
http://ramirose.wix.com/ramirosen1/121

 Rami Rosen

ramirose@gmail.com

 Haifux, May 2013

www.haifux.org

Resource management:

Linux kernel Namespaces and

cgroups

mailto:ramirose@gmail.com

http://ramirose.wix.com/ramirosen2/121

TOC

PID namespaces

cgroups

Note: All code examples are from for_3_10 branch of cgroup git tree (3.9.0-rc1, April 2013)

links

Mounting cgroups

user namespaces

UTS namespace

Network Namespace

Mount namespace

http://ramirose.wix.com/ramirosen3/121

General

The presentation deals with two Linux process resource

management solutions: namespaces and cgroups.

We will look at:
● Kernel Implementation details.
●what was added/changed in brief.
● User space interface.
● Some working examples.
● Usage of namespaces and cgroups in other projects.
● Is process virtualization indeed lightweight comparing to Os

virtualization ?
●Comparing to VMWare/qemu/scaleMP or even to Xen/KVM.

http://ramirose.wix.com/ramirosen4/121

Namespaces

● Namespaces - lightweight process virtualization.

– Isolation: Enable a process (or several processes) to have different

views of the system than other processes.

– 1992: “The Use of Name Spaces in Plan 9”

– http://www.cs.bell-labs.com/sys/doc/names.html

● Rob Pike et al, ACM SIGOPS European Workshop 1992.

– Much like Zones in Solaris.

– No hypervisor layer (as in OS virtualization like KVM, Xen)

– Only one system call was added (setns())

– Used in Checkpoint/Restart

● Developers: Eric W. Biederman, Pavel Emelyanov, Al Viro, Cyrill Gorcunov, more.

–

http://www.cs.bell-labs.com/sys/doc/names.html

http://ramirose.wix.com/ramirosen5/121

Namespaces - contd

There are currently 6 namespaces:

● mnt (mount points, filesystems)

● pid (processes)

● net (network stack)

● ipc (System V IPC)

● uts (hostname)

● user (UIDs)

http://ramirose.wix.com/ramirosen6/121

Namespaces - contd

It was intended that there will be 10 namespaces: the following 4

namespaces are not implemented (yet):

● security namespace

● security keys namespace

● device namespace

● time namespace.

– There was a time namespace patch – but it was not applied.

– See: PATCH 0/4 - Time virtualization:

– http://lwn.net/Articles/179825/

● see ols2006, "Multiple Instances of the Global Linux Namespaces" Eric

W. Biederman

http://ramirose.wix.com/ramirosen7/121

Namespaces - contd

● Mount namespaces were the first type of namespace to be

implemented on Linux by Al Viro, appearing in 2002.

– Linux 2.4.19.

● CLONE_NEWNS flag was added (stands for “new namespace”; at

that time, no other namespace was planned, so it was not called

new mount...)

● User namespace was the last to be implemented. A number of Linux

filesystems are not yet user-namespace aware

http://ramirose.wix.com/ramirosen8/121

Implementation details

●Implementation (partial):

- 6 CLONE_NEW * flags were added:

(include/linux/sched.h)

● These flags (or a combination of them) can be

used in clone() or unshare() syscalls to create a

namespace.
●In setns(), the flags are optional.

http://ramirose.wix.com/ramirosen9/121

CLONE_NEWNS 2.4.19 CAP_SYS_ADMIN

CLONE_NEWUTS 2.6.19 CAP_SYS_ADMIN

CLONE_NEWIPC 2.6.19 CAP_SYS_ADMIN

 CLONE_NEWPID 2.6.24 CAP_SYS_ADMIN

CLONE_NEWNET 2.6.29 CAP_SYS_ADMIN

CLONE_NEWUSER 3.8 No capability is required

http://ramirose.wix.com/ramirosen10/121

Implementation - contd

● Three system calls are used for namespaces:

● clone() - creates a new process and a new namespace; the

process is attached to the new namespace.

– Process creation and process termination methods, fork() and exit() methods,

were patched to handle the new namespace CLONE_NEW* flags.

● unshare() - does not create a new process; creates a new

namespace and attaches the current process to it.

– unshare() was added in 2005, but not for namespaces only, but also for security.

see “new system call, unshare” : http://lwn.net/Articles/135266/

● setns() - a new system call was added, for joining an existing

namespace.

http://lwn.net/Articles/135266/

http://ramirose.wix.com/ramirosen11/121

Nameless namespaces

From man (2) clone:

...

 int clone(int (*fn)(void *), void *child_stack,

 int flags, void *arg, ...

 /* pid_t *ptid, struct user_desc *tls, pid_t *ctid */);

...
●Flags is the CLONE_* flags, including the namespaces

CLONE_NEW* flags. There are more than 20 flags in total.
● See include/uapi/linux/sched.h

●There is no parameter of a namespace name.
● How do we know if two processes are in the same namespace ?
● Namespaces do not have names.
● Six entries (inodes) were added under /proc/<pid>/ns (one for

each namespace) (in kernel 3.8 and higher.)
● Each namespace has a unique inode number.
●This inode number of a each namespace is created when the namespace is created.

http://ramirose.wix.com/ramirosen12/121

Nameless namespaces

●ls -al /proc/<pid>/ns
lrwxrwxrwx 1 root root 0 Apr 24 17:29 ipc -> ipc:[4026531839]

lrwxrwxrwx 1 root root 0 Apr 24 17:29 mnt -> mnt:[4026531840]

lrwxrwxrwx 1 root root 0 Apr 24 17:29 net -> net:[4026531956]

lrwxrwxrwx 1 root root 0 Apr 24 17:29 pid -> pid:[4026531836]

lrwxrwxrwx 1 root root 0 Apr 24 17:29 user -> user:[4026531837]

lrwxrwxrwx 1 root root 0 Apr 24 17:29 uts -> uts:[4026531838]

You can use also readlink.

http://ramirose.wix.com/ramirosen13/121

Implementation - contd

● A member named nsproxy was added to the process descriptor

, struct task_struct.
●A method named task_nsproxy(struct task_struct *tsk), to access

the nsproxy of a specified process. (include/linux/nsproxy.h)

● nsproxy includes 5 inner namespaces:
● uts_ns, ipc_ns, mnt_ns, pid_ns, net_ns;

 Notice that user ns is missing in this list,

● it is a member of the credentials object (struct cred) which is a

member of the process descriptor, task_struct.

● There is an initial, default namespace for each namespace.

http://ramirose.wix.com/ramirosen14/121

Implementation - contd

● Kernel config items:
 CONFIG_NAMESPACES

 CONFIG_UTS_NS

 CONFIG_IPC_NS

 CONFIG_USER_NS

 CONFIG_PID_NS

 CONFIG_NET_NS

● user space additions:
● IPROUTE package
●some additions like ip netns add/ip netns del and more.
●util-linux package
●unshare util with support for all the 6 namespaces.
●nsenter – a wrapper around setns().

http://ramirose.wix.com/ramirosen15/121

UTS namespace

● uts - (Unix timesharing)

– Very simple to implement.

Added a member named uts_ns (uts_namespace object) to the

nsproxy. process descriptor
(task_struct)

nsproxy

uts_ns (uts_namespace object)

name (new_utsname object)

 sysname

 nodename

 release

 version

 machine

 domainname

new_utsname struct

http://ramirose.wix.com/ramirosen16/121

UTS namespace - contd

The old implementation of gethostname():

asmlinkage long sys_gethostname(char __user *name, int len)

{

...

 if (copy_to_user(name, system_utsname.nodename, i))

... errno = -EFAULT;

}

(system_utsname is a global)

kernel/sys.c, Kernel v2.6.11.5

http://ramirose.wix.com/ramirosen17/121

UTS namespace - contd
A Method called utsname() was added:

static inline struct new_utsname *utsname(void)

{

return ¤t->nsproxy->uts_ns->name;

}

The new implementation of gethostname():
SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)

{

struct new_utsname *u;

...

u = utsname();

if (copy_to_user(name, u->nodename, i))

errno = -EFAULT;

...

