt subsequently takes the logical processor out of the shutdown activity state without 
causing a VM exit, an MTF VM exit is pending after delivery of that interrupt.

25.5.3 Translation of Guest-Physical Addresses Using EPT

The extended page-table mechanism (EPT) is a feature that can be used to support the virtualization of physical 
memory. When EPT is in use, certain physical addresses are treated as guest-physical addresses and are not used 
to access memory directly. Instead, guest-physical addresses are translated by traversing a set of EPT paging 
structures to produce physical addresses that are used to access memory.

Details of the EPT are given in Section 28.2.

25.5.4 APIC Virtualization

APIC virtualization is a collection of features that can be used to support the virtualization of interrupts and the 
Advanced Programmable Interrupt Controller (APIC). When APIC virtualization is enabled, the processor emulates 
many accesses to the APIC, tracks the state of the virtual APIC, and delivers virtual interrupts — all in VMX non-
root operation without a VM exit.

Details of the APIC virtualization are given in Chapter 29.

25.5.5 VM Functions

A VM function is an operation provided by the processor that can be invoked from VMX non-root operation without 
a VM exit. VM functions are enabled and configured by the settings of different fields in the VMCS. Software in VMX 
non-root operation invokes a VM function with the VMFUNC instruction; the value of EAX selects the specific 
VM function being invoked.

Section 25.5.5.1 explains how VM functions are enabled. Section 25.5.5.2 specifies the behavior of the VMFUNC 
instruction. Section 25.5.5.3 describes a specific VM function called EPTP switching.

25.5.5.1  Enabling VM Functions

Software enables VM functions generally by setting the “enable VM functions” VM-execution control. A specific 
VM function is enabled by setting the corresponding VM-function control.

1. This item includes the cases of an invalid opcode exception—#UD— generated by the UD2 instruction and a BOUND-range exceeded 
exception—#BR—generated by the BOUND instruction.
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Suppose, for example, that software wants to enable EPTP switching (VM function 0; see Section 24.6.14).To do 
so, it must set the “activate secondary controls” VM-execution control (bit 31 of the primary processor-based VM-
execution controls), the “enable VM functions” VM-execution control (bit 13 of the secondary processor-based VM-
execution controls) and the “EPTP switching” VM-function control (bit 0 of the VM-function controls).

25.5.5.2  General Operation of the VMFUNC Instruction

The VMFUNC instruction causes an invalid-opcode exception (#UD) if the “enable VM functions” VM-execution 
controls is 01 or the value of EAX is greater than 63 (only VM functions 0–63 can be enable). Otherwise, the 
instruction causes a VM exit if the bit at position EAX is 0 in the VM-function controls (the selected VM function is 
not enabled). If such a VM exit occurs, the basic exit reason used is 59 (3BH), indicating “VMFUNC”, and the length 
of the VMFUNC instruction is saved into the VM-exit instruction-length field. If the instruction causes neither an 
invalid-opcode exception nor a VM exit due to a disabled VM function, it performs the functionality of the 
VM function specified by the value in EAX.

Individual VM functions may perform additional fault checking (e.g., one might cause a general-protection excep-
tion if CPL > 0). In addition, specific VM functions may include checks that might result in a VM exit. If such a 
VM exit occurs, VM-exit information is saved as described in the previous paragraph. The specification of a 
VM function may indicate that additional VM-exit information is provided.

The specific behavior of the EPTP-switching VM function (including checks that result in VM exits) is given in 
Section 25.5.5.3.

25.5.5.3  EPTP Switching

EPTP switching is VM function 0. This VM function allows software in VMX non-root operation to load a new value 
for the EPT pointer (EPTP), thereby establishing a different EPT paging-structure hierarchy (see Section 28.2 for 
details of the operation of EPT). Software is limited to selecting from a list of potential EPTP values configured in 
advance by software in VMX root operation.

Specifically, the value of ECX is used to select an entry from the EPTP list, the 4-KByte structure referenced by the 
EPTP-list address (see Section 24.6.14; because this structure contains 512 8-Byte entries, VMFUNC causes a 
VM exit if ECX ≥ 512). If the selected entry is a valid EPTP value (it would not cause VM entry to fail; see Section 
26.2.1.1), it is stored in the EPTP field of the current VMCS and is used for subsequent accesses using guest-phys-
ical addresses. The following pseudocode provides details:

IF ECX ≥ 512

THEN VM exit;

ELSE

tent_EPTP ← 8 bytes from EPTP-list address + 8 * ECX;

IF tent_EPTP is not a valid EPTP value (would cause VM entry to fail if in EPTP)

THEN VMexit;

ELSE

write tent_EPTP to the EPTP field in the current VMCS;

use tent_EPTP as the new EPTP value for address translation;

IF processor supports the 1-setting of the “EPT-violation #VE” VM-execution control

THEN

write ECX[15:0] to EPTP-index field in current VMCS;

use ECX[15:0] as EPTP index for subsequent EPT-violation virtualization exceptions (see Section 25.5.6.2);

FI;

FI;

FI;

Execution of the EPTP-switching VM function does not modify the state of any registers; no flags are modified.

1. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VMX non-root operation functions as if the “enable VM functions” VM-execution control were 0. See Section 24.6.2.
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As noted in Section 25.5.5.2, an execution of the EPTP-switching VM function that causes a VM exit (as specified 
above), uses the basic exit reason 59, indicating “VMFUNC”. The length of the VMFUNC instruction is saved into the 
VM-exit instruction-length field. No additional VM-exit information is provided.

An execution of VMFUNC loads EPTP from the EPTP list (and thus does not cause a fault or VM exit) is called an 
EPTP-switching VMFUNC. After an EPTP-switching VMFUNC, control passes to the next instruction. The logical 
processor starts creating and using guest-physical and combined mappings associated with the new value of bits 
51:12 of EPTP; the combined mappings created and used are associated with the current VPID and PCID (these are 
not changed by VMFUNC).1 If the “enable VPID” VM-execution control is 0, an EPTP-switching VMFUNC invalidates 
combined mappings associated with VPID 0000H (for all PCIDs and for all EP4TA values, where EP4TA is the value 
of bits 51:12 of EPTP).

Because an EPTP-switching VMFUNC may change the translation of guest-physical addresses, it may affect use of 
the guest-physical address in CR3. The EPTP-switching VMFUNC cannot itself cause a VM exit due to an EPT viola-
tion or an EPT misconfiguration due to the translation of that guest-physical address through the new EPT paging 
structures. The following items provide details that apply if CR0.PG = 1:
• If 32-bit paging or IA-32e paging is in use (either CR4.PAE = 0 or IA32_EFER.LMA = 1), the next memory 

access with a linear address uses the translation of the guest-physical address in CR3 through the new EPT 
paging structures. As a result, this access may cause a VM exit due to an EPT violation or an EPT misconfigu-
ration encountered during that translation.

• If PAE paging is in use (CR4.PAE = 1 and IA32_EFER.LMA = 0), an EPTP-switching VMFUNC does not load the 
four page-directory-pointer-table entries (PDPTEs) from the guest-physical address in CR3. The logical 
processor continues to use the four guest-physical addresses already present in the PDPTEs. The guest-
physical address in CR3 is not translated through the new EPT paging structures (until some operation that 
would load the PDPTEs).
The EPTP-switching VMFUNC cannot itself cause a VM exit due to an EPT violation or an EPT misconfiguration
encountered during the translation of a guest-physical address in any of the PDPTEs. A subsequent memory
access with a linear address uses the translation of the guest-physical address in the appropriate PDPTE
through the new EPT paging structures. As a result, such an access may cause a VM exit due to an EPT
violation or an EPT misconfiguration encountered during that translation.

If an EPTP-switching VMFUNC establishes an EPTP value that enables accessed and dirty flags for EPT (by setting 
bit 6), subsequent memory accesses may fail to set those flags as specified if there has been no appropriate execu-
tion of INVEPT since the last use of an EPTP value that does not enable accessed and dirty flags for EPT (because 
bit 6 is clear) and that is identical to the new value on bits 51:12.

IF the processor supports the 1-setting of the “EPT-violation #VE” VM-execution control, an EPTP-switching 
VMFUNC loads the value in ECX[15:0] into to EPTP-index field in current VMCS. Subsequent EPT-violation virtual-
ization exceptions will save this value into the virtualization-exception information area (see Section 25.5.6.2);

25.5.6 Virtualization Exceptions

A virtualization exception is a new processor exception. It uses vector 20 and is abbreviated #VE.

A virtualization exception can occur only in VMX non-root operation. Virtualization exceptions occur only with 
certain settings of certain VM-execution controls. Generally, these settings imply that certain conditions that would 
normally cause VM exits instead cause virtualization exceptions

In particular, the 1-setting of the “EPT-violation #VE” VM-execution control causes some EPT violations to generate 
virtualization exceptions instead of VM exits. Section 25.5.6.1 provides the details of how the processor determines 
whether an EPT violation causes a virtualization exception or a VM exit.

When the processor encounters a virtualization exception, it saves information about the exception to the virtual-
ization-exception information area; see Section 25.5.6.2.

After saving virtualization-exception information, the processor delivers a virtualization exception as it would any 
other exception; see Section 25.5.6.3 for details.

1. If the “enable VPID” VM-execution control is 0, the current VPID is 0000H; if CR4.PCIDE = 0, the current PCID is 000H.
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25.5.6.1  Convertible EPT Violations

If the “EPT-violation #VE” VM-execution control is 0 (e.g., on processors that do not support this feature), EPT 
violations always cause VM exits. If instead the control is 1, certain EPT violations may be converted to cause virtu-
alization exceptions instead; such EPT violations are convertible. 

The values of certain EPT paging-structure entries determine which EPT violations are convertible. Specifically, 
bit 63 of certain EPT paging-structure entries may be defined to mean suppress #VE:
• If bits 2:0 of an EPT paging-structure entry are all 0, the entry is not present. If the processor encounters 

such an entry while translating a guest-physical address, it causes an EPT violation. The EPT violation is 
convertible if and only if bit 63 of the entry is 0.

• If bits 2:0 of an EPT paging-structure entry are not all 0, the following cases apply:

— If the value of the EPT paging-structure entry is not supported, the entry is misconfigured. If the 
processor encounters such an entry while translating a guest-physical address, it causes an EPT misconfig-
uration (not an EPT violation). EPT misconfigurations always cause VM exits.

— If the value of the EPT paging-structure entry is supported, the following cases apply:

• If bit 7 of the entry is 1, or if the entry is an EPT PTE, the entry maps a page. If the processor uses such 
an entry to translate a guest-physical address, and if an access to that address causes an EPT violation, 
the EPT violation is convertible if and only if bit 63 of the entry is 0.

• If bit 7 of the entry is 0 and the entry is not an EPT PTE, the entry references another EPT paging 
structure. The processor does not use the value of bit 63 of the entry to determine whether any 
subsequent EPT violation is convertible.

If an access to a guest-physical address causes an EPT violation, bit 63 of exactly one of the EPT paging-structure 
entries used to translate that address is used to determine whether the EPT violation is convertible: either a entry 
that is not present (if the guest-physical address does not translate to a physical address) or an entry that maps a 
page (if it does).

A convertible EPT violation instead causes a virtualization exception if the following all hold:
• CR0.PE = 1;
• the logical processor is not in the process of delivering an event through the IDT; and
• the 32 bits at offset 4 in the virtualization-exception information area are all 0.

Delivery of virtualization exceptions writes the value FFFFFFFFH to offset 4 in the virtualization-exception informa-
tion area (see Section 25.5.6.2). Thus, once a virtualization exception occurs, another can occur only if software 
clears this field.

25.5.6.2  Virtualization-Exception Information

Virtualization exceptions save data into the virtualization-exception information area (see Section 24.6.16). 
Table 25-1 enumerates the data saved and the format of the area.

Table 25-1.  Format of the Virtualization-Exception Information Area

Byte Offset Contents

0 The 32-bit value that would have been saved into the VMCS as an exit reason had a VM exit occurred 
instead of the virtualization exception. For EPT violations, this value is 48 (00000030H)

4 FFFFFFFFH

8 The 64-bit value that would have been saved into the VMCS as an exit qualification had a VM exit 
occurred instead of the virtualization exception

16 The 64-bit value that would have been saved into the VMCS as a guest-linear address had a VM exit 
occurred instead of the virtualization exception
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25.5.6.3  Delivery of Virtualization Exceptions

After saving virtualization-exception information, the processor treats a virtualization exception as it does other 
exceptions:
• If bit 20 (#VE) is 1 in the exception bitmap in the VMCS, a virtualization exception causes a VM exit (see 

below). If the bit is 0, the virtualization exception is delivered using gate descriptor 20 in the IDT.
• Virtualization exceptions produce no error code. Delivery of a virtualization exception pushes no error code on 

the stack.
• With respect to double faults, virtualization exceptions have the same severity as page faults. If delivery of a 

virtualization exception encounters a nested fault that is either contributory or a page fault, a double fault 
(#DF) is generated. See Chapter 6, “Interrupt 8—Double Fault Exception (#DF)” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A.
It is not possible for a virtualization exception to be encountered while delivering another exception (see
Section 25.5.6.1).

If a virtualization exception causes a VM exit directly (because bit 20 is 1 in the exception bitmap), information 
about the exception is saved normally in the VM-exit interruption information field in the VMCS (see Section 
27.2.2). Specifically, the event is reported as a hardware exception with vector 20 and no error code. Bit 12 of the 
field (NMI unblocking due to IRET) is set normally.

If a virtualization exception causes a VM exit indirectly (because bit 20 is 0 in the exception bitmap and delivery of 
the exception generates an event that causes a VM exit), information about the exception is saved normally in the 
IDT-vectoring information field in the VMCS (see Section 27.2.3). Specifically, the event is reported as a hardware 
exception with vector 20 and no error code.

25.6 UNRESTRICTED GUESTS

The first processors to support VMX operation require CR0.PE and CR0.PG to be 1 in VMX operation (see Section 
23.8). This restriction implies that guest software cannot be run in unpaged protected mode or in real-address 
mode. Later processors support a VM-execution control called “unrestricted guest”.1 If this control is 1, CR0.PE and 
CR0.PG may be 0 in VMX non-root operation. Such processors allow guest software to run in unpaged protected 
mode or in real-address mode. The following items describe the behavior of such software:
• The MOV CR0 instructions does not cause a general-protection exception simply because it would set either 

CR0.PE and CR0.PG to 0. See Section 25.3 for details.
• A logical processor treats the values of CR0.PE and CR0.PG in VMX non-root operation just as it does outside 

VMX operation. Thus, if CR0.PE = 0, the processor operates as it does normally in real-address mode (for 
example, it uses the 16-bit interrupt table to deliver interrupts and exceptions). If CR0.PG = 0, the processor 
operates as it does normally when paging is disabled.

• Processor operation is modified by the fact that the processor is in VMX non-root operation and by the settings 
of the VM-execution controls just as it is in protected mode or when paging is enabled. Instructions, interrupts, 
and exceptions that cause VM exits in protected mode or when paging is enabled also do so in real-address 
mode or when paging is disabled. The following examples should be noted:

24 The 64-bit value that would have been saved into the VMCS as a guest-physical address had a VM 
exit occurred instead of the virtualization exception

32 The current 16-bit value of the EPTP index VM-execution control (see Section 24.6.16 and Section 
25.5.5.3)

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VMX non-root operation functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.

Table 25-1.  Format of the Virtualization-Exception Information Area (Contd.)

Byte Offset Contents



Vol. 3C 25-17

VMX NON-ROOT OPERATION

— If CR0.PG = 0, page faults do not occur and thus cannot cause VM exits.

— If CR0.PE = 0, invalid-TSS exceptions do not occur and thus cannot cause VM exits.

— If CR0.PE = 0, the following instructions cause invalid-opcode exceptions and do not cause VM exits: 
INVEPT, INVVPID, LLDT, LTR, SLDT, STR, VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, 
VMRESUME, VMWRITE, VMXOFF, and VMXON.

• If CR0.PG = 0, each linear address is passed directly to the EPT mechanism for translation to a physical 
address.1 The guest memory type passed on to the EPT mechanism is WB (writeback).

1. As noted in Section 26.2.1.1, the “enable EPT” VM-execution control must be 1 if the “unrestricted guest” VM-execution control is 1.
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Software can enter VMX non-root operation using either of the VM-entry instructions VMLAUNCH and VMRESUME. 
VMLAUNCH can be used only with a VMCS whose launch state is clear and VMRESUME can be used only with a 
VMCS whose the launch state is launched. VMLAUNCH should be used for the first VM entry after VMCLEAR; VMRE-
SUME should be used for subsequent VM entries with the same VMCS.

Each VM entry performs the following steps in the order indicated:

1. Basic checks are performed to ensure that VM entry can commence 
(Section 26.1).

2. The control and host-state areas of the VMCS are checked to ensure that they are proper for supporting VMX 
non-root operation and that the VMCS is correctly configured to support the next VM exit (Section 26.2).

3. The following may be performed in parallel or in any order (Section 26.3):

• The guest-state area of the VMCS is checked to ensure that, after the VM entry completes, the state of the 
logical processor is consistent with IA-32 and Intel 64 architectures.

• Processor state is loaded from the guest-state area and based on controls in the VMCS.

• Address-range monitoring is cleared.

4. MSRs are loaded from the VM-entry MSR-load area (Section 26.4).

5. If VMLAUNCH is being executed, the launch state of the VMCS is set to “launched.”

6. An event may be injected in the guest context (Section 26.5).

Steps 1–4 above perform checks that may cause VM entry to fail. Such failures occur in one of the following three 
ways:
• Some of the checks in Section 26.1 may generate ordinary faults (for example, an invalid-opcode exception). 

Such faults are delivered normally.
• Some of the checks in Section 26.1 and all the checks in Section 26.2 cause control to pass to the instruction 

following the VM-entry instruction. The failure is indicated by setting RFLAGS.ZF1 (if there is a current VMCS) 
or RFLAGS.CF (if there is no current VMCS). If there is a current VMCS, an error number indicating the cause of 
the failure is stored in the VM-instruction error field. See Chapter 30 for the error numbers.

• The checks in Section 26.3 and Section 26.4 cause processor state to be loaded from the host-state area of the 
VMCS (as would be done on a VM exit). Information about the failure is stored in the VM-exit information fields. 
See Section 26.7 for details.

EFLAGS.TF = 1 causes a VM-entry instruction to generate a single-step debug exception only if failure of one of the 
checks in Section 26.1 and Section 26.2 causes control to pass to the following instruction. A VM-entry does not 
generate a single-step debug exception in any of the following cases: (1) the instruction generates a fault; (2) 
failure of one of the checks in Section 26.3 or in loading MSRs causes processor state to be loaded from the host-
state area of the VMCS; or (3) the instruction passes all checks in Section 26.1, Section 26.2, and Section 26.3 and 
there is no failure in loading MSRs.

Section 34.15 describes the dual-monitor treatment of system-management interrupts (SMIs) and system-
management mode (SMM). Under this treatment, code running in SMM returns using VM entries instead of the 
RSM instruction. A VM entry returns from SMM if it is executed in SMM and the “entry to SMM” VM-entry control 
is 0. VM entries that return from SMM differ from ordinary VM entries in ways that are detailed in Section 34.15.4.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For IA-32 processors, this notation refers to the 32-bit forms of those registers (EAX, EIP, 
ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.
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26.1 BASIC VM-ENTRY CHECKS

Before a VM entry commences, the current state of the logical processor is checked in the following order:

1. If the logical processor is in virtual-8086 mode or compatibility mode, an invalid-opcode exception is
generated.

2. If the current privilege level (CPL) is not zero, a general-protection exception is generated.

3. If there is no current VMCS, RFLAGS.CF is set to 1 and control passes to the next instruction.

4. If there is a current VMCS but the current VMCS is a shadow VMCS (see Section 24.10), RFLAGS.CF is set to 1 
and control passes to the next instruction.

5. If there is a current VMCS that is not a shadow VMCS, the following conditions are evaluated in order; any of 
these cause VM entry to fail:

a. if there is MOV-SS blocking (see Table 24-3)

b. if the VM entry is invoked by VMLAUNCH and the VMCS launch state is not clear

c. if the VM entry is invoked by VMRESUME and the VMCS launch state is not launched
If any of these checks fail, RFLAGS.ZF is set to 1 and control passes to the next instruction. An error number 
indicating the cause of the failure is stored in the VM-instruction error field. See Chapter 30 for the error 
numbers.

26.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA

If the checks in Section 26.1 do not cause VM entry to fail, the control and host-state areas of the VMCS are 
checked to ensure that they are proper for supporting VMX non-root operation, that the VMCS is correctly config-
ured to support the next VM exit, and that, after the next VM exit, the processor’s state is consistent with the Intel 
64 and IA-32 architectures.

VM entry fails if any of these checks fail. When such failures occur, control is passed to the next instruction, 
RFLAGS.ZF is set to 1 to indicate the failure, and the VM-instruction error field is loaded with an error number that 
indicates whether the failure was due to the controls or the host-state area (see Chapter 30).

These checks may be performed in any order. Thus, an indication by error number of one cause (for example, host 
state) does not imply that there are not also other errors. Different processors may thus give different error 
numbers for the same VMCS. Some checks prevent establishment of settings (or combinations of settings) that are 
currently reserved. Future processors may allow such settings (or combinations) and may not perform the corre-
sponding checks. The correctness of software should not rely on VM-entry failures resulting from the checks docu-
mented in this section.

The checks on the controls and the host-state area are presented in Section 26.2.1 through Section 26.2.4. These 
sections reference VMCS fields that correspond to processor state. Unless otherwise stated, these references are 
to fields in the host-state area.

26.2.1 Checks on VMX Controls

This section identifies VM-entry checks on the VMX control fields.

26.2.1.1  VM-Execution Control Fields

VM entries perform the following checks on the VM-execution control fields:1

• Reserved bits in the pin-based VM-execution controls must be set properly. Software may consult the VMX 
capability MSRs to determine the proper settings (see Appendix A.3.1).

1. If the “activate secondary controls” primary processor-based VM-execution control is 0, VM entry operates as if each secondary pro-
cessor-based VM-execution control were 0.
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• Reserved bits in the primary processor-based VM-execution controls must be set properly. Software may 
consult the VMX capability MSRs to determine the proper settings (see Appendix A.3.2).

• If the “activate secondary controls” primary processor-based VM-execution control is 1, reserved bits in the 
secondary processor-based VM-execution controls must be cleared. Software may consult the VMX capability 
MSRs to determine which bits are reserved (see Appendix A.3.3).
If the “activate secondary controls” primary processor-based VM-execution control is 0 (or if the processor
does not support the 1-setting of that control), no checks are performed on the secondary processor-based
VM-execution controls. The logical processor operates as if all the secondary processor-based VM-execution
controls were 0.

• The CR3-target count must not be greater than 4. Future processors may support a different number of CR3-
target values. Software should read the VMX capability MSR IA32_VMX_MISC to determine the number of 
values supported (see Appendix A.6).

• If the “use I/O bitmaps” VM-execution control is 1, bits 11:0 of each I/O-bitmap address must be 0. Neither 
address should set any bits beyond the processor’s physical-address width.1,2

• If the “use MSR bitmaps” VM-execution control is 1, bits 11:0 of the MSR-bitmap address must be 0. The 
address should not set any bits beyond the processor’s physical-address width.3

• If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.4

If all of the above checks are satisfied and the “use TPR shadow” VM-execution control is 1, bytes 3:1 of VTPR
(see Section 29.1.1) may be cleared (behavior may be implementation-specific).
The clearing of these bytes may occur even if the VM entry fails. This is true either if the failure causes control
to pass to the instruction following the VM-entry instruction or if it causes processor state to be loaded from
the host-state area of the VMCS.

• If the “use TPR shadow” VM-execution control is 1 and the “virtual-interrupt delivery” VM-execution control is 
0, bits 31:4 of the TPR threshold VM-execution control field must be 0.5

• The following check is performed if the “use TPR shadow” VM-execution control is 1 and the “virtualize APIC 
accesses” and “virtual-interrupt delivery” VM-execution controls are both 0: the value of bits 3:0 of the TPR 
threshold VM-execution control field should not be greater than the value of bits 7:4 of VTPR (see Section 
29.1.1).

• If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” VM-execution control must be 0.
• If the “virtual NMIs” VM-execution control is 0, the “NMI-window exiting” VM-execution control must be 0.
• If the “virtualize APIC-accesses” VM-execution control is 1, the APIC-access address must satisfy the following 

checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.6

• If the “use TPR shadow” VM-execution control is 0, the following VM-execution controls must also be 0: 
“virtualize x2APIC mode”, “APIC-register virtualization”, and “virtual-interrupt delivery”.7

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, these addresses must not set any bits in the range 63:32; see Appendix A.1.

3. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

4. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

5. “Virtual-interrupt delivery” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-exe-
cution controls is 0, VM entry functions as if the “virtual-interrupt delivery” VM-execution control were 0. See Section 24.6.2.

6. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

7. “Virtualize x2APIC mode” and “APIC-register virtualization” are secondary processor-based VM-execution controls. If bit 31 of the 
primary processor-based VM-execution controls is 0, VM entry functions as if these controls were 0. See Section 24.6.2.
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• If the “virtualize x2APIC mode” VM-execution control is 1, the “virtualize APIC accesses” VM-execution control 
must be 0.

• If the “virtual-interrupt delivery” VM-execution control is 1, the “external-interrupt exiting” VM-execution 
control must be 1.

• If the “process posted interrupts” VM-execution control is 1, the following must be true:1

— The “virtual-interrupt delivery” VM-execution control is 1.

— The “acknowledge interrupt on exit” VM-exit control is 1.

— The posted-interrupt notification vector has a value in the range 0–255 (bits 15:8 are all 0).

— Bits 5:0 of the posted-interrupt descriptor address are all 0.

— The posted-interrupt descriptor address does not set any bits beyond the processor's physical-address 
width.2

• If the “enable VPID” VM-execution control is 1, the value of the VPID VM-execution control field must not be 
0000H.3

• If the “enable EPT” VM-execution control is 1, the EPTP VM-execution control field (see Table 24-8 in Section 
24.6.11) must satisfy the following checks:4

— The EPT memory type (bits 2:0) must be a value supported by the processor as indicated in the 
IA32_VMX_EPT_VPID_CAP MSR (see Appendix A.10).

— Bits 5:3 (1 less than the EPT page-walk length) must be 3, indicating an EPT page-walk length of 4; see 
Section 28.2.2.

— Bit 6 (enable bit for accessed and dirty flags for EPT) must be 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP 
MSR (see Appendix A.10) is read as 0, indicating that the processor does not support accessed and dirty 
flags for EPT.

— Reserved bits 11:7 and 63:N (where N is the processor’s physical-address width) must all be 0.

— If the “unrestricted guest” VM-execution control is 1, the “enable EPT” VM-execution control must also be 
1.5

• If the “enable VM functions” processor-based VM-execution control is 1, reserved bits in the VM-function 
controls must be clear.6 Software may consult the VMX capability MSRs to determine which bits are reserved 
(see Appendix A.11). In addition, the following check is performed based on the setting of bits in the VM-
function controls (see Section 24.6.14):

— If “EPTP switching” VM-function control is 1, the “enable EPT” VM-execution control must also 1. In 
addition, the EPTP-list address must satisfy the following checks:

• Bits 11:0 of the address must be 0.

• The address must not set any bits beyond the processor’s physical-address width.
If the “enable VM functions” processor-based VM-execution control is 0, no checks are performed on the VM-
function controls.

• If the “VMCS shadowing” VM-execution control is 1, the VMREAD-bitmap and VMWRITE-bitmap addresses 
must each satisfy the following checks:7

1. “Process posted interrupts” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-exe-
cution controls is 0, VM entry functions as if the “process posted interrupts” VM-execution control were 0. See Section 24.6.2.

2. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

3. “Enable VPID” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls 
is 0, VM entry functions as if the “enable VPID” VM-execution control were 0. See Section 24.6.2.

4. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls 
is 0, VM entry functions as if the “enable EPT” VM-execution control were 0. See Section 24.6.2.

5. “Unrestricted guest” and “enable EPT” are both secondary processor-based VM-execution controls. If bit 31 of the primary proces-
sor-based VM-execution controls is 0, VM entry functions as if both these controls were 0. See Section 24.6.2.

6. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “enable VM functions” VM-execution control were 0. See Section 24.6.2.
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— Bits 11:0 of the address must be 0.

— The address must not set any bits beyond the processor’s physical-address width.
• If the “EPT-violation #VE” VM-execution control is 1, the virtualization-exception information address must 

satisfy the following checks:1

— Bits 11:0 of the address must be 0.

— The address must not set any bits beyond the processor’s physical-address width.

26.2.1.2  VM-Exit Control Fields

VM entries perform the following checks on the VM-exit control fields.
• Reserved bits in the VM-exit controls must be set properly. Software may consult the VMX capability MSRs to 

determine the proper settings (see Appendix A.4).
• If “activate VMX-preemption timer” VM-execution control is 0, the “save VMX-preemption timer value” VM-exit 

control must also be 0.
• The following checks are performed for the VM-exit MSR-store address if the VM-exit MSR-store count field is 

non-zero:

— The lower 4 bits of the VM-exit MSR-store address must be 0. The address should not set any bits beyond 
the processor’s physical-address width.2

— The address of the last byte in the VM-exit MSR-store area should not set any bits beyond the processor’s 
physical-address width. The address of this last byte is VM-exit MSR-store address + (MSR count * 16) – 
1. (The arithmetic used for the computation uses more bits than the processor’s physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the range 63:32; see Appendix
A.1.

• The following checks are performed for the VM-exit MSR-load address if the VM-exit MSR-load count field is 
non-zero:

— The lower 4 bits of the VM-exit MSR-load address must be 0. The address should not set any bits beyond 
the processor’s physical-address width.

— The address of the last byte in the VM-exit MSR-load area should not set any bits beyond the processor’s 
physical-address width. The address of this last byte is VM-exit MSR-load address + (MSR count * 16) – 1. 
(The arithmetic used for the computation uses more bits than the processor’s physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the range 63:32; see Appendix
A.1.

26.2.1.3  VM-Entry Control Fields

VM entries perform the following checks on the VM-entry control fields.
• Reserved bits in the VM-entry controls must be set properly. Software may consult the VMX capability MSRs to 

determine the proper settings (see Appendix A.5).
• Fields relevant to VM-entry event injection must be set properly. These fields are the VM-entry interruption-

information field (see Table 24-13 in Section 24.8.3), the VM-entry exception error code, and the VM-entry 

7. “VMCS shadowing” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “VMCS shadowing” VM-execution control were 0. See Section 24.6.2.

1. “EPT-violation #VE” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “EPT-violation #VE” VM-execution control were 0. See Section 24.6.2.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.
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instruction length. If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the following must 
hold:

— The field’s interruption type (bits 10:8) is not set to a reserved value. Value 1 is reserved on all logical 
processors; value 7 (other event) is reserved on logical processors that do not support the 1-setting of the 
“monitor trap flag” VM-execution control.

— The field’s vector (bits 7:0) is consistent with the interruption type:

• If the interruption type is non-maskable interrupt (NMI), the vector is 2.

• If the interruption type is hardware exception, the vector is at most 31.

• If the interruption type is other event, the vector is 0 (pending MTF VM exit).

— The field's deliver-error-code bit (bit 11) is 1 if and only if (1) either (a) the "unrestricted guest" VM-
execution control is 0; or (b) bit 0 (corresponding to CR0.PE) is set in the CR0 field in the guest-state area; 
(2) the interruption type is hardware exception; and (3) the vector indicates an exception that would 
normally deliver an error code (8 = #DF; 10 = TS; 11 = #NP; 12 = #SS; 13 = #GP; 14 = #PF; or 17 = 
#AC).

— Reserved bits in the field (30:12) are 0.

— If the deliver-error-code bit (bit 11) is 1, bits 31:15 of the VM-entry exception error-code field are 0.

— If the interruption type is software interrupt, software exception, or privileged software exception, the 
VM-entry instruction-length field is in the range 1–15.

• The following checks are performed for the VM-entry MSR-load address if the VM-entry MSR-load count field is 
non-zero:

— The lower 4 bits of the VM-entry MSR-load address must be 0. The address should not set any bits beyond 
the processor’s physical-address width.1

— The address of the last byte in the VM-entry MSR-load area should not set any bits beyond the processor’s 
physical-address width. The address of this last byte is VM-entry MSR-load address + (MSR count * 16) – 
1. (The arithmetic used for the computation uses more bits than the processor’s physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the range 63:32; see Appendix
A.1.

• If the processor is not in SMM, the “entry to SMM” and “deactivate dual-monitor treatment” VM-entry controls 
must be 0.

• The “entry to SMM” and “deactivate dual-monitor treatment” VM-entry controls cannot both be 1.

26.2.2 Checks on Host Control Registers and MSRs

The following checks are performed on fields in the host-state area that correspond to control registers and MSRs:
• The CR0 field must not set any bit to a value not supported in VMX operation (see Section 23.8).2

• The CR4 field must not set any bit to a value not supported in VMX operation (see Section 23.8).
• On processors that support Intel 64 architecture, the CR3 field must be such that bits 63:52 and bits in the 

range 51:32 beyond the processor’s physical-address width must be 0.3,4

• On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP 
field must each contain a canonical address.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

2. The bits corresponding to CR0.NW (bit 29) and CR0.CD (bit 30) are never checked because the values of these bits are not changed 
by VM exit; see Section 27.5.1.

3. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

4. Bit 63 of the CR3 field in the host-state area must be 0. This is true even though, If CR4.PCIDE = 1, bit 63 of the source operand to 
MOV to CR3 is used to determine whether cached translation information is invalidated.
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• If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, bits reserved in the IA32_PERF_GLOBAL_CTRL 
MSR must be 0 in the field for that register (see Figure 18-3).

• If the “load IA32_PAT” VM-exit control is 1, the value of the field for the IA32_PAT MSR must be one that could 
be written by WRMSR without fault at CPL 0. Specifically, each of the 8 bytes in the field must have one of the 
values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

• If the “load IA32_EFER” VM-exit control is 1, bits reserved in the IA32_EFER MSR must be 0 in the field for that 
register. In addition, the values of the LMA and LME bits in the field must each be that of the “host address-
space size” VM-exit control.

26.2.3 Checks on Host Segment and Descriptor-Table Registers

The following checks are performed on fields in the host-state area that correspond to segment and descriptor-
table registers:
• In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the RPL (bits 1:0) and the TI flag (bit 2) must 

be 0.
• The selector fields for CS and TR cannot be 0000H.
• The selector field for SS cannot be 0000H if the “host address-space size” VM-exit control is 0.
• On processors that support Intel 64 architecture, the base-address fields for FS, GS, GDTR, IDTR, and TR must 

contain canonical addresses.

26.2.4 Checks Related to Address-Space Size

On processors that support Intel 64 architecture, the following checks related to address-space size are performed 
on VMX controls and fields in the host-state area:
• If the logical processor is outside IA-32e mode (if IA32_EFER.LMA = 0) at the time of VM entry, the following 

must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— The “host address-space size” VM-exit control is 0.
• If the logical processor is in IA-32e mode (if IA32_EFER.LMA = 1) at the time of VM entry, the “host address-

space size” VM-exit control must be 1.
• If the “host address-space size” VM-exit control is 0, the following must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0.

— Bits 63:32 in the RIP field is 0.
• If the “host address-space size” VM-exit control is 1, the following must hold:

— Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.

— The RIP field contains a canonical address.

On processors that do not support Intel 64 architecture, checks are performed to ensure that the “IA-32e mode 
guest” VM-entry control and the “host address-space size” VM-exit control are both 0.

26.3 CHECKING AND LOADING GUEST STATE

If all checks on the VMX controls and the host-state area pass (see Section 26.2), the following operations take 
place concurrently: (1) the guest-state area of the VMCS is checked to ensure that, after the VM entry completes, 
the state of the logical processor is consistent with IA-32 and Intel 64 architectures; (2) processor state is loaded 
from the guest-state area or as specified by the VM-entry control fields; and (3) address-range monitoring is 
cleared.
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Because the checking and the loading occur concurrently, a failure may be discovered only after some state has 
been loaded. For this reason, the logical processor responds to such failures by loading state from the host-state 
area, as it would for a VM exit. See Section 26.7.

26.3.1 Checks on the Guest State Area

This section describes checks performed on fields in the guest-state area. These checks may be performed in any 
order. Some checks prevent establishment of settings (or combinations of settings) that are currently reserved. 
Future processors may allow such settings (or combinations) and may not perform the corresponding checks. The 
correctness of software should not rely on VM-entry failures resulting from the checks documented in this section. 

The following subsections reference fields that correspond to processor state. Unless otherwise stated, these refer-
ences are to fields in the guest-state area.

26.3.1.1  Checks on Guest Control Registers, Debug Registers, and MSRs

The following checks are performed on fields in the guest-state area corresponding to control registers, debug 
registers, and MSRs:
• The CR0 field must not set any bit to a value not supported in VMX operation (see Section 23.8). The following 

are exceptions:

— Bit 0 (corresponding to CR0.PE) and bit 31 (PG) are not checked if the “unrestricted guest” VM-execution 
control is 1.1

— Bit 29 (corresponding to CR0.NW) and bit 30 (CD) are never checked because the values of these bits are 
not changed by VM entry; see Section 26.3.2.1.

• If bit 31 in the CR0 field (corresponding to PG) is 1, bit 0 in that field (PE) must also be 1.2

• The CR4 field must not set any bit to a value not supported in VMX operation (see Section 23.8).
• If the “load debug controls” VM-entry control is 1, bits reserved in the IA32_DEBUGCTL MSR must be 0 in the 

field for that register. The first processors to support the virtual-machine extensions supported only the 1-
setting of this control and thus performed this check unconditionally.

• The following checks are performed on processors that support Intel 64 architecture:

— If the “IA-32e mode guest” VM-entry control is 1, bit 31 in the CR0 field (corresponding to CR0.PG) and 
bit 5 in the CR4 field (corresponding to CR4.PAE) must each be 1.3

— If the “IA-32e mode guest” VM-entry control is 0, bit 17 in the CR4 field (corresponding to CR4.PCIDE) 
must each be 0.

— The CR3 field must be such that bits 63:52 and bits in the range 51:32 beyond the processor’s physical-
address width are 0.4,5

— If the “load debug controls” VM-entry control is 1, bits 63:32 in the DR7 field must be 0. The first processors 
to support the virtual-machine extensions supported only the 1-setting of this control and thus performed 
this check unconditionally (if they supported Intel 64 architecture).

— The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field must each contain a canonical address.

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, bit 0 in the CR0 field must be 1 
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

3. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, bit 31 in the CR0 field must be 1 
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

4. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

5. Bit 63 of the CR3 field in the guest-state area must be 0. This is true even though, If CR4.PCIDE = 1, bit 63 of the source operand to 
MOV to CR3 is used to determine whether cached translation information is invalidated.



Vol. 3C 26-9

VM ENTRIES

• If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, bits reserved in the IA32_PERF_GLOBAL_CTRL 
MSR must be 0 in the field for that register (see Figure 18-3).

• If the “load IA32_PAT” VM-entry control is 1, the value of the field for the IA32_PAT MSR must be one that could 
be written by WRMSR without fault at CPL 0. Specifically, each of the 8 bytes in the field must have one of the 
values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

• If the “load IA32_EFER” VM-entry control is 1, the following checks are performed on the field for the 
IA32_EFER MSR :

— Bits reserved in the IA32_EFER MSR must be 0.

— Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of the “IA-32e mode guest” VM-exit 
control. It must also be identical to bit 8 (LME) if bit 31 in the CR0 field (corresponding to CR0.PG) is 1.1 

26.3.1.2  Checks on Guest Segment Registers

This section specifies the checks on the fields for CS, SS, DS, ES, FS, GS, TR, and LDTR. The following terms are 
used in defining these checks:
• The guest will be virtual-8086 if the VM flag (bit 17) is 1 in the RFLAGS field in the guest-state area.
• The guest will be IA-32e mode if the “IA-32e mode guest” VM-entry control is 1. (This is possible only on 

processors that support Intel 64 architecture.)
• Any one of these registers is said to be usable if the unusable bit (bit 16) is 0 in the access-rights field for that 

register.

The following are the checks on these fields: 
• Selector fields.

— TR. The TI flag (bit 2) must be 0.

— LDTR. If LDTR is usable, the TI flag (bit 2) must be 0.

— SS. If the guest will not be virtual-8086 and the “unrestricted guest” VM-execution control is 0, the RPL 
(bits 1:0) must equal the RPL of the selector field for CS.2

• Base-address fields.

— CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the address must be the selector field shifted left 
4 bits (multiplied by 16).

— The following checks are performed on processors that support Intel 64 architecture:

• TR, FS, GS. The address must be canonical.

• LDTR. If LDTR is usable, the address must be canonical.

• CS. Bits 63:32 of the address must be zero.

• SS, DS, ES. If the register is usable, bits 63:32 of the address must be zero.
• Limit fields for CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the field must be 0000FFFFH.
• Access-rights fields.

— CS, SS, DS, ES, FS, GS.

• If the guest will be virtual-8086, the field must be 000000F3H. This implies the following:

— Bits 3:0 (Type) must be 3, indicating an expand-up read/write accessed data segment.

— Bit 4 (S) must be 1.

— Bits 6:5 (DPL) must be 3.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, bit 31 in the CR0 field must be 1 
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

2. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.
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— Bit 7 (P) must be 1.

— Bits 11:8 (reserved), bit 12 (software available), bit 13 (reserved/L), bit 14 (D/B), bit 15 (G),
bit 16 (unusable), and bits 31:17 (reserved) must all be 0.

• If the guest will not be virtual-8086, the different sub-fields are considered separately:

— Bits 3:0 (Type).

• CS. The values allowed depend on the setting of the “unrestricted guest” VM-execution
control:

— If the control is 0, the Type must be 9, 11, 13, or 15 (accessed code segment).

— If the control is 1, the Type must be either 3 (read/write accessed expand-up data
segment) or one of 9, 11, 13, and 15 (accessed code segment).

• SS. If SS is usable, the Type must be 3 or 7 (read/write, accessed data segment).

• DS, ES, FS, GS. The following checks apply if the register is usable:

— Bit 0 of the Type must be 1 (accessed).

— If bit 3 of the Type is 1 (code segment), then bit 1 of the Type must be 1 (readable).

— Bit 4 (S). If the register is CS or if the register is usable, S must be 1.

— Bits 6:5 (DPL).

• CS.

— If the Type is 3 (read/write accessed expand-up data segment), the DPL must be 0. The
Type can be 3 only if the “unrestricted guest” VM-execution control is 1.

— If the Type is 9 or 11 (non-conforming code segment), the DPL must equal the DPL in the
access-rights field for SS.

— If the Type is 13 or 15 (conforming code segment), the DPL cannot be greater than the
DPL in the access-rights field for SS.

• SS.

— If the “unrestricted guest” VM-execution control is 0, the DPL must equal the RPL from the
selector field.

— The DPL must be 0 either if the Type in the access-rights field for CS is 3 (read/write
accessed expand-up data segment) or if bit 0 in the CR0 field (corresponding to CR0.PE) is
0.1

• DS, ES, FS, GS. The DPL cannot be less than the RPL in the selector field if (1) the
“unrestricted guest” VM-execution control is 0; (2) the register is usable; and (3) the Type in
the access-rights field is in the range 0 – 11 (data segment or non-conforming code segment).

— Bit 7 (P). If the register is CS or if the register is usable, P must be 1.

— Bits 11:8 (reserved). If the register is CS or if the register is usable, these bits must all be 0.

— Bit 14 (D/B). For CS, D/B must be 0 if the guest will be IA-32e mode and the L bit (bit 13) in the
access-rights field is 1.

— Bit 15 (G). The following checks apply if the register is CS or if the register is usable:

• If any bit in the limit field in the range 11:0 is 0, G must be 0.

• If any bit in the limit field in the range 31:20 is 1, G must be 1.

— Bits 31:17 (reserved). If the register is CS or if the register is usable, these bits must all be 0.

— TR. The different sub-fields are considered separately:

1. The following apply if either the “unrestricted guest” VM-execution control or bit 31 of the primary processor-based VM-execution 
controls is 0:  (1) bit 0 in the CR0 field must be 1 if the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in 
VMX operation; and (2) the Type in the access-rights field for CS cannot be 3.
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• Bits 3:0 (Type).

— If the guest will not be IA-32e mode, the Type must be 3 (16-bit busy TSS) or 11 (32-bit busy
TSS).

— If the guest will be IA-32e mode, the Type must be 11 (64-bit busy TSS).

• Bit 4 (S). S must be 0.

• Bit 7 (P). P must be 1.

• Bits 11:8 (reserved). These bits must all be 0.

• Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• Bit 16 (Unusable). The unusable bit must be 0.

• Bits 31:17 (reserved). These bits must all be 0.

— LDTR. The following checks on the different sub-fields apply only if LDTR is usable:

• Bits 3:0 (Type). The Type must be 2 (LDT).

• Bit 4 (S). S must be 0.

• Bit 7 (P). P must be 1.

• Bits 11:8 (reserved). These bits must all be 0.

• Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• Bits 31:17 (reserved). These bits must all be 0.

26.3.1.3  Checks on Guest Descriptor-Table Registers

The following checks are performed on the fields for GDTR and IDTR:
• On processors that support Intel 64 architecture, the base-address fields must contain canonical addresses.
• Bits 31:16 of each limit field must be 0.

26.3.1.4  Checks on Guest RIP and RFLAGS

The following checks are performed on fields in the guest-state area corresponding to RIP and RFLAGS:
• RIP. The following checks are performed on processors that support Intel 64 architecture:

— Bits 63:32 must be 0 if the “IA-32e mode guest” VM-entry control is 0 or if the L bit (bit 13) in the access-
rights field for CS is 0.

— If the processor supports N < 64 linear-address bits, bits 63:N must be identical if the “IA-32e mode guest” 
VM-entry control is 1 and the L bit in the access-rights field for CS is 1.1 (No check applies if the processor 
supports 64 linear-address bits.)

• RFLAGS.

— Reserved bits 63:22 (bits 31:22 on processors that do not support Intel 64 architecture), bit 15, bit 5 and 
bit 3 must be 0 in the field, and reserved bit 1 must be 1.

— The VM flag (bit 17) must be 0 either if the “IA-32e mode guest” VM-entry control is 1 or if bit 0 in the CR0 
field (corresponding to CR0.PE) is 0.2

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of linear-address bits supported is 
returned in bits 15:8 of EAX.
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— The IF flag (RFLAGS[bit 9]) must be 1 if the valid bit (bit 31) in the VM-entry interruption-information field 
is 1 and the interruption type (bits 10:8) is external interrupt.

26.3.1.5  Checks on Guest Non-Register State

The following checks are performed on fields in the guest-state area corresponding to non-register state:
• Activity state.

— The activity-state field must contain a value in the range 0 – 3, indicating an activity state supported by the 
implementation (see Section 24.4.2). Future processors may include support for other activity states. 
Software should read the VMX capability MSR IA32_VMX_MISC (see Appendix A.6) to determine what 
activity states are supported.

— The activity-state field must not indicate the HLT state if the DPL (bits 6:5) in the access-rights field for SS 
is not 0.1

— The activity-state field must indicate the active state if the interruptibility-state field indicates blocking by 
either MOV-SS or by STI (if either bit 0 or bit 1 in that field is 1).

— If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the interruption to be delivered 
(as defined by interruption type and vector) must not be one that would normally be blocked while a logical 
processor is in the activity state corresponding to the contents of the activity-state field. The following 
items enumerate the interruptions (as specified in the VM-entry interruption-information field) whose 
injection is allowed for the different activity states:

• Active. Any interruption is allowed.

• HLT. The only events allowed are the following:

— Those with interruption type external interrupt or non-maskable interrupt (NMI).

— Those with interruption type hardware exception and vector 1 (debug exception) or vector 18
(machine-check exception).

— Those with interruption type other event and vector 0 (pending MTF VM exit).

See Table 24-13 in Section 24.8.3 for details regarding the format of the VM-entry interruption-
information field.

• Shutdown. Only NMIs and machine-check exceptions are allowed.

• Wait-for-SIPI. No interruptions are allowed.

— The activity-state field must not indicate the wait-for-SIPI state if the “entry to SMM” VM-entry control is 1.
• Interruptibility state.

— The reserved bits (bits 31:4) must be 0.

— The field cannot indicate blocking by both STI and MOV SS (bits 0 and 1 cannot both be 1).

— Bit 0 (blocking by STI) must be 0 if the IF flag (bit 9) is 0 in the RFLAGS field.

— Bit 0 (blocking by STI) and bit 1 (blocking by MOV-SS) must both be 0 if the valid bit (bit 31) in the 
VM-entry interruption-information field is 1 and the interruption type (bits 10:8) in that field has value 0, 
indicating external interrupt.

— Bit 1 (blocking by MOV-SS) must be 0 if the valid bit (bit 31) in the VM-entry interruption-information field 
is 1 and the interruption type (bits 10:8) in that field has value 2, indicating non-maskable interrupt (NMI).

— Bit 2 (blocking by SMI) must be 0 if the processor is not in SMM.

— Bit 2 (blocking by SMI) must be 1 if the “entry to SMM” VM-entry control is 1.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, bit 0 in the CR0 field must be 1 
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

1. As noted in Section 24.4.1, SS.DPL corresponds to the logical processor’s current privilege level (CPL).
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— A processor may require bit 0 (blocking by STI) to be 0 if the valid bit (bit 31) in the VM-entry interruption-
information field is 1 and the interruption type (bits 10:8) in that field has value 2, indicating NMI. Other 
processors may not make this requirement.

— Bit 3 (blocking by NMI) must be 0 if the “virtual NMIs” VM-execution control is 1, the valid bit (bit 31) in the 
VM-entry interruption-information field is 1, and the interruption type (bits 10:8) in that field has value 2 
(indicating NMI).

NOTE

If the “virtual NMIs” VM-execution control is 0, there is no requirement that bit 3 be 0 if the valid 
bit in the VM-entry interruption-information field is 1 and the interruption type in that field has 
value 2.

• Pending debug exceptions.

— Bits 11:4, bit 13, and bits 63:15 (bits 31:15 on processors that do not support Intel 64 architecture) must 
be 0.

— The following checks are performed if any of the following holds: (1) the interruptibility-state field indicates 
blocking by STI (bit 0 in that field is 1); (2) the interruptibility-state field indicates blocking by MOV SS 
(bit 1 in that field is 1); or (3) the activity-state field indicates HLT:

• Bit 14 (BS) must be 1 if the TF flag (bit 8) in the RFLAGS field is 1 and the BTF flag (bit 1) in the 
IA32_DEBUGCTL field is 0.

• Bit 14 (BS) must be 0 if the TF flag (bit 8) in the RFLAGS field is 0 or the BTF flag (bit 1) in the 
IA32_DEBUGCTL field is 1.

• VMCS link pointer. The following checks apply if the field contains a value other than FFFFFFFF_FFFFFFFFH:

— Bits 11:0 must be 0.

— Bits beyond the processor’s physical-address width must be 0.1,2

— The 4 bytes located in memory referenced by the value of the field (as a physical address) must satisfy the 
following:

• Bits 30:0 must contain the processor’s VMCS revision identifier (see Section 24.2).3

• Bit 31 must contain the setting of the “VMCS shadowing” VM-execution control.4 This implies that the 
referenced VMCS is a shadow VMCS (see Section 24.10) if and only if the “VMCS shadowing” VM-
execution control is 1.

— If the processor is not in SMM or the “entry to SMM” VM-entry control is 1, the field must not contain the 
current VMCS pointer.

— If the processor is in SMM and the “entry to SMM” VM-entry control is 0, the field must differ from the 
executive-VMCS pointer.

26.3.1.6 Checks on Guest Page-Directory-Pointer-Table Entries

If CR0.PG =1, CR4.PAE = 1, and IA32_EFER.LMA = 0, the logical processor also uses PAE paging (see Section 4.4 
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).5 When PAE paging is in use, 
the physical address in CR3 references a table of page-directory-pointer-table entries (PDPTEs). A MOV to CR3 
when PAE paging is in use checks the validity of the PDPTEs.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, this field must not set any bits in the range 63:32; see Appendix A.1.

3. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field. For all processors produced prior to this 
change, bit 31 of the VMCS revision identifier was 0.

4. “VMCS shadowing” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “VMCS shadowing” VM-execution control were 0. See Section 24.6.2.
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A VM entry is to a guest that uses PAE paging if (1) bit 31 (corresponding to CR0.PG) is set in the CR0 field in the 
guest-state area; (2) bit 5 (corresponding to CR4.PAE) is set in the CR4 field; and (3) the “IA-32e mode guest” 
VM-entry control is 0. Such a VM entry checks the validity of the PDPTEs:
• If the “enable EPT” VM-execution control is 0, VM entry checks the validity of the PDPTEs referenced by the CR3 

field in the guest-state area if either (1) PAE paging was not in use before the VM entry; or (2) the value of CR3 
is changing as a result of the VM entry. VM entry may check their validity even if neither (1) nor (2) hold.1

• If the “enable EPT” VM-execution control is 1, VM entry checks the validity of the PDPTE fields in the guest-state 
area (see Section 24.4.2).

A VM entry to a guest that does not use PAE paging does not check the validity of any PDPTEs.

A VM entry that checks the validity of the PDPTEs uses the same checks that are used when CR3 is loaded with 
MOV to CR3 when PAE paging is in use.2 If MOV to CR3 would cause a general-protection exception due to the 
PDPTEs that would be loaded (e.g., because a reserved bit is set), the VM entry fails.

26.3.2 Loading Guest State

Processor state is updated on VM entries in the following ways:
• Some state is loaded from the guest-state area.
• Some state is determined by VM-entry controls.
• The page-directory pointers are loaded based on the values of certain control registers.

This loading may be performed in any order and in parallel with the checking of VMCS contents (see Section 
26.3.1).

The loading of guest state is detailed in Section 26.3.2.1 to Section 26.3.2.4. These sections reference VMCS fields 
that correspond to processor state. Unless otherwise stated, these references are to fields in the guest-state area.

In addition to the state loading described in this section, VM entries may load MSRs from the VM-entry MSR-load 
area (see Section 26.4). This loading occurs only after the state loading described in this section and the checking 
of VMCS contents described in Section 26.3.1.

26.3.2.1  Loading Guest Control Registers, Debug Registers, and MSRs

The following items describe how guest control registers, debug registers, and MSRs are loaded on VM entry:
• CR0 is loaded from the CR0 field with the exception of the following bits, which are never modified on VM entry: 

ET (bit 4); reserved bits 15:6, 17, and 28:19; NW (bit 29) and CD (bit 30).3 The values of these bits in the CR0 
field are ignored.

• CR3 and CR4 are loaded from the CR3 field and the CR4 field, respectively.
• If the “load debug controls” VM-execution control is 1, DR7 is loaded from the DR7 field with the exception that 

bit 12 and bits 15:14 are always 0 and bit 10 is always 1. The values of these bits in the DR7 field are ignored.
The first processors to support the virtual-machine extensions supported only the 1-setting of the “load
debug controls” VM-execution control and thus always loaded DR7 from the DR7 field.

5. On processors that support Intel 64 architecture, the physical-address extension may support more than 36 physical-address bits. 
Software can determine the number physical-address bits supported by executing CPUID with 80000008H in EAX. The physical-
address width is returned in bits 7:0 of EAX.

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls 
is 0, VM entry functions as if the “enable EPT” VM-execution control were 0. See Section 24.6.2.

2. This implies that (1) bits 11:9 in each PDPTE are ignored; and (2) if bit 0 (present) is clear in one of the PDPTEs, bits 63:1 of that 
PDPTE are ignored.

3. Bits 15:6, bit 17, and bit 28:19 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. Bits 15:6, bit 17, and bit 28:19 of 
CR0 are always 0 and CR0.ET is always 1.
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• The following describes how some MSRs are loaded using fields in the guest-state area:

— If the “load debug controls” VM-execution control is 1, the IA32_DEBUGCTL MSR is loaded from the 
IA32_DEBUGCTL field. The first processors to support the virtual-machine extensions supported only the 1-
setting of this control and thus always loaded the IA32_DEBUGCTL MSR from the IA32_DEBUGCTL field.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field. Since this field has only 32 
bits, bits 63:32 of the MSR are cleared to 0.

— The IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are loaded from the IA32_SYSENTER_ESP field 
and the IA32_SYSENTER_EIP field, respectively. On processors that do not support Intel 64 architecture, 
these fields have only 32 bits; bits 63:32 of the MSRs are cleared to 0.

— The following are performed on processors that support Intel 64 architecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields for FS and GS, respectively 
(see Section 26.3.2.2).

• If the “load IA32_EFER” VM-entry control is 0, bits in the IA32_EFER MSR are modified as follows:

— IA32_EFER.LMA is loaded with the setting of the “IA-32e mode guest” VM-entry control.

— If CR0 is being loaded so that CR0.PG = 1, IA32_EFER.LME is also loaded with the setting of the
“IA-32e mode guest” VM-entry control.1 Otherwise, IA32_EFER.LME is unmodified.

See below for the case in which the “load IA32_EFER” VM-entry control is 1

— If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, the IA32_PERF_GLOBAL_CTRL MSR is loaded 
from the IA32_PERF_GLOBAL_CTRL field.

— If the “load IA32_PAT” VM-entry control is 1, the IA32_PAT MSR is loaded from the IA32_PAT field.

— If the “load IA32_EFER” VM-entry control is 1, the IA32_EFER MSR is loaded from the IA32_EFER field.
With the exception of FS.base and GS.base, any of these MSRs is subsequently overwritten if it appears in the
VM-entry MSR-load area. See Section 26.4.

• The SMBASE register is unmodified by all VM entries except those that return from SMM.

26.3.2.2  Loading Guest Segment Registers and Descriptor-Table Registers

For each of CS, SS, DS, ES, FS, GS, TR, and LDTR, fields are loaded from the guest-state area as follows:

• The unusable bit is loaded from the access-rights field. This bit can never be set for TR (see Section 26.3.1.2). 
If it is set for one of the other registers, the following apply:

— For each of CS, SS, DS, ES, FS, and GS, uses of the segment cause faults (general-protection exception or 
stack-fault exception) outside 64-bit mode, just as they would had the segment been loaded using a null 
selector. This bit does not cause accesses to fault in 64-bit mode.

— If this bit is set for LDTR, uses of LDTR cause general-protection exceptions in all modes, just as they would 
had LDTR been loaded using a null selector.

If this bit is clear for any of CS, SS, DS, ES, FS, GS, TR, and LDTR, a null selector value does not cause a fault
(general-protection exception or stack-fault exception).

• TR. The selector, base, limit, and access-rights fields are loaded.
• CS.

— The following fields are always loaded: selector, base address, limit, and (from the access-rights field) the 
L, D, and G bits.

— For the other fields, the unusable bit of the access-rights field is consulted:

• If the unusable bit is 0, all of the access-rights field is loaded.
• If the unusable bit is 1, the remainder of CS access rights are undefined after VM entry.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, VM entry must be loading CR0 so 
that CR0.PG = 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution con-
trols are both 1.
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• SS, DS, ES, FS, GS, and LDTR.

— The selector fields are loaded.
— For the other fields, the unusable bit of the corresponding access-rights field is consulted:

• If the unusable bit is 0, the base-address, limit, and access-rights fields are loaded.
• If the unusable bit is 1, the base address, the segment limit, and the remainder of the access rights are 

undefined after VM entry with the following exceptions:

— Bits 3:0 of the base address for SS are cleared to 0.

— SS.DPL is always loaded from the SS access-rights field. This will be the current privilege level
(CPL) after the VM entry completes.

— SS.B is always set to 1.

— The base addresses for FS and GS are loaded from the corresponding fields in the VMCS. On
processors that support Intel 64 architecture, the values loaded for base addresses for FS and GS
are also manifest in the FS.base and GS.base MSRs.

— On processors that support Intel 64 architecture, the base address for LDTR is set to an undefined
but canonical value.

— On processors that support Intel 64 architecture, bits 63:32 of the base addresses for SS, DS, and
ES are cleared to 0.

GDTR and IDTR are loaded using the base and limit fields.

26.3.2.3  Loading Guest RIP, RSP, and RFLAGS

RSP, RIP, and RFLAGS are loaded from the RSP field, the RIP field, and the RFLAGS field, respectively. The following 
items regard the upper 32 bits of these fields on VM entries that are not to 64-bit mode:
• Bits 63:32 of RSP are undefined outside 64-bit mode. Thus, a logical processor may ignore the contents of 

bits 63:32 of the RSP field on VM entries that are not to 64-bit mode.
• As noted in Section 26.3.1.4, bits 63:32 of the RIP and RFLAGS fields must be 0 on VM entries that are not to 

64-bit mode.

26.3.2.4  Loading Page-Directory-Pointer-Table Entries

As noted in Section 26.3.1.6, the logical processor uses PAE paging if bit 5 in CR4 (CR4.PAE) is 1 and 
IA32_EFER.LMA is 0. A VM entry to a guest that uses PAE paging loads the PDPTEs into internal, non-architectural 
registers based on the setting of the “enable EPT” VM-execution control:
• If the control is 0, the PDPTEs are loaded from the page-directory-pointer table referenced by the physical 

address in the value of CR3 being loaded by the VM entry (see Section 26.3.2.1). The values loaded are treated 
as physical addresses in VMX non-root operation.

• If the control is 1, the PDPTEs are loaded from corresponding fields in the guest-state area (see Section 
24.4.2). The values loaded are treated as guest-physical addresses in VMX non-root operation.

26.3.2.5  Updating Non-Register State

Section 28.3 describes how the VMX architecture controls how a logical processor manages information in the TLBs 
and paging-structure caches. The following items detail how VM entries invalidate cached mappings:
• If the “enable VPID” VM-execution control is 0, the logical processor invalidates linear mappings and combined 

mappings associated with VPID 0000H (for all PCIDs); combined mappings for VPID 0000H are invalidated for 
all EP4TA values (EP4TA is the value of bits 51:12 of EPTP).

• VM entries are not required to invalidate any guest-physical mappings, nor are they required to invalidate any 
linear mappings or combined mappings if the “enable VPID” VM-execution control is 1.
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If the “virtual-interrupt delivery” VM-execution control is 1, VM entry loads the values of RVI and SVI from the 
guest interrupt-status field in the VMCS (see Section 24.4.2). After doing so, the logical processor first causes PPR 
virtualization (Section 29.1.3) and then evaluates pending virtual interrupts (Section 29.2.1).

If a virtual interrupt is recognized, it may be delivered in VMX non-root operation immediately after VM entry 
(including any specified event injection) completes; see Section 26.6.5. See Section 29.2.2 for details regarding 
the delivery of virtual interrupts.

26.3.3 Clearing Address-Range Monitoring

The Intel 64 and IA-32 architectures allow software to monitor a specified address range using the MONITOR and 
MWAIT instructions. See Section 8.10.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A. VM entries clear any address-range monitoring that may be in effect.

26.4 LOADING MSRS

VM entries may load MSRs from the VM-entry MSR-load area (see Section 24.8.2). Specifically each entry in that 
area (up to the number specified in the VM-entry MSR-load count) is processed in order by loading the MSR 
indexed by bits 31:0 with the contents of bits 127:64 as they would be written by WRMSR.1 

Processing of an entry fails in any of the following cases:
• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or C0000101 (the IA32_GS_BASE MSR).
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that allows access to an APIC register 

when the local APIC is in x2APIC mode. 
• The value of bits 31:0 indicates an MSR that can be written only in system-management mode (SMM) and the 

VM entry did not commence in SMM. (IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)
• The value of bits 31:0 indicates an MSR that cannot be loaded on VM entries for model-specific reasons. A 

processor may prevent loading of certain MSRs even if they can normally be written by WRMSR. Such model-
specific behavior is documented in Chapter 35.

• Bits 63:32 are not all 0.
• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry would cause a general-protection 

exception if executed via WRMSR with CPL = 0.2

The VM entry fails if processing fails for any entry. The logical processor responds to such failures by loading state 
from the host-state area, as it would for a VM exit. See Section 26.7.

If any MSR is being loaded in such a way that would architecturally require a TLB flush, the TLBs are updated so 
that, after VM entry, the logical processor will not use any translations that were cached before the transition.

26.5 EVENT INJECTION

If the valid bit in the VM-entry interruption-information field (see Section 24.8.3) is 1, VM entry causes an event to 
be delivered (or made pending) after all components of guest state have been loaded (including MSRs) and after 
the VM-execution control fields have been established.
• If the interruption type in the field is 0 (external interrupt), 2 (non-maskable interrupt); 3 (hardware 

exception), 4 (software interrupt), 5 (privileged software exception), or 6 (software exception), the event is 
delivered as described in Section 26.5.1.

1. Because attempts to modify the value of IA32_EFER.LMA by WRMSR are ignored, attempts to modify it using the VM-entry MSR-
load area are also ignored.

2. If CR0.PG = 1, WRMSR to the IA32_EFER MSR causes a general-protection exception if it would modify the LME bit. If VM entry has 
established CR0.PG = 1, the IA32_EFER MSR should not be included in the VM-entry MSR-load area for the purpose of modifying the 
LME bit.
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• If the interruption type in the field is 7 (other event) and the vector field is 0, an MTF VM exit is pending after 
VM entry. See Section 26.5.2.

26.5.1 Vectored-Event Injection

VM entry delivers an injected vectored event within the guest context established by VM entry. This means that 
delivery occurs after all components of guest state have been loaded (including MSRs) and after the VM-execution 
control fields have been established.1 The event is delivered using the vector in that field to select a descriptor in 
the IDT. Since event injection occurs after loading IDTR from the guest-state area, this is the guest IDT.

Section 26.5.1.1 provides details of vectored-event injection. In general, the event is delivered exactly as if it had 
been generated normally.

If event delivery encounters a nested exception (for example, a general-protection exception because the vector 
indicates a descriptor beyond the IDT limit), the exception bitmap is consulted using the vector of that exception:
• If the bit for the nested exception is 0, the nested exception is delivered normally. If the nested exception is 

benign, it is delivered through the IDT. If it is contributory or a page fault, a double fault may be generated, 
depending on the nature of the event whose delivery encountered the nested exception. See Chapter 6, 
“Interrupt 8—Double Fault Exception (#DF)” in Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.2

• If the bit for the nested exception is 1, a VM exit occurs. Section 26.5.1.2 details cases in which event injection 
causes a VM exit.

26.5.1.1  Details of Vectored-Event Injection

The event-injection process is controlled by the contents of the VM-entry interruption information field (format 
given in Table 24-13), the VM-entry exception error-code field, and the VM-entry instruction-length field. The 
following items provide details of the process:
• The value pushed on the stack for RFLAGS is generally that which was loaded from the guest-state area. The 

value pushed for the RF flag is not modified based on the type of event being delivered. However, the pushed 
value of RFLAGS may be modified if a software interrupt is being injected into a guest that will be in virtual-
8086 mode (see below). After RFLAGS is pushed on the stack, the value in the RFLAGS register is modified as 
is done normally when delivering an event through the IDT.

• The instruction pointer that is pushed on the stack depends on the type of event and whether nested exceptions 
occur during its delivery. The term current guest RIP refers to the value to be loaded from the guest-state 
area. The value pushed is determined as follows:3

— If VM entry successfully injects (with no nested exception) an event with interruption type external 
interrupt, NMI, or hardware exception, the current guest RIP is pushed on the stack.

— If VM entry successfully injects (with no nested exception) an event with interruption type software 
interrupt, privileged software exception, or software exception, the current guest RIP is incremented by the 
VM-entry instruction length before being pushed on the stack.

— If VM entry encounters an exception while injecting an event and that exception does not cause a VM exit, 
the current guest RIP is pushed on the stack regardless of event type or VM-entry instruction length. If the 
encountered exception does cause a VM exit that saves RIP, the saved RIP is current guest RIP.

• If the deliver-error-code bit (bit 11) is set in the VM-entry interruption-information field, the contents of the 
VM-entry exception error-code field is pushed on the stack as an error code would be pushed during delivery of 
an exception.

1. This does not imply that injection of an exception or interrupt will cause a VM exit due to the settings of VM-execution control fields 
(such as the exception bitmap) that would cause a VM exit if the event had occurred in VMX non-root operation. In contrast, a nested 
exception encountered during event delivery may cause a VM exit; see Section 26.5.1.1.

2. Hardware exceptions with the following unused vectors are considered benign: 15 and 21–31. A hardware exception with vector 20 
is considered benign unless the processor supports the 1-setting of the “EPT-violation #VE” VM-execution control; in that case, it 
has the same severity as page faults.

3. While these items refer to RIP, the width of the value pushed (16 bits, 32 bits, or 64 bits) is determined normally.
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• DR6, DR7, and the IA32_DEBUGCTL MSR are not modified by event injection, even if the event has vector 1 
(normal deliveries of debug exceptions, which have vector 1, do update these registers).

• If VM entry is injecting a software interrupt and the guest will be in virtual-8086 mode (RFLAGS.VM = 1), no 
general-protection exception can occur due to RFLAGS.IOPL < 3. A VM monitor should check RFLAGS.IOPL 
before injecting such an event and, if desired, inject a general-protection exception instead of a software 
interrupt.

• If VM entry is injecting a software interrupt and the guest will be in virtual-8086 mode with virtual-8086 mode 
extensions (RFLAGS.VM = CR4.VME = 1), event delivery is subject to VME-based interrupt redirection based 
on the software interrupt redirection bitmap in the task-state segment (TSS) as follows:

— If bit n in the bitmap is clear (where n is the number of the software interrupt), the interrupt is directed to 
an 8086 program interrupt handler: the processor uses a 16-bit interrupt-vector table (IVT) located at 
linear address zero. If the value of RFLAGS.IOPL is less than 3, the following modifications are made to the 
value of RFLAGS that is pushed on the stack: IOPL is set to 3, and IF is set to the value of VIF.

— If bit n in the bitmap is set (where n is the number of the software interrupt), the interrupt is directed to a 
protected-mode interrupt handler. (In other words, the injection is treated as described in the next item.) 
In this case, the software interrupt does not invoke such a handler if RFLAGS.IOPL < 3 (a general-
protection exception occurs instead). However, as noted above, RFLAGS.IOPL cannot cause an injected 
software interrupt to cause such a exception. Thus, in this case, the injection invokes a protected-mode 
interrupt handler independent of the value of RFLAGS.IOPL.

Injection of events of other types are not subject to this redirection.
• If VM entry is injecting a software interrupt (not redirected as described above) or software exception, privilege 

checking is performed on the IDT descriptor being accessed as would be the case for executions of INT n, INT3, 
or INTO (the descriptor’s DPL cannot be less than CPL). There is no checking of RFLAGS.IOPL, even if the guest 
will be in virtual-8086 mode. Failure of this check may lead to a nested exception. Injection of an event with 
interruption type external interrupt, NMI, hardware exception, and privileged software exception, or with inter-
ruption type software interrupt and being redirected as described above, do not perform these checks.

• If VM entry is injecting a non-maskable interrupt (NMI) and the “virtual NMIs” VM-execution control is 1, 
virtual-NMI blocking is in effect after VM entry.

• The transition causes a last-branch record to be logged if the LBR bit is set in the IA32_DEBUGCTL MSR. This is 
true even for events such as debug exceptions, which normally clear the LBR bit before delivery.

• The last-exception record MSRs (LERs) may be updated based on the setting of the LBR bit in the 
IA32_DEBUGCTL MSR. Events such as debug exceptions, which normally clear the LBR bit before they are 
delivered, and therefore do not normally update the LERs, may do so as part of VM-entry event injection.

• If injection of an event encounters a nested exception that does not itself cause a VM exit, the value of the EXT 
bit (bit 0) in any error code pushed on the stack is determined as follows:

— If event being injected has interruption type external interrupt, NMI, hardware exception, or privileged 
software exception and encounters a nested exception (but does not produce a double fault), the error code 
for the first such exception encountered sets the EXT bit.

— If event being injected is a software interrupt or an software exception and encounters a nested exception 
(but does not produce a double fault), the error code for the first such exception encountered clears the 
EXT bit.

— If event delivery encounters a nested exception and delivery of that exception encounters another 
exception (but does not produce a double fault), the error code for that exception sets the EXT bit. If a 
double fault is produced, the error code for the double fault is 0000H (the EXT bit is clear).

26.5.1.2  VM Exits During Event Injection

An event being injected never causes a VM exit directly regardless of the settings of the VM-execution controls. For 
example, setting the “NMI exiting” VM-execution control to 1 does not cause a VM exit due to injection of an NMI.

However, the event-delivery process may lead to a VM exit:
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• If the vector in the VM-entry interruption-information field identifies a task gate in the IDT, the attempted task 
switch may cause a VM exit just as it would had the injected event occurred during normal execution in VMX 
non-root operation (see Section 25.4.2).

• If event delivery encounters a nested exception, a VM exit may occur depending on the contents of the 
exception bitmap (see Section 25.2).

• If event delivery generates a double-fault exception (due to a nested exception); the logical processor 
encounters another nested exception while attempting to call the double-fault handler; and that exception does 
not cause a VM exit due to the exception bitmap; then a VM exit occurs due to triple fault (see Section 25.2).

• If event delivery injects a double-fault exception and encounters a nested exception that does not cause a 
VM exit due to the exception bitmap, then a VM exit occurs due to triple fault (see Section 25.2).

• If the “virtualize APIC accesses” VM-execution control is 1 and event delivery generates an access to the APIC-
access page, that access is treated as described in Section 29.4 and may cause a VM exit.1

If the event-delivery process does cause a VM exit, the processor state before the VM exit is determined just as it 
would be had the injected event occurred during normal execution in VMX non-root operation. If the injected event 
directly accesses a task gate that cause a VM exit or if the first nested exception encountered causes a VM exit, 
information about the injected event is saved in the IDT-vectoring information field (see Section 27.2.3).

26.5.1.3  Event Injection for VM Entries to Real-Address Mode

If VM entry is loading CR0.PE with 0, any injected vectored event is delivered as would normally be done in real-
address mode.2 Specifically, VM entry uses the vector provided in the VM-entry interruption-information field to 
select a 4-byte entry from an interrupt-vector table at the linear address in IDTR.base. Further details are provided 
in Section 15.1.4 in Volume 3A of the IA-32 Intel® Architecture Software Developer’s Manual.

Because bit 11 (deliver error code) in the VM-entry interruption-information field must be 0 if CR0.PE will be 0 after 
VM entry (see Section 26.2.1.3), vectored events injected with CR0.PE = 0 do not push an error code on the stack. 
This is consistent with event delivery in real-address mode.

If event delivery encounters a fault (due to a violation of IDTR.limit or of SS.limit), the fault is treated as if it had 
occurred during event delivery in VMX non-root operation. Such a fault may lead to a VM exit as discussed in 
Section 26.5.1.2.

26.5.2 Injection of Pending MTF VM Exits

If the interruption type in the VM-entry interruption-information field is 7 (other event) and the vector field is 0, 
VM entry causes an MTF VM exit to be pending on the instruction boundary following VM entry. This is the case 
even if the “monitor trap flag” VM-execution control is 0. See Section 25.5.2 for the treatment of pending MTF 
VM exits.

26.6 SPECIAL FEATURES OF VM ENTRY

This section details a variety of features of VM entry. It uses the following terminology: a VM entry is vectoring if 
the valid bit (bit 31) of the VM-entry interruption information field is 1 and the interruption type in the field is 0 
(external interrupt), 2 (non-maskable interrupt); 3 (hardware exception), 4 (software interrupt), 5 (privileged 
software exception), or 6 (software exception).

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execu-
tion controls is 0, VM entry functions as if the “virtualize APIC accesses” VM-execution control were 0. See Section 24.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, VM entry must be loading CR0.PE 
with 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are 
both 1.
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26.6.1 Interruptibility State

The interruptibility-state field in the guest-state area (see Table 24-3) contains bits that control blocking by STI, 
blocking by MOV SS, and blocking by NMI. This field impacts event blocking after VM entry as follows:
• If the VM entry is vectoring, there is no blocking by STI or by MOV SS following the VM entry, regardless of the 

contents of the interruptibility-state field.
• If the VM entry is not vectoring, the following apply:

— Events are blocked by STI if and only if bit 0 in the interruptibility-state field is 1. This blocking is cleared 
after the guest executes one instruction or incurs an exception (including a debug exception made pending 
by VM entry; see Section 26.6.3).

— Events are blocked by MOV SS if and only if bit 1 in the interruptibility-state field is 1. This may affect the 
treatment of pending debug exceptions; see Section 26.6.3. This blocking is cleared after the guest 
executes one instruction or incurs an exception (including a debug exception made pending by VM entry).

• The blocking of non-maskable interrupts (NMIs) is determined as follows:

— If the “virtual NMIs” VM-execution control is 0, NMIs are blocked if and only if bit 3 (blocking by NMI) in the 
interruptibility-state field is 1. If the “NMI exiting” VM-execution control is 0, execution of the IRET 
instruction removes this blocking (even if the instruction generates a fault). If the “NMI exiting” control is 
1, IRET does not affect this blocking.

— The following items describe the use of bit 3 (blocking by NMI) in the interruptibility-state field if the 
“virtual NMIs” VM-execution control is 1:

• The bit’s value does not affect the blocking of NMIs after VM entry. NMIs are not blocked in VMX non-
root operation (except for ordinary blocking for other reasons, such as by the MOV SS instruction, the 
wait-for-SIPI state, etc.)

• The bit’s value determines whether there is virtual-NMI blocking after VM entry. If the bit is 1, virtual-
NMI blocking is in effect after VM entry. If the bit is 0, there is no virtual-NMI blocking after VM entry 
unless the VM entry is injecting an NMI (see Section 26.5.1.1). Execution of IRET removes virtual-NMI 
blocking (even if the instruction generates a fault).

If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” control must be 0; see Section 26.2.1.1.
• Blocking of system-management interrupts (SMIs) is determined as follows:

— If the VM entry was not executed in system-management mode (SMM), SMI blocking is unchanged by 
VM entry.

— If the VM entry was executed in SMM, SMIs are blocked after VM entry if and only if the bit 2 in the inter-
ruptibility-state field is 1.

26.6.2 Activity State

The activity-state field in the guest-state area controls whether, after VM entry, the logical processor is active or in 
one of the inactive states identified in Section 24.4.2. The use of this field is determined as follows:
• If the VM entry is vectoring, the logical processor is in the active state after VM entry. While the consistency 

checks described in Section 26.3.1.5 on the activity-state field do apply in this case, the contents of the 
activity-state field do not determine the activity state after VM entry.

• If the VM entry is not vectoring, the logical processor ends VM entry in the activity state specified in the guest-
state area. If VM entry ends with the logical processor in an inactive activity state, the VM entry generates any 
special bus cycle that is normally generated when that activity state is entered from the active state. If 
VM entry would end with the logical processor in the shutdown state and the logical processor is in SMX 
operation,1 an Intel® TXT shutdown condition occurs. The error code used is 0000H, indicating “legacy 
shutdown.” See Intel® Trusted Execution Technology Preliminary Architecture Specification.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. See 
Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B.
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• Some activity states unconditionally block certain events. The following blocking is in effect after any VM entry 
that puts the processor in the indicated state:

— The active state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical processor is in the active state 
and in VMX non-root operation are discarded and do not cause VM exits.

— The HLT state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical processor is in the HLT state and 
in VMX non-root operation are discarded and do not cause VM exits.

— The shutdown state blocks external interrupts and SIPIs. External interrupts that arrive while a logical 
processor is in the shutdown state and in VMX non-root operation do not cause VM exits even if the 
“external-interrupt exiting” VM-execution control is 1. SIPIs that arrive while a logical processor is in the 
shutdown state and in VMX non-root operation are discarded and do not cause VM exits.

— The wait-for-SIPI state blocks external interrupts, non-maskable interrupts (NMIs), INIT signals, and 
system-management interrupts (SMIs). Such events do not cause VM exits if they arrive while a logical 
processor is in the wait-for-SIPI state and in VMX non-root operation do not cause VM exits regardless of 
the settings of the pin-based VM-execution controls.

26.6.3 Delivery of Pending Debug Exceptions after VM Entry

The pending debug exceptions field in the guest-state area indicates whether there are debug exceptions that have 
not yet been delivered (see Section 24.4.2). This section describes how these are treated on VM entry.

There are no pending debug exceptions after VM entry if any of the following are true:
• The VM entry is vectoring with one of the following interruption types: external interrupt, non-maskable 

interrupt (NMI), hardware exception, or privileged software exception.
• The interruptibility-state field does not indicate blocking by MOV SS and the VM entry is vectoring with either 

of the following interruption type: software interrupt or software exception.
• The VM entry is not vectoring and the activity-state field indicates either shutdown or wait-for-SIPI.

If none of the above hold, the pending debug exceptions field specifies the debug exceptions that are pending for 
the guest. There are valid pending debug exceptions if either the BS bit (bit 14) or the enable-breakpoint bit 
(bit 12) is 1. If there are valid pending debug exceptions, they are handled as follows:
• If the VM entry is not vectoring, the pending debug exceptions are treated as they would had they been 

encountered normally in guest execution:

— If the logical processor is not blocking such exceptions (the interruptibility-state field indicates no blocking 
by MOV SS), a debug exception is delivered after VM entry (see below). 

— If the logical processor is blocking such exceptions (due to blocking by MOV SS), the pending debug 
exceptions are held pending or lost as would normally be the case.

• If the VM entry is vectoring (with interruption type software interrupt or software exception and with blocking 
by MOV SS), the following items apply:

— For injection of a software interrupt or of a software exception with vector 3 (#BP) or vector 4 (#OF), the 
pending debug exceptions are treated as they would had they been encountered normally in guest 
execution if the corresponding instruction (INT3 or INTO) were executed after a MOV SS that encountered 
a debug trap.

— For injection of a software exception with a vector other than 3 and 4, the pending debug exceptions may 
be lost or they may be delivered after injection (see below).

If there are no valid pending debug exceptions (as defined above), no pending debug exceptions are delivered after 
VM entry.

If a pending debug exception is delivered after VM entry, it has the priority of “traps on the previous instruction” 
(see Section 6.9 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). Thus, INIT 
signals and system-management interrupts (SMIs) take priority of such an exception, as do VM exits induced by 
the TPR threshold (see Section 26.6.7) and pending MTF VM exits (see Section 26.6.8. The exception takes priority 
over any pending non-maskable interrupt (NMI) or external interrupt and also over VM exits due to the 1-settings 
of the “interrupt-window exiting” and “NMI-window exiting” VM-execution controls.
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A pending debug exception delivered after VM entry causes a VM exit if the bit 1 (#DB) is 1 in the exception 
bitmap. If it does not cause a VM exit, it updates DR6 normally.

26.6.4 VMX-Preemption Timer

If the “activate VMX-preemption timer” VM-execution control is 1, VM entry starts the VMX-preemption timer with 
the unsigned value in the VMX-preemption timer-value field.

It is possible for the VMX-preemption timer to expire during VM entry (e.g., if the value in the VMX-preemption 
timer-value field is zero). If this happens (and if the VM entry was not to the wait-for-SIPI state), a VM exit occurs 
with its normal priority after any event injection and before execution of any instruction following VM entry. For 
example, any pending debug exceptions established by VM entry (see Section 26.6.3) take priority over a timer-
induced VM exit. (The timer-induced VM exit will occur after delivery of the debug exception, unless that exception 
or its delivery causes a different VM exit.)

See Section 25.5.1 for details of the operation of the VMX-preemption timer in VMX non-root operation, including 
the blocking and priority of the VM exits that it causes.

26.6.5 Interrupt-Window Exiting and Virtual-Interrupt Delivery

If “interrupt-window exiting” VM-execution control is 1, an open interrupt window may cause a VM exit immedi-
ately after VM entry (see Section 25.2 for details). If the “interrupt-window exiting” VM-execution control is 0 but 
the “virtual-interrupt delivery” VM-execution control is 1, a virtual interrupt may be delivered immediately after 
VM entry (see Section 26.3.2.5 and Section 29.2.1).

The following items detail the treatment of these events:
• These events occur after any event injection specified for VM entry.
• Non-maskable interrupts (NMIs) and higher priority events take priority over these events. These events take 

priority over external interrupts and lower priority events. 
• These events wake the logical processor if it just entered the HLT state because of a VM entry (see Section 

26.6.2). They do not occur if the logical processor just entered the shutdown state or the wait-for-SIPI state.

26.6.6 NMI-Window Exiting

The “NMI-window exiting” VM-execution control may cause a VM exit to occur immediately after VM entry (see 
Section 25.2 for details).

The following items detail the treatment of these VM exits:
• These VM exits follow event injection if such injection is specified for VM entry.
• Debug-trap exceptions (see Section 26.6.3) and higher priority events take priority over VM exits caused by 

this control. VM exits caused by this control take priority over non-maskable interrupts (NMIs) and lower 
priority events. 

• VM exits caused by this control wake the logical processor if it just entered either the HLT state or the shutdown 
state because of a VM entry (see Section 26.6.2). They do not occur if the logical processor just entered the 
wait-for-SIPI state.

26.6.7 VM Exits Induced by the TPR Threshold

If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are both 1 and the “virtual-interrupt 
delivery” VM-execution control is 0, a VM exit occurs immediately after VM entry if the value of bits 3:0 of the TPR 
threshold VM-execution control field is greater than the value of bits 7:4 of VTPR (see Section 29.1.1).1

1. “Virtualize APIC accesses” and “virtual-interrupt delivery” are secondary processor-based VM-execution controls. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if these controls were 0. See Section 24.6.2.
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The following items detail the treatment of these VM exits:
• The VM exits are not blocked if RFLAGS.IF = 0 or by the setting of bits in the interruptibility-state field in guest-

state area.
• The VM exits follow event injection if such injection is specified for VM entry.
• VM exits caused by this control take priority over system-management interrupts (SMIs), INIT signals, and 

lower priority events. They thus have priority over the VM exits described in Section 26.6.5, Section 26.6.6, 
and Section 26.6.8, as well as any interrupts or debug exceptions that may be pending at the time of VM entry.

• These VM exits wake the logical processor if it just entered the HLT state as part of a VM entry (see Section 
26.6.2). They do not occur if the logical processor just entered the shutdown state or the wait-for-SIPI state.
If such a VM exit is suppressed because the processor just entered the shutdown state, it occurs after the
delivery of any event that cause the logical processor to leave the shutdown state while remaining in VMX
non-root operation (e.g., due to an NMI that occurs while the “NMI-exiting” VM-execution control is 0).

• The basic exit reason is “TPR below threshold.”

26.6.8 Pending MTF VM Exits

As noted in Section 26.5.2, VM entry may cause an MTF VM exit to be pending immediately after VM entry. The 
following items detail the treatment of these VM exits:
• System-management interrupts (SMIs), INIT signals, and higher priority events take priority over these 

VM exits. These VM exits take priority over debug-trap exceptions and lower priority events. 
• These VM exits wake the logical processor if it just entered the HLT state because of a VM entry (see Section 

26.6.2). They do not occur if the logical processor just entered the shutdown state or the wait-for-SIPI state.

26.6.9 VM Entries and Advanced Debugging Features

VM entries are not logged with last-branch records, do not produce branch-trace messages, and do not update the 
branch-trace store.

26.7 VM-ENTRY FAILURES DURING OR AFTER LOADING GUEST STATE

VM-entry failures due to the checks identified in Section 26.3.1 and failures during the MSR loading identified in 
Section 26.4 are treated differently from those that occur earlier in VM entry. In these cases, the following steps 
take place:

1. Information about the VM-entry failure is recorded in the VM-exit information fields:

— Exit reason.

• Bits 15:0 of this field contain the basic exit reason. It is loaded with a number indicating the general 
cause of the VM-entry failure. The following numbers are used:

33. VM-entry failure due to invalid guest state. A VM entry failed one of the checks identified in Section 
26.3.1.

34. VM-entry failure due to MSR loading. A VM entry failed in an attempt to load MSRs (see Section 
26.4).

41. VM-entry failure due to machine-check event. A machine-check event occurred during VM entry 
(see Section 26.8).

• Bit 31 is set to 1 to indicate a VM-entry failure.

• The remainder of the field (bits 30:16) is cleared.

— Exit qualification. This field is set based on the exit reason.

• VM-entry failure due to invalid guest state. In most cases, the exit qualification is cleared to 0. The 
following non-zero values are used in the cases indicated:
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1. Not used.

2. Failure was due to a problem loading the PDPTEs (see Section 26.3.1.6).

3. Failure was due to an attempt to inject a non-maskable interrupt (NMI) into a guest that is blocking 
events through the STI blocking bit in the interruptibility-state field. Such failures are implemen-
tation-specific (see Section 26.3.1.5). 

4. Failure was due to an invalid VMCS link pointer (see Section 26.3.1.5).

VM-entry checks on guest-state fields may be performed in any order. Thus, an indication by exit
qualification of one cause does not imply that there are not also other errors. Different processors
may give different exit qualifications for the same VMCS.

• VM-entry failure due to MSR loading. The exit qualification is loaded to indicate which entry in the 
VM-entry MSR-load area caused the problem (1 for the first entry, 2 for the second, etc.).

— All other VM-exit information fields are unmodified.

2. Processor state is loaded as would be done on a VM exit (see Section 27.5). If this results in 
[CR4.PAE & CR0.PG & ~IA32_EFER.LMA] = 1, page-directory-pointer-table entries (PDPTEs) may be checked 
and loaded (see Section 27.5.4).

3. The state of blocking by NMI is what it was before VM entry.

4. MSRs are loaded as specified in the VM-exit MSR-load area (see Section 27.6).

Although this process resembles that of a VM exit, many steps taken during a VM exit do not occur for these 
VM-entry failures:
• Most VM-exit information fields are not updated (see step 1 above).
• The valid bit in the VM-entry interruption-information field is not cleared.
• The guest-state area is not modified.
• No MSRs are saved into the VM-exit MSR-store area.

26.8 MACHINE-CHECK EVENTS DURING VM ENTRY

If a machine-check event occurs during a VM entry, one of the following occurs:
• The machine-check event is handled as if it occurred before the VM entry:

— If CR4.MCE = 0, operation of the logical processor depends on whether the logical processor is in SMX 
operation:1

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs. The error code 
used is 000CH, indicating “unrecoverable machine-check condition.”

• If the logical processor is outside SMX operation, it goes to the shutdown state.

— If CR4.MCE = 1, a machine-check exception (#MC) is delivered through the IDT.
• The machine-check event is handled after VM entry completes:

— If the VM entry ends with CR4.MCE = 0, operation of the logical processor depends on whether the logical 
processor is in SMX operation:

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs with error code 
000CH (unrecoverable machine-check condition).

• If the logical processor is outside SMX operation, it goes to the shutdown state.

— If the VM entry ends with CR4.MCE = 1, a machine-check exception (#MC) is generated:

• If bit 18 (#MC) of the exception bitmap is 0, the exception is delivered through the guest IDT.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last 
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software 

Developer’s Manual, Volume 2B.
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• If bit 18 of the exception bitmap is 1, the exception causes a VM exit.
• A VM-entry failure occurs as described in Section 26.7. The basic exit reason is 41, for “VM-entry failure due to 

machine-check event.”

The first option is not used if the machine-check event occurs after any guest state has been loaded. The second 
option is used only if VM entry is able to load all guest state.
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VM EXITS

VM exits occur in response to certain instructions and events in VMX non-root operation as detailed in Section 25.1 
through Section 25.2. VM exits perform the following operations:

1. Information about the cause of the VM exit is recorded in the VM-exit information fields and VM-entry control 
fields are modified as described in Section 27.2.

2. Processor state is saved in the guest-state area (Section 27.3).

3. MSRs may be saved in the VM-exit MSR-store area (Section 27.4). This step is not performed for SMM VM exits 
that activate the dual-monitor treatment of SMIs and SMM.

4. The following may be performed in parallel and in any order (Section 27.5):

— Processor state is loaded based in part on the host-state area and some VM-exit controls. This step is not 
performed for SMM VM exits that activate the dual-monitor treatment of SMIs and SMM. See Section 
34.15.6 for information on how processor state is loaded by such VM exits.

— Address-range monitoring is cleared.

5. MSRs may be loaded from the VM-exit MSR-load area (Section 27.6). This step is not performed for SMM 
VM exits that activate the dual-monitor treatment of SMIs and SMM.

VM exits are not logged with last-branch records, do not produce branch-trace messages, and do not update the 
branch-trace store.

Section 27.1 clarifies the nature of the architectural state before a VM exit begins. The steps described above are 
detailed in Section 27.2 through Section 27.6. 

Section 34.15 describes the dual-monitor treatment of system-management interrupts (SMIs) and system-
management mode (SMM). Under this treatment, ordinary transitions to SMM are replaced by VM exits to a sepa-
rate SMM monitor. Called SMM VM exits, these are caused by the arrival of an SMI or the execution of VMCALL in 
VMX root operation. SMM VM exits differ from other VM exits in ways that are detailed in Section 34.15.2.

27.1 ARCHITECTURAL STATE BEFORE A VM EXIT

This section describes the architectural state that exists before a VM exit, especially for VM exits caused by events 
that would normally be delivered through the IDT. Note the following:
• An exception causes a VM exit directly if the bit corresponding to that exception is set in the exception bitmap. 

A non-maskable interrupt (NMI) causes a VM exit directly if the “NMI exiting” VM-execution control is 1. An 
external interrupt causes a VM exit directly if the “external-interrupt exiting” VM-execution control is 1. A start-
up IPI (SIPI) that arrives while a logical processor is in the wait-for-SIPI activity state causes a VM exit directly. 
INIT signals that arrive while the processor is not in the wait-for-SIPI activity state cause VM exits directly.

• An exception, NMI, external interrupt, or software interrupt causes a VM exit indirectly if it does not do so 
directly but delivery of the event causes a nested exception, double fault, task switch, APIC access (see Section 
27.4), EPT violation, or EPT misconfiguration that causes a VM exit.

• An event results in a VM exit if it causes a VM exit (directly or indirectly).

The following bullets detail when architectural state is and is not updated in response to VM exits:
• If an event causes a VM exit directly, it does not update architectural state as it would have if it had it not 

caused the VM exit:

— A debug exception does not update DR6, DR7.GD, or IA32_DEBUGCTL.LBR. (Information about the nature 
of the debug exception is saved in the exit qualification field.)

— A page fault does not update CR2. (The linear address causing the page fault is saved in the exit-qualifi-
cation field.)

— An NMI causes subsequent NMIs to be blocked, but only after the VM exit completes.
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— An external interrupt does not acknowledge the interrupt controller and the interrupt remains pending, 
unless the “acknowledge interrupt on exit” VM-exit control is 1. In such a case, the interrupt controller is 
acknowledged and the interrupt is no longer pending.

— The flags L0 – L3 in DR7 (bit 0, bit 2, bit 4, and bit 6) are not cleared when a task switch causes a VM exit.

— If a task switch causes a VM exit, none of the following are modified by the task switch: old task-state 
segment (TSS); new TSS; old TSS descriptor; new TSS descriptor; RFLAGS.NT1; or the TR register.

— No last-exception record is made if the event that would do so directly causes a VM exit. 

— If a machine-check exception causes a VM exit directly, this does not prevent machine-check MSRs from 
being updated. These are updated by the machine-check event itself and not the resulting machine-check 
exception.

— If the logical processor is in an inactive state (see Section 24.4.2) and not executing instructions, some 
events may be blocked but others may return the logical processor to the active state. Unblocked events 
may cause VM exits.2 If an unblocked event causes a VM exit directly, a return to the active state occurs 
only after the VM exit completes.3 The VM exit generates any special bus cycle that is normally generated 
when the active state is entered from that activity state.

MTF VM exits (see Section 25.5.2 and Section 26.6.8) are not blocked in the HLT activity state. If an MTF 
VM exit occurs in the HLT activity state, the logical processor returns to the active state only after the 
VM exit completes. MTF VM exits are blocked the shutdown state and the wait-for-SIPI state.

• If an event causes a VM exit indirectly, the event does update architectural state:

— A debug exception updates DR6, DR7, and the IA32_DEBUGCTL MSR. No debug exceptions are considered 
pending.

— A page fault updates CR2.

— An NMI causes subsequent NMIs to be blocked before the VM exit commences.

— An external interrupt acknowledges the interrupt controller and the interrupt is no longer pending.

— If the logical processor had been in an inactive state, it enters the active state and, before the VM exit 
commences, generates any special bus cycle that is normally generated when the active state is entered 
from that activity state.

— There is no blocking by STI or by MOV SS when the VM exit commences.

— Processor state that is normally updated as part of delivery through the IDT (CS, RIP, SS, RSP, RFLAGS) is 
not modified. However, the incomplete delivery of the event may write to the stack.

— The treatment of last-exception records is implementation dependent:

• Some processors make a last-exception record when beginning the delivery of an event through the IDT 
(before it can encounter a nested exception). Such processors perform this update even if the event 
encounters a nested exception that causes a VM exit (including the case where nested exceptions lead 
to a triple fault).

• Other processors delay making a last-exception record until event delivery has reached some event 
handler successfully (perhaps after one or more nested exceptions). Such processors do not update the 
last-exception record if a VM exit or triple fault occurs before an event handler is reached.

• If the “virtual NMIs” VM-execution control is 1, VM entry injects an NMI, and delivery of the NMI causes a 
nested exception, double fault, task switch, or APIC access that causes a VM exit, virtual-NMI blocking is in 
effect before the VM exit commences.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit 
forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32 
bits of the indicated register.

2. If a VM exit takes the processor from an inactive state resulting from execution of a specific instruction (HLT or MWAIT), the value 
saved for RIP by that VM exit will reference the following instruction.

3. An exception is made if the logical processor had been inactive due to execution of MWAIT; in this case, it is considered to have 
become active before the VM exit.
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• If a VM exit results from a fault, EPT violation, or EPT misconfiguration encountered during execution of IRET 
and the “NMI exiting” VM-execution control is 0, any blocking by NMI is cleared before the VM exit commences. 
However, the previous state of blocking by NMI may be recorded in the VM-exit interruption-information field; 
see Section 27.2.2.

• If a VM exit results from a fault, EPT violation, or EPT misconfiguration encountered during execution of IRET 
and the “virtual NMIs” VM-execution control is 1, virtual-NMI blocking is cleared before the VM exit 
commences. However, the previous state of virtual-NMI blocking may be recorded in the VM-exit interruption-
information field; see Section 27.2.2.

• Suppose that a VM exit is caused directly by an x87 FPU Floating-Point Error (#MF) or by any of the following 
events if the event was unblocked due to (and given priority over) an x87 FPU Floating-Point Error: an INIT 
signal, an external interrupt, an NMI, an SMI; or a machine-check exception. In these cases, there is no 
blocking by STI or by MOV SS when the VM exit commences.

• Normally, a last-branch record may be made when an event is delivered through the IDT. However, if such an 
event results in a VM exit before delivery is complete, no last-branch record is made.

• If machine-check exception results in a VM exit, processor state is suspect and may result in suspect state 
being saved to the guest-state area. A VM monitor should consult the RIPV and EIPV bits in the 
IA32_MCG_STATUS MSR before resuming a guest that caused a VM exit resulting from a machine-check 
exception.

• If a VM exit results from a fault, APIC access (see Section 29.4), EPT violation, or EPT misconfiguration 
encountered while executing an instruction, data breakpoints due to that instruction may have been recognized 
and information about them may be saved in the pending debug exceptions field (see Section 27.3.4).

• The following VM exits are considered to happen after an instruction is executed:

— VM exits resulting from debug traps (single-step, I/O breakpoints, and data breakpoints).

— VM exits resulting from debug exceptions whose recognition was delayed by blocking by MOV SS.

— VM exits resulting from some machine-check exceptions.

— Trap-like VM exits due to execution of MOV to CR8 when the “CR8-load exiting” VM-execution control is 0 
and the “use TPR shadow” VM-execution control is 1 (see Section 29.3). (Such VM exits can occur only from 
64-bit mode and thus only on processors that support Intel 64 architecture.)

— Trap-like VM exits due to execution of WRMSR when the “use MSR bitmaps” VM-execution control is 1; the 
value of ECX is in the range 800H–8FFH; and the bit corresponding to the ECX value in write bitmap for low 
MSRs is 0; and the “virtualize x2APIC mode” VM-execution control is 1. See Section 29.5.

— VM exits caused by APIC-write emulation (see Section 29.4.3.2) that result from APIC accesses as part of 
instruction execution.

For these VM exits, the instruction’s modifications to architectural state complete before the VM exit occurs. 
Such modifications include those to the logical processor’s interruptibility state (see Table 24-3). If there had 
been blocking by MOV SS, POP SS, or STI before the instruction executed, such blocking is no longer in effect.

27.2 RECORDING VM-EXIT INFORMATION AND UPDATING VM-ENTRY CONTROL 
FIELDS

VM exits begin by recording information about the nature of and reason for the VM exit in the VM-exit information 
fields. Section 27.2.1 to Section 27.2.4 detail the use of these fields.

In addition to updating the VM-exit information fields, the valid bit (bit 31) is cleared in the VM-entry interruption-
information field. If bit 5 of the IA32_VMX_MISC MSR (index 485H) is read as 1 (see Appendix A.6), the value of 
IA32_EFER.LMA is stored into the “IA-32e mode guest” VM-entry control.1

1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting of the “unrestricted guest” VM-
execution control.
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27.2.1 Basic VM-Exit Information

Section 24.9.1 defines the basic VM-exit information fields. The following items detail their use.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number indicating the general cause 
of the VM exit. Appendix C lists the numbers used and their meaning.

— The remainder of the field (bits 31:16) is cleared to 0 (certain SMM VM exits may set some of these bits; 
see Section 34.15.2.3).1

• Exit qualification. This field is saved for VM exits due to the following causes: debug exceptions; page-fault 
exceptions; start-up IPIs (SIPIs); system-management interrupts (SMIs) that arrive immediately after the 
retirement of I/O instructions; task switches; INVEPT; INVLPG; INVPCID; INVVPID; LGDT; LIDT; LLDT; LTR; 
SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; XRSTORS; XSAVES; 
control-register accesses; MOV DR; I/O instructions; MWAIT; accesses to the APIC-access page (see Section 
29.4); EPT violations; EOI virtualization (Section 29.1.4); and APIC-write emulation (see Section 29.4.3.3). For 
all other VM exits, this field is cleared. The following items provide details:

— For a debug exception, the exit qualification contains information about the debug exception. The 
information has the format given in Table 27-1.

— For a page-fault exception, the exit qualification contains the linear address that caused the page fault. On 
processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was not in 64-
bit mode before the VM exit.

— For a start-up IPI (SIPI), the exit qualification contains the SIPI vector information in bits 7:0. Bits 63:8 of 
the exit qualification are cleared to 0.

— For a task switch, the exit qualification contains details about the task switch, encoded as shown in 
Table 27-2.

— For INVLPG, the exit qualification contains the linear-address operand of the instruction.

• On processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was not 
in 64-bit mode before the VM exit.

• If the INVLPG source operand specifies an unusable segment, the linear address specified in the exit 
qualification will match the linear address that the INVLPG would have used if no VM exit occurred. This 
address is not architecturally defined and may be implementation-specific.

1. Bit 13 of this field is set on certain VM-entry failures; see Section 26.7.

Table 27-1.  Exit Qualification for Debug Exceptions

Bit Position(s) Contents

3:0 B3 – B0. When set, each of these bits indicates that the corresponding breakpoint condition was met. Any of 
these bits may be set even if its corresponding enabling bit in DR7 is not set.

12:4 Reserved (cleared to 0).

13 BD. When set, this bit indicates that the cause of the debug exception is “debug register access detected.”

14 BS. When set, this bit indicates that the cause of the debug exception is either the execution of a single 
instruction (if RFLAGS.TF = 1 and IA32_DEBUGCTL.BTF = 0) or a taken branch (if 
RFLAGS.TF = DEBUGCTL.BTF = 1).

63:15 Reserved (cleared to 0). Bits 63:32 exist only on processors that support Intel 64 architecture.
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— For INVEPT, INVPCID, INVVPID, LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR, VMCLEAR, VMPTRLD, 
VMPTRST, VMREAD, VMWRITE, VMXON, XRSTORS, and XSAVES, the exit qualification receives the value of 
the instruction’s displacement field, which is sign-extended to 64 bits if necessary (32 bits on processors 
that do not support Intel 64 architecture). If the instruction has no displacement (for example, has a 
register operand), zero is stored into the exit qualification.

On processors that support Intel 64 architecture, an exception is made for RIP-relative addressing (used 
only in 64-bit mode). Such addressing causes an instruction to use an address that is the sum of the 
displacement field and the value of RIP that references the following instruction. In this case, the exit 
qualification is loaded with the sum of the displacement field and the appropriate RIP value.

In all cases, bits of this field beyond the instruction’s address size are undefined. For example, suppose 
that the address-size field in the VM-exit instruction-information field (see Section 24.9.4 and Section 
27.2.4) reports an n-bit address size. Then bits 63:n (bits 31:n on processors that do not support Intel 64 
architecture) of the instruction displacement are undefined.

— For a control-register access, the exit qualification contains information about the access and has the 
format given in Table 27-3.

— For MOV DR, the exit qualification contains information about the instruction and has the format given in 
Table 27-4.

— For an I/O instruction, the exit qualification contains information about the instruction and has the format 
given in Table 27-5.

— For MWAIT, the exit qualification contains a value that indicates whether address-range monitoring 
hardware was armed. The exit qualification is set either to 0 (if address-range monitoring hardware is not 
armed) or to 1 (if address-range monitoring hardware is armed).

— For an APIC-access VM exit resulting from a linear access or a guest-physical access to the APIC-access 
page (see Section 29.4), the exit qualification contains information about the access and has the format 
given in Table 27-6.1

Such a VM exit that set bits 15:12 of the exit qualification to 0000b (data read during instruction execution) 
or 0001b (data write during instruction execution) set bit 12—which distinguishes data read from data 
write—to that which would have been stored in bit 1—W/R—of the page-fault error code had the access 
caused a page fault instead of an APIC-access VM exit. This implies the following:

• For an APIC-access VM exit caused by the CLFLUSH instruction, the access type is “data read during 
instruction execution.”

• For an APIC-access VM exit caused by the ENTER instruction, the access type is “data write during 
instruction execution.”

Table 27-2.  Exit Qualification for Task Switch

Bit Position(s) Contents

15:0 Selector of task-state segment (TSS) to which the guest attempted to switch

29:16 Reserved (cleared to 0)

31:30 Source of task switch initiation:

0: CALL instruction
1: IRET instruction
2: JMP instruction
3: Task gate in IDT

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 64 architecture.

1. The exit qualification is undefined if the access was part of the logging of a branch record or a precise-event-based-sampling (PEBS) 
record to the DS save area. It is recommended that software configure the paging structures so that no address in the DS save area 
translates to an address on the APIC-access page.
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• For an APIC-access VM exit caused by the MASKMOVQ instruction or the MASKMOVDQU instruction, the 
access type is “data write during instruction execution.”

• For an APIC-access VM exit caused by the MONITOR instruction, the access type is “data read during 
instruction execution.”

Such a VM exit stores 1 for bit 31 for IDT-vectoring information field (see Section 27.2.3) if and only if it 
sets bits 15:12 of the exit qualification to 0011b (linear access during event delivery) or 1010b (guest-
physical access during event delivery).

See Section 29.4.4 for further discussion of these instructions and APIC-access VM exits.

For APIC-access VM exits resulting from physical accesses, the APIC-access page (see Section 29.4.6), the 
exit qualification is undefined.

— For an EPT violation, the exit qualification contains information about the access causing the EPT violation 
and has the format given in Table 27-7.

An EPT violation that occurs during as a result of execution of a read-modify-write operation sets bit 1 (data 
write). Whether it also sets bit 0 (data read) is implementation-specific and, for a given implementation, 
may differ for different kinds of read-modify-write operations.

Table 27-3.  Exit Qualification for Control-Register Accesses 

Bit Positions Contents

3:0 Number of control register (0 for CLTS and LMSW). Bit 3 is always 0 on processors that do not support Intel 64 
architecture as they do not support CR8.

5:4 Access type:

0 = MOV to CR
1 = MOV from CR
2 = CLTS
3 = LMSW

6 LMSW operand type:

0 = register
1 = memory

For CLTS and MOV CR, cleared to 0

7 Reserved (cleared to 0)

11:8 For MOV CR, the general-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

For CLTS and LMSW, cleared to 0

15:12 Reserved (cleared to 0)

31:16 For LMSW, the LMSW source data

For CLTS and MOV CR, cleared to 0

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 64 architecture.
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Bit 12 is undefined in any of the following cases:

• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs” VM-execution control is 0.

• If the VM exit sets the valid bit in the IDT-vectoring information field (see Section 27.2.3).

Otherwise, bit 12 is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the EPT violation was caused by a memory access as 
part of execution of the IRET instruction, and blocking by NMI (see Table 24-3) was in effect before 
execution of IRET, bit 12 is set to 1.

Table 27-4.  Exit Qualification for MOV DR

Bit Position(s) Contents

2:0 Number of debug register

3 Reserved (cleared to 0)

4 Direction of access (0 = MOV to DR; 1 = MOV from DR)

7:5 Reserved (cleared to 0)

11:8 General-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8 –15 = R8 – R15, respectively

63:12 Reserved (cleared to 0)

Table 27-5.  Exit Qualification for I/O Instructions

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in DX or in an immediate operand)

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 64 architecture.
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• If the “virtual NMIs” VM-execution control is 1,the EPT violation was caused by a memory access as part 
of execution of the IRET instruction, and virtual-NMI blocking was in effect before execution of IRET, 
bit 12 is set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.

— For VM exits caused as part of EOI virtualization (Section 29.1.4), bits 7:0 of the exit qualification are set 
to vector of the virtual interrupt that was dismissed by the EOI virtualization. Bits above bit 7 are cleared.

— For APIC-write VM exits (Section 29.4.3.3), bits 11:0 of the exit qualification are set to the page offset of 
the write access that caused the VM exit.1 Bits above bit 11 are cleared.

• Guest-linear address. For some VM exits, this field receives a linear address that pertains to the VM exit. The 
field is set for different VM exits as follows:

— VM exits due to attempts to execute LMSW with a memory operand. In these cases, this field receives the 
linear address of that operand. Bits 63:32 are cleared if the logical processor was not in 64-bit mode before 
the VM exit.

— VM exits due to attempts to execute INS or OUTS for which the relevant segment is usable (if the relevant 
segment is not usable, the value is undefined). (ES is always the relevant segment for INS; for OUTS, the 
relevant segment is DS unless overridden by an instruction prefix.) The linear address is the base address 
of relevant segment plus (E)DI (for INS) or (E)SI (for OUTS). Bits 63:32 are cleared if the logical processor 
was not in 64-bit mode before the VM exit.

— VM exits due to EPT violations that set bit 7 of the exit qualification (see Table 27-7; these are all EPT 
violations except those resulting from an attempt to load the PDPTEs as of execution of the MOV CR 
instruction). The linear address may translate to the guest-physical address whose access caused the EPT 
violation. Alternatively, translation of the linear address may reference a paging-structure entry whose 
access caused the EPT violation. Bits 63:32 are cleared if the logical processor was not in 64-bit mode 
before the VM exit.

— For all other VM exits, the field is undefined.
• Guest-physical address. For a VM exit due to an EPT violation or an EPT misconfiguration, this field receives 

the guest-physical address that caused the EPT violation or EPT misconfiguration. For all other VM exits, the 
field is undefined.

Table 27-6.  Exit Qualification for APIC-Access VM Exits from Linear Accesses and Guest-Physical Accesses

Bit Position(s) Contents

11:0 • If the APIC-access VM exit is due to a linear access, the offset of access within the APIC page.
• Undefined if the APIC-access VM exit is due a guest-physical access

15:12 Access type:

0 = linear access for a data read during instruction execution
1 = linear access for a data write during instruction execution
2 = linear access for an instruction fetch
3 = linear access (read or write) during event delivery
10 = guest-physical access during event delivery
15 = guest-physical access for an instruction fetch or during instruction execution

Other values not used

63:16 Reserved (cleared to 0). Bits 63:32 exist only on processors that support Intel 64 architecture.

1. Execution of WRMSR with ECX = 83FH (self-IPI MSR) can lead to an APIC-write VM exit; the exit qualification for such an APIC-write 
VM exit is 3F0H.
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27.2.2 Information for VM Exits Due to Vectored Events

Section 24.9.2 defines fields containing information for VM exits due to the following events: exceptions (including 
those generated by the instructions INT3, INTO, BOUND, and UD2); external interrupts that occur while the 
“acknowledge interrupt on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). Such VM exits include 
those that occur on an attempt at a task switch that causes an exception before generating the VM exit due to the 
task switch that causes the VM exit.

The following items detail the use of these fields:
• VM-exit interruption information (format given in Table 24-15). The following items detail how this field is 

established for VM exits due to these events:

— For an exception, bits 7:0 receive the exception vector (at most 31). For an NMI, bits 7:0 are set to 2. For 
an external interrupt, bits 7:0 receive the interrupt number.

— Bits 10:8 are set to 0 (external interrupt), 2 (non-maskable interrupt), 3 (hardware exception), or 6 
(software exception). Hardware exceptions comprise all exceptions except breakpoint exceptions (#BP; 

Table 27-7.  Exit Qualification for EPT Violations

Bit Position(s) Contents

0 Set if the access causing the EPT violation was a data read.1

1 Set if the access causing the EPT violation was a data write.1

2 Set if the access causing the EPT violation was an instruction fetch.

3 The logical-AND of bit 0 in the EPT paging-structures entries used to translate the guest-physical address of the 
access causing the EPT violation (indicates that the guest-physical address was readable).2

4 The logical-AND of bit 1 in the EPT paging-structures entries used to translate the guest-physical address of the 
access causing the EPT violation (indicates that the guest-physical address was writeable).

5 The logical-AND of bit 2 in the EPT paging-structures entries used to translate the guest-physical address of the 
access causing the EPT violation (indicates that the guest-physical address was executable).

6 Reserved (cleared to 0).

7 Set if the guest linear-address field is valid.

The guest linear-address field is valid for all EPT violations except those resulting from an attempt to load the 
guest PDPTEs as part of the execution of the MOV CR instruction.

8 If bit 7 is 1:

• Set if the access causing the EPT violation is to a guest-physical address that is the translation of a linear 
address.

• Clear if the access causing the EPT violation is to a paging-structure entry as part of a page walk or the 
update of an accessed or dirty bit.

Reserved if bit 7 is 0 (cleared to 0).

11:9 Reserved (cleared to 0).

12 NMI unblocking due to IRET

63:13 Reserved (cleared to 0).

NOTES:

1. If accessed and dirty flags for EPT are enabled, processor accesses to guest paging-structure entries are treated as writes with 
regard to EPT violations (see Section 28.2.3.2). If such an access causes an EPT violation, the processor sets both bit 0 and bit 1 of 
the exit qualification.

2. Bits 5:3 are cleared to 0 if any of EPT paging-structures entries used to translate the guest-physical address of the access causing 
the EPT violation is not present (see Section 28.2.2).
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generated by INT3) and overflow exceptions (#OF; generated by INTO); these are software exceptions. 
BOUND-range exceeded exceptions (#BR; generated by BOUND) and invalid opcode exceptions (#UD) 
generated by UD2 are hardware exceptions.

— Bit 11 is set to 1 if the VM exit is caused by a hardware exception that would have delivered an error code 
on the stack. This bit is always 0 if the VM exit occurred while the logical processor was in real-address 
mode (CR0.PE=0).1 If bit 11 is set to 1, the error code is placed in the VM-exit interruption error code (see 
below).

— Bit 12 is undefined in any of the following cases:

• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs” VM-execution control is 0.

• If the VM exit sets the valid bit in the IDT-vectoring information field (see Section 27.2.3).

• If the VM exit is due to a double fault (the interruption type is hardware exception and the vector is 8).

Otherwise, bit 12 is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the VM exit is due to a fault on the IRET instruction 
(other than a debug exception for an instruction breakpoint), and blocking by NMI (see Table 24-3) was 
in effect before execution of IRET, bit 12 is set to 1.

• If the “virtual NMIs” VM-execution control is 1, the VM exit is due to a fault on the IRET instruction 
(other than a debug exception for an instruction breakpoint), and virtual-NMI blocking was in effect 
before execution of IRET, bit 12 is set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.2

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.
For other VM exits (including those due to external interrupts when the “acknowledge interrupt on exit” VM-exit 
control is 0), the field is marked invalid (by clearing bit 31) and the remainder of the field is undefined.

• VM-exit interruption error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the VM-exit interruption-information 
field, this field receives the error code that would have been pushed on the stack had the event causing the 
VM exit been delivered normally through the IDT. The EXT bit is set in this field exactly when it would be set 
normally. For exceptions that occur during the delivery of double fault (if the IDT-vectoring information field 
indicates a double fault), the EXT bit is set to 1, assuming that (1) that the exception would produce an 
error code normally (if not incident to double-fault delivery) and (2) that the error code uses the EXT bit 
(not for page faults, which use a different format).

— For other VM exits, the value of this field is undefined.

27.2.3 Information for VM Exits During Event Delivery

Section 24.9.3 defined fields containing information for VM exits that occur while delivering an event through the 
IDT and as a result of any of the following cases:3

• A fault occurs during event delivery and causes a VM exit (because the bit associated with the fault is set to 1 
in the exception bitmap).

• A task switch is invoked through a task gate in the IDT. The VM exit occurs due to the task switch only after the 
initial checks of the task switch pass (see Section 25.4.2).

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a logical processor cannot be in real-
address mode unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution con-
trols are both 1.

2. The conditions imply that, if the “NMI exiting” VM-execution control is 0 or the “virtual NMIs” VM-execution control is 1, bit 12 is 
always cleared to 0 by VM exits due to debug exceptions.

3. This includes the case in which a VM exit occurs while delivering a software interrupt (INT n) through the 16-bit IVT (interrupt vec-
tor table) that is used in virtual-8086 mode with virtual-machine extensions (if RFLAGS.VM = CR4.VME = 1).
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• Event delivery causes an APIC-access VM exit (see Section 29.4).
• An EPT violation or EPT misconfiguration that occurs during event delivery.

These fields are used for VM exits that occur during delivery of events injected as part of VM entry (see Section 
26.5.1.2).

A VM exit is not considered to occur during event delivery in any of the following circumstances:
• The original event causes the VM exit directly (for example, because the original event is a non-maskable 

interrupt (NMI) and the “NMI exiting” VM-execution control is 1).
• The original event results in a double-fault exception that causes the VM exit directly.
• The VM exit occurred as a result of fetching the first instruction of the handler invoked by the event delivery.
• The VM exit is caused by a triple fault.

The following items detail the use of these fields:
• IDT-vectoring information (format given in Table 24-16). The following items detail how this field is established 

for VM exits that occur during event delivery:

— If the VM exit occurred during delivery of an exception, bits 7:0 receive the exception vector (at most 31). 
If the VM exit occurred during delivery of an NMI, bits 7:0 are set to 2. If the VM exit occurred during 
delivery of an external interrupt, bits 7:0 receive the interrupt number.

— Bits 10:8 are set to indicate the type of event that was being delivered when the VM exit occurred: 0 
(external interrupt), 2 (non-maskable interrupt), 3 (hardware exception), 4 (software interrupt), 5 
(privileged software interrupt), or 6 (software exception).

Hardware exceptions comprise all exceptions except breakpoint exceptions (#BP; generated by INT3) and 
overflow exceptions (#OF; generated by INTO); these are software exceptions. BOUND-range exceeded 
exceptions (#BR; generated by BOUND) and invalid opcode exceptions (#UD) generated by UD2 are 
hardware exceptions.

Bits 10:8 may indicate privileged software interrupt if such an event was injected as part of VM entry.

— Bit 11 is set to 1 if the VM exit occurred during delivery of a hardware exception that would have delivered 
an error code on the stack. This bit is always 0 if the VM exit occurred while the logical processor was in 
real-address mode (CR0.PE=0).1 If bit 11 is set to 1, the error code is placed in the IDT-vectoring error 
code (see below).

— Bit 12 is undefined.

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.
For other VM exits, the field is marked invalid (by clearing bit 31) and the remainder of the field is undefined.

• IDT-vectoring error code. 

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the IDT-vectoring information field, 
this field receives the error code that would have been pushed on the stack by the event that was being 
delivered through the IDT at the time of the VM exit. The EXT bit is set in this field when it would be set 
normally.

— For other VM exits, the value of this field is undefined.

27.2.4 Information for VM Exits Due to Instruction Execution

Section 24.9.4 defined fields containing information for VM exits that occur due to instruction execution. (The VM-
exit instruction length is also used for VM exits that occur during the delivery of a software interrupt or software 
exception.) The following items detail their use.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a logical processor cannot be in real-
address mode unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution con-
trols are both 1.
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• VM-exit instruction length. This field is used in the following cases:

— For fault-like VM exits due to attempts to execute one of the following instructions that cause VM exits 
unconditionally (see Section 25.1.2) or based on the settings of VM-execution controls (see Section 
25.1.3): CLTS, CPUID, GETSEC, HLT, IN, INS, INVD, INVEPT, INVLPG, INVPCID, INVVPID, LGDT, LIDT, LLDT, 
LMSW, LTR, MONITOR, MOV CR, MOV DR, MWAIT, OUT, OUTS, PAUSE, RDMSR, RDPMC, RDRAND, RDTSC, 
RDTSCP, RSM, SGDT, SIDT, SLDT, STR, VMCALL, VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, 
VMRESUME, VMWRITE, VMXOFF, VMXON, WBINVD, WRMSR, XRSTORS, XSETBV, and XSAVES.1

— For VM exits due to software exceptions (those generated by executions of INT3 or INTO).

— For VM exits due to faults encountered during delivery of a software interrupt, privileged software 
exception, or software exception.

— For VM exits due to attempts to effect a task switch via instruction execution. These are VM exits that 
produce an exit reason indicating task switch and either of the following:

• An exit qualification indicating execution of CALL, IRET, or JMP instruction.

• An exit qualification indicating a task gate in the IDT and an IDT-vectoring information field indicating 
that the task gate was encountered during delivery of a software interrupt, privileged software 
exception, or software exception.

— For APIC-access VM exits resulting from accesses (see Section 29.4) during delivery of a software interrupt, 
privileged software exception, or software exception.2

— For VM exits due executions of VMFUNC that fail because one of the following is true:

• EAX indicates a VM function that is not enabled (the bit at position EAX is 0 in the VM-function controls; 
see Section 25.5.5.2).

• EAX = 0 and either ECX ≥ 512 or the value of ECX selects an invalid tentative EPTP value (see Section 
25.5.5.3).

In all the above cases, this field receives the length in bytes (1–15) of the instruction (including any instruction 
prefixes) whose execution led to the VM exit (see the next paragraph for one exception).
The cases of VM exits encountered during delivery of a software interrupt, privileged software exception, or 
software exception include those encountered during delivery of events injected as part of VM entry (see 
Section 26.5.1.2). If the original event was injected as part of VM entry, this field receives the value of the VM-
entry instruction length.
All VM exits other than those listed in the above items leave this field undefined.

• VM-exit instruction information. For VM exits due to attempts to execute INS, INVEPT, INVPCID, INVVPID, 
LIDT, LGDT, LLDT, LTR, OUTS, RDRAND, SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST, VMREAD, 
VMWRITE, VMXON, XRSTORS, or XSAVES, this field receives information about the instruction that caused the 
VM exit. The format of the field depends on the identity of the instruction causing the VM exit:

— For VM exits due to attempts to execute INS or OUTS, the field has the format is given in Table 27-8.3

— For VM exits due to attempts to execute INVEPT, INVPCID, or INVVPID, the field has the format is given in 
Table 27-9.

— For VM exits due to attempts to execute LIDT, LGDT, SIDT, or SGDT, the field has the format is given in 
Table 27-10.

— For VM exits due to attempts to execute LLDT, LTR, SLDT, or STR, the field has the format is given in 
Table 27-11.

1. This item applies only to fault-like VM exits. It does not apply to trap-like VM exits following executions of the MOV to CR8 instruc-
tion when the “use TPR shadow” VM-execution control is 1 or to those following executions of the WRMSR instruction when the 
“virtualize x2APIC mode” VM-execution control is 1.

2. The VM-exit instruction-length field is not defined following APIC-access VM exits resulting from physical accesses (see Section 
29.4.6) even if encountered during delivery of a software interrupt, privileged software exception, or software exception.

3. The format of the field was undefined for these VM exits on the first processors to support the virtual-machine extensions. Soft-
ware can determine whether the format specified in Table 27-8 is used by consulting the VMX capability MSR IA32_VMX_BASIC 
(see Appendix A.1).
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— For VM exits due to attempts to execute RDRAND, the field has the format is given in Table 27-12.

— For VM exits due to attempts to execute VMCLEAR, VMPTRLD, VMPTRST, VMXON, XRSTORS, or XSAVES, 
the field has the format is given in Table 27-13.

— For VM exits due to attempts to execute VMREAD or VMWRITE, the field has the format is given in 
Table 27-14.

For all other VM exits, the field is undefined.
• I/O RCX, I/O RSI, I/O RDI, I/O RIP. These fields are undefined except for SMM VM exits due to system-

management interrupts (SMIs) that arrive immediately after retirement of I/O instructions. See Section 
34.15.2.3.

Table 27-8.  Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS

Bit Position(s) Content

6:0 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

14:10 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for VM exits due to execution of INS.

31:18 Undefined.

Table 27-9.  Format of the VM-Exit Instruction-Information Field as Used for INVEPT, INVPCID, and INVVPID

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

14:11 Undefined.
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17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for memory instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Reg2 (same encoding as IndexReg above)

Table 27-10.  Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT, SIDT, or SGDT

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

11 Operand size:

0: 16-bit
1: 32-bit

Undefined for VM exits from 64-bit mode.

14:12 Undefined.

Table 27-9.  Format of the VM-Exit Instruction-Information Field as Used for INVEPT, INVPCID, and INVVPID (Contd.)

Bit Position(s) Content
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17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

29:28 Instruction identity:

0: SGDT
1: SIDT
2: LGDT
3: LIDT

31:30 Undefined.

Table 27-11.  Format of the VM-Exit Instruction-Information Field as Used for LLDT, LTR, SLDT, and STR

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear 
and bit 22 is set).

2 Undefined.

Table 27-10.  Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT, SIDT, or SGDT (Contd.)

Bit Position(s) Content
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6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for register instructions (bit 10 is set).

21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear 
and bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no base register (bit 10 is clear 
and bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

29:28 Instruction identity:

0: SLDT
1: STR
2: LLDT
3: LTR

31:30 Undefined.

Table 27-12.  Format of the VM-Exit Instruction-Information Field as Used for RDRAND

Bit Position(s) Content

2:0 Undefined.

Table 27-11.  Format of the VM-Exit Instruction-Information Field as Used for LLDT, LTR, SLDT, and STR (Contd.)

Bit Position(s) Content
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6:3 Destination register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

10:7 Undefined.

12:11 Operand size:

0: 16-bit
1: 32-bit
2: 64-bit

The value 3 is not used.

31:13 Undefined.

Table 27-13.  Format of the VM-Exit Instruction-Information Field as Used for VMCLEAR, VMPTRLD, VMPTRST, 
VMXON, XRSTORS, and XSAVES

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

Table 27-12.  Format of the VM-Exit Instruction-Information Field as Used for RDRAND (Contd.)

Bit Position(s) Content
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21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Undefined.

Table 27-14.  Format of the VM-Exit Instruction-Information Field as Used for VMREAD and VMWRITE

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear 
and bit 22 is set).

2 Undefined.

6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

14:11 Undefined.

Table 27-13.  Format of the VM-Exit Instruction-Information Field as Used for VMCLEAR, VMPTRLD, VMPTRST, 
VMXON, XRSTORS, and XSAVES (Contd.)

Bit Position(s) Content
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27.3 SAVING GUEST STATE

Each field in the guest-state area of the VMCS (see Section 24.4) is written with the corresponding component of 
processor state. On processors that support Intel 64 architecture, the full values of each natural-width field (see 
Section 24.11.2) is saved regardless of the mode of the logical processor before and after the VM exit.

In general, the state saved is that which was in the logical processor at the time the VM exit commences. See 
Section 27.1 for a discussion of which architectural updates occur at that time.

Section 27.3.1 through Section 27.3.4 provide details for how certain components of processor state are saved. 
These sections reference VMCS fields that correspond to processor state. Unless otherwise stated, these refer-
ences are to fields in the guest-state area.

27.3.1 Saving Control Registers, Debug Registers, and MSRs

Contents of certain control registers, debug registers, and MSRs is saved as follows:
• The contents of CR0, CR3, CR4, and the IA32_SYSENTER_CS, IA32_SYSENTER_ESP, and IA32_SYSENTER_EIP 

MSRs are saved into the corresponding fields. Bits 63:32 of the IA32_SYSENTER_CS MSR are not saved. On 
processors that do not support Intel 64 architecture, bits 63:32 of the IA32_SYSENTER_ESP and 
IA32_SYSENTER_EIP MSRs are not saved.

• If the “save debug controls” VM-exit control is 1, the contents of DR7 and the IA32_DEBUGCTL MSR are saved 
into the corresponding fields. The first processors to support the virtual-machine extensions supported only the 
1-setting of this control and thus always saved data into these fields.

• If the “save IA32_PAT” VM-exit control is 1, the contents of the IA32_PAT MSR are saved into the corresponding 
field.

• If the “save IA32_EFER” VM-exit control is 1, the contents of the IA32_EFER MSR are saved into the corre-
sponding field.

• The value of the SMBASE field is undefined after all VM exits except SMM VM exits. See Section 34.15.2.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for register instructions (bit 10 is set).

21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear 
and bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no base register (bit 10 is clear 
and bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

31:28 Reg2 (same encoding as Reg1 above)

Table 27-14.  Format of the VM-Exit Instruction-Information Field as Used for VMREAD and VMWRITE (Contd.)

Bit Position(s) Content
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27.3.2 Saving Segment Registers and Descriptor-Table Registers

For each segment register (CS, SS, DS, ES, FS, GS, LDTR, or TR), the values saved for the base-address, segment-
limit, and access rights are based on whether the register was unusable (see Section 24.4.1) before the VM exit:
• If the register was unusable, the values saved into the following fields are undefined: (1) base address; 

(2) segment limit; and (3) bits 7:0 and bits 15:12 in the access-rights field. The following exceptions apply:

— CS.

• The base-address and segment-limit fields are saved.

• The L, D, and G bits are saved in the access-rights field.

— SS.

• DPL is saved in the access-rights field.

• On processors that support Intel 64 architecture, bits 63:32 of the value saved for the base address are 
always zero.

— DS and ES. On processors that support Intel 64 architecture, bits 63:32 of the values saved for the base 
addresses are always zero.

— FS and GS. The base-address field is saved.

— LDTR. The value saved for the base address is always canonical.
• If the register was not unusable, the values saved into the following fields are those which were in the register 

before the VM exit: (1) base address; (2) segment limit; and (3) bits 7:0 and bits 15:12 in access rights.
• Bits 31:17 and 11:8 in the access-rights field are always cleared. Bit 16 is set to 1 if and only if the segment is 

unusable.

The contents of the GDTR and IDTR registers are saved into the corresponding base-address and limit fields.

27.3.3 Saving RIP, RSP, and RFLAGS

The contents of the RIP, RSP, and RFLAGS registers are saved as follows:
• The value saved in the RIP field is determined by the nature and cause of the VM exit:

— If the VM exit occurs due to by an attempt to execute an instruction that causes VM exits unconditionally or 
that has been configured to cause a VM exit via the VM-execution controls, the value saved references that 
instruction.

— If the VM exit is caused by an occurrence of an INIT signal, a start-up IPI (SIPI), or system-management 
interrupt (SMI), the value saved is that which was in RIP before the event occurred.

— If the VM exit occurs due to the 1-setting of either the “interrupt-window exiting” VM-execution control or 
the “NMI-window exiting” VM-execution control, the value saved is that which would be in the register had 
the VM exit not occurred.

— If the VM exit is due to an external interrupt, non-maskable interrupt (NMI), or hardware exception (as 
defined in Section 27.2.2), the value saved is the return pointer that would have been saved (either on the 
stack had the event been delivered through a trap or interrupt gate,1 or into the old task-state segment had 
the event been delivered through a task gate).

— If the VM exit is due to a triple fault, the value saved is the return pointer that would have been saved 
(either on the stack had the event been delivered through a trap or interrupt gate, or into the old task-state 
segment had the event been delivered through a task gate) had delivery of the double fault not 
encountered the nested exception that caused the triple fault.

— If the VM exit is due to a software exception (due to an execution of INT3 or INTO), the value saved 
references the INT3 or INTO instruction that caused that exception.

1. The reference here is to the full value of RIP before any truncation that would occur had the stack width been only 32 bits or 16 
bits.
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— Suppose that the VM exit is due to a task switch that was caused by execution of CALL, IRET, or JMP or by 
execution of a software interrupt (INT n) or software exception (due to execution of INT3 or INTO) that 
encountered a task gate in the IDT. The value saved references the instruction that caused the task switch 
(CALL, IRET, JMP, INT n, INT3, or INTO).

— Suppose that the VM exit is due to a task switch that was caused by a task gate in the IDT that was 
encountered for any reason except the direct access by a software interrupt or software exception. The 
value saved is that which would have been saved in the old task-state segment had the task switch 
completed normally.

— If the VM exit is due to an execution of MOV to CR8 or WRMSR that reduced the value of bits 7:4 of VTPR 
(see Section 29.1.1) below that of TPR threshold VM-execution control field (see Section 29.1.2), the value 
saved references the instruction following the MOV to CR8 or WRMSR.

— If the VM exit was caused by APIC-write emulation (see Section 29.4.3.2) that results from an APIC access 
as part of instruction execution, the value saved references the instruction following the one whose 
execution caused the APIC-write emulation.

• The contents of the RSP register are saved into the RSP field.
• With the exception of the resume flag (RF; bit 16), the contents of the RFLAGS register is saved into the 

RFLAGS field. RFLAGS.RF is saved as follows:

— If the VM exit is caused directly by an event that would normally be delivered through the IDT, the value 
saved is that which would appear in the saved RFLAGS image (either that which would be saved on the 
stack had the event been delivered through a trap or interrupt gate1 or into the old task-state segment had 
the event been delivered through a task gate) had the event been delivered through the IDT. See below for 
VM exits due to task switches caused by task gates in the IDT.

— If the VM exit is caused by a triple fault, the value saved is that which the logical processor would have in 
RF in the RFLAGS register had the triple fault taken the logical processor to the shutdown state.

— If the VM exit is caused by a task switch (including one caused by a task gate in the IDT), the value saved 
is that which would have been saved in the RFLAGS image in the old task-state segment (TSS) had the task 
switch completed normally without exception.

— If the VM exit is caused by an attempt to execute an instruction that unconditionally causes VM exits or one 
that was configured to do with a VM-execution control, the value saved is 0.2

— For APIC-access VM exits and for VM exits caused by EPT violations and EPT misconfigurations, the value 
saved depends on whether the VM exit occurred during delivery of an event through the IDT:

• If the VM exit stored 0 for bit 31 for IDT-vectoring information field (because the VM exit did not occur 
during delivery of an event through the IDT; see Section 27.2.3), the value saved is 1.

• If the VM exit stored 1 for bit 31 for IDT-vectoring information field (because the VM exit did occur 
during delivery of an event through the IDT), the value saved is the value that would have appeared in 
the saved RFLAGS image had the event been delivered through the IDT (see above).

— For all other VM exits, the value saved is the value RFLAGS.RF had before the VM exit occurred.

27.3.4 Saving Non-Register State

Information corresponding to guest non-register state is saved as follows:

1. The reference here is to the full value of RFLAGS before any truncation that would occur had the stack width been only 32 bits or 
16 bits.

2. This is true even if RFLAGS.RF was 1 before the instruction was executed. If, in response to such a VM exit, a VM monitor re-enters 
the guest to re-execute the instruction that caused the VM exit (for example, after clearing the VM-execution control that caused 
the VM exit), the instruction may encounter a code breakpoint that has already been processed. A VM monitor can avoid this by set-
ting the guest value of RFLAGS.RF to 1 before resuming guest software.
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• The activity-state field is saved with the logical processor’s activity state before the VM exit.1 See Section 27.1 
for details of how events leading to a VM exit may affect the activity state.

• The interruptibility-state field is saved to reflect the logical processor’s interruptibility before the VM exit. See 
Section 27.1 for details of how events leading to a VM exit may affect this state. VM exits that end outside 
system-management mode (SMM) save bit 2 (blocking by SMI) as 0 regardless of the state of such blocking 
before the VM exit.
Bit 3 (blocking by NMI) is treated specially if the “virtual NMIs” VM-execution control is 1. In this case, the value 
saved for this field does not indicate the blocking of NMIs but rather the state of virtual-NMI blocking.

• The pending debug exceptions field is saved as clear for all VM exits except the following:

— A VM exit caused by an INIT signal, a machine-check exception, or a system-management interrupt (SMI).

— A VM exit with basic exit reason “TPR below threshold”,2 “virtualized EOI”, “APIC write”, or “monitor trap 
flag.”

— VM exits that are not caused by debug exceptions and that occur while there is MOV-SS blocking of debug 
exceptions.

For VM exits that do not clear the field, the value saved is determined as follows:

— Each of bits 3:0 may be set if it corresponds to a matched breakpoint. This may be true even if the corre-
sponding breakpoint is not enabled in DR7.

— Suppose that a VM exit is due to an INIT signal, a machine-check exception, or an SMI; or that a VM exit 
has basic exit reason “TPR below threshold” or “monitor trap flag.” In this case, the value saved sets bits 
corresponding to the causes of any debug exceptions that were pending at the time of the VM exit.

If the VM exit occurs immediately after VM entry, the value saved may match that which was loaded on 
VM entry (see Section 26.6.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched data or I/O breakpoint that was 
enabled in DR7. Bit 12 is also set if it had been set on VM entry, causing there to be valid pending debug 
exceptions (see Section 26.6.3) and the VM exit occurred before those exceptions were either delivered 
or lost. In other cases, bit 12 is cleared to 0.

• Bit 14 (BS) is set if RFLAGS.TF = 1 in either of the following cases:

• IA32_DEBUGCTL.BTF = 0 and the cause of a pending debug exception was the execution of a 
single instruction.

• IA32_DEBUGCTL.BTF = 1 and the cause of a pending debug exception was a taken branch.

— Suppose that a VM exit is due to another reason (but not a debug exception) and occurs while there is MOV-
SS blocking of debug exceptions. In this case, the value saved sets bits corresponding to the causes of any 
debug exceptions that were pending at the time of the VM exit. If the VM exit occurs immediately after 
VM entry (no instructions were executed in VMX non-root operation), the value saved may match that 
which was loaded on VM entry (see Section 26.6.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched data or I/O breakpoint that was 
enabled in DR7. Bit 12 is also set if it had been set on VM entry, causing there to be valid pending debug 
exceptions (see Section 26.6.3) and the VM exit occurred before those exceptions were either delivered 
or lost. In other cases, bit 12 is cleared to 0.

