
CMPSC 293S
Internet of Things (IoT)

Winter Term 2019
UCSB

Prof. Dr. Markus U. Mock

Hype Cycle

2

Hype Cycle is a chart that lays out where the hottest
technologies are in terms of adoption. Developed
by the research and advisory firm Gartner.

Hype Cycle 2011

3

Hype Cycle 2013

4

Hype Cycle 2015

5

Hype Cycle 2016

6

Number of connected devices worldwide

7

50.1

42.1

34.8

28.4

22.9

18.2

14.4

11.2

8.7

0 10 20 30 40 50 60

2020*

2019*

2018*

2017*

2016*

2015*

2014

2013

2012

Connected devices in billions

2012

Source: Hotel News Resource; ID 471264

http://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

IoT Landscape: Huge Career Opportunities

8

A few words about myself

• Ph.D. in Computer Science, University of Washington, Seattle,
2002, on “Automating Selective Dynamic Compilation”, (Advisors,
Susan Eggers and Craig Chambers)

• 2002 – 2005 Assistant Professor of Computer Science, University
of Pittsburgh
◦ Research and Teaching in Compilers, Programming

Languages, Computer Architecture

• 2005-2010: Google, Mountain View, Advertising and Google
Docs Backend

• 2010-2014: VMware, Consulting, Nutanix, Amazon
Kindle Division
◦ Worked on the Kindle Fire and Amazon Echo

9

Organizational Issues (1)

• Lecture
◦ Mondays & Wednesdays, 3pm - 4:50pm, Phelps 2510

• Documents
◦ Syllabus online at http://cs.ucsb.edu/~mock/cs293S/index.html

◦ Using Gouchospace for lecture notes etc.

◦ Piazza sign up at: piazza.com/ucsb/winter2019/cmpsc283S

• Exams
◦ Midterm planned for 2/4, no final

• Lecturer
◦ Prof. Dr. Markus U. Mock

◦ Office: HFH 5112

◦ Contact: Via Piazza for questions etc.

◦ Office hours: Wednesdays from 13:30 – 14:30 (subject to change)
and after class

10

http://cs.ucsb.edu/~mock/cs190b/index.html

Organizational Issues (2)

• Books & Articles
◦ There is no textbook for the class

◦ Articles will be provided in Gouchospace as needed
• Project
◦ Group Project 2-3 people in one group, form a group this week

◦ Focus is Data Analysis, statistical and / or machine learning techniques

◦ You will work with sensor data and do analysis for them
▪ More details Wednesday

11

SYLLABUS

• Available on http://cs.ucsb.edu/~mock/cs283S/index.html

Will probably be updates as we move along

12

http://cs.ucsb.edu/~mock/cs190b/index.html

Content
Planning

Introduction

Smart Objects

Connectivity

Application
protocols

Backend

Q&A

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Last Chapter

13

Overview – Lecture Topics

• Introduction

• Smart Objects

• Raspberry-PI and Arduino Platforms

• Connectivity for IoT
• IoT App Protocols: MQTT & CoAP

• IoT Cloud Backends

• IoT Device Management: OMA LWM2M

• Application Development: NodeRED

• 11: IoT Misc.: Cloud / Energy-Efficiency / Security / OS
• Anomaly Detection methods

• Not necessarily all of these topics are covered

14

Group Exercise: Interviews

• Counting exercise
• Find an interviewee (listen for instructions)
◦ Get to know your interviewee (1 minute)
▪ Why are they taking the class?
▪ What experience do they have in IoT?

▪ Unique factoid: what do they think is something unique that no one else
in the class has? (e.g.,10 siblings, married 15 times, born on an
airplane etc.)

◦ Take turns
▪ Now the interviewer becomes the interviewee (1 minute)

• If you have a bad short-term memory: take notes
◦ You will introduce your interviewee to the class (1 minute)

15

Introduction to IoT

Contents

• Illustration of Smart Objects

• IoT Definition

• IoT Applications/Verticals
• IoT Technology Roadmap

• IoT Market

17

What IoT Devices Do You Know?

•

18

Smart Things at Consumer Electronics Show
(CES 2013)

• Parrot: “Flower Power” with
humidity & light sensors [to monitor health

of the plant]

• Withings: “Smart Body Analyzer″
[to monitor weight, heart rate, temperature and air quality]

• Belkin: “Smart WeMo Light Switch”
[to remote or automatic control light]

• Dacor: “Android Smart Oven”
[to install apps and download recipes]

• .. And many others

19

Smart Things at CES’2015

• Sony Smartwatch
• Alcatel Smartwatch
• Withings Smartwatch with the

HealthMate app

• Connected Pacifier

• Mini Drones

• .. And many others

https://www.pastemagazine.com/blogs/lists/2015/01/the-10-best-gadgets-from-ces-2015.html

20

https://www.pastemagazine.com/blogs/lists/2015/01/the-10-best-gadgets-from-ces-2015.html

Smart Things at CES’2016

• The WiFi-enabled, Airmega smart
air purifier

• WowWee’s CHiP robot dog

• The Bluetooth-enabled Chipolo is a
wireless tracker

• Digisole smart shoes are controlled
by a smartphone app (runprofiler,
heated, etc)

• .. And many others
https://www.thestar.com/business/2016/01/05/10-of-the-best-gadgets-at-ces-2016.html

21

https://www.thestar.com/business/2016/01/05/10-of-the-best-gadgets-at-ces-2016.html

Smart Things at CES’2017

• Plume is a wearable device that tracks
pollution around you

• The Griffin Connected Toaster

• Checking your blood alcohol content with
a breathalyzer

• Kuri is an adorable little robot designed for
the home

• Motiv’s fitness/sleep tracking ring

• Intel's Compute Card, which is a mini-
computer about the size of a credit card.

• .. And many others

https://techcrunch.com/2017/01/09/10-of-the-coolest-gadgets-we-saw-at-ces-2017/
http://time.com/4626654/ces-2017-best-gadgets/

22

http://time.com/4626654/ces-2017-best-gadgets/
http://time.com/4626654/ces-2017-best-gadgets/

Smart Cars

• FORD: EV charging app

• NISSAN: Kan-Kan-Kyo house

• TOYOTA: Smart Center
• CHEVROLET Volt: OnStar app

• DAIMLER BENZ: Smart Car2Go

• BMW-TENDRIL: BMW ActiveE

• ..

• Autonomous cars

Sr
c:

 h
ttp

://
w

w
w

.to
yo

ta
-

gl
ob

al
.c

om
/in

no
va

tio
n/

sm
ar

t_
gr

id
/

ht
tp

s:
//s

ec
ur

e.
m

yv
ol

t.c
om

/

Sr
c:

 h
ttp

://
so

ci
al

.fo
rd

.c
om

ht
tp

s:
//s

ec
ur

e.
m

yv
ol

t.c
om

/

“The vehicle is actually the third-fastest growing
connected device behind smart phones and tablets“
IHS Automotive

23

What is Common to All / Most IoT Devices?

•

24

Thing + IT = Function +
Service

25

- Processing (computation
+ storage)

- Communication
- Sensors*
- Actuators**
- Batteries

*Sensors are active devices that measure some variable of the natural or man-made environment (e.g., a building, an assembly line, an
industrial assemblage supporting a process).

**An actuator is a mechanized device of various sizes (from ultra-small to very large) that accomplishes a specified physical action,
for example, controlling a mechanism or system, opening or closing a valve, starting some kind or rotary or linear motion, or initiating
physical locomotion. An actuator is the mechanism by which an entity acts upon an environment.

Prof. Elgar Fleisch:

Metcalfe’s Law (1980)

• Robert M. Metcalfe is the inventor of Ethernet

• The value of a network grows quadratically—proportionately
with the number of connections you can make.

• Metcalfe’s Law: value = n2 – n

• But scaling is challenging!
26

participants (n) Value

3 6
10 90
100 9.900
7x109 (Internet of People) ~72x1018

M*7x109 (Internet of Things) ~M2*72x1018

2012

In 2020: 50x109

connected devices
"Everything that can be networked, should be networked!"

Further important laws

27

• Nielsen‘s law(1998): The
bandwidth doubles every 24 months
(updated 2018: 50% per year)

à „Everything that can be networked is
also networked!“

• Moore‘s law (1965): the integration
density (or the computing power of
computer chips) doubles approximately
every 18 months .

à „Everything that can be digitized is also
digitized“ Karl-Heinz Land

Src: nngroup

Src: Intel

IoT Definition(s)

• “The Internet of things (IoT) is the inter-networking of physical devices,
vehicles (also referred to as "connected devices" and "smart devices"),
buildings, and other items—embedded with electronics, software, sensors,
actuators, and network connectivity that enable these objects to collect and
exchange data” Wikipedia

• “The Internet of Things (IoT) is the network of physical objects that contain
embedded technology to communicate and sense or interact with their internal
states or the external environment” Gartner

• “The Internet of things links the objects of the real world with the virtual world,
thus enabling anytime, anyplace connectivity for anything and not only for
anyone. It refers to a world where physical objects and beings, as well as
virtual data and environments, all interact with each other in the same space
and time” Cluster of European Research Projects on the Internet of Things, “Vision and
Challenges for Realizing the Internet of Things”, March 2010

28

IoT Definition(s)

• “The IoT refers to as ubiquitous networking or pervasive computing
environments, is a vision where all manufactured things can be network
enabled, that is connected to each other via wireless or wired communication
networks” European Network and Information Security Agency (ENISA)

• “The IoT is a world where physical objects are seamlessly integrated into the
information network, and where the physical objects can become active
participants in business processes. Services are available to interact with
these “smart objects” over the Internet, query and change their state and any
information associated with them, taking into account security and privacy
issues. RFID, sensor networks, and so on are just enabling technologies ” SAS

• “The Internet of things (IoT) is the infrastructure of the information society”
Global Standards Initiative on Internet of Things: IoT-GSI, 2013

29

IoT: Espousing Cyber & Physical Worlds

Real Life of Things
(Physical World)

Second Life (shadows)
of Things (Cyber World)

Physical World - Continuous
Digitalization:
- Pervasive sensing/embedded
computing
- Low-cost wireless connectivity
for things (RFID, ZigBee, NFC,
dongles ..)

Cyber World - Web of
Things:
- Powerful computation,
sensing cloud (quality-aware,
intelligent, predictive Big Data
analytics)
- (Semantic) Web 3.0
- Information-centric networks

IoT - Cyber Physical
World:
- Fully automated processes
based on rules/predicates
- Social networking for things
- (Virtual) Things,
augmented reality

Ubiquitous access
of trustworthy

services

30

What is IoT, M2M, IoE?