}

Similar approach in uname() and sethostname() syscalls.

http://ramirose.wix.com/ramirosen18/121

UTS namespace - Example

We have a machine where hostname is myoldhostname.

uname -n
myoldhostname

unshare -u /bin/bash
This create a UTS namespace by unshare()

syscall and call execvp() for invoking bash.

Then:
hostname mynewhostname

uname -n
mynewhostname

Now from a different terminal we will run uname -n, and we will

see myoldhostname.

http://ramirose.wix.com/ramirosen19/121

UTS namespace - Example

nsexec
nsexec is a package by Serge Hallyn; it consists of a

program called nsexec.c which creates tasks in new

namespaces (there are some more utils in it) by clone() or by

unshare() with fork().

https://launchpad.net/~serge-hallyn/+archive/nsexec

Again we have a machine where hostname is myoldhostname.

uname -n
myoldhostname

http://ramirose.wix.com/ramirosen21/121

IPC namespaces

The same principle as uts , nothing

special, more code.

Added a member named ipc_ns

(ipc_namespace object) to the nsproxy.

●CONFIG_POSIX_MQUEUE or CONFIG_SYSVIPC must be set

http://ramirose.wix.com/ramirosen22/121

Network Namespaces

● A network namespace is logically another copy of the network stack,

 with its own routes, firewall rules, and network devices.

● The network namespace is struct net. (defined in

include/net/net_namespace.h)

Struct net includes all network stack ingredients, like:

– Loopback device.

– SNMP stats. (netns_mib)

– All network tables:routing, neighboring, etc.

– All sockets

– /procfs and /sysfs entries.

http://ramirose.wix.com/ramirosen23/121

Implementations guidelines

• A network device belongs to exactly one network
namespace.
● Added to struct net_device structure:
● struct net *nd_net;

for the Network namespace this network device is inside.
●Added a method: dev_net(const struct net_device *dev)
to access the nd_net namespace of a network device.

• A socket belongs to exactly one network namespace.
● Added sk_net to struct sock (also a pointer to struct net), for the

Network namespace this socket is inside.
● Added sock_net() and sock_net_set() methods (get/set network

 namespace of a socket)

http://ramirose.wix.com/ramirosen24/121

Network Namespaces - contd

● Added a system wide linked list of all namespaces: net_namespace_list,
and a macro to traverse it (for_each_net())

● The initial network namespace, init_net (instance of struct net), includes

the loopback device and all physical devices, the networking tables, etc.

● Each newly created network namespace includes only the loopback device.

● There are no sockets in a newly created namespace:

 netstat -nl

 Active Internet connections (only servers)

 Proto Recv-Q Send-Q Local Address Foreign Address State

 Active UNIX domain sockets (only servers)

 Proto RefCnt Flags Type State I-Node Path

http://ramirose.wix.com/ramirosen25/121

Example

● Create two namespaces, called "myns1" and "myns2":

● ip netns add myns1

● ip netns add myns2

– (In fedora 18, ip netns is included in the iproute package).

● This triggers:

● creation of /var/run/netns/myns1,/var/run/netns/myns2 empty folders

● calling the unshare() system call with CLONE_NEWNET.

– unshare() does not trigger cloning of a process; it does create
a new namespace (a network namespace, because of the
CLONE_NEWNET flag).

● see netns_add() in ipnetns.c (iproute2)

http://ramirose.wix.com/ramirosen26/121

● You can use the file descriptor of /var/run/netns/myns1 with the setns() system call.

● From man 2 setns:

 ...

 int setns(int fd, int nstype);

 DESCRIPTION

 Given a file descriptor referring to a namespace, reassociate the calling

 thread with that namespace.

 ...

● In case you pass 0 as nstype, no check is done about the fd.

● In case you pass some nstype, like CLONE_NEWNET of CLONE_NEWUTS, the

method verifies that the specified nstype corresponds to the specified fd.

http://ramirose.wix.com/ramirosen27/121

Network Namespaces - delete

● You delete a namespace by:

● ip netns del myns1

– This unmounts and removes /var/run/netns/myns1

– see netns_delete() in ipnetns.c

– Will not delete a network namespace if there is one or more processes attached to it.

● Notice that after deleting a namespace, all its migratable network devices

are moved to the default network namespace;

● unmoveable devices (devices who have NETIF_F_NETNS_LOCAL in their

features) and virtual devices are not moved to the default network namespace.

● (The semantics of migratable network devices and unmoveable devices

are taken from default_device_exit() method, net/core/dev.c).

http://ramirose.wix.com/ramirosen28/121

NETIF_F_NETNS_LOCAL

● NETIF_F_NETNS_LOCAL ia a network device feature

– (a member of net_device struct, of type netdev_features_t)

● It is set for devices that are not allowed to move between network namespaces; sometime

these devices are named "local devices".

● Example for local devices (where NETIF_F_NETNS_LOCAL is set):

– Loopback, VXLAN, ppp, bridge.

– You can see it with ethtool (by ethtool -k, or ethtool –show-
features)

– ethtool -k p2p1

 netns-local: off [fixed]

For the loopback device:

ethtool -k lo

netns-local: on [fixed]

http://ramirose.wix.com/ramirosen29/121

VXLAN

● Virtual eXtensible Local Area Network.

● VXLAN is a standard protocol to transfer layer 2 Ethernet packets

over UDP.

● Why do we need it ?

● There are firewalls which block tunnels and allow, for example, only

TCP/UDP traffic.

● developed by Stephen Hemminger.

– drivers/net/vxlan.c

– IANA assigned port is 4789

– Linux default is 8472 (legacy)

http://ramirose.wix.com/ramirosen30/121

When trying to move a device with NETIF_F_NETNS_LOCAL flag, like

VXLAN, from one namespace to another, we will encounter an error:

ip link add myvxlan type vxlan id 1
ip link set myvxlan netns myns1

We will get: RTNETLINK answers: Invalid argument

int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
{

int err;

err = -EINVAL;
if (dev->features & NETIF_F_NETNS_LOCAL)

goto out;
...
}

http://ramirose.wix.com/ramirosen31/121

● You list the network namespaces (which were added via “ ip netns

add”)

● ip netns list

– this simply reads the namespaces under:

/var/run/netns
● You can find the pid (or list of pids) in a specified net namespace by:

– ip netns pids namespaceName

● You can find the net namespace of a specified pid by:

– ip/ip netns identify #pid

http://ramirose.wix.com/ramirosen32/121

You can monitor addition/removal of network

namespaces by:

ip netns monitor

- prints one line for each addition/removal event it
sees

http://ramirose.wix.com/ramirosen33/121

● Assigning p2p1 interface to myns1 network namespace:

● ip link set p2p1 netns myns1

– This triggers changing the network namespace of the net_device to “myns1”.

– It is handled by dev_change_net_namespace(), net/core/dev.c.

● Now, running:

● ip netns exec myns1 bash

● will transfer me to myns1 network namespaces; so if I will run there:

● ifconfig -a

● I will see p2p1 (and the loopback device);

– Also under /sys/class/net, there will be only p2p1 and lo folders.

● But if I will open a new terminal and type ifconifg -a, I will not see

p2p1.

http://ramirose.wix.com/ramirosen34/121

● Also, when going to the second namespace by running:

● ip netns exec myns2 bash

● will transfer me to myns2 network namespace; but if we will run

there:

● ifconfig -a

– We will not see p2p1; we will only see the loopback device.