• The setting of bit 14 (BS) is implementation-specific. However, it is not set if RFLAGS.TF = 0 or 
IA32_DEBUGCTL.BTF = 1.

— The reserved bits in the field are cleared.
• If the “save VMX-preemption timer value” VM-exit control is 1, the value of timer is saved into the VMX-

preemption timer-value field. This is the value loaded from this field on VM entry as subsequently decremented 
(see Section 25.5.1). VM exits due to timer expiration save the value 0. Other VM exits may also save the value 

1. If this activity state was an inactive state resulting from execution of a specific instruction (HLT or MWAIT), the value saved for RIP 
by that VM exit will reference the following instruction.

2. This item includes VM exits that occur as a result of certain VM entries (Section 26.6.7).
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0 if the timer expired during VM exit. (If the “save VMX-preemption timer value” VM-exit control is 0, VM exit 
does not modify the value of the VMX-preemption timer-value field.)

• If the logical processor supports the 1-setting of the “enable EPT” VM-execution control, values are saved into 
the four (4) PDPTE fields as follows:

— If the “enable EPT” VM-execution control is 1 and the logical processor was using PAE paging at the time of 
the VM exit, the PDPTE values currently in use are saved:1

• The values saved into bits 11:9 of each of the fields is undefined.

• If the value saved into one of the fields has bit 0 (present) clear, the value saved into bits 63:1 of that 
field is undefined. That value need not correspond to the value that was loaded by VM entry or to any 
value that might have been loaded in VMX non-root operation.

• If the value saved into one of the fields has bit 0 (present) set, the value saved into bits 63:12 of the 
field is a guest-physical address.

— If the “enable EPT” VM-execution control is 0 or the logical processor was not using PAE paging at the time 
of the VM exit, the values saved are undefined.

27.4 SAVING MSRS

After processor state is saved to the guest-state area, values of MSRs may be stored into the VM-exit MSR-store 
area (see Section 24.7.2). Specifically each entry in that area (up to the number specified in the VM-exit MSR-store 
count) is processed in order by storing the value of the MSR indexed by bits 31:0 (as they would be read by 
RDMSR) into bits 127:64. Processing of an entry fails in either of the following cases:
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that allows access to an APIC register 

when the local APIC is in x2APIC mode. 
• The value of bits 31:0 indicates an MSR that can be read only in system-management mode (SMM) and the 

VM exit will not end in SMM. (IA32_SMBASE is an MSR that can be read only in SMM.)
• The value of bits 31:0 indicates an MSR that cannot be saved on VM exits for model-specific reasons. A 

processor may prevent certain MSRs (based on the value of bits 31:0) from being stored on VM exits, even if 
they can normally be read by RDMSR. Such model-specific behavior is documented in Chapter 35.

• Bits 63:32 of the entry are not all 0.
• An attempt to read the MSR indexed by bits 31:0 would cause a general-protection exception if executed via 

RDMSR with CPL = 0.

A VMX abort occurs if processing fails for any entry. See Section 27.7.

27.5 LOADING HOST STATE

Processor state is updated on VM exits in the following ways:
• Some state is loaded from or otherwise determined by the contents of the host-state area.
• Some state is determined by VM-exit controls.
• Some state is established in the same way on every VM exit.
• The page-directory pointers are loaded based on the values of certain control registers.

This loading may be performed in any order.

On processors that support Intel 64 architecture, the full values of each 64-bit field loaded (for example, the base 
address for GDTR) is loaded regardless of the mode of the logical processor before and after the VM exit.

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3A. “Enable EPT” is a secondary processor-based VM-execution control. If 
bit 31 of the primary processor-based VM-execution controls is 0, VM exit functions as if the “enable EPT” VM-execution control 
were 0. See Section 24.6.2.
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The loading of host state is detailed in Section 27.5.1 to Section 27.5.5. These sections reference VMCS fields that 
correspond to processor state. Unless otherwise stated, these references are to fields in the host-state area.

A logical processor is in IA-32e mode after a VM exit only if the “host address-space size” VM-exit control is 1. If 
the logical processor was in IA-32e mode before the VM exit and this control is 0, a VMX abort occurs. See Section 
27.7.

In addition to loading host state, VM exits clear address-range monitoring (Section 27.5.6).

After the state loading described in this section, VM exits may load MSRs from the VM-exit MSR-load area (see 
Section 27.6). This loading occurs only after the state loading described in this section.

27.5.1 Loading Host Control Registers, Debug Registers, MSRs

VM exits load new values for controls registers, debug registers, and some MSRs:
• CR0, CR3, and CR4 are loaded from the CR0 field, the CR3 field, and the CR4 field, respectively, with the 

following exceptions:

— The following bits are not modified:

• For CR0, ET, CD, NW; bits 63:32 (on processors that support Intel 64 architecture), 28:19, 17, and 
15:6; and any bits that are fixed in VMX operation (see Section 23.8).1

• For CR3, bits 63:52 and bits in the range 51:32 beyond the processor’s physical-address width (they 
are cleared to 0).2 (This item applies only to processors that support Intel 64 architecture.)

• For CR4, any bits that are fixed in VMX operation (see Section 23.8).

— CR4.PAE is set to 1 if the “host address-space size” VM-exit control is 1.

— CR4.PCIDE is set to 0 if the “host address-space size” VM-exit control is 0.
• DR7 is set to 400H.
• The following MSRs are established as follows:

— The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field. Since that field has only 32 
bits, bits 63:32 of the MSR are cleared to 0. 

— IA32_SYSENTER_ESP MSR and IA32_SYSENTER_EIP MSR are loaded from the IA32_SYSENTER_ESP field 
and the IA32_SYSENTER_EIP field, respectively.

If the processor does not support the Intel 64 architecture, these fields have only 32 bits; bits 63:32 of the 
MSRs are cleared to 0.

If the processor does support the Intel 64 architecture and the processor supports N < 64 linear-address 
bits, each of bits 63:N is set to the value of bit N–1.3

— The following steps are performed on processors that support Intel 64 architecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields for FS and GS, respectively 
(see Section 27.5.2).

• The LMA and LME bits in the IA32_EFER MSR are each loaded with the setting of the “host address-
space size” VM-exit control.

— If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, the IA32_PERF_GLOBAL_CTRL MSR is loaded 
from the IA32_PERF_GLOBAL_CTRL field. Bits that are reserved in that MSR are maintained with their 
reserved values.

1. Bits 28:19, 17, and 15:6 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. CR0.ET is always 1 and the other bits are 
always 0.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

3. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of linear-address bits supported is 
returned in bits 15:8 of EAX.
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— If the “load IA32_PAT” VM-exit control is 1, the IA32_PAT MSR is loaded from the IA32_PAT field. Bits that 
are reserved in that MSR are maintained with their reserved values.

— If the “load IA32_EFER” VM-exit control is 1, the IA32_EFER MSR is loaded from the IA32_EFER field. Bits 
that are reserved in that MSR are maintained with their reserved values.

With the exception of FS.base and GS.base, any of these MSRs is subsequently overwritten if it appears in the 
VM-exit MSR-load area. See Section 27.6.

27.5.2 Loading Host Segment and Descriptor-Table Registers

Each of the registers CS, SS, DS, ES, FS, GS, and TR is loaded as follows (see below for the treatment of LDTR):
• The selector is loaded from the selector field. The segment is unusable if its selector is loaded with zero. The 

checks specified Section 26.3.1.2 limit the selector values that may be loaded. In particular, CS and TR are 
never loaded with zero and are thus never unusable. SS can be loaded with zero only on processors that 
support Intel 64 architecture and only if the VM exit is to 64-bit mode (64-bit mode allows use of segments 
marked unusable).

• The base address is set as follows:

— CS. Cleared to zero.

— SS, DS, and ES. Undefined if the segment is unusable; otherwise, cleared to zero.

— FS and GS. Undefined (but, on processors that support Intel 64 architecture, canonical) if the segment is 
unusable and the VM exit is not to 64-bit mode; otherwise, loaded from the base-address field.

If the processor supports the Intel 64 architecture and the processor supports N < 64 linear-address bits, 
each of bits 63:N is set to the value of bit N–1.1 The values loaded for base addresses for FS and GS are 
also manifest in the FS.base and GS.base MSRs.

— TR. Loaded from the host-state area. If the processor supports the Intel 64 architecture and the processor 
supports N < 64 linear-address bits, each of bits 63:N is set to the value of bit N–1.

• The segment limit is set as follows:

— CS. Set to FFFFFFFFH (corresponding to a descriptor limit of FFFFFH and a G-bit setting of 1).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to FFFFFFFFH.

— TR. Set to 00000067H.
• The type field and S bit are set as follows:

— CS. Type set to 11 and S set to 1 (execute/read, accessed, non-conforming code segment).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, type set to 3 and S set to 1 
(read/write, accessed, expand-up data segment).

— TR. Type set to 11 and S set to 0 (busy 32-bit task-state segment).
• The DPL is set as follows:

— CS, SS, and TR. Set to 0. The current privilege level (CPL) will be 0 after the VM exit completes.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 0.
• The P bit is set as follows:

— CS, TR. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.
• On processors that support Intel 64 architecture, CS.L is loaded with the setting of the “host address-space 

size” VM-exit control. Because the value of this control is also loaded into IA32_EFER.LMA (see Section 27.5.1), 
no VM exit is ever to compatibility mode (which requires IA32_EFER.LMA = 1 and CS.L = 0).

• D/B.

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of linear-address bits supported is 
returned in bits 15:8 of EAX.
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— CS. Loaded with the inverse of the setting of the “host address-space size” VM-exit control. For example, if 
that control is 0, indicating a 32-bit guest, CS.D/B is set to 1.

— SS. Set to 1.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.

— TR. Set to 0.
• G.

— CS. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.

— TR. Set to 0.

The host-state area does not contain a selector field for LDTR. LDTR is established as follows on all VM exits: the 
selector is cleared to 0000H, the segment is marked unusable and is otherwise undefined (although the base 
address is always canonical).

The base addresses for GDTR and IDTR are loaded from the GDTR base-address field and the IDTR base-address 
field, respectively. If the processor supports the Intel 64 architecture and the processor supports N < 64 linear-
address bits, each of bits 63:N of each base address is set to the value of bit N–1 of that base address. The GDTR 
and IDTR limits are each set to FFFFH.

27.5.3 Loading Host RIP, RSP, and RFLAGS

RIP and RSP are loaded from the RIP field and the RSP field, respectively. RFLAGS is cleared, except bit 1, which is 
always set.

27.5.4 Checking and Loading Host Page-Directory-Pointer-Table Entries

If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LMA = 0, the logical processor uses PAE paging. See Section 4.4 of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.1 When in PAE paging is in use, the 
physical address in CR3 references a table of page-directory-pointer-table entries (PDPTEs). A MOV to CR3 
when PAE paging is in use checks the validity of the PDPTEs and, if they are valid, loads them into the processor 
(into internal, non-architectural registers).

A VM exit is to a VMM that uses PAE paging if (1) bit 5 (corresponding to CR4.PAE) is set in the CR4 field in the host-
state area of the VMCS; and (2) the “host address-space size” VM-exit control is 0. Such a VM exit may check the 
validity of the PDPTEs referenced by the CR3 field in the host-state area of the VMCS. Such a VM exit must check 
their validity if either (1) PAE paging was not in use before the VM exit; or (2) the value of CR3 is changing as a 
result of the VM exit. A VM exit to a VMM that does not use PAE paging must not check the validity of the PDPTEs.

A VM exit that checks the validity of the PDPTEs uses the same checks that are used when CR3 is loaded with 
MOV to CR3 when PAE paging is in use. If MOV to CR3 would cause a general-protection exception due to the 
PDPTEs that would be loaded (e.g., because a reserved bit is set), a VMX abort occurs (see Section 27.7). If a 
VM exit to a VMM that uses PAE does not cause a VMX abort, the PDPTEs are loaded into the processor as would 
MOV to CR3, using the value of CR3 being load by the VM exit.

27.5.5 Updating Non-Register State

VM exits affect the non-register state of a logical processor as follows:
• A logical processor is always in the active state after a VM exit.
• Event blocking is affected as follows:

— There is no blocking by STI or by MOV SS after a VM exit.

1. On processors that support Intel 64 architecture, the physical-address extension may support more than 36 physical-address bits. 
Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.
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— VM exits caused directly by non-maskable interrupts (NMIs) cause blocking by NMI (see Table 24-3). Other 
VM exits do not affect blocking by NMI. (See Section 27.1 for the case in which an NMI causes a VM exit 
indirectly.)

• There are no pending debug exceptions after a VM exit.

Section 28.3 describes how the VMX architecture controls how a logical processor manages information in the TLBs 
and paging-structure caches. The following items detail how VM exits invalidate cached mappings:
• If the “enable VPID” VM-execution control is 0, the logical processor invalidates linear mappings and combined 

mappings associated with VPID 0000H (for all PCIDs); combined mappings for VPID 0000H are invalidated for 
all EP4TA values (EP4TA is the value of bits 51:12 of EPTP).

• VM exits are not required to invalidate any guest-physical mappings, nor are they required to invalidate any 
linear mappings or combined mappings if the “enable VPID” VM-execution control is 1. 

27.5.6 Clearing Address-Range Monitoring

The Intel 64 and IA-32 architectures allow software to monitor a specified address range using the MONITOR and 
MWAIT instructions. See Section 8.10.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A. VM exits clear any address-range monitoring that may be in effect.

27.6 LOADING MSRS

VM exits may load MSRs from the VM-exit MSR-load area (see Section 24.7.2). Specifically each entry in that area 
(up to the number specified in the VM-exit MSR-load count) is processed in order by loading the MSR indexed by 
bits 31:0 with the contents of bits 127:64 as they would be written by WRMSR.

Processing of an entry fails in any of the following cases:
• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or C0000101H (the IA32_GS_BASE 

MSR).
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that allows access to an APIC register 

when the local APIC is in x2APIC mode. 
• The value of bits 31:0 indicates an MSR that can be written only in system-management mode (SMM) and the 

VM exit will not end in SMM. (IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)
• The value of bits 31:0 indicates an MSR that cannot be loaded on VM exits for model-specific reasons. A 

processor may prevent loading of certain MSRs even if they can normally be written by WRMSR. Such model-
specific behavior is documented in Chapter 35.

• Bits 63:32 are not all 0.
• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry would cause a general-protection 

exception if executed via WRMSR with CPL = 0.1

If processing fails for any entry, a VMX abort occurs. See Section 27.7.

If any MSR is being loaded in such a way that would architecturally require a TLB flush, the TLBs are updated so 
that, after VM exit, the logical processor does not use any translations that were cached before the transition.

27.7 VMX ABORTS

A problem encountered during a VM exit leads to a VMX abort. A VMX abort takes a logical processor into a shut-
down state as described below.

1. Note the following about processors that support Intel 64 architecture. If CR0.PG = 1, WRMSR to the IA32_EFER MSR causes a gen-
eral-protection exception if it would modify the LME bit. Since CR0.PG is always 1 in VMX operation, the IA32_EFER MSR should not 
be included in the VM-exit MSR-load area for the purpose of modifying the LME bit.
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A VMX abort does not modify the VMCS data in the VMCS region of any active VMCS. The contents of these data are 
thus suspect after the VMX abort.

On a VMX abort, a logical processor saves a nonzero 32-bit VMX-abort indicator field at byte offset 4 in the VMCS 
region of the VMCS whose misconfiguration caused the failure (see Section 24.2). The following values are used:

1. There was a failure in saving guest MSRs (see Section 27.4).

2. Host checking of the page-directory-pointer-table entries (PDPTEs) failed (see Section 27.5.4).

3. The current VMCS has been corrupted (through writes to the corresponding VMCS region) in such a way that 
the logical processor cannot complete the VM exit properly.

4. There was a failure on loading host MSRs (see Section 27.6).

5. There was a machine-check event during VM exit (see Section 27.8).

6. The logical processor was in IA-32e mode before the VM exit and the “host address-space size” VM-entry 
control was 0 (see Section 27.5).

Some of these causes correspond to failures during the loading of state from the host-state area. Because the 
loading of such state may be done in any order (see Section 27.5) a VM exit that might lead to a VMX abort for 
multiple reasons (for example, the current VMCS may be corrupt and the host PDPTEs might not be properly 
configured). In such cases, the VMX-abort indicator could correspond to any one of those reasons.

A logical processor never reads the VMX-abort indicator in a VMCS region and writes it only with one of the non-
zero values mentioned above. The VMX-abort indicator allows software on one logical processor to diagnose the 
VMX-abort on another. For this reason, it is recommended that software running in VMX root operation zero the 
VMX-abort indicator in the VMCS region of any VMCS that it uses.

After saving the VMX-abort indicator, operation of a logical processor experiencing a VMX abort depends on 
whether the logical processor is in SMX operation:1

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs. The error code used is 
000DH, indicating “VMX abort.” See Intel® Trusted Execution Technology Measured Launched Environment 
Programming Guide.

• If the logical processor is outside SMX operation, it issues a special bus cycle (to notify the chipset) and enters 
the VMX-abort shutdown state. RESET is the only event that wakes a logical processor from the VMX-abort 
shutdown state. The following events do not affect a logical processor in this state: machine-check events; INIT 
signals; external interrupts; non-maskable interrupts (NMIs); start-up IPIs (SIPIs); and system-management 
interrupts (SMIs).

27.8 MACHINE-CHECK EVENTS DURING VM EXIT

If a machine-check event occurs during VM exit, one of the following occurs:
• The machine-check event is handled as if it occurred before the VM exit:

— If CR4.MCE = 0, operation of the logical processor depends on whether the logical processor is in SMX 
operation:2

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs. The error code 
used is 000CH, indicating “unrecoverable machine-check condition.”

• If the logical processor is outside SMX operation, it goes to the shutdown state.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last 
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software 

Developer’s Manual, Volume 2B.

2. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last 
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software 

Developer’s Manual, Volume 2B.
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— If CR4.MCE = 1, a machine-check exception (#MC) is generated:

• If bit 18 (#MC) of the exception bitmap is 0, the exception is delivered through the guest IDT.

• If bit 18 of the exception bitmap is 1, the exception causes a VM exit.
• The machine-check event is handled after VM exit completes:

— If the VM exit ends with CR4.MCE = 0, operation of the logical processor depends on whether the logical 
processor is in SMX operation:

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs with error code 
000CH (unrecoverable machine-check condition).

• If the logical processor is outside SMX operation, it goes to the shutdown state.

— If the VM exit ends with CR4.MCE = 1, a machine-check exception (#MC) is delivered through the host IDT.
• A VMX abort is generated (see Section 27.7). The logical processor blocks events as done normally in 

VMX abort. The VMX abort indicator is 5, for “machine-check event during VM exit.”

The first option is not used if the machine-check event occurs after any host state has been loaded. The second 
option is used only if VM entry is able to load all host state.



27-30 Vol. 3C

VM EXITS



Vol. 3C 28-1

CHAPTER 28
VMX SUPPORT FOR ADDRESS TRANSLATION

The architecture for VMX operation includes two features that support address translation: virtual-processor iden-
tifiers (VPIDs) and the extended page-table mechanism (EPT). VPIDs are a mechanism for managing translations 
of linear addresses. EPT defines a layer of address translation that augments the translation of linear addresses.

Section 28.1 details the architecture of VPIDs. Section 28.2 provides the details of EPT. Section 28.3 explains how 
a logical processor may cache information from the paging structures, how it may use that cached information, and 
how software can managed the cached information.

28.1 VIRTUAL PROCESSOR IDENTIFIERS (VPIDS)

The original architecture for VMX operation required VMX transitions to flush the TLBs and paging-structure caches. 
This ensured that translations cached for the old linear-address space would not be used after the transition.

Virtual-processor identifiers (VPIDs) introduce to VMX operation a facility by which a logical processor may cache 
information for multiple linear-address spaces. When VPIDs are used, VMX transitions may retain cached informa-
tion and the logical processor switches to a different linear-address space.

Section 28.3 details the mechanisms by which a logical processor manages information cached for multiple address 
spaces. A logical processor may tag some cached information with a 16-bit VPID. This section specifies how the 
current VPID is determined at any point in time:
• The current VPID is 0000H in the following situations:

— Outside VMX operation. (This includes operation in system-management mode under the default treatment 
of SMIs and SMM with VMX operation; see Section 34.14.)

— In VMX root operation.

— In VMX non-root operation when the “enable VPID” VM-execution control is 0.
• If the logical processor is in VMX non-root operation and the “enable VPID” VM-execution control is 1, the 

current VPID is the value of the VPID VM-execution control field in the VMCS. (VM entry ensures that this value 
is never 0000H; see Section 26.2.1.1.)

VPIDs and PCIDs (see Section 4.10.1) can be used concurrently. When this is done, the processor associates 
cached information with both a VPID and a PCID. Such information is used only if the current VPID and PCID both 
match those associated with the cached information.

28.2 THE EXTENDED PAGE TABLE MECHANISM (EPT)

The extended page-table mechanism (EPT) is a feature that can be used to support the virtualization of physical 
memory. When EPT is in use, certain addresses that would normally be treated as physical addresses (and used to 
access memory) are instead treated as guest-physical addresses. Guest-physical addresses are translated by 
traversing a set of EPT paging structures to produce physical addresses that are used to access memory.
• Section 28.2.1 gives an overview of EPT.
• Section 28.2.2 describes operation of EPT-based address translation.
• Section 28.2.3 discusses VM exits that may be caused by EPT.
• Section 28.2.5 describes interactions between EPT and memory typing.

28.2.1 EPT Overview

EPT is used when the “enable EPT” VM-execution control is 1.1 It translates the guest-physical addresses used in 
VMX non-root operation and those used by VM entry for event injection.
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The translation from guest-physical addresses to physical addresses is determined by a set of EPT paging struc-
tures. The EPT paging structures are similar to those used to translate linear addresses while the processor is in 
IA-32e mode. Section 28.2.2 gives the details of the EPT paging structures.

If CR0.PG = 1, linear addresses are translated through paging structures referenced through control register CR3. 
While the “enable EPT” VM-execution control is 1, these are called guest paging structures. There are no guest 
paging structures if CR0.PG = 0.1

When the “enable EPT” VM-execution control is 1, the identity of guest-physical addresses depends on the value 
of CR0.PG:
• If CR0.PG = 0, each linear address is treated as a guest-physical address.
• If CR0.PG = 1, guest-physical addresses are those derived from the contents of control register CR3 and the 

guest paging structures. (This includes the values of the PDPTEs, which logical processors store in internal, 
non-architectural registers.) The latter includes (in page-table entries and in other paging-structure entries for 
which bit 7—PS—is 1) the addresses to which linear addresses are translated by the guest paging structures.

If CR0.PG = 1, the translation of a linear address to a physical address requires multiple translations of guest-phys-
ical addresses using EPT. Assume, for example, that CR4.PAE = CR4.PSE = 0. The translation of a 32-bit linear 
address then operates as follows:
• Bits 31:22 of the linear address select an entry in the guest page directory located at the guest-physical 

address in CR3. The guest-physical address of the guest page-directory entry (PDE) is translated through EPT 
to determine the guest PDE’s physical address.

• Bits 21:12 of the linear address select an entry in the guest page table located at the guest-physical address in 
the guest PDE. The guest-physical address of the guest page-table entry (PTE) is translated through EPT to 
determine the guest PTE’s physical address.

• Bits 11:0 of the linear address is the offset in the page frame located at the guest-physical address in the guest 
PTE. The guest-physical address determined by this offset is translated through EPT to determine the physical 
address to which the original linear address translates.

In addition to translating a guest-physical address to a physical address, EPT specifies the privileges that software 
is allowed when accessing the address. Attempts at disallowed accesses are called EPT violations and cause 
VM exits. See Section 28.2.3.

A logical processor uses EPT to translate guest-physical addresses only when those addresses are used to access 
memory. This principle implies the following:
• The MOV to CR3 instruction loads CR3 with a guest-physical address. Whether that address is translated 

through EPT depends on whether PAE paging is being used.2

— If PAE paging is not being used, the instruction does not use that address to access memory and does not 
cause it to be translated through EPT. (If CR0.PG = 1, the address will be translated through EPT on the 
next memory accessing using a linear address.)

— If PAE paging is being used, the instruction loads the four (4) page-directory-pointer-table entries (PDPTEs) 
from that address and it does cause the address to be translated through EPT.

• Section 4.4.1 identifies executions of MOV to CR0 and MOV to CR4 that load the PDPTEs from the guest-
physical address in CR3. Such executions cause that address to be translated through EPT.

• The PDPTEs contain guest-physical addresses. The instructions that load the PDPTEs (see above) do not use 
those addresses to access memory and do not cause them to be translated through EPT. The address in a 
PDPTE will be translated through EPT on the next memory accessing using a linear address that uses that 
PDPTE.

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls 
is 0, the logical processor operates as if the “enable EPT” VM-execution control were 0. See Section 24.6.2.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, CR0.PG can be 0 in VMX non-root 
operation only if the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are 
both 1.

2. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3A.
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28.2.2 EPT Translation Mechanism

The EPT translation mechanism uses only bits 47:0 of each guest-physical address.1 It uses a page-walk length of 
4, meaning that at most 4 EPT paging-structure entries are accessed to translate a guest-physical address.2

These 48 bits are partitioned by the logical processor to traverse the EPT paging structures:
• A 4-KByte naturally aligned EPT PML4 table is located at the physical address specified in bits 51:12 of the 

extended-page-table pointer (EPTP), a VM-execution control field (see Table 24-8 in Section 24.6.11). An EPT 
PML4 table comprises 512 64-bit entries (EPT PML4Es). An EPT PML4E is selected using the physical address 
defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPTP.

— Bits 11:3 are bits 47:39 of the guest-physical address.

— Bits 2:0 are all 0.
Because an EPT PML4E is identified using bits 47:39 of the guest-physical address, it controls access to a 512-
GByte region of the guest-physical-address space. The format of an EPT PML4E is given in Table 28-1.

• A 4-KByte naturally aligned EPT page-directory-pointer table is located at the physical address specified in 
bits 51:12 of the EPT PML4E. An EPT page-directory-pointer table comprises 512 64-bit entries (EPT PDPTEs). 
An EPT PDPTE is selected using the physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PML4E.

1. No processors supporting the Intel 64 architecture support more than 48 physical-address bits. Thus, no such processor can pro-
duce a guest-physical address with more than 48 bits. An attempt to use such an address causes a page fault. An attempt to load 
CR3 with such an address causes a general-protection fault. If PAE paging is being used, an attempt to load CR3 that would load a 
PDPTE with such an address causes a general-protection fault.

2. Future processors may include support for other EPT page-walk lengths. Software should read the VMX capability MSR 
IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine what EPT page-walk lengths are supported.

Table 28-1.  Format of an EPT PML4 Entry (PML4E)

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 512-GByte region controlled by this entry

1 Write access; indicates whether writes are allowed to the 512-GByte region controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 512-GByte region controlled by this 
entry

7:3 Reserved (must be 0)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 512-GByte region 
controlled by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

11:9 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page-directory-pointer table referenced by this entry1

NOTES:

1. N is the physical-address width supported by the processor. Software can determine a processor’s physical-address width by execut-
ing CPUID with 80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

51:N Reserved (must be 0)

63:52 Ignored
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— Bits 11:3 are bits 38:30 of the guest-physical address.

— Bits 2:0 are all 0.

Because an EPT PDPTE is identified using bits 47:30 of the guest-physical address, it controls access to a 1-GByte 
region of the guest-physical-address space. Use of the EPT PDPTE depends on the value of bit 7 in that entry:1

• If bit 7 of the EPT PDPTE is 1, the EPT PDPTE maps a 1-GByte page. The final physical address is computed as 
follows:

— Bits 63:52 are all 0.

— Bits 51:30 are from the EPT PDPTE.

— Bits 29:0 are from the original guest-physical address.
The format of an EPT PDPTE that maps a 1-GByte page is given in Table 28-2.

• If bit 7 of the EPT PDPTE is 0, a 4-KByte naturally aligned EPT page directory is located at the physical address 
specified in bits 51:12 of the EPT PDPTE. The format of an EPT PDPTE that references an EPT page directory is 
given in Table 28-3.

1. Not all processors allow bit 7 of an EPT PDPTE to be set to 1. Software should read the VMX capability MSR 
IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether this is allowed.

Table 28-2.  Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 1-GByte page referenced by this entry

1 Write access; indicates whether writes are allowed to the 1-GByte page referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 1-GByte page referenced by this entry

5:3 EPT memory type for this 1-GByte page (see Section 28.2.5)

6 Ignore PAT memory type for this 1-GByte page (see Section 28.2.5)

7 Must be 1 (otherwise, this entry references an EPT page directory)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 1-GByte page referenced 
by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to the 1-GByte page referenced by 
this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

11:10 Ignored

29:12 Reserved (must be 0)

(N–1):30 Physical address of the 1-GByte page referenced by this entry1

NOTES:

1. N is the physical-address width supported by the logical processor.

51:N Reserved (must be 0)

62:52 Ignored

63 Suppress #VE. If the “EPT-violation #VE” VM-execution control is 1, EPT violations caused by accesses to this page 
are convertible to virtualization exceptions only if this bit is 0 (see Section 25.5.6.1). If “EPT-violation #VE” VM-
execution control is 0, this bit is ignored.
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An EPT page-directory comprises 512 64-bit entries (PDEs). An EPT PDE is selected using the physical address 
defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PDPTE.

— Bits 11:3 are bits 29:21 of the guest-physical address.

— Bits 2:0 are all 0.

Because an EPT PDE is identified using bits 47:21 of the guest-physical address, it controls access to a 2-MByte 
region of the guest-physical-address space. Use of the EPT PDE depends on the value of bit 7 in that entry:
• If bit 7 of the EPT PDE is 1, the EPT PDE maps a 2-MByte page. The final physical address is computed as 

follows:

— Bits 63:52 are all 0.

— Bits 51:21 are from the EPT PDE.

— Bits 20:0 are from the original guest-physical address.
The format of an EPT PDE that maps a 2-MByte page is given in Table 28-4.

• If bit 7 of the EPT PDE is 0, a 4-KByte naturally aligned EPT page table is located at the physical address 
specified in bits 51:12 of the EPT PDE. The format of an EPT PDE that references an EPT page table is given in 
Table 28-5.
An EPT page table comprises 512 64-bit entries (PTEs). An EPT PTE is selected using a physical address defined 
as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PDE.

— Bits 11:3 are bits 20:12 of the guest-physical address.

— Bits 2:0 are all 0.
• Because an EPT PTE is identified using bits 47:12 of the guest-physical address, every EPT PTE maps a 4-KByte 

page. The final physical address is computed as follows:

— Bits 63:52 are all 0.

Table 28-3.  Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that References an EPT Page Directory

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 1-GByte region controlled by this entry

1 Write access; indicates whether writes are allowed to the 1-GByte region controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 1-GByte region controlled by this entry

7:3 Reserved (must be 0)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 1-GByte region controlled 
by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

11:9 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page directory referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:

1. N is the physical-address width supported by the logical processor.
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— Bits 51:12 are from the EPT PTE.

— Bits 11:0 are from the original guest-physical address.
The format of an EPT PTE is given in Table 28-6.

If bits 2:0 of an EPT paging-structure entry are all 0, the entry is not present. The processor ignores bits 62:3 and 
uses the entry neither to reference another EPT paging-structure entry nor to produce a physical address. A refer-
ence using a guest-physical address whose translation encounters an EPT paging-structure that is not present 
causes an EPT violation (see Section 28.2.3.2). (If the “EPT-violation #VE” VM-execution control is 1, the EPT viola-
tion is convertible to a virtualization exception only if bit 63 is 0; see Section 25.5.6.1. If the “EPT-violation #VE” 
VM-execution control is 0, this bit is ignored.)

The discussion above describes how the EPT paging structures reference each other and how the logical processor 
traverses those structures when translating a guest-physical address. It does not cover all details of the translation 
process. Additional details are provided as follows:
• Situations in which the translation process may lead to VM exits (sometimes before the process completes) are 

described in Section 28.2.3.
• Interactions between the EPT translation mechanism and memory typing are described in Section 28.2.5.

Figure 28-1 gives a summary of the formats of the EPTP and the EPT paging-structure entries. For the EPT paging 
structure entries, it identifies separately the format of entries that map pages, those that reference other EPT 
paging structures, and those that do neither because they are “not present”; bits 2:0 and bit 7 are highlighted 
because they determine how a paging-structure entry is used.

Table 28-4.  Format of an EPT Page-Directory Entry (PDE) that Maps a 2-MByte Page

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 2-MByte page referenced by this entry

1 Write access; indicates whether writes are allowed to the 2-MByte page referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 2-MByte page referenced by this entry

5:3 EPT memory type for this 2-MByte page (see Section 28.2.5)

6 Ignore PAT memory type for this 2-MByte page (see Section 28.2.5)

7 Must be 1 (otherwise, this entry references an EPT page table)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 2-MByte page referenced 
by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to the 2-MByte page referenced by 
this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

11:10 Ignored

20:12 Reserved (must be 0)

(N–1):21 Physical address of the 2-MByte page referenced by this entry1

51:N Reserved (must be 0)

62:52 Ignored

63 Suppress #VE. If the “EPT-violation #VE” VM-execution control is 1, EPT violations caused by accesses to this page 
are convertible to virtualization exceptions only if this bit is 0 (see Section 25.5.6.1). If “EPT-violation #VE” VM-
execution control is 0, this bit is ignored.

NOTES:

1. N is the physical-address width supported by the logical processor.
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28.2.3 EPT-Induced VM Exits

Accesses using guest-physical addresses may cause VM exits due to EPT misconfigurations and EPT viola-
tions. An EPT misconfiguration occurs when, in the course of translating a guest-physical address, the logical 
processor encounters an EPT paging-structure entry that contains an unsupported value. An EPT violation occurs 
when there is no EPT misconfiguration but the EPT paging-structure entries disallow an access using the guest-
physical address.

EPT misconfigurations and EPT violations occur only due to an attempt to access memory with a guest-physical 
address. Loading CR3 with a guest-physical address with the MOV to CR3 instruction can cause neither an EPT 
configuration nor an EPT violation until that address is used to access a paging structure.1

If the “EPT-violation #VE” VM-execution control is 1, certain EPT violations may cause virtualization exceptions 
instead of VM exits. See Section 25.5.6.1.

28.2.3.1  EPT Misconfigurations

AN EPT misconfiguration occurs if any of the following is identified while translating a guest-physical address:
• The value of bits 2:0 of an EPT paging-structure entry is either 010b (write-only) or 110b (write/execute).
• The value of bits 2:0 of an EPT paging-structure entry is 100b (execute-only) and this value is not supported 

by the logical processor. Software should read the VMX capability MSR IA32_VMX_EPT_VPID_CAP to determine 
whether this value is supported (see Appendix A.10).

• The value of bits 2:0 of an EPT paging-structure entry is not 000b (the entry is present) and one of the 
following holds:

Table 28-5.  Format of an EPT Page-Directory Entry (PDE) that References an EPT Page Table

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 2-MByte region controlled by this entry

1 Write access; indicates whether writes are allowed to the 2-MByte region controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 2-MByte region controlled by this entry

6:3 Reserved (must be 0)

7 Must be 0 (otherwise, this entry maps a 2-MByte page)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 2-MByte region controlled 
by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

11:9 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page table referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:

1. N is the physical-address width supported by the logical processor.

1. If the logical processor is using PAE paging—because CR0.PG = CR4.PAE = 1 and IA32_EFER.LMA = 0—the MOV to CR3 instruction 
loads the PDPTEs from memory using the guest-physical address being loaded into CR3. In this case, therefore, the MOV to CR3 
instruction may cause an EPT misconfiguration or an EPT violation.
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— A reserved bit is set. This includes the setting of a bit in the range 51:12 that is beyond the logical 
processor’s physical-address width.1 See Section 28.2.2 for details of which bits are reserved in which EPT 
paging-structure entries.

— The entry is the last one used to translate a guest physical address (either an EPT PDE with bit 7 set to 1 or 
an EPT PTE) and the value of bits 5:3 (EPT memory type) is 2, 3, or 7 (these values are reserved).

EPT misconfigurations result when an EPT paging-structure entry is configured with settings reserved for future 
functionality. Software developers should be aware that such settings may be used in the future and that an EPT 
paging-structure entry that causes an EPT misconfiguration on one processor might not do so in the future.

28.2.3.2  EPT Violations

An EPT violation may occur during an access using a guest-physical address whose translation does not cause an 
EPT misconfiguration. An EPT violation occurs in any of the following situations:
• Translation of the guest-physical address encounters an EPT paging-structure entry that is not present (see 

Section 28.2.2).
• The access is a data read and bit 0 was clear in any of the EPT paging-structure entries used to translate the 

guest-physical address. Reads by the logical processor of guest paging structures to translate a linear address 
are considered to be data reads.

Table 28-6.  Format of an EPT Page-Table Entry

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 4-KByte page referenced by this entry

1 Write access; indicates whether writes are allowed to the 4-KByte page referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 4-KByte page referenced by this entry

5:3 EPT memory type for this 4-KByte page (see Section 28.2.5)

6 Ignore PAT memory type for this 4-KByte page (see Section 28.2.5)

7 Ignored

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 4-KByte page referenced 
by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to the 4-KByte page referenced by 
this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

11:10 Ignored

(N–1):12 Physical address of the 4-KByte page referenced by this entry1

51:N Reserved (must be 0)

62:52 Ignored

63 Suppress #VE. If the “EPT-violation #VE” VM-execution control is 1, EPT violations caused by accesses to this page 
are convertible to virtualization exceptions only if this bit is 0 (see Section 25.5.6.1). If “EPT-violation #VE” VM-
execution control is 0, this bit is ignored.

NOTES:

1. N is the physical-address width supported by the logical processor.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.
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• The access is a data write and bit 1 was clear in any of the EPT paging-structure entries used to translate the 
guest-physical address. Writes by the logical processor to guest paging structures to update accessed and dirty 
flags are considered to be data writes.
If bit 6 of the EPT pointer (EPTP) is 1 (enabling accessed and dirty flags for EPT), processor accesses to guest 
paging-structure entries are treated as writes with regard to EPT violations. Thus, if bit 1 is clear in any of the 
EPT paging-structure entries used to translate the guest-physical address of a guest paging-structure entry, an 
attempt to use that entry to translate a linear address causes an EPT violation.
(This does not apply to loads of the PDPTE registers by the MOV to CR instruction for PAE paging; see Section 
4.4.1. Those loads of guest PDPTEs are treated as reads and do not cause EPT violations due to a guest-
physical address not being writable.)

• The access is an instruction fetch and bit 2 was clear in any of the EPT paging-structure entries used to 
translate the guest-physical address.
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Figure 28-1.  Formats of EPTP and EPT Paging-Structure Entries

NOTES:

1. M is an abbreviation for MAXPHYADDR.

2. See Section 24.6.11 for details of the EPTP.

3. Suppress #VE. If the “EPT-violation #VE” VM-execution control is 0, this bit is ignored.
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28.2.3.3  Prioritization of EPT-Induced VM Exits

The translation of a linear address to a physical address requires one or more translations of guest-physical 
addresses using EPT (see Section 28.2.1). This section specifies the relative priority of EPT-induced VM exits with 
respect to each other and to other events that may be encountered when accessing memory using a linear address.

For an access to a guest-physical address, determination of whether an EPT misconfiguration or an EPT violation 
occurs is based on an iterative process:1

1. An EPT paging-structure entry is read (initially, this is an EPT PML4 entry):

a. If the entry is not present (bits 2:0 are all 0), an EPT violation occurs.

b. If the entry is present but its contents are not configured properly (see Section 28.2.3.1), an EPT miscon-
figuration occurs.

c. If the entry is present and its contents are configured properly, operation depends on whether the entry 
references another EPT paging structure (whether it is an EPT PDE with bit 7 set to 1 or an EPT PTE):

i) If the entry does reference another EPT paging structure, an entry from that structure is accessed; 
step 1 is executed for that other entry.

ii) Otherwise, the entry is used to produce the ultimate physical address (the translation of the original 
guest-physical address); step 2 is executed.

2. Once the ultimate physical address is determined, the privileges determined by the EPT paging-structure 
entries are evaluated:

a. If the access to the guest-physical address is not allowed by these privileges (see Section 28.2.3.2), an EPT 
violation occurs.

b. If the access to the guest-physical address is allowed by these privileges, memory is accessed using the 
ultimate physical address.

If CR0.PG = 1, the translation of a linear address is also an iterative process, with the processor first accessing an 
entry in the guest paging structure referenced by the guest-physical address in CR3 (or, if PAE paging is in use, the 
guest-physical address in the appropriate PDPTE register), then accessing an entry in another guest paging struc-
ture referenced by the guest-physical address in the first guest paging-structure entry, etc. Each guest-physical 
address is itself translated using EPT and may cause an EPT-induced VM exit. The following items detail how page 
faults and EPT-induced VM exits are recognized during this iterative process:

1. An attempt is made to access a guest paging-structure entry with a guest-physical address (initially, the 
address in CR3 or PDPTE register).

a. If the access fails because of an EPT misconfiguration or an EPT violation (see above), an EPT-induced 
VM exit occurs.

b. If the access does not cause an EPT-induced VM exit, bit 0 (the present flag) of the entry is consulted:

i) If the present flag is 0 or any reserved bit is set, a page fault occurs.

ii) If the present flag is 1, no reserved bit is set, operation depends on whether the entry references 
another guest paging structure (whether it is a guest PDE with PS = 1 or a guest PTE):

• If the entry does reference another guest paging structure, an entry from that structure is 
accessed; step 1 is executed for that other entry.

• Otherwise, the entry is used to produce the ultimate guest-physical address (the translation of the 
original linear address); step 2 is executed.

2. Once the ultimate guest-physical address is determined, the privileges determined by the guest paging-
structure entries are evaluated:

a. If the access to the linear address is not allowed by these privileges (e.g., it was a write to a read-only 
page), a page fault occurs.

b. If the access to the linear address is allowed by these privileges, an attempt is made to access memory at 
the ultimate guest-physical address:

1. This is a simplification of the more detailed description given in Section 28.2.2.
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i) If the access fails because of an EPT misconfiguration or an EPT violation (see above), an EPT-induced 
VM exit occurs.

ii) If the access does not cause an EPT-induced VM exit, memory is accessed using the ultimate physical 
address (the translation, using EPT, of the ultimate guest-physical address).

If CR0.PG = 0, a linear address is treated as a guest-physical address and is translated using EPT (see above). This 
process, if it completes without an EPT violation or EPT misconfiguration, produces a physical address and deter-
mines the privileges allowed by the EPT paging-structure entries. If these privileges do not allow the access to the 
physical address (see Section 28.2.3.2), an EPT violation occurs. Otherwise, memory is accessed using the phys-
ical address.

28.2.4 Accessed and Dirty Flags for EPT

The Intel 64 architecture supports accessed and dirty flags in ordinary paging-structure entries (see Section 
4.8). Some processors also support corresponding flags in EPT paging-structure entries. Software should read the 
VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether the processor supports 
this feature.

Software can enable accessed and dirty flags for EPT using bit 6 of the extended-page-table pointer (EPTP), a VM-
execution control field (see Table 24-8 in Section 24.6.11). If this bit is 1, the processor will set the accessed and 
dirty flags for EPT as described below. In addition, setting this flag causes processor accesses to guest paging-
structure entries to be treated as writes (see below and Section 28.2.3.2).

For any EPT paging-structure entry that is used during guest-physical-address translation, bit 8 is the accessed 
flag. For a EPT paging-structure entry that maps a page (as opposed to referencing another EPT paging structure), 
bit 9 is the dirty flag.

Whenever the processor uses an EPT paging-structure entry as part of guest-physical-address translation, it sets 
the accessed flag in that entry (if it is not already set).

Whenever there is a write to a guest-physical address, the processor sets the dirty flag (if it is not already set) in 
the EPT paging-structure entry that identifies the final physical address for the guest-physical address (either an 
EPT PTE or an EPT paging-structure entry in which bit 7 is 1).

When accessed and dirty flags for EPT are enabled, processor accesses to guest paging-structure entries are 
treated as writes (see Section 28.2.3.2). Thus, such an access will cause the processor to set the dirty flag in the 
EPT paging-structure entry that identifies the final physical address of the guest paging-structure entry.

(This does not apply to loads of the PDPTE registers for PAE paging by the MOV to CR instruction; see Section 4.4.1. 
Those loads of guest PDPTEs are treated as reads and do not cause the processor to set the dirty flag in any EPT 
paging-structure entry.)

These flags are “sticky,” meaning that, once set, the processor does not clear them; only software can clear them.

A processor may cache information from the EPT paging-structure entries in TLBs and paging-structure caches 
(see Section 28.3). This fact implies that, if software changes an accessed flag or a dirty flag from 1 to 0, the 
processor might not set the corresponding bit in memory on a subsequent access using an affected guest-physical 
address.

28.2.5 EPT and Memory Typing

This section specifies how a logical processor determines the memory type use for a memory access while EPT is in 
use. (See Chapter 11, “Memory Cache Control” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A for details of memory typing in the Intel 64 architecture.) Section 28.2.5.1 explains how the memory 
type is determined for accesses to the EPT paging structures. Section 28.2.5.2 explains how the memory type is 
determined for an access using a guest-physical address that is translated using EPT.

28.2.5.1  Memory Type Used for Accessing EPT Paging Structures

This section explains how the memory type is determined for accesses to the EPT paging structures. The determi-
nation is based first on the value of bit 30 (cache disable—CD) in control register CR0:
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• If CR0.CD = 0, the memory type used for any such reference is the EPT paging-structure memory type, which 
is specified in bits 2:0 of the extended-page-table pointer (EPTP), a VM-execution control field (see Section 
24.6.11). A value of 0 indicates the uncacheable type (UC), while a value of 6 indicates the write-back type 
(WB). Other values are reserved.

• If CR0.CD = 1, the memory type used for any such reference is uncacheable (UC).

The MTRRs have no effect on the memory type used for an access to an EPT paging structure.

28.2.5.2  Memory Type Used for Translated Guest-Physical Addresses

The effective memory type of a memory access using a guest-physical address (an access that is translated 
using EPT) is the memory type that is used to access memory. The effective memory type is based on the value of 
bit 30 (cache disable—CD) in control register CR0; the last EPT paging-structure entry used to translate the guest-
physical address (either an EPT PDE with bit 7 set to 1 or an EPT PTE); and the PAT memory type (see below):
• The PAT memory type depends on the value of CR0.PG:

— If CR0.PG = 0, the PAT memory type is WB (writeback).1

— If CR0.PG = 1, the PAT memory type is the memory type selected from the IA32_PAT MSR as specified in 
Section 11.12.3, “Selecting a Memory Type from the PAT”.2

• The EPT memory type is specified in bits 5:3 of the last EPT paging-structure entry: 0 = UC; 1 = WC; 4 = WT; 
5 = WP; and 6 = WB. Other values are reserved and cause EPT misconfigurations (see Section 28.2.3).

• If CR0.CD = 0, the effective memory type depends upon the value of bit 6 of the last EPT paging-structure 
entry:

— If the value is 0, the effective memory type is the combination of the EPT memory type and the PAT memory 
type specified in Table 11-7 in Section 11.5.2.2, using the EPT memory type in place of the MTRR memory 
type.

— If the value is 1, the memory type used for the access is the EPT memory type. The PAT memory type is 
ignored.

• If CR0.CD = 1, the effective memory type is UC.

The MTRRs have no effect on the memory type used for an access to a guest-physical address.

28.3 CACHING TRANSLATION INFORMATION

Processors supporting Intel® 64 and IA-32 architectures may accelerate the address-translation process by 
caching on the processor data from the structures in memory that control that process. Such caching is discussed 
in Section 4.10, “Caching Translation Information” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A. The current section describes how this caching interacts with the VMX architecture.

The VPID and EPT features of the architecture for VMX operation augment this caching architecture. EPT defines 
the guest-physical address space and defines translations to that address space (from the linear-address space) 
and from that address space (to the physical-address space). Both features control the ways in which a logical 
processor may create and use information cached from the paging structures.

Section 28.3.1 describes the different kinds of information that may be cached. Section 28.3.2 specifies when such 
information may be cached and how it may be used. Section 28.3.3 details how software can invalidate cached 
information.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, CR0.PG can be 0 in VMX non-root 
operation only if the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are 
both 1.

2. Table 11-11 in Section 11.12.3, “Selecting a Memory Type from the PAT” illustrates how the PAT memory type is selected based on 
the values of the PAT, PCD, and PWT bits in a page-table entry (or page-directory entry with PS = 1). For accesses to a guest paging-
structure entry X, the PAT memory type is selected from the table by using a value of 0 for the PAT bit with the values of PCD and 
PWT from the paging-structure entry Y that references X (or from CR3 if X is in the root paging structure). With PAE paging, the PAT 
memory type for accesses to the PDPTEs is WB.
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28.3.1 Information That May Be Cached

Section 4.10, “Caching Translation Information” in Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A identifies two kinds of translation-related information that may be cached by a logical 
processor: translations, which are mappings from linear page numbers to physical page frames, and paging-
structure caches, which map the upper bits of a linear page number to information from the paging-structure 
entries used to translate linear addresses matching those upper bits.

The same kinds of information may be cached when VPIDs and EPT are in use. A logical processor may cache and 
use such information based on its function. Information with different functionality is identified as follows:
• Linear mappings.1 There are two kinds:

— Linear translations. Each of these is a mapping from a linear page number to the physical page frame to 
which it translates, along with information about access privileges and memory typing.

— Linear paging-structure-cache entries. Each of these is a mapping from the upper portion of a linear 
address to the physical address of the paging structure used to translate the corresponding region of the 
linear-address space, along with information about access privileges. For example, bits 47:39 of a linear 
address would map to the address of the relevant page-directory-pointer table.

Linear mappings do not contain information from any EPT paging structure.
• Guest-physical mappings.2 There are two kinds:

— Guest-physical translations. Each of these is a mapping from a guest-physical page number to the physical 
page frame to which it translates, along with information about access privileges and memory typing.

— Guest-physical paging-structure-cache entries. Each of these is a mapping from the upper portion of a 
guest-physical address to the physical address of the EPT paging structure used to translate the corre-
sponding region of the guest-physical address space, along with information about access privileges.

The information in guest-physical mappings about access privileges and memory typing is derived from EPT 
paging structures.

• Combined mappings.3 There are two kinds:

— Combined translations. Each of these is a mapping from a linear page number to the physical page frame 
to which it translates, along with information about access privileges and memory typing.

— Combined paging-structure-cache entries. Each of these is a mapping from the upper portion of a linear 
address to the physical address of the paging structure used to translate the corresponding region of the 
linear-address space, along with information about access privileges.

The information in combined mappings about access privileges and memory typing is derived from both guest 
paging structures and EPT paging structures.

28.3.2 Creating and Using Cached Translation Information

The following items detail the creation of the mappings described in the previous section:4

• The following items describe the creation of mappings while EPT is not in use (including execution outside VMX 
non-root operation):

— Linear mappings may be created. They are derived from the paging structures referenced (directly or 
indirectly) by the current value of CR3 and are associated with the current VPID and the current PCID.

1. Earlier versions of this manual used the term “VPID-tagged” to identify linear mappings.

2. Earlier versions of this manual used the term “EPTP-tagged” to identify guest-physical mappings.

3. Earlier versions of this manual used the term “dual-tagged” to identify combined mappings.

4. This section associated cached information with the current VPID and PCID. If PCIDs are not supported or are not being used (e.g., 
because CR4.PCIDE = 0), all the information is implicitly associated with PCID 000H; see Section 4.10.1, “Process-Context Identifiers 
(PCIDs),” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
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— No linear mappings are created with information derived from paging-structure entries that are not present 
(bit 0 is 0) or that set reserved bits. For example, if a PTE is not present, no linear mapping are created for 
any linear page number whose translation would use that PTE.

— No guest-physical or combined mappings are created while EPT is not in use.
• The following items describe the creation of mappings while EPT is in use:

— Guest-physical mappings may be created. They are derived from the EPT paging structures referenced 
(directly or indirectly) by bits 51:12 of the current EPTP. These 40 bits contain the address of the EPT-PML4-
table. (the notation EP4TA refers to those 40 bits). Newly created guest-physical mappings are associated 
with the current EP4TA.

— Combined mappings may be created. They are derived from the EPT paging structures referenced (directly 
or indirectly) by the current EP4TA. If CR0.PG = 1, they are also derived from the paging structures 
referenced (directly or indirectly) by the current value of CR3. They are associated with the current VPID, 
the current PCID, and the current EP4TA.1 No combined paging-structure-cache entries are created if 
CR0.PG = 0.2

— No guest-physical mappings or combined mappings are created with information derived from EPT paging-
structure entries that are not present (bits 2:0 are all 0) or that are misconfigured (see Section 28.2.3.1).

— No combined mappings are created with information derived from guest paging-structure entries that are 
not present or that set reserved bits.

— No linear mappings are created while EPT is in use.

The following items detail the use of the various mappings:
• If EPT is not in use (e.g., when outside VMX non-root operation), a logical processor may use cached mappings 

as follows:

— For accesses using linear addresses, it may use linear mappings associated with the current VPID and the 
current PCID. It may also use global TLB entries (linear mappings) associated with the current VPID and 
any PCID.

— No guest-physical or combined mappings are used while EPT is not in use.
• If EPT is in use, a logical processor may use cached mappings as follows:

— For accesses using linear addresses, it may use combined mappings associated with the current VPID, the 
current PCID, and the current EP4TA. It may also use global TLB entries (combined mappings) associated 
with the current VPID, the current EP4TA, and any PCID.

— For accesses using guest-physical addresses, it may use guest-physical mappings associated with the 
current EP4TA.

— No linear mappings are used while EPT is in use.

28.3.3 Invalidating Cached Translation Information

Software modifications of paging structures (including EPT paging structures) may result in inconsistencies 
between those structures and the mappings cached by a logical processor. Certain operations invalidate informa-
tion cached by a logical processor and can be used to eliminate such inconsistencies.

28.3.3.1  Operations that Invalidate Cached Mappings

The following operations invalidate cached mappings as indicated:

1. At any given time, a logical processor may be caching combined mappings for a VPID and a PCID that are associated with different 
EP4TAs. Similarly, it may be caching combined mappings for an EP4TA that are associated with different VPIDs and PCIDs.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, CR0.PG can be 0 in VMX non-root 
operation only if the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are 
both 1.



Vol. 3C 28-15

VMX SUPPORT FOR ADDRESS TRANSLATION

• Operations that architecturally invalidate entries in the TLBs or paging-structure caches independent of VMX 
operation (e.g., the INVLPG and INVPCID instructions) invalidate linear mappings and combined mappings.1 
They are required to do so only for the current VPID (but, for combined mappings, all EP4TAs). Linear 
mappings for the current VPID are invalidated even if EPT is in use.2 Combined mappings for the current 
VPID are invalidated even if EPT is not in use.3

• An EPT violation invalidates any guest-physical mappings (associated with the current EP4TA) that would be 
used to translate the guest-physical address that caused the EPT violation. If that guest-physical address was 
the translation of a linear address, the EPT violation also invalidates any combined mappings for that linear 
address associated with the current PCID, the current VPID and the current EP4TA.

• If the “enable VPID” VM-execution control is 0, VM entries and VM exits invalidate linear mappings and 
combined mappings associated with VPID 0000H (for all PCIDs). Combined mappings for VPID 0000H are 
invalidated for all EP4TAs.

• Execution of the INVVPID instruction invalidates linear mappings and combined mappings. Invalidation is 
based on instruction operands, called the INVVPID type and the INVVPID descriptor. Four INVVPID types are 
currently defined:

— Individual-address. If the INVVPID type is 0, the logical processor invalidates linear mappings and 
combined mappings associated with the VPID specified in the INVVPID descriptor and that would be used 
to translate the linear address specified in of the INVVPID descriptor. Linear mappings and combined 
mappings for that VPID and linear address are invalidated for all PCIDs and, for combined mappings, all 
EP4TAs. (The instruction may also invalidate mappings associated with other VPIDs and for other linear 
addresses.)

— Single-context. If the INVVPID type is 1, the logical processor invalidates all linear mappings and 
combined mappings associated with the VPID specified in the INVVPID descriptor. Linear mappings and 
combined mappings for that VPID are invalidated for all PCIDs and, for combined mappings, all EP4TAs. 
(The instruction may also invalidate mappings associated with other VPIDs.)

— All-context. If the INVVPID type is 2, the logical processor invalidates linear mappings and combined 
mappings associated with all VPIDs except VPID 0000H and with all PCIDs. (The instruction may also 
invalidate linear mappings with VPID 0000H.) Combined mappings are invalidated for all EP4TAs.

— Single-context-retaining-globals. If the INVVPID type is 3, the logical processor invalidates linear 
mappings and combined mappings associated with the VPID specified in the INVVPID descriptor. Linear 
mappings and combined mappings for that VPID are invalidated for all PCIDs and, for combined mappings, 
all EP4TAs. The logical processor is not required to invalidate information that was used for global transla-
tions (although it may do so). See Section 4.10, “Caching Translation Information” for details regarding 
global translations. (The instruction may also invalidate mappings associated with other VPIDs.)

See Chapter 30 for details of the INVVPID instruction. See Section 28.3.3.3 for guidelines regarding use of this 
instruction.

• Execution of the INVEPT instruction invalidates guest-physical mappings and combined mappings. Invalidation 
is based on instruction operands, called the INVEPT type and the INVEPT descriptor. Two INVEPT types are 
currently defined:

— Single-context. If the INVEPT type is 1, the logical processor invalidates all guest-physical mappings and 
combined mappings associated with the EP4TA specified in the INVEPT descriptor. Combined mappings for 
that EP4TA are invalidated for all VPIDs and all PCIDs. (The instruction may invalidate mappings associated 
with other EP4TAs.)

— All-context. If the INVEPT type is 2, the logical processor invalidates guest-physical mappings and 
combined mappings associated with all EP4TAs (and, for combined mappings, for all VPIDs and PCIDs).

1. See Section 4.10.4, “Invalidation of TLBs and Paging-Structure Caches,” in the Intel® 64 and IA-32 Architectures Software Devel-

oper’s Manual, Volume 3A for an enumeration of operations that architecturally invalidate entries in the TLBs and paging-structure 
caches independent of VMX operation.

2. While no linear mappings are created while EPT is in use, a logical processor may retain, while EPT is in use, linear mappings (for the 
same VPID as the current one) there were created earlier, when EPT was not in use.

3. While no combined mappings are created while EPT is not in use, a logical processor may retain, while EPT is in not use, combined 
mappings (for the same VPID as the current one) there were created earlier, when EPT was in use.
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See Chapter 30 for details of the INVEPT instruction. See Section 28.3.3.4 for guidelines regarding use of this 
instruction.

• A power-up or a reset invalidates all linear mappings, guest-physical mappings, and combined mappings.

28.3.3.2  Operations that Need Not Invalidate Cached Mappings

The following items detail cases of operations that are not required to invalidate certain cached mappings:
• Operations that architecturally invalidate entries in the TLBs or paging-structure caches independent of VMX 

operation are not required to invalidate any guest-physical mappings.
• The INVVPID instruction is not required to invalidate any guest-physical mappings.
• The INVEPT instruction is not required to invalidate any linear mappings.
• VMX transitions are not required to invalidate any guest-physical mappings. If the “enable VPID” VM-execution 

control is 1, VMX transitions are not required to invalidate any linear mappings or combined mappings. 
• The VMXOFF and VMXON instructions are not required to invalidate any linear mappings, guest-physical 

mappings, or combined mappings.

A logical processor may invalidate any cached mappings at any time. For this reason, the operations identified 
above may invalidate the indicated mappings despite the fact that doing so is not required.

28.3.3.3  Guidelines for Use of the INVVPID Instruction

The need for VMM software to use the INVVPID instruction depends on how that software is virtualizing memory 
(e.g., see Section 32.3, “Memory Virtualization”). 

If EPT is not in use, it is likely that the VMM is virtualizing the guest paging structures. Such a VMM may configure 
the VMCS so that all or some of the operations that invalidate entries the TLBs and the paging-structure caches 
(e.g., the INVLPG instruction) cause VM exits. If VMM software is emulating these operations, it may be necessary 
to use the INVVPID instruction to ensure that the logical processor’s TLBs and the paging-structure caches are 
appropriately invalidated.

Requirements of when software should use the INVVPID instruction depend on the specific algorithm being used for 
page-table virtualization. The following items provide guidelines for software developers:
• Emulation of the INVLPG instruction may require execution of the INVVPID instruction as follows:

— The INVVPID type is individual-address (0).

— The VPID in the INVVPID descriptor is the one assigned to the virtual processor whose execution is being 
emulated.

— The linear address in the INVVPID descriptor is that of the operand of the INVLPG instruction being 
emulated.

• Some instructions invalidate all entries in the TLBs and paging-structure caches—except for global translations. 
An example is the MOV to CR3 instruction. (See Section 4.10, “Caching Translation Information” in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A for details regarding global translations.) 
Emulation of such an instruction may require execution of the INVVPID instruction as follows:

— The INVVPID type is single-context-retaining-globals (3).

— The VPID in the INVVPID descriptor is the one assigned to the virtual processor whose execution is being 
emulated.

• Some instructions invalidate all entries in the TLBs and paging-structure caches—including for global transla-
tions. An example is the MOV to CR4 instruction if the value of value of bit 4 (page global enable—PGE) is 
changing. Emulation of such an instruction may require execution of the INVVPID instruction as follows:

— The INVVPID type is single-context (1).

— The VPID in the INVVPID descriptor is the one assigned to the virtual processor whose execution is being 
emulated.

If EPT is not in use, the logical processor associates all mappings it creates with the current VPID, and it will use 
such mappings to translate linear addresses. For that reason, a VMM should not use the same VPID for different 
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non-EPT guests that use different page tables. Doing so may result in one guest using translations that pertain to 
the other.

If EPT is in use, the instructions enumerated above might not be configured to cause VM exits and the VMM might 
not be emulating them. In that case, executions of the instructions by guest software properly invalidate the 
required entries in the TLBs and paging-structure caches (see Section 28.3.3.1); execution of the INVVPID instruc-
tion is not required.

If EPT is in use, the logical processor associates all mappings it creates with the value of bits 51:12 of current EPTP. 
If a VMM uses different EPTP values for different guests, it may use the same VPID for those guests. Doing so 
cannot result in one guest using translations that pertain to the other.

The following guidelines apply more generally and are appropriate even if EPT is in use:
• As detailed in Section 29.4.5, an access to the APIC-access page might not cause an APIC-access VM exit if 

software does not properly invalidate information that may be cached from the paging structures. If, at one 
time, the current VPID on a logical processor was a non-zero value X, it is recommended that software use the 
INVVPID instruction with the “single-context” INVVPID type and with VPID X in the INVVPID descriptor before 
a VM entry on the same logical processor that establishes VPID X and either (a) the “virtualize APIC accesses” 
VM-execution control was changed from 0 to 1; or (b) the value of the APIC-access address was changed.

• Software can use the INVVPID instruction with the “all-context” INVVPID type immediately after execution of 
the VMXON instruction or immediately prior to execution of the VMXOFF instruction. Either prevents potentially 
undesired retention of information cached from paging structures between separate uses of VMX operation.

28.3.3.4  Guidelines for Use of the INVEPT Instruction

The following items provide guidelines for use of the INVEPT instruction to invalidate information cached from the 
EPT paging structures.
• Software should use the INVEPT instruction with the “single-context” INVEPT type after making any of the 

following changes to an EPT paging-structure entry (the INVEPT descriptor should contain an EPTP value that 
references — directly or indirectly — the modified EPT paging structure):

— Changing any of the privilege bits 2:0 from 1 to 0.

— Changing the physical address in bits 51:12.

— Clearing bit 8 (the accessed flag) if accessed and dirty flags for EPT will be enabled.

— For an EPT PDPTE or an EPT PDE, changing bit 7 (which determines whether the entry maps a page).

— For the last EPT paging-structure entry used to translate a guest-physical address (an EPT PDPTE with bit 7 
set to 1, an EPT PDE with bit 7 set to 1, or an EPT PTE), changing either bits 5:3 or bit 6. (These bits 
determine the effective memory type of accesses using that EPT paging-structure entry; see Section 
28.2.5.)

— For the last EPT paging-structure entry used to translate a guest-physical address (an EPT PDPTE with bit 7 
set to 1, an EPT PDE with bit 7 set to 1, or an EPT PTE), clearing bit 9 (the dirty flag) if accessed and dirty 
flags for EPT will be enabled.

• Software should use the INVEPT instruction with the “single-context” INVEPT type before a VM entry with an 
EPTP value X such that X[6] = 1 (accessed and dirty flags for EPT are enabled) if the logical processor had 
earlier been in VMX non-root operation with an EPTP value Y such that Y[6] = 0 (accessed and dirty flags for 
EPT are not enabled) and Y[51:12] = X[51:12].

• Software may use the INVEPT instruction after modifying a present EPT paging-structure entry to change any 
of the privilege bits 2:0 from 0 to 1. Failure to do so may cause an EPT violation that would not otherwise occur. 
Because an EPT violation invalidates any mappings that would be used by the access that caused the EPT 
violation (see Section 28.3.3.1), an EPT violation will not recur if the original access is performed again, even if 
the INVEPT instruction is not executed.

• Because a logical processor does not cache any information derived from EPT paging-structure entries that are 
not present or misconfigured (see Section 28.2.3.1), it is not necessary to execute INVEPT following modifi-
cation of an EPT paging-structure entry that had been not present or misconfigured.

• As detailed in Section 29.4.5, an access to the APIC-access page might not cause an APIC-access VM exit if 
software does not properly invalidate information that may be cached from the EPT paging structures. If EPT 
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was in use on a logical processor at one time with EPTP X, it is recommended that software use the INVEPT 
instruction with the “single-context” INVEPT type and with EPTP X in the INVEPT descriptor before a VM entry 
on the same logical processor that enables EPT with EPTP X and either (a) the “virtualize APIC accesses” VM-
execution control was changed from 0 to 1; or (b) the value of the APIC-access address was changed.

• Software can use the INVEPT instruction with the “all-context” INVEPT type immediately after execution of the 
VMXON instruction or immediately prior to execution of the VMXOFF instruction. Either prevents potentially 
undesired retention of information cached from EPT paging structures between separate uses of VMX 
operation.

In a system containing more than one logical processor, software must account for the fact that information from 
an EPT paging-structure entry may be cached on logical processors other than the one that modifies that entry. The 
process of propagating the changes to a paging-structure entry is commonly referred to as “TLB shootdown.” A 
discussion of TLB shootdown appears in Section 4.10.5, “Propagation of Paging-Structure Changes to Multiple 
Processors,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
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APIC VIRTUALIZATION AND VIRTUAL INTERRUPTS

The VMCS includes controls that enable the virtualization of interrupts and the Advanced Programmable Interrupt 
Controller (APIC).

When these controls are used, the processor will emulate many accesses to the APIC, track the state of the virtual 
APIC, and deliver virtual interrupts — all in VMX non-root operation with out a VM exit.1

The processor tracks the state of the virtual APIC using a virtual-APIC page identified by the virtual-machine 
monitor (VMM). Section 29.1 discusses the virtual-APIC page and how the processor uses it to track the state of the 
virtual APIC.

The following are the VM-execution controls relevant to APIC virtualization and virtual interrupts (see Section 24.6 
for information about the locations of these controls):
• Virtual-interrupt delivery. This controls enables the evaluation and delivery of pending virtual interrupts 

(Section 29.2). It also enables the emulation of writes (memory-mapped or MSR-based, as enabled) to the 
APIC registers that control interrupt prioritization.

• Use TPR shadow. This control enables emulation of accesses to the APIC’s task-priority register (TPR) via CR8 
(Section 29.3) and, if enabled, via the memory-mapped or MSR-based interfaces.

• Virtualize APIC accesses. This control enables virtualization of memory-mapped accesses to the APIC 
(Section 29.4) by causing VM exits on accesses to a VMM-specified APIC-access page. Some of the other 
controls, if set, may cause some of these accesses to be emulated rather than causing VM exits.

• Virtualize x2APIC mode. This control enables virtualization of MSR-based accesses to the APIC (Section 
29.5).

• APIC-register virtualization. This control allows memory-mapped and MSR-based reads of most APIC 
registers (as enabled) by satisfying them from the virtual-APIC page. It directs memory-mapped writes to the 
APIC-access page to the virtual-APIC page, following them by VM exits for VMM emulation.

• Process posted interrupts. This control allows software to post virtual interrupts in a data structure and send 
a notification to another logical processor; upon receipt of the notification, the target processor will process the 
posted interrupts by copying them into the virtual-APIC page (Section 29.6).

“Virtualize APIC accesses”, “virtualize x2APIC mode”, “virtual-interrupt delivery”, and “APIC-register virtualization” 
are all secondary processor-based VM-execution controls. If bit 31 of the primary processor-based VM-execution 
controls is 0, the processor operates as if these controls were all 0. See Section 24.6.2.

29.1 VIRTUAL APIC STATE

The virtual-APIC page is a 4-KByte region of memory that the processor uses the virtual-APIC page to virtualize 
certain accesses to APIC registers and to manage virtual interrupts. The physical address of the virtual-APIC page 
is the virtual-APIC address, a 64-bit VM-execution control field in the VMCS (see Section 24.6.8).

Depending on the settings of certain VM-execution controls, the processor may virtualize certain fields on the 
virtual-APIC page with functionality analogous to that performed by the local APIC. Section 29.1.1 identifies and 
defines these fields. Section 29.1.2, Section 29.1.3, Section 29.1.4, and Section 29.1.5 detail the actions taken to 
virtualize updates to some of these fields.

29.1.1 Virtualized APIC Registers

Depending on the setting of certain VM-execution controls, a logical processor may virtualize certain accesses to 
APIC registers using the following fields on the virtual-APIC page:
• Virtual task-priority register (VTPR): the 32-bit field located at offset 080H on the virtual-APIC page.

1. In most cases, it is not necessary for a virtual-machine monitor (VMM) to inject virtual interrupts as part of VM entry.



29-2 Vol. 3C

APIC VIRTUALIZATION AND VIRTUAL INTERRUPTS

• Virtual processor-priority register (VPPR): the 32-bit field located at offset 0A0H on the virtual-APIC 
page.

• Virtual end-of-interrupt register (VEOI): the 32-bit field located at offset 0B0H on the virtual-APIC page.
• Virtual interrupt-service register (VISR): the 256-bit value comprising eight non-contiguous 32-bit fields 

at offsets 100H, 110H, 120H, 130H, 140H, 150H, 160H, and 170H on the virtual-APIC page. Bit x of the VISR 
is at bit position (x & 1FH) at offset (100H | ((x & E0H) » 1)). The processor uses only the low 4 bytes of each 
of the 16-byte fields at offsets 100H, 110H, 120H, 130H, 140H, 150H, 160H, and 170H.

• Virtual interrupt-request register (VIRR): the 256-bit value comprising eight non-contiguous 32-bit fields 
at offsets 200H, 210H, 220H, 230H, 240H, 250H, 260H, and 270H on the virtual-APIC page. Bit x of the VIRR 
is at bit position (x & 1FH) at offset (200H | ((x & E0H) » 1)). The processor uses only the low 4 bytes of each 
of the 16-Byte fields at offsets 200H, 210H, 220H, 230H, 240H, 250H, 260H, and 270H.

• Virtual interrupt-command register (VICR_LO): the 32-bit field located at offset 300H on the virtual-APIC 
page

• Virtual interrupt-command register (VICR_HI): the 32-bit field located at offset 310H on the virtual-APIC 
page.

29.1.2 TPR Virtualization

The processor performs TPR virtualization in response to the following operations: (1) virtualization of the MOV 
to CR8 instruction; (2) virtualization of a write to offset 080H on the APIC-access page; and (3) virtualization of the 
WRMSR instruction with ECX = 808H. See Section 29.3, Section 29.4.3, and Section 29.5 for details of when TPR 
virtualization is performed.

The following pseudocode details the behavior of TPR virtualization:
IF “virtual-interrupt delivery” is 0

THEN

IF VTPR[7:4] < TPR threshold (see Section 24.6.8)

THEN cause VM exit due to TPR below threshold;

FI;

ELSE

perform PPR virtualization (see Section 29.1.3);

evaluate pending virtual interrupts (see Section 29.2.1);

FI;

Any VM exit caused by TPR virtualization is trap-like: the instruction causing TPR virtualization completes before 
the VM exit occurs (for example, the value of CS:RIP saved in the guest-state area of the VMCS references the next 
instruction).

29.1.3 PPR Virtualization

The processor performs PPR virtualization in response to the following operations: (1) VM entry; (2) TPR virtu-
alization; and (3) EOI virtualization. See Section 26.3.2.5, Section 29.1.2, and Section 29.1.4 for details of when 
PPR virtualization is performed.

PPR virtualization uses the guest interrupt status (specifically, SVI; see Section 24.4.2) and VTPR.The following 
pseudocode details the behavior of PPR virtualization:

IF VTPR[7:4] ≥ SVI[7:4]

THEN VPPR ← VTPR & FFH;

ELSE VPPR ← SVI & F0H;

FI;

PPR virtualization always clears bytes 3:1 of VPPR.

PPR virtualization is caused only by TPR virtualization, EOI virtualization, and VM entry. Delivery of a virtual inter-
rupt also modifies VPPR, but in a different way (see Section 29.2.2). No other operations modify VPPR, even if they 
modify SVI, VISR, or VTPR.
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29.1.4 EOI Virtualization

The processor performs EOI virtualization in response to the following operations: (1) virtualization of a write to 
offset 0B0H on the APIC-access page; and (2) virtualization of the WRMSR instruction with ECX = 80BH. See 
Section 29.4.3 and Section 29.5 for details of when EOI virtualization is performed. EOI virtualization occurs only 
if the “virtual-interrupt delivery” VM-execution control is 1.

EOI virtualization uses and updates the guest interrupt status (specifically, SVI; see Section 24.4.2). The following 
pseudocode details the behavior of EOI virtualization:

Vector ← SVI;

VISR[Vector] ← 0; (see Section 29.1.1 for definition of VISR)

IF any bits set in VISR

THEN SVI ← highest index of bit set in VISR

ELSE SVI ← 0;

FI;

perform PPR virtualiation (see Section 29.1.3);

IF EOI_exit_bitmap[Vector] = 1 (see Section 24.6.8 for definition of EOI_exit_bitmap)

THEN cause EOI-induced VM exit with Vector as exit qualification;

ELSE evaluate pending virtual interrupts; (see Section 29.2.1)

FI;

Any VM exit caused by EOI virtualization is trap-like: the instruction causing EOI virtualization completes before 
the VM exit occurs (for example, the value of CS:RIP saved in the guest-state area of the VMCS references the next 
instruction).

29.1.5 Self-IPI Virtualization

The processor performs self-IPI virtualization in response to the following operations: (1) virtualization of a 
write to offset 300H on the APIC-access page; and (2) virtualization of the WRMSR instruction with ECX = 83FH. 
See Section 29.4.3 and Section 29.5 for details of when self-IPI virtualization is performed. Self-IPI virtualization 
occurs only if the “virtual-interrupt delivery” VM-execution control is 1.

Each operation that leads to self-IPI virtualization provides an 8-bit vector (see Section 29.4.3 and Section 29.5). 
Self-IPI virtualization updates the guest interrupt status (specifically, RVI; see Section 24.4.2). The following 
pseudocode details the behavior of self-IPI virtualization:

VIRR[Vector] ← 1; (see Section 29.1.1 for definition of VIRR)

RVI ← max{RVI,Vector};

evaluate pending virtual interrupts; (see Section 29.2.1)

29.2 EVALUATION AND DELIVERY OF VIRTUAL INTERRUPTS

If the “virtual-interrupt delivery” VM-execution control is 1, certain actions in VMX non-root operation or during 
VM entry cause the processor to evaluate and deliver virtual interrupts.

Evaluation of virtual interrupts is triggered by certain actions change the state of the virtual-APIC page and is 
described in Section 29.2.1. This evaluation may result in recognition of a virtual interrupt. Once a virtual interrupt 
is recognized, the processor may deliver it within VMX non-root operation without a VM exit. Virtual-interrupt 
delivery is described in Section 29.2.2.

29.2.1 Evaluation of Pending Virtual Interrupts

If the “virtual-interrupt delivery” VM-execution control is 1, certain actions cause a logical processor to evaluate 
pending virtual interrupts.

The following actions cause the evaluation of pending virtual interrupts: VM entry; TPR virtualization; EOI virtual-
ization; self-IPI virtualization; and posted-interrupt processing. See Section 26.3.2.5, Section 29.1.2, Section 
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29.1.4, Section 29.1.5, and Section 29.6 for details of when evaluation of pending virtual interrupts is performed. 
No other operations cause the evaluation of pending virtual interrupts, even if they modify RVI or VPPR.

Evaluation of pending virtual interrupts uses the guest interrupt status (specifically, RVI; see Section 24.4.2). The 
following pseudocode details the evaluation of pending virtual interrupts:

IF “interrupt-window exiting” is 0 AND

RVI[7:4] > VPPR[7:4] (see Section 29.1.1 for definition of VPPR)

THEN recognize a pending virtual interrupt;

ELSE

do not recognize a pending virtual interrupt;

FI;

Once recognized, a virtual interrupt may be delivered in VMX non-root operation; see Section 29.2.2.

Evaluation of pending virtual interrupts is caused only by VM entry, TPR virtualization, EOI virtualization, self-IPI 
virtualization, and posted-interrupt processing. No other operations do so, even if they modify RVI or VPPR. The 
logical processor ceases recognition of a pending virtual interrupt following the delivery of a virtual interrupt.

29.2.2 Virtual-Interrupt Delivery

If a virtual interrupt has been recognized (see Section 29.2.1), it will be delivered at an instruction boundary when 
the following conditions all hold: (1) RFLAGS.IF = 1; (2) there is no blocking by STI; (3) there is no blocking by 
MOV SS or by POP SS; and (4) the “interrupt-window exiting” VM-execution control is 0.

Virtual-interrupt delivery has the same priority as that of VM exits due to the 1-setting of the “interrupt-window 
exiting” VM-execution control.2 Thus, non-maskable interrupts (NMIs) and higher priority events take priority over 
delivery of a virtual interrupt; delivery of a virtual interrupt takes priority over external interrupts and lower priority 
events.

Virtual-interrupt delivery wakes a logical processor from the same inactive activity states as would an external 
interrupt. Specifically, it wakes a logical processor from the states entered using the HLT and MWAIT instructions. 
It does not wake a logical processor in the shutdown state or in the wait-for-SIPI state.

Virtual-interrupt delivery updates the guest interrupt status (both RVI and SVI; see Section 24.4.2) and delivers an 
event within VMX non-root operation without a VM exit. The following pseudocode details the behavior of virtual-
interrupt delivery (see Section 29.1.1 for definition of VISR, VIRR, and VPPR):

Vector ← RVI;

VISR[Vector] ← 1;

SVI ← Vector;

VPPR ← Vector & F0H;

VIRR[Vector] ← 0;

IF any bits set in VIRR

THEN RVI ← highest index of bit set in VIRR

ELSE RVI ← 0;

FI;

deliver interrupt with Vector through IDT;

cease recognition of any pending virtual interrupt;

29.3 VIRTUALIZING CR8-BASED TPR ACCESSES

In 64-bit mode, software can access the local APIC’s task-priority register (TPR) through CR8. Specifically, software 
uses the MOV from CR8 and MOV to CR8 instructions (see Section 10.8.6, “Task Priority in IA-32e Mode”). This 
section describes how these accesses can be virtualized.

2. A logical processor never recognizes or delivers a virtual interrupt if the “interrupt-window exiting” VM-execution control is 1. 
Because of this, the relative priority of virtual-interrupt delivery and VM exits due to the 1-setting of that control is not defined.
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A virtual-machine monitor can virtualize these CR8-based APIC accesses by setting the “CR8-load exiting” and 
“CR8-store exiting” VM-execution controls, ensuring that the accesses cause VM exits (see Section 25.1.3). Alter-
natively, there are methods for virtualizing some CR8-based APIC accesses without VM exits.

Normally, an execution of MOV from CR8 or MOV to CR8 that does not fault or cause a VM exit accesses the APIC’s 
TPR. However, such an execution are treated specially if the “use TPR shadow” VM-execution control is 1. The 
following items provide details:
• MOV from CR8. The instruction loads bits 3:0 of its destination operand with bits 7:4 of VTPR (see Section 

29.1.1). Bits 63:4 of the destination operand are cleared.
• MOV to CR8. The instruction stores bits 3:0 of its source operand into bits 7:4 of VTPR; the remainder of VTPR 

(bits 3:0 and bits 31:8) are cleared. Following this, the processor performs TPR virtualization (see Section 
29.1.2).

29.4 VIRTUALIZING MEMORY-MAPPED APIC ACCESSES

When the local APIC is in xAPIC mode, software accesses the local APIC’s control registers using a memory-
mapped interface. Specifically, software uses linear addresses that translate to physical addresses on page frame 
indicated by the base address in the IA32_APIC_BASE MSR (see Section 10.4.4, “Local APIC Status and Location”). 
This section describes how these accesses can be virtualized.

A virtual-machine monitor (VMM) can virtualize these memory-mapped APIC accesses by ensuring that any access 
to a linear address that would access the local APIC instead causes a VM exit. This could be done using paging or 
the extended page-table mechanism (EPT). Another way is by using the 1-setting of the “virtualize APIC accesses” 
VM-execution control.

If the “virtualize APIC accesses” VM-execution control is 1, the logical processor treats specially memory accesses 
using linear addresses that translate to physical addresses in the 4-KByte APIC-access page.3 (The APIC-access 
page is identified by the APIC-access address, a field in the VMCS; see Section 24.6.8.)

In general, an access to the APIC-access page causes an APIC-access VM exit. APIC-access VM exits provide a 
VMM with information about the access causing the VM exit. Section 29.4.1 discusses the priority of APIC-access 
VM exits.

Certain VM-execution controls enable the processor to virtualize certain accesses to the APIC-access page without 
a VM exit. In general, this virtualization causes these accesses to be made to the virtual-APIC page instead of the 
APIC-access page.

NOTES

Unless stated otherwise, this section characterizes only linear accesses to the APIC-access page; 
an access to the APIC-access page is a linear access if (1) it results from a memory access using a 
linear address; and (2) the access’s physical address is the translation of that linear address. 
Section 29.4.6 discusses accesses to the APIC-access page that are not linear accesses.
The distinction between the APIC-access page and the virtual-APIC page allows a VMM to share 
paging structures or EPT paging structures among the virtual processors of a virtual machine (the 
shared paging structures referencing the same APIC-access address, which appears in the VMCS of 
all the virtual processors) while giving each virtual processor its own virtual APIC (the VMCS of each 
virtual processor will have a unique virtual-APIC address).

Section 29.4.2 discusses when and how the processor may virtualize read accesses from the APIC-access page. 
Section 29.4.3 does the same for write accesses. When virtualizing a write to the APIC-access page, the processor 
typically takes actions in addition to passing the write through to the virtual-APIC page.

3. Even when addresses are translated using EPT (see Section 28.2), the determination of whether an APIC-access VM exit occurs 
depends on an access’s physical address, not its guest-physical address. Even when CR0.PG = 0, ordinary memory accesses by soft-
ware use linear addresses; the fact that CR0.PG = 0 means only that the identity translation is used to convert linear addresses to 
physical (or guest-physical) addresses.
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The discussion in those sections uses the concept of an operation within which these memory accesses may occur. 
For those discussions, an “operation” can be an iteration of a REP-prefixed string instruction, an execution of any 
other instruction, or delivery of an event through the IDT.

The 1-setting of the “virtualize APIC accesses” VM-execution control may also affect accesses to the APIC-access 
page that do not result directly from linear addresses. This is discussed in Section 29.4.6.

29.4.1 Priority of APIC-Access VM Exits

The following items specify the priority of APIC-access VM exits relative to other events.
• The priority of an APIC-access VM exit due to a memory access is below that of any page fault or EPT violation 

that that access may incur. That is, an access does not cause an APIC-access VM exit if it would cause a page 
fault or an EPT violation.

• A memory access does not cause an APIC-access VM exit until after the accessed flags are set in the paging 
structures (including EPT paging structures, if enabled).

• A write access does not cause an APIC-access VM exit until after the dirty flags are set in the appropriate paging 
structure and EPT paging structure (if enabled).

• With respect to all other events, any APIC-access VM exit due to a memory access has the same priority as any 
page fault or EPT violation that the access could cause. (This item applies to other events that the access may 
generate as well as events that may be generated by other accesses by the same operation.)

These principles imply, among other things, that an APIC-access VM exit may occur during the execution of a 
repeated string instruction (including INS and OUTS). Suppose, for example, that the first n iterations (n may be 
0) of such an instruction do not access the APIC-access page and that the next iteration does access that page. As 
a result, the first n iterations may complete and be followed by an APIC-access VM exit. The instruction pointer 
saved in the VMCS references the repeated string instruction and the values of the general-purpose registers 
reflect the completion of n iterations.

29.4.2 Virtualizing Reads from the APIC-Access Page

A read access from the APIC-access page causes an APIC-access VM exit if any of the following are true:
• The “use TPR shadow” VM-execution control is 0.
• The access is for an instruction fetch.
• The access is more than 32 bits in size.
• The access is part of an operation for which the processor has already virtualized a write to the APIC-access 

page.
• The access is not entirely contained within the low 4 bytes of a naturally aligned 16-byte region. That is, bits 

3:2 of the access’s address are 0, and the same is true of the address of the highest byte accessed.

If none of the above are true, whether a read access is virtualized depends on the setting of the “APIC-register 
virtualization” VM-execution control:
• If “APIC-register virtualization” is 0, a read access is virtualized if its page offset is 080H (task priority); 

otherwise, the access causes an APIC-access VM exit.
• If “APIC-register virtualization is 1, a read access is virtualized if it is entirely within one the following ranges of 

offsets:

— 020H–023H (local APIC ID);

— 030H–033H (local APIC version);

— 080H–083H (task priority);

— 0B0H–0B3H (end of interrupt);

— 0D0H–0D3H (logical destination);

— 0E0H–0E3H (destination format);
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— 0F0H–0F3H (spurious-interrupt vector);

— 100H–103H, 110H–113H, 120H–123H, 130H–133H, 140H–143H, 150H–153H, 160H–163H, or 170H–
173H (in-service);

— 180H–183H, 190H–193H, 1A0H–1A3H, 1B0H–1B3H, 1C0H–1C3H, 1D0H–1D3H, 1E0H–1E3H, or 1F0H–
1F3H (trigger mode);

— 200H–203H, 210H–213H, 220H–223H, 230H–233H, 240H–243H, 250H–253H, 260H–263H, or 270H–
273H (interrupt request);

— 280H–283H (error status);

— 300H–303H or 310H–313H (interrupt command);

— 320H–323H, 330H–333H, 340H–343H, 350H–353H, 360H–363H, or 370H–373H (LVT entries);

— 380H–383H (initial count); or

— 3E0H–3E3H (divide configuration).
In all other cases, the access causes an APIC-access VM exit.

A read access from the APIC-access page that is virtualized returns data from the corresponding page offset on the 
virtual-APIC page.4

29.4.3 Virtualizing Writes to the APIC-Access Page

Whether a write access to the APIC-access page is virtualized depends on the settings of the VM-execution controls 
and the page offset of the access. Section 29.4.3.1 details when APIC-write virtualization occurs.

Unlike reads, writes to the local APIC have side effects; because of this, virtualization of writes to the APIC-access 
page may require emulation specific to the access’s page offset (which identifies the APIC register being accessed). 
Section 29.4.3.2 describes this APIC-write emulation.

For some page offsets, it is necessary for software to complete the virtualization after a write completes. In these 
cases, the processor causes an APIC-write VM exit to invoke VMM software. Section 29.4.3.3 discusses APIC-
write VM exits.

29.4.3.1  Determining Whether a Write Access is Virtualized

A write access to the APIC-access page causes an APIC-access VM exit if any of the following are true:
• The “use TPR shadow” VM-execution control is 0.
• The access is more than 32 bits in size.
• The access is part of an operation for which the processor has already virtualized a write (with a different page 

offset or a different size) to the APIC-access page.
• The access is not entirely contained within the low 4 bytes of a naturally aligned 16-byte region. That is, bits 

3:2 of the access’s address are 0, and the same is true of the address of the highest byte accessed.

If none of the above are true, whether a write access is virtualized depends on the settings of the “APIC-register 
virtualization” and “virtual-interrupt delivery” VM-execution controls:
• If the “APIC-register virtualization” and “virtual-interrupt delivery” VM-execution controls are both 0, a write 

access is virtualized if its page offset is 080H; otherwise, the access causes an APIC-access VM exit.
• If the “APIC-register virtualization” VM-execution control is 0 and the “virtual-interrupt delivery” VM-execution 

control is 1, a write access is virtualized if its page offset is 080H (task priority), 0B0H (end of interrupt), and 
300H (interrupt command — low); otherwise, the access causes an APIC-access VM exit.

• If “APIC-register virtualization is 1, a write access is virtualized if it is entirely within one the following ranges 
of offsets:

4. The memory type used for accesses that read from the virtual-APIC page is reported in bits 53:50 of the IA32_VMX_BASIC MSR 
(see Appendix A.1).
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— 020H–023H (local APIC ID);

— 080H–083H (task priority);

— 0B0H–0B3H (end of interrupt);

— 0D0H–0D3H (logical destination);

— 0E0H–0E3H (destination format);

— 0F0H–0F3H (spurious-interrupt vector);

— 280H–283H (error status);

— 300H–303H or 310H–313H (interrupt command);

— 320H–323H, 330H–333H, 340H–343H, 350H–353H, 360H–363H, or 370H–373H (LVT entries);

— 380H–383H (initial count); or

— 3E0H–3E3H (divide configuration).
In all other cases, the access causes an APIC-access VM exit.

The processor virtualizes a write access to the APIC-access page by writing data to the corresponding page offset 
on the virtual-APIC page.5 Following this, the processor performs certain actions after completion of the operation 
of which the access was a part.6 APIC-write emulation is described in Section 29.4.3.2.

29.4.3.2  APIC-Write Emulation

If the processor virtualizes a write access to the APIC-access page, it performs additional actions after completion 
of an operation of which the access was a part. These actions are called APIC-write emulation.

The details of APIC-write emulation depend upon the page offset of the virtualized write access:7

• 080H (task priority). The processor clears bytes 3:1 of VTPR and then causes TPR virtualization (Section 
29.1.2).

• 0B0H (end of interrupt). If the “virtual-interrupt delivery” VM-execution control is 1, the processor clears VEOI 
and then causes EOI virtualization (Section 29.1.4); otherwise, the processor causes an APIC-write VM exit 
(Section 29.4.3.3).

• 300H (interrupt command — low). If the “virtual-interrupt delivery” VM-execution control is 1, the processor 
checks the value of VICR_LO to determine whether the following are all true:

— Reserved bits (31:20, 17:16, 13) and bit 12 (delivery status) are all 0.

— Bits 19:18 (destination shorthand) are 01B (self).

— Bit 15 (trigger mode) is 0 (edge).

— Bits 10:8 (delivery mode) are 000B (fixed).

— Bits 7:4 (the upper half of the vector) are not 0000B.
If all of the items above are true, the processor performs self-IPI virtualization using the 8-bit vector in byte 0
of VICR_LO (Section 29.1.5).
If the “virtual-interrupt delivery” VM-execution control is 0, or if any of the items above are false, the
processor causes an APIC-write VM exit (Section 29.4.3.3).

• 310H–313H (interrupt command — high). The processor clears bytes 2:0 of VICR_HI. No other virtualization or 
VM exit occurs.

• Any other page offset. The processor causes an APIC-write VM exit (Section 29.4.3.3).

5. The memory type used for accesses that write to the virtual-APIC page is reported in bits 53:50 of the IA32_VMX_BASIC MSR (see 
Appendix A.1).

6. Recall that, for the purposes of this discussion, an operation is an iteration of a REP-prefixed string instruction, an execution of any 
other instruction, or delivery of an event through the IDT.

7. For any operation, there can be only one page offset for which a write access was virtualized. This is because a write access is not 
virtualized if the processor has already virtualized a write access for the same operation with a different page offset.
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APIC-write emulation takes priority over system-management interrupts (SMIs), INIT signals, and lower priority 
events. APIC-write emulation is not blocked if RFLAGS.IF = 0 or by the MOV SS, POP SS, or STI instructions.

If an operation causes a fault after a write access to the APIC-access page and before APIC-write emulation. In this 
case, APIC-write emulation occurs after the fault is delivered and before the fault handler can execute. However, if 
the operation causes a VM exit (perhaps due to a fault), the APIC-write emulation does not occur.

29.4.3.3  APIC-Write VM Exits

In certain cases, VMM software must be invoked to complete the virtualization of a write access to the APIC-access 
page. In this case, APIC-write emulation causes an APIC-write VM exit. (Section 29.4.3.2 details the cases that 
causes APIC-write VM exits.)

APIC-write VM exits are invoked by APIC-write emulation, and APIC-write emulation occurs after an operation that 
performs a write access to the APIC-access page. Because of this, every APIC-write VM exit is trap-like: it occurs 
after completion of the operation containing the write access that caused the VM exit (for example, the value of 
CS:RIP saved in the guest-state area of the VMCS references the next instruction).

The basic exit reason for an APIC-write VM exit is “APIC write.” The exit qualification is the page offset of the write 
access that led to the VM exit.

As noted in Section 29.5, execution of WRMSR with ECX = 83FH (self-IPI MSR) can lead to an APIC-write VM exit 
if the “virtual-interrupt delivery” VM-execution control is 1. The exit qualification for such an APIC-write VM exit is 
3F0H.

29.4.4 Instruction-Specific Considerations

Certain instructions that use linear address may cause page faults even though they do not use those addresses to 
access memory. The APIC-virtualization features may affect these instructions as well:
• CLFLUSH. With regard to faulting, the processor operates as if CLFLUSH reads from the linear address in its 

source operand. If that address translates to one on the APIC-access page, the instruction may cause an APIC-
access VM exit. If it does not, it will flush the corresponding cache line on the virtual-APIC page instead of the 
APIC-access page.

• ENTER. With regard to faulting, the processor operates if ENTER writes to the byte referenced by the final 
value of the stack pointer (even though it does not if its size operand is non-zero). If that value translates to an 
address on the APIC-access page, the instruction may cause an APIC-access VM exit. If it does not, it will cause 
the APIC-write emulation appropriate to the address’s page offset.

• MASKMOVQ and MAKSMOVDQU. Even if the instruction’s mask is zero, the processor may operate with 
regard to faulting as if MASKMOVQ or MASKMOVDQU writes to memory (the behavior is implementation-
specific). In such a situation, an APIC-access VM exit may occur.

• MONITOR. With regard to faulting, the processor operates as if MONITOR reads from the effective address in 
RAX. If the resulting linear address translates to one on the APIC-access page, the instruction may cause an 
APIC-access VM exit.8 If it does not, it will monitor the corresponding address on the virtual-APIC page instead 
of the APIC-access page.

• PREFETCH. An execution of the PREFETCH instruction that would result in an access to the APIC-access page 
does not cause an APIC-access VM exit. Such an access may prefetch data; if so, it is from the corresponding 
address on the virtual-APIC page.

Virtualization of accesses to the APIC-access page is principally intended for basic instructions such as AND, MOV, 
OR, TEST, XCHG, and XOR. Use of instructions that normally operate on floating-point, SSE, or AVX registers may 
cause APIC-access VM exit unconditionally regardless of the page offset they access on the APIC-access page.

8. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For IA-32 processors, this notation refers to the 32-bit forms of those registers (EAX, EIP, 
ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.
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29.4.5 Issues Pertaining to Page Size and TLB Management

The 1-setting of the “virtualize APIC accesses” VM-execution is guaranteed to apply only if translations to the APIC-
access address use a 4-KByte page. The following items provide details:
• If EPT is not in use, any linear address that translates to an address on the APIC-access page should use a 4-

KByte page. Any access to a linear address that translates to the APIC-access page using a larger page may 
operate as if the “virtualize APIC accesses” VM-execution control were 0.

• If EPT is in use, any guest-physical address that translates to an address on the APIC-access page should use a 
4-KByte page. Any access to a linear address that translates to a guest-physical address that in turn translates 
to the APIC-access page using a larger page may operate as if the “virtualize APIC accesses” VM-execution 
control were 0. (This is true also for guest-physical accesses to the APIC-access page; see Section 29.4.6.1.)

In addition, software should perform appropriate TLB invalidation when making changes that may affect APIC-
virtualization. The specifics depend on whether VPIDs or EPT is being used:
• VPIDs being used but EPT not being used. Suppose that there is a VPID that has been used before and that 

software has since made either of the following changes: (1) set the “virtualize APIC accesses” VM-execution 
control when it had previously been 0; or (2) changed the paging structures so that some linear address 
translates to the APIC-access address when it previously did not. In that case, software should execute 
INVVPID (see “INVVPID— Invalidate Translations Based on VPID” in Section 30.3) before performing on the 
same logical processor and with the same VPID.9

• EPT being used. Suppose that there is an EPTP value that has been used before and that software has since 
made either of the following changes: (1) set the “virtualize APIC accesses” VM-execution control when it had 
previously been 0; or (2) changed the EPT paging structures so that some guest-physical address translates to 
the APIC-access address when it previously did not. In that case, software should execute INVEPT (see 
“INVEPT— Invalidate Translations Derived from EPT” in Section 30.3) before performing on the same logical 
processor and with the same EPTP value.10

• Neither VPIDs nor EPT being used. No invalidation is required.

Failure to perform the appropriate TLB invalidation may result in the logical processor operating as if the “virtualize 
APIC accesses” VM-execution control were 0 in responses to accesses to the affected address. (No invalidation is 
necessary if neither VPIDs nor EPT is being used.)

29.4.6 APIC Accesses Not Directly Resulting From Linear Addresses

Section 29.4 has described the treatment of accesses that use linear addresses that translate to addresses on the 
APIC-access page. This section considers memory accesses that do not result directly from linear addresses.
• An access is called a guest-physical access if (1) CR0.PG = 1;11 (2) the “enable EPT” VM-execution control 

is 1;12 (3) the access’s physical address is the result of an EPT translation; and (4) either (a) the access was 
not generated by a linear address; or (b) the access’s guest-physical address is not the translation of the 
access’s linear address. Section 29.4.6.1 discusses the treatment of guest-physical accesses to the APIC-
access page.

• An access is called a physical access if (1) either (a) the “enable EPT” VM-execution control is 0; or (b) the 
access’s physical address is not the result of a translation through the EPT paging structures; and (2) either 
(a) the access is not generated by a linear address; or (b) the access’s physical address is not the translation 
of its linear address. Section 29.4.6.2 discusses the treatment of physical accesses to the APIC-access page.

9. INVVPID should use either (1) the all-contexts INVVPID type; (2) the single-context INVVPID type with the VPID in the INVVPID 
descriptor; or (3)  the individual-address INVVPID type with the linear address and the VPID in the INVVPID descriptor.

10. INVEPT should use either (1) the global INVEPT type; or (2) the single-context INVEPT type with the EPTP value in the INVEPT 
descriptor.

11. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, CR0.PG must be 1 unless the “unre-
stricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

12. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls 
is 0, VMX non-root operation functions as if the “enable EPT” VM-execution control were 0. See Section 24.6.2.
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29.4.6.1  Guest-Physical Accesses to the APIC-Access Page

Guest-physical accesses include the following when guest-physical addresses are being translated using EPT:
• Reads from the guest paging structures when translating a linear address (such an access uses a guest-

physical address that is not the translation of that linear address).
• Loads of the page-directory-pointer-table entries by MOV to CR when the logical processor is using (or that 

causes the logical processor to use) PAE paging (see Section 4.4).
• Updates to the accessed and dirty flags in the guest paging structures when using a linear address (such an 

access uses a guest-physical address that is not the translation of that linear address).

Every guest-physical access to an address on the APIC-access page causes an APIC-access VM exit. Such accesses 
are never virtualized regardless of the page offset.

The following items specify the priority relative to other events of APIC-access VM exits caused by guest-physical 
accesses to the APIC-access page.
• The priority of an APIC-access VM exit caused by a guest-physical access to memory is below that of any EPT 

violation that that access may incur. That is, a guest-physical access does not cause an APIC-access VM exit if 
it would cause an EPT violation.

• With respect to all other events, any APIC-access VM exit caused by a guest-physical access has the same 
priority as any EPT violation that the guest-physical access could cause.

29.4.6.2  Physical Accesses to the APIC-Access Page

Physical accesses include the following:
• If the “enable EPT” VM-execution control is 0:

— Reads from the paging structures when translating a linear address.

— Loads of the page-directory-pointer-table entries by MOV to CR when the logical processor is using (or that 
causes the logical processor to use) PAE paging (see Section 4.4).

— Updates to the accessed and dirty flags in the paging structures.
• If the “enable EPT” VM-execution control is 1, accesses to the EPT paging structures (including updates to the 

accessed and dirty flags for EPT).
• Any of the following accesses made by the processor to support VMX non-root operation:

— Accesses to the VMCS region.

— Accesses to data structures referenced (directly or indirectly) by physical addresses in VM-execution 
control fields in the VMCS. These include the I/O bitmaps, the MSR bitmaps, and the virtual-APIC page.

• Accesses that effect transitions into and out of SMM.13 These include the following:

— Accesses to SMRAM during SMI delivery and during execution of RSM.

— Accesses during SMM VM exits (including accesses to MSEG) and during VM entries that return from SMM.

A physical access to the APIC-access page may or may not cause an APIC-access VM exit. If it does not cause an 
APIC-access VM exit, it may access the APIC-access page or the virtual-APIC page. Physical write accesses to the 
APIC-access page may or may not cause APIC-write emulation or APIC-write VM exits.

The priority of an APIC-access VM exit caused by physical access is not defined relative to other events that the 
access may cause.

It is recommended that software not set the APIC-access address to any of the addresses used by physical memory 
accesses (identified above). For example, it should not set the APIC-access address to the physical address of any 
of the active paging structures if the “enable EPT” VM-execution control is 0.

13. Technically, these accesses do not occur in VMX non-root operation. They are included here for clarity.
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29.5 VIRTUALIZING MSR-BASED APIC ACCESSES

When the local APIC is in x2APIC mode, software accesses the local APIC’s control registers using the MSR inter-
face. Specifically, software uses the RDMSR and WRMSR instructions, setting ECX (identifying the MSR being 
accessed) to values in the range 800H–8FFH (see Section 10.12, “Extended XAPIC (x2APIC)”). This section 
describes how these accesses can be virtualized.

A virtual-machine monitor can virtualize these MSR-based APIC accesses by configuring the MSR bitmaps (see 
Section 24.6.9) to ensure that the accesses cause VM exits (see Section 25.1.3). Alternatively, there are methods 
for virtualizing some MSR-based APIC accesses without VM exits.

Normally, an execution of RDMSR or WRMSR that does not fault or cause a VM exit accesses the MSR indicated in 
ECX. However, such an execution treats some values of ECX in the range 800H–8FFH specially if the “virtualize 
x2APIC mode” VM-execution control is 1. The following items provide details:
• RDMSR. The instruction’s behavior depends on the setting of the “APIC-register virtualization” VM-execution 

control.

— If the “APIC-register virtualization” VM-execution control is 0, behavior depends upon the value of ECX.

• If ECX contains 808H (indicating the TPR MSR), the instruction reads the 8 bytes from offset 080H on 
the virtual-APIC page (VTPR and the 4 bytes above it) into EDX:EAX. This occurs even if the local APIC 
is not in x2APIC mode (no general-protection fault occurs because the local APIC is not x2APIC mode).

• If ECX contains any other value in the range 800H–8FFH, the instruction operates normally. If the local 
APIC is in x2APIC mode and ECX indicates a readable APIC register, EDX and EAX are loaded with the 
value of that register. If the local APIC is not in x2APIC mode or ECX does not indicate a readable APIC 
register, a general-protection fault occurs.

— If “APIC-register virtualization” is 1 and ECX contains a value in the range 800H–8FFH, the instruction reads 
the 8 bytes from offset X on the virtual-APIC page into EDX:EAX, where X = (ECX & FFH) « 4. This occurs 
even if the local APIC is not in x2APIC mode (no general-protection fault occurs because the local APIC is 
not in x2APIC mode).

• WRMSR. The instruction’s behavior depends on the value of ECX and the setting of the “virtual-interrupt 
delivery” VM-execution control.
Special processing applies in the following cases: (1) ECX contains 808H (indicating the TPR MSR); (2) ECX
contains 80BH (indicating the EOI MSR) and the “virtual-interrupt delivery” VM-execution control is 1; and
(3) ECX contains 83FH (indicating the self-IPI MSR) and the “virtual-interrupt delivery” VM-execution control
is 1.
If special processing applies, no general-protection exception is produced due to the fact that the local APIC is
in xAPIC mode. However, WRMSR does perform the normal reserved-bit checking:

— If ECX contains 808H or 83FH, a general-protection fault occurs if either EDX or EAX[31:8] is non-zero.

— If ECX contains 80BH, a general-protection fault occurs if either EDX or EAX is non-zero.
If there is no fault, WRMSR stores EDX:EAX at offset X on the virtual-APIC page, where X = (ECX & FFH) « 4.
Following this, the processor performs an operation depending on the value of ECX:

— If ECX contains 808H, the processor performs TPR virtualization (see Section 29.1.2).

— If ECX contains 80BH, the processor performs EOI virtualization (see Section 29.1.4).

— If ECX contains 83FH, the processor It then checks the value of EAX[7:4] and proceeds as follows:

• If the value is non-zero, the logical processor performs self-IPI virtualization with the 8-bit vector in 
EAX[7:0] (see Section 29.1.5).

• If the value is zero, the logical processor causes an APIC-write VM exit as if there had been a write 
access to page offset 3F0H on the APIC-access page (see Section 29.4.3.3).

If special processing does not apply, the instruction operates normally. If the local APIC is in x2APIC mode
and ECX indicates a writeable APIC register, the value in EDX:EAX is written to that register. If the local APIC
is not in x2APIC mode or ECX does not indicate a writeable APIC register, a general-protection fault occurs.
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29.6 POSTED-INTERRUPT PROCESSING

Posted-interrupt processing is a feature by which a processor processes the virtual interrupts by recording them as 
pending on the virtual-APIC page.

Posted-interrupt processing is enabled by setting the “process posted interrupts” VM-execution control. The 
processing is performed in response to the arrival of an interrupt with the posted-interrupt notification vector. 
In response to such an interrupt, the processor processes virtual interrupts recorded in a data structure called a 
posted-interrupt descriptor. The posted-interrupt notification vector and the address of the posted-interrupt 
descriptor are fields in the VMCS; see Section 24.6.8.

If the “process posted interrupts” VM-execution control is 1, a logical processor uses a 64-byte posted-interrupt 
descriptor located at the posted-interrupt descriptor address. The posted-interrupt descriptor has the following 
format:

The notation PIR (posted-interrupt requests) refers to the 256 posted-interrupt bits in the posted-interrupt 
descriptor.

Use of the posted-interrupt descriptor differs from that of other data structures that are referenced by pointers in 
a VMCS. There is a general requirement that software ensure that each such data structure is modified only when 
no logical processor with a current VMCS that references it is in VMX non-root operation. That requirement does 
not apply to the posted-interrupt descriptor. There is a requirement, however, that such modifications be done 
using locked read-modify-write instructions.

If the “external-interrupt exiting” VM-execution control is 1, any unmasked external interrupt causes a VM exit 
(see Section 25.2). If the “process posted interrupts” VM-execution control is also 1, this behavior is changed and 
the processor handles an external interrupt as follows:14

1. The local APIC is acknowledged; this provides the processor core with an interrupt vector, called here the 
physical vector.

2. If the physical vector equals the posted-interrupt notification vector, the logical processor continues to the next 
step. Otherwise, a VM exit occurs as it would normally due to an external interrupt; the vector is saved in the 
VM-exit interruption-information field.

3. The processor clears the outstanding-notification bit in the posted-interrupt descriptor. This is done atomically 
so as to leave the remainder of the descriptor unmodified (e.g., with a locked AND operation).

4. The processor writes zero to the EOI register in the local APIC; this dismisses the interrupt with the posted-
interrupt notification vector from the local APIC.

5. The logical processor performs a logical-OR of PIR into VIRR and clears PIR. No other agent can read or write a 
PIR bit (or group of bits) between the time it is read (to determine what to OR into VIRR) and when it is cleared.

6. The logical processor sets RVI to be the maximum of the old value of RVI and the highest index of all bits that 
were set in PIR; if no bit was set in PIR, RVI is left unmodified.

7. The logical processor evaluates pending virtual interrupts as described in Section 29.2.1.

The logical processor performs the steps above in an uninterruptible manner. If step #7 leads to recognition of a 
virtual interrupt, the processor may deliver that interrupt immediately.

Table 29-1.  Format of Posted-Interrupt Descriptor

Bit
Position(s)

Name Description

255:0 Posted-interrupt requests One bit for each interrupt vector. There is a posted-interrupt request for a vector if 
the corresponding bit is 1

256 Outstanding notification If this bit is set, there is a notification outstanding for one or more posted interrupts 
in bits 255:0

511:257 Reserved for software and 
other agents

These bits may be used by software and by other agents in the system (e.g., 
chipset). The processor does not modify these bits.

14. VM entry ensures that the “process posted interrupts” VM-execution control is 1 only if the “external-interrupt exiting” VM-execu-
tion control is also 1. SeeSection 26.2.1.1.
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Steps #1 to #7 above occur when the interrupt controller delivers an unmasked external interrupt to the CPU core. 
This delivery can occur when the logical processor is in the active, HLT, or MWAIT states. If the logical processor had 
been in the active or MWAIT state before the arrival of the interrupt, it is in the active state following completion of 
step #7; if it had been in the HLT state, it returns to the HLT state after step #7 (if a pending virtual interrupt was 
recognized, the logical processor may immediately wake from the HLT state).
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CHAPTER 30
VMX INSTRUCTION REFERENCE

NOTE

This chapter was previously located in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2B as chapter 5. 

30.1 OVERVIEW

This chapter describes the virtual-machine extensions (VMX) for the Intel 64 and IA-32 architectures. VMX is 
intended to support virtualization of processor hardware and a system software layer acting as a host to multiple 
guest software environments. The virtual-machine extensions (VMX) includes five instructions that manage the 
virtual-machine control structure (VMCS), four instructions that manage VMX operation, two TLB-management 
instructions, and two instructions for use by guest software. Additional details of VMX are described in Chapter 23 
through Chapter 29. 

The behavior of the VMCS-maintenance instructions is summarized below:
• VMPTRLD — This instruction takes a single 64-bit source operand that is in memory. It makes the referenced 

VMCS active and current, loading the current-VMCS pointer with this operand and establishes the current VMCS 
based on the contents of VMCS-data area in the referenced VMCS region. Because this makes the referenced 
VMCS active, a logical processor may start maintaining on the processor some of the VMCS data for the VMCS.

• VMPTRST — This instruction takes a single 64-bit destination operand that is in memory. The current-VMCS 
pointer is stored into the destination operand.

• VMCLEAR — This instruction takes a single 64-bit operand that is in memory. The instruction sets the launch 
state of the VMCS referenced by the operand to “clear”, renders that VMCS inactive, and ensures that data for 
the VMCS have been written to the VMCS-data area in the referenced VMCS region. If the operand is the same 
as the current-VMCS pointer, that pointer is made invalid.

• VMREAD — This instruction reads a component from a VMCS (the encoding of that field is given in a register 
operand) and stores it into a destination operand that may be a register or in memory.

• VMWRITE — This instruction writes a component to a VMCS (the encoding of that field is given in a register 
operand) from a source operand that may be a register or in memory.

The behavior of the VMX management instructions is summarized below:
• VMLAUNCH — This instruction launches a virtual machine managed by the VMCS. A VM entry occurs, trans-

ferring control to the VM.
• VMRESUME — This instruction resumes a virtual machine managed by the VMCS. A VM entry occurs, trans-

ferring control to the VM.
• VMXOFF — This instruction causes the processor to leave VMX operation.
• VMXON — This instruction takes a single 64-bit source operand that is in memory. It causes a logical processor 

to enter VMX root operation and to use the memory referenced by the operand to support VMX operation.

The behavior of the VMX-specific TLB-management instructions is summarized below:
• INVEPT — This instruction invalidates entries in the TLBs and paging-structure caches that were derived from 

extended page tables (EPT).
• INVVPID — This instruction invalidates entries in the TLBs and paging-structure caches based on a Virtual-

Processor Identifier (VPID).

None of the instructions above can be executed in compatibility mode; they generate invalid-opcode exceptions if 
executed in compatibility mode.

The behavior of the guest-available instructions is summarized below:
• VMCALL — This instruction allows software in VMX non-root operation to call the VMM for service. A VM exit 

occurs, transferring control to the VMM.
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• VMFUNC — This instruction allows software in VMX non-root operation to invoke a VM function (processor 
functionality enabled and configured by software in VMX root operation) without a VM exit.

30.2 CONVENTIONS

The operation sections for the VMX instructions in Section 30.3 use the pseudo-function VMexit, which indicates 
that the logical processor performs a VM exit.

The operation sections also use the pseudo-functions VMsucceed, VMfail, VMfailInvalid, and VMfailValid. These 
pseudo-functions signal instruction success or failure by setting or clearing bits in RFLAGS and, in some cases, by 
writing the VM-instruction error field. The following pseudocode fragments detail these functions:

VMsucceed:

CF ← 0;

PF ← 0;

AF ← 0;

ZF ← 0;

SF ← 0;

OF ← 0;

VMfail(ErrorNumber):

IF VMCS pointer is valid

THEN VMfailValid(ErrorNumber);

ELSE VMfailInvalid;

FI;

VMfailInvalid:

CF ← 1;

PF ← 0;

AF ← 0;

ZF ← 0;

SF ← 0;

OF ← 0;

VMfailValid(ErrorNumber):// executed only if there is a current VMCS

CF ← 0;

PF ← 0;

AF ← 0;

ZF ← 1;

SF ← 0;

OF ← 0;

Set the VM-instruction error field to ErrorNumber;

The different VM-instruction error numbers are enumerated in Section 30.4, “VM Instruction Error Numbers”.

30.3 VMX INSTRUCTIONS

This section provides detailed descriptions of the VMX instructions.
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INVEPT— Invalidate Translations Derived from EPT

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-structure caches that were derived 
from extended page tables (EPT). (See Chapter 28, “VMX Support for Address Translation”.) Invalidation is based 
on the INVEPT type specified in the register operand and the INVEPT descriptor specified in the memory 
operand.

Outside IA-32e mode, the register operand is always 32 bits, regardless of the value of CS.D; in 64-bit mode, the 
register operand has 64 bits (the instruction cannot be executed in compatibility mode).

The INVEPT types supported by a logical processors are reported in the IA32_VMX_EPT_VPID_CAP MSR (see 
Appendix A, “VMX Capability Reporting Facility”). There are two INVEPT types currently defined:
• Single-context invalidation. If the INVEPT type is 1, the logical processor invalidates all mappings associated 

with bits 51:12 of the EPT pointer (EPTP) specified in the INVEPT descriptor. It may invalidate other mappings 
as well.

• Global invalidation: If the INVEPT type is 2, the logical processor invalidates mappings associated with all 
EPTPs.

If an unsupported INVEPT type is specified, the instruction fails.

INVEPT invalidates all the specified mappings for the indicated EPTP(s) regardless of the VPID and PCID values with 
which those mappings may be associated.

The INVEPT descriptor comprises 128 bits and contains a 64-bit EPTP value in bits 63:0 (see Figure 30-1).

Opcode Instruction Description

66 0F 38 80 INVEPT r64, m128 Invalidates EPT-derived entries in the TLBs and paging-structure caches (in 64-
bit mode)

66 0F 38 80 INVEPT r32, m128 Invalidates EPT-derived entries in the TLBs and paging-structure caches (outside 
64-bit mode)

Figure 30-1.  INVEPT Descriptor

127 64 63 0

Reserved (must be zero) EPT pointer (EPTP)
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Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;

ELSIF in VMX non-root operation

THEN VM exit;

ELSIF CPL > 0

THEN #GP(0);

ELSE

INVEPT_TYPE ← value of register operand;

IF IA32_VMX_EPT_VPID_CAP MSR indicates that processor does not support INVEPT_TYPE

THEN VMfail(Invalid operand to INVEPT/INVVPID);

ELSE // INVEPT_TYPE must be 1 or 2

INVEPT_DESC ← value of memory operand;

EPTP ← INVEPT_DESC[63:0];

CASE INVEPT_TYPE OF

1: // single-context invalidation

IF VM entry with the “enable EPT“ VM execution control set to 1

would fail due to the EPTP value

THEN VMfail(Invalid operand to INVEPT/INVVPID);

ELSE

Invalidate mappings associated with EPTP[51:12];

VMsucceed;

FI;

BREAK;

2: // global invalidation

Invalidate mappings associated with all EPTPs;

VMsucceed;

BREAK;

ESAC;

FI;

FI;

Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If not in VMX operation.

If the logical processor does not support EPT (IA32_VMX_PROCBASED_CTLS2[33]=0).
If the logical processor supports EPT (IA32_VMX_PROCBASED_CTLS2[33]=1) but does not 
support the INVEPT instruction (IA32_VMX_EPT_VPID_CAP[20]=0).

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX operation and the INVEPT 
instruction is not recognized outside VMX operation.
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Virtual-8086 Mode Exceptions

#UD The INVEPT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The INVEPT instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.
If the memory operand is in the CS, DS, ES, FS, or GS segments and the memory address is 
in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand is in the SS segment and the memory address is in a non-canonical 

form.
#UD If not in VMX operation.

If the logical processor does not support EPT (IA32_VMX_PROCBASED_CTLS2[33]=0).
If the logical processor supports EPT (IA32_VMX_PROCBASED_CTLS2[33]=1) but does not 
support the INVEPT instruction (IA32_VMX_EPT_VPID_CAP[20]=0).
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INVVPID— Invalidate Translations Based on VPID

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-structure caches based on virtual-
processor identifier (VPID). (See Chapter 28, “VMX Support for Address Translation”.) Invalidation is based on 
the INVVPID type specified in the register operand and the INVVPID descriptor specified in the memory 
operand.

Outside IA-32e mode, the register operand is always 32 bits, regardless of the value of CS.D; in 64-bit mode, the 
register operand has 64 bits (the instruction cannot be executed in compatibility mode).

The INVVPID types supported by a logical processors are reported in the IA32_VMX_EPT_VPID_CAP MSR (see 
Appendix A, “VMX Capability Reporting Facility”). There are four INVVPID types currently defined:
• Individual-address invalidation: If the INVVPID type is 0, the logical processor invalidates mappings for the 

linear address and VPID specified in the INVVPID descriptor. In some cases, it may invalidate mappings for 
other linear addresses (or other VPIDs) as well.

• Single-context invalidation: If the INVVPID type is 1, the logical processor invalidates all mappings tagged with 
the VPID specified in the INVVPID descriptor. In some cases, it may invalidate mappings for other VPIDs as 
well.

• All-contexts invalidation: If the INVVPID type is 2, the logical processor invalidates all mappings tagged with all 
VPIDs except VPID 0000H. In some cases, it may invalidate translations with VPID 0000H as well.

• Single-context invalidation, retaining global translations: If the INVVPID type is 3, the logical processor 
invalidates all mappings tagged with the VPID specified in the INVVPID descriptor except global translations. In 
some cases, it may invalidate global translations (and mappings with other VPIDs) as well. See the “Caching 
Translation Information” section in Chapter 4 of the IA-32 Intel Architecture Software Developer’s Manual, 
Volumes 3A for information about global translations.

If an unsupported INVVPID type is specified, the instruction fails.

INVVPID invalidates all the specified mappings for the indicated VPID(s) regardless of the EPTP and PCID values 
with which those mappings may be associated.

The INVVPID descriptor comprises 128 bits and consists of a VPID and a linear address as shown in Figure 30-2.

Opcode Instruction Description

66 0F 38 81 INVVPID r64, m128 Invalidates entries in the TLBs and paging-structure caches based on VPID (in 
64-bit mode)

66 0F 38 81 INVVPID r32, m128 Invalidates entries in the TLBs and paging-structure caches based on VPID 
(outside 64-bit mode)

Figure 30-2.  INVVPID Descriptor

127 64 63 01516

Reserved (must be zero)Linear Address VPID
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Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;

ELSIF in VMX non-root operation

THEN VM exit;

ELSIF CPL > 0

THEN #GP(0);

ELSE

INVVPID_TYPE ← value of register operand;

IF IA32_VMX_EPT_VPID_CAP MSR indicates that processor does not support

INVVPID_TYPE

THEN VMfail(Invalid operand to INVEPT/INVVPID);

ELSE // INVVPID_TYPE must be in the range 0–3

INVVPID_DESC ← value of memory operand;

IF INVVPID_DESC[63:16] ≠ 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);

ELSE

CASE INVVPID_TYPE OF

0: // individual-address invalidation

VPID ← INVVPID_DESC[15:0];

IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);

ELSE

GL_ADDR ← INVVPID_DESC[127:64];

IF (GL_ADDR is not in a canonical form)

THEN

VMfail(Invalid operand to INVEPT/INVVPID);

ELSE

Invalidate mappings for GL_ADDR tagged with VPID;

VMsucceed;

FI;

FI;

BREAK;

1: // single-context invalidation

VPID ← INVVPID_DESC[15:0];

IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);

ELSE

Invalidate all mappings tagged with VPID;

VMsucceed;

FI;

BREAK;

2: // all-context invalidation

Invalidate all mappings tagged with all non-zero VPIDs;

VMsucceed;

BREAK;

3: // single-context invalidation retaining globals

VPID ← INVVPID_DESC[15:0];

IF VPID = 0

THEN VMfail(Invalid operand to INVEPT/INVVPID);

ELSE

Invalidate all mappings tagged with VPID except global translations;

VMsucceed;
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FI;

BREAK;

ESAC;

FI;

FI;

FI;

Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If not in VMX operation.

If the logical processor does not support VPIDs (IA32_VMX_PROCBASED_CTLS2[37]=0).
If the logical processor supports VPIDs (IA32_VMX_PROCBASED_CTLS2[37]=1) but does not 
support the INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX operation and the INVVPID 
instruction is not recognized outside VMX operation.

Virtual-8086 Mode Exceptions

#UD The INVVPID instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The INVVPID instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.
If the memory operand is in the CS, DS, ES, FS, or GS segments and the memory address is 
in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory destination operand is in the SS segment and the memory address is in a non-

canonical form.
#UD If not in VMX operation.

If the logical processor does not support VPIDs (IA32_VMX_PROCBASED_CTLS2[37]=0).
If the logical processor supports VPIDs (IA32_VMX_PROCBASED_CTLS2[37]=1) but does not 
support the INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).
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VMCALL—Call to VM Monitor

Description

This instruction allows guest software can make a call for service into an underlying VM monitor. The details of the 
programming interface for such calls are VMM-specific; this instruction does nothing more than cause a VM exit, 
registering the appropriate exit reason.

Use of this instruction in VMX root operation invokes an SMM monitor (see Section 34.15.2). This invocation will 
activate the dual-monitor treatment of system-management interrupts (SMIs) and system-management mode 
(SMM) if it is not already active (see Section 34.15.6).

Operation

IF not in VMX operation

THEN #UD;

ELSIF in VMX non-root operation

THEN VM exit;

ELSIF (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;

ELSIF CPL > 0

THEN #GP(0);

ELSIF in SMM or the logical processor does not support the dual-monitor treatment of SMIs and SMM or the valid bit in the 
IA32_SMM_MONITOR_CTL MSR is clear

THEN VMfail (VMCALL executed in VMX root operation);

ELSIF dual-monitor treatment of SMIs and SMM is active

THEN perform an SMM VM exit (see Section 34.15.2);

ELSIF current-VMCS pointer is not valid

THEN VMfailInvalid;

ELSIF launch state of current VMCS is not clear

THEN VMfailValid(VMCALL with non-clear VMCS);

ELSIF VM-exit control fields are not valid (see Section 34.15.6.1)

THEN VMfailValid (VMCALL with invalid VM-exit control fields);

ELSE

enter SMM;

read revision identifier in MSEG;

IF revision identifier does not match that supported by processor

THEN

leave SMM;

VMfailValid(VMCALL with incorrect MSEG revision identifier);

ELSE

read SMM-monitor features field in MSEG (see Section 34.15.6.2);

IF features field is invalid

THEN

leave SMM;

VMfailValid(VMCALL with invalid SMM-monitor features);

ELSE activate dual-monitor treatment of SMIs and SMM (see Section 34.15.6);

FI;

FI;

FI;

Opcode Instruction Description

0F 01 C1 VMCALL Call to VM monitor by causing VM exit.
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Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0 and the logical processor is in VMX root operation. 
#UD If executed outside VMX operation.

Real-Address Mode Exceptions

#UD If executed outside VMX operation.

Virtual-8086 Mode Exceptions

#UD If executed outside VMX non-root operation.

Compatibility Mode Exceptions

#UD If executed outside VMX non-root operation.

64-Bit Mode Exceptions

#UD If executed outside VMX non-root operation.
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VMCLEAR—Clear Virtual-Machine Control Structure

Description

This instruction applies to the VMCS whose VMCS region resides at the physical address contained in the instruc-
tion operand. The instruction ensures that VMCS data for that VMCS (some of these data may be currently main-
tained on the processor) are copied to the VMCS region in memory. It also initializes parts of the VMCS region (for 
example, it sets the launch state of that VMCS to clear). See Chapter 24, “Virtual-Machine Control Structures”. 

The operand of this instruction is always 64 bits and is always in memory. If the operand is the current-VMCS 
pointer, then that pointer is made invalid (set to FFFFFFFF_FFFFFFFFH).

Note that the VMCLEAR instruction might not explicitly write any VMCS data to memory; the data may be already 
resident in memory before the VMCLEAR is executed.

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;

ELSIF in VMX non-root operation

THEN VM exit;

ELSIF CPL > 0

THEN #GP(0);

ELSE

addr ← contents of 64-bit in-memory operand;

IF addr is not 4KB-aligned OR 

addr sets any bits beyond the physical-address width1

THEN VMfail(VMCLEAR with invalid physical address);

ELSIF addr = VMXON pointer

THEN VMfail(VMCLEAR with VMXON pointer);

ELSE

ensure that data for VMCS referenced by the operand is in memory;

initialize implementation-specific data in VMCS region;

launch state of VMCS referenced by the operand ← “clear”

IF operand addr = current-VMCS pointer

THEN current-VMCS pointer ← FFFFFFFF_FFFFFFFFH;

FI;

VMsucceed;

FI;

FI;

Flags Affected

See the operation section and Section 30.2.

Opcode Instruction Description

66 0F C7 /6 VMCLEAR m64 Copy VMCS data to VMCS region in memory.

1. If IA32_VMX_BASIC[48] is read as 1, VMfail occurs if addr sets any bits in the range 63:32; see Appendix A.1.
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Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX operation and the VMCLEAR 
instruction is not recognized outside VMX operation.

Virtual-8086 Mode Exceptions

#UD The VMCLEAR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The VMCLEAR instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.
If the source operand is in the CS, DS, ES, FS, or GS segments and the memory address is in 
a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the source operand is in the SS segment and the memory address is in a non-canonical 

form.
#UD If operand is a register.

If not in VMX operation.
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VMFUNC—Invoke VM function

Description

This instruction allows software in VMX non-root operation to invoke a VM function, which is processor functionality 
enabled and configured by software in VMX root operation. The value of EAX selects the specific VM function being 
invoked.

The behavior of each VM function (including any additional fault checking) is specified in Section 25.5.5, 
“VM Functions”.

Operation

Perform functionality of the VM function specified in EAX;

Flags Affected

Depends on the VM function specified in EAX. See Section 25.5.5, “VM Functions”.

Protected Mode Exceptions (not including those defined by specific VM functions)

#UD If executed outside VMX non-root operation.
If “enable VM functions” VM-execution control is 0.
If EAX ≥ 64.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

Opcode Instruction Description

0F 01 D4 VMFUNC Invoke VM function specified in EAX.
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VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

Description

Effects a VM entry managed by the current VMCS.
• VMLAUNCH fails if the launch state of current VMCS is not “clear”. If the instruction is successful, it sets the 

launch state to “launched.” 
• VMRESUME fails if the launch state of the current VMCS is not “launched.”

If VM entry is attempted, the logical processor performs a series of consistency checks as detailed in Chapter 26, 
“VM Entries”. Failure to pass checks on the VMX controls or on the host-state area passes control to the instruction 
following the VMLAUNCH or VMRESUME instruction. If these pass but checks on the guest-state area fail, the logical 
processor loads state from the host-state area of the VMCS, passing control to the instruction referenced by the RIP 
field in the host-state area.

VM entry is not allowed when events are blocked by MOV SS or POP SS. Neither VMLAUNCH nor VMRESUME should 
be used immediately after either MOV to SS or POP to SS.

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;

ELSIF in VMX non-root operation

THEN VMexit;

ELSIF CPL > 0

THEN #GP(0);

ELSIF current-VMCS pointer is not valid

THEN VMfailInvalid;

ELSIF events are being blocked by MOV SS

THEN VMfailValid(VM entry with events blocked by MOV SS);

ELSIF (VMLAUNCH and launch state of current VMCS is not “clear”)

THEN VMfailValid(VMLAUNCH with non-clear VMCS);

ELSIF (VMRESUME and launch state of current VMCS is not “launched”)

THEN VMfailValid(VMRESUME with non-launched VMCS);

ELSE

Check settings of VMX controls and host-state area;

IF invalid settings

THEN VMfailValid(VM entry with invalid VMX-control field(s)) or

VMfailValid(VM entry with invalid host-state field(s)) or 

VMfailValid(VM entry with invalid executive-VMCS pointer)) or 

VMfailValid(VM entry with non-launched executive VMCS) or

VMfailValid(VM entry with executive-VMCS pointer not VMXON pointer) or

VMfailValid(VM entry with invalid VM-execution control fields in executive

VMCS)

as appropriate;

ELSE

Attempt to load guest state and PDPTRs as appropriate;

clear address-range monitoring;

IF failure in checking guest state or PDPTRs

THEN VM entry fails (see Section 26.7);

Opcode Instruction Description

0F 01 C2 VMLAUNCH Launch virtual machine managed by current VMCS.

0F 01 C3 VMRESUME Resume virtual machine managed by current VMCS.



Vol. 3C 30-15

VMX INSTRUCTION REFERENCE

ELSE

Attempt to load MSRs from VM-entry MSR-load area;

IF failure

THEN VM entry fails

(see Section 26.7);

ELSE

IF VMLAUNCH

THEN launch state of VMCS ← “launched”;

FI;

IF in SMM and “entry to SMM” VM-entry control is 0

THEN

IF “deactivate dual-monitor treatment” VM-entry

control is 0

THEN SMM-transfer VMCS pointer ←
current-VMCS pointer;

FI;

IF executive-VMCS pointer is VMX pointer

THEN current-VMCS pointer ←
VMCS-link pointer;

ELSE current-VMCS pointer ←
executive-VMCS pointer;

FI;

leave SMM;

FI;

VM entry succeeds;

FI;

FI;

FI;

FI;

Further details of the operation of the VM-entry appear in Chapter 26.

Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX operation and the VMLAUNCH 
and VMRESUME instructions are not recognized outside VMX operation.

Virtual-8086 Mode Exceptions

#UD The VMLAUNCH and VMRESUME instructions are not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The VMLAUNCH and VMRESUME instructions are not recognized in compatibility mode.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.
#UD If executed outside VMX operation.
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VMPTRLD—Load Pointer to Virtual-Machine Control Structure

Description

Marks the current-VMCS pointer valid and loads it with the physical address in the instruction operand. The instruc-
tion fails if its operand is not properly aligned, sets unsupported physical-address bits, or is equal to the VMXON 
pointer. In addition, the instruction fails if the 32 bits in memory referenced by the operand do not match the VMCS 
revision identifier supported by this processor.2

The operand of this instruction is always 64 bits and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;

ELSIF in VMX non-root operation

THEN VMexit;

ELSIF CPL > 0

THEN #GP(0);

ELSE

addr ← contents of 64-bit in-memory source operand;

IF addr is not 4KB-aligned OR

addr sets any bits beyond the physical-address width3

THEN VMfail(VMPTRLD with invalid physical address);

ELSIF addr = VMXON pointer

THEN VMfail(VMPTRLD with VMXON pointer);

ELSE

rev ← 32 bits located at physical address addr;

IF rev[30:0] ≠ VMCS revision identifier supported by processor OR

rev[31] = 1 AND processor does not support 1-setting of “VMCS shadowing”

THEN VMfail(VMPTRLD with incorrect VMCS revision identifier);

ELSE

current-VMCS pointer ← addr;

VMsucceed;

FI;

FI;

FI;

Flags Affected

See the operation section and Section 30.2.

Opcode Instruction Description

0F C7 /6 VMPTRLD m64 Loads the current VMCS pointer from memory.

2. Software should consult the VMX capability MSR VMX_BASIC to discover the VMCS revision identifier supported by this processor 
(see Appendix A, “VMX Capability Reporting Facility”).

3. If IA32_VMX_BASIC[48] is read as 1, VMfail occurs if addr sets any bits in the range 63:32; see Appendix A.1.
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Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
If the memory source operand effective address is outside the CS, DS, ES, FS, or GS segment 
limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the memory source operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX operation and the VMPTRLD 
instruction is not recognized outside VMX operation.

Virtual-8086 Mode Exceptions

#UD The VMPTRLD instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The VMPTRLD instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.
If the source operand is in the CS, DS, ES, FS, or GS segments and the memory address is in 
a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the source operand is in the SS segment and the memory address is in a non-canonical 

form.
#UD If operand is a register.

If not in VMX operation.
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VMPTRST—Store Pointer to Virtual-Machine Control Structure

Description

Stores the current-VMCS pointer into a specified memory address. The operand of this instruction is always 64 bits 
and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;

ELSIF in VMX non-root operation

THEN VMexit;

ELSIF CPL > 0

THEN #GP(0);

ELSE 

64-bit in-memory destination operand ← current-VMCS pointer;

VMsucceed;

FI;

Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
If the memory destination operand effective address is outside the CS, DS, ES, FS, or GS 
segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the destination operand is located in a read-only data segment or any code segment.

#PF(fault-code) If a page fault occurs in accessing the memory destination operand.
#SS(0) If the memory destination operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX operation and the VMPTRST 
instruction is not recognized outside VMX operation.

Virtual-8086 Mode Exceptions

#UD The VMPTRST instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The VMPTRST instruction is not recognized in compatibility mode.

Opcode Instruction Description

0F C7 /7 VMPTRST m64 Stores the current VMCS pointer into memory.
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64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.
If the destination operand is in the CS, DS, ES, FS, or GS segments and the memory address 
is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory destination operand.
#SS(0) If the destination operand is in the SS segment and the memory address is in a non-canonical 

form.
#UD If operand is a register.

If not in VMX operation.
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VMREAD—Read Field from Virtual-Machine Control Structure

Description

Reads a specified field from a VMCS and stores it into a specified destination operand (register or memory). In VMX 
root operation, the instruction reads from the current VMCS. If executed in VMX non-root operation, the instruction 
reads from the VMCS referenced by the VMCS link pointer field in the current VMCS.

The VMCS field is specified by the VMCS-field encoding contained in the register source operand. Outside IA-32e 
mode, the source operand has 32 bits, regardless of the value of CS.D. In 64-bit mode, the source operand has 64 
bits; however, if bits 63:32 of the source operand are not zero, VMREAD will fail due to an attempt to access an 
unsupported VMCS component (see operation section). 

The effective size of the destination operand, which may be a register or in memory, is always 32 bits outside IA-
32e mode (the setting of CS.D is ignored with respect to operand size) and 64 bits in 64-bit mode. If the VMCS field 
specified by the source operand is shorter than this effective operand size, the high bits of the destination operand 
are cleared to 0. If the VMCS field is longer, then the high bits of the field are not read.

Note that any faults resulting from accessing a memory destination operand can occur only after determining, in 
the operation section below, that the relevant VMCS pointer is valid and that the specified VMCS field is supported.

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;

ELSIF in VMX non-root operation AND (“VMCS shadowing” is 0 OR source operand sets bits in range 63:15 OR

VMREAD bit corresponding to bits 14:0 of source operand is 1)4

THEN VMexit;

ELSIF CPL > 0

THEN #GP(0);

ELSIF (in VMX root operation AND current-VMCS pointer is not valid) OR 

(in VMX non-root operation AND VMCS link pointer is not valid)

THEN VMfailInvalid;

ELSIF source operand does not correspond to any VMCS field

THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);

ELSE

IF in VMX root operation

THEN destination operand ← contents of field indexed by source operand in current VMCS;

ELSE destination operand ← contents of field indexed by source operand in VMCS referenced by VMCS link pointer;

FI;

VMsucceed;

FI;

Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Opcode Instruction Description

0F 78 VMREAD r/m64, r64 Reads a specified VMCS field (in 64-bit mode).

0F 78 VMREAD r/m32, r32 Reads a specified VMCS field (outside 64-bit mode).

4. The VMREAD bit for a source operand is defined as follows. Let x be the value of bits 14:0 of the source operand and let addr be the 
VMREAD-bitmap address. The corresponding VMREAD bit is in bit position x & 7 of the byte at physical address addr | (x » 3).
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If a memory destination operand effective address is outside the CS, DS, ES, FS, or GS 
segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the destination operand is located in a read-only data segment or any code segment.

#PF(fault-code) If a page fault occurs in accessing a memory destination operand.
#SS(0) If a memory destination operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If not in VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX operation and the VMREAD 
instruction is not recognized outside VMX operation.

Virtual-8086 Mode Exceptions

#UD The VMREAD instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The VMREAD instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.
If the memory destination operand is in the CS, DS, ES, FS, or GS segments and the memory 
address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing a memory destination operand.
#SS(0) If the memory destination operand is in the SS segment and the memory address is in a non-

canonical form.
#UD If not in VMX operation.
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VMRESUME—Resume Virtual Machine

See VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine.
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VMWRITE—Write Field to Virtual-Machine Control Structure

Description

Writes the contents of a primary source operand (register or memory) to a specified field in a VMCS. In VMX root 
operation, the instruction writes to the current VMCS. If executed in VMX non-root operation, the instruction writes 
to the VMCS referenced by the VMCS link pointer field in the current VMCS.

The VMCS field is specified by the VMCS-field encoding contained in the register secondary source operand. 
Outside IA-32e mode, the secondary source operand is always 32 bits, regardless of the value of CS.D. In 64-bit 
mode, the secondary source operand has 64 bits; however, if bits 63:32 of the secondary source operand are not 
zero, VMWRITE will fail due to an attempt to access an unsupported VMCS component (see operation section). 

