
Estimating Outdoor Temperature from CPU Temperature for
IoT Applications in Agriculture

Chandra Krintz, Rich Wolski, Nevena Golubovic, and Fatih Bakir
Computer Science Department

University of California, Santa Barbara

ABSTRACT
In the paper, we investigate using CPU temperature from
small, low cost, single-board computers to predict out-
door temperature in IoT-based precision agricultural settings.
Temperature is a key metric in these settings that is used to in-
form and actuate farm operations such as irrigation schedul-
ing, frost damage mitigation, and greenhouse management.
Using cheap single-board computers as temperature sensors
can drive down the cost of sensing in these applications and
make it possible to monitor a large number of micro-climates
concurrently. We have developed a system in which devices
communicate their CPU measurements to an on-farm edge
cloud. The edge cloud uses a combination of calibration,
smoothing (noise removal), and linear regression to make pre-
dictions of the outdoor temperature at each device. We eval-
uate the accuracy of this approach for different temperature
sensors, devices, and locations, as well as different training
and calibration durations.

Author Keywords
IoT, precision agriculture, regression, sensing, prediction

INTRODUCTION
The Internet of Things (IoT) is a vision of a digitally en-
hanced society in which ordinary physical objects, equipped
with ubiquitous network connectivity, sensors, and actuators,
interact with local (edge) and remote (cloud) computing sys-
tems, to provide automation and data-driven decision support
for a variety of applications. One such application where this
vision is attainable in the near term is precision agriculture
in which IoT technologies automate farm operations and fa-
cilitate specialized (site-specific) management of crops and
livestock. The goal of precision agriculture is to reduce cost,
farm labor, and resource use while increasing yields sustain-
ability by precisely tailoring farm operations to hyper-local
conditions (e.g. individual blocks or plants). Examples in-
clude automatic irrigation to maximize crop production per
unit of water consumed or to synchronize harvest times, au-
tonomous and vision-based weeding, planting, and harvesting
systems, and data-driven application of inputs (fertilizers and

pesticides) based on the needs of individual plants and local-
ized soil health.

Many, if not most, IoT systems for precision agriculture de-
pend on and integrate measurements of real time, atmospheric
temperature. Temperature is used to inform and actuate irri-
gation scheduling, frost damage mitigation, greenhouse man-
agement, plant growth modulation, yield estimation, post-
harvest monitoring, crop selection, and disease and pest man-
agement, among other farm operations [8, 24, 13, 23, 10].
Measuring and predicting temperature accurately is challeng-
ing due to variation across farm micro-climates where local
temperature can deviate from the surrounding area which is
typically measured at mesoscale. Measuring temperature for
large number of micro-climates on a farm can be prohibitively
expensive with extant weather stations and sensors (which
can be hundreds to thousands of dollars).

We explore alternative ways of measuring outdoor tempera-
ture on farms by using simple, inexpensive single board com-
puters (e.g. those in the Raspberry Pi family [22] or micro-
controllers such as those in the Arduino family [4]). Our
approach estimates outdoor temperature from the on-board
processor temperature sensor that these devices support and
which is available via their respective hardware/software in-
terfaces. Such devices cost around $5, are battery or solar
powered, and can be packaged in small, inexpensive, weath-
erproof enclosures, making it possible to use them in moder-
ate and large scale geographic deployments.

To investigate how well the processor temperature of these
devices can be used to predict outdoor temperature, we have
developed an on-farm IoT system in which we place single-
board computers in-situ throughout the farm. The devices
transmit measurements of CPU temperature wirelessly to
wall-powered, indoor, edge cloud systems [6]. We first cali-
brate the device CPU temperature against a co-located, high-
quality temperature sensor using linear regression. We then
remove the temperature sensor at each remote location.

The edge cloud computes a prediction of outdoor tempera-
ture for each device/location for each CPU measurement that
it receives from the device. It does so by applying the re-
gression coefficients from the calibration period to the CPU
temperature measurement. To account for autocorrelation in
the time series, we investigate the use of Single Spectrum
Analysis (SSA) [9] to extract a smooth “signal” from the data
prior to performing linear regression and compare this ap-
proach to non-smoothing. We also evaluate the impact of us-
ing different amounts of training data (period over which re-

gression is performed) and calibration durations. Finally, we
integrate different outdoor temperature sources that include
device-attached sensors (e.g. thermistors), high-end, on-farm
weather stations, and remote WeatherUnderground [26] sta-
tions.