● We move a network device to the default, initial namespace by:

 ip link set p2p1 netns 1

http://ramirose.wix.com/ramirosen35/121

● In that namespace, network application which look for files under

/etc, will first look in /etc/netns/myns1/, and then in /etc.

● For example, if we will add the following entry "192.168.2.111

www.dummy.com"

● in /etc/netns/myns1/hosts, and run:

● ping www.dummy.com

● we will see that we are pinging 192.168.2.111.

http://ramirose.wix.com/ramirosen36/121

veth

● You can communicate between two network namespaces by:

● creating a pair of network devices (veth) and move one to another

network namespace.

● Veth (Virtual Ethernet) is like a pipe.

● unix sockets (use paths on the filesystems).

Example with veth:

Create two namesapces, myns1 and myns1:

ip netns add myns1

ip netns add myns2

http://ramirose.wix.com/ramirosen37/121

veth
ip netns exec myns1 bash

- open a shell of myns1 net namespace

ip link add name if_one type veth peer name if_one_peer

- create veth interface, with if_one and if_one_peer

- ifconfig running in myns1 will show if_one and if_one_peer

and lo (the loopback device)

- ifconfig running in myns2 will show only lo (the loopback

device)

Run from myns1 shell:

ip link set dev if_one_peer netns myns2

move if_one_peer to myns2

- now ifconfig running in myns2 will show if_one_peer

and lo (the loopback device)

- Now set ip addresses to if_one (myns1) and if_one_peer

(myns2) and you can send traffic.

http://ramirose.wix.com/ramirosen38/121

unshare util

● The unshare utility

● Util-linux recent git tree has the unshare utility with support for all six namespaces:

 http://git.kernel.org/cgit/utils/util-linux/util-linux.git

./unshare –help

...

Options:

 -m, --mount unshare mounts namespace

 -u, --uts unshare UTS namespace (hostname etc)

 -i, --ipc unshare System V IPC namespace

 -n, --net unshare network namespace

 -p, --pid unshare pid namespace

 -U, --user unshare user namespace

http://ramirose.wix.com/ramirosen39/121

● For example:

● Type:

● ./unshare --net bash

– A new network namespace was generated and the bash process was

generated inside that namespace.

● Now run ifconfig -a

● You will see only the loopback device.

– With unshare util, no folder is created under /var/run/netns;

also network application in the net namespace we created, do

not look under /etc/netns

– If you will kill this bash or exit from this bash, then the network

namespace will be freed.

–

–

–

–

http://git.kernel.org/cgit/utils/util-linux/util-linux.git

http://ramirose.wix.com/ramirosen40/121

This is not the case as with ip netns exec myns1 bash; in that

case, killing/exiting the bash does not trigger destroying the

namespace.

For implementation details, look in

put_net(struct net *net) and the reference count (named “count”)
of the network namespace struct net.

http://ramirose.wix.com/ramirosen41/121

Mount namespaces
● Added a member named mnt_ns
(mnt_namespace object) to the nsproxy.

● We copy the mount namespace of the calling process

using generic filesystem method (see copy_tree() in

dup_mnt_ns()).

● In the new mount namespace, all previous mounts will be

visible; and from now on:
● mounts/unmounts in that mount namespace are invisible to

the rest of the system.
● mounts/unmounts in the global namespace are visible in

that namespace.
●pam_namespace module uses mount namespaces (with

unshare(CLONE_NEWNS))

(modules/pam_namespace/pam_namespace.c)

http://ramirose.wix.com/ramirosen42/121

mount namespaces: example 1

Example 1 (tested on Ubuntu):

Verify that /dev/sda3 is not mounted:
mount | grep /dev/sda3

should give nothing.
unshare -m /bin/bash
mount /dev/sda3 /mnt/sda3

now run mount | grep sda3

We will see:

/dev/sda3 on /mnt/sda3 type ext3 (rw)

readlink /proc/$$/ns/mnt

mnt:[4026532114]

http://ramirose.wix.com/ramirosen43/121

From another terminal run

readlink /proc/$$/ns/mnt
mnt:[4026531840]

The results shows that we are in a different

namespace.

Now run:

mount | grep sda3

/dev/sda3 on /mnt/sda3 type ext3 (rw)

Why ? We are in a different mount namespace?

We should have not see the mount which was

done from another namespace!

http://ramirose.wix.com/ramirosen44/121

The answer is simple: running mount is not good

enough when working with mount namespaces.

The reason is that mount reads /etc/mtab, which

was updated by the mount command; mount

command does not access the kernel structures.

What is the solution?

http://ramirose.wix.com/ramirosen45/121

To access directly the kernel data structures, you

should run:

cat /proc/mounts | grep sda3

(/proc/mounts is in fact symbolic link to

/proc/self/mounts).

Now you will get no results, as expected.

http://ramirose.wix.com/ramirosen46/121

mount namespaces: example 2
Example2: tested on Fedora 18

Verify that /dev/sdb3 is not mounted:

mount | grep sdb3

should give nothing.
unshare -m /bin/bash
mount /dev/sdb3 /mnt/sdb3

now run mount | grep sdb3

You will see:

/dev/sdb3 on /mnt/sdb3 type ext4 (rw,relatime,data=ordered)

readlink /proc/$$/ns/mnt

mnt:[4026532381]

http://ramirose.wix.com/ramirosen47/121

From another terminal run:

readlink /proc/$$/ns/mnt
mnt:[4026531840]
This shows that we are in a different namespace.

Now run:

mount | grep sdb3
/dev/sdb3 on /mnt/sdb3 type ext4 (rw,relatime,data=ordered)

- We know now that we should use cat /proc/mounts (and not
mount) to get the right answer when working with namespace; so:

cat /proc/mounts | grep sdb3
/dev/sdb3 /mnt/sdb3 ext4 rw,relatime,data=ordered 0 0

Why is it so ? We should have seen no results, as in previous

example.

http://ramirose.wix.com/ramirosen48/121

Answer: Fedora runs systemd;systemd uses the shared flag for mounting /.

From systemd source code: (src/core/mount-setup.c)

int mount_setup(bool loaded_policy) {

 ...

 if (mount(NULL, "/", NULL, MS_REC|MS_SHARED, NULL) < 0)

 log_warning("Failed to set up the root directory for shared mount propagation: %m");

 ...

}

(MS_REC stands for recursive mount)

How do I know whether we have a shared flags ?

cat /proc/self/mountinfo | grep shared
we will see:

...

33 1 8:3 / / rw,relatime shared:1 - ext4 /dev/sda3 rw,data=ordered
...

What to do ?

http://ramirose.wix.com/ramirosen49/121

mount --make-rprivate -o remount / /dev/sda3
This changes the shared flag to private,

recursively.

--make-rprivate – set the private flag recursively

http://ramirose.wix.com/ramirosen50/121

Shared subtrees

/users/bin

 /

/mnt

/users/user1 /users/user2

Now, we want that user1 and user2 folders will see the whole

filesystem; we will run

mount –bind / /users/user1
mount –bind / /users/user2

By default, the filesysytem is mounted as private,

unless the shared mount flag is set explicitly.

http://ramirose.wix.com/ramirosen51/121

Shared subtrees - contd

/users/bin

 /

/mnt

/users/user1 /users/user2

 /mnt /bin /mnt /bin

/users /users

/user1 /users2 /user1 /user2

http://ramirose.wix.com/ramirosen52/121

Shared subtrees – Quiz

Quiz:
Now, we mount a usb disk on key on /mnt/dok.

Will it be seen in /users/user1/mnt or

/users/user2/mnt?

http://ramirose.wix.com/ramirosen53/121

Shared subtrees - contd

The answer is no, since by default, the filesysytem is

mounted as private. To enable that the dok will be seen

also under /users/user1/mnt or /users/user2/mnt, we

should mount the filesystem as shared:

mount / --make-rshared
And then mount the usb disk on key again.