The effective size of the primary source operand, which may be a register or in memory, is always 32 bits outside 
IA-32e mode (the setting of CS.D is ignored with respect to operand size) and 64 bits in 64-bit mode. If the VMCS 
field specified by the secondary source operand is shorter than this effective operand size, the high bits of the 
primary source operand are ignored. If the VMCS field is longer, then the high bits of the field are cleared to 0.

Note that any faults resulting from accessing a memory source operand occur after determining, in the operation 
section below, that the relevant VMCS pointer is valid but before determining if the destination VMCS field is 
supported.

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;

ELSIF in VMX non-root operation AND (“VMCS shadowing” is 0 OR secondary source operand sets bits in range 63:15 OR

VMWRITE bit corresponding to bits 14:0 of secondary source operand is 1)5

THEN VMexit;

ELSIF CPL > 0

THEN #GP(0);

ELSIF (in VMX root operation AND current-VMCS pointer is not valid) OR

(in VMX non-root operation AND VMCS-link pointer is not valid)

THEN VMfailInvalid;

ELSIF secondary source operand does not correspond to any VMCS field

THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);

ELSIF VMCS field indexed by secondary source operand is a VM-exit information field AND

processor does not support writing to such fields6

THEN VMfailValid(VMWRITE to read-only VMCS component);

ELSE

IF in VMX root operation

THEN field indexed by secondary source operand in current VMCS ← primary source operand;

THEN field indexed by secondary source operand in VMCS referenced by VMCS link pointer ← primary source operand;

FI;

VMsucceed;

FI;

Opcode Instruction Description

0F 79 VMWRITE r64, r/m64 Writes a specified VMCS field (in 64-bit mode)

0F 79 VMWRITE r32, r/m32 Writes a specified VMCS field (outside 64-bit mode)

5. The VMWRITE bit for a secondary source operand is defined as follows. Let x be the value of bits 14:0 of the secondary source oper-
and and let addr be the VMWRITE-bitmap address. The corresponding VMWRITE bit is in bit position x & 7 of the byte at physical 
address addr | (x » 3).

6. Software can discover whether these fields can be written by reading the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).
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Flags Affected

See the operation section and Section 30.2.
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Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.
If a memory source operand effective address is outside the CS, DS, ES, FS, or GS segment 
limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.
#SS(0) If a memory source operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If not in VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX operation and the VMWRITE 
instruction is not recognized outside VMX operation.

Virtual-8086 Mode Exceptions

#UD The VMWRITE instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The VMWRITE instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.
If the memory source operand is in the CS, DS, ES, FS, or GS segments and the memory 
address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.
#SS(0) If the memory source operand is in the SS segment and the memory address is in a non-

canonical form.
#UD If not in VMX operation.
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VMXOFF—Leave VMX Operation

Description

Takes the logical processor out of VMX operation, unblocks INIT signals, conditionally re-enables A20M, and clears 
any address-range monitoring.7 

Operation

IF (not in VMX operation) or (CR0.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;

ELSIF in VMX non-root operation

THEN VMexit;

ELSIF CPL > 0

THEN #GP(0);

ELSIF dual-monitor treatment of SMIs and SMM is active

THEN VMfail(VMXOFF under dual-monitor treatment of SMIs and SMM);

ELSE

leave VMX operation;

unblock INIT;

IF IA32_SMM_MONITOR_CTL[2] = 08

THEN unblock SMIs;

IF outside SMX operation9

THEN unblock and enable A20M;

FI;

clear address-range monitoring;

VMsucceed;

FI;

Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions

#GP(0) If executed in VMX root operation with CPL > 0.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX operation and the VMXOFF 
instruction is not recognized outside VMX operation.

Opcode Instruction Description

0F 01 C4 VMXOFF Leaves VMX operation.

7. See the information on MONITOR/MWAIT in Chapter 8, “Multiple-Processor Management,” of the Intel® 64 and IA-32 Architectures 

Software Developer’s Manual, Volume 3A.

8. Setting IA32_SMM_MONITOR_CTL[bit 2] to 1 prevents VMXOFF from unblocking SMIs regardless of the value of the register’s value 
bit (bit 0). Not all processors allow this bit to be set to 1. Software should consult the VMX capability MSR IA32_VMX_MISC (see 
Appendix A.6) to determine whether this is allowed.

9. A logical processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the 
last execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference.”
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Virtual-8086 Mode Exceptions

#UD The VMXOFF instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The VMXOFF instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions

#GP(0) If executed in VMX root operation with CPL > 0.
#UD If executed outside VMX operation.
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VMXON—Enter VMX Operation

Description

Puts the logical processor in VMX operation with no current VMCS, blocks INIT signals, disables A20M, and clears 
any address-range monitoring established by the MONITOR instruction.10 

The operand of this instruction is a 4KB-aligned physical address (the VMXON pointer) that references the VMXON 
region, which the logical processor may use to support VMX operation. This operand is always 64 bits and is always 
in memory. 

Operation

IF (register operand) or (CR0.PE = 0) or (CR4.VMXE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;

ELSIF not in VMX operation

THEN

IF (CPL > 0) or (in A20M mode) or

(the values of CR0 and CR4 are not supported in VMX operation11) or

(bit 0 (lock bit) of IA32_FEATURE_CONTROL MSR is clear) or

(in SMX operation12 and bit 1 of IA32_FEATURE_CONTROL MSR is clear) or

(outside SMX operation and bit 2 of IA32_FEATURE_CONTROL MSR is clear)

THEN #GP(0);

ELSE

addr ← contents of 64-bit in-memory source operand;

IF addr is not 4KB-aligned or 

addr sets any bits beyond the physical-address width13

THEN VMfailInvalid;

ELSE

rev ← 32 bits located at physical address addr;

IF rev[30:0] ≠ VMCS revision identifier supported by processor OR rev[31] = 1

THEN VMfailInvalid;

ELSE

current-VMCS pointer ← FFFFFFFF_FFFFFFFFH;

enter VMX operation;

block INIT signals;

block and disable A20M;

clear address-range monitoring;

VMsucceed;

FI;

FI;
FI;

ELSIF in VMX non-root operation

Opcode Instruction Description

F3 0F C7 /6 VMXON m64 Enter VMX root operation.

10. See the information on MONITOR/MWAIT in Chapter 8, “Multiple-Processor Management,” of the Intel® 64 and IA-32 Architectures 

Software Developer’s Manual, Volume 3A.

11. See Section 19.8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

12. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last 
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference.”

13. If IA32_VMX_BASIC[48] is read as 1, VMfailInvalid occurs if addr sets any bits in the range 63:32; see Appendix A.1.
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THEN VMexit;

ELSIF CPL > 0

THEN #GP(0);

ELSE VMfail(“VMXON executed in VMX root operation”);

FI;

Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions

#GP(0) If executed outside VMX operation with CPL>0 or with invalid CR0 or CR4 fixed bits.
If executed in A20M mode.
If the memory source operand effective address is outside the CS, DS, ES, FS, or GS segment 
limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the memory source operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If operand is a register.

If executed with CR4.VMXE = 0.

Real-Address Mode Exceptions

#UD The VMXON instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The VMXON instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The VMXON instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions

#GP(0) If executed outside VMX operation with CPL > 0 or with invalid CR0 or CR4 fixed bits.
If executed in A20M mode.
If the source operand is in the CS, DS, ES, FS, or GS segments and the memory address is in 
a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the source operand is in the SS segment and the memory address is in a non-canonical 

form.
#UD If operand is a register.

If executed with CR4.VMXE = 0.
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30.4 VM INSTRUCTION ERROR NUMBERS

For certain error conditions, the VM-instruction error field is loaded with an error number to indicate the source of 
the error. Table 30-1 lists VM-instruction error numbers.

Table 30-1.  VM-Instruction Error Numbers

Error
Number

Description

1 VMCALL executed in VMX root operation

2 VMCLEAR with invalid physical address

3 VMCLEAR with VMXON pointer

4 VMLAUNCH with non-clear VMCS

5 VMRESUME with non-launched VMCS

6 VMRESUME after VMXOFF (VMXOFF and VMXON between VMLAUNCH and VMRESUME)a

NOTES:

a. Earlier versions of this manual described this error as “VMRESUME with a corrupted VMCS”.

7 VM entry with invalid control field(s)b,c

b. VM-entry checks on control fields and host-state fields may be performed in any order. Thus, an indication by error number of one 
cause does not imply that there are not also other errors. Different processors may give different error numbers for the same VMCS.

c. Error number 7 is not used for VM entries that return from SMM that fail due to invalid 
VM-execution control fields in the executive VMCS. Error number 25 is used for these cases.

8 VM entry with invalid host-state field(s)b

9 VMPTRLD with invalid physical address

10 VMPTRLD with VMXON pointer

11 VMPTRLD with incorrect VMCS revision identifier

12 VMREAD/VMWRITE from/to unsupported VMCS component

13 VMWRITE to read-only VMCS component

15 VMXON executed in VMX root operation

16 VM entry with invalid executive-VMCS pointerb

17 VM entry with non-launched executive VMCSb

18 VM entry with executive-VMCS pointer not VMXON pointer (when attempting to deactivate the dual-monitor treatment of 
SMIs and SMM)b

19 VMCALL with non-clear VMCS (when attempting to activate the dual-monitor treatment of SMIs and SMM)

20 VMCALL with invalid VM-exit control fields

22 VMCALL with incorrect MSEG revision identifier (when attempting to activate the dual-monitor treatment of SMIs and SMM)

23 VMXOFF under dual-monitor treatment of SMIs and SMM

24 VMCALL with invalid SMM-monitor features (when attempting to activate the dual-monitor treatment of SMIs and SMM)

25 VM entry with invalid VM-execution control fields in executive VMCS (when attempting to return from SMM)b,c

26 VM entry with events blocked by MOV SS.

28 Invalid operand to INVEPT/INVVPID.



30-32 Vol. 3C

VMX INSTRUCTION REFERENCE



Vol. 3C 31-1

CHAPTER 31
VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

31.1 VMX SYSTEM PROGRAMMING OVERVIEW

The Virtual Machine Monitor (VMM) is a software class used to manage virtual machines (VM). This chapter 
describes programming considerations for VMMs.

Each VM behaves like a complete physical machine and can run operating system (OS) and applications. The VMM 
software layer runs at the most privileged level and has complete ownership of the underlying system hardware. 
The VMM controls creation of a VM, transfers control to a VM, and manages situations that can cause transitions 
between the guest VMs and host VMM. The VMM allows the VMs to share the underlying hardware and yet provides 
isolation between the VMs. The guest software executing in a VM is unaware of any transitions that might have 
occurred between the VM and its host. 

31.2 SUPPORTING PROCESSOR OPERATING MODES IN GUEST ENVIRONMENTS

Typically, VMMs transfer control to a VM using VMX transitions referred to as VM entries. The boundary conditions 
that define what a VM is allowed to execute in isolation are specified in a virtual-machine control structure (VMCS). 

As noted in Section 23.8, processors may fix certain bits in CR0 and CR4 to specific values and not support other 
values. The first processors to support VMX operation require that CR0.PE and CR0.PG be 1 in VMX operation. Thus, 
a VM entry is allowed only to guests with paging enabled that are in protected mode or in virtual-8086 mode. Guest 
execution in other processor operating modes need to be specially handled by the VMM.

One example of such a condition is guest execution in real-mode. A VMM could support guest real-mode execution 
using at least two approaches:
• By using a fast instruction set emulator in the VMM.
• By using the similarity between real-mode and virtual-8086 mode to support real-mode guest execution in a 

virtual-8086 container. The virtual-8086 container may be implemented as a virtual-8086 container task within 
a monitor that emulates real-mode guest state and instructions, or by running the guest VM as the virtual-8086 
container (by entering the guest with RFLAGS.VM1 set). Attempts by real-mode code to access privileged state 
outside the virtual-8086 container would trap to the VMM and would also need to be emulated.

Another example of such a condition is guest execution in protected mode with paging disabled. A VMM could 
support such guest execution by using “identity” page tables to emulate unpaged protected mode.

31.2.1 Using Unrestricted Guest Mode

Processors which support the “unrestricted guest” VM-execution control allow VM software to run in real-address 
mode and unpaged protected mode. Since these modes do not use paging, VMM software must virtualize guest 
memory using EPT.

Special notes for 64-bit VMM software using the 1-setting of the “unrestricted guest” VM-execution control:
• It is recommended that 64-bit VMM software use the 1-settings of the "load IA32_EFER" VM entry control and 

the "save IA32_EFER" VM-exit control. If VM entry is establishing CR0.PG=0 and if the "IA-32e mode guest" 
and "load IA32_EFER" VM entry controls are both 0, VM entry leaves IA32_EFER.LME unmodified (i.e., the host 
value will persist in the guest).

• It is not necessary for VMM software to track guest transitions into and out of IA-32e mode for the purpose of 
maintaining the correct setting of the "IA-32e mode guest" VM entry control.  This is because VM exits on 

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit 
forms of those registers (EAX, EIP, ESP, EFLAGS, etc.).
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processors supporting the 1-setting of the "unrestricted guest" VM-execution control save the (guest) value of 
IA32_EFER.LMA into the "IA-32e mode guest" VM entry control.

31.3 MANAGING VMCS REGIONS AND POINTERS

A VMM must observe necessary procedures when working with a VMCS, the associated VMCS pointer, and the 
VMCS region. It must also not assume the state of persistency for VMCS regions in memory or cache. 

Before entering VMX operation, the host VMM allocates a VMXON region. A VMM can host several virtual machines 
and have many VMCSs active under its management. A unique VMCS region is required for each virtual machine; 
a VMXON region is required for the VMM itself. 

A VMM determines the VMCS region size by reading IA32_VMX_BASIC MSR; it creates VMCS regions of this size 
using a 4-KByte-aligned area of physical memory. Each VMCS region needs to be initialized with a VMCS revision 
identifier (at byte offset 0) identical to the revision reported by the processor in the VMX capability MSR.

NOTE

Software must not read or write directly to the VMCS data region as the format is not architecturally 
defined. Consequently, Intel recommends that the VMM remove any linear-address mappings to 
VMCS regions before loading. 

System software does not need to do special preparation to the VMXON region before entering into VMX operation. 
The address of the VMXON region for the VMM is provided as an operand to VMXON instruction. Once in VMX root 
operation, the VMM needs to prepare data fields in the VMCS that control the execution of a VM upon a VM entry. 
The VMM can make a VMCS the current VMCS by using the VMPTRLD instruction. VMCS data fields must be read or 
written only through VMREAD and VMWRITE commands respectively. 

Every component of the VMCS is identified by a 32-bit encoding that is provided as an operand to VMREAD and 
VMWRITE. Appendix B provides the encodings. A VMM must properly initialize all fields in a VMCS before using the 
current VMCS for VM entry. 

A VMCS is referred to as a controlling VMCS if it is the current VMCS on a logical processor in VMX non-root opera-
tion. A current VMCS for controlling a logical processor in VMX non-root operation may be referred to as a working 
VMCS if the logical processor is not in VMX non-root operation. The relationship of active, current (i.e. working) and 
controlling VMCS during VMX operation is shown in Figure 31-1.

NOTE

As noted in Section 24.1, the processor may optimize VMX operation by maintaining the state of an 
active VMCS (one for which VMPTRLD has been executed) on the processor. Before relinquishing 
control to other system software that may, without informing the VMM, remove power from the 
processor (e.g., for transitions to S3 or S4) or leave VMX operation, a VMM must VMCLEAR all active 
VMCSs. This ensures that all VMCS data cached by the processor are flushed to memory and that 
no other software can corrupt the current VMM’s VMCS data. It is also recommended that the VMM 
execute VMXOFF after such executions of VMCLEAR.

The VMX capability MSR IA32_VMX_BASIC reports the memory type used by the processor for accessing a VMCS 
or any data structures referenced through pointers in the VMCS. Software must maintain the VMCS structures in 
cache-coherent memory. Software must always map the regions hosting the I/O bitmaps, MSR bitmaps, VM-exit 
MSR-store area, VM-exit MSR-load area, and VM-entry MSR-load area to the write-back (WB) memory type. 
Mapping these regions to uncacheable (UC) memory type is supported, but strongly discouraged due to negative 
impact on performance.

31.4 USING VMX INSTRUCTIONS

VMX instructions are allowed only in VMX root operation. An attempt to execute a VMX instruction in VMX non-root 
operation causes a VM exit.
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Processors perform various checks while executing any VMX instruction. They follow well-defined error handling on 
failures. VMX instruction execution failures detected before loading of a guest state are handled by the processor 
as follows: 
• If the working-VMCS pointer is not valid, the instruction fails by setting RFLAGS.CF to 1.
• If the working-VMCS pointer is valid, RFLAGS.ZF is set to 1 and the proper error-code is saved in the VM-

instruction error field of the working-VMCS.

Software is required to check RFLAGS.CF and RFLAGS.ZF to determine the success or failure of VMX instruction 
executions.

The following items provide details regarding use of the VM-entry instructions (VMLAUNCH and VMRESUME):
• If the working-VMCS pointer is valid, the state of the working VMCS may cause the VM-entry instruction to fail. 

RFLAGS.ZF is set to 1 and one of the following values is saved in the VM-instruction error field:

— 4: VMLAUNCH with non-clear VMCS.
If this error occurs, software can avoid the error by executing VMRESUME.

— 5: VMRESUME with non-launched VMCS.
If this error occurs, software can avoid the error by executing VMLAUNCH.

Figure 31-1.  VMX Transitions and States of VMCS in a Logical Processor

(a) VMX Operation and VMX Transitions

(b) State of VMCS and VMX Operation
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— 6: VMRESUME after VMXOFF.1
If this error occurs, software can avoid the error by executing the following sequence of instructions:

VMPTRST ¢working-VMCS pointer²
VMCLEAR ¢working-VMCS pointer²
VMPTRLD ¢working-VMCS pointer²
VMLAUNCH

(VMPTRST may not be necessary is software already knows the working-VMCS pointer.)
• If none of the above errors occur, the processor checks on the VMX controls and host-state area. If any of these 

checks fail, the VM-entry instruction fails. RFLAGS.ZF is set to 1 and either 7 (VM entry with invalid control 
field(s)) or 8 (VM entry with invalid host-state field(s)) is saved in the VM-instruction error field.

• After a VM-entry instruction (VMRESUME or VMLAUNCH) successfully completes the general checks and checks 
on VMX controls and the host-state area (see Section 26.2), any errors encountered while loading of guest-
state (due to bad guest-state or bad MSR loading) causes the processor to load state from the host-state area 
of the working VMCS as if a VM exit had occurred (see Section 31.7). 
This failure behavior differs from that of VM exits in that no guest-state is saved to the guest-state area. A VMM 
can detect its VM-exit handler was invoked by such a failure by checking bit 31 (for 1) in the exit reason field of 
the working VMCS and further identify the failure by using the exit qualification field.

See Chapter 26 for more details about the VM-entry instructions.

31.5 VMM SETUP & TEAR DOWN

VMMs need to ensure that the processor is running in protected mode with paging before entering VMX operation. 
The following list describes the minimal steps required to enter VMX root operation with a VMM running at CPL = 0.
• Check VMX support in processor using CPUID. 
• Determine the VMX capabilities supported by the processor through the VMX capability MSRs. See Section 

31.5.1 and Appendix A. 
• Create a VMXON region in non-pageable memory of a size specified by IA32_VMX_BASIC MSR and aligned to a 

4-KByte boundary. Software should read the capability MSRs to determine width of the physical addresses that 
may be used for the VMXON region and ensure the entire VMXON region can be addressed by addresses with 
that width. Also, software must ensure that the VMXON region is hosted in cache-coherent memory.

• Initialize the version identifier in the VMXON region (the first 31 bits) with the VMCS revision identifier reported 
by capability MSRs. Clear bit 31 of the first 4 bytes of the VMXON region.

• Ensure the current processor operating mode meets the required CR0 fixed bits (CR0.PE = 1, CR0.PG = 1). 
Other required CR0 fixed bits can be detected through the IA32_VMX_CR0_FIXED0 and 
IA32_VMX_CR0_FIXED1 MSRs.

• Enable VMX operation by setting CR4.VMXE = 1. Ensure the resultant CR4 value supports all the CR4 fixed bits 
reported in the IA32_VMX_CR4_FIXED0 and IA32_VMX_CR4_FIXED1 MSRs.

• Ensure that the IA32_FEATURE_CONTROL MSR (MSR index 3AH) has been properly programmed and that its 
lock bit is set (Bit 0 = 1). This MSR is generally configured by the BIOS using WRMSR.

• Execute VMXON with the physical address of the VMXON region as the operand. Check successful execution of 
VMXON by checking if RFLAGS.CF = 0.

Upon successful execution of the steps above, the processor is in VMX root operation. 

A VMM executing in VMX root operation and CPL = 0 leaves VMX operation by executing VMXOFF and verifies 
successful execution by checking if RFLAGS.CF = 0 and RFLAGS.ZF = 0. 

If an SMM monitor has been configured to service SMIs while in VMX operation (see Section 34.15), the SMM 
monitor needs to be torn down before the executive monitor can leave VMX operation (see Section 34.15.7). 
VMXOFF fails for the executive monitor (a VMM that entered VMX operation by way of issuing VMXON) if SMM 
monitor is configured.

1. Earlier versions of this manual described this error as “VMRESUME with a corrupted VMCS”.
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31.5.1 Algorithms for Determining VMX Capabilities

As noted earlier, a VMM should determine the VMX capabilities supported by the processor by reading the VMX 
capability MSRs. The architecture for these MSRs is detailed in Appendix A.

As noted in Chapter 26, “VM Entries”, certain VMX controls are reserved and must be set to a specific value (0 or 
1) determined by the processor. The specific value to which a reserved control must be set is its default setting. 
Most controls have a default setting of 0; Appendix A.2 identifies those controls that have a default setting of 1. The 
term default1 describes the class of controls whose default setting is 1. The are controls in this class from the pin-
based VM-execution controls, the primary processor-based VM-execution controls, the VM-exit controls, and the 
VM-entry controls. There are no secondary processor-based VM-execution controls in the default1 class.

Future processors may define new functionality for one or more reserved controls. Such processors would allow 
each newly defined control to be set either to 0 or to 1. Software that does not desire a control’s new functionality 
should set the control to its default setting.

The capability MSRs IA32_VMX_PINBASED_CTLS, IA32_VMX_PROCBASED_CTLS, IA32_VMX_EXIT_CTLS, and 
IA32_VMX_ENTRY_CTLS report, respectively, on the allowed settings of most of the pin-based VM-execution 
controls, the primary processor-based VM-execution controls, the VM-exit controls, and the VM-entry controls. 
However, they will always report that any control in the default1 class must be 1. If a logical processor allows any 
control in the default1 class to be 0, it indicates this fact by returning 1 for the value of bit 55 of the 
IA32_VMX_BASIC MSR. If this bit is 1, the logical processor supports the capability MSRs 
IA32_VMX_TRUE_PINBASED_CTLS, IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and 
IA32_VMX_TRUE_ENTRY_CTLS. These capability MSRs report, respectively, on the allowed settings of all of the 
pin-based VM-execution controls, the primary processor-based VM-execution controls, the VM-exit controls, and 
the VM-entry controls.

Software may use one of the following high-level algorithms to determine the correct default control settings:1

1. The following algorithm does not use the details given in Appendix A.2:

a. Ignore bit 55 of the IA32_VMX_BASIC MSR.

b. Using RDMSR, read the VMX capability MSRs IA32_VMX_PINBASED_CTLS, IA32_VMX_PROCBASED_CTLS, 
IA32_VMX_EXIT_CTLS, and IA32_VMX_ENTRY_CTLS.

c. Set the VMX controls as follows:

i) If the relevant VMX capability MSR reports that a control has a single setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to 0 or 1; and (2) the control’s 
meaning is known to the VMM; then set the control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to 0 or 1; and (2) the control’s 
meaning is not known to the VMM; then set the control to 0.

A VMM using this algorithm will set to 1 all controls in the default1 class (in step (c)(i)). It will operate
correctly even on processors that allow some controls in the default1 class to be 0. However, such a VMM will
not be able to use the new features enabled by the 0-setting of such controls. For that reason, this algorithm
is not recommended.

2. The following algorithm uses the details given in Appendix A.2. This algorithm requires software to know the 
identity of the controls in the default1 class:

a. Using RDMSR, read the IA32_VMX_BASIC MSR.

b. Use bit 55 of that MSR as follows:

i) If bit 55 is 0, use RDMSR to read the VMX capability MSRs IA32_VMX_PINBASED_CTLS, 
IA32_VMX_PROCBASED_CTLS, IA32_VMX_EXIT_CTLS, and IA32_VMX_ENTRY_CTLS.

ii) If bit 55 is 1, use RDMSR to read the VMX capability MSRs IA32_VMX_TRUE_PINBASED_CTLS, 
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and 
IA32_VMX_TRUE_ENTRY_CTLS.

1. These algorithms apply only to the pin-based VM-execution controls, the primary processor-based VM-execution controls, the VM-
exit controls, and the VM-entry controls. Because there are no secondary processor-based VM-execution controls in the default1 
class, a VMM can always set to 0 any such control whose meaning is unknown to it.
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c. Set the VMX controls as follows:

i) If the relevant VMX capability MSR reports that a control has a single setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to 0 or 1; and (2) the control’s 
meaning is known to the VMM; then set the control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to 0 or 1; (2) the control’s 
meaning is not known to the VMM; and (3) the control is not in the default1 class; then set the control 
to 0.

iv) If (1) the relevant VMX capability MSR reports that a control can be set to 0 or 1; (2) the control’s 
meaning is not known to the VMM; and (3) the control is in the default1 class; then set the control to 1.

A VMM using this algorithm will set to 1 all controls in default1 class whose meaning it does not know (either
in step (c)(i) or step (c)(iv)). It will operate correctly even on processors that allow some controls in the
default1 class to be 0. Unlike a VMM using Algorithm 1, a VMM using Algorithm 2 will be able to use the new
features enabled by the 0-setting of such controls.

3. The following algorithm uses the details given in Appendix A.2. This algorithm does not require software to 
know the identity of the controls in the default1 class:

a. Using RDMSR, read the VMX capability MSRs IA32_VMX_BASIC, IA32_VMX_PINBASED_CTLS, 
IA32_VMX_PROCBASED_CTLS, IA32_VMX_EXIT_CTLS, and IA32_VMX_ENTRY_CTLS.

b. If bit 55 of the IA32_VMX_BASIC MSR is 0, set the VMX controls as follows:

i) If the relevant VMX capability MSR reports that a control has a single setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to 0 or 1; and (2) the control’s 
meaning is known to the VMM; then set the control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to 0 or 1; and (2) the control’s 
meaning is not known to the VMM; then set the control to 0.

c. If bit 55 of the IA32_VMX_BASIC MSR is 1, use RDMSR to read the VMX capability MSRs 
IA32_VMX_TRUE_PINBASED_CTLS, IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, 
and IA32_VMX_TRUE_ENTRY_CTLS. Set the VMX controls as follows:

i) If the relevant VMX capability MSR just read reports that a control has a single setting, use that 
setting.

ii) If (1) the relevant VMX capability MSR just read reports that a control can be set to 0 or 1; and (2) the 
control’s meaning is known to the VMM; then set the control based on functionality desired.

iii) If (1) the relevant VMX capability MSR just read reports that a control can be set to 0 or 1; (2) the 
control’s meaning is not known to the VMM; and (3) the relevant VMX capability MSR as read in step (a) 
reports that a control can be set to 0; then set the control to 0.

iv) If (1) the relevant VMX capability MSR just read reports that a control can be set to 0 or 1; (2) the 
control’s meaning is not known to the VMM; and (3) the relevant VMX capability MSR as read in step (a) 
reports that a control must be 1; then set the control to 1.

A VMM using this algorithm will set to 1 all controls in the default1 class whose meaning it does not know (in
step (b)(i), step (c)(i), or step (c)(iv)). It will operate correctly even on processors that allow some controls
in the default1 class to be 0. Unlike a VMM using Algorithm 1, a VMM using Algorithm 3 will be able to use the
new features enabled by the 0-setting of such controls. Unlike a VMM using Algorithm 2, a VMM using
Algorithm 3 need not know the identities of the controls in the default1 class.

31.6 PREPARATION AND LAUNCHING A VIRTUAL MACHINE

The following list describes the minimal steps required by the VMM to set up and launch a guest VM.
• Create a VMCS region in non-pageable memory of size specified by the VMX capability MSR IA32_VMX_BASIC 

and aligned to 4-KBytes. Software should read the capability MSRs to determine width of the physical 
addresses that may be used for a VMCS region and ensure the entire VMCS region can be addressed by 
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addresses with that width. The term “guest-VMCS address” refers to the physical address of the new VMCS 
region for the following steps.

• Initialize the version identifier in the VMCS (first 31 bits) with the VMCS revision identifier reported by the VMX 
capability MSR IA32_VMX_BASIC. Clear bit 31 of the first 4 bytes of the VMCS region.

• Execute the VMCLEAR instruction by supplying the guest-VMCS address. This will initialize the new VMCS 
region in memory and set the launch state of the VMCS to “clear”. This action also invalidates the working-
VMCS pointer register to FFFFFFFF_FFFFFFFFH. Software should verify successful execution of VMCLEAR by 
checking if RFLAGS.CF = 0 and RFLAGS.ZF = 0.

• Execute the VMPTRLD instruction by supplying the guest-VMCS address. This initializes the working-VMCS 
pointer with the new VMCS region’s physical address.

• Issue a sequence of VMWRITEs to initialize various host-state area fields in the working VMCS. The initialization 
sets up the context and entry-points to the VMM upon subsequent VM exits from the guest. Host-state fields 
include control registers (CR0, CR3 and CR4), selector fields for the segment registers (CS, SS, DS, ES, FS, GS 
and TR), and base-address fields (for FS, GS, TR, GDTR and IDTR; RSP, RIP and the MSRs that control fast 
system calls). 
Chapter 27 describes the host-state consistency checking done by the processor for VM entries. The VMM is 
required to set up host-state that comply with these consistency checks. For example, VMX requires the host-
area to have a task register (TR) selector with TI and RPL fields set to 0 and pointing to a valid TSS.

• Use VMWRITEs to set up the various VM-exit control fields, VM-entry control fields, and VM-execution control 
fields in the VMCS. Care should be taken to make sure the settings of individual fields match the allowed 0 and 
1 settings for the respective controls as reported by the VMX capability MSRs (see Appendix A). Any settings 
inconsistent with the settings reported by the capability MSRs will cause VM entries to fail.

• Use VMWRITE to initialize various guest-state area fields in the working VMCS. This sets up the context and 
entry-point for guest execution upon VM entry. Chapter 27 describes the guest-state loading and checking 
done by the processor for VM entries to protected and virtual-8086 guest execution. 

• The VMM is required to set up guest-state that complies with these consistency checks:

— If the VMM design requires the initial VM launch to cause guest software (typically the guest virtual BIOS) 
execution from the guest’s reset vector, it may need to initialize the guest execution state to reflect the 
state of a physical processor at power-on reset (described in Chapter 9, Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A). 

— The VMM may need to initialize additional guest execution state that is not captured in the VMCS guest-
state area by loading them directly on the respective processor registers. Examples include general 
purpose registers, the CR2 control register, debug registers, floating point registers and so forth. VMM may 
support lazy loading of FPU, MMX, SSE, and SSE2 states with CR0.TS = 1 (described in Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A).

• Execute VMLAUNCH to launch the guest VM. If VMLAUNCH fails due to any consistency checks before guest-
state loading, RFLAGS.CF or RFLAGS.ZF will be set and the VM-instruction error field (see Section 24.9.5) will 
contain the error-code. If guest-state consistency checks fail upon guest-state loading, the processor loads 
state from the host-state area as if a VM exit had occurred (see Section 31.6).

VMLAUNCH updates the controlling-VMCS pointer with the working-VMCS pointer and saves the old value of 
controlling-VMCS as the parent pointer. In addition, the launch state of the guest VMCS is changed to “launched” 
from “clear”. Any programmed exit conditions will cause the guest to VM exit to the VMM. The VMM should execute 
VMRESUME instruction for subsequent VM entries to guests in a “launched” state.

31.7 HANDLING OF VM EXITS

This section provides examples of software steps involved in a VMM’s handling of VM-exit conditions:
• Determine the exit reason through a VMREAD of the exit-reason field in the working-VMCS. Appendix C 

describes exit reasons and their encodings.
• VMREAD the exit-qualification from the VMCS if the exit-reason field provides a valid qualification. The exit-

qualification field provides additional details on the VM-exit condition. For example, in case of page faults, the 
exit-qualification field provides the guest linear address that caused the page fault.



31-8 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

• Depending on the exit reason, fetch other relevant fields from the VMCS. Appendix C lists the various exit 
reasons.

• Handle the VM-exit condition appropriately in the VMM. This may involve the VMM emulating one or more guest 
instructions, programming the underlying host hardware resources, and then re-entering the VM to continue 
execution. 

31.7.1 Handling VM Exits Due to Exceptions

As noted in Section 25.2, an exception causes a VM exit if the bit corresponding to the exception’s vector is set in 
the exception bitmap. (For page faults, the error code also determines whether a VM exit occurs.) This section 
provide some guidelines of how a VMM might handle such exceptions.

Exceptions result when a logical processor encounters an unusual condition that software may not have expected. 
When guest software encounters an exception, it may be the case that the condition was caused by the guest soft-
ware. For example, a guest application may attempt to access a page that is restricted to supervisor access. Alter-
natively, the condition causing the exception may have been established by the VMM. For example, a guest OS may 
attempt to access a page that the VMM has chosen to make not present.

When the condition causing an exception was established by guest software, the VMM may choose to reflect the 
exception to guest software. When the condition was established by the VMM itself, the VMM may choose to 
resume guest software after removing the condition.

31.7.1.1  Reflecting Exceptions to Guest Software

If the VMM determines that a VM exit was caused by an exception due to a condition established by guest software, 
it may reflect that exception to guest software. The VMM would cause the exception to be delivered to guest soft-
ware, where it can be handled as it would be if the guest were running on a physical machine. This section 
describes how that may be done.

In general, the VMM can deliver the exception to guest software using VM-entry event injection as described in 
Section 26.5. The VMM can copy (using VMREAD and VMWRITE) the contents of the VM-exit interruption-informa-
tion field (which is valid, since the VM exit was caused by an exception) to the VM-entry interruption-information 
field (which, if valid, will cause the exception to be delivered as part of the next VM entry). The VMM would also 
copy the contents of the VM-exit interruption error-code field to the VM-entry exception error-code field; this need 
not be done if bit 11 (error code valid) is clear in the VM-exit interruption-information field. After this, the VMM can 
execute VMRESUME.

The following items provide details that may qualify the general approach:
• Care should be taken to ensure that reserved bits 30:12 in the VM-entry interruption-information field are 0. In 

particular, some VM exits may set bit 12 in the VM-exit interruption-information field to indicate NMI 
unblocking due to IRET. If this bit is copied as 1 into the VM-entry interruption-information field, the next 
VM entry will fail because that bit should be 0.

• Bit 31 (valid) of the IDT-vectoring information field indicates, if set, that the exception causing the VM exit 
occurred while another event was being delivered to guest software. If this is the case, it may not be 
appropriate simply to reflect that exception to guest software. To provide proper virtualization of the exception 
architecture, a VMM should handle nested events as a physical processor would. Processor handling is 
described in Chapter 6, “Interrupt 8—Double Fault Exception (#DF)” in Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A.

— The VMM should reflect the exception causing the VM exit to guest software in any of the following cases:

• The value of bits 10:8 (interruption type) of the IDT-vectoring information field is anything other than 3 
(hardware exception).

• The value of bits 7:0 (vector) of the IDT-vectoring information field indicates a benign exception (1, 2, 
3, 4, 5, 6, 7, 9, 16, 17, 18, or 19).

• The value of bits 7:0 (vector) of the VM-exit interruption-information field indicates a benign exception.
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• The value of bits 7:0 of the IDT-vectoring information field indicates a contributory exception (0, 10, 
11, 12, or 13) and the value of bits 7:0 of the VM-exit interruption-information field indicates a page 
fault (14).

— If the value of bits 10:8 of the IDT-vectoring information field is 3 (hardware exception), the VMM should 
reflect a double-fault exception to guest software in any of the following cases:

• The value of bits 7:0 of the IDT-vectoring information field and the value of bits 7:0 of the VM-exit 
interruption-information field each indicates a contributory exception.

• The value of bits 7:0 of the IDT-vectoring information field indicates a page fault and the value of 
bits 7:0 of the VM-exit interruption-information field indicates either a contributory exception or a page 
fault.

A VMM can reflect a double-fault exception to guest software by setting the VM-entry interruption-
information and VM-entry exception error-code fields as follows:

• Set bits 7:0 (vector) of the VM-entry interruption-information field to 8 (#DF).

• Set bits 10:8 (interruption type) of the VM-entry interruption-information field to 3 (hardware 
exception).

• Set bit 11 (deliver error code) of the VM-entry interruption-information field to 1.

• Clear bits 30:12 (reserved) of VM-entry interruption-information field.

• Set bit 31 (valid) of VM-entry interruption-information field.

• Set the VM-entry exception error-code field to zero.

— If the value of bits 10:8 of the IDT-vectoring information field is 3 (hardware exception) and the value of 
bits 7:0 is 8 (#DF), guest software would have encountered a triple fault. Event injection should not be 
used in this case. The VMM may choose to terminate the guest, or it might choose to enter the guest in the 
shutdown activity state.

31.7.1.2  Resuming Guest Software after Handling an Exception

If the VMM determines that a VM exit was caused by an exception due to a condition established by the VMM itself, 
it may choose to resume guest software after removing the condition. The approach for removing the condition 
may be specific to the VMM’s software architecture. and algorithms This section describes how guest software may 
be resumed after removing the condition.

In general, the VMM can resume guest software simply by executing VMRESUME. The following items provide 
details of cases that may require special handling:
• If the “NMI exiting” VM-execution control is 0, bit 12 of the VM-exit interruption-information field indicates that 

the VM exit was due to a fault encountered during an execution of the IRET instruction that unblocked non-
maskable interrupts (NMIs). In particular, it provides this indication if the following are both true:

— Bit 31 (valid) in the IDT-vectoring information field is 0.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is not 8 (the VM exit is not due 
to a double-fault exception).

If both are true and bit 12 of the VM-exit interruption-information field is 1, NMIs were blocked before guest 
software executed the IRET instruction that caused the fault that caused the VM exit. The VMM should set bit 3 
(blocking by NMI) in the interruptibility-state field (using VMREAD and VMWRITE) before resuming guest 
software.

• If the “virtual NMIs” VM-execution control is 1, bit 12 of the VM-exit interruption-information field indicates 
that the VM exit was due to a fault encountered during an execution of the IRET instruction that removed 
virtual-NMI blocking. In particular, it provides this indication if the following are both true:

— Bit 31 (valid) in the IDT-vectoring information field is 0.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is not 8 (the VM exit is not due 
to a double-fault exception).

If both are true and bit 12 of the VM-exit interruption-information field is 1, there was virtual-NMI blocking 
before guest software executed the IRET instruction that caused the fault that caused the VM exit. The VMM 
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should set bit 3 (blocking by NMI) in the interruptibility-state field (using VMREAD and VMWRITE) before 
resuming guest software. 

• Bit 31 (valid) of the IDT-vectoring information field indicates, if set, that the exception causing the VM exit 
occurred while another event was being delivered to guest software. The VMM should ensure that the other 
event is delivered when guest software is resumed. It can do so using the VM-entry event injection described 
in Section 26.5 and detailed in the following paragraphs:

— The VMM can copy (using VMREAD and VMWRITE) the contents of the IDT-vectoring information field 
(which is presumed valid) to the VM-entry interruption-information field (which, if valid, will cause the 
exception to be delivered as part of the next VM entry).

• The VMM should ensure that reserved bits 30:12 in the VM-entry interruption-information field are 0. In 
particular, the value of bit 12 in the IDT-vectoring information field is undefined after all VM exits. If this 
bit is copied as 1 into the VM-entry interruption-information field, the next VM entry will fail because the 
bit should be 0.

• If the “virtual NMIs” VM-execution control is 1 and the value of bits 10:8 (interruption type) in the IDT-
vectoring information field is 2 (indicating NMI), the VM exit occurred during delivery of an NMI that had 
been injected as part of the previous VM entry. In this case, bit 3 (blocking by NMI) will be 1 in the inter-
ruptibility-state field in the VMCS. The VMM should clear this bit; otherwise, the next VM entry will fail 
(see Section 26.3.1.5).

— The VMM can also copy the contents of the IDT-vectoring error-code field to the VM-entry exception error-
code field. This need not be done if bit 11 (error code valid) is clear in the IDT-vectoring information field.

— The VMM can also copy the contents of the VM-exit instruction-length field to the VM-entry instruction-
length field. This need be done only if bits 10:8 (interruption type) in the IDT-vectoring information field 
indicate either software interrupt, privileged software exception, or software exception.

31.8 MULTI-PROCESSOR CONSIDERATIONS

The most common VMM design will be the symmetric VMM. This type of VMM runs the same VMM binary on all 
logical processors. Like a symmetric operating system, the symmetric VMM is written to ensure all critical data is 
updated by only one processor at a time, IO devices are accessed sequentially, and so forth. Asymmetric VMM 
designs are possible. For example, an asymmetric VMM may run its scheduler on one processor and run just 
enough of the VMM on other processors to allow the correct execution of guest VMs. The remainder of this section 
focuses on the multi-processor considerations for a symmetric VMM.

A symmetric VMM design does not preclude asymmetry in its operations. For example, a symmetric VMM can 
support asymmetric allocation of logical processor resources to guests. Multiple logical processors can be brought 
into a single guest environment to support an MP-aware guest OS. Because an active VMCS can not control more 
than one logical processor simultaneously, a symmetric VMM must make copies of its VMCS to control the VM allo-
cated to support an MP-aware guest OS. Care must be taken when accessing data structures shared between these 
VMCSs. See Section 31.8.4.

Although it may be easier to develop a VMM that assumes a fully-symmetric view of hardware capabilities (with all 
processors supporting the same processor feature sets, including the same revision of VMX), there are advantages 
in developing a VMM that comprehends different levels of VMX capability (reported by VMX capability MSRs). One 
possible advantage of such an approach could be that an existing software installation (VMM and guest software 
stack) could continue to run without requiring software upgrades to the VMM, when the software installation is 
upgraded to run on hardware with enhancements in the processor’s VMX capabilities. Another advantage could be 
that a single software installation image, consisting of a VMM and guests, could be deployed to multiple hardware 
platforms with varying VMX capabilities. In such cases, the VMM could fall back to a common subset of VMX 
features supported by all VMX revisions, or choose to understand the asymmetry of the VMX capabilities and assign 
VMs accordingly. 

This section outlines some of the considerations to keep in mind when developing an MP-aware VMM.
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31.8.1 Initialization

Before enabling VMX, an MP-aware VMM must check to make sure that all processors in the system are compatible 
and support features required. This can be done by:
• Checking the CPUID on each logical processor to ensure VMX is supported and that the overall feature set of 

each logical processor is compatible.
• Checking VMCS revision identifiers on each logical processor.
• Checking each of the “allowed-1” or “allowed-0” fields of the VMX capability MSR’s on each processor.

31.8.2 Moving a VMCS Between Processors

An MP-aware VMM is free to assign any logical processor to a VM. But for performance considerations, moving a 
guest VMCS to another logical processor is slower than resuming that guest VMCS on the same logical processor. 
Certain VMX performance features (such as caching of portions of the VMCS in the processor) are optimized for a 
guest VMCS that runs on the same logical processor. 

The reasons are:
• To restart a guest on the same logical processor, a VMM can use VMRESUME. VMRESUME is expected to be 

faster than VMLAUNCH in general.
• To migrate a VMCS to another logical processor, a VMM must use the sequence of VMCLEAR, VMPTRLD and 

VMLAUNCH.
• Operations involving VMCLEAR can impact performance negatively. See

Section 24.11.3.

A VMM scheduler should make an effort to schedule a guest VMCS to run on the logical processor where it last ran. 
Such a scheduler might also benefit from doing lazy VMCLEARs (that is: performing a VMCLEAR on a VMCS only 
when the scheduler knows the VMCS is being moved to a new logical processor). The remainder of this section 
describes the steps a VMM must take to move a VMCS from one processor to another.

A VMM must check the VMCS revision identifier in the VMX capability MSR IA32_VMX_BASIC to determine if the 
VMCS regions are identical between all logical processors. If the VMCS regions are identical (same revision ID) the 
following sequence can be used to move or copy the VMCS from one logical processor to another:
• Perform a VMCLEAR operation on the source logical processor. This ensures that all VMCS data that may be 

cached by the processor are flushed to memory.
• Copy the VMCS region from one memory location to another location. This is an optional step assuming the 

VMM wishes to relocate the VMCS or move the VMCS to another system.
• Perform a VMPTRLD of the physical address of VMCS region on the destination processor to establish its current 

VMCS pointer.

If the revision identifiers are different, each field must be copied to an intermediate structure using individual reads 
(VMREAD) from the source fields and writes (VMWRITE) to destination fields. Care must be taken on fields that are 
hard-wired to certain values on some processor implementations.

31.8.3 Paired Index-Data Registers

A VMM may need to virtualize hardware that is visible to software using paired index-data registers. Paired index-
data register interfaces, such as those used in PCI (CF8, CFC), require special treatment in cases where a VM 
performing writes to these pairs can be moved during execution. In this case, the index (e.g. CF8) should be part 
of the virtualized state. If the VM is moved during execution, writes to the index should be redone so subsequent 
data reads/writes go to the right location.

31.8.4 External Data Structures

Certain fields in the VMCS point to external data structures (for example: the MSR bitmap, the I/O bitmaps). If a 
logical processor is in VMX non-root operation, none of the external structures referenced by that logical 



31-12 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

processor's current VMCS should be modified by any logical processor or DMA. Before updating one of these struc-
tures, the VMM must ensure that no logical processor whose current VMCS references the structure is in VMX non-
root operation. 

If a VMM uses multiple VMCS with each VMCS using separate external structures, and these structures must be 
kept synchronized, the VMM must apply the same care to updating these structures.

31.8.5 CPUID Emulation

CPUID reports information that is used by OS and applications to detect hardware features. It also provides multi-
threading/multi-core configuration information. For example, MP-aware OSs rely on data reported by CPUID to 
discover the topology of logical processors in a platform (see Section 8.9, “Programming Considerations for Hard-
ware Multi-Threading Capable Processors,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A). 

If a VMM is to support asymmetric allocation of logical processor resources to guest OSs that are MP aware, then 
the VMM must emulate CPUID for its guests. The emulation of CPUID by the VMM must ensure the guest’s view of 
CPUID leaves are consistent with the logical processor allocation committed by the VMM to each guest OS.

31.9 32-BIT AND 64-BIT GUEST ENVIRONMENTS

For the most part, extensions provided by VMX to support virtualization are orthogonal to the extensions provided 
by Intel 64 architecture. There are considerations that impact VMM designs. These are described in the following 
subsections.

31.9.1 Operating Modes of Guest Environments

For Intel 64 processors, VMX operation supports host and guest environments that run in IA-32e mode or without 
IA-32e mode. VMX operation also supports host and guest environments on IA-32 processors. 

A VMM entering VMX operation while IA-32e mode is active is considered to be an IA-32e mode host. A VMM 
entering VMX operation while IA-32e mode is not activated or not available is referred to as a 32-bit VMM. The type 
of guest operations such VMMs support are summarized in Table 31-1.

A VM exit may occur to an IA-32e mode guest in either 64-bit sub-mode or compatibility sub-mode of IA-32e 
mode. VMMs may resume guests in either mode. The sub-mode in which an IA-32e mode guest resumes VMX non-
root operation is determined by the attributes of the code segment which experienced the VM exit. If CS.L = 1, the 
guest is executing in 64-bit mode; if CS.L = 0, the guest is executing in compatibility mode (see Section 31.9.5).

Not all of an IA-32e mode VMM must run in 64-bit mode. While some parts of an IA-32e mode VMM must run in 64-
bit mode, there are only a few restrictions preventing a VMM from executing in compatibility mode. The most 
notable restriction is that most VMX instructions cause exceptions when executed in compatibility mode. 

31.9.2 Handling Widths of VMCS Fields

Individual VMCS control fields must be accessed using VMREAD or VMWRITE instructions. Outside of 64-Bit mode, 
VMREAD and VMWRITE operate on 32 bits of data. The widths of VMCS control fields may vary depending on 
whether a processor supports Intel 64 architecture.

Table 31-1.  Operating Modes for Host and Guest Environments

Capability Guest Operation 
in IA-32e mode

Guest Operation 
Not Requiring IA-32e Mode

IA-32e mode VMM Yes Yes

32-bit VMM Not supported Yes
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Many VMCS fields are architected to extend transparently on processors supporting Intel 64 architecture (64 bits 
on processors that support Intel 64 architecture, 32 bits on processors that do not). Some VMCS fields are 64-bits 
wide regardless of whether the processor supports Intel 64 architecture or is in IA-32e mode.

31.9.2.1  Natural-Width VMCS Fields

Many VMCS fields operate using natural width. Such fields return (on reads) and set (on writes) 32-bits when oper-
ating in 32-bit mode and 64-bits when operating in 64-bit mode. For the most part, these fields return the naturally 
expected data widths. The “Guest RIP” field in the VMCS guest-state area is an example of this type of field.

31.9.2.2  64-Bit VMCS Fields

Unlike natural width fields, these fields are fixed to 64-bit width on all processors. When in 64-bit mode, reads of 
these fields return 64-bit wide data and writes to these fields write 64-bits. When outside of 64-bit mode, reads of 
these fields return the low 32-bits and writes to these fields write the low 32-bits and zero the upper 32-bits. 
Should a non-IA-32e mode host require access to the upper 32-bits of these fields, a separate VMCS encoding is 
used when issuing VMREAD/VMWRITE instructions.

The VMCS control field “MSR bitmap address” (which contains the physical address of a region of memory which 
specifies which MSR accesses should generate VM-exits) is an example of this type of field. Specifying encoding 
00002004H to VMREAD returns the lower 32-bits to non-IA-32e mode hosts and returns 64-bits to 64-bit hosts. 
The separate encoding 00002005H returns only the upper 32-bits. 

31.9.3 IA-32e Mode Hosts

An IA-32e mode host is required to support 64-bit guest environments. Because activating IA-32e mode currently 
requires that paging be disabled temporarily and VMX entry requires paging to be enabled, IA-32e mode must be 
enabled before entering VMX operation. For this reason, it is not possible to toggle in and out of IA-32e mode in a 
VMM.

Section 31.5 describes the steps required to launch a VMM. An IA-32e mode host is also required to set the “host 
address-space size” VMCS VM-exit control to 1. The value of this control is then loaded in the IA32_EFER.LME/LMA 
and CS.L bits on each VM exit. This establishes a 64-bit host environment as execution transfers to the VMM entry 
point. At a minimum, the entry point is required to be in a 64-bit code segment. Subsequently, the VMM can, if it 
chooses, switch to 32-bit compatibility mode on a code-segment basis (see Section 31.9.1). Note, however, that 
VMX instructions other than VMCALL and VMFUNC are not supported in compatibility mode; they generate an 
invalid opcode exception if used. 

The following VMCS controls determine the value of IA32_EFER when a VM exit occurs: the “host address-space 
size” control (described above), the “load IA32_EFER” VM-exit control, the “VM-exit MSR-load count,” and the “VM-
exit MSR-load address” (see Section 27.3).

If the “load IA32_EFER” VM-exit control is 1, the value of the LME and LMA bits in the IA32_EFER field in the host-
state area must be the value of the “host address-space size” VM-exit control.

The loading of IA32_EFER.LME/LMA and CS.L bits established by the “host address-space size” control precede any 
loading of the IA32_EFER MSR due from the VM-exit MSR-load area. If IA32_EFER is specified in the VM-exit MSR-
load area, the value of the LME bit in the load image of IA32_EFER should match the setting of the “host address-
space size” control. Otherwise the attempt to modify the LME bit (while paging is enabled) will lead to a VMX-abort. 
However, IA32_EFER.LMA is always set by the processor to equal IA32_EFER.LME & CR0.PG; the value specified 
for LMA in the load image of the IA32_EFER MSR is ignored. For these and performance reasons, VMM writers may 
choose to not use the VM-exit/entry MSR-load/save areas for IA32_EFER.

On a VMM teardown, VMX operation should be exited before deactivating IA-32e mode if the latter is required.

31.9.4 IA-32e Mode Guests

A 32-bit guest can be launched by either IA-32e-mode hosts or non-IA-32e-mode hosts. A 64-bit guests can only 
be launched by a IA-32e-mode host.
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In addition to the steps outlined in Section 31.6, VMM writers need to: 
• Set the “IA-32e-mode guest” VM-entry control to 1 in the VMCS to assure VM-entry (VMLAUNCH or 

VMRESUME) will establish a 64-bit (or 32-bit compatible) guest operating environment. 
• Enable paging (CR0.PG) and PAE mode (CR4.PAE) to assure VM-entry to a 64-bit guest will succeed. 
• Ensure that the host to be in IA-32e mode (the IA32_EFER.LMA must be set to 1) and the setting of the VM-exit 

“host address-space size” control bit in the VMCS must also be set to 1. 

If each of the above conditions holds true, then VM-entry will copy the value of the VM-entry “IA-32e-mode guest” 
control bit into the guests IA32_EFER.LME bit, which will result in subsequent activation of IA-32e mode. If any of 
the above conditions is false, the VM-entry will fail and load state from the host-state area of the working VMCS as 
if a VM exit had occurred (see Section 26.7).

The following VMCS controls determine the value of IA32_EFER on a VM entry: the “IA-32e-mode guest” VM-entry 
control (described above), the “load IA32_EFER” VM-entry control, the “VM-entry MSR-load count,” and the “VM-
entry MSR-load address” (see Section 26.4).

If the “load IA32_EFER” VM-entry control is 1, the value of the LME and LMA bits in the IA32_EFER field in the 
guest-state area must be the value of the “IA-32e-mode guest” VM-entry control. Otherwise, the VM entry fails.

The loading of IA32_EFER.LME bit (described above) precedes any loading of the IA32_EFER MSR from the VM-
entry MSR-load area of the VMCS. If loading of IA32_EFER is specified in the VM-entry MSR-load area, the value of 
the LME bit in the load image should be match the setting of the “IA-32e-mode guest” VM-entry control. Otherwise, 
the attempt to modify the LME bit (while paging is enabled) results in a failed VM entry. However, IA32_EFER.LMA 
is always set by the processor to equal IA32_EFER.LME & CR0.PG; the value specified for LMA in the load image of 
the IA32_EFER MSR is ignored. For these and performance reasons, VMM writers may choose to not use the VM-
exit/entry MSR-load/save areas for IA32_EFER MSR.

Note that the VMM can control the processor’s architectural state when transferring control to a VM. VMM writers 
may choose to launch guests in protected mode and subsequently allow the guest to activate IA-32e mode or they 
may allow guests to toggle in and out of IA-32e mode. In this case, the VMM should require VM exit on accesses to 
the IA32_EFER MSR to detect changes in the operating mode and modify the VM-entry “IA-32e-mode guest” 
control accordingly.

A VMM should save/restore the extended (full 64-bit) contents of the guest general-purpose registers, the new 
general-purpose registers (R8-R15) and the SIMD registers introduced in 64-bit mode should it need to modify 
these upon VM exit. 

31.9.5 32-Bit Guests

To launch or resume a 32-bit guest, VMM writers can follow the steps outlined in Section 31.6, making sure that the 
“IA-32e-mode guest” VM-entry control bit is set to 0. Then the “IA-32e-mode guest” control bit is copied into the 
guest IA32_EFER.LME bit, establishing IA32_EFER.LMA as 0. 

31.10 HANDLING MODEL SPECIFIC REGISTERS

Model specific registers (MSR) provide a wide range of functionality. They affect processor features, control the 
programming interfaces, or are used in conjunction with specific instructions. As part of processor virtualization, a 
VMM may wish to protect some or all MSR resources from direct guest access. 

VMX operation provides the following features to virtualize processor MSRs.

31.10.1 Using VM-Execution Controls

Processor-based VM-execution controls provide two levels of support for handling guest access to processor MSRs 
using RDMSR and WRMSR:
• MSR bitmaps: In VMX implementations that support a 1-setting (see Appendix A) of the user-MSR-bitmaps 

execution control bit, MSR bitmaps can be used to provide flexibility in managing guest MSR accesses. The 
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MSR-bitmap-address in the guest VMCS can be programmed by VMM to point to a bitmap region which 
specifies VM-exit behavior when reading and writing individual MSRs. 
MSR bitmaps form a 4-KByte region in physical memory and are required to be aligned to a 4-KByte boundary. 
The first 1-KByte region manages read control of MSRs in the range 00000000H-00001FFFH; the second 1-
KByte region covers read control of MSR addresses in the range C0000000H-C0001FFFH. The bitmaps for write 
control of these MSRs are located in the 2-KByte region immediately following the read control bitmaps. While 
the MSR bitmap address is part of VMCS, the MSR bitmaps themselves are not. This implies MSR bitmaps are 
not accessible through VMREAD and VMWRITE instructions but rather by using ordinary memory writes. Also, 
they are not specially cached by the processor and may be placed in normal cache-coherent memory by the 
VMM. 
When MSR bitmap addresses are properly programmed and the use-MSR-bitmap control (see Section 24.6.2) 
is set, the processor consults the associated bit in the appropriate bitmap on guest MSR accesses to the corre-
sponding MSR and causes a VM exit if the bit in the bitmap is set. Otherwise, the access is permitted to 
proceed. This level of protection may be utilized by VMMs to selectively allow guest access to some MSRs while 
virtualizing others. 

• Default MSR protection: If the use-MSR-bitmap control is not set, an attempt by a guest to access any MSR 
causes a VM exit. This also occurs for any attempt to access an MSR outside the ranges identified above (even 
if the use-MSR-bitmap control is set).

VM exits due to guest MSR accesses may be identified by the VMM through VM-exit reason codes. The MSR-read 
exit reason implies guest software attempted to read an MSR protected either by default or through MSR bitmaps. 
The MSR-write exit reason implies guest software attempting to write a MSR protected through the VM-execution 
controls. Upon VM exits caused by MSR accesses, the VMM may virtualize the guest MSR access through emulation 
of RDMSR/WRMSR.

31.10.2 Using VM-Exit Controls for MSRs

If a VMM allows its guest to access MSRs directly, the VMM may need to store guest MSR values and load host MSR 
values for these MSRs on VM exits. This is especially true if the VMM uses the same MSRs while in VMX root oper-
ation. 

A VMM can use the VM-exit MSR-store-address and the VM-exit MSR-store-count exit control fields (see Section 
24.7.2) to manage how MSRs are stored on VM exits. The VM-exit MSR-store-address field contains the physical 
address (16-byte aligned) of the VM-exit MSR-store area (a table of entries with 16 bytes per entry). Each table 
entry specifies an MSR whose value needs to be stored on VM exits. The VM-exit MSR-store-count contains the 
number of entries in the table.

Similarly the VM-exit MSR-load-address and VM-exit MSR-load-count fields point to the location and size of the VM-
exit MSR load area. The entries in the VM-exit MSR-load area contain the host expected values of specific MSRs 
when a VM exit occurs. 

Upon VM-exit, bits 127:64 of each entry in the VM-exit MSR-store area is updated with the contents of the MSR 
indexed by bits 31:0. Also, bits 127:64 of each entry in the VM-exit MSR-load area is updated by loading with 
values from bits 127:64 the contents of the MSR indexed by bits 31:0. 

31.10.3 Using VM-Entry Controls for MSRs

A VMM may require specific MSRs to be loaded explicitly on VM entries while launching or resuming guest execu-
tion. The VM-entry MSR-load-address and VM-entry MSR-load-count entry control fields determine how MSRs are 
loaded on VM-entries. The VM-entry MSR-load-address and count fields are similar in structure and function to the 
VM-exit MSR-load address and count fields, except the MSR loading is done on VM-entries.

31.10.4 Handling Special-Case MSRs and Instructions

A number of instructions make use of designated MSRs in their operation. The VMM may need to consider saving 
the states of those MSRs. Instructions that merit such consideration include SYSENTER/SYSEXIT, 
SYSCALL/SYSRET, SWAPGS. 
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31.10.4.1  Handling IA32_EFER MSR

The IA32_EFER MSR includes bit fields that allow system software to enable processor features. For example: the 
SCE bit enables SYSCALL/SYSRET and the NXE bit enables the execute-disable bits in the paging-structure entries. 

VMX provides hardware support to load the IA32_EFER MSR on VMX transitions and to save it on VM exits. Because 
of this, VMM software need not use the RDMSR and WRMSR instruction to give the register different values during 
host and guest execution. 

31.10.4.2  Handling the SYSENTER and SYSEXIT Instructions

The SYSENTER and SYSEXIT instructions use three dedicated MSRs (IA32_SYSENTER_CS, IA32_SYSENTER_ESP 
and IA32_SYSENTER_EIP) to manage fast system calls. These MSRs may be utilized by both the VMM and the 
guest OS to manage system calls in VMX root operation and VMX non-root operation respectively. 

VM entries load these MSRs from fields in the guest-state area of the VMCS. VM exits save the values of these MSRs 
into those fields and loads the MSRs from fields in the host-state area.

31.10.4.3  Handling the SYSCALL and SYSRET Instructions

The SYSCALL/SYSRET instructions are similar to SYSENTER/SYSEXIT but are designed to operate within the 
context of a 64-bit flat code segment. They are available only in 64-bit mode and only when the SCE bit of the 
IA32_EFER MSR is set. SYSCALL/SYSRET invocations can occur from either 32-bit compatibility mode application 
code or from 64-bit application code. Three related MSR registers (IA32_STAR, IA32_LSTAR, IA32_FMASK) are 
used in conjunction with fast system calls/returns that use these instructions.

64-Bit hosts which make use of these instructions in the VMM environment will need to save the guest state of the 
above registers on VM exit, load the host state, and restore the guest state on VM entry. One possible approach is 
to use the VM-exit MSR-save and MSR-load areas and the VM-entry MSR-load area defined by controls in the VMCS. 
A disadvantage to this approach, however, is that the approach results in the unconditional saving, loading, and 
restoring of MSR registers on each VM exit or VM entry.

Depending on the design of the VMM, it is likely that many VM-exits will require no fast system call support but the 
VMM will be burdened with the additional overhead of saving and restoring MSRs if the VMM chooses to support fast 
system call uniformly. Further, even if the host intends to support fast system calls during a VM-exit, some of the 
MSR values (such as the setting of the SCE bit in IA32_EFER) may not require modification as they may already be 
set to the appropriate value in the guest. 

For performance reasons, a VMM may perform lazy save, load, and restore of these MSR values on certain VM exits 
when it is determined that this is acceptable. The lazy-save-load-restore operation can be carried out “manually” 
using RDMSR and WRMSR.

31.10.4.4  Handling the SWAPGS Instruction

The SWAPGS instruction is available only in 64-bit mode. It swaps the contents of two specific MSRs 
(IA32_GSBASE and IA32_KERNEL_GSBASE). The IA32_GSBASE MSR shadows the base address portion of the GS 
descriptor register; the IA32_KERNEL_GSBASE MSR holds the base address of the GS segment used by the kernel 
(typically it houses kernel structures). SWAPGS is intended for use with fast system calls when in 64-bit mode to 
allow immediate access to kernel structures on transition to kernel mode.

Similar to SYSCALL/SYSRET, IA-32e mode hosts which use fast system calls may need to save, load, and restore 
these MSR registers on VM exit and VM entry using the guidelines discussed in previous paragraphs.

31.10.4.5  Implementation Specific Behavior on Writing to Certain MSRs 

As noted in Section 26.4 and Section 27.4, a processor may prevent writing to certain MSRs when loading guest 
states on VM entries or storing guest states on VM exits. This is done to ensure consistent operation. The subset 
and number of MSRs subject to restrictions are implementation specific. For initial VMX implementations, there are 
two MSRs: IA32_BIOS_UPDT_TRIG and IA32_BIOS_SIGN_ID (see Chapter 35).
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31.10.5 Handling Accesses to Reserved MSR Addresses

Privileged software (either a VMM or a guest OS) can access a model specific register by specifying addresses in 
MSR address space. VMMs, however, must prevent a guest from accessing reserved MSR addresses in MSR address 
space. 

Consult Chapter 35 for lists of supported MSRs and their usage. Use the MSR bitmap control to cause a VM exit 
when a guest attempts to access a reserved MSR address. The response to such a VM exit should be to reflect 
#GP(0) back to the guest.

31.11 HANDLING ACCESSES TO CONTROL REGISTERS

Bit fields in control registers (CR0, CR4) control various aspects of processor operation. The VMM must prevent 
guests from modifying bits in CR0 or CR4 that are reserved at the time the VMM is written. 

Guest/host masks should be used by the VMM to cause VM exits when a guest attempts to modify reserved bits. 
Read shadows should be used to ensure that the guest always reads the reserved value (usually 0) for such bits. 
The VMM response to VM exits due to attempts from a guest to modify reserved bits should be to emulate the 
response which the processor would have normally produced (usually a #GP(0)).

31.12 PERFORMANCE CONSIDERATIONS

VMX provides hardware features that may be used for improving processor virtualization performance. VMMs must 
be designed to use this support properly. The basic idea behind most of these performance optimizations of the 
VMM is to reduce the number of VM exits while executing a guest VM. 

This section lists ways that VMMs can take advantage of the performance enhancing features in VMX.
• Read Access to Control Registers. Analysis of common client workloads with common PC operating systems 

in a virtual machine shows a large number of VM-exits are caused by control register read accesses (particu-
larly CR0). Reads of CR0 and CR4 does not cause VM exits. Instead, they return values from the CR0/CR4 read-
shadows configured by the VMM in the guest controlling-VMCS with the guest-expected values.

• Write Access to Control Registers. Most VMM designs require only certain bits of the control registers to be 
protected from direct guest access. Write access to CR0/CR4 registers can be reduced by defining the host-
owned and guest-owned bits in them through the CR0/CR4 host/guest masks in the VMCS. CR0/CR4 write 
values by the guest are qualified with the mask bits. If they change only guest-owned bits, they are allowed 
without causing VM exits. Any write that cause changes to host-owned bits cause VM exits and need to be 
handled by the VMM.

• Access Rights based Page Table protection. For VMM that implement access-rights-based page table 
protection, the VMCS provides a CR3 target value list that can be consulted by the processor to determine if a 
VM exit is required. Loading of CR3 with a value matching an entry in the CR3 target-list are allowed to proceed 
without VM exits. The VMM can utilize the CR3 target-list to save page-table hierarchies whose state is 
previously verified by the VMM.

• Page-fault handling. Another common cause for a VM exit is due to page-faults induced by guest address 
remapping done through virtual memory virtualization. VMX provides page-fault error-code mask and match 
fields in the VMCS to filter VM exits due to page-faults based on their cause (reflected in the error-code).

31.13 USE OF THE VMX-PREEMPTION TIMER

The VMX-preemption timer allows VMM software to preempt guest VM execution after a specified amount of time. 
Typical VMX-preemption timer usage is to program the initial VM quantum into the timer, save the timer value on 
each successive VM-exit (using the VM-exit control “save preemption timer value”) and run the VM until the timer 
expires. 

In an alternative scenario, the VMM may use another timer (e.g. the TSC) to track the amount of time the VM has 
run while still using the VMX-preemption timer for VM preemption. In this scenario the VMM would not save the 



31-18 Vol. 3C

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

VMX-preemption timer on each VM-exit but instead would reload the VMX-preemption timer with initial VM 
quantum less the time the VM has already run. This scenario includes all the VM-entry and VM-exit latencies in the 
VM run time. 

In both scenarios, on each successive VM-entry the VMX-preemption timer contains a smaller value until the VM 
quantum ends. If the VMX-preemption timer is loaded with a value smaller than the VM-entry latency then the VM 
will not execute any instructions before the timer expires. The VMM must ensure the initial VM quantum is greater 
than the VM-entry latency; otherwise the VM will make no forward progress.
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CHAPTER 32
VIRTUALIZATION OF SYSTEM RESOURCES

32.1 OVERVIEW

When a VMM is hosting multiple guest environments (VMs), it must monitor potential interactions between soft-
ware components using the same system resources. These interactions can require the virtualization of resources. 
This chapter describes the virtualization of system resources. These include: debugging facilities, address transla-
tion, physical memory, and microcode update facilities.

32.2 VIRTUALIZATION SUPPORT FOR DEBUGGING FACILITIES

The Intel 64 and IA-32 debugging facilities (see Chapter 17) provide breakpoint instructions, exception conditions, 
register flags, debug registers, control registers and storage buffers for functions related to debugging system and 
application software. In VMX operation, a VMM can support debugging system and application software from within 
virtual machines if the VMM properly virtualizes debugging facilities. The following list describes features relevant 
to virtualizing these facilities. 
• The VMM can program the exception-bitmap (see Section 24.6.3) to ensure it gets control on debug functions 

(like breakpoint exceptions occurring while executing guest code such as INT3 instructions). Normally, debug 
exceptions modify debug registers (such as DR6, DR7, IA32_DEBUGCTL). However, if debug exceptions cause 
VM exits, exiting occurs before register modification.

• The VMM may utilize the VM-entry event injection facilities described in Section 26.5 to inject debug or 
breakpoint exceptions to the guest. See Section 32.2.1 for a more detailed discussion.

• The MOV-DR exiting control bit in the processor-based VM-execution control field (see Section 24.6.2) can be 
enabled by the VMM to cause VM exits on explicit guest access of various processor debug registers (for 
example, MOV to/from DR0-DR7). These exits would always occur on guest access of DR0-DR7 registers 
regardless of the values in CPL, DR4.DE or DR7.GD. Since all guest task switches cause VM exits, a VMM can 
control any indirect guest access or modification of debug registers during guest task switches.

• Guest software access to debug-related model-specific registers (such as IA32_DEBUGCTL MSR) can be 
trapped by the VMM through MSR access control features (such as the MSR-bitmaps that are part of processor-
based VM-execution controls). See Section 31.10 for details on MSR virtualization.

• Debug registers such as DR7 and the IA32_DEBUGCTL MSR may be explicitly modified by the guest (through 
MOV-DR or WRMSR instructions) or modified implicitly by the processor as part of generating debug 
exceptions. The current values of DR7 and the IA32_DEBUGCTL MSR are saved to guest-state area of VMCS on 
every VM exit. Pending debug exceptions are debug exceptions that are recognized by the processor but not yet 
delivered. See Section 26.6.3 for details on pending debug exceptions. 

• DR7 and the IA32-DEBUGCTL MSR are loaded from values in the guest-state area of the VMCS on every VM 
entry. This allows the VMM to properly virtualize debug registers when injecting debug exceptions to guest. 
Similarly, the RFLAGS1 register is loaded on every VM entry (or pushed to stack if injecting a virtual event) from 
guest-state area of the VMCS. Pending debug exceptions are also loaded from guest-state area of VMCS so that 
they may be delivered after VM entry is completed.

32.2.1 Debug Exceptions

If a VMM emulates a guest instruction that would encounter a debug trap (single step or data or I/O breakpoint), it 
should cause that trap to be delivered. The VMM should not inject the debug exception using VM-entry event injec-
tion, but should set the appropriate bits in the pending debug exceptions field. This method will give the trap the 

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit 
forms of those registers (EAX, EIP, ESP, EFLAGS, etc.).
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right priority with respect to other events. (If the exception bitmap was programmed to cause VM exits on debug 
exceptions, the debug trap will cause a VM exit. At this point, the trap can be injected during VM entry with the 
proper priority.)

There is a valid pending debug exception if the BS bit (see Table 24-4) is set, regardless of the values of RFLAGS.TF 
or IA32_DEBUGCTL.BTF. The values of these bits do not impact the delivery of pending debug exceptions. 

VMMs should exercise care when emulating a guest write (attempted using WRMSR) to IA32_DEBUGCTL to modify 
BTF if this is occurring with RFLAGS.TF = 1 and after a MOV SS or POP SS instruction (for example: while debug 
exceptions are blocked). Note the following:
• Normally, if WRMSR clears BTF while RFLAGS.TF = 1 and with debug exceptions blocked, a single-step trap will 

occur after WRMSR. A VMM emulating such an instruction should set the BS bit (see Table 24-4) in the pending 
debug exceptions field before VM entry.

• Normally, if WRMSR sets BTF while RFLAGS.TF = 1 and with debug exceptions blocked, neither a single-step 
trap nor a taken-branch trap can occur after WRMSR. A VMM emulating such an instruction should clear the BS 
bit (see Table 24-4) in the pending debug exceptions field before VM entry.

32.3 MEMORY VIRTUALIZATION

VMMs must control physical memory to ensure VM isolation and to remap guest physical addresses in host physical 
address space for virtualization. Memory virtualization allows the VMM to enforce control of physical memory and 
yet support guest OSs’ expectation to manage memory address translation.

32.3.1 Processor Operating Modes & Memory Virtualization

Memory virtualization is required to support guest execution in various processor operating modes. This includes: 
protected mode with paging, protected mode with no paging, real-mode and any other transient execution modes. 
VMX allows guest operation in protected-mode with paging enabled and in virtual-8086 mode (with paging 
enabled) to support guest real-mode execution. Guest execution in transient operating modes (such as in real 
mode with one or more segment limits greater than 64-KByte) must be emulated by the VMM. 

Since VMX operation requires processor execution in protected mode with paging (through CR0 and CR4 fixed bits), 
the VMM may utilize paging structures to support memory virtualization. To support guest real-mode execution, 
the VMM may establish a simple flat page table for guest linear to host physical address mapping. Memory virtual-
ization algorithms may also need to capture other guest operating conditions (such as guest performing A20M# 
address masking) to map the resulting 20-bit effective guest physical addresses. 

32.3.2 Guest & Host Physical Address Spaces

Memory virtualization provides guest software with contiguous guest physical address space starting zero and 
extending to the maximum address supported by the guest virtual processor’s physical address width. The VMM 
utilizes guest physical to host physical address mapping to locate all or portions of the guest physical address space 
in host memory. The VMM is responsible for the policies and algorithms for this mapping which may take into 
account the host system physical memory map and the virtualized physical memory map exposed to a guest by the 
VMM. The memory virtualization algorithm needs to accommodate various guest memory uses (such as: accessing 
DRAM, accessing memory-mapped registers of virtual devices or core logic functions and so forth). For example:
• To support guest DRAM access, the VMM needs to map DRAM-backed guest physical addresses to host-DRAM 

regions. The VMM also requires the guest to host memory mapping to be at page granularity.
• Virtual devices (I/O devices or platform core logic) emulated by the VMM may claim specific regions in the guest 

physical address space to locate memory-mapped registers. Guest access to these virtual registers may be 
configured to cause page-fault induced VM-exits by marking these regions as always not present. The VMM 
may handle these VM exits by invoking appropriate virtual device emulation code.
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32.3.3 Virtualizing Virtual Memory by Brute Force

VMX provides the hardware features required to fully virtualize guest virtual memory accesses. VMX allows the 
VMM to trap guest accesses to the PAT (Page Attribute Table) MSR and the MTRR (Memory Type Range Registers). 
This control allows the VMM to virtualize the specific memory type of a guest memory. The VMM may control 
caching by controlling the guest CR0.CRD and CR0.NW bits, as well as by trapping guest execution of the INVD 
instruction. The VMM can trap guest CR3 loads and stores, and it may trap guest execution of INVLPG.

Because a VMM must retain control of physical memory, it must also retain control over the processor’s address-
translation mechanisms. Specifically, this means that only the VMM can access CR3 (which contains the base of the 
page directory) and can execute INVLPG (the only other instruction that directly manipulates the TLB). 

At the same time that the VMM controls address translation, a guest operating system will also expect to perform 
normal memory management functions. It will access CR3, execute INVLPG, and modify (what it believes to be) 
page directories and page tables. Virtualization of address translation must tolerate and support guest attempts to 
control address translation. 

A simple-minded way to do this would be to ensure that all guest attempts to access address-translation hardware 
trap to the VMM where such operations can be properly emulated. It must ensure that accesses to page directories 
and page tables also get trapped. This may be done by protecting these in-memory structures with conventional 
page-based protection. The VMM can do this because it can locate the page directory because its base address is 
in CR3 and the VMM receives control on any change to CR3; it can locate the page tables because their base 
addresses are in the page directory.

Such a straightforward approach is not necessarily desirable. Protection of the in-memory translation structures 
may be cumbersome. The VMM may maintain these structures with different values (e.g., different page base 
addresses) than guest software. This means that there must be traps on guest attempt to read these structures 
and that the VMM must maintain, in auxiliary data structures, the values to return to these reads. There must also 
be traps on modifications to these structures even if the translations they effect are never used. All this implies 
considerable overhead that should be avoided.

32.3.4 Alternate Approach to Memory Virtualization

Guest software is allowed to freely modify the guest page-table hierarchy without causing traps to the VMM. 
Because of this, the active page-table hierarchy might not always be consistent with the guest hierarchy. Any 
potential problems arising from inconsistencies can be solved using techniques analogous to those used by the 
processor and its TLB.

This section describes an alternative approach that allows guest software to freely access page directories and 
page tables. Traps occur on CR3 accesses and executions of INVLPG. They also occur when necessary to ensure 
that guest modifications to the translation structures actually take effect. The software mechanisms to support this 
approach are collectively called virtual TLB. This is because they emulate the functionality of the processor’s phys-
ical translation look-aside buffer (TLB).

The basic idea behind the virtual TLB is similar to that behind the processor TLB. While the page-table hierarchy 
defines the relationship between physical to linear address, it does not directly control the address translation of 
each memory access. Instead, translation is controlled by the TLB, which is occasionally filled by the processor with 
translations derived from the page-table hierarchy. With a virtual TLB, the page-table hierarchy established by 
guest software (specifically, the guest operating system) does not control translation, either directly or indirectly. 
Instead, translation is controlled by the processor (through its TLB) and by the VMM (through a page-table hier-
archy that it maintains).

Specifically, the VMM maintains an alternative page-table hierarchy that effectively caches translations derived 
from the hierarchy maintained by guest software. The remainder of this document refers to the former as the 
active page-table hierarchy (because it is referenced by CR3 and may be used by the processor to load its TLB) and 
the latter as the guest page-table hierarchy (because it is maintained by guest software). The entries in the active 
hierarchy may resemble the corresponding entries in the guest hierarchy in some ways and may differ in others.

Guest software is allowed to freely modify the guest page-table hierarchy without causing VM exits to the VMM. 
Because of this, the active page-table hierarchy might not always be consistent with the guest hierarchy. Any 
potential problems arising from any inconsistencies can be solved using techniques analogous to those used by the 
processor and its TLB. Note the following:
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• Suppose the guest page-table hierarchy allows more access than active hierarchy (for example: there is a 
translation for a linear address in the guest hierarchy but not in the active hierarchy); this is analogous to a 
situation in which the TLB allows less access than the page-table hierarchy. If an access occurs that would be 
allowed by the guest hierarchy but not the active one, a page fault occurs; this is analogous to a TLB miss. The 
VMM gains control (as it handles all page faults) and can update the active page-table hierarchy appropriately; 
this corresponds to a TLB fill.

• Suppose the guest page-table hierarchy allows less access than the active hierarchy; this is analogous to a 
situation in which the TLB allows more access than the page-table hierarchy. This situation can occur only if the 
guest operating system has modified a page-table entry to reduce access (for example: by marking it not-
present). Because the older, more permissive translation may have been cached in the TLB, the processor is 
architecturally permitted to use the older translation and allow more access. Thus, the VMM may (through the 
active page-table hierarchy) also allow greater access. For the new, less permissive translation to take effect, 
guest software should flush any older translations from the TLB either by executing INVLPG or by loading CR3. 
Because both these operations will cause a trap to the VMM, the VMM will gain control and can remove from the 
active page-table hierarchy the translations indicated by guest software (the translation of a specific linear 
address for INVLPG or all translations for a load of CR3).

As noted previously, the processor reads the page-table hierarchy to cache translations in the TLB. It also writes to 
the hierarchy to main the accessed (A) and dirty (D) bits in the PDEs and PTEs. The virtual TLB emulates this 
behavior as follows:
• When a page is accessed by guest software, the A bit in the corresponding PTE (or PDE for a 4-MByte page) in 

the active page-table hierarchy will be set by the processor (the same is true for PDEs when active page tables 
are accessed by the processor). For guest software to operate properly, the VMM should update the A bit in the 
guest entry at this time. It can do this reliably if it keeps the active PTE (or PDE) marked not-present until it has 
set the A bit in the guest entry.

• When a page is written by guest software, the D bit in the corresponding PTE (or PDE for a 4-MByte page) in 
the active page-table hierarchy will be set by the processor. For guest software to operate properly, the VMM 
should update the D bit in the guest entry at this time. It can do this reliably if it keeps the active PTE (or PDE) 
marked read-only until it has set the D bit in the guest entry. This solution is valid for guest software running at 
privilege level 3; support for more privileged guest software is described in Section 32.3.5.

32.3.5 Details of Virtual TLB Operation

This section describes in more detail how a VMM could support a virtual TLB. It explains how an active page-table 
hierarchy is initialized and how it is maintained in response to page faults, uses of INVLPG, and accesses to CR3. 
The mechanisms described here are the minimum necessary. They may not result in the best performance.
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As noted above, the VMM maintains an active page-table hierarchy for each virtual machine that it supports. It also 
maintains, for each machine, values that the machine expects for control registers CR0, CR2, CR3, and CR4 (they 
control address translation). These values are called the guest control registers.

In general, the VMM selects the physical-address space that is allocated to guest software. The term guest address 
refers to an address installed by guest software in the guest CR3, in a guest PDE (as a page table base address or 
a page base address), or in a guest PTE (as a page base address). While guest software considers these to be 
specific physical addresses, the VMM may map them differently.

32.3.5.1  Initialization of Virtual TLB

To enable the Virtual TLB scheme, the VMCS must be set up to trigger VM exits on:
• All writes to CR3 (the CR3-target count should be 0) or the paging-mode bits in CR0 and CR4 (using the CR0 

and CR4 guest/host masks)
• Page-fault (#PF) exceptions
• Execution of INVLPG

When guest software first enables paging, the VMM creates an aligned 4-KByte active page directory that is invalid 
(all entries marked not-present). This invalid directory is analogous to an empty TLB. 

32.3.5.2  Response to Page Faults

Page faults can occur for a variety of reasons. In some cases, the page fault alerts the VMM to an inconsistency 
between the active and guest page-table hierarchy. In such cases, the VMM can update the former and re-execute 
the faulting instruction. In other cases, the hierarchies are already consistent and the fault should be handled by 
the guest operating system. The VMM can detect this and use an established mechanism for raising a page fault to 
guest software. 

The VMM can handle a page fault by following these steps (The steps below assume the guest is operating in a 
paging mode without PAE. Analogous steps to handle address translation using PAE or four-level paging mecha-

Figure 32-1.  Virtual TLB Scheme
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nisms can be derived by VMM developers according to the paging behavior defined in Chapter 3 of the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3A):

1. First consult the active PDE, which can be located using the upper 10 bits of the faulting address and the 
current value of CR3. The active PDE is the source of the fault if it is marked not present or if its R/W bit and 
U/S bits are inconsistent with the attempted guest access (the guest privilege level and the values of CR0.WP 
and CR4.SMEP should also be taken into account).

2. If the active PDE is the source of the fault, consult the corresponding guest PDE using the same 10 bits from the 
faulting address and the physical address that corresponds to the guest address in the guest CR3. If the guest 
PDE would cause a page fault (for example: it is marked not present), then raise a page fault to the guest 
operating system. 
The following steps assume that the guest PDE would not have caused a page fault.

3. If the active PDE is the source of the fault and the guest PDE contains, as page-table base address (if PS = 0) 
or page base address (PS = 1), a guest address that the VMM has chosen not to support; then raise a machine 
check (or some other abort) to the guest operating system. 
The following steps assume that the guest address in the guest PDE is supported for the virtual machine.

4. If the active PDE is marked not-present, then set the active PDE to correspond to guest PDE as follows:

a. If the active PDE contains a page-table base address (if PS = 0), then allocate an aligned 4-KByte active 
page table marked completely invalid and set the page-table base address in the active PDE to be the 
physical address of the newly allocated page table.

b. If the active PDE contains a page base address (if PS = 1), then set the page base address in the active PDE 
to be the physical page base address that corresponds to the guest address in the guest PDE.

c. Set the P, U/S, and PS bits in the active PDE to be identical to those in the guest PDE.

d. Set the PWT, PCD, and G bits according to the policy of the VMM.

e. Set A = 1 in the guest PDE.

f. If D = 1 in the guest PDE or PS = 0 (meaning that this PDE refers to a page table), then set the R/W bit in 
the active PDE as in the guest PDE.

g. If D = 0 in the guest PDE, PS = 1 (this is a 4-MByte page), and the attempted access is a write; then set 
R/W in the active PDE as in the guest PDE and set D = 1 in the guest PDE.

h. If D = 0 in the guest PDE, PS = 1, and the attempted access is not a write; then set R/W = 0 in the active 
PDE.

i. After modifying the active PDE, re-execute the faulting instruction. 
The remaining steps assume that the active PDE is already marked present.

5. If the active PDE is the source of the fault, the active PDE refers to a 4-MByte page (PS = 1), the attempted 
access is a write; D = 0 in the guest PDE, and the active PDE has caused a fault solely because it has R/W = 0; 
then set R/W in the active PDE as in the guest PDE; set D = 1 in the guest PDE, and re-execute the faulting 
instruction.

6. If the active PDE is the source of the fault and none of the above cases apply, then raise a page fault of the 
guest operating system. 
The remaining steps assume that the source of the original page fault is not the active PDE.

NOTE

It is possible that the active PDE might be causing a fault even though the guest PDE would not. 
However, this can happen only if the guest operating system increased access in the guest PDE and 
did not take action to ensure that older translations were flushed from the TLB. Such translations 
might have caused a page fault if the guest software were running on bare hardware.

7. If the active PDE refers to a 4-MByte page (PS = 1) but is not the source of the fault, then the fault resulted 
from an inconsistency between the active page-table hierarchy and the processor’s TLB. Since the transition to 
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the VMM caused an address-space change and flushed the processor’s TLB, the VMM can simply re-execute the 
faulting instruction. 
The remaining steps assume that PS = 0 in the active and guest PDEs.

8. Consult the active PTE, which can be located using the next 10 bits of the faulting address (bits 21–12) and the 
physical page-table base address in the active PDE. The active PTE is the source of the fault if it is marked not-
present or if its R/W bit and U/S bits are inconsistent with the attempted guest access (the guest privilege level 
and the values of CR0.WP and CR4.SMEP should also be taken into account).

9. If the active PTE is not the source of the fault, then the fault has resulted from an inconsistency between the 
active page-table hierarchy and the processor’s TLB. Since the transition to the VMM caused an address-space 
change and flushed the processor’s TLB, the VMM simply re-executes the faulting instruction.
The remaining steps assume that the active PTE is the source of the fault.

10. Consult the corresponding guest PTE using the same 10 bits from the faulting address and the physical address 
that correspond to the guest page-table base address in the guest PDE. If the guest PTE would cause a page 
fault (it is marked not-present), the raise a page fault to the guest operating system. 
The following steps assume that the guest PTE would not have caused a page fault.

11. If the guest PTE contains, as page base address, a physical address that is not valid for the virtual machine 
being supported; then raise a machine check (or some other abort) to the guest operating system. 
The following steps assume that the address in the guest PTE is valid for the virtual machine.

12. If the active PTE is marked not-present, then set the active PTE to correspond to guest PTE:

a. Set the page base address in the active PTE to be the physical address that corresponds to the guest page 
base address in the guest PTE.

b. Set the P, U/S, and PS bits in the active PTE to be identical to those in the guest PTE.

c. Set the PWT, PCD, and G bits according to the policy of the VMM.

d. Set A = 1 in the guest PTE.

e. If D = 1 in the guest PTE, then set the R/W bit in the active PTE as in the guest PTE.

f. If D = 0 in the guest PTE and the attempted access is a write, then set R/W in the active PTE as in the guest 
PTE and set D = 1 in the guest PTE.

g. If D = 0 in the guest PTE and the attempted access is not a write, then set R/W = 0 in the active PTE.

h. After modifying the active PTE, re-execute the faulting instruction. 
The remaining steps assume that the active PTE is already marked present.

13. If the attempted access is a write, D = 0 (not dirty) in the guest PTE and the active PTE has caused a fault 
solely because it has R/W = 0 (read-only); then set R/W in the active PTE as in the guest PTE, set D = 1 in the 
guest PTE and re-execute the faulting instruction.

14. If none of the above cases apply, then raise a page fault of the guest operating system.

32.3.5.3  Response to Uses of INVLPG

Operating-systems can use INVLPG to flush entries from the TLB. This instruction takes a linear address as an 
operand and software expects any cached translations for the address to be flushed. A VMM should set the 
processor-based VM-execution control “INVLPG exiting” to 1 so that any attempts by a privileged guest to execute 
INVLPG will trap to the VMM. The VMM can then modify the active page-table hierarchy to emulate the desired 
effect of the INVLPG. 

The following steps are performed. Note that these steps are performed only if the guest invocation of INVLPG 
would not fault and only if the guest software is running at privilege level 0:

1. Locate the relevant active PDE using the upper 10 bits of the operand address and the current value of CR3. If 
the PDE refers to a 4-MByte page (PS = 1), then set P = 0 in the PDE.

2. If the PDE is marked present and refers to a page table (PS = 0), locate the relevant active PTE using the next 
10 bits of the operand address (bits 21–12) and the page-table base address in the PDE. Set P = 0 in the PTE. 
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Examine all PTEs in the page table; if they are now all marked not-present, de-allocate the page table and set 
P = 0 in the PDE (this step may be optional).

32.3.5.4  Response to CR3 Writes

A guest operating system may attempt to write to CR3. Any write to CR3 implies a TLB flush and a possible page 
table change. The following steps are performed:

1. The VMM notes the new CR3 value (used later to walk guest page tables) and emulates the write.

2. The VMM allocates a new PD page, with all invalid entries.

3. The VMM sets actual processor CR3 register to point to the new PD page.

The VMM may, at this point, speculatively fill in VTLB mappings for performance reasons.

32.4 MICROCODE UPDATE FACILITY

The microcode code update facility may be invoked at various points during the operation of a platform. Typically, 
the BIOS invokes the facility on all processors during the BIOS boot process. This is sufficient to boot the BIOS and 
operating system. As a microcode update more current than the system BIOS may be available, system software 
should provide another mechanism for invoking the microcode update facility. The implications of the microcode 
update mechanism on the design of the VMM are described in this section.

NOTE

Microcode updates must not be performed during VMX non-root operation. Updates performed in 
VMX non-root operation may result in unpredictable system behavior.

32.4.1 Early Load of Microcode Updates

The microcode update facility may be invoked early in the VMM or guest OS boot process. Loading the microcode 
update early provides the opportunity to correct errata affecting the boot process but the technique generally 
requires a reboot of the software.

A microcode update may be loaded from the OS or VMM image loader. Typically, such image loaders do not run on 
every logical processor, so this method effects only one logical processor. Later in the VMM or OS boot process, 
after bringing all application processors on-line, the VMM or OS needs to invoke the microcode update facility for all 
application processors.

Depending on the order of the VMM and the guest OS boot, the microcode update facility may be invoked by the 
VMM or the guest OS. For example, if the guest OS boots first and then loads the VMM, the guest OS may invoke 
the microcode update facility on all the logical processors. If a VMM boots before its guests, then the VMM may 
invoke the microcode update facility during its boot process. In both cases, the VMM or OS should invoke the micro-
code update facilities soon after performing the multiprocessor startup.

In the early load scenario, microcode updates may be contained in the VMM or OS image or, the VMM or OS may 
manage a separate database or file of microcode updates. Maintaining a separate microcode update image data-
base has the advantage of reducing the number of required VMM or OS releases as a result of microcode update 
releases.

32.4.2 Late Load of Microcode Updates

A microcode update may be loaded during normal system operation. This allows system software to activate the 
microcode update at anytime without requiring a system reboot. This scenario does not allow the microcode update 
to correct errata which affect the processor’s boot process but does allow high-availability systems to activate 
microcode updates without interrupting the availability of the system. In this late load scenario, either the VMM or 
a designated guest may load the microcode update. If the guest is loading the microcode update, the VMM must 
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make sure that the entire guest memory buffer (which contains the microcode update image) will not cause a page 
fault when accessed.

If the VMM loads the microcode update, then the VMM must have access to the current set of microcode updates. 
These updates could be part of the VMM image or could be contained in a separate microcode update image data-
base (for example: a database file on disk or in memory). Again, maintaining a separate microcode update image 
database has the advantage of reducing the number of required VMM or OS releases as a result of microcode 
update releases.

The VMM may wish to prevent a guest from loading a microcode update or may wish to support the microcode 
update requested by a guest using emulation (without actually loading the microcode update). To prevent micro-
code update loading, the VMM may return a microcode update signature value greater than the value of 
IA32_BIOS_SIGN_ID MSR. A well behaved guest will not attempt to load an older microcode update. The VMM may 
also drop the guest attempts to write to IA32_BIOS_UPDT_TRIG MSR, preventing the guest from loading any 
microcode updates. Later, when the guest queries IA32_BIOS_SIGN_ID MSR, the VMM could emulate the micro-
code update signature that the guest expects.

In general, loading a microcode update later will limit guest software’s visibility of features that may be enhanced 
by a microcode update.
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CHAPTER 33
HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR

33.1 OVERVIEW

This chapter describes what a VMM must consider when handling exceptions, interrupts, error conditions, and tran-
sitions between activity states.

33.2 INTERRUPT HANDLING IN VMX OPERATION 

The following bullets summarize VMX support for handling interrupts:
• Control of processor exceptions. The VMM can get control on specific guest exceptions through the 

exception-bitmap in the guest controlling VMCS. The exception bitmap is a 32-bit field that allows the VMM to 
specify processor behavior on specific exceptions (including traps, faults, and aborts). Setting a specific bit in 
the exception bitmap implies VM exits will be generated when the corresponding exception occurs. Any 
exceptions that are programmed not to cause VM exits are delivered directly to the guest through the guest 
IDT. The exception bitmap also controls execution of relevant instructions such as BOUND, INTO and INT3. VM 
exits on page-faults are treated in such a way the page-fault error code is qualified through the page-fault-
error-code mask and match fields in the VMCS. 

• Control over triple faults. If a fault occurs while attempting to call a double-fault handler in the guest and 
that fault is not configured to cause a VM exit in the exception bitmap, the resulting triple fault causes a 
VM exit. 

• Control of external interrupts. VMX allows both host and guest control of external interrupts through the 
“external-interrupt exiting” VM execution control. If the control is 0, external-interrupts do not cause VM exits 
and the interrupt delivery is masked by the guest programmed RFLAGS.IF value.1 If the control is 1, external-
interrupts causes VM exits and are not masked by RFLAGS.IF. The VMM can identify VM exits due to external 
interrupts by checking the exit reason for an “external interrupt” (value = 1).

• Control of other events. There is a pin-based VM-execution control that controls system behavior (exit or no-
exit) for NMI events. Most VMM usages will need handling of NMI external events in the VMM and hence will 
specify host control of these events.
Some processors also support a pin-based VM-execution control called “virtual NMIs.” When this control is set, 
NMIs cause VM exits, but the processor tracks guest readiness for virtual NMIs. This control interacts with the 
“NMI-window exiting” VM-execution control (see below).
INIT and SIPI events always cause VM exits.

• Acknowledge interrupt on exit. The “acknowledge interrupt on exit” VM-exit control in the controlling VMCS 
controls processor behavior for external interrupt acknowledgement. If the control is 1, the processor acknowl-
edges the interrupt controller to acquire the interrupt vector upon VM exit, and stores the vector in the VM-exit 
interruption-information field. If the control is 0, the external interrupt is not acknowledged during VM exit. 
Since RFLAGS.IF is automatically cleared on VM exits due to external interrupts, VMM re-enabling of interrupts 
(setting RFLAGS.IF = 1) initiates the external interrupt acknowledgement and vectoring of the external 
interrupt through the monitor/host IDT.

• Event-masking Support. VMX captures the masking conditions of specific events while in VMX non-root 
operation through the interruptibility-state field in the guest-state area of the VMCS.
This feature allows proper virtualization of various interrupt blocking states, such as: (a) blocking of external 
interrupts for the instruction following STI; (b) blocking of interrupts for the instruction following a MOV-SS or 
POP-SS instruction; (c) SMI blocking of subsequent SMIs until the next execution of RSM; and (d) NMI/SMI 
blocking of NMIs until the next execution of IRET or RSM.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit 
forms of those registers (EAX, EIP, ESP, EFLAGS, etc.).



33-2 Vol. 3C

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR

INIT and SIPI events are treated specially. INIT assertions are always blocked in VMX root operation and while 
in SMM, and unblocked otherwise. SIPI events are always blocked in VMX root operation.
The interruptibility state is loaded from the VMCS guest-state area on every VM entry and saved into the VMCS 
on every VM exit.

• Event injection. VMX operation allows injecting interruptions to a guest virtual machine through the use of 
VM-entry interrupt-information field in VMCS. Injectable interruptions include external interrupts, NMI, 
processor exceptions, software generated interrupts, and software traps. If the interrupt-information field 
indicates a valid interrupt, exception or trap event upon the next VM entry; the processor will use the 
information in the field to vector a virtual interruption through the guest IDT after all guest state and MSRs are 
loaded. Delivery through the guest IDT emulates vectoring in non-VMX operation by doing the normal privilege 
checks and pushing appropriate entries to the guest stack (entries may include RFLAGS, EIP and exception 
error code). A VMM with host control of NMI and external interrupts can use the event-injection facility to 
forward virtual interruptions to various guest virtual machines.

• Interrupt-window exiting. When set to 1, the “interrupt-window exiting” VM-execution control (Section 
24.6.2) causes VM exits when guest RFLAGS.IF is 1 and no other conditions block external interrupts. A VM exit 
occurs at the beginning of any instruction at which RFLAGS.IF = 1 and on which the interruptibility state of the 
guest would allow delivery of an interrupt. For example: when the guest executes an STI instruction, 
RFLAGS = 1, and if at the completion of next instruction the interruptibility state masking due to STI is 
removed; a VM exit occurs if the “interrupt-window exiting” VM-execution control is 1. This feature allows a 
VMM to queue a virtual interrupt to the guest when the guest is not in an interruptible state. The VMM can set 
the “interrupt-window exiting” VM-execution control for the guest and depend on a VM exit to know when the 
guest becomes interruptible (and, therefore, when it can inject a virtual interrupt). The VMM can detect such 
VM exits by checking for the basic exit reason “interrupt-window” (value = 7). If this feature is not used, the 
VMM will need to poll and check the interruptibility state of the guest to deliver virtual interrupts. 

• NMI-window exiting. If the “virtual NMIs” VM-execution is set, the processor tracks virtual-NMI blocking. 
The “NMI-window exiting” VM-execution control (Section 24.6.2) causes VM exits when there is no virtual-NMI 
blocking. For example, after execution of the IRET instruction, a VM exit occurs if the “NMI-window exiting” VM-
execution control is 1. This feature allows a VMM to queue a virtual NMI to a guest when the guest is not ready 
to receive NMIs. The VMM can set the “NMI-window exiting” VM-execution control for the guest and depend on 
a VM exit to know when the guest becomes ready for NMIs (and, therefore, when it can inject a virtual NMI). 
The VMM can detect such VM exits by checking for the basic exit reason “NMI window” (value = 8). If this 
feature is not used, the VMM will need to poll and check the interruptibility state of the guest to deliver virtual 
NMIs. 

• VM-exit information. The VM-exit information fields provide details on VM exits due to exceptions and 
interrupts. This information is provided through the exit-qualification, VM-exit-interruption-information, 
instruction-length and interruption-error-code fields. Also, for VM exits that occur in the course of vectoring 
through the guest IDT, information about the event that was being vectored through the guest IDT is provided 
in the IDT-vectoring-information and IDT-vectoring-error-code fields. These information fields allow the VMM to 
identify the exception cause and to handle it properly.

33.3 EXTERNAL INTERRUPT VIRTUALIZATION

VMX operation allows both host and guest control of external interrupts. While guest control of external interrupts 
might be suitable for partitioned usages (different CPU cores/threads and I/O devices partitioned to independent 
virtual machines), most VMMs built upon VMX are expected to utilize host control of external interrupts. The rest of 
this section describes a general host-controlled interrupt virtualization architecture for standard PC platforms 
through the use of VMX supported features.

With host control of external interrupts, the VMM (or the host OS in a hosted VMM model) manages the physical 
interrupt controllers in the platform and the interrupts generated through them. The VMM exposes software-
emulated virtual interrupt controller devices (such as PIC and APIC) to each guest virtual machine instance.
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33.3.1 Virtualization of Interrupt Vector Space

The Intel 64 and IA-32 architectures use 8-bit vectors of which 224 (20H – FFH) are available for external inter-
rupts. Vectors are used to select the appropriate entry in the interrupt descriptor table (IDT). VMX operation allows 
each guest to control its own IDT. Host vectors refer to vectors delivered by the platform to the processor during 
the interrupt acknowledgement cycle. Guest vectors refer to vectors programmed by a guest to select an entry in 
its guest IDT. Depending on the I/O resource management models supported by the VMM design, the guest vector 
space may or may not overlap with the underlying host vector space. 
• Interrupts from virtual devices: Guest vector numbers for virtual interrupts delivered to guests on behalf of 

emulated virtual devices have no direct relation to the host vector numbers of interrupts from physical devices 
on which they are emulated. A guest-vector assigned for a virtual device by the guest operating environment 
is saved by the VMM and utilized when injecting virtual interrupts on behalf of the virtual device.

• Interrupts from assigned physical devices: Hardware support for I/O device assignment allows physical I/O 
devices in the host platform to be assigned (direct-mapped) to VMs. Guest vectors for interrupts from direct-
mapped physical devices take up equivalent space from the host vector space, and require the VMM to perform 
host-vector to guest-vector mapping for interrupts. 

Figure 33-1 illustrates the functional relationship between host external interrupts and guest virtual external inter-
rupts. Device A is owned by the host and generates external interrupts with host vector X. The host IDT is set up 
such that the interrupt service routine (ISR) for device driver A is hooked to host vector X as normal. VMM 
emulates (over device A) virtual device C in software which generates virtual interrupts to the VM with guest 
expected vector P. Device B is assigned to a VM and generates external interrupts with host vector Y. The host IDT 
is programmed to hook the VMM interrupt service routine (ISR) for assigned devices for vector Y, and the VMM 
handler injects virtual interrupt with guest vector Q to the VM. The guest operating system programs the guest to 
hook appropriate guest driver’s ISR to vectors P and Q.
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33.3.2 Control of Platform Interrupts

To meet the interrupt virtualization requirements, the VMM needs to take ownership of the physical interrupts and 
the various interrupt controllers in the platform. VMM control of physical interrupts may be enabled through the 
host-control settings of the “external-interrupt exiting” VM-execution control. To take ownership of the platform 
interrupt controllers, the VMM needs to expose the virtual interrupt controller devices to the virtual machines and 
restrict guest access to the platform interrupt controllers. 

Intel 64 and IA-32 platforms can support three types of external interrupt control mechanisms: Programmable 
Interrupt Controllers (PIC), Advanced Programmable Interrupt Controllers (APIC), and Message Signaled Inter-
rupts (MSI). The following sections provide information on the virtualization of each of these mechanisms.

33.3.2.1  PIC Virtualization

Typical PIC-enabled platform implementations support dual 8259 interrupt controllers cascaded as master and 
slave controllers. They supporting up to 15 possible interrupt inputs. The 8259 controllers are programmed 
through initialization command words (ICWx) and operation command words (OCWx) accessed through specific 
I/O ports. The various interrupt line states are captured in the PIC through interrupt requests, interrupt service 
routines and interrupt mask registers. 

Guest access to the PIC I/O ports can be restricted by activating I/O bitmaps in the guest controlling-VMCS (acti-
vate-I/O-bitmap bit in VM-execution control field set to 1) and pointing the I/O-bitmap physical addresses to valid 

Figure 33-1.  Host External Interrupts and Guest Virtual Interrupts
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bitmap regions. Bits corresponding to the PIC I/O ports can be cleared to cause a VM exit on guest access to these 
ports. 

If the VMM is not supporting direct access to any I/O ports from a guest, it can set the unconditional-I/O-exiting in 
the VM-execution control field instead of activating I/O bitmaps. The exit-reason field in VM-exit information allows 
identification of VM exits due to I/O access and can provide an exit-qualification to identify details about the guest 
I/O operation that caused the VM exit. 

The VMM PIC virtualization needs to emulate the platform PIC functionality including interrupt priority, mask, 
request and service states, and specific guest programmed modes of PIC operation.

33.3.2.2  xAPIC Virtualization

Most modern Intel 64 and IA-32 platforms include support for an APIC. While the standard PIC is intended for use 
on uniprocessor systems, APIC can be used in either uniprocessor or multi-processor systems.

APIC based interrupt control consists of two physical components: the interrupt acceptance unit (Local APIC) which 
is integrated with the processor, and the interrupt delivery unit (I/O APIC) which is part of the I/O subsystem. APIC 
virtualization involves protecting the platform’s local and I/O APICs and emulating them for the guest. 

33.3.2.3  Local APIC Virtualization

The local APIC is responsible for the local interrupt sources, interrupt acceptance, dispensing interrupts to the 
logical processor, and generating inter-processor interrupts. Software interacts with the local APIC by reading and 
writing its memory-mapped registers residing within a 4-KByte uncached memory region with base address stored 
in the IA32_APIC_BASE MSR. Since the local APIC registers are memory-mapped, the VMM can utilize memory 
virtualization techniques (such as page-table virtualization) to trap guest accesses to the page frame hosting the 
virtual local APIC registers. 

Local APIC virtualization in the VMM needs to emulate the various local APIC operations and registers, such as: 
APIC identification/format registers, the local vector table (LVT), the interrupt command register (ICR), interrupt 
capture registers (TMR, IRR and ISR), task and processor priority registers (TPR, PPR), the EOI register and the 
APIC-timer register. Since local APICs are designed to operate with non-specific EOI, local APIC emulation also 
needs to emulate broadcast of EOI to the guest’s virtual I/O APICs for level triggered virtual interrupts. 

A local APIC allows interrupt masking at two levels: (1) mask bit in the local vector table entry for local interrupts 
and (2) raising processor priority through the TPR registers for masking lower priority external interrupts. The VMM 
needs to comprehend these virtual local APIC mask settings as programmed by the guest in addition to the guest 
virtual processor interruptibility state (when injecting APIC routed external virtual interrupts to a guest VM). 

VMX provides several features which help the VMM to virtualize the local APIC. These features allow many of guest 
TPR accesses (using CR8 only) to occur without VM exits to the VMM:
• The VMCS contains a “virtual-APIC address” field. This 64-bit field is the physical address of the 4-KByte virtual 

APIC page (4-KByte aligned). The virtual-APIC page contains a TPR shadow, which is accessed by the MOV CR8 
instruction. The TPR shadow comprises bits 7:4 in byte 80H of the virtual-APIC page.

• The TPR threshold: bits 3:0 of this 32-bit field determine the threshold below which the TPR shadow cannot fall. 
A VM exit will occur after an execution of MOV CR8 that reduces the TPR shadow below this value.

• The processor-based VM-execution controls field contains a “use TPR shadow” bit and a “CR8-store exiting” bit. 
If the “use TPR shadow” VM-execution control is 1 and the “CR8-store exiting” VM-execution control is 0, then 
a MOV from CR8 reads from the TPR shadow. If the “CR8-store exiting” VM-execution control is 1, then MOV 
from CR8 causes a VM exit; the “use TPR shadow” VM-execution control is ignored in this case.

• The processor-based VM-execution controls field contains a “CR8-load exiting” bit. If the “use TPR shadow” 
VM-execution control is set and the “CR8-load exiting” VM-execution control is clear, then MOV to CR8 writes to 
the “TPR shadow”. A VM exit will occur after this write if the value written is below the TPR threshold. If the 
“CR8-load exiting” VM-execution control is set, then MOV to CR8 causes a VM exit; the “use TPR shadow” VM-
execution control is ignored in this case.
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33.3.2.4  I/O APIC Virtualization

The I/O APIC registers are typically mapped to a 1 MByte region where each I/O APIC is allocated a 4K address 
window within this range. The VMM may utilize physical memory virtualization to trap guest accesses to the virtual 
I/O APIC memory-mapped registers. The I/O APIC virtualization needs to emulate the various I/O APIC operations 
and registers such as identification/version registers, indirect-I/O-access registers, EOI register, and the I/O redi-
rection table. I/O APIC virtualization also need to emulate various redirection table entry settings such as delivery 
mode, destination mode, delivery status, polarity, masking, and trigger mode programmed by the guest and track 
remote-IRR state on guest EOI writes to various virtual local APICs.

33.3.2.5  Virtualization of Message Signaled Interrupts

The PCI Local Bus Specification (Rev. 2.2) introduces the concept of message signaled interrupts (MSI). MSI enable 
PCI devices to request service by writing a system-specified message to a system specified address. The transac-
tion address specifies the message destination while the transaction data specifies the interrupt vector, trigger 
mode and delivery mode. System software is expected to configure the message data and address during MSI 
device configuration, allocating one or more no-shared messages to MSI capable devices. Chapter 10, “Advanced 
Programmable Interrupt Controller (APIC),” specifies the MSI message address and data register formats to be 
followed on Intel 64 and IA-32 platforms. While MSI is optional for conventional PCI devices, it is the preferred 
interrupt mechanism for PCI-Express devices. 

Since the MSI address and data are configured through PCI configuration space, to control these physical interrupts 
the VMM needs to assume ownership of PCI configuration space. This allows the VMM to capture the guest config-
uration of message address and data for MSI-capable virtual and assigned guest devices. PCI configuration trans-
actions on PC-compatible systems are generated by software through two different methods: 

1. The standard CONFIG_ADDRESS/CONFIG_DATA register mechanism (CFCH/CF8H ports) as defined in the PCI 
Local Bus Specification.

2. The enhanced flat memory-mapped (MEMCFG) configuration mechanism as defined in the PCI-Express Base 
Specification (Rev. 1.0a.). 

The CFCH/CF8H configuration access from guests can be trapped by the VMM through use of I/O-bitmap VM-
execution controls. The memory-mapped PCI-Express MEMCFG guest configuration accesses can be trapped by 
VMM through physical memory virtualization.

33.3.3 Examples of Handling of External Interrupts

The following sections illustrate interrupt processing in a VMM (when used to support the external interrupt virtu-
alization requirements). 

33.3.3.1  Guest Setup

The VMM sets up the guest to cause a VM exit to the VMM on external interrupts. This is done by setting the 
“external-interrupt exiting” VM-execution control in the guest controlling-VMCS. 

33.3.3.2  Processor Treatment of External Interrupt

Interrupts are automatically masked by hardware in the processor on VM exit by clearing RFLAGS.IF. The exit-
reason field in VMCS is set to 1 to indicate an external interrupt as the exit reason. 

If the VMM is utilizing the acknowledge-on-exit feature (by setting the “acknowledge interrupt on exit” VM-exit 
control), the processor acknowledges the interrupt, retrieves the host vector, and saves the interrupt in the VM-
exit-interruption-information field (in the VM-exit information region of the VMCS) before transitioning control to 
the VMM. 
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33.3.3.3  Processing of External Interrupts by VMM

Upon VM exit, the VMM can determine the exit cause of an external interrupt by checking the exit-reason field 
(value = 1) in VMCS. If the acknowledge-interrupt-on-exit control (see Section 24.7.1) is enabled, the VMM can 
use the saved host vector (in the exit-interruption-information field) to switch to the appropriate interrupt handler. 
If the “acknowledge interrupt on exit” VM-exit control is 0, the VMM may re-enable interrupts (by setting 
RFLAGS.IF) to allow vectoring of external interrupts through the monitor/host IDT. 

The following steps may need to be performed by the VMM to process an external interrupt:
• Host Owned I/O Devices: For host-owned I/O devices, the interrupting device is owned by the VMM (or 

hosting OS in a hosted VMM). In this model, the interrupt service routine in the VMM/host driver is invoked and, 
upon ISR completion, the appropriate write sequences (TPR updates, EOI etc.) to respective interrupt 
controllers are performed as normal. If the work completion indicated by the driver implies virtual device 
activity, the VMM runs the virtual device emulation. Depending on the device class, physical device activity 
could imply activity by multiple virtual devices mapped over the device. For each affected virtual device, the 
VMM injects a virtual external interrupt event to respective guest virtual machines. The guest driver interacts 
with the emulated virtual device to process the virtual interrupt. The interrupt controller emulation in the VMM 
supports various guest accesses to the VMM’s virtual interrupt controller.

• Guest Assigned I/O Devices: For assigned I/O devices, either the VMM uses a software proxy or it can 
directly map the physical device to the assigned VM. In both cases, servicing of the interrupt condition on the 
physical device is initiated by the driver running inside the guest VM. With host control of external interrupts, 
interrupts from assigned physical devices cause VM exits to the VMM and vectoring through the host IDT to the 
registered VMM interrupt handler. To unblock delivery of other low priority platform interrupts, the VMM 
interrupt handler must mask the interrupt source (for level triggered interrupts) and issue the appropriate EOI 
write sequences. 

Once the physical interrupt source is masked and the platform EOI generated, the VMM can map the host vector to 
its corresponding guest vector to inject the virtual interrupt into the assigned VM. The guest software does EOI 
write sequences to its virtual interrupt controller after completing interrupt processing. For level triggered inter-
rupts, these EOI writes to the virtual interrupt controller may be trapped by the VMM which may in turn unmask 
the previously masked interrupt source.

33.3.3.4  Generation of Virtual Interrupt Events by VMM

The following provides some of the general steps that need to be taken by VMM designs when generating virtual 
interrupts:

1. Check virtual processor interruptibility state. The virtual processor interruptibility state is reflected in the guest 
RFLAGS.IF flag and the processor interruptibility-state saved in the guest state area of the controlling-VMCS. If 
RFLAGS.IF is set and the interruptibility state indicates readiness to take external interrupts (STI-masking and 
MOV-SS/POP-SS-masking bits are clear), the guest virtual processor is ready to take external interrupts. If the 
VMM design supports non-active guest sleep states, the VMM needs to make sure the current guest sleep state 
allows injection of external interrupt events. 

2. If the guest virtual processor state is currently not interruptible, a VMM may utilize the “interrupt-window 
exiting” VM-execution to notify the VM (through a VM exit) when the virtual processor state changes to inter-
ruptible state. 

3. Check the virtual interrupt controller state. If the guest VM exposes a virtual local APIC, the current value of its 
processor priority register specifies if guest software allows dispensing an external virtual interrupt with a 
specific priority to the virtual processor. If the virtual interrupt is routed through the local vector table (LVT) 
entry of the local APIC, the mask bits in the corresponding LVT entry specifies if the interrupt is currently 
masked. Similarly, the virtual interrupt controller’s current mask (IO-APIC or PIC) and priority settings reflect 
guest state to accept specific external interrupts. The VMM needs to check both the virtual processor and 
interrupt controller states to verify its guest interruptibility state. If the guest is currently interruptible, the 
VMM can inject the virtual interrupt. If the current guest state does not allow injecting a virtual interrupt, the 
interrupt needs to be queued by the VMM until it can be delivered.

4. Prioritize the use of VM-entry event injection. A VMM may use VM-entry event injection to deliver various 
virtual events (such as external interrupts, exceptions, traps, and so forth). VMM designs may prioritize use of 
virtual-interrupt injection between these event types. Since each VM entry allows injection of one event, 
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depending on the VMM event priority policies, the VMM may need to queue the external virtual interrupt if a 
higher priority event is to be delivered on the next VM entry. Since the VMM has masked this particular interrupt 
source (if it was level triggered) and done EOI to the platform interrupt controller, other platform interrupts can 
be serviced while this virtual interrupt event is queued for later delivery to the VM.

5. Update the virtual interrupt controller state. When the above checks have passed, before generating the virtual 
interrupt to the guest, the VMM updates the virtual interrupt controller state (Local-APIC, IO-APIC and/or PIC) 
to reflect assertion of the virtual interrupt. This involves updating the various interrupt capture registers, and 
priority registers as done by the respective hardware interrupt controllers. Updating the virtual interrupt 
controller state is required for proper interrupt event processing by guest software.

6. Inject the virtual interrupt on VM entry. To inject an external virtual interrupt to a guest VM, the VMM sets up 
the VM-entry interruption-information field in the guest controlling-VMCS before entry to guest using 
VMRESUME. Upon VM entry, the processor will use this vector to access the gate in guest’s IDT and the value of 
RFLAGS and EIP in guest-state area of controlling-VMCS is pushed on the guest stack. If the guest RFLAGS.IF 
is clear, the STI-masking bit is set, or the MOV- SS/POP-SS-masking bit is set, the VM entry will fail and the 
processor will load state from the host-state area of the working VMCS as if a VM exit had occurred (see Section 
26.7).

33.4 ERROR HANDLING BY VMM

Error conditions may occur during VM entries and VM exits and a few other situations. This section describes how 
VMM should handle these error conditions, including triple faults and machine-check exceptions.

33.4.1 VM-Exit Failures

All VM exits load processor state from the host-state area of the VMCS that was the controlling VMCS before the VM 
exit. This state is checked for consistency while being loaded. Because the host-state is checked on VM entry, these 
checks will generally succeed. Failure is possible only if host software is incorrect or if VMCS data in the VMCS 
region in memory has been written by guest software (or by I/O DMA) since the last VM entry. VM exits may fail for 
the following reasons:
• There was a failure on storing guest MSRs.
• There was failure in loading a PDPTR.
• The controlling VMCS has been corrupted (through writes to the corresponding VMCS region) in such a way that 

the implementation cannot complete the VM exit.
• There was a failure on loading host MSRs.
• A machine-check event occurred.

If one of these problems occurs on a VM exit, a VMX abort results. 

33.4.2 Machine-Check Considerations

The following sequence determine how machine-check events are handled during VMXON, VMXOFF, VM entries, 
and VM exits:
• VMXOFF and VMXON: 

If a machine-check event occurs during VMXOFF or VMXON and CR4.MCE = 1, a machine-check exception 
(#MC) is generated. If CR4.MCE = 0, the processor goes to shutdown state.

• VM entry: 
If a machine-check event occurs during VM entry, one of the following three treatments must occur:

a. Normal delivery before VM entry. If CR4.MCE = 1 before VM entry, delivery of a machine-check exception 
(#MC) through the host IDT occurs. If CR4.MCE = 0, the processor goes to shutdown state.
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b. Normal delivery after VM entry. If CR4.MCE = 1 after VM entry, delivery of a machine-check exception 
(#MC) through the guest IDT occurs (alternatively, this exception may cause a VM exit). If CR4.MCE = 0, 
the processor goes to shutdown state.

c. Load state from the host-state area of the working VMCS as if a VM exit had occurred (see Section 26.7). 
The basic exit reason will be “VM-entry failure due to machine-check event.” 

If the machine-check event occurs after any guest state has been loaded, option a above will not be used; it 
may be used if the machine-check event occurs while checking host state and VMX controls (or while reporting 
a failure due to such checks). An implementation may use option b only if all guest state has been loaded 
properly.

• VM exit: 
If a machine-check event occurs during VM exit, one of the following three treatments must occur:

a. Normal delivery before VM exit. If CR4.MCE = 1 before the VM exit, delivery of a machine-check exception 
(#MC) through the guest IDT (alternatively, this may cause a VM exit). If CR4.MCE = 0, the processor goes 
to shutdown state.

b. Normal delivery after VM exit. If CR4.MCE = 1 after the VM exit, delivery of a machine-check exception 
(#MC) through the host IDT. If CR4.MCE = 0, the processor goes to shutdown state.

c. Fail the VM exit. If the VM exit is to VMX root operation, a VMX abort will result; it will block events as done 
normally in VMX abort. The VMX abort indicator will show that a machine-check event induced the abort 
operation.

If a machine-check event is induced by an action in VMX non-root operation before any determination is made 
that the inducing action may cause a VM exit, that machine-check event should be considered as happening 
during guest execution in VMX non-root operation. This is the case even if the part of the action that caused the 
machine-check event was VMX-specific (for example, the processor’s consulting an I/O bitmap). If a machine-
check exception occurs and if bit 12H of the exception bitmap is cleared to 0, the exception is delivered to the 
guest through gate 12H of its IDT; if the bit is set to 1, the machine-check exception causes a VM exit.

NOTE

The state saved in the guest-state area on VM exits due to machine-check exceptions should be 
considered suspect. A VMM should consult the RIPV and EIPV bits in the IA32_MCG_STATUS MSR 
before resuming a guest that caused a VM exit due to a machine-check exception.

33.4.3 MCA Error Handling Guidelines for VMM

Section 33.4.2 covers general requirements for VMMs to handle machine-check exceptions, when normal operation 
of the guest machine and/or the VMM is no longer possible. enhancements of machine-check architecture in newer 
processors may support software recovery of uncorrected MC errors (UCR) signaled through either machine-check 
exceptions or corrected machine-check interrupt (CMCI). Section 15.5 and Section 15.6 describes details of these 
more recent enhancements of machine-check architecture.

In general, Virtual Machine Monitor (VMM) error handling should follow the recommendations for OS error handling 
described in Section 15.3, Section 15.6, Section 15.9, and Section 15.10. This section describes additional guide-
lines for hosted and native hypervisor-based VMM implementations to support corrected MC errors and recoverable 
uncorrected MC errors.

Because a hosted VMM provides virtualization services in the context of an existing standard host OS, the host OS 
controls platform hardware through the host OS services such as the standard OS device drivers. In hosted VMMs. 
MCA errors will be handled by the host OS error handling software.

In native VMMs, the hypervisor runs on the hardware directly, and may provide only a limited set of platform 
services for guest VMs. Most platform services may instead be provided by a “control OS”. In hypervisor-based 
VMMs, MCA errors will either be delivered directly to the VMM MCA handler (when the error is signaled while in the 
VMM context) or cause by a VM exit from a guest VM or be delivered to the MCA intercept handler. There are two 
general approaches the hypervisor can use to handle the MCA error: either within the hypervisor itself or by 
forwarding the error to the control OS. 
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33.4.3.1  VMM Error Handling Strategies

Broadly speaking, there are two strategies that VMMs may take for error handling: 
• Basic error handling: in this approach the guest VM is treated as any other thread of execution. If the error 

recovery action does not support restarting the thread after handling the error, the guest VM should be 
terminated.

• MCA virtualization: in this approach, the VMM virtualizes the MCA events and hardware. This enables the VMM 
to intercept MCA events and inject an MCA into the guest VM. The guest VM then has the opportunity to attempt 
error recovery actions, rather than being terminated by the VMM.

Details of these approaches and implementation considerations for hosted and native VMMs are discussed below.

33.4.3.2  Basic VMM MCA error recovery handling

The simplest approach is for the VMM to treat the guest VM as any other thread of execution:
• MCE's that occur outside the stream of execution of a virtual machine guest will cause an MCE abort and may 

be handled by the MCA error handler following the recovery actions and guidelines described in Section 15.9, 
and Section 15.10. This includes logging the error and taking appropriate recovery actions when necessary. The 
VMM must not resume the interrupted thread of execution or another VM until it has taken the appropriate 
recovery action or, in the case of fatal MCAs, reset the system.

• MCE's that occur while executing in the context of a virtual machine will be intercepted by the VMM. The MCA 
intercept handler may follow the error handling guidelines listed in Section 15.9 and Section 15.10 for SRAO 
and SRAR errors. For SRAR errors, terminating the thread of execution will involve terminating the affected 
guest VM. For fatal errors the MCA handler should log the error and reset the system -- the VMM should not 
resume execution of the interrupted VM.

33.4.3.3  Implementation Considerations for the Basic Model

For hosted VMMs, the host OS MCA error handling code will perform error analysis and initiate the appropriate 
recovery actions. For the basic model this flow does not change when terminating a guest VM although the specific 
actions needed to terminate a guest VM may be different than terminating an application or user process.

For native, hypervisor-based VMMs, MCA errors will either be delivered directly to the VMM MCA handler (when the 
error is signaled while in the VMM context) or cause a VM exit from a guest VM or be delivered to the MCA intercept 
handler. There are two general approaches the hypervisor can use to handle the MCA error: either by forwarding 
the error to the control OS or within the hypervisor itself. These approaches are described in the following para-
graphs.

The hypervisor may forward the error to the control OS for handling errors. This approach simplifies the hypervisor 
error handling since it relies on the control OS to implement the basic error handling model.  The control OS error 
handling code will be similar to the error handling code in the hosted VMM. Errors can be forwarded to the control 
OS via an OS callback or by injecting an MCE event into the control OS. Injecting an MCE will cause the control OS 
MCA error handler to be invoked. The control OS is responsible for terminating the affected guest VM, if necessary, 
which may require cooperation from the hypervisor.

Alternatively, the error may be handled completely in the hypervisor. The hypervisor error handler is enhanced to 
implement the basic error handling model and the hypervisor error handler has the capability to fully analyze the 
error information and take recovery actions based on the guidelines. In this case error handling steps in the hyper-
visor are similar to those for the hosted VMM described above (where the hypervisor replaces the host OS actions). 
The hypervisor is responsible for terminating the affected guest VM, if necessary.

In all cases, if a fatal error is detected the VMM error handler should log the error and reset the system. The VMM 
error handler must ensure that guest VMs are not resumed after a fatal error is detected to ensure error contain-
ment is maintained.

33.4.3.4  MCA Virtualization

A more sophisticated approach for handling errors is to virtualize the MCA. This involves virtualizing the MCA hard-
ware and intercepting the MCA event in the VMM when a guest VM is interrupted by an MCA. After analyzing the 
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error, the VMM error handler may then decide to inject an MCE abort into the guest VM for attempted guest VM 
error recovery. This would enable the guest OS the opportunity to take recovery actions specific to that guest. 

For MCA virtualization, the VMM must provide the guest physical address for memory errors instead of the system 
physical address when reporting the errors to the guest VM. To compute the guest physical address, the VMM 
needs to maintain a reverse mapping of system physical page addresses to guest physical page addresses. 

When the MCE is injected into the guest VM, the guest OS MCA handler would be invoked. The guest OS imple-
ments the MCA handling guidelines and it could potentially terminate the interrupted thread of execution within the 
guest instead of terminating the VM. The guest OS may also disable use of the affected page by the guest. When 
disabling the page the VMM error handler may handle the case where a page is shared by the VMM and a guest or 
by two guests. In these cases the page use must be disabled in both contexts to ensure no subsequent consump-
tion errors are generated.

33.4.3.5  Implementation Considerations for the MCA Virtualization Model

MCA virtualization may be done in either hosted VMMs or hypervisor-based VMMs.  The error handling flow is 
similar to the flow described in the basic handling case. The major difference is that the recovery action includes 
injecting the MCE abort into the guest VM to enable recovery by the guest OS when the MCA interrupts the execu-
tion of a guest VM.

33.5 HANDLING ACTIVITY STATES BY VMM

A VMM might place a logic processor in the wait-for-SIPI activity state if supporting certain guest operating system 
using the multi-processor (MP) start-up algorithm. A guest with direct access to the physical local APIC and using 
the MP start-up algorithm sends an INIT-SIPI-SIPI IPI sequence to start the application processor. In order to trap 
the SIPIs, the VMM must start the logic processor which is the target of the SIPIs in wait-for-SIPI mode.
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CHAPTER 34
SYSTEM MANAGEMENT MODE

This chapter describes aspects of IA-64 and IA-32 architecture used in system management mode (SMM).

SMM provides an alternate operating environment that can be used to monitor and manage various system 
resources for more efficient energy usage, to control system hardware, and/or to run proprietary code. It was 
introduced into the IA-32 architecture in the Intel386 SL processor (a mobile specialized version of the Intel386 
processor). It is also available in the Pentium M, Pentium 4, Intel Xeon, P6 family, and Pentium and Intel486 
processors (beginning with the enhanced versions of the Intel486 SL and Intel486 processors). 

34.1 SYSTEM MANAGEMENT MODE OVERVIEW

SMM is a special-purpose operating mode provided for handling system-wide functions like power management, 
system hardware control, or proprietary OEM-designed code. It is intended for use only by system firmware, not by 
applications software or general-purpose systems software. The main benefit of SMM is that it offers a distinct and 
easily isolated processor environment that operates transparently to the operating system or executive and soft-
ware applications. 

When SMM is invoked through a system management interrupt (SMI), the processor saves the current state of the 
processor (the processor’s context), then switches to a separate operating environment defined by a new address 
space. The system management software executive (SMI handler) starts execution in that environment, and the 
critical code and data of the SMI handler reside in a physical memory region (SMRAM) within that address space. 
While in SMM, the processor executes SMI handler code to perform operations such as powering down unused disk 
drives or monitors, executing proprietary code, or placing the whole system in a suspended state. When the SMI 
handler has completed its operations, it executes a resume (RSM) instruction. This instruction causes the processor 
to reload the saved context of the processor, switch back to protected or real mode, and resume executing the 
interrupted application or operating-system program or task.

The following SMM mechanisms make it transparent to applications programs and operating systems:
• The only way to enter SMM is by means of an SMI.
• The processor executes SMM code in a separate address space that can be made inaccessible from the other 

operating modes.
• Upon entering SMM, the processor saves the context of the interrupted program or task.
• All interrupts normally handled by the operating system are disabled upon entry into SMM.
• The RSM instruction can be executed only in SMM.

Section 34.3 describes transitions into and out of SMM. The execution environment after entering SMM is in real-
address mode with paging disabled (CR0.PE = CR0.PG = 0). In this initial execution environment, the SMI handler 
can address up to 4 GBytes of memory and can execute all I/O and system instructions. Section 34.5 describes in 
detail the initial SMM execution environment for an SMI handler and operation within that environment. The SMI 
handler may subsequently switch to other operating modes while remaining in SMM.

NOTES

Software developers should be aware that, even if a logical processor was using the physical-
address extension (PAE) mechanism (introduced in the P6 family processors) or was in IA-32e 
mode before an SMI, this will not be the case after the SMI is delivered. This is because delivery of 
an SMI disables paging (see Table 34-4). (This does not apply if the dual-monitor treatment of SMIs 
and SMM is active; see Section 34.15.)

34.1.1 System Management Mode and VMX Operation

Traditionally, SMM services system management interrupts and then resumes program execution (back to the soft-
ware stack consisting of executive and application software; see Section 34.2 through Section 34.13). 



34-2 Vol. 3C

SYSTEM MANAGEMENT MODE

A virtual machine monitor (VMM) using VMX can act as a host to multiple virtual machines and each virtual machine 
can support its own software stack of executive and application software. On processors that support VMX, virtual-
machine extensions may use system-management interrupts (SMIs) and system-management mode (SMM) in one 
of two ways:
• Default treatment. System firmware handles SMIs. The processor saves architectural states and critical 

states relevant to VMX operation upon entering SMM. When the firmware completes servicing SMIs, it uses 
RSM to resume VMX operation.

• Dual-monitor treatment. Two VM monitors collaborate to control the servicing of SMIs: one VMM operates 
outside of SMM to provide basic virtualization in support for guests; the other VMM operates inside SMM (while 
in VMX operation) to support system-management functions. The former is referred to as executive monitor, 
the latter SMM-transfer monitor (STM).1

The default treatment is described in Section 34.14, “Default Treatment of SMIs and SMM with VMX Operation and 
SMX Operation”. Dual-monitor treatment of SMM is described in Section 34.15, “Dual-Monitor Treatment of SMIs 
and SMM”.

34.2 SYSTEM MANAGEMENT INTERRUPT (SMI)

The only way to enter SMM is by signaling an SMI through the SMI# pin on the processor or through an SMI 
message received through the APIC bus. The SMI is a nonmaskable external interrupt that operates independently 
from the processor’s interrupt- and exception-handling mechanism and the local APIC. The SMI takes precedence 
over an NMI and a maskable interrupt. SMM is non-reentrant; that is, the SMI is disabled while the processor is in 
SMM.

NOTES

In the Pentium 4, Intel Xeon, and P6 family processors, when a processor that is designated as an 
application processor during an MP initialization sequence is waiting for a startup IPI (SIPI), it is in 
a mode where SMIs are masked. However if a SMI is received while an application processor is in 
the wait for SIPI mode, the SMI will be pended. The processor then responds on receipt of a SIPI by 
immediately servicing the pended SMI and going into SMM before handling the SIPI.
An SMI may be blocked for one instruction following execution of STI, MOV to SS, or POP into SS.

34.3 SWITCHING BETWEEN SMM AND THE OTHER 
PROCESSOR OPERATING MODES

Figure 2-3 shows how the processor moves between SMM and the other processor operating modes (protected, 
real-address, and virtual-8086). Signaling an SMI while the processor is in real-address, protected, or virtual-8086 
modes always causes the processor to switch to SMM. Upon execution of the RSM instruction, the processor always 
returns to the mode it was in when the SMI occurred. 

34.3.1 Entering SMM

The processor always handles an SMI on an architecturally defined “interruptible” point in program execution 
(which is commonly at an IA-32 architecture instruction boundary). When the processor receives an SMI, it waits 
for all instructions to retire and for all stores to complete. The processor then saves its current context in SMRAM 
(see Section 34.4), enters SMM, and begins to execute the SMI handler.

Upon entering SMM, the processor signals external hardware that SMI handling has begun. The signaling mecha-
nism used is implementation dependent. For the P6 family processors, an SMI acknowledge transaction is gener-

1. The dual-monitor treatment may not be supported by all processors. Software should consult the VMX capability MSR 
IA32_VMX_BASIC (see Appendix A.1) to determine whether it is supported.
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ated on the system bus and the multiplexed status signal EXF4 is asserted each time a bus transaction is generated 
while the processor is in SMM. For the Pentium and Intel486 processors, the SMIACT# pin is asserted.

An SMI has a greater priority than debug exceptions and external interrupts. Thus, if an NMI, maskable hardware 
interrupt, or a debug exception occurs at an instruction boundary along with an SMI, only the SMI is handled. 
Subsequent SMI requests are not acknowledged while the processor is in SMM. The first SMI interrupt request that 
occurs while the processor is in SMM (that is, after SMM has been acknowledged to external hardware) is latched 
and serviced when the processor exits SMM with the RSM instruction. The processor will latch only one SMI while 
in SMM.

See Section 34.5 for a detailed description of the execution environment when in SMM.

34.3.2 Exiting From SMM

The only way to exit SMM is to execute the RSM instruction. The RSM instruction is only available to the SMI 
handler; if the processor is not in SMM, attempts to execute the RSM instruction result in an invalid-opcode excep-
tion (#UD) being generated.

The RSM instruction restores the processor’s context by loading the state save image from SMRAM back into the 
processor’s registers. The processor then returns an SMIACK transaction on the system bus and returns program 
control back to the interrupted program.

Upon successful completion of the RSM instruction, the processor signals external hardware that SMM has been 
exited. For the P6 family processors, an SMI acknowledge transaction is generated on the system bus and the 
multiplexed status signal EXF4 is no longer generated on bus cycles. For the Pentium and Intel486 processors, the 
SMIACT# pin is deserted.

If the processor detects invalid state information saved in the SMRAM, it enters the shutdown state and generates 
a special bus cycle to indicate it has entered shutdown state. Shutdown happens only in the following situations:
• A reserved bit in control register CR4 is set to 1 on a write to CR4. This error should not happen unless SMI 

handler code modifies reserved areas of the SMRAM saved state map (see Section 34.4.1). CR4 is saved in the 
state map in a reserved location and cannot be read or modified in its saved state.

• An illegal combination of bits is written to control register CR0, in particular PG set to 1 and PE set to 0, or NW 
set to 1 and CD set to 0.

• CR4.PCIDE would be set to 1 and IA32_EFER.LMA to 0.
• (For the Pentium and Intel486 processors only.) If the address stored in the SMBASE register when an RSM 

instruction is executed is not aligned on a 32-KByte boundary. This restriction does not apply to the P6 family 
processors.

In the shutdown state, Intel processors stop executing instructions until a RESET#, INIT# or NMI# is asserted. 
While Pentium family processors recognize the SMI# signal in shutdown state, P6 family and Intel486 processors 
do not. Intel does not support using SMI# to recover from shutdown states for any processor family; the response 
of processors in this circumstance is not well defined. On Pentium 4 and later processors, shutdown will inhibit 
INTR and A20M but will not change any of the other inhibits. On these processors, NMIs will be inhibited if no action 
is taken in the SMI handler to uninhibit them (see Section 34.8).

If the processor is in the HALT state when the SMI is received, the processor handles the return from SMM slightly 
differently (see Section 34.10). Also, the SMBASE address can be changed on a return from SMM (see Section 
34.11).

34.4 SMRAM

Upon entering SMM, the processor switches to a new address space. Because paging is disabled upon entering 
SMM, this initial address space maps all memory accesses to the low 4 GBytes of the processor's physical address 
space. The SMI handler's critical code and data reside in a memory region referred to as system-management RAM 
(SMRAM). The processor uses a pre-defined region within SMRAM to save the processor's pre-SMI context. SMRAM 
can also be used to store system management information (such as the system configuration and specific informa-
tion about powered-down devices) and OEM-specific information. 
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The default SMRAM size is 64 KBytes beginning at a base physical address in physical memory called the SMBASE 
(see Figure 34-1). The SMBASE default value following a hardware reset is 30000H. The processor looks for the 
first instruction of the SMI handler at the address [SMBASE + 8000H]. It stores the processor’s state in the area 
from [SMBASE + FE00H] to [SMBASE + FFFFH]. See Section 34.4.1 for a description of the mapping of the state 
save area.

The system logic is minimally required to decode the physical address range for the SMRAM from [SMBASE + 
8000H] to [SMBASE + FFFFH]. A larger area can be decoded if needed. The size of this SMRAM can be between 32 
KBytes and 4 GBytes.

The location of the SMRAM can be changed by changing the SMBASE value (see Section 34.11). It should be noted 
that all processors in a multiple-processor system are initialized with the same SMBASE value (30000H). Initializa-
tion software must sequentially place each processor in SMM and change its SMBASE so that it does not overlap 
those of other processors.

The actual physical location of the SMRAM can be in system memory or in a separate RAM memory. The processor 
generates an SMI acknowledge transaction (P6 family processors) or asserts the SMIACT# pin (Pentium and 
Intel486 processors) when the processor receives an SMI (see Section 34.3.1). 