31SRC: Minoli „BUILDING THE INTERNET OF THINGS WITH IPv6 AND MIPv6“, 2013

IoE IoE

IoE: Internet of Everything

Scope of IoT by way of Illustration

32SRC: Minoli „BUILDING THE INTERNET OF THINGS WITH IPv6 AND MIPv6“, 2013

Smart devices

Backend (server,
cloud,…)

Edge devices
(Gateways,
fogs)

Endusers

Yet another illustrative example of the IoT
(Body Area Network – BAN)

33

SRC: Minoli „BUILDING THE INTERNET OF THINGS WITH IPv6 AND MIPv6“, 2013

Application Domains (or Verticals)

Automotive

34

Smart Cities Asset Mgmt Industrial
manufacturing

Wearables

Fleet Mgmt
& Logistics

Smart meters Safety &
security

Agriculture &
environment

Src Telenor Connexion, 2016

…

Networking & comp.
(Cyber World)

Things & people
(Physical World)

IoT Applications

Smart & communicating things (Cyber-Physical World)

S
ha

re
 e

co
no

m
y

M
on

ito
rin

g
(d

at
a

co
lle

ct
io

n)
S

ur
ve

ill
an

ce
 (s

ec
ur

ity

&
 s

af
et

y)

E
nh

an
ce

d
E

R
P

,
C

R
M

, P
D

M
, .

.
P

ro
du

ct
 li

fe
cy

cl
e

m
gm

t

Cyber-Physical
Systems: Linking
sensing, networking,
computation and people!

Novel real-time measurement

Fine granular measurement Remote control

Human-out-of-the-loop

S
ensing

P
eople

A
ctuation

N
etw

orking &
 com

p.

U
sa

ge
 b

as
ed

in

su
ra

nc
e

S
el

f-c
on

tro
lli

ng

m
an

uf
ac

tu
rin

g

The verticals (i.e.,
applications)

35

What isn’t IoT?

36

Hype Cycle for the IoT, 2016

37

IoT Standardization

◦ 7 SDO (ETSI, ATIS, TIA, CCSA, TTA, ARIB, TTC): OneM2M (since 2012)

◦ ETSI: M2M service layer standard (published Jan 2012)

◦ IETF: CORE (Constrained RESTful Environments), ROLL, RPL, 6LoWPAN,

CoAP

◦ 3GPP Machine Type Comm. (MTC)

◦ OpenADR (Open Auto-Demand-Response) for smart grids

◦ ITU-T: USN (Ubiquitous Sensor Networks)

◦ ISO/IEC: WGSN (Working Group on Sensor Networks)

◦ IEEE 802.14.5, WirelessHART, ZigBee, DASH7, Bluetooth, UWB,

◦ Sigfox UNB (10 - 1000 bps)

◦ The LoRa Alliance

38

The IoT* units installed base by category from
2014 to 2020

39

12.86

7.04

5.24

3.96

3.02

2.28

4.38

2.13

1.5

1.1

0.82

0.63

3.17

2.03

1.64

1.32

1.07

0.9

0 5 10 15 20 25

2020**

2018**

2017**

2016

2015

2014

Installed base in millions

Consumer Business: Cross-Industry Business: Vertical-Specific

Source: Gartner; ID 370350

Notes:
* The IoT is the network of dedicated physical objects
(things) that contain embedded technology to sense or
interact with their internal state or external environment.
The IoT comprises an ecosystem that includes things,
communication, applications and data analysis. ** Forecast

http://www.statista.com/statistics/370350/internet-of-things-installed-base-by-category/

Estimated IoT technology spending breakdown
in 2015, by scenario

40

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0%

Hardware (including sensors and other hardware)

Physical setup

General contracting/ project management operations

Business apps

Packaged software

Analytics tools

Connectivity

Algorithms

Security

Device cloud

Share of spending

Optimistic scenario Conservative scenario

Source: McKinsey; Various sources; ID 462311

http://www.statista.com/statistics/462311/internet-of-things-technology-spending-split-by-scenario/

Spending on IoT worldwide by vertical in 2015
and 2020 (in billion U.S. dollars)

41

30

5

12

12

12

15

15

25

40

40

40

8

2

5

2

3

4

5

5

7

10

10

0 5 10 15 20 25 30 35 40 45

Other

Insurance

Government

Retail

Energy and natural resources

Process

Healthcare

B2C

Utilities

Transportation and logistics

Discrete manufacturing

Spending in billion U.S. dollars

2020* 2015

Source: BCG; ID 666864

http://www.statista.com/statistics/666864/iot-spending-by-vertical-worldwide/

IoT Market

• Forrester Research
states that the
M2M market will be
“the biggest growth
market of the next
5 to 20 years.”

• Berg Insight:
Shipments of
cellular M2M
devices are
forecasted to grow
19.2% p.a.

42

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2015 2016 2017 2018 2019 2020 2021

C
on

ne
ct

ed
 th

in
gs

 in
 m

illi
on

s

Utilities
Consumer electronics**
POS/Vendong/ATM
Automotive
Smart cities
Smart buildings
Smart homes
Wearables
Healthcare
Other

IoT@ HAW-LA

43

Platforms
Challenges

Systems

& appl.

Design &

development

Distributed
Systems

Arduino LibeliumLego
Smart
phones

Embedded
Systems

Google
glassesiWatch

Wireless
Networks

Operating
Systems

Raspberry
Cooking Hacks

Quadrocopter

Internet Technologies

Smart Aquarium

Smart
Agriculture

eHealth

Mobility

Smart city

Waspmote

Smart Objects/Things

Outline – Lecture

• LEC1: Introduction

• LEC2: Smart Objects
• LEC3: Raspberry-PI and Arduino

• LEC4: Information Models (Eclipse Vorto)
• LEC5: Connectivity for IoT

• LEC6: 6LoWPAN

• LEC7: IoT App Protocols: MQTT

• LEC8: Scaling MQTT (HiveMQ)

• LEC9: IoT App Protocols: IETF CoAP
• LEC10: IoT App Protocols: OMA LWM2M

• LEC11: IoT Application Development

• LEC12: IoT Cloud

• LEC13: Security / OS / Energy-Efficiency

• LEC14: Exam preparation

45

Chapter Outline

• Smart Objects
◦ Selected Examples

◦ Definition

◦ Requirements

◦ Technolgies

◦ Applications and Business Models

• Smart Home
◦ Definition and Key Applications

◦ Solution Architecture

◦ Interoperability Gap

• Smart Thermostats
◦ The 1885 Thermostat

◦ Programmable Thermostats

◦ Smart Thermostats
46

Scope of IoT by way of Illustration

47SRC: Minoli „BUILDING THE INTERNET OF THINGS WITH IPv6 AND MIPv6“, 2013

Smart devices

Backend (server,
cloud,…)

Edge devices
(Gateways,
fogs)

Endusers

Repetition!

Smart Gadgets

48

• The Quirky Egg Minder

• The Hidrate Spark

$ 12

$ 55

https://www.amazon.com/Quirky-Minder-Wink-Enabled-Smart/dp/B00GN92KQ4
http://hidratespark.com/
https://www.amazon.com/Quirky-Minder-Wink-Enabled-Smart/dp/B00GN92KQ4/ref=sr_1_1?s=grocery&ie=UTF8&qid=1507786070&sr=8-1&keywords=Quirky+Egg+Minder
https://www.amazon.com/Quirky-Minder-Wink-Enabled-Smart/dp/B00GN92KQ4/ref=sr_1_1?s=grocery&ie=UTF8&qid=1507786070&sr=8-1&keywords=Quirky+Egg+Minder

Smart Gadgets

49

• The Onvi Prophix isn’t the only
“smart toothbrush”

• The Flosstime, a smart floss
dispenser

$ 400

$ 30

https://www.getprophix.com/
http://www.businessinsider.com/philips-sonicare-smart-toothbrush-review-2016-9
http://www.flosstime.com/
https://www.amazon.com/Quirky-Minder-Wink-Enabled-Smart/dp/B00GN92KQ4/ref=sr_1_1?s=grocery&ie=UTF8&qid=1507786070&sr=8-1&keywords=Quirky+Egg+Minder
https://www.amazon.com/Quirky-Minder-Wink-Enabled-Smart/dp/B00GN92KQ4/ref=sr_1_1?s=grocery&ie=UTF8&qid=1507786070&sr=8-1&keywords=Quirky+Egg+Minder

Smart Gadgets

50

• The June is a smart countertop oven

• The HapiFork is a Bluetooth-
enabled “smart fork”

$ 1500

$ 65

http://www.businessinsider.com/june-oven-review-2016-10
https://www.amazon.com/HAPILABS-103-HAPIfork-Bluetooth-Enabled-Smart/dp/B00FRPCQ9Q
https://www.amazon.com/Quirky-Minder-Wink-Enabled-Smart/dp/B00GN92KQ4/ref=sr_1_1?s=grocery&ie=UTF8&qid=1507786070&sr=8-1&keywords=Quirky+Egg+Minder
https://www.amazon.com/Quirky-Minder-Wink-Enabled-Smart/dp/B00GN92KQ4/ref=sr_1_1?s=grocery&ie=UTF8&qid=1507786070&sr=8-1&keywords=Quirky+Egg+Minder

Smart Gadgets

51

• The Belty Good Vibes

• The Verizon Smart Football Helmet
(CES 2013)

$ 149

http://www.wearbelty.com/
https://www.amazon.com/Quirky-Minder-Wink-Enabled-Smart/dp/B00GN92KQ4/ref=sr_1_1?s=grocery&ie=UTF8&qid=1507786070&sr=8-1&keywords=Quirky+Egg+Minder

Smart Gadgets

52

• The Oombrella

• The Porkfolio Piggy bank

$ 80

$ 19

https://www.indiegogo.com/projects/oombrella-unforgettable-umbrella
https://www.wink.com/help/products/quirky-porkfolio-piggy-bank/

Smart Gadgets

53

• iTouchless Automatic Trash
Can

• The Bruno, the smart trash
gadget

• Kinect-powered trash can

• ..

http://brunosmartcan.com/
https://www.engadget.com/2016/10/13/smart-trash-can-helps-educate-reluctant-recyclers/
http://www.theverge.com/circuitbreaker/2017/1/4/14173976/simplehuman-trash-cans-voice-command-wi-fi-ces-2017
https://www.geek.com/gadgets/kinect-powered-trash-can-helps-you-never-miss-the-basket-1539997/

Thing + IT = Function + Services

- Processing (comp. + storage)
- Communication
- Sensors
- Actuators
- Batteries

User
(InternetoT)

Gateway/
Edge
device

54

Backend/
Cloud

User Interface (UI) /
Smartphone app

„Internet“

User
(IntranetoT)

Metcalfe‘s
law

Moore‘s law
Niels‘ law

Prof. Elgar Fleisch:

X

M
in

ut
ar

iz
ed

+
lo

w
 c

os
t

Definition and Classification

• Definition

◦ Thing that is simply connected to internet … A thing that plays an
active role in the network… A thing that has a counterpart in the
cyber world.