The shared subtrees patch is from 2005 by Ram Pai.

It add some mount flags like –make-slave, --make-rslave, -make-

unbindable, --make-runbindable and more. The patch added this kernel

mount flags: MS_UNBINDABLE, MS_PRIVATE, MS_SLAVE and

MS_SHARED
The shared flag is in use by the fuse filesystem.

http://ramirose.wix.com/ramirosen54/121

PID namespaces

● Added a member named pid_ns (pid_namespace object) to the

 nsproxy.

● Processes in different PID namespaces can have the same process ID.

● When creating the first process in a new namespace, its PID is 1.

● Behavior like the “init” process:

– When a process dies, all its orphaned children will now have the process with PID 1 as
their parent (child reaping).

– Sending SIGKILL signal does not kill process 1, regardless of which namespace the
command was issued (initial namespace or other pid namespace).

http://ramirose.wix.com/ramirosen55/121

PID namespaces - contd

● When a new namespace is created, we cannot see from it the PID

of the parent namespace; running getppid() from the new pid

namespace will return 0.

● But all PIDs which are used in this namespace are visible to the

parent namespace.

● pid namespaces can be nested, up to 32 nesting levels.

(MAX_PID_NS_LEVEL).

● See: multi_pidns.c, Michael Kerrisk, from

http://lwn.net/Articles/532745/.

● When trying to run multi_pidns with 33, you will get:

– clone: Invalid argument

http://ramirose.wix.com/ramirosen56/121

User Namespaces

● Added a member named user_ns

(user_namespace object) to the nsproxy.
● include/linux/user_namespace.h

●Includes a pointer named parent to the user_namespace

that created it.
●struct user_namespace *parent;
●Includes the effective uid of the process that created it:
●kuid_t owner;

● A process will have distinct set of UIDs, GIDs

and capabilities.

http://lwn.net/Articles/532745/

http://ramirose.wix.com/ramirosen57/121

User Namespaces

Creating a new user namespace is done by passing

CLONE_NEWUSER to fork() or unshare().

Example:

Running from some user account

id -u

1000 // 1000 is the effective user ID.

id -g

1000 // 1000 is the effective group ID.

(usually the first user added gets uid/gid of 1000)

http://ramirose.wix.com/ramirosen58/121

User Namespaces - example

Capbilties:
cat /proc/self/status | grep Cap
CapInh: 0000000000000000
CapPrm: 0000000000000000
CapEff: 0000000000000000
CapBnd: 0000001fffffffff

In order to create a user namespace and start a shell, we will run from
that non-root account:

./nsexec -cU /bin/bash
●The c flag is for using clone
●The U flag is for using user namespace (CLONE_NEWUSER flag for
clone())

http://ramirose.wix.com/ramirosen59/121

User Namespaces - example -contd

Now from the new shell run

id -u

65534

id -g

65534

● These are default values for the eUID and eGUID In the new

namespace.
● We will get the same results for effective user id and effective

root id also when running /nsexec -cU /bin/bash as root.
● The defaults can be changed by: /proc/sys/kernel/overflowuid,
/proc/sys/kernel/overflowgid
● In fact, the user namespace that was created had full capabilities,
but the call to exec() with bash removed them.

http://ramirose.wix.com/ramirosen60/121

cat /proc/self/status | grep Cap

CapInh: 0000000000000000

CapPrm: 0000000000000000

CapEff: 0000000000000000
CapBnd: 0000001fffffffff

http://ramirose.wix.com/ramirosen61/121

User Namespaces - contd
Now run:

echo $$ (get the bash pid)

Now, from a different root terminal, we set the uid_map:

First, we can see that uid_map is uninitialized by:

cat /proc/<pid>/uid_map
Then:

echo 0 1000 10 > /proc/<pid>/uid_map
(<pid> is the pid of the bash process from previous step).

Entry in uid_map is of the following format:

namespace_first_uid host_first_uid number_of_uids

So this sets the first uid in the new namespace (which

correspond to uid 1000 in the outside world) to be 0; the

second will be 1; and so forth, for 10 entries.

http://ramirose.wix.com/ramirosen62/121

User Namespaces - contd

Note: you can set the uid_map only once for a specific

process. Further attempts will fail.

run

id -u

You will get 0.

whoami
root

●User namespace is the only namespace which can be

created without CAP_SYS_ADMIN capability

http://ramirose.wix.com/ramirosen63/121

cat /proc/self/status | grep Cap

CapInh: 0000000000000000

CapPrm: 0000001fffffffff

CapEff: 0000001fffffffff

CapBnd: 0000001fffffffff

The CapEff (Effective Capabilites) is 1fffffffff-> this is 37 bits of '1' ,

which means all capabilities.

Quiz: Will unshare --net bash work now ?

http://ramirose.wix.com/ramirosen64/121

Answer: no

unshare --net bash
unshare: cannot set group id: Invalid argument

But after running, from a different terminal, as root:

echo 0 1000 10 > /proc/2429/gid_map
It will work.

ls /root will fail however:

ls /root/

ls: cannot open directory /root/: Permission denied

http://ramirose.wix.com/ramirosen65/121

Short quiz 1:

I am a regular user, not root.
Will clone() with (CLONE_NEWNET) work ?

Short quiz 2:

Will clone() with (CLONE_NEWNET | CLONE_NEWUSER)

work ?

http://ramirose.wix.com/ramirosen66/121

●Quiz 1 : No.
● In order to use the CLONE_NEWNET we need to have

CAP_SYS_ADMIN.

unshare --net bash
unshare: unshare failed: Operation not permitted

●Quiz 2: Yes.

namespaces code guarantees us that user namespace creation is the

first to be created. For creating a user namespace we do'nt need

CAP_SYS_ADMIN. The user namespace is created with full

capabilities, so we can create the network namespace successfully.

./unshare --net --user /bin/bash

 No errors!

http://ramirose.wix.com/ramirosen67/121

Quiz 3:

If you run, from a non root user,
unsare –user bash

And then

cat /proc/self/status | grep CapEff
CapEff: 0000000000000000

This means no capabilities. So how was the net namespace,

which needs CAP_SYS_ADMIN, created ?

http://ramirose.wix.com/ramirosen68/121

Answer: we first do unshare;

It is first done with user namespace. This enables all capabilities.

Then we create the namespace. Afterwards, we call exec for the

shell; exec removes capabilities.

From unshare.c of util-linux:

if (-1 == unshare(unshare_flags))
err(EXIT_FAILURE, _("unshare failed"));

...

exec_shell();

http://ramirose.wix.com/ramirosen69/121

Anatomy of a user namespaces vulnerability
By Michael Kerrisk, March 2013

About CVE 2013-1858 - exploitable security

vulnerability

http://lwn.net/Articles/543273/

http://ramirose.wix.com/ramirosen70/121

cgroups

● cgroups (control groups) subsystem is a Resource Management solution providing a

generic process-grouping framework.

● This work was started by engineers at Google (primarily Paul Menage and Rohit Seth) in

2006 under the name "process containers; in 2007, renamed to “Control Groups”.

● Maintainers: Li Zefan (huawei) and Tejun Heo ;

● The memory controller (memcg) is maintained separately (4 maintainers)

● Probably the most complex.

– Namespaces provide per process resource isolation solution.

– Cgroups provide resource management solution (handling groups).

● Available in Fedora 18 kernel and ubuntu 12.10 kernel (also some previous releases).

– Fedora systemd uses cgroups.