System logic can use the SMI acknowledge transaction or the assertion of the SMIACT# pin to decode accesses to 
the SMRAM and redirect them (if desired) to specific SMRAM memory. If a separate RAM memory is used for 
SMRAM, system logic should provide a programmable method of mapping the SMRAM into system memory space 
when the processor is not in SMM. This mechanism will enable start-up procedures to initialize the SMRAM space 
(that is, load the SMI handler) before executing the SMI handler during SMM.

34.4.1 SMRAM State Save Map

When an IA-32 processor that does not support Intel 64 architecture initially enters SMM, it writes its state to the 
state save area of the SMRAM.   The state save area begins at [SMBASE + 8000H + 7FFFH] and extends down to 
[SMBASE + 8000H + 7E00H]. Table 34-1 shows the state save map. The offset in column 1 is relative to the 
SMBASE value plus 8000H. Reserved spaces should not be used by software.

Some of the registers in the SMRAM state save area (marked YES in column 3) may be read and changed by the 
SMI handler, with the changed values restored to the processor registers by the RSM instruction. Some register 
images are read-only, and must not be modified (modifying these registers will result in unpredictable behavior). 
An SMI handler should not rely on any values stored in an area that is marked as reserved.

 

Figure 34-1.  SMRAM Usage

Start of State Save Area
SMBASE + FFFFH

SMBASE

SMBASE + 8000H

SMRAM

SMI Handler Entry Point
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The following registers are saved (but not readable) and restored upon exiting SMM:
• Control register CR4. (This register is cleared to all 0s when entering SMM).
• The hidden segment descriptor information stored in segment registers CS, DS, ES, FS, GS, and SS.

If an SMI request is issued for the purpose of powering down the processor, the values of all reserved locations in 
the SMM state save must be saved to nonvolatile memory.

The following state is not automatically saved and restored following an SMI and the RSM instruction, respectively:

Table 34-1.  SMRAM State Save Map

Offset 
(Added to SMBASE + 8000H)

Register Writable?

7FFCH CR0 No

7FF8H CR3 No

7FF4H EFLAGS Yes

7FF0H EIP Yes

7FECH EDI Yes

7FE8H ESI Yes

7FE4H EBP Yes

7FE0H ESP Yes

7FDCH EBX Yes

7FD8H EDX Yes

7FD4H ECX Yes

7FD0H EAX Yes

7FCCH DR6 No

7FC8H DR7 No

7FC4H TR1 No

7FC0H Reserved No

7FBCH GS1 No

7FB8H FS1 No

7FB4H DS1 No

7FB0H SS1 No

7FACH CS1 No

7FA8H ES1 No

7FA4H I/O State Field, see Section 34.7 No

7FA0H I/O Memory Address Field, see Section 34.7 No

7F9FH-7F03H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7E00H Reserved No

NOTE:

1. The two most significant bytes are reserved.
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• Debug registers DR0 through DR3.
• The x87 FPU registers.
• The MTRRs.
• Control register CR2.
• The model-specific registers (for the P6 family and Pentium processors) or test registers TR3 through TR7 (for 

the Pentium and Intel486 processors).
• The state of the trap controller.
• The machine-check architecture registers.
• The APIC internal interrupt state (ISR, IRR, etc.).
• The microcode update state.

If an SMI is used to power down the processor, a power-on reset will be required before returning to SMM, which 
will reset much of this state back to its default values. So an SMI handler that is going to trigger power down should 
first read these registers listed above directly, and save them (along with the rest of RAM) to nonvolatile storage. 
After the power-on reset, the continuation of the SMI handler should restore these values, along with the rest of 
the system's state. Anytime the SMI handler changes these registers in the processor, it must also save and restore 
them.

NOTES

A small subset of the MSRs (such as, the time-stamp counter and performance-monitoring 
counters) are not arbitrarily writable and therefore cannot be saved and restored. SMM-based 
power-down and restoration should only be performed with operating systems that do not use or 
rely on the values of these registers. 
Operating system developers should be aware of this fact and insure that their operating-system 
assisted power-down and restoration software is immune to unexpected changes in these register 
values.

34.4.1.1  SMRAM State Save Map and Intel 64 Architecture

When the processor initially enters SMM, it writes its state to the state save area of the SMRAM. The state save area 
on an Intel 64 processor at [SMBASE + 8000H + 7FFFH] and extends to [SMBASE + 8000H + 7C00H]. 

Support for Intel 64 architecture is reported by CPUID.80000001:EDX[29] = 1. The layout of the SMRAM state save 
map is shown in Table 34-3. 

Additionally, the SMRAM state save map shown in Table 34-3 also applies to processors with the following CPUID 
signatures listed in Table 34-2, irrespective of the value in CPUID.80000001:EDX[29].

Table 34-2.   Processor Signatures and 64-bit SMRAM State Save Map Format

DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad processor Q9xxx, Intel Core 2 Duo 
processors E8000, T9000,

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad, Intel Core 2 Extreme, 
Intel Core 2 Duo processors, Intel Pentium dual-core processors

06_1CH Intel® Atom™ processors
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Table 34-3.  SMRAM State Save Map for Intel 64 Architecture

Offset 
(Added to SMBASE + 8000H)

Register Writable?

7FF8H CR0 No

7FF0H CR3 No

7FE8H RFLAGS Yes

7FE0H IA32_EFER Yes

7FD8H RIP Yes

7FD0H DR6 No

7FC8H DR7 No

7FC4H TR SEL1 No

7FC0H LDTR SEL1 No

7FBCH GS SEL1 No

7FB8H FS SEL1 No

7FB4H DS SEL1 No

7FB0H SS SEL1 No

7FACH CS SEL1 No

7FA8H ES SEL1 No

7FA4H IO_MISC No

7F9CH IO_MEM_ADDR No

7F94H RDI Yes

7F8CH RSI Yes

7F84H RBP Yes

7F7CH RSP Yes

7F74H RBX Yes

7F6CH RDX Yes

7F64H RCX Yes

7F5CH RAX Yes

7F54H R8 Yes

7F4CH R9 Yes

7F44H R10 Yes

7F3CH R11 Yes

7F34H R12 Yes

7F2CH R13 Yes

7F24H R14 Yes

7F1CH R15 Yes

7F1BH-7F04H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes
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34.4.2 SMRAM Caching

An IA-32 processor does not automatically write back and invalidate its caches before entering SMM or before 
exiting SMM. Because of this behavior, care must be taken in the placement of the SMRAM in system memory and 
in the caching of the SMRAM to prevent cache incoherence when switching back and forth between SMM and 
protected mode operation. Either of the following three methods of locating the SMRAM in system memory will 
guarantee cache coherency:
• Place the SRAM in a dedicated section of system memory that the operating system and applications are 

prevented from accessing. Here, the SRAM can be designated as cacheable (WB, WT, or WC) for optimum 
processor performance, without risking cache incoherence when entering or exiting SMM.

• Place the SRAM in a section of memory that overlaps an area used by the operating system (such as the video 
memory), but designate the SMRAM as uncacheable (UC). This method prevents cache access when in SMM to 
maintain cache coherency, but the use of uncacheable memory reduces the performance of SMM code.

• Place the SRAM in a section of system memory that overlaps an area used by the operating system and/or 
application code, but explicitly flush (write back and invalidate) the caches upon entering and exiting SMM 
mode. This method maintains cache coherency, but incurs the overhead of two complete cache flushes.

For Pentium 4, Intel Xeon, and P6 family processors, a combination of the first two methods of locating the SMRAM 
is recommended. Here the SMRAM is split between an overlapping and a dedicated region of memory. Upon 
entering SMM, the SMRAM space that is accessed overlaps video memory (typically located in low memory). This 
SMRAM section is designated as UC memory. The initial SMM code then jumps to a second SMRAM section that is 
located in a dedicated region of system memory (typically in high memory). This SMRAM section can be cached for 
optimum processor performance.

7EF7H - 7EE4H Reserved No

7EE0H Setting of “enable EPT” VM-execution control No

7ED8H Value of EPTP VM-execution control field No

7ED7H - 7EA0H Reserved No

7E9CH LDT Base (lower 32 bits) No

7E98H Reserved No

7E94H IDT Base (lower 32 bits) No

7E90H Reserved No

7E8CH GDT Base (lower 32 bits) No

7E8BH - 7E44H Reserved No

7E40H CR4 No

7E3FH - 7DF0H Reserved No

7DE8H IO_RIP Yes

7DE7H - 7DDCH Reserved No

7DD8H IDT Base (Upper 32 bits) No

7DD4H LDT Base (Upper 32 bits) No

7DD0H GDT Base (Upper 32 bits) No

7DCFH - 7C00H Reserved No

NOTE:

1. The two most significant bytes are reserved.

Table 34-3.  SMRAM State Save Map for Intel 64 Architecture (Contd.)

Offset 
(Added to SMBASE + 8000H)

Register Writable?
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For systems that explicitly flush the caches upon entering SMM (the third method described above), the cache flush 
can be accomplished by asserting the FLUSH# pin at the same time as the request to enter SMM (generally initi-
ated by asserting the SMI# pin). The priorities of the FLUSH# and SMI# pins are such that the FLUSH# is serviced 
first. To guarantee this behavior, the processor requires that the following constraints on the interaction of FLUSH# 
and SMI# be met. In a system where the FLUSH# and SMI# pins are synchronous and the set up and hold times 
are met, then the FLUSH# and SMI# pins may be asserted in the same clock. In asynchronous systems, the 
FLUSH# pin must be asserted at least one clock before the SMI# pin to guarantee that the FLUSH# pin is serviced 
first. 

Upon leaving SMM (for systems that explicitly flush the caches), the WBINVD instruction should be executed prior 
to leaving SMM to flush the caches.

NOTES

In systems based on the Pentium processor that use the FLUSH# pin to write back and invalidate 
cache contents before entering SMM, the processor will prefetch at least one cache line in between 
when the Flush Acknowledge cycle is run and the subsequent recognition of SMI# and the assertion 
of SMIACT#. 
It is the obligation of the system to ensure that these lines are not cached by returning KEN# 
inactive to the Pentium processor.

34.4.2.1  System Management Range Registers (SMRR)

SMI handler code and data stored by SMM code resides in SMRAM. The SMRR interface is an enhancement in Intel 
64 architecture to limit cacheable reference of addresses in SMRAM to code running in SMM. The SMRR interface 
can be configured only by code running in SMM. Details of SMRR is described in Section 11.11.2.4.

34.5 SMI HANDLER EXECUTION ENVIRONMENT

Section 34.5.1 describes the initial execution environment for an SMI handler. An SMI handler may re-configure its 
execution environment to other supported operating modes. Section 34.5.2 discusses modifications an SMI 
handler can make to its execution environment.

34.5.1 Initial SMM Execution Environment

After saving the current context of the processor, the processor initializes its core registers to the values shown in 
Table 34-4. Upon entering SMM, the PE and PG flags in control register CR0 are cleared, which places the processor 
in an environment similar to real-address mode. The differences between the SMM execution environment and the 
real-address mode execution environment are as follows:
• The addressable address space ranges from 0 to FFFFFFFFH (4 GBytes). 
• The normal 64-KByte segment limit for real-address mode is increased to 4 GBytes.
• The default operand and address sizes are set to 16 bits, which restricts the addressable SMRAM address space 

to the 1-MByte real-address mode limit for native real-address-mode code. However, operand-size and 
address-size override prefixes can be used to access the address space beyond the 1-MByte.

Table 34-4.  Processor Register Initialization in SMM

Register Contents

General-purpose registers Undefined

EFLAGS 00000002H

EIP 00008000H

CS selector SMM Base shifted right 4 bits (default 3000H)

CS base SMM Base (default 30000H)

DS, ES, FS, GS, SS Selectors 0000H
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• Near jumps and calls can be made to anywhere in the 4-GByte address space if a 32-bit operand-size override 
prefix is used. Due to the real-address-mode style of base-address formation, a far call or jump cannot transfer 
control to a segment with a base address of more than 20 bits (1 MByte). However, since the segment limit in 
SMM is 4 GBytes, offsets into a segment that go beyond the 1-MByte limit are allowed when using 32-bit 
operand-size override prefixes. Any program control transfer that does not have a 32-bit operand-size override 
prefix truncates the EIP value to the 16 low-order bits.

• Data and the stack can be located anywhere in the 4-GByte address space, but can be accessed only with a 32-
bit address-size override if they are located above 1 MByte. As with the code segment, the base address for a 
data or stack segment cannot be more than 20 bits.

The value in segment register CS is automatically set to the default of 30000H for the SMBASE shifted 4 bits to the 
right; that is, 3000H. The EIP register is set to 8000H. When the EIP value is added to shifted CS value (the 
SMBASE), the resulting linear address points to the first instruction of the SMI handler.

The other segment registers (DS, SS, ES, FS, and GS) are cleared to 0 and their segment limits are set to 4 GBytes. 
In this state, the SMRAM address space may be treated as a single flat 4-GByte linear address space. If a segment 
register is loaded with a 16-bit value, that value is then shifted left by 4 bits and loaded into the segment base 
(hidden part of the segment register). The limits and attributes are not modified.

Maskable hardware interrupts, exceptions, NMI interrupts, SMI interrupts, A20M interrupts, single-step traps, 
breakpoint traps, and INIT operations are inhibited when the processor enters SMM. Maskable hardware interrupts, 
exceptions, single-step traps, and breakpoint traps can be enabled in SMM if the SMM execution environment 
provides and initializes an interrupt table and the necessary interrupt and exception handlers (see Section 34.6).

34.5.2 SMI Handler Operating Mode Switching

Within SMM, an SMI handler may change the processor's operating mode (e.g., to enable PAE paging, enter 64-bit 
mode, etc.) after it has made proper preparation and initialization to do so. For example, if switching to 32-bit 
protected mode, the SMI handler should follow the guidelines provided in Chapter 9, “Processor Management and 
Initialization”. If the SMI handler does wish to change operating mode, it is responsible for executing the appro-
priate mode-transition code after each SMI.

It is recommended that the SMI handler make use of all means available to protect the integrity of its critical code 
and data. In particular, it should use the system-management range register (SMRR) interface if it is available (see 
Section 11.11.2.4). The SMRR interface can protect only the first 4 GBytes of the physical address space. The SMI 
handler should take that fact into account if it uses operating modes that allow access to physical addresses beyond 
that 4-GByte limit (e.g. PAE paging or 64-bit mode).

Execution of the RSM instruction restores the pre-SMI processor state from the SMRAM state-state map (see 
Section 34.4.1) into which it was stored when the processor entered SMM. (The SMBASE field in the SMRAM state-
save map does not determine the state following RSM but rather the initial environment following the next entry to 
SMM.) Any required change to operating mode is performed by the RSM instruction; there is no need for the SMI 
handler to change modes explicitly prior to executing RSM.

34.6 EXCEPTIONS AND INTERRUPTS WITHIN SMM

When the processor enters SMM, all hardware interrupts are disabled in the following manner:

DS, ES, FS, GS, SS Bases 000000000H

DS, ES, FS, GS, SS Limits 0FFFFFFFFH

CR0 PE, EM, TS, and PG flags set to 0; others unmodified

CR4 Cleared to zero

DR6 Undefined

DR7 00000400H

Table 34-4.  Processor Register Initialization in SMM
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• The IF flag in the EFLAGS register is cleared, which inhibits maskable hardware interrupts from being 
generated.

• The TF flag in the EFLAGS register is cleared, which disables single-step traps.
• Debug register DR7 is cleared, which disables breakpoint traps. (This action prevents a debugger from acciden-

tally breaking into an SMI handler if a debug breakpoint is set in normal address space that overlays code or 
data in SMRAM.)

• NMI, SMI, and A20M interrupts are blocked by internal SMM logic. (See Section 34.8 for more information 
about how NMIs are handled in SMM.)

Software-invoked interrupts and exceptions can still occur, and maskable hardware interrupts can be enabled by 
setting the IF flag. Intel recommends that SMM code be written in so that it does not invoke software interrupts 
(with the INT n, INTO, INT 3, or BOUND instructions) or generate exceptions. 

If the SMI handler requires interrupt and exception handling, an SMM interrupt table and the necessary exception 
and interrupt handlers must be created and initialized from within SMM. Until the interrupt table is correctly initial-
ized (using the LIDT instruction), exceptions and software interrupts will result in unpredictable processor 
behavior. 

The following restrictions apply when designing SMM interrupt and exception-handling facilities:
• The interrupt table should be located at linear address 0 and must contain real-address mode style interrupt 

vectors (4 bytes containing CS and IP).
• Due to the real-address mode style of base address formation, an interrupt or exception cannot transfer control 

to a segment with a base address of more that 20 bits.
• An interrupt or exception cannot transfer control to a segment offset of more than 16 bits (64 KBytes).
• When an exception or interrupt occurs, only the 16 least-significant bits of the return address (EIP) are pushed 

onto the stack. If the offset of the interrupted procedure is greater than 64 KBytes, it is not possible for the 
interrupt/exception handler to return control to that procedure. (One solution to this problem is for a handler 
to adjust the return address on the stack.)

• The SMBASE relocation feature affects the way the processor will return from an interrupt or exception 
generated while the SMI handler is executing. For example, if the SMBASE is relocated to above 1 MByte, but 
the exception handlers are below 1 MByte, a normal return to the SMI handler is not possible. One solution is 
to provide the exception handler with a mechanism for calculating a return address above 1 MByte from the 16-
bit return address on the stack, then use a 32-bit far call to return to the interrupted procedure.

• If an SMI handler needs access to the debug trap facilities, it must insure that an SMM accessible debug handler 
is available and save the current contents of debug registers DR0 through DR3 (for later restoration). Debug 
registers DR0 through DR3 and DR7 must then be initialized with the appropriate values.

• If an SMI handler needs access to the single-step mechanism, it must insure that an SMM accessible single-
step handler is available, and then set the TF flag in the EFLAGS register.

• If the SMI design requires the processor to respond to maskable hardware interrupts or software-generated 
interrupts while in SMM, it must ensure that SMM accessible interrupt handlers are available and then set the 
IF flag in the EFLAGS register (using the STI instruction). Software interrupts are not blocked upon entry to 
SMM, so they do not need to be enabled.

34.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS
SYSTEM MANAGEMENT INTERRUPTS

When coding for a multiprocessor system or a system with Intel HT Technology, it was not always possible for an 
SMI handler to distinguish between a synchronous SMI (triggered during an I/O instruction) and an asynchronous 
SMI. To facilitate the discrimination of these two events, incremental state information has been added to the SMM 
state save map. 

Processors that have an SMM revision ID of 30004H or higher have the incremental state information described 
below.
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34.7.1 I/O State Implementation

Within the extended SMM state save map, a bit (IO_SMI) is provided that is set only when an SMI is either taken 
immediately after a successful I/O instruction or is taken after a successful iteration of a REP I/O instruction (the 
successful notion pertains to the processor point of view; not necessarily to the corresponding platform function). 
When set, the IO_SMI bit provides a strong indication that the corresponding SMI was synchronous. In this case, 
the SMM State Save Map also supplies the port address of the I/O operation. The IO_SMI bit and the I/O Port 
Address may be used in conjunction with the information logged by the platform to confirm that the SMI was 
indeed synchronous.

The IO_SMI bit by itself is a strong indication, not a guarantee, that the SMI is synchronous. This is because an 
asynchronous SMI might coincidentally be taken after an I/O instruction. In such a case, the IO_SMI bit would still 
be set in the SMM state save map.

Information characterizing the I/O instruction is saved in two locations in the SMM State Save Map (Table 34-5). 
The IO_SMI bit also serves as a valid bit for the rest of the I/O information fields. The contents of these I/O infor-
mation fields are not defined when the IO_SMI bit is not set.

When IO_SMI is set, the other fields may be interpreted as follows:
• I/O length:

• 001 – Byte

• 010 – Word

• 100 – Dword
• I/O instruction type (Table 34-6)

Table 34-5.  I/O Instruction Information in the SMM State Save Map

State (SMM Rev. ID: 30004H or higher) Format

31 16 15 8 7 4 3 1 0

I/0 State Field

SMRAM offset 7FA4
I/O

 P
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rt
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e

se
rv
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I/O
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e

I/O
 Le

n
g

th

IO
_

S
M

I

31 0

I/O Memory Address Field

SMRAM offset 7FA0

I/O Memory Address

Table 34-6.  I/O Instruction Type Encodings

Instruction Encoding

IN Immediate 1001

IN DX 0001

OUT Immediate 1000

OUT DX 0000

INS 0011

OUTS 0010

REP INS 0111

REP OUTS 0110
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34.8 NMI HANDLING WHILE IN SMM

NMI interrupts are blocked upon entry to the SMI handler. If an NMI request occurs during the SMI handler, it is 
latched and serviced after the processor exits SMM. Only one NMI request will be latched during the SMI handler. 
If an NMI request is pending when the processor executes the RSM instruction, the NMI is serviced before the next 
instruction of the interrupted code sequence. This assumes that NMIs were not blocked before the SMI occurred. If 
NMIs were blocked before the SMI occurred, they are blocked after execution of RSM.

Although NMI requests are blocked when the processor enters SMM, they may be enabled through software by 
executing an IRET instruction. If the SMI handler requires the use of NMI interrupts, it should invoke a dummy 
interrupt service routine for the purpose of executing an IRET instruction. Once an IRET instruction is executed, 
NMI interrupt requests are serviced in the same “real mode” manner in which they are handled outside of SMM.

A special case can occur if an SMI handler nests inside an NMI handler and then another NMI occurs. During NMI 
interrupt handling, NMI interrupts are disabled, so normally NMI interrupts are serviced and completed with an 
IRET instruction one at a time. When the processor enters SMM while executing an NMI handler, the processor 
saves the SMRAM state save map but does not save the attribute to keep NMI interrupts disabled. Potentially, an 
NMI could be latched (while in SMM or upon exit) and serviced upon exit of SMM even though the previous NMI 
handler has still not completed. One or more NMIs could thus be nested inside the first NMI handler. The NMI inter-
rupt handler should take this possibility into consideration.

Also, for the Pentium processor, exceptions that invoke a trap or fault handler will enable NMI interrupts from inside 
of SMM. This behavior is implementation specific for the Pentium processor and is not part of the IA-32 architec-
ture.

34.9 SMM REVISION IDENTIFIER

The SMM revision identifier field is used to indicate the version of SMM and the SMM extensions that are supported 
by the processor (see Figure 34-2). The SMM revision identifier is written during SMM entry and can be examined 
in SMRAM space at offset 7EFCH. The lower word of the SMM revision identifier refers to the version of the base 
SMM architecture.

The upper word of the SMM revision identifier refers to the extensions available. If the I/O instruction restart flag 
(bit 16) is set, the processor supports the I/O instruction restart (see Section 34.12); if the SMBASE relocation flag 
(bit 17) is set, SMRAM base address relocation is supported (see Section 34.11).

34.10 AUTO HALT RESTART

If the processor is in a HALT state (due to the prior execution of a HLT instruction) when it receives an SMI, the 
processor records the fact in the auto HALT restart flag in the saved processor state (see Figure 34-3). (This flag is 
located at offset 7F02H and bit 0 in the state save area of the SMRAM.)

If the processor sets the auto HALT restart flag upon entering SMM (indicating that the SMI occurred when the 
processor was in the HALT state), the SMI handler has two options:

Figure 34-2.  SMM Revision Identifier

SMM Revision Identifier

I/O Instruction Restart
SMBASE Relocation

Register Offset
7EFCH
31 0

Reserved

18 17 16 15
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• It can leave the auto HALT restart flag set, which instructs the RSM instruction to return program control to the 
HLT instruction. This option in effect causes the processor to re-enter the HALT state after handling the SMI. 
(This is the default operation.)

• It can clear the auto HALT restart flag, which instructs the RSM instruction to return program control to the 
instruction following the HLT instruction. 

These options are summarized in Table 34-7. If the processor was not in a HALT state when the SMI was received 
(the auto HALT restart flag is cleared), setting the flag to 1 will cause unpredictable behavior when the RSM instruc-
tion is executed.

If the HLT instruction is restarted, the processor will generate a memory access to fetch the HLT instruction (if it is 
not in the internal cache), and execute a HLT bus transaction. This behavior results in multiple HLT bus transactions 
for the same HLT instruction.

34.10.1 Executing the HLT Instruction in SMM

The HLT instruction should not be executed during SMM, unless interrupts have been enabled by setting the IF flag 
in the EFLAGS register. If the processor is halted in SMM, the only event that can remove the processor from this 
state is a maskable hardware interrupt or a hardware reset.

34.11 SMBASE RELOCATION

The default base address for the SMRAM is 30000H. This value is contained in an internal processor register called 
the SMBASE register. The operating system or executive can relocate the SMRAM by setting the SMBASE field in the 
saved state map (at offset 7EF8H) to a new value (see Figure 34-4). The RSM instruction reloads the internal 
SMBASE register with the value in the SMBASE field each time it exits SMM. All subsequent SMI requests will use 
the new SMBASE value to find the starting address for the SMI handler (at SMBASE + 8000H) and the SMRAM state 
save area (from SMBASE + FE00H to SMBASE + FFFFH). (The processor resets the value in its internal SMBASE 
register to 30000H on a RESET, but does not change it on an INIT.) 

 

Figure 34-3.  Auto HALT Restart Field

Table 34-7.  Auto HALT Restart Flag Values

Value of Flag After 
Entry to SMM

Value of Flag When 
Exiting SMM

Action of Processor When Exiting SMM

0

0

1

1

0

1

0

1

Returns to next instruction in interrupted program or task.

Unpredictable.

Returns to next instruction after HLT instruction.

Returns to HALT state.

Auto HALT Restart

015
Reserved Register Offset

7F02H

1
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In multiple-processor systems, initialization software must adjust the SMBASE value for each processor so that the 
SMRAM state save areas for each processor do not overlap. (For Pentium and Intel486 processors, the SMBASE 
values must be aligned on a 32-KByte boundary or the processor will enter shutdown state during the execution of 
a RSM instruction.)

If the SMBASE relocation flag in the SMM revision identifier field is set, it indicates the ability to relocate the 
SMBASE (see Section 34.9).

34.12 I/O INSTRUCTION RESTART

If the I/O instruction restart flag in the SMM revision identifier field is set (see Section 34.9), the I/O instruction 
restart mechanism is present on the processor. This mechanism allows an interrupted I/O instruction to be re-
executed upon returning from SMM mode. For example, if an I/O instruction is used to access a powered-down I/O 
device, a chip set supporting this device can intercept the access and respond by asserting SMI#. This action 
invokes the SMI handler to power-up the device. Upon returning from the SMI handler, the I/O instruction restart 
mechanism can be used to re-execute the I/O instruction that caused the SMI.

The I/O instruction restart field (at offset 7F00H in the SMM state-save area, see Figure 34-5) controls I/O instruc-
tion restart. When an RSM instruction is executed, if this field contains the value FFH, then the EIP register is modi-
fied to point to the I/O instruction that received the SMI request. The processor will then automatically re-execute 
the I/O instruction that the SMI trapped. (The processor saves the necessary machine state to insure that re-
execution of the instruction is handled coherently.)

If the I/O instruction restart field contains the value 00H when the RSM instruction is executed, then the processor 
begins program execution with the instruction following the I/O instruction. (When a repeat prefix is being used, 
the next instruction may be the next I/O instruction in the repeat loop.) Not re-executing the interrupted I/O 
instruction is the default behavior; the processor automatically initializes the I/O instruction restart field to 00H 
upon entering SMM. Table 34-8 summarizes the states of the I/O instruction restart field.

The I/O instruction restart mechanism does not indicate the cause of the SMI. It is the responsibility of the SMI 
handler to examine the state of the processor to determine the cause of the SMI and to determine if an I/O instruc-
tion was interrupted and should be restarted upon exiting SMM. If an SMI interrupt is signaled on a non-I/O 
instruction boundary, setting the I/O instruction restart field to FFH prior to executing the RSM instruction will likely 
result in a program error.

 

Figure 34-4.  SMBASE Relocation Field

 

Figure 34-5.  I/O Instruction Restart Field

Table 34-8.  I/O Instruction Restart Field Values

Value of Flag After 
Entry to SMM

Value of Flag When 
Exiting SMM

Action of Processor When Exiting SMM

00H

00H

00H

FFH

Does not re-execute trapped I/O instruction.

Re-executes trapped I/O instruction.

031

SMM Base Register Offset
7EF8H

015

I/O Instruction Restart Field Register Offset
7F00H
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34.12.1 Back-to-Back SMI Interrupts When I/O Instruction Restart Is Being Used

If an SMI interrupt is signaled while the processor is servicing an SMI interrupt that occurred on an I/O instruction 
boundary, the processor will service the new SMI request before restarting the originally interrupted I/O instruc-
tion. If the I/O instruction restart field is set to FFH prior to returning from the second SMI handler, the EIP will point 
to an address different from the originally interrupted I/O instruction, which will likely lead to a program error. To 
avoid this situation, the SMI handler must be able to recognize the occurrence of back-to-back SMI interrupts when 
I/O instruction restart is being used and insure that the handler sets the I/O instruction restart field to 00H prior to 
returning from the second invocation of the SMI handler.

34.13 SMM MULTIPLE-PROCESSOR CONSIDERATIONS

The following should be noted when designing multiple-processor systems:
• Any processor in a multiprocessor system can respond to an SMM.
• Each processor needs its own SMRAM space. This space can be in system memory or in a separate RAM.
• The SMRAMs for different processors can be overlapped in the same memory space. The only stipulation is that 

each processor needs its own state save area and its own dynamic data storage area. (Also, for the Pentium 
and Intel486 processors, the SMBASE address must be located on a 32-KByte boundary.) Code and static data 
can be shared among processors. Overlapping SMRAM spaces can be done more efficiently with the P6 family 
processors because they do not require that the SMBASE address be on a 32-KByte boundary. 

• The SMI handler will need to initialize the SMBASE for each processor.
• Processors can respond to local SMIs through their SMI# pins or to SMIs received through the APIC interface. 

The APIC interface can distribute SMIs to different processors.
• Two or more processors can be executing in SMM at the same time.
• When operating Pentium processors in dual processing (DP) mode, the SMIACT# pin is driven only by the MRM 

processor and should be sampled with ADS#. For additional details, see Chapter 14 of the Pentium Processor 
Family User’s Manual, Volume 1.

SMM is not re-entrant, because the SMRAM State Save Map is fixed relative to the SMBASE. If there is a need to 
support two or more processors in SMM mode at the same time then each processor should have dedicated SMRAM 
spaces. This can be done by using the SMBASE Relocation feature (see Section 34.11).

34.14 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX OPERATION AND 
SMX OPERATION

Under the default treatment, the interactions of SMIs and SMM with VMX operation are few. This section details 
those interactions. It also explains how this treatment affects SMX operation.

34.14.1 Default Treatment of SMI Delivery

Ordinary SMI delivery saves processor state into SMRAM and then loads state based on architectural definitions. 
Under the default treatment, processors that support VMX operation perform SMI delivery as follows:

enter SMM;

save the following internal to the processor:

CR4.VMXE

an indication of whether the logical processor was in VMX operation (root or non-root)

IF the logical processor is in VMX operation

THEN

save current VMCS pointer internal to the processor;

leave VMX operation;

save VMX-critical state defined below;
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FI;

IF the logical processor supports SMX operation

THEN

save internal to the logical processor an indication of whether the Intel® TXT private space is locked;

IF the TXT private space is unlocked

THEN lock the TXT private space;

FI;

FI;

CR4.VMXE ← 0;

perform ordinary SMI delivery:

save processor state in SMRAM;

set processor state to standard SMM values;1

invalidate linear mappings and combined mappings associated with VPID 0000H (for all PCIDs); combined mappings for VPID 0000H 
are invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP; see Section 28.3);

The pseudocode above makes reference to the saving of VMX-critical state. This state consists of the following: 
(1) SS.DPL (the current privilege level); (2) RFLAGS.VM2; (3) the state of blocking by STI and by MOV SS (see 
Table 24-3 in Section 24.4.2); (4) the state of virtual-NMI blocking (only if the processor is in VMX non-root oper-
ation and the “virtual NMIs” VM-execution control is 1); and (5) an indication of whether an MTF VM exit is pending 
(see Section 25.5.2). These data may be saved internal to the processor or in the VMCS region of the current 
VMCS. Processors that do not support SMI recognition while there is blocking by STI or by MOV SS need not save 
the state of such blocking.

If the logical processor supports the 1-setting of the “enable EPT” VM-execution control and the logical processor 
was in VMX non-root operation at the time of an SMI, it saves the value of that control into bit 0 of the 32-bit field 
at offset SMBASE + 8000H + 7EE0H (SMBASE + FEE0H; see Table 34-3).3 If the logical processor was not in VMX 
non-root operation at the time of the SMI, it saves 0 into that bit. If the logical processor saves 1 into that bit (it 
was in VMX non-root operation and the “enable EPT” VM-execution control was 1), it saves the value of the EPT 
pointer (EPTP) into the 64-bit field at offset SMBASE + 8000H + 7ED8H (SMBASE + FED8H).

Because SMI delivery causes a logical processor to leave VMX operation, all the controls associated with VMX non-
root operation are disabled in SMM and thus cannot cause VM exits while the logical processor in SMM.

34.14.2 Default Treatment of RSM

Ordinary execution of RSM restores processor state from SMRAM. Under the default treatment, processors that 
support VMX operation perform RSM as follows:

IF VMXE = 1 in CR4 image in SMRAM

THEN fail and enter shutdown state;

ELSE

restore state normally from SMRAM;

invalidate linear mappings and combined mappings associated with all VPIDs and all PCIDs; combined mappings are invalidated 
for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP; see Section 28.3);

IF the logical processor supports SMX operation andthe Intel® TXT private space was unlocked at the time of the last SMI (as 
saved)

THEN unlock the TXT private space;

FI;

CR4.VMXE ← value stored internally;

1. This causes the logical processor to block INIT signals, NMIs, and SMIs.

2. Section 34.14 and Section 34.15 use the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that 
support VMX operation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation 
refers to the 32-bit forms of these registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer spe-
cifically to the lower 32 bits of the register.

3. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls 
is 0, SMI functions as the “enable EPT” VM-execution control were 0. See Section 24.6.2.
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IF internal storage indicates that the logical processor

had been in VMX operation (root or non-root)

THEN

enter VMX operation (root or non-root);

restore VMX-critical state as defined in Section 34.14.1;

set to their fixed values any bits in CR0 and CR4 whose values must be fixed in VMX operation (see Section 23.8);1

IF RFLAGS.VM = 0 AND (in VMX root operation OR the “unrestricted guest” VM-execution control is 0)2

THEN

CS.RPL ← SS.DPL;

SS.RPL ← SS.DPL;

FI;

restore current VMCS pointer;

FI;

leave SMM;

IF logical processor will be in VMX operation or in SMX operation after RSM

THEN block A20M and leave A20M mode;

FI;

FI;

RSM unblocks SMIs. It restores the state of blocking by NMI (see Table 24-3 in Section 24.4.2) as follows:
• If the RSM is not to VMX non-root operation or if the “virtual NMIs” VM-execution control will be 0, the state of 

NMI blocking is restored normally.
• If the RSM is to VMX non-root operation and the “virtual NMIs” VM-execution control will be 1, NMIs are not 

blocked after RSM. The state of virtual-NMI blocking is restored as part of VMX-critical state.

INIT signals are blocked after RSM if and only if the logical processor will be in VMX root operation.

If RSM returns a logical processor to VMX non-root operation, it re-establishes the controls associated with the 
current VMCS. If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs immediately after RSM 
if the enabling conditions apply. The same is true for the “NMI-window exiting” VM-execution control. Such 
VM exits occur with their normal priority. See Section 25.2.

If an MTF VM exit was pending at the time of the previous SMI, an MTF VM exit is pending on the instruction 
boundary following execution of RSM. The following items detail the treatment of MTF VM exits that may be 
pending following RSM:
• System-management interrupts (SMIs), INIT signals, and higher priority events take priority over these MTF 

VM exits. These MTF VM exits take priority over debug-trap exceptions and lower priority events. 
• These MTF VM exits wake the logical processor if RSM caused the logical processor to enter the HLT state (see 

Section 34.10). They do not occur if the logical processor just entered the shutdown state.

34.14.3 Protection of CR4.VMXE in SMM

Under the default treatment, CR4.VMXE is treated as a reserved bit while a logical processor is in SMM. Any 
attempt by software running in SMM to set this bit causes a general-protection exception. In addition, software 
cannot use VMX instructions or enter VMX operation while in SMM.

34.14.4 VMXOFF and SMI Unblocking

The VMXOFF instruction can be executed only with the default treatment (see Section 34.15.1) and only outside 
SMM. If SMIs are blocked when VMXOFF is executed, VMXOFF unblocks them unless 

1. If the RSM is to VMX non-root operation and both the “unrestricted guest” VM-execution control and bit 31 of the primary proces-
sor-based VM-execution controls will be 1, CR0.PE and CR0.PG retain the values that were loaded from SMRAM regardless of what is 
reported in the capability MSR IA32_VMX_CR0_FIXED0.

2. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution 
controls is 0, VM entry functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.
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IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section 34.15.5 for details regarding this MSR).1 Section 34.15.7 iden-
tifies a case in which SMIs may be blocked when VMXOFF is executed.

Not all processors allow this bit to be set to 1. Software should consult the VMX capability MSR IA32_VMX_MISC 
(see Appendix A.6) to determine whether this is allowed.

34.15 DUAL-MONITOR TREATMENT OF SMIs AND SMM

Dual-monitor treatment is activated through the cooperation of the executive monitor (the VMM that operates 
outside of SMM to provide basic virtualization) and the SMM-transfer monitor (STM; the VMM that operates 
inside SMM—while in VMX operation—to support system-management functions). Control is transferred to the STM 
through VM exits; VM entries are used to return from SMM.

The dual-monitor treatment may not be supported by all processors. Software should consult the VMX capability 
MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether it is supported.

34.15.1 Dual-Monitor Treatment Overview

The dual-monitor treatment uses an executive monitor and an SMM-transfer monitor (STM). Transitions from the 
executive monitor or its guests to the STM are called SMM VM exits and are discussed in Section 34.15.2. SMM 
VM exits are caused by SMIs as well as executions of VMCALL in VMX root operation. The latter allow the executive 
monitor to call the STM for service.

The STM runs in VMX root operation and uses VMX instructions to establish a VMCS and perform VM entries to its 
own guests. This is done all inside SMM (see Section 34.15.3). The STM returns from SMM, not by using the RSM 
instruction, but by using a VM entry that returns from SMM. Such VM entries are described in Section 34.15.4.

Initially, there is no STM and the default treatment (Section 34.14) is used. The dual-monitor treatment is not used 
until it is enabled and activated. The steps to do this are described in Section 34.15.5 and Section 34.15.6.

It is not possible to leave VMX operation under the dual-monitor treatment; VMXOFF will fail if executed. The dual-
monitor treatment must be deactivated first. The STM deactivates dual-monitor treatment using a VM entry that 
returns from SMM with the “deactivate dual-monitor treatment” VM-entry control set to 1 (see Section 34.15.7).

The executive monitor configures any VMCS that it uses for VM exits to the executive monitor. SMM VM exits, which 
transfer control to the STM, use a different VMCS. Under the dual-monitor treatment, each logical processor uses 
a separate VMCS called the SMM-transfer VMCS. When the dual-monitor treatment is active, the logical 
processor maintains another VMCS pointer called the SMM-transfer VMCS pointer. The SMM-transfer VMCS 
pointer is established when the dual-monitor treatment is activated.

34.15.2 SMM VM Exits

An SMM VM exit is a VM exit that begins outside SMM and that ends in SMM.

Unlike other VM exits, SMM VM exits can begin in VMX root operation. SMM VM exits result from the arrival of an 
SMI outside SMM or from execution of VMCALL in VMX root operation outside SMM. Execution of VMCALL in VMX 
root operation causes an SMM VM exit only if the valid bit is set in the IA32_SMM_MONITOR_CTL MSR (see Section 
34.15.5).

Execution of VMCALL in VMX root operation causes an SMM VM exit even under the default treatment. This SMM 
VM exit activates the dual-monitor treatment (see Section 34.15.6).

Differences between SMM VM exits and other VM exits are detailed in Sections 34.15.2.1 through 34.15.2.5. 
Differences between SMM VM exits that activate the dual-monitor treatment and other SMM VM exits are described 
in Section 34.15.6.

1. Setting IA32_SMM_MONITOR_CTL[bit 2] to 1 prevents VMXOFF from unblocking SMIs regardless of the value of the register’s valid 
bit (bit 0).
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34.15.2.1  Architectural State Before a VM Exit

System-management interrupts (SMIs) that cause SMM VM exits always do so directly. They do not save state to 
SMRAM as they do under the default treatment.

34.15.2.2  Updating the Current-VMCS and Executive-VMCS Pointers

SMM VM exits begin by performing the following steps:

1. The executive-VMCS pointer field in the SMM-transfer VMCS is loaded as follows:

— If the SMM VM exit commenced in VMX non-root operation, it receives the current-VMCS pointer.

— If the SMM VM exit commenced in VMX root operation, it receives the VMXON pointer.

2. The current-VMCS pointer is loaded with the value of the SMM-transfer VMCS pointer.

The last step ensures that the current VMCS is the SMM-transfer VMCS. VM-exit information is recorded in that 
VMCS, and VM-entry control fields in that VMCS are updated. State is saved into the guest-state area of that VMCS. 
The VM-exit controls and host-state area of that VMCS determine how the VM exit operates.

34.15.2.3  Recording VM-Exit Information

SMM VM exits differ from other VM exit with regard to the way they record VM-exit information. The differences 
follow.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. The field is loaded with the reason for the SMM VM exit: 
I/O SMI (an SMI arrived immediately after retirement of an I/O instruction), other SMI, or VMCALL. See 
Appendix C, “VMX Basic Exit Reasons”.

— SMM VM exits are the only VM exits that may occur in VMX root operation. Because the SMM-transfer 
monitor may need to know whether it was invoked from VMX root or VMX non-root operation, this 
information is stored in bit 29 of the exit-reason field (see Table 24-14 in Section 24.9.1). The bit is set by 
SMM VM exits from VMX root operation.

— If the SMM VM exit occurred in VMX non-root operation and an MTF VM exit was pending, bit 28 of the exit-
reason field is set; otherwise, it is cleared.

— Bits 27:16 and bits 31:30 are cleared.
• Exit qualification. For an SMM VM exit due an SMI that arrives immediately after the retirement of an I/O 

instruction, the exit qualification contains information about the I/O instruction that retired immediately before 
the SMI.It has the format given in Table 34-9.

Table 34-9.  Exit Qualification for SMIs That Arrive Immediately After the Retirement of an I/O Instruction

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used.

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)
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• Guest linear address. This field is used for VM exits due to SMIs that arrive immediately after the retirement 
of an INS or OUTS instruction for which the relevant segment (ES for INS; DS for OUTS unless overridden by 
an instruction prefix) is usable. The field receives the value of the linear address generated by ES:(E)DI (for 
INS) or segment:(E)SI (for OUTS; the default segment is DS but can be overridden by a segment override 
prefix) at the time the instruction started. If the relevant segment is not usable, the value is undefined. On 
processors that support Intel 64 architecture, bits 63:32 are clear if the logical processor was not in 64-bit 
mode before the VM exit.

• I/O RCX, I/O RSI, I/O RDI, and I/O RIP. For an SMM VM exit due an SMI that arrives immediately after 
the retirement of an I/O instruction, these fields receive the values that were in RCX, RSI, RDI, and RIP, respec-
tively, before the I/O instruction executed. Thus, the value saved for I/O RIP addresses the I/O instruction.

34.15.2.4  Saving Guest State

SMM VM exits save the contents of the SMBASE register into the corresponding field in the guest-state area.

The value of the VMX-preemption timer is saved into the corresponding field in the guest-state area if the “save 
VMX-preemption timer value” VM-exit control is 1. That field becomes undefined if, in addition, either the SMM 
VM exit is from VMX root operation or the SMM VM exit is from VMX non-root operation and the “activate VMX-
preemption timer” VM-execution control is 0.

34.15.2.5  Updating Non-Register State

SMM VM exits affect the non-register state of a logical processor as follows:
• SMM VM exits cause non-maskable interrupts (NMIs) to be blocked; they may be unblocked through execution 

of IRET or through a VM entry (depending on the value loaded for the interruptibility state and the setting of 
the “virtual NMIs” VM-execution control).

• SMM VM exits cause SMIs to be blocked; they may be unblocked by a VM entry that returns from SMM (see 
Section 34.15.4).

SMM VM exits invalidate linear mappings and combined mappings associated with VPID 0000H for all PCIDs. 
Combined mappings for VPID 0000H are invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP; 
see Section 28.3). (Ordinary VM exits are not required to perform such invalidation if the “enable VPID” VM-execu-
tion control is 1; see Section 27.5.5.)

34.15.3 Operation of the SMM-Transfer Monitor

Once invoked, the SMM-transfer monitor (STM) is in VMX root operation and can use VMX instructions to configure 
VMCSs and to cause VM entries to virtual machines supported by those structures. As noted in Section 34.15.1, the 
VMXOFF instruction cannot be used under the dual-monitor treatment and thus cannot be used by the STM.

The RSM instruction also cannot be used under the dual-monitor treatment. As noted in Section 25.1.3, it causes 
a VM exit if executed in SMM in VMX non-root operation. If executed in VMX root operation, it causes an invalid-
opcode exception. The STM uses VM entries to return from SMM (see Section 34.15.4).

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in the I/O instruction)

63:32 Reserved (cleared to 0). These bits exist only on processors 
that support Intel 64 architecture.

Table 34-9.  Exit Qualification for SMIs That Arrive Immediately After the Retirement of an I/O Instruction (Contd.)

Bit Position(s) Contents
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34.15.4 VM Entries that Return from SMM

The SMM-transfer monitor (STM) returns from SMM using a VM entry with the “entry to SMM” VM-entry control 
clear. VM entries that return from SMM reverse the effects of an SMM VM exit (see Section 34.15.2).

VM entries that return from SMM may differ from other VM entries in that they do not necessarily enter VMX non-
root operation. If the executive-VMCS pointer field in the current VMCS contains the VMXON pointer, the logical 
processor remains in VMX root operation after VM entry.

For differences between VM entries that return from SMM and other VM entries see Sections 34.15.4.1 through 
34.15.4.10.

34.15.4.1  Checks on the Executive-VMCS Pointer Field

VM entries that return from SMM perform the following checks on the executive-VMCS pointer field in the current 
VMCS:
• Bits 11:0 must be 0.
• The pointer must not set any bits beyond the processor’s physical-address width.1,2

• The 32 bits located in memory referenced by the physical address in the pointer must contain the processor’s 
VMCS revision identifier (see Section 24.2).

The checks above are performed before the checks described in Section 34.15.4.2 and before any of the following 
checks:
• 'If the “deactivate dual-monitor treatment” VM-entry control is 0 and the executive-VMCS pointer field does not 

contain the VMXON pointer, the launch state of the executive VMCS (the VMCS referenced by the executive-
VMCS pointer field) must be launched (see Section 24.11.3).

• If the “deactivate dual-monitor treatment” VM-entry control is 1, the executive-VMCS pointer field must 
contain the VMXON pointer (see Section 34.15.7).3

34.15.4.2  Checks on VM-Execution Control Fields

VM entries that return from SMM differ from other VM entries with regard to the checks performed on the VM-
execution control fields specified in Section 26.2.1.1. They do not apply the checks to the current VMCS. Instead, 
VM-entry behavior depends on whether the executive-VMCS pointer field contains the VMXON pointer:
• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root operation), 

the checks are not performed at all.
• If the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters VMX non-root 

operation), the checks are performed on the VM-execution control fields in the executive VMCS (the VMCS 
referenced by the executive-VMCS pointer field in the current VMCS). These checks are performed after 
checking the executive-VMCS pointer field itself (for proper alignment).

Other VM entries ensure that, if “activate VMX-preemption timer” VM-execution control is 0, the “save VMX-
preemption timer value” VM-exit control is also 0. This check is not performed by VM entries that return from SMM.

34.15.4.3  Checks on VM-Entry Control Fields

VM entries that return from SMM differ from other VM entries with regard to the checks performed on the VM-entry 
control fields specified in Section 26.2.1.3.

Specifically, if the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root 
operation), the following must not all hold for the VM-entry interruption-information field:

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address 
width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, this pointer must not set any bits in the range 63:32; see Appendix A.1.

3. The STM can determine the VMXON pointer by reading the executive-VMCS pointer field in the current VMCS after the SMM VM exit 
that activates the dual-monitor treatment.
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• the valid bit (bit 31) in the VM-entry interruption-information field is 1
• the interruption type (bits 10:8) is not 7 (other event); and
• the vector (bits 7:0) is not 0 (pending MTF VM exit).

34.15.4.4  Checks on the Guest State Area

Section 26.3.1 specifies checks performed on fields in the guest-state area of the VMCS. Some of these checks are 
conditioned on the settings of certain VM-execution controls (e.g., “virtual NMIs” or “unrestricted guest”). 
VM entries that return from SMM modify these checks based on whether the executive-VMCS pointer field contains 
the VMXON pointer:1

• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root operation), 
the checks are performed as all relevant VM-execution controls were 0. (As a result, some checks may not be 
performed at all.)

• If the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters VMX non-root 
operation), this check is performed based on the settings of the VM-execution controls in the executive VMCS 
(the VMCS referenced by the executive-VMCS pointer field in the current VMCS).

For VM entries that return from SMM, the activity-state field must not indicate the wait-for-SIPI state if the execu-
tive-VMCS pointer field contains the VMXON pointer (the VM entry is to VMX root operation).

34.15.4.5  Loading Guest State

VM entries that return from SMM load the SMBASE register from the SMBASE field.

VM entries that return from SMM invalidate linear mappings and combined mappings associated with all VPIDs. 
Combined mappings are invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP; see Section 
28.3). (Ordinary VM entries are required to perform such invalidation only for VPID 0000H and are not required to 
do even that if the “enable VPID” VM-execution control is 1; see Section 26.3.2.5.)

34.15.4.6  VMX-Preemption Timer

A VM entry that returns from SMM activates the VMX-preemption timer only if the executive-VMCS pointer field 
does not contain the VMXON pointer (the VM entry enters VMX non-root operation) and the “activate VMX-preemp-
tion timer” VM-execution control is 1 in the executive VMCS (the VMCS referenced by the executive-VMCS pointer 
field). In this case, VM entry starts the VMX-preemption timer with the value in the VMX-preemption timer-value 
field in the current VMCS.

34.15.4.7  Updating the Current-VMCS and SMM-Transfer VMCS Pointers

Successful VM entries (returning from SMM) load the SMM-transfer VMCS pointer with the current-VMCS pointer. 
Following this, they load the current-VMCS pointer from a field in the current VMCS:
• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root operation), 

the current-VMCS pointer is loaded from the VMCS-link pointer field.
• If the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters VMX non-root 

operation), the current-VMCS pointer is loaded with the value of the executive-VMCS pointer field.

If the VM entry successfully enters VMX non-root operation, the VM-execution controls in effect after the VM entry 
are those from the new current VMCS. This includes any structures external to the VMCS referenced by VM-execu-
tion control fields.

The updating of these VMCS pointers occurs before event injection. Event injection is determined, however, by the 
VM-entry control fields in the VMCS that was current when the VM entry commenced.

1. The STM can determine the VMXON pointer by reading the executive-VMCS pointer field in the current VMCS after the SMM VM exit 
that activates the dual-monitor treatment.
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34.15.4.8  VM Exits Induced by VM Entry

Section 26.5.1.2 describes how the event-delivery process invoked by event injection may lead to a VM exit. 
Section 26.6.3 to Section 26.6.7 describe other situations that may cause a VM exit to occur immediately after a 
VM entry.

Whether these VM exits occur is determined by the VM-execution control fields in the current VMCS. For VM entries 
that return from SMM, they can occur only if the executive-VMCS pointer field does not contain the VMXON pointer 
(the VM entry enters VMX non-root operation).

In this case, determination is based on the VM-execution control fields in the VMCS that is current after the 
VM entry. This is the VMCS referenced by the value of the executive-VMCS pointer field at the time of the VM entry 
(see Section 34.15.4.7). This VMCS also controls the delivery of such VM exits. Thus, VM exits induced by a 
VM entry returning from SMM are to the executive monitor and not to the STM.

34.15.4.9  SMI Blocking

VM entries that return from SMM determine the blocking of system-management interrupts (SMIs) as follows:
• If the “deactivate dual-monitor treatment” VM-entry control is 0, SMIs are blocked after VM entry if and only if 

the bit 2 in the interruptibility-state field is 1.
• If the “deactivate dual-monitor treatment” VM-entry control is 1, the blocking of SMIs depends on whether the 

logical processor is in SMX operation:1

— If the logical processor is in SMX operation, SMIs are blocked after VM entry.

— If the logical processor is outside SMX operation, SMIs are unblocked after VM entry.

VM entries that return from SMM and that do not deactivate the dual-monitor treatment may leave SMIs blocked. 
This feature exists to allow the STM to invoke functionality outside of SMM without unblocking SMIs.

34.15.4.10  Failures of VM Entries That Return from SMM

Section 26.7 describes the treatment of VM entries that fail during or after loading guest state. Such failures record 
information in the VM-exit information fields and load processor state as would be done on a VM exit. The VMCS 
used is the one that was current before the VM entry commenced. Control is thus transferred to the STM and the 
logical processor remains in SMM.

34.15.5 Enabling the Dual-Monitor Treatment

Code and data for the SMM-transfer monitor (STM) reside in a region of SMRAM called the monitor segment 
(MSEG). Code running in SMM determines the location of MSEG and establishes its content. This code is also 
responsible for enabling the dual-monitor treatment. 

SMM code enables the dual-monitor treatment and specifies the location of MSEG by writing to the 
IA32_SMM_MONITOR_CTL MSR (index 9BH). The MSR has the following format:
• Bit 0 is the register’s valid bit. The STM may be invoked using VMCALL only if this bit is 1. Because VMCALL is 

used to activate the dual-monitor treatment (see Section 34.15.6), the dual-monitor treatment cannot be 
activated if the bit is 0. This bit is cleared when the logical processor is reset.

• Bit 1 is reserved.
• Bit 2 determines whether executions of VMXOFF unblock SMIs under the default treatment of SMIs and SMM. 

Executions of VMXOFF unblock SMIs unless bit 2 is 1 (the value of bit 0 is irrelevant). See Section 34.14.4.
Certain leaf functions of the GETSEC instruction clear this bit (see Chapter 5, “Safer Mode Extensions 
Reference,” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2C)

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last 
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software 

Developer’s Manual, Volume 2B.
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• Bits 11:3 are reserved.
• Bits 31:12 contain a value that, when shifted right 12 bits, is the physical address of MSEG (the MSEG base 

address).
• Bits 63:32 are reserved.

The following items detail use of this MSR:
• The IA32_SMM_MONITOR_CTL MSR is supported only on processors that support the dual-monitor treatment.1 

On other processors, accesses to the MSR using RDMSR or WRMSR generate a general-protection fault 
(#GP(0)).

• A write to the IA32_SMM_MONITOR_CTL MSR using WRMSR generates a general-protection fault (#GP(0)) if 
executed outside of SMM or if an attempt is made to set any reserved bit. An attempt to write to the 
IA32_SMM_MONITOR_CTL MSR fails if made as part of a VM exit that does not end in SMM or part of a 
VM entry that does not begin in SMM.

• Reads from the IA32_SMM_MONITOR_CTL MSR using RDMSR are allowed any time RDMSR is allowed. The 
MSR may be read as part of any VM exit.

• The dual-monitor treatment can be activated only if the valid bit in the MSR is set to 1.

The 32 bytes located at the MSEG base address are called the MSEG header. The format of the MSEG header is 
given in Table 34-10 (each field is 32 bits).

To ensure proper behavior in VMX operation, software should maintain the MSEG header in writeback cacheable 
memory. Future implementations may allow or require a different memory type.2 Software should consult the VMX 
capability MSR IA32_VMX_BASIC (see Appendix A.1).

SMM code should enable the dual-monitor treatment (by setting the valid bit in IA32_SMM_MONITOR_CTL MSR) 
only after establishing the content of the MSEG header as follows:
• Bytes 3:0 contain the MSEG revision identifier. Different processors may use different MSEG revision identi-

fiers. These identifiers enable software to avoid using an MSEG header formatted for one processor on a 
processor that uses a different format. Software can discover the MSEG revision identifier that a processor uses 
by reading the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether the dual-monitor 
treatment is supported.

Table 34-10.  Format of MSEG Header

Byte Offset Field

0 MSEG-header revision identifier

4 SMM-transfer monitor features

8 GDTR limit

12 GDTR base offset

16 CS selector

20 EIP offset

24 ESP offset

28 CR3 offset

2. Alternatively, software may map the MSEG header with the UC memory type; this may be necessary, depending on how memory is 
organized. Doing so is strongly discouraged unless necessary as it will cause the performance of transitions using those structures 
to suffer significantly. In addition, the processor will continue to use the memory type reported in the VMX capability MSR 
IA32_VMX_BASIC with exceptions noted in Appendix A.1.
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• Bytes 7:4 contain the SMM-transfer monitor features field. Bits 31:1 of this field are reserved and must be 
zero. Bit 0 of the field is the IA-32e mode SMM feature bit. It indicates whether the logical processor will be 
in IA-32e mode after the STM is activated (see Section 34.15.6).

• Bytes 31:8 contain fields that determine how processor state is loaded when the STM is activated (see Section 
34.15.6.6). SMM code should establish these fields so that activating of the STM invokes the STM’s initialization 
code. 

34.15.6 Activating the Dual-Monitor Treatment

The dual-monitor treatment may be enabled by SMM code as described in Section 34.15.5. The dual-monitor treat-
ment is activated only if it is enabled and only by the executive monitor. The executive monitor activates the dual-
monitor treatment by executing VMCALL in VMX root operation.

When VMCALL activates the dual-monitor treatment, it causes an SMM VM exit. Differences between this SMM 
VM exit and other SMM VM exits are discussed in Sections 34.15.6.1 through 34.15.6.7. See also “VMCALL—Call to 
VM Monitor” in Chapter 30.

34.15.6.1  Initial Checks

An execution of VMCALL attempts to activate the dual-monitor treatment if (1) the processor supports the dual-
monitor treatment;1 (2) the logical processor is in VMX root operation; (3) the logical processor is outside SMM and 
the valid bit is set in the IA32_SMM_MONITOR_CTL MSR; (4) the logical processor is not in virtual-8086 mode and 
not in compatibility mode; (5) CPL = 0; and (6) the dual-monitor treatment is not active.

The VMCS that manages SMM VM exit caused by this VMCALL is the current VMCS established by the executive 
monitor. The VMCALL performs the following checks on the current VMCS in the order indicated:

1. There must be a current VMCS pointer.

2. The launch state of the current VMCS must be clear.

3. Reserved bits in the VM-exit controls in the current VMCS must be set properly. Software may consult the VMX 
capability MSR IA32_VMX_EXIT_CTLS to determine the proper settings (see Appendix A.4).

If any of these checks fail, subsequent checks are skipped and VMCALL fails. If all these checks succeed, the logical 
processor uses the IA32_SMM_MONITOR_CTL MSR to determine the base address of MSEG. The following checks 
are performed in the order indicated:

1. The logical processor reads the 32 bits at the base of MSEG and compares them to the processor’s MSEG 
revision identifier.

2. The logical processor reads the SMM-transfer monitor features field:

— Bit 0 of the field is the IA-32e mode SMM feature bit, and it indicates whether the logical processor will be 
in IA-32e mode after the SMM-transfer monitor (STM) is activated.

• If the VMCALL is executed on a processor that does not support Intel 64 architecture, the IA-32e mode 
SMM feature bit must be 0.

• If the VMCALL is executed in 64-bit mode, the IA-32e mode SMM feature bit must be 1.

— Bits 31:1 of this field are currently reserved and must be zero.

If any of these checks fail, subsequent checks are skipped and the VMCALL fails.

34.15.6.2  MSEG Checking

SMM VM exits that activate the dual-monitor treatment check the following before updating the current-VMCS 
pointer and the executive-VMCS pointer field (see Section 34.15.2.2):

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether the dual-monitor 
treatment is supported.
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• The 32 bits at the MSEG base address (used as a physical address) must contain the processor’s MSEG revision 
identifier.

• Bits 31:1 of the SMM-transfer monitor features field in the MSEG header (see Table 34-10) must be 0. Bit 0 of 
the field (the IA-32e mode SMM feature bit) must be 0 if the processor does not support Intel 64 architecture.

If either of these checks fail, execution of VMCALL fails.

34.15.6.3  Updating the Current-VMCS and Executive-VMCS Pointers

Before performing the steps in Section 34.15.2.2, SMM VM exits that activate the dual-monitor treatment begin by 
loading the SMM-transfer VMCS pointer with the value of the current-VMCS pointer.

34.15.6.4  Saving Guest State

As noted in Section 34.15.2.4, SMM VM exits save the contents of the SMBASE register into the corresponding field 
in the guest-state area. While this is true also for SMM VM exits that activate the dual-monitor treatment, the 
VMCS used for those VM exits exists outside SMRAM.

The SMM-transfer monitor (STM) can also discover the current value of the SMBASE register by using the RDMSR 
instruction to read the IA32_SMBASE MSR (MSR address 9EH). The following items detail use of this MSR:
• The MSR is supported only if IA32_VMX_MISC[15] = 1 (see Appendix A.6).
• A write to the IA32_SMBASE MSR using WRMSR generates a general-protection fault (#GP(0)). An attempt to 

write to the IA32_SMBASE MSR fails if made as part of a VM exit or part of a VM entry.
• A read from the IA32_SMBASE MSR using RDMSR generates a general-protection fault (#GP(0)) if executed 

outside of SMM. An attempt to read from the IA32_SMBASE MSR fails if made as part of a VM exit that does not 
end in SMM.

34.15.6.5  Saving MSRs

The VM-exit MSR-store area is not used by SMM VM exits that activate the dual-monitor treatment. No MSRs are 
saved into that area.

34.15.6.6  Loading Host State

The VMCS that is current during an SMM VM exit that activates the dual-monitor treatment was established by the 
executive monitor. It does not contain the VM-exit controls and host state required to initialize the STM. For this 
reason, such SMM VM exits do not load processor state as described in Section 27.5. Instead, state is set to fixed 
values or loaded based on the content of the MSEG header (see Table 34-10):
• CR0 is set to as follows:

— PG, NE, ET, MP, and PE are all set to 1.

— CD and NW are left unchanged.

— All other bits are cleared to 0.
• CR3 is set as follows:

— Bits 63:32 are cleared on processors that supports IA-32e mode.

— Bits 31:12 are set to bits 31:12 of the sum of the MSEG base address and the CR3-offset field in the MSEG 
header.

— Bits 11:5 and bits 2:0 are cleared (the corresponding bits in the CR3-offset field in the MSEG header are 
ignored).

— Bits 4:3 are set to bits 4:3 of the CR3-offset field in the MSEG header.
• CR4 is set as follows:

— MCE and PGE are cleared.

— PAE is set to the value of the IA-32e mode SMM feature bit.
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— If the IA-32e mode SMM feature bit is clear, PSE is set to 1 if supported by the processor; if the bit is set, 
PSE is cleared.

— All other bits are unchanged.
• DR7 is set to 400H.
• The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.
• The registers CS, SS, DS, ES, FS, and GS are loaded as follows:

— All registers are usable.

— CS.selector is loaded from the corresponding field in the MSEG header (the high 16 bits are ignored), with 
bits 2:0 cleared to 0. If the result is 0000H, CS.selector is set to 0008H.

— The selectors for SS, DS, ES, FS, and GS are set to CS.selector+0008H. If the result is 0000H (if the CS 
selector was 0xFFF8), these selectors are instead set to 0008H.

— The base addresses of all registers are cleared to zero.

— The segment limits for all registers are set to FFFFFFFFH.

— The AR bytes for the registers are set as follows:

• CS.Type is set to 11 (execute/read, accessed, non-conforming code segment).

• For SS, DS, FS, and GS, the Type is set to 3 (read/write, accessed, expand-up data segment).

• The S bits for all registers are set to 1.

• The DPL for each register is set to 0.

• The P bits for all registers are set to 1.

• On processors that support Intel 64 architecture, CS.L is loaded with the value of the IA-32e mode SMM 
feature bit.

• CS.D is loaded with the inverse of the value of the IA-32e mode SMM feature bit.

• For each of SS, DS, FS, and GS, the D/B bit is set to 1.

• The G bits for all registers are set to 1.
• LDTR is unusable. The LDTR selector is cleared to 0000H, and the register is otherwise undefined (although the 

base address is always canonical)
• GDTR.base is set to the sum of the MSEG base address and the GDTR base-offset field in the MSEG header 

(bits 63:32 are always cleared on processors that supports IA-32e mode). GDTR.limit is set to the corre-
sponding field in the MSEG header (the high 16 bits are ignored).

• IDTR.base is unchanged. IDTR.limit is cleared to 0000H.
• RIP is set to the sum of the MSEG base address and the value of the RIP-offset field in the MSEG header 

(bits 63:32 are always cleared on logical processors that support IA-32e mode).
• RSP is set to the sum of the MSEG base address and the value of the RSP-offset field in the MSEG header 

(bits 63:32 are always cleared on logical processor that supports IA-32e mode).
• RFLAGS is cleared, except bit 1, which is always set.
• The logical processor is left in the active state.
• Event blocking after the SMM VM exit is as follows:

— There is no blocking by STI or by MOV SS.

— There is blocking by non-maskable interrupts (NMIs) and by SMIs.
• There are no pending debug exceptions after the SMM VM exit.
• For processors that support IA-32e mode, the IA32_EFER MSR is modified so that LME and LMA both contain 

the value of the IA-32e mode SMM feature bit.

If any of CR3[63:5], CR4.PAE, CR4.PSE, or IA32_EFER.LMA is changing, the TLBs are updated so that, after 
VM exit, the logical processor does not use translations that were cached before the transition. This is not neces-
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sary for changes that would not affect paging due to the settings of other bits (for example, changes to CR4.PSE if 
IA32_EFER.LMA was 1 before and after the transition).

34.15.6.7  Loading MSRs

The VM-exit MSR-load area is not used by SMM VM exits that activate the dual-monitor treatment. No MSRs are 
loaded from that area.

34.15.7 Deactivating the Dual-Monitor Treatment

The SMM-transfer monitor may deactivate the dual-monitor treatment and return the processor to default treat-
ment of SMIs and SMM (see Section 34.14). It does this by executing a VM entry with the “deactivate dual-monitor 
treatment” VM-entry control set to 1.

As noted in Section 26.2.1.3 and Section 34.15.4.1, an attempt to deactivate the dual-monitor treatment fails in 
the following situations: (1) the processor is not in SMM; (2) the “entry to SMM” VM-entry control is 1; or (3) the 
executive-VMCS pointer does not contain the VMXON pointer (the VM entry is to VMX non-root operation).

As noted in Section 34.15.4.9, VM entries that deactivate the dual-monitor treatment ignore the SMI bit in the 
interruptibility-state field of the guest-state area. Instead, the blocking of SMIs following such a VM entry depends 
on whether the logical processor is in SMX operation:1

• If the logical processor is in SMX operation, SMIs are blocked after VM entry. SMIs may later be unblocked by 
the VMXOFF instruction (see Section 34.14.4) or by certain leaf functions of the GETSEC instruction (see 
Chapter 5, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2C).

• If the logical processor is outside SMX operation, SMIs are unblocked after VM entry.

34.16 SMI AND PROCESSOR EXTENDED STATE MANAGEMENT

On processors that support processor extended states using XSAVE/XRSTOR (see Chapter 13, “Managing State 
Using the XSAVE Feature Set” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1), 
the processor does not save any XSAVE/XRSTOR related state on an SMI. It is the responsibility of the SMI handler 
code to properly preserve the state information (including CR4.OSXSAVE, XCR0, and possibly processor extended 
states using XSAVE/XRSTOR). Therefore, the SMI handler must follow the rules described in Chapter 13, 
“Managing State Using the XSAVE Feature Set” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1.

34.17 MODEL-SPECIFIC SYSTEM MANAGEMENT ENHANCEMENT

This section describes enhancement of system management features that apply only to the 4th generation Intel 
Core processors. These features are model-specific. BIOS and SMM handler must use CPUID to enumerate 
DisplayFamily_DisplayModel signature when programming with these interfaces.

34.17.1 SMM Handler Code Access Control

The BIOS may choose to restrict the address ranges of code that SMM handler executes. When SMM handler code 
execution check is enabled, an attempt by the SMM handler to execute outside the ranges specified by SMRR (see 
Section 34.4.2.1) will cause the assertion of an unrecoverable machine check exception (MCE). 

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last 
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software 

Developer’s Manual, Volume 2B.
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The interface to enable SMM handler code access check resides in a per-package scope model-specific register 
MSR_SMM_FEATURE_CONTROL at address 4E0H. An attempt to access MSR_SMM_FEATURE_CONTROL outside of 
SMM will cause a #GP. Writes to MSR_SMM_FEATURE_CONTROL is further protected by configuration interface of 
MSR_SMM_MCA_CAP at address 17DH.

Details of the interface of MSR_SMM_FEATURE_CONTROL and MSR_SMM_MCA_CAP are described in Table 35-20.

34.17.2 SMI Delivery Delay Reporting 

Entry into the system management mode occurs at instruction boundary. In situations where a logical processor is 
executing an instruction involving a long flow of internal operations, servicing an SMI by that logical processor will 
be delayed. Delayed servicing of SMI of each logical processor due to executing long flows of internal operation in 
a physical processor can be queried via a package-scope register MSR_SMM_DELAYED at address 4E2H.

The interface to enable reporting of SMI delivery delay due to long internal flows resides in a per-package scope 
model-specific register MSR_SMM_DELAYED. An attempt to access MSR_SMM_DELAYED outside of SMM will cause 
a #GP. Availability to MSR_SMM_DELAYED is protected by configuration interface of MSR_SMM_MCA_CAP at 
address 17DH.

Details of the interface of MSR_SMM_DELAYED and MSR_SMM_MCA_CAP are described in Table 35-20.

34.17.3 Blocked SMI Reporting 

A logical processor may have entered into a state and blocked from servicing other interrupts (including SMI). 
Logical processors in a physical processor that are blocked in serving SMI can be queried in a package-scope 
register MSR_SMM_BLOCKED at address 4E3H. An attempt to access MSR_SMM_BLOCKED outside of SMM will 
cause a #GP.

Details of the interface of MSR_SMM_BLOCKED is described in Table 35-20.
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CHAPTER 35
MODEL-SPECIFIC REGISTERS (MSRS)

This chapter list MSRs across Intel processor families. All MSRs listed can be read with the RDMSR and written with 
the WRMSR instructions. 

Register addresses are given in both hexadecimal and decimal. The register name is the mnemonic register name 
and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor families/models. To 
distinguish between different processor family and/or models, software must use CPUID.01H leaf function to query 
the combination of DisplayFamily and DisplayModel to determine model-specific availability of MSRs (see CPUID 
instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A). Table 35-1 lists the signature values of DisplayFamily and DisplayModel for various 
processor families or processor number series.

Table 35-1.  CPUID Signature Values of DisplayFamily_DisplayModel 

DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_4EH Future Generation Intel Core Processor 

06_3DH Next Generation Intel Core Processor 

06_3FH Next Generation Intel Xeon Processor

06_3CH, 06_45H, 06_46H 4th Generation Intel Core Processor and Intel Xeon Processor E3-1200 v3 Product Family based on 
Haswell microarchitecture.

06_3EH Intel Xeon Processor E7-8800 v2/E7-4800 v2/E7-2800 v2 Family based on Ivy Bridge-EP 
microarchitecture

06_3EH Intel Xeon Processor E5-1600 v2/E5-2400 v2/E5-2600 v2 Product Families based on Ivy Bridge-EP 
microarchitecture, Intel Core i7-49xx Processor Extreme Edition

06_3AH 3rd Generation Intel Core Processor and Intel Xeon Processor E3-1200 v2 Product Family based on 
Ivy Bridge microarchitecture.

06_2DH Intel Xeon Processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core 
i7-39xx Processor Extreme Edition

06_2FH Intel Xeon Processor E7 Family

06_2AH Intel Xeon Processor E3-1200 Product Family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx 
Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon Processor 3400, 3500, 5500 series

06_1DH Intel Xeon Processor MP 7400 series

06_17H Intel Xeon Processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000 
series

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series, 
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel 
Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_4AH, 06_5AH, 06_5DH Future Intel Atom Processor Based on Silvermont Microarchitecture

06_37H Intel Atom Processor E3000 series
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35.1 ARCHITECTURAL MSRS

Many MSRs have carried over from one generation of IA-32 processors to the next and to Intel 64 processors. A 
subset of MSRs and associated bit fields, which do not change on future processor generations, are now considered 
architectural MSRs. For historical reasons (beginning with the Pentium 4 processor), these “architectural MSRs” 
were given the prefix “IA32_”. Table 35-2 lists the architectural MSRs, their addresses, their current names, their 
names in previous IA-32 processors, and bit fields that are considered architectural. MSR addresses outside Table 
35-2 and certain bitfields in an MSR address that may overlap with architectural MSR addresses are model-specific. 
Code that accesses a machine specified MSR and that is executed on a processor that does not support that MSR 
will generate an exception.

Architectural MSR or individual bit fields in an architectural MSR may be introduced or transitioned at the granu-
larity of certain processor family/model or the presence of certain CPUID feature flags. The right-most column of 
Table 35-2 provides information on the introduction of each architectural MSR or its individual fields. This informa-
tion is expressed either as signature values of “DF_DM” (see Table 35-1) or via CPUID flags.

Certain bit field position may be related to the maximum physical address width, the value of which is expressed as 
“MAXPHYWID” in Table 35-2. “MAXPHYWID” is reported by CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially reserved range. All existing and 
future processors will not implement any features using any MSR in this range.

06_4DH Intel Atom Processor C2000 series

06_36H Intel Atom Processor S1000 Series

06_1CH, 06_26H, 06_27H, 
06_35H, 06_36H

Intel Atom Processor family, Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D 
processors

0F_03H, 0F_04H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 processors

06_7H, 06_08H, 06_0AH, 
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor 

06_01H Intel Pentium Pro Processor 

05_01H, 05_02H, 05_04H Intel Pentium Processor, Intel Pentium Processor with MMX Technology

Table 35-2.  IA-32 Architectural MSRs
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0H 0 IA32_P5_MC_ADDR (P5_MC_ADDR) See Section 35.18, “MSRs in Pentium 
Processors.”

Pentium Processor 
(05_01H)

1H 1 IA32_P5_MC_TYPE (P5_MC_TYPE) See Section 35.18, “MSRs in Pentium 
Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_SIZE See Section 8.10.5, “Monitor/Mwait 
Address Range Determination.”

0F_03H

Table 35-1.  CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel  (Contd.)

DisplayFamily_DisplayModel Processor Families/Processor Number Series
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10H 16 IA32_TIME_STAMP_
COUNTER (TSC)

See Section 17.13, “Time-Stamp Counter.” 05_01H

17H 23 IA32_PLATFORM_ID 
(MSR_PLATFORM_ID )

Platform ID (RO) 
The operating system can use this MSR to 
determine “slot” information for the 
processor and the proper microcode update 
to load.

06_01H

49:0 Reserved.

52:50 Platform Id (RO) 

Contains information concerning the 
intended platform for the processor. 

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4 
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.

1BH 27 IA32_APIC_BASE (APIC_BASE) 06_01H

7:0 Reserved

8 BSP flag (R/W)

9 Reserved

10 Enable x2APIC mode 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYWID - 1):12 APIC Base (R/W)

63: MAXPHYWID Reserved

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64 Processor 
(R/W)

If CPUID.01H: ECX[bit 5 or 
bit 6] = 1

0 Lock bit (R/WO): (1 = locked). When set, 
locks this MSR from being written, writes 
to this bit will result in GP(0).

Note: Once the Lock bit is set, the contents 
of this register cannot be modified. 
Therefore the lock bit must be set after 
configuring support

If CPUID.01H:ECX[bit 5 or 
bit 6] = 1

Table 35-2.  IA-32 Architectural MSRs (Contd.)
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for Intel Virtualization Technology and prior 
to transferring control to an option ROM or 
the OS. Hence, once the Lock bit is set, the 
entire

IA32_FEATURE_CONTROL_MSR contents 
are preserved across RESET when 
PWRGOOD is not deasserted.

1 Enable VMX inside SMX operation (R/WL): 
This bit enables a system executive to use 
VMX in conjunction with SMX to support 
Intel® Trusted Execution Technology.

BIOS must set this bit only when the CPUID 
function 1 returns VMX feature flag and 
SMX feature flag set (ECX bits 5 and 6 
respectively).

If CPUID.01H:ECX[bit 5 and 
bit 6] are set to 1

2 Enable VMX outside SMX operation (R/WL): 
This bit enables VMX for system executive 
that do not require SMX.

BIOS must set this bit only when the CPUID 
function 1 returns VMX feature flag set 
(ECX bit 5).

If CPUID.01H:ECX[bit 5 or 
bit 6] = 1

7:3 Reserved

14:8 SENTER Local Function Enables (R/WL): 
When set, each bit in the field represents 
an enable control for a corresponding 
SENTER function. This bit is supported only 
if CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[bit 6] = 1

15 SENTER Global Enable (R/WL): This bit must 
be set to enable SENTER leaf functions. 
This bit is supported only if 
CPUID.1:ECX.[bit 6] is set

If CPUID.01H:ECX[bit 6] = 1

19:16 Reserved

20 LMCE On (R/WL): When set, system 
software can program the MSRs associated 
with LMCE to configure delivery of some 
machine check exceptions to a single logical 
processor. 

63:21 Reserved

3BH 59 IA32_TSC_ADJUST Per Logical Processor TSC Adjust (R/Write 
to clear)

If CPUID.(EAX=07H, 
ECX=0H): EBX[1] = 1

63:0 THREAD_ADJUST: 

Local offset value of the IA32_TSC for a 
logical processor. Reset value is Zero. A 
write to IA32_TSC will modify the local 
offset in IA32_TSC_ADJUST and the 
content of IA32_TSC, but does not affect 
the internal invariant TSC hardware. 

Table 35-2.  IA-32 Architectural MSRs (Contd.)
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79H 121 IA32_BIOS_UPDT_TRIG 
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR instruction to this MSR 
causes a microcode update to be loaded 
into the processor. See Section 9.11.6, 
“Microcode Update Loader.”

A processor may prevent writing to this 
MSR when loading guest states on VM 
entries or saving guest states on VM exits.

06_01H

8BH 139 IA32_BIOS_SIGN_ID 
(BIOS_SIGN/BBL_CR_D3)

BIOS Update Signature (RO)

Returns the microcode update signature 
following the execution of CPUID.01H.

A processor may prevent writing to this 
MSR when loading guest states on VM 
entries or saving guest states on VM exits.

06_01H

31:0 Reserved

63:32 It is recommended that this field be pre-
loaded with 0 prior to executing CPUID. 

If the field remains 0 following the 
execution of CPUID; this indicates that no 
microcode update is loaded. Any non-zero 
value is the microcode update signature.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration (R/W) If CPUID.01H: ECX[bit 5 or 
bit 6] = 1

0 Valid (R/W)

1 Reserved

2 Controls SMI unblocking by VMXOFF (see 
Section 34.14.4)

If IA32_VMX_MISC[bit 28])

11:3 Reserved

31:12 MSEG Base (R/W)

63:32 Reserved

9EH 158 IA32_SMBASE Base address of the logical processor’s 
SMRAM image (RO, SMM only)

If IA32_VMX_MISC[bit 15])

C1H 193 IA32_PMC0 (PERFCTR0) General Performance Counter 0 (R/W) If CPUID.0AH: EAX[15:8] > 
0

C2H 194 IA32_PMC1 (PERFCTR1) General Performance Counter 1 (R/W) If CPUID.0AH: EAX[15:8] > 
1

C3H 195 IA32_PMC2 General Performance Counter 2 (R/W) If CPUID.0AH: EAX[15:8] > 
2

C4H 196 IA32_PMC3 General Performance Counter 3 (R/W) If CPUID.0AH: EAX[15:8] > 
3

C5H 197 IA32_PMC4 General Performance Counter 4 (R/W) If CPUID.0AH: EAX[15:8] > 
4

C6H 198 IA32_PMC5 General Performance Counter 5 (R/W) If CPUID.0AH: EAX[15:8] > 
5

Table 35-2.  IA-32 Architectural MSRs (Contd.)
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C7H 199 IA32_PMC6 General Performance Counter 6 (R/W) If CPUID.0AH: EAX[15:8] > 
6

C8H 200 IA32_PMC7 General Performance Counter 7 (R/W) If CPUID.0AH: EAX[15:8] > 
7

E7H 231 IA32_MPERF Maximum Qualified Performance Clock 
Counter (R/Write to clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_MCNT: C0 Maximum Frequency Clock 
Count

Increments at fixed interval (relative to TSC 
freq.) when the logical processor is in C0. 

Cleared upon overflow / wrap-around of 
IA32_APERF. 

E8H 232 IA32_APERF Actual Performance Clock Counter (R/Write 
to clear)

If CPUID.06H: ECX[0] = 1

63:0 C0_ACNT: C0 Actual Frequency Clock 
Count

Accumulates core clock counts at the 
coordinated clock frequency, when the 
logical processor is in C0. 

Cleared upon overflow / wrap-around of 
IA32_MPERF.

FEH 254 IA32_MTRRCAP (MTRRcap) MTRR Capability (RO) Section 11.11.2.1, 
“IA32_MTRR_DEF_TYPE MSR.”

06_01H

7:0 VCNT: The number of variable memory 
type ranges in the processor.

8 Fixed range MTRRs are supported when 
set.

9 Reserved.

10 WC Supported when set.

11 SMRR Supported when set.

63:12 Reserved.

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector

63:16 Reserved.

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

179H 377 IA32_MCG_CAP (MCG_CAP) Global Machine Check Capability (RO) 06_01H

7:0 Count: Number of reporting banks.

8 MCG_CTL_P: IA32_MCG_CTL is present if 
this bit is set

9 MCG_EXT_P: Extended machine check 
state registers are present if this bit is set

Table 35-2.  IA-32 Architectural MSRs (Contd.)
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10 MCP_CMCI_P: Support for corrected MC 
error event is present.

06_1AH

11 MCG_TES_P: Threshold-based error status 
register are present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of extended 
machine check state registers present.

24 MCG_SER_P: The processor supports 
software error recovery if this bit is set.

25 Reserved.

26 MCG_ELOG_P: Indicates that the processor 
allows platform firmware to be invoked 
when an error is detected so that it may 
provide additional platform specific 
information in an ACPI format “Generic 
Error Data Entry” that augments the data 
included in machine check bank registers.

06_3EH

27 MCG_LMCE_P: Indicates that the processor 
support extended state in 
IA32_MCG_STATUS and associated 
MSR necessary to configure Local 
Machine Check Exception (LMCE).

06_3EH

63:28 Reserved.

17AH 378 IA32_MCG_STATUS (MCG_STATUS) Global Machine Check Status (R/W0) 06_01H

0 RIPV. Restart IP valid 06_01H

1 EIPV. Error IP valid 06_01H

2 MCIP. Machine check in progress 06_01H

3 LMCE_S. If IA32_MCG_CAP.LMCE_P 
=1

63:4 Reserved.

17BH 379 IA32_MCG_CTL (MCG_CTL) Global Machine Check Control (R/W) 06_01H

180H-
185H

384-
389

Reserved 06_0EH1

186H 390 IA32_PERFEVTSEL0 (PERFEVTSEL0) Performance Event Select Register 0 (R/W) If CPUID.0AH: EAX[15:8] > 
0

7:0 Event Select: Selects a performance event 
logic unit.

15:8 UMask: Qualifies the microarchitectural 
condition to detect on the selected event 
logic.

16 USR: Counts while in privilege level is not 
ring 0.

17 OS: Counts while in privilege level is ring 0.
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18 Edge: Enables edge detection if set.

19 PC: enables pin control.

20 INT: enables interrupt on counter overflow.

21 AnyThread: When set to 1, it enables 
counting the associated event conditions 
occurring across all logical processors 
sharing a processor core. When set to 0, the 
counter only increments the associated 
event conditions occurring in the logical 
processor which programmed the MSR.

22 EN: enables the corresponding performance 
counter to commence counting when this 
bit is set.

23 INV: invert the CMASK.

31:24 CMASK: When CMASK is not zero, the 
corresponding performance counter 
increments each cycle if the event count is 
greater than or equal to the CMASK.

63:32 Reserved.

187H 391 IA32_PERFEVTSEL1 (PERFEVTSEL1) Performance Event Select Register 1 (R/W) If CPUID.0AH: EAX[15:8] > 
1

188H 392 IA32_PERFEVTSEL2 Performance Event Select Register 2 (R/W) If CPUID.0AH: EAX[15:8] > 
2

189H 393 IA32_PERFEVTSEL3 Performance Event Select Register 3 (R/W) If CPUID.0AH: EAX[15:8] > 
3

18AH-
197H

394-
407

Reserved 06_0EH2

198H 408 IA32_PERF_STATUS (RO) 0F_03H 

15:0 Current performance State Value

63:16 Reserved.

199H 409 IA32_PERF_CTL (R/W) 0F_03H 

15:0 Target performance State Value

31:16 Reserved.

32 IDA Engage. (R/W)

When set to 1: disengages IDA

06_0FH (Mobile)

63:33 Reserved.

19AH 410 IA32_CLOCK_MODULATION Clock Modulation Control (R/W)

See Section 14.7.3, “Software Controlled 
Clock Modulation.”

0F_0H

0 Extended On-Demand Clock Modulation 
Duty Cycle:

If CPUID.06H:EAX[5] = 1
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3:1 On-Demand Clock Modulation Duty Cycle: 
Specific encoded values for target duty 
cycle modulation.

4 On-Demand Clock Modulation Enable: Set 1 
to enable modulation.

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

Enables and disables the generation of an 
interrupt on temperature transitions 
detected with the processor’s thermal 
sensors and thermal monitor. 

See Section 14.7.2, “Thermal Monitor.”

0F_0H

0 High-Temperature Interrupt Enable

1 Low-Temperature Interrupt Enable

2 PROCHOT# Interrupt Enable

3 FORCEPR# Interrupt Enable

4 Critical Temperature Interrupt Enable

7:5 Reserved.

14:8 Threshold #1 Value

15 Threshold #1 Interrupt Enable

22:16 Threshold #2 Value

23 Threshold #2 Interrupt Enable

24 Power Limit Notification Enable If CPUID.06H:EAX[4] = 1

63:25 Reserved.

19CH 412 IA32_THERM_STATUS Thermal Status Information (RO)

Contains status information about the 
processor’s thermal sensor and automatic 
thermal monitoring facilities. 

See Section 14.7.2, “Thermal Monitor”

0F_0H

0 Thermal Status (RO):

1 Thermal Status Log (R/W): 

2 PROCHOT # or FORCEPR# event (RO)

3 PROCHOT # or FORCEPR# log (R/WC0)

4 Critical Temperature Status (RO)

5 Critical Temperature Status log (R/WC0)

6 Thermal Threshold #1 Status (RO) If CPUID.01H:ECX[8] = 1

7 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1

8 Thermal Threshold #2 Status (RO) If CPUID.01H:ECX[8] = 1

9 Thermal Threshold #1 log (R/WC0) If CPUID.01H:ECX[8] = 1
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10 Power Limitation Status (RO) If CPUID.06H:EAX[4] = 1

11 Power Limitation log (R/WC0) If CPUID.06H:EAX[4] = 1

15:12 Reserved.

22:16 Digital Readout (RO) If CPUID.06H:EAX[0] = 1

26:23 Reserved.

30:27 Resolution in Degrees Celsius (RO) If CPUID.06H:EAX[0] = 1

31 Reading Valid (RO) If CPUID.06H:EAX[0] = 1

63:32 Reserved.

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to 
be enabled and disabled.

0 Fast-Strings Enable

When set, the fast-strings feature (for REP 
MOVS and REP STORS) is enabled (default); 
when clear, fast-strings are disabled.

0F_0H

2:1 Reserved.

3 Automatic Thermal Control Circuit Enable 
(R/W) 

1 = Setting this bit enables the thermal 
control circuit (TCC) portion of the 
Intel Thermal Monitor feature. This 
allows the processor to automatically 
reduce power consumption in 
response to TCC activation.

0 = Disabled (default).

Note: In some products clearing this bit 
might be ignored in critical thermal 
conditions, and TM1, TM2 and adaptive 
thermal throttling will still be activated.

0F_0H

6:4 Reserved

7 Performance Monitoring Available (R) 

1 = Performance monitoring enabled

0 = Performance monitoring disabled

0F_0H

10:8 Reserved.

11 Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch 
trace storage (BTS)

0 = BTS is supported

0F_0H

12 Precise Event Based Sampling (PEBS) 
Unavailable (RO) 

1 = PEBS is not supported; 

0 = PEBS is supported. 

06_0FH

15:13 Reserved.
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16 Enhanced Intel SpeedStep Technology 
Enable (R/W)

0= Enhanced Intel SpeedStep 
Technology disabled

1 = Enhanced Intel SpeedStep 
Technology enabled

06_0DH

17 Reserved.

18 ENABLE MONITOR FSM (R/W)

When this bit is set to 0, the MONITOR 
feature flag is not set (CPUID.01H:ECX[bit 
3] = 0). This indicates that 
MONITOR/MWAIT are not supported. 

Software attempts to execute 
MONITOR/MWAIT will cause #UD when this 
bit is 0.

When this bit is set to 1 (default), 
MONITOR/MWAIT are supported 
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag ECX[0] is not set 
(CPUID.01H:ECX[bit 0] = 0), the OS must 
not attempt to alter this bit. BIOS must 
leave it in the default state. Writing this bit 
when the SSE3 feature flag is set to 0 may 
generate a #GP exception.

0F_03H

21:19 Reserved.

22 Limit CPUID Maxval (R/W)

When this bit is set to 1, CPUID.00H returns 
a maximum value in EAX[7:0] of 3.

BIOS should contain a setup question that 
allows users to specify when the installed 
OS does not support CPUID functions 
greater than 3.

Before setting this bit, BIOS must execute 
the CPUID.0H and examine the maximum 
value returned in EAX[7:0]. If the maximum 
value is greater than 3, the bit is supported.

Otherwise, the bit is not supported.  Writing 
to this bit when the maximum value is 
greater than 3 may generate a #GP 
exception.

Setting this bit may cause unexpected 
behavior in software that depends on the 
availability of CPUID leaves greater than 3.

0F_03H

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are 
disabled. xTPR messages are optional 
messages that allow the processor to 
inform the chipset of its priority.

if CPUID.01H:ECX[14] = 1
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33:24 Reserved.

34 XD Bit Disable (R/W)

When set to 1, the Execute Disable Bit 
feature (XD Bit) is disabled and the XD Bit 
extended feature flag will be clear 
(CPUID.80000001H: EDX[20]=0).

When set to a 0 (default), the Execute 
Disable Bit feature (if available) allows the 
OS to enable PAE paging and take 
advantage of data only pages.

BIOS must not alter the contents of this bit 
location, if XD bit is not supported.. Writing 
this bit to 1 when the XD Bit extended 
feature flag is set to 0 may generate a #GP 
exception.

if 
CPUID.80000001H:EDX[2
0] = 1

63:35 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIAS Performance Energy Bias Hint (R/W) if CPUID.6H:ECX[3] = 1

3:0 Power Policy Preference: 

0 indicates preference to highest 
performance.

15 indicates preference to maximize 
energy saving.

63:4 Reserved.

1B1H 433 IA32_PACKAGE_THERM_STATUS Package Thermal Status Information (RO)

Contains status information about the 
package’s thermal sensor. 

See Section 14.8, “Package Level Thermal 
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log (R/W): 

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature Status (RO)

5 Pkg Critical Temperature Status log 
(R/WC0)

6 Pkg Thermal Threshold #1 Status (RO)

7 Pkg Thermal Threshold #1 log (R/WC0)

8 Pkg Thermal Threshold #2 Status (RO)

9 Pkg Thermal Threshold #1 log (R/WC0)

10 Pkg Power Limitation Status (RO)

11 Pkg Power Limitation log (R/WC0)
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15:12 Reserved.

22:16 Pkg Digital Readout (RO)

63:23 Reserved.

1B2H 434 IA32_PACKAGE_THERM_INTERRUPT Pkg Thermal Interrupt Control (R/W)

Enables and disables the generation of an 
interrupt on temperature transitions 
detected with the package’s thermal 
sensor. 

See Section 14.8, “Package Level Thermal 
Management.”

If CPUID.06H: EAX[6] = 1

0 Pkg High-Temperature Interrupt Enable

1 Pkg Low-Temperature Interrupt Enable

2 Pkg PROCHOT# Interrupt Enable

3 Reserved.

4 Pkr Overheat Interrupt Enable

7:5 Reserved.

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt Enable

22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt Enable

24 Pkg Power Limit Notification Enable

63:25 Reserved.

1D9H 473 IA32_DEBUGCTL (MSR_DEBUGCTLA, 
MSR_DEBUGCTLB)

Trace/Profile Resource Control (R/W) 06_0EH

0 LBR: Setting this bit to 1 enables the 
processor to record a running trace of the 
most recent branches taken by the 
processor in the LBR stack.

06_01H

1 BTF: Setting this bit to 1 enables the 
processor to treat EFLAGS.TF as single-step 
on branches instead of single-step on 
instructions.

06_01H

5:2 Reserved.

6 TR: Setting this bit to 1 enables branch 
trace messages to be sent.

06_0EH

7 BTS: Setting this bit enables branch trace 
messages (BTMs) to be logged in a BTS 
buffer.

06_0EH

8 BTINT: When clear, BTMs are logged in a 
BTS buffer in circular fashion. When this bit 
is set, an interrupt is generated by the BTS 
facility when the BTS buffer is full.

06_0EH
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9 1: BTS_OFF_OS: When set, BTS or BTM is 
skipped if CPL = 0.

06_0FH

10 BTS_OFF_USR: When set, BTS or BTM is 
skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When set, the LBR 
stack is frozen on a PMI request.

If CPUID.01H: ECX[15] = 1 
and CPUID.0AH: EAX[7:0] > 
1

12 FREEZE_PERFMON_ON_PMI: When set, 
each ENABLE bit of the global counter 
control MSR are frozen (address 3BFH) on a 
PMI request

If CPUID.01H: ECX[15] = 1 
and CPUID.0AH: EAX[7:0] > 
1

13 ENABLE_UNCORE_PMI: When set, enables 
the logical processor to receive and 
generate PMI on behalf of the uncore.

06_1AH

14 FREEZE_WHILE_SMM: When set, freezes 
perfmon and trace messages while in SMM.

if  
IA32_PERF_CAPABILITIES[
12] = '1

63:15 Reserved.

1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address (Writeable only in 
SMM) 

Base address of SMM memory range.

If IA32_MTRR_CAP[SMRR] 
= 1

7:0 Type. Specifies memory type of the range.

11:8 Reserved.

31:12 PhysBase. 

SMRR physical Base Address.

63:32 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask. (Writeable only in 
SMM) 

Range Mask of SMM memory range.

If IA32_MTRR_CAP[SMRR] 
= 1

10:0  Reserved.

11 Valid

Enable range mask.

31:12 PhysMask

SMRR address range mask.

63:32 Reserved.

1F8H 504 IA32_PLATFORM_DCA_CAP DCA Capability (R) 06_0FH

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-Hint type. 

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and Control register. 06_2EH

0 DCA_ACTIVE: Set by HW when DCA is fuse-
enabled and no defeatures are set.

06_2EH

2:1 TRANSACTION 06_2EH

6:3 DCA_TYPE 06_2EH
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10:7 DCA_QUEUE_SIZE 06_2EH

12:11 Reserved. 06_2EH

16:13 DCA_DELAY: Writes will update the register 
but have no HW side-effect.

06_2EH

23:17 Reserved. 06_2EH

24 SW_BLOCK: SW can request DCA block by 
setting this bit.

06_2EH

25 Reserved. 06_2EH

26 HW_BLOCK: Set when DCA is blocked by 
HW (e.g. CR0.CD = 1).

06_2EH

31:27 Reserved. 06_2EH

200H 512 IA32_MTRR_PHYSBASE0 
(MTRRphysBase0)

See Section 11.11.2.3, “Variable Range 
MTRRs.”

06_01H

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 06_01H

202H 514 IA32_MTRR_PHYSBASE1  MTRRphysBase1 06_01H

203H 515 IA32_MTRR_PHYSMASK1  MTRRphysMask1 06_01H

204H 516 IA32_MTRR_PHYSBASE2  MTRRphysBase2 06_01H

205H 517 IA32_MTRR_PHYSMASK2  MTRRphysMask2 06_01H

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 06_01H

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 06_01H

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 06_01H

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 06_01H

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 06_01H

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 06_01H

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 06_01H

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 06_01H

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 06_01H

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 06_01H

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 if IA32_MTRR_CAP[7:0] > 
8

211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 if IA32_MTRR_CAP[7:0] > 
8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 if IA32_MTRR_CAP[7:0] > 
9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 if IA32_MTRR_CAP[7:0] > 
9

250H 592 IA32_MTRR_FIX64K_00000 MTRRfix64K_00000 06_01H

258H 600 IA32_MTRR_FIX16K_80000 MTRRfix16K_80000 06_01H

259H 601 IA32_MTRR_FIX16K_A0000 MTRRfix16K_A0000 06_01H
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268H 616 IA32_MTRR_FIX4K_C0000 
(MTRRfix4K_C0000 )

See Section 11.11.2.2, “Fixed Range 
MTRRs.”

06_01H

269H 617 IA32_MTRR_FIX4K_C8000 MTRRfix4K_C8000 06_01H

26AH 618 IA32_MTRR_FIX4K_D0000 MTRRfix4K_D0000 06_01H

26BH 619 IA32_MTRR_FIX4K_D8000 MTRRfix4K_D8000 06_01H

26CH 620 IA32_MTRR_FIX4K_E0000 MTRRfix4K_E0000 06_01H

26DH 621 IA32_MTRR_FIX4K_E8000 MTRRfix4K_E8000 06_01H

26EH 622 IA32_MTRR_FIX4K_F0000 MTRRfix4K_F0000 06_01H

26FH 623 IA32_MTRR_FIX4K_F8000 MTRRfix4K_F8000 06_01H

277H 631 IA32_PAT IA32_PAT (R/W) 06_05H

2:0 PA0

7:3 Reserved.

10:8 PA1

15:11 Reserved.

18:16 PA2

23:19 Reserved.

26:24 PA3

31:27 Reserved.

34:32 PA4

39:35 Reserved.

42:40 PA5

47:43 Reserved.

50:48 PA6

55:51 Reserved.

58:56 PA7

63:59 Reserved.

280H 640 IA32_MC0_CTL2 (R/W) 06_1AH

14:0 Corrected error count threshold.

29:15 Reserved.

30 CMCI_EN

63:31 Reserved.

281H 641 IA32_MC1_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

282H 642 IA32_MC2_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

283H 643 IA32_MC3_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

284H 644 IA32_MC4_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

285H 645 IA32_MC5_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

286H 646 IA32_MC6_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH
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287H 647 IA32_MC7_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

288H 648 IA32_MC8_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_1AH

289H 649 IA32_MC9_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28AH 650 IA32_MC10_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28BH 651 IA32_MC11_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28CH 652 IA32_MC12_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28DH 653 IA32_MC13_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28EH 654 IA32_MC14_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

28FH 655 IA32_MC15_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

290H 656 IA32_MC16_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

291H 657 IA32_MC17_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

292H 658 IA32_MC18_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

293H 659 IA32_MC19_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

294H 660 IA32_MC20_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

295H 661 IA32_MC21_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_2EH

296H 662 IA32_MC22_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

297H 663 IA32_MC23_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

298H 664 IA32_MC24_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

299H 665 IA32_MC25_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29AH 666 IA32_MC26_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29BH 667 IA32_MC27_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29CH 668 IA32_MC28_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29DH 669 IA32_MC29_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29EH 670 IA32_MC30_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

29FH 671 IA32_MC31_CTL2 (R/W) same fields as IA32_MC0_CTL2. 06_3EH

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) 06_01H

2:0 Default Memory Type

9:3 Reserved.

10 Fixed Range MTRR Enable 

11 MTRR Enable 

63:12 Reserved.

309H 777 IA32_FIXED_CTR0 
(MSR_PERF_FIXED_CTR0)

Fixed-Function Performance Counter 0 
(R/W): Counts Instr_Retired.Any.

If CPUID.0AH: EDX[4:0] > 0

30AH 778 IA32_FIXED_CTR1 
(MSR_PERF_FIXED_CTR1)

Fixed-Function Performance Counter 1 0 
(R/W): Counts CPU_CLK_Unhalted.Core

If CPUID.0AH: EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2 
(MSR_PERF_FIXED_CTR2)

Fixed-Function Performance Counter 0 0 
(R/W): Counts CPU_CLK_Unhalted.Ref

If CPUID.0AH: EDX[4:0] > 2

345H 837 IA32_PERF_CAPABILITIES RO If CPUID.01H: ECX[15] = 1
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5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is supported.

13 1: Full width of counter writable via 
IA32_A_PMCx.

63:14 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL 
(MSR_PERF_FIXED_CTR_CTRL)

Fixed-Function Performance Counter 
Control (R/W)

Counter increments while the results of 
ANDing respective enable bit in 
IA32_PERF_GLOBAL_CTRL with the 
corresponding OS or USR bits in this MSR is 
true.

If CPUID.0AH: EAX[7:0] > 1

0 EN0_OS: Enable Fixed Counter 0 to count 
while CPL = 0.

1 EN0_Usr: Enable Fixed Counter 0 to count 
while CPL > 0.

2 AnyThread: When set to 1, it enables 
counting the associated event conditions 
occurring across all logical processors 
sharing a processor core. When set to 0, the 
counter only increments the associated 
event conditions occurring in the logical 
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when fixed counter 0 
overflows.

4 EN1_OS: Enable Fixed Counter 1to count 
while CPL = 0.

5 EN1_Usr: Enable Fixed Counter 1to count 
while CPL > 0.

6 AnyThread: When set to 1, it enables 
counting the associated event conditions 
occurring across all logical processors 
sharing a processor core. When set to 0, the 
counter only increments the associated 
event conditions occurring in the logical 
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when fixed counter 1 
overflows.

8 EN2_OS: Enable Fixed Counter 2 to count 
while CPL = 0.

9 EN2_Usr: Enable Fixed Counter 2 to count 
while CPL > 0.
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10 AnyThread: When set to 1, it enables 
counting the associated event conditions 
occurring across all logical processors 
sharing a processor core. When set to 0, the 
counter only increments the associated 
event conditions occurring in the logical 
processor which programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when fixed counter 2 
overflows.

63:12 Reserved.

38EH 910 IA32_PERF_GLOBAL_STATUS 
(MSR_PERF_GLOBAL_STATUS)

Global Performance Counter Status (RO) If CPUID.0AH: EAX[7:0] > 0

0 Ovf_PMC0: Overflow status of IA32_PMC0. If CPUID.0AH: EAX[7:0] > 0

1 Ovf_PMC1: Overflow status of IA32_PMC1. If CPUID.0AH: EAX[7:0] > 0

2 Ovf_PMC2: Overflow status of IA32_PMC2. 06_2EH

3 Ovf_PMC3: Overflow status of IA32_PMC3. 06_2EH

31:4 Reserved.

32 Ovf_FixedCtr0: Overflow status of 
IA32_FIXED_CTR0.

If CPUID.0AH: EAX[7:0] > 1

33 Ovf_FixedCtr1: Overflow status of 
IA32_FIXED_CTR1.

If CPUID.0AH: EAX[7:0] > 1

34 Ovf_FixedCtr2: Overflow status of 
IA32_FIXED_CTR2.

If CPUID.0AH: EAX[7:0] > 1

60:35 Reserved.

61 Ovf_Uncore: Uncore counter overflow 
status.

If CPUID.0AH: EAX[7:0] > 2

62 OvfBuf: DS SAVE area Buffer overflow 
status.

If CPUID.0AH: EAX[7:0] > 0

63 CondChg: status bits of this register has 
changed.

If CPUID.0AH: EAX[7:0] > 0

38FH 911 IA32_PERF_GLOBAL_CTRL 
(MSR_PERF_GLOBAL_CTRL)

Global Performance Counter Control (R/W)

Counter increments while the result of 
ANDing respective enable bit in this MSR 
with the corresponding OS or USR bits in 
the general-purpose or fixed counter 
control MSR is true.

If CPUID.0AH: EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH: EAX[7:0] > 0

1 EN_PMC1 If CPUID.0AH: EAX[7:0] > 0

31:2 Reserved.

32 EN_FIXED_CTR0 If CPUID.0AH: EAX[7:0] > 1

33 EN_FIXED_CTR1 If CPUID.0AH: EAX[7:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH: EAX[7:0] > 1
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63:35 Reserved.

390H 912 IA32_PERF_GLOBAL_OVF_CTRL 
(MSR_PERF_GLOBAL_OVF_CTRL)

Global Performance Counter Overflow 
Control (R/W)

If CPUID.0AH: EAX[7:0] > 0

0 Set 1 to Clear Ovf_PMC0 bit. If CPUID.0AH: EAX[7:0] > 0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.0AH: EAX[7:0] > 0

31:2 Reserved.

32 Set 1 to Clear Ovf_FIXED_CTR0 bit. If CPUID.0AH: EAX[7:0] > 1

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.0AH: EAX[7:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTR2 bit. If CPUID.0AH: EAX[7:0] > 1

60:35 Reserved.

61 Set 1 to Clear Ovf_Uncore: bit. 06_2EH

62 Set 1 to Clear OvfBuf: bit. If CPUID.0AH: EAX[7:0] > 0

63 Set to 1to clear CondChg: bit. If CPUID.0AH: EAX[7:0] > 0

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0. 06_0FH

1-3 Reserved or Model specific .

31:4 Reserved.

35-32 Reserved or Model specific .

63:36 Reserved.

400H 1024 IA32_MC0_CTL MC0_CTL P6 Family Processors

401H 1025 IA32_MC0_STATUS MC0_STATUS P6 Family Processors

402H 1026 IA32_MC0_ADDR1 MC0_ADDR P6 Family Processors

403H 1027 IA32_MC0_MISC MC0_MISC P6 Family Processors

404H 1028 IA32_MC1_CTL MC1_CTL P6 Family Processors

405H 1029 IA32_MC1_STATUS MC1_STATUS P6 Family Processors

406H 1030 IA32_MC1_ADDR2 MC1_ADDR P6 Family Processors

407H 1031 IA32_MC1_MISC MC1_MISC P6 Family Processors

408H 1032 IA32_MC2_CTL MC2_CTL P6 Family Processors

409H 1033 IA32_MC2_STATUS MC2_STATUS P6 Family Processors

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR P6 Family Processors

40BH 1035 IA32_MC2_MISC MC2_MISC P6 Family Processors

40CH 1036 IA32_MC3_CTL MC3_CTL P6 Family Processors

40DH 1037 IA32_MC3_STATUS MC3_STATUS P6 Family Processors

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR P6 Family Processors

40FH 1039 IA32_MC3_MISC MC3_MISC P6 Family Processors

410H 1040 IA32_MC4_CTL MC4_CTL P6 Family Processors

411H 1041 IA32_MC4_STATUS MC4_STATUS P6 Family Processors
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412H 1042 IA32_MC4_ADDR1 MC4_ADDR P6 Family Processors

413H 1043 IA32_MC4_MISC MC4_MISC P6 Family Processors

414H 1044 IA32_MC5_CTL MC5_CTL 06_0FH

415H 1045 IA32_MC5_STATUS MC5_STATUS 06_0FH

416H 1046 IA32_MC5_ADDR1 MC5_ADDR 06_0FH

417H 1047 IA32_MC5_MISC MC5_MISC 06_0FH

418H 1048 IA32_MC6_CTL MC6_CTL 06_1DH

419H 1049 IA32_MC6_STATUS MC6_STATUS 06_1DH

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR 06_1DH

41BH 1051 IA32_MC6_MISC MC6_MISC 06_1DH

41CH 1052 IA32_MC7_CTL MC7_CTL 06_1AH

41DH 1053 IA32_MC7_STATUS MC7_STATUS 06_1AH

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR 06_1AH

41FH 1055 IA32_MC7_MISC MC7_MISC 06_1AH

420H 1056 IA32_MC8_CTL MC8_CTL 06_1AH

421H 1057 IA32_MC8_STATUS MC8_STATUS 06_1AH

422H 1058 IA32_MC8_ADDR1 MC8_ADDR 06_1AH

423H 1059 IA32_MC8_MISC MC8_MISC 06_1AH

424H 1060 IA32_MC9_CTL MC9_CTL 06_2EH

425H 1061 IA32_MC9_STATUS MC9_STATUS 06_2EH

426H 1062 IA32_MC9_ADDR1 MC9_ADDR 06_2EH

427H 1063 IA32_MC9_MISC MC9_MISC 06_2EH

428H 1064 IA32_MC10_CTL MC10_CTL 06_2EH

429H 1065 IA32_MC10_STATUS MC10_STATUS 06_2EH

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR 06_2EH

42BH 1067 IA32_MC10_MISC MC10_MISC 06_2EH

42CH 1068 IA32_MC11_CTL MC11_CTL 06_2EH

42DH 1069 IA32_MC11_STATUS MC11_STATUS 06_2EH

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR 06_2EH

42FH 1071 IA32_MC11_MISC MC11_MISC 06_2EH

430H 1072 IA32_MC12_CTL MC12_CTL 06_2EH

431H 1073 IA32_MC12_STATUS MC12_STATUS 06_2EH

432H 1074 IA32_MC12_ADDR1 MC12_ADDR 06_2EH

433H 1075 IA32_MC12_MISC MC12_MISC 06_2EH

434H 1076 IA32_MC13_CTL MC13_CTL 06_2EH

435H 1077 IA32_MC13_STATUS MC13_STATUS 06_2EH

436H 1078 IA32_MC13_ADDR1 MC13_ADDR 06_2EH
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437H 1079 IA32_MC13_MISC MC13_MISC 06_2EH

438H 1080 IA32_MC14_CTL MC14_CTL 06_2EH

439H 1081 IA32_MC14_STATUS MC14_STATUS 06_2EH

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR 06_2EH

43BH 1083 IA32_MC14_MISC MC14_MISC 06_2EH

43CH 1084 IA32_MC15_CTL MC15_CTL 06_2EH

43DH 1085 IA32_MC15_STATUS MC15_STATUS 06_2EH

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR 06_2EH

43FH 1087 IA32_MC15_MISC MC15_MISC 06_2EH

440H 1088 IA32_MC16_CTL MC16_CTL 06_2EH

441H 1089 IA32_MC16_STATUS MC16_STATUS 06_2EH

442H 1090 IA32_MC16_ADDR1 MC16_ADDR 06_2EH

443H 1091 IA32_MC16_MISC MC16_MISC 06_2EH

444H 1092 IA32_MC17_CTL MC17_CTL 06_2EH

445H 1093 IA32_MC17_STATUS MC17_STATUS 06_2EH

446H 1094 IA32_MC17_ADDR1 MC17_ADDR 06_2EH

447H 1095 IA32_MC17_MISC MC17_MISC 06_2EH

448H 1096 IA32_MC18_CTL MC18_CTL 06_2EH

449H 1097 IA32_MC18_STATUS MC18_STATUS 06_2EH

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR 06_2EH

44BH 1099 IA32_MC18_MISC MC18_MISC 06_2EH

44CH 1100 IA32_MC19_CTL MC19_CTL 06_2EH

44DH 1101 IA32_MC19_STATUS MC19_STATUS 06_2EH

44EH 1102 IA32_MC19_ADDR1 MC19_ADDR 06_2EH

44FH 1103 IA32_MC19_MISC MC19_MISC 06_2EH

450H 1104 IA32_MC20_CTL MC20_CTL 06_2EH

451H 1105 IA32_MC20_STATUS MC20_STATUS 06_2EH

452H 1106 IA32_MC20_ADDR1 MC20_ADDR 06_2EH

453H 1107 IA32_MC20_MISC MC20_MISC 06_2EH

454H 1108 IA32_MC21_CTL MC21_CTL 06_2EH

455H 1109 IA32_MC21_STATUS MC21_STATUS 06_2EH

456H 1110 IA32_MC21_ADDR1 MC21_ADDR 06_2EH

457H 1111 IA32_MC21_MISC MC21_MISC 06_2EH

480H 1152 IA32_VMX_BASIC Reporting Register of Basic VMX 
Capabilities (R/O)

See Appendix A.1, “Basic VMX Information.”

If CPUID.01H:ECX.[bit 5] = 
1
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481H 1153 IA32_VMX_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If CPUID.01H:ECX.[bit 5] = 
1

482H 1154 IA32_VMX_PROCBASED_CTLS Capability Reporting Register of Primary 
Processor-based VM-execution Controls 
(R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If CPUID.01H:ECX.[bit 5] = 
1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting Register of VM-exit 
Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If CPUID.01H:ECX.[bit 5] = 
1

484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting Register of VM-
entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If CPUID.01H:ECX.[bit 5] = 
1

485H 1157 IA32_VMX_MISC Reporting Register of Miscellaneous 
VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data.”

If CPUID.01H:ECX.[bit 5] = 
1

486H 1158 IA32_VMX_CRO_FIXED0 Capability Reporting Register of CR0 Bits 
Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[bit 5] = 
1

487H 1159 IA32_VMX_CRO_FIXED1 Capability Reporting Register of CR0 Bits 
Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0.”

If CPUID.01H:ECX.[bit 5] = 
1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting Register of CR4 Bits 
Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[bit 5] = 
1

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting Register of CR4 Bits 
Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4.”

If CPUID.01H:ECX.[bit 5] = 
1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting Register of VMCS 
Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration.”

If CPUID.01H:ECX.[bit 5] = 
1

48BH 1163 IA32_VMX_PROCBASED_CTLS2 Capability Reporting Register of 
Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3.3, “Secondary Processor-
Based VM-Execution Controls.”

If ( CPUID.01H:ECX.[bit 5] 
and 
IA32_VMX_PROCBASED_C
TLS[bit 63])

48CH 1164 IA32_VMX_EPT_VPID_CAP Capability Reporting Register of EPT and 
VPID (R/O)

See Appendix A.10, “VPID and EPT 
Capabilities.”

If ( CPUID.01H:ECX.[bit 5], 
IA32_VMX_PROCBASED_C
TLS[bit 63], and either 
IA32_VMX_PROCBASED_C
TLS2[bit 33] or 
IA32_VMX_PROCBASED_C
TLS2[bit 37])
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48DH 1165 IA32_VMX_TRUE_PINBASED_CTLS Capability Reporting Register of Pin-
based VM-execution Flex Controls (R/O)

See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”

If ( CPUID.01H:ECX.[bit 5] = 
1 and 
IA32_VMX_BASIC[bit 55] )

48EH 1166 IA32_VMX_TRUE_PROCBASED_CTLS Capability Reporting Register of Primary 
Processor-based VM-execution Flex 
Controls (R/O)

See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”

If( CPUID.01H:ECX.[bit 5] = 
1 and 
IA32_VMX_BASIC[bit 55] )

48FH 1167 IA32_VMX_TRUE_EXIT_CTLS Capability Reporting Register of VM-exit 
Flex Controls (R/O)

See Appendix A.4, “VM-Exit Controls.”

If( CPUID.01H:ECX.[bit 5] = 
1 and 
IA32_VMX_BASIC[bit 55] )

490H 1168 IA32_VMX_TRUE_ENTRY_CTLS Capability Reporting Register of VM-
entry Flex Controls (R/O)

See Appendix A.5, “VM-Entry Controls.”

If( CPUID.01H:ECX.[bit 5] = 
1 and 
IA32_VMX_BASIC[bit 55] )

491H 1169 IA32_VMX_VMFUNC Capability Reporting Register of VM-
function Controls (R/O)

If( CPUID.01H:ECX.[bit 5] = 
1 and 
IA32_VMX_BASIC[bit 55] )

4C1H 1217 IA32_A_PMC0 Full Width Writable IA32_PMC0 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
0) &

IA32_PERF_CAPABILITIES[
13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable IA32_PMC1 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
1) &

IA32_PERF_CAPABILITIES[
13] = 1

4C3H 1219 IA32_A_PMC2 Full Width Writable IA32_PMC2 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
2) &

IA32_PERF_CAPABILITIES[
13] = 1

4C4H 1220 IA32_A_PMC3 Full Width Writable IA32_PMC3 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
3) &

IA32_PERF_CAPABILITIES[
13] = 1

4C5H 1221 IA32_A_PMC4 Full Width Writable IA32_PMC4 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
4) &

IA32_PERF_CAPABILITIES[
13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable IA32_PMC5 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
5) &

IA32_PERF_CAPABILITIES[
13] = 1
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4C7H 1223 IA32_A_PMC6 Full Width Writable IA32_PMC6 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
6) &

IA32_PERF_CAPABILITIES[
13] = 1

4C8H 1224 IA32_A_PMC7 Full Width Writable IA32_PMC7 Alias (R/W) (If CPUID.0AH: EAX[15:8] > 
7) &

IA32_PERF_CAPABILITIES[
13] = 1

4D0H 1232 IA32_MCG_EXT_CTL (R/W) If IA32_MCG_CAP.LMCE_P 
=1

0 LMCE_EN.

63:1 Reserved.

600H 1536 IA32_DS_AREA DS Save Area (R/W) 

Points to the linear address of the first 
byte of the DS buffer management area, 
which is used to manage the BTS and PEBS 
buffers.

See Section 18.12.4, “Debug Store (DS) 
Mechanism.”

0F_0H

63:0 The linear address of the first byte of the 
DS buffer management area, if IA-32e 
mode is active.

31:0 The linear address of the first byte of the 
DS buffer management area, if not in IA-
32e mode.

63:32 Reserved if not in IA-32e mode.

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s TSC Deadline 
Mode (R/W)

If( CPUID.01H:ECX.[bit 25] 
= 1 

770H 1904 IA32_PM_ENABLE Enable/disable HWP (R/W) If( CPUID.06H:EAX.[bit 7] = 
1 

0 HWP_ENABLE (R/W1-Once).

See Section 14.4.2, “Enabling HWP”

If( CPUID.06H:EAX.[bit 7] = 
1 

63:1 Reserved. 

771H 1905 IA32_HWP_CAPABILITIES HWP Performance Range Enumeration 
(RO)

If( CPUID.06H:EAX.[bit 7] = 
1 

7:0 Highest_Performance 

See Section 14.4.3, “HWP Performance 
Range and Dynamic Capabilities”

If( CPUID.06H:EAX.[bit 7] = 
1 

15:8 Guaranteed_Performance 

See Section 14.4.3, “HWP Performance 
Range and Dynamic Capabilities”

If( CPUID.06H:EAX.[bit 7] = 
1 

23:16 Most_Efficient_Performance 

See Section 14.4.3, “HWP Performance 
Range and Dynamic Capabilities”

If( CPUID.06H:EAX.[bit 7] = 
1 

Table 35-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name and bit 
fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural MSR

Hex Decimal



35-26 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)

31:24 Lowest_Performance 

See Section 14.4.3, “HWP Performance 
Range and Dynamic Capabilities”

If( CPUID.06H:EAX.[bit 7] = 
1 

63:32 Reserved. 

772H 1906 IA32_HWP_REQUEST_PKG Power Management Control Hints for All 
Logical Processors in a Package (R/W)

If( CPUID.06H:EAX.[bit 11] 
= 1 

7:0 Minimum_Performance 

See Section 14.4.4, “Managing HWP”

If( CPUID.06H:EAX.[bit 11] 
= 1 

15:8 Maximum_Performance 

See Section 14.4.4, “Managing HWP”

If( CPUID.06H:EAX.[bit 11] 
= 1 

23:16 Desired_Performance 

See Section 14.4.4, “Managing HWP”

If( CPUID.06H:EAX.[bit 11] 
= 1 

31:24 Energy_Performance_Preference 

See Section 14.4.4, “Managing HWP”

If( CPUID.06H:EAX.[bit 11] 
= 1 and

CPUID.06HEAX.[bit 10] = 1

41:32 Activity_Window 

See Section 14.4.4, “Managing HWP”

If( CPUID.06H:EAX.[bit 11] 
= 1 and

CPUID.06HEAX.[bit 9] = 1

63:42 Reserved. 

773H 1907 IA32_HWP_INTERRUPT Control HWP Native Interrupts (R/W) If( CPUID.06H:EAX.[bit 8] = 
1 

0 EN_Guaranteed_Performance_Change.

See Section 14.4.6, “HWP Notifications”

If( CPUID.06H:EAX.[bit 8] = 
1 

1 EN_Excursion_Minimum.

See Section 14.4.6, “HWP Notifications”

If( CPUID.06H:EAX.[bit 8] = 
1 

63:2 Reserved. 

774H 1908 IA32_HWP_REQUEST Power Management Control Hints to a 
Logical Processor (R/W)

If( CPUID.06H:EAX.[bit 7] = 
1

7:0 Minimum_Performance 

See Section 14.4.4, “Managing HWP”

If( CPUID.06H:EAX.[bit 7] = 
1 

15:8 Maximum_Performance 

See Section 14.4.4, “Managing HWP”

If( CPUID.06H:EAX.[bit 7] = 
1 

23:16 Desired_Performance 

See Section 14.4.4, “Managing HWP”

If( CPUID.06H:EAX.[bit 7] = 
1 

31:24 Energy_Performance_Preference 

See Section 14.4.4, “Managing HWP”

If CPUID.06HEAX.[bit 7] = 
1 and ( CPUID.06H:EAX.[bit 
10] = 1 

41:32 Activity_Window 

See Section 14.4.4, “Managing HWP”

If CPUID.06HEAX.[bit 7] = 
1 and ( CPUID.06H:EAX.[bit 
9] = 1 
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42 Package_Control 

See Section 14.4.4, “Managing HWP”

IfCPUID.06HEAX.[bit 7] = 1 
and ( CPUID.06H:EAX.[bit 
11] = 1 

63:43 Reserved. 

777H 1911 IA32_HWP_STATUS Log bits indicating changes to 
Guaranteed & excursions to Minimum 
(R/W)

If( CPUID.06H:EAX.[bit 7] = 
1 

0 Guaranteed_Performance_Change 
(R/WC0).

See Section 14.4.5, “HWP Feedback”

If( CPUID.06H:EAX.[bit 7] = 
1 

1 Reserved. 

2 Excursion_To_Minimum (R/WC0).

See Section 14.4.5, “HWP Feedback”

If( CPUID.06H:EAX.[bit 7] = 
1 

63:3 Reserved. 

802H 2050 IA32_X2APIC_APICID x2APIC ID Register (R/O)

See x2APIC Specification

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register (R/O) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

808H 2056 IA32_X2APIC_TPR x2APIC Task Priority Register (R/W) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority Register (R/O) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register (W/O) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination Register 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt Vector 
Register (R/W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register Bits 31:0 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register Bits 63:32 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register Bits 95:64 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register Bits 127:96 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register Bits 159:128 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register Bits 191:160 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register Bits 223:192 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )
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817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register Bits 255:224 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode Register Bits 31:0 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode Register Bits 63:32 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode Register Bits 95:64 
(R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode Register Bits 
127:96 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode Register Bits 
159:128 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode Register Bits 
191:160 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode Register Bits 
223:192 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode Register Bits 
255:224 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request Register Bits 
31:0 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request Register Bits 
63:32 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request Register Bits 
95:64 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request Register Bits 
127:96 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request Register Bits 
159:128 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request Register Bits 
191:160 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request Register Bits 
223:192 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request Register Bits 
255:224 (R/O)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

828H 2088 IA32_X2APIC_ESR x2APIC Error Status Register (R/W) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected Machine Check 
Interrupt Register (R/W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command Register 
(R/W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt Register 
(R/W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

833H 2099 IA32_X2APIC_LVT_THERMAL x2APIC LVT Thermal Sensor Interrupt 
Register (R/W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )
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834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance Monitor 
Interrupt Register (R/W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register (R/W) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register (R/W) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

837H 2103 IA32_X2APIC_LVT_ERROR x2APIC LVT Error Register (R/W) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

838H 2104 IA32_X2APIC_INIT_COUNT x2APIC Initial Count Register (R/W) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

839H 2105 IA32_X2APIC_CUR_COUNT x2APIC Current Count Register (R/O) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration Register 
(R/W)

If ( CPUID.01H:ECX.[bit 21] 
= 1 )

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register (W/O) If ( CPUID.01H:ECX.[bit 21] 
= 1 )

C80H 3200 IA32_DEBUG_INTERFACE Silicon Debug Feature Control (R/W) If( CPUID.01H:ECX.[bit 11] 
= 1 

0 Enable (R/W).

BIOS set 1 to enable Silicon debug features. 
Default is 0

If( CPUID.01H:ECX.[bit 11] 
= 1 

29:1 Reserved. 

30 Lock (R/W): If 1, locks any further change 
to the MSR. The lock bit is set automatically 
on the first SMI assertion even if not 
explicitly set by BIOS. Default is 0.

If( CPUID.01H:ECX.[bit 11] 
= 1 

31 Debug Occurred (R/O): This sticky bit is set 
by hardware to indicate the status of bit 0. 
Default is 0.

If( CPUID.01H:ECX.[bit 11] 
= 1 

63:32 Reserved. 

C8DH 3213 IA32_QM_EVTSEL QoS Monitoring Event Select Register 
(R/W)

If ( CPUID.(EAX=07H, 
ECX=0):EBX.[bit 12] = 1 )

7:0 Event ID: ID of a supported QoS monitoring 
event to report via IA32_QM_CTR.

31: 8 Reserved. 

N+31:32 Resource Monitoring ID: ID for QoS 
monitoring hardware to report monitored 
data via IA32_QM_CTR.

N = Ceil (Log2 ( 
CPUID.(EAX= 0FH, 
ECX=0H).EBX[31:0] +1))

63:N+32 Reserved.

C8EH 3214 IA32_QM_CTR QoS Monitoring Counter Register (R/O) If ( CPUID.(EAX=07H, 
ECX=0):EBX.[bit 12] = 1 )

61:0 Resource Monitored Data 
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62 Unavailable: If 1, indicates data for this 
RMID is not available or not monitored for 
this resource or RMID.

63 Error: If 1, indicates and unsupported RMID 
or event type was written to 
IA32_PQR_QM_EVTSEL.

C8FH 3215 IA32_PQR_ASSOC QoS Resource Association Register (R/W) If ( CPUID.(EAX=07H, 
ECX=0):EBX.[bit 12] = 1 )

N-1:0 Resource Monitoring ID (R/W): ID for QoS 
monitoring hardware to track internal 
operation, e.g. memory access.

N = Ceil (Log2 ( 
CPUID.(EAX= 0FH, 
ECX=0H).EBX[31:0] +1))

31:N Reserved 

63:32 COS (R/W). The class of service 
(COS) to enforce (on writes); 
returns the current COS when 
read.

If ( CPUID.(EAX=07H, 
ECX=0):EBX.[bit 15] = 1 )

0C90H 
- 
0D8FH

Reserved MSR Address Space for 
Platform QoS Enforcement Mask 
Registers

See Section 17.15.2.1, “Enumeration and 
Detection Support of CQE”

C90H 3216 IA32_L3_QOS_MASK_0 L3 CQE Mask for COS0 (R/W) If (CPUID.(10H, 0):EBX[bit 
1] != 0)

31:0 Capacity Bit Mask (R/W).

63:32 Reserved. 

C90H+
n

3216+n IA32_L3_QOS_MASK_n L3 CQE Mask for COSn (R/W) n = CPUID.(10H, 
1):EDX[15:0]

31:0 Capacity Bit Mask (R/W).

63:32 Reserved. 

DA0H 3488 IA32_XSS Extended Supervisor State Mask (R/W) If( CPUID.(0DH, 1):EAX.[bit 
3] = 1 

7:0 Reserved

8 Trace Packet Configuration State (R/W).

63:9 Reserved. 

DB0H 3504 IA32_PKG_HDC_CTL Package Level Enable/disable HDC (R/W) If( CPUID.06H:EAX.[bit 13] 
= 1 

0 HDC_Pkg_Enable (R/W).

Force HDC idling or wake up HDC-idled 
logical processors in the package. See 
Section 14.5.2, “Package level Enabling 
HDC”

If( CPUID.06H:EAX.[bit 13] 
= 1 

63:1 Reserved. 
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DB1H 3505 IA32_PM_CTL1 Enable/disable HWP (R/W) If( CPUID.06H:EAX.[bit 13] 
= 1 

0 HDC_Allow_Block (R/W).

Allow/Block this logical processor for 
package level HDC control. See Section 
14.5.3

If( CPUID.06H:EAX.[bit 13] 
= 1 

63:1 Reserved. 

DB2H 3506 IA32_THREAD_STALL Per-Logical_Processor HDC Idle 
Residency (R/0)

If( CPUID.06H:EAX.[bit 13] 
= 1 

63:0 Stall_Cycle_Cnt (R/W).

Stalled cycles due to HDC forced idle on this 
logical processor. See Section 14.5.4.1

If( CPUID.06H:EAX.[bit 13] 
= 1 

4000_
0000H 
- 
4000_
00FFH

Reserved MSR Address Space All existing and future processors will 
not implement MSR in this range.

C000_
0080H

IA32_EFER Extended Feature Enables If ( 
CPUID.80000001.EDX.[bit 
20] or 
CPUID.80000001.EDX.[bit
29])

0 SYSCALL Enable (R/W)

Enables SYSCALL/SYSRET instructions in 
64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable (R/W)

Enables IA-32e mode operation.

9 Reserved.

10 IA-32e Mode Active (R) 

Indicates IA-32e mode is active when set.

11 Execute Disable Bit Enable (R/W)

63:12 Reserved.

C000_
0081H

IA32_STAR System Call Target Address (R/W) If 
CPUID.80000001.EDX.[bit 
29] = 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call Target Address 
(R/W)

If 
CPUID.80000001.EDX.[bit 
29] = 1

C000_
0084H

IA32_FMASK System Call Flag Mask (R/W) If 
CPUID.80000001.EDX.[bit 
29] = 1
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35.2 MSRS IN THE INTEL® CORE™ 2 PROCESSOR FAMILY

Table 35-3 lists model-specific registers (MSRs) for Intel Core 2 processor family and for Intel Xeon processors 
based on Intel Core microarchitecture, architectural MSR addresses are also included in Table 35-3. These proces-
sors have a CPUID signature with DisplayFamily_DisplayModel of 06_0FH, see Table 35-1. 

MSRs listed in Table 35-2 and Table 35-3 are also supported by processors based on the Enhanced Intel Core micro-
architecture. Processors based on the Enhanced Intel Core microarchitecture have the CPUID signature 
DisplayFamily_DisplayModel of 06_17H. 

The column “Shared/Unique” applies to multi-core processors based on Intel Core microarchitecture. “Unique” 
means each processor core has a separate MSR, or a bit field in an MSR governs only a core independently. 
“Shared” means the MSR or the bit field in an MSR address governs the operation of both processor cores. 

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS (R/W) If 
CPUID.80000001.EDX.[bit 
29] = 1

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS (R/W) If 
CPUID.80000001.EDX.[bit 
29] = 1

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE Address of GS 
(R/W)

If 
CPUID.80000001.EDX.[bit 
29] = 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If CPUID.80000001H: 
EDX[27] = 1

31:0 AUX: Auxiliary signature of TSC

63:32 Reserved.

NOTES:

1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are supported, software must treat them as 
model-specific. Starting with Intel Core Duo processors, MSR addresses 180H-185H, 188H-197H are reserved.

2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. See Section 15.3.2.3 and Section 
15.3.2.4 for more information.

Table 35-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture

Register 
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0H 0 IA32_P5_MC_ADDR Unique See Section 35.18, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Unique See Section 35.18, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_SIZ
E

Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination.” 
andTable 35-2.

10H 16 IA32_TIME_STAMP_COUNT
ER

Unique See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R) 
See Table 35-2.
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17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R) 

7:0 Reserved.

12:8 Maximum Qualified Ratio (R) 

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table 35-2.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location.” and 
Table 35-2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W)

Enables and disables processor features; (R) indicates current 
processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled

Note: Not all processor implements R/W. 

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled

Note: Not all processor implements R/W. 

3 MCERR# Drive Enable (R/W) 

1 = Enabled; 0 = Disabled

Note: Not all processor implements R/W. 

4 Address Parity Enable (R/W)

1 = Enabled; 0 = Disabled

Note: Not all processor implements R/W. 

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled 

Note: Not all processor implements R/W. 

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled 

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled 

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

11 Intel TXT Capable Chipset. (R/O)

1 = Present; 0 = Not Present

Table 35-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)
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12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled 

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved.

17:16 APIC Cluster ID (R/O)

18 N/2 Non-Integer Bus Ratio (R/O)

0 = Integer ratio; 1 = Non-integer ratio

19 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

26:22 Integer Bus Frequency Ratio (R/O)

3AH 58 IA32_FEATURE_CONTROL Unique Control Features in Intel 64Processor (R/W)

See Table 35-2.

3 Unique SMRR Enable (R/WL)

When this bit is set and the lock bit is set makes the 
SMRR_PHYS_BASE and SMRR_PHYS_MASK registers read visible 
and writeable while in SMM.

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Unique Last Branch Record 0 From IP (R/W)

One of four pairs of last branch record registers on the last branch 
record stack. This part of the stack contains pointers to the source 
instruction for one of the last four branches, exceptions, or 
interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.11, “Last Branch, Interrupt, and Exception Recording 

(Pentium M Processors).”

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Unique Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Unique Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Unique Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Unique Last Branch Record 0 To IP (R/W)

One of four pairs of last branch record registers on the last branch 
record stack. This part of the stack contains pointers to the 
destination instruction for one of the last four branches, 
exceptions, or interrupts taken by the processor.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Unique Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 
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Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec



Vol. 3C 35-35

MODEL-SPECIFIC REGISTERS (MSRS)

62H 98 MSR_
LASTBRANCH_2_TO_IP

Unique Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

63H 99 MSR_
LASTBRANCH_3_TO_IP

Unique Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

79H 121 IA32_BIOS_UPDT_TRIG Unique BIOS Update Trigger Register (W) 

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 35-2.

A0H 160 MSR_SMRR_PHYSBASE Unique System Management Mode Base Address register (WO in SMM)

Model-specific implementation of SMRR-like interface, read visible 
and write only in SMM.

11:0 Reserved.

31:12 PhysBase. SMRR physical Base Address.

63:32 Reserved.

A1H 161 MSR_SMRR_PHYSMASK Unique System Management Mode Physical Address Mask register 
(WO in SMM)

Model-specific implementation of SMRR-like interface, read visible 
and write only in SMM..

10:0 Reserved.

11 Valid. Physical address base and range mask are valid.

31:12 PhysMask. SMRR physical address range mask.

63:32 Reserved.

C1H 193 IA32_PMC0 Unique Performance Counter Register

See Table 35-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 35-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for 
processors based on Intel Core microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)

133.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 001B. 

166.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 011B.
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266.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 000B.

333.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 100B.

63:3 Reserved.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for 
processors based on Enhanced Intel Core microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)
• 110B: 400 MHz (FSB 1600)

133.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 001B. 

166.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 110B.

333.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 111B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW) 

See Table 35-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW) 

See Table 35-2.

FEH 254 IA32_MTRRCAP Unique See Table 35-2.

11 Unique SMRR Capability Using MSR 0A0H and 0A1H (R) 

11EH 281 MSR_BBL_CR_CTL3 Shared

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled

0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled (R/W) 

1 = L2 cache has been initialized 

0 = Disabled (default)

Until this bit is set the processor will not respond to the WBINVD 
instruction or the assertion of the FLUSH# input.

22:9 Reserved.
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23 L2 Not Present (RO) 

0 = L2 Present

1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Unique See Table 35-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 35-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 35-2.

179H 377 IA32_MCG_CAP Unique See Table 35-2.

17AH 378 IA32_MCG_STATUS Unique

0 RIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) can be used to restart the program. If cleared, the 
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If 
a second machine check is detected while this bit is still set, the 
processor enters a shutdown state. Software should write this bit 
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Unique See Table 35-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 35-2.

198H 408 IA32_PERF_STATUS Shared See Table 35-2.

198H 408 MSR_PERF_STATUS Shared

15:0 Current Performance State Value.

30:16 Reserved.

31 XE Operation (R/O).

If set, XE operation is enabled. Default is cleared.

39:32 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

45 Reserved.

46 Non-Integer Bus Ratio (R/O)

Indicates non-integer bus ratio is enabled. Applies processors 
based on Enhanced Intel Core microarchitecture.
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63:47 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W) 

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W) 

See Table 35-2.

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W) 

See Table 35-2.

19DH 413 MSR_THERM2_CTL Unique

15:0 Reserved.

16 TM_SELECT (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of 
the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT 
has no effect. Neither TM1 nor TM2 are enabled.

63:16 Reserved.

1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable (R/W) 

See Table 35-2.

6:4 Reserved.

7 Shared Performance Monitoring Available (R) 

See Table 35-2.

8 Reserved.

9 Hardware Prefetcher Disable (R/W)

When set, disables the hardware prefetcher operation on streams 
of data. When clear (default), enables the prefetch queue.

Disabling of the hardware prefetcher may impact processor 
performance.
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10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break 
event within the processor 

0 =  Indicates compatible FERR# signaling behavior

This bit must be set to 1 to support XAPIC interrupt model usage.

11 Shared Branch Trace Storage Unavailable (RO) 

See Table 35-2.

12 Shared Precise Event Based Sampling Unavailable (RO) 

See Table 35-2.

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the 
die temperature is at the pre-determined threshold, the Thermal 
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core 
ratio and voltage according to the value last written to 
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not change 
the VID signals or the bus to core ratio when the processor enters 
a thermally managed state. 

The BIOS must enable this feature if the TM2 feature flag 
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, this 
feature is not supported and BIOS must not alter the contents of 
the TM2 bit location. 

The processor is operating out of specification if both this bit and 
the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 35-2.

18 Shared ENABLE MONITOR FSM (R/W) 

See Table 35-2.

19 Shared Adjacent Cache Line Prefetch Disable (R/W) 

When set to 1, the processor fetches the cache line that contains 
data currently required by the processor. When set to 0, the 
processor fetches cache lines that comprise a cache line pair (128 
bytes).

Single processor platforms should not set this bit. Server platforms 
should set or clear this bit based on platform performance 
observed in validation and testing. 

BIOS may contain a setup option that controls the setting of this 
bit.
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20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this bit), 
• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep 
Technology transition is requested. This bit is cleared on reset.

21 Reserved.

22 Shared Limit CPUID Maxval (R/W) 

See Table 35-2.

23 Shared xTPR Message Disable (R/W) 

See Table 35-2.

33:24 Reserved.

34 Unique XD Bit Disable (R/W) 

See Table 35-2.

36:35 Reserved.