• Classification criteria: Awareness, representation, interaction

• Common classification (Awareness)

◦ Activity-aware objects: Maintain logs info about work activities of
their own

◦ Policy-aware objects: Understand events and activities w.r.t pre-
defined policies

◦ Process-aware objects: Understand inbuilt processes and provide
context aware guidelines

• Recent smart objects also exhibit pseudo social behavior!

55

• Easy to embed to physical objects
◦ Compact & easy to add-on even for small sized objects

◦ Affordable even for low-cost objects (Cost should not
exceed 3%)

◦ Energy efficient in particular for battery-powered objects

• Minimally intrusive, no disturbance of main functionality

• Easily interchangeable

Requirements on the “IT-ilization” of Things

56

Sensing

Actuation

Ne
tw

or
ki
ng

Processing

Web server Ba
tt
er
ie
s

The Early Smart Things

Bar/QR RFID (Radio-Frequency IDentification)

(Quick Response) Code Tag/Transponder

Linking a thing to a web service (homepage, cloud etc) for:

57

• Product rating

• Self-checkout

• Stock-taking

• Dynamic pricing

• Proof of origin

• Replenishment alert

• Fair trade check

• Political shopping

• Counterfeit check

BLE (Bluetooth Low Energy) Tags / NFC
(Near Field Communication) (Chapter 5)

„Pass by Reference“

Intuitive Interaction: Access information through pointing / „touch“

58

Internet

ID=123.45.67.89

ID=123.45.67.89Information

„Get a reference“

„Pass by reference“

QR-Codes

• Free tools to generate QR codes:
◦ http://www.qrstuff.com/
◦ http://goqr.me/
◦ www.unitag.io/qrcode

• Commercial tools
◦ http://www.visualead.com/

• Scanner apps (Android, iOS, win10)

59

http://www.qrstuff.com/
http://goqr.me/
http://www.unitag.io/qrcode
http://www.visualead.com/

RFID Systems

• RFID system: Reader(s) + unique tags as
identifier
◦ Monitor objects in real time without the need to be in

Line-Of-Sight

▪ Logistics, e-health, security

▪ Mapping real world -> virtual world

• An RFID tag is a small chip with antenna
◦ Receiving signals, and transmitting the tag ID

▪ Induction, current

▪ Signal power recv. divided by power transm. = ID

◦ Passive (low-cost things), semi-passive (with battery)
and active (with battery, for higher cost things)

◦ UHF: 300 MHz- 3GHz, 860 – 960 MHz

60

• Reduced size, weight, energy consumption, and cost of radio

Bar/QR-code RFID Smarter thing

Enabling things with sensing/actuation, computation & networking

capabilities:

- Advanced product lifecycle mgmt: More individualized products, estimated residual

lifetime, predictive maintenance, usage behavior, etc.

- Context-aware behavior: Tailor functionality to environment/lifetime, ..

Smarter Things (Software Defined Things!)

..

Just a few examples:
Smartphone

Vehicle (car, train)

Machines

Robots

Home appliances

Medical device

Tools

Sport equipments

Clothes

etc., etc.

61

Sensing

Actuation

Ne
tw

or
ki
ng

Processing

Web server Ba
tt
er
ie
s

• Enabling assets/tools with sensing/actuation, computation &
networking capabilities:

◦ Sensing: Cameras, GPS, light intensity, micro, etc.

◦ Actuation: Light, sound, reconfiguration of standard functions, etc.

◦ Networking (Chapter 5)

à Provide Services: Tracking, proactive maintenance, usage monitoring,
rent/sharing, payment per use, etc

Smartening Tools (Software Defined Tools!)

…

Se
ns
in
g

Actuation

Networking

Processing

Smarter ToolsCode (Bar, QR..) Tag (RFID, ThinFilm..) Product Examples

62

Bosch Rexroth Nexo
- On-board controller
for Sensing of torque
and angle of rotation
- WiFi
- Barcode scanner

Low-Power, Low-Cost WiFi Modules

63

Real-time
clock

HW encryption
engine

G2M 5477
(About 10$)

.. others

Products in the IoT World

• Are much smarter
• Know their life cycle
• Are customizable for customer requests
• Can understand and interpret user behavior
• Can be maintained remotely and preventively (networked

products change the service model from reactive to proactive)

64

Manufacturer in the IoT World

• The manufacturer receives useful information about the long-term
use behavior of his product under real operating conditions

• Away from the product seller to the service provider

• Stay in constant contact with your customers throughout the
product lifecycle

• Dependence on trading partners is decreasing, customer loyalty
is being improved

65

Customers in the IoT World

• IoT starts with the customer
• Customers have moved from the end of the production chain into

the production and logistics process. As a customer I want:
◦ Know the status of my order in real time

◦ Flexible, situational and individual solutions
◦ An individual, fast customer service and an uncomplicated service

experience

• Age of the Customer: service orientation instead of product
orientation

66

New Business Models

• Individualisation of products
◦ „We produce what we sell“ instead of what „we sell what we produce“

• Services instead of products
◦ Pay as your Drive (PAYD)

◦ Pay-per-use

▪ à Extensive sharing
▫ Dynamic tolling on roads depending on pollution zones, traffic, law enforcement

rules,

▫ Etc.

▪ à Renting instead of selling
▫ Pay-per-volume
▫ Etc.

• Fine-granular product lifecycle management

◦ Traceability

◦ Predictability

◦ Etc.
67

Shareconomy: A Driver for IoT

Resource sharing in the cyber physical world
• Car sharing
• Bike sharing
• ..

Why not sharing lower cost objects?
• Machines
• Tools
• Toys
• ..

Increasing object value

Shareconomy already successful in the cyber world: Cloud computing

68

„Smart Home: Thermostat as an
Illustration of a Smart Object“

69

Smart Home

70

Smart Home: Why Now?

• Access to Affordable Devices

• Plentiful Bandwidth

• Savvy Consumers

• Smartphones and Tablets

71

SRC: iControl Networks: „ 2015
State of the Smart Home Report“,
www.StateOfTheSmartHome.com

…

http://www.stateofthesmarthome.com/

Smart Home Applications

• Security

• Energy efficiency (example later)

• Home maintenance

• Environment protection

72

SRC: iControl Networks: „ 2015 State of the Smart Home Report“,

www.StateOfTheSmartHome.com

http://www.stateofthesmarthome.com/

Technology Design

73

Cloud

Customer Premise Enterprise Data Center Servers

VPN Tunnel

Direct Media Stream

Wireless & Wired
Device Mesh

Internet Connection

Smart
Home
Objects

Users

Major Commercial Gateways & Plattforms

• Apple Homekit
◦ http://www.electronichouse.com/daily/smart-home/homekit-coming-will-

apple-home-automation-different/

• Deutsche Telekom Smart-Home-Box
◦ Telekom Smart Home Base Qivicon

• Mosaic Gateway (Bosch, ABB, Cisco)
• HUE Philips
• Belkon WeMo switch
• Dropcam

74

http://www.electronichouse.com/daily/smart-home/homekit-coming-will-apple-home-automation-different/

Interoperability:
Accept the Diversity, Break the Silos

• Eclipse SmartHome™ project
◦ Addresses a vast variety of comm. mechanisms

◦ Serves as an abstraction and translation
framework that makes interaction possible
across system and protocol boundaries

• Other initiatives
◦ openHAB (open source) Run on Linux, OS X,

Windows, Java 8, Raspberry Pi

◦ Mosaic (Bosch, ABB, Cisco)

75

• Poor interoperability is the main barrier for a sustainable ecosystem
◦ HW-agnostic platforms

Smart Thermostat

76

1885 Thermostat

• Albert Butz (started a company that became
Honeywell in 1927)
◦ Bimetal plate (sensor/control)

◦ Motor to move the furnace damper

• On-off control based on threshold (room
predetermined temperature)

• Thermostat switching on -> main motor shaft
turns one-half revolution opening furnace’s air
damper to let in air (fire burn hotter).

• Thermostat switching off -> motor shaft turns
another half revolution closing furnace’s air
damper.

77

http://www.travelfilmarchive.com/item.php?id=13013

http://www.travelfilmarchive.com/item.php?id=13013

Thermostat Control Logic

78

-

Thermostat Control Logic (Cont.)

79

.. Programmable Thermostats:
Clock thermostats, Digital thermostats, Digital thermostats with PID controller..

PID Controller

• PID stands for
◦ Proportional
◦ Integral
◦ Derivative

80

Image credits: CC Wikipedia

Programmable Thermostats

• Some field studies have shown no significant
savings in households using programmable
versus non-programmable thermostats. These
studies point out that programmable thermostats
are only used successfully by about 50 percent
of home occupants, although estimates vary
among the different studies.

81

• The U.S. Department of Energy has estimated that the average homeowner
can save between 5 and 20% of their heating and cooling costs by using a
programmable thermostat.

• The programmable thermostat itself does not guarantee energy savings;
savings depend on how the device is programmed and used in each
household versus how a manual thermostat would be used in that household.