– Ubuntu does not have systemd. Tip: do tests with Ubuntu and also make sure that cgroups are not
mounted after boot, by looking with mount (packages such as cgroup-lite can exist)

http://lwn.net/Articles/543273/

http://ramirose.wix.com/ramirosen71/121

● The implementation of cgroups requires a few, simple hooks into the rest

of the kernel, none in performance-critical paths:

– In boot phase (init/main.c) to preform various initializations.

– In process creation and destroy methods, fork() and exit().

– A new file system of type "cgroup" (VFS)

– Process descriptor additions (struct task_struct)

– Add procfs entries:

● For each process: /proc/pid/cgroup.

● System-wide: /proc/cgroups

http://ramirose.wix.com/ramirosen72/121

– The cgroup modules are not located in one folder but

scattered in the kernel tree according to their functionality:

● memory: mm/memcontrol.c

● cpuset: kernel/cpuset.c.

● net_prio: net/core/netprio_cgroup.c

● devices: security/device_cgroup.c.

● And so on.

http://ramirose.wix.com/ramirosen73/121

cgroups and kernel namespaces

Note that the cgroups is not dependent upon namespaces; you can build
cgroups without namespaces kernel support.

There was an attempt in the past to add "ns" subsystem (ns_cgroup, namespace
cgroup subsystem); with this, you could mount a namespace subsystem by:

mount -t cgroup -ons.

This code it was removed in 2011 (by a patch by Daniel Lezcano).

See:

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=
a77aea92010acf54ad785047234418d5d68772e2

http://ramirose.wix.com/ramirosen74/121

cgroups VFS

● Cgroups uses a Virtual File System

– All entries created in it are not persistent and deleted after

reboot.

● All cgroups actions are performed via filesystem actions

(create/remove directory, reading/writing to files in it,

mounting/mount options).

● For example:

– cgroup inode_operations for cgroup mkdir/rmdir.

– cgroup file_system_type for cgroup mount/unmount.

– cgroup file_operations for reading/writing to control files.

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=a77aea92010acf54ad785047234418d5d68772e2
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=a77aea92010acf54ad785047234418d5d68772e2

http://ramirose.wix.com/ramirosen75/121

Mounting cgroups

In order to use a filesystem (browse it/attach tasks to cgroups,etc) it must be mounted.

The control group can be mounted anywhere on the filesystem. Systemd uses /sys/fs/cgroup.

When mounting, we can specify with mount options (-o) which subsystems we want to use.

There are 11 cgroup subsystems (controllers) (kernel 3.9.0-rc4 , April 2013); two can be built as
modules. (All subsystems are instances of cgroup_subsys struct)

cpuset_subsys - defined in kernel/cpuset.c.

freezer_subsys - defined in kernel/cgroup_freezer.c.

mem_cgroup_subsys - defined in mm/memcontrol.c; Aka memcg - memory control groups.

blkio_subsys - defined in block/blk-cgroup.c.

net_cls_subsys - defined in net/sched/cls_cgroup.c (can be built as a kernel module)

net_prio_subsys - defined in net/core/netprio_cgroup.c (can be built as a kernel module)

devices_subsys - defined in security/device_cgroup.c.

perf_subsys (perf_event) - defined in kernel/events/core.c

hugetlb_subsys - defined in mm/hugetlb_cgroup.c.

cpu_cgroup_subsys - defined in kernel/sched/core.c

cpuacct_subsys - defined in kernel/sched/core.c

http://ramirose.wix.com/ramirosen76/121

Mounting cgroups – contd.

In order to mount a subsystem, you should first create a folder for it

under /cgroup.

In order to mount a cgroup, you first mount some tmpfs root folder:

● mount -t tmpfs tmpfs /cgroup

Mounting of the memory subsystem, for example, is done thus:

● mkdir /cgroup/memtest

● mount -t cgroup -o memory test /cgroup/memtest/

 Note that instead “test” you can insert any text; this text is not

handled by cgroups core. It's only usage is when displaying the mount

by the “mount” command or by cat /proc/mounts.

http://ramirose.wix.com/ramirosen77/121

Mounting cgroups – contd.

● Mount creates cgroupfs_root object + cgroup (top_cgroup) object

● mounting another path with the same subsystems - the same

subsys_mask; the same cgroupfs_root object is reused.

● mkdir increments number_of_cgroups, rmdir decrements number_of_cgroups.

● cgroup1 - created by mkdir /cgroup/memtest/cgroup1.

struct super_block *sb
The super block being used. (in memory).

struct cgroup top_cgroup

unsigned long subsys_mask
 bitmask of subsystems attached to this hierarchy
int number_of_cgroups

cgroupfs_root

cgroup

cgroup1 cgroup2

parent parent

parent

parent

cgroup3

cgroupfs_root *root

http://ramirose.wix.com/ramirosen78/121

Mounting a set of subsystems

From Documentation/cgroups/cgroups.txt:

If an active hierarchy with exactly the same set of subsystems

already exists, it will be reused for the new mount.

If no existing hierarchy matches, and any of the requested

subsystems are in use in an existing hierarchy, the mount will fail

with -EBUSY.

Otherwise, a new hierarchy is activated, associated with the

requested subsystems.

http://ramirose.wix.com/ramirosen79/121

First case: Reuse

● mount -t tmpfs test1 /cgroup/test1

● mount -t tmpfs test2 /cgroup/test2

● mount -t cgroup -ocpu,cpuacct test1 /cgroup/test1

● mount -t cgroup -ocpu,cpuacct test2 /cgroup/test2

● This will work; the mount method recognizes that we want to

use the same mask of subsytems in the second case.

– (Behind the scenes, this is done by the return value of sget() method, called

from cgroup_mount(), found an already allocated superblock; the sget()

makes sure that the mask of the sb and the required mask are identical)

– Both will use the same cgroupfs_root object.

● This is exactly the first case described in Documentation/cgroups/cgroups.txt

http://ramirose.wix.com/ramirosen80/121

Second case: any of the requested

subsystems are in use

● mount -t tmpfs tmpfs /cgroup/tst1/

● mount -t tmpfs tmpfs /cgroup/tst2/

● mount -t tmpfs tmpfs /cgroup/tst3/

● mount -t cgroup -o freezer tst1 /cgroup/tst1/

● mount -t cgroup -o memory tst2 /cgroup/tst2/

● mount -t cgroup -o freezer,memory tst3 /cgroup/tst3

– Last command will give an error. (-EBUSY).

The reason: these subsystems (controllers) were been

separately mounted.

● This is exactly the second case described in Documentation/cgroups/cgroups.txt

http://ramirose.wix.com/ramirosen81/121

Third case - no existing hierarchy

no existing hierarchy matches, and none of the requested

subsystems are in use in an existing hierarchy:

mount -t cgroup -o net_prio netpriotest /cgroup/net_prio/

Will succeed.

http://ramirose.wix.com/ramirosen82/121

– under each new cgroup which is created, these 4 files are always created:

● tasks

– list of pids which are attached to this group.

● cgroup.procs.

– list of thread group IDs (listed by TGID) attached to this group.

● cgroup.event_control.

– Example in following slides.

● notify_on_release (boolean).

– For a newly generated cgroup, the value of notify_on_release in inherited

from its parent; However, changing notify_on_release in the parent does not

change the value in the children he already has.

– Example in following slides.