37 Unique DCU Prefetcher Disable (R/W)

When set to 1, The DCU L1 data cache prefetcher is disabled. The 
default value after reset is 0. BIOS may write ‘1’ to disable this 
feature. 

The DCU prefetcher is an L1 data cache prefetcher.  When the DCU 
prefetcher detects multiple loads from the same line done within a 
time limit, the DCU prefetcher assumes the next line will be 
required. The next line is prefetched in to the L1 data cache from 
memory or L2.

38 Shared IDA Disable (R/W)

When set to 1 on processors that support IDA, the Intel Dynamic 
Acceleration feature (IDA) is disabled and the IDA_Enable feature 
flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H: 
EAX[1] reports the processor’s support of IDA is enabled.

Note: the power-on default value is used by BIOS to detect 
hardware support of IDA. If power-on default value is 1, IDA is 
available in the processor. If power-on default value is 0, IDA is not 
available.

39 Unique IP Prefetcher Disable (R/W)

When set to 1, The IP prefetcher is disabled. The default value 
after reset is 0. BIOS may write ‘1’ to disable this feature. 

The IP prefetcher is an L1 data cache prefetcher. The IP prefetcher 
looks for sequential load history to determine whether to prefetch 
the next expected data into the L1 cache from memory or L2.

63:40 Reserved.
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1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the 
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W) 

See Table 35-2

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch 
instruction that the processor executed prior to the last exception 
that was generated or the last interrupt that was handled. 

200H 512 IA32_MTRR_PHYSBASE0 Unique See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Unique See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Unique See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Unique See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Unique See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Unique See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Unique See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Unique See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Unique See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Unique See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Unique See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Unique See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Unique See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Unique See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Unique See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Unique See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Unique See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Unique See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Unique See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Unique See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Unique See Table 35-2.
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26AH 618 IA32_MTRR_FIX4K_D0000 Unique See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Unique See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Unique See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Unique See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Unique See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Unique See Table 35-2.

277H 631 IA32_PAT Unique See Table 35-2.

2FFH 767 IA32_MTRR_DEF_TYPE Unique Default Memory Types (R/W) 

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W) 

See Table 35-2.

309H 777 MSR_PERF_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W) 

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W) 

See Table 35-2.

30AH 778 MSR_PERF_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W) 

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W) 

See Table 35-2.

30BH 779 MSR_PERF_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W) 

345H 837 IA32_PERF_CAPABILITIES Unique See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

345H 837 MSR_PERF_CAPABILITIES Unique RO. This applies to processors that do not support architectural 
perfmon version 2.

5:0 LBR Format. See Table 35-2.

6 PEBS Record Format. 

7 PEBSSaveArchRegs. See Table 35-2.

63:8 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W) 

See Table 35-2.

38DH 909 MSR_PERF_FIXED_CTR_
CTRL

Unique Fixed-Function-Counter Control Register (R/W) 

38EH 910 IA32_PERF_GLOBAL_
STAUS

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.” 

38EH 910 MSR_PERF_GLOBAL_STAUS Unique See Section 18.4.2, “Global Counter Control Facilities.”

38FH 911 IA32_PERF_GLOBAL_CTRL Unique See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

38FH 911 MSR_PERF_GLOBAL_CTRL Unique See Section 18.4.2, “Global Counter Control Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”
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390H 912 MSR_PERF_GLOBAL_OVF_
CTRL

Unique See Section 18.4.2, “Global Counter Control Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Unique See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling 
(PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC0_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC1_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC2_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC4_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table 35-3.  MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec



35-44 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)

412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC3_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

413H 1043 MSR_MC3_MISC Unique

414H 1044 MSR_MC5_CTL Unique

415H 1045 MSR_MC5_STATUS Unique

416H 1046 MSR_MC5_ADDR Unique

417H 1047 MSR_MC5_MISC Unique

419H 1045 MSR_MC6_STATUS Unique Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.” and 
Chapter 23.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Unique Capability Reporting Register of Pin-based VM-execution 
Controls (R/O) 

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Unique Capability Reporting Register of Primary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-exit Controls (R/O) 

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-entry Controls (R/O) 

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”
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488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Unique Capability Reporting Register of Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 35-2.

See Section 18.12.4, “Debug Store (DS) Mechanism.”

107CC
H

MSR_EMON_L3_CTR_CTL0 Unique GBUSQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107CD
H

MSR_EMON_L3_CTR_CTL1 Unique GBUSQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107CE
H

MSR_EMON_L3_CTR_CTL2 Unique GSNPQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107CF
H

MSR_EMON_L3_CTR_CTL3 Unique GSNPQ Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107D0
H

MSR_EMON_L3_CTR_CTL4 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107D1
H

MSR_EMON_L3_CTR_CTL5 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107D2
H

MSR_EMON_L3_CTR_CTL6 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

107D3
H

MSR_EMON_L3_CTR_CTL7 Unique FSB Event Control/Counter Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2
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35.3 MSRS IN THE INTEL® ATOM™ PROCESSOR FAMILY

Table 35-4 lists model-specific registers (MSRs) for Intel Atom processor family, architectural MSR addresses are 
also included in Table 35-4. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_1CH, 
06_26H, 06_27H, 06_35H and 06_36H, see Table 35-1. 

The column “Shared/Unique” applies to logical processors sharing the same core in processors based on the Intel 
Atom microarchitecture. “Unique” means each logical processor has a separate MSR, or a bit field in an MSR 
governs only a logical processor. “Shared” means the MSR or the bit field in an MSR address governs the operation 
of both logical processors in the same core.

107D8
H

MSR_EMON_L3_GL_CTL Unique L3/FSB Common Control Register (R/W)

Apply to Intel Xeon processor 7400 series (processor signature 
06_1D) only. See Section 17.2.2

C000_
0080H

IA32_EFER Unique Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Unique System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Unique Swap Target of BASE Address of GS (R/W) See Table 35-2.

Table 35-4.  MSRs in Intel® Atom™ Processor Family

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Shared See Section 35.18, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Shared See Section 35.18, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination.” 
andTable 35-2

10H 16 IA32_TIME_STAMP_
COUNTER

Unique See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R) 
See Table 35-2.
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17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R) 

7:0 Reserved.

12:8 Maximum Qualified Ratio (R) 

The maximum allowed bus ratio.

63:13 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location,” and 
Table 35-2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W) Enables and 
disables processor features; 

(R) indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled

Always 0. 

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled

Always 0.

3 AERR# Drive Enable (R/W) 

1 = Enabled; 0 = Disabled

Always 0.

4 BERR# Enable for initiator bus requests (R/W)

1 = Enabled; 0 = Disabled

Always 0. 

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled 

Always 0.

8 Reserved.

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled 

10 AERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

Always 0.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled 

Always 0.

13 Reserved.
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14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

Always 00B.

19: 18 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio (R/O)

3AH 58 IA32_FEATURE_CONTROL Unique Control Features in Intel 64Processor (R/W)

See Table 35-2.

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Unique Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the last branch 
record stack. This part of the stack contains pointers to the source 
instruction for one of the last eight branches, exceptions, or 
interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.11, “Last Branch, Interrupt, and Exception Recording 

(Pentium M Processors).”

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Unique Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Unique Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Unique Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_FROM_IP

Unique Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_FROM_IP

Unique Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_FROM_IP

Unique Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_FROM_IP

Unique Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_TO_IP

Unique Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the last branch 
record stack. This part of the stack contains pointers to the 
destination instruction for one of the last eight branches, 
exceptions, or interrupts taken by the processor.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Unique Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 
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62H 98 MSR_
LASTBRANCH_2_TO_IP

Unique Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

63H 99 MSR_
LASTBRANCH_3_TO_IP

Unique Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

64H 100 MSR_
LASTBRANCH_4_TO_IP

Unique Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

65H 101 MSR_
LASTBRANCH_5_TO_IP

Unique Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

66H 102 MSR_
LASTBRANCH_6_TO_IP

Unique Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

67H 103 MSR_
LASTBRANCH_7_TO_IP

Unique Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

79H 121 IA32_BIOS_UPDT_TRIG Shared BIOS Update Trigger Register (W) 

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Unique Performance counter register

See Table 35-2.

C2H 194 IA32_PMC1 Unique Performance Counter Register

See Table 35-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for 
processors based on Intel Atom microarchitecture:

2:0 • 111B: 083 MHz (FSB 333)
• 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 001B. 

166.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 011B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW) 

See Table 35-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count (RW) 

See Table 35-2.

FEH 254 IA32_MTRRCAP Shared Memory Type Range Register (R) 

See Table 35-2.

11EH 281 MSR_BBL_CR_CTL3 Shared
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0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled

0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W) 

1 = L2 cache has been initialized 

0 = Disabled (default)

Until this bit is set the processor will not respond to the WBINVD 
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO) 

0 = L2 Present

1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Unique See Table 35-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 35-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 35-2.

179H 377 IA32_MCG_CAP Unique See Table 35-2.

17AH 378 IA32_MCG_STATUS Unique

0 RIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) can be used to restart the program. If cleared, the 
program cannot be reliably restarted

1 EIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If 
a second machine check is detected while this bit is still set, the 
processor enters a shutdown state. Software should write this bit 
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Unique See Table 35-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 35-2.

198H 408 IA32_PERF_STATUS Shared See Table 35-2.

198H 408 MSR_PERF_STATUS Shared

15:0 Current Performance State Value.

39:16 Reserved.
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44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for the processor.

63:45 Reserved.

199H 409 IA32_PERF_CTL Unique See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Unique Clock Modulation (R/W) 

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

19BH 411 IA32_THERM_INTERRUPT Unique Thermal Interrupt Control (R/W) 

See Table 35-2.

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W) 

See Table 35-2.

19DH 413 MSR_THERM2_CTL Shared

15:0 Reserved.

16 TM_SELECT (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of 
the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT 
has no effect. Neither TM1 nor TM2 are enabled.

63:17 Reserved.

1A0 416 IA32_MISC_ENABLE Unique Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable (R/W) 

See Table 35-2.

6:4 Reserved.

7 Shared Performance Monitoring Available (R) 

See Table 35-2.

8 Reserved.

9 Reserved.

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break 
event within the processor 

0 =  Indicates compatible FERR# signaling behavior

This bit must be set to 1 to support XAPIC interrupt model usage.
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11 Shared Branch Trace Storage Unavailable (RO) 

See Table 35-2.

12 Shared Precise Event Based Sampling Unavailable (RO) 

See Table 35-2.

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the 
die temperature is at the pre-determined threshold, the Thermal 
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core 
ratio and voltage according to the value last written to 
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not change 
the VID signals or the bus to core ratio when the processor enters 
a thermally managed state. 

The BIOS must enable this feature if the TM2 feature flag 
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, this 
feature is not supported and BIOS must not alter the contents of 
the TM2 bit location. 

The processor is operating out of specification if both this bit and 
the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 35-2.

18 Shared ENABLE MONITOR FSM (R/W) 

See Table 35-2.

19 Reserved.

20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO)

When set, this bit causes the following bits to become read-only:

• Enhanced Intel SpeedStep Technology Select Lock (this bit), 
• Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep 
Technology transition is requested. This bit is cleared on reset.

21 Reserved.

22 Unique Limit CPUID Maxval (R/W) 

See Table 35-2.

23 Shared xTPR Message Disable (R/W) 

See Table 35-2.

33:24 Reserved.

34 Unique XD Bit Disable (R/W) 

See Table 35-2.

63:35 Reserved.
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1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-2) that points to the MSR containing the 
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W) 

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch 
instruction that the processor executed prior to the last exception 
that was generated or the last interrupt that was handled. 

200H 512 IA32_MTRR_PHYSBASE0 Shared See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Shared See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Shared See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Shared See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Shared See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Shared See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Shared See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Shared See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Shared See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Shared See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Shared See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Shared See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Shared See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Shared See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Shared See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Shared See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Shared See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Shared See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Shared See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Shared See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Shared See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Shared See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Shared See Table 35-2.

Table 35-4.  MSRs in Intel® Atom™ Processor Family (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec



35-54 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)

26CH 620 IA32_MTRR_FIX4K_E0000 Shared See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Shared See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Shared See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Shared See Table 35-2.

277H 631 IA32_PAT Unique See Table 35-2.

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter Register 0 (R/W) 

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W) 

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W) 

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Shared See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W) 

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.” 

38FH 911 IA32_PERF_GLOBAL_CTRL Unique See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Unique See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Unique See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling 
(PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC0_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC2_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.
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40CH 1036 MSR_MC3_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

4OEH 1038 MSR_MC3_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC3_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

410H 1040 MSR_MC4_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC4_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC4_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Unique Capability Reporting Register of Pin-based VM-execution 
Controls (R/O) 

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Unique Capability Reporting Register of Primary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-exit Controls (R/O) 

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-entry Controls (R/O) 

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”
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488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Unique Capability Reporting Register of Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W)

See Table 35-2.

See Section 18.12.4, “Debug Store (DS) Mechanism.”

C000_
0080H

IA32_EFER Unique Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Unique System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Unique System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Unique Swap Target of BASE Address of GS (R/W) See Table 35-2.
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Table 35-5 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor with the CPUID signa-
ture with DisplayFamily_DisplayModel of 06_27H. 

35.4 MSRS IN THE PROCESSORS BASED ON SILVERMONT MICROARCHITECTURE

Table 35-6 lists model-specific registers (MSRs) for Intel processors based on the Silvermont microarchitecture 
These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_37H, 06_4AH, 06_4DH, 
06_5AH, and 06_5DH, see Table 35-1. 

The column “Scope” lists the core/shared/package granularity of sharing in the Silvermont microarchitecture. 
“Core” means each processor core has a separate MSR, or a bit field not shared with another processor core. 
“Shared” means the MSR or the bit field is shared by more than one processor cores in the physical package. 
“Package” means all processor cores in the physical package share the same MSR or bit interface.

Table 35-5.  MSRs Supported by Intel® Atom™ Processors with CPUID Signature 06_27H

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

3F8H 1016 MSR_PKG_C2_RESIDENCY Package Package C2 Residency

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-States

63:0 Package Package C2 Residency Counter. (R/O)

Time that this package is in processor-specific C2 states since last 
reset. Counts at 1 Mhz frequency.

3F9H 1017 MSR_PKG_C4_RESIDENCY Package Package C4 Residency

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-States

63:0 Package Package C4 Residency Counter. (R/O)

Time that this package is in processor-specific C4 states since last 
reset. Counts at 1 Mhz frequency.

3FAH 1018 MSR_PKG_C6_RESIDENCY Package Package C6 Residency

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-States

63:0 Package Package C6 Residency Counter. (R/O)

Time that this package is in processor-specific C6 states since last 
reset. Counts at 1 Mhz frequency.

Table 35-6.  Common MSRs in Intel Processors Based on the Silvermont Microarchitecture
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0H 0 IA32_P5_MC_ADDR Shared See Section 35.18, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Shared See Section 35.18, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Core See Section 8.10.5, “Monitor/Mwait Address Range Determination.” 
andTable 35-2

10H 16 IA32_TIME_STAMP_
COUNTER

Core See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R) 
See Table 35-2.
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17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R) 

7:0 Reserved.

12:8 Maximum Qualified Ratio (R) 

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table 35-2

63:33 Reserved.

1BH 27 IA32_APIC_BASE Core See Section 10.4.4, “Local APIC Status and Location,” and 
Table 35-2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W) Enables and 
disables processor features; 

(R) indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled

Always 0. 

2 Response Error Checking Enable (R/W)
1 = Enabled; 0 = Disabled

Always 0.

3 AERR# Drive Enable (R/W) 

1 = Enabled; 0 = Disabled

Always 0.

4 BERR# Enable for initiator bus requests (R/W)

1 = Enabled; 0 = Disabled

Always 0. 

5 Reserved.

6 Reserved.

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled 

Always 0.

8 Reserved.

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled 

10 AERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

Always 0.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled 

Always 0.

Table 35-6.  Common MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)
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13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID (R/O)

Always 00B.

19: 18 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio (R/O)

34H 52 MSR_SMI_COUNT Core SMI Counter (R/O)

31:0 SMI Count (R/O) 

Running count of SMI events since last RESET.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Core Control Features in Intel 64Processor (R/W)

See Table 35-2.

40H 64 MSR_
LASTBRANCH_0_FROM_IP

Core Last Branch Record 0 From IP (R/W)

One of eight pairs of last branch record registers on the last branch 
record stack. This part of the stack contains pointers to the source 
instruction for one of the last eight branches, exceptions, or 
interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.11, “Last Branch, Interrupt, and Exception Recording 

(Pentium M Processors).”

41H 65 MSR_
LASTBRANCH_1_FROM_IP

Core Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_FROM_IP

Core Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

43H 67 MSR_
LASTBRANCH_3_FROM_IP

Core Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_FROM_IP

Core Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_FROM_IP

Core Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_FROM_IP

Core Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_FROM_IP

Core Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

Table 35-6.  Common MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description

 Hex Dec



35-60 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)

60H 96 MSR_
LASTBRANCH_0_TO_IP

Core Last Branch Record 0 To IP (R/W)

One of eight pairs of last branch record registers on the last branch 
record stack. This part of the stack contains pointers to the 
destination instruction for one of the last eight branches, 
exceptions, or interrupts taken by the processor.

61H 97 MSR_
LASTBRANCH_1_TO_IP

Core Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

62H 98 MSR_
LASTBRANCH_2_TO_IP

Core Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

63H 99 MSR_
LASTBRANCH_3_TO_IP

Core Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

64H 100 MSR_
LASTBRANCH_4_TO_IP

Core Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

65H 101 MSR_
LASTBRANCH_5_TO_IP

Core Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

66H 102 MSR_
LASTBRANCH_6_TO_IP

Core Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

67H 103 MSR_
LASTBRANCH_7_TO_IP

Core Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W) 

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Core BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Core Performance counter register

See Table 35-2.

C2H 194 IA32_PMC1 Core Performance Counter Register

See Table 35-2.

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for 
processors based on Silvermont microarchitecture:

2:0 • 100B: 080.0 MHz 
• 000B: 083.3 MHz 
• 001B: 100.0 MHz 
• 010B: 133.3 MHz 
• 011B: 116.7 MHz 

63:3 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Shared C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.
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2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name 
(consuming the least power). for the package. The default is set as 
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

100b: C4

110b: C6

111b: C7 (Silvermont only).

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register 
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO) 

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Shared Power Management IO Redirection in C-state (R/W) 

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W) 

Specifies the base address visible to software for IO redirection. If 
IO MWAIT Redirection is enabled, reads to this address will be 
consumed by the power management logic and decoded to MWAIT 
instructions. When IO port address redirection is enabled, this is the 
IO port address reported to the OS/software.

18:16 C-state Range (R/W) 

Specifies the encoding value of the maximum C-State code name to 
be included when IO read to MWAIT redirection is enabled by 
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

100b - C4 is the max C-State to include

110b - C6 is the max C-State to include

111b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Core Maximum Performance Frequency Clock Count (RW) 

See Table 35-2.

E8H 232 IA32_APERF Core Actual Performance Frequency Clock Count (RW) 

See Table 35-2.

FEH 254 IA32_MTRRCAP Core Memory Type Range Register (R) 

See Table 35-2.

11EH 281 MSR_BBL_CR_CTL3 Shared

Table 35-6.  Common MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)
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0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled

0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W) 

1 = L2 cache has been initialized 

0 = Disabled (default)

Until this bit is set the processor will not respond to the WBINVD 
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO) 

0 = L2 Present

1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Core See Table 35-2.

175H 373 IA32_SYSENTER_ESP Core See Table 35-2.

176H 374 IA32_SYSENTER_EIP Core See Table 35-2.

179H 377 IA32_MCG_CAP Core See Table 35-2.

17AH 378 IA32_MCG_STATUS Core

0 RIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) can be used to restart the program. If cleared, the 
program cannot be reliably restarted

1 EIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If 
a second machine check is detected while this bit is still set, the 
processor enters a shutdown state. Software should write this bit 
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Core See Table 35-2.

187H 391 IA32_PERFEVTSEL1 Core See Table 35-2.

198H 408 IA32_PERF_STATUS Shared See Table 35-2.

199H 409 IA32_PERF_CTL Core See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Core Clock Modulation (R/W) 

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

Table 35-6.  Common MSRs in Intel Processors Based on the Silvermont Microarchitecture (Contd.)

Address
Register Name

Scope
Bit Description

 Hex Dec



Vol. 3C 35-63

MODEL-SPECIFIC REGISTERS (MSRS)

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W) 

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W) 

See Table 35-2.

1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Core Fast-Strings Enable

See Table 35-2.

2:1 Reserved.

3 Shared Automatic Thermal Control Circuit Enable (R/W) 

See Table 35-2.

6:4 Reserved.

7 Core Performance Monitoring Available (R) 

See Table 35-2.

10:8 Reserved.

11 Core Branch Trace Storage Unavailable (RO) 

See Table 35-2.

12 Core Precise Event Based Sampling Unavailable (RO) 

See Table 35-2.

15:13 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 35-2.

18 Core ENABLE MONITOR FSM (R/W) 

See Table 35-2.

21:19 Reserved.

22 Core Limit CPUID Maxval (R/W) 

See Table 35-2.

23 Shared xTPR Message Disable (R/W) 

See Table 35-2.

33:24 Reserved.

34 Core XD Bit Disable (R/W) 

See Table 35-2.

37:35 Reserved.
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38 Shared Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost 
Technology, the turbo mode feature is disabled and the IDA_Enable 
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H: 
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect 
hardware support of turbo mode. If power-on default value is 1, 
turbo mode is available in the processor. If power-on default value 
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Package

15:0 Reserved.

23:16 Temperature Target (R) 

The default thermal throttling or PROCHOT# activation 
temperature in degree C, The effective temperature for thermal 
throttling or PROCHOT# activation is “Temperature Target” + 
“Target Offset”

29:24 Target Offset (R/W) 

Specifies an offset in degrees C to adjust the throttling and 
PROCHOT# activation temperature from the default target 
specified in TEMPERATURE_TARGET (bits 23:16).

63:30 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Shared Offcore Response Event Select Register (R/W)

1A7H 423 MSR_OFFCORE_RSP_1 Shared Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode (RW)

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.
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1B0H 432 IA32_ENERGY_PERF_BIAS Core See Table 35-2.

1C9H 457 MSR_LASTBRANCH_TOS Core Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-2) that points to the MSR containing the 
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Core Debug Control (R/W) 

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Core Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Core Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch 
instruction that the processor executed prior to the last exception 
that was generated or the last interrupt that was handled. 

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

200H 512 IA32_MTRR_PHYSBASE0 Core See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Core See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Core See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Core See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Core See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Core See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Core See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Core See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Core See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Core See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Core See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Core See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Core See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Core See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Core See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Core See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Core See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Core See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Core See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Core See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Core See Table 35-2.
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26AH 618 IA32_MTRR_FIX4K_D0000 Core See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Core See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Core See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Core See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Core See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Core See Table 35-2.

277H 631 IA32_PAT Core See Table 35-2.

2FFH 767 IA32_MTRR_DEF_TYPE Core Default Memory Types (R/W) 

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Core Fixed-Function Performance Counter Register 0 (R/W) 

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Core Fixed-Function Performance Counter Register 1 (R/W) 

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Core Fixed-Function Performance Counter Register 2 (R/W) 

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Core See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_CTRL Core Fixed-Function-Counter Control Register (R/W) 

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Core See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.” 

38FH 911 IA32_PERF_GLOBAL_CTRL Core See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Core See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Core See Table 35-2. See Section 18.4.4, “Precise Event Based Sampling 
(PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

3FAH 1018 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6 
states. Counts at P1 clock frequency (Guaranteed Maximum 
Frequency)

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6 
states. Counts at P1 clock frequency (Guaranteed Maximum 
Frequency)

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”
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401H 1025 IA32_MC0_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC0_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC2_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

4OEH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC3_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC4_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC4_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

480H 1152 IA32_VMX_BASIC Core Reporting Register of Basic VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”
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481H 1153 IA32_VMX_PINBASED_
CTLS

Core Capability Reporting Register of Pin-based VM-execution 
Controls (R/O) 

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Core Capability Reporting Register of Primary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Core Capability Reporting Register of VM-exit Controls (R/O) 

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Core Capability Reporting Register of VM-entry Controls (R/O) 

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Core Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Core Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Core Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Core Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Core Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Core Capability Reporting Register of VMCS Field Enumeration (R/O)

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Core Capability Reporting Register of Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Core Capability Reporting Register of EPT and VPID (R/O) 

See Table 35-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Core Capability Reporting Register of Pin-based VM-execution Flex 
Controls (R/O)

See Table 35-2

48EH 1166 IA32_VMX_TRUE_PROCBA
SED_CTLS

Core Capability Reporting Register of Primary Processor-based 
VM-execution Flex Controls (R/O)

See Table 35-2
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48FH 1167 IA32_VMX_TRUE_EXIT_CT
LS

Core Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-2

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Core Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-2

491H 1169 IA32_VMX_FMFUNC Core Capability Reporting Register of VM-function Controls (R/O)

See Table 35-2

4C1H 1217 IA32_A_PMC0 Core See Table 35-2.

4C2H 1218 IA32_A_PMC1 Core See Table 35-2.

600H 1536 IA32_DS_AREA Core DS Save Area (R/W)

See Table 35-2.

See Section 18.12.4, “Debug Store (DS) Mechanism.”

611H 1553 MSR_PKG_ENERGY_STATUS Package PKG Energy Status (R/O) 

See Section 14.9.3, “Package RAPL Domain.”

639H 1593 MSR_PP0_ENERGY_STATU
S

Package PP0 Energy Status (R/O) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

660H 1632 MSR_CORE_C1_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C1 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C1 
states. Counts at P1 clock frequency (Guaranteed Maximum 
Frequency)

6E0H 1760 IA32_TSC_DEADLINE Core TSC Target of Local APIC’s TSC Deadline Mode (R/W) 

See Table 35-2

C000_
0080H

IA32_EFER Core Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Core System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Core IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Core System Call Flag Mask (R/W)

See Table 35-2.

C000_
0100H

IA32_FS_BASE Core Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Core Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Core Swap Target of BASE Address of GS (R/W) See Table 35-2.

C000_
0103H

IA32_TSC_AUX Core AUXILIARY TSC Signature. (R/W) See Table 35-2 
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Table 35-7 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor E3000 Series (CPUID 
signature with DisplayFamily_DisplayModel of 06_37H) and future Intel Atom processors (CPUID signatures with 
DisplayFamily_DisplayModel of 06_4AH, 06_5AH, 06_5DH). 

Table 35-8 lists model-specific registers (MSRs) that are specific to Intel® Atom™ processor C2000 Series (CPUID 
signature with DisplayFamily_DisplayModel of 06_4DH). 

Table 35-7.  Specific MSRs Supported by Intel® Atom™ Processors with CPUID Signature 06_37H, 06_4AH, 06_5AH, 
06_5DH

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W) 

14:0 Package Power Limit #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

15 Enable Power Limit #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

16 Package Clamping Limitation #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

23:17 Time Window for Power Limit #1. (R/W)

Time Limit = 2^Y * (1.0+Z/4.0) seconds.

Y and Z: see definition in Section 14.9.3, “Package RAPL Domain.”

31:24 Reserved

46:32 Package Power Limit #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

47 Enable Power Limit #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

48 Package Clamping Limitation #1. (R/W)

See Section 14.9.3, “Package RAPL Domain.”

55:49 Time Window for Power Limit #1. (R/W)

Time Limit = 2^Y * (1.0+Z/4.0) seconds.

Y and Z: see definition in Section 14.9.3, “Package RAPL Domain.”

63:56 Reserved

Table 35-8.  Specific MSRs Supported by Intel® Atom™ Processor C2000 Series with CPUID Signature 06_4DH
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606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O) 

See Section 14.9.1, “RAPL Interfaces.”

3:0 Power Units. 

Power related information (in milliWatts) is based on the multiplier,   
2^PU; where PU is an unsigned integer represented by bits 3:0. 
Default value is 0011b, indicating power unit is in 8 milliWatts 
increment.

7:4 Reserved
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35.5 MSRS IN THE INTEL® MICROARCHITECTURE CODE NAME NEHALEM

Table 35-9 lists model-specific registers (MSRs) that are common for Intel® microarchitecture code name 
Nehalem. These include Intel Core i7 and i5 processor family. Architectural MSR addresses are also included in 
Table 35-9. These processors have a CPUID signature with DisplayFamily_DisplayModel of 06_1AH, 06_1EH, 
06_1FH, 06_2EH, see Table 35-1. Additional MSRs specific to 06_1AH, 06_1EH, 06_1FH are listed in Table 35-10. 
Some MSRs listed in these tables are used by BIOS. More information about these MSR can be found at http://bios-
bits.org.

The column “Scope” represents the package/core/thread scope of individual bit field of an MSR. “Thread” means 
this bit field must be programmed on each logical processor independently. “Core” means the bit field must be 
programmed on each processor core independently, logical processors in the same core will be affected by change 
of this bit on the other logical processor in the same core. “Package“ means the bit field must be programmed once 
for each physical package. Change of a bit filed with a package scope will affect all logical processors in that phys-
ical package.

12:8 Energy Status Units. 

See Section 14.9.3, “Package RAPL Domain.”

15:13 Reserved

19:16 Time Units. 

See Section 14.9.3, “Package RAPL Domain.”

63:20 Reserved

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W) 

See Section 14.9.3, “Package RAPL Domain.”

66EH 1646 MSR_PKG_POWER_INFO Package PKG RAPL Parameter (R/0) 

14:0 Thermal Spec Power. (R/0)

The unsigned integer value is the equivalent of thermal 
specification power of the package domain. The unit of this field is 
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT

63:15 Reserved

Table 35-8.  Specific MSRs Supported by Intel® Atom™ Processor C2000 Series (Contd.)with CPUID Signature 
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Table 35-9.  MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 35.18, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 35.18, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,” 
and Table 35-2.

10H 16 IA32_TIME_
STAMP_COUNTER

Thread See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R) 
See Table 35-2.

17H 23 MSR_PLATFORM_ID Package Model Specific Platform ID (R) 

49:0 Reserved.

52:50 See Table 35-2.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and 
Table 35-2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O) 

Running count of SMI events since last RESET.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64Processor (R/W)

See Table 35-2.

79H 121 IA32_BIOS_
UPDT_TRIG

Core BIOS Update Trigger Register (W) 

See Table 35-2.

8BH 139 IA32_BIOS_
SIGN_ID

Thread BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register

See Table 35-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register

See Table 35-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register

See Table 35-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package see http://biosbits.org.

7:0 Reserved.
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15:8 Package Maximum Non-Turbo Ratio (R/O) 

The is the ratio of the frequency that invariant TSC runs at. The 
invariant TSC frequency can be computed by multiplying this ratio 
by 133.33 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limits for Turbo 
mode is enabled, and when set to 0, indicates Programmable Ratio 
Limits for Turbo mode is disabled.

29 Package Programmable TDC-TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDC/TDP Limits for Turbo mode are 
programmable, and when set to 0, indicates TDC and TDP Limits for 
Turbo mode are not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O) 

The is the minimum ratio (maximum efficiency) that the processor 
can operates, in units of 133.33MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States. See http://biosbits.org.

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name 
(consuming the least power). for the package. The default is set as 
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

010b: C3

011b: C6

100b: C7

101b and 110b: Reserved

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved. 

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register 
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions.

14:11 Reserved. 

15 CFG Lock (R/WO) 

When set, lock bits 15:0 of this register until next reset.

Table 35-9.  MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)
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23:16 Reserved. 

24 Interrupt filtering enable (R/W) 

When set, processor cores in a deep C-State will wake only when 
the event message is destined for that core. When 0, all processor 
cores in a deep C-State will wake for an event message.

25 C3 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C6/C7 requests 
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C3/C6/C7 
requests to C1 based on uncore auto-demote information.

63:27 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W) 

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W) 

Specifies the base address visible to software for IO redirection. If 
IO MWAIT Redirection is enabled, reads to this address will be 
consumed by the power management logic and decoded to MWAIT 
instructions. When IO port address redirection is enabled, this is the 
IO port address reported to the OS/software.

18:16 C-state Range (R/W) 

Specifies the encoding value of the maximum C-State code name to 
be included when IO read to MWAIT redirection is enabled by 
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW) 

See Table 35-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW) 

See Table 35-2.

FEH 254 IA32_MTRRCAP Thread See Table 35-2.

174H 372 IA32_SYSENTER_CS Thread See Table 35-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 35-2.

179H 377 IA32_MCG_CAP Thread See Table 35-2.

17AH 378 IA32_MCG_STATUS Thread
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0 RIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) can be used to restart the program. If cleared, the 
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If 
a second machine check is detected while this bit is still set, the 
processor enters a shutdown state. Software should write this bit 
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Thread See Table 35-2.

187H 391 IA32_PERFEVTSEL1 Thread See Table 35-2.

188H 392 IA32_PERFEVTSEL2 Thread See Table 35-2.

189H 393 IA32_PERFEVTSEL3 Thread See Table 35-2.

198H 408 IA32_PERF_STATUS Core See Table 35-2.

15:0 Current Performance State Value.

63:16 Reserved.

199H 409 IA32_PERF_CTL Thread See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Thread Clock Modulation (R/W) 

See Table 35-2.

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

0 Reserved.

3:1 On demand Clock Modulation Duty Cycle (R/W)

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W) 

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W) 

See Table 35-2.

1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Thread Fast-Strings Enable

See Table 35-2.

2:1 Reserved.
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3 Thread Automatic Thermal Control Circuit Enable (R/W)

See Table 35-2.

6:4 Reserved.

7 Thread Performance Monitoring Available (R) 

See Table 35-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO) 

See Table 35-2.

12 Thread Precise Event Based Sampling Unavailable (RO) 

See Table 35-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 35-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 35-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W) 

See Table 35-2.

23 Thread xTPR Message Disable (R/W) 

See Table 35-2.

33:24 Reserved.

34 Thread XD Bit Disable (R/W)

See Table 35-2.

37:35 Reserved.

38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost 
Technology, the turbo mode feature is disabled and the IDA_Enable 
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H: 
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect 
hardware support of turbo mode. If power-on default value is 1, 
turbo mode is available in the processor. If power-on default value 
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Thread

15:0 Reserved.

23:16 Temperature Target (R) 

The minimum temperature at which PROCHOT# will be asserted. 
The value is degree C.
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63:24 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT See http://biosbits.org.

0 Package EIST Hardware Coordination Disable (R/W)

When 0, enables hardware coordination of Enhanced Intel 
Speedstep Technology request from processor cores; When 1, 
disables hardware coordination of Enhanced Intel Speedstep 
Technology requests.

1 Thread Energy/Performance Bias Enable (R/W) 

This bit makes the IA32_ENERGY_PERF_BIAS register (MSR 1B0h) 
visible to software with Ring 0 privileges. This bit’s status (1 or 0) 
is also reflected by CPUID.(EAX=06h):ECX[3].

63:2 Reserved.

1ACH 428 MSR_TURBO_POWER_
CURRENT_LIMIT

See http://biosbits.org.

14:0 Package TDP Limit (R/W) 

TDP limit in 1/8 Watt granularity.

15 Package TDP Limit Override Enable (R/W) 

A value = 0 indicates override is not active, and a value = 1 
indicates active.

30:16 Package TDC Limit (R/W) 

TDC limit in 1/8 Amp granularity.

31 Package TDC Limit Override Enable (R/W) 

A value = 0 indicates override is not active, and a value = 1 
indicates active.

63:32 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register (R/W) 

See Section 17.6.2, “Filtering of Last Branch Records.”
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1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the 
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W) 

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch 
instruction that the processor executed prior to the last exception 
that was generated or the last interrupt that was handled. 

1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

1FCH 508 MSR_POWER_CTL Core Power Control Register. See http://biosbits.org.

0 Reserved.

1 Package C1E Enable (R/W) 

When set to ‘1’, will enable the CPU to switch to the Minimum 
Enhanced Intel SpeedStep Technology operating point when all 
execution cores enter MWAIT (C1).

63:2 Reserved.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 35-2.
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20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 35-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 35-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 35-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 35-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 35-2.

26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 35-2.

277H 631 IA32_PAT Thread See Table 35-2.

280H 640 IA32_MC0_CTL2 Package See Table 35-2.

281H 641 IA32_MC1_CTL2 Package See Table 35-2.

282H 642 IA32_MC2_CTL2 Core See Table 35-2.

283H 643 IA32_MC3_CTL2 Core See Table 35-2.

284H 644 IA32_MC4_CTL2 Core See Table 35-2.

285H 645 IA32_MC5_CTL2 Core See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W) 

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W) 

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W) 

See Table 35-2.
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30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W) 

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 35-2.

6 PEBS Record Format. 

7 PEBSSaveArchRegs. See Table 35-2.

11:8 PEBS_REC_FORMAT. See Table 35-2.

12 SMM_FREEZE. See Table 35-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W) 

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.” 

38EH 910 MSR_PERF_GLOBAL_STAUS Thread  (RO)

61 UNC_Ovf

Uncore overflowed if 1.

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

390H 912 MSR_PERF_GLOBAL_OVF_
CTRL

Thread  (R/W)

61 CLR_UNC_Ovf

Set 1 to clear UNC_Ovf.

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.7.1.1, “Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_LD_LAT Thread See Section 18.7.1.2, “Load Latency Performance Monitoring 
Facility.”
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15:0 Minimum threshold latency value of tagged load operation that will 
be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3 
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6 
states. Count at the same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7 
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3 
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6 
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC0_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

403H 1027 MSR_MC0_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”
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405H 1029 IA32_MC1_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC1_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

407H 1031 MSR_MC1_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC2_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

40BH 1035 MSR_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC4_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

40FH 1039 MSR_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC3_STATUS 
register is clear. 

When not implemented in the processor, all reads and writes to this 
MSR will cause a general-protection exception.

413H 1043 MSR_MC4_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

414H 1044 MSR_MC5_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

416H 1046 MSR_MC5_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.
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41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution 
Controls (R/O) 

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O) 

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O) 

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”
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489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration 
(R/O). 

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-2.

See Section 18.12.4, “Debug Store (DS) Mechanism.”

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last 
branch record stack. This part of the stack contains pointers to the 
source instruction for one of the last sixteen branches, 
exceptions, or interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.
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68BH 1675 MSR_
LASTBRANCH_11_FROM_IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_FROM_IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last 
branch record stack. This part of the stack contains pointers to the 
destination instruction for one of the last sixteen branches, 
exceptions, or interrupts taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

Table 35-9.  MSRs in Processors Based on Intel® Microarchitecture Code Name Nehalem (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec



35-86 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

802H 2050 IA32_X2APIC_APICID Thread x2APIC ID register (R/O) See x2APIC Specification.

803H 2051 IA32_X2APIC_VERSION Thread x2APIC Version register (R/O) 

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W) 

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O) 

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O) 

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O) 

80FH 2063 IA32_X2APIC_SIVR Thread x2APIC Spurious Interrupt Vector register (R/W) 

810H 2064 IA32_X2APIC_ISR0 Thread x2APIC In-Service register bits [31:0] (R/O) 

811H 2065 IA32_X2APIC_ISR1 Thread x2APIC In-Service register bits [63:32] (R/O) 

812H 2066 IA32_X2APIC_ISR2 Thread x2APIC In-Service register bits [95:64] (R/O) 

813H 2067 IA32_X2APIC_ISR3 Thread x2APIC In-Service register bits [127:96] (R/O) 

814H 2068 IA32_X2APIC_ISR4 Thread x2APIC In-Service register bits [159:128] (R/O) 

815H 2069 IA32_X2APIC_ISR5 Thread x2APIC In-Service register bits [191:160] (R/O) 

816H 2070 IA32_X2APIC_ISR6 Thread x2APIC In-Service register bits [223:192] (R/O) 

817H 2071 IA32_X2APIC_ISR7 Thread x2APIC In-Service register bits [255:224] (R/O) 

818H 2072 IA32_X2APIC_TMR0 Thread x2APIC Trigger Mode register bits [31:0] (R/O) 

819H 2073 IA32_X2APIC_TMR1 Thread x2APIC Trigger Mode register bits [63:32] (R/O) 

81AH 2074 IA32_X2APIC_TMR2 Thread x2APIC Trigger Mode register bits [95:64] (R/O) 

81BH 2075 IA32_X2APIC_TMR3 Thread x2APIC Trigger Mode register bits [127:96] (R/O) 

81CH 2076 IA32_X2APIC_TMR4 Thread x2APIC Trigger Mode register bits [159:128] (R/O) 

81DH 2077 IA32_X2APIC_TMR5 Thread x2APIC Trigger Mode register bits [191:160] (R/O) 

81EH 2078 IA32_X2APIC_TMR6 Thread x2APIC Trigger Mode register bits [223:192] (R/O) 

81FH 2079 IA32_X2APIC_TMR7 Thread x2APIC Trigger Mode register bits [255:224] (R/O) 

820H 2080 IA32_X2APIC_IRR0 Thread x2APIC Interrupt Request register bits [31:0] (R/O) 

821H 2081 IA32_X2APIC_IRR1 Thread x2APIC Interrupt Request register bits [63:32] (R/O) 

822H 2082 IA32_X2APIC_IRR2 Thread x2APIC Interrupt Request register bits [95:64] (R/O) 

823H 2083 IA32_X2APIC_IRR3 Thread x2APIC Interrupt Request register bits [127:96] (R/O) 

824H 2084 IA32_X2APIC_IRR4 Thread x2APIC Interrupt Request register bits [159:128] (R/O) 

825H 2085 IA32_X2APIC_IRR5 Thread x2APIC Interrupt Request register bits [191:160] (R/O) 

826H 2086 IA32_X2APIC_IRR6 Thread x2APIC Interrupt Request register bits [223:192] (R/O) 
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35.5.1  Additional MSRs in the Intel® Xeon® Processor 5500 and 3400 Series

Intel Xeon Processor 5500 and 3400 series support additional model-specific registers listed in Table 35-10. These 
MSRs also apply to Intel Core i7 and i5 processor family CPUID signature with DisplayFamily_DisplayModel of 
06_1AH, 06_1EH and 06_1FH, see Table 35-1. 

827H 2087 IA32_X2APIC_IRR7 Thread x2APIC Interrupt Request register bits [255:224] (R/O) 

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W) 

82FH 2095 IA32_X2APIC_LVT_CMCI Thread x2APIC LVT Corrected Machine Check Interrupt register (R/W) 

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W) 

832H 2098 IA32_X2APIC_LVT_TIMER Thread x2APIC LVT Timer Interrupt register (R/W) 

833H 2099 IA32_X2APIC_LVT_THERM
AL

Thread x2APIC LVT Thermal Sensor Interrupt register (R/W) 

834H 2100 IA32_X2APIC_LVT_PMI Thread x2APIC LVT Performance Monitor register (R/W) 

835H 2101 IA32_X2APIC_LVT_LINT0 Thread x2APIC LVT LINT0 register (R/W) 

836H 2102 IA32_X2APIC_LVT_LINT1 Thread x2APIC LVT LINT1 register (R/W) 

837H 2103 IA32_X2APIC_LVT_ERROR Thread x2APIC LVT Error register (R/W) 

838H 2104 IA32_X2APIC_INIT_COUNT Thread x2APIC Initial Count register (R/W) 

839H 2105 IA32_X2APIC_CUR_COUNT Thread x2APIC Current Count register (R/O) 

83EH 2110 IA32_X2APIC_DIV_CONF Thread x2APIC Divide Configuration register (R/W) 

83FH 2111 IA32_X2APIC_SELF_IPI Thread x2APIC Self IPI register (W/O) 

C000_
0080H

IA32_EFER Thread Extended Feature Enables 

See Table 35-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W) 

See Table 35-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W) 

See Table 35-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W) 

See Table 35-2.

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W) 

See Table 35-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W) 

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W) See Table 35-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W) See Table 35-2 and Section 
17.13.2, “IA32_TSC_AUX Register and RDTSCP Support.” 
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Table 35-10.  Additional MSRs in Intel® Xeon® Processor 5500 and 3400 Series

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Actual maximum turbo frequency is multiplied by 133.33MHz. (not 
available to model 06_2EH)

7:0 Maximum Turbo Ratio Limit 1C (R/O) 

Maximum Turbo mode ratio limit with 1 core active. 

15:8 Maximum Turbo Ratio Limit 2C (R/O) 

Maximum Turbo mode ratio limit with 2cores active. 

23:16 Maximum Turbo Ratio Limit 3C (R/O) 

Maximum Turbo mode ratio limit with 3cores active. 

31:24 Maximum Turbo Ratio Limit 4C (R/O) 

Maximum Turbo mode ratio limit with 4 cores active. 

63:32 Reserved.

301H 769 MSR_GQ_SNOOP_MESF Package

0 From M to S (R/W)

1 From E to S (R/W)

2 From S to S (R/W)

3 From F to S (R/W)

4 From M to I (R/W)

5 From E to I (R/W)

6 From S to I (R/W)

7 From F to I (R/W)

63:8 Reserved.

391H 913 MSR_UNCORE_PERF_
GLOBAL_CTRL

Package See Section 18.7.2.1, “Uncore Performance Monitoring 
Management Facility.”

392H 914 MSR_UNCORE_PERF_
GLOBAL_STATUS

Package See Section 18.7.2.1, “Uncore Performance Monitoring 
Management Facility.”

393H 915 MSR_UNCORE_PERF_
GLOBAL_OVF_CTRL

Package See Section 18.7.2.1, “Uncore Performance Monitoring 
Management Facility.”

394H 916 MSR_UNCORE_FIXED_CTR0 Package See Section 18.7.2.1, “Uncore Performance Monitoring 
Management Facility.”

395H 917 MSR_UNCORE_FIXED_CTR_
CTRL

Package See Section 18.7.2.1, “Uncore Performance Monitoring 
Management Facility.”

396H 918 MSR_UNCORE_ADDR_
OPCODE_MATCH

Package See Section 18.7.2.3, “Uncore Address/Opcode Match MSR.”

3B0H 960 MSR_UNCORE_PMC0 Package See Section 18.7.2.2, “Uncore Performance Event Configuration 
Facility.”

3B1H 961 MSR_UNCORE_PMC1 Package See Section 18.7.2.2, “Uncore Performance Event Configuration 
Facility.”

3B2H 962 MSR_UNCORE_PMC2 Package See Section 18.7.2.2, “Uncore Performance Event Configuration 
Facility.”
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35.5.2  Additional MSRs in the Intel® Xeon® Processor 7500 Series

Intel Xeon Processor 7500 series support MSRs listed in Table 35-9 (except MSR address 1ADH) and additional 
model-specific registers listed in Table 35-11. 

3B3H 963 MSR_UNCORE_PMC3 Package See Section 18.7.2.2, “Uncore Performance Event Configuration 
Facility.”

3B4H 964 MSR_UNCORE_PMC4 Package See Section 18.7.2.2, “Uncore Performance Event Configuration 
Facility.”

3B5H 965 MSR_UNCORE_PMC5 Package See Section 18.7.2.2, “Uncore Performance Event Configuration 
Facility.”

3B6H 966 MSR_UNCORE_PMC6 Package See Section 18.7.2.2, “Uncore Performance Event Configuration 
Facility.”

3B7H 967 MSR_UNCORE_PMC7 Package See Section 18.7.2.2, “Uncore Performance Event Configuration 
Facility.”

3C0H 944 MSR_UNCORE_
PERFEVTSEL0

Package See Section 18.7.2.2, “Uncore Performance Event Configuration 
Facility.”

3C1H 945 MSR_UNCORE_
PERFEVTSEL1

Package See Section 18.7.2.2, “Uncore Performance Event Configuration 
Facility.”

3C2H 946 MSR_UNCORE_
PERFEVTSEL2

Package See Section 18.7.2.2, “Uncore Performance Event Configuration 
Facility.”

3C3H 947 MSR_UNCORE_
PERFEVTSEL3

Package See Section 18.7.2.2, “Uncore Performance Event Configuration 
Facility.”

3C4H 948 MSR_UNCORE_
PERFEVTSEL4

Package See Section 18.7.2.2, “Uncore Performance Event Configuration 
Facility.”

3C5H 949 MSR_UNCORE_
PERFEVTSEL5

Package See Section 18.7.2.2, “Uncore Performance Event Configuration 
Facility.”

3C6H 950 MSR_UNCORE_
PERFEVTSEL6

Package See Section 18.7.2.2, “Uncore Performance Event Configuration 
Facility.”

3C7H 951 MSR_UNCORE_
PERFEVTSEL7

Package See Section 18.7.2.2, “Uncore Performance Event Configuration 
Facility.”

Table 35-11.  Additional MSRs in Intel® Xeon® Processor 7500 Series
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1ADH 429 MSR_TURBO_RATIO_LIMIT Package Reserved

Attempt to read/write will cause #UD.

289H 649 IA32_MC9_CTL2 Package See Table 35-2.

28AH 650 IA32_MC10_CTL2 Package See Table 35-2.

28BH 651 IA32_MC11_CTL2 Package See Table 35-2.

28CH 652 IA32_MC12_CTL2 Package See Table 35-2.
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28DH 653 IA32_MC13_CTL2 Package See Table 35-2.

28EH 654 IA32_MC14_CTL2 Package See Table 35-2.

28FH 655 IA32_MC15_CTL2 Package See Table 35-2.

290H 656 IA32_MC16_CTL2 Package See Table 35-2.

291H 657 IA32_MC17_CTL2 Package See Table 35-2.

292H 658 IA32_MC18_CTL2 Package See Table 35-2.

293H 659 IA32_MC19_CTL2 Package See Table 35-2.

294H 660 IA32_MC20_CTL2 Package See Table 35-2.

295H 661 IA32_MC21_CTL2 Package See Table 35-2.

394H 816 MSR_W_PMON_FIXED_CTR Package Uncore W-box perfmon fixed counter 

395H 817 MSR_W_PMON_FIXED_
CTR_CTL

Package Uncore U-box perfmon fixed counter control MSR

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 MSR_MC14_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”
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43DH 1085 MSR_MC15_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

450H 1104 MSR_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

451H 1105 MSR_MC20_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

452H 1106 MSR_MC20_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

453H 1107 MSR_MC20_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

454H 1108 MSR_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

455H 1109 MSR_MC21_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

456H 1110 MSR_MC21_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

457H 1111 MSR_MC21_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

C00H 3072 MSR_U_PMON_GLOBAL_
CTRL

Package Uncore U-box perfmon global control MSR.

C01H 3073 MSR_U_PMON_GLOBAL_
STATUS

Package Uncore U-box perfmon global status MSR.

C02H 3074 MSR_U_PMON_GLOBAL_
OVF_CTRL

Package Uncore U-box perfmon global overflow control MSR.

C10H 3088 MSR_U_PMON_EVNT_SEL Package Uncore U-box perfmon event select MSR.

C11H 3089 MSR_U_PMON_CTR Package Uncore U-box perfmon counter MSR.

C20H 3104 MSR_B0_PMON_BOX_CTRL Package Uncore B-box 0 perfmon local box control MSR.
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C21H 3105 MSR_B0_PMON_BOX_
STATUS

Package Uncore B-box 0 perfmon local box status MSR.

C22H 3106 MSR_B0_PMON_BOX_OVF_
CTRL

Package Uncore B-box 0 perfmon local box overflow control MSR.

C30H 3120 MSR_B0_PMON_EVNT_
SEL0

Package Uncore B-box 0 perfmon event select MSR.

C31H 3121 MSR_B0_PMON_CTR0 Package Uncore B-box 0 perfmon counter MSR.

C32H 3122 MSR_B0_PMON_EVNT_
SEL1

Package Uncore B-box 0 perfmon event select MSR.

C33H 3123 MSR_B0_PMON_CTR1 Package Uncore B-box 0 perfmon counter MSR.

C34H 3124 MSR_B0_PMON_EVNT_
SEL2

Package Uncore B-box 0 perfmon event select MSR.

C35H 3125 MSR_B0_PMON_CTR2 Package Uncore B-box 0 perfmon counter MSR.

C36H 3126 MSR_B0_PMON_EVNT_
SEL3

Package Uncore B-box 0 perfmon event select MSR.

C37H 3127 MSR_B0_PMON_CTR3 Package Uncore B-box 0 perfmon counter MSR.

C40H 3136 MSR_S0_PMON_BOX_CTRL Package Uncore S-box 0 perfmon local box control MSR.

C41H 3137 MSR_S0_PMON_BOX_
STATUS

Package Uncore S-box 0 perfmon local box status MSR.

C42H 3138 MSR_S0_PMON_BOX_OVF_
CTRL

Package Uncore S-box 0 perfmon local box overflow control MSR.

C50H 3152 MSR_S0_PMON_EVNT_
SEL0

Package Uncore S-box 0 perfmon event select MSR.

C51H 3153 MSR_S0_PMON_CTR0 Package Uncore S-box 0 perfmon counter MSR.

C52H 3154 MSR_S0_PMON_EVNT_
SEL1

Package Uncore S-box 0 perfmon event select MSR.

C53H 3155 MSR_S0_PMON_CTR1 Package Uncore S-box 0 perfmon counter MSR.

C54H 3156 MSR_S0_PMON_EVNT_
SEL2

Package Uncore S-box 0 perfmon event select MSR.

C55H 3157 MSR_S0_PMON_CTR2 Package Uncore S-box 0 perfmon counter MSR.

C56H 3158 MSR_S0_PMON_EVNT_
SEL3

Package Uncore S-box 0 perfmon event select MSR.

C57H 3159 MSR_S0_PMON_CTR3 Package Uncore S-box 0 perfmon counter MSR.

C60H 3168 MSR_B1_PMON_BOX_CTRL Package Uncore B-box 1 perfmon local box control MSR.

C61H 3169 MSR_B1_PMON_BOX_
STATUS

Package Uncore B-box 1 perfmon local box status MSR.

C62H 3170 MSR_B1_PMON_BOX_OVF_
CTRL

Package Uncore B-box 1 perfmon local box overflow control MSR.
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C70H 3184 MSR_B1_PMON_EVNT_
SEL0

Package Uncore B-box 1 perfmon event select MSR.

C71H 3185 MSR_B1_PMON_CTR0 Package Uncore B-box 1 perfmon counter MSR.

C72H 3186 MSR_B1_PMON_EVNT_
SEL1

Package Uncore B-box 1 perfmon event select MSR.

C73H 3187 MSR_B1_PMON_CTR1 Package Uncore B-box 1 perfmon counter MSR.

C74H 3188 MSR_B1_PMON_EVNT_
SEL2

Package Uncore B-box 1 perfmon event select MSR.

C75H 3189 MSR_B1_PMON_CTR2 Package Uncore B-box 1 perfmon counter MSR.

C76H 3190 MSR_B1_PMON_EVNT_
SEL3

Package Uncore B-box 1vperfmon event select MSR.

C77H 3191 MSR_B1_PMON_CTR3 Package Uncore B-box 1 perfmon counter MSR.

C80H 3120 MSR_W_PMON_BOX_CTRL Package Uncore W-box perfmon local box control MSR.

C81H 3121 MSR_W_PMON_BOX_
STATUS

Package Uncore W-box perfmon local box status MSR.

C82H 3122 MSR_W_PMON_BOX_OVF_
CTRL

Package Uncore W-box perfmon local box overflow control MSR.

C90H 3136 MSR_W_PMON_EVNT_SEL0 Package Uncore W-box perfmon event select MSR.

C91H 3137 MSR_W_PMON_CTR0 Package Uncore W-box perfmon counter MSR.

C92H 3138 MSR_W_PMON_EVNT_SEL1 Package Uncore W-box perfmon event select MSR.

C93H 3139 MSR_W_PMON_CTR1 Package Uncore W-box perfmon counter MSR.

C94H 3140 MSR_W_PMON_EVNT_SEL2 Package Uncore W-box perfmon event select MSR.

C95H 3141 MSR_W_PMON_CTR2 Package Uncore W-box perfmon counter MSR.

C96H 3142 MSR_W_PMON_EVNT_SEL3 Package Uncore W-box perfmon event select MSR.

C97H 3143 MSR_W_PMON_CTR3 Package Uncore W-box perfmon counter MSR.

CA0H 3232 MSR_M0_PMON_BOX_CTRL Package Uncore M-box 0 perfmon local box control MSR.

CA1H 3233 MSR_M0_PMON_BOX_
STATUS

Package Uncore M-box 0 perfmon local box status MSR.

CA2H 3234 MSR_M0_PMON_BOX_
OVF_CTRL

Package Uncore M-box 0 perfmon local box overflow control MSR.

CA4H 3236 MSR_M0_PMON_
TIMESTAMP

Package Uncore M-box 0 perfmon time stamp unit select MSR.

CA5H 3237 MSR_M0_PMON_DSP Package Uncore M-box 0 perfmon DSP unit select MSR.

CA6H 3238 MSR_M0_PMON_ISS Package Uncore M-box 0 perfmon ISS unit select MSR.
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CA7H 3239 MSR_M0_PMON_MAP Package Uncore M-box 0 perfmon MAP unit select MSR.

CA8H 3240 MSR_M0_PMON_MSC_THR Package Uncore M-box 0 perfmon MIC THR select MSR.

CA9H 3241 MSR_M0_PMON_PGT Package Uncore M-box 0 perfmon PGT unit select MSR.

CAAH 3242 MSR_M0_PMON_PLD Package Uncore M-box 0 perfmon PLD unit select MSR.

CABH 3243 MSR_M0_PMON_ZDP Package Uncore M-box 0 perfmon ZDP unit select MSR.

CB0H 3248 MSR_M0_PMON_EVNT_
SEL0

Package Uncore M-box 0 perfmon event select MSR.

CB1H 3249 MSR_M0_PMON_CTR0 Package Uncore M-box 0 perfmon counter MSR.

CB2H 3250 MSR_M0_PMON_EVNT_
SEL1

Package Uncore M-box 0 perfmon event select MSR.

CB3H 3251 MSR_M0_PMON_CTR1 Package Uncore M-box 0 perfmon counter MSR.

CB4H 3252 MSR_M0_PMON_EVNT_
SEL2

Package Uncore M-box 0 perfmon event select MSR.

CB5H 3253 MSR_M0_PMON_CTR2 Package Uncore M-box 0 perfmon counter MSR.

CB6H 3254 MSR_M0_PMON_EVNT_
SEL3

Package Uncore M-box 0 perfmon event select MSR.

CB7H 3255 MSR_M0_PMON_CTR3 Package Uncore M-box 0 perfmon counter MSR.

CB8H 3256 MSR_M0_PMON_EVNT_
SEL4

Package Uncore M-box 0 perfmon event select MSR.

CB9H 3257 MSR_M0_PMON_CTR4 Package Uncore M-box 0 perfmon counter MSR.

CBAH 3258 MSR_M0_PMON_EVNT_
SEL5

Package Uncore M-box 0 perfmon event select MSR.

CBBH 3259 MSR_M0_PMON_CTR5 Package Uncore M-box 0 perfmon counter MSR.

CC0H 3264 MSR_S1_PMON_BOX_CTRL Package Uncore S-box 1 perfmon local box control MSR.

CC1H 3265 MSR_S1_PMON_BOX_
STATUS

Package Uncore S-box 1 perfmon local box status MSR.

CC2H 3266 MSR_S1_PMON_BOX_OVF_
CTRL

Package Uncore S-box 1 perfmon local box overflow control MSR.

CD0H 3280 MSR_S1_PMON_EVNT_
SEL0

Package Uncore S-box 1 perfmon event select MSR.

CD1H 3281 MSR_S1_PMON_CTR0 Package Uncore S-box 1 perfmon counter MSR.

CD2H 3282 MSR_S1_PMON_EVNT_
SEL1

Package Uncore S-box 1 perfmon event select MSR.

CD3H 3283 MSR_S1_PMON_CTR1 Package Uncore S-box 1 perfmon counter MSR.

CD4H 3284 MSR_S1_PMON_EVNT_
SEL2

Package Uncore S-box 1 perfmon event select MSR.

CD5H 3285 MSR_S1_PMON_CTR2 Package Uncore S-box 1 perfmon counter MSR.
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CD6H 3286 MSR_S1_PMON_EVNT_
SEL3

Package Uncore S-box 1 perfmon event select MSR.

CD7H 3287 MSR_S1_PMON_CTR3 Package Uncore S-box 1 perfmon counter MSR.

CE0H 3296 MSR_M1_PMON_BOX_CTRL Package Uncore M-box 1 perfmon local box control MSR.

CE1H 3297 MSR_M1_PMON_BOX_
STATUS

Package Uncore M-box 1 perfmon local box status MSR.

CE2H 3298 MSR_M1_PMON_BOX_
OVF_CTRL

Package Uncore M-box 1 perfmon local box overflow control MSR.

CE4H 3300 MSR_M1_PMON_
TIMESTAMP

Package Uncore M-box 1 perfmon time stamp unit select MSR.

CE5H 3301 MSR_M1_PMON_DSP Package Uncore M-box 1 perfmon DSP unit select MSR.

CE6H 3302 MSR_M1_PMON_ISS Package Uncore M-box 1 perfmon ISS unit select MSR.

CE7H 3303 MSR_M1_PMON_MAP Package Uncore M-box 1 perfmon MAP unit select MSR.

CE8H 3304 MSR_M1_PMON_MSC_THR Package Uncore M-box 1 perfmon MIC THR select MSR.

CE9H 3305 MSR_M1_PMON_PGT Package Uncore M-box 1 perfmon PGT unit select MSR.

CEAH 3306 MSR_M1_PMON_PLD Package Uncore M-box 1 perfmon PLD unit select MSR.

CEBH 3307 MSR_M1_PMON_ZDP Package Uncore M-box 1 perfmon ZDP unit select MSR.

CF0H 3312 MSR_M1_PMON_EVNT_
SEL0

Package Uncore M-box 1 perfmon event select MSR.

CF1H 3313 MSR_M1_PMON_CTR0 Package Uncore M-box 1 perfmon counter MSR.

CF2H 3314 MSR_M1_PMON_EVNT_
SEL1

Package Uncore M-box 1 perfmon event select MSR.

CF3H 3315 MSR_M1_PMON_CTR1 Package Uncore M-box 1 perfmon counter MSR.

CF4H 3316 MSR_M1_PMON_EVNT_
SEL2

Package Uncore M-box 1 perfmon event select MSR.

CF5H 3317 MSR_M1_PMON_CTR2 Package Uncore M-box 1 perfmon counter MSR.

CF6H 3318 MSR_M1_PMON_EVNT_
SEL3

Package Uncore M-box 1 perfmon event select MSR.

CF7H 3319 MSR_M1_PMON_CTR3 Package Uncore M-box 1 perfmon counter MSR.

CF8H 3320 MSR_M1_PMON_EVNT_
SEL4

Package Uncore M-box 1 perfmon event select MSR.

CF9H 3321 MSR_M1_PMON_CTR4 Package Uncore M-box 1 perfmon counter MSR.

CFAH 3322 MSR_M1_PMON_EVNT_
SEL5

Package Uncore M-box 1 perfmon event select MSR.

CFBH 3323 MSR_M1_PMON_CTR5 Package Uncore M-box 1 perfmon counter MSR.

D00H 3328 MSR_C0_PMON_BOX_CTRL Package Uncore C-box 0 perfmon local box control MSR.
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D01H 3329 MSR_C0_PMON_BOX_
STATUS

Package Uncore C-box 0 perfmon local box status MSR.

D02H 3330 MSR_C0_PMON_BOX_OVF_
CTRL

Package Uncore C-box 0 perfmon local box overflow control MSR.

D10H 3344 MSR_C0_PMON_EVNT_
SEL0

Package Uncore C-box 0 perfmon event select MSR.

D11H 3345 MSR_C0_PMON_CTR0 Package Uncore C-box 0 perfmon counter MSR.

D12H 3346 MSR_C0_PMON_EVNT_
SEL1

Package Uncore C-box 0 perfmon event select MSR.

D13H 3347 MSR_C0_PMON_CTR1 Package Uncore C-box 0 perfmon counter MSR.

D14H 3348 MSR_C0_PMON_EVNT_
SEL2

Package Uncore C-box 0 perfmon event select MSR.

D15H 3349 MSR_C0_PMON_CTR2 Package Uncore C-box 0 perfmon counter MSR.

D16H 3350 MSR_C0_PMON_EVNT_
SEL3

Package Uncore C-box 0 perfmon event select MSR.

D17H 3351 MSR_C0_PMON_CTR3 Package Uncore C-box 0 perfmon counter MSR.

D18H 3352 MSR_C0_PMON_EVNT_
SEL4

Package Uncore C-box 0 perfmon event select MSR.

D19H 3353 MSR_C0_PMON_CTR4 Package Uncore C-box 0 perfmon counter MSR.

D1AH 3354 MSR_C0_PMON_EVNT_
SEL5

Package Uncore C-box 0 perfmon event select MSR.

D1BH 3355 MSR_C0_PMON_CTR5 Package Uncore C-box 0 perfmon counter MSR.

D20H 3360 MSR_C4_PMON_BOX_CTRL Package Uncore C-box 4 perfmon local box control MSR.

D21H 3361 MSR_C4_PMON_BOX_
STATUS

Package Uncore C-box 4 perfmon local box status MSR.

D22H 3362 MSR_C4_PMON_BOX_OVF_
CTRL

Package Uncore C-box 4 perfmon local box overflow control MSR.

D30H 3376 MSR_C4_PMON_EVNT_
SEL0

Package Uncore C-box 4 perfmon event select MSR.

D31H 3377 MSR_C4_PMON_CTR0 Package Uncore C-box 4 perfmon counter MSR.

D32H 3378 MSR_C4_PMON_EVNT_
SEL1

Package Uncore C-box 4 perfmon event select MSR.

D33H 3379 MSR_C4_PMON_CTR1 Package Uncore C-box 4 perfmon counter MSR.

D34H 3380 MSR_C4_PMON_EVNT_
SEL2

Package Uncore C-box 4 perfmon event select MSR.

D35H 3381 MSR_C4_PMON_CTR2 Package Uncore C-box 4 perfmon counter MSR.

D36H 3382 MSR_C4_PMON_EVNT_
SEL3

Package Uncore C-box 4 perfmon event select MSR.

D37H 3383 MSR_C4_PMON_CTR3 Package Uncore C-box 4 perfmon counter MSR.
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D38H 3384 MSR_C4_PMON_EVNT_
SEL4

Package Uncore C-box 4 perfmon event select MSR.

D39H 3385 MSR_C4_PMON_CTR4 Package Uncore C-box 4 perfmon counter MSR.

D3AH 3386 MSR_C4_PMON_EVNT_
SEL5

Package Uncore C-box 4 perfmon event select MSR.

D3BH 3387 MSR_C4_PMON_CTR5 Package Uncore C-box 4 perfmon counter MSR.

D40H 3392 MSR_C2_PMON_BOX_CTRL Package Uncore C-box 2 perfmon local box control MSR.

D41H 3393 MSR_C2_PMON_BOX_
STATUS

Package Uncore C-box 2 perfmon local box status MSR.

D42H 3394 MSR_C2_PMON_BOX_OVF_
CTRL

Package Uncore C-box 2 perfmon local box overflow control MSR.

D50H 3408 MSR_C2_PMON_EVNT_
SEL0

Package Uncore C-box 2 perfmon event select MSR.

D51H 3409 MSR_C2_PMON_CTR0 Package Uncore C-box 2 perfmon counter MSR.

D52H 3410 MSR_C2_PMON_EVNT_
SEL1

Package Uncore C-box 2 perfmon event select MSR.

D53H 3411 MSR_C2_PMON_CTR1 Package Uncore C-box 2 perfmon counter MSR.

D54H 3412 MSR_C2_PMON_EVNT_
SEL2

Package Uncore C-box 2 perfmon event select MSR.

D55H 3413 MSR_C2_PMON_CTR2 Package Uncore C-box 2 perfmon counter MSR.

D56H 3414 MSR_C2_PMON_EVNT_
SEL3

Package Uncore C-box 2 perfmon event select MSR.

D57H 3415 MSR_C2_PMON_CTR3 Package Uncore C-box 2 perfmon counter MSR.

D58H 3416 MSR_C2_PMON_EVNT_
SEL4

Package Uncore C-box 2 perfmon event select MSR.

D59H 3417 MSR_C2_PMON_CTR4 Package Uncore C-box 2 perfmon counter MSR.

D5AH 3418 MSR_C2_PMON_EVNT_
SEL5

Package Uncore C-box 2 perfmon event select MSR.

D5BH 3419 MSR_C2_PMON_CTR5 Package Uncore C-box 2 perfmon counter MSR.

D60H 3424 MSR_C6_PMON_BOX_CTRL Package Uncore C-box 6 perfmon local box control MSR.

D61H 3425 MSR_C6_PMON_BOX_
STATUS

Package Uncore C-box 6 perfmon local box status MSR.

D62H 3426 MSR_C6_PMON_BOX_OVF_
CTRL

Package Uncore C-box 6 perfmon local box overflow control MSR.

D70H 3440 MSR_C6_PMON_EVNT_
SEL0

Package Uncore C-box 6 perfmon event select MSR.

D71H 3441 MSR_C6_PMON_CTR0 Package Uncore C-box 6 perfmon counter MSR.
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D72H 3442 MSR_C6_PMON_EVNT_
SEL1

Package Uncore C-box 6 perfmon event select MSR.

D73H 3443 MSR_C6_PMON_CTR1 Package Uncore C-box 6 perfmon counter MSR.

D74H 3444 MSR_C6_PMON_EVNT_
SEL2

Package Uncore C-box 6 perfmon event select MSR.

D75H 3445 MSR_C6_PMON_CTR2 Package Uncore C-box 6 perfmon counter MSR.

D76H 3446 MSR_C6_PMON_EVNT_
SEL3

Package Uncore C-box 6 perfmon event select MSR.

D77H 3447 MSR_C6_PMON_CTR3 Package Uncore C-box 6 perfmon counter MSR.

D78H 3448 MSR_C6_PMON_EVNT_
SEL4

Package Uncore C-box 6 perfmon event select MSR.

D79H 3449 MSR_C6_PMON_CTR4 Package Uncore C-box 6 perfmon counter MSR.

D7AH 3450 MSR_C6_PMON_EVNT_
SEL5

Package Uncore C-box 6 perfmon event select MSR.

D7BH 3451 MSR_C6_PMON_CTR5 Package Uncore C-box 6 perfmon counter MSR.

D80H 3456 MSR_C1_PMON_BOX_CTRL Package Uncore C-box 1 perfmon local box control MSR.

D81H 3457 MSR_C1_PMON_BOX_
STATUS

Package Uncore C-box 1 perfmon local box status MSR.

D82H 3458 MSR_C1_PMON_BOX_OVF_
CTRL

Package Uncore C-box 1 perfmon local box overflow control MSR.

D90H 3472 MSR_C1_PMON_EVNT_
SEL0

Package Uncore C-box 1 perfmon event select MSR.

D91H 3473 MSR_C1_PMON_CTR0 Package Uncore C-box 1 perfmon counter MSR.

D92H 3474 MSR_C1_PMON_EVNT_
SEL1

Package Uncore C-box 1 perfmon event select MSR.

D93H 3475 MSR_C1_PMON_CTR1 Package Uncore C-box 1 perfmon counter MSR.

D94H 3476 MSR_C1_PMON_EVNT_
SEL2

Package Uncore C-box 1 perfmon event select MSR.

D95H 3477 MSR_C1_PMON_CTR2 Package Uncore C-box 1 perfmon counter MSR.

D96H 3478 MSR_C1_PMON_EVNT_
SEL3

Package Uncore C-box 1 perfmon event select MSR.

D97H 3479 MSR_C1_PMON_CTR3 Package Uncore C-box 1 perfmon counter MSR.

D98H 3480 MSR_C1_PMON_EVNT_
SEL4

Package Uncore C-box 1 perfmon event select MSR.

D99H 3481 MSR_C1_PMON_CTR4 Package Uncore C-box 1 perfmon counter MSR.

D9AH 3482 MSR_C1_PMON_EVNT_
SEL5

Package Uncore C-box 1 perfmon event select MSR.

D9BH 3483 MSR_C1_PMON_CTR5 Package Uncore C-box 1 perfmon counter MSR.
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DA0H 3488 MSR_C5_PMON_BOX_CTRL Package Uncore C-box 5 perfmon local box control MSR.

DA1H 3489 MSR_C5_PMON_BOX_
STATUS

Package Uncore C-box 5 perfmon local box status MSR.

DA2H 3490 MSR_C5_PMON_BOX_OVF_
CTRL

Package Uncore C-box 5 perfmon local box overflow control MSR.

DB0H 3504 MSR_C5_PMON_EVNT_
SEL0

Package Uncore C-box 5 perfmon event select MSR.

DB1H 3505 MSR_C5_PMON_CTR0 Package Uncore C-box 5 perfmon counter MSR.

DB2H 3506 MSR_C5_PMON_EVNT_
SEL1

Package Uncore C-box 5 perfmon event select MSR.

DB3H 3507 MSR_C5_PMON_CTR1 Package Uncore C-box 5 perfmon counter MSR.

DB4H 3508 MSR_C5_PMON_EVNT_
SEL2

Package Uncore C-box 5 perfmon event select MSR.

DB5H 3509 MSR_C5_PMON_CTR2 Package Uncore C-box 5 perfmon counter MSR.

DB6H 3510 MSR_C5_PMON_EVNT_
SEL3

Package Uncore C-box 5 perfmon event select MSR.

DB7H 3511 MSR_C5_PMON_CTR3 Package Uncore C-box 5 perfmon counter MSR.

DB8H 3512 MSR_C5_PMON_EVNT_
SEL4

Package Uncore C-box 5 perfmon event select MSR.

DB9H 3513 MSR_C5_PMON_CTR4 Package Uncore C-box 5 perfmon counter MSR.

DBAH 3514 MSR_C5_PMON_EVNT_
SEL5

Package Uncore C-box 5 perfmon event select MSR.

DBBH 3515 MSR_C5_PMON_CTR5 Package Uncore C-box 5 perfmon counter MSR.

DC0H 3520 MSR_C3_PMON_BOX_CTRL Package Uncore C-box 3 perfmon local box control MSR.

DC1H 3521 MSR_C3_PMON_BOX_
STATUS

Package Uncore C-box 3 perfmon local box status MSR.

DC2H 3522 MSR_C3_PMON_BOX_OVF_
CTRL

Package Uncore C-box 3 perfmon local box overflow control MSR.

DD0H 3536 MSR_C3_PMON_EVNT_
SEL0

Package Uncore C-box 3 perfmon event select MSR.

DD1H 3537 MSR_C3_PMON_CTR0 Package Uncore C-box 3 perfmon counter MSR.

DD2H 3538 MSR_C3_PMON_EVNT_
SEL1

Package Uncore C-box 3 perfmon event select MSR.

DD3H 3539 MSR_C3_PMON_CTR1 Package Uncore C-box 3 perfmon counter MSR.

DD4H 3540 MSR_C3_PMON_EVNT_
SEL2

Package Uncore C-box 3 perfmon event select MSR.

DD5H 3541 MSR_C3_PMON_CTR2 Package Uncore C-box 3 perfmon counter MSR.

Table 35-11.  Additional MSRs in Intel® Xeon® Processor 7500 Series (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec



35-100 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)

DD6H 3542 MSR_C3_PMON_EVNT_SEL
3

Package Uncore C-box 3 perfmon event select MSR.

DD7H 3543 MSR_C3_PMON_CTR3 Package Uncore C-box 3 perfmon counter MSR.

DD8H 3544 MSR_C3_PMON_EVNT_
SEL4

Package Uncore C-box 3 perfmon event select MSR.

DD9H 3545 MSR_C3_PMON_CTR4 Package Uncore C-box 3 perfmon counter MSR.

DDAH 3546 MSR_C3_PMON_EVNT_
SEL5

Package Uncore C-box 3 perfmon event select MSR.

DDBH 3547 MSR_C3_PMON_CTR5 Package Uncore C-box 3 perfmon counter MSR.

DE0H 3552 MSR_C7_PMON_BOX_CTRL Package Uncore C-box 7 perfmon local box control MSR.

DE1H 3553 MSR_C7_PMON_BOX_
STATUS

Package Uncore C-box 7 perfmon local box status MSR.

DE2H 3554 MSR_C7_PMON_BOX_OVF_
CTRL

Package Uncore C-box 7 perfmon local box overflow control MSR.

DF0H 3568 MSR_C7_PMON_EVNT_
SEL0

Package Uncore C-box 7 perfmon event select MSR.

DF1H 3569 MSR_C7_PMON_CTR0 Package Uncore C-box 7 perfmon counter MSR.

DF2H 3570 MSR_C7_PMON_EVNT_
SEL1

Package Uncore C-box 7 perfmon event select MSR.

DF3H 3571 MSR_C7_PMON_CTR1 Package Uncore C-box 7 perfmon counter MSR.

DF4H 3572 MSR_C7_PMON_EVNT_
SEL2

Package Uncore C-box 7 perfmon event select MSR.

DF5H 3573 MSR_C7_PMON_CTR2 Package Uncore C-box 7 perfmon counter MSR.

DF6H 3574 MSR_C7_PMON_EVNT_
SEL3

Package Uncore C-box 7 perfmon event select MSR.

DF7H 3575 MSR_C7_PMON_CTR3 Package Uncore C-box 7 perfmon counter MSR.

DF8H 3576 MSR_C7_PMON_EVNT_
SEL4

Package Uncore C-box 7 perfmon event select MSR.

DF9H 3577 MSR_C7_PMON_CTR4 Package Uncore C-box 7 perfmon counter MSR.

DFAH 3578 MSR_C7_PMON_EVNT_
SEL5

Package Uncore C-box 7 perfmon event select MSR.

DFBH 3579 MSR_C7_PMON_CTR5 Package Uncore C-box 7 perfmon counter MSR.

E00H 3584 MSR_R0_PMON_BOX_CTRL Package Uncore R-box 0 perfmon local box control MSR.

E01H 3585 MSR_R0_PMON_BOX_
STATUS

Package Uncore R-box 0 perfmon local box status MSR.

E02H 3586 MSR_R0_PMON_BOX_OVF_
CTRL

Package Uncore R-box 0 perfmon local box overflow control MSR.

E04H 3588 MSR_R0_PMON_IPERF0_P0 Package Uncore R-box 0 perfmon IPERF0 unit Port 0 select MSR.
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E05H 3589 MSR_R0_PMON_IPERF0_P1 Package Uncore R-box 0 perfmon IPERF0 unit Port 1 select MSR.

E06H 3590 MSR_R0_PMON_IPERF0_P2 Package Uncore R-box 0 perfmon IPERF0 unit Port 2 select MSR.

E07H 3591 MSR_R0_PMON_IPERF0_P3 Package Uncore R-box 0 perfmon IPERF0 unit Port 3 select MSR.

E08H 3592 MSR_R0_PMON_IPERF0_P4 Package Uncore R-box 0 perfmon IPERF0 unit Port 4 select MSR.

E09H 3593 MSR_R0_PMON_IPERF0_P5 Package Uncore R-box 0 perfmon IPERF0 unit Port 5 select MSR.

E0AH 3594 MSR_R0_PMON_IPERF0_P6 Package Uncore R-box 0 perfmon IPERF0 unit Port 6 select MSR.

E0BH 3595 MSR_R0_PMON_IPERF0_P7 Package Uncore R-box 0 perfmon IPERF0 unit Port 7 select MSR.

E0CH 3596 MSR_R0_PMON_QLX_P0 Package Uncore R-box 0 perfmon QLX unit Port 0 select MSR.

E0DH 3597 MSR_R0_PMON_QLX_P1 Package Uncore R-box 0 perfmon QLX unit Port 1 select MSR.

E0EH 3598 MSR_R0_PMON_QLX_P2 Package Uncore R-box 0 perfmon QLX unit Port 2 select MSR.

E0FH 3599 MSR_R0_PMON_QLX_P3 Package Uncore R-box 0 perfmon QLX unit Port 3 select MSR.

E10H 3600 MSR_R0_PMON_EVNT_
SEL0

Package Uncore R-box 0 perfmon event select MSR.

E11H 3601 MSR_R0_PMON_CTR0 Package Uncore R-box 0 perfmon counter MSR.

E12H 3602 MSR_R0_PMON_EVNT_
SEL1

Package Uncore R-box 0 perfmon event select MSR.

E13H 3603 MSR_R0_PMON_CTR1 Package Uncore R-box 0 perfmon counter MSR.

E14H 3604 MSR_R0_PMON_EVNT_
SEL2

Package Uncore R-box 0 perfmon event select MSR.

E15H 3605 MSR_R0_PMON_CTR2 Package Uncore R-box 0 perfmon counter MSR.

E16H 3606 MSR_R0_PMON_EVNT_
SEL3

Package Uncore R-box 0 perfmon event select MSR.

E17H 3607 MSR_R0_PMON_CTR3 Package Uncore R-box 0 perfmon counter MSR.

E18H 3608 MSR_R0_PMON_EVNT_
SEL4

Package Uncore R-box 0 perfmon event select MSR.

E19H 3609 MSR_R0_PMON_CTR4 Package Uncore R-box 0 perfmon counter MSR.

E1AH 3610 MSR_R0_PMON_EVNT_
SEL5

Package Uncore R-box 0 perfmon event select MSR.

E1BH 3611 MSR_R0_PMON_CTR5 Package Uncore R-box 0 perfmon counter MSR.

E1CH 3612 MSR_R0_PMON_EVNT_
SEL6

Package Uncore R-box 0 perfmon event select MSR.

E1DH 3613 MSR_R0_PMON_CTR6 Package Uncore R-box 0 perfmon counter MSR.

E1EH 3614 MSR_R0_PMON_EVNT_
SEL7

Package Uncore R-box 0 perfmon event select MSR.

E1FH 3615 MSR_R0_PMON_CTR7 Package Uncore R-box 0 perfmon counter MSR.

E20H 3616 MSR_R1_PMON_BOX_CTRL Package Uncore R-box 1 perfmon local box control MSR.

E21H 3617 MSR_R1_PMON_BOX_
STATUS

Package Uncore R-box 1 perfmon local box status MSR.
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E22H 3618 MSR_R1_PMON_BOX_OVF_
CTRL

Package Uncore R-box 1 perfmon local box overflow control MSR.

E24H 3620 MSR_R1_PMON_IPERF1_P8 Package Uncore R-box 1 perfmon IPERF1 unit Port 8 select MSR.

E25H 3621 MSR_R1_PMON_IPERF1_P9 Package Uncore R-box 1 perfmon IPERF1 unit Port 9 select MSR.

E26H 3622 MSR_R1_PMON_IPERF1_
P10

Package Uncore R-box 1 perfmon IPERF1 unit Port 10 select MSR.

E27H 3623 MSR_R1_PMON_IPERF1_
P11

Package Uncore R-box 1 perfmon IPERF1 unit Port 11 select MSR.

E28H 3624 MSR_R1_PMON_IPERF1_
P12

Package Uncore R-box 1 perfmon IPERF1 unit Port 12 select MSR.

E29H 3625 MSR_R1_PMON_IPERF1_
P13

Package Uncore R-box 1 perfmon IPERF1 unit Port 13 select MSR.

E2AH 3626 MSR_R1_PMON_IPERF1_
P14

Package Uncore R-box 1 perfmon IPERF1 unit Port 14 select MSR.

E2BH 3627 MSR_R1_PMON_IPERF1_
P15

Package Uncore R-box 1 perfmon IPERF1 unit Port 15 select MSR.

E2CH 3628 MSR_R1_PMON_QLX_P4 Package Uncore R-box 1 perfmon QLX unit Port 4 select MSR.

E2DH 3629 MSR_R1_PMON_QLX_P5 Package Uncore R-box 1 perfmon QLX unit Port 5 select MSR.

E2EH 3630 MSR_R1_PMON_QLX_P6 Package Uncore R-box 1 perfmon QLX unit Port 6 select MSR.

E2FH 3631 MSR_R1_PMON_QLX_P7 Package Uncore R-box 1 perfmon QLX unit Port 7 select MSR.

E30H 3632 MSR_R1_PMON_EVNT_
SEL8

Package Uncore R-box 1 perfmon event select MSR.

E31H 3633 MSR_R1_PMON_CTR8 Package Uncore R-box 1 perfmon counter MSR.

E32H 3634 MSR_R1_PMON_EVNT_
SEL9

Package Uncore R-box 1 perfmon event select MSR.

E33H 3635 MSR_R1_PMON_CTR9 Package Uncore R-box 1 perfmon counter MSR.

E34H 3636 MSR_R1_PMON_EVNT_
SEL10

Package Uncore R-box 1 perfmon event select MSR.

E35H 3637 MSR_R1_PMON_CTR10 Package Uncore R-box 1 perfmon counter MSR.

E36H 3638 MSR_R1_PMON_EVNT_
SEL11

Package Uncore R-box 1 perfmon event select MSR.

E37H 3639 MSR_R1_PMON_CTR11 Package Uncore R-box 1 perfmon counter MSR.

E38H 3640 MSR_R1_PMON_EVNT_
SEL12

Package Uncore R-box 1 perfmon event select MSR.

E39H 3641 MSR_R1_PMON_CTR12 Package Uncore R-box 1 perfmon counter MSR.

E3AH 3642 MSR_R1_PMON_EVNT_
SEL13

Package Uncore R-box 1 perfmon event select MSR.

E3BH 3643 MSR_R1_PMON_CTR13 Package Uncore R-box 1perfmon counter MSR.

E3CH 3644 MSR_R1_PMON_EVNT_
SEL14

Package Uncore R-box 1 perfmon event select MSR.
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E3DH 3645 MSR_R1_PMON_CTR14 Package Uncore R-box 1 perfmon counter MSR.

E3EH 3646 MSR_R1_PMON_EVNT_
SEL15

Package Uncore R-box 1 perfmon event select MSR.

E3FH 3647 MSR_R1_PMON_CTR15 Package Uncore R-box 1 perfmon counter MSR.

E45H 3653 MSR_B0_PMON_MATCH Package Uncore B-box 0 perfmon local box match MSR.

E46H 3654 MSR_B0_PMON_MASK Package Uncore B-box 0 perfmon local box mask MSR.

E49H 3657 MSR_S0_PMON_MATCH Package Uncore S-box 0 perfmon local box match MSR.

E4AH 3658 MSR_S0_PMON_MASK Package Uncore S-box 0 perfmon local box mask MSR.

E4DH 3661 MSR_B1_PMON_MATCH Package Uncore B-box 1 perfmon local box match MSR.

E4EH 3662 MSR_B1_PMON_MASK Package Uncore B-box 1 perfmon local box mask MSR.

E54H 3668 MSR_M0_PMON_MM_
CONFIG

Package Uncore M-box 0 perfmon local box address match/mask config MSR.

E55H 3669 MSR_M0_PMON_ADDR_
MATCH

Package Uncore M-box 0 perfmon local box address match MSR.

E56H 3670 MSR_M0_PMON_ADDR_
MASK

Package Uncore M-box 0 perfmon local box address mask MSR.

E59H 3673 MSR_S1_PMON_MATCH Package Uncore S-box 1 perfmon local box match MSR.

E5AH 3674 MSR_S1_PMON_MASK Package Uncore S-box 1 perfmon local box mask MSR.

E5CH 3676 MSR_M1_PMON_MM_
CONFIG

Package Uncore M-box 1 perfmon local box address match/mask config MSR.

E5DH 3677 MSR_M1_PMON_ADDR_
MATCH

Package Uncore M-box 1 perfmon local box address match MSR.

E5EH 3678 MSR_M1_PMON_ADDR_
MASK

Package Uncore M-box 1 perfmon local box address mask MSR.

3B5H 965 MSR_UNCORE_PMC5 Package See Section 18.7.2.2, “Uncore Performance Event Configuration 
Facility.”
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35.6 MSRS IN THE INTEL® XEON® PROCESSOR 5600 SERIES (BASED ON INTEL® 
MICROARCHITECTURE CODE NAME WESTMERE)

Intel® Xeon® Processor 5600 Series (based on Intel® microarchitecture code name Westmere) supports the MSR 
interfaces listed in Table 35-9, Table 35-10, plus additional MSR listed in Table 35-12. These MSRs also apply to 
Intel Core i7, i5 and i3 processor family with CPUID signature DisplayFamily_DisplayModel of 06_25H and 06_2CH, 
see Table 35-1.

Table 35-12.  Additional MSRs Supported by Intel Processors 
(Based on Intel® Microarchitecture Code Name Westmere)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

1A7H 423 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

63:48 Reserved.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 35-2.
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35.7 MSRS IN THE INTEL® XEON® PROCESSOR E7 FAMILY (BASED ON INTEL® 
MICROARCHITECTURE CODE NAME WESTMERE)

Intel® Xeon® Processor E7 Family (based on Intel® microarchitecture code name Westmere) supports the MSR 
interfaces listed in Table 35-9 (except MSR address 1ADH), Table 35-10, plus additional MSR listed in Table 35-13. 

Table 35-13.  Additional MSRs Supported by Intel® Xeon® Processor E7 Family

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

1A7H 423 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Reserved

Attempt to read/write will cause #UD.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 35-2.

F40H 3904 MSR_C8_PMON_BOX_CTRL Package Uncore C-box 8 perfmon local box control MSR.

F41H 3905 MSR_C8_PMON_BOX_
STATUS

Package Uncore C-box 8 perfmon local box status MSR.

F42H 3906 MSR_C8_PMON_BOX_OVF_
CTRL

Package Uncore C-box 8 perfmon local box overflow control MSR.

F50H 3920 MSR_C8_PMON_EVNT_
SEL0

Package Uncore C-box 8 perfmon event select MSR.

F51H 3921 MSR_C8_PMON_CTR0 Package Uncore C-box 8 perfmon counter MSR.

F52H 3922 MSR_C8_PMON_EVNT_
SEL1

Package Uncore C-box 8 perfmon event select MSR.

F53H 3923 MSR_C8_PMON_CTR1 Package Uncore C-box 8 perfmon counter MSR.

F54H 3924 MSR_C8_PMON_EVNT_
SEL2

Package Uncore C-box 8 perfmon event select MSR.

F55H 3925 MSR_C8_PMON_CTR2 Package Uncore C-box 8 perfmon counter MSR.

F56H 3926 MSR_C8_PMON_EVNT_
SEL3

Package Uncore C-box 8 perfmon event select MSR.

F57H 3927 MSR_C8_PMON_CTR3 Package Uncore C-box 8 perfmon counter MSR.

F58H 3928 MSR_C8_PMON_EVNT_
SEL4

Package Uncore C-box 8 perfmon event select MSR.

F59H 3929 MSR_C8_PMON_CTR4 Package Uncore C-box 8 perfmon counter MSR.

F5AH 3930 MSR_C8_PMON_EVNT_
SEL5

Package Uncore C-box 8 perfmon event select MSR.

F5BH 3931 MSR_C8_PMON_CTR5 Package Uncore C-box 8 perfmon counter MSR.

FC0H 4032 MSR_C9_PMON_BOX_CTRL Package Uncore C-box 9 perfmon local box control MSR.

FC1H 4033 MSR_C9_PMON_BOX_
STATUS

Package Uncore C-box 9 perfmon local box status MSR.

FC2H 4034 MSR_C9_PMON_BOX_OVF_
CTRL

Package Uncore C-box 9 perfmon local box overflow control MSR.
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35.8 MSRS IN INTEL® PROCESSOR FAMILY BASED ON INTEL® 
MICROARCHITECTURE CODE NAME SANDY BRIDGE

Table 35-14 lists model-specific registers (MSRs) that are common to Intel® processor family based on Intel micro-
architecture code name Sandy Bridge. All architectural MSRs listed in Table 35-2 are supported. These processors 
have a CPUID signature with DisplayFamily_DisplayModel of 06_2AH, 06_2DH, see Table 35-1. Additional MSRs 
specific to 06_2AH are listed in Table 35-15.

FD0H 4048 MSR_C9_PMON_EVNT_
SEL0

Package Uncore C-box 9 perfmon event select MSR.

FD1H 4049 MSR_C9_PMON_CTR0 Package Uncore C-box 9 perfmon counter MSR.

FD2H 4050 MSR_C9_PMON_EVNT_
SEL1

Package Uncore C-box 9 perfmon event select MSR.

FD3H 4051 MSR_C9_PMON_CTR1 Package Uncore C-box 9 perfmon counter MSR.

FD4H 4052 MSR_C9_PMON_EVNT_
SEL2

Package Uncore C-box 9 perfmon event select MSR.

FD5H 4053 MSR_C9_PMON_CTR2 Package Uncore C-box 9 perfmon counter MSR.

FD6H 4054 MSR_C9_PMON_EVNT_
SEL3

Package Uncore C-box 9 perfmon event select MSR.

FD7H 4055 MSR_C9_PMON_CTR3 Package Uncore C-box 9 perfmon counter MSR.

FD8H 4056 MSR_C9_PMON_EVNT_
SEL4

Package Uncore C-box 9 perfmon event select MSR.

FD9H 4057 MSR_C9_PMON_CTR4 Package Uncore C-box 9 perfmon counter MSR.

FDAH 4058 MSR_C9_PMON_EVNT_
SEL5

Package Uncore C-box 9 perfmon event select MSR.

FDBH 4059 MSR_C9_PMON_CTR5 Package Uncore C-box 9 perfmon counter MSR.

Table 35-14.  MSRs Supported by Intel® Processors 
based on Intel® microarchitecture code name Sandy Bridge

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR Thread See Section 35.18, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE Thread See Section 35.18, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_
SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address Range Determination,” 
and Table 35-2.

10H 16 IA32_TIME_STAMP_
COUNTER

Thread See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Package Platform ID (R) 
See Table 35-2.

Table 35-13.  Additional MSRs Supported by Intel® Xeon® Processor E7 Family (Contd.)
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1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and Location,” and 
Table 35-2.

34H 52 MSR_SMI_COUNT Thread SMI Counter (R/O)

31:0 SMI Count (R/O) 

Count SMIs.

63:32 Reserved.

3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 35-2.

0 Lock (R/WL) 

1 Enable VMX inside SMX operation (R/WL) 

2 Enable VMX outside SMX operation (R/WL) 

14:8 SENTER local functions enables (R/WL) 

15 SENTER global functions enable (R/WL) 

79H 121 IA32_BIOS_UPDT_TRIG Core BIOS Update Trigger Register (W) 

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Thread BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Thread Performance Counter Register 

See Table 35-2.

C2H 194 IA32_PMC1 Thread Performance Counter Register 

See Table 35-2.

C3H 195 IA32_PMC2 Thread Performance Counter Register 

See Table 35-2.

C4H 196 IA32_PMC3 Thread Performance Counter Register 

See Table 35-2.

C5H 197 IA32_PMC4 Core Performance Counter Register 

See Table 35-2.

C6H 198 IA32_PMC5 Core Performance Counter Register 

See Table 35-2.

C7H 199 IA32_PMC6 Core Performance Counter Register 

See Table 35-2.

C8H 200 IA32_PMC7 Core Performance Counter Register 

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

Table 35-14.  MSRs Supported by Intel® Processors 
based on Intel® microarchitecture code name Sandy Bridge (Contd.)
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15:8 Package Maximum Non-Turbo Ratio (R/O) 

The is the ratio of the frequency that invariant TSC runs at. 
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limits for Turbo 
mode is enabled, and when set to 0, indicates Programmable Ratio 
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limits for Turbo mode are 
programmable, and when set to 0, indicates TDP Limit for Turbo 
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O) 

The is the minimum ratio (maximum efficiency) that the processor 
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name 
(consuming the least power). for the package. The default is set as 
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register 
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO) 

When set, lock bits 15:0 of this register until next reset.
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24:16 Reserved.

25 C3 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C6/C7 requests 
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C3/C6/C7 
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W) 

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W) 

When set, enables undemotion from demoted C1.

63:29 Reserved.

E4H 228 MSR_PMG_IO_CAPTURE_
BASE

Core Power Management IO Redirection in C-state (R/W) 

See http://biosbits.org.

15:0 LVL_2 Base Address (R/W) 

Specifies the base address visible to software for IO redirection. If 
IO MWAIT Redirection is enabled, reads to this address will be 
consumed by the power management logic and decoded to MWAIT 
instructions. When IO port address redirection is enabled, this is 
the IO port address reported to the OS/software.

18:16 C-state Range (R/W) 

Specifies the encoding value of the maximum C-State code name 
to be included when IO read to MWAIT redirection is enabled by 
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock Count (RW) 

See Table 35-2.

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Thread See Table 35-2.

174H 372 IA32_SYSENTER_CS Thread See Table 35-2.

175H 373 IA32_SYSENTER_ESP Thread See Table 35-2.

176H 374 IA32_SYSENTER_EIP Thread See Table 35-2.

179H 377 IA32_MCG_CAP Thread See Table 35-2.

17AH 378 IA32_MCG_STATUS Thread

Table 35-14.  MSRs Supported by Intel® Processors 
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0 RIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) can be used to restart the program. If cleared, the 
program cannot be reliably restarted.

1 EIPV

When set, bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) is directly associated with the error.

2 MCIP

When set, bit indicates that a machine check has been generated. If 
a second machine check is detected while this bit is still set, the 
processor enters a shutdown state. Software should write this bit 
to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Thread See Table 35-2.

187H 391 IA32_
PERFEVTSEL1

Thread See Table 35-2.

188H 392 IA32_
PERFEVTSEL2

Thread See Table 35-2.

189H 393 IA32_
PERFEVTSEL3

Thread See Table 35-2.

18AH 394 IA32_
PERFEVTSEL4

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18BH 395 IA32_
PERFEVTSEL5

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18CH 396 IA32_
PERFEVTSEL6

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

18DH 397 IA32_
PERFEVTSEL7

Core See Table 35-2; If CPUID.0AH:EAX[15:8] = 8

198H 408 IA32_PERF_STATUS Package See Table 35-2.

15:0 Current Performance State Value.

63:16 Reserved.

198H 408 MSR_PERF_STATUS Package

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

199H 409 IA32_PERF_CTL Thread See Table 35-2.
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19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation (R/W) 

See Table 35-2

IA32_CLOCK_MODULATION MSR was originally named 
IA32_THERM_CONTROL MSR.

3:0 On demand Clock Modulation Duty Cycle (R/W)

In 6.25% increment

4 On demand Clock Modulation Enable (R/W)

63:5 Reserved.

19BH 411 IA32_THERM_INTERRUPT Core Thermal Interrupt Control (R/W) 

See Table 35-2.

19CH 412 IA32_THERM_STATUS Core Thermal Monitor Status (R/W) 

See Table 35-2.

1A0 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W) 

Allows a variety of processor functions to be enabled and disabled.

0 Thread Fast-Strings Enable 

See Table 35-2

6:1 Reserved.

7 Thread Performance Monitoring Available (R) 

See Table 35-2.

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable (RO) 

See Table 35-2.

12 Thread Precise Event Based Sampling Unavailable (RO) 

See Table 35-2.

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology Enable (R/W) 

See Table 35-2.

18 Thread ENABLE MONITOR FSM. (R/W) See Table 35-2.

21:19 Reserved.

22 Thread Limit CPUID Maxval (R/W) 

See Table 35-2.

23 Thread xTPR Message Disable (R/W) 

See Table 35-2.

33:24 Reserved.

34 Thread XD Bit Disable (R/W) 

See Table 35-2.

37:35 Reserved.
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38 Package Turbo Mode Disable (R/W)

When set to 1 on processors that support Intel Turbo Boost 
Technology, the turbo mode feature is disabled and the IDA_Enable 
feature flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.06H: 
EAX[1] reports the processor’s support of turbo mode is enabled.

Note: the power-on default value is used by BIOS to detect 
hardware support of turbo mode. If power-on default value is 1, 
turbo mode is available in the processor. If power-on default value 
is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TARGET

Unique

15:0 Reserved.

23:16 Temperature Target (R) 

The minimum temperature at which PROCHOT# will be asserted. 
The value is degree C.

63:24 Reserved.

1A6H 422 MSR_OFFCORE_RSP_0 Thread Offcore Response Event Select Register (R/W)

1A7H 422 MSR_OFFCORE_RSP_1 Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_MGMT See http://biosbits.org.

1B0H 432 IA32_ENERGY_PERF_BIAS Package See Table 35-2.

1B1H 433 IA32_PACKAGE_THERM_
STATUS

Package See Table 35-2.

1B2H 434 IA32_PACKAGE_THERM_
INTERRUPT

Package See Table 35-2.

1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register (R/W) 

See Section 17.6.2, “Filtering of Last Branch Records.”

1C9H 457 MSR_LASTBRANCH_TOS Thread Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the 
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control (R/W) 

See Table 35-2.

1DDH 477 MSR_LER_FROM_LIP Thread Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Thread Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch 
instruction that the processor executed prior to the last exception 
that was generated or the last interrupt that was handled. 
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1F2H 498 IA32_SMRR_PHYSBASE Core See Table 35-2.

1F3H 499 IA32_SMRR_PHYSMASK Core See Table 35-2.

1FCH 508 MSR_POWER_CTL Core See http://biosbits.org.

200H 512 IA32_MTRR_PHYSBASE0 Thread See Table 35-2.

201H 513 IA32_MTRR_PHYSMASK0 Thread See Table 35-2.

202H 514 IA32_MTRR_PHYSBASE1 Thread See Table 35-2.

203H 515 IA32_MTRR_PHYSMASK1 Thread See Table 35-2.

204H 516 IA32_MTRR_PHYSBASE2 Thread See Table 35-2.

205H 517 IA32_MTRR_PHYSMASK2 Thread See Table 35-2.

206H 518 IA32_MTRR_PHYSBASE3 Thread See Table 35-2.

207H 519 IA32_MTRR_PHYSMASK3 Thread See Table 35-2.

208H 520 IA32_MTRR_PHYSBASE4 Thread See Table 35-2.

209H 521 IA32_MTRR_PHYSMASK4 Thread See Table 35-2.

20AH 522 IA32_MTRR_PHYSBASE5 Thread See Table 35-2.

20BH 523 IA32_MTRR_PHYSMASK5 Thread See Table 35-2.

20CH 524 IA32_MTRR_PHYSBASE6 Thread See Table 35-2.

20DH 525 IA32_MTRR_PHYSMASK6 Thread See Table 35-2.

20EH 526 IA32_MTRR_PHYSBASE7 Thread See Table 35-2.

20FH 527 IA32_MTRR_PHYSMASK7 Thread See Table 35-2.

210H 528 IA32_MTRR_PHYSBASE8 Thread See Table 35-2.

211H 529 IA32_MTRR_PHYSMASK8 Thread See Table 35-2.

212H 530 IA32_MTRR_PHYSBASE9 Thread See Table 35-2.

213H 531 IA32_MTRR_PHYSMASK9 Thread See Table 35-2.

250H 592 IA32_MTRR_FIX64K_
00000

Thread See Table 35-2.

258H 600 IA32_MTRR_FIX16K_
80000

Thread See Table 35-2.

259H 601 IA32_MTRR_FIX16K_
A0000

Thread See Table 35-2.

268H 616 IA32_MTRR_FIX4K_C0000 Thread See Table 35-2.

269H 617 IA32_MTRR_FIX4K_C8000 Thread See Table 35-2.

26AH 618 IA32_MTRR_FIX4K_D0000 Thread See Table 35-2.

26BH 619 IA32_MTRR_FIX4K_D8000 Thread See Table 35-2.

26CH 620 IA32_MTRR_FIX4K_E0000 Thread See Table 35-2.

26DH 621 IA32_MTRR_FIX4K_E8000 Thread See Table 35-2.
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26EH 622 IA32_MTRR_FIX4K_F0000 Thread See Table 35-2.

26FH 623 IA32_MTRR_FIX4K_F8000 Thread See Table 35-2.

277H 631 IA32_PAT Thread See Table 35-2.

280H 640 IA32_MC0_CTL2 Core See Table 35-2.

281H 641 IA32_MC1_CTL2 Core See Table 35-2.

282H 642 IA32_MC2_CTL2 Core See Table 35-2.

283H 643 IA32_MC3_CTL2 Core See Table 35-2.

284H 644 MSR_MC4_CTL2 Package Always 0 (CMCI not supported).

2FFH 767 IA32_MTRR_DEF_TYPE Thread Default Memory Types (R/W) 

See Table 35-2.

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter Register 0 (R/W)

See Table 35-2.

30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter Register 1 (R/W) 

See Table 35-2.

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter Register 2 (R/W) 

See Table 35-2.

345H 837 IA32_PERF_CAPABILITIES Thread See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR.”

5:0 LBR Format. See Table 35-2.

6 PEBS Record Format. 

7 PEBSSaveArchRegs. See Table 35-2.

11:8 PEBS_REC_FORMAT. See Table 35-2.

12 SMM_FREEZE. See Table 35-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_CTRL Thread Fixed-Function-Counter Control Register (R/W) 

See Table 35-2.

38EH 910 IA32_PERF_GLOBAL_
STAUS

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.” 

38FH 911 IA32_PERF_GLOBAL_CTRL Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

390H 912 IA32_PERF_GLOBAL_OVF_
CTRL

Thread See Table 35-2. See Section 18.4.2, “Global Counter Control 
Facilities.”

3F1H 1009 MSR_PEBS_ENABLE Thread See Section 18.7.1.1, “Precise Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved.
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32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved.

3F6H 1014 MSR_PEBS_LD_LAT Thread see See Section 18.7.1.2, “Load Latency Performance Monitoring 
Facility.”

15:0 Minimum threshold latency value of tagged load operation that will 
be counted. (R/W)

63:36 Reserved.

3F8H 1016 MSR_PKG_C3_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C3 
states. Count at the same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C6 
states. Count at the same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C7 
states. Count at the same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C3 
states. Count at the same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C6 
states. Count at the same frequency as the TSC.

3FEH 1022 MSR_CORE_C7_RESIDENCY Core Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.
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63:0 CORE C7 Residency Counter. (R/O)

Value since last reset that this core is in processor-specific C7 
states. Count at the same frequency as the TSC.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error (R/W) 

When set, enables signaling of PCU hardware detected errors. 

1 PCU Controller Error (R/W) 

When set, enables signaling of PCU controller detected errors

2 PCU Firmware Error (R/W) 

When set, enables signaling of PCU firmware detected errors

63:2 Reserved.

411H 1041 IA32_MC4_STATUS Core See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_
CTLS

Thread Capability Reporting Register of Pin-based VM-execution 
Controls (R/O) 

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_
CTLS

Thread Capability Reporting Register of Primary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”
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483H 1155 IA32_VMX_EXIT_CTLS Thread Capability Reporting Register of VM-exit Controls (R/O) 

See Table 35-2.

See Appendix A.4, “VM-Exit Controls.”

484H 1156 IA32_VMX_ENTRY_CTLS Thread Capability Reporting Register of VM-entry Controls (R/O) 

See Table 35-2.

See Appendix A.5, “VM-Entry Controls.”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX Capabilities (R/O) 

See Table 35-2.

See Appendix A.6, “Miscellaneous Data.”

486H 1158 IA32_VMX_CR0_FIXED0 Thread Capability Reporting Register of CR0 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

487H 1159 IA32_VMX_CR0_FIXED1 Thread Capability Reporting Register of CR0 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.7, “VMX-Fixed Bits in CR0.”

488H 1160 IA32_VMX_CR4_FIXED0 Thread Capability Reporting Register of CR4 Bits Fixed to 0 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

489H 1161 IA32_VMX_CR4_FIXED1 Thread Capability Reporting Register of CR4 Bits Fixed to 1 (R/O) 

See Table 35-2.

See Appendix A.8, “VMX-Fixed Bits in CR4.”

48AH 1162 IA32_VMX_VMCS_ENUM Thread Capability Reporting Register of VMCS Field Enumeration (R/O) 

See Table 35-2.

See Appendix A.9, “VMCS Enumeration.”

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Thread Capability Reporting Register of Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls.”

48CH 1164 IA32_VMX_EPT_VPID_ENU
M

Thread Capability Reporting Register of EPT and VPID (R/O) 

See Table 35-2

48DH 1165 IA32_VMX_TRUE_PINBASE
D_CTLS

Thread Capability Reporting Register of Pin-based VM-execution Flex 
Controls (R/O)

See Table 35-2

48EH 1166 IA32_VMX_TRUE_PROCBA
SED_CTLS

Thread Capability Reporting Register of Primary Processor-based 
VM-execution Flex Controls (R/O)

See Table 35-2

48FH 1167 IA32_VMX_TRUE_EXIT_CT
LS

Thread Capability Reporting Register of VM-exit Flex Controls (R/O)

See Table 35-2

490H 1168 IA32_VMX_TRUE_ENTRY_C
TLS

Thread Capability Reporting Register of VM-entry Flex Controls (R/O)

See Table 35-2

4C1H 1217 IA32_A_PMC0 Thread See Table 35-2.
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4C2H 1218 IA32_A_PMC1 Thread See Table 35-2.

4C3H 1219 IA32_A_PMC2 Thread See Table 35-2.

4C4H 1220 IA32_A_PMC3 Thread See Table 35-2.

4C5H 1221 IA32_A_PMC4 Core See Table 35-2.

4C6H 1222 IA32_A_PMC5 Core See Table 35-2.

4C7H 1223 IA32_A_PMC6 Core See Table 35-2.

4C8H 200 IA32_A_PMC7 Core See Table 35-2.

600H 1536 IA32_DS_AREA Thread DS Save Area (R/W)

See Table 35-2.

See Section 18.12.4, “Debug Store (DS) Mechanism.”

606H 1542 MSR_RAPL_POWER_UNIT Package Unit Multipliers used in RAPL Interfaces (R/O) 

See Section 14.9.1, “RAPL Interfaces.”

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit (R/W) 

Specifies the limit that should be used to decide if the package 
should be put into a package C3 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response 
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used 
by the processor for package C-sate management. 

63:16 Reserved.

60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W) 

This MSR defines the budget allocated for the package to exit from 
C6 to a C0 state, where interrupt request can be delivered to the 
core and serviced. Additional core-exit latency amy be applicable 
depending on the actual C-state the core is in. 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.
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9:0 Interrupt response time limit (R/W) 

Specifies the limit that should be used to decide if the package 
should be put into a package C6 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response 
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used 
by the processor for package C-sate management. 

63:16 Reserved.

60DH 1549 MSR_PKG_C2_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C2 
states. Count at the same frequency as the TSC.

610H 1552 MSR_PKG_POWER_LIMIT Package PKG RAPL Power Limit Control (R/W) 

See Section 14.9.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERGY_STATU
S

Package PKG Energy Status (R/O) 

See Section 14.9.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER_INFO Package PKG RAPL Parameters (R/W) See Section 14.9.3, “Package RAPL 
Domain.”

638H 1592 MSR_PP0_POWER_LIMIT Package PP0 RAPL Power Limit Control (R/W) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERGY_STATU
S

Package PP0 Energy Status (R/O) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

680H 1664 MSR_
LASTBRANCH_0_FROM_IP

Thread Last Branch Record 0 From IP (R/W)

One of sixteen pairs of last branch record registers on the last 
branch record stack. This part of the stack contains pointers to the 
source instruction for one of the last sixteen branches, 
exceptions, or interrupts taken by the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_FROM_IP

Thread Last Branch Record 1 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.
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682H 1666 MSR_
LASTBRANCH_2_FROM_IP

Thread Last Branch Record 2 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP. 

683H 1667 MSR_
LASTBRANCH_3_FROM_IP

Thread Last Branch Record 3 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_FROM_IP

Thread Last Branch Record 4 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_FROM_IP

Thread Last Branch Record 5 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_FROM_IP

Thread Last Branch Record 6 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_FROM_IP

Thread Last Branch Record 7 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_FROM_IP

Thread Last Branch Record 8 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_FROM_IP

Thread Last Branch Record 9 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_FROM_
IP

Thread Last Branch Record 10 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_FROM_
IP

Thread Last Branch Record 11 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_FROM_
IP

Thread Last Branch Record 12 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_FROM_
IP

Thread Last Branch Record 13 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_FROM_
IP

Thread Last Branch Record 14 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_FROM_
IP

Thread Last Branch Record 15 From IP (R/W)

See description of MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_TO_IP

Thread Last Branch Record 0 To IP (R/W)

One of sixteen pairs of last branch record registers on the last 
branch record stack. This part of the stack contains pointers to the 
destination instruction for one of the last sixteen branches, 
exceptions, or interrupts taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_TO_IP

Thread Last Branch Record 1 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 
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6C2H 1730 MSR_
LASTBRANCH_2_TO_IP

Thread Last Branch Record 2 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C3H 1731 MSR_
LASTBRANCH_3_TO_IP

Thread Last Branch Record 3 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C4H 1732 MSR_
LASTBRANCH_4_TO_IP

Thread Last Branch Record 4 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C5H 1733 MSR_
LASTBRANCH_5_TO_IP

Thread Last Branch Record 5 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C6H 1734 MSR_
LASTBRANCH_6_TO_IP

Thread Last Branch Record 6 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C7H 1735 MSR_
LASTBRANCH_7_TO_IP

Thread Last Branch Record 7 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C8H 1736 MSR_
LASTBRANCH_8_TO_IP

Thread Last Branch Record 8 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6C9H 1737 MSR_
LASTBRANCH_9_TO_IP

Thread Last Branch Record 9 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CAH 1738 MSR_
LASTBRANCH_10_TO_IP

Thread Last Branch Record 10 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CBH 1739 MSR_
LASTBRANCH_11_TO_IP

Thread Last Branch Record 11 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CCH 1740 MSR_
LASTBRANCH_12_TO_IP

Thread Last Branch Record 12 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CDH 1741 MSR_
LASTBRANCH_13_TO_IP

Thread Last Branch Record 13 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CEH 1742 MSR_
LASTBRANCH_14_TO_IP

Thread Last Branch Record 14 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6CFH 1743 MSR_
LASTBRANCH_15_TO_IP

Thread Last Branch Record 15 To IP (R/W)

See description of MSR_LASTBRANCH_0_TO_IP. 

6E0H 1760 IA32_TSC_DEADLINE Thread See Table 35-2.

802H-
83FH

X2APIC MSRs Thread See Table 35-2.

C000_
0080H

IA32_EFER Thread Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR Thread System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK Thread System Call Flag Mask (R/W) 

See Table 35-2.
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35.8.1  MSRs In 2nd Generation Intel® Core™ Processor Family (Based on Intel® 
Microarchitecture Code Name Sandy Bridge)

Table 35-15 lists model-specific registers (MSRs) that are specific to the 2nd generation Intel® Core™ processor 
family (based on Intel microarchitecture code name Sandy Bridge). These processors have a CPUID signature with 
DisplayFamily_DisplayModel of 06_2AH, see Table 35-1. 

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE Thread Swap Target of BASE Address of GS (R/W)

See Table 35-2.

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature (R/W)

See Table 35-2 and Section 17.13.2, “IA32_TSC_AUX Register and 
RDTSCP Support.” 

Table 35-15.  MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® microarchitecture code name 
Sandy Bridge)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select
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18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

392H 914 MSR_UNC_PERF_GLOBAL_
STATUS

Package Uncore PMU main status 

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

394H 916 MSR_UNC_PERF_FIXED_
CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow propagation

21 Reserved

22 Enable counting

63:23 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box configuration information (R/O)

3:0 Encoded number of C-Box, derive value by “-1“ 

63:4 Reserved.

3B0H 946 MSR_UNC_ARB_PER_CTR0 Package Uncore Arb unit, performance counter 0 

3B1H 947 MSR_UNC_ARB_PER_CTR1 Package Uncore Arb unit, performance counter 1

3B2H 944 MSR_UNC_ARB_
PERFEVTSEL0

Package Uncore Arb unit, counter 0 event select MSR

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

Table 35-15.  MSRs Supported by 2nd Generation Intel® Core™ Processors (Intel® microarchitecture code name 
Sandy Bridge) (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec



35-124 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)

60CH 1548 MSR_PKGC7_IRTL Package Package C7 Interrupt Response Limit (R/W) 

This MSR defines the budget allocated for the package to exit from 
C7 to a C0 state, where interrupt request can be delivered to the 
core and serviced. Additional core-exit latency amy be applicable 
depending on the actual C-state the core is in. 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-States.

9:0 Interrupt response time limit (R/W) 

Specifies the limit that should be used to decide if the package 
should be put into a package C7 state. 

12:10 Time Unit (R/W) 

Specifies the encoding value of time unit of the interrupt response 
time limit. The following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid (R/W) 

Indicates whether the values in bits 12:0 are valid and can be used 
by the processor for package C-sate management. 

63:16 Reserved.

63AH 1594 MSR_PP0_POLICY Package PP0 Balance Policy (R/W) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

63BH 1595 MSR_PP0_PERF_STATUS Package PP0 Performance Throttling Status (R/O) See Section 14.9.4, 
“PP0/PP1 RAPL Domains.”

640H 1600 MSR_PP1_POWER_LIMIT Package PP1 RAPL Power Limit Control (R/W) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATU
S

Package PP1 Energy Status (R/O) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

706H 1798 MSR_UNC_CBO_0_PER_
CTR0

Package Uncore C-Box 0, performance counter 0 
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35.8.2  MSRs In Intel® Xeon® Processor E5 Family (Based on Intel® Microarchitecture Code 
Name Sandy Bridge)

Table 35-16 lists selected model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5 Family 
(based on Intel® microarchitecture code name Sandy Bridge). These processors have a CPUID signature with 
DisplayFamily_DisplayModel of 06_2DH, see Table 35-1. 

707H 1799 MSR_UNC_CBO_0_PER_
CTR1

Package Uncore C-Box 0, performance counter 1

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

716H 1814 MSR_UNC_CBO_1_PER_
CTR0

Package Uncore C-Box 1, performance counter 0 

717H 1815 MSR_UNC_CBO_1_PER_
CTR1

Package Uncore C-Box 1, performance counter 1

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1824 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

726H 1830 MSR_UNC_CBO_2_PER_
CTR0

Package Uncore C-Box 2, performance counter 0 

727H 1831 MSR_UNC_CBO_2_PER_
CTR1

Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR.

736H 1846 MSR_UNC_CBO_3_PER_
CTR0

Package Uncore C-Box 3, performance counter 0.

737H 1847 MSR_UNC_CBO_3_PER_
CTR1

Package Uncore C-Box 3, performance counter 1.

Table 35-16.  Selected MSRs Supported by Intel® Xeon® Processors E5 Family (based on Intel® microarchitecture 
code name Sandy Bridge)
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17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved
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1 MemError Log Enable (R/W) 

When set, enables IMC status bank to log additional info in bits 
36:32.

63:2 Reserved.

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C

Maximum turbo ratio limit of 6 core active.

55:48 Package Maximum Ratio Limit for 7C

Maximum turbo ratio limit of 7 core active.

63:56 Package Maximum Ratio Limit for 8C

Maximum turbo ratio limit of 8 core active.

285H 645 IA32_MC5_CTL2 Package See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.

289H 649 IA32_MC9_CTL2 Package See Table 35-2.

28AH 650 IA32_MC10_CTL2 Package See Table 35-2.

28BH 651 IA32_MC11_CTL2 Package See Table 35-2.

28CH 652 IA32_MC12_CTL2 Package See Table 35-2.

28DH 653 IA32_MC13_CTL2 Package See Table 35-2.

28EH 654 IA32_MC14_CTL2 Package See Table 35-2.

28FH 655 IA32_MC15_CTL2 Package See Table 35-2.

290H 656 IA32_MC16_CTL2 Package See Table 35-2.

291H 657 IA32_MC17_CTL2 Package See Table 35-2.

292H 658 IA32_MC18_CTL2 Package See Table 35-2.

293H 659 IA32_MC19_CTL2 Package See Table 35-2.
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39CH 924 MSR_PEBS_NUM_ALT Package

0 ENABLE_PEBS_NUM_ALT (RW)

Write 1 to enable alternate PEBS counting logic for specific events 
requiring additional configuration, see Table 19-9

63:1 Reserved (must be zero).

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”
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433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 MSR_MC14_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 MSR_MC15_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

613H 1555 MSR_PKG_PERF_STATUS Package Package RAPL Perf Status (R/O) 

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W) 

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O) 

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5, 
“DRAM RAPL Domain.”
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35.9 MSRS IN THE 3RD GENERATION INTEL® CORE™ PROCESSOR FAMILY 
(BASED ON IVY BRIDGE MICROARCHITECTURE)

The 3rd generation Intel® Core™ processor family and Intel Xeon processor E3-1200v2 product family (based on 
Ivy Bridge microarchitecture) supports the MSR interfaces listed in Table 35-14, Table 35-15 and Table 35-17. 

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W) 

See Section 14.9.5, “DRAM RAPL Domain.”

Table 35-17.  Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Ivy Bridge 
microarchitecture)

Register 
Address Register Name
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Bit Description
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CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O) 

The is the ratio of the frequency that invariant TSC runs at. 
Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limits for Turbo 
mode is enabled, and when set to 0, indicates Programmable Ratio 
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limits for Turbo mode are 
programmable, and when set to 0, indicates TDP Limit for Turbo 
mode is not programmable.

31:30 Reserved.

32 Package Low Power Mode Support (LPM) (R/O) 

When set to 1, indicates that LPM is supported, and when set to 0, 
indicates LPM is not supported.

34:33 Package Number of ConfigTDP Levels (R/O) 

00: Only nominal TDP level available.

01: One additional TDP level available.

02: Two additional TDP level available.

11: Reserved

39:35 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O) 

The is the minimum ratio (maximum efficiency) that the processor 
can operates, in units of 100MHz.
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55:48 Package Minimum Operating Ratio (R/O) 

Contains the minimum supported

operating ratio in units of 100 MHz.

63:56 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-States.

See http://biosbits.org.

2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name 
(consuming the least power). for the package. The default is set as 
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register specified 
by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO) 

When set, lock bits 15:0 of this register until next reset.

24:16 Reserved.

25 C3 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C6/C7 requests 
to C3 based on uncore auto-demote information.

26 C1 state auto demotion enable (R/W) 

When set, the processor will conditionally demote C3/C6/C7 
requests to C1 based on uncore auto-demote information.

27 Enable C3 undemotion (R/W) 

When set, enables undemotion from demoted C3.

28 Enable C1 undemotion (R/W) 

When set, enables undemotion from demoted C1.

63:29 Reserved.

Table 35-17.  Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Ivy Bridge 
microarchitecture) (Contd.)
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648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Nominal TDP Ratio (R/O)

7:0 Config_TDP_Nominal

Nominal TDP level ratio to be used for this specific processor (in 
units of 100 MHz). 

63:8 Reserved.

649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O)

14:0 PKG_TDP_LVL1. Power setting for ConfigTDP Level 1.

15 Reserved

23:16 Config_TDP_LVL1_Ratio. ConfigTDP level 1 ratio to be used for this 
specific processor. 

31:24 Reserved

46:32 PKG_MAX_PWR_LVL1. Max Power setting allowed for ConfigTDP 
Level 1.

47 Reserved

62:48 PKG_MIN_PWR_LVL1. MIN Power setting allowed for ConfigTDP 
Level 1.

63 Reserved.

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O)

14:0 PKG_TDP_LVL2. Power setting for ConfigTDP Level 2.

15 Reserved

23:16 Config_TDP_LVL2_Ratio. ConfigTDP level 2 ratio to be used for this 
specific processor. 

31:24 Reserved

46:32 PKG_MAX_PWR_LVL2. Max Power setting allowed for ConfigTDP 
Level 2.

47 Reserved

62:48 PKG_MIN_PWR_LVL2. MIN Power setting allowed for ConfigTDP 
Level 2.

63 Reserved.

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

1:0 TDP_LEVEL (RW/L)

System BIOS can program this field. 

30:2 Reserved.

31 Config_TDP_Lock (RW/L)

When this bit is set, the content of this register is locked until a 
reset. 

63:32 Reserved.

Table 35-17.  Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Ivy Bridge 
microarchitecture) (Contd.)
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35.9.1  MSRs In Intel® Xeon® Processor E5 v2 Product Family (Based on Ivy Bridge-EP 
Microarchitecture)

Table 35-18 lists model-specific registers (MSRs) that are specific to the Intel® Xeon® Processor E5 v2 Product 
Family (based on Ivy Bridge-EP microarchitecture). These processors have a CPUID signature with 
DisplayFamily_DisplayModel of 06_3EH, see Table 35-1. These processors supports the MSR interfaces listed in 
Table 35-14, and Table 35-18. 

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

7:0 MAX_NON_TURBO_RATIO (RW/L)

System BIOS can program this field. 

30:8 Reserved.

31 TURBO_ACTIVATION_RATIO_Lock (RW/L)

When this bit is set, the content of this register is locked until a 
reset. 

63:32 Reserved.

Table 35-18.  MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-EP 
microarchitecture)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

4EH 78 MSR_PPIN_CTL Package Protected Processor Inventory Number Enable Control (R/W)

0 LockOut (R/WO)

Set 1to prevent further writes to MSR_PPIN_CTL. Writing 1 to

MSR_PPINCTL[bit 0] is permitted only if MSR_PPIN_CTL[bit 1] is

clear, Default is 0.

BIOS should provide an opt-in menu to enable the user to turn on

MSR_PPIN_CTL[bit 1] for privileged inventory initialization agent to

access MSR_PPIN. After reading MSR_PPIN, the privileged

inventory initialization agent should write ‘01b’ to MSR_PPIN_CTL

to disable further access to MSR_PPIN and prevent unauthorized

modification to MSR_PPIN_CTL.

1 Enable_PPIN (R/W)

If 1, enables MSR_PPIN to be accessible using RDMSR. Once set,

attempt to write 1 to MSR_PPIN_CTL[bit 0] will cause #GP.

If 0, an attempt to read MSR_PPIN will cause #GP. Default is 0.

63:2 Reserved.

4FH 79 MSR_PPIN Package Protected Processor Inventory Number (R/O)

Table 35-17.  Additional MSRs Supported by 3rd Generation Intel® Core™ Processors (based on Ivy Bridge 
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63:0 Protected Processor Inventory Number (R/O)

A unique value within a given CPUID family/model/stepping

signature that a privileged inventory initialization agent can access

to identify each physical processor, when access to MSR_PPIN is

enabled. Access to MSR_PPIN is permitted only if

MSR_PPIN_CTL[bits 1:0] = ‘10b’

CEH 206 MSR_PLATFORM_INFO Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio (R/O) 

The is the ratio of the frequency that invariant TSC runs at. 
Frequency = ratio * 100 MHz.

22:16 Reserved.

23 Package PPIN_CAP (R/O)

When set to 1, indicates that Protected Processor Inventory

Number (PPIN) capability can be enabled for privileged system

inventory agent to read PPIN from MSR_PPIN.

When set to 0, PPIN capability is not supported. An attempt to

access MSR_PPIN_CTL or MSR_PPIN will cause #GP.

27:24 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode (R/O) 

When set to 1, indicates that Programmable Ratio Limits for Turbo 
mode is enabled, and when set to 0, indicates Programmable Ratio 
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode (R/O) 

When set to 1, indicates that TDP Limits for Turbo mode are 
programmable, and when set to 0, indicates TDP Limit for Turbo 
mode is not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio (R/O) 

The is the minimum ratio (maximum efficiency) that the processor 
can operates, in units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CONFIG_
CONTROL

Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

Table 35-18.  MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-EP 
microarchitecture) (Contd.)
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2:0 Package C-State Limit (R/W) 

Specifies the lowest processor-specific C-state code name 
(consuming the least power). for the package. The default is set as 
factory-configured package C-state limit.

The following C-state code name encodings are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable (R/W) 

When set, will map IO_read instructions sent to IO register 
specified by MSR_PMG_IO_CAPTURE_BASE to MWAIT instructions

14:11 Reserved.

15 CFG Lock (R/WO) 

When set, lock bits 15:0 of this register until next reset.

63:16 Reserved.

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 Reserved.

26 MCG_ELOG_P

63:27 Reserved.

17FH 383 MSR_ERROR_CONTROL Package MC Bank Error Configuration (R/W)

0 Reserved

1 MemError Log Enable (R/W) 

When set, enables IMC status bank to log additional info in bits 
36:32.

63:2 Reserved.

Table 35-18.  MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-EP 
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1AEH 430 MSR_TURBO_RATIO_LIMIT
1

Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active. 

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10core active. 

23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

63:32 Reserved

285H 645 IA32_MC5_CTL2 Package See Table 35-2.

286H 646 IA32_MC6_CTL2 Package See Table 35-2.

287H 647 IA32_MC7_CTL2 Package See Table 35-2.

288H 648 IA32_MC8_CTL2 Package See Table 35-2.

289H 649 IA32_MC9_CTL2 Package See Table 35-2.

28AH 650 IA32_MC10_CTL2 Package See Table 35-2.

28BH 651 IA32_MC11_CTL2 Package See Table 35-2.

28CH 652 IA32_MC12_CTL2 Package See Table 35-2.

28DH 653 IA32_MC13_CTL2 Package See Table 35-2.

28EH 654 IA32_MC14_CTL2 Package See Table 35-2.

28FH 655 IA32_MC15_CTL2 Package See Table 35-2.

290H 656 IA32_MC16_CTL2 Package See Table 35-2.

291H 657 IA32_MC17_CTL2 Package See Table 35-2.

292H 658 IA32_MC18_CTL2 Package See Table 35-2.

293H 659 IA32_MC19_CTL2 Package See Table 35-2.

294H 660 IA32_MC20_CTL2 Package See Table 35-2.

295H 661 IA32_MC21_CTL2 Package See Table 35-2.

296H 662 IA32_MC22_CTL2 Package See Table 35-2.

297H 663 IA32_MC23_CTL2 Package See Table 35-2.

298H 664 IA32_MC24_CTL2 Package See Table 35-2.

299H 665 IA32_MC25_CTL2 Package See Table 35-2.

29AH 666 IA32_MC26_CTL2 Package See Table 35-2.

29BH 667 IA32_MC27_CTL2 Package See Table 35-2.

29CH 668 IA32_MC28_CTL2 Package See Table 35-2.

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 35-18.  MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-EP 
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415H 1045 MSR_MC5_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 35-18.  MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-EP 
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439H 1081 MSR_MC14_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 MSR_MC15_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

450H 1104 MSR_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

451H 1105 MSR_MC20_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

452H 1106 MSR_MC20_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

453H 1107 MSR_MC20_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

454H 1108 MSR_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

455H 1109 MSR_MC21_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

456H 1110 MSR_MC21_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

457H 1111 MSR_MC21_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

458H 1112 MSR_MC22_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

459H 1113 MSR_MC22_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

45AH 1114 MSR_MC22_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

45BH 1115 MSR_MC22_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

45CH 1116 MSR_MC23_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table 35-18.  MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-EP 
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35.9.2  Additional MSRs Supported by Intel® Xeon Processor E7 v2 Family

Intel® Xeon Processor E7 v2 Family (based on Ivy Bridge-EP microarchitecture) with CPUID 
DisplayFamily_DisplayModel signature 06_3EH supports the MSR interfaces listed in Table 35-14, Table 35-18, and 
Table 35-19. 

45DH 1117 MSR_MC23_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

45EH 1118 MSR_MC23_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

45FH 1119 MSR_MC23_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

460H 1120 MSR_MC24_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

461H 1121 MSR_MC24_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

462H 1122 MSR_MC24_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

463H 1123 MSR_MC24_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

464H 1124 MSR_MC25_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

465H 1125 MSR_MC25_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

466H 1126 MSR_MC25_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

467H 1127 MSR_MC25_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

468H 1128 MSR_MC26_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

469H 1129 MSR_MC26_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

46AH 1130 MSR_MC26_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

46BH 1131 MSR_MC26_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

46CH 1132 MSR_MC27_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

46DH 1133 MSR_MC27_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

46EH 1134 MSR_MC27_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

46FH 1135 MSR_MC27_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

470H 1136 MSR_MC28_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

471H 1137 MSR_MC28_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

472H 1138 MSR_MC28_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

473H 1139 MSR_MC28_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

613H 1555 MSR_PKG_PERF_STATUS Package Package RAPL Perf Status (R/O) 

618H 1560 MSR_DRAM_POWER_LIMIT Package DRAM RAPL Power Limit Control (R/W) 

See Section 14.9.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENERGY_
STATUS

Package DRAM Energy Status (R/O) 

See Section 14.9.5, “DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF_STATUS Package DRAM Performance Throttling Status (R/O) See Section 14.9.5, 
“DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWER_INFO Package DRAM RAPL Parameters (R/W) 

See Section 14.9.5, “DRAM RAPL Domain.”

Table 35-18.  MSRs Supported by Intel® Xeon® Processors E5 v2 Product Family (based on Ivy Bridge-EP 
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Table 35-19.  Additional MSRs Supported by Intel® Xeon Processors E7 v2 Family with DisplayFamily_DisplayModel 
Signature 06_3EH

Register 
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Bit Description
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3AH 58 IA32_FEATURE_CONTROL Thread Control Features in Intel 64 Processor (R/W)

See Table 35-2.

0 Lock (R/WL) 

1 Enable VMX inside SMX operation (R/WL) 

2 Enable VMX outside SMX operation (R/WL) 

14:8 SENTER local functions enables (R/WL) 

15 SENTER global functions enable (R/WL) 

20 LMCE_ON (R/WL) 

63:21 Reserved.

179H 377 IA32_MCG_CAP Thread Global Machine Check Capability (R/O)

7:0 Count

8 MCG_CTL_P

9 MCG_EXT_P

10 MCP_CMCI_P

11 MCG_TES_P

15:12 Reserved.

23:16 MCG_EXT_CNT

24 MCG_SER_P

25 Reserved.

26 MCG_ELOG_P

27 MCG_LMCE_P

63:28 Reserved.

17AH 378 IA32_MCG_STATUS Thread (R/W0)

0 RIPV

1 EIPV

2 MCIP

3 LMCE signaled

63:4 Reserved.

1AEH 430 MSR_TURBO_RATIO_LIMIT1 Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 9C

Maximum turbo ratio limit of 9 core active. 

15:8 Package Maximum Ratio Limit for 10C

Maximum turbo ratio limit of 10core active. 
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23:16 Package Maximum Ratio Limit for 11C

Maximum turbo ratio limit of 11 core active.

31:24 Package Maximum Ratio Limit for 12C

Maximum turbo ratio limit of 12 core active.

39:32 Package Maximum Ratio Limit for 13C

Maximum turbo ratio limit of 13 core active.

47:40 Package Maximum Ratio Limit for 14C

Maximum turbo ratio limit of 14 core active.

55:48 Package Maximum Ratio Limit for 15C

Maximum turbo ratio limit of 15 core active.

63:56 Reserved

29DH 669 IA32_MC29_CTL2 Package See Table 35-2.

29EH 670 IA32_MC30_CTL2 Package See Table 35-2.

29FH 671 IA32_MC31_CTL2 Package See Table 35-2.

41BH 1051 IA32_MC6_MISC Package Misc MAC information of Integrated I/O. (R/O) see Section 15.3.2.4

5:0 Recoverable Address LSB

8:6 Address Mode

15:9 Reserved

31:16 PCI Express Requestor ID

39:32 PCI Express Segment Number

63:32 Reserved

474H 1140 MSR_MC29_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

475H 1141 MSR_MC29_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

476H 1142 MSR_MC29_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

477H 1143 MSR_MC29_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

478H 1144 MSR_MC30_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

479H 1145 MSR_MC30_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

47AH 1146 MSR_MC30_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

47BH 1147 MSR_MC30_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

47CH 1148 MSR_MC31_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

47DH 1149 MSR_MC31_STATUS Package See Section 15.3.2.2, “IA32_MCi_STATUS MSRS,” and Chapter 16.

47EH 1150 MSR_MC31_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

47FH 1147 MSR_MC31_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

Table 35-19.  Additional MSRs Supported by Intel® Xeon Processors E7 v2 Family with DisplayFamily_DisplayModel 
Signature 06_3EH

Register 
Address Register Name

Scope
Bit Description

 Hex Dec
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35.10 MSRS IN THE 4TH GENERATION INTEL® CORE™ PROCESSORS (BASED ON 
HASWELL MICROARCHITECTURE)

The 4th generation Intel® Core™ processor family and Intel Xeon processor E3-1200v3 product family (based on 
Haswell microarchitecture), with CPUID DisplayFamily_DisplayModel signature 06_3CH/06_45H/06_46H, support 
the MSR interfaces listed in Table 35-14, Table 35-15, Table 35-17, and Table 35-20. 

Table 35-20.  Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell 
microarchitecture)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

3BH 59 IA32_TSC_ADJUST THREAD Per-Logical-Processor TSC ADJUST (R/W)

See Table 35-2.

CEH 206 MSR_PLATFORM_INFO Package See Table 35-17

186H 390 IA32_PERFEVTSEL0 THREAD Performance Event Select for Counter 0 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to 
prevent incorrect results

187H 391 IA32_PERFEVTSEL1 THREAD Performance Event Select for Counter 1 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to 
prevent incorrect results

188H 392 IA32_PERFEVTSEL2 THREAD Performance Event Select for Counter 2 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to 
prevent incorrect results

33 IN_TXCP: see Section 18.11.5.1

When IN_TXCP=1 & IN_TX=1 and in sampling, spurious PMI may 
occur and transactions may continuously abort near overflow 
conditions. Software should favor using IN_TXCP for counting over 
sampling. If sampling, software should use large “sample-after“ 
value after clearing the counter configured to use IN_TXCP and 
also always reset the counter even when no overflow condition 
was reported. 

189H 393 IA32_PERFEVTSEL3 THREAD Performance Event Select for Counter 3 (R/W)

Supports all fields described inTable 35-2 and the fields below.

32 IN_TX: see Section 18.11.5.1

When IN_TX (bit 32) is set, AnyThread (bit 21) should be cleared to 
prevent incorrect results

491H 1169 IA32_VMX_FMFUNC THREAD Capability Reporting Register of VM-function Controls (R/O)

See Table 35-2

648H 1608 MSR_CONFIG_TDP_
NOMINAL

Package Nominal TDP Ratio (R/O)

See Table 35-17
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649H 1609 MSR_CONFIG_TDP_LEVEL1 Package ConfigTDP Level 1 ratio and power level (R/O). See Table 35-17

64AH 1610 MSR_CONFIG_TDP_LEVEL2 Package ConfigTDP Level 2 ratio and power level (R/O). See Table 35-17

64BH 1611 MSR_CONFIG_TDP_
CONTROL

Package ConfigTDP Control (R/W)

See Table 35-17

64CH 1612 MSR_TURBO_ACTIVATION_
RATIO

Package ConfigTDP Control (R/W)

See Table 35-17

690H 1680 MSR_CORE_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in Processor Cores (R/W)

(frequency refers to processor core frequency)

0 PROCHOT Status (R0)

When set, processor core frequency is reduced below the operating 
system request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system 
request due to Processor Graphics driver override.

5 Autonomous Utilization-Based Frequency Control Status (R0)

When set, frequency is reduced below the operating system 
request because the processor has detected that utilization is low.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system 
request due to electrical design point constraints (e.g. maximum 
electrical current consumption).

9 Core Power Limiting Status (R0)

When set, frequency is reduced below the operating system 
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system 
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system 
request due to package-level power limiting PL2.

12 Max Turbo Limit Status (R0)

When set, frequency is reduced below the operating system 
request due to multi-core turbo limits.