Smart Thermostat: “do the thinking for their
owners”

82

Smart Thermostat

• High degree of automation
◦ Information gathered by sensors and other data acquisition devices,

monitoring weather forecasts

◦ Communications incl. Internet connectivity

◦ Self-programming and adaptive learning (interview-based programming),
“set and forget” approach

• User interface
◦ Home Energy Displays (HEDs) (feedback and recommendations)
◦ Dashboard or portal

◦ Smartphone App

• 20 - 40% energy savings

83

Smart Thermostat – Current products

• Nest ($200), 2011+

• Ecobee ($170, $70/sensor), 2007+
◦ Temperature & presence sensors

• Honeywell ($250)
◦ Interview-based programming

• Others (Filtrete/Homewerks, Emerson, Venstar, Proliphix, Aprilaire, Lux, Robert Shaw,
Lennox, Carrier, Bay Controls, Evolve, Hunter, Jackson Systems, ICM Controls, Net/X, Intwine
Energy, Schlage Nexia, Enphase Energy, Energate, Trane and LockState)

84

Conclusions

• Smartening Objects is the main driver of IoT
◦ Several techniques

◦ New business models: Pay-as-*, pay-per-*

• Smart Home is
◦ Profiting from affordable HW and plethora of applications

◦ But still struggling with the interoperability gap

85

Raspberry PI & Arduino Uno

Chapter Outline

• Raspberry PI
◦ Specs
◦ Setup & Configuration
◦ Python
◦ Hello World

• Arduino Uno
◦ Specs
◦ Programming
◦ Hello World

• Comparison

87

RASPBERRY PI

88

Raspberry PI 3 & the Rest of the World

89Src: www.pi-top.com

Beagle Bone
Black

Odroid
C1+

Banana Pi Pine 64 pcDuino3 C.H.I.P

OS

COST

Raspberry
PI, B

Raspberry PI is the Most Popular

90

SRC: https://docs.google.com/spreadsheets/d/1zWwpcckDEEVAhNH3y7JQGxxbjP42nUywPOzDWr1fH28/edit#gid=0

https://docs.google.com/spreadsheets/d/1zWwpcckDEEVAhNH3y7JQGxxbjP42nUywPOzDWr1fH28/edit

Two Models

• Model A

◦ Lower-spec variant of the Raspberry Pi (256 MB RAM, 1x
USB port, no Ethernet)

◦ Lighter and consumes less power

◦ Suitable for embedded projects

▪ Robotics

▪ Projects where weight and low power are paramount

• Model B

91

Model B Timeline

92

Pi 3 Model B

RASPBERRY PI 3 MODEL B

Specifications (Specs):
SoC (System on Chip): Broadcom
BCM2837
CPU: 4xcore, ARM Cortex-A53, 1.2GHz,
64-bit
GPU: Broadcom VideoCore IV
RAM: 1GB LPDDR2 (900 MHz)
Networking: 10/100 Ethernet, 2.4GHz
802.11n wireless
Bluetooth: Bluetooth 4.1 Classic,
Bluetooth Low Energy
Storage: microSD
GPIO (General-Purpose
Input/Output): 40-pin header (only 26 for
Pi A)
Ports: HDMI, 3.5mm analog audio-video
jack, 4x USB 2.0, Ethernet, Camera
Serial Interface (CSI), Display Serial
Interface (DSI)

93

https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks

https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks/

Setup of the Raspberry Pi

• Step 1: Setup an interface to the device
◦ Plug in a monitor (via HDMI)
◦ Keyboard/mouse via USB

• Step 2: Get an Operating System (OS)
◦ Raspberry Pi needs an OS
◦ OS image must be present on the micro SD card

• Step 3: Power supply
◦ Micro USB power supply (at least 2A at 5V)

94

Installing an OS

• Use NOOBS (New Out-Of-Box-Software)

◦ Comes pre-installed on Micro SD bundled with Raspberry Pi
boards

◦ Otherwise use a “good quality” 8GB+ micro SD and do:
▪ Format the micro SD (need an SD reader)

▪ Download NOOBS for free from
www.raspberrypi.org/downloads
▪ Extract NOOBS download

▪ Put it on the micro SD

• NOOBS will install an OS on the SD card

◦ You get a choice of OS
▪ Longer list if you are connected to Internet

◦ Choose RASPBIAN (distribution of Linux/Debian)

95

http://www.raspberrypi.org/downloads

Configuration of Raspberry Pi

• Raspi-Config
◦ is a tool, which provides various setup/boot options for Raspberry Pi

◦ will run automatically when you boot with a new SD card for the first time

• Raspi-Config key Options
◦ Expand Filesystem: reformats your micro SD card filesystem to allow

access to all the memory
◦ Change User Password (highly important!)
▪ Raspberry Pi starts with one default user account

▫ Username: pi

▫ Password: raspberry

◦ Change Boot options
▪ Console (text-based interface, default)

▪ Desktop graphic interface

96

Programming Raspberry Pi

• Many programming languages can be used
◦ Need a compiler (C, C++, Java, etc) or an interpreter (Python, Perl,

etc)
◦ Python is most convenient
▪ Good programming environment built-in

▪ Good APIs available to access Raspberry Pi hardware

• Python language
◦ High-level language, easy to use
▪ No need to explicitly declare data types
▪ No pointers

▪ Object-oriented programming

◦ Slow compared to C/C++ (interpreted not compiled)
◦ Two versions: 2.x and 3.x (3.x recommended)

97

Python Programming Environmment

• Two possible environments
◦ Integrated Development Environment

(IDE)
▪ IDLE is the best option

▪ Invoke via Menu > Programming >
Python
▪ Select Python 3

◦ Text editor and interpreter separately
▪ Use Raspberry Pi text editor (e.g.,

Pico or Nano) to write a program
„test.py“

▪ Execute program by typing „python3
test.py“

98

Executing Python Code

Two ways to do it:
• Interactive
◦ Execute lines typed interactively in a Python console/shell
◦ Start IDLE, shell is default

◦ In terminal type „python3“

• Batch
◦ Execute an entire Python program

◦ Start IDLE

◦ File > New File to create a new text editor window

◦ Type in code

◦ Run > Run Module
◦ Python shell will open and code will execute

99

Setup for Optional LED Lab (1)

100

Resistor: Place the LED with a 270 ohm resistor in
series with the GND and GPIO pin of Raspberry Pi
(Always use a resistor with LEDs to limit the current,
else you might end up with a burnt LED!)

Breadboard:
LED:

GPIO

GPIO:

Command: gpio readall

Lab Setup (2)

101

LED on/off

102

File in Moodle: blink.py

Is Raspberry Pi an IoT Device?

• Maybe – Depends on how it is used!
• Similarities
◦ Network connectivity and computational intelligence

◦ Small and cheap (relative to a PC)

◦ Can interface directly with sensors/actuators via pins

• Differences
◦ Interface can be exactly the same as a PC running Linux
▪ Complexities of the system can be visible

103

Raspberry PI - Samples of IoT Projects

http://makezine.com/2013/04/14/47-raspberry-pi-projects-to-inspire-your-next-build/

104

http://drstrangelove.net/2013/12/
raspberry-pi-power-cat-feeder-
updates/

http://makezine.com/2013/04/14/47-raspberry-pi-projects-to-inspire-your-next-build/
http://drstrangelove.net/2013/12/raspberry-pi-power-cat-feeder-updates/

Lab Hardware: Raspberry Pi

105

Raspberry PI 3 B All-
In-Bundle: 58,78 €

ARDUINO

106

Arduino UNO
Microcontroller ATmega328P
Operating Voltage 5V

Input Voltage
(recommended)

7-12V

Input Voltage (limit) 6-20V

Digital I/O Pins 14

PWM Digital I/O Pins 6 (out of 14)
Analog Input Pins 6

DC Current per I/O Pin 20 mA
DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB (ATmega328P) of which
0.5 KB used by bootloader

SRAM 2 KB (ATmega328P)

EEPROM 1 KB (ATmega328P)

Clock Speed 16 MHz
LED_BUILTIN 13

Length 68.6 mm
Width 53.4 mm

Weight 25 g

107

Programming Arduino (1)

• Is designed for turning
electronic inputs to outputs
◦ Rapidly & Cheaply!

• Writing programs (called
sketches is done on a
separate machine
◦ Uploaded to the Arduino for

execution

108

Arduino is based on a microcontroller

•Microcontroller vs microprocessor
◦Microprocessor = CPU

◦Microcontroller = CPU, RAM, ROM +
some peripherals on 1 chip

•How do you run code without an

operating system

109

Programming Arduino (2)

• www.arduino.cc

• IDE
◦ Platform agnostic – works on
▪ Desktop
▪ Laptop

▪ Tablets

▪ Mobile

◦ OS agnostic

110

http://www.arduino.cc/

Verify and Upload

111

Code

Code

Code

Combine &
Transform Compile Link .hex File

Creation

Libraries

.hex

Upload

Verify
.elf

Combine & Transform
• All program files are combined

into one
• An #include is added to

reference basic Arduino
libraries

• Function prototypes are added
• A main() function is created

Compile & Link
• avr-gcc is invoked to cross-

compile the code
◦ Resulting code executes on AVR

• Generates an object file (.o)
• Object file is linked to Arduino

library functions
• Result is an .elf file

112

Verify (1)

Hex File Creation &
Programming
• avr-objcopy is invoked to

change the format of the
executable file

• A .hex file is generated from
the .elf file

Arduino Programs
• A program is called sketch
• C++ program using Arduino

library functions (C++ is a
superset of C)

• Classes defined in libraries
◦ Ethernet.begin(mac);

◦ Serial.begin(speed);
◦ Client.print(“Hello“);

◦ Serial.print(“Hello“);

113

Verify (2)

Setup() Function
• A sketch does not have a

main() function
• Every sketch has a setup()

function
◦ Executed once Arduino is

powered up

◦ Used for initialization operations

◦ No argument / no return value
Void setup(){

…
}

Loop() Function
• Every sketch has a loop()

function
◦ Executed iteratively as long as

Arduino is powered up

◦ Loop() starts executing after
setup() has finished

◦ Loop() is the main program
control flow

◦ No argument / no return value

Void loop(){
…

}

114

Sketch Structure

Pin Mode
Void pinMode(pin, mode)

• Sets a pin to act as either I/O

• pin is the pin number

◦ 0-13 for digital pins

◦ A0-A5 for analog pins

• mode is the I/O mode the pin is set to

◦ INPUT

◦ OUTPUT

◦ INPUT_PULLUP: acts as INPUT

with reversed polarity

Digital I/O
Int digitalRead(pin)

◦ Returns state of an input pin

◦ Returns either LOW (0 volt) or HIGH

(5 volts)

Void digitalWrite(pin, value)

◦ Assigns the state of an output pin

◦ Assigns either LOW or HIGH

115

Input/Output (I/O): Functions to Access Pins

Analog Input
Int analogRead(pin)

◦ Returns state of an analog input pin

◦ Returns an integer 0 .. 1023

◦ 0 (o volt), 1023 (5 volts)

Blink Sketch

116

Built-in LED

Wired LED

Lab Hardware: Arduino

117

Allnet 4duino Starter-
Kit 41,98 €

Raspberry Pi vs. ARDUINO

118

Raspberry Pi vs. Arduino

Raspberry Pi Arduino
Processor 1200 MHz 16 MHz PI is faster

Larger address space64 Bit 8 Bit
Memory 1024 MB SRAM 2 KB SRAM Pi has more memory

4 GB Flash 32 KB Flash
- 1 EEPROM

OS Full fledged OS -
Processes -

IO 3.3 V voltage level 5 V PI higher energy efficiency
Ethernet -
SD Card -
- Analog input
Accessing to pins
may be time-
consuming

Accurate time for
writing to pins

Arduino better supports time-
sensitive applications

119

Chapter 6:
Connectivity for IoT

Enabling Communication Technologies for IoT

Learning Objectives

Upon completion of this chapter, the student should understand:
• The main attributes of the major competing wireless technologies
• How to interpret Physical/link layer specifications
• How to compare two radio modules
• The common impairments affecting radio performance
• How to select a suitable radio technology

165

Outline

• Motivation
• Wireless Behaviour
• The Main Wireless Standards
◦ Cellular, WiFi, ZigBee, Bluetooth, many others

• Selection of Suitable Technology for a given Application

166

The Protocol Stack

167

This Lecture

The Internet ..