– For the topmost cgroup root object only, there is also a release_agent – a

command which will be invoked when the last process of a cgroup terminates; the

notify_on_release flag should be set in order that it will be activated.

http://ramirose.wix.com/ramirosen83/121

● Each subsystem adds specific control files for its own needs, besides

these 4 fields. All control files created by cgroup subsystems are given a

prefix corresponding to their subsystem name. For example:

cpuset.cpus

cpuset.mems

cpuset.cpu_exclusive

cpuset.mem_exclusive

cpuset.mem_hardwall

cpuset.sched_load_balance

cpuset.sched_relax_domain_level

cpuset.memory_migrate

cpuset.memory_pressure

cpuset.memory_spread_page

cpuset.memory_spread_slab

cpuset.memory_pressure_enabled

cpuset
subsystem

devices.allow

devices.deny

devices.list

devices
subsystem

http://ramirose.wix.com/ramirosen84/121

cpu subsystem

cpu.shares (only if CONFIG_FAIR_GROUP_SCHED is set)

cpu.cfs_quota_us (only if CONFIG_CFS_BANDWIDTH is set)

cpu.cfs_period_us (only if CONFIG_CFS_BANDWIDTH is set)

cpu.stat (only if CONFIG_CFS_BANDWIDTH is set)

cpu.rt_runtime_us (only if CONFIG_RT_GROUP_SCHED is set)

cpu.rt_period_us (only if CONFIG_RT_GROUP_SCHED is set)

cpu subsystem

http://ramirose.wix.com/ramirosen85/121

memory subsystem
memory.usage_in_bytes

memory.max_usage_in_bytes

memory.limit_in_bytes

memory.soft_limit_in_bytes

memory.failcnt

memory.stat

memory.force_empty

memory.use_hierarchy

memory.swappiness

memory.move_charge_at_immigrate

memory.oom_control

memory.numa_stat (only if CONFIG_NUMA is set)

memory.kmem.limit_in_bytes (only if CONFIG_MEMCG_KMEM is set)

memory.kmem.usage_in_bytes (only if CONFIG_MEMCG_KMEM is set)

memory.kmem.failcnt (only if CONFIG_MEMCG_KMEM is set)

memory.kmem.max_usage_in_bytes (only if CONFIG_MEMCG_KMEM is set)

memory.kmem.tcp.limit_in_bytes (only if CONFIG_MEMCG_KMEM is set)

memory.kmem.tcp.usage_in_bytes (only if CONFIG_MEMCG_KMEM is set)

memory.kmem.tcp.failcnt (only if CONFIG_MEMCG_KMEM is set)

memory.kmem.tcp.max_usage_in_bytes (only if CONFIG_MEMCG_KMEM is set)

memory.kmem.slabinfo (only if CONFIG_SLABINFO is set)

memory.memsw.usage_in_bytes (only if CONFIG_MEMCG_SWAP is set)

memory.memsw.max_usage_in_bytes (only if CONFIG_MEMCG_SWAP is set)

memory.memsw.limit_in_bytes (only if CONFIG_MEMCG_SWAP is set)

memory.memsw.failcnt (only if CONFIG_MEMCG_SWAP is set)

memory

subsystem

up to 25 control files

http://ramirose.wix.com/ramirosen86/121

blkio subsystem
blkio.weight_device

blkio.weight

blkio.weight_device

blkio.weight

blkio.leaf_weight_device

blkio.leaf_weight

blkio.time

blkio.sectors

blkio.io_service_bytes

blkio.io_serviced

blkio.io_service_time

blkio.io_wait_time

blkio.io_merged

blkio.io_queued

blkio.time_recursive

blkio.sectors_recursive

blkio.io_service_bytes_recursive

blkio.io_serviced_recursive

blkio.io_service_time_recursive

blkio.io_wait_time_recursive

blkio.io_merged_recursive

blkio.io_queued_recursive

blkio.avg_queue_size (only ifCONFIG_DEBUG_BLK_CGROUP is set)

blkio.group_wait_time (only ifCONFIG_DEBUG_BLK_CGROUP is set)

blkio.idle_time (only ifCONFIG_DEBUG_BLK_CGROUP is set)

blkio.empty_time (only ifCONFIG_DEBUG_BLK_CGROUP is set)

blkio.dequeue (only ifCONFIG_DEBUG_BLK_CGROUP is set)

blkio.unaccounted_time (only ifCONFIG_DEBUG_BLK_CGROUP is set)

blkio.throttle.read_bps_device

blkio.throttle.write_bps_device

blkio.throttle.read_iops_device

blkio.throttle.write_iops_device

blkio.throttle.io_service_bytes

blkio.throttle.io_serviced

http://ramirose.wix.com/ramirosen87/121

netprio

net_prio.ifpriomap

net_prio.prioidx

Note the netprio_cgroup.ko should be insmoded

so the mount will succeed. Moreover, rmmod will

fail if netprio is mounted

http://ramirose.wix.com/ramirosen88/121

– When mounting a cgroup subsystem (or a set of cgroup subsystems) , allall
processes in the system belong to it (the top cgroup object).

● After mount -t cgroup -o memory test /cgroup/memtest/

– you can see all tasks by: cat /cgroup/memtest/tasks

– When creating new child cgroups in that hierarchy, each one of them will not have

any tasks at all initially.

– Example:

– mkdir /cgroup/memtest/group1

– mkdir /cgroup/memtest/group2

– cat /cgroup/memtest/group1/tasks

● Shows nothing.

– cat /cgroup/memtest/group2/tasks

● Shows nothing.

http://ramirose.wix.com/ramirosen89/121

●Any task can be a member of exactly one cgroup in a specific

hierarchy.
●Example:
●echo $$ > /cgroup/memtest/group1/tasks
●cat /cgroup/memtest/group1/tasks
●cat /cgroup/memtest/group2/tasks
●Will show that task only in group1/tasks.
●After:
●echo $$ > /cgroup/memtest/group2/tasks
●The task was moved to group2; we will see that task it only in

group2/tasks.

http://ramirose.wix.com/ramirosen90/121

Removing a child group
Removing a child group is done by rmdir.

We cannot remove a child group in these two cases:
●When it has processes attached to it.
●When it has children.

We will get -EBUSY error in both cases.

Example 1 - processes attached to a group:
echo $$ > /cgroup/memtest/group1/tasks
rmdir /cgroup/memtest/group1
rmdir: failed to remove `/cgroup/memtest/group1': Device or

resource busy

Example 2 - group has children:
mkdir /cgroup/memtest/group2/childOfGroup2
cat /cgroup/memtest/group2/tasks

- to make sure that there are no processes in group2.

rmdir /cgroup/memtest/group2/
rmdir: failed to remove `/cgroup/memtest/group2/': Device or resource busy

http://ramirose.wix.com/ramirosen91/121

● Nesting is allowed:

– mkdir /cgroup/memtest/0/FirstSon

– mkdir /cgroup/memtest/0/SecondSon

– mkdir /cgroup/memtest/0/ThirdSon

● However, there are subsystems which will emit a kernel warning when trying to nest; in this
subsystems, the .broken_hierarchy boolean member of cgroup_subsys is set explicitly to true.

For example:

struct cgroup_subsys devices_subsys = {

.name = "devices",

...

.broken_hierarchy = true,

}

BTW, a recent patch removed it; in latest git for-3.10 tree, the only subsystem with broken_hierarchy
is blkio.

http://ramirose.wix.com/ramirosen92/121

broken_hierarchy example

● typing:

● mkdir /sys/fs/cgroup/devices/0

● Will omit no error, but if afterwards we will type:

● mkdir /sys/fs/cgroup/devices/0/firstSon

● We will see in the kernel log this warning:

● cgroup: mkdir (4730) created nested cgroup for controller "devices"

which has incomplete hierarchy support. Nested cgroups may

change behavior in the future.

http://ramirose.wix.com/ramirosen93/121

● In this way, we can mount any one of the 11 cgroup subsystems

(controllers) under it:

● mkdir /cgroup/cpuset

● mount -t cgroup -ocpuset cpuset_group /cgroup/cpuset/

● Also here, the “cpuset_group” is only for the mount command,

– So this will also work:

– mkdir /cgroup2/

– mount -t tmpfs cgroup2_root /cgroup2

– mkdir /cgroup2/cpuset

– mount -t cgroup -ocpuset mytest /cgroup2/cpuset

–

http://ramirose.wix.com/ramirosen94/121

devices

● Also referred to as : devcg (devices control group)

● devices cgroup provides enforcing restrictions on opening and mknod operations

on device files.