Table 35-20.  Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell 
microarchitecture) (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec
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13 Turbo Transition Attenuation Status (R0)

When set, frequency is reduced below the operating system 
request due to Turbo transition attenuation. This prevents 
performance degradation due to frequent operating ratio changes.

15:14 Reserved 

16 PROCHOT Log 

When set, indicates that the corresponding PROCHOT Status bit is 
set. Software can write 0 to this bit to clear PROCHOT Status.

17 Thermal Log 

When set, indicates that the corresponding Thermal status bit was 
set since it was last cleared by software. Software can write 0 to 
this bit to clear Thermal Status.

19:18 Reserved.

20 Graphics Driver Log 

When set, indicates that the corresponding Graphics Driver status 
bit was set since it was last cleared by software. Software can 
write 0 to this bit to clear Graphics Driver Status.

21 Autonomous Utilization-Based Frequency Control Log 

When set, indicates that the corresponding Autonomous 
Utilization-Based Frequency Control status bit was set since it was 
last cleared by software. Software can write 0 to this bit to clear 
Autonomous Utilization-Based Frequency Control Status.

22 VR Therm Alert Log 

When set, indicates that the corresponding VR Therm Alert Status 
bit was set since it was last cleared by software. Software can 
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

24 Electrical Design Point Log 

When set, indicates that the corresponding EDP Status bit was set 
since it was last cleared by software. Software can write 0 to this 
bit to clear EDP Status.

25 Core Power Limiting Log 

When set, indicates that the corresponding Core Power Limiting 
Status bit was set since it was last cleared by software. Software 
can write 0 to this bit to clear Core Power Limiting Status.

26 Package-Level PL1 Power Limiting Log 

When set, indicates that the corresponding Package-level Power 
Limiting PL1 Status bit was set since it was last cleared by 
software. Software can write 0 to this bit to clear Package-level 
Power Limiting PL1 Status.

Table 35-20.  Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell 
microarchitecture) (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec
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27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power 
Limiting PL2 Status bit was set since it was last cleared by 
software. Software can write 0 to this bit to clear Package-level 
Power Limiting PL2 Status.

28 Max Turbo Limit Log

When set, indicates that the corresponding Max Turbo Limit Status 
bit was set since it was last cleared by software. Software can 
write 0 to this bit to clear Max Turbo Limit Status.

29 Turbo Transition Attenuation Log

When set, indicates that the corresponding Turbo Transition 
Attenuation Status bit was set since it was last cleared by 
software. Software can write 0 to this bit to clear Turbo Transition 
Attenuation Status.

63:30 Reserved.

6B0H 1712 MSR_GRAPHICS_PERF_LIMI
T_REASONS

Package Indicator of Frequency Clipping in the Processor Graphics (R/W)

(frequency refers to processor graphics frequency)

0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system 
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal event.

3:2 Reserved.

4 Graphics Driver Status (R0)

When set, frequency is reduced below the operating system 
request due to Processor Graphics driver override.

5 Reserved.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system 
request due to electrical design point constraints (e.g. maximum 
electrical current consumption).

9 Graphics Power Limiting Status (R0)

When set, frequency is reduced below the operating system 
request due to domain-level power limiting.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system 
request due to package-level power limiting PL1.

Table 35-20.  Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell 
microarchitecture) (Contd.)
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Address Register Name

Scope
Bit Description

 Hex Dec
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11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system 
request due to package-level power limiting PL2.

15:12 Reserved 

16 PROCHOT Log 

When set, indicates that the corresponding PROCHOT Status bit is 
set. Software can write 0 to this bit to clear PROCHOT Status.

17 Thermal Log 

When set, indicates that the corresponding Thermal status bit was 
set since it was last cleared by software. Software can write 0 to 
this bit to clear Thermal Status.

19:18 Reserved.

20 Graphics Driver Log 

When set, indicates that the corresponding Graphics Driver status 
bit was set since it was last cleared by software. Software can 
write 0 to this bit to clear Graphics Driver Status.

21 Reserved.

22 VR Therm Alert Log 

When set, indicates that the corresponding VR Therm Alert Status 
bit was set since it was last cleared by software. Software can 
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

24 Electrical Design Point Log 

When set, indicates that the corresponding EDP Status bit was set 
since it was last cleared by software. Software can write 0 to this 
bit to clear EDP Status.

25 Graphics Power Limiting Log 

When set, indicates that the corresponding Graphics Power Limiting 
Status bit was set since it was last cleared by software. Software 
can write 0 to this bit to clear Graphics Power Limiting Status.

26 Package-Level PL1 Power Limiting Log 

When set, indicates that the corresponding Package-level Power 
Limiting PL1 Status bit was set since it was last cleared by 
software. Software can write 0 to this bit to clear Package-level 
Power Limiting PL1 Status.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power 
Limiting PL2 Status bit was set since it was last cleared by 
software. Software can write 0 to this bit to clear Package-level 
Power Limiting PL2 Status.

63:28 Reserved.

6B1H 1713 MSR_RING_PERF_LIMIT_RE
ASONS

Package Indicator of Frequency Clipping in the Ring Interconnect (R/W)

(frequency refers to ring interconnect in the uncore)

Table 35-20.  Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell 
microarchitecture) (Contd.)
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Bit Description
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0 PROCHOT Status (R0)

When set, frequency is reduced below the operating system 
request due to assertion of external PROCHOT.

1 Thermal Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal event.

5:2 Reserved.

6 VR Therm Alert Status (R0)

When set, frequency is reduced below the operating system 
request due to a thermal alert from the Voltage Regulator.

7 Reserved.

8 Electrical Design Point Status (R0)

When set, frequency is reduced below the operating system 
request due to electrical design point constraints (e.g. maximum 
electrical current consumption).

9 Reserved.

10 Package-Level Power Limiting PL1 Status (R0)

When set, frequency is reduced below the operating system 
request due to package-level power limiting PL1.

11 Package-Level PL2 Power Limiting Status (R0)

When set, frequency is reduced below the operating system 
request due to package-level power limiting PL2.

15:12 Reserved 

16 PROCHOT Log 

When set, indicates that the corresponding PROCHOT Status bit is 
set. Software can write 0 to this bit to clear PROCHOT Status.

17 Thermal Log 

When set, indicates that the corresponding Thermal status bit was 
set since it was last cleared by software. Software can write 0 to 
this bit to clear Thermal Status.

21:18 Reserved.

22 VR Therm Alert Log 

When set, indicates that the corresponding VR Therm Alert Status 
bit was set since it was last cleared by software. Software can 
write 0 to this bit to clear VR Therm Alert Status.

23 Reserved.

24 Electrical Design Point Log 

When set, indicates that the corresponding EDP Status bit was set 
since it was last cleared by software. Software can write 0 to this 
bit to clear EDP Status.

25 Reserved.

Table 35-20.  Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell 
microarchitecture) (Contd.)
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Bit Description
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35.10.1  Additional MSRs Supported by 4th Generation Intel® Core™ Processors

The 4th generation Intel® Core™ processor family (based on Haswell microarchitecture) with CPUID 
DisplayFamily_DisplayModel signature 06_45H supports the MSR interfaces listed in Table 35-14, Table 35-15, 
Table 35-17, Table 35-20, and Table 35-21. 

26 Package-Level PL1 Power Limiting Log 

When set, indicates that the corresponding Package-level Power 
Limiting PL1 Status bit was set since it was last cleared by 
software. Software can write 0 to this bit to clear Package-level 
Power Limiting PL1 Status.

27 Package-Level PL2 Power Limiting Log

When set, indicates that the corresponding Package-level Power 
Limiting PL2 Status bit was set since it was last cleared by 
software. Software can write 0 to this bit to clear Package-level 
Power Limiting PL2 Status.

63:28 Reserved.

C80H 32 IA32_DEBUG_FEATURE Package Silicon Debug Feature Control (R/W)

See Table 35-2.

Table 35-21.  Additional MSRs Supported by 4th Generation Intel® Core™ Processors with 
DisplayFamily_DisplayModel Signature 06_45H

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

630H 1584 MSR_PKG_C8_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-States.

59:0 Package C8 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C8 
states. Count at the same frequency as the TSC.

63:60 Reserved

631H 1585 MSR_PKG_C9_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-States.

59:0 Package C9 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C9 
states. Count at the same frequency as the TSC.

63:60 Reserved

632H 1586 MSR_PKG_C10_RESIDENCY Package Note: C-state values are processor specific C-state code names, 
unrelated to MWAIT extension C-state parameters or ACPI C-States.

59:0 Package C10 Residency Counter. (R/O)

Value since last reset that this package is in processor-specific C10 
states. Count at the same frequency as the TSC.

63:60 Reserved

Table 35-20.  Additional MSRs Supported by 4th Generation Intel® Core Processors (based on Haswell 
microarchitecture) (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec
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35.10.2  MSRs in 4th Generation Intel® Core™ Processor Family (based on Haswell 
Microarchitecture)

Table 35-22 lists model-specific registers (MSRs) that are specific to 4th generation Intel® Core™ processor family 
and Intel Xeon processor E3-1200 v3 product family (based on Haswell microarchitecture). These processors have 
a CPUID signature with DisplayFamily_DisplayModel of 06_3CH/06_45H/06_46H, see Table 35-1. 

Table 35-22.  MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

17DH 390 MSR_SMM_MCA_CAP THREAD Enhanced SMM Capabilities (SMM-RO)

Reports SMM capability Enhancement. Accessible only while in 
SMM.

57:0 Reserved

58 SMM_Code_Access_Chk (SMM-RO)

If set to 1 indicates that the SMM code access restriction is 
supported and the MSR_SMM_FEATURE_CONTROL is supported.

59 Long_Flow_Indication (SMM-RO)

If set to 1 indicates that the SMM long flow indicator is supported 
and the MSR_SMM_DELAYED is supported.

63:60 Reserved

1ADH 429 MSR_TURBO_RATIO_LIMIT Package Maximum Ratio Limit of Turbo Mode

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.
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392H 914 MSR_UNC_PERF_GLOBAL_
STATUS

Package Uncore PMU main status 

0 Fixed counter overflowed

1 An ARB counter overflowed

2 Reserved

3 A CBox counter overflowed (on any slice)

63:4 Reserved.

394H 916 MSR_UNC_PERF_FIXED_
CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow propagation

21 Reserved

22 Enable counting

63:23 Reserved.

395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

396H 918 MSR_UNC_CBO_CONFIG Package Uncore C-Box configuration information (R/O)

3:0 Encoded number of C-Box, derive value by “-1“ 

63:4 Reserved.

3B0H 946 MSR_UNC_ARB_PER_CTR0 Package Uncore Arb unit, performance counter 0 

3B1H 947 MSR_UNC_ARB_PER_CTR1 Package Uncore Arb unit, performance counter 1

3B2H 944 MSR_UNC_ARB_
PERFEVTSEL0

Package Uncore Arb unit, counter 0 event select MSR

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

391H 913 MSR_UNC_PERF_GLOBAL_
CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved.

29 Enable all uncore counters

30 Enable wake on PMI

31 Enable Freezing counter when overflow

63:32 Reserved.

Table 35-22.  MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)
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Bit Description
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395H 917 MSR_UNC_PERF_FIXED_
CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

3B3H 945 MSR_UNC_ARB_
PERFEVTSEL1

Package Uncore Arb unit, counter 1 event select MSR

4E0H 1248 MSR_SMM_FEATURE_CONT
ROL

Package Enhanced SMM Feature Control (SMM-RW)

Reports SMM capability Enhancement. Accessible only while in 
SMM.

0 Lock (SMM-RWO)

When set to ‘1’ locks this register from further changes

1 Reserved

2 SMM_Code_Chk_En (SMM-RW)

This control bit is available only if MSR_SMM_MCA_CAP[58] == 1. 
When set to ‘0’ (default) none of the logical processors are 
prevented from executing SMM code outside the ranges defined by 
the SMRR. 

When set to ‘1’ any logical processor in the package that attempts 
to execute SMM code not within the ranges defined by the SMRR 
will assert an unrecoverable MCE.

63:3 Reserved

4E2H 1250 MSR_SMM_DELAYED Package SMM Delayed (SMM-RO)

Reports the interruptible state of all logical processors in the 
package . Available only while in SMM and 
MSR_SMM_MCA_CAP[LONG_FLOW_INDICATION] == 1.

N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its state in a long flow of 
internal operation which delays servicing an interrupt. The 
corresponding bit will be set at the start of long events such as: 
Microcode Update Load, C6, WBINVD, Ratio Change, Throttle. 

The bit is automatically cleared at the end of each long event. The 
reset value of this field is 0.

Only bit positions below N = CPUID.(EAX=0BH, 
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

4E3H 1251 MSR_SMM_BLOCKED Package SMM Blocked (SMM-RO)

Reports the blocked state of all logical processors in the package . 
Available only while in SMM.

Table 35-22.  MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)
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N-1:0 LOG_PROC_STATE (SMM-RO)

Each bit represents a logical processor of its blocked state to 
service an SMI. The corresponding bit will be set if the logical 
processor is in one of the following states: Wait For SIPI or SENTER 
Sleep. 

The reset value of this field is 0FFFH.

Only bit positions below N = CPUID.(EAX=0BH, 
ECX=PKG_LVL):EBX[15:0] can be updated.

63:N Reserved

640H 1600 MSR_PP1_POWER_LIMIT Package PP1 RAPL Power Limit Control (R/W) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERGY_STATU
S

Package PP1 Energy Status (R/O) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W) 

See Section 14.9.4, “PP0/PP1 RAPL Domains.”

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

706H 1798 MSR_UNC_CBO_0_PER_
CTR0

Package Uncore C-Box 0, performance counter 0 

707H 1799 MSR_UNC_CBO_0_PER_
CTR1

Package Uncore C-Box 0, performance counter 1

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

716H 1814 MSR_UNC_CBO_1_PER_
CTR0

Package Uncore C-Box 1, performance counter 0 

717H 1815 MSR_UNC_CBO_1_PER_
CTR1

Package Uncore C-Box 1, performance counter 1

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1824 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

726H 1830 MSR_UNC_CBO_2_PER_
CTR0

Package Uncore C-Box 2, performance counter 0 

727H 1831 MSR_UNC_CBO_2_PER_
CTR1

Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR.

Table 35-22.  MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)
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35.11 MSRS IN NEXT GENERATION INTEL® XEON® PROCESSORS 

The following MSRs are available in next generation of Intel® Xeon® Processor Family (CPUID 
DisplayFamily_DisplayModel = 06_3F) if CPUID.(EAX=07H, ECX=0):EBX.QoS[bit 12] = 1. 

35.12 MSRS IN THE NEXT GENERATION INTEL® CORE™ PROCESSORS

The next generation Intel® Core™ processor family, with CPUID DisplayFamily_DisplayModel signature 06_3DH, 
supports the MSR interfaces listed in Table 35-14, Table 35-15, Table 35-17, and Table 35-20. 

35.13 MSRS IN FUTURE GENERATION INTEL® CORE™ PROCESSORS

Future generation Intel® Core™ processor family, with CPUID DisplayFamily_DisplayModel signature 06_4DH, 
supports the MSR interfaces listed in Table 35-14, Table 35-15, Table 35-17, Table 35-20, and Table 35-24. 

736H 1846 MSR_UNC_CBO_3_PER_
CTR0

Package Uncore C-Box 3, performance counter 0.

737H 1847 MSR_UNC_CBO_3_PER_
CTR1

Package Uncore C-Box 3, performance counter 1.

Table 35-23.  Additional MSRs Supported by Next Generation Intel® Xeon® Processors 

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

C8DH 3113 IA32_QM_EVTSEL THREAD QoS Monitoring Event Select Register (R/W).

7:0 EventID (RW)

31:8 Reserved.

41:32 RMID (RW)

63:42 Reserved.

C8EH 3114 IA32_QM_CTR THREAD QoS Monitoring Counter Register (R/O).

61:0 Resource Monitored Data 

62 Unavailable: If 1, indicates data for this RMID is not available or not 
monitored for this resource or RMID.

63 Error: If 1, indicates and unsupported RMID or event type was 
written to IA32_PQR_QM_EVTSEL.

C8FH 3115 IA32_PQR_ASSOC THREAD QoS Resource Association Register (R/W).

9:0 RMID 

63: 10 Reserved

Table 35-22.  MSRs Supported by 4th Generation Intel® Core™ Processors (Haswell microarchitecture) (Contd.)
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Table 35-24.  Additional MSRs Supported by Future Generation Intel® Core™ Processors with 
DisplayFamily_DisplayModel Signature 06_4DH

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

64EH 1615 MSR_PPERF THREAD Productive Performance Count. (R/O).

63:0 Hardware’s view of workload scalability. See Section 14.4.5.1

652H 1614 MSR_PKG_HDC_CONFIG Package HDC Configuration (R/W).

2:0 PKG_Cx_Monitor. 

Configures Package Cx state threshold for 
MSR_PKG_HDC_DEEP_RESIDENCY

63: 3 Reserved

653H 1615 MSR_CORE_HDC_Residency Core Core HDC Idle Residency. (R/O).

63:0 Core_Cx_Duty_Cycle_Cnt. 

655H 1617 MSR_PKG_HDC_SHALLOW_
Residency

Package Accumulate the cycles the package was in C2 state and at least one 
logical processor was in forced idle. (R/O).

63:0 Pkg_C2_Duty_Cycle_Cnt. 

656H 1618 MSR_PKG_HDC_DEEP_Resid
ency

Package Package Cx HDC Idle Residency. (R/O).

63:0 Pkg_Cx_Duty_Cycle_Cnt. 

658H 1620 MSR_WEIGHTED_CORE_C0 Package Core-count Weighted C0 Residency. (R/O).

63:0 Increment at the same rate as the TSC. The increment each cycle is 
weighted by the number of processor cores in the package that 
reside in C0. If N cores are simultaneously in C0, then each cycle the 
counter increments by N. 

659H 1621 MSR_ANY_CORE_C0 Package Any Core C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is 
one if any processor core in the package is in C0. 

65AH 1622 MSR_ANY_GFXE_C0 Package Any Graphics Engine C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is 
one if any processor graphic device’s compute engines are in C0. 

65BH 1623 MSR_CORE_GFXE_OVERLA
P_C0

Package Core and Graphics Engine Overlapped C0 Residency. (R/O)

63:0 Increment at the same rate as the TSC. The increment each cycle is 
one if at least one compute engine of the processor graphics is in 
C0 and at least one processor core in the package is also in C0. 

770H 1904 IA32_PM_ENABLE Package See Section 14.4.2, “Enabling HWP”

771H 1905 IA32_HWP_CAPABILITIES Thread See Section 14.4.3, “HWP Performance Range and Dynamic 
Capabilities”

772H 1906 IA32_HWP_REQUEST_PKG Package See Section 14.4.4, “Managing HWP”

773H 1907 IA32_HWP_INTERRUPT Thread See Section 14.4.6, “HWP Notifications”

774H 1908 IA32_HWP_REQUEST Thread See Section 14.4.4, “Managing HWP”

777H 1911 IA32_HWP_STATUS Thread See Section 14.4.5, “HWP Feedback”

DB0H 3504 IA32_PKG_HDC_CTL Package See Section 14.5.2, “Package level Enabling HDC”
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35.14 MSRS IN THE PENTIUM® 4 AND INTEL® XEON® PROCESSORS

Table 35-25 lists MSRs (architectural and model-specific) that are defined across processor generations based on 
Intel NetBurst microarchitecture. The processor can be identified by its CPUID signatures of DisplayFamily 
encoding of 0FH, see Table 35-1.
• MSRs with an “IA32_” prefix are designated as “architectural.” This means that the functions of these MSRs and 

their addresses remain the same for succeeding families of IA-32 processors.
• MSRs with an “MSR_” prefix are model specific with respect to address functionalities. The column “Model Avail-

ability” lists the model encoding value(s) within the Pentium 4 and Intel Xeon processor family at the specified 
register address. The model encoding value of a processor can be queried using CPUID. See “CPUID—CPU 
Identification” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

DB1H 3505 IA32_PM_CTL1 Thread See Section 14.5.3, “Logical-Processor Level HDC Control”

DB2H 3506 IA32_THREAD_STALL Thread See Section 14.5.4.1, “IA32_THREAD_STALL”

Table 35-25.  MSRs in the Pentium® 4 and Intel® Xeon® Processors 

Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR 0, 1, 2, 3, 
4, 6

Shared See Section 35.18, “MSRs in Pentium Processors.”

1H 1 IA32_P5_MC_TYPE 0, 1, 2, 3, 
4, 6

Shared See Section 35.18, “MSRs in Pentium Processors.”

6H 6 IA32_MONITOR_FILTER_LINE_
SIZE

3, 4, 6 Shared See Section 8.10.5, “Monitor/Mwait Address 
Range Determination.”

10H 16 IA32_TIME_STAMP_COUNTER 0, 1, 2, 3, 
4, 6

Unique Time Stamp Counter

See Table 35-2.

On earlier processors, only the lower 32 bits are 
writable. On any write to the lower 32 bits, the 
upper 32 bits are cleared. For processor family 
0FH, models 3 and 4: all 64 bits are writable.

17H 23 IA32_PLATFORM_ID 0, 1, 2, 3, 
4, 6

Shared Platform ID (R) 

See Table 35-2.

The operating system can use this MSR to 
determine “slot” information for the processor and 
the proper microcode update to load.

1BH 27 IA32_APIC_BASE 0, 1, 2, 3, 
4, 6

Unique APIC Location and Status (R/W)

See Table 35-2. See Section 10.4.4, “Local APIC 
Status and Location.”

2AH 42 MSR_EBC_HARD_POWERON 0, 1, 2, 3, 
4, 6

Shared Processor Hard Power-On Configuration

(R/W) Enables and disables processor features; 

(R) indicates current processor configuration.

Table 35-24.  Additional MSRs Supported by Future Generation Intel® Core™ Processors with 
DisplayFamily_DisplayModel Signature 06_4DH

Register 
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 Hex Dec
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0 Output Tri-state Enabled (R)

Indicates whether tri-state output is enabled (1) 
or disabled (0) as set by the strapping of SMI#. 
The value in this bit is written on the deassertion 
of RESET#; the bit is set to 1 when the address 
bus signal is asserted.

1 Execute BIST (R) 

Indicates whether the execution of the BIST is 
enabled (1) or disabled (0) as set by the strapping 
of INIT#. The value in this bit is written on the 
deassertion of RESET#; the bit is set to 1 when 
the address bus signal is asserted.

2 In Order Queue Depth (R)

Indicates whether the in order queue depth for 
the system bus is 1 (1) or up to 12 (0) as set by 
the strapping of A7#. The value in this bit is 
written on the deassertion of RESET#; the bit is 
set to 1 when the address bus signal is asserted.

3 MCERR# Observation Disabled (R)

Indicates whether MCERR# observation is enabled 
(0) or disabled (1) as determined by the strapping 
of A9#. The value in this bit is written on the 
deassertion of RESET#; the bit is set to 1 when 
the address bus signal is asserted.

4 BINIT# Observation Enabled (R)

Indicates whether BINIT# observation is enabled 
(0) or disabled (1) as determined by the strapping 
of A10#. The value in this bit is written on the 
deassertion of RESET#; the bit is set to 1 when 
the address bus signal is asserted.

6:5 APIC Cluster ID (R) 

Contains the logical APIC cluster ID value as set by 
the strapping of A12# and A11#. The logical 
cluster ID value is written into the field on the 
deassertion of RESET#; the field is set to 1 when 
the address bus signal is asserted.

7 Bus Park Disable (R) 

Indicates whether bus park is enabled (0) or 
disabled (1) as set by the strapping of A15#. The 
value in this bit is written on the deassertion of 
RESET#; the bit is set to 1 when the address bus 
signal is asserted.

11:8 Reserved.

Table 35-25.  MSRs in the Pentium® 4 and Intel® Xeon® Processors  (Contd.)
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13:12 Agent ID (R) 

Contains the logical agent ID value as set by the 
strapping of BR[3:0]. The logical ID value is 
written into the field on the deassertion of 
RESET#; the field is set to 1 when the address bus 
signal is asserted.

63:14 Reserved.

2BH 43 MSR_EBC_SOFT_POWERON 0, 1, 2, 3, 
4, 6

Shared Processor Soft Power-On Configuration (R/W) 

Enables and disables processor features.

0 RCNT/SCNT On Request Encoding Enable (R/W) 

Controls the driving of RCNT/SCNT on the request 
encoding. Set to enable (1); clear to disabled (0, 
default).

1 Data Error Checking Disable (R/W) 

Set to disable system data bus parity checking; 
clear to enable parity checking.

2 Response Error Checking Disable (R/W) 

Set to disable (default); clear to enable. 

3 Address/Request Error Checking Disable (R/W) 

Set to disable (default); clear to enable.

4 Initiator MCERR# Disable (R/W)

Set to disable MCERR# driving for initiator bus 
requests (default); clear to enable. 

5 Internal MCERR# Disable (R/W)

Set to disable MCERR# driving for initiator internal 
errors (default); clear to enable. 

6 BINIT# Driver Disable (R/W) 

Set to disable BINIT# driver (default); clear to 
enable driver.

63:7 Reserved.

2CH 44 MSR_EBC_FREQUENCY_ID 2,3, 4, 6 Shared Processor Frequency Configuration

The bit field layout of this MSR varies according to 
the MODEL value in the CPUID version 
information. The following bit field layout applies 
to Pentium 4 and Xeon Processors with MODEL 
encoding equal or greater than 2. 

(R) The field Indicates the current processor 
frequency configuration.

15:0 Reserved.

Table 35-25.  MSRs in the Pentium® 4 and Intel® Xeon® Processors  (Contd.)
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18:16 Scalable Bus Speed (R/W)

Indicates the intended scalable bus speed:

EncodingScalable Bus Speed
000B 100 MHz (Model 2)
000B 266 MHz (Model 3 or 4)
001B 133 MHz
010B 200 MHz
011B 166 MHz
100B 333 MHz (Model 6)

133.33 MHz should be utilized if performing 
calculation with System Bus Speed when encoding 
is 001B. 

166.67 MHz should be utilized if performing 
calculation with System Bus Speed when encoding 
is 011B.

266.67 MHz should be utilized if performing 
calculation with System Bus Speed when encoding 
is 000B and model encoding = 3 or 4.

333.33 MHz should be utilized if performing 
calculation with System Bus Speed when encoding 
is 100B and model encoding = 6.

All other values are reserved.

23:19 Reserved.

31:24 Core Clock Frequency to System Bus 
Frequency Ratio (R)

The processor core clock frequency to system bus 
frequency ratio observed at the de-assertion of 
the reset pin.

63:25 Reserved.

2CH 44 MSR_EBC_FREQUENCY_ID 0, 1 Shared Processor Frequency Configuration (R) 

The bit field layout of this MSR varies according to 
the MODEL value of the CPUID version 
information. This bit field layout applies to 
Pentium 4 and Xeon Processors with MODEL 
encoding less than 2.

Indicates current processor frequency 
configuration.

20:0 Reserved.

23:21 Scalable Bus Speed (R/W)

Indicates the intended scalable bus speed:

Encoding Scalable Bus Speed
000B 100 MHz

All others values reserved.

63:24 Reserved.

Table 35-25.  MSRs in the Pentium® 4 and Intel® Xeon® Processors  (Contd.)
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3AH 58 IA32_FEATURE_CONTROL 3, 4, 6 Unique Control Features in IA-32 Processor (R/W)

See Table 35-2

(If CPUID.01H:ECX.[bit 5])

79H 121 IA32_BIOS_UPDT_TRIG 0, 1, 2, 3, 
4, 6

Shared BIOS Update Trigger Register (W) 

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID 0, 1, 2, 3, 
4, 6

Unique BIOS Update Signature ID (R/W)

See Table 35-2.

9BH 155 IA32_SMM_MONITOR_CTL 3, 4, 6 Unique SMM Monitor Configuration (R/W)

See Table 35-2.

FEH 254 IA32_MTRRCAP 0, 1, 2, 3, 
4, 6

Unique MTRR Information

See Section 11.11.1, “MTRR Feature 
Identification.”.

174H 372 IA32_SYSENTER_CS 0, 1, 2, 3, 
4, 6

Unique CS register target for CPL 0 code (R/W)

See Table 35-2.

See Section 5.8.7, “Performing Fast Calls to 
System Procedures with the SYSENTER and 
SYSEXIT Instructions.”

175H 373 IA32_SYSENTER_ESP 0, 1, 2, 3, 
4, 6

Unique Stack pointer for CPL 0 stack (R/W)

See Table 35-2.

See Section 5.8.7, “Performing Fast Calls to 
System Procedures with the SYSENTER and 
SYSEXIT Instructions.”

176H 374 IA32_SYSENTER_EIP 0, 1, 2, 3, 
4, 6

Unique CPL 0 code entry point (R/W)

See Table 35-2. See Section 5.8.7, “Performing 
Fast Calls to System Procedures with the 
SYSENTER and SYSEXIT Instructions.”

179H 377 IA32_MCG_CAP 0, 1, 2, 3, 
4, 6

Unique Machine Check Capabilities (R)

See Table 35-2. See Section 15.3.1.1, 
“IA32_MCG_CAP MSR.”

17AH 378 IA32_MCG_STATUS 0, 1, 2, 3, 
4, 6

Unique Machine Check Status. (R)

See Table 35-2. See Section 15.3.1.2, 
“IA32_MCG_STATUS MSR.”

17BH 379 IA32_MCG_CTL Machine Check Feature Enable (R/W)

See Table 35-2.

See Section 15.3.1.3, “IA32_MCG_CTL MSR.”

180H 384 MSR_MCG_RAX 0, 1, 2, 3, 
4, 6

Unique Machine Check EAX/RAX Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.
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181H 385 MSR_MCG_RBX 0, 1, 2, 3, 
4, 6

Unique Machine Check EBX/RBX Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

182H 386 MSR_MCG_RCX 0, 1, 2, 3, 
4, 6

Unique Machine Check ECX/RCX Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

183H 387 MSR_MCG_RDX 0, 1, 2, 3, 
4, 6

Unique Machine Check EDX/RDX Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

184H 388 MSR_MCG_RSI 0, 1, 2, 3, 
4, 6

Unique Machine Check ESI/RSI Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

185H 389 MSR_MCG_RDI 0, 1, 2, 3, 
4, 6

Unique Machine Check EDI/RDI Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

186H 390 MSR_MCG_RBP 0, 1, 2, 3, 
4, 6

Unique Machine Check EBP/RBP Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

187H 391 MSR_MCG_RSP 0, 1, 2, 3, 
4, 6

Unique Machine Check ESP/RSP Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

188H 392 MSR_MCG_RFLAGS 0, 1, 2, 3, 
4, 6

Unique Machine Check EFLAGS/RFLAG Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”
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63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

189H 393 MSR_MCG_RIP 0, 1, 2, 3, 
4, 6

Unique Machine Check EIP/RIP Save State

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63:0 Contains register state at time of machine check 
error. When in non-64-bit modes at the time of 
the error, bits 63-32 do not contain valid data.

18AH 394 MSR_MCG_MISC 0, 1, 2, 3, 
4, 6

Unique Machine Check Miscellaneous

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

0 DS

When set, the bit indicates that a page assist or 
page fault occurred during DS normal operation. 
The processors response is to shut down. 

The bit is used as an aid for debugging DS 
handling code. It is the responsibility of the user 
(BIOS or operating system) to clear this bit for 
normal operation.

63:1 Reserved.

18BH - 
18FH

395 MSR_MCG_RESERVED1 - 
MSR_MCG_RESERVED5

Reserved.

190H 400 MSR_MCG_R8 0, 1, 2, 3, 
4, 6

Unique Machine Check R8

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

191H 401 MSR_MCG_R9 0, 1, 2, 3, 
4, 6

Unique Machine Check R9D/R9

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

192H 402 MSR_MCG_R10 0, 1, 2, 3, 
4, 6

Unique Machine Check R10

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”
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63-0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

193H 403 MSR_MCG_R11 0, 1, 2, 3, 
4, 6

Unique Machine Check R11

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

194H 404 MSR_MCG_R12 0, 1, 2, 3, 
4, 6

Unique Machine Check R12

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

195H 405 MSR_MCG_R13 0, 1, 2, 3, 
4, 6

Unique Machine Check R13

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

196H 406 MSR_MCG_R14 0, 1, 2, 3, 
4, 6

Unique Machine Check R14

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

197H 407 MSR_MCG_R15 0, 1, 2, 3, 
4, 6

Unique Machine Check R15

See Section 15.3.2.6, “IA32_MCG Extended 
Machine Check State MSRs.”

63-0 Registers R8-15 (and the associated state-save 
MSRs) exist only in Intel 64 processors. These 
registers contain valid information only when the 
processor is operating in 64-bit mode at the time 
of the error.

198H 408 IA32_PERF_STATUS 3, 4, 6 Unique See Table 35-2. See Section 14.1, “Enhanced Intel 
Speedstep® Technology.”
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199H 409 IA32_PERF_CTL 3, 4, 6 Unique See Table 35-2. See Section 14.1, “Enhanced Intel 
Speedstep® Technology.”

19AH 410 IA32_CLOCK_MODULATION 0, 1, 2, 3, 
4, 6

Unique Thermal Monitor Control (R/W)

See Table 35-2. 

See Section 14.7.3, “Software Controlled Clock 
Modulation.”

19BH 411 IA32_THERM_INTERRUPT 0, 1, 2, 3, 
4, 6

Unique Thermal Interrupt Control (R/W)

See Section 14.7.2, “Thermal Monitor,” and see 
Table 35-2.

19CH 412 IA32_THERM_STATUS 0, 1, 2, 3, 
4, 6

Shared Thermal Monitor Status (R/W)

See Section 14.7.2, “Thermal Monitor,” and see 
Table 35-2.

19DH 413 MSR_THERM2_CTL Thermal Monitor 2 Control.

3, Shared For Family F, Model 3 processors: When read, 
specifies the value of the target TM2 transition 
last written. When set, it sets the next target 
value for TM2 transition. 

4, 6 Shared For Family F, Model 4 and Model 6 processors: 
When read, specifies the value of the target TM2 
transition last written. Writes may cause #GP 
exceptions.

1A0H 416 IA32_MISC_ENABLE 0, 1, 2, 3, 
4, 6

Shared Enable Miscellaneous Processor Features (R/W) 

0 Fast-Strings Enable. See Table 35-2.

1 Reserved. 

2 x87 FPU Fopcode Compatibility Mode Enable

3 Thermal Monitor 1 Enable

See Section 14.7.2, “Thermal Monitor,” and see 
Table 35-2.

4 Split-Lock Disable

When set, the bit causes an #AC exception to be 
issued instead of a split-lock cycle. Operating 
systems that set this bit must align system 
structures to avoid split-lock scenarios. 

When the bit is clear (default), normal split-locks 
are issued to the bus.

This debug feature is specific to the Pentium 4 
processor.

5 Reserved.
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6 Third-Level Cache Disable (R/W)

When set, the third-level cache is disabled; when 
clear (default) the third-level cache is enabled. 
This flag is reserved for processors that do not 
have a third-level cache. 

Note that the bit controls only the third-level 
cache; and only if overall caching is enabled 
through the CD flag of control register CR0, the 
page-level cache controls, and/or the MTRRs.

See Section 11.5.4, “Disabling and Enabling the L3 
Cache.”

7 Performance Monitoring Available (R)

See Table 35-2.

8 Suppress Lock Enable

When set, assertion of LOCK on the bus is 
suppressed during a Split Lock access. When clear 
(default), LOCK is not suppressed.

9 Prefetch Queue Disable

When set, disables the prefetch queue. When clear 
(default), enables the prefetch queue.

10 FERR# Interrupt Reporting Enable (R/W) 

When set, interrupt reporting through the FERR# 
pin is enabled; when clear, this interrupt reporting 
function is disabled. 

When this flag is set and the processor is in the 
stop-clock state (STPCLK# is asserted), asserting 
the FERR# pin signals to the processor that an 
interrupt (such as, INIT#, BINIT#, INTR, NMI, SMI#, 
or RESET#) is pending and that the processor 
should return to normal operation to handle the 
interrupt.

This flag does not affect the normal operation of 
the FERR# pin (to indicate an unmasked floating-
point error) when the STPCLK# pin is not 
asserted.

11 Branch Trace Storage Unavailable 
(BTS_UNAVILABLE) (R)

See Table 35-2.

When set, the processor does not support branch 
trace storage (BTS); when clear, BTS is supported.

12 PEBS_UNAVILABLE: Precise Event Based 
Sampling Unavailable (R)

See Table 35-2.

When set, the processor does not support precise 
event-based sampling (PEBS); when clear, PEBS is 
supported.
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13 3 TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor 
indicates that the die temperature is at the pre-
determined threshold, the Thermal Monitor 2 
mechanism is engaged. TM2 will reduce the bus to 
core ratio and voltage according to the value last 
written to MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor 
does not change the VID signals or the bus to core 
ratio when the processor enters a thermal 
managed state.

If the TM2 feature flag (ECX[8]) is not set to 1 
after executing CPUID with EAX = 1, then this 
feature is not supported and BIOS must not alter 
the contents of this bit location. The processor is 
operating out of spec if both this bit and the TM1 
bit are set to disabled states.

17:14 Reserved.

18 3, 4, 6 ENABLE MONITOR FSM (R/W)

See Table 35-2.

19 Adjacent Cache Line Prefetch Disable (R/W) 

When set to 1, the processor fetches the cache 
line of the 128-byte sector containing currently 
required data. When set to 0, the processor 
fetches both cache lines in the sector.

Single processor platforms should not set this bit. 
Server platforms should set or clear this bit based 
on platform performance observed in validation 
and testing. 

BIOS may contain a setup option that controls the 
setting of this bit.

21:20 Reserved.

22 3, 4, 6 Limit CPUID MAXVAL (R/W) 

See Table 35-2.

Setting this can cause unexpected behavior to 
software that depends on the availability of CPUID 
leaves greater than 3.

23 Shared xTPR Message Disable (R/W)

See Table 35-2.
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24 L1 Data Cache Context Mode (R/W) 

When set, the L1 data cache is placed in shared 
mode; when clear (default), the cache is placed in 
adaptive mode. This bit is only enabled for IA-32 
processors that support Intel Hyper-Threading 
Technology. See Section 11.5.6, “L1 Data Cache 
Context Mode.”

When L1 is running in adaptive mode and CR3s 
are identical, data in L1 is shared across logical 
processors. Otherwise, L1 is not shared and cache 
use is competitive.

If the Context ID feature flag (ECX[10]) is set to 0 
after executing CPUID with EAX = 1, the ability to 
switch modes is not supported. BIOS must not 
alter the contents of IA32_MISC_ENABLE[24].

33:25 Reserved.

34 Unique XD Bit Disable (R/W)

See Table 35-2.

63:35 Reserved.

1A1H 417 MSR_PLATFORM_BRV 3, 4, 6 Shared Platform Feature Requirements (R)

17:0 Reserved.

18 PLATFORM Requirements

When set to 1, indicates the processor has specific 
platform requirements. The details of the platform 
requirements are listed in the respective data 
sheets of the processor.

63:19 Reserved.

1D7H 471 MSR_LER_FROM_LIP 0, 1, 2, 3, 
4, 6

Unique Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction 
that the processor executed prior to the last 
exception that was generated or the last interrupt 
that was handled.

See Section 17.9.3, “Last Exception Records.”

31:0 From Linear IP

Linear address of the last branch instruction. 

63:32 Reserved.

1D7H 471 63:0 Unique From Linear IP

Linear address of the last branch instruction (If IA-
32e mode is active). 

1D8H 472 MSR_LER_TO_LIP 0, 1, 2, 3, 
4, 6

Unique Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the 
last branch instruction that the processor 
executed prior to the last exception that was 
generated or the last interrupt that was handled.

See Section 17.9.3, “Last Exception Records.”
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31:0 From Linear IP

Linear address of the target of the last branch 
instruction. 

63:32 Reserved.

1D8H 472 63:0 Unique From Linear IP

Linear address of the target of the last branch 
instruction (If IA-32e mode is active).

1D9H 473 MSR_DEBUGCTLA 0, 1, 2, 3, 
4, 6

Unique Debug Control (R/W) 

Controls how several debug features are used. Bit 
definitions are discussed in the referenced 
section.

See Section 17.9.1, “MSR_DEBUGCTLA MSR.”

1DAH 474 MSR_LASTBRANCH
_TOS

0, 1, 2, 3, 
4, 6

Unique Last Branch Record Stack TOS (R/W) 

Contains an index (0-3 or 0-15) that points to the 
top of the last branch record stack (that is, that 
points the index of the MSR containing the most 
recent branch record).

See Section 17.9.2, “LBR Stack for Processors 
Based on Intel NetBurst® Microarchitecture”; and 
addresses 1DBH-1DEH and 680H-68FH.

1DBH 475 MSR_LASTBRANCH_0 0, 1, 2 Unique Last Branch Record 0 (R/W) 

One of four last branch record registers on the last 
branch record stack. It contains pointers to the 
source and destination instruction for one of the 
last four branches, exceptions, or interrupts that 
the processor took.

MSR_LASTBRANCH_0 through 
MSR_LASTBRANCH_3 at 1DBH-1DEH are 
available only on family 0FH, models 0H-02H. 
They have been replaced by the MSRs at 680H-
68FH and 6C0H-6CFH. 

See Section 17.9, “Last Branch, Interrupt, and 
Exception Recording (Processors based on Intel 
NetBurst® Microarchitecture).”

1DDH 477 MSR_LASTBRANCH_2 0, 1, 2 Unique Last Branch Record 2

See description of the MSR_LASTBRANCH_0 MSR 
at 1DBH.

1DEH 478 MSR_LASTBRANCH_3 0, 1, 2 Unique Last Branch Record 3

See description of the MSR_LASTBRANCH_0 MSR 
at 1DBH.

200H 512 IA32_MTRR_PHYSBASE0 0, 1, 2, 3, 
4, 6

Shared Variable Range Base MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

201H 513 IA32_MTRR_PHYSMASK0 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”
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202H 514 IA32_MTRR_PHYSBASE1 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

203H 515 IA32_MTRR_PHYSMASK1 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

204H 516 IA32_MTRR_PHYSBASE2 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

205H 517 IA32_MTRR_PHYSMASK2 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs”.

206H 518 IA32_MTRR_PHYSBASE3 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

207H 519 IA32_MTRR_PHYSMASK3 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

208H 520 IA32_MTRR_PHYSBASE4 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

209H 521 IA32_MTRR_PHYSMASK4 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20AH 522 IA32_MTRR_PHYSBASE5 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20BH 523 IA32_MTRR_PHYSMASK5 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20CH 524 IA32_MTRR_PHYSBASE6 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20DH 525 IA32_MTRR_PHYSMASK6 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20EH 526 IA32_MTRR_PHYSBASE7 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

20FH 527 IA32_MTRR_PHYSMASK7 0, 1, 2, 3, 
4, 6

Shared Variable Range Mask MTRR

See Section 11.11.2.3, “Variable Range MTRRs.”

250H 592 IA32_MTRR_FIX64K_00000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

258H 600 IA32_MTRR_FIX16K_80000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

259H 601 IA32_MTRR_FIX16K_A0000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

268H 616 IA32_MTRR_FIX4K_C0000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

269H 617 IA32_MTRR_FIX4K_C8000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs”.
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26AH 618 IA32_MTRR_FIX4K_D0000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs”.

26BH 619 IA32_MTRR_FIX4K_D8000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26CH 620 IA32_MTRR_FIX4K_E0000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26DH 621 IA32_MTRR_FIX4K_E8000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26EH 622 IA32_MTRR_FIX4K_F0000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

26FH 623 IA32_MTRR_FIX4K_F8000 0, 1, 2, 3, 
4, 6

Shared Fixed Range MTRR

See Section 11.11.2.2, “Fixed Range MTRRs.”

277H 631 IA32_PAT 0, 1, 2, 3, 
4, 6

Unique Page Attribute Table

See Section 11.11.2.2, “Fixed Range MTRRs.”

2FFH 767 IA32_MTRR_DEF_TYPE 0, 1, 2, 3, 
4, 6

Shared Default Memory Types (R/W) 

See Table 35-2. 

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE 
MSR.”

300H 768 MSR_BPU_COUNTER0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

301H 769 MSR_BPU_COUNTER1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

302H 770 MSR_BPU_COUNTER2 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

303H 771 MSR_BPU_COUNTER3 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

304H 772 MSR_MS_COUNTER0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

305H 773 MSR_MS_COUNTER1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

306H 774 MSR_MS_COUNTER2 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

307H 775 MSR_MS_COUNTER3 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

308H 776 MSR_FLAME_COUNTER0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

309H 777 MSR_FLAME_COUNTER1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

30AH 778 MSR_FLAME_COUNTER2 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

30BH 779 MSR_FLAME_COUNTER3 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”
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3OCH 780 MSR_IQ_COUNTER0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

3ODH 781 MSR_IQ_COUNTER1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

3OEH 782 MSR_IQ_COUNTER2 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

3OFH 783 MSR_IQ_COUNTER3 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

310H 784 MSR_IQ_COUNTER4 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

311H 785 MSR_IQ_COUNTER5 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.2, “Performance Counters.”

360H 864 MSR_BPU_CCCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

361H 865 MSR_BPU_CCCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

362H 866 MSR_BPU_CCCR2 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

363H 867 MSR_BPU_CCCR3 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

364H 868 MSR_MS_CCCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

365H 869 MSR_MS_CCCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

366H 870 MSR_MS_CCCR2 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

367H 871 MSR_MS_CCCR3 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

368H 872 MSR_FLAME_CCCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

369H 873 MSR_FLAME_CCCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

36AH 874 MSR_FLAME_CCCR2 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

36BH 875 MSR_FLAME_CCCR3 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

36CH 876 MSR_IQ_CCCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

36DH 877 MSR_IQ_CCCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

36EH 878 MSR_IQ_CCCR2 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

36FH 879 MSR_IQ_CCCR3 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”
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370H 880 MSR_IQ_CCCR4 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

371H 881 MSR_IQ_CCCR5 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.3, “CCCR MSRs.”

3A0H 928 MSR_BSU_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3A1H 929 MSR_BSU_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3A2H 930 MSR_FSB_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3A3H 931 MSR_FSB_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3A4H 932 MSR_FIRM_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3A5H 933 MSR_FIRM_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3A6H 934 MSR_FLAME_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3A7H 935 MSR_FLAME_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3A8H 936 MSR_DAC_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3A9H 937 MSR_DAC_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3AAH 938 MSR_MOB_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3ABH 939 MSR_MOB_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3ACH 940 MSR_PMH_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3ADH 941 MSR_PMH_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3AEH 942 MSR_SAAT_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3AFH 943 MSR_SAAT_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3B0H 944 MSR_U2L_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3B1H 945 MSR_U2L_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3B2H 946 MSR_BPU_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3B3H 947 MSR_BPU_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”
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3B4H 948 MSR_IS_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3B5H 949 MSR_IS_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3B6H 950 MSR_ITLB_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3B7H 951 MSR_ITLB_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3B8H 952 MSR_CRU_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3B9H 953 MSR_CRU_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3BAH 954 MSR_IQ_ESCR0 0, 1, 2 Shared See Section 18.12.1, “ESCR MSRs.”

This MSR is not available on later processors. It is 
only available on processor family 0FH, models 
01H-02H.

3BBH 955 MSR_IQ_ESCR1 0, 1, 2 Shared See Section 18.12.1, “ESCR MSRs.”

This MSR is not available on later processors. It is 
only available on processor family 0FH, models 
01H-02H.

3BCH 956 MSR_RAT_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3BDH 957 MSR_RAT_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3BEH 958 MSR_SSU_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3C0H 960 MSR_MS_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3C1H 961 MSR_MS_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3C2H 962 MSR_TBPU_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3C3H 963 MSR_TBPU_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3C4H 964 MSR_TC_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3C5H 965 MSR_TC_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3C8H 968 MSR_IX_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3C9H 969 MSR_IX_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3CAH 970 MSR_ALF_ESCR0 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”
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3CBH 971 MSR_ALF_ESCR1 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3CCH 972 MSR_CRU_ESCR2 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3CDH 973 MSR_CRU_ESCR3 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3E0H 992 MSR_CRU_ESCR4 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3E1H 993 MSR_CRU_ESCR5 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3FOH 1008 MSR_TC_PRECISE_EVENT 0, 1, 2, 3, 
4, 6

Shared See Section 18.12.1, “ESCR MSRs.”

3F1H 1009 MSR_PEBS_ENABLE 0, 1, 2, 3, 
4, 6

Shared Precise Event-Based Sampling (PEBS) (R/W) 

Controls the enabling of precise event sampling 
and replay tagging. 

12:0 See Table 19-26.

23:13 Reserved.

24 UOP Tag 

Enables replay tagging when set.

25 ENABLE_PEBS_MY_THR (R/W)

Enables PEBS for the target logical processor 
when set; disables PEBS when clear (default). 

See Section 18.13.3, “IA32_PEBS_ENABLE MSR,” 
for an explanation of the target logical processor. 

This bit is called ENABLE_PEBS in IA-32 
processors that do not support Intel Hyper-
Threading Technology.

26 ENABLE_PEBS_OTH_THR (R/W)

Enables PEBS for the target logical processor 
when set; disables PEBS when clear (default).

See Section 18.13.3, “IA32_PEBS_ENABLE MSR,” 
for an explanation of the target logical processor. 

This bit is reserved for IA-32 processors that do 
not support Intel Hyper-Threading Technology.

63:27 Reserved.

3F2H 1010 MSR_PEBS_MATRIX_VERT 0, 1, 2, 3, 
4, 6

Shared See Table 19-26.

400H 1024 IA32_MC0_CTL 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”
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402H 1026 IA32_MC0_ADDR 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC0_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC0_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

403H 1027 IA32_MC0_MISC 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC0_MISC MSR is either not 
implemented or does not contain additional 
information if the MISCV flag in the 
IA32_MC0_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

404H 1028 IA32_MC1_CTL 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC1_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC1_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

407H 1031 IA32_MC1_MISC Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC1_MISC MSR is either not 
implemented or does not contain additional 
information if the MISCV flag in the 
IA32_MC1_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

408H 1032 IA32_MC2_CTL 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC2_STATUS register is clear. 
When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.
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40BH 1035 IA32_MC2_MISC See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either not 
implemented or does not contain additional 
information if the MISCV flag in the 
IA32_MC2_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

40CH 1036 IA32_MC3_CTL 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC3_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC3_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

40FH 1039 IA32_MC3_MISC 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

The IA32_MC3_MISC MSR is either not 
implemented or does not contain additional 
information if the MISCV flag in the 
IA32_MC3_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

410H 1040 IA32_MC4_CTL 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS 0, 1, 2, 3, 
4, 6

Shared See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC4_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

413H 1043 IA32_MC4_MISC See Section 15.3.2.4, “IA32_MCi_MISC MSRs.” 

The IA32_MC2_MISC MSR is either not 
implemented or does not contain additional 
information if the MISCV flag in the 
IA32_MC4_STATUS register is clear. 

When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.
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480H 1152 IA32_VMX_BASIC 3, 4, 6 Unique Reporting Register of Basic VMX Capabilities 
(R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information.”

481H 1153 IA32_VMX_PINBASED_CTLS 3, 4, 6 Unique Capability Reporting Register of Pin-based 
VM-execution Controls (R/O)

See Table 35-2.

See Appendix A.3, “VM-Execution Controls.”

482H 1154 IA32_VMX_PROCBASED_CTLS 3, 4, 6 Unique Capability Reporting Register of Primary 
Processor-based VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls,” and 
see Table 35-2.

483H 1155 IA32_VMX_EXIT_CTLS 3, 4, 6 Unique Capability Reporting Register of VM-exit 
Controls (R/O)

See Appendix A.4, “VM-Exit Controls,” and see 
Table 35-2.

484H 1156 IA32_VMX_ENTRY_CTLS 3, 4, 6 Unique Capability Reporting Register of VM-entry 
Controls (R/O)

See Appendix A.5, “VM-Entry Controls,” and see 
Table 35-2.

485H 1157 IA32_VMX_MISC 3, 4, 6 Unique Reporting Register of Miscellaneous VMX 
Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data,” and see 
Table 35-2.

486H 1158 IA32_VMX_CR0_FIXED0 3, 4, 6 Unique Capability Reporting Register of CR0 Bits Fixed 
to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0,” and 
see Table 35-2.

487H 1159 IA32_VMX_CR0_FIXED1 3, 4, 6 Unique Capability Reporting Register of CR0 Bits Fixed 
to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0,” and 
see Table 35-2.

488H 1160 IA32_VMX_CR4_FIXED0 3, 4, 6 Unique Capability Reporting Register of CR4 Bits Fixed 
to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4,” and 
see Table 35-2.

489H 1161 IA32_VMX_CR4_FIXED1 3, 4, 6 Unique Capability Reporting Register of CR4 Bits Fixed 
to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4,” and 
see Table 35-2.

48AH 1162 IA32_VMX_VMCS_ENUM 3, 4, 6 Unique Capability Reporting Register of VMCS Field 
Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration,” and see 
Table 35-2.
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48BH 1163 IA32_VMX_PROCBASED_CTLS2 3, 4, 6 Unique Capability Reporting Register of Secondary 
Processor-based VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls,” and 
see Table 35-2.

600H 1536 IA32_DS_AREA 0, 1, 2, 3, 
4, 6

Unique DS Save Area (R/W)

See Table 35-2.

See Section 18.12.4, “Debug Store (DS) 
Mechanism.”

680H 1664 MSR_LASTBRANCH_0_FROM_IP 3, 4, 6 Unique Last Branch Record 0 (R/W) 

One of 16 pairs of last branch record registers on 
the last branch record stack (680H-68FH). This 
part of the stack contains pointers to the source 
instruction for one of the last 16 branches, 
exceptions, or interrupts taken by the processor.

The MSRs at 680H-68FH, 6C0H-6CfH are not 
available in processor releases before family 0FH, 
model 03H. These MSRs replace MSRs previously 
located at 1DBH-1DEH.which performed the same 
function for early releases. 

See Section 17.9, “Last Branch, Interrupt, and 
Exception Recording (Processors based on Intel 
NetBurst® Microarchitecture).”

681H 1665 MSR_LASTBRANCH_1_FROM_IP 3, 4, 6 Unique Last Branch Record 1

See description of MSR_LASTBRANCH_0 at 680H.

682H 1666 MSR_LASTBRANCH_2_FROM_IP 3, 4, 6 Unique Last Branch Record 2

See description of MSR_LASTBRANCH_0 at 680H.

683H 1667 MSR_LASTBRANCH_3_FROM_IP 3, 4, 6 Unique Last Branch Record 3

See description of MSR_LASTBRANCH_0 at 680H.

684H 1668 MSR_LASTBRANCH_4_FROM_IP 3, 4, 6 Unique Last Branch Record 4

See description of MSR_LASTBRANCH_0 at 680H.

685H 1669 MSR_LASTBRANCH_5_FROM_IP 3, 4, 6 Unique Last Branch Record 5

See description of MSR_LASTBRANCH_0 at 680H.

686H 1670 MSR_LASTBRANCH_6_FROM_IP 3, 4, 6 Unique Last Branch Record 6

See description of MSR_LASTBRANCH_0 at 680H.

687H 1671 MSR_LASTBRANCH_7_FROM_IP 3, 4, 6 Unique Last Branch Record 7

See description of MSR_LASTBRANCH_0 at 680H.

688H 1672 MSR_LASTBRANCH_8_FROM_IP 3, 4, 6 Unique Last Branch Record 8

See description of MSR_LASTBRANCH_0 at 680H.

689H 1673 MSR_LASTBRANCH_9_FROM_IP 3, 4, 6 Unique Last Branch Record 9

See description of MSR_LASTBRANCH_0 at 680H.

68AH 1674 MSR_LASTBRANCH_10_FROM_IP 3, 4, 6 Unique Last Branch Record 10

See description of MSR_LASTBRANCH_0 at 680H.
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68BH 1675 MSR_LASTBRANCH_11_FROM_IP 3, 4, 6 Unique Last Branch Record 11

See description of MSR_LASTBRANCH_0 at 680H.

68CH 1676 MSR_LASTBRANCH_12_FROM_IP 3, 4, 6 Unique Last Branch Record 12

See description of MSR_LASTBRANCH_0 at 680H.

68DH 1677 MSR_LASTBRANCH_13_FROM_IP 3, 4, 6 Unique Last Branch Record 13

See description of MSR_LASTBRANCH_0 at 680H.

68EH 1678 MSR_LASTBRANCH_14_FROM_IP 3, 4, 6 Unique Last Branch Record 14

See description of MSR_LASTBRANCH_0 at 680H.

68FH 1679 MSR_LASTBRANCH_15_FROM_IP 3, 4, 6 Unique Last Branch Record 15

See description of MSR_LASTBRANCH_0 at 680H.

6C0H 1728 MSR_LASTBRANCH_0_TO_IP 3, 4, 6 Unique Last Branch Record 0 (R/W) 

One of 16 pairs of last branch record registers on 
the last branch record stack (6C0H-6CFH). This 
part of the stack contains pointers to the 
destination instruction for one of the last 16 
branches, exceptions, or interrupts that the 
processor took.

See Section 17.9, “Last Branch, Interrupt, and 
Exception Recording (Processors based on Intel 
NetBurst® Microarchitecture).”

6C1H 1729 MSR_LASTBRANCH_1_TO_IP 3, 4, 6 Unique Last Branch Record 1

See description of MSR_LASTBRANCH_0 at 6C0H.

6C2H 1730 MSR_LASTBRANCH_2_TO_IP 3, 4, 6 Unique Last Branch Record 2

See description of MSR_LASTBRANCH_0 at 6C0H.

6C3H 1731 MSR_LASTBRANCH_3_TO_IP 3, 4, 6 Unique Last Branch Record 3

See description of MSR_LASTBRANCH_0 at 6C0H.

6C4H 1732 MSR_LASTBRANCH_4_TO_IP 3, 4, 6 Unique Last Branch Record 4

See description of MSR_LASTBRANCH_0 at 6C0H.

6C5H 1733 MSR_LASTBRANCH_5_TO_IP 3, 4, 6 Unique Last Branch Record 5

See description of MSR_LASTBRANCH_0 at 6C0H.

6C6H 1734 MSR_LASTBRANCH_6_TO_IP 3, 4, 6 Unique Last Branch Record 6

See description of MSR_LASTBRANCH_0 at 6C0H.

6C7H 1735 MSR_LASTBRANCH_7_TO_IP 3, 4, 6 Unique Last Branch Record 7

See description of MSR_LASTBRANCH_0 at 6C0H.

6C8H 1736 MSR_LASTBRANCH_8_TO_IP 3, 4, 6 Unique Last Branch Record 8

See description of MSR_LASTBRANCH_0 at 6C0H.

6C9H 1737 MSR_LASTBRANCH_9_TO_IP 3, 4, 6 Unique Last Branch Record 9

See description of MSR_LASTBRANCH_0 at 6C0H.

6CAH 1738 MSR_LASTBRANCH_10_TO_IP 3, 4, 6 Unique Last Branch Record 10

See description of MSR_LASTBRANCH_0 at 6C0H.

Table 35-25.  MSRs in the Pentium® 4 and Intel® Xeon® Processors  (Contd.)

Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec



35-178 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)

35.14.1  MSRs Unique to Intel® Xeon® Processor MP with L3 Cache

The MSRs listed in Table 35-26 apply to Intel Xeon Processor MP with up to 8MB level three cache. These processors 
can be detected by enumerating the deterministic cache parameter leaf of CPUID instruction (with EAX = 4 as 
input) to detect the presence of the third level cache, and with CPUID reporting family encoding 0FH, model 
encoding 3 or 4 (see CPUID instruction for more details).

6CBH 1739 MSR_LASTBRANCH_11_TO_IP 3, 4, 6 Unique Last Branch Record 11

See description of MSR_LASTBRANCH_0 at 6C0H.

6CCH 1740 MSR_LASTBRANCH_12_TO_IP 3, 4, 6 Unique Last Branch Record 12

See description of MSR_LASTBRANCH_0 at 6C0H.

6CDH 1741 MSR_LASTBRANCH_13_TO_IP 3, 4, 6 Unique Last Branch Record 13

See description of MSR_LASTBRANCH_0 at 6C0H.

6CEH 1742 MSR_LASTBRANCH_14_TO_IP 3, 4, 6 Unique Last Branch Record 14

See description of MSR_LASTBRANCH_0 at 6C0H.

6CFH 1743 MSR_LASTBRANCH_15_TO_IP 3, 4, 6 Unique Last Branch Record 15

See description of MSR_LASTBRANCH_0 at 6C0H.

C000_
0080H

IA32_EFER 3, 4, 6 Unique Extended Feature Enables

See Table 35-2.

C000_
0081H

IA32_STAR 3, 4, 6 Unique System Call Target Address (R/W)

See Table 35-2.

C000_
0082H

IA32_LSTAR 3, 4, 6 Unique IA-32e Mode System Call Target Address (R/W)

See Table 35-2.

C000_
0084H

IA32_FMASK 3, 4, 6 Unique System Call Flag Mask (R/W) 

See Table 35-2.

C000_
0100H

IA32_FS_BASE 3, 4, 6 Unique Map of BASE Address of FS (R/W)

See Table 35-2.

C000_
0101H

IA32_GS_BASE 3, 4, 6 Unique Map of BASE Address of GS (R/W)

See Table 35-2.

C000_
0102H

IA32_KERNEL_GSBASE 3, 4, 6 Unique Swap Target of BASE Address of GS (R/W)

See Table 35-2.

NOTES

1. For HT-enabled processors, there may be more than one logical processors per physical unit. If an MSR is Shared, this means that 
one MSR is shared between logical processors. If an MSR is unique, this means that each logical processor has its own MSR.
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The MSRs listed in Table 35-27 apply to Intel Xeon Processor 7100 series. These processors can be detected by 
enumerating the deterministic cache parameter leaf of CPUID instruction (with EAX = 4 as input) to detect the 
presence of the third level cache, and with CPUID reporting family encoding 0FH, model encoding 6 (See CPUID 
instruction for more details.). The performance monitoring MSRs listed in Table 35-27 are shared between logical 
processors in the same core, but are replicated for each core.

Table 35-26.  MSRs Unique to 64-bit Intel® Xeon® Processor MP with 
Up to an 8 MB L3 Cache

Register Address

Register Name
Fields and Flags

Model Avail-
ability

Shared/
Unique Bit Description

107CCH MSR_IFSB_BUSQ0 3, 4 Shared IFSB BUSQ Event Control and Counter 
Register (R/W)

See Section 18.17, “Performance 
Monitoring on 64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 Cache.”

107CDH MSR_IFSB_BUSQ1 3, 4 Shared IFSB BUSQ Event Control and Counter 
Register (R/W) 

107CEH MSR_IFSB_SNPQ0 3, 4 Shared IFSB SNPQ Event Control and Counter 
Register (R/W) 

See Section 18.17, “Performance 
Monitoring on 64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 Cache.”

107CFH MSR_IFSB_SNPQ1 3, 4 Shared IFSB SNPQ Event Control and Counter 
Register (R/W)

107D0H MSR_EFSB_DRDY0 3, 4 Shared EFSB DRDY Event Control and Counter 
Register (R/W) 

See Section 18.17, “Performance 
Monitoring on 64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 Cache” for 
details.

107D1H MSR_EFSB_DRDY1 3, 4 Shared EFSB DRDY Event Control and Counter 
Register (R/W)

107D2H MSR_IFSB_CTL6 3, 4 Shared IFSB Latency Event Control Register 
(R/W)

See Section 18.17, “Performance 
Monitoring on 64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 Cache” for 
details.

107D3H MSR_IFSB_CNTR7 3, 4 Shared IFSB Latency Event Counter Register 
(R/W) 

See Section 18.17, “Performance 
Monitoring on 64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 Cache.” 
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35.15 MSRS IN INTEL® CORE™ SOLO AND INTEL® CORE™ DUO PROCESSORS

Model-specific registers (MSRs) for Intel Core Solo, Intel Core Duo processors, and Dual-core Intel Xeon processor 
LV are listed in Table 35-28. The column “Shared/Unique” applies to Intel Core Duo processor. “Unique” means 
each processor core has a separate MSR, or a bit field in an MSR governs only a core independently. “Shared” 
means the MSR or the bit field in an MSR address governs the operation of both processor cores.

Table 35-27.  MSRs Unique to Intel Xeon Processor 7100 Series

Register Address

Register Name
Fields and Flags

Model Avail-
ability

Shared/
Unique Bit Description

107CCH MSR_EMON_L3_CTR_CTL0 6 Shared GBUSQ Event Control and Counter 
Register (R/W)

See Section 18.17, “Performance 
Monitoring on 64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 Cache.”

107CDH MSR_EMON_L3_CTR_CTL1 6 Shared GBUSQ Event Control and Counter 
Register (R/W) 

107CEH MSR_EMON_L3_CTR_CTL2 6 Shared GSNPQ Event Control and Counter 
Register (R/W) 

See Section 18.17, “Performance 
Monitoring on 64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 Cache.”

107CFH MSR_EMON_L3_CTR_CTL3 6 Shared GSNPQ Event Control and Counter 
Register (R/W)

107D0H MSR_EMON_L3_CTR_CTL4 6 Shared FSB Event Control and Counter Register 
(R/W) 

See Section 18.17, “Performance 
Monitoring on 64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 Cache” for 
details.

107D1H MSR_EMON_L3_CTR_CTL5 6 Shared FSB Event Control and Counter Register 
(R/W)

107D2H MSR_EMON_L3_CTR_CTL6 6 Shared FSB Event Control and Counter Register 
(R/W)

107D3H MSR_EMON_L3_CTR_CTL7 6 Shared FSB Event Control and Counter Register 
(R/W)
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0H 0 P5_MC_ADDR Unique See Section 35.18, “MSRs in Pentium Processors,” and see 
Table 35-2.

1H 1 P5_MC_TYPE Unique See Section 35.18, “MSRs in Pentium Processors,” and see 
Table 35-2.

6H 6 IA32_MONITOR_FILTER_
SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination,” 
and see Table 35-2.
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10H 16 IA32_TIME_STAMP_
COUNTER

Unique See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Shared Platform ID (R) 

See Table 35-2.

The operating system can use this MSR to determine “slot” 
information for the processor and the proper microcode update to 
load.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location,” and see 
Table 35-2.

2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W)

Enables and disables processor features; (R) indicates current 
processor configuration.

0 Reserved.

1 Data Error Checking Enable (R/W)

1 = Enabled; 0 = Disabled

Note: Not all processor implements R/W.

2 Response Error Checking Enable (R/W)

1 = Enabled; 0 = Disabled

Note: Not all processor implements R/W.

3 MCERR# Drive Enable (R/W) 

1 = Enabled; 0 = Disabled

Note: Not all processor implements R/W.

4 Address Parity Enable (R/W)

1 = Enabled; 0 = Disabled

Note: Not all processor implements R/W.

6: 5 Reserved

7 BINIT# Driver Enable (R/W)

1 = Enabled; 0 = Disabled

Note: Not all processor implements R/W.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled 

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled 

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

11 Reserved

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled 

13 Reserved

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes
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15 Reserved

17:16 APIC Cluster ID (R/O)

18 System Bus Frequency (R/O)

0 = 100 MHz

1 = Reserved

19 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

26:22 Clock Frequency Ratio (R/O)

3AH 58 IA32_FEATURE_CONTROL Unique Control Features in IA-32 Processor (R/W) 

See Table 35-2.

40H 64 MSR_LASTBRANCH_0 Unique Last Branch Record 0 (R/W)

One of 8 last branch record registers on the last branch record 
stack: bits 31-0 hold the ‘from’ address and bits 63-32 hold the ‘to’ 
address. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.11, “Last Branch, Interrupt, and Exception Recording 

(Pentium M Processors).”

41H 65 MSR_LASTBRANCH_1 Unique Last Branch Record 1 (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_LASTBRANCH_2 Unique Last Branch Record 2 (R/W)

See description of MSR_LASTBRANCH_0. 

43H 67 MSR_LASTBRANCH_3 Unique Last Branch Record 3 (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_LASTBRANCH_4 Unique Last Branch Record 4 (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_LASTBRANCH_5 Unique Last Branch Record 5 (R/W)

See description of MSR_LASTBRANCH_0. 

46H 70 MSR_LASTBRANCH_6 Unique Last Branch Record 6 (R/W)

See description of MSR_LASTBRANCH_0. 

47H 71 MSR_LASTBRANCH_7 Unique Last Branch Record 7 (R/W)

See description of MSR_LASTBRANCH_0. 

79H 121 IA32_BIOS_UPDT_TRIG Unique BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)

See Table 35-2.

C1H 193 IA32_PMC0 Unique Performance counter register

See Table 35-2.

C2H 194 IA32_PMC1 Unique Performance counter register

See Table 35-2.
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CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed (RO)

This field indicates the scaleable bus clock speed:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 101B. 

166.67 MHz should be utilized if performing calculation with 
System Bus Speed when encoding is 001B.

63:3 Reserved.

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count. (RW)

See Table 35-2.

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count. (RW)

See Table 35-2.

FEH 254 IA32_MTRRCAP Unique See Table 35-2.

11EH 281 MSR_BBL_CR_CTL3 Shared

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled

0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled (R/W) 

1 = L2 cache has been initialized 

0 = Disabled (default)

Until this bit is set the processor will not respond to the WBINVD 
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO) 

0 = L2 Present

1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_CS Unique See Table 35-2.

175H 373 IA32_SYSENTER_ESP Unique See Table 35-2.

176H 374 IA32_SYSENTER_EIP Unique See Table 35-2.

179H 377 IA32_MCG_CAP Unique See Table 35-2.

17AH 378 IA32_MCG_STATUS Unique
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0 RIPV

When set, this bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) can be used to restart the program. If this bit is 
cleared, the program cannot be reliably restarted.

1 EIPV

When set, this bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check 
was generated) is directly associated with the error.

2 MCIP

When set, this bit indicates that a machine check has been 
generated. If a second machine check is detected while this bit is 
still set, the processor enters a shutdown state. Software should 
write this bit to 0 after processing a machine check exception.

63:3 Reserved.

186H 390 IA32_PERFEVTSEL0 Unique See Table 35-2.

187H 391 IA32_PERFEVTSEL1 Unique See Table 35-2.

198H 408 IA32_PERF_STATUS Shared See Table 35-2.

199H 409 IA32_PERF_CTL Unique See Table 35-2.

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation (R/W) 

See Table 35-2.

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control (R/W) 

See Table 35-2.

See Section 14.7.2, “Thermal Monitor.”

19CH 412 IA32_THERM_STATUS Unique Thermal Monitor Status (R/W) 

See Table 35-2. 

See Section 14.7.2, “Thermal Monitor”.

19DH 413 MSR_THERM2_CTL Unique

15:0 Reserved.

16 TM_SELECT (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of 
the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT 
has no effect. Neither TM1 nor TM2 will be enabled.

63:16 Reserved.

1A0 416 IA32_MISC_
ENABLE

Enable Miscellaneous Processor Features

(R/W) 

Allows a variety of processor functions to be enabled and disabled.

2:0 Reserved.
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3 Unique Automatic Thermal Control Circuit Enable (R/W) 

See Table 35-2. 

6:4 Reserved.

7 Shared Performance Monitoring Available (R)

See Table 35-2.

9:8 Reserved.

10 Shared FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break 
event within the processor 

0 =  Indicates compatible FERR# signaling behavior

This bit must be set to 1 to support XAPIC interrupt model usage.

11 Shared Branch Trace Storage Unavailable (RO)

See Table 35-2.

12 Reserved.

13 Shared TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the 
die temperature is at the pre-determined threshold, the Thermal 
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core 
ratio and voltage according to the value last written to 
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the processor does not change 
the VID signals or the bus to core ratio when the processor enters 
a thermal managed state.

If the TM2 feature flag (ECX[8]) is not set to 1 after executing 
CPUID with EAX = 1, then this feature is not supported and BIOS 
must not alter the contents of this bit location. The processor is 
operating out of spec if both this bit and the TM1 bit are set to 
disabled states.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)

1 = Enhanced Intel SpeedStep Technology enabled

18 Shared ENABLE MONITOR FSM (R/W)

See Table 35-2.

19 Reserved. 

22 Shared Limit CPUID Maxval (R/W) 

See Table 35-2. 

Setting this bit may cause behavior in software that depends on 
the availability of CPUID leaves greater than 3.

33:23 Reserved.

34 Shared XD Bit Disable (R/W)

See Table 35-2.

63:35 Reserved.
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1C9H 457 MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the 
most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control (R/W) 

Controls how several debug features are used. Bit definitions are 
discussed in the referenced section.

1DDH 477 MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch 
instruction that the processor executed prior to the last exception 
that was generated or the last interrupt that was handled. 

1E0H 480 ROB_CR_
BKUPTMPDR6

Unique

1:0 Reserved.

2 Fast String Enable bit. (Default, enabled)

200H 512 MTRRphysBase0 Unique

201H 513 MTRRphysMask0 Unique

202H 514 MTRRphysBase1 Unique

203H 515 MTRRphysMask1 Unique

204H 516 MTRRphysBase2 Unique

205H 517 MTRRphysMask2 Unique

206H 518 MTRRphysBase3 Unique

207H 519 MTRRphysMask3 Unique

208H 520 MTRRphysBase4 Unique

209H 521 MTRRphysMask4 Unique

20AH 522 MTRRphysBase5 Unique

20BH 523 MTRRphysMask5 Unique

20CH 524 MTRRphysBase6 Unique

20DH 525 MTRRphysMask6 Unique

20EH 526 MTRRphysBase7 Unique

20FH 527 MTRRphysMask7 Unique

250H 592 MTRRfix64K_00000 Unique

258H 600 MTRRfix16K_80000 Unique

259H 601 MTRRfix16K_A0000 Unique

268H 616 MTRRfix4K_C0000 Unique
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269H 617 MTRRfix4K_C8000 Unique

26AH 618 MTRRfix4K_D0000 Unique

26BH 619 MTRRfix4K_D8000 Unique

26CH 620 MTRRfix4K_E0000 Unique

26DH 621 MTRRfix4K_E8000 Unique

26EH 622 MTRRfix4K_F0000 Unique

26FH 623 MTRRfix4K_F8000 Unique

2FFH 767 IA32_MTRR_DEF_TYPE Unique Default Memory Types (R/W)

See Table 35-2. 

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE MSR.”

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC0_STATUS 
register is clear. When not implemented in the processor, all reads 
and writes to this MSR will cause a general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC1_STATUS 
register is clear. When not implemented in the processor, all reads 
and writes to this MSR will cause a general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the IA32_MC2_STATUS 
register is clear. When not implemented in the processor, all reads 
and writes to this MSR will cause a general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC4_STATUS 
register is clear. When not implemented in the processor, all reads 
and writes to this MSR will cause a general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”
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412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not implemented or 
contains no address if the ADDRV flag in the MSR_MC3_STATUS 
register is clear. When not implemented in the processor, all reads 
and writes to this MSR will cause a general-protection exception.

413H 1043 MSR_MC3_MISC Unique

414H 1044 MSR_MC5_CTL Unique

415H 1045 MSR_MC5_STATUS Unique

416H 1046 MSR_MC5_ADDR Unique

417H 1047 MSR_MC5_MISC Unique

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX Capabilities (R/O)

See Table 35-2.

See Appendix A.1, “Basic VMX Information”

(If CPUID.01H:ECX.[bit 9])

481H 1153 IA32_VMX_PINBASED_
CTLS

Unique Capability Reporting Register of Pin-based VM-execution 
Controls (R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

482H 1154 IA32_VMX_PROCBASED_
CTLS

Unique Capability Reporting Register of Primary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

483H 1155 IA32_VMX_EXIT_CTLS Unique Capability Reporting Register of VM-exit Controls (R/O)

See Appendix A.4, “VM-Exit Controls”

(If CPUID.01H:ECX.[bit 9])

484H 1156 IA32_VMX_ENTRY_CTLS Unique Capability Reporting Register of VM-entry Controls (R/O)

See Appendix A.5, “VM-Entry Controls”

(If CPUID.01H:ECX.[bit 9])

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX Capabilities (R/O)

See Appendix A.6, “Miscellaneous Data”

(If CPUID.01H:ECX.[bit 9])

486H 1158 IA32_VMX_CR0_FIXED0 Unique Capability Reporting Register of CR0 Bits Fixed to 0 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

487H 1159 IA32_VMX_CR0_FIXED1 Unique Capability Reporting Register of CR0 Bits Fixed to 1 (R/O)

See Appendix A.7, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

488H 1160 IA32_VMX_CR4_FIXED0 Unique Capability Reporting Register of CR4 Bits Fixed to 0 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])
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35.16 MSRS IN THE PENTIUM M PROCESSOR

Model-specific registers (MSRs) for the Pentium M processor are similar to those described in Section 35.17 for P6 
family processors. The following table describes new MSRs and MSRs whose behavior has changed on the Pentium 
M processor. 

489H 1161 IA32_VMX_CR4_FIXED1 Unique Capability Reporting Register of CR4 Bits Fixed to 1 (R/O)

See Appendix A.8, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

48AH 1162 IA32_VMX_VMCS_ENUM Unique Capability Reporting Register of VMCS Field Enumeration (R/O)

See Appendix A.9, “VMCS Enumeration”

(If CPUID.01H:ECX.[bit 9])

48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Unique Capability Reporting Register of Secondary Processor-based 
VM-execution Controls (R/O)

See Appendix A.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9] and 
IA32_VMX_PROCBASED_CTLS[bit 63])

600H 1536 IA32_DS_AREA Unique DS Save Area (R/W) 

See Table 35-2.

See Section 18.12.4, “Debug Store (DS) Mechanism.”

31:0 DS Buffer Management Area

Linear address of the first byte of the DS buffer management area.

63:32 Reserved.

C000_
0080H

IA32_EFER Unique See Table 35-2.

10:0 Reserved.

11 Execute Disable Bit Enable

63:12 Reserved.

Table 35-29.  MSRs in Pentium M Processors

Register 
Address

Register Name Bit Description

 Hex Dec

0H 0 P5_MC_ADDR See Section 35.18, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Section 35.18, “MSRs in Pentium Processors.”

10H 16 IA32_TIME_STAMP_COUNTER See Section 17.13, “Time-Stamp Counter,” and see Table 35-2.

17H 23 IA32_PLATFORM_ID Platform ID (R)

See Table 35-2.

The operating system can use this MSR to determine “slot” information 
for the processor and the proper microcode update to load.
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2AH 42 MSR_EBL_CR_POWERON Processor Hard Power-On Configuration

(R/W) Enables and disables processor features.

(R) Indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable (R)

0 = Disabled

Always 0 on the Pentium M processor.

2 Response Error Checking Enable (R)

0 = Disabled
Always 0 on the Pentium M processor.

3 MCERR# Drive Enable (R) 

0 = Disabled

Always 0 on the Pentium M processor.

4 Address Parity Enable (R)

0 = Disabled

Always 0 on the Pentium M processor.

6:5 Reserved.

7 BINIT# Driver Enable (R)

1 = Enabled; 0 = Disabled

Always 0 on the Pentium M processor.

8 Output Tri-state Enabled (R/O)

1 = Enabled; 0 = Disabled 

9 Execute BIST (R/O)

1 = Enabled; 0 = Disabled 

10 MCERR# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled

Always 0 on the Pentium M processor.

11 Reserved.

12 BINIT# Observation Enabled (R/O)

1 = Enabled; 0 = Disabled 

Always 0 on the Pentium M processor.

13 Reserved.

14 1 MByte Power on Reset Vector (R/O)

1 = 1 MByte; 0 = 4 GBytes

Always 0 on the Pentium M processor.

15 Reserved.

17:16 APIC Cluster ID (R/O)

Always 00B on the Pentium M processor.

Table 35-29.  MSRs in Pentium M Processors (Contd.)
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18 System Bus Frequency (R/O)

0 = 100 MHz

1 = Reserved

Always 0 on the Pentium M processor.

19 Reserved.

21: 20 Symmetric Arbitration ID (R/O)

Always 00B on the Pentium M processor.

26:22 Clock Frequency Ratio (R/O)

40H 64 MSR_LASTBRANCH_0 Last Branch Record 0 (R/W)

One of 8 last branch record registers on the last branch record stack: bits 
31-0 hold the ‘from’ address and bits 63-32 hold the to address. 

See also:

• Last Branch Record Stack TOS at 1C9H
• Section 17.11, “Last Branch, Interrupt, and Exception Recording 

(Pentium M Processors)”

41H 65 MSR_LASTBRANCH_1 Last Branch Record 1 (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_LASTBRANCH_2 Last Branch Record 2 (R/W)

See description of MSR_LASTBRANCH_0. 

43H 67 MSR_LASTBRANCH_3 Last Branch Record 3 (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_LASTBRANCH_4 Last Branch Record 4 (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_LASTBRANCH_5 Last Branch Record 5 (R/W)

See description of MSR_LASTBRANCH_0. 

46H 70 MSR_LASTBRANCH_6 Last Branch Record 6 (R/W)

See description of MSR_LASTBRANCH_0. 

47H 71 MSR_LASTBRANCH_7 Last Branch Record 7 (R/W)

See description of MSR_LASTBRANCH_0. 

119H 281 MSR_BBL_CR_CTL

63:0 Reserved.

11EH 281 MSR_BBL_CR_CTL3

0 L2 Hardware Enabled (RO)

1 = If the L2 is hardware-enabled

0 = Indicates if the L2 is hardware-disabled

4:1 Reserved.
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5 ECC Check Enable (RO)

This bit enables ECC checking on the cache data bus. ECC is always 
generated on write cycles. 

0 = Disabled (default)

1 = Enabled

For the Pentium M processor, ECC checking on the cache data bus is 
always enabled.

7:6 Reserved.

8 L2 Enabled (R/W) 

1 = L2 cache has been initialized 

0 = Disabled (default)

Until this bit is set the processor will not respond to the WBINVD 
instruction or the assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present (RO) 

0 = L2 Present

1 = L2 Not Present

63:24 Reserved.

179H 377 IA32_MCG_CAP

7:0 Count (RO)

Indicates the number of hardware unit error reporting banks available in 
the processor.

8 IA32_MCG_CTL Present (RO)

1 = Indicates that the processor implements the MSR_MCG_CTL 
register found at MSR 17BH.

0 = Not supported.

63:9 Reserved.

17AH 378 IA32_MCG_STATUS

0 RIPV

When set, this bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check was 
generated) can be used to restart the program. If this bit is cleared, the 
program cannot be reliably restarted.

1 EIPV

When set, this bit indicates that the instruction addressed by the 
instruction pointer pushed on the stack (when the machine check was 
generated) is directly associated with the error.

2 MCIP

When set, this bit indicates that a machine check has been generated. If a 
second machine check is detected while this bit is still set, the processor 
enters a shutdown state. Software should write this bit to 0 after 
processing a machine check exception.

63:3 Reserved.
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198H 408 IA32_PERF_STATUS See Table 35-2.

199H 409 IA32_PERF_CTL See Table 35-2.

19AH 410 IA32_CLOCK_MODULATION Clock Modulation (R/W). 

See Table 35-2. 

See Section 14.7.3, “Software Controlled Clock Modulation.”

19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W)

See Table 35-2. 

See Section 14.7.2, “Thermal Monitor.”

19CH 412 IA32_THERM_STATUS Thermal Monitor Status (R/W)

See Table 35-2.

See Section 14.7.2, “Thermal Monitor.”

19DH 413 MSR_THERM2_CTL

15:0 Reserved.

16 TM_SELECT (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die modulation of the 
stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT has no 
effect. Neither TM1 nor TM2 will be enabled.

63:16 Reserved.

1A0 416 IA32_MISC_ENABLE Enable Miscellaneous Processor Features (R/W)

Allows a variety of processor functions to be enabled and disabled.

2:0 Reserved.

3 Automatic Thermal Control Circuit Enable (R/W) 

1 = Setting this bit enables the thermal control circuit (TCC) portion of 
the Intel Thermal Monitor feature. This allows processor clocks to 
be automatically modulated based on the processor's thermal 
sensor operation. 

0 = Disabled (default). 

The automatic thermal control circuit enable bit determines if the 
thermal control circuit (TCC) will be activated when the processor's 
internal thermal sensor determines the processor is about to exceed its 
maximum operating temperature.

When the TCC is activated and TM1 is enabled, the processors clocks will 
be forced to a 50% duty cycle. BIOS must enable this feature.

The bit should not be confused with the on-demand thermal control 
circuit enable bit.

6:4 Reserved.

7 Performance Monitoring Available (R) 

1 = Performance monitoring enabled

0 = Performance monitoring disabled
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9:8 Reserved.

10 FERR# Multiplexing Enable (R/W)

1 = FERR# asserted by the processor to indicate a pending break 
event within the processor 

0 =  Indicates compatible FERR# signaling behavior

This bit must be set to 1 to support XAPIC interrupt model usage.

Branch Trace Storage Unavailable (RO)

1 = Processor doesn’t support branch trace storage (BTS)

0 = BTS is supported

12 Precise Event Based Sampling Unavailable (RO) 

1 = Processor does not support precise event-based sampling (PEBS); 

0 = PEBS is supported. 

The Pentium M processor does not support PEBS.

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable (R/W) 

1 = Enhanced Intel SpeedStep Technology enabled.

On the Pentium M processor, this bit may be configured to be read-only.

22:17 Reserved.

23 xTPR Message Disable (R/W)

When set to 1, xTPR messages are disabled. xTPR messages are optional 
messages that allow the processor to inform the chipset of its priority. 
The default is processor specific.

63:24 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Last Branch Record Stack TOS (R/W) 

Contains an index (bits 0-3) that points to the MSR containing the most 
recent branch record. See also:

• MSR_LASTBRANCH_0_FROM_IP (at 40H)
• Section 17.11, “Last Branch, Interrupt, and Exception Recording 

(Pentium M Processors)”

1D9H 473 MSR_DEBUGCTLB Debug Control (R/W) 

Controls how several debug features are used. Bit definitions are 
discussed in the referenced section.

See Section 17.11, “Last Branch, Interrupt, and Exception Recording 
(Pentium M Processors).”

1DDH 477 MSR_LER_TO_LIP Last Exception Record To Linear IP (R) 

This area contains a pointer to the target of the last branch instruction 
that the processor executed prior to the last exception that was 
generated or the last interrupt that was handled.

See Section 17.11, “Last Branch, Interrupt, and Exception Recording 
(Pentium M Processors)” and Section 17.12.2, “Last Branch and Last 
Exception MSRs.”
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1DEH 478 MSR_LER_FROM_LIP Last Exception Record From Linear IP (R) 

Contains a pointer to the last branch instruction that the processor 
executed prior to the last exception that was generated or the last 
interrupt that was handled.

See Section 17.11, “Last Branch, Interrupt, and Exception Recording 
(Pentium M Processors)” and Section 17.12.2, “Last Branch and Last 
Exception MSRs.”

2FFH 767 IA32_MTRR_DEF_TYPE Default Memory Types (R/W) 

Sets the memory type for the regions of physical memory that are not 
mapped by the MTRRs. 

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE MSR.”

400H 1024 IA32_MC0_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR See Section 14.3.2.3., “IA32_MCi_ADDR MSRs”. 

The IA32_MC0_ADDR register is either not implemented or contains no 
address if the ADDRV flag in the IA32_MC0_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR 
will cause a general-protection exception.

404H 1028 IA32_MC1_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not implemented or contains no 
address if the ADDRV flag in the IA32_MC1_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR 
will cause a general-protection exception.

408H 1032 IA32_MC2_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS See Chapter 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not implemented or contains no 
address if the ADDRV flag in the IA32_MC2_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR 
will cause a general-protection exception.

40CH 1036 MSR_MC4_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not implemented or contains no 
address if the ADDRV flag in the MSR_MC4_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR 
will cause a general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”
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35.17 MSRS IN THE P6 FAMILY PROCESSORS

The following MSRs are defined for the P6 family processors. The MSRs in this table that are shaded are available 
only in the Pentium II and Pentium III processors. Beginning with the Pentium 4 processor, some of the MSRs in this 
list have been designated as “architectural” and have had their names changed. See Table 35-2 for a list of the 
architectural MSRs.

412H 1042 MSR_MC3_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The MSR_MC3_ADDR register is either not implemented or contains no 
address if the ADDRV flag in the MSR_MC3_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR 
will cause a general-protection exception.

600H 1536 IA32_DS_AREA DS Save Area (R/W)

See Table 35-2.

Points to the DS buffer management area, which is used to manage the 
BTS and PEBS buffers. See Section 18.12.4, “Debug Store (DS) 
Mechanism.”

31:0 DS Buffer Management Area

Linear address of the first byte of the DS buffer management area.

63:32 Reserved.
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0H 0 P5_MC_ADDR See Section 35.18, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Section 35.18, “MSRs in Pentium Processors.”

10H 16 TSC See Section 17.13, “Time-Stamp Counter.”

17H 23 IA32_PLATFORM_ID Platform ID (R) 

The operating system can use this MSR to determine “slot” information for 
the processor and the proper microcode update to load.

49:0 Reserved.

52:50 Platform Id (R)

Contains information concerning the intended platform for the processor. 

52 51 50

0 0 0 Processor Flag 0

0 0 1 Processor Flag 1

0 1 0 Processor Flag 2

0 1 1 Processor Flag 3

1 0 0 Processor Flag 4 

1 0 1 Processor Flag 5

1 1 0 Processor Flag 6

1 1 1 Processor Flag 7

56:53 L2 Cache Latency Read.

59:57 Reserved.
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60 Clock Frequency Ratio Read.

63:61 Reserved.

1BH 27 APIC_BASE Section 10.4.4, “Local APIC Status and Location.”

7:0 Reserved.

8 Boot Strap Processor indicator Bit

1 = BSP

10:9 Reserved.

11 APIC Global Enable Bit - Permanent till reset

1 = Enabled 

0 = Disabled 

31:12 APIC Base Address.

63:32 Reserved.

2AH 42 EBL_CR_POWERON Processor Hard Power-On Configuration 

(R/W) Enables and disables processor features; 

(R) indicates current processor configuration.

0 Reserved.1

1 Data Error Checking Enable (R/W)

1 = Enabled

0 = Disabled 

2 Response Error Checking Enable FRCERR Observation Enable (R/W)

1 = Enabled 

0 = Disabled

3 AERR# Drive Enable (R/W)

1 = Enabled

0 = Disabled 

4 BERR# Enable for Initiator Bus Requests (R/W)

1 = Enabled

0 = Disabled 

5 Reserved.

6 BERR# Driver Enable for Initiator Internal Errors (R/W)

1 = Enabled

0 = Disabled 

7 BINIT# Driver Enable (R/W)

1 = Enabled

0 = Disabled 

8 Output Tri-state Enabled (R)

1 = Enabled

0 = Disabled 

Table 35-30.  MSRs in the P6 Family Processors  (Contd.)

Register 
Address

Register Name Bit Description

 Hex Dec



35-198 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)

9 Execute BIST (R)

1 = Enabled

0 = Disabled 

10 AERR# Observation Enabled (R)

1 = Enabled

0 = Disabled 

11 Reserved.

12 BINIT# Observation Enabled (R)

1 = Enabled

0 = Disabled 

13 In Order Queue Depth (R)

1 = 1

0 = 8

14 1-MByte Power on Reset Vector (R)

1 = 1MByte

0 = 4GBytes

 15 FRC Mode Enable (R)

1 = Enabled

0 = Disabled 

 17:16 APIC Cluster ID (R)

19:18 System Bus Frequency (R)

00 = 66MHz

10 = 100Mhz

01 = 133MHz

11 = Reserved

21: 20 Symmetric Arbitration ID (R)

25:22 Clock Frequency Ratio (R)

26 Low Power Mode Enable (R/W)

27 Clock Frequency Ratio

 63:28 Reserved.1

33H 51 TEST_CTL Test Control Register

29:0 Reserved.

30 Streaming Buffer Disable

31 Disable LOCK#

Assertion for split locked access.

79H 121 BIOS_UPDT_TRIG BIOS Update Trigger Register.

    88     136 BBL_CR_D0[63:0] Chunk 0 data register D[63:0]: used to write to and read from the L2

    89     137 BBL_CR_D1[63:0] Chunk 1 data register D[63:0]: used to write to and read from the L2

    8A     138 BBL_CR_D2[63:0] Chunk 2 data register D[63:0]: used to write to and read from the L2
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8BH 139 BIOS_SIGN/BBL_CR_D3[63:0] BIOS Update Signature Register or Chunk 3 data register D[63:0]

Used to write to and read from the L2 depending on the usage model.

C1H 193 PerfCtr0 (PERFCTR0)

C2H 194 PerfCtr1 (PERFCTR1)

FEH 254 MTRRcap

   116 278 BBL_CR_ADDR [63:0]

BBL_CR_ADDR [63:32]

BBL_CR_ADDR [31:3]

BBL_CR_ADDR [2:0]

Address register: used to send specified address (A31-A3) to L2 during 
cache initialization accesses.

Reserved, 

Address bits [35:3]

Reserved Set to 0.

   118  280 BBL_CR_DECC[63:0] Data ECC register D[7:0]: used to write ECC and read ECC to/from L2

   119  281 BBL_CR_CTL 

BL_CR_CTL[63:22]

BBL_CR_CTL[21]

Control register: used to program L2 commands to be issued via cache 
configuration accesses mechanism. Also receives L2 lookup response

Reserved

Processor number2

Disable = 1
Enable = 0
Reserved

BBL_CR_CTL[20:19]

BBL_CR_CTL[18]

BBL_CR_CTL[17]

BBL_CR_CTL[16]

BBL_CR_CTL[15:14]

BBL_CR_CTL[13:12]

BBL_CR_CTL[11:10]

BBL_CR_CTL[9:8]

BBL_CR_CTL[7]

BBL_CR_CTL[6:5]

User supplied ECC

Reserved

L2 Hit

Reserved

State from L2 

Modified - 11,Exclusive - 10, Shared - 01, Invalid - 00

Way from L2

Way 0 - 00, Way 1 - 01, Way 2 - 10, Way 3 - 11

Way to L2

Reserved

State to L2

BBL_CR_CTL[4:0]

01100
01110
01111
00010
00011
010 + MESI encode
111 + MESI encode
100 + MESI encode

L2 Command

Data Read w/ LRU update (RLU)
Tag Read w/ Data Read (TRR)
Tag Inquire (TI)
L2 Control Register Read (CR)
L2 Control Register Write (CW)
Tag Write w/ Data Read (TWR)
Tag Write w/ Data Write (TWW)
Tag Write (TW)

   11A  282 BBL_CR_TRIG Trigger register: used to initiate a cache configuration accesses access, 
Write only with Data = 0.

   11B  283 BBL_CR_BUSY Busy register: indicates when a cache configuration accesses L2 command 
is in progress. D[0] = 1 = BUSY

Table 35-30.  MSRs in the P6 Family Processors  (Contd.)

Register 
Address

Register Name Bit Description

 Hex Dec



35-200 Vol. 3C

MODEL-SPECIFIC REGISTERS (MSRS)

11E  286 BBL_CR_CTL3

BBL_CR_CTL3[63:26]

BBL_CR_CTL3[25]

BBL_CR_CTL3[24]

BBL_CR_CTL3[23]

Control register 3: used to configure the L2 Cache

Reserved 

Cache bus fraction (read only)

Reserved

L2 Hardware Disable (read only)

BBL_CR_CTL3[22:20]

111
110 
101
100
011
010
001
000

BBL_CR_CTL3[19]

BBL_CR_CTL3[18]

L2 Physical Address Range support

64GBytes
32GBytes
16GBytes
8GBytes
4GBytes
2GBytes
1GBytes
512MBytes

Reserved

Cache State error checking enable (read/write)

 BBL_CR_CTL3[17:13

00001
00010
00100
01000
10000

BBL_CR_CTL3[12:11]

BBL_CR_CTL3[10:9]

00
01
10
11

BBL_CR_CTL3[8]

BBL_CR_CTL3[7]

BBL_CR_CTL3[6]

BBL_CR_CTL3[5]

BBL_CR_CTL3[4:1]

BBL_CR_CTL3[0]

Cache size per bank (read/write)

256KBytes
512KBytes
1MByte
2MByte
4MBytes

Number of L2 banks (read only)

L2 Associativity (read only)

Direct Mapped
2 Way
4 Way
Reserved

L2 Enabled (read/write)

CRTN Parity Check Enable (read/write)

Address Parity Check Enable (read/write)

ECC Check Enable (read/write)

L2 Cache Latency (read/write)

L2 Configured (read/write

)

174H 372 SYSENTER_CS_MSR CS register target for CPL 0 code

175H 373 SYSENTER_ESP_MSR Stack pointer for CPL 0 stack

176H 374 SYSENTER_EIP_MSR CPL 0 code entry point

179H 377 MCG_CAP

17AH 378 MCG_STATUS
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17BH 379 MCG_CTL

186H 390 PerfEvtSel0 (EVNTSEL0)

7:0 Event Select

Refer to Performance Counter section for a list of event encodings.

15:8 UMASK (Unit Mask)

Unit mask register set to 0 to enable all count options.

16 USER

Controls the counting of events at Privilege levels of 1, 2, and 3.

17 OS

Controls the counting of events at Privilege level of 0.

18 E

Occurrence/Duration Mode Select

1 = Occurrence

0 = Duration

19 PC

Enabled the signaling of performance counter overflow via BP0 pin

20 INT

Enables the signaling of counter overflow via input to APIC

1 = Enable

0 = Disable

22 ENABLE

Enables the counting of performance events in both counters

1 = Enable

0 = Disable

23 INV

Inverts the result of the CMASK condition

1 = Inverted

0 = Non-Inverted

31:24 CMASK (Counter Mask).

187H 391 PerfEvtSel1 (EVNTSEL1)

7:0 Event Select

Refer to Performance Counter section for a list of event encodings.

15:8 UMASK (Unit Mask)

Unit mask register set to 0 to enable all count options.
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16 USER

Controls the counting of events at Privilege levels of 1, 2, and 3.

17 OS

Controls the counting of events at Privilege level of 0

18 E

Occurrence/Duration Mode Select

1 = Occurrence

0 = Duration

19 PC

Enabled the signaling of performance counter overflow via BP0 pin.

20 INT

Enables the signaling of counter overflow via input to APIC

1 = Enable

0 = Disable

23 INV

Inverts the result of the CMASK condition

1 = Inverted

0 = Non-Inverted

31:24 CMASK (Counter Mask)

1D9H 473 DEBUGCTLMSR

0 Enable/Disable Last Branch Records

1 Branch Trap Flag

2 Performance Monitoring/Break Point Pins

3 Performance Monitoring/Break Point Pins

4 Performance Monitoring/Break Point Pins

5 Performance Monitoring/Break Point Pins

6 Enable/Disable Execution Trace Messages

31:7 Reserved

1DBH 475 LASTBRANCHFROMIP

1DCH 476 LASTBRANCHTOIP

1DDH 477 LASTINTFROMIP

1DEH 478 LASTINTTOIP

1E0H 480 ROB_CR_BKUPTMPDR6

1:0 Reserved

2 Fast String Enable bit. Default is enabled

200H 512 MTRRphysBase0

201H 513 MTRRphysMask0

202H 514 MTRRphysBase1

Table 35-30.  MSRs in the P6 Family Processors  (Contd.)

Register 
Address

Register Name Bit Description

 Hex Dec



Vol. 3C 35-203

MODEL-SPECIFIC REGISTERS (MSRS)

203H 515 MTRRphysMask1

204H 516 MTRRphysBase2

205H 517 MTRRphysMask2

206H 518 MTRRphysBase3

207H 519 MTRRphysMask3

208H 520 MTRRphysBase4

209H 521 MTRRphysMask4

20AH 522 MTRRphysBase5

20BH 523 MTRRphysMask5

20CH 524 MTRRphysBase6

20DH 525 MTRRphysMask6

20EH 526 MTRRphysBase7

20FH 527 MTRRphysMask7

250H 592 MTRRfix64K_00000

258H 600 MTRRfix16K_80000

259H 601 MTRRfix16K_A0000

268H 616 MTRRfix4K_C0000

269H 617 MTRRfix4K_C8000

26AH 618 MTRRfix4K_D0000

26BH 619 MTRRfix4K_D8000

26CH 620 MTRRfix4K_E0000

26DH 621 MTRRfix4K_E8000

26EH 622 MTRRfix4K_F0000

26FH 623 MTRRfix4K_F8000

2FFH 767 MTRRdefType

2:0 Default memory type

10 Fixed MTRR enable

11 MTRR Enable

400H 1024 MC0_CTL

401H 1025 MC0_STATUS

15:0 MC_STATUS_MCACOD 

31:16 MC_STATUS_MSCOD 

57 MC_STATUS_DAM

58 MC_STATUS_ADDRV 

59 MC_STATUS_MISCV 

60 MC_STATUS_EN. (Note: For MC0_STATUS only, this bit is hardcoded to 1.)

61 MC_STATUS_UC 
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35.18 MSRS IN PENTIUM PROCESSORS

The following MSRs are defined for the Pentium processors. The P5_MC_ADDR, P5_MC_TYPE, and TSC MSRs 
(named IA32_P5_MC_ADDR, IA32_P5_MC_TYPE, and IA32_TIME_STAMP_COUNTER in the Pentium 4 processor) 
are architectural; that is, code that accesses these registers will run on Pentium 4 and P6 family processors without 
generating exceptions (see Section 35.1, “Architectural MSRs”). The CESR, CTR0, and CTR1 MSRs are unique to 

62 MC_STATUS_O

63 MC_STATUS_V

402H 1026 MC0_ADDR

403H 1027 MC0_MISC Defined in MCA architecture but not implemented in the P6 family 
processors.

404H 1028 MC1_CTL

405H 1029 MC1_STATUS Bit definitions same as MC0_STATUS.

406H 1030 MC1_ADDR

407H 1031 MC1_MISC Defined in MCA architecture but not implemented in the P6 family 
processors.

408H 1032 MC2_CTL

409H 1033 MC2_STATUS Bit definitions same as MC0_STATUS.

40AH 1034 MC2_ADDR

40BH 1035 MC2_MISC Defined in MCA architecture but not implemented in the P6 family 
processors.

40CH 1036 MC4_CTL

40DH 1037 MC4_STATUS Bit definitions same as MC0_STATUS, except bits 0, 4, 57, and 61 are 
hardcoded to 1.

40EH 1038 MC4_ADDR Defined in MCA architecture but not implemented in P6 Family processors.

40FH 1039 MC4_MISC Defined in MCA architecture but not implemented in the P6 family 
processors.

410H 1040 MC3_CTL

411H 1041 MC3_STATUS Bit definitions same as MC0_STATUS.

412H 1042 MC3_ADDR

413H 1043 MC3_MISC Defined in MCA architecture but not implemented in the P6 family 
processors.

NOTES

1. Bit 0 of this register has been redefined several times, and is no longer used in P6 family processors.

2. The processor number feature may be disabled by setting bit 21 of the BBL_CR_CTL MSR (model-specific register address 119h) to 
“1”. Once set, bit 21 of the BBL_CR_CTL may not be cleared. This bit is write-once. The processor number feature will be disabled 
until the processor is reset.

3. The Pentium III processor will prevent FSB frequency overclocking with a new shutdown mechanism. If the FSB frequency selected 
is greater than the internal FSB frequency the processor will shutdown. If the FSB selected is less than the internal FSB frequency 
the BIOS may choose to use bit 11 to implement its own shutdown policy.
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Pentium processors; code that accesses these registers will generate exceptions on Pentium 4 and P6 family 
processors.

Table 35-31.  MSRs in the Pentium Processor
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0H 0 P5_MC_ADDR See Section 15.10.2, “Pentium Processor Machine-Check Exception Handling.”

1H 1 P5_MC_TYPE See Section 15.10.2, “Pentium Processor Machine-Check Exception Handling.”

10H 16 TSC See Section 17.13, “Time-Stamp Counter.”

11H 17 CESR See Section 18.20.1, “Control and Event Select Register (CESR).”

12H 18 CTR0 Section 18.20.3, “Events Counted.”

13H 19 CTR1 Section 18.20.3, “Events Counted.”
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APPENDIX A
VMX CAPABILITY REPORTING FACILITY

The ability of a processor to support VMX operation and related instructions is indicated by 
CPUID.1:ECX.VMX[bit 5] = 1. A value 1 in this bit indicates support for VMX features.

Support for specific features detailed in Chapter 26 and other VMX chapters is determined by reading values from 
a set of capability MSRs. These MSRs are indexed starting at MSR address 480H. VMX capability MSRs are read-
only; an attempt to write them (with WRMSR) produces a general-protection exception (#GP(0)). They do not exist 
on processors that do not support VMX operation; an attempt to read them (with RDMSR) on such processors 
produces a general-protection exception (#GP(0)).

A.1 BASIC VMX INFORMATION

The IA32_VMX_BASIC MSR (index 480H) consists of the following fields:
• Bits 30:0 contain the 31-bit VMCS revision identifier used by the processor. Processors that use the same VMCS 

revision identifier use the same size for VMCS regions (see subsequent item on bits 44:32).1

• Bit 31 is always 0.
• Bits 44:32 report the number of bytes that software should allocate for the VMXON region and any VMCS 

region. It is a value greater than 0 and at most 4096 (bit 44 is set if and only if bits 43:32 are clear).
• Bit 48 indicates the width of the physical addresses that may be used for the VMXON region, each VMCS, and 

data structures referenced by pointers in a VMCS (I/O bitmaps, virtual-APIC page, MSR areas for VMX transi-
tions). If the bit is 0, these addresses are limited to the processor’s physical-address width.2 If the bit is 1, 
these addresses are limited to 32 bits. This bit is always 0 for processors that support Intel 64 architecture.

• If bit 49 is read as 1, the logical processor supports the dual-monitor treatment of system-management 
interrupts and system-management mode. See Section 34.15 for details of this treatment.

• Bits 53:50 report the memory type that the logical processor uses to access the VMCS for VMREAD and 
VMWRITE and to access the VMCS, data structures referenced by pointers in the VMCS (I/O bitmaps, virtual-
APIC page, MSR areas for VMX transitions), and the MSEG header during VM entries, VM exits, and in VMX non-
root operation.3

The first processors to support VMX operation use the write-back type. The values used are given in Table A-1.

1. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field in bits 31:0 of this MSR. For all proces-
sors produced prior to this change, bit 31 of this MSR was read as 0.

2. On processors that support Intel 64 architecture, the pointer must not set bits beyond the processor's physical address width.

3. If the MTRRs are disabled by clearing the E bit (bit 11) in the IA32_MTRR_DEF_TYPE MSR, the logical processor uses the UC memory 
type to access the indicated data structures, regardless of the value reported in bits 53:50 in the IA32_VMX_BASIC MSR. The pro-
cessor will also use the UC memory type if the setting of CR0.CD on this logical processor (or another logical processor on the same 
physical processor) would cause it to do so for all memory accesses. The values of IA32_MTRR_DEF_TYPE.E and CR0.CD do not 
affect the value reported in IA32_VMX_BASIC[53:50].

Table A-1.  Memory Types Used For VMCS Access

Value(s) Field

0 Uncacheable (UC)

1–5 Not used

6 Write Back (WB)

7–15 Not used
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If software needs to access these data structures (e.g., to modify the contents of the MSR bitmaps), it can 
configure the paging structures to map them into the linear-address space. If it does so, it should establish 
mappings that use the memory type reported in this MSR.1

• If bit 54 is read as 1, the logical processor reports information in the VM-exit instruction-information field on 
VM exits due to execution of the INS and OUTS instructions. This reporting is done only if this bit is read as 1.

• Bit 55 is read as 1 if any VMX controls that default to 1 may be cleared to 0. See Appendix A.2 for details. It also 
reports support for the VMX capability MSRs IA32_VMX_TRUE_PINBASED_CTLS, 
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and IA32_VMX_TRUE_ENTRY_CTLS. See 
Appendix A.3.1, Appendix A.3.2, Appendix A.4, and Appendix A.5 for details.

• The values of bits 47:45 and bits 63:56 are reserved and are read as 0.

A.2 RESERVED CONTROLS AND DEFAULT SETTINGS

As noted in Chapter 26, “VM Entries”, certain VMX controls are reserved and must be set to a specific value (0 or 1) 
determined by the processor. The specific value to which a reserved control must be set is its default setting. 
Software can discover the default setting of a reserved control by consulting the appropriate VMX capability MSR 
(see Appendix A.3 through Appendix A.5).

Future processors may define new functionality for one or more reserved controls. Such processors would allow 
each newly defined control to be set either to 0 or to 1. Software that does not desire a control’s new functionality 
should set the control to its default setting. For that reason, it is useful for software to know the default settings of 
the reserved controls.

Default settings partition the various controls into the following classes:
• Always-flexible. These have never been reserved.
• Default0. These are (or have been) reserved with a default setting of 0.
• Default1. They are (or have been) reserved with a default setting of 1.

As noted in Appendix A.1, a logical processor uses bit 55 of the IA32_VMX_BASIC MSR to indicate whether any of 
the default1 controls may be 0:
• If bit 55 of the IA32_VMX_BASIC MSR is read as 0, all the default1 controls are reserved and must be 1. 

VM entry will fail if any of these controls are 1 (see Section 26.2.1).
• If bit 55 of the IA32_VMX_BASIC MSR is read as 1, not all the default1 controls are reserved, and some (but 

not necessarily all) may be 0. The CPU supports four (4) new VMX capability MSRs: 
IA32_VMX_TRUE_PINBASED_CTLS, IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and 
IA32_VMX_TRUE_ENTRY_CTLS. See Appendix A.3 through Appendix A.5 for details. (These MSRs are not 
supported if bit 55 of the IA32_VMX_BASIC MSR is read as 0.)

See Section 31.5.1 for recommended software algorithms for proper capability detection of the default1 controls.

A.3 VM-EXECUTION CONTROLS

There are separate capability MSRs for the pin-based VM-execution controls, the primary processor-based VM-
execution controls, and the secondary processor-based VM-execution controls. These are described in Appendix 
A.3.1, Appendix A.3.2, and Appendix A.3.3, respectively.

1. Alternatively, software may map any of these regions or structures with the UC memory type. (This may be necessary for the MSEG 
header.) Doing so is discouraged unless necessary as it will cause the performance of software accesses to those structures to suf-
fer. The processor will continue to use the memory type reported in the VMX capability MSR IA32_VMX_BASIC with the exceptions 
noted.
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A.3.1  Pin-Based VM-Execution Controls

The IA32_VMX_PINBASED_CTLS MSR (index 481H) reports on the allowed settings of most of the pin-based 
VM-execution controls (see Section 24.6.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X (bit X of the pin-based 

VM-execution controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if 
control X is 0.
Exceptions are made for the pin-based VM-execution controls in the default1 class (see Appendix A.2). These 
are bits 1, 2, and 4; the corresponding bits of the IA32_VMX_PINBASED_CTLS MSR are always read as 1. The 
treatment of these controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any pin-based VM-execution control in 
the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_PINBASED_CTLS MSR (see 
below) reports which of the pin-based VM-execution controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in 
the MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_PINBASED_CTLS MSR (index 48DH) 
reports on the allowed settings of all of the pin-based VM-execution controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X to be 0 if bit X in the MSR 

is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0. There are no exceptions.
• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in the 

MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the allowed settings of the pin-
based VM-execution controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed settings of the pin-based 

VM-execution controls is contained in the IA32_VMX_PINBASED_CTLS MSR. (The 
IA32_VMX_TRUE_PINBASED_CTLS MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed settings of the pin-based 
VM-execution controls is contained in the IA32_VMX_TRUE_PINBASED_CTLS MSR. Assuming that software 
knows that the default1 class of pin-based VM-execution controls contains bits 1, 2, and 4, there is no need for 
software to consult the IA32_VMX_PINBASED_CTLS MSR.

A.3.2  Primary Processor-Based VM-Execution Controls

The IA32_VMX_PROCBASED_CTLS MSR (index 482H) reports on the allowed settings of most of the primary 
processor-based VM-execution controls (see Section 24.6.2):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X (bit X of the primary 

processor-based VM-execution controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 
1, VM entry fails if control X is 0.
Exceptions are made for the primary processor-based VM-execution controls in the default1 class (see 
Appendix A.2). These are bits 1, 4–6, 8, 13–16, and 26; the corresponding bits of the 
IA32_VMX_PROCBASED_CTLS MSR are always read as 1. The treatment of these controls by VM entry is 
determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any of the primary processor-based VM-
execution controls in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_PROCBASED_CTLS MSR (see 
below) reports which of the primary processor-based VM-execution controls in the default1 class can be 0 
on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in the 
MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.
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If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_PROCBASED_CTLS MSR (index 48EH) 
reports on the allowed settings of all of the primary processor-based VM-execution controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X to be 0 if bit X in the MSR 

is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0. There are no exceptions.
• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in the 

MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the allowed settings of the 
primary processor-based VM-execution controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed settings of the primary 

processor-based VM-execution controls is contained in the IA32_VMX_PROCBASED_CTLS MSR. (The 
IA32_VMX_TRUE_PROCBASED_CTLS MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed settings of the processor-
based VM-execution controls is contained in the IA32_VMX_TRUE_PROCBASED_CTLS MSR. Assuming that 
software knows that the default1 class of processor-based VM-execution controls contains bits 1, 4–6, 8, 13–
16, and 26, there is no need for software to consult the IA32_VMX_PROCBASED_CTLS MSR.

A.3.3  Secondary Processor-Based VM-Execution Controls

The IA32_VMX_PROCBASED_CTLS2 MSR (index 48BH) reports on the allowed settings of the secondary processor-
based VM-execution controls (see Section 24.6.2). VM entries perform the following checks:
• Bits 31:0 indicate the allowed 0-settings of these controls. These bits are always 0. This fact indicates that 

VM entry allows each bit of the secondary processor-based VM-execution controls to be 0 (reserved bits must 
be 0)

• Bits 63:32 indicate the allowed 1-settings of these controls; the 1-setting is not allowed for any reserved bit. 
VM entry allows control X (bit X of the secondary processor-based VM-execution controls) to be 1 if bit 32+X in 
the MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X and the “activate secondary 
controls” primary processor-based VM-execution control are both 1.

The IA32_VMX_PROCBASED_CTLS2 MSR exists only on processors that support the 1-setting of the “activate 
secondary controls” VM-execution control (only if bit 63 of the IA32_VMX_PROCBASED_CTLS MSR is 1).

A.4 VM-EXIT CONTROLS

The IA32_VMX_EXIT_CTLS MSR (index 483H) reports on the allowed settings of most of the VM-exit controls (see 
Section 24.7.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X (bit X of the VM-exit 

controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Exceptions are made for the VM-exit controls in the default1 class (see Appendix A.2). These are bits 0–8, 10, 
11, 13, 14, 16, and 17; the corresponding bits of the IA32_VMX_EXIT_CTLS MSR are always read as 1. The 
treatment of these controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any VM-exit control in the default1 class 
is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_EXIT_CTLS MSR (see below) 
reports which of the VM-exit controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control 32+X to be 1 if bit X in the 
MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_EXIT_CTLS MSR (index 48FH) reports on 
the allowed settings of all of the VM-exit controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X to be 0 if bit X in the MSR 

is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0. There are no exceptions.
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• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control X to be 1 if bit 32+X in the 
MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the allowed settings of the 
VM-exit controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed settings of the VM-exit 

controls is contained in the IA32_VMX_EXIT_CTLS MSR. (The IA32_VMX_TRUE_EXIT_CTLS MSR is not 
supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed settings of the VM-exit 
controls is contained in the IA32_VMX_TRUE_EXIT_CTLS MSR. Assuming that software knows that the default1 
class of VM-exit controls contains bits 0–8, 10, 11, 13, 14, 16, and 17, there is no need for software to consult 
the IA32_VMX_EXIT_CTLS MSR.

A.5 VM-ENTRY CONTROLS

The IA32_VMX_ENTRY_CTLS MSR (index 484H) reports on the allowed settings of most of the VM-entry controls 
(see Section 24.8.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X (bit X of the VM-entry 

controls) to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Exceptions are made for the VM-entry controls in the default1 class (see Appendix A.2). These are bits 0–8 and 
12; the corresponding bits of the IA32_VMX_ENTRY_CTLS MSR are always read as 1. The treatment of these 
controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any VM-entry control in the default1 
class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_ENTRY_CTLS MSR (see below) 
reports which of the VM-entry controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit X is 1 in the VM-entry controls 
and bit 32+X is 0 in this MSR.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_ENTRY_CTLS MSR (index 490H) reports 
on the allowed settings of all of the VM-entry controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows control X to be 0 if bit X in the MSR 

is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0. There are no exceptions.
• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows control 32+X to be 1 if bit X in the 

MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine the allowed settings of the 
VM-entry controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the allowed settings of the VM-entry 

controls is contained in the IA32_VMX_ENTRY_CTLS MSR. (The IA32_VMX_TRUE_ENTRY_CTLS MSR is not 
supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the allowed settings of the VM-entry 
controls is contained in the IA32_VMX_TRUE_ENTRY_CTLS MSR. Assuming that software knows that the 
default1 class of VM-entry controls contains bits 0–8 and 12, there is no need for software to consult the 
IA32_VMX_ENTRY_CTLS MSR.

A.6 MISCELLANEOUS DATA

The IA32_VMX_MISC MSR (index 485H) consists of the following fields:
• Bits 4:0 report a value X that specifies the relationship between the rate of the VMX-preemption timer and that 

of the timestamp counter (TSC). Specifically, the VMX-preemption timer (if it is active) counts down by 1 every 
time bit X in the TSC changes due to a TSC increment.
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• If bit 5 is read as 1, VM exits store the value of IA32_EFER.LMA into the “IA-32e mode guest” VM-entry control; 
see Section 27.2 for more details. This bit is read as 1 on any logical processor that supports the 1-setting of 
the “unrestricted guest” VM-execution control.

• Bits 8:6 report, as a bitmap, the activity states supported by the implementation:

— Bit 6 reports (if set) the support for activity state 1 (HLT).

— Bit 7 reports (if set) the support for activity state 2 (shutdown).

— Bit 8 reports (if set) the support for activity state 3 (wait-for-SIPI).
If an activity state is not supported, the implementation causes a VM entry to fail if it attempts to establish that 
activity state. All implementations support VM entry to activity state 0 (active).

• If bit 15 is read as 1, the RDMSR instruction can be used in system-management mode (SMM) to read the 
IA32_SMBASE MSR (MSR address 9EH). See Section 34.15.6.4.

• Bits 24:16 indicate the number of CR3-target values supported by the processor. This number is a value 
between 0 and 256, inclusive (bit 24 is set if and only if bits 23:16 are clear).

• Bits 27:25 is used to compute the recommended maximum number of MSRs that should appear in the VM-exit 
MSR-store list, the VM-exit MSR-load list, or the VM-entry MSR-load list. Specifically, if the value bits 27:25 of 
IA32_VMX_MISC is N, then 512 * (N + 1) is the recommended maximum number of MSRs to be included in 
each list. If the limit is exceeded, undefined processor behavior may result (including a machine check during 
the VMX transition).

• If bit 28 is read as 1, bit 2 of the IA32_SMM_MONITOR_CTL can be set to 1. VMXOFF unblocks SMIs unless 
IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section 34.14.4).

• If bit 29 is read as 1, software can use VMWRITE to write to any supported field in the VMCS; otherwise, 
VMWRITE cannot be used to modify VM-exit information fields.

• Bits 63:32 report the 32-bit MSEG revision identifier used by the processor.
• Bits 14:9 and bits 31:30 are reserved and are read as 0.

A.7 VMX-FIXED BITS IN CR0

The IA32_VMX_CR0_FIXED0 MSR (index 486H) and IA32_VMX_CR0_FIXED1 MSR (index 487H) indicate how bits 
in CR0 may be set in VMX operation. They report on bits in CR0 that are allowed to be 0 and to be 1, respectively, 
in VMX operation. If bit X is 1 in IA32_VMX_CR0_FIXED0, then that bit of CR0 is fixed to 1 in VMX operation. Simi-
larly, if bit X is 0 in IA32_VMX_CR0_FIXED1, then that bit of CR0 is fixed to 0 in VMX operation. It is always the case 
that, if bit X is 1 in IA32_VMX_CR0_FIXED0, then that bit is also 1 in IA32_VMX_CR0_FIXED1; if bit X is 0 in 
IA32_VMX_CR0_FIXED1, then that bit is also 0 in IA32_VMX_CR0_FIXED0. Thus, each bit in CR0 is either fixed to 
0 (with value 0 in both MSRs), fixed to 1 (1 in both MSRs), or flexible (0 in IA32_VMX_CR0_FIXED0 and 1 in 
IA32_VMX_CR0_FIXED1).

A.8 VMX-FIXED BITS IN CR4

The IA32_VMX_CR4_FIXED0 MSR (index 488H) and IA32_VMX_CR4_FIXED1 MSR (index 489H) indicate how bits 
in CR4 may be set in VMX operation. They report on bits in CR4 that are allowed to be 0 and 1, respectively, in VMX 
operation. If bit X is 1 in IA32_VMX_CR4_FIXED0, then that bit of CR4 is fixed to 1 in VMX operation. Similarly, if 
bit X is 0 in IA32_VMX_CR4_FIXED1, then that bit of CR4 is fixed to 0 in VMX operation. It is always the case that, 
if bit X is 1 in IA32_VMX_CR4_FIXED0, then that bit is also 1 in IA32_VMX_CR4_FIXED1; if bit X is 0 in 
IA32_VMX_CR4_FIXED1, then that bit is also 0 in IA32_VMX_CR4_FIXED0. Thus, each bit in CR4 is either fixed to 
0 (with value 0 in both MSRs), fixed to 1 (1 in both MSRs), or flexible (0 in IA32_VMX_CR4_FIXED0 and 1 in 
IA32_VMX_CR4_FIXED1).
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A.9 VMCS ENUMERATION

The IA32_VMX_VMCS_ENUM MSR (index 48AH) provides information to assist software in enumerating fields in 
the VMCS.

As noted in Section 24.11.2, each field in the VMCS is associated with a 32-bit encoding which is structured as 
follows:
• Bits 31:15 are reserved (must be 0).
• Bits 14:13 indicate the field’s width.
• Bit 12 is reserved (must be 0).
• Bits 11:10 indicate the field’s type.
• Bits 9:1 is an index field that distinguishes different fields with the same width and type.
• Bit 0 indicates access type.

IA32_VMX_VMCS_ENUM indicates to software the highest index value used in the encoding of any field supported 
by the processor:
• Bits 9:1 contain the highest index value used for any VMCS encoding.
• Bit 0 and bits 63:10 are reserved and are read as 0.

A.10 VPID AND EPT CAPABILITIES

The IA32_VMX_EPT_VPID_CAP MSR (index 48CH) reports information about the capabilities of the logical 
processor with regard to virtual-processor identifiers (VPIDs, Section 28.1) and extended page tables (EPT, Section 
28.2):
• If bit 0 is read as 1, the logical processor allows software to configure EPT paging-structure entries in which 

bits 2:0 have value 100b (indicating an execute-only translation). 
• Bit 6 indicates support for a page-walk length of 4.
• If bit 8 is read as 1, the logical processor allows software to configure the EPT paging-structure memory type 

to be uncacheable (UC); see Section 24.6.11.
• If bit 14 is read as 1, the logical processor allows software to configure the EPT paging-structure memory type 

to be write-back (WB).
• If bit 16 is read as 1, the logical processor allows software to configure a EPT PDE to map a 2-Mbyte page (by 

setting bit 7 in the EPT PDE). 
• If bit 17 is read as 1, the logical processor allows software to configure a EPT PDPTE to map a 1-Gbyte page (by 

setting bit 7 in the EPT PDPTE). 
• Support for the INVEPT instruction (see Chapter 30 and Section 28.3.3.1).

— If bit 20 is read as 1, the INVEPT instruction is supported.

— If bit 25 is read as 1, the single-context INVEPT type is supported.

— If bit 26 is read as 1, the all-context INVEPT type is supported.
• If bit 21 is read as 1, accessed and dirty flags for EPT are supported (see Section 28.2.4).
• Support for the INVVPID instruction (see Chapter 30 and Section 28.3.3.1).

— If bit 32 is read as 1, the INVVPID instruction is supported.

— If bit 40 is read as 1, the individual-address INVVPID type is supported.

— If bit 41 is read as 1, the single-context INVVPID type is supported.

— If bit 42 is read as 1, the all-context INVVPID type is supported.

— If bit 43 is read as 1, the single-context-retaining-globals INVVPID type is supported.
• Bits 5:1, bit 7, bits 13:9, bit 15, bits 19:17, bits 24:21, bits 31:27, bits 39:33, and bits 63:44 are reserved 

and are read as 0.
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The IA32_VMX_EPT_VPID_CAP MSR exists only on processors that support the 1-setting of the “activate secondary 
controls” VM-execution control (only if bit 63 of the IA32_VMX_PROCBASED_CTLS MSR is 1) and that support 
either the 1-setting of the “enable EPT” VM-execution control (only if bit 33 of the IA32_VMX_PROCBASED_CTLS2 
MSR is 1) or the 1-setting of the “enable VPID” VM-execution control (only if bit 37 of the 
IA32_VMX_PROCBASED_CTLS2 MSR is 1).

A.11 VM FUNCTIONS

The IA32_VMX_VMFUNC MSR (index 491H) reports on the allowed settings of the VM-function controls (see 
Section 24.6.14). VM entry allows bit X of the VM-function controls to be 1 if bit X in the MSR is set to 1; if bit X in 
the MSR is cleared to 0, VM entry fails if bit X of the VM-function controls, the “activate secondary controls” primary 
processor-based VM-execution control, and the “enable VM functions” secondary processor-based VM-execution 
control are all 1.

The IA32_VMX_VMFUNC MSR exists only on processors that support the 1-setting of the “activate secondary 
controls” VM-execution control (only if bit 63 of the IA32_VMX_PROCBASED_CTLS MSR is 1) and the 1-setting of 
the “enable VM functions” secondary processor-based VM-execution control (only if bit 45 of the 
IA32_VMX_PROCBASED_CTLS2 MSR is 1).
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APPENDIX B
FIELD ENCODING IN VMCS

Every component of the VMCS is encoded by a 32-bit field that can be used by VMREAD and VMWRITE. Section 
24.11.2 describes the structure of the encoding space (the meanings of the bits in each 32-bit encoding). 

This appendix enumerates all fields in the VMCS and their encodings. Fields are grouped by width (16-bit, 32-bit, 
etc.) and type (guest-state, host-state, etc.)

B.1 16-BIT FIELDS

A value of 0 in bits 14:13 of an encoding indicates a 16-bit field. Only guest-state areas and the host-state area 
contain 16-bit fields. As noted in Section 24.11.2, each 16-bit field allows only full access, meaning that bit 0 of its 
encoding is 0. Each such encoding is thus an even number.

B.1.1  16-Bit Control Fields

A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index value 
in bits 9:1. Table B-1 enumerates the 16-bit control fields.

B.1.2  16-Bit Guest-State Fields

A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields are distinguished by 
their index value in bits 9:1. Table B-2 enumerates 16-bit guest-state fields.

Table B-1.  Encoding for 16-Bit Control Fields (0000_00xx_xxxx_xxx0B)

Field Name Index Encoding

Virtual-processor identifier (VPID)1

NOTES:

1. This field exists only on processors that support the 1-setting of the “enable VPID” VM-execution control.

000000000B 00000000H

Posted-interrupt notification vector2

2. This field exists only on processors that support the 1-setting of the “process posted interrupts” VM-execution control.

000000001B 00000002H

EPTP index3

3. This field exists only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.

000000010B 00000004H

Table B-2.  Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B)

Field Name Index Encoding

Guest ES selector 000000000B 00000800H

Guest CS selector 000000001B 00000802H

Guest SS selector 000000010B 00000804H

Guest DS selector 000000011B 00000806H

Guest FS selector 000000100B 00000808H

Guest GS selector 000000101B 0000080AH

Guest LDTR selector 000000110B 0000080CH

Guest TR selector 000000111B 0000080EH
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B.1.3  16-Bit Host-State Fields

A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. These fields are distinguished by 
their index value in bits 9:1. Table B-3 enumerates the 16-bit host-state fields.

B.2 64-BIT FIELDS

A value of 1 in bits 14:13 of an encoding indicates a 64-bit field. There are 64-bit fields only for controls and for 
guest state. As noted in Section 24.11.2, every 64-bit field has two encodings, which differ on bit 0, the access 
type. Thus, each such field has an even encoding for full access and an odd encoding for high access.

B.2.1  64-Bit Control Fields

A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index value 
in bits 9:1. Table B-4 enumerates the 64-bit control fields.

Guest interrupt status1 000001000B 00000810H

NOTES:

1. This field exists only on processors that support the 1-setting of the “virtual-interrupt delivery” VM-execution control.

Table B-3.  Encodings for 16-Bit Host-State Fields (0000_11xx_xxxx_xxx0B)

Field Name Index Encoding

Host ES selector 000000000B 00000C00H

Host CS selector 000000001B 00000C02H

Host SS selector 000000010B 00000C04H

Host DS selector 000000011B 00000C06H

Host FS selector 000000100B 00000C08H

Host GS selector 000000101B 00000C0AH

Host TR selector 000000110B 00000C0CH

Table B-4.  Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb)

Field Name Index Encoding

Address of I/O bitmap A (full)
000000000B

00002000H

Address of I/O bitmap A (high) 00002001H

Address of I/O bitmap B (full)
000000001B

00002002H

Address of I/O bitmap B (high) 00002003H

Address of MSR bitmaps (full)1

000000010B
00002004H

Address of MSR bitmaps (high)1 00002005H

VM-exit MSR-store address (full)
000000011B

00002006H

VM-exit MSR-store address (high) 00002007H

VM-exit MSR-load address (full)
000000100B

00002008H

VM-exit MSR-load address (high) 00002009H

Table B-2.  Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B) (Contd.)

Field Name Index Encoding
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VM-entry MSR-load address (full)
000000101B

0000200AH

VM-entry MSR-load address (high) 0000200BH

Executive-VMCS pointer (full)
000000110B

0000200CH

Executive-VMCS pointer (high) 0000200DH

TSC offset (full)
000001000B

00002010H

TSC offset (high) 00002011H

Virtual-APIC address (full)2

000001001B
00002012H

Virtual-APIC address (high)2 00002013H

APIC-access address (full)3

000001010B
00002014H

APIC-access address (high)3 00002015H

Posted-interrupt descriptor address (full)4

000001011B
00002016H

Posted-interrupt descriptor address (high)4 00002017H

VM-function controls (full)5

000001100B
00002018H

VM-function controls (high)5 00002019H

EPT pointer (EPTP; full)6

000001101B
0000201AH

EPT pointer (EPTP; high)6 0000201BH

EOI-exit bitmap 0 (EOI_EXIT0; full)7

000001110B
0000201CH

EOI-exit bitmap 0 (EOI_EXIT0; high)7 0000201DH

EOI-exit bitmap 1 (EOI_EXIT1; full)7

000001111B
0000201EH

EOI-exit bitmap 1 (EOI_EXIT1; high)7 0000201FH

EOI-exit bitmap 2 (EOI_EXIT2; full)7

000010000B
00002020H

EOI-exit bitmap 2 (EOI_EXIT2; high)7 00002021H

EOI-exit bitmap 3 (EOI_EXIT3; full)7

000010001B
00002022H

EOI-exit bitmap 3 (EOI_EXIT3; high)7 00002023H

EPTP-list address (full)8

000010010B
00002024H

EPTP-list address (high)8 00002025H

VMREAD-bitmap address (full)9

000010011B
00002026H

VMREAD-bitmap address (high)9 00002027H

VMWRITE-bitmap address (full)9

000010100B
00002028H

VMWRITE-bitmap address (high)9 00002029H

Virtualization-exception information address (full)10

000010101B
0000202AH

Virtualization-exception information address (high)10 0000202BH

XSS-exiting bitmap (full)11

000010110B
0000202CH

XSS-exiting bitmap (high)11 0000202DH

NOTES:

1. This field exists only on processors that support the 1-setting of the “use MSR bitmaps” 
VM-execution control.

2. This field exists only on processors that support either the 1-setting of the “use TPR shadow” VM-execution control.

3. This field exists only on processors that support the 1-setting of the “virtualize APIC accesses” VM-execution control.

Table B-4.  Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb) (Contd.)

Field Name Index Encoding
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B.2.2  64-Bit Read-Only Data Field

A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields are distinguished by their 
index value in bits 9:1. There is only one such 64-bit field as given in Table B-5.(As with other 64-bit fields, this one 
has two encodings.)

B.2.3  64-Bit Guest-State Fields

A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields are distinguished by 
their index value in bits 9:1. Table B-6 enumerates the 64-bit guest-state fields.

4. This field exists only on processors that support the 1-setting of the “process posted interrupts” VM-execution control.

5. This field exists only on processors that support the 1-setting of the “enable VM functions” VM-execution control.

6. This field exists only on processors that support the 1-setting of the “enable EPT” VM-execution control.

7. This field exists only on processors that support the 1-setting of the “virtual-interrupt delivery” VM-execution control.

8. This field exists only on processors that support the 1-setting of the “EPTP switching” VM-function control.

9. This field exists only on processors that support the 1-setting of the “VMCS shadowing” VM-execution control.

10. This field exists only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.

11. This field exists only on processors that support the 1-setting of the “enable XSAVES/XRSTORS” VM-execution control.

Table B-5.  Encodings for 64-Bit Read-Only Data Field (0010_01xx_xxxx_xxxAb)

Field Name Index Encoding

Guest-physical address (full)1

NOTES:

1. This field exists only on processors that support the 1-setting of the "enable EPT” VM-execution control.

000000000B
00002400H

Guest-physical address (high)1 00002401H

Table B-6.  Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb)

Field Name Index Encoding

VMCS link pointer (full)
000000000B

00002800H

VMCS link pointer (high) 00002801H

Guest IA32_DEBUGCTL (full)
000000001B

00002802H

Guest IA32_DEBUGCTL (high) 00002803H

Guest IA32_PAT (full)1

000000010B
00002804H

Guest IA32_PAT (high)1 00002805H

Guest IA32_EFER (full)2

000000011B
00002806H

Guest IA32_EFER (high)2 00002807H

Guest IA32_PERF_GLOBAL_CTRL (full)3

000000100B
00002808H

Guest IA32_PERF_GLOBAL_CTRL (high)3 00002809H

Guest PDPTE0 (full)4

000000101B
0000280AH

Guest PDPTE0 (high)4 0000280BH

Guest PDPTE1 (full)4

000000110B
0000280CH

Guest PDPTE1 (high)4 0000280DH

Guest PDPTE2 (full)4

000000111B
0000280EH

Guest PDPTE2 (high)4 0000280FH



Vol. 3C B-5

FIELD ENCODING IN VMCS

B.2.4  64-Bit Host-State Fields

A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. These fields are distinguished by 
their index value in bits 9:1. Table B-7 enumerates the 64-bit control fields.

B.3 32-BIT FIELDS

A value of 2 in bits 14:13 of an encoding indicates a 32-bit field. As noted in Section 24.11.2, each 32-bit field 
allows only full access, meaning that bit 0 of its encoding is 0. Each such encoding is thus an even number.

B.3.1  32-Bit Control Fields

A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index value 
in bits 9:1. Table B-8 enumerates the 32-bit control fields.

Guest PDPTE3 (full)4

000001000B
00002810H

Guest PDPTE3 (high)4 00002811H

NOTES:

1. This field exists only on processors that support either the 1-setting of the "load IA32_PAT" VM-entry control or that of the "save 
IA32_PAT" VM-exit control.

2. This field exists only on processors that support either the 1-setting of the "load IA32_EFER" VM-entry control or that of the "save 
IA32_EFER" VM-exit control.

3. This field exists only on processors that support the 1-setting of the "load IA32_PERF_GLOBAL_CTRL" VM-entry control.

4. This field exists only on processors that support the 1-setting of the "enable EPT" VM-execution control.

Table B-7.  Encodings for 64-Bit Host-State Fields (0010_11xx_xxxx_xxxAb)

Field Name Index Encoding

Host IA32_PAT (full)1

NOTES:

1. This field exists only on processors that support the 1-setting of the "load IA32_PAT" VM-exit control.

000000000B
00002C00H

Host IA32_PAT (high)1 00002C01H

Host IA32_EFER (full)2

2. This field exists only on processors that support the 1-setting of the "load IA32_EFER" VM-exit control.

000000001B
00002C02H

Host IA32_EFER (high)2 00002C03H

Host IA32_PERF_GLOBAL_CTRL (full)3

3. This field exists only on processors that support the 1-setting of the "load IA32_PERF_GLOBAL_CTRL" VM-exit control.

000000010B
00002C04H

Host IA32_PERF_GLOBAL_CTRL (high)3 00002C05H

Table B-8.  Encodings for 32-Bit Control Fields (0100_00xx_xxxx_xxx0B)

Field Name Index Encoding

Pin-based VM-execution controls 000000000B 00004000H

Primary processor-based VM-execution controls 000000001B 00004002H

Exception bitmap 000000010B 00004004H

Page-fault error-code mask 000000011B 00004006H

Table B-6.  Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb) (Contd.)

Field Name Index Encoding
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B.3.2  32-Bit Read-Only Data Fields

A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields are distinguished by their 
index value in bits 9:1. Table B-9 enumerates the 32-bit read-only data fields.

Page-fault error-code match 000000100B 00004008H

CR3-target count 000000101B 0000400AH

VM-exit controls 000000110B 0000400CH

VM-exit MSR-store count 000000111B 0000400EH

VM-exit MSR-load count 000001000B 00004010H

VM-entry controls 000001001B 00004012H

VM-entry MSR-load count 000001010B 00004014H

VM-entry interruption-information field 000001011B 00004016H

VM-entry exception error code 000001100B 00004018H

VM-entry instruction length 000001101B 0000401AH

TPR threshold1 000001110B 0000401CH

Secondary processor-based VM-execution controls2 000001111b 0000401EH

PLE_Gap3 000010000b 00004020H

PLE_Window3 000010001b 00004022H

NOTES:

1. This field exists only on processors that support the 1-setting of the “use TPR shadow” VM-execution control.

2. This field exists only on processors that support the 1-setting of the “activate secondary controls” VM-execution control.

3. This field exists only on processors that support the 1-setting of the “PAUSE-loop exiting” VM-execution control.

Table B-9.  Encodings for 32-Bit Read-Only Data Fields (0100_01xx_xxxx_xxx0B)

Field Name Index Encoding

VM-instruction error 000000000B 00004400H

Exit reason 000000001B 00004402H

VM-exit interruption information 000000010B 00004404H

VM-exit interruption error code 000000011B 00004406H

IDT-vectoring information field 000000100B 00004408H

IDT-vectoring error code 000000101B 0000440AH

VM-exit instruction length 000000110B 0000440CH

VM-exit instruction information 000000111B 0000440EH

Table B-8.  Encodings for 32-Bit Control Fields (0100_00xx_xxxx_xxx0B) (Contd.)