168

IoT ? IoT
Gateway ?

Frequency Allocation (Spectrum)

• Some frequencies are
allocated to specific uses
◦ Cellular phones, analog

television/radio broadcasting,
DVB-T, radar, emergency
services, radio astronomy, ..

• Particularly interesting: ISM
bands (“Industrial, scientific,
medicine”) – license-free
operation

169

Challenges on Physical Layer

170

Scattering

Diffraction

Attenuation

Refraction

ReflectionLine of Sight
• Line of Sight
• Near Line of Sight
• No Line of Sight

Challenges on Link Layer

171

Hidden Terminal

Exposed Terminal

Collision
A B

Topologies for Wireless Networks

172

(e.g., cellular)

(e.g., Bluetooth, ZigBee) (e.g., WiFi-direct)

(e.g., WLAN)

Characteristics of wireless networks

• Number of nodes: number of all devices in the network, like routers, gateways, or hosts.
The larger the number of nodes in a network, the more difficult it is to manage the network.

• Mobility: This key refers to mobile nodes in the network, for example mobile routers and
mobile clients. A network with a higher degree of mobility usually exposes a higher dynamic
topology.

• Hop-Count: number of hops between a source and destination. A high hop count is likely
to increase the latency of transmissions and decrease the throughput of a network.

• Self-Organization: degree of human interaction required by a network, e.g., for
configuration and management. Thus a network with a higher degree of self-organization is
a network which demands less human interaction.

• Energy-Awareness: energy sensitivity of a network. A network has to be more energy-
aware if the energy resource is finite.

• Universality: Characterizes whether the network is tailored to a specific application. A
network is more universal if it can be used for more applications.

• Data rate: user-perceived throughput, for example the quality of a connection from a
source to a destination. Usually, the higher the data rate, the better the connection
throughput. However, this key has to be used carefully, since a wireless link may show low
quality due to interference even with high data rates.

173

Enabling Technologies: Number of connected
devices/things by technology worldwide

Source: Berg Insight; ID 626323

350 450 500 570 610 650 700

1,660

2,160

2,680

3,150

3,800

4,480

5,260

265

330

410

510

620

740

910

20

50

100

250

450

700

900

5

10

10

20

20

30

30

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2015 2016 2017 2018 2019 2020 2021

N
um

be
r o

f d
ev

ic
es

/th
in

gs
 in

 m
ill

io
ns

Fixed WPAN/WLAN Cellular LPWA Satellite, others

WPAN: Wireless Personal Area Network
WLAN: Wireless Local Area Network
LPWA(N): Low Power Wide Area (Network)

http://www.statista.com/statistics/626323/connected-iot-devices-things-worldwide-by-technology/

Connectivity Technology Considerations

175 Src Telenor Connexion, 2016

Main Technologies for IoT

176 Src Telenor Connexion, 2016

Main Characteristics of Short Range
Communication (ZigBee, 6LowPAN, Z-Wave, BLE, Bluetooth)

177

ZigBee, 6LowPAN

178

ZigBee, 6LowPAN

179

Z-Wave

180

Z-Wave

181

Bluetooth Low Energy, Classic Bluetooth

182

Bluetooth Low Energy, Classic Bluetooth

183

Near Field Communication (NFC)

184

Selection of Suitable Technique
for a planned IoT Application

Key Strengths and Weaknesses of Different
Types of Connectivity Technologies

186 Src Telenor Connexion, 2016

Design Constraints on the Technical Level:
Data Rate vs Coverage

187 SRC: LG

Design Constraints on the Technical Level:
Data Rate vs Coverage vs Energy Consumption

188 Src Telenor Connexion, 2016

Trade-offs on the Commercial Level:
QoS vs Scalability vs. Cost

Main cost components of an
IoT Device
• Connectivity module
• Sensors
• Battery
• Processor

189

Src Telenor Connexion, 2016

Spider Diagrams

D
at

a
R

at
e

C
rit

er
ia

2
Footprint

(RAM/ROM)

Com
m.

La
ten

cy
Coverage

Criteria 3

Energy
Consumption

Technology 2

Crite
ria

1

Technology 1

Characteristics of Wireless Networks (1)

191

Characteristics of Wireless Networks (2)

192

Suitability for Application Areas

193 Src Telenor Connexion, 2016

Takeaways

• Rich landscape of technologies
• Selection of one or more technologies is a fundamental decision

for the realization of an IoT application

194

Networking for IoT
6LowPAN, RPL

The Protocol Stack

196

This Lecture

6LoWPAN

RPL

Chapter Outline

• Motivation
◦ Low-Power and Lossy Networks (LLN)
◦ Why all-IP?

• 6LowPAN
◦ 6LowPAN Adaptation Layer
◦ 6LowPAN Header Compression
◦ 6LowPAN Fragmentation

• Routing Protocol for Low-Power and Lossy Networks (RPL)
◦ Concept
◦ RPL Control Messages
◦ DODAG Formation Example

197

Low power and Lossy Networks (LLNs)

• LLNs are composed of many embedded devices:
◦ restricted in processing power, memory and energy (battery)
▪ Duty cycling to save energy (sleep, idle, active..)

◦ interconnected by a variety of links, such as IEEE 802.15.4 or Low Power
WiFi, characterized by
▪ high loss rates,

▪ low data rates and

▪ instability

• There exist many protocols for LLNs and consider the network to
follow the source - sink architecture. Thus, most of the
protocols are designed to support multipoint-to-point (M2P) or
point-to-multipoint (P2M) communications

• UDP rather than TCP like communication

198

LoWPAN-Extended IP Network

199

IP/LoWPAN Router

IP/LoWPAN Sensor Router

IP Device

IP Network
(powered)

LoWPAN-Extended IP Network

IP/LoWPAN Router

IP/LoWPAN Sensor Router

IP Device

IP Network
(powered)

LoWPAN-Extended IP Network

Src: D.E. Culler et al., 2008

IEEE 802.15.4

Many Advantages of IP

• Extensive interoperability
◦ Other wireless embedded 802.15.4 network devices
◦ Devices on any other IP network link (WiFi, Ethernet, GPRS, Serial lines, …)

• Established security
◦ Authentication, access control, and firewall mechanisms
◦ Network design and policy determines access, not the technology

• Established naming, addressing, translation, lookup, discovery

• Established proxy architectures for higher-level services
◦ NAT, load balancing, caching, mobility

• Established application level data model and services
◦ HTTP/HTML/XML/SOAP/REST, Application profiles

• Established network management tools
◦ Ping, Traceroute, SNMP, … OpenView, NetManager, Ganglia, …

• Transport protocols
◦ End-to-end reliability in addition to link reliability

• Most “industrial” (wired and wireless) standards support an IP option
200

à Leverage
existing
standards,
rather than
“reinventing
the wheel”

6LoWPAN: IPv6 over Low power
lossy Personal Area Networks

(many slides are from D.E. Culler et al. 2008)

The 6LoWPAN Standard..

202

IEEE Wireless links

• ZigBee
◦ only defines communication between 15.4 nodes (“layer 2” in IP terms), not the rest of the network (other

links, other nodes).
◦ defines new upper layers, all the way to the application, similar to IRDA/USB/Bluetooth, rather than utilizing

existing standards.

203

802.15.4 802.15.1 802.15.3 802.11 802.3
Class WPAN WPAN WPAN WLAN LAN

Lifetime (days) 100-1000+ 1-7 Powered 0.1-5 Powered

Net Size 65535 7 243 30 1024

BW (kbps) 20-250 720 11,000+ 11,000+ 100,000+

Range (m) 1-75+ 1-10+ 10 1-100 185 (wired)

Goals
Low Power,
Large Scale,

Low Cost
Cable

Replacement
Cable

Replacement Throughput Throughput

IPv6: Re-Designing Addressing

• IPv6 (RFC 2460)

◦ Complete redesign of IP addressing

◦ Hierarchical 128-bit address

• Majority of traffic not yet IPv6 but exponential increase

204

Src: Google

IEEE 802.15.4

• Allows mesh networking: Full function nodes can forward packets
to other nodes

• A PAN coordinator (like WiFi Access Point) allows nodes to join
the Internet

• Nodes have 64-bit addresses

◦ Coordinator assigns 16-bit short addresses for use during the
association

• Max Frame size is 127 bytes

205

Internet Concepts: Layering

206

802.5
Token Ring

802.3
Ethernet

802.11
WiFi802.3a

Ethernet
10b2

802.3i
Ethernet
10bT
802.3y
Ethernet
100bT

802.3ab
Ethernet
1000bT

802.3an
Ethernet
1G bT

802.11a
WiFi802.11b

WiFi802.11g
WiFi802.11n

WiFi

X3T9.5
FDDI

Serial
Modem

GPRS

ISDN
DSL

Sonet

Transport (UDP/IP, TCP/IP)

Application (Telnet, FTP, SMTP, SNMP, HTTP)

Diverse Object and Data Models (HTML, XML, …, BacNet, …)

802.15.4
LoWPAN

Network (IP)

Link2: link

3: net

4: xport

7: app

1: phy

6LoWPAN

Key Factors for IP over 802.15.4

• Header

◦ Standard IPv6 header is 40 bytes [RFC 2460]

◦ Entire 802.15.4 MTU is 127 bytes [IEEE]

◦ Often data payload is small

• Fragmentation

◦ Interoperability means that applications need not know the
constraints of physical links that might carry their packets

◦ IP packets may be large, compared to 802.15.4 max frame size

◦ IPv6 requires all links support 1280 byte packets [RFC 2460]

207

6LoWPAN

• The primary driving force behind the growth of IoT is the effectiveness of
6LoWPAN (IPv6 over Low power lossy personal area networks).

• 6LoWPAN is an adaptation layer between the network layer and the data link
layer [2]. The primary function of the 6LoWPAN is to convert IPv6 packets
from the network layer to short IEEE802.15.4 frames. To encapsulate IPv6
packets in IEEE802.15.4 frames [1], 6LoWPAN requires performing IPv6
header compression, and fragmentation & defragmentation. The
6LoWPAN adaptation layer also performs routing between the nodes within
the network.

[1] IEEE, “Ieee standard for local and metropolitan area networks–part 15.4: Low-rate wireless personal area
networks (lr-wpans) amendment 3: Physical layer (phy) specifications for low-data-rate, wireless, smart metering
utility networks,” IEEE Std 802.15.4g-2012 (Amendment to IEEE Std 802.15.4-2011), April 2012, pp. 1–252.
[2] N. Kushalnagar, G. Montenegro, and C. Schumacher, “Ipv6 over lowpower wireless personal area networks
(6lowpans): overview, assumptions, problem statement, and goals,” Internet Requests for Comments, RFC 4914,
August 2007.