● 3 files: devices.allow, devices.deny, devices.list.

– devices.allow can be considered as devices whitelist

– devices.deny can be considered as devices blacklist.

– devices.list available devices.

● Each entry is 4 fields:

– type: can be a (all), c (char device), or b (block device).

● All means all types of devices, and all major and minor numbers.

– Major number.

– Minor number.

– Access: composition of 'r' (read), 'w' (write) and 'm' (mknod).

http://ramirose.wix.com/ramirosen95/121

devices - example

/dev/null major number is 1 and minor number is 3 (You can fetch the major/minor number from

Documentation/devices.txt)

mkdir /sys/fs/cgroup/devices/0

By default, for a new group, you have full permissions:

cat /sys/fs/cgroup/devices/0/devices.list

a *:* rwm

echo 'c 1:3 rmw' > /sys/fs/cgroup/devices/0/devices.deny

This denies rmw access from /dev/null deice.

echo $$ > /sys/fs/cgroup/devices/0/tasks

echo "test" > /dev/null

bash: /dev/null: Operation not permitted

echo a > /sys/fs/cgroup/devices/0/devices.allow

This adds the 'a *:* rwm' entry to the whitelist.

echo "test" > /dev/null

Now there is no error.

http://ramirose.wix.com/ramirosen96/121

cpuset

● Creating a cpuset group is done with:

– mkdir /sys/fs/cgroup/cpuset/0

● You must be root to run this; for non root user, you will get

the following error:

– mkdir: cannot create directory ‘/sys/fs/cgroup/cpuset/0’:

Permission denied

● cpusets provide a mechanism for assigning a set of CPUs and

Memory Nodes to a set of tasks.

http://ramirose.wix.com/ramirosen97/121

cpuset example

On Fedora 18, cpuset is mounted after boot on /sys/fs/cgroup/cpuset.

 cd /sys/fs/cgroup/cpuset

 mkdir test

cd test

 /bin/echo 1 > cpuset.cpus

 /bin/echo 0 > cpuset.mems

 cpuset.cpus and cpuset.mems are not initialized; these two initializations are

mandatory.

 /bin/echo $$ > tasks

Last command moves the shell process to the new cpuset cgroup.

You cannot move a list of pids in a single command; you mush issue a separate

command for each pid.

http://ramirose.wix.com/ramirosen98/121

memcg (memory control groups)

Example:

mkdir /sys/fs/cgroup/memory/0

echo $$ > /sys/fs/cgroup/memory/0/tasks

echo 10M > /sys/fs/cgroup/memory/0/memory.limit_in_bytes

You can disable the out of memory killer with memcg:

echo 1 > /sys/fs/cgroup/memory/0/memory.oom_control

 This disables the oom killer.

cat /sys/fs/cgroup/memory/0/memory.oom_control

oom_kill_disable 1

under_oom 0

http://ramirose.wix.com/ramirosen99/121

● Now run some memory hogging process in this cgroup, which is

known to be killed with oom killer in the default namespace.

● This process will not be killed.

● After some time, the value of under_oom will change to 1

● After enabling the OOM killer again:

echo 0 > /sys/fs/cgroup/memory/0/memory.oom_control

You will get soon get the OOM “Killed” message.

http://ramirose.wix.com/ramirosen100/121

Notification API

● There is an API which enable us to get notifications about changing

status of a cgroup. It uses the eventfd() system call

● See man 2 eventfd

● It uses the fd of cgroup.event_control

● Following is a simple userspace app , “eventfd” (error handling was

omitted for brevity)

http://ramirose.wix.com/ramirosen101/121

Notification API – example

char buf[256];

int event_fd, control_fd, oom_fd, wb;

uint64_t u;

event_fd = eventfd(0, 0);

control_fd = open("cgroup.event_control", O_WRONLY);

oom_fd = open("memory.oom_control", O_RDONLY);

snprintf(buf, 256, "%d %d", event_fd, oom_fd);

write(control_fd, buf, wb);

close(control_fd);

for (;;) {

 read(event_fd, &u, sizeof(uint64_t));

 printf("oom event received from mem_cgroup\n");

}

http://ramirose.wix.com/ramirosen102/121

Notification API – example (contd)

● Now run this program (eventfd) thus:

● From /sys/fs/cgroup/memory/0

 ./eventfd cgroup.event_control memory.oom_control

From a second terminal run:

cd /sys/fs/cgroup/memory/0/

echo $$ > /sys/fs/cgroup/memory/0/tasks

echo 10M > /sys/fs/cgroup/memory/0/memory.limit_in_bytes

Then run a memory hog problem.

When on OOM killer is invoked, you will get the messages from eventfd userspace program, “oom event
received from mem_cgroup”.

http://ramirose.wix.com/ramirosen103/121

release_agent example

● The release_agent is invoked when the last process of a cgroup terminates.

● The cgroup sysfs notify_on_release entry should be set so that release_agent will be invoked.

● A short script, /work/dev/t/date.sh:

 #!/bin/sh

 date >> /work/log.txt

Run a simple process, which simply sleeps forever; let's say it's PID is pidSleepingProcess.

echo 1 > /sys/fs/cgroup/memory/notify_on_release

echo /work/dev/t/date.sh > /sys/fs/cgroup/memory/release_agent

mkdir /sys/fs/cgroup/memory/0/

echo pidSleepingProcess > /sys/fs/cgroup/memory/0/tasks

kill -9 pidSleepingProcess

This activates the release_agent; so we will see that the current time and date was written to

/work/log.txt

http://ramirose.wix.com/ramirosen104/121

Systemd and cgroups

● Systemd – developed by Lennart Poettering, Kay Sievers,

others.
● Replacement for the Linux init scripts and daemon.

Adopted by Fedora (since Fedora 15), openSUSE , others.
● Udev was integrated into systemd.

● systemd uses control groups only for process grouping;

not for anything else like allocating resources like block io bandwidth,

etc.

release_agent is a mount option on Fedora 18:

mount -a | grep systemd
cgroup on /sys/fs/cgroup/systemd type cgroup

(rw,nosuid,nodev,noexec,relatime,release_agent=/usr/lib/systemd/systemd-
cgroups-agent,name=systemd)

http://ramirose.wix.com/ramirosen105/121

cgroup-agent is a short program (cgroups-agent.c)

which all it does is send dbus message via the DBUS

api.

dbus_message_new_signal()/dbus_message_append_

args()/dbus_connection_send()

systemd Lightweight Containers new feature in Fedora

19:

https://fedoraproject.org/wiki/Features/SystemdLightwei

ghtContainers

http://ramirose.wix.com/ramirosen106/121

ls /sys/fs/cgroup/systemd/system

abrtd.service crond.service rpcbind.service

abrt-oops.service cups.service rsyslog.service

abrt-xorg.service dbus.service sendmail.service

accounts-daemon.service firewalld.service smartd.service

atd.service getty@.service sm-client.service

auditd.service iprdump.service sshd.service

bluetooth.service iprinit.service systemd-fsck@.service

cgroup.clone_children iprupdate.service systemd-journald.service

cgroup.event_control ksmtuned.service systemd-logind.service

cgroup.procs mcelog.service systemd-udevd.service

colord.service NetworkManager.service tasks

configure-printer@.service notify_on_release udisks2.service

console-kit-daemon.service polkit.service upower.service

We have here 34 services.