Field Name Index Encoding
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B.3.3  32-Bit Guest-State Fields

A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields are distinguished by 
their index value in bits 9:1. Table B-10 enumerates the 32-bit guest-state fields.

The limit fields for GDTR and IDTR are defined to be 32 bits in width even though these fields are only 16-bits wide 
in the Intel 64 and IA-32 architectures. VM entry ensures that the high 16 bits of both these fields are cleared to 0.

B.3.4  32-Bit Host-State Field

A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. There is only one such 32-bit field 
as given in Table B-11.

Table B-10.  Encodings for 32-Bit Guest-State Fields 
(0100_10xx_xxxx_xxx0B)

Field Name Index Encoding

Guest ES limit 000000000B 00004800H

Guest CS limit 000000001B 00004802H

Guest SS limit 000000010B 00004804H

Guest DS limit 000000011B 00004806H

Guest FS limit 000000100B 00004808H

Guest GS limit 000000101B 0000480AH

Guest LDTR limit 000000110B 0000480CH

Guest TR limit 000000111B 0000480EH

Guest GDTR limit 000001000B 00004810H

Guest IDTR limit 000001001B 00004812H

Guest ES access rights 000001010B 00004814H

Guest CS access rights 000001011B 00004816H

Guest SS access rights 000001100B 00004818H

Guest DS access rights 000001101B 0000481AH

Guest FS access rights 000001110B 0000481CH

Guest GS access rights 000001111B 0000481EH

Guest LDTR access rights 000010000B 00004820H

Guest TR access rights 000010001B 00004822H

Guest interruptibility state 000010010B 00004824H

Guest activity state 000010011B 00004826H

Guest SMBASE 000010100B 00004828H

Guest IA32_SYSENTER_CS 000010101B 0000482AH

VMX-preemption timer value1

NOTES:

1. This field exists only on processors that support the 1-setting of the "activate VMX-preemption timer" VM-execution control.

000010111B 0000482EH

Table B-11.  Encoding for 32-Bit Host-State Field (0100_11xx_xxxx_xxx0B)

Field Name Index Encoding

Host IA32_SYSENTER_CS 000000000B 00004C00H
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B.4 NATURAL-WIDTH FIELDS

A value of 3 in bits 14:13 of an encoding indicates a natural-width field. As noted in Section 24.11.2, each of these 
fields allows only full access, meaning that bit 0 of its encoding is 0. Each such encoding is thus an even number.

B.4.1  Natural-Width Control Fields

A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are distinguished by their index value 
in bits 9:1. Table B-12 enumerates the natural-width control fields.

B.4.2  Natural-Width Read-Only Data Fields

A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields are distinguished by their 
index value in bits 9:1. Table B-13 enumerates the natural-width read-only data fields.

B.4.3  Natural-Width Guest-State Fields

A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. These fields are distinguished by 
their index value in bits 9:1. Table B-14 enumerates the natural-width guest-state fields.

Table B-12.  Encodings for Natural-Width Control Fields (0110_00xx_xxxx_xxx0B)

Field Name Index Encoding

CR0 guest/host mask 000000000B 00006000H

CR4 guest/host mask 000000001B 00006002H

CR0 read shadow 000000010B 00006004H

CR4 read shadow 000000011B 00006006H

CR3-target value 0 000000100B 00006008H

CR3-target value 1 000000101B 0000600AH

CR3-target value 2 000000110B 0000600CH

CR3-target value 31

NOTES:

1. If a future implementation supports more than 4 CR3-target values, they will be encoded consecutively following the 4 encodings 
given here.

000000111B 0000600EH

Table B-13.  Encodings for Natural-Width Read-Only Data Fields (0110_01xx_xxxx_xxx0B)

Field Name Index Encoding

Exit qualification 000000000B 00006400H

I/O RCX 000000001B 00006402H

I/O RSI 000000010B 00006404H

I/O RDI 000000011B 00006406H

I/O RIP 000000100B 00006408H

Guest-linear address 000000101B 0000640AH
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The base-address fields for ES, CS, SS, and DS in the guest-state area are defined to be natural-width (with 64 bits 
on processors supporting Intel 64 architecture) even though these fields are only 32-bits wide in the Intel 64 archi-
tecture. VM entry ensures that the high 32 bits of these fields are cleared to 0.

B.4.4  Natural-Width Host-State Fields

A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. These fields are distinguished by 
their index value in bits 9:1. Table B-15 enumerates the natural-width host-state fields.

Table B-14.  Encodings for Natural-Width Guest-State Fields (0110_10xx_xxxx_xxx0B) 

Field Name Index Encoding

Guest CR0 000000000B 00006800H

Guest CR3 000000001B 00006802H

Guest CR4 000000010B 00006804H

Guest ES base 000000011B 00006806H

Guest CS base 000000100B 00006808H

Guest SS base 000000101B 0000680AH

Guest DS base 000000110B 0000680CH

Guest FS base 000000111B 0000680EH

Guest GS base 000001000B 00006810H

Guest LDTR base 000001001B 00006812H

Guest TR base 000001010B 00006814H

Guest GDTR base 000001011B 00006816H

Guest IDTR base 000001100B 00006818H

Guest DR7 000001101B 0000681AH

Guest RSP 000001110B 0000681CH

Guest RIP 000001111B 0000681EH

Guest RFLAGS 000010000B 00006820H

Guest pending debug exceptions 000010001B 00006822H

Guest IA32_SYSENTER_ESP 000010010B 00006824H

Guest IA32_SYSENTER_EIP 000010011B 00006826H

Table B-15.  Encodings for Natural-Width Host-State Fields (0110_11xx_xxxx_xxx0B) 

Field Name Index Encoding

Host CR0 000000000B 00006C00H

Host CR3 000000001B 00006C02H

Host CR4 000000010B 00006C04H

Host FS base 000000011B 00006C06H

Host GS base 000000100B 00006C08H

Host TR base 000000101B 00006C0AH

Host GDTR base 000000110B 00006C0CH

Host IDTR base 000000111B 00006C0EH
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Host IA32_SYSENTER_ESP 000001000B 00006C10H

Host IA32_SYSENTER_EIP 000001001B 00006C12H

Host RSP 000001010B 00006C14H

Host RIP 000001011B 00006C16H

Table B-15.  Encodings for Natural-Width Host-State Fields (0110_11xx_xxxx_xxx0B)  (Contd.)

Field Name Index Encoding
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Every VM exit writes a 32-bit exit reason to the VMCS (see Section 24.9.1). Certain VM-entry failures also do this 
(see Section 26.7). The low 16 bits of the exit-reason field form the basic exit reason which provides basic informa-
tion about the cause of the VM exit or VM-entry failure.

Table C-1 lists values for basic exit reasons and explains their meaning. Entries apply to VM exits, unless otherwise 
noted.

Table C-1.  Basic Exit Reasons 

Basic Exit 
Reason Description

0 Exception or non-maskable interrupt (NMI). Either:

1: Guest software caused an exception and the bit in the exception bitmap associated with exception’s vector was 1.
2: An NMI was delivered to the logical processor and the “NMI exiting” VM-execution control was 1. This case includes 

executions of BOUND that cause #BR, executions of INT3 (they cause #BP), executions of INTO that cause #OF, 
and executions of UD2 (they cause #UD).

1 External interrupt. An external interrupt arrived and the “external-interrupt exiting” VM-execution control was 1.

2 Triple fault. The logical processor encountered an exception while attempting to call the double-fault handler and 
that exception did not itself cause a VM exit due to the exception bitmap.

3 INIT signal. An INIT signal arrived

4 Start-up IPI (SIPI). A SIPI arrived while the logical processor was in the “wait-for-SIPI” state.

5 I/O system-management interrupt (SMI). An SMI arrived immediately after retirement of an I/O instruction and 
caused an SMM VM exit (see Section 34.15.2).

6 Other SMI. An SMI arrived and caused an SMM VM exit (see Section 34.15.2) but not immediately after retirement of 
an I/O instruction.

7 Interrupt window. At the beginning of an instruction, RFLAGS.IF was 1; events were not blocked by STI or by MOV 
SS; and the “interrupt-window exiting” VM-execution control was 1.

8 NMI window. At the beginning of an instruction, there was no virtual-NMI blocking; events were not blocked by MOV 
SS; and the “NMI-window exiting” VM-execution control was 1.

9 Task switch. Guest software attempted a task switch.

10 CPUID. Guest software attempted to execute CPUID.

11 GETSEC. Guest software attempted to execute GETSEC.

12 HLT. Guest software attempted to execute HLT and the “HLT exiting” VM-execution control was 1.

13 INVD. Guest software attempted to execute INVD.

14 INVLPG. Guest software attempted to execute INVLPG and the “INVLPG exiting” VM-execution control was 1.

15 RDPMC. Guest software attempted to execute RDPMC and the “RDPMC exiting” VM-execution control was 1.

16 RDTSC. Guest software attempted to execute RDTSC and the “RDTSC exiting” VM-execution control was 1.

17 RSM. Guest software attempted to execute RSM in SMM.

18 VMCALL. VMCALL was executed either by guest software (causing an ordinary VM exit) or by the executive monitor 
(causing an SMM VM exit; see Section 34.15.2).

19 VMCLEAR. Guest software attempted to execute VMCLEAR.

20 VMLAUNCH. Guest software attempted to execute VMLAUNCH.

21 VMPTRLD. Guest software attempted to execute VMPTRLD.

22 VMPTRST. Guest software attempted to execute VMPTRST.

23 VMREAD. Guest software attempted to execute VMREAD.
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24 VMRESUME. Guest software attempted to execute VMRESUME.

25 VMWRITE. Guest software attempted to execute VMWRITE.

26 VMXOFF. Guest software attempted to execute VMXOFF.

27 VMXON. Guest software attempted to execute VMXON.

28 Control-register accesses. Guest software attempted to access CR0, CR3, CR4, or CR8 using CLTS, LMSW, or 
MOV CR and the VM-execution control fields indicate that a VM exit should occur (see Section 25.1 for details). This 
basic exit reason is not used for trap-like VM exits following executions of the MOV to CR8 instruction when the “use 
TPR shadow” VM-execution control is 1.

29 MOV DR. Guest software attempted a MOV to or from a debug register and the “MOV-DR exiting” VM-execution 
control was 1.

30 I/O instruction. Guest software attempted to execute an I/O instruction and either:

1: The “use I/O bitmaps” VM-execution control was 0 and the “unconditional I/O exiting” VM-execution control was 1.
2: The “use I/O bitmaps” VM-execution control was 1 and a bit in the I/O bitmap associated with one of the ports 

accessed by the I/O instruction was 1.

31 RDMSR. Guest software attempted to execute RDMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in read bitmap for low MSRs is 1, 

where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in read bitmap for high MSRs is 1, where 

n is the value of RCX & 00001FFFH.

32 WRMSR. Guest software attempted to execute WRMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in write bitmap for low MSRs is 1, 

where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in write bitmap for high MSRs is 1, 

where n is the value of RCX & 00001FFFH.

33 VM-entry failure due to invalid guest state. A VM entry failed one of the checks identified in Section 26.3.1.

34 VM-entry failure due to MSR loading. A VM entry failed in an attempt to load MSRs. See Section 26.4.

36 MWAIT. Guest software attempted to execute MWAIT and the “MWAIT exiting” VM-execution control was 1.

37 Monitor trap flag. A VM entry occurred due to the 1-setting of the “monitor trap flag” VM-execution control and 
injection of an MTF VM exit as part of VM entry. See Section 25.5.2.

39 MONITOR. Guest software attempted to execute MONITOR and the “MONITOR exiting” VM-execution control was 1.

40 PAUSE. Either guest software attempted to execute PAUSE and the “PAUSE exiting” VM-execution control was 1 or 
the “PAUSE-loop exiting” VM-execution control was 1 and guest software executed a PAUSE loop with execution 
time exceeding PLE_Window (see Section 25.1.3).

41 VM-entry failure due to machine-check event. A machine-check event occurred during VM entry (see Section 
26.8).

43 TPR below threshold. The logical processor determined that the value of bits 7:4 of the byte at offset 080H on the 
virtual-APIC page was below that of the TPR threshold VM-execution control field while the “use TPR shadow” VM-
execution control was 1 either as part of TPR virtualization (Section 29.1.2) or VM entry (Section 26.6.7).

44 APIC access. Guest software attempted to access memory at a physical address on the APIC-access page and the 
“virtualize APIC accesses” VM-execution control was 1 (see Section 29.4).

45 Virtualized EOI. EOI virtualization was performed for a virtual interrupt whose vector indexed a bit set in the EOI-
exit bitmap.

Table C-1.  Basic Exit Reasons  (Contd.)

Basic Exit 
Reason Description
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46 Access to GDTR or IDTR. Guest software attempted to execute LGDT, LIDT, SGDT, or SIDT and the “descriptor-table 
exiting” VM-execution control was 1.

47 Access to LDTR or TR. Guest software attempted to execute LLDT, LTR, SLDT, or STR and the “descriptor-table 
exiting” VM-execution control was 1.

48 EPT violation. An attempt to access memory with a guest-physical address was disallowed by the configuration of 
the EPT paging structures.

49 EPT misconfiguration. An attempt to access memory with a guest-physical address encountered a misconfigured 
EPT paging-structure entry.

50 INVEPT. Guest software attempted to execute INVEPT.

51 RDTSCP. Guest software attempted to execute RDTSCP and the “enable RDTSCP” and “RDTSC exiting” VM-execution 
controls were both 1.

52 VMX-preemption timer expired. The preemption timer counted down to zero.

53 INVVPID. Guest software attempted to execute INVVPID.

54 WBINVD. Guest software attempted to execute WBINVD and the “WBINVD exiting” VM-execution control was 1.

55 XSETBV. Guest software attempted to execute XSETBV.

56 APIC write. Guest software completed a write to the virtual-APIC page that must be virtualized by VMM software 
(see Section 29.4.3.3).

57 RDRAND. Guest software attempted to execute RDRAND and the “RDRAND exiting” VM-execution control was 1.

58 INVPCID. Guest software attempted to execute INVPCID and the “enable INVPCID” and “INVLPG exiting” 
VM-execution controls were both 1.

59 VMFUNC. Guest software invoked a VM function with the VMFUNC instruction and the VM function either was not 
enabled or generated a function-specific condition causing a VM exit.

63 XSAVES. Guest software attempted to execute XSAVES, the “enable XSAVES/XRSTORS” was 1, and a bit was set in 
the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-exiting bitmap.

64 XRSTORS. Guest software attempted to execute XRSTORS, the “enable XSAVES/XRSTORS” was 1, and a bit was set 
in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-exiting bitmap.

Table C-1.  Basic Exit Reasons  (Contd.)

Basic Exit 
Reason Description
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Numerics
0000, Vol.2-B-41
128-bit

packed byte integers data type, Vol.1-4-9, Vol.1-11-4
packed double-precision floating-point

data type, Vol.1-4-9, Vol.1-11-4
packed doubleword integers data type, Vol.1-4-9
packed quadword integers data type, Vol.1-4-9
packed SIMD data types, Vol.1-4-8
packed single-precision floating-point

data type, Vol.1-4-9, Vol.1-10-5
packed word integers data type, Vol.1-4-9, Vol.1-11-4

16-bit
address size, Vol.1-3-8
operand size, Vol.1-3-8

16-bit code, mixing with 32-bit code, Vol.3-21-1
286 processor, Vol.1-2-1
32-bit

address size, Vol.1-3-8
operand size, Vol.1-3-8

32-bit code, mixing with 16-bit code, Vol.3-21-1
32-bit physical addressing

overview, Vol.3-3-6
36-bit physical addressing

overview, Vol.3-3-6
64-bit

packed byte integers data type, Vol.1-4-8, Vol.1-9-3
packed doubleword integers data type, Vol.1-4-8
packed doubleword integers data types, Vol.1-9-3
packed word integers data type, Vol.1-4-8, Vol.1-9-3

64-bit mode
sub-mode of IA-32e, Vol.1-3-1
address calculation, Vol.1-3-9
address size, Vol.1-3-18
address space, Vol.1-3-4
BOUND instruction, Vol.1-7-18
branch behavior, Vol.1-6-8
byte register limitation, Vol.1-3-12
call gates, Vol.3-5-14
CALL instruction, Vol.1-6-8, Vol.1-7-17
canonical address, Vol.1-3-9
CMPS instruction, Vol.1-7-20
CMPXCHG16B instruction, Vol.1-7-5
code segment descriptors, Vol.3-5-3, Vol.3-9-11
control and debug registers, Vol.2-2-11
control registers, Vol.3-2-13
CR8 register, Vol.3-2-13
D flag, Vol.3-5-4
data types, Vol.1-7-2
debug registers, Vol.3-2-7
DEC instruction, Vol.1-7-8
decimal arithmetic instructions, Vol.1-7-10
default operand and address sizes, Vol.1-3-2
default operand size, Vol.2-2-11
descriptors, Vol.3-5-3, Vol.3-5-5
direct memory-offset MOVs, Vol.2-2-10
DPL field, Vol.3-5-4
exception handling, Vol.3-6-16
exceptions, Vol.1-6-13
external interrupts, Vol.3-10-31
far pointer, Vol.1-4-7
fast system calls, Vol.3-5-22
feature list, Vol.1-2-20
GDTR register, Vol.1-3-5, Vol.3-2-12, Vol.3-2-13
general purpose encodings, Vol.2-B-18
GP faults, causes of, Vol.3-6-38
IDTR register, Vol.1-3-5, Vol.3-2-12
immediates, Vol.2-2-10
INC instruction, Vol.1-7-8
initialization process, Vol.3-2-8, Vol.3-9-10
instruction pointer, Vol.1-3-9, Vol.1-3-17
instructions introduced, Vol.1-5-28

interrupt and trap gates, Vol.3-6-16
interrupt controller, Vol.3-10-31
interrupt descriptors, Vol.3-2-5
interrupt handling, Vol.3-6-16
interrupt stack table, Vol.3-6-19
interrupts, Vol.1-6-13
introduction, Vol.1-2-20, Vol.1-3-1, Vol.1-7-1, Vol.2-2-6
IRET instruction, Vol.1-7-18, Vol.3-6-18
I/O instructions, Vol.1-7-20
JCC instruction, Vol.1-6-8, Vol.1-7-17
JCXZ instruction, Vol.1-6-8, Vol.1-7-17
JMP instruction, Vol.1-6-8, Vol.1-7-17
L flag, Vol.3-3-12, Vol.3-5-4
LAHF instruction, Vol.1-7-22
LDTR register, Vol.1-3-5
legacy modes, Vol.1-2-20
LODS instruction, Vol.1-7-20
logical address translation, Vol.3-3-7
LOOP instruction, Vol.1-6-8, Vol.1-7-17
machine instructions, Vol.2-B-1
memory models, Vol.1-3-8
memory operands, Vol.1-3-20
MMX technology, Vol.1-9-2
MOV CRn, Vol.3-2-13, Vol.3-10-31
MOVS instruction, Vol.1-7-20
MOVSXD instruction, Vol.1-7-8
near pointer, Vol.1-4-7
null segment checking, Vol.3-5-6
operand addressing, Vol.1-3-23
operand size, Vol.1-3-18
operands, Vol.1-3-20
paging, Vol.3-2-6
POPF instruction, Vol.1-7-22
promoted instructions, Vol.1-3-2
PUSHA, PUSHAD, POPA, POPAD, Vol.1-7-7
PUSHF instruction, Vol.1-7-22
PUSHFD instruction, Vol.1-7-22
reading counters, Vol.3-2-24
reading & writing MSRs, Vol.3-2-24
real address mode, Vol.1-3-8
reg (reg) field, Vol.2-B-3
register operands, Vol.1-3-20
registers and mode changes, Vol.3-9-12
REP prefix, Vol.1-7-20
RET instruction, Vol.1-6-8, Vol.1-7-17
REX prefix, Vol.1-3-2, Vol.1-3-11, Vol.1-3-18
REX prefixes, Vol.2-2-7, Vol.2-B-2
RFLAGS register, Vol.1-7-22, Vol.3-2-11
RIP register, Vol.1-3-9
RIP-relative addressing, Vol.1-3-17, Vol.1-3-23, Vol.2-2-11
SAHF instruction, Vol.1-7-22
SCAS instruction, Vol.1-7-20
segment descriptor tables, Vol.3-3-16, Vol.3-5-3
segment loading instructions, Vol.3-3-9
segment registers, Vol.1-3-14
segmentation, Vol.1-3-8, Vol.1-3-21
segments, Vol.3-3-5
SIMD encodings, Vol.2-B-37
special instruction encodings, Vol.2-B-64
SSE extensions, Vol.1-10-3
SSE2 extensions, Vol.1-11-3
SSE3 extensions, Vol.1-12-1
SSSE3 extensions, Vol.1-12-1
stack behavior, Vol.1-6-4
stack switching, Vol.3-5-19, Vol.3-6-18
STOS instruction, Vol.1-7-20
summary table notation, Vol.2-3-7
SYSCALL and SYSRET, Vol.3-2-7, Vol.3-5-22
SYSENTER and SYSEXIT, Vol.3-5-21
system registers, Vol.3-2-7
task gate, Vol.3-7-16
task priority, Vol.3-2-18, Vol.3-10-31
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task register, Vol.3-2-13
TR register, Vol.1-3-5
TSS

stack pointers, Vol.3-7-17
x87 FPU, Vol.1-8-1
See also: IA-32e mode, compatibility mode

8086
emulation, support for, Vol.3-20-1
processor, exceptions and interrupts, Vol.3-20-6

8086 processor, Vol.1-2-1
8086/8088 processor, Vol.3-22-6
8087 math coprocessor, Vol.3-22-7
8088 processor, Vol.1-2-1
82489DX, Vol.3-22-26, Vol.3-22-27

Local APIC and I/O APICs, Vol.3-10-4

A
A20M# signal, Vol.3-20-2, Vol.3-22-33, Vol.3-23-4
AAA instruction, Vol.1-7-9, Vol.2-3-16, Vol.2-3-18
AAD instruction, Vol.1-7-10, Vol.2-3-18
AAM instruction, Vol.1-7-10, Vol.2-3-20
AAS instruction, Vol.1-7-10, Vol.2-3-22
Aborts

description of, Vol.3-6-5
restarting a program or task after, Vol.3-6-5

AC (alignment check) flag, EFLAGS register, Vol.1-3-16, Vol.3-2-11, 
Vol.3-6-45, Vol.3-22-6

Access rights
checking, Vol.3-2-21
checking caller privileges, Vol.3-5-26
description of, Vol.3-5-24
invalid values, Vol.3-22-18

Access rights, segment descriptor, Vol.1-6-7, Vol.1-6-10
ADC instruction, Vol.1-7-8, Vol.2-3-24, Vol.2-3-468, Vol.3-8-3
ADD instruction, Vol.1-7-8, Vol.2-3-16, Vol.2-3-27, Vol.2-3-229, 

Vol.2-3-468, Vol.3-8-3
ADDPD instruction, Vol.1-11-6, Vol.2-3-29
ADDPS instruction, Vol.1-10-8, Vol.2-3-31
Address

size prefix, Vol.3-21-1
space, of task, Vol.3-7-14

Address size attribute
code segment, Vol.1-3-17
description of, Vol.1-3-17
of stack, Vol.1-6-3

Address sizes, Vol.1-3-8
Address space

64-bit mode, Vol.1-3-1, Vol.1-3-4
compatibility mode, Vol.1-3-1
overview of, Vol.1-3-2
physical, Vol.1-3-5

Address translation
in real-address mode, Vol.3-20-2
logical to linear, Vol.3-3-7
overview, Vol.3-3-6

Addressing methods
RIP-relative, Vol.2-2-11

Addressing modes
assembler, Vol.1-3-23
base, Vol.1-3-21, Vol.1-3-22, Vol.1-3-23
base plus displacement, Vol.1-3-22
base plus index plus displacement, Vol.1-3-22
base plus index time scale plus displacement, Vol.1-3-22, Vol.1-3-23
canonical address, Vol.1-3-9
displacement, Vol.1-3-21, Vol.1-3-22, Vol.1-3-23
effective address, Vol.1-3-22
immediate operands, Vol.1-3-19
index, Vol.1-3-21, Vol.1-3-23
index times scale plus displacement, Vol.1-3-22
memory operands, Vol.1-3-20
register operands, Vol.1-3-19, Vol.1-3-20

RIP-relative addressing, Vol.1-3-17, Vol.1-3-23
scale factor, Vol.1-3-21, Vol.1-3-23
specifying a segment selector, Vol.1-3-20
specifying an offset, Vol.1-3-21
specifying offsets in 64-bit mode, Vol.1-3-23

Addressing, segments, Vol.2-1-5, Vol.3-1-6
ADDSD instruction, Vol.1-11-6, Vol.2-3-33
ADDSS instruction, Vol.1-10-8, Vol.2-3-34
ADDSUBPD instruction, Vol.1-5-20, Vol.1-12-4, Vol.2-3-35
ADDSUBPS instruction, Vol.1-5-20, Vol.1-12-4, Vol.2-3-37
Advanced media boost, Vol.1-2-11
Advanced power management

C-state and Sub C-state, Vol.3-14-19
MWAIT extensions, Vol.3-14-19
See also: thermal monitoring

Advanced programmable interrupt controller (see I/O APIC or Local APIC)
advanced smart cache, Vol.1-2-10
AESDEC/AESDECLAST- Perform One Round of an AES Decryption Flow, 

Vol.2-3-46
AESIMC- Perform the AES InvMixColumn Transformation, Vol.2-3-42
AESKEYGENASSIST - AES Round Key Generation Assist, Vol.2-3-49
AF (adjust) flag, EFLAGS register, Vol.1-3-15, Vol.1-A-1
AH register, Vol.1-3-11
AL register, Vol.1-3-11
Alignment

check exception, Vol.3-2-11, Vol.3-6-45, Vol.3-22-11, Vol.3-22-20
checking, Vol.3-5-27
words, doublewords, quadwords, Vol.1-4-2

AM (alignment mask) flag
CR0 control register, Vol.3-2-11, Vol.3-2-14, Vol.3-22-17

AND instruction, Vol.1-7-10, Vol.2-3-51, Vol.2-3-468, Vol.3-8-3
ANDNPD instruction, Vol.1-11-7, Vol.2-3-58
ANDNPS instruction, Vol.1-10-9, Vol.2-3-60
ANDPD instruction, Vol.1-11-7, Vol.2-3-53
ANDPS instruction, Vol.1-10-9, Vol.2-3-56
APIC, Vol.3-10-40, Vol.3-10-41
APIC bus

arbitration mechanism and protocol, Vol.3-10-26, Vol.3-10-33
bus message format, Vol.3-10-34, Vol.3-10-47
diagram of, Vol.3-10-2, Vol.3-10-3
EOI message format, Vol.3-10-15, Vol.3-10-47
nonfocused lowest priority message, Vol.3-10-49
short message format, Vol.3-10-48
SMI message, Vol.3-34-2
status cycles, Vol.3-10-50
structure of, Vol.3-10-4
See also

local APIC
APIC flag, CPUID instruction, Vol.3-10-7
APIC ID, Vol.3-10-40, Vol.3-10-44, Vol.3-10-46
APIC (see I/O APIC or Local APIC)
Arctangent, x87 FPU operation, Vol.1-8-20, Vol.2-3-313
Arithmetic instructions, x87 FPU, Vol.1-8-24
ARPL instruction, Vol.2-3-62, Vol.3-2-21, Vol.3-5-27

not supported in 64-bit mode, Vol.3-2-21
Assembler, addressing modes, Vol.1-3-23
Asymmetric processing model, Vol.1-12-1
Atomic operations

automatic bus locking, Vol.3-8-3
effects of a locked operation on internal processor caches, Vol.3-8-5
guaranteed, description of, Vol.3-8-2
overview of, Vol.3-8-1, Vol.3-8-3
software-controlled bus locking, Vol.3-8-3

At-retirement
counting, Vol.3-18-15, Vol.3-18-16, Vol.3-18-71
events, Vol.3-18-15, Vol.3-18-16, Vol.3-18-61, Vol.3-18-62, 

Vol.3-18-71, Vol.3-18-76
authenticated code execution mode, Vol.2-5-3
Auto HALT restart

field, SMM, Vol.3-34-14
SMM, Vol.3-34-13

Automatic bus locking, Vol.3-8-3
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Automatic thermal monitoring mechanism, Vol.3-14-20
AX register, Vol.1-3-11

B
B (busy) flag

TSS descriptor, Vol.3-7-5, Vol.3-7-10, Vol.3-7-13, Vol.3-8-3
B (default size) flag, segment descriptor, Vol.1-3-17
B (default stack size) flag

segment descriptor, Vol.3-21-1, Vol.3-22-32
B0-B3 (BP condition detected) flags

DR6 register, Vol.3-17-3
Backlink (see Previous task link)
Base address fields, segment descriptor, Vol.3-3-10
Base (operand addressing), Vol.1-3-21, Vol.1-3-22, Vol.1-3-23, Vol.2-2-3
Basic execution environment, Vol.1-3-2
Basic programming environment, Vol.1-7-1
B-bit, x87 FPU status word, Vol.1-8-5
BCD integers

packed, Vol.1-4-10, Vol.2-3-229, Vol.2-3-231, Vol.2-3-263, 
Vol.2-3-265

relationship to status flags, Vol.1-3-16
unpacked, Vol.1-4-9, Vol.1-7-9, Vol.2-3-16, Vol.2-3-18, Vol.2-3-20, 

Vol.2-3-22
x87 FPU encoding, Vol.1-4-10

BD (debug register access detected) flag, DR6 register, Vol.3-17-3, 
Vol.3-17-10

BEXTR - Bit Field Extract, Vol.2-3-66
BH register, Vol.1-3-11
Bias value

numeric overflow, Vol.1-8-28
numeric underflow, Vol.1-8-29

Biased exponent, Vol.1-4-13
Biasing constant, for floating-point numbers, Vol.1-4-6
Binary numbers, Vol.1-1-5, Vol.2-1-5, Vol.3-1-6
Binary-coded decimal (see BCD)
BINIT# signal, Vol.3-2-23
BIOS role in microcode updates, Vol.3-9-38
Bit field, Vol.1-4-7
Bit order, Vol.1-1-4, Vol.2-1-3, Vol.3-1-5
BL register, Vol.1-3-11
BLSMSK - Get Mask Up to Lowest Set Bit, Vol.2-3-76
bootstrap processor, Vol.2-5-15, Vol.2-5-20, Vol.2-5-28, Vol.2-5-29
BOUND instruction, Vol.1-6-12, Vol.1-7-18, Vol.1-7-23, Vol.2-3-78, 

Vol.2-4-424, Vol.3-2-5, Vol.3-6-4, Vol.3-6-25
BOUND range exceeded exception (#BR), Vol.1-6-13, Vol.2-3-78, 

Vol.2-4-424, Vol.3-6-25
BP register, Vol.1-3-11
BP0#, BP1#, BP2#, and BP3# pins, Vol.3-17-33, Vol.3-17-35
Branch

control transfer instructions, Vol.1-7-14
hints, Vol.1-11-13
on EFLAGS register status flags, Vol.1-7-15, Vol.1-8-6
on x87 FPU condition codes, Vol.1-8-6, Vol.1-8-19
prediction, Vol.1-2-8

Branch hints, Vol.2-2-2
Branch record

branch trace message, Vol.3-17-13
IA-32e mode, Vol.3-17-19
saving, Vol.3-17-14, Vol.3-17-23, Vol.3-17-30
saving as a branch trace message, Vol.3-17-13
structure, Vol.3-17-30
structure of in BTS buffer, Vol.3-17-18

Branch trace message (see BTM)
Branch trace store (see BTS)
Brand information, Vol.2-3-179

processor brand index, Vol.2-3-182
processor brand string, Vol.2-3-180

Breakpoint exception (#BP), Vol.3-6-4, Vol.3-6-23, Vol.3-17-10
Breakpoints

data breakpoint, Vol.3-17-5
data breakpoint exception conditions, Vol.3-17-9

description of, Vol.3-17-1
DR0-DR3 debug registers, Vol.3-17-3
example, Vol.3-17-5
exception, Vol.3-6-23
field recognition, Vol.3-17-5, Vol.3-17-6
general-detect exception condition, Vol.3-17-9
instruction breakpoint, Vol.3-17-5
instruction breakpoint exception condition, Vol.3-17-8
I/O breakpoint exception conditions, Vol.3-17-9
LEN0 - LEN3 (Length) fields

DR7 register, Vol.3-17-5
R/W0-R/W3 (read/write) fields

DR7 register, Vol.3-17-4
single-step exception condition, Vol.3-17-10
task-switch exception condition, Vol.3-17-10

BS (single step) flag, DR6 register, Vol.3-17-3
BSF instruction, Vol.1-7-14, Vol.2-3-80
BSP flag, IA32_APIC_BASE MSR, Vol.3-10-8
BSR instruction, Vol.1-7-14, Vol.2-3-82
BSWAP instruction, Vol.1-7-4, Vol.2-3-84, Vol.3-22-4
BT instruction, Vol.1-3-14, Vol.1-3-15, Vol.1-7-14, Vol.2-3-85
BT (task switch) flag, DR6 register, Vol.3-17-3, Vol.3-17-10
BTC instruction, Vol.1-3-14, Vol.1-3-15, Vol.1-7-14, Vol.2-3-87, 

Vol.2-3-468, Vol.3-8-3
BTF (single-step on branches) flag

DEBUGCTLMSR MSR, Vol.3-17-35
BTMs (branch trace messages)

description of, Vol.3-17-13
enabling, Vol.3-17-11, Vol.3-17-21, Vol.3-17-22, Vol.3-17-29, 

Vol.3-17-32, Vol.3-17-33
TR (trace message enable) flag

MSR_DEBUGCTLA MSR, Vol.3-17-29
MSR_DEBUGCTLB MSR, Vol.3-17-11, Vol.3-17-32, Vol.3-17-33

BTR instruction, Vol.1-3-14, Vol.1-3-15, Vol.1-7-14, Vol.2-3-89, 
Vol.2-3-468, Vol.3-8-3

BTS buffer
description of, Vol.3-17-16
introduction to, Vol.3-17-10, Vol.3-17-13
records in, Vol.3-17-18
setting up, Vol.3-17-21
structure of, Vol.3-17-17, Vol.3-17-19, Vol.3-18-27

BTS instruction, Vol.1-3-14, Vol.1-3-15, Vol.1-7-14, Vol.2-3-91, 
Vol.2-3-468, Vol.3-8-3

BTS (branch trace store) facilities
availability of, Vol.3-17-28
BTS_UNAVAILABLE flag,

IA32_MISC_ENABLE MSR, Vol.3-17-16, Vol.1-35-163
introduction to, Vol.3-17-10
setting up BTS buffer, Vol.3-17-21
writing an interrupt service routine for, Vol.3-17-22

BTS_UNAVAILABLE, Vol.3-17-16
Built-in self-test (BIST)

description of, Vol.3-9-1
performing, Vol.3-9-2

Bus
errors detected with MCA, Vol.3-15-24
hold, Vol.3-22-34
locking, Vol.3-8-3, Vol.3-22-34

BX register, Vol.1-3-11
Byte, Vol.1-4-1
Byte order, Vol.1-1-4, Vol.2-1-3, Vol.3-1-5

C
C (conforming) flag, segment descriptor, Vol.3-5-11
C1 flag, x87 FPU status word, Vol.1-8-4, Vol.1-8-26, Vol.1-8-28, 

Vol.1-8-29, Vol.3-22-7, Vol.3-22-14
C2 flag, x87 FPU status word, Vol.1-8-5, Vol.3-22-7
Cache and TLB information, Vol.2-3-174
Cache control, Vol.3-11-20

adaptive mode, L1 Data Cache, Vol.3-11-18
cache management instructions, Vol.3-11-17, Vol.3-11-18
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cache mechanisms in IA-32 processors, Vol.3-22-29
caching terminology, Vol.3-11-5
CD flag, CR0 control register, Vol.3-11-10, Vol.3-22-18
choosing a memory type, Vol.3-11-8
CPUID feature flag, Vol.3-11-18
flags and fields, Vol.3-11-10
flushing TLBs, Vol.3-11-19
G (global) flag

page-directory entries, Vol.3-11-13
page-table entries, Vol.3-11-13

internal caches, Vol.3-11-1
MemTypeGet() function, Vol.3-11-29
MemTypeSet() function, Vol.3-11-31
MESI protocol, Vol.3-11-5, Vol.3-11-9
methods of caching available, Vol.3-11-6
MTRR initialization, Vol.3-11-29
MTRR precedences, Vol.3-11-28
MTRRs, description of, Vol.3-11-20
multiple-processor considerations, Vol.3-11-32
NW flag, CR0 control register, Vol.3-11-13, Vol.3-22-18
operating modes, Vol.3-11-12
overview of, Vol.3-11-1
page attribute table (PAT), Vol.3-11-33
PCD flag

CR3 control register, Vol.3-11-13
page-directory entries, Vol.3-11-13, Vol.3-11-33
page-table entries, Vol.3-11-13, Vol.3-11-33

PGE (page global enable) flag, CR4 control register, Vol.3-11-13
precedence of controls, Vol.3-11-13
preventing caching, Vol.3-11-16
protocol, Vol.3-11-9
PWT flag

CR3 control register, Vol.3-11-13
page-directory entries, Vol.3-11-33
page-table entries, Vol.3-11-33

remapping memory types, Vol.3-11-29
setting up memory ranges with MTRRs, Vol.3-11-22
shared mode, L1 Data Cache, Vol.3-11-18
variable-range MTRRs, Vol.3-11-23, Vol.3-11-25

Cache Inclusiveness, Vol.2-3-159
Caches, Vol.3-2-7

cache hit, Vol.3-11-5
cache line, Vol.3-11-5
cache line fill, Vol.3-11-5
cache write hit, Vol.3-11-5
description of, Vol.3-11-1
effects of a locked operation on internal processor caches, Vol.3-8-5
enabling, Vol.3-9-7
management, instructions, Vol.3-2-22, Vol.3-11-17

Caches, invalidating (flushing), Vol.2-3-416, Vol.2-4-547
cache, smart, Vol.1-2-4
Caching

cache control protocol, Vol.3-11-9
cache line, Vol.3-11-5
cache management instructions, Vol.3-11-17
cache mechanisms in IA-32 processors, Vol.3-22-29
caching terminology, Vol.3-11-5
choosing a memory type, Vol.3-11-8
flushing TLBs, Vol.3-11-19
implicit caching, Vol.3-11-19
internal caches, Vol.3-11-1
L1 (level 1) cache, Vol.3-11-4
L2 (level 2) cache, Vol.3-11-4
L3 (level 3) cache, Vol.3-11-4
methods of caching available, Vol.3-11-6
MTRRs, description of, Vol.3-11-20
operating modes, Vol.3-11-12
overview of, Vol.3-11-1
self-modifying code, effect on, Vol.3-11-18, Vol.3-22-29
snooping, Vol.3-11-6
store buffer, Vol.3-11-20
TLBs, Vol.3-11-5

UC (strong uncacheable) memory type, Vol.3-11-6
UC- (uncacheable) memory type, Vol.3-11-6
WB (write back) memory type, Vol.3-11-7
WC (write combining) memory type, Vol.3-11-7
WP (write protected) memory type, Vol.3-11-7
write-back caching, Vol.3-11-6
WT (write through) memory type, Vol.3-11-7

Call gate, Vol.1-6-6
Call gates

16-bit, interlevel return from, Vol.3-22-32
accessing a code segment through, Vol.3-5-15
description of, Vol.3-5-13
for 16-bit and 32-bit code modules, Vol.3-21-1
IA-32e mode, Vol.3-5-14
introduction to, Vol.3-2-4
mechanism, Vol.3-5-15
privilege level checking rules, Vol.3-5-16

CALL instruction, Vol.1-3-17, Vol.1-6-3, Vol.1-6-4, Vol.1-6-7, Vol.1-7-15, 
Vol.1-7-22, Vol.2-3-95, Vol.3-2-5, Vol.3-3-9, Vol.3-5-10, 
Vol.3-5-15, Vol.3-5-20, Vol.3-7-2, Vol.3-7-9, Vol.3-7-10, 
Vol.3-21-5

Caller access privileges, checking, Vol.3-5-26
Calls

16 and 32-bit code segments, Vol.3-21-3
controlling operand-size attribute, Vol.3-21-5
returning from, Vol.3-5-20

Calls (see Procedure calls)
Canonical address, Vol.1-3-9
GETSEC, Vol.2-5-2
Capability MSRs

See VMX capability MSRs
Catastrophic shutdown detector

Thermal monitoring
catastrophic shutdown detector, Vol.3-14-21

catastrophic shutdown detector, Vol.3-14-20
CBW instruction, Vol.1-7-7, Vol.2-3-108
CC0 and CC1 (counter control) fields, CESR MSR (Pentium processor), 

Vol.3-18-95
CD (cache disable) flag, CR0 control register, Vol.3-2-14, Vol.3-9-7, 

Vol.3-11-10, Vol.3-11-12, Vol.3-11-13, Vol.3-11-16, 
Vol.3-11-32, Vol.3-22-17, Vol.3-22-18, Vol.3-22-29

CDQ instruction, Vol.1-7-7, Vol.2-3-228
CDQE instruction, Vol.2-3-108
Celeron processor

description of, Vol.1-2-3
CESR (control and event select) MSR (Pentium processor), Vol.3-18-94, 

Vol.3-18-95
CF (carry) flag, EFLAGS register, Vol.1-3-15, Vol.1-A-1, Vol.2-3-27, 

Vol.2-3-85, Vol.2-3-87, Vol.2-3-89, Vol.2-3-91, Vol.2-3-109, 
Vol.2-3-116, Vol.2-3-233, Vol.2-3-391, Vol.2-3-396, 
Vol.2-3-589, Vol.2-4-278, Vol.2-4-339, Vol.2-4-351, 
Vol.2-4-354, Vol.2-4-375, Vol.2-4-387

CH register, Vol.1-3-11
CL register, Vol.1-3-11
CLC instruction, Vol.1-3-15, Vol.1-7-21, Vol.2-3-109
CLD instruction, Vol.1-3-16, Vol.1-7-21, Vol.2-3-110
CLFLSH feature flag, CPUID instruction, Vol.3-9-8
CLFLUSH instruction, Vol.1-11-12, Vol.2-3-111, Vol.3-2-15, Vol.3-8-6, 

Vol.3-9-8, Vol.3-11-17
CPUID flag, Vol.2-3-173

CLI instruction, Vol.1-16-3, Vol.2-3-113, Vol.3-6-7
Clocks

counting processor clocks, Vol.3-18-79
Hyper-Threading Technology, Vol.3-18-79
nominal CPI, Vol.3-18-79
non-halted clockticks, Vol.3-18-79
non-halted CPI, Vol.3-18-79
non-sleep Clockticks, Vol.3-18-79
time stamp counter, Vol.3-18-79

CLTS instruction, Vol.2-3-115, Vol.3-2-21, Vol.3-5-24, Vol.3-25-2, 
Vol.3-25-6

Cluster model, local APIC, Vol.3-10-24
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CMC instruction, Vol.1-3-15, Vol.1-7-21, Vol.2-3-116
CMOVcc flag, Vol.2-3-173
CMOVcc instructions, Vol.1-7-3, Vol.1-7-4, Vol.2-3-117, Vol.3-22-4

CPUID flag, Vol.2-3-173
CMP instruction, Vol.1-7-8, Vol.2-3-121
CMPPD instruction, Vol.1-11-7, Vol.2-3-123
CMPPS instruction, Vol.1-10-9, Vol.2-3-130
CMPS instruction, Vol.1-3-16, Vol.1-7-18, Vol.2-3-136, Vol.2-4-300
CMPSB instruction, Vol.2-3-136
CMPSD instruction, Vol.1-11-7, Vol.2-3-136, Vol.2-3-140
CMPSQ instruction, Vol.2-3-136
CMPSS instruction, Vol.1-10-9, Vol.2-3-144
CMPSW instruction, Vol.2-3-136
CMPXCHG instruction, Vol.1-7-4, Vol.2-3-148, Vol.2-3-468, Vol.3-8-3, 

Vol.3-22-4
CMPXCHG16B instruction, Vol.1-7-5, Vol.2-3-150

CPUID bit, Vol.2-3-171
CMPXCHG8B instruction, Vol.1-7-4, Vol.2-3-150, Vol.3-8-3, Vol.3-22-4

CPUID flag, Vol.2-3-173
Code modules

16 bit vs. 32 bit, Vol.3-21-1
mixing 16-bit and 32-bit code, Vol.3-21-1
sharing data, mixed-size code segs, Vol.3-21-3
transferring control, mixed-size code segs, Vol.3-21-3

Code segment, Vol.1-3-13
Code segments

accessing data in, Vol.3-5-9
accessing through a call gate, Vol.3-5-15
description of, Vol.3-3-12
descriptor format, Vol.3-5-2
descriptor layout, Vol.3-5-2
direct calls or jumps to, Vol.3-5-10
paging of, Vol.3-2-6
pointer size, Vol.3-21-4
privilege level checks

transferring control between code segs, Vol.3-5-10
COMISD instruction, Vol.1-11-7, Vol.2-3-153
COMISS instruction, Vol.1-10-9, Vol.2-3-155
Compare

compare and exchange, Vol.1-7-4
integers, Vol.1-7-8
real numbers, x87 FPU, Vol.1-8-19
strings, Vol.1-7-18

Compatibility
IA-32 architecture, Vol.3-22-1
software, Vol.3-1-5

Compatibility mode
address space, Vol.1-3-1
branch functions, Vol.1-6-8
call gate descriptors, Vol.1-6-8
code segment descriptor, Vol.3-5-3
code segment descriptors, Vol.3-9-11
control registers, Vol.3-2-13
CS.L and CS.D, Vol.3-9-11
debug registers, Vol.3-2-22
EFLAGS register, Vol.3-2-11
exception handling, Vol.3-2-5
gates, Vol.3-2-4
GDTR register, Vol.3-2-12, Vol.3-2-13
global and local descriptor tables, Vol.3-2-4
IDTR register, Vol.3-2-12
interrupt handling, Vol.3-2-5
introduction, Vol.1-2-20, Vol.1-3-1, Vol.2-2-6
L flag, Vol.3-3-12, Vol.3-5-4
memory management, Vol.3-2-6
memory models, Vol.1-3-8
MMX technology, Vol.1-9-2
operation, Vol.3-9-11
see 64-bit mode
segment loading instructions, Vol.3-3-9
segmentation, Vol.1-3-21
segments, Vol.3-3-5

SSE extensions, Vol.1-10-3
SSE2 extensions, Vol.1-11-3
SSE3 extensions, Vol.1-12-1
SSSE3 extensions, Vol.1-12-1
summary table notation, Vol.2-3-7
switching to, Vol.3-9-12
SYSCALL and SYSRET, Vol.3-5-22
SYSENTER and SYSEXIT, Vol.3-5-21
system flags, Vol.3-2-11
system registers, Vol.3-2-7
task register, Vol.3-2-13
x87 FPU, Vol.1-8-1
See also: 64-bit mode, IA-32e mode
See also: IA-32e mode, 64-bit mode

Compatibility, software, Vol.1-1-4, Vol.2-1-4
Condition code flags, EFLAGS register, Vol.2-3-117
Condition code flags, x87 FPU status word

branching on, Vol.1-8-6
compatibility information, Vol.3-22-7
conditional moves on, Vol.1-8-6
description of, Vol.1-8-4
flags affected by instructions, Vol.2-3-13
interpretation of, Vol.1-8-5
setting, Vol.2-3-349, Vol.2-3-351, Vol.2-3-353
use of, Vol.1-8-18

Conditional jump, Vol.2-3-431
Conditional moves, x87 FPU condition codes, Vol.1-8-6
Conforming code segment, Vol.2-3-445
Conforming code segments

accessing, Vol.3-5-12
C (conforming) flag, Vol.3-5-11
description of, Vol.3-3-13

Constants (floating point), Vol.1-8-17
Constants (floating point), loading, Vol.2-3-303
Context, task (see Task state)
Control registers

64-bit mode, Vol.1-3-4, Vol.3-2-13
CR0, Vol.3-2-13
CR1 (reserved), Vol.3-2-13
CR2, Vol.3-2-13
CR3 (PDBR), Vol.3-2-6, Vol.3-2-13
CR4, Vol.3-2-13
description of, Vol.3-2-13
introduction to, Vol.3-2-6
overview of, Vol.1-3-4
VMX operation, Vol.3-31-17

Control registers, moving values to and from, Vol.2-3-510
Coprocessor segment

overrun exception, Vol.3-6-30, Vol.3-22-11
Core microarchitecture, Vol.1-2-10, Vol.1-2-12, Vol.1-2-13
core microarchitecture, Vol.1-2-10, Vol.1-2-12, Vol.1-2-13
Core Solo and Core Duo, Vol.1-2-4
Cosine, x87 FPU operation, Vol.1-8-20, Vol.2-3-279, Vol.2-3-331
Counter mask field

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family processors), Vol.3-18-4, 
Vol.3-18-93

CPL, Vol.2-3-113, Vol.2-4-433
description of, Vol.3-5-7
field, CS segment selector, Vol.3-5-2

CPUID instruction, Vol.2-3-157, Vol.2-3-173
36-bit page size extension, Vol.2-3-173
AP-485, Vol.1-1-7, Vol.2-1-7, Vol.3-1-8
APIC on-chip, Vol.2-3-173
availability, Vol.3-22-4
basic CPUID information, Vol.2-3-158
cache and TLB characteristics, Vol.2-3-158
CLFLUSH flag, Vol.1-11-12, Vol.2-3-173
CLFLUSH instruction cache line size, Vol.2-3-169
CMOVcc feature flag, Vol.1-7-3
CMPXCHG16B flag, Vol.2-3-171
CMPXCHG8B flag, Vol.2-3-173
control register flags, Vol.3-2-18
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CPL qualified debug store, Vol.2-3-170
debug extensions, CR4.DE, Vol.2-3-173
debug store supported, Vol.2-3-174
detecting features, Vol.3-22-2
determine support for, Vol.1-3-16
deterministic cache parameters leaf, Vol.2-3-158, Vol.2-3-160, 

Vol.2-3-161, Vol.2-3-162, Vol.2-3-163, Vol.2-3-164
extended function information, Vol.2-3-164
feature information, Vol.2-3-172
FPU on-chip, Vol.2-3-173
FSAVE flag, Vol.2-3-174
FXRSTOR flag, Vol.2-3-174
FXSAVE-FXRSTOR flag, Vol.1-10-14
IA-32e mode available, Vol.2-3-165
input limits for EAX, Vol.2-3-166
L1 Context ID, Vol.2-3-171
local APIC physical ID, Vol.2-3-169
machine check architecture, Vol.2-3-173
machine check exception, Vol.2-3-173
memory type range registers, Vol.2-3-173
MMX feature flag, Vol.1-9-8
MONITOR feature information, Vol.2-3-178
MONITOR/MWAIT flag, Vol.2-3-170
MONITOR/MWAIT leaf, Vol.2-3-159, Vol.2-3-160, Vol.2-3-161, 

Vol.2-3-162
MWAIT feature information, Vol.2-3-178
page attribute table, Vol.2-3-173
page size extension, Vol.2-3-173
performance monitoring features, Vol.2-3-179
physical address bits, Vol.2-3-166
physical address extension, Vol.2-3-173
power management, Vol.2-3-178, Vol.2-3-179
processor brand index, Vol.2-3-169, Vol.2-3-179
processor brand string, Vol.2-3-165, Vol.2-3-179
processor serial number, Vol.2-3-158, Vol.2-3-173
processor type field, Vol.2-3-169
RDMSR flag, Vol.2-3-173
returned in EBX, Vol.2-3-169
returned in ECX & EDX, Vol.2-3-169
self snoop, Vol.2-3-174
serializing instructions, Vol.3-8-17
serializing use, Vol.1-16-5
SpeedStep technology, Vol.2-3-170
SS2 extensions flag, Vol.2-3-174
SSE extensions flag, Vol.2-3-174
SSE feature flag, Vol.1-10-1, Vol.1-10-6
SSE2 feature flag, Vol.1-11-1, Vol.1-12-5
SSE3 extensions flag, Vol.2-3-170
SSE3 feature flag, Vol.1-12-5
SSSE2 feature flag, Vol.1-12-9, Vol.1-12-20, Vol.1-12-26
SSSE3 extensions flag, Vol.2-3-170
summary of, Vol.1-7-23
syntax for data, Vol.3-1-7
SYSENTER flag, Vol.2-3-173
SYSEXIT flag, Vol.2-3-173
thermal management, Vol.2-3-178, Vol.2-3-179
thermal monitor, Vol.2-3-170, Vol.2-3-174
time stamp counter, Vol.2-3-173
using CPUID, Vol.2-3-157
vendor ID string, Vol.2-3-166
version information, Vol.2-3-158, Vol.2-3-178
virtual 8086 Mode flag, Vol.2-3-173
virtual address bits, Vol.2-3-166
WRMSR flag, Vol.2-3-173

CQO instruction, Vol.2-3-228
CR0 control register, Vol.2-4-367, Vol.3-22-7

description of, Vol.3-2-13
introduction to, Vol.3-2-6
state following processor reset, Vol.3-9-2

CR1 control register (reserved), Vol.3-2-13
CR2 control register

description of, Vol.3-2-13

introduction to, Vol.3-2-6
CR3 control register (PDBR)

associated with a task, Vol.3-7-1, Vol.3-7-3
description of, Vol.3-2-13
in TSS, Vol.3-7-4, Vol.3-7-14
introduction to, Vol.3-2-6
loading during initialization, Vol.3-9-10
memory management, Vol.3-2-6
page directory base address, Vol.3-2-6
page table base address, Vol.3-2-5

CR4 control register
description of, Vol.3-2-13
enabling control functions, Vol.3-22-2
inclusion in IA-32 architecture, Vol.3-22-17
introduction to, Vol.3-2-6
VMX usage of, Vol.3-23-3

CR8 register, Vol.3-2-7
64-bit mode, Vol.3-2-13
compatibility mode, Vol.3-2-13
description of, Vol.3-2-13
task priority level bits, Vol.3-2-18
when available, Vol.3-2-13

CS register, Vol.1-3-12, Vol.1-3-13, Vol.2-3-96, Vol.2-3-404, 
Vol.2-3-423, Vol.2-3-437, Vol.2-3-506, Vol.2-4-183, 
Vol.3-22-10

state following initialization, Vol.3-9-5
C-state, Vol.3-14-19
CTI instruction, Vol.1-7-22
CTR0 and CTR1 (performance counters) MSRs (Pentium processor), 

Vol.3-18-94, Vol.3-18-96
Current privilege level (see CPL)
Current stack, Vol.1-6-1, Vol.1-6-3
CVTDQ2PD instruction, Vol.1-11-10, Vol.2-3-188
CVTDQ2PS instruction, Vol.1-11-10, Vol.2-3-193
CVTPD2DQ instruction, Vol.1-11-10, Vol.2-3-195
CVTPD2PI instruction, Vol.1-11-10, Vol.2-3-197
CVTPD2PS instruction, Vol.1-11-9, Vol.2-3-198
CVTPI2PD instruction, Vol.1-11-10, Vol.2-3-200
CVTPI2PS instruction, Vol.1-10-11, Vol.2-3-201
CVTPS2DQ instruction, Vol.1-11-10, Vol.2-3-202, Vol.2-3-203
CVTPS2PD instruction, Vol.1-11-9, Vol.2-3-204
CVTPS2PI instruction, Vol.1-10-11, Vol.2-3-206
CVTSD2SI instruction, Vol.1-11-10, Vol.2-3-207
CVTSD2SS instruction, Vol.1-11-9, Vol.2-3-209
CVTSI2SD instruction, Vol.1-11-10, Vol.2-3-211
CVTSI2SS instruction, Vol.1-10-11, Vol.2-3-213
CVTSS2SD instruction, Vol.1-11-9, Vol.2-3-215
CVTSS2SI instruction, Vol.1-10-11, Vol.2-3-216
CVTTPD2DQ instruction, Vol.1-11-10, Vol.2-3-218
CVTTPD2PI instruction, Vol.1-11-10, Vol.2-3-218, Vol.2-3-220
CVTTPS2DQ instruction, Vol.1-11-10, Vol.2-3-221
CVTTPS2PI instruction, Vol.1-10-11, Vol.2-3-223
CVTTSD2SI instruction, Vol.1-11-10, Vol.2-3-224
CVTTSS2SI instruction, Vol.1-10-11, Vol.2-3-226
CWD instruction, Vol.1-7-7, Vol.2-3-228
CWDE instruction, Vol.1-7-7, Vol.2-3-108
CX register, Vol.1-3-11
C/C++ compiler intrinsics

compiler functional equivalents, Vol.2-C-1
composite, Vol.2-C-14
description of, Vol.2-3-11
lists of, Vol.2-C-1
simple, Vol.2-C-2

D
D (default operation size) flag

segment descriptor, Vol.3-21-1, Vol.3-22-32
D (default operation size) flag, segment descriptor, Vol.2-4-187
D (default size) flag, segment descriptor, Vol.1-6-2, Vol.1-6-3
DAA instruction, Vol.1-7-9, Vol.2-3-229
DAS instruction, Vol.1-7-9, Vol.2-3-231
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Data breakpoint exception conditions, Vol.3-17-9
Data movement instructions, Vol.1-7-2
Data pointer, x87 FPU, Vol.1-8-9
Data registers, x87 FPU, Vol.1-8-1
Data segment, Vol.1-3-13
Data segments

description of, Vol.3-3-12
descriptor layout, Vol.3-5-2
expand-down type, Vol.3-3-11
paging of, Vol.3-2-6
privilege level checking when accessing, Vol.3-5-8

Data types
128-bit packed SIMD, Vol.1-4-8
64-bit mode, Vol.1-7-2
64-bit packed SIMD, Vol.1-4-8
alignment, Vol.1-4-2
BCD integers, Vol.1-4-9, Vol.1-7-9
bit field, Vol.1-4-7
byte, Vol.1-4-1
doubleword, Vol.1-4-1
floating-point, Vol.1-4-4
fundamental, Vol.1-4-1
integers, Vol.1-4-3
numeric, Vol.1-4-2
operated on by GP instructions, Vol.1-7-1, Vol.1-7-2
operated on by MMX technology, Vol.1-9-3
operated on by SSE extensions, Vol.1-10-5
operated on by SSE2 extensions, Vol.1-11-3
operated on by x87 FPU, Vol.1-8-12
operated on in 64-bit mode, Vol.1-4-7
packed bytes, Vol.1-9-3
packed doublewords, Vol.1-9-3
packed SIMD, Vol.1-4-8
packed words, Vol.1-9-3
pointers, Vol.1-4-6
quadword, Vol.1-4-1, Vol.1-9-3
signed integers, Vol.1-4-4
strings, Vol.1-4-8
unsigned integers, Vol.1-4-3
word, Vol.1-4-1

DAZ (denormals-are-zeros) flag
MXCSR register, Vol.1-10-5

DE (debugging extensions) flag, CR4 control register, Vol.3-2-17, 
Vol.3-22-17, Vol.3-22-19

DE (denormal operand exception) flag
MXCSR register, Vol.1-11-15
x87 FPU status word, Vol.1-8-5, Vol.1-8-27

Debug exception (#DB), Vol.3-6-7, Vol.3-6-21, Vol.3-7-5, Vol.3-17-8, 
Vol.3-17-12, Vol.3-17-36

Debug registers
64-bit mode, Vol.1-3-5
legacy modes, Vol.1-3-4

Debug registers, moving value to and from, Vol.2-3-513
Debug store (see DS)
DEBUGCTLMSR MSR, Vol.3-17-34, Vol.3-17-35, Vol.1-35-202
Debugging facilities

breakpoint exception (#BP), Vol.3-17-1
debug exception (#DB), Vol.3-17-1
DR6 debug status register, Vol.3-17-1
DR7 debug control register, Vol.3-17-1
exceptions, Vol.3-17-7
INT3 instruction, Vol.3-17-1
last branch, interrupt, and exception recording, Vol.3-17-1, 

Vol.3-17-10
masking debug exceptions, Vol.3-6-7
overview of, Vol.3-17-1
performance-monitoring counters, Vol.3-18-1
registers

description of, Vol.3-17-2
introduction to, Vol.3-2-6
loading, Vol.3-2-22

RF (resume) flag, EFLAGS, Vol.3-17-1

see DS (debug store) mechanism
T (debug trap) flag, TSS, Vol.3-17-1
TF (trap) flag, EFLAGS, Vol.3-17-1
virtualization, Vol.3-32-1
VMX operation, Vol.3-32-1

DEC instruction, Vol.1-7-8, Vol.2-3-233, Vol.2-3-468, Vol.3-8-3
Decimal integers, x87 FPU, Vol.1-4-10
Deeper sleep, Vol.1-2-4
Denormal number (see Denormalized finite number)
Denormal operand exception (#D), Vol.3-22-9

overview of, Vol.1-4-20
SSE and SSE2 extensions, Vol.1-11-15
x87 FPU, Vol.1-8-26

Denormalization process, Vol.1-4-15
Denormalized finite number, Vol.1-4-5, Vol.1-4-14, Vol.2-3-353
Denormalized operand, Vol.3-22-12
Denormals-are-zero

DAZ flag, MXCSR register, Vol.1-10-5, Vol.1-11-2, Vol.1-11-3, 
Vol.1-11-20

mode, Vol.1-10-5, Vol.1-11-20
Detecting and Enabling SMX

level 2, Vol.2-5-1
Device-not-available exception (#NM), Vol.3-2-15, Vol.3-2-21, 

Vol.3-6-27, Vol.3-9-6, Vol.3-22-10, Vol.3-22-11
DF (direction) flag, EFLAGS register, Vol.1-3-16, Vol.1-A-1, Vol.2-3-110, 

Vol.2-3-137, Vol.2-3-398, Vol.2-3-470, Vol.2-3-561, 
Vol.2-4-19, Vol.2-4-341, Vol.2-4-376

DFR
Destination Format Register, Vol.3-10-38, Vol.3-10-41, Vol.3-10-46

DH register, Vol.1-3-11
DI register, Vol.1-3-11
Digital media boost, Vol.1-2-4
Digital readout bits, Vol.3-14-28, Vol.3-14-31
Displacement (operand addressing), Vol.1-3-21, Vol.1-3-22, Vol.1-3-23, 

Vol.2-2-3
DIV instruction, Vol.1-7-9, Vol.2-3-235, Vol.3-6-20
Divide, Vol.1-4-20
Divide by zero exception (#Z)

SSE and SSE2 extensions, Vol.1-11-15
x87 FPU, Vol.1-8-27

Divide configuration register, local APIC, Vol.3-10-16
Divide error exception (#DE), Vol.2-3-235
Divide-error exception (#DE), Vol.3-6-20, Vol.3-22-20
DIVPD instruction, Vol.1-11-6, Vol.2-3-238
DIVPS instruction, Vol.1-10-8, Vol.2-3-240
DIVSD instruction, Vol.1-11-6, Vol.2-3-242
DIVSS instruction, Vol.1-10-8, Vol.2-3-243
DL register, Vol.1-3-11
DM (denormal operand exception) mask bit

MXCSR register, Vol.1-11-15
x87 FPU, Vol.1-8-27
x87 FPU control word, Vol.1-8-7

Double-extended-precision FP format, Vol.1-4-4
Double-fault exception (#DF), Vol.3-6-28, Vol.3-22-26
Double-precision floating-point format, Vol.1-4-4
Doubleword, Vol.1-4-1
DPL (descriptor privilege level) field, segment descriptor, Vol.3-3-11, 

Vol.3-5-2, Vol.3-5-4, Vol.3-5-7
DR0-DR3 breakpoint-address registers, Vol.3-17-1, Vol.3-17-3, 

Vol.3-17-33, Vol.3-17-35, Vol.3-17-36
DR4-DR5 debug registers, Vol.3-17-3, Vol.3-22-19
DR6 debug status register, Vol.3-17-3

B0-B3 (BP detected) flags, Vol.3-17-3
BD (debug register access detected) flag, Vol.3-17-3
BS (single step) flag, Vol.3-17-3
BT (task switch) flag, Vol.3-17-3
debug exception (#DB), Vol.3-6-21
reserved bits, Vol.3-22-19

DR7 debug control register, Vol.3-17-4
G0-G3 (global breakpoint enable) flags, Vol.3-17-4
GD (general detect enable) flag, Vol.3-17-4
GE (global exact breakpoint enable) flag, Vol.3-17-4
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L0-L3 (local breakpoint enable) flags, Vol.3-17-4
LE local exact breakpoint enable) flag, Vol.3-17-4
LEN0-LEN3 (Length) fields, Vol.3-17-4
R/W0-R/W3 (read/write) fields, Vol.3-17-4, Vol.3-22-19

DS feature flag, CPUID instruction, Vol.3-17-16, Vol.3-17-28, 
Vol.3-17-32, Vol.3-17-33

DS register, Vol.1-3-12, Vol.1-3-13, Vol.2-3-136, Vol.2-3-451, 
Vol.2-3-470, Vol.2-3-561, Vol.2-4-19

DS save area, Vol.3-17-17, Vol.3-17-18, Vol.3-17-19
DS (debug store) mechanism

availability of, Vol.3-18-65
description of, Vol.3-18-65
DS feature flag, CPUID instruction, Vol.3-18-65
DS save area, Vol.3-17-16, Vol.3-17-18
IA-32e mode, Vol.3-17-18
interrupt service routine (DS ISR), Vol.3-17-22
setting up, Vol.3-17-20

Dual-core technology
architecture, Vol.3-8-31
introduction, Vol.1-2-18
logical processors supported, Vol.3-8-24
MTRR memory map, Vol.3-8-32
multi-threading feature flag, Vol.3-8-24
performance monitoring, Vol.3-18-82
specific features, Vol.3-22-4

Dual-monitor treatment, Vol.3-34-19
DX register, Vol.1-3-11
Dynamic data flow analysis, Vol.1-2-8
Dynamic execution, Vol.1-2-8, Vol.1-2-10, Vol.1-2-12, Vol.1-2-13
D/B (default operation size/default stack pointer size and/or upper bound) 

flag, segment descriptor, Vol.3-3-11, Vol.3-5-4

E
E (edge detect) flag

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family), Vol.3-18-4
E (edge detect) flag, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family 

processors), Vol.3-18-92
E (expansion direction) flag

segment descriptor, Vol.3-5-2, Vol.3-5-4
E (MTRRs enabled) flag

IA32_MTRR_DEF_TYPE MSR, Vol.3-11-23
EAX register, Vol.1-3-10, Vol.1-3-11
EBP register, Vol.1-3-10, Vol.1-3-11, Vol.1-6-3, Vol.1-6-5
EBX register, Vol.1-3-10, Vol.1-3-11
ECX register, Vol.1-3-10, Vol.1-3-11
EDI register, Vol.1-3-10, Vol.1-3-11, Vol.2-4-341, Vol.2-4-376, 

Vol.2-4-380
EDX register, Vol.1-3-10, Vol.1-3-11
Effective address, Vol.1-3-22, Vol.2-3-455
EFLAGS register

64-bit mode, Vol.1-7-2
condition codes, Vol.1-B-1, Vol.2-3-119, Vol.2-3-271, Vol.2-3-276
cross-reference with instructions, Vol.1-A-1
description of, Vol.1-3-14
flags affected by instructions, Vol.2-3-13
identifying 32-bit processors, Vol.3-22-6
instructions that operate on, Vol.1-7-21
introduction to, Vol.3-2-6
new flags, Vol.3-22-5
overview, Vol.1-3-10
part of basic programming environment, Vol.1-7-1
popping, Vol.2-4-191
popping on return from interrupt, Vol.2-3-423
pushing, Vol.2-4-272
pushing on interrupts, Vol.2-3-404
restoring from stack, Vol.1-6-6
saved in TSS, Vol.3-7-4
saving, Vol.2-4-329
saving on a procedure call, Vol.1-6-6
status flags, Vol.1-8-6, Vol.1-8-7, Vol.1-8-19, Vol.2-3-121, 

Vol.2-3-434, Vol.2-4-346, Vol.2-4-407

system flags, Vol.3-2-9
use with CMOVcc instructions, Vol.1-7-3
VMX operation, Vol.3-31-2

EIP register, Vol.2-3-96, Vol.2-3-404, Vol.2-3-423, Vol.2-3-437, 
Vol.3-22-10

description of, Vol.1-3-17
overview, Vol.1-3-10
part of basic programming environment, Vol.1-7-1
relationship to CS register, Vol.1-3-13
saved in TSS, Vol.3-7-4
state following initialization, Vol.3-9-5

EM (emulation) flag
CR0 control register, Vol.3-2-15, Vol.3-2-16, Vol.3-6-27, Vol.3-9-5, 

Vol.3-9-6, Vol.3-12-1, Vol.3-13-3
EMMS instruction, Vol.1-9-8, Vol.1-9-9, Vol.2-3-249, Vol.3-12-3
Encodings

See machine instructions, opcodes
Enhanced Intel Deeper Sleep, Vol.1-2-4
Enhanced Intel SpeedStep Technology

ACPI 3.0 specification, Vol.3-14-1
IA32_APERF MSR, Vol.3-14-2
IA32_MPERF MSR, Vol.3-14-2
IA32_PERF_CTL MSR, Vol.3-14-1
IA32_PERF_STATUS MSR, Vol.3-14-1
introduction, Vol.3-14-1
multiple processor cores, Vol.3-14-1
performance transitions, Vol.3-14-1
P-state coordination, Vol.3-14-1
See also: thermal monitoring

ENTER instruction, Vol.1-6-13, Vol.1-6-14, Vol.1-7-21, Vol.2-3-251
GETSEC, Vol.2-5-3, Vol.2-5-9, Vol.1-5-29
EOI

End Of Interrupt register, Vol.3-10-38
Error code, Vol.3-16-3, Vol.3-16-7, Vol.3-16-10, Vol.3-16-13, 

Vol.3-16-16
architectural MCA, Vol.3-16-1, Vol.3-16-3, Vol.3-16-7, Vol.3-16-10, 

Vol.3-16-13, Vol.3-16-16
decoding IA32_MCi_STATUS, Vol.3-16-1, Vol.3-16-3, Vol.3-16-7, 

Vol.3-16-10, Vol.3-16-13, Vol.3-16-16
exception, description of, Vol.3-6-14
external bus, Vol.3-16-1, Vol.3-16-3, Vol.3-16-7, Vol.3-16-10, 

Vol.3-16-13, Vol.3-16-16
memory hierarchy, Vol.3-16-3, Vol.3-16-7, Vol.3-16-10, Vol.3-16-13, 

Vol.3-16-16
pushing on stack, Vol.3-22-31
watchdog timer, Vol.3-16-1, Vol.3-16-3, Vol.3-16-7, Vol.3-16-10, 

Vol.3-16-13, Vol.3-16-16
Error numbers

VM-instruction error field, Vol.3-30-31
Error signals, Vol.3-22-10
Error-reporting bank registers, Vol.3-15-2
ERROR#

input, Vol.3-22-15
output, Vol.3-22-15

ES register, Vol.1-3-12, Vol.1-3-13, Vol.2-3-451, Vol.2-4-19, 
Vol.2-4-341, Vol.2-4-380

ES (exception summary) flag
x87 FPU status word, Vol.1-8-30

ES0 and ES1 (event select) fields, CESR MSR (Pentium processor), 
Vol.3-18-95

ESC instructions, x87 FPU, Vol.1-8-15
ESI register, Vol.1-3-10, Vol.1-3-11, Vol.2-3-136, Vol.2-3-470, 

Vol.2-3-561, Vol.2-4-19, Vol.2-4-376
ESP register, Vol.1-3-11, Vol.2-3-96, Vol.2-4-183
ESP register (stack pointer), Vol.1-3-10, Vol.1-6-3
ESR

Error Status Register, Vol.3-10-39
ET (extension type) flag, CR0 control register, Vol.3-2-15, Vol.3-22-7
Event select field, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family 

processors), Vol.3-18-3, Vol.3-18-13, Vol.3-18-92
Events

at-retirement, Vol.3-18-71
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at-retirement (Pentium 4 processor), Vol.3-18-61
non-retirement (Pentium 4 processor), Vol.3-18-61, Vol.3-19-150
P6 family processors, Vol.3-19-181
Pentium processor, Vol.3-19-190

Exception flags, x87 FPU status word, Vol.1-8-5
Exception handler

calling, Vol.3-6-11
defined, Vol.3-6-1
flag usage by handler procedure, Vol.3-6-14
machine-check exception handler, Vol.3-15-25
machine-check exceptions (#MC), Vol.3-15-25
machine-error logging utility, Vol.3-15-25
procedures, Vol.3-6-11
protection of handler procedures, Vol.3-6-13
task, Vol.3-6-14, Vol.3-7-2

Exception handlers
overview of, Vol.1-6-9
SIMD floating-point exceptions, Vol.1-E-1
SSE and SSE2 extensions, Vol.1-11-17, Vol.1-11-18
typical actions of a FP exception handler, Vol.1-4-23
x87 FPU, Vol.1-8-31

Exception priority, floating-point exceptions, Vol.1-4-22
Exception-flag masks, x87 FPU control word, Vol.1-8-7
Exceptions

64-bit mode, Vol.1-6-13
alignment check, Vol.3-22-11
BOUND range exceeded (#BR), Vol.2-3-78, Vol.2-4-424
classifications, Vol.3-6-4
compound error codes, Vol.3-15-19
conditions checked during a task switch, Vol.3-7-11
coprocessor segment overrun, Vol.3-22-11
description of, Vol.1-6-9, Vol.3-2-5, Vol.3-6-1
device not available, Vol.3-22-11
double fault, Vol.3-6-28
error code, Vol.3-6-14
exception bitmap, Vol.3-32-1
execute-disable bit, Vol.3-5-32
floating-point error, Vol.3-22-11
general protection, Vol.3-22-11
handler, Vol.1-6-9
handler mechanism, Vol.3-6-11
handler procedures, Vol.3-6-11
handling, Vol.3-6-11
handling in real-address mode, Vol.3-20-4
handling in SMM, Vol.3-34-10
handling in virtual-8086 mode, Vol.3-20-11
handling through a task gate in virtual-8086 mode, Vol.3-20-14
handling through a trap or interrupt gate in virtual-8086 mode, 

Vol.3-20-12
IA-32e mode, Vol.3-2-5
IDT, Vol.3-6-9
implicit call to handler, Vol.1-6-1
in real-address mode, Vol.1-6-12
initializing for protected-mode operation, Vol.3-9-10
invalid-opcode, Vol.3-22-5
masking debug exceptions, Vol.3-6-7
masking when switching stack segments, Vol.3-6-7
MCA error codes, Vol.3-15-18
MMX instructions, Vol.3-12-1
notation, Vol.1-1-6, Vol.2-1-5, Vol.3-1-8
overflow exception (#OF), Vol.2-3-404
overview of, Vol.3-6-1
priorities among simultaneous exceptions and interrupts, Vol.3-6-8
priority of, Vol.3-22-21
priority of, x87 FPU exceptions, Vol.3-22-10
reference information on all exceptions, Vol.3-6-19
reference information, 64-bit mode, Vol.3-6-16
restarting a task or program, Vol.3-6-5
returning from, Vol.2-3-423
segment not present, Vol.3-22-11
simple error codes, Vol.3-15-18
sources of, Vol.3-6-4

summary of, Vol.3-6-2
vector, Vol.1-6-9
vectors, Vol.3-6-1

Executable, Vol.3-3-11
Execute-disable bit capability

conditions for, Vol.3-5-30
CPUID flag, Vol.3-5-30
detecting and enabling, Vol.3-5-30
exception handling, Vol.3-5-32
page-fault exceptions, Vol.3-6-40
protection matrix for IA-32e mode, Vol.3-5-31
protection matrix for legacy modes, Vol.3-5-31
reserved bit checking, Vol.3-5-31

Execution events, Vol.3-19-173
GETSEC, Vol.2-5-3, Vol.2-5-5
Exit-reason numbers

VM entries & exits, Vol.3-C-1
Expand-down data segment type, Vol.3-3-11
Exponent, extracting from floating-point number, Vol.2-3-368
Exponent, floating-point number, Vol.1-4-11
Extended signature table, Vol.3-9-31
extended signature table, Vol.3-9-31
External bus errors, detected with machine-check architecture, 

Vol.3-15-24
Extract exponent and significand, x87 FPU operation, Vol.2-3-368

F
F2XM1 instruction, Vol.1-8-21, Vol.2-3-256, Vol.2-3-368, Vol.3-22-13
FABS instruction, Vol.1-8-17, Vol.2-3-258
FADD instruction, Vol.1-8-17, Vol.2-3-260
FADDP instruction, Vol.1-8-17, Vol.2-3-260
Family 06H, Vol.3-16-1
Family 0FH, Vol.3-16-1

microcode update facilities, Vol.3-9-28
Far call

description of, Vol.1-6-4
operation, Vol.1-6-4

Far pointer
16-bit addressing, Vol.1-3-8
32-bit addressing, Vol.1-3-8
64-bit mode, Vol.1-4-7
description of, Vol.1-3-6, Vol.1-4-6
legacy modes, Vol.1-4-6

Far pointer, loading, Vol.2-3-451
Far return operation, Vol.1-6-4
Far return, RET instruction, Vol.2-4-302
Faults

description of, Vol.3-6-5
restarting a program or task after, Vol.3-6-5

FBLD instruction, Vol.1-8-15, Vol.2-3-263
FBSTP instruction, Vol.1-8-16, Vol.2-3-265
FCHS instruction, Vol.1-8-17, Vol.2-3-267
FCLEX instruction, Vol.2-3-269
FCLEX/FNCLEX instructions, Vol.1-8-5
FCMOVcc instructions, Vol.1-8-7, Vol.1-8-16, Vol.2-3-271, Vol.3-22-4
FCOM instruction, Vol.1-8-6, Vol.1-8-18, Vol.2-3-273
FCOMI instruction, Vol.1-8-7, Vol.1-8-18, Vol.2-3-276, Vol.3-22-4
FCOMIP instruction, Vol.1-8-7, Vol.1-8-18, Vol.2-3-276, Vol.3-22-4
FCOMP instruction, Vol.1-8-6, Vol.1-8-18, Vol.2-3-273
FCOMPP instruction, Vol.1-8-6, Vol.1-8-18, Vol.2-3-273
FCOS instruction, Vol.1-8-5, Vol.1-8-20, Vol.2-3-279, Vol.3-22-13
FDECSTP instruction, Vol.2-3-281
FDISI instruction (obsolete), Vol.3-22-14
FDIV instruction, Vol.1-8-17, Vol.2-3-282, Vol.3-22-11, Vol.3-22-12
FDIVP instruction, Vol.1-8-17, Vol.2-3-282
FDIVR instruction, Vol.1-8-17, Vol.2-3-285
FDIVRP instruction, Vol.1-8-17, Vol.2-3-285
FE (fixed MTRRs enabled) flag, IA32_MTRR_DEF_TYPE MSR, Vol.3-11-23
Feature

determination, of processor, Vol.3-22-2
information, processor, Vol.3-22-2
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Feature information, processor, Vol.2-3-157
FENI instruction (obsolete), Vol.3-22-14
FFREE instruction, Vol.2-3-288
FIADD instruction, Vol.1-8-17, Vol.2-3-260
FICOM instruction, Vol.1-8-6, Vol.1-8-18, Vol.2-3-289
FICOMP instruction, Vol.1-8-6, Vol.1-8-18, Vol.2-3-289
FIDIV instruction, Vol.1-8-17, Vol.2-3-282
FIDIVR instruction, Vol.1-8-17, Vol.2-3-285
FILD instruction, Vol.1-8-15, Vol.2-3-291
FIMUL instruction, Vol.1-8-17, Vol.2-3-309
FINCSTP instruction, Vol.2-3-293
FINIT instruction, Vol.2-3-294
FINIT/FNINIT instructions, Vol.1-8-5, Vol.1-8-7, Vol.1-8-8, Vol.1-8-22, 

Vol.2-3-324, Vol.3-22-7, Vol.3-22-15
FIST instruction, Vol.1-8-16, Vol.2-3-296
FISTP instruction, Vol.1-8-16, Vol.2-3-296
FISTTP instruction, Vol.1-5-19, Vol.1-12-3, Vol.2-3-299
FISUB instruction, Vol.1-8-17, Vol.2-3-343
FISUBR instruction, Vol.1-8-17, Vol.2-3-346
FIX (fixed range registers supported) flag, IA32_MTRRCAPMSR, 

Vol.3-11-22
Fixed-range MTRRs

description of, Vol.3-11-23
Flags

cross-reference with instructions, Vol.1-A-1
Flat memory model, Vol.1-3-6, Vol.1-3-12
Flat segmentation model, Vol.3-3-3
FLD instruction, Vol.1-8-15, Vol.2-3-301, Vol.3-22-13
FLD1 instruction, Vol.1-8-17, Vol.2-3-303
FLDCW instruction, Vol.1-8-7, Vol.1-8-22, Vol.2-3-305
FLDENV instruction, Vol.1-8-5, Vol.1-8-9, Vol.1-8-11, Vol.1-8-23, 

Vol.2-3-307, Vol.3-22-11
FLDL2E instruction, Vol.1-8-17, Vol.2-3-303, Vol.3-22-13
FLDL2T instruction, Vol.1-8-17, Vol.2-3-303, Vol.3-22-13
FLDLG2 instruction, Vol.1-8-17, Vol.2-3-303, Vol.3-22-13
FLDLN2 instruction, Vol.1-8-17, Vol.2-3-303, Vol.3-22-13
FLDPI instruction, Vol.1-8-17, Vol.2-3-303, Vol.3-22-13
FLDSW instruction, Vol.1-8-22
FLDZ instruction, Vol.1-8-17, Vol.2-3-303
Floating point instructions

machine encodings, Vol.2-B-64
Floating-point data types

biasing constant, Vol.1-4-6
denormalized finite number, Vol.1-4-5
description of, Vol.1-4-4
double extended precision format, Vol.1-4-4, Vol.1-4-5
double precision format, Vol.1-4-4, Vol.1-4-5
infinites, Vol.1-4-5
normalized finite number, Vol.1-4-5
single precision format, Vol.1-4-4, Vol.1-4-5
SSE extensions, Vol.1-10-5
SSE2 extensions, Vol.1-11-3
storing in memory, Vol.1-4-6
x87 FPU, Vol.1-8-12
zeros, Vol.1-4-5

Floating-point error exception (#MF), Vol.3-22-11
Floating-point exception handlers

SSE and SSE2 extensions, Vol.1-11-17, Vol.1-11-18
typical actions, Vol.1-4-23
x87 FPU, Vol.1-8-31

Floating-point exceptions
denormal operand exception (#D), Vol.1-4-20, Vol.1-8-27, 

Vol.1-11-15, Vol.1-C-1, Vol.3-22-9
divide by zero exception (#Z), Vol.1-4-20, Vol.1-8-27, Vol.1-11-15, 

Vol.1-C-1
exception conditions, Vol.1-4-19
exception priority, Vol.1-4-22
inexact result (precision) exception (#P), Vol.1-4-22, Vol.1-8-29, 

Vol.1-11-16, Vol.1-C-1
invalid operation exception (#I), Vol.1-4-20, Vol.1-8-25, Vol.1-11-14
invalid operation (#I), Vol.3-22-13
invalid-operation exception (#IA), Vol.1-C-1

invalid-operation exception (#IS), Vol.1-C-1
invalid-operation exception (#I), Vol.1-C-1
numeric overflow exception (#O), Vol.1-4-20, Vol.1-8-28, 

Vol.1-11-15, Vol.1-C-1
numeric overflow (#O), Vol.3-22-9
numeric underflow exception (#U), Vol.1-4-21, Vol.1-8-29, 

Vol.1-11-16, Vol.1-C-1
numeric underflow (#U), Vol.3-22-10
saved CS and EIP values, Vol.3-22-10
SSE and SSE2 SIMD, Vol.2-3-15
summary of, Vol.1-4-18, Vol.1-C-1
typical handler actions, Vol.1-4-23
x87 FPU, Vol.2-3-15

Floating-point format
biased exponent, Vol.1-4-13
description of, Vol.1-8-12
exponent, Vol.1-4-11
fraction, Vol.1-4-11
indefinite, Vol.1-4-5
QNaN floating-point indefinite, Vol.1-4-17
real number system, Vol.1-4-11
sign, Vol.1-4-11
significand, Vol.1-4-11

Floating-point numbers
defined, Vol.1-4-11
encoding, Vol.1-4-5

Flushing
caches, Vol.2-3-416, Vol.2-4-547
TLB entry, Vol.2-3-418

Flush-to-zero
FZ flag, MXCSR register, Vol.1-10-4, Vol.1-11-2
mode, Vol.1-10-4

FLUSH# pin, Vol.3-6-3
FMA operation, Vol.1-14-22, Vol.1-14-23
FMUL instruction, Vol.1-8-17, Vol.2-3-309
FMULP instruction, Vol.1-8-17, Vol.2-3-309
FNCLEX instruction, Vol.2-3-269
FNINIT instruction, Vol.2-3-294
FNOP instruction, Vol.1-8-22, Vol.2-3-312
FNSAVE instruction, Vol.2-3-324, Vol.3-12-4
FNSTCW instruction, Vol.2-3-337
FNSTENV instruction, Vol.2-3-307, Vol.2-3-339
FNSTSW instruction, Vol.2-3-341
Focus processor, local APIC, Vol.3-10-26
Fopcode compatibility mode, Vol.1-8-10
FORCEPR# log, Vol.3-14-27, Vol.3-14-30
FORCPR# interrupt enable bit, Vol.3-14-28
FPATAN instruction, Vol.1-8-20, Vol.2-3-313, Vol.3-22-13
FPREM instruction, Vol.1-8-5, Vol.1-8-17, Vol.1-8-20, Vol.2-3-315, 

Vol.3-22-7, Vol.3-22-11, Vol.3-22-12
FPREM1 instruction, Vol.1-8-5, Vol.1-8-17, Vol.1-8-20, Vol.2-3-317, 

Vol.3-22-7, Vol.3-22-12
FPTAN instruction, Vol.1-8-5, Vol.2-3-319, Vol.3-22-7, Vol.3-22-12
Fraction, floating-point number, Vol.1-4-11
FRNDINT instruction, Vol.1-8-17, Vol.2-3-321
Front_end events, Vol.3-19-173
FRSTOR instruction, Vol.1-8-5, Vol.1-8-9, Vol.1-8-11, Vol.1-8-23, 

Vol.2-3-322, Vol.3-12-4, Vol.3-22-11
FS register, Vol.1-3-12, Vol.1-3-13, Vol.2-3-451
FSAVE instruction, Vol.2-3-324, Vol.3-12-3, Vol.3-12-4
FSAVE/FNSAVE instructions, Vol.1-8-4, Vol.1-8-5, Vol.1-8-9, Vol.1-8-11, 

Vol.1-8-23, Vol.2-3-322, Vol.3-22-11, Vol.3-22-14
FSCALE instruction, Vol.1-8-22, Vol.2-3-327, Vol.3-22-12
FSIN instruction, Vol.1-8-5, Vol.1-8-20, Vol.2-3-329, Vol.3-22-13
FSINCOS instruction, Vol.1-8-5, Vol.1-8-20, Vol.2-3-331, Vol.3-22-13
FSQRT instruction, Vol.1-8-17, Vol.2-3-333, Vol.3-22-11, Vol.3-22-12
FST instruction, Vol.1-8-16, Vol.2-3-335
FSTCW instruction, Vol.2-3-337
FSTCW/FNSTCW instructions, Vol.1-8-7, Vol.1-8-22
FSTENV instruction, Vol.2-3-339, Vol.3-12-3
FSTENV/FNSTENV instructions, Vol.1-8-4, Vol.1-8-9, Vol.1-8-11, 

Vol.1-8-23, Vol.3-22-14
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FSTP instruction, Vol.1-8-16, Vol.2-3-335
FSTSW instruction, Vol.2-3-341
FSTSW/FNSTSW instructions, Vol.1-8-4, Vol.1-8-22
FSUB instruction, Vol.1-8-17, Vol.2-3-343
FSUBP instruction, Vol.1-8-17, Vol.2-3-343
FSUBR instruction, Vol.1-8-17, Vol.2-3-346
FSUBRP instruction, Vol.1-8-17, Vol.2-3-346
FTAN instruction, Vol.3-22-7
FTST instruction, Vol.1-8-6, Vol.1-8-18, Vol.2-3-349
FUCOM instruction, Vol.1-8-18, Vol.2-3-351, Vol.3-22-12
FUCOMI instruction, Vol.1-8-7, Vol.1-8-18, Vol.2-3-276, Vol.3-22-4
FUCOMIP instruction, Vol.1-8-7, Vol.1-8-18, Vol.2-3-276, Vol.3-22-4
FUCOMP instruction, Vol.1-8-18, Vol.2-3-351, Vol.3-22-12
FUCOMPP instruction, Vol.1-8-6, Vol.1-8-18, Vol.2-3-351, Vol.3-22-12
FWAIT instruction, Vol.3-6-27
FXAM instruction, Vol.1-8-4, Vol.1-8-18, Vol.2-3-353, Vol.3-22-13, 

Vol.3-22-14
FXCH instruction, Vol.1-8-16, Vol.2-3-355
FXRSTOR instruction, Vol.1-5-11, Vol.1-8-12, Vol.1-10-14, Vol.1-11-23, 

Vol.2-3-357, Vol.3-2-17, Vol.3-2-18, Vol.3-9-8, Vol.3-12-3, 
Vol.3-12-4, Vol.3-13-2, Vol.3-13-6

CPUID flag, Vol.2-3-174
FXSAVE instruction, Vol.1-5-11, Vol.1-8-12, Vol.1-10-14, Vol.1-11-23, 

Vol.2-3-360, Vol.2-4-542, Vol.2-4-544, Vol.2-4-567, 
Vol.2-4-577, Vol.2-4-581, Vol.2-4-585, Vol.2-4-588, 
Vol.2-4-591, Vol.2-4-594, Vol.2-4-597, Vol.3-2-17, 
Vol.3-2-18, Vol.3-9-8, Vol.3-12-3, Vol.3-12-4, Vol.3-13-2, 
Vol.3-13-6

CPUID flag, Vol.2-3-174
FXSR feature flag, CPUID instruction, Vol.3-9-8
FXTRACT instruction, Vol.1-8-17, Vol.2-3-327, Vol.2-3-368, Vol.3-22-9, 

Vol.3-22-13
FYL2X instruction, Vol.1-8-21, Vol.2-3-370
FYL2XP1 instruction, Vol.1-8-21, Vol.2-3-372

G
G (global) flag

page-directory entries, Vol.3-11-13
page-table entries, Vol.3-11-13

G (granularity) flag
segment descriptor, Vol.3-3-10, Vol.3-3-11, Vol.3-5-2, Vol.3-5-4

G0-G3 (global breakpoint enable) flags
DR7 register, Vol.3-17-4

Gate descriptors
call gates, Vol.3-5-13
description of, Vol.3-5-13
IA-32e mode, Vol.3-5-14

Gates, Vol.3-2-4
IA-32e mode, Vol.3-2-4

GD (general detect enable) flag
DR7 register, Vol.3-17-4, Vol.3-17-9

GDT
description of, Vol.3-2-3, Vol.3-3-15
IA-32e mode, Vol.3-2-4
index field of segment selector, Vol.3-3-7
initializing, Vol.3-9-9
paging of, Vol.3-2-6
pointers to exception/interrupt handlers, Vol.3-6-11
segment descriptors in, Vol.3-3-9
selecting with TI flag of segment selector, Vol.3-3-7
task switching, Vol.3-7-9
task-gate descriptor, Vol.3-7-8
TSS descriptors, Vol.3-7-5
use in address translation, Vol.3-3-6

GDT (global descriptor table), Vol.2-3-461, Vol.2-3-464
GDTR register, Vol.1-3-4, Vol.1-3-5

description of, Vol.3-2-3, Vol.3-2-6, Vol.3-2-12, Vol.3-3-15
IA-32e mode, Vol.3-2-4, Vol.3-2-12
limit, Vol.3-5-5
loading during initialization, Vol.3-9-9
storing, Vol.3-3-15

GDTR (global descriptor table register), Vol.2-3-461, Vol.2-4-349
GE (global exact breakpoint enable) flag

DR7 register, Vol.3-17-4, Vol.3-17-9
General purpose registers

64-bit mode, Vol.1-3-4, Vol.1-3-12
description of, Vol.1-3-10
overview of, Vol.1-3-2, Vol.1-3-4
parameter passing, Vol.1-6-5
part of basic programming environment, Vol.1-7-1
using REX prefix, Vol.1-3-12

General-detect exception condition, Vol.3-17-9
General-protection exception (#GP), Vol.3-3-12, Vol.3-5-6, Vol.3-5-7, 

Vol.3-5-11, Vol.3-5-12, Vol.3-6-9, Vol.3-6-13, Vol.3-6-37, 
Vol.3-7-5, Vol.3-17-3, Vol.3-22-11, Vol.3-22-20, Vol.3-22-33, 
Vol.3-22-34

General-purpose instructions
64-bit encodings, Vol.2-B-18
64-bit mode, Vol.1-7-1
basic programming environment, Vol.1-7-1
data types operated on, Vol.1-7-1, Vol.1-7-2
description of, Vol.1-7-1
non-64-bit encodings, Vol.2-B-7
origin of, Vol.1-7-1
programming with, Vol.1-7-1
summary of, Vol.1-5-2, Vol.1-7-2

General-purpose registers
moving value to and from, Vol.2-3-506
popping all, Vol.2-4-187
pushing all, Vol.2-4-270

General-purpose registers, saved in TSS, Vol.3-7-4
GETSEC, Vol.2-5-1, Vol.2-5-2, Vol.2-5-5
Global control MSRs, Vol.3-15-2
Global descriptor table register (see GDTR)
Global descriptor table (see GDT)
GS register, Vol.1-3-12, Vol.1-3-13, Vol.2-3-451

H
HADDPD instruction, Vol.1-5-20, Vol.1-12-4, Vol.2-3-374, Vol.2-3-375
HADDPS instruction, Vol.1-5-20, Vol.1-12-4, Vol.2-3-377
HALT state

relationship to SMI interrupt, Vol.3-34-3, Vol.3-34-13
Hardware Lock Elision (HLE), Vol.1-15-2
Hardware reset

description of, Vol.3-9-1
processor state after reset, Vol.3-9-2
state of MTRRs following, Vol.3-11-20
value of SMBASE following, Vol.3-34-4

Hexadecimal numbers, Vol.1-1-5, Vol.2-1-5, Vol.3-1-6
high-temperature interrupt enable bit, Vol.3-14-28, Vol.3-14-31
HITM# line, Vol.3-11-6
HLT instruction, Vol.2-3-380, Vol.3-2-23, Vol.3-5-24, Vol.3-6-29, 

Vol.3-25-2, Vol.3-34-13, Vol.3-34-14
Horizontal processing model, Vol.1-12-1
HSUBPD instruction, Vol.1-5-20, Vol.1-12-5, Vol.2-3-381
HSUBPS instruction, Vol.1-5-20, Vol.1-12-4, Vol.2-3-384
HT Technology

first processor, Vol.1-2-3
implementing, Vol.1-2-17
introduction, Vol.1-2-16

Hyper-Threading Technology
architectural state of a logical processor, Vol.3-8-32
architecture description, Vol.3-8-26
caches, Vol.3-8-30
counting clockticks, Vol.3-18-80
debug registers, Vol.3-8-29
description of, Vol.3-8-24, Vol.3-22-3, Vol.3-22-4
detecting, Vol.3-8-35, Vol.3-8-39, Vol.3-8-40
executing multiple threads, Vol.3-8-25
execution-based timing loops, Vol.3-8-52
external signal compatibility, Vol.3-8-31
halting logical processors, Vol.3-8-50
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handling interrupts, Vol.3-8-25
HLT instruction, Vol.3-8-46
IA32_MISC_ENABLE MSR, Vol.3-8-29, Vol.3-8-32
initializing IA-32 processors with, Vol.3-8-25
introduction of into the IA-32 architecture, Vol.3-22-3, Vol.3-22-4
local a, Vol.3-8-27
local APIC

functionality in logical processor, Vol.3-8-28
logical processors, identifying, Vol.3-8-35
machine check architecture, Vol.3-8-28
managing idle and blocked conditions, Vol.3-8-46
mapping resources, Vol.3-8-33
memory ordering, Vol.3-8-29
microcode update resources, Vol.3-8-29, Vol.3-8-32, Vol.3-9-35
MP systems, Vol.3-8-26
MTRRs, Vol.3-8-28, Vol.3-8-32
multi-threading feature flag, Vol.3-8-24
multi-threading support, Vol.3-8-24
PAT, Vol.3-8-28
PAUSE instruction, Vol.3-8-46, Vol.3-8-47
performance monitoring, Vol.3-18-75, Vol.3-18-82
performance monitoring counters, Vol.3-8-29, Vol.3-8-32
placement of locks and semaphores, Vol.3-8-52
required operating system support, Vol.3-8-48
scheduling multiple threads, Vol.3-8-51
self modifying code, Vol.3-8-30
serializing instructions, Vol.3-8-29
spin-wait loops

PAUSE instructions in, Vol.3-8-49, Vol.3-8-51
thermal monitor, Vol.3-8-31
TLBs, Vol.3-8-30

I
IA-32 architecture

history of, Vol.1-2-1
introduction to, Vol.1-2-1

IA-32 Intel architecture
compatibility, Vol.3-22-1
processors, Vol.3-22-1

IA32e mode
registers and mode changes, Vol.3-9-12

IA-32e mode
call gates, Vol.3-5-14
code segment descriptor, Vol.3-5-3
CPUID flag, Vol.2-3-165
D flag, Vol.3-5-4
data structures and initialization, Vol.3-9-11
debug registers, Vol.3-2-7
debug store area, Vol.3-17-18
descriptors, Vol.3-2-4
DPL field, Vol.3-5-4
exceptions during initialization, Vol.3-9-11
feature-enable register, Vol.3-2-7
gates, Vol.3-2-4
global and local descriptor tables, Vol.3-2-4
IA32_EFER MSR, Vol.3-2-7, Vol.3-5-30
initialization process, Vol.3-9-10
interrupt stack table, Vol.3-6-19
interrupts and exceptions, Vol.3-2-5
introduction, Vol.1-2-20, Vol.2-2-6, Vol.2-2-12
IRET instruction, Vol.3-6-18
L flag, Vol.3-3-12, Vol.3-5-4
logical address, Vol.3-3-7
MOV CRn, Vol.3-9-10
MTRR calculations, Vol.3-11-27
NXE bit, Vol.3-5-30
page level protection, Vol.3-5-30
paging, Vol.3-2-6
PDE tables, Vol.3-5-31
PDP tables, Vol.3-5-31
PML4 tables, Vol.3-5-31

PTE tables, Vol.3-5-31
registers and data structures, Vol.3-2-1
see 64-bit mode
see compatibility mode
segment descriptor tables, Vol.3-3-16, Vol.3-5-3
segment descriptors, Vol.3-3-9
segment loading instructions, Vol.3-3-9
segmentation, Vol.1-3-21, Vol.3-3-5
stack switching, Vol.3-5-19, Vol.3-6-18
SYSCALL and SYSRET, Vol.3-5-22
SYSENTER and SYSEXIT, Vol.3-5-21
system descriptors, Vol.3-3-14
system registers, Vol.3-2-7
task switching, Vol.3-7-16
task-state segments, Vol.3-2-5
terminating mode operation, Vol.3-9-12
See also: 64-bit mode, compatibility mode

IA32_APERF MSR, Vol.3-14-2
IA32_APIC_BASE MSR, Vol.3-8-18, Vol.3-8-19, Vol.3-10-6, Vol.3-10-8, 

Vol.1-35-154
IA32_BIOS_SIGN_ID MSR, Vol.1-35-157
IA32_BIOS_UPDT_TRIG MSR, Vol.3-32-9, Vol.1-35-157
IA32_BISO_SIGN_ID MSR, Vol.3-32-9
IA32_CLOCK_MODULATION MSR, Vol.3-8-31, Vol.3-14-8, Vol.3-14-11, 

Vol.3-14-12, Vol.3-14-13, Vol.3-14-15, Vol.3-14-16, 
Vol.3-14-17, Vol.3-14-18, Vol.3-14-19, Vol.3-14-24, 
Vol.3-14-25, Vol.3-14-26, Vol.3-14-27, Vol.3-14-35, 
Vol.3-14-36, Vol.3-14-37, Vol.3-14-38, Vol.3-14-39, 
Vol.1-35-37, Vol.1-35-50, Vol.1-35-62, Vol.1-35-75, 
Vol.1-35-111, Vol.1-35-161, Vol.1-35-184, Vol.1-35-192

IA32_CTL MSR, Vol.1-35-158
IA32_DEBUGCTL MSR, Vol.3-27-24, Vol.1-35-165
IA32_DS_AREA MSR, Vol.3-17-16, Vol.3-17-19, Vol.3-17-20, 

Vol.3-18-59, Vol.3-18-74, Vol.1-35-175
IA32_EFER MSR, Vol.3-2-7, Vol.3-2-8, Vol.3-5-30, Vol.3-27-24, 

Vol.3-31-16
IA32_FEATURE_CONTROL MSR, Vol.3-23-3
IA32_KernelGSbase MSR, Vol.3-2-7
IA32_LSTAR MSR, Vol.3-2-7, Vol.3-5-22
IA32_MCG_CAP MSR, Vol.3-15-2, Vol.3-15-25, Vol.1-35-158
IA32_MCG_CTL MSR, Vol.3-15-2, Vol.3-15-4
IA32_MCG_EAX MSR, Vol.3-15-9
IA32_MCG_EBP MSR, Vol.3-15-9
IA32_MCG_EBX MSR, Vol.3-15-9
IA32_MCG_ECX MSR, Vol.3-15-9
IA32_MCG_EDI MSR, Vol.3-15-9
IA32_MCG_EDX MSR, Vol.3-15-9
IA32_MCG_EFLAGS MSR, Vol.3-15-9
IA32_MCG_EIP MSR, Vol.3-15-10
IA32_MCG_ESI MSR, Vol.3-15-9
IA32_MCG_ESP MSR, Vol.3-15-9
IA32_MCG_MISC MSR, Vol.3-15-10, Vol.1-35-159
IA32_MCG_R10 MSR, Vol.3-15-10, Vol.1-35-160
IA32_MCG_R11 MSR, Vol.3-15-10, Vol.1-35-160
IA32_MCG_R12 MSR, Vol.3-15-10
IA32_MCG_R13 MSR, Vol.3-15-10
IA32_MCG_R14 MSR, Vol.3-15-10
IA32_MCG_R15 MSR, Vol.3-15-10, Vol.1-35-161
IA32_MCG_R8 MSR, Vol.3-15-10
IA32_MCG_R9 MSR, Vol.3-15-10
IA32_MCG_RAX MSR, Vol.3-15-10, Vol.1-35-158
IA32_MCG_RBP MSR, Vol.3-15-10
IA32_MCG_RBX MSR, Vol.3-15-10, Vol.1-35-158
IA32_MCG_RCX MSR, Vol.3-15-10
IA32_MCG_RDI MSR, Vol.3-15-10
IA32_MCG_RDX MSR, Vol.3-15-10
IA32_MCG_RESERVEDn, Vol.1-35-159
IA32_MCG_RESERVEDn MSR, Vol.3-15-10
IA32_MCG_RFLAGS MSR, Vol.3-15-10, Vol.1-35-159
IA32_MCG_RIP MSR, Vol.3-15-10, Vol.1-35-159
IA32_MCG_RSI MSR, Vol.3-15-10
IA32_MCG_RSP MSR, Vol.3-15-10
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IA32_MCG_STATUS MSR, Vol.3-15-2, Vol.3-15-3, Vol.3-15-26, 
Vol.3-15-27, Vol.3-27-3

IA32_MCi_ADDR MSR, Vol.3-15-7, Vol.3-15-27, Vol.1-35-172
IA32_MCi_CTL, Vol.3-15-4
IA32_MCi_CTL MSR, Vol.3-15-4, Vol.1-35-172
IA32_MCi_MISC MSR, Vol.3-15-8, Vol.3-15-9, Vol.3-15-27, Vol.1-35-172
IA32_MCi_STATUS MSR, Vol.3-15-4, Vol.3-15-25, Vol.3-15-27, 

Vol.1-35-172
decoding for Family 06H, Vol.3-16-1
decoding for Family 0FH, Vol.3-16-1, Vol.3-16-3, Vol.3-16-7, 

Vol.3-16-10, Vol.3-16-13, Vol.3-16-16
IA32_MISC_ENABLE MSR, Vol.1-8-10, Vol.3-14-1, Vol.3-14-21, 

Vol.3-17-16, Vol.3-17-28, Vol.3-18-58, Vol.1-35-161
IA32_MPERF MSR, Vol.3-14-1, Vol.3-14-2
IA32_MTRRCAP MSR, Vol.3-11-21, Vol.3-11-22, Vol.1-35-157
IA32_MTRR_DEF_TYPE MSR, Vol.3-11-22
IA32_MTRR_FIXn, fixed ranger MTRRs, Vol.3-11-23
IA32_MTRR_PHYS BASEn MTRR, Vol.1-35-166
IA32_MTRR_PHYSBASEn MTRR, Vol.1-35-166
IA32_MTRR_PHYSMASKn MTRR, Vol.1-35-166
IA32_P5_MC_ADDR MSR, Vol.1-35-154
IA32_P5_MC_TYPE MSR, Vol.1-35-154
IA32_PAT_CR MSR, Vol.3-11-34
IA32_PEBS_ENABLE MSR, Vol.3-18-16, Vol.3-18-59, Vol.3-18-74, 

Vol.3-19-174, Vol.1-35-171
IA32_PERF_CTL MSR, Vol.3-14-1
IA32_PERF_STATUS MSR, Vol.3-14-1
IA32_PLATFORM_ID, Vol.1-35-32, Vol.1-35-46, Vol.1-35-57, 

Vol.1-35-72, Vol.1-35-106, Vol.1-35-154, Vol.1-35-180, 
Vol.1-35-189, Vol.1-35-196

IA32_STAR MSR, Vol.3-5-22
IA32_STAR_CS MSR, Vol.3-2-7
IA32_STATUS MSR, Vol.1-35-158
IA32_SYSCALL_FLAG_MASK MSR, Vol.3-2-7
IA32_SYSENTER_CS MSR, Vol.3-5-21, Vol.3-5-22, Vol.3-27-19, 

Vol.1-35-157
IA32_SYSENTER_EIP MSR, Vol.3-5-21, Vol.3-27-24, Vol.1-35-158
IA32_SYSENTER_ESP MSR, Vol.3-5-21, Vol.3-27-24, Vol.1-35-157
IA32_TERM_CONTROL MSR, Vol.1-35-37, Vol.1-35-50, Vol.1-35-62, 

Vol.1-35-75, Vol.1-35-111
IA32_THERM_INTERRUPT MSR, Vol.3-14-23, Vol.3-14-26, Vol.3-14-28, 

Vol.1-35-161
FORCPR# interrupt enable bit, Vol.3-14-28
high-temperature interrupt enable bit, Vol.3-14-28, Vol.3-14-31
low-temperature interrupt enable bit, Vol.3-14-28, Vol.3-14-31
overheat interrupt enable bit, Vol.3-14-28, Vol.3-14-31
THERMTRIP# interrupt enable bit, Vol.3-14-28, Vol.3-14-31
threshold #1 interrupt enable bit, Vol.3-14-29, Vol.3-14-31
threshold #1 value, Vol.3-14-28, Vol.3-14-31
threshold #2 interrupt enable, Vol.3-14-29, Vol.3-14-32
threshold #2 value, Vol.3-14-29, Vol.3-14-31

IA32_THERM_STATUS MSR, Vol.3-14-26, Vol.1-35-161
digital readout bits, Vol.3-14-28, Vol.3-14-31
out-of-spec status bit, Vol.3-14-27, Vol.3-14-30
out-of-spec status log, Vol.3-14-27, Vol.3-14-30, Vol.3-14-31
PROCHOT# or FORCEPR# event bit, Vol.3-14-26, Vol.3-14-30, 

Vol.3-14-31
PROCHOT# or FORCEPR# log, Vol.3-14-27, Vol.3-14-30
resolution in degrees, Vol.3-14-28
thermal status bit, Vol.3-14-26, Vol.3-14-30
thermal status log, Vol.3-14-26, Vol.3-14-30
thermal threshold #1 log, Vol.3-14-27, Vol.3-14-30, Vol.3-14-31
thermal threshold #1 status, Vol.3-14-27, Vol.3-14-30
thermal threshold #2 log, Vol.3-14-27, Vol.3-14-30
thermal threshold #2 status, Vol.3-14-27, Vol.3-14-30, Vol.3-14-31
validation bit, Vol.3-14-28

IA32_TIME_STAMP_COUNTER MSR, Vol.1-35-154
IA32_VMX_BASIC MSR, Vol.3-24-3, Vol.3-31-2, Vol.3-31-5, Vol.3-31-6, 

Vol.3-31-11, Vol.1-35-44, Vol.1-35-55, Vol.1-35-67, 
Vol.1-35-83, Vol.1-35-116, Vol.1-35-174, Vol.1-35-187, 
Vol.3-A-1, Vol.3-A-2

IA32_VMX_CR0_FIXED0 MSR, Vol.3-23-3, Vol.3-31-4, Vol.1-35-44, 
Vol.1-35-55, Vol.1-35-68, Vol.1-35-83, Vol.1-35-117, 
Vol.1-35-175, Vol.1-35-188, Vol.3-A-6

IA32_VMX_CR0_FIXED1 MSR, Vol.3-23-3, Vol.3-31-4, Vol.1-35-44, 
Vol.1-35-55, Vol.1-35-68, Vol.1-35-83, Vol.1-35-117, 
Vol.1-35-175, Vol.1-35-188, Vol.3-A-6

IA32_VMX_CR4_FIXED0 MSR, Vol.3-23-3, Vol.3-31-4, Vol.1-35-44, 
Vol.1-35-55, Vol.1-35-68, Vol.1-35-83, Vol.1-35-117, 
Vol.1-35-175, Vol.1-35-188, Vol.3-A-6

IA32_VMX_CR4_FIXED1 MSR, Vol.3-23-3, Vol.3-31-4, Vol.1-35-44, 
Vol.1-35-55, Vol.1-35-68, Vol.1-35-84, Vol.1-35-117, 
Vol.1-35-175, Vol.1-35-188, Vol.3-A-6

IA32_VMX_ENTRY_CTLS MSR, Vol.3-31-5, Vol.3-31-6, Vol.1-35-44, 
Vol.1-35-55, Vol.1-35-68, Vol.1-35-83, Vol.1-35-117, 
Vol.1-35-175, Vol.1-35-188, Vol.3-A-2, Vol.3-A-5

IA32_VMX_EXIT_CTLS MSR, Vol.3-31-5, Vol.3-31-6, Vol.1-35-44, 
Vol.1-35-55, Vol.1-35-68, Vol.1-35-83, Vol.1-35-117, 
Vol.1-35-174, Vol.1-35-188, Vol.3-A-2, Vol.3-A-4, Vol.3-A-5

IA32_VMX_MISC MSR, Vol.3-24-6, Vol.3-26-3, Vol.3-26-12, Vol.3-34-25, 
Vol.1-35-44, Vol.1-35-55, Vol.1-35-68, Vol.1-35-83, 
Vol.1-35-117, Vol.1-35-175, Vol.1-35-188, Vol.3-A-5

IA32_VMX_PINBASED_CTLS MSR, Vol.3-31-5, Vol.3-31-6, Vol.1-35-44, 
Vol.1-35-55, Vol.1-35-68, Vol.1-35-83, Vol.1-35-116, 
Vol.1-35-174, Vol.1-35-188, Vol.3-A-2, Vol.3-A-3

IA32_VMX_PROCBASED_CTLS MSR, Vol.3-24-8, Vol.3-31-5, Vol.3-31-6, 
Vol.1-35-44, Vol.1-35-55, Vol.1-35-56, Vol.1-35-68, 
Vol.1-35-69, Vol.1-35-83, Vol.1-35-84, Vol.1-35-116, 
Vol.1-35-117, Vol.1-35-141, Vol.1-35-174, Vol.1-35-188, 
Vol.3-A-2, Vol.3-A-3, Vol.3-A-4, Vol.3-A-8

IA32_VMX_VMCS_ENUM MSR, Vol.1-35-175, Vol.3-A-7
ICR

Interrupt Command Register, Vol.3-10-38, Vol.3-10-41, Vol.3-10-47
ID (identification) flag

EFLAGS register, Vol.3-2-11, Vol.3-22-6
ID (identification) flag, EFLAGS register, Vol.1-3-16
IDIV instruction, Vol.1-7-9, Vol.2-3-387, Vol.3-6-20, Vol.3-22-20
IDT

64-bit mode, Vol.3-6-16
call interrupt & exception-handlers from, Vol.3-6-11
change base & limit in real-address mode, Vol.3-20-5
description of, Vol.3-6-9
handling NMIs during initialization, Vol.3-9-8
initializing protected-mode operation, Vol.3-9-10
initializing real-address mode operation, Vol.3-9-8
introduction to, Vol.3-2-5
limit, Vol.3-22-26
paging of, Vol.3-2-6
structure in real-address mode, Vol.3-20-5
task switching, Vol.3-7-10
task-gate descriptor, Vol.3-7-8
types of descriptors allowed, Vol.3-6-10
use in real-address mode, Vol.3-20-4

IDT (interrupt descriptor table), Vol.2-3-404, Vol.2-3-461
IDTR register, Vol.1-3-4, Vol.1-3-5

description of, Vol.3-2-12, Vol.3-6-9
IA-32e mode, Vol.3-2-12
introduction to, Vol.3-2-5
limit, Vol.3-5-5
loading in real-address mode, Vol.3-20-5
storing, Vol.3-3-16

IDTR (interrupt descriptor table register), Vol.2-3-461, Vol.2-4-363
IE (invalid operation exception) flag

MXCSR register, Vol.1-11-14
x87 FPU status word, Vol.1-8-5, Vol.1-8-26, Vol.3-22-8

IEEE Standard 754, Vol.1-4-4, Vol.1-4-11, Vol.1-8-1
IEEE Standard 754 for Binary Floating-Point Arithmetic, Vol.3-22-8, 

Vol.3-22-9, Vol.3-22-12, Vol.3-22-13
IF (interrupt enable) flag

EFLAGS register, Vol.1-3-16, Vol.1-6-10, Vol.1-16-4, Vol.1-A-1, 
Vol.3-2-10, Vol.3-2-11, Vol.3-6-6, Vol.3-6-10, Vol.3-6-14, 
Vol.3-20-4, Vol.3-20-19, Vol.3-34-11

IF (interrupt enable) flag, EFLAGS register, Vol.2-3-113, Vol.2-4-377
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IM (invalid operation exception) mask bit
MXCSR register, Vol.1-11-14
x87 FPU control word, Vol.1-8-7

Immediate operands, Vol.1-3-19, Vol.2-2-3
IMUL instruction, Vol.1-7-9, Vol.2-3-390
IN instruction, Vol.1-5-6, Vol.1-7-20, Vol.1-16-3, Vol.2-3-394, 

Vol.3-8-15, Vol.3-22-34, Vol.3-25-2
INC instruction, Vol.1-7-8, Vol.2-3-396, Vol.2-3-468, Vol.3-8-3
Indefinite

description of, Vol.1-4-17, Vol.1-14-18
floating-point format, Vol.1-4-5, Vol.1-4-13
integer, Vol.1-4-4, Vol.1-8-13
packed BCD integer, Vol.1-4-11
QNaN floating-point, Vol.1-4-16, Vol.1-4-17

Index field, segment selector, Vol.3-3-7
Index (operand addressing), Vol.1-3-21, Vol.1-3-22, Vol.1-3-23, 

Vol.2-2-3
Inexact result (precision)

exception (#P), overview, Vol.1-4-22
exception (#P), SSE-SSE2 extensions, Vol.1-11-16
exception (#P), x87 FPU, Vol.1-8-29
on floating-point operations, Vol.1-4-18

Infinity control flag, x87 FPU control word, Vol.1-8-8
Infinity, floating-point format, Vol.1-4-5, Vol.1-4-15
INIT interrupt, Vol.3-10-3
INIT pin, Vol.1-3-14
Initial-count register, local APIC, Vol.3-10-16, Vol.3-10-17
Initialization

built-in self-test (BIST), Vol.3-9-1, Vol.3-9-2
CS register state following, Vol.3-9-5
EIP register state following, Vol.3-9-5
example, Vol.3-9-14
first instruction executed, Vol.3-9-5
hardware reset, Vol.3-9-1
IA-32e mode, Vol.3-9-10
IDT, protected mode, Vol.3-9-10
IDT, real-address mode, Vol.3-9-8
Intel486 SX processor and Intel 487 SX math coprocessor, 

Vol.3-22-15
location of software-initialization code, Vol.3-9-5
machine-check initialization, Vol.3-15-17
model and stepping information, Vol.3-9-4
multitasking environment, Vol.3-9-10
overview, Vol.3-9-1
paging, Vol.3-9-10
processor state after reset, Vol.3-9-2
protected mode, Vol.3-9-9
real-address mode, Vol.3-9-8
RESET# pin, Vol.3-9-1
setting up exception- and interrupt-handling facilities, Vol.3-9-10
x87 FPU, Vol.3-9-5

Initialization x87 FPU, Vol.2-3-294
initiating logical processor, Vol.2-5-3, Vol.2-5-4, Vol.2-5-5, Vol.2-5-9, 

Vol.2-5-20
INIT# pin, Vol.3-6-3, Vol.3-9-1
INIT# signal, Vol.3-2-23, Vol.3-23-4
Input/output (see I/O)
INS instruction, Vol.1-5-6, Vol.1-7-20, Vol.1-16-3, Vol.2-3-398, 

Vol.2-4-300, Vol.3-17-9
INSB instruction, Vol.2-3-398
INSD instruction, Vol.2-3-398
instruction encodings, Vol.2-B-60, Vol.2-B-66, Vol.2-B-73
Instruction format

base field, Vol.2-2-3
description of reference information, Vol.2-3-1
displacement, Vol.2-2-3
immediate, Vol.2-2-3
index field, Vol.2-2-3
Mod field, Vol.2-2-3
ModR/M byte, Vol.2-2-3
opcode, Vol.2-2-2
operands, Vol.2-1-4

prefixes, Vol.2-2-1
reg/opcode field, Vol.2-2-3
r/m field, Vol.2-2-3
scale field, Vol.2-2-3
SIB byte, Vol.2-2-3
See also: machine instructions, opcodes

Instruction operands, Vol.1-1-5, Vol.3-1-6
Instruction pointer

64-bit mode, Vol.1-7-2
EIP register, Vol.1-3-10, Vol.1-3-17
RIP register, Vol.1-3-17
RIP, EIP, IP compared, Vol.1-3-9
x87 FPU, Vol.1-8-9

Instruction prefixes
effect on SSE and SSE2 instructions, Vol.1-11-25
REX prefix, Vol.1-3-2, Vol.1-3-11

Instruction reference, nomenclature, Vol.2-3-1
Instruction set

binary arithmetic instructions, Vol.1-7-8
bit scan instructions, Vol.1-7-14
bit test and modify instructions, Vol.1-7-14
byte-set-on-condition instructions, Vol.1-7-14
cacheability control instructions, Vol.1-5-16, Vol.1-5-19
comparison and sign change instruction, Vol.1-7-8
control transfer instructions, Vol.1-7-14
data movement instructions, Vol.1-7-2
decimal arithmetic instructions, Vol.1-7-9
EFLAGS cross-reference, Vol.1-A-1
EFLAGS instructions, Vol.1-7-21
exchange instructions, Vol.1-7-4
FXSAVE and FXRSTOR instructions, Vol.1-5-11
general-purpose instructions, Vol.1-5-2
grouped by processor, Vol.1-5-1, Vol.1-5-2
increment and decrement instructions, Vol.1-7-8
instruction ordering instructions, Vol.1-5-16, Vol.1-5-19
I/O instructions, Vol.1-5-6, Vol.1-7-20
logical instructions, Vol.1-7-10
MMX instructions, Vol.1-5-11, Vol.1-9-5
multiply and divide instructions, Vol.1-7-9
processor identification instruction, Vol.1-7-23
repeating string operations, Vol.1-7-19
rotate instructions, Vol.1-7-13
segment register instructions, Vol.1-7-22
shift instructions, Vol.1-7-10
SIMD instructions, introduction to, Vol.1-2-14
software interrupt instructions, Vol.1-7-17
SSE instructions, Vol.1-5-13
SSE2 instructions, Vol.1-5-16
stack manipulation instructions, Vol.1-7-5
string operation instructions, Vol.1-7-18
summary, Vol.1-5-1
system instructions, Vol.1-5-27
test instruction, Vol.1-7-14
type conversion instructions, Vol.1-7-7
x87 FPU and SIMD state management instructions, Vol.1-5-11
x87 FPU instructions, Vol.1-5-8

Instruction set, reference, Vol.2-3-1
Instruction-breakpoint exception condition, Vol.3-17-8
Instructions

new instructions, Vol.3-22-4
obsolete instructions, Vol.3-22-5
privileged, Vol.3-5-23
serializing, Vol.3-8-16, Vol.3-8-29, Vol.3-22-15
supported in real-address mode, Vol.3-20-3
system, Vol.3-2-7, Vol.3-2-19

INSW instruction, Vol.2-3-398
INS/INSB/INSW/INSD instruction, Vol.3-25-2
INT 3 instruction, Vol.2-3-404, Vol.3-2-5, Vol.3-6-23
INT instruction, Vol.1-6-12, Vol.1-7-23, Vol.3-2-5, Vol.3-5-10
INT n instruction, Vol.3-3-9, Vol.3-6-1, Vol.3-6-4, Vol.3-17-10
INT (APIC interrupt enable) flag, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 

family processors), Vol.3-18-4, Vol.3-18-93
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INT15 and microcode updates, Vol.3-9-42
INT3 instruction, Vol.3-3-9, Vol.3-6-4
Integers

description of, Vol.1-4-3
indefinite, Vol.1-4-4, Vol.1-8-13
signed integer encodings, Vol.1-4-4
signed, description of, Vol.1-4-4
unsigned integer encodings, Vol.1-4-3
unsigned, description of, Vol.1-4-3

Integer, storing, x87 FPU data type, Vol.2-3-296
Intel 287 math coprocessor, Vol.3-22-7
Intel 387 math coprocessor system, Vol.3-22-7
Intel 487 SX math coprocessor, Vol.3-22-6, Vol.3-22-15
Intel 64 architecture

64-bit mode, Vol.1-3-1
64-bit mode instructions, Vol.1-5-28
address space, Vol.1-3-6
compatibility mode, Vol.1-3-1
data types, Vol.1-4-1
definition of, Vol.1-1-3, Vol.2-1-3, Vol.3-1-3
executing calls, Vol.1-6-1
general purpose instructions, Vol.1-7-1
generations, Vol.1-2-20
history of, Vol.1-2-1
IA32e mode, Vol.1-3-1
instruction format, Vol.2-2-1
introduction, Vol.1-2-20
memory organization, Vol.1-3-6, Vol.1-3-7
relation to IA-32, Vol.1-1-3, Vol.2-1-3, Vol.3-1-3
See also: IA-32e mode

Intel 8086 processor, Vol.3-22-7
Intel Advanced Digital Media Boost, Vol.1-2-4, Vol.1-2-11
Intel Advanced Smart Cache, Vol.1-2-10
Intel Advanced Thermal Manager, Vol.1-2-4
Intel Core 2 Extreme processor family, Vol.1-2-4, Vol.1-2-5, Vol.1-2-18
Intel Core Duo processor, Vol.1-2-4, Vol.1-2-18
Intel Core microarchitecture, Vol.1-2-4, Vol.1-2-5, Vol.1-2-10, 

Vol.1-2-12, Vol.1-2-13, Vol.1-2-18
Intel Core Solo and Duo processors

model-specific registers, Vol.1-35-180
Intel Core Solo and Intel Core Duo processors

event mask (Umask), Vol.3-18-11, Vol.3-18-12
last branch, interrupt, exception recording, Vol.3-17-31
notes on P-state transitions, Vol.3-14-1
performance monitoring, Vol.3-18-11, Vol.3-18-12
performance monitoring events, Vol.3-19-2, Vol.3-19-14, 

Vol.3-19-23, Vol.3-19-37, Vol.3-19-99, Vol.3-19-125, 
Vol.3-19-131

sub-fields layouts, Vol.3-18-11, Vol.3-18-12
time stamp counters, Vol.3-17-36

Intel Core Solo processor, Vol.1-2-4
Intel developer link, Vol.1-1-8, Vol.2-1-7, Vol.3-1-9
Intel Dynamic Power Coordination, Vol.1-2-4
Intel NetBurst microarchitecture, Vol.1-1-2, Vol.2-1-2, Vol.3-1-2

description of, Vol.1-2-8
introduction, Vol.1-2-8

Intel Pentium D processor, Vol.1-2-18
Intel Pentium processor Extreme Edition, Vol.1-2-18
Intel Smart Cache, Vol.1-2-4
Intel Smart Memory Access, Vol.1-2-4, Vol.1-2-11
Intel software network link, Vol.1-1-7, Vol.2-1-7, Vol.3-1-9
Intel SpeedStep Technology

See: Enhanced Intel SpeedStep Technology
Intel Transactional Synchronization, Vol.1-15-1
Intel VTune Performance Analyzer

related information, Vol.1-1-7, Vol.2-1-7, Vol.3-1-8
Intel Wide Dynamic Execution, Vol.1-2-4, Vol.1-2-10, Vol.1-2-12, 

Vol.1-2-13
Intel Xeon processor, Vol.1-1-1, Vol.2-1-1, Vol.3-1-1

description of, Vol.1-2-3
last branch, interrupt, and exception recording, Vol.3-17-28
time-stamp counter, Vol.3-17-36

Intel Xeon processor 5100 series, Vol.1-2-4, Vol.1-2-5, Vol.1-2-18
Intel Xeon processor MP

with 8MB L3 cache, Vol.3-18-82, Vol.3-18-85
Intel286 processor, Vol.3-22-7
Intel386 DX processor, Vol.3-22-7
Intel386 processor, Vol.1-2-1
Intel386 SL processor, Vol.3-2-7
Intel486 DX processor, Vol.3-22-6
Intel486 processor

history of, Vol.1-2-2
Intel486 SX processor, Vol.3-22-6, Vol.3-22-15
Intel® Trusted Execution Technology, Vol.2-5-3
Inter-privilege level

call, CALL instruction, Vol.2-3-95
return, RET instruction, Vol.2-4-302

Inter-privilege level call
description of, Vol.1-6-6
operation, Vol.1-6-7

Interprivilege level calls
call mechanism, Vol.3-5-15
stack switching, Vol.3-5-17

Inter-privilege level return
description of, Vol.1-6-6
operation, Vol.1-6-7

Interprocessor interrupt (IPIs), Vol.3-10-1
Interprocessor interrupt (IPI)

in MP systems, Vol.3-10-1
interrupt, Vol.3-6-12
Interrupt Command Register, Vol.3-10-37
Interrupt command register (ICR), local APIC, Vol.3-10-19
Interrupt gate, Vol.1-6-9
Interrupt gates

16-bit, interlevel return from, Vol.3-22-32
clearing IF flag, Vol.3-6-7, Vol.3-6-14
difference between interrupt and trap gates, Vol.3-6-14
for 16-bit and 32-bit code modules, Vol.3-21-1
handling a virtual-8086 mode interrupt or exception through, 

Vol.3-20-12
in IDT, Vol.3-6-10
introduction to, Vol.3-2-4, Vol.3-2-5
layout of, Vol.3-6-10

Interrupt handler, Vol.1-6-9
calling, Vol.3-6-11
defined, Vol.3-6-1
flag usage by handler procedure, Vol.3-6-14
procedures, Vol.3-6-11
protection of handler procedures, Vol.3-6-13
task, Vol.3-6-14, Vol.3-7-2

Interrupt vector, Vol.1-6-9
Interrupts

64-bit mode, Vol.1-6-13
automatic bus locking, Vol.3-22-34
control transfers between 16- and 32-bit code modules, Vol.3-21-6
description of, Vol.1-6-9, Vol.3-2-5, Vol.3-6-1
destination, Vol.3-10-26
distribution mechanism, local APIC, Vol.3-10-25
enabling and disabling, Vol.3-6-6
handler, Vol.1-6-9
handling, Vol.3-6-11
handling in real-address mode, Vol.3-20-4
handling in SMM, Vol.3-34-10
handling in virtual-8086 mode, Vol.3-20-11
handling multiple NMIs, Vol.3-6-6
handling through a task gate in virtual-8086 mode, Vol.3-20-14
handling through a trap or interrupt gate in virtual-8086 mode, 

Vol.3-20-12
IA-32e mode, Vol.3-2-5, Vol.3-2-12
IDT, Vol.3-6-9
IDTR, Vol.3-2-12
implicit call to an interrupt handler

procedure, Vol.1-6-9
implicit call to an interrupt handler task, Vol.1-6-12
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implicit call to interrupt handler procedure, Vol.1-6-9
implicit call to interrupt handler task, Vol.1-6-12
in real-address mode, Vol.1-6-12
initializing for protected-mode operation, Vol.3-9-10
interrupt descriptor table register (see IDTR)
interrupt descriptor table (see IDT)
interrupt vector 4, Vol.2-3-404
list of, Vol.3-6-2, Vol.3-20-6
local APIC, Vol.3-10-1
maskable, Vol.1-6-9
maskable hardware interrupts, Vol.3-2-10
masking maskable hardware interrupts, Vol.3-6-6
masking when switching stack segments, Vol.3-6-7
message signalled interrupts, Vol.3-10-34
on-die sensors for, Vol.3-14-20
overview of, Vol.3-6-1
priorities among simultaneous exceptions and interrupts, Vol.3-6-8
priority, Vol.3-10-28
propagation delay, Vol.3-22-26
real-address mode, Vol.3-20-6
restarting a task or program, Vol.3-6-5
returning from, Vol.2-3-423
software, Vol.2-3-404, Vol.3-6-51
sources of, Vol.3-10-1
summary of, Vol.3-6-2
thermal monitoring, Vol.3-14-20
user defined, Vol.3-6-1, Vol.3-6-51
user-defined, Vol.1-6-9
valid APIC interrupts, Vol.3-10-14
vector, Vol.1-6-9
vectors, Vol.3-6-1
virtual-8086 mode, Vol.3-20-6

INTn instruction, Vol.1-7-17, Vol.2-3-404
INTO instruction, Vol.1-6-12, Vol.1-7-18, Vol.1-7-23, Vol.2-3-404, 

Vol.3-2-5, Vol.3-3-9, Vol.3-6-4, Vol.3-6-24, Vol.3-17-10
Intrinsics

compiler functional equivalents, Vol.2-C-1
composite, Vol.2-C-14
description of, Vol.2-3-11
list of, Vol.2-C-1
simple, Vol.2-C-2

INTR# pin, Vol.3-6-2, Vol.3-6-6
Invalid arithmetic operand exception (#IA)

description of, Vol.1-8-26
masked response to, Vol.1-8-26

Invalid opcode exception (#UD), Vol.3-2-16, Vol.3-6-26, Vol.3-6-48, 
Vol.3-12-1, Vol.3-17-3, Vol.3-22-5, Vol.3-22-10, Vol.3-22-19, 
Vol.3-22-20, Vol.3-34-3

Invalid operation exception (#I)
overview, Vol.1-4-20
SSE and SSE2 extensions, Vol.1-11-14
x87 FPU, Vol.1-8-25

Invalid TSS exception (#TS), Vol.3-6-31, Vol.3-7-6
Invalid-operation exception, x87 FPU, Vol.3-22-11, Vol.3-22-13
INVD instruction, Vol.2-3-416, Vol.3-2-22, Vol.3-5-24, Vol.3-11-17, 

Vol.3-22-4
INVLPG instruction, Vol.2-3-418, Vol.3-2-22, Vol.3-5-24, Vol.3-22-4, 

Vol.3-25-2, Vol.3-32-3, Vol.3-32-4
IOPL (I/O privilege level) field

EFLAGS register, Vol.1-3-16, Vol.1-16-3
IOPL (I/O privilege level) field, EFLAGS register, Vol.2-3-113, Vol.2-4-272, 

Vol.2-4-377
description of, Vol.3-2-10
on return from exception, interrupt handler, Vol.3-6-13
sensitive instructions in virtual-8086 mode, Vol.3-20-10
virtual interrupt, Vol.3-2-11

IPI (see interprocessor interrupt)
IRET instruction, Vol.1-3-17, Vol.1-6-11, Vol.1-6-12, Vol.1-7-15, 

Vol.1-7-23, Vol.1-16-4, Vol.2-3-423, Vol.3-3-9, Vol.3-6-7, 
Vol.3-6-13, Vol.3-6-14, Vol.3-6-18, Vol.3-7-10, Vol.3-8-17, 
Vol.3-20-5, Vol.3-20-19, Vol.3-25-7

IRETD instruction, Vol.2-3-423, Vol.3-2-10, Vol.3-8-17

IRR
Interrupt Request Register, Vol.3-10-39, Vol.3-10-41, Vol.3-10-47

IRR (interrupt request register), local APIC, Vol.3-10-30
ISR

In Service Register, Vol.3-10-38, Vol.3-10-41, Vol.3-10-47
I/O

address space, Vol.1-16-1
breakpoint exception conditions, Vol.3-17-9
in virtual-8086 mode, Vol.3-20-10
instruction restart flag

SMM revision identifier field, Vol.3-34-15
instruction restart flag, SMM revision identifier field, Vol.3-34-15
instruction serialization, Vol.1-16-5
instructions, Vol.1-5-6, Vol.1-7-20, Vol.1-16-3
IO_SMI bit, Vol.3-34-12
I/O permission bit map, TSS, Vol.3-7-5
I/O privilege level (see IOPL)
map base, Vol.1-16-4
map base address field, TSS, Vol.3-7-5
permission bit map, Vol.1-16-4
ports, Vol.1-3-3, Vol.1-16-1, Vol.1-16-2, Vol.1-16-3, Vol.1-16-5
restarting following SMI interrupt, Vol.3-34-15
saving I/O state, Vol.3-34-12
sensitive instructions, Vol.1-16-3
SMM state save map, Vol.3-34-12

I/O APIC, Vol.3-10-26
bus arbitration, Vol.3-10-26
description of, Vol.3-10-1
external interrupts, Vol.3-6-3
information about, Vol.3-10-1
interrupt sources, Vol.3-10-2
local APIC and I/O APIC, Vol.3-10-2, Vol.3-10-3
overview of, Vol.3-10-1
valid interrupts, Vol.3-10-14
See also: local APIC

J
J-bit, Vol.1-4-11
Jcc instructions, Vol.1-3-16, Vol.1-3-17, Vol.1-7-15, Vol.2-3-431
JMP instruction, Vol.1-3-17, Vol.1-7-15, Vol.1-7-22, Vol.2-3-436, 
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Jump operation, Vol.2-3-436

K
KEN# pin, Vol.3-11-13, Vol.3-22-35

L
L0-L3 (local breakpoint enable) flags

DR7 register, Vol.3-17-4
L1 Context ID, Vol.2-3-171
L1 (level 1) cache, Vol.1-2-7, Vol.1-2-9

caching methods, Vol.3-11-6
CPUID feature flag, Vol.3-11-18
description of, Vol.3-11-4
effect of using write-through memory, Vol.3-11-8
introduction of, Vol.3-22-29
invalidating and flushing, Vol.3-11-17
MESI cache protocol, Vol.3-11-9
shared and adaptive mode, Vol.3-11-18

L2 (level 2) cache, Vol.1-2-7, Vol.1-2-9
caching methods, Vol.3-11-6
description of, Vol.3-11-4
disabling, Vol.3-11-17
effect of using write-through memory, Vol.3-11-8
introduction of, Vol.3-22-29
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MESI cache protocol, Vol.3-11-9

L3 (level 3) cache
caching methods, Vol.3-11-6
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MESI cache protocol, Vol.3-11-9

LAHF instruction, Vol.1-3-14, Vol.1-7-21, Vol.2-3-444
LAR instruction, Vol.2-3-445, Vol.3-2-22, Vol.3-5-24
Larger page sizes

introduction of, Vol.3-22-30
support for, Vol.3-22-18

Last branch
interrupt & exception recording
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Vol.3-17-12, Vol.3-17-29, Vol.3-17-34, Vol.3-17-35
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task switching, Vol.3-7-9
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description of, Vol.3-2-3, Vol.3-2-5, Vol.3-2-6, Vol.3-2-12, Vol.3-3-15
IA-32e mode, Vol.3-2-12
limit, Vol.3-5-5
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LDTR (local descriptor table register), Vol.2-3-464, Vol.2-4-365
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Vol.3-17-9
LEA instruction, Vol.1-7-23, Vol.2-3-455
LEAVE instruction, Vol.1-6-13, Vol.1-6-18, Vol.1-7-21, Vol.2-3-458
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LES instruction, Vol.1-7-23, Vol.2-3-451, Vol.3-3-8, Vol.3-5-8, 

Vol.3-6-26
LFENCE instruction, Vol.1-11-12, Vol.2-3-460, Vol.3-2-15, Vol.3-8-6, 

Vol.3-8-15, Vol.3-8-16, Vol.3-8-17
LFS instruction, Vol.2-3-451, Vol.3-3-8, Vol.3-5-8
LGDT instruction, Vol.2-3-461, Vol.3-2-21, Vol.3-5-23, Vol.3-8-17, 

Vol.3-9-9, Vol.3-22-19
LGS instruction, Vol.1-7-23, Vol.2-3-451, Vol.3-3-8, Vol.3-5-8
LIDT instruction, Vol.2-3-461, Vol.3-2-21, Vol.3-5-24, Vol.3-6-9, 