208

6LoWPAN Challenges

• Large IP Address & Header => 16 bit short address / 64 bit EUID

• Minimum Transfer Unit => Fragmentation

• Short range & Embedded => Multiple Hops

209

Link frame

ctrl src UIDlen chkdst UID link payload

Network packet

UDP datagram or
TCP stream segment

transport header application payload

…, modbus, BacNET/IP, … , HTML, XML, …, ZCL

128 Bytes MAX

40 B + options

1280 Bytes MIN

cls flow len hops src IP dst IP net payload

16 B16 B

NH

The Header Size Problem

Worst-case scenario calculation:
• Max Frame size in 802.15.4: 127 byte
• Reduced by the max frame header (25 byte): 102 byte
• Reduced by highest link-layer security (21 byte): 81 byte
• Reduced by standard Ipv6 header (40 byte): 41 byte
• Reduced by standard UDP header (8 byte): 33 byte
• This leaves 33 byte for actual payload (the rest is used by

headers!)

210

6LoWPAN – IP Header Optimization

• Eliminate all fields in the IPv6 header that can be derived from the 802.15.4
header in the common case
◦ Source address : derived from link address

◦ Destination address : derived from link address

◦ Payload length : derived from link frame length

◦ Traffic Class & Flow Label : may be elided

◦ Next header : UDP, TCP, or ICMP

• Additional IPv6 options follow as options
211

Link frame

ctrl src UIDlen chkdst UID

Network packet
40 B

6LoWPAN adaptation header

hops
3 B

cls flow len hops src IP dst IP net payloadNH

IPv6 Header Compression

http://www.visi.com/~mjb/Drawings/IP_Header_v6.pdf

212

v6 zero

Link local => derive from 802.15.4 header

Link local => derive from 802.15.4 header

In 802.15.4 header

in HC1 byte

uncompressed

Further Header Compression (Example)

48-byte UDP/IPv6 header à 7-byte 6loWPAN header

213

Src: Cisco

6LoWPAN Fragmentation

• IP interoperability over many links => users not limited by frame size

• IP datagrams that are too large to fit in a 802.15.4 frame are
fragmented into multiple frames
◦ Self describing for reassembly

Multiple Link frames

net payload

Network packet

IP header

chk15.4 header IPF1

chk15.4 header IPF2

chk15.4 header IPFn

.

ne
t p

ay
lo

ad

214

6LoWPAN … What it means for sensors

• Low-Power Wireless Embedded devices can now be connected
using familiar networking technology,
◦ like ethernet (but even where wiring is not viable)
◦ and like WiFi (but even where power is not plentiful)

• all of these can interoperate in real applications
• Interoperate with traditional computing infrastructure
• Utilize modern security techniques

• Application Requirements and Capacity Plan dictate how the
network is organized,
◦ not artifacts of the underlying technology

215

… Making Sensor Nets Make Sense

216

802.15.4, …802.11Ethernet Sonet

XML / RPC / REST / SOAP / OSGI

IP

IETF 6lowpan

Web Services

TCP / UDP

HTTP / FTP / SNMP

LoWPAN – 802.15.4
• 1% of 802.11 power, easier to

embed, as easy to use.
• 8-16 bit MCUs with KBs, not MBs.
• Off 99% of the time

P
ro

xy
 /

G
at

ew
ay

RPL (ripple):
Routing Protocol for Low Power

and Lossy Networks

Routing Over Low Power and Lossy Networks (ROLL)

IETF working group focused on routing issues for LLNs:

• Routing requirements specification for various application areas of LLNs

◦ Home automation

◦ Commercial buildings automation

◦ Industrial automation

◦ Urban environments

• Evaluation of existing routing protocols in the scope of LLNs

• Solution must work over IPv6 and 6LoWPAN

• Routing Protocol for Low power and lossy networks (RPL)

Survey of Existing Routing Protocols

Protocol State Loss Control Link Cost Node Cost
OSPF/IS-IS Fail Fail Fail Pass Fail
OLSRv2 Fail ? ? Pass pass
TBRPF fail Pass Fail Pass ?
RIP pass Fail pass ? fail
AODV pass fail pass fail fail
DYMO pass ? pass ? ?
DSR fail pass pass Fail fail

- Routing State - limited memory resources of low-power nodes.
- Loss Response - what happens in response to link failures.
- Control cost - constraints on control traffic.
- Link&Node cost - link and node properties are considered when choosing routes.

RPL („Ripple“)

• Short-range radios & Obstructions => Multi-hop Communication
is often required
◦ i.e. Routing and Forwarding

• Proactive distance-vector approach

220

PAN

RPL: IPv6 Routing Protocol for LLNs

Definitions:
• Directed Acyclic Graph (DAG) - a directed graph where no cycles

exist.
• Destination Oriented DAG (DODAG) - a DAG rooted at a single

destination.

DAG DODAG

DAG roots

RPL Node Rank

• Defines a node’s relative position within a DODAG with respect to the
DODAG “root”.

Rank = 0

Rank = 1

Rank = 2Rank = 3

Rank = 1

Rank = 3

RPL: IPv6 Routing Protocol for LLNs

• Assumption: most traffic in LLNs flows through few nodes
◦ many-to-one
◦ one-to-many

• Approach: build a topology (Instance) where routes to these nodes are
optimized (DODAG(s) rooted at these nodes)

RPL Instance

• Defines Optimization Objective when forming paths towards roots
based on one or more metrics

• Metrics may include both Link properties (Reliability, Latency) and
Node properties (Powered or not)

• A network may run multiple instances concurrently with different
optimization criteria

Instance may include several DODAGs

RPL Control Messages

RPL defines a new ICMPv6 message with three possible types:

• DAG Information Object (DIO) - carries information that allows
a node to discover an RPL Instance, learn its configuration
parameters and select DODAG parents

• DAG Information Solicitation (DIS) - solicit a DODAG
Information Object from a RPL node

• Destination Advertisement Object (DAO) - used to propagate
destination information upwards along the DODAG.

DODAG Construction

• Nodes periodically send link-local multicast DIO
messages
◦ Stability or detection of routing inconsistencies

influence the rate of DIO messages
◦ Nodes listen for DIOs and use their information to

join a new DODAG, or to maintain an existing
DODAG

• Nodes may use a DIS message to solicit a DIO

◦ Based on information in the DIOs the node
chooses parents that minimize path cost to the
DODAG root

• Result: Upward routes towards the DODAG root

New Old

DIS

DIO

DAO

DAO-Ack

DODAG Example

• Each node has a set of parent nodes
• A node has no knowledge about children → ONLY upward routes

1 A

I

1

3
C 1

11
2

F
1

1

1

1
4

2G
1 3

2

edge in DODAG

R=0

R=1

B
7

R=2
R=1
D
1

unused link
E R=3

K R=4

R=3R=4

H
R=5 R=6

RPL Operation

• Directed Acyclic Graph (DAG) Information Option (DIO) messages are
broadcast to build the tree; includes a node’s rank (its level), ETX
(Expected Transmission Count), etc.

• ETX probe is sent periodically to probe neighboring ETX

0

1 1

3

2

2
2

1DIO DIO

DIO

DIO

DIO

DIODIO DIO

DIODIO

DIO
DIODIO

DIO

2

3 3 3

3

2

RPL Summary

• RPL forms a Destination Oriented Directed Acyclic Graph
(DODAG), with the root of the tree being the AP

• DODAG minimizes the cost to the root per Objective Function
(using ETX for example)

• Directed Acyclic Graph (DAG) Information Option (DIO)
messages are broadcast to build the tree; includes a node’s rank
(its level), ETX, etc.

• A node selects a parent based on the received DIO msgs and
calculates its rank

• Destination Advertisement Option (DAO) msg sent periodically to
notify parent about routes to downward nodes

Conclusion: The New „Pieces“ for IoT

230

Src: Cisco

IoT Application Protocols:
MQTT

The Protocol Stack

232

CoAP, MQTT

MQTT vs CoAP

233

Chapter Outline

• What is MQTT?
◦ Message Queuing Telemetry Transport (MQTT)

• Design Objectives

• MQTT Protocol
◦ Message Format

◦ Quality of Service (QoS) Support

◦ Message Sequences

• MQTT-SN

• Conclusions

234

MQ Telemetry Transport (MQTT)

MQTT

■ MQTT was co-invented by IBM and Eurotech in 1999
■ The current MQTT specification is available here:
◦ www.mqtt.org

◦ Abstract from the MQTT spec web site:
The MQTT protocol is a lightweight publish/subscribe protocol flowing
over TCP/IP for remote sensors and control devices through low bandwidth,
unreliable or intermittent communications.

■ In 2014, MQTT was adopted and published as an official standard by
OASIS (published V3.1.1). The OASIS TC (Technical Committee) is
tasked with the further development of MQTT.
■ 2018: MQTT 5 released

http://www.mqtt.org/

MQTT in a Nutshell

• In a nutshell
A lightweight event and message oriented protocol allowing devices
to asynchronously communicate efficiently across constrained
networks to remote systems

• Suited to
◦ Constrained networks and devices
▪ Low bandwidth

▪ High latency

▪ Unreliable

▪ High cost (per byte)

◦ Constrained devices in processing, storage and energy (8 Bit
controllers upwards)

• Assumption
◦ TCP/IP

237

Original Design Goals

• To provide loose coupling between devices and the processing
systems, and between things that produce data and things that
consume that data.

• To provide multiple deterministic message delivery Qualities of
Service (QoS) to reflect tradeoffs between bandwidth, availability
and delivery guarantees

• To support large numbers of things (Millions and more)
• To be simple for application developers and implementers of the

protocol
• To have open specification for ease of adoption by device/thing

vendors
• To be industry-agnostic

238

Publish Subscribe Messaging (One to Many)

A publish/subscribe messaging protocol allowing a message to be published
once, and multiple consumers (applications/devices) to receive the message
providing decoupling between the producers and the consumer(s).

• A producer sends (publishes) a message (publication) to a topic (subject)

• A consumer subscribes (makes a subscription) for messages on a topic
(subject)

• A message server (broker) matches publications to subscriptions
◦ If no matches, the message is discarded

◦ If matches, the message is delivered to each matching subscriber/consumer
239

Topic Wildcards (1)

• Problem: Subscribers are often interested in a great number of topics.
Individually subscribing to each named topic is time-consuming.

• MQTT solution: Topics can be hierarchically organized through wildcards with
path-type topic strings and the wildcard characters
◦ +: can appear anywhere in the topic string (Single-level wildcard)
◦ #: must appear at the end of the string (Multi-level wildcard)

• Subscribers can subscribe for an entire sub-tree of topics thus receiving
messages published to any of the sub-tree‘s nodes. Wildcards can not be used
when publishing.