https://fedoraproject.org/wiki/Features/SystemdLightweightContainers
https://fedoraproject.org/wiki/Features/SystemdLightweightContainers

http://ramirose.wix.com/ramirosen107/121

Example for bluetooth systemd entry:

ls /sys/fs/cgroup/systemd/system/bluetooth.service/

cgroup.clone_children cgroup.event_control cgroup.procs notify_on_release tasks

cat /sys/fs/cgroup/systemd/system/bluetooth.service/tasks
709

There are services which have more than one pid in the tasks control file.

http://ramirose.wix.com/ramirosen108/121

●With fedora 18, default location of cgroup mount is: /sys/fs/cgroup
●We have 9 controllers:
●/sys/fs/cgroup/blkio
●/sys/fs/cgroup/cpu,cpuacct
●/sys/fs/cgroup/cpuset
●/sys/fs/cgroup/devices
●/sys/fs/cgroup/freezer
●/sys/fs/cgroup/memory
●/sys/fs/cgroup/net_cls
●/sys/fs/cgroup/perf_event
●/sys/fs/cgroup/systemd
●In boot, systemd parses /sys/fs/cgroup and mounts all entries.

http://ramirose.wix.com/ramirosen109/121

 /proc/cgroups

In Fedora 18, cat /proc/cgroups gives:

#subsys_name hierarchy num_cgroups enabled

cpuset 2 1 1

cpu 3 37 1

cpuacct 3 37 1

memory 4 1 1

devices 5 1 1

freezer 6 1 1

net_cls 7 1 1

blkio 8 1 1

perf_event 9 1 1

http://ramirose.wix.com/ramirosen110/121

Libcgroup

Libcgroup

libcgroup is a library that abstracts the control group file system in Linux.

libcgroup-tools package provides tools for performing cgroups actions.

 Ubuntu:apt-get install cgroup-bin (tried on Ubuntu 12.10)

 Fedora: yum install libcgroup

cgcreate creates new cgroup; cgset sets parameters for given cgroup(s); and cgexec runs a task in specified

control groups.

Example:

cgcreate -g cpuset:/test

cgset -r cpuset.cpus=1 /test

cgset -r cpuset.mems=0 /test

cgexec -g cpuset:/test bash

http://ramirose.wix.com/ramirosen111/121

One of the advantages of cgroups framework is

that it is simple to add kernel modules which will

work with. There are only two callback which we

must implement, css_alloc() and css_free().
And there is no need to patch the kernel unless

you do something special.

Thus, net/core/netprio_cgroup.c is only 322 lines

of code and net/sched/cls_cgroup.c is 332 lines

of code.

http://ramirose.wix.com/ramirosen112/121

Checkpoint/Restart

Checkpointing is to the operation of a Checkpointing the state of a group of processes to
a single file or several files.

Restart is the operation of restoring these processes at some future time by reading and
parsing that file/files.

Attempts to merge Checkpoint/Restart in the Linux kernel failed:

Attempts to merge CKPT of openVZ failed:

Oren Laadan spent about three years for implementing
checkpoint/restart in kernel; this code was not merged either.

Checkpoint and Restore In Userspace (CRIU)

● A project of OpenVZ

● sponsored and supported by Parallels.

Uses some kernel patches

http://criu.org/Main_Page

http://ramirose.wix.com/ramirosen113/121

●Workman: (workload management)

 It aims to provide high-level resource allocation and

management implemented as a library but provides bindings for

more languages (depends on the GObject framework ; allows all

the library APIs to be exposed to non-C languages like Perl,

Python, JavaScript, Vala).

https://gitorious.org/workman/pages/Home

●Pax Controla Groupiana – a document:
●Tries to define precautions that a software or user can take to avoid breaking

or confusing other users of the cgroup filesystem.

http://www.freedesktop.org/wiki/Software/systemd/PaxControlGroups

● aka "How to behave nicely in the cgroupfs trees"

http://criu.org/Main_Page

http://ramirose.wix.com/ramirosen114/121

Note: in this presentation, we refer to two

userspace package, iproute and util-linux. The

examples are based on the most recent git

source code of these packages.

You can check namespaces and cgroups

support on your machine by running:

lxc-checkconfig
(from lxc package)

In Fedora 18 and Ubuntu 13.04, there is no

support for User Namespaces though it is kernel

3.8

https://gitorious.org/workman/pages/Home
http://www.freedesktop.org/wiki/Software/systemd/PaxControlGroups

http://ramirose.wix.com/ramirosen115/121

● On Android - Samsung Mini Galaxy:

– cat /proc/mounts | grep cgroup

none /acct cgroup rw,relatime,cpuacct 0 0

none /dev/cpuctl cgroup rw,relatime,cpu 0 0

http://ramirose.wix.com/ramirosen116/121

Links
Namespaces in operation series By Michael Kerrisk, January 2013:

part 1: namespaces overview

http://lwn.net/Articles/531114/

part 2: the namespaces API

http://lwn.net/Articles/531381/

part 3: PID namespaces

http://lwn.net/Articles/531419/

part 4: more on PID namespaces

http://lwn.net/Articles/532748/

part 5: User namespaces

http://lwn.net/Articles/532593/

part 6: more on user namespaces

http://lwn.net/Articles/540087/

http://ramirose.wix.com/ramirosen117/121

Links - contd

Stepping closer to practical containers: "syslog" namespaces

http://lwn.net/Articles/527342/

● tree /sys/fs/cgroup/

● Devices implementation.

● Serge Hallyn nsexec

http://lwn.net/Articles/531114/
http://lwn.net/Articles/531381/
http://lwn.net/Articles/531419/
http://lwn.net/Articles/532748/
http://lwn.net/Articles/532593/
http://lwn.net/Articles/540087/

http://ramirose.wix.com/ramirosen118/121

Capabilities - appendix
include/uapi/linux/capability.h

CAP_CHOWN CAP_DAC_OVERRIDE

CAP_DAC_READ_SEARCH CAP_FOWNER

CAP_FSETID CAP_KILL

CAP_SETGID CAP_SETUID

CAP_SETPCAP CAP_LINUX_IMMUTABLE

CAP_NET_BIND_SERVICE CAP_NET_BROADCAST

CAP_NET_ADMIN CAP_NET_RAW

CAP_IPC_LOCK CAP_IPC_OWNER

CAP_SYS_MODULE CAP_SYS_RAWIO

CAP_SYS_CHROOT CAP_SYS_PTRACE

CAP_SYS_PACCT CAP_SYS_ADMIN

CAP_SYS_BOOT CAP_SYS_NICE

CAP_SYS_RESOURCE CAP_SYS_TIME

CAP_SYS_TTY_CONFIG CAP_MKNOD

CAP_LEASE CAP_AUDIT_WRITE

CAP_AUDIT_CONTROL CAP_SETFCAP

CAP_MAC_OVERRIDE CAP_MAC_ADMIN

CAP_SYSLOG CAP_WAKE_ALARM

CAP_BLOCK_SUSPEND

See: man 8 setcap / man 8 getcap

http://lwn.net/Articles/527342/

http://ramirose.wix.com/ramirosen119/121

Summary

● Namespaces

– Implementation

– UTS namespace

– Network Namespaces

● Example

– PID namespaces

● cgroups

– Cgroups and kernel namespaces

– CGROUPS VFS

– CPUSET

– cpuset example

– release_agent example

– memcg

– Notification API

– devices

– Libcgroup

● Checkpoint/Restart

http://ramirose.wix.com/ramirosen120/121

Links

cgroups kernel mailing list archive:
http://blog.gmane.org/gmane.linux.kernel.cgroups

cgroup git tree:

 git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup.git

http://ramirose.wix.com/ramirosen121/121

Thank you!

http://blog.gmane.org/gmane.linux.kernel.cgroups