Vol.3-8-17, Vol.3-9-8, Vol.3-20-5, Vol.3-22-26
Limit checking

description of, Vol.3-5-4
pointer offsets are within limits, Vol.3-5-25

Limit field, segment descriptor, Vol.3-5-2, Vol.3-5-4
Linear address, Vol.1-3-6

description of, Vol.3-3-6
IA-32e mode, Vol.3-3-7
introduction to, Vol.3-2-6

Linear address space, Vol.3-3-6
defined, Vol.1-3-6, Vol.3-3-1
maximum size, Vol.1-3-6
of task, Vol.3-7-14
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Linking tasks

mechanism, Vol.3-7-12
modifying task linkages, Vol.3-7-13
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function of, Vol.3-6-2
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64-bit mode, Vol.3-10-32
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arbitration over the APIC bus, Vol.3-10-26
arbitration over the system bus, Vol.3-10-26
block diagram, Vol.3-10-4
cluster model, Vol.3-10-24
CR8 usage, Vol.3-10-32
current-count register, Vol.3-10-17
description of, Vol.3-10-1
detecting with CPUID, Vol.3-10-7
DFR (destination format register), Vol.3-10-24
divide configuration register, Vol.3-10-16
enabling and disabling, Vol.3-10-8
external interrupts, Vol.3-6-2
features
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Pentium and P6, Vol.3-22-27
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global enable flag, Vol.3-10-8
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internal error interrupts, Vol.3-10-2
interrupt command register (ICR), Vol.3-10-19
interrupt destination, Vol.3-10-26
interrupt distribution mechanism, Vol.3-10-25
interrupt sources, Vol.3-10-2
IRR (interrupt request register), Vol.3-10-30
I/O APIC, Vol.3-10-1
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local APIC and I/O APIC, Vol.3-10-2, Vol.3-10-3
local vector table (LVT), Vol.3-10-12
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mapping of resources, Vol.3-8-33
MDA (message destination address), Vol.3-10-23
overview of, Vol.3-10-1
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physical destination mode, Vol.3-10-23
receiving external interrupts, Vol.3-6-2
register address map, Vol.3-10-6, Vol.3-10-38
shared resources, Vol.3-8-33
SMI interrupt, Vol.3-34-2
spurious interrupt, Vol.3-10-32
spurious-interrupt vector register, Vol.3-10-8
state after a software (INIT) reset, Vol.3-10-11
state after INIT-deassert message, Vol.3-10-11
state after power-up reset, Vol.3-10-10
state of, Vol.3-10-33
SVR (spurious-interrupt vector register), Vol.3-10-8
timer, Vol.3-10-16



INDEX

Index-18 Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C

timer generated interrupts, Vol.3-10-1
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valid interrupts, Vol.3-10-14
version register, Vol.3-10-11

Local descriptor table register (see LDTR)
Local descriptor table (see LDT)
Local vector table (LVT)

description of, Vol.3-10-12
thermal entry, Vol.3-14-23
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Log (base 2), x87 FPU operation, Vol.2-3-372
Logical address, Vol.1-3-6
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IA-32e mode, Vol.3-3-7

Logical address space, of task, Vol.3-7-15
Logical destination mode, local APIC, Vol.3-10-23
Logical processors
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Logical x2APIC ID, Vol.3-10-46
LOOP instructions, Vol.1-7-16, Vol.2-3-473
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low-temperature interrupt enable bit, Vol.3-14-28, Vol.3-14-31
LSL instruction, Vol.2-3-475, Vol.3-2-22, Vol.3-5-25
LSS instruction, Vol.1-7-23, Vol.2-3-451, Vol.3-3-8, Vol.3-5-8
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Machine check architecture

CPUID flag, Vol.2-3-173
description, Vol.2-3-173
VMX considerations, Vol.3-33-11

Machine check registers, Vol.1-3-4
Machine instructions

64-bit mode, Vol.2-B-1
condition test (tttn) field, Vol.2-B-5
direction bit (d) field, Vol.2-B-6
floating-point instruction encodings, Vol.2-B-64
general description, Vol.2-B-1
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legacy prefixes, Vol.2-B-1
MMX encodings, Vol.2-B-38–Vol.2-B-41
opcode fields, Vol.2-B-2
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P6 family encodings, Vol.2-B-41
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reg (reg) field, Vol.2-B-2, Vol.2-B-3
REX prefixes, Vol.2-B-2
segment register (sreg) field, Vol.2-B-4
sign-extend (s) bit, Vol.2-B-4
SIMD 64-bit encodings, Vol.2-B-37
special 64-bit encodings, Vol.2-B-64
special fields, Vol.2-B-2
special-purpose register (eee) field, Vol.2-B-5
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Machine-check architecture

availability of MCA and exception, Vol.3-15-17
compatibility with Pentium processor, Vol.3-15-1
compound error codes, Vol.3-15-19
CPUID flags, Vol.3-15-17
error codes, Vol.3-15-18, Vol.3-15-19
error-reporting bank registers, Vol.3-15-2
error-reporting MSRs, Vol.3-15-4
extended machine check state MSRs, Vol.3-15-9
external bus errors, Vol.3-15-24
first introduced, Vol.3-22-21
global MSRs, Vol.3-15-2
initialization of, Vol.3-15-17
introduction of in IA-32 processors, Vol.3-22-35
logging correctable errors, Vol.3-15-26, Vol.3-15-28, Vol.3-15-32
machine-check exception handler, Vol.3-15-25
machine-check exception (#MC), Vol.3-15-1
MSRs, Vol.3-15-2
overview of MCA, Vol.3-15-1
Pentium processor exception handling, Vol.3-15-26
Pentium processor style error reporting, Vol.3-15-11
simple error codes, Vol.3-15-18
VMX considerations, Vol.3-33-8, Vol.3-33-9
writing machine-check software, Vol.3-15-24, Vol.3-15-25

Machine-check exception (#MC), Vol.3-6-47, Vol.3-15-1, Vol.3-15-17, 
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Mapping of shared resources, Vol.3-8-33
Maskable hardware interrupts

description of, Vol.3-6-3
handling with virtual interrupt mechanism, Vol.3-20-15
masking, Vol.3-2-10, Vol.3-6-6

Maskable interrupts, Vol.1-6-9
Masked responses
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divide by zero exception (#Z), Vol.1-4-20, Vol.1-8-28
inexact result (precision) exception (#P), Vol.1-4-22, Vol.1-8-29
invalid arithmetic operation (#IA), Vol.1-8-26
invalid operation exception (#I), Vol.1-4-20
numeric overflow exception (#O), Vol.1-4-21, Vol.1-8-28
numeric underflow exception (#U), Vol.1-4-22, Vol.1-8-29
stack overflow or underflow

exception (#IS), Vol.1-8-26
MASKMOVDQU instruction, Vol.1-11-12, Vol.1-11-25, Vol.2-3-513
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MAXSD instruction, Vol.1-11-6, Vol.2-3-490
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CR4 control register, Vol.3-2-17, Vol.3-22-17
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MDA (message destination address)
local APIC, Vol.3-10-23

measured environment, Vol.2-5-1
Measured Launched Environment, Vol.2-5-1, Vol.2-5-24
Memory, Vol.3-11-1

flat memory model, Vol.1-3-6
management registers, Vol.1-3-4
memory type range registers (MTRRs), Vol.1-3-4
modes of operation, Vol.1-3-8
organization, Vol.1-3-5, Vol.1-3-6
physical, Vol.1-3-5
real address mode memory model, Vol.1-3-6, Vol.1-3-7
segmented memory model, Vol.1-3-6
virtual-8086 mode memory model, Vol.1-3-6, Vol.1-3-7

Memory management
introduction to, Vol.3-2-6
overview, Vol.3-3-1
paging, Vol.3-3-1, Vol.3-3-2
registers, Vol.3-2-11
segments, Vol.3-3-1, Vol.3-3-2, Vol.3-3-7
virtualization of, Vol.3-32-2

Memory operands
64-bit mode, Vol.1-3-20
legacy modes, Vol.1-3-20
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overview, Vol.3-8-5
processor ordering, Vol.3-8-5
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write ordering, Vol.3-8-5
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selecting for Pentium Pro and Pentium II processors, Vol.3-11-14
UC (strong uncacheable), Vol.3-11-6
UC- (uncacheable), Vol.3-11-6
WB (write back), Vol.3-11-7
WC (write combining), Vol.3-11-7
WP (write protected), Vol.3-11-7
writing values across pages with different memory types, Vol.3-11-16
WT (write through), Vol.3-11-7

Memory-mapped I/O, Vol.1-16-2
MemTypeGet() function, Vol.3-11-29
MemTypeSet() function, Vol.3-11-31
MESI cache protocol, Vol.3-11-5, Vol.3-11-9
Message address register, Vol.3-10-34
Message data register format, Vol.3-10-35
Message signalled interrupts
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message data register format, Vol.3-10-34
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Microarchitecture
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authenticating an update, Vol.3-9-37
BIOS responsibilities, Vol.3-9-38
calling program responsibilities, Vol.3-9-39
checksum, Vol.3-9-33
extended signature table, Vol.3-9-31
family 0FH processors, Vol.3-9-28
field definitions, Vol.3-9-28
format of update, Vol.3-9-28
function 00H presence test, Vol.3-9-42
function 01H write microcode update data, Vol.3-9-43
function 02H microcode update control, Vol.3-9-46
function 03H read microcode update data, Vol.3-9-47
general description, Vol.3-9-28

HT Technology, Vol.3-9-35
INT 15H-based interface, Vol.3-9-42
overview, Vol.3-9-27
process description, Vol.3-9-28
processor identification, Vol.3-9-32
processor signature, Vol.3-9-32
return codes, Vol.3-9-48
update loader, Vol.3-9-34
update signature and verification, Vol.3-9-36
update specifications, Vol.3-9-37
VMX non-root operation, Vol.3-25-9, Vol.3-32-8
VMX support

early loading, Vol.3-32-8
late loading, Vol.3-32-8
virtualization issues, Vol.3-32-8

MINPD instruction, Vol.1-11-6, Vol.2-3-495
MINPS instruction, Vol.1-10-9, Vol.2-3-497
MINSD instruction, Vol.1-11-7, Vol.2-3-499
MINSS instruction, Vol.1-10-9, Vol.2-3-501
Mixing 16-bit and 32-bit code

in IA-32 processors, Vol.3-22-32
overview, Vol.3-21-1

MLE, Vol.2-5-1
MMX instruction set

arithmetic instructions, Vol.1-9-6
comparison instructions, Vol.1-9-7
conversion instructions, Vol.1-9-7
data transfer instructions, Vol.1-9-6
EMMS instruction, Vol.1-9-8
logical instructions, Vol.1-9-7
overview, Vol.1-9-5
shift instructions, Vol.1-9-8

MMX instructions
CPUID flag for technology, Vol.2-3-174
encodings, Vol.2-B-38

MMX registers
description of, Vol.1-9-2
overview of, Vol.1-3-2

MMX technology
64-bit mode, Vol.1-9-2
64-bit packed SIMD data types, Vol.1-4-8
compatibility mode, Vol.1-9-2
compatibility with FPU architecture, Vol.1-9-8
data types, Vol.1-9-3
debugging MMX code, Vol.3-12-5
detecting MMX technology with CPUID instruction, Vol.1-9-8
effect of instruction prefixes on MMX instructions, Vol.1-9-11
effect of MMX instructions on pending x87 floating-point exceptions, 

Vol.3-12-5
emulation of the MMX instruction set, Vol.3-12-1
exception handling in MMX code, Vol.1-9-11
exceptions that can occur when executing MMX instructions, 

Vol.3-12-1
IA-32e mode, Vol.1-9-2
instruction set, Vol.1-5-11, Vol.1-9-5
interfacing with MMX code, Vol.1-9-10
introduction of into the IA-32 architecture, Vol.3-22-2
introduction to, Vol.1-9-1
memory data formats, Vol.1-9-3
mixing MMX and floating-point instructions, Vol.1-9-10
MMX registers, Vol.1-9-2
programming environment (overview), Vol.1-9-1
register aliasing, Vol.3-12-1
register mapping, Vol.1-9-11
saturation arithmetic, Vol.1-9-4
SIMD execution environment, Vol.1-9-4
state, Vol.3-12-1
state, saving and restoring, Vol.3-12-3
system programming, Vol.3-12-1
task or context switches, Vol.3-12-4
transitions between x87 FPU - MMX code, Vol.1-9-9
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updating MMX technology routines using 128-bit SIMD integer 
instructions, Vol.1-11-24

using MMX code in a multitasking operating system environment, 
Vol.1-9-10

using the EMMS instruction, Vol.1-9-9
using TS flag to control saving of MMX state, Vol.3-13-7
wraparound mode, Vol.1-9-4

Mod field, instruction format, Vol.2-2-3
Mode switching

example, Vol.3-9-14
real-address and protected mode, Vol.3-9-12
to SMM, Vol.3-34-2

Model and stepping information, following processor initialization or reset
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64-bit mode, Vol.1-3-1
compatibility mode, Vol.1-3-1
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protected mode, Vol.1-3-1
real address mode, Vol.1-3-1
system management mode (SMM), Vol.1-3-1

Modes of operation (see Operating modes)
ModR/M byte, Vol.2-2-3

16-bit addressing forms, Vol.2-2-4
32-bit addressing forms of, Vol.2-2-5
description of, Vol.2-2-3

MONITOR instruction, Vol.1-5-20, Vol.1-12-5, Vol.2-3-503, Vol.3-25-3
CPUID flag, Vol.2-3-170
feature data, Vol.2-3-178

Moore’s law, Vol.1-2-20
MOV instruction, Vol.1-7-3, Vol.1-7-22, Vol.2-3-505, Vol.3-3-8, Vol.3-5-8
MOV instruction (control registers), Vol.2-3-510
MOV instruction (debug registers), Vol.2-3-513, Vol.2-3-519
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Vol.3-9-12
MOV (debug registers) instructions, Vol.3-2-22, Vol.3-5-24, Vol.3-8-17, 

Vol.3-17-10
MOVAPD instruction, Vol.1-11-5, Vol.1-11-23, Vol.2-3-515
MOVAPS instruction, Vol.1-10-7, Vol.1-11-23, Vol.2-3-517
MOVD instruction, Vol.1-9-6, Vol.2-3-519
MOVDDUP instruction, Vol.1-5-20, Vol.1-12-3, Vol.2-3-524
MOVDQ2Q instruction, Vol.1-11-11, Vol.2-3-530
MOVDQA instruction, Vol.1-11-11, Vol.1-11-23, Vol.2-3-526
MOVDQU instruction, Vol.1-11-11, Vol.1-11-23, Vol.2-3-528
MOVHLPS instruction, Vol.1-10-8, Vol.2-3-531
MOVHPD instruction, Vol.1-11-6, Vol.2-3-533
MOVHPS instruction, Vol.1-10-8, Vol.2-3-535
MOVLHP instruction, Vol.2-3-537
MOVLHPS instruction, Vol.1-10-8, Vol.2-3-537
MOVLPD instruction, Vol.1-11-6, Vol.2-3-539
MOVLPS instruction, Vol.1-10-7, Vol.2-3-541
MOVMSKPD instruction, Vol.1-11-6, Vol.2-3-543
MOVMSKPS instruction, Vol.1-10-8, Vol.2-3-545
MOVNTDQ instruction, Vol.1-11-12, Vol.1-11-25, Vol.2-3-560, Vol.3-8-6, 

Vol.3-11-5, Vol.3-11-17
MOVNTI instruction, Vol.1-11-12, Vol.1-11-25, Vol.2-3-560, Vol.3-2-15, 

Vol.3-8-6, Vol.3-11-5, Vol.3-11-17
MOVNTPD instruction, Vol.1-11-12, Vol.1-11-25, Vol.2-3-553, Vol.3-8-6, 

Vol.3-11-5, Vol.3-11-17
MOVNTPS instruction, Vol.1-10-12, Vol.1-11-25, Vol.2-3-555, Vol.3-8-6, 

Vol.3-11-5, Vol.3-11-17
MOVNTQ instruction, Vol.1-10-12, Vol.1-11-25, Vol.2-3-557, Vol.3-8-6, 

Vol.3-11-5, Vol.3-11-17
MOVQ instruction, Vol.1-9-6, Vol.2-3-519, Vol.2-3-558
MOVQ2DQ instruction, Vol.1-11-11, Vol.2-3-560
MOVS instruction, Vol.1-3-16, Vol.1-7-18, Vol.2-3-561, Vol.2-4-300
MOVSB instruction, Vol.2-3-561
MOVSD instruction, Vol.1-11-6, Vol.1-11-23, Vol.2-3-561, Vol.2-3-565
MOVSHDUP instruction, Vol.1-5-20, Vol.1-12-3, Vol.2-3-567

MOVSLDUP instruction, Vol.1-5-20, Vol.1-12-3, Vol.2-3-569
MOVSQ instruction, Vol.2-3-561
MOVSS instruction, Vol.1-10-7, Vol.1-11-23, Vol.2-3-571
MOVSW instruction, Vol.2-3-561
MOVSX instruction, Vol.1-7-8, Vol.2-3-573
MOVSXD instruction, Vol.1-7-8, Vol.2-3-573
MOVUPD instruction, Vol.1-11-6, Vol.1-11-23, Vol.2-3-575
MOVUPS instruction, Vol.1-10-6, Vol.1-10-7, Vol.1-11-23, Vol.2-3-577
MOVZX instruction, Vol.1-7-8, Vol.2-3-579
MP (monitor coprocessor) flag

CR0 control register, Vol.3-2-15, Vol.3-2-16, Vol.3-6-27, Vol.3-9-5, 
Vol.3-9-6, Vol.3-12-1, Vol.3-22-7

MS-DOS compatibility mode, Vol.1-8-31, Vol.1-D-1
MSR

Model Specific Register, Vol.3-10-37, Vol.3-10-38
MSRs, Vol.1-3-4

architectural, Vol.1-35-2
description of, Vol.3-9-7
introduction of in IA-32 processors, Vol.3-22-35
introduction to, Vol.3-2-6
list of, Vol.1-35-1
machine-check architecture, Vol.3-15-2
P6 family processors, Vol.1-35-195
Pentium 4 processor, Vol.1-35-32, Vol.1-35-46, Vol.1-35-129, 

Vol.1-35-140, Vol.1-35-151, Vol.1-35-154, Vol.1-35-178
Pentium processors, Vol.1-35-204
reading and writing, Vol.3-2-19, Vol.3-2-24
reading & writing in 64-bit mode, Vol.3-2-24
virtualization support, Vol.3-31-14
VMX support, Vol.3-31-14

MSRs (model specific registers)
reading, Vol.2-4-287

MSR_ TC_PRECISE_EVENT MSR, Vol.3-19-173
MSR_DEBUBCTLB MSR, Vol.3-17-12, Vol.3-17-25, Vol.3-17-32, 

Vol.3-17-33
MSR_DEBUGCTLA MSR, Vol.3-17-11, Vol.3-17-16, Vol.3-17-21, 

Vol.3-17-22, Vol.3-17-28, Vol.3-17-29, Vol.3-18-9, 
Vol.3-18-13, Vol.3-18-16, Vol.3-18-19, Vol.3-18-43, 
Vol.3-18-54, Vol.1-35-165

MSR_DEBUGCTLB MSR, Vol.3-17-11, Vol.3-17-31, Vol.3-17-33, 
Vol.1-35-40, Vol.1-35-52, Vol.1-35-65, Vol.1-35-78, 
Vol.1-35-112, Vol.1-35-185, Vol.1-35-194

MSR_EBC_FREQUENCY_ID MSR, Vol.1-35-156, Vol.1-35-157
MSR_EBC_HARD_POWERON MSR, Vol.1-35-154
MSR_EBC_SOFT_POWERON MSR, Vol.1-35-155
MSR_IFSB_CNTR7 MSR, Vol.3-18-84
MSR_IFSB_CTRL6 MSR, Vol.3-18-84
MSR_IFSB_DRDY0 MSR, Vol.3-18-84
MSR_IFSB_DRDY1 MSR, Vol.3-18-84
MSR_IFSB_IBUSQ0 MSR, Vol.3-18-83
MSR_IFSB_IBUSQ1 MSR, Vol.3-18-83
MSR_IFSB_ISNPQ0 MSR, Vol.3-18-83
MSR_IFSB_ISNPQ1 MSR, Vol.3-18-83
MSR_LASTBRANCH _TOS, Vol.1-35-165
MSR_LASTBRANCH_0_TO_IP, Vol.1-35-177
MSR_LASTBRANCH_n MSR, Vol.3-17-15, Vol.3-17-16, Vol.3-17-30, 

Vol.1-35-166
MSR_LASTBRANCH_n_FROM_IP MSR, Vol.3-17-15, Vol.3-17-16, 

Vol.3-17-30, Vol.3-17-31, Vol.1-35-175
MSR_LASTBRANCH_n_TO_IP MSR, Vol.3-17-15, Vol.3-17-16, 

Vol.3-17-30, Vol.3-17-31
MSR_LASTBRANCH_n_TO_LIP MSR, Vol.1-35-177
MSR_LASTBRANCH_TOS MSR, Vol.3-17-30
MSR_LER_FROM_LIP MSR, Vol.3-17-24, Vol.3-17-31, Vol.3-17-32, 

Vol.1-35-165
MSR_LER_TO_LIP MSR, Vol.3-17-24, Vol.3-17-31, Vol.3-17-32, 

Vol.1-35-165
MSR_PEBS_ MATRIX_VERT MSR, Vol.3-19-174
MSR_PEBS_MATRIX_VERT MSR, Vol.1-35-172
MSR_PLATFORM_BRV, Vol.1-35-164
MTRR feature flag, CPUID instruction, Vol.3-11-21
MTRRcap MSR, Vol.3-11-21
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MTRRfix MSR, Vol.3-11-23
MTRRs, Vol.1-3-4, Vol.3-8-15

base & mask calculations, Vol.3-11-26, Vol.3-11-27
cache control, Vol.3-11-13
description of, Vol.3-9-7, Vol.3-11-20
dual-core processors, Vol.3-8-32
enabling caching, Vol.3-9-7
feature identification, Vol.3-11-21
fixed-range registers, Vol.3-11-23
IA32_MTRRCAP MSR, Vol.3-11-21
IA32_MTRR_DEF_TYPE MSR, Vol.3-11-22
initialization of, Vol.3-11-29
introduction of in IA-32 processors, Vol.3-22-35
introduction to, Vol.3-2-6
large page size considerations, Vol.3-11-33
logical processors, Vol.3-8-32
mapping physical memory with, Vol.3-11-21
memory types and their properties, Vol.3-11-21
MemTypeGet() function, Vol.3-11-29
MemTypeSet() function, Vol.3-11-31
multiple-processor considerations, Vol.3-11-32
precedence of cache controls, Vol.3-11-13
precedences, Vol.3-11-28
programming interface, Vol.3-11-29
remapping memory types, Vol.3-11-29
state of following a hardware reset, Vol.3-11-20
variable-range registers, Vol.3-11-23, Vol.3-11-25

MUL instruction, Vol.1-7-9, Vol.2-3-20, Vol.2-3-589
MULPD instruction, Vol.1-11-6, Vol.2-3-591
MULPS instruction, Vol.1-10-8, Vol.2-3-593
MULSD instruction, Vol.1-11-6, Vol.2-3-595
MULSS instruction, Vol.1-10-8, Vol.2-3-596
Multi-byte no operation, Vol.2-4-6, Vol.2-4-8, Vol.2-B-12
Multi-core technology, Vol.1-2-18

See multi-threading support
Multiple-processor management

bus locking, Vol.3-8-3
guaranteed atomic operations, Vol.3-8-2
initialization

MP protocol, Vol.3-8-18
procedure, Vol.3-8-53

local APIC, Vol.3-10-1
memory ordering, Vol.3-8-5
MP protocol, Vol.3-8-18
overview of, Vol.3-8-1
SMM considerations, Vol.3-34-16
VMM design, Vol.3-31-10

asymmetric, Vol.3-31-10
CPUID emulation, Vol.3-31-12
external data structures, Vol.3-31-11
index-data registers, Vol.3-31-11
initialization, Vol.3-31-11
moving between processors, Vol.3-31-11
symmetric, Vol.3-31-10

Multiple-processor system
local APIC and I/O APICs, Pentium 4, Vol.3-10-3
local APIC and I/O APIC, P6 family, Vol.3-10-3

Multisegment model, Vol.3-3-4
Multitasking

initialization for, Vol.3-9-10
initializing IA-32e mode, Vol.3-9-10
linking tasks, Vol.3-7-12
mechanism, description of, Vol.3-7-2
overview, Vol.3-7-1
setting up TSS, Vol.3-9-10
setting up TSS descriptor, Vol.3-9-10

Multi-threading capability, Vol.1-2-18
Multi-threading support

executing multiple threads, Vol.3-8-25
handling interrupts, Vol.3-8-25
logical processors per package, Vol.3-8-24
mapping resources, Vol.3-8-33

microcode updates, Vol.3-8-32
performance monitoring counters, Vol.3-8-32
programming considerations, Vol.3-8-33
See also: Hyper-Threading Technology and dual-core technology

MULX - Unsigned Multiply Without Affecting Flags, Vol.2-3-597
MVMM, Vol.2-5-1, Vol.2-5-4, Vol.2-5-5, Vol.2-5-36
MWAIT instruction, Vol.1-5-20, Vol.1-12-5, Vol.2-3-599, Vol.3-25-3

CPUID flag, Vol.2-3-170
feature data, Vol.2-3-178
power management extensions, Vol.3-14-19

MXCSR register, Vol.1-11-16, Vol.3-6-48, Vol.3-9-8, Vol.3-13-6
denormals-are-zero (DAZ) flag, Vol.1-10-5, Vol.1-11-2, Vol.1-11-3
description, Vol.1-10-3
flush-to-zero flag (FZ), Vol.1-10-4
FXSAVE and FXRSTOR instructions, Vol.1-11-23
LDMXCSR instruction, Vol.1-11-24
load and store instructions, Vol.1-10-12
RC field, Vol.1-4-18
saving on a procedure or function call, Vol.1-11-23
SIMD floating-point mask and flag bits, Vol.1-10-4
SIMD floating-point rounding control field, Vol.1-10-4
state management instructions, Vol.1-5-15, Vol.1-10-12
STMXCSR instruction, Vol.1-11-24
writing to while preventing general-protection exceptions (#GP), 

Vol.1-11-21

N
NaNs

description of, Vol.1-4-13, Vol.1-4-15
encoding of, Vol.1-4-5, Vol.1-4-14
SNaNs vs. QNaNs, Vol.1-4-15

NaN, compatibility, IA-32 processors, Vol.3-22-8
NaN. testing for, Vol.2-3-349
NE (numeric error) flag

CR0 control register, Vol.3-2-15, Vol.3-6-43, Vol.3-9-5, Vol.3-9-6, 
Vol.3-22-7, Vol.3-22-17

Near
return, RET instruction, Vol.2-4-302

Near call
description of, Vol.1-6-4
operation, Vol.1-6-4

Near pointer
64-bit mode, Vol.1-4-7
legacy modes, Vol.1-4-6

Near return operation, Vol.1-6-4
NEG instruction, Vol.1-7-8, Vol.2-3-468, Vol.2-4-6, Vol.3-8-3
NetBurst microarchitecture (see Intel NetBurst microarchitecture)
NMI interrupt, Vol.3-2-23, Vol.3-10-3

description of, Vol.3-6-2
handling during initialization, Vol.3-9-8
handling in SMM, Vol.3-34-11
handling multiple NMIs, Vol.3-6-6
masking, Vol.3-22-26
receiving when processor is shutdown, Vol.3-6-29
reference information, Vol.3-6-22
vector, Vol.3-6-2

NMI# pin, Vol.3-6-2, Vol.3-6-22
No operation, Vol.2-4-6, Vol.2-4-8, Vol.2-B-12
Nomenclature, used in instruction reference pages, Vol.2-3-1
Nominal CPI method, Vol.3-18-80
Non-arithmetic instructions, x87 FPU, Vol.1-8-24
Nonconforming code segments

accessing, Vol.3-5-11
C (conforming) flag, Vol.3-5-11
description of, Vol.3-3-13

Non-halted clockticks, Vol.3-18-79
setting up counters, Vol.3-18-80

Non-Halted CPI method, Vol.3-18-80
Nonmaskable interrupt (see NMI)
Non-number encodings, floating-point format, Vol.1-4-13
Non-precise event-based sampling
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defined, Vol.3-18-61
used for at-retirement counting, Vol.3-18-72
writing an interrupt service routine for, Vol.3-17-22

Non-retirement events, Vol.3-18-61, Vol.3-19-150
Non-sleep clockticks, Vol.3-18-79

setting up counters, Vol.3-18-80
Non-temporal data

caching of, Vol.1-10-12
description, Vol.1-10-12
temporal vs. non-temporal data, Vol.1-10-12

Non-waiting instructions, x87 FPU, Vol.1-8-23, Vol.1-8-31
NOP instruction, Vol.1-7-23, Vol.2-4-8
Normalized finite number, Vol.1-4-5, Vol.1-4-13, Vol.1-4-14
NOT instruction, Vol.1-7-10, Vol.2-3-468, Vol.2-4-9, Vol.3-8-3
Notation

bit and byte order, Vol.1-1-4, Vol.2-1-3, Vol.3-1-5
conventions, Vol.3-1-5
exceptions, Vol.1-1-6, Vol.2-1-5, Vol.3-1-8
hexadecimal and binary numbers, Vol.1-1-5, Vol.2-1-5, Vol.3-1-6
instruction operands, Vol.1-1-5, Vol.2-1-4
Instructions

operands, Vol.3-1-6
notational conventions, Vol.1-1-4
reserved bits, Vol.1-1-4, Vol.2-1-4, Vol.3-1-5
segmented addressing, Vol.1-1-5, Vol.2-1-5, Vol.3-1-6

Notational conventions, Vol.2-1-3
NT (nested task) flag

EFLAGS register, Vol.3-2-10, Vol.3-7-10, Vol.3-7-12
NT (nested task) flag, EFLAGS register, Vol.1-3-16, Vol.1-A-1, 

Vol.2-3-423
Null segment selector, checking for, Vol.3-5-6
Numeric overflow exception (#O), Vol.3-22-9

overview, Vol.1-4-20
SSE and SSE2 extensions, Vol.1-11-15
x87 FPU, Vol.1-8-4, Vol.1-8-28

Numeric underflow exception (#U), Vol.3-22-10
overview, Vol.1-4-21
SSE and SSE2 extensions, Vol.1-11-16
x87 FPU, Vol.1-8-4, Vol.1-8-29

NV (invert) flag, PerfEvtSel0 MSR
(P6 family processors), Vol.3-18-4, Vol.3-18-93

NW (not write-through) flag
CR0 control register, Vol.3-2-14, Vol.3-9-7, Vol.3-11-12, Vol.3-11-13, 

Vol.3-11-16, Vol.3-11-32, Vol.3-22-17, Vol.3-22-18, Vol.3-22-29
NXE bit, Vol.3-5-30

O
Obsolete instructions, Vol.3-22-5, Vol.3-22-14
OE (numeric overflow exception) flag

MXCSR register, Vol.1-11-15
x87 FPU status word, Vol.1-8-5, Vol.1-8-28

OF flag, EFLAGS register, Vol.3-6-24
OF (carry) flag, EFLAGS register, Vol.2-3-391
OF (overflow) flag

EFLAGS register, Vol.1-3-15, Vol.1-6-12
OF (overflow) flag, EFLAGS register, Vol.1-A-1, Vol.2-3-27, Vol.2-3-404, 

Vol.2-3-589, Vol.2-4-339, Vol.2-4-351, Vol.2-4-354, 
Vol.2-4-387

Offset (operand addressing, 64-bit mode), Vol.1-3-23
Offset (operand addressing), Vol.1-3-21
OM (numeric overflow exception) mask bit

MXCSR register, Vol.1-11-15
x87 FPU control word, Vol.1-8-7, Vol.1-8-28

On die digital thermal sensor, Vol.3-14-26
relevant MSRs, Vol.3-14-26
sensor enumeration, Vol.3-14-26

On-Demand
clock modulation enable bits, Vol.3-14-24

On-demand
clock modulation duty cycle bits, Vol.3-14-24

On-die sensors, Vol.3-14-20

Opcode format, Vol.2-2-2
Opcodes

addressing method codes for, Vol.2-A-1
extensions, Vol.2-A-18
extensions tables, Vol.2-A-19
group numbers, Vol.2-A-18
integers

one-byte opcodes, Vol.2-A-8
two-byte opcodes, Vol.2-A-8

key to abbreviations, Vol.2-A-1
look-up examples, Vol.2-A-3, Vol.2-A-18, Vol.2-A-21
ModR/M byte, Vol.2-A-18
one-byte opcodes, Vol.2-A-3, Vol.2-A-8
opcode maps, Vol.2-A-1
operand type codes for, Vol.2-A-2
register codes for, Vol.2-A-3
superscripts in tables, Vol.2-A-6
two-byte opcodes, Vol.2-A-4, Vol.2-A-5, Vol.2-A-8
undefined, Vol.3-22-5
VMX instructions, Vol.2-B-117, Vol.2-B-118
x87 ESC instruction opcodes, Vol.2-A-21

Operand
addressing, modes, Vol.1-3-18
instruction, Vol.1-1-5
size attribute, Vol.1-3-17
sizes, Vol.1-3-8, Vol.1-3-18
x87 FPU instructions, Vol.1-8-15

Operands, Vol.2-1-4
instruction, Vol.3-1-6
operand-size prefix, Vol.3-21-1

Operating modes
64-bit mode, Vol.3-2-7
compatibility mode, Vol.3-2-7
IA-32e mode, Vol.3-2-7, Vol.3-2-8
introduction to, Vol.3-2-7
protected mode, Vol.3-2-7
SMM (system management mode), Vol.3-2-7
transitions between, Vol.3-2-8
virtual-8086 mode, Vol.3-2-7
VMX operation

enabling and entering, Vol.3-23-3
guest environments, Vol.3-31-1

OR instruction, Vol.1-7-10, Vol.2-3-468, Vol.2-4-11, Vol.3-8-3
Ordering I/O, Vol.1-16-5
ORPD instruction, Vol.1-11-7, Vol.2-4-13
ORPS instruction, Vol.1-10-9, Vol.2-4-15
OS (operating system mode) flag

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 only), Vol.3-18-4, Vol.3-18-92
OSFXSR (FXSAVE/FXRSTOR support) flag

CR4 control register, Vol.3-2-17, Vol.3-9-8, Vol.3-13-2
OSXMMEXCPT flag

control register CR4, Vol.1-11-18
OSXMMEXCPT (SIMD floating-point exception support) flag, CR4 control 

register, Vol.3-2-18, Vol.3-6-48, Vol.3-9-8, Vol.3-13-2
OUT instruction, Vol.1-5-6, Vol.1-7-20, Vol.1-16-3, Vol.2-4-17, 

Vol.3-8-15, Vol.3-25-2
Out-of-spec status bit, Vol.3-14-27, Vol.3-14-30
Out-of-spec status log, Vol.3-14-27, Vol.3-14-30, Vol.3-14-31
OUTS instruction, Vol.1-5-6, Vol.1-7-20, Vol.1-16-3, Vol.2-4-19, 

Vol.2-4-300
OUTSB instruction, Vol.2-4-19
OUTSD instruction, Vol.2-4-19
OUTSW instruction, Vol.2-4-19
OUTS/OUTSB/OUTSW/OUTSD instruction, Vol.3-17-9, Vol.3-25-2
Overflow exception (#OF), Vol.1-6-12, Vol.2-3-404, Vol.3-6-24
Overflow, x87 FPU stack, Vol.1-8-25
Overheat interrupt enable bit, Vol.3-14-28, Vol.3-14-31

P
P (present) flag

page-directory entry, Vol.3-6-40
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page-table entry, Vol.3-6-40
segment descriptor, Vol.3-3-11

P5_MC_ADDR MSR, Vol.3-15-11, Vol.3-15-26, Vol.1-35-32, Vol.1-35-46, 
Vol.1-35-57, Vol.1-35-72, Vol.1-35-106, Vol.1-35-180, 
Vol.1-35-189, Vol.1-35-196, Vol.1-35-204

P5_MC_TYPE MSR, Vol.3-15-11, Vol.3-15-26, Vol.1-35-32, Vol.1-35-46, 
Vol.1-35-57, Vol.1-35-72, Vol.1-35-106, Vol.1-35-180, 
Vol.1-35-189, Vol.1-35-196, Vol.1-35-204

P6 family microarchitecture
description of, Vol.1-2-7
history of, Vol.1-2-2

P6 family processors
compatibility with FP software, Vol.3-22-6
description of, Vol.1-1-1, Vol.2-1-1, Vol.3-1-1
history of, Vol.1-2-2
last branch, interrupt, and exception recording, Vol.3-17-34
list of performance-monitoring events, Vol.3-19-181
machine encodings, Vol.2-B-41
MSR supported by, Vol.1-35-195
P6 family microarchitecture, Vol.1-2-7

PABSB instruction, Vol.1-5-21, Vol.1-12-7, Vol.2-4-23
PABSD instruction, Vol.1-12-8, Vol.2-4-23
PABSW instruction, Vol.1-5-21, Vol.1-12-8, Vol.2-4-23
Packed

BCD integer indefinite, Vol.1-4-11
BCD integers, Vol.1-4-10
bytes, Vol.1-9-3
doublewords, Vol.1-9-3
SIMD data types, Vol.1-4-8
SIMD floating-point values, Vol.1-4-8
SIMD integers, Vol.1-4-8
words, Vol.1-9-3

PACKSSDW instruction, Vol.2-4-27
PACKSSWB instruction, Vol.1-9-7, Vol.2-4-27
PACKUSWB instruction, Vol.1-9-7, Vol.2-4-35
PADDB instruction, Vol.1-9-6, Vol.2-4-38
PADDD instruction, Vol.1-9-6, Vol.2-4-38
PADDQ instruction, Vol.1-11-11, Vol.2-4-42
PADDSB instruction, Vol.1-9-7, Vol.2-4-44
PADDSW instruction, Vol.1-9-7, Vol.2-4-44
PADDUSB instruction, Vol.1-9-7, Vol.2-4-47
PADDUSW instruction, Vol.1-9-7, Vol.2-4-47
PADDW instruction, Vol.1-9-6, Vol.2-4-38
PAE paging

feature flag, CR4 register, Vol.3-2-17
flag, CR4 control register, Vol.3-3-6, Vol.3-22-17, Vol.3-22-18

Page attribute table (PAT)
compatibility with earlier IA-32 processors, Vol.3-11-36
detecting support for, Vol.3-11-34
IA32_CR_PAT MSR, Vol.3-11-34
introduction to, Vol.3-11-33
memory types that can be encoded with, Vol.3-11-34
MSR, Vol.3-11-13
precedence of cache controls, Vol.3-11-14
programming, Vol.3-11-35
selecting a memory type with, Vol.3-11-35

Page directories, Vol.3-2-6
Page directory

base address (PDBR), Vol.3-7-5
introduction to, Vol.3-2-6
overview, Vol.3-3-2
setting up during initialization, Vol.3-9-10

Page directory pointers, Vol.3-2-6
Page frame (see Page)
Page tables, Vol.3-2-6

introduction to, Vol.3-2-6
overview, Vol.3-3-2
setting up during initialization, Vol.3-9-10

Page-directory entries, Vol.3-8-3, Vol.3-11-5
Page-fault exception (#PF), Vol.3-4-44, Vol.3-6-40, Vol.3-22-20
Pages

disabling protection of, Vol.3-5-1

enabling protection of, Vol.3-5-1
introduction to, Vol.3-2-6
overview, Vol.3-3-2
PG flag, CR0 control register, Vol.3-5-1
split, Vol.3-22-14

Page-table entries, Vol.3-8-3, Vol.3-11-5, Vol.3-11-19
Paging

combining segment and page-level protection, Vol.3-5-29
combining with segmentation, Vol.3-3-5
defined, Vol.3-3-1
IA-32e mode, Vol.3-2-6
initializing, Vol.3-9-10
introduction to, Vol.3-2-6
large page size MTRR considerations, Vol.3-11-33
mapping segments to pages, Vol.3-4-45
page boundaries regarding TSS, Vol.3-7-5
page-fault exception, Vol.3-6-40, Vol.3-6-50
page-level protection, Vol.3-5-2, Vol.3-5-3, Vol.3-5-27
page-level protection flags, Vol.3-5-28
virtual-8086 tasks, Vol.3-20-7

PALIGNR instruction, Vol.1-5-22, Vol.1-12-8, Vol.2-4-50
PAND instruction, Vol.1-9-7, Vol.2-4-53
PANDN instruction, Vol.1-9-7, Vol.2-4-55
Parameter

passing, between 16- and 32-bit call gates, Vol.3-21-6
translation, between 16- and 32-bit code segments, Vol.3-21-6

Parameter passing
argument list, Vol.1-6-5
on stack, Vol.1-6-5
on the stack, Vol.1-6-5
through general-purpose registers, Vol.1-6-5
x87 FPU register stack, Vol.1-8-3
XMM registers, Vol.1-11-23

GETSEC, Vol.2-5-4
PAUSE instruction, Vol.1-11-12, Vol.2-4-57, Vol.3-2-15, Vol.3-25-3
PAVGB instruction, Vol.1-10-11, Vol.2-4-58
PAVGW instruction, Vol.2-4-58
PBi (performance monitoring/breakpoint pins) flags, DEBUGCTLMSR MSR, 

Vol.3-17-33, Vol.3-17-35
PC (pin control) flag, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family 

processors), Vol.3-18-4, Vol.3-18-93
PC (precision) field, x87 FPU control word, Vol.1-8-7
PC0 and PC1 (pin control) fields, CESR MSR (Pentium processor), 

Vol.3-18-95
PCD pin (Pentium processor), Vol.3-11-13
PCD (page-level cache disable) flag

CR3 control register, Vol.3-2-16, Vol.3-11-13, Vol.3-22-17, 
Vol.3-22-29

page-directory entries, Vol.3-9-7, Vol.3-11-13, Vol.3-11-33
page-table entries, Vol.3-9-7, Vol.3-11-13, Vol.3-11-33, Vol.3-22-30

PCE flag, CR4 register, Vol.2-4-290
PCE (performance monitoring counter enable) flag, CR4 control register, 

Vol.3-2-17, Vol.3-5-24, Vol.3-18-63, Vol.3-18-93
PCE (performance-monitoring counter enable) flag, CR4 control register, 

Vol.3-22-17
PCMPEQB instruction, Vol.1-9-7, Vol.2-4-71
PCMPEQD instruction, Vol.1-9-7, Vol.2-4-71
PCMPEQW instruction, Vol.1-9-7, Vol.2-4-71
PCMPGTB instruction, Vol.1-9-7, Vol.2-4-81
PCMPGTD instruction, Vol.1-9-7, Vol.2-4-81
PCMPGTW instruction, Vol.1-9-7, Vol.2-4-81
PDBR (see CR3 control register)
PDEP - Parallel Bits Deposit, Vol.2-4-91
PE (inexact result exception) flag, Vol.1-11-16

MXCSR register, Vol.1-4-18
x87 FPU status word, Vol.1-4-18, Vol.1-8-4, Vol.1-8-5, Vol.1-8-29

PE (protection enable) flag, CR0 control register, Vol.3-2-16, Vol.3-5-1, 
Vol.3-9-10, Vol.3-9-12, Vol.3-34-9

PE (protection enable) flag, CR0 register, Vol.2-3-466
PEBS records, Vol.3-17-19
PEBS (precise event-based sampling) facilities

availability of, Vol.3-18-74
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description of, Vol.3-18-61, Vol.3-18-73
DS save area, Vol.3-17-16
IA-32e mode, Vol.3-17-19
PEBS buffer, Vol.3-17-16, Vol.3-18-74
PEBS records, Vol.3-17-16, Vol.3-17-18
writing a PEBS interrupt service routine, Vol.3-18-74
writing interrupt service routine, Vol.3-17-22

PEBS_UNAVAILABLE flag
IA32_MISC_ENABLE MSR, Vol.3-17-16, Vol.1-35-163

Pending break enable, Vol.2-3-174
Pentium 4 processor, Vol.1-1-1, Vol.2-1-1, Vol.3-1-1

compatibility with FP software, Vol.3-22-6
description of, Vol.1-2-3, Vol.1-2-4
last branch, interrupt, and exception recording, Vol.3-17-28
list of performance-monitoring events, Vol.3-19-1, Vol.3-19-150
MSRs supported, Vol.1-35-32, Vol.1-35-46, Vol.1-35-57, 

Vol.1-35-153, Vol.1-35-154, Vol.1-35-178
time-stamp counter, Vol.3-17-36

Pentium 4 processor supporting Hyper-Threading Technology
description of, Vol.1-2-3, Vol.1-2-4

Pentium II processor, Vol.1-1-2, Vol.2-1-2, Vol.3-1-2
description of, Vol.1-2-2
P6 family microarchitecture, Vol.1-2-7

Pentium II Xeon processor
description of, Vol.1-2-2

Pentium III processor, Vol.1-1-2, Vol.2-1-2, Vol.3-1-2
description of, Vol.1-2-3
P6 family microarchitecture, Vol.1-2-7

Pentium III Xeon processor
description of, Vol.1-2-3

Pentium M processor
description of, Vol.1-2-3
instructions supported, Vol.1-2-3
last branch, interrupt, and exception recording, Vol.3-17-33
MSRs supported by, Vol.1-35-189
time-stamp counter, Vol.3-17-36

Pentium Pro processor, Vol.1-1-2, Vol.2-1-2, Vol.3-1-2
description of, Vol.1-2-2
P6 family microarchitecture, Vol.1-2-7

Pentium processor, Vol.1-1-1, Vol.2-1-1, Vol.3-1-1, Vol.3-22-6
compatibility with MCA, Vol.3-15-1
history of, Vol.1-2-2
list of performance-monitoring events, Vol.3-19-190
MSR supported by, Vol.1-35-204
performance-monitoring counters, Vol.3-18-94

Pentium processor Extreme Edition
introduction, Vol.1-2-4

Pentium processor family processors
machine encodings, Vol.2-B-37

Pentium processor with MMX technology, Vol.1-2-2
PerfCtr0 and PerfCtr1 MSRs

(P6 family processors), Vol.3-18-92, Vol.3-18-93
PerfEvtSel0 and PerfEvtSel1 MSRs

(P6 family processors), Vol.3-18-92
PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family processors), Vol.3-18-92
Performance events

architectural, Vol.3-18-1
Intel Core Solo and Intel Core Duo processors, Vol.3-18-1
non-architectural, Vol.3-18-1
non-retirement events (Pentium 4 processor), Vol.3-19-150
P6 family processors, Vol.3-19-181
Pentium 4 and Intel Xeon processors, Vol.3-17-28
Pentium M processors, Vol.3-17-33
Pentium processor, Vol.3-19-190

Performance monitoring counters, Vol.1-3-4
Performance state, Vol.3-14-1
Performance-monitoring counters

counted events (P6 family processors), Vol.3-19-181
counted events (Pentium 4 processor), Vol.3-19-1, Vol.3-19-150
counted events (Pentium processors), Vol.3-18-96
CPUID inquiry for, Vol.2-3-179
description of, Vol.3-18-1, Vol.3-18-2

events that can be counted (Pentium processors), Vol.3-19-190
interrupt, Vol.3-10-1
introduction of in IA-32 processors, Vol.3-22-36
monitoring counter overflow (P6 family processors), Vol.3-18-94
overflow, monitoring (P6 family processors), Vol.3-18-94
overview of, Vol.3-2-7
P6 family processors, Vol.3-18-91
Pentium II processor, Vol.3-18-91
Pentium Pro processor, Vol.3-18-91
Pentium processor, Vol.3-18-94
reading, Vol.3-2-23, Vol.3-18-93
setting up (P6 family processors), Vol.3-18-92
software drivers for, Vol.3-18-93
starting and stopping, Vol.3-18-93

PEXT - Parallel Bits Extract, Vol.2-4-93
PEXTRW instruction, Vol.1-10-11, Vol.2-4-98
PF (parity) flag, EFLAGS register, Vol.1-3-15, Vol.1-A-1
PG (paging) flag

CR0 control register, Vol.3-2-14, Vol.3-5-1
PG (paging) flag, CR0 control register, Vol.3-9-10, Vol.3-9-12, 

Vol.3-22-31, Vol.3-34-9
PGE (page global enable) flag, CR4 control register, Vol.3-2-17, 

Vol.3-11-13, Vol.3-22-17, Vol.3-22-18
PHADDD instruction, Vol.1-5-21, Vol.1-12-7, Vol.2-4-101
PHADDSW instruction, Vol.1-5-21, Vol.1-12-7, Vol.2-4-105
PHADDW instruction, Vol.1-5-21, Vol.1-12-7, Vol.2-4-101
PHSUBD instruction, Vol.1-5-21, Vol.1-12-7, Vol.2-4-109
PHSUBSW instruction, Vol.1-5-21, Vol.1-12-7, Vol.2-4-112
PHSUBW instruction, Vol.1-5-21, Vol.1-12-7, Vol.2-4-109
PhysBase field, IA32_MTRR_PHYSBASEn MTRR, Vol.3-11-24, 

Vol.3-11-26
Physical

address space, Vol.1-3-5
memory, Vol.1-3-5

Physical address extension
introduction to, Vol.3-3-6

Physical address space
4 GBytes, Vol.3-3-6
64 GBytes, Vol.3-3-6
addressing, Vol.3-2-6
defined, Vol.3-3-1
description of, Vol.3-3-6
guest and host spaces, Vol.3-32-2
IA-32e mode, Vol.3-3-6
mapped to a task, Vol.3-7-14
mapping with variable-range MTRRs, Vol.3-11-23, Vol.3-11-25
memory virtualization, Vol.3-32-2
See also: VMM, VMX

Physical destination mode, local APIC, Vol.3-10-23
PhysMask

IA32_MTRR_PHYSMASKn MTRR, Vol.3-11-24, Vol.3-11-26
Pi, Vol.2-3-303
PINSRW instruction, Vol.1-10-11, Vol.2-4-116, Vol.2-4-213
Pi, x87 FPU constant, Vol.1-8-20
PM (inexact result exception) mask bit

MXCSR register, Vol.1-11-16
x87 FPU control word, Vol.1-8-7, Vol.1-8-29

PM0/BP0 and PM1/BP1 (performance-monitor) pins (Pentium processor), 
Vol.3-18-94, Vol.3-18-95, Vol.3-18-96

PMADDUBSW instruction, Vol.1-5-21, Vol.1-12-8, Vol.2-4-118
PMADDUDSW instruction, Vol.2-4-118
PMADDWD instruction, Vol.1-9-7, Vol.2-4-120
PMAXSW instruction, Vol.1-10-11, Vol.2-4-128
PMAXUB instruction, Vol.1-10-11, Vol.2-4-131
PMINSW instruction, Vol.1-10-11, Vol.2-4-143
PMINUB instruction, Vol.1-10-11, Vol.2-4-146
PML4 tables, Vol.3-2-6
PMOVMSKB instruction, Vol.1-10-11, Vol.2-4-149
PMULHRSW instruction, Vol.1-5-21, Vol.1-12-8, Vol.2-4-165
PMULHUW instruction, Vol.1-10-12, Vol.2-4-168
PMULHW instruction, Vol.2-4-172
PMULLW instruction, Vol.2-4-177
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PMULUDQ instruction, Vol.1-11-11, Vol.2-4-180
Pointer data types, Vol.1-4-6, Vol.1-4-7
Pointers

64-bit mode, Vol.1-4-7
code-segment pointer size, Vol.3-21-4
far pointer, Vol.1-4-6
limit checking, Vol.3-5-25
near pointer, Vol.1-4-6
validation, Vol.3-5-24

POP instruction, Vol.1-6-1, Vol.1-6-2, Vol.1-7-6, Vol.1-7-22, 
Vol.2-4-182, Vol.3-3-8

POPA instruction, Vol.1-6-6, Vol.1-7-6, Vol.2-4-187
POPAD instruction, Vol.2-4-187
POPF instruction, Vol.1-3-14, Vol.1-6-6, Vol.1-7-21, Vol.1-16-4, 

Vol.2-4-191, Vol.3-6-7, Vol.3-17-10
POPFD instruction, Vol.1-3-14, Vol.1-6-6, Vol.1-7-21, Vol.2-4-191
POPFQ instruction, Vol.2-4-191
POR instruction, Vol.1-9-7, Vol.2-4-194
Power consumption

software controlled clock, Vol.3-14-20, Vol.3-14-24
Power coordination, Vol.1-2-4
Precise event-based sampling (see PEBS)
PREFETCHh instruction, Vol.2-4-196, Vol.3-2-15, Vol.3-11-5, 

Vol.3-11-17
PREFETCHh instructions, Vol.1-10-13, Vol.1-11-25
Prefixes

Address-size override prefix, Vol.2-2-2
Branch hints, Vol.2-2-2
branch hints, Vol.2-2-2
instruction, description of, Vol.2-2-1
legacy prefix encodings, Vol.2-B-1
LOCK, Vol.2-2-1, Vol.2-3-468
Operand-size override prefix, Vol.2-2-2
REP or REPE/REPZ, Vol.2-2-1
REPNE/REPNZ, Vol.2-2-1
REP/REPE/REPZ/REPNE/REPNZ, Vol.2-4-299
REX prefix encodings, Vol.2-B-2
Segment override prefixes, Vol.2-2-1

Previous task link field, TSS, Vol.3-7-4, Vol.3-7-12, Vol.3-7-13
Privilege levels

checking when accessing data segments, Vol.3-5-8
checking, for call gates, Vol.3-5-15
checking, when transferring program control between code segments, 

Vol.3-5-10
description of, Vol.1-6-6, Vol.3-5-6
inter-privilege level calls, Vol.1-6-6
protection rings, Vol.1-6-6, Vol.3-5-8
stack switching, Vol.1-6-10

Privileged instructions, Vol.3-5-23
Procedure calls

description of, Vol.1-6-4
far call, Vol.1-6-4
for block-structured languages, Vol.1-6-13
inter-privilege level call, Vol.1-6-7
linking, Vol.1-6-3
near call, Vol.1-6-4
overview, Vol.1-6-1
return instruction pointer (EIP register), Vol.1-6-3
saving procedure state information, Vol.1-6-6
stack, Vol.1-6-1
stack switching, Vol.1-6-7
to exception handler procedure, Vol.1-6-9
to exception task, Vol.1-6-12
to interrupt handler procedure, Vol.1-6-9
to interrupt task, Vol.1-6-12
to other privilege levels, Vol.1-6-6
types of, Vol.1-6-1

Processor families
06H, Vol.3-16-1
0FH, Vol.3-16-1

Processor management
initialization, Vol.3-9-1

local APIC, Vol.3-10-1
microcode update facilities, Vol.3-9-27
overview of, Vol.3-8-1
See also: multiple-processor management

Processor ordering, description of, Vol.3-8-5
Processor state information, saving, Vol.1-6-6
PROCHOT# log, Vol.3-14-27, Vol.3-14-30
PROCHOT# or FORCEPR# event bit, Vol.3-14-26, Vol.3-14-30, 

Vol.3-14-31
Protected mode

IDT initialization, Vol.3-9-10
initialization for, Vol.3-9-9
I/O, Vol.1-16-3
memory models used, Vol.1-3-8
mixing 16-bit and 32-bit code modules, Vol.3-21-1
mode switching, Vol.3-9-12
overview, Vol.1-3-1
PE flag, CR0 register, Vol.3-5-1
switching to, Vol.3-5-1, Vol.3-9-12
system data structures required during initialization, Vol.3-9-9

Protection
combining segment & page-level, Vol.3-5-29
disabling, Vol.3-5-1
enabling, Vol.3-5-1
flags used for page-level protection, Vol.3-5-2, Vol.3-5-3
flags used for segment-level protection, Vol.3-5-2
IA-32e mode, Vol.3-5-3
of exception, interrupt-handler procedures, Vol.3-6-13
overview of, Vol.3-5-1
page level, Vol.3-5-1, Vol.3-5-27, Vol.3-5-28, Vol.3-5-30
page level, overriding, Vol.3-5-29
page-level protection flags, Vol.3-5-28
read/write, page level, Vol.3-5-28
segment level, Vol.3-5-1
user/supervisor type, Vol.3-5-28

Protection rings, Vol.1-6-6, Vol.3-5-8
PSADBW instruction, Vol.1-10-12, Vol.2-4-200
PSE (page size extension) flag

CR4 control register, Vol.3-2-17, Vol.3-11-20, Vol.3-22-17, 
Vol.3-22-18

PSE-36 page size extension, Vol.3-3-6
Pseudo-functions

VMfail, Vol.3-30-2
VMfailInvalid, Vol.3-30-2
VMfailValid, Vol.3-30-2
VMsucceed, Vol.3-30-2

Pseudo-infinity, Vol.3-22-9
Pseudo-NaN, Vol.3-22-9
Pseudo-zero, Vol.3-22-9
PSHUFB instruction, Vol.1-5-22, Vol.1-12-8, Vol.2-4-203
PSHUFD instruction, Vol.1-11-11, Vol.2-4-206
PSHUFHW instruction, Vol.1-11-11, Vol.2-4-208
PSHUFLW instruction, Vol.1-11-11, Vol.2-4-210
PSHUFW instruction, Vol.1-10-12, Vol.1-11-11, Vol.2-4-212
PSIGNB instruction, Vol.2-4-213
PSIGNB/W/D instruction, Vol.1-5-22, Vol.1-12-8
PSIGND instruction, Vol.2-4-213
PSIGNW instruction, Vol.2-4-213
PSLLD instruction, Vol.1-9-8, Vol.2-4-219
PSLLDQ instruction, Vol.1-11-11, Vol.2-4-217
PSLLQ instruction, Vol.1-9-8, Vol.2-4-219
PSLLW instruction, Vol.1-9-8, Vol.2-4-219
PSRAD instruction, Vol.2-4-225
PSRAW instruction, Vol.2-4-225
PSRLD instruction, Vol.2-4-232
PSRLDQ instruction, Vol.1-11-11, Vol.2-4-230
PSRLQ instruction, Vol.2-4-232
PSRLW instruction, Vol.2-4-232
P-state, Vol.3-14-1
PSUBB instruction, Vol.1-9-6, Vol.2-4-238
PSUBD instruction, Vol.1-9-6, Vol.2-4-238
PSUBQ instruction, Vol.1-11-11, Vol.2-4-243
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PSUBSB instruction, Vol.1-9-7, Vol.2-4-245
PSUBSW instruction, Vol.1-9-7, Vol.2-4-245
PSUBUSB instruction, Vol.1-9-7, Vol.2-4-248
PSUBUSW instruction, Vol.1-9-7, Vol.2-4-248
PSUBW instruction, Vol.1-9-6, Vol.2-4-238
PUNPCKHBW instruction, Vol.1-9-7, Vol.2-4-253
PUNPCKHDQ instruction, Vol.1-9-7, Vol.2-4-253
PUNPCKHQDQ instruction, Vol.1-11-11, Vol.2-4-253
PUNPCKHWD instruction, Vol.1-9-7, Vol.2-4-253
PUNPCKLBW instruction, Vol.1-9-7, Vol.2-4-260
PUNPCKLDQ instruction, Vol.1-9-7, Vol.2-4-260
PUNPCKLQDQ instruction, Vol.1-11-11, Vol.2-4-260
PUNPCKLWD instruction, Vol.1-9-7, Vol.2-4-260
PUSH instruction, Vol.1-6-1, Vol.1-6-2, Vol.1-7-5, Vol.1-7-22, 

Vol.2-4-267, Vol.3-22-6
PUSHA instruction, Vol.1-6-6, Vol.1-7-5, Vol.2-4-270
PUSHAD instruction, Vol.2-4-270
PUSHF instruction, Vol.1-3-14, Vol.1-6-6, Vol.1-7-21, Vol.2-4-272, 

Vol.3-6-7, Vol.3-22-6
PUSHFD instruction, Vol.1-3-14, Vol.1-6-6, Vol.1-7-21, Vol.2-4-272
PVI (protected-mode virtual interrupts) flag

CR4 control register, Vol.3-2-11, Vol.3-2-17, Vol.3-22-17
PWT pin (Pentium processor), Vol.3-11-13
PWT (page-level write-through) flag

CR3 control register, Vol.3-2-16, Vol.3-11-13, Vol.3-22-17, 
Vol.3-22-29

page-directory entries, Vol.3-9-7, Vol.3-11-13, Vol.3-11-33
page-table entries, Vol.3-9-7, Vol.3-11-33, Vol.3-22-30

PXOR instruction, Vol.1-9-7, Vol.2-4-274

Q
QNaN floating-point indefinite, Vol.1-4-5, Vol.1-4-16, Vol.1-4-17, 

Vol.1-8-13
QNaNs

description of, Vol.1-4-15
effect on COMISD and UCOMISD, Vol.1-11-7
encodings, Vol.1-4-5
operating on, Vol.1-4-16
rules for generating, Vol.1-4-16
using in applications, Vol.1-4-16

QNaN, compatibility, IA-32 processors, Vol.3-22-8
Quadword, Vol.1-4-1, Vol.1-9-3
Quiet NaN (see QNaN)

R
R8D-R15D registers, Vol.1-3-11
R8-R15 registers, Vol.1-3-11
RAX register, Vol.1-3-11
RBP register, Vol.1-3-11, Vol.1-6-4
RBX register, Vol.1-3-11
RC (rounding control) field

MXCSR register, Vol.1-4-18, Vol.1-10-4
x87 FPU control word, Vol.1-4-18, Vol.1-8-8

RC (rounding control) field, x87 FPU control word, Vol.2-3-296, 
Vol.2-3-303, Vol.2-3-335

RCL instruction, Vol.1-7-13, Vol.2-4-276
RCPPS instruction, Vol.1-10-8, Vol.2-4-281
RCPSS instruction, Vol.1-10-8, Vol.2-4-283
RCR instruction, Vol.1-7-13, Vol.2-4-276
RCX register, Vol.1-3-11
RDI register, Vol.1-3-11
RDMSR instruction, Vol.2-4-287, Vol.2-4-290, Vol.2-4-295, Vol.3-2-19, 

Vol.3-2-24, Vol.3-5-24, Vol.3-17-30, Vol.3-17-35, 
Vol.3-17-37, Vol.3-18-63, Vol.3-18-92, Vol.3-18-93, 
Vol.3-18-94, Vol.3-22-4, Vol.3-22-35, Vol.3-25-4, Vol.3-25-8

CPUID flag, Vol.2-3-173
RDPMC instruction, Vol.2-4-289, Vol.3-2-23, Vol.3-5-24, Vol.3-18-63, 

Vol.3-18-92, Vol.3-18-93, Vol.3-22-4, Vol.3-22-17, 
Vol.3-22-36, Vol.3-25-4

in 64-bit mode, Vol.3-2-24

RDRAND, Vol.1-7-24
RDTSC instruction, Vol.2-4-293, Vol.2-4-295, Vol.2-4-297, Vol.3-2-23, 

Vol.3-5-24, Vol.3-17-37, Vol.3-22-4, Vol.3-25-4, Vol.3-25-8
in 64-bit mode, Vol.3-2-24

RDX register, Vol.1-3-11
reading sensors, Vol.3-14-26
Read/write

protection, page level, Vol.3-5-28
rights, checking, Vol.3-5-25

Real address mode
handling exceptions in, Vol.1-6-12
handling interrupts in, Vol.1-6-12
memory model, Vol.1-3-6, Vol.1-3-7
memory model used, Vol.1-3-8
not in 64-bit mode, Vol.1-3-8
overview, Vol.1-3-1

Real numbers
continuum, Vol.1-4-11
encoding, Vol.1-4-13, Vol.1-4-14
notation, Vol.1-4-12, Vol.1-14-18
system, Vol.1-4-11

Real-address mode
8086 emulation, Vol.3-20-1
address translation in, Vol.3-20-2
description of, Vol.3-20-1
exceptions and interrupts, Vol.3-20-6
IDT initialization, Vol.3-9-8
IDT, changing base and limit of, Vol.3-20-5
IDT, structure of, Vol.3-20-5
IDT, use of, Vol.3-20-4
initialization, Vol.3-9-8
instructions supported, Vol.3-20-3
interrupt and exception handling, Vol.3-20-4
interrupts, Vol.3-20-6
introduction to, Vol.3-2-7
mode switching, Vol.3-9-12
native 16-bit mode, Vol.3-21-1
overview of, Vol.3-20-1
registers supported, Vol.3-20-3
switching to, Vol.3-9-13

Recursive task switching, Vol.3-7-13
Register operands

64-bit mode, Vol.1-3-20
legacy modes, Vol.1-3-19

Register stack, x87 FPU, Vol.1-8-1
Registers

64-bit mode, Vol.1-3-11, Vol.1-3-14
control registers, Vol.1-3-4
CR in 64-bit mode, Vol.1-3-4
debug registers, Vol.1-3-4
EFLAGS register, Vol.1-3-10, Vol.1-3-14
EIP register, Vol.1-3-10, Vol.1-3-17
general purpose registers, Vol.1-3-10
instruction pointer, Vol.1-3-10
machine check registers, Vol.1-3-4
memory management registers, Vol.1-3-4
MMX registers, Vol.1-3-2, Vol.1-9-2
MSRs, Vol.1-3-4
MTRRs, Vol.1-3-4
MXCSR register, Vol.1-10-4
performance monitoring counters, Vol.1-3-4
REX prefix, Vol.1-3-11
segment registers, Vol.1-3-10, Vol.1-3-12
x87 FPU registers, Vol.1-8-1
XMM registers, Vol.1-3-2, Vol.1-10-3

Reg/opcode field, instruction format, Vol.2-2-3
Related literature, Vol.1-1-7, Vol.2-1-6, Vol.3-1-8
Remainder, x87 FPU operation, Vol.2-3-317
Replay events, Vol.3-19-174
REP/REPE/REPZ/REPNE/REPNZ

prefixes, Vol.1-7-19, Vol.1-16-3
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REP/REPE/REPZ/REPNE/REPNZ prefixes, Vol.2-3-137, Vol.2-3-399, 
Vol.2-4-20, Vol.2-4-299

Requested privilege level (see RPL)
Reserved

use of reserved bits, Vol.2-1-4
Reserved bits, Vol.1-1-4, Vol.3-1-5, Vol.3-22-1
RESET pin, Vol.1-3-14
RESET# pin, Vol.3-6-3, Vol.3-22-15
RESET# signal, Vol.3-2-23
Resolution in degrees, Vol.3-14-28
Responding logical processor, Vol.2-5-4
responding logical processor, Vol.2-5-4, Vol.2-5-5
Restarting program or task, following an exception or interrupt, Vol.3-6-5
Restricting addressable domain, Vol.3-5-28
RET instruction, Vol.1-3-17, Vol.1-6-3, Vol.1-6-4, Vol.1-7-15, Vol.1-7-22, 

Vol.2-4-302, Vol.3-5-10, Vol.3-5-20, Vol.3-21-6
Return instruction pointer, Vol.1-6-3
Returning

from a called procedure, Vol.3-5-20
from an interrupt or exception handler, Vol.3-6-13

Returns, from procedure calls
exception handler, return from, Vol.1-6-9
far return, Vol.1-6-4
inter-privilege level return, Vol.1-6-7
interrupt handler, return from, Vol.1-6-9
near return, Vol.1-6-4

REX prefixes, Vol.1-3-2, Vol.1-3-11, Vol.1-3-18
addressing modes, Vol.2-2-8
and INC/DEC, Vol.2-2-7
encodings, Vol.2-2-7, Vol.2-B-2
field names, Vol.2-2-8
ModR/M byte, Vol.2-2-7
overview, Vol.2-2-7
REX.B, Vol.2-2-7
REX.R, Vol.2-2-7
REX.W, Vol.2-2-7
special encodings, Vol.2-2-10

RF (resume) flag
EFLAGS register, Vol.3-2-10, Vol.3-6-7

RF (resume) flag, EFLAGS register, Vol.1-3-16, Vol.1-A-1
RFLAGS, Vol.1-3-17
RFLAGS register, Vol.1-7-22

See EFLAGS register
RIP register, Vol.1-6-4

64-bit mode, Vol.1-7-2
description of, Vol.1-3-17
relation to EIP, Vol.1-7-2

RIP-relative addressing, Vol.2-2-11
ROL instruction, Vol.1-7-13, Vol.2-4-276
ROR instruction, Vol.1-7-13, Vol.2-4-276
RORX - Rotate Right Logical Without Affecting Flags, Vol.2-4-312
Rounding

modes, floating-point operations, Vol.1-4-18, Vol.2-4-314
modes, x87 FPU, Vol.1-8-8
toward zero (truncation), Vol.1-4-18

Rounding control (RC) field
MXCSR register, Vol.1-4-18, Vol.1-10-4, Vol.2-4-314
x87 FPU control word, Vol.1-4-18, Vol.1-8-8, Vol.2-4-314

Rounding, round to integer, x87 FPU operation, Vol.2-3-321
RPL

description of, Vol.3-3-8, Vol.3-5-8
field, segment selector, Vol.3-5-2

RPL field, Vol.2-3-62
RSI register, Vol.1-3-11
RSM instruction, Vol.2-4-323, Vol.3-2-23, Vol.3-8-17, Vol.3-22-5, 

Vol.3-25-4, Vol.3-34-1, Vol.3-34-2, Vol.3-34-3, Vol.3-34-13, 
Vol.3-34-15, Vol.3-34-18

RSP register, Vol.1-3-11, Vol.1-6-4
RSQRTPS instruction, Vol.1-10-8, Vol.2-4-325
RSQRTSS instruction, Vol.1-10-8, Vol.2-4-327
RsvdZ, Vol.3-10-40
R/m field, instruction format, Vol.2-2-3

R/S# pin, Vol.3-6-3
R/W (read/write) flag

page-directory entry, Vol.3-5-1, Vol.3-5-2, Vol.3-5-28
page-table entry, Vol.3-5-1, Vol.3-5-2, Vol.3-5-28

R/W0-R/W3 (read/write) fields
DR7 register, Vol.3-17-4, Vol.3-22-19

S
S (descriptor type) flag

segment descriptor, Vol.3-3-11, Vol.3-3-12, Vol.3-5-2, Vol.3-5-5
Safer Mode Extensions, Vol.2-5-1
SAHF instruction, Vol.1-3-14, Vol.1-7-21, Vol.2-4-329
SAL instruction, Vol.1-7-10, Vol.2-4-331
SAR instruction, Vol.1-7-11, Vol.2-4-331
Saturation arithmetic (MMX instructions), Vol.1-9-4
SBB instruction, Vol.1-7-8, Vol.2-3-468, Vol.2-4-338, Vol.3-8-3
Scalar operations

defined, Vol.1-10-7, Vol.1-11-5
scalar double-precision FP operands, Vol.1-11-5
scalar single-precision FP operands, Vol.1-10-7

Scale (operand addressing), Vol.1-3-21, Vol.1-3-22, Vol.1-3-23, Vol.2-2-3
Scale, x87 FPU operation, Vol.1-8-21, Vol.2-3-327
Scaling bias value, Vol.1-8-28, Vol.1-8-29
Scan string instructions, Vol.2-4-341
SCAS instruction, Vol.1-3-16, Vol.1-7-18, Vol.2-4-300, Vol.2-4-341
SCASB instruction, Vol.2-4-341
SCASD instruction, Vol.2-4-341
SCASW instruction, Vol.2-4-341
Segment

defined, Vol.1-3-6
descriptor, segment limit, Vol.2-3-475
limit, Vol.2-3-475
maximum number, Vol.1-3-6
registers, moving values to and from, Vol.2-3-506
selector, RPL field, Vol.2-3-62

Segment descriptors
access rights, Vol.3-5-24
access rights, invalid values, Vol.3-22-18
automatic bus locking while updating, Vol.3-8-3
base address fields, Vol.3-3-10
code type, Vol.3-5-2
data type, Vol.3-5-2
description of, Vol.3-2-4, Vol.3-3-9
DPL (descriptor privilege level) field, Vol.3-3-11, Vol.3-5-2
D/B (default operation size/default stack pointer size and/or upper 

bound) flag, Vol.3-3-11, Vol.3-5-4
E (expansion direction) flag, Vol.3-5-2, Vol.3-5-4
G (granularity) flag, Vol.3-3-11, Vol.3-5-2, Vol.3-5-4
limit field, Vol.3-5-2, Vol.3-5-4
loading, Vol.3-22-19
P (segment-present) flag, Vol.3-3-11
S (descriptor type) flag, Vol.3-3-11, Vol.3-3-12, Vol.3-5-2, Vol.3-5-5
segment limit field, Vol.3-3-10
system type, Vol.3-5-2
tables, Vol.3-3-14
TSS descriptor, Vol.3-7-5, Vol.3-7-6
type field, Vol.3-3-10, Vol.3-3-12, Vol.3-5-2, Vol.3-5-5
type field, encoding, Vol.3-3-14
when P (segment-present) flag is clear, Vol.3-3-11

Segment limit
checking, Vol.3-2-21
field, segment descriptor, Vol.3-3-10

Segment not present exception (#NP), Vol.3-3-11
Segment override prefixes, Vol.1-3-20
Segment registers

64-bit mode, Vol.1-3-14, Vol.1-3-21, Vol.1-7-2
default usage rules, Vol.1-3-20
description of, Vol.1-3-10, Vol.1-3-12, Vol.3-3-8
IA-32e mode, Vol.3-3-9
part of basic programming environment, Vol.1-7-1
saved in TSS, Vol.3-7-4
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Segment selector
description of, Vol.1-3-6, Vol.1-3-12
segment override prefixes, Vol.1-3-20
specifying, Vol.1-3-20

Segment selectors
description of, Vol.3-3-7
index field, Vol.3-3-7
null, Vol.3-5-6
null in 64-bit mode, Vol.3-5-6
RPL field, Vol.3-3-8, Vol.3-5-2
TI (table indicator) flag, Vol.3-3-7

Segmented addressing, Vol.2-1-5, Vol.3-1-6
Segmented memory model, Vol.1-1-5, Vol.1-3-6, Vol.1-3-12
Segment-not-present exception (#NP), Vol.3-6-34
Segments

64-bit mode, Vol.3-3-5
basic flat model, Vol.3-3-3
code type, Vol.3-3-12
combining segment, page-level protection, Vol.3-5-29
combining with paging, Vol.3-3-5
compatibility mode, Vol.3-3-5
data type, Vol.3-3-12
defined, Vol.3-3-1
disabling protection of, Vol.3-5-1
enabling protection of, Vol.3-5-1
mapping to pages, Vol.3-4-45
multisegment usage model, Vol.3-3-4
protected flat model, Vol.3-3-3
segment-level protection, Vol.3-5-2, Vol.3-5-3
segment-not-present exception, Vol.3-6-34
system, Vol.3-2-4
types, checking access rights, Vol.3-5-24
typing, Vol.3-5-5
using, Vol.3-3-2
wraparound, Vol.3-22-33

SELF IPI register, Vol.3-10-38
Self Snoop, Vol.2-3-174
Self-modifying code, effect on caches, Vol.3-11-18
GETSEC, Vol.2-5-2, Vol.2-5-3, Vol.2-5-5
SENTER sleep state, Vol.2-5-9
Serialization of I/O instructions, Vol.1-16-5
Serializing, Vol.3-8-16
Serializing instructions, Vol.1-16-5

CPUID, Vol.3-8-16
HT technology, Vol.3-8-29
non-privileged, Vol.3-8-16
privileged, Vol.3-8-16

SETcc instructions, Vol.1-3-16, Vol.1-7-14, Vol.2-4-345
GETSEC, Vol.2-5-4
SF (sign) flag, EFLAGS register, Vol.1-3-15, Vol.1-A-1, Vol.2-3-27
SF (stack fault) flag, x87 FPU status word, Vol.1-8-6, Vol.1-8-26, 

Vol.3-22-8
SFENCE instruction, Vol.1-10-14, Vol.1-11-12, Vol.1-11-25, Vol.2-4-348, 

Vol.3-2-15, Vol.3-8-6, Vol.3-8-15, Vol.3-8-16, Vol.3-8-17
SGDT instruction, Vol.2-4-349, Vol.3-2-21, Vol.3-3-15
SHAF instruction, Vol.2-4-329
Shared resources

mapping of, Vol.3-8-33
Shift instructions, Vol.2-4-331
SHL instruction, Vol.1-7-10, Vol.2-4-331
SHLD instruction, Vol.1-7-12, Vol.2-4-351
SHR instruction, Vol.1-7-11, Vol.2-4-331
SHRD instruction, Vol.1-7-12, Vol.2-4-354
Shuffle instructions

SSE extensions, Vol.1-10-9
SSE2 extensions, Vol.1-11-7

SHUFPD instruction, Vol.1-11-7, Vol.2-4-357
SHUFPS instruction, Vol.2-4-360
Shutdown

resulting from double fault, Vol.3-6-29
resulting from out of IDT limit condition, Vol.3-6-29

SI register, Vol.1-3-11

SIB byte, Vol.2-2-3
32-bit addressing forms of, Vol.2-2-6, Vol.2-2-19
description of, Vol.2-2-3

SIDT instruction, Vol.2-4-349, Vol.2-4-363, Vol.3-2-21, Vol.3-3-16, 
Vol.3-6-9

Signaling NaN (see SNaN)
Signed

infinity, Vol.1-4-15
integers, description of, Vol.1-4-4
integers, encodings, Vol.1-4-4
zero, Vol.1-4-14

Significand, extracting from floating-point number, Vol.2-3-368
Significand, of floating-point number, Vol.1-4-11
Sign, floating-point number, Vol.1-4-11
SIMD floating-point exception (#XF), Vol.3-2-18, Vol.3-6-48, Vol.3-9-8
SIMD floating-point exception (#XM), Vol.1-11-18
SIMD floating-point exceptions

denormal operand exception (#D), Vol.1-11-15
description of, Vol.3-6-48, Vol.3-13-5
divide-by-zero (#Z), Vol.1-11-15
exception conditions, Vol.1-11-14
exception handlers, Vol.1-E-1
handler, Vol.3-13-2
inexact result exception (#P), Vol.1-11-16
invalid operation exception (#I), Vol.1-11-14
list of, Vol.1-11-13
numeric overflow exception (#O), Vol.1-11-15
numeric underflow exception (#U), Vol.1-11-16
precision exception (#P), Vol.1-11-16
software handling, Vol.1-11-18
summary of, Vol.1-C-1
support for, Vol.3-2-18
writing exception handlers for, Vol.1-E-1

SIMD floating-point exceptions, unmasking, effects of, Vol.2-3-450, 
Vol.2-4-285, Vol.2-4-549

SIMD floating-point flag bits, Vol.1-10-4
SIMD floating-point mask bits, Vol.1-10-4
SIMD floating-point rounding control field, Vol.1-10-4
SIMD (single-instruction, multiple-data)

execution model, Vol.1-2-2, Vol.1-2-3, Vol.1-9-4
instructions, Vol.1-2-14, Vol.1-5-16, Vol.1-10-7
MMX instructions, Vol.1-5-11
operations, on packed double-precision floating-point operands, 

Vol.1-11-4
operations, on packed single-precision floating-point operands, 

Vol.1-10-6
packed data types, Vol.1-4-8
SSE instructions, Vol.1-5-13
SSE2 instructions, Vol.1-11-4, Vol.1-12-2, Vol.1-12-6

Sine, x87 FPU operation, Vol.1-8-20, Vol.2-3-329, Vol.2-3-331
Single-precision floating-point format, Vol.1-4-4
Single-stepping

breakpoint exception condition, Vol.3-17-10
on branches, Vol.3-17-13
on exceptions, Vol.3-17-13
on interrupts, Vol.3-17-13
TF (trap) flag, EFLAGS register, Vol.3-17-10

SINIT, Vol.2-5-4
SLDT instruction, Vol.2-4-365, Vol.3-2-21
Sleep, Vol.1-2-4
SLTR instruction, Vol.3-3-16
Smart cache, Vol.1-2-4
Smart memory access, Vol.1-2-11
smart memory access, Vol.1-2-4
SMBASE

default value, Vol.3-34-4
relocation of, Vol.3-34-14

GETSEC, Vol.2-5-4
SMI handler

description of, Vol.3-34-1
execution environment for, Vol.3-34-9
exiting from, Vol.3-34-3
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VMX treatment of, Vol.3-34-16
SMI interrupt, Vol.3-2-23, Vol.3-10-3

description of, Vol.3-34-1, Vol.3-34-2
IO_SMI bit, Vol.3-34-11
priority, Vol.3-34-3
switching to SMM, Vol.3-34-2
synchronous and asynchronous, Vol.3-34-11
VMX treatment of, Vol.3-34-16

SMI# pin, Vol.3-6-3, Vol.3-34-2, Vol.3-34-15
SMM

asynchronous SMI, Vol.3-34-11
auto halt restart, Vol.3-34-13
executing the HLT instruction in, Vol.3-34-14
exiting from, Vol.3-34-3
handling exceptions and interrupts, Vol.3-34-10
introduction to, Vol.3-2-7
I/O instruction restart, Vol.3-34-15
I/O state implementation, Vol.3-34-12
memory model used, Vol.1-3-8
native 16-bit mode, Vol.3-21-1
overview, Vol.1-3-1
overview of, Vol.3-34-1
revision identifier, Vol.3-34-13
revision identifier field, Vol.3-34-13
switching to, Vol.3-34-2
switching to from other operating modes, Vol.3-34-2
synchronous SMI, Vol.3-34-11
VMX operation

default RSM treatment, Vol.3-34-17
default SMI delivery, Vol.3-34-16
dual-monitor treatment, Vol.3-34-19
overview, Vol.3-34-1
protecting CR4.VMXE, Vol.3-34-18
RSM instruction, Vol.3-34-18
SMM monitor, Vol.3-34-1
SMM VM exits, Vol.3-27-1, Vol.3-34-19
SMM-transfer VMCS, Vol.3-34-19
SMM-transfer VMCS pointer, Vol.3-34-19
VMCS pointer preservation, Vol.3-34-17
VMX-critical state, Vol.3-34-17

SMRAM
caching, Vol.3-34-8
state save map, Vol.3-34-4
structure of, Vol.3-34-3

SMSW instruction, Vol.2-4-367, Vol.3-2-21, Vol.3-25-8
SNaNs

description of, Vol.1-4-15
effect on COMISD and UCOMISD, Vol.1-11-7
encodings, Vol.1-4-5
operating on, Vol.1-4-16
typical uses of, Vol.1-4-15
using in applications, Vol.1-4-16

SNaN, compatibility, IA-32 processors, Vol.3-22-8, Vol.3-22-13
Snooping mechanism, Vol.3-11-6
Software compatibility, Vol.1-1-4
Software controlled clock

modulation control bits, Vol.3-14-24
power consumption, Vol.3-14-20, Vol.3-14-24

Software interrupts, Vol.3-6-4
Software-controlled bus locking, Vol.3-8-3
SP register, Vol.1-3-11
Speculative execution, Vol.1-2-7, Vol.1-2-9
SpeedStep technology, Vol.2-3-170
Spin-wait loops

programming with PAUSE instruction, Vol.1-11-12
Split pages, Vol.3-22-14
Spurious interrupt, local APIC, Vol.3-10-32
SQRTPD instruction, Vol.1-11-6, Vol.2-4-369
SQRTPS instruction, Vol.1-10-8, Vol.2-4-371
SQRTSD instruction, Vol.1-11-6, Vol.2-4-373
SQRTSS instruction, Vol.1-10-8, Vol.2-4-374
Square root, Fx87 PU operation, Vol.2-3-333

SS register, Vol.1-3-12, Vol.1-3-13, Vol.1-6-1, Vol.2-3-451, Vol.2-3-506, 
Vol.2-4-183

SSE extensions
128-bit packed single-precision data type, Vol.1-10-5
64-bit mode, Vol.1-10-3
64-bit SIMD integer instructions, Vol.1-10-11
branching on arithmetic operations, Vol.1-11-24
cacheability control instructions, Vol.1-10-12
cacheability hint instructions, Vol.1-11-25
cacheability instruction encodings, Vol.2-B-48
caller-save requirement for procedure and function calls, Vol.1-11-24
checking for SSE and SSE2 support, Vol.1-11-19
checking for with CPUID, Vol.3-13-2
checking support for FXSAVE/FXRSTOR, Vol.3-13-2
comparison instructions, Vol.1-10-9
compatibility mode, Vol.1-10-3
compatibility of SIMD and x87 FPU floating-point data types, 

Vol.1-11-22
conversion instructions, Vol.1-10-11
CPUID feature flag, Vol.3-9-8
CPUID flag, Vol.2-3-174
data movement instructions, Vol.1-10-7
data types, Vol.1-10-5, Vol.1-12-1
denormal operand exception (#D), Vol.1-11-15
denormals-are-zeros mode, Vol.1-10-5
divide by zero exception (#Z), Vol.1-11-15
EM flag, Vol.3-2-16
emulation of, Vol.3-13-5
exceptions, Vol.1-11-13
facilities for automatic saving of state, Vol.3-13-6, Vol.3-13-7
floating-point encodings, Vol.2-B-42
floating-point format, Vol.1-4-11
flush-to-zero mode, Vol.1-10-4
generating SIMD FP exceptions, Vol.1-11-16
guidelines for using, Vol.1-11-19
handling combinations of masked and unmasked exceptions, 

Vol.1-11-18
handling masked exceptions, Vol.1-11-16
handling SIMD floating-point exceptions in software, Vol.1-11-18
handling unmasked exceptions, Vol.1-11-17, Vol.1-11-18
inexact result exception (#P), Vol.1-11-16
initialization, Vol.3-9-8
instruction encodings, Vol.2-B-42
instruction prefixes, effect on SSE and SSE2 instructions, Vol.1-11-25
instruction set, Vol.1-5-13, Vol.1-10-6
integer instruction encodings, Vol.2-B-46
interaction of SIMD and x87 FPU floating-point exceptions, 

Vol.1-11-18
interaction of SSE and SSE2 instructions with x87 FPU and MMX 

instructions, Vol.1-11-21
interfacing with SSE and SSE2 procedures and functions, Vol.1-11-23
intermixing packed and scalar floating-point

and 128-bit SIMD integer instructions
and data ....................., Vol.1-11-22

introduction, Vol.1-2-3
introduction of into the IA-32 architecture, Vol.3-22-3
invalid operation exception (#I), Vol.1-11-14
logical instructions, Vol.1-10-9
masked responses to invalid arithmetic operations, Vol.1-11-14
memory ordering encodings, Vol.2-B-48
memory ordering instruction, Vol.1-10-14
MMX technology compatibility, Vol.1-10-5
MXCSR register, Vol.1-10-3
MXCSR state management instructions, Vol.1-10-12
non-temporal data, operating on, Vol.1-10-12
numeric overflow exception (#O), Vol.1-11-15
numeric underflow exception (#U), Vol.1-11-16
overview, Vol.1-10-1
packed 128-Bit SIMD data types, Vol.1-4-8
packed and scalar floating-point instructions, Vol.1-10-6
programming environment, Vol.1-10-2
providing exception handlers for, Vol.3-13-4, Vol.3-13-5
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providing operating system support for, Vol.3-13-1
QNaN floating-point indefinite, Vol.1-4-17
restoring SSE and SSE2 state, Vol.1-11-20
REX prefixes, Vol.1-10-3
saving and restoring state, Vol.3-13-6
saving SSE and SSE2 state, Vol.1-11-20
saving state on task, context switches, Vol.3-13-6
saving XMM register state on a procedure or function call, Vol.1-11-23
shuffle instructions, Vol.1-10-9
SIMD floating-point exception conditions, Vol.1-11-14
SIMD floating-point exception cross reference, Vol.1-C-3
SIMD Floating-point exception (#XF), Vol.3-6-48
SIMD floating-point exception (#XM), Vol.1-11-17, Vol.1-11-18
SIMD floating-point exceptions, Vol.1-11-13
SIMD floating-point mask and flag bits, Vol.1-10-4
SIMD floating-point rounding control field, Vol.1-10-4
SSE and SSE2 conversion instruction chart, Vol.1-11-9
SSE feature flag, CPUID instruction, Vol.1-11-19
SSE2 compatibility, Vol.1-10-5
system programming, Vol.1-13-14
unpack instructions, Vol.1-10-9
updating MMX technology routines

using128-bit SIMD integer instructions, Vol.1-11-24
using TS flag to control saving of state, Vol.3-13-7
x87 FPU compatibility, Vol.1-10-5
XMM registers, Vol.1-10-3

SSE feature flag
CPUID instruction, Vol.3-13-2

SSE feature flag, CPUID instruction, Vol.1-11-19, Vol.1-12-5
SSE instructions

descriptions of, Vol.1-10-6
SIMD floating-point exception cross-reference, Vol.1-C-3
summary of, Vol.1-5-13

SSE2 extensions
128-bit packed single-precision

data type, Vol.1-11-3
128-bit packed single-precision data type, Vol.1-12-1
128-bit SIMD integer instruction

extensions, Vol.1-11-11
64-bit and 128-bit SIMD integer instructions, Vol.1-11-10
64-bit mode, Vol.1-11-3
arithmetic instructions, Vol.1-11-6
branch hints, Vol.1-11-13
branching on arithmetic operations, Vol.1-11-24
cacheability control instructions, Vol.1-11-12
cacheability hint instructions, Vol.1-11-25
cacheability instruction encodings, Vol.2-B-58
caller-save requirement for procedure and function calls, Vol.1-11-24
checking for SSE and SSE2 support, Vol.1-11-19
checking for with CPUID, Vol.3-13-2
checking support for FXSAVE/FXRSTOR, Vol.3-13-2
comparison instructions, Vol.1-11-7
compatibility mode, Vol.1-11-3
compatibility of SIMD and x87 FPU floating-point data types, 

Vol.1-11-22
conversion instructions, Vol.1-11-9
CPUID feature flag, Vol.3-9-8
CPUID flag, Vol.2-3-174
data movement instructions, Vol.1-11-5
data types, Vol.1-11-3, Vol.1-12-1
denormal operand exception (#D), Vol.1-11-15
denormals-are-zero mode, Vol.1-11-3
divide by zero exception (#Z), Vol.1-11-15
EM flag, Vol.3-2-16
emulation of, Vol.3-13-5
exceptions, Vol.1-11-13
facilities for automatic saving of state, Vol.3-13-6, Vol.3-13-7
floating-point encodings, Vol.2-B-49
floating-point format, Vol.1-4-11
generating SIMD floating-point exceptions, Vol.1-11-16
guidelines for using, Vol.1-11-19

handling combinations of masked and unmasked exceptions, 
Vol.1-11-18

handling masked exceptions, Vol.1-11-16
handling SIMD floating-point exceptions in software, Vol.1-11-18
handling unmasked exceptions, Vol.1-11-17, Vol.1-11-18
inexact result exception (#P), Vol.1-11-16
initialization, Vol.3-9-8
initialization of, Vol.1-11-20
instruction prefixes, effect on SSE and SSE2 instructions, Vol.1-11-25
instruction set, Vol.1-5-16
instructions, Vol.1-11-4, Vol.1-12-2, Vol.1-12-6
integer instruction encodings, Vol.2-B-54
interaction of SIMD and x87 FPU floating-point exceptions, 

Vol.1-11-18
interaction of SSE and SSE2 instructions with x87 FPU and MMX 

instructions, Vol.1-11-21
interfacing with SSE and SSE2 procedures and functions, Vol.1-11-23
intermixing packed and scalar floating-point and 128-bit SIMD integer 

instructions and data, Vol.1-11-22
introduction of into the IA-32 architecture, Vol.3-22-3
invalid operation exception (#I), Vol.1-11-14
logical instructions, Vol.1-11-7
masked responses to invalid arithmetic operations, Vol.1-11-14
memory ordering instructions, Vol.1-11-12
MMX technology compatibility, Vol.1-11-3
numeric overflow exception (#O), Vol.1-11-15
numeric underflow exception (#U), Vol.1-11-16
overview of, Vol.1-11-1
packed 128-Bit SIMD data types, Vol.1-4-8
packed and scalar floating-point instructions, Vol.1-11-4
programming environment, Vol.1-11-2
providing exception handlers for, Vol.3-13-4, Vol.3-13-5
providing operating system support for, Vol.3-13-1
QNaN floating-point indefinite, Vol.1-4-17
restoring SSE and SSE2 state, Vol.1-11-20
REX prefixes, Vol.1-11-3
saving and restoring state, Vol.3-13-6
saving SSE and SSE2 state, Vol.1-11-20
saving state on task, context switches, Vol.3-13-6
saving XMM register state on a procedure or function call, Vol.1-11-23
shuffle instructions, Vol.1-11-7
SIMD floating-point exception conditions, Vol.1-11-14
SIMD floating-point exception cross reference, Vol.1-C-5
SIMD Floating-point exception (#XF), Vol.3-6-48
SIMD floating-point exception (#XM), Vol.1-11-17, Vol.1-11-18
SIMD floating-point exceptions, Vol.1-11-13
SSE and SSE2 conversion instruction chart, Vol.1-11-9
SSE compatibility, Vol.1-11-3
SSE2 feature flag, CPUID instruction, Vol.1-11-19
system programming, Vol.1-13-14
unpack instructions, Vol.1-11-7
updating MMX technology routines using 128-bit SIMD integer 

instructions, Vol.1-11-24
using TS flag to control saving state, Vol.3-13-7
writing applications with, Vol.1-11-19
x87 FPU compatibility, Vol.1-11-3

SSE2 feature flag
CPUID instruction, Vol.3-13-2

SSE2 feature flag, CPUID instruction, Vol.1-11-19, Vol.1-12-5
SSE2 instructions

descriptions of, Vol.1-11-4, Vol.1-12-2, Vol.1-12-6
SIMD floating-point exception cross-reference, Vol.1-C-5
summary of, Vol.1-5-16

SSE3
CPUID flag, Vol.2-3-170

SSE3 extensions
64-bit mode, Vol.1-12-1
asymmetric processing, Vol.1-12-1
checking for with CPUID, Vol.3-13-2
compatibility mode, Vol.1-12-1
CPUID feature flag, Vol.3-9-8
CPUID flag, Vol.2-3-170
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DNA exceptions, Vol.1-12-9
EM flag, Vol.3-2-16
emulation, Vol.1-12-10
emulation of, Vol.3-13-5
enabling support in a system executive, Vol.1-12-5, Vol.1-12-20
event mgmt instruction encodings, Vol.2-B-59
example verifying SS3 support, Vol.3-8-43, Vol.3-8-47, Vol.3-14-2
exceptions, Vol.1-12-9
facilities for automatic saving of state, Vol.3-13-6, Vol.3-13-7
floating-point instruction encodings, Vol.2-B-59
guideline for packed addition/subtraction instructions, Vol.1-12-6
horizontal addition/subtraction instructions, Vol.1-12-4
horizontal processing, Vol.1-12-1
initialization, Vol.3-9-8
instruction that addresses cache line splits, Vol.1-5-20
instruction that improves X87-FP integer conversion, Vol.1-5-19
instructions for horizontal addition/subtraction, Vol.1-5-20
instructions for packed addition/subtraction, Vol.1-5-20
instructions that enhance LOAD/MOVE/DUPLICATE, Vol.1-5-20
instructions that improve synchronization between agents, Vol.1-5-20
integer instruction encodings, Vol.2-B-60
introduction of into the IA-32 architecture, Vol.3-22-3
LOAD/MOVE/DUPLICATE enhancement instructions, Vol.1-12-3
MMX technology compatibility, Vol.1-12-1
numeric error flag and IGNNE#, Vol.1-12-9
packed addition/subtraction instructions, Vol.1-12-4
programming environment, Vol.1-12-1
providing exception handlers for, Vol.3-13-4, Vol.3-13-5
providing operating system support for, Vol.3-13-1
REX prefixes, Vol.1-12-1
saving and restoring state, Vol.3-13-6
saving state on task, context switches, Vol.3-13-6
SIMD floating-point exception cross reference, Vol.1-C-7, Vol.1-C-8
specialized 120-bit load instruction, Vol.1-12-3
SSE compatibility, Vol.1-12-1
SSE2 compatibility, Vol.1-12-1
system programming, Vol.1-13-14
using TS flag to control saving of state, Vol.3-13-7
x87 FPU compatibility, Vol.1-12-1

SSE3 feature flag
CPUID instruction, Vol.3-13-2

SSE3 instructions
descriptions of, Vol.1-12-2
SIMD floating-point exception

cross-reference, Vol.1-C-7, Vol.1-C-8
summary of, Vol.1-5-19

SSSE3 extensions, Vol.2-B-60, Vol.2-B-66, Vol.2-B-73
64-bit mode, Vol.1-12-1
asymmetric processing, Vol.1-12-1
checking for support, Vol.1-12-9
compatibility, Vol.1-12-1
compatibility mode, Vol.1-12-1
CPUID flag, Vol.2-3-170
data types, Vol.1-12-1
DNA exceptions, Vol.1-12-9
emulation, Vol.1-12-10
enabling support in a system executive, Vol.1-12-9
exceptions, Vol.1-12-9
horizontal add/subtract instructions, Vol.1-12-7
horizontal processing, Vol.1-12-1
MMX technology compatibility, Vol.1-12-1
multiply and add packed instructions, Vol.1-12-8
numeric error flag and IGNNE#, Vol.1-12-9
packed absolute value instructions, Vol.1-12-7
packed align instruction, Vol.1-12-8
packed multiply high instructions, Vol.1-12-8
packed shuffle instruction, Vol.1-12-8
programming environment, Vol.1-12-1
SSSE2 compatibility, Vol.1-12-1
x87 FPU compatibility, Vol.1-12-1

SSSE3 instructions
descriptions of, Vol.1-12-6

summary of, Vol.1-5-20
Stack

64-bit mode, Vol.1-3-4, Vol.1-6-4
64-bit mode behavior, Vol.1-6-13
address-size attribute, Vol.1-6-3
alignment, Vol.1-6-2
alignment of stack pointer, Vol.1-6-2
current stack, Vol.1-6-1, Vol.1-6-3
description of, Vol.1-6-1
EIP register (return instruction pointer), Vol.1-6-3
maximum size, Vol.1-6-1
number allowed, Vol.1-6-1
overview of, Vol.1-3-3
passing parameters on, Vol.1-6-5
popping values from, Vol.1-6-1
procedure linking information, Vol.1-6-3
pushing values on, Vol.1-6-1
return instruction pointer, Vol.1-6-3
SS register, Vol.1-6-1
stack segment, Vol.1-3-13, Vol.1-6-1
stack-frame base pointer, EBP register, Vol.1-6-3
switching

on calls to interrupt and exception handlers, Vol.1-6-10
on inter-privilege level calls, Vol.1-6-7, Vol.1-6-11
privilege levels, Vol.1-6-7

width, Vol.1-6-2
Stack fault exception (#SS), Vol.3-6-36
Stack fault, x87 FPU, Vol.3-22-8, Vol.3-22-12
Stack pointers

privilege level 0, 1, and 2 stacks, Vol.3-7-5
size of, Vol.3-3-11

Stack segments
paging of, Vol.3-2-6
privilege level check when loading SS register, Vol.3-5-10
size of stack pointer, Vol.3-3-11

Stack switching
exceptions/interrupts when switching stacks, Vol.3-6-7
IA-32e mode, Vol.3-6-18
inter-privilege level calls, Vol.3-5-17

Stack-fault exception (#SS), Vol.3-22-33
Stacks

error code pushes, Vol.3-22-31
faults, Vol.3-6-36
for privilege levels 0, 1, and 2, Vol.3-5-17
interlevel RET/IRET

from a 16-bit interrupt or call gate, Vol.3-22-32
interrupt stack table, 64-bit mode, Vol.3-6-19
management of control transfers for

16- and 32-bit procedure calls, Vol.3-21-4
operation on pushes and pops, Vol.3-22-31
pointers to in TSS, Vol.3-7-5
stack switching, Vol.3-5-17, Vol.3-6-18
usage on call to exception

or interrupt handler, Vol.3-22-32
Stack, pushing values on, Vol.2-4-267
Stack, x87 FPU

stack fault, Vol.1-8-6
stack overflow and underflow exception (#IS), Vol.1-8-4, Vol.1-8-25

Status flags
EFLAGS register, Vol.1-3-15, Vol.1-8-6, Vol.1-8-7, Vol.1-8-19

Status flags, EFLAGS register, Vol.2-3-119, Vol.2-3-121, Vol.2-3-271, 
Vol.2-3-276, Vol.2-3-434, Vol.2-4-346, Vol.2-4-407

STC instruction, Vol.1-3-15, Vol.1-7-21, Vol.2-4-375
STD instruction, Vol.1-3-16, Vol.1-7-21, Vol.2-4-376
Stepping information, Vol.2-3-178
Stepping information, following processor initialization or reset, Vol.3-9-4
STI instruction, Vol.1-7-22, Vol.1-16-3, Vol.2-4-377, Vol.3-6-7
Sticky bits, Vol.1-8-5
STMXCSR instruction, Vol.1-10-12, Vol.1-11-24, Vol.2-4-379
Store buffer

caching terminology, Vol.3-11-5
characteristics of, Vol.3-11-4
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operation of, Vol.3-11-20

STOS instruction, Vol.1-3-16, Vol.1-7-19, Vol.2-4-300, Vol.2-4-380
STOSB instruction, Vol.2-4-380
STOSD instruction, Vol.2-4-380
STOSQ instruction, Vol.2-4-380
STOSW instruction, Vol.2-4-380
STPCLK# pin, Vol.3-6-3
STR instruction, Vol.2-4-384, Vol.3-2-21, Vol.3-3-16, Vol.3-7-7
Streaming SIMD extensions 2 (see SSE2 extensions)
Streaming SIMD extensions (see SSE extensions)
String data type, Vol.1-4-8
String instructions, Vol.2-3-136, Vol.2-3-398, Vol.2-3-470, Vol.2-3-561, 

Vol.2-4-19, Vol.2-4-341, Vol.2-4-380
Strong uncached (UC) memory type

description of, Vol.3-11-6
effect on memory ordering, Vol.3-8-16
use of, Vol.3-9-7, Vol.3-11-8

ST(0), top-of-stack register, Vol.1-8-3
Sub C-state, Vol.3-14-19
SUB instruction, Vol.1-7-8, Vol.2-3-22, Vol.2-3-231, Vol.2-3-468, 

Vol.2-4-386, Vol.3-8-3
SUBPD instruction, Vol.2-4-388
SUBSS instruction, Vol.2-4-393
Superscalar microarchitecture

P6 family microarchitecture, Vol.1-2-2
P6 family processors, Vol.1-2-7
Pentium 4 processor, Vol.1-2-9
Pentium Pro processor, Vol.1-2-2
Pentium processor, Vol.1-2-2

Supervisor mode
description of, Vol.3-5-28
U/S (user/supervisor) flag, Vol.3-5-28

SVR (spurious-interrupt vector register), local APIC, Vol.3-10-8, 
Vol.3-22-27

SWAPGS instruction, Vol.2-4-394, Vol.3-2-7, Vol.3-31-15
SYSCALL instruction, Vol.2-4-396, Vol.3-2-7, Vol.3-5-22, Vol.3-31-15
SYSENTER instruction, Vol.2-4-398, Vol.3-3-9, Vol.3-5-10, Vol.3-5-20, 

Vol.3-5-21, Vol.3-31-15, Vol.3-31-16
CPUID flag, Vol.2-3-173

SYSENTER_CS_MSR, Vol.3-5-21
SYSENTER_EIP_MSR, Vol.3-5-21
SYSENTER_ESP_MSR, Vol.3-5-21
SYSEXIT instruction, Vol.2-4-401, Vol.3-3-9, Vol.3-5-10, Vol.3-5-20, 

Vol.3-5-21, Vol.3-31-15, Vol.3-31-16
CPUID flag, Vol.2-3-173

SYSRET instruction, Vol.2-4-404, Vol.3-2-7, Vol.3-5-22, Vol.3-31-15
System

architecture, Vol.3-2-1, Vol.3-2-2
data structures, Vol.3-2-2
instructions, Vol.3-2-7, Vol.3-2-19
registers in IA-32e mode, Vol.3-2-7
registers, introduction to, Vol.3-2-6
segment descriptor, layout of, Vol.3-5-2
segments, paging of, Vol.3-2-6

System management mode (see SMM)
System programming

MMX technology, Vol.3-12-1
SSE/SSE2/SSE3 extensions, Vol.1-13-14
virtualization of resources, Vol.3-32-1

System-management mode (see SMM)

T
T (debug trap) flag, TSS, Vol.3-7-5
Tangent, x87 FPU operation, Vol.1-8-20, Vol.2-3-319
Task gate, Vol.1-6-12
Task gates

descriptor, Vol.3-7-8
executing a task, Vol.3-7-2

handling a virtual-8086 mode interrupt or exception through, 
Vol.3-20-14

IA-32e mode, Vol.3-2-5
in IDT, Vol.3-6-10
introduction for IA-32e, Vol.3-2-4
introduction to, Vol.3-2-4, Vol.3-2-5
layout of, Vol.3-6-10
referencing of TSS descriptor, Vol.3-6-14

Task management, Vol.3-7-1
data structures, Vol.3-7-3
mechanism, description of, Vol.3-7-2

Task register, Vol.1-3-4, Vol.3-3-16
description of, Vol.3-2-13, Vol.3-7-1, Vol.3-7-7
IA-32e mode, Vol.3-2-13
initializing, Vol.3-9-10
introduction to, Vol.3-2-6
loading, Vol.2-3-478
storing, Vol.2-4-384

Task state segment (see TSS)
Task switch

CALL instruction, Vol.2-3-95
return from nested task, IRET instruction, Vol.2-3-423

Task switching
description of, Vol.3-7-3
exception condition, Vol.3-17-10
operation, Vol.3-7-10
preventing recursive task switching, Vol.3-7-13
saving MMX state on, Vol.3-12-4
saving SSE/SSE2/SSE3 state

on task or context switches, Vol.3-13-6
T (debug trap) flag, Vol.3-7-5

Tasks
address space, Vol.3-7-14
description of, Vol.3-7-1
exception handler, Vol.1-6-12
exception-handler task, Vol.3-6-11
executing, Vol.3-7-2
Intel 286 processor tasks, Vol.3-22-36
interrupt handler, Vol.1-6-12
interrupt-handler task, Vol.3-6-11
interrupts and exceptions, Vol.3-6-14
linking, Vol.3-7-12
logical address space, Vol.3-7-15
management, Vol.3-7-1
mapping linear and physical address space, Vol.3-7-14
restart following an exception or interrupt, Vol.3-6-5
state (context), Vol.3-7-2, Vol.3-7-3
structure, Vol.3-7-1
switching, Vol.3-7-3
task management data structures, Vol.3-7-3

Temporal data, Vol.1-10-12
TEST instruction, Vol.1-7-14, Vol.2-4-407, Vol.2-4-539
TF (trap) flag, EFLAGS register, Vol.1-3-16, Vol.1-A-1, Vol.3-2-9, 

Vol.3-6-14, Vol.3-17-10, Vol.3-17-11, Vol.3-17-29, 
Vol.3-17-31, Vol.3-17-33, Vol.3-17-35, Vol.3-20-4, 
Vol.3-20-19, Vol.3-34-11

Thermal Monitor, Vol.1-2-4
CPUID flag, Vol.2-3-174

Thermal Monitor 2, Vol.2-3-170
CPUID flag, Vol.2-3-170

Thermal monitoring
advanced power management, Vol.3-14-19
automatic, Vol.3-14-21
automatic thermal monitoring, Vol.3-14-20
catastrophic shutdown detector, Vol.3-14-20, Vol.3-14-21
clock-modulation bits, Vol.3-14-24
C-state, Vol.3-14-19
detection of facilities, Vol.3-14-26
Enhanced Intel SpeedStep Technology, Vol.3-14-1
IA32_APERF MSR, Vol.3-14-2
IA32_MPERF MSR, Vol.3-14-1
IA32_THERM_INTERRUPT MSR, Vol.3-14-26
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IA32_THERM_STATUS MSR, Vol.3-14-26
interrupt enable/disable flags, Vol.3-14-23
interrupt mechanisms, Vol.3-14-20
MWAIT extensions for, Vol.3-14-19
on die sensors, Vol.3-14-20, Vol.3-14-26
overview of, Vol.3-14-1, Vol.3-14-20
performance state transitions, Vol.3-14-22
sensor interrupt, Vol.3-10-1
setting thermal thresholds, Vol.3-14-26
software controlled clock modulation, Vol.3-14-20, Vol.3-14-24
status flags, Vol.3-14-23
status information, Vol.3-14-23, Vol.3-14-24
stop clock mechanism, Vol.3-14-20
thermal monitor 1 (TM1), Vol.3-14-21
thermal monitor 2 (TM2), Vol.3-14-21
TM flag, CPUID instruction, Vol.3-14-26

Thermal status bit, Vol.3-14-26, Vol.3-14-30
Thermal status log bit, Vol.3-14-26, Vol.3-14-30
Thermal threshold #1 log, Vol.3-14-27, Vol.3-14-30, Vol.3-14-31
Thermal threshold #1 status, Vol.3-14-27, Vol.3-14-30
Thermal threshold #2 log, Vol.3-14-27, Vol.3-14-30
Thermal threshold #2 status, Vol.3-14-27, Vol.3-14-30, Vol.3-14-31
THERMTRIP# interrupt enable bit, Vol.3-14-28, Vol.3-14-31
thread timeout indicator, Vol.3-16-3, Vol.3-16-7, Vol.3-16-10, 

Vol.3-16-13, Vol.3-16-16
Threshold #1 interrupt enable bit, Vol.3-14-29, Vol.3-14-31
Threshold #1 value, Vol.3-14-28, Vol.3-14-31
Threshold #2 interrupt enable, Vol.3-14-29, Vol.3-14-32
Threshold #2 value, Vol.3-14-29, Vol.3-14-31
TI (table indicator) flag, segment selector, Vol.3-3-7
Time Stamp Counter, Vol.2-3-173
Timer, local APIC, Vol.3-10-16
Time-stamp counter

counting clockticks, Vol.3-18-79
description of, Vol.3-17-36
IA32_TIME_STAMP_COUNTER MSR, Vol.3-17-36
RDTSC instruction, Vol.3-17-36
reading, Vol.3-2-23
software drivers for, Vol.3-18-93
TSC flag, Vol.3-17-36
TSD flag, Vol.3-17-36

Time-stamp counter, reading, Vol.2-4-295, Vol.2-4-297
Tiny number, Vol.1-4-14
TLB entry, invalidating (flushing), Vol.2-3-418
TLBs

description of, Vol.3-11-1, Vol.3-11-5
flushing, Vol.3-11-19
invalidating (flushing), Vol.3-2-22
relationship to PGE flag, Vol.3-22-18
relationship to PSE flag, Vol.3-11-20
virtual TLBs, Vol.3-32-3

TM1 and TM2
See: thermal monitoring, Vol.3-14-21

TMR
Trigger Mode Register, Vol.3-10-31, Vol.3-10-38, Vol.3-10-41, 

Vol.3-10-47
TMR (Trigger Mode Register), local APIC, Vol.3-10-30
TOP (stack TOP) field

x87 FPU status word, Vol.1-8-2, Vol.1-9-9
TPR

Task Priority Register, Vol.3-10-38, Vol.3-10-41
TR register, Vol.1-3-5
TR (trace message enable) flag

DEBUGCTLMSR MSR, Vol.3-17-11, Vol.3-17-29, Vol.3-17-32, 
Vol.3-17-33, Vol.3-17-35

Trace cache, Vol.1-2-9, Vol.3-11-4, Vol.3-11-5
Transcendental instruction accuracy, Vol.1-8-22, Vol.3-22-7, Vol.3-22-14
Translation lookaside buffer (see TLB)
Trap gate, Vol.1-6-9
Trap gates

difference between interrupt and trap gates, Vol.3-6-14
for 16-bit and 32-bit code modules, Vol.3-21-1

handling a virtual-8086 mode interrupt or exception through, 
Vol.3-20-12

in IDT, Vol.3-6-10
introduction for IA-32e, Vol.3-2-4
introduction to, Vol.3-2-4, Vol.3-2-5
layout of, Vol.3-6-10

Traps
description of, Vol.3-6-5
restarting a program or task after, Vol.3-6-5

Truncation
description of, Vol.1-4-18
with SSE-SSE2 conversion instructions, Vol.1-4-18

Trusted Platform Module, Vol.2-5-4, Vol.2-5-5
TS (task switched) flag

CR0 control register, Vol.3-2-15, Vol.3-2-21, Vol.3-6-27, Vol.3-12-1, 
Vol.3-13-3, Vol.3-13-7

TS (task switched) flag, CR0 register, Vol.2-3-115
TSD flag, CR4 register, Vol.2-4-295, Vol.2-4-297
TSD (time-stamp counter disable) flag

CR4 control register, Vol.3-2-17, Vol.3-5-24, Vol.3-17-37, 
Vol.3-22-17

TSS
16-bit TSS, structure of, Vol.3-7-15
32-bit TSS, structure of, Vol.3-7-3
64-bit mode, Vol.3-7-16
CR3 control register (PDBR), Vol.3-7-4, Vol.3-7-14
description of, Vol.3-2-4, Vol.3-2-5, Vol.3-7-1, Vol.3-7-3
EFLAGS register, Vol.3-7-4
EFLAGS.NT, Vol.3-7-12
EIP, Vol.3-7-4
executing a task, Vol.3-7-2
floating-point save area, Vol.3-22-11
format in 64-bit mode, Vol.3-7-16
general-purpose registers, Vol.3-7-4
IA-32e mode, Vol.3-2-5
initialization for multitasking, Vol.3-9-10
interrupt stack table, Vol.3-7-17
invalid TSS exception, Vol.3-6-31
IRET instruction, Vol.3-7-12
I/O map base, Vol.1-16-4
I/O map base address field, Vol.3-7-5, Vol.3-22-28
I/O permission bit map, Vol.1-16-4, Vol.3-7-5, Vol.3-7-17
LDT segment selector field, Vol.3-7-4, Vol.3-7-14
link field, Vol.3-6-14
order of reads/writes to, Vol.3-22-28
pointed to by task-gate descriptor, Vol.3-7-8
previous task link field, Vol.3-7-4, Vol.3-7-12, Vol.3-7-13
privilege-level 0, 1, and 2 stacks, Vol.3-5-17
referenced by task gate, Vol.3-6-14
saving state of EFLAGS register, Vol.1-3-14
segment registers, Vol.3-7-4
T (debug trap) flag, Vol.3-7-5
task register, Vol.3-7-7
using 16-bit TSSs in a 32-bit environment, Vol.3-22-28
virtual-mode extensions, Vol.3-22-28

TSS descriptor
B (busy) flag, Vol.3-7-5
busy flag, Vol.3-7-13
initialization for multitasking, Vol.3-9-10
structure of, Vol.3-7-5, Vol.3-7-6

TSS segment selector
field, task-gate descriptor, Vol.3-7-8
writes, Vol.3-22-28

TSS, relationship to task register, Vol.2-4-384
Type

checking, Vol.3-5-5
field, IA32_MTRR_DEF_TYPE MSR, Vol.3-11-22
field, IA32_MTRR_PHYSBASEn MTRR, Vol.3-11-24, Vol.3-11-26
field, segment descriptor, Vol.3-3-10, Vol.3-3-12, Vol.3-3-14, 

Vol.3-5-2, Vol.3-5-5
of segment, Vol.3-5-5

TZCNT - Count the Number of Trailing Zero Bits, Vol.2-4-409
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U
UC- (uncacheable) memory type, Vol.3-11-6
UCOMISD instruction, Vol.1-11-7, Vol.2-4-409
UCOMISS instruction, Vol.1-10-9, Vol.2-4-413
UD2 instruction, Vol.1-7-24, Vol.2-4-415, Vol.3-22-4
UE (numeric underflow exception) flag

MXCSR register, Vol.1-11-16
x87 FPU status word, Vol.1-8-5, Vol.1-8-29

UM (numeric underflow exception) mask bit
MXCSR register, Vol.1-11-16
x87 FPU control word, Vol.1-8-7, Vol.1-8-29

Uncached (UC-) memory type, Vol.3-11-8
Uncached (UC) memory type (see Strong uncached (UC) memory type)
Undefined opcodes, Vol.3-22-5
Undefined, format opcodes, Vol.2-3-349
Underflow

FPU exception
(see Numeric underflow exception)

numeric, floating-point, Vol.1-4-14
x87 FPU stack, Vol.1-8-25

Underflow, x87 FPU stack, Vol.1-8-25
Unit mask field, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family processors)

, Vol.3-18-3, Vol.3-18-5, Vol.3-18-6, Vol.3-18-7, Vol.3-18-8, 
Vol.3-18-9, Vol.3-18-14, Vol.3-18-15, Vol.3-18-30, 
Vol.3-18-32, Vol.3-18-39, Vol.3-18-40, Vol.3-18-41, 
Vol.3-18-56, Vol.3-18-92

Un-normal number, Vol.3-22-9
Unordered values, Vol.2-3-273, Vol.2-3-349, Vol.2-3-351
Unpack instructions

SSE extensions, Vol.1-10-9
SSE2 extensions, Vol.1-11-7

UNPCKHPD instruction, Vol.1-11-8, Vol.2-4-416
UNPCKHPS instruction, Vol.1-10-10, Vol.2-4-418
UNPCKLPD instruction, Vol.1-11-8, Vol.2-4-420
UNPCKLPS instruction, Vol.1-10-10, Vol.2-4-422
Unsigned integers

description of, Vol.1-4-3
range of, Vol.1-4-3
types, Vol.1-4-3

Unsupported, Vol.1-8-14
floating-point formats, x87 FPU, Vol.1-8-14
x87 FPU instructions, Vol.1-8-23

User mode
description of, Vol.3-5-28
U/S (user/supervisor) flag, Vol.3-5-28

User-defined interrupts, Vol.3-6-1, Vol.3-6-51
USR (user mode) flag, PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family 

processors), Vol.3-18-3, Vol.3-18-5, Vol.3-18-6, Vol.3-18-7, 
Vol.3-18-8, Vol.3-18-9, Vol.3-18-14, Vol.3-18-15, 
Vol.3-18-30, Vol.3-18-32, Vol.3-18-39, Vol.3-18-40, 
Vol.3-18-41, Vol.3-18-56, Vol.3-18-92

U/S (user/supervisor) flag
page-directory entry, Vol.3-5-1, Vol.3-5-2, Vol.3-5-28
page-table entries, Vol.3-20-8
page-table entry, Vol.3-5-1, Vol.3-5-2, Vol.3-5-28

V
V (valid) flag

IA32_MTRR_PHYSMASKn MTRR, Vol.3-11-24, Vol.3-11-26
Variable-range MTRRs, description of, Vol.3-11-23, Vol.3-11-25
VCNT (variable range registers count) field, IA32_MTRRCAP MSR, 

Vol.3-11-22
Vector (see Interrupt vector)
Vectors

exceptions, Vol.3-6-1
interrupts, Vol.3-6-1

VERR instruction, Vol.2-4-433, Vol.3-2-22, Vol.3-5-25
Version information, processor, Vol.2-3-157
VERW instruction, Vol.2-4-433, Vol.3-2-22, Vol.3-5-25
VEX, Vol.2-3-3
VEXTRACTI128 - Extract packed Integer Values, Vol.2-4-522

VEX.B, Vol.2-3-3
VEX.L, Vol.2-3-3
VEX.mmmmm, Vol.2-3-3
VEX.pp, Vol.2-3-4
VEX.R, Vol.2-3-4
VEX.vvvv, Vol.2-3-3
VEX.W, Vol.2-3-3
VEX.X, Vol.2-3-3
VFMADD132PD/VFMADD213PD/VFMADD231PD - Fused Multiply-Add of 

Packed Double-Precision Floating-Point Values, Vol.2-4-432
VFMADD132SD/VFMADD213SD/VFMADD231SD - Fused Multiply-Add of 

Scalar Double-Precision Floating-Point Values, Vol.2-4-443
VFMADD132SS/VFMADD213SS/VFMADD231SS - Fused Multiply-Add of 

Scalar Single-Precision Floating-Point Values, Vol.2-4-445
VFMADDSUB132PD/VFMADDSUB213PD/VFMADDSUB231PD - Fused 

Multiply-Alternating Add/Subtract of Packed Double-Precision 
Floating-Point Values, Vol.2-4-447

VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS - Fused 
Multiply-Alternating Add/Subtract of Packed Single-Precision 
Floating-Point Values, Vol.2-4-450

VFMSUB132PD/VFMSUB213PD/VFMSUB231PD - Fused Multiply-Subtract 
of Packed Double-Precision Floating-Point Values, Vol.2-4-459

VFMSUB132PS/VFMSUB213PS/VFMSUB231PS - Fused Multiply-Subtract 
of Packed Single-Precision Floating-Point Values, Vol.2-4-462

VFMSUB132SD/VFMSUB213SD/VFMSUB231SD - Fused Multiply-Subtract 
of Scalar Double-Precision Floating-Point Values, Vol.2-4-465

VFMSUB132SS/VFMSUB213SS/VFMSUB231SS - Fused Multiply-Subtract 
of Scalar Single-Precision Floating-Point Values, Vol.2-4-467

VFMSUBADD132PD/VFMSUBADD213PD/VFMSUBADD231PD - Fused 
Multiply-Alternating Subtract/Add of Packed Double-Precision 
Floating-Point Values, Vol.2-4-453

VFNMADD132PD/VFNMADD213PD/VFNMADD231PD - Fused Negative 
Multiply-Add of Packed Double-Precision Floating-Point Values, 
Vol.2-4-469

VFNMADD132PS/VFNMADD213PS/VFNMADD231PS - Fused Negative 
Multiply-Add of Packed Single-Precision Floating-Point Values, 
Vol.2-4-472

VFNMADD132SD/VFNMADD213SD/VFNMADD231SD - Fused Negative 
Multiply-Add of Scalar Double-Precision Floating-Point Values, 
Vol.2-4-475

VFNMSUB132PD/VFNMSUB213PD/VFNMSUB231PD - Fused Negative 
Multiply-Subtract of Packed Double-Precision Floating-Point 
Values, Vol.2-4-479

VFNMSUB132SD/VFNMSUB213SD/VFNMSUB231SD - Fused Negative 
Multiply-Subtract of Scalar Double-Precision Floating-Point 
Values, Vol.2-4-485

VGATHERDPS/VGATHERQPS - Gather Packed SP FP values Using Signed 
Dword/Qword Indices, Vol.2-4-493

VIF (virtual interrupt) flag
EFLAGS register, Vol.3-2-11, Vol.3-22-5, Vol.3-22-6

VIF (virtual interrupt) flag, EFLAGS register, Vol.1-3-16
VIP (virtual interrupt pending) flag

EFLAGS register, Vol.1-3-16, Vol.3-2-11, Vol.3-22-5, Vol.3-22-6
Virtual 8086 mode

description of, Vol.1-3-16
memory model, Vol.1-3-6, Vol.1-3-7

Virtual Machine Monitor, Vol.2-5-1
Virtual memory, Vol.3-2-6, Vol.3-3-1, Vol.3-3-2
Virtual-8086 mode

8086 emulation, Vol.3-20-1
description of, Vol.3-20-5
emulating 8086 operating system calls, Vol.3-20-18
enabling, Vol.3-20-6
entering, Vol.3-20-8
exception and interrupt handling overview, Vol.3-20-11
exceptions and interrupts, handling through a task gate, Vol.3-20-14
exceptions and interrupts, handling through a trap or interrupt gate, 

Vol.3-20-12
handling exceptions and interrupts through a task gate, Vol.3-20-14
interrupts, Vol.3-20-6
introduction to, Vol.3-2-7
IOPL sensitive instructions, Vol.3-20-10



Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C Index -35

INDEX

I/O-port-mapped I/O, Vol.3-20-11
leaving, Vol.3-20-9
memory mapped I/O, Vol.3-20-11
native 16-bit mode, Vol.3-21-1
overview of, Vol.3-20-1
paging of virtual-8086 tasks, Vol.3-20-7
protection within a virtual-8086 task, Vol.3-20-8
special I/O buffers, Vol.3-20-11
structure of a virtual-8086 task, Vol.3-20-7
virtual I/O, Vol.3-20-10
VM flag, EFLAGS register, Vol.3-2-10

Virtual-8086 tasks
paging of, Vol.3-20-7
protection within, Vol.3-20-8
structure of, Vol.3-20-7

Virtualization
debugging facilities, Vol.3-32-1
interrupt vector space, Vol.3-33-3
memory, Vol.3-32-2
microcode update facilities, Vol.3-32-8
operating modes, Vol.3-32-2
page faults, Vol.3-32-5
system resources, Vol.3-32-1
TLBs, Vol.3-32-3

VM
OSs and application software, Vol.3-31-1
programming considerations, Vol.3-31-1

VM entries
basic VM-entry checks, Vol.3-26-2
checking guest state

control registers, Vol.3-26-8
debug registers, Vol.3-26-8
descriptor-table registers, Vol.3-26-11
MSRs, Vol.3-26-8
non-register state, Vol.3-26-12
RIP and RFLAGS, Vol.3-26-11
segment registers, Vol.3-26-9

checks on controls, host-state area, Vol.3-26-2
registers and MSRs, Vol.3-26-6
segment and descriptor-table registers, Vol.3-26-7
VMX control checks, Vol.3-26-2

exit-reason numbers, Vol.3-C-1
loading guest state, Vol.3-26-14

control and debug registers, MSRs, Vol.3-26-14
RIP, RSP, RFLAGS, Vol.3-26-16
segment & descriptor-table registers, Vol.3-26-15

loading MSRs, Vol.3-26-17
failure cases, Vol.3-26-17
VM-entry MSR-load area, Vol.3-26-17

overview of failure conditions, Vol.3-26-1
overview of steps, Vol.3-26-1
VMLAUNCH and VMRESUME, Vol.3-26-1
See also: VMCS, VMM, VM exits

VM exits
architectural state

existing before exit, Vol.3-27-1
updating state before exit, Vol.3-27-1

basic VM-exit information fields, Vol.3-27-4
basic exit reasons, Vol.3-27-4
exit qualification, Vol.3-27-4

exception bitmap, Vol.3-27-1
exceptions (faults, traps, and aborts), Vol.3-25-5
exit-reason numbers, Vol.3-C-1
external interrupts, Vol.3-25-5
handling of exits due to exceptions, Vol.3-31-8
IA-32 faults and VM exits, Vol.3-25-1
INITs, Vol.3-25-5
instructions that cause:

conditional exits, Vol.3-25-2
unconditional exits, Vol.3-25-2

interrupt-window exiting, Vol.3-25-6
non-maskable interrupts (NMIs), Vol.3-25-5

page faults, Vol.3-25-5
reflecting exceptions to guest, Vol.3-31-8
resuming guest after exception handling, Vol.3-31-9
start-up IPIs (SIPIs), Vol.3-25-5
task switches, Vol.3-25-5
See also: VMCS, VMM, VM entries

VM (virtual 8086 mode) flag, EFLAGS register, Vol.1-3-16, Vol.2-3-423
VM (virtual-8086 mode) flag

EFLAGS register, Vol.3-2-8, Vol.3-2-10
VMCALL instruction, Vol.1-5-29, Vol.1-5-30, Vol.3-30-1
VMCLEAR instruction, Vol.1-5-29, Vol.3-30-1, Vol.3-31-7
VMCS

error numbers, Vol.3-30-31
field encodings, Vol.3-1-5, Vol.3-B-1

16-bit guest-state fields, Vol.3-B-1
16-bit host-state fields, Vol.3-B-2
32-bit control fields, Vol.3-B-1, Vol.3-B-5
32-bit guest-state fields, Vol.3-B-7
32-bit read-only data fields, Vol.3-B-6
64-bit control fields, Vol.3-B-2
64-bit guest-state fields, Vol.3-B-4, Vol.3-B-5
natural-width control fields, Vol.3-B-8
natural-width guest-state fields, Vol.3-B-8
natural-width host-state fields, Vol.3-B-9
natural-width read-only data fields, Vol.3-B-8

format of VMCS region, Vol.3-24-2
guest-state area, Vol.3-24-3, Vol.3-24-4

guest non-register state, Vol.3-24-5
guest register state, Vol.3-24-4

host-state area, Vol.3-24-3, Vol.3-24-7
introduction, Vol.3-24-1
migrating between processors, Vol.3-24-23
software access to, Vol.3-24-23
VMCS data, Vol.3-24-2, Vol.3-25-15
VMCS pointer, Vol.3-24-1, Vol.3-31-2
VMCS region, Vol.3-24-1, Vol.3-31-2
VMCS revision identifier, Vol.3-24-2, Vol.3-25-15
VM-entry control fields, Vol.3-24-3, Vol.3-24-17

entry controls, Vol.3-24-17
entry controls for event injection, Vol.3-24-18
entry controls for MSRs, Vol.3-24-18

VM-execution control fields, Vol.3-24-3, Vol.3-24-8
controls for CR8 accesses, Vol.3-24-12
CR3-target controls, Vol.3-24-12
exception bitmap, Vol.3-24-11
I/O bitmaps, Vol.3-24-11
masks & read shadows CR0 & CR4, Vol.3-24-11
pin-based controls, Vol.3-24-8
processor-based controls, Vol.3-24-9
time-stamp counter offset, Vol.3-24-11

VM-exit control fields, Vol.3-24-3, Vol.3-24-16
exit controls, Vol.3-24-16
exit controls for MSRs, Vol.3-24-17

VM-exit information fields, Vol.3-24-3, Vol.3-24-19
basic exit information, Vol.3-24-19, Vol.3-C-1
basic VM-exit information, Vol.3-24-19
exits due to instruction execution, Vol.3-24-22
exits due to vectored events, Vol.3-24-20
exits occurring during event delivery, Vol.3-24-21
VM-instruction error field, Vol.3-24-22

VM-instruction error field, Vol.3-26-1, Vol.3-30-31
VMREAD instruction, Vol.3-31-2

field encodings, Vol.3-1-5, Vol.3-B-1
VMWRITE instruction, Vol.3-31-2

field encodings, Vol.3-1-5, Vol.3-B-1
VMX-abort indicator, Vol.3-24-2, Vol.3-25-15
See also: VM entries, VM exits, VMM, VMX

VME (virtual-8086 mode extensions) flag, CR4 control register, 
Vol.3-2-11, Vol.3-2-16, Vol.3-22-17

VMLAUNCH instruction, Vol.1-5-29, Vol.1-5-30, Vol.3-30-1, Vol.3-31-7
VMM, Vol.2-5-1

asymmetric design, Vol.3-31-10
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control registers, Vol.3-31-17
CPUID instruction emulation, Vol.3-31-12
debug exceptions, Vol.3-32-1
debugging facilities, Vol.3-32-1
entering VMX root operation, Vol.3-31-4
error handling, Vol.3-31-2
exception bitmap, Vol.3-32-1
external interrupts, Vol.3-33-1
fast instruction set emulator, Vol.3-31-1
index data pairs, usage of, Vol.3-31-11
interrupt handling, Vol.3-33-1
interrupt vectors, Vol.3-33-3
leaving VMX operation, Vol.3-31-4
machine checks, Vol.3-33-8, Vol.3-33-9, Vol.3-33-11
memory virtualization, Vol.3-32-2
microcode update facilities, Vol.3-32-8
multi-processor considerations, Vol.3-31-10
operating modes, Vol.3-31-12
programming considerations, Vol.3-31-1
response to page faults, Vol.3-32-5
root VMCS, Vol.3-31-2
SMI transfer monitor, Vol.3-31-4
steps for launching VMs, Vol.3-31-6
SWAPGS instruction, Vol.3-31-15
symmetric design, Vol.3-31-10
SYSCALL/SYSRET instructions, Vol.3-31-15
SYSENTER/SYSEXIT instructions, Vol.3-31-15
triple faults, Vol.3-33-1
virtual TLBs, Vol.3-32-3
virtual-8086 container, Vol.3-31-1
virtualization of system resources, Vol.3-32-1
VM exits, Vol.3-27-1
VM exits, handling of, Vol.3-31-7
VMCLEAR instruction, Vol.3-31-7
VMCS field width, Vol.3-31-12
VMCS pointer, Vol.3-31-2
VMCS region, Vol.3-31-2
VMCS revision identifier, Vol.3-31-2
VMCS, writing/reading fields, Vol.3-31-2
VM-exit failures, Vol.3-33-8
VMLAUNCH instruction, Vol.3-31-7
VMREAD instruction, Vol.3-31-2
VMRESUME instruction, Vol.3-31-7
VMWRITE instruction, Vol.3-31-2, Vol.3-31-7
VMXOFF instruction, Vol.3-31-4
See also: VMCS, VM entries, VM exits, VMX

VMM software interrupts, Vol.3-33-1
VMPTRLD instruction, Vol.1-5-29, Vol.3-30-1
VMPTRST instruction, Vol.1-5-29, Vol.3-30-1
VMREAD instruction, Vol.1-5-29, Vol.3-30-1, Vol.3-31-2

field encodings, Vol.3-B-1
VMRESUME instruction, Vol.1-5-29, Vol.1-5-30, Vol.3-30-1, Vol.3-31-7
VMWRITE instruction, Vol.1-5-29, Vol.3-30-1, Vol.3-31-2, Vol.3-31-7

field encodings, Vol.3-B-1
VMX

A20M# signal, Vol.3-23-4
capability MSRs

overview, Vol.3-23-2, Vol.3-A-1
IA32_VMX_BASIC MSR, Vol.3-24-3, Vol.3-31-2, Vol.3-31-5, 

Vol.3-31-6, Vol.3-31-11, Vol.1-35-44, Vol.1-35-55, 
Vol.1-35-67, Vol.1-35-83, Vol.1-35-116, Vol.1-35-174, 
Vol.1-35-187, Vol.3-A-1, Vol.3-A-2

IA32_VMX_CR0_FIXED0 MSR, Vol.3-23-3, Vol.3-31-4, 
Vol.1-35-44, Vol.1-35-55, Vol.1-35-68, Vol.1-35-83, 
Vol.1-35-117, Vol.1-35-175, Vol.1-35-188, Vol.3-A-6

IA32_VMX_CR0_FIXED1 MSR, Vol.3-23-3, Vol.3-31-4, 
Vol.1-35-44, Vol.1-35-55, Vol.1-35-68, Vol.1-35-83, 
Vol.1-35-117, Vol.1-35-175, Vol.1-35-188, Vol.3-A-6

IA32_VMX_CR4_FIXED0 MSR, Vol.3-23-3, Vol.3-31-4, 
Vol.1-35-44, Vol.1-35-55, Vol.1-35-68, Vol.1-35-83, 
Vol.1-35-117, Vol.1-35-175, Vol.1-35-188

IA32_VMX_CR4_FIXED1 MSR, Vol.3-23-3, Vol.3-31-4, 
Vol.1-35-44, Vol.1-35-55, Vol.1-35-68, Vol.1-35-84, 
Vol.1-35-117, Vol.1-35-175, Vol.1-35-188

IA32_VMX_ENTRY_CTLS MSR, Vol.3-31-5, Vol.3-31-6, 
Vol.1-35-44, Vol.1-35-55, Vol.1-35-68, Vol.1-35-83, 
Vol.1-35-117, Vol.1-35-175, Vol.1-35-188, Vol.3-A-2, 
Vol.3-A-5

IA32_VMX_EXIT_CTLS MSR, Vol.3-31-5, Vol.3-31-6, Vol.1-35-44, 
Vol.1-35-55, Vol.1-35-68, Vol.1-35-83, Vol.1-35-117, 
Vol.1-35-174, Vol.1-35-188, Vol.3-A-2, Vol.3-A-4, Vol.3-A-5

IA32_VMX_MISC MSR, Vol.3-24-6, Vol.3-26-3, Vol.3-26-12, 
Vol.3-34-25, Vol.1-35-44, Vol.1-35-55, Vol.1-35-68, 
Vol.1-35-83, Vol.1-35-117, Vol.1-35-175, Vol.1-35-188, 
Vol.3-A-5

IA32_VMX_PINBASED_CTLS MSR, Vol.3-31-5, Vol.3-31-6, 
Vol.1-35-44, Vol.1-35-55, Vol.1-35-68, Vol.1-35-83, 
Vol.1-35-116, Vol.1-35-174, Vol.1-35-188, Vol.3-A-2, 
Vol.3-A-3

IA32_VMX_PROCBASED_CTLS MSR, Vol.3-24-8, Vol.3-31-5, 
Vol.3-31-6, Vol.1-35-44, Vol.1-35-55, Vol.1-35-56, 
Vol.1-35-68, Vol.1-35-69, Vol.1-35-83, Vol.1-35-84, 
Vol.1-35-116, Vol.1-35-117, Vol.1-35-141, Vol.1-35-174, 
Vol.1-35-188, Vol.3-A-2, Vol.3-A-3, Vol.3-A-4, Vol.3-A-8

IA32_VMX_VMCS_ENUM MSR, Vol.1-35-175
CPUID instruction, Vol.3-23-2, Vol.3-A-1
CR4 control register, Vol.3-23-3
CR4 fixed bits, Vol.3-A-6
debugging facilities, Vol.3-32-1
EFLAGS, Vol.3-31-2
entering operation, Vol.3-23-3
entering root operation, Vol.3-31-4
error handling, Vol.3-31-2
guest software, Vol.3-23-1
IA32_FEATURE_CONTROL MSR, Vol.3-23-3
INIT# signal, Vol.3-23-4
instruction set, Vol.1-5-29, Vol.3-23-2
introduction, Vol.1-2-20, Vol.3-23-1
memory virtualization, Vol.3-32-2
microcode update facilities, Vol.3-25-9, Vol.3-32-8
non-root operation, Vol.3-23-1

event blocking, Vol.3-25-9
instruction changes, Vol.3-25-6
overview, Vol.3-25-1
task switches not allowed, Vol.3-25-10
see VM exits

operation restrictions, Vol.3-23-3
root operation, Vol.3-23-1
SMM

CR4.VMXE reserved, Vol.3-34-18
overview, Vol.3-34-1
RSM instruction, Vol.3-34-18
VMCS pointer, Vol.3-34-17
VMX-critical state, Vol.3-34-17

testing for support, Vol.3-23-2
Virtual machine monitor (VMM), Vol.1-2-20
virtual TLBs, Vol.3-32-3
virtualization, Vol.1-2-20
virtual-machine control structure (VMCS), Vol.3-23-2
virtual-machine monitor (VMM), Vol.3-23-1
vitualization of system resources, Vol.3-32-1
VM entries and exits, Vol.3-23-1
VM exits, Vol.3-27-1
VMCS pointer, Vol.3-23-2
VMM life cycle, Vol.3-23-2
VMXOFF instruction, Vol.3-23-3
VMXON instruction, Vol.3-23-3
VMXON pointer, Vol.3-23-3
VMXON region, Vol.3-23-3
See also:VMM, VMCS, VM entries, VM exits

VMXOFF instruction, Vol.1-5-29, Vol.3-23-3, Vol.3-30-1
VMXON instruction, Vol.1-5-29, Vol.3-23-3, Vol.3-30-1
VPBROADCAST - Broadcast Integer Data, Vol.2-4-512
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VPERM2I128 - Permute Integer Values, Vol.2-4-520
VPERMD - Full Doublewords Element Permutation, Vol.2-4-516
VPERMPD - Permute Double-Precision Floating-Point Elements, 

Vol.2-4-517
VPERMPS - Permute Single-Precision Floating-Point Elements, 

Vol.2-4-518
VPERMQ - Qwords Element Permutation, Vol.2-4-519
VPGATHERDQ/VPGATHERQQ - Gather Packed Qword values Using Signed 

Dword/Qword Indices, Vol.2-4-501
VPSRLVD/VPSRLVQ - Variable Bit Shift Right Logical, Vol.2-4-537

W
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