■ A topic forms the namespace
◦ Is hierarchical with each “sub topic” separated by a /
◦ An example topic space

▪ A house publishes information about itself on:
▫ <country>/<region>/<town>/<postcode>/<house>/energyConsumption
▫ <country>/<region>/<town>/<postcode>/<house>/waterConsumption
▫ <country>/<region>/<town>/<postcode>/<house>/solarEnergy
▫ <country>/<region>/<town>/<postcode>/<house>/alarmState

And subscribes for control commands:
▫ <country>/<region>/<town>/<postcode>/<house>/thermostat/setTemp

240

Topic Wildcards (2)

241

Example topic tree:

MQTT - Publish Subscribe Messaging (One to Many)

■ A subscription can be durable or non durable
◦ Durable:
▪ Once a subscription is in place a broker will forward matching messages

to the subscriber:
▫ Immediately if the subscriber is connected
▫ If the subscriber is not connected messages are stored on the server/broker

until the next time the subscriber connects
◦ Non-durable/transient: The subscription lifetime is the same as the time

the subscriber is connected to the server / broker
• A publication may be retained
◦ A publisher can mark a publication as retained
◦ The broker / server remembers the last known good message of a

retained topic

◦ The broker / server gives the last known good message to new
subscribers
▪ i.e. the new subscriber does not have to wait for a publisher to publish a

message in order to receive its first message

MQTT: The Protocol

Message Format

244

Src: indigoo.com

CONNECT and SUBSCRIBE msg Sequence (1)

• Case 1: Session and subscription setup with clean session flag =
1 („transient“ subscription)

Src: indigoo.com

245

CONNECT and SUBSCRIBE msg Sequence (2)

• Case 2: Session and subscription setup with clean session flag =
0 („durable subscription“)

Src: indigoo.com

246

RETAIN (Keep Last Message)

• RETAIN=1 in a PUBLISH msg à instructs the server to keep the
message for this topic. When a new client subscribes to this
topic, the server sends the retained msg à Subscribers receive
the last know good value.

247

Src: indigoo.com

PUBLISH Message Flows (1)

• QoS Level 0: A msg is delivered with at-most-once delivery

semantics („fire-and-forget“).

• QoS Level 1: Affords at-least-once delivery semantics. If the

client does not receive the PUBACK in time, it re-sends the msg.

Src: indigoo.com

248

PUBLISH Message Flows (2)

• QoS level 2: Affords the highest quality delivery semantics
exactly-once, but comes with the cost of additional control
messages.

249

Publish
complete

Keepalive and PINGREQ

• Keepalive timer: Defines the max allowable time interval between client msgs.
The timer is used by the server to check client‘s connection status. After 1,5*
keepalive-time elapsed, the server disconnects the client. Typical value for
keepalive timer are a couple of minutes.

• Breath of live with PINGREQ: In the absence of data to be sent, the client
sends a PINGREQ message instead.

250

• Problem: In case of an unexpected client disconnect, depending applications

(subscribers) do not receive any notification of the client‘s departure.

• MQTT solution: Client can specify a will msg along with a will QoS and will
retain in the CONNECT msg payload. If the client unexpectedly disconnects,

the server sends the will msg on behalf of the client to all subscribers („last
will“).

251

MQTT will Message

Suits Constrained Networks & Devices

■ Designed for constrained networks:
◦ Protocol compressed into bit-wise headers and variable length fields
◦ Smallest possible packet size is 2 bytes
◦ Tiny footprint MQTT client (and server) libraries, e.g., C/C++ client lib in 30Kb

and a Java lib in 64Kb
◦ Asynchronous bidirectional “push” delivery of messages to apps (no polling)
▪ Client to server/cloud and server/cloud to client

◦ Supports always-connected and sometimes-connected models
◦ Provides Session awareness
▪ Configurable keep alive providing granular session awareness
▪ “Last will” enable apps to know when a client goes offline abnormally

◦ Typically utilises TCP based networks e.g. Websokets
◦ Tested on many networks – vsat, gprs, 2G….

■ Provides multiple deterministic message delivery QoS.
QoS maintained over fragile network even if connection breaks
◦ 0 – message delivered at most once.
◦ 1 – message will be delivered but may be duplicated
◦ 2 – once and once only delivery

MQTT – Further Properties

• Client simple to develop (spec about 70 pages)
• Payload agnostic
◦ no data types

◦ no metadata
◦ any data format (text, binary, JSON, XML, BSON, ProtoBuf, ...)

◦ peer must agree on serialization/deserialization

• Assumptions
◦ TCP/IP stack

◦ Persistent TCP connections

◦ Clean and persistent sessions

253

MQTT for Sensor Networks
(MQTT-SN renamed from MQTT-S)

MQTT-SN

• MQTT is a connectivity protocol that requires TCP/IP.
• MQTT-SN is designed to be as close as possible to MQTT, but is

adapted to the peculiarities of a wireless communication
environment such as low bandwidth, high link failures, short
message length, etc
◦ It does not require TCP/IP

MQTT-SN (2)

• WSNs (Wireless Sensor Networks) usually do not have TCP/IP as transport
layer. They have their own protocol stack such as ZigBee on top of IEEE
802.15.4 MAC layer. Thus, MQTT which is based on TCP/IP cannot be directly
run on WSNs. WSNs are connected to traditional TCP/IP networks through
gateway devices.

• MQTT-SN is an extension of MQTT for WSNs.

256

MQTT-SN (3)

MQTT-SN is a largely based on MQTT, but
implements some important optimizations for
WSN:
• Topic string replaced by a topic ID (fewer bytes

necessary)

• Predefined topic IDs that do not require a registration

• Discovery procedure for clients to find brokers (no need to
statically config broker address)

• Persistent will message (in addition to persistent
subscriptions)

• Off-line keepalive supporting sleeping clients (will receive
buffered messages from the server once they wake up)

• MQTT-SN gateways (transparent or aggregating) connect
MQTT-S domains (WSNs) with MQTT domains
(traditional TCP/IP based networks).

257

Example of MQTT-SN

258

Src: http://openiotchallenge.tumblr.com/post/114361695760/project-wrap-up

MQTT: Eclipse Support

MQTT Brokers

• HiveMQ introduction to MQTT (invited lecture)
◦ Commercial, enterprise use, highly scalable

• Mosquitto
◦ Open source

• CloudMQTT

• Ardulink MQTT
◦ Java based

• Etc.
260

Mosquitto on Raspberry Pi

Eclipse MQTT Support

• See getting started under: https://iot.eclipse.org/getting-started

261

MQTT @ Eclipse IoT
• Paho (MQTT und MQTT-S) for devices
• Mosquitto MQTT broker
• Kura (MQTT Application framework)

MQTT over TCP
• Client IDs for stateful MQTT broker

sessions
• Standard ports: 1883 for TCP,

8883 for TLS
• Configurable mapping of public

and private MQTT ports

MQTT over Websockets
• Cookies instead of Client IDs for

stateful MQTT broker sessions
• Name mapping

https://iot.eclipse.org/getting-started

Conclusions (1)

+ Telemetry
◦ born for telemetry with “publish/subscribe” pattern

◦ no flow control for a lot of data at high rate

◦ QoS (at most once, at least once, exactly once)

+ Notification
◦ born for notification with “publish/subscribe” pattern

◦ no flow control for a lot of data at high rate

◦ QoS (at most once, at least once, exactly once)

- Inquiry
◦ no built in response path support

◦ needed to define a response topic pattern (over)
▪ group_id, device_id, req_id in custom format (as payload)

262

Conclusions (2)

- Command
◦ no built in result command path support

◦ needed to define a result topic pattern (over)
▪ addressing result (req_id) in custom payload

◦ if device is offline

▪ no TTL (Time To Live) for command

▪ old command could be delivered (if “retain” flag)

▪ new command could be lost (if not “retain” flag)
▪ commands are enqueued only if not “clean session”

+ Security
◦ SSL/TLS

◦ username/password on connection

◦ encryption only payload

• Scalability?
263

IoT Application Protocols:
CoAP: The Web of Things

Protocol

The Protocol Stack

265

CoAP, MQTT

Chapter Outline

• What is CoAP?
• HTTP vs. CoAP

• CoAP Protocol
◦ Methods: GET, PUT, POST

◦ Observation

◦ Resource Discovery

◦ Proxying and Caching

• Eclipse Support

• Conclusions

266

CoAP – Design Requirements

267

Src: draft-shelby-core-coap-req

(Helper slide) REST

• Representational State Transfer (REST) is a software architectural
style for Web client-server

• Resources are represented as URL:
◦ “example.com/profile/john”

◦ “example.com/domain/sensor3/temp1“

• Resources can be retrieved and manipulated using methods:
◦ GET, POST, PUT, DELETE
◦ Example protocol: HTTP

268

CoAP: Constrained Application Protocol

• Open IETF Standard
• Inspired by HTTP
◦ Methods: GET, POST, PUT,
DELETE

◦ But UDP binding
• Small, simple 4-Byte header
• UDP, SMS, (TCP) support

• Strong DTLS Security

à “Web of Things”

269

CoAP Architecture

Src: Presentation Shelby: CoAP: the IoT protocol

CoAP: Constrained Application Protocol

• RESTful Web services for networked embedded devices

◦ Idealized architectural style of the Web

◦ Usually implemented with HTTP

• Central mechanisms

◦ Reliable transport («confirmable»)

◦ Group communication (IP multicast)

◦ Push notifications («observing»)

◦ Resource discovery («CoAP link format»)

◦ Larger data transport («blockwise transfers»)

270

From Web Applications to IoT Nodes

271

Src:ARM

Message Header (4 Bytes)

Transaction/Message ID:
n CON: Confirmable message (=00)

n NON: Non-confirmable message (=01)
n ACK: Acknowledgment message (=10)

n RST: Reset message (=11)
n Piggy-backed

n Seperate

272

Requests and Responses

• Request Methods

◦ GET uri

▪ Retrieve (resource identified by) uri

◦ PUT uri [parameter]

▪ Update uri

◦ DELETE uri

▪ Delete uri

◦ POST uri [parameter]

▪ Create new resource under uri

• GET is safe (does not modify resources)

• GET, PUT and DELETE are (must

be) idempotent (can be called many times

without different outcomes)
273

• Responses

◦ Class 2: success

▪ 2.01: created, 2.02:

deleted, 2.03: valid, 2.04:

changed, 2.05: content

◦ Class 4: client error

▪ 4.00 bad request, 4.01:

unauthorized, 4.02: bad

option, 4.03: forbidden,

4.04: not found, etc

◦ Class 5: server error

▪ 5.00: internal server error,

5.01: not implemented,

5.02: bad gateway, 5.03:

service unavailable, etc

Web Naming

• URI is
◦ Name (identity, e.g., URN) +

◦ Locator (address, e.g., URL)

• coap://example.org:5683/sensors/light1 (default port of 5683)

• coaps://example.org:5684/sensors/light1 (default port of 5684)
274

Src: Presentation Shelby: CoAP: the IoT protocol

URL Resolution

coap://example.org:5683/sensors/light1

275

Architecture : HTTP & CoAP

• Client/Server
◦ Request/response
▪ HTTP : synchronous
▪ CoAP : (also) asynchronous

• HTTP is ASCII based
• CoAP is binary based

276

Client Server

Example:

Difference MQTT-COAP

277

Source: RF
Wireless World
ConsortiumLLN = low

power and
lossy
network

An HTTP Request

278

HTTP
Client

HTTP
Server

HTTP GET /<resource>
HTTP 200 OK (<resource>)

TCP 3-way Handshake

TCP 2-way Termination

Connection request

Connection accepted
ACK

Disconnection request

ACK

HTTP/CoAP: Command

279

Device
(server)

System
(client)

HTTP POST /<cmd>

HTTP 200 OK (<result>)

push

Device
(server)

System
(client)

CON [0x123] POST /<cmd> Token: 0xAB

ACK [0x123]

CON [0x7F2] 2.05 Content Token: 0xAB <result>…

ACK [0x7F2]

push

result

HTTP

CoAP

result

A unique
message

ID

Token

HTTP/CoAP: Notification

280

Device
(server)

System
(client)

HTTP POST /<notify> (content)

HTTP 200 OK

Device
(server)

System
(client)

CON [0x123] POST /<notify> (content)
ACK [0x123]

HTTP

CoAP

CoAP Observation

• PROBLEM:
◦ REST paradigm is often „PULL“ type, i.e., data is obtained by

issuing an explicit request
◦ Information/data in IoT is often periodic/triggered (e.g., get

temperature measurment every 2 sec, or get a notification if
temperature goes higher than 75°C)

• SOLUTION:
◦ Use Observation on CoAP resources.

281

CoAP: Telemetry

282

Device
(server)

CON [0xaf5] GET /<resource> Observe: 0 Token: 0xAB

ACK [0xaf5] 2.05 Observe: 30 Token: 0xAB <resource>…

/<resource>

changed

CON [] 2.05 Observe: 31 Token: 0xAB <resource>…

ACK [] Token: 0xAB

/<resource>

changed

CON [] 2.05 Observe: 32 Token: 0xAB <resource>…

ACK [] Token: 0xAB

RST [] Token: 0xAB

ACK [] Token: 0xAB

register

deregister

System

(client)

Timeout

to detect

msg loss

Blockwise Transfer

• PROBLEM: avoid segmentation in the lower layers (IPv6)

• SOLUTION: CoAP Block Transfer Mode
◦ brings up fragmentation at the application layer

283

nr: incremental block
number within orginal data
m: more blocks flag
sz: block size

Discovery

• Resource Discovery
◦ GOAL: Discovering the links hosted by

CoAP servers
▪ GET /.well-

known/core?optional_query_string

◦ Returns a link-header style format
▪ URL, relation, type, interface, content-

type etc.

• A Directory Approach
◦ Supports sleeping nodes
◦ No multicast traffic (longer battery life)
◦ Remote lookup, hierarchical and

federated distribution

284

Building Resource Directory (RD)

• Nodes POST (register) their link-format to an RD

• Nodes PUT (refresh) to the RD periodically

• Node may DELETE (de-register) their link-format
• Nodes may GET (lookup) the RD or resource of other nodes

285

Proxying and Caching

286

• CoAP includes a simple caching model
◦ Cacheability determined by response code
◦ An option number mask determines if it is a

cache key

• Freshness model
◦ Max-Age option indicates cache lifetime

• Validation model
◦ Checked using Etag option (version of

resource representation)

• A proxy often supports caching
◦ Usually on behalf of a constrained node, or

a sleeping node
◦ Or to reduce network traffic

CoAP: Implementations

CoAP Tools

• There are many open source implementations:
◦ Java CoAP library Californium (Eclipse)
▪ Scandium: Security for Californium

▪ Actinium: App-server for Californium

◦ Erbium C library
◦ libCoAP C library
◦ openCoAP C library
◦ jCoAP Java library
◦ Firefox has a CoAP plugin: Copper

• Commercial implementations

288

Eclipse CoAP Support

• See getting started under: https://iot.eclipse.org/getting-started

289

https://iot.eclipse.org/getting-started

HTTP vs CoAP: Implementation & Weight

• HTTP
◦ client more complex (ASCII parser)

◦ more bytes to pay on data transfer

◦ connection oriented via TCP

• CoAP
◦ HTTP-like but binary

◦ Connection-less via UDP

◦ Client more simple than HTTP

◦ “options” like HTTP headers (binary)

• HTTP & CoAP
◦ Content-Type based on MIME

290

HTTP vs CoAP

• HTTP
◦ More verbose (ASCII, headers, ...) for few data

◦ Addressing problem (mobile roaming, NAT, ...)

◦ No QoS (but based on TCP)

• CoAP
◦ “observer” pattern

◦ Addressing problem (mobile roaming, NAT, ...)

◦ QoS with “confirmable” message or not

291

Conclusions

• CoAP supports HTTP-style RESTful applications
• CoAP reduces TCP carrier overhead and brings it under control

of the application
• CoAP reduces the data-size overhead of HTTP/TCP significantly
◦ typical GET and response just a few bytes in size

• CoAP support a variety of in-network behaviors/mechanisms that
improve performance of low-resource devices
◦ proxy, caching

• CoAP deals effectively with peculiarities of low resource nodes

292

Pair exercise: What are COAP & MQTTs
strengths

• Read the article “MQTT and COAP: Underlying Protocols for the
IoT” (ca 10 minutes)

• Turn 1: group ”blue”: explain MQTTs strengths and weaknesses
to your partner (2-3 minutes)

• Turn 2: group “red” explain COPAs strengths and weaknesses to
your partner (2-3 minutes)

293

MQTT vs CoAP

Connectivity: Device to Cloud

• CoAP on UDP/IP (1-1) (GET, POST, PUT, DELETE)

◦ coap://host/lamps/12/status

◦ PubSub (m-n) MQ Telemetry Transport (on TCP/IP)

• MQTT-SN (on ZigBee, Bluetooth/BLE, Z-Wave)

◦ Connectionless

◦ Gateways/proxy to translate MQTT-SN to MQTT

• MQTT/CoAP @ Eclipse IoT

◦ Paho (MQTT und MQTT-SN) for devices

◦ Mosquitto MQTT broker

◦ Kura (MQTT Application framework)

◦ Ponte (bridge HTTP, CoAP, MQTT)

◦ Californium (CoAP)
Mosquitto on Raspberry Pi

• HTTP (on TCP/IP)

◦ http://host/docs/doc12

◦ Web-Socket, RabbitMQ

295

Internet of Things Classical Internet

MQTT and CoAP

296

Src: MQTT and CoAP: Underlying Protocols for the IoT, Electronic design, July 2015

CoAP vs HTTP vs MQTT (1)

Protocol CoAP REST/HTTP MQTT
Transport UDP TCP TCP
Routing IPv6 with 6LoWPAN IP IP
RESTfullness Yes Yes No
Messaging Request/Response Request/Response Publish/Subscribe
2G, 3G, 4G
Suitability
(1000s nodes) Excellent Excellent Excellent

LLN *) Suitability
(1000s nodes) Excellent Fair Fair ++

Simplicity

CoAP is less complex
and has lower
overhead compared
to HTTP.
CoAP allows only 4
types of messages.

Can be complex (but
often well understood)
– multitude of return
codes and methods.
REST is a great
principle but not
always the best for
SIMPLE data
applications.

Has few methods
(publish/subscribe/
unsubscribe), quick to
learn. MQTT allows 16
different types of
messages.

297*) Low-Power and Lossy Networks (LLN)

CoAP vs HTTP vs MQTT (2)

Protocol CoAP REST/HTTP MQTT

Lightweight
Stack (CPU &
MEM)

CoAP is simpler than
MQTT and has lower
consumption of CPU
and memory.

HTTP (often with associated
XML or JSON libraries for
SOAP or REST etc) can be
relatively large on top of OS
network libraries. Plus …
even if the client is small,
consider whether it is really
necessary to run an HTTP
server on every device.

MQTT has been trivially
implemented on tiny to
larger platforms in very
small libraries (IBM ref
implementation = ~80 kB
for full broker).

Light on the
network

CoAP’s packet size
is smaller than that
of MQTT. CoAP
header is of 4 bytes.
The protocol was
optimized for LLN.

HTTP is relatively verbose –
lots of „chatter“ in a POST.

The smallest possible
packet size for an MQTT
message is 2 bytes
(MQTT header is of 2
bytes). The protocol was
optimized from start for
unreliable, low-
bandwidth, expensive,
high-latency networks.

298

CoAP vs HTTP vs MQTT (3)

Protocol CoAP REST/HTTP MQTT

Communica
tion model

CoAP supports both

synchronous and

asynchronous messaging.

MQTT supports

asynchronous messaging:

MQTT has a highly

decoupled publisher and

subscriber model.

Easy
distribution
of data

CoAP network is

inherently one-to-one;

CoAP supports multicast

(because of UDP, IP

multicast can be used for

one-to-many). CoAP has

a simplified “observe”

mechanism similar to

MQTT’s pub/sub.

HTTP is one-to-one
(can be mediated/

clustered but no

distribution mechanism).

To distribute to multiple

receivers a large number

of POSTs may be

required.

MQTT distributes 1-to-
none, 1-to-1, 1-to-many
via the pub/sub

mechanism à very

efficient

Message
reliability
(QoS levels)

CoAP has a 2 level
application reliability. It

provides a very simple

method of providing a

“confirmable” message

and a “non-confirmable”

message.

HTTP has no

retry/confirmation/attempt

at once-only delivery.

Retry needs to be written

in the application level.

Application must also

handle timeouts.

MQTT has a 3 level
application reliability,

whereas: It supports fire-

and-forget or fire-and-

confirm or exactly-once

(aka QoS 0/1/2)

299

CoAP vs HTTP vs MQTT (4)

Protocol CoAP RESTful HTTP MQTT
Energy-
efficiency

Higher than MQTT due to
the use of UDP (less
messages, asynchrony).

low high

Dynamic
discovery Yes No No

Encoding Binary Plain text Binary

Real-time No No No

Security DTLS TLS/SSL
Username-password
authentication + SSL
encryption

Standard
maturity Still evolving (IETF) Mature (IETF) Mature (OASIS)

300