Our empirical evaluation considers two configurations. The
first is a “limit study” in which we continuously update the re-
gression coefficients using a co-located temperature sensor, to
compute a one step ahead (5 minute) prediction. This config-
uration represents an upper bound on the efficacy of predict-
ing outdoor temperature from processor temperature. Using
a second configuration, we consider a practical application of
our approach in which the edge cloud estimates the outdoor
temperature (at the device) using information from the initial
calibration period and the CPU temperature measurements re-
ported by the device every 5 minutes. Our results indicate
that this approach, which can reduce instrumentation costs
by 50% or more, yields an average error of approximately
1.5 degrees Fahrenheit (or lower) in the farm deployments we
describe. Moreover, our we show that our approach achieves
similar accuracy for the different device types, locations, and
ground truth weather stations/sensors that we consider.

APPROACH
We investigate the relationship between processor tempera-
ture (henceforth simply referred to as CPU temperature) em-
bedded in single-board computers, and the atmospheric tem-
perature that surrounds them. Our goal is to place these com-
puters in-situ in agricultural settings for use as thermometers.
By doing so, we can leverage their measurements to actu-
ate and control a wide range of IoT-based farm operations,
while driving down the cost of implementing such solutions
at scale.

Examples of such farm operations include irrigation schedul-
ing and frost damage mitigation strategies. For automatic ir-
rigation scheduling, real-time temperature measurements are
used to compute localized estimates of evapotranspiration
(ET), which indicates the amount of water that has been lost
(since the last irrigation) and that must be replaced via irriga-
tion. Both under and over watering can decrease productivity,
destroy crops, and degrade soil health. Irrigation scheduling
is the most common form of IoT and data-driven decision
support system on farms and is especially important for man-
aging farms in drought stricken regions.

The terms “frost” or “freeze” are used by the public to de-
scribe a meteorological event that causes freezing injury to
crops and other plants, when the air temperature falls below
the tolerance level of the specific plant [17]. The ability to
predict the onset of frost, its duration, and the specific lo-
cations where frost will occur is of tremendous value to the
agricultural industry. In the USA, there are more economic
losses to frost damage than to any other weather-related phe-
nomenon [27]. Active frost protection strategies include ap-
plication of water, use of wind engine-driven machines and
heaters, and/or some combination of these methods, all of
which are extremely labor intensive and costly for growers.
If the onset or duration of frost is mis-predicted, the cost of

any mitigation strategies applied is lost. Alternatively, incor-
rectly predicting that a freeze will not occur to save these
costs can devastate a crop. For this reason, current practice
is conservative, passing any unnecessary mitigation costs on
to the consumer in exchange for a low risk of crop loss.

In both operations, accurately measuring and predicting tem-
perature in real-time is required. However, temperature is
not uniform and can vary widely across a farm, requiring
that operations account for very localized differences to ob-
tain measurable outcomes. Micro-climates can occur in large
numbers due to topographic differences, surrounding struc-
tures, ground cover, plant maturity, and nearby bodies of wa-
ter. Measuring temperature across vast numbers of micro-
climates is costly and labor intensive given the price of high
quality sensors and complexity of sensor management (data
extraction, advanced analytics, connection inferences, and
prediction). Many IoT vendors provide managed services
to reduce this complexity for growers, but these services are
expensive, require that data be transmitted off-farm to cloud
based applications via cellular, and impose a recurring sub-
scription fee on farmers in order to view their data. As a
result, IoT advances have not achieved wide spread uptake in
the agriculture, despite their potential.

As part of the UCSB SmartFarm effort, we are investigat-
ing ways of reducing cost and complexity of temperature-
based IoT solutions, while maintaining accuracy and robust-
ness. SmartFarm implements a low cost, on-farm edge cloud
comprised of multiple Intel Next Unit of Computation (NUC)
machines [12]. Using open source cloud software (App-
Scale [14] and Eucalyptus [20]), we design the edge clouds to
be self-managing and to perform a wide range of data analyt-
ics on farm data, thereby precluding the need to transmit data
off-farm and keeping cost, complexity, and latency low [15].

We use SmartFarm and single-board computers to provide
accurate, real time estimates of micro-climate temperature
across a farm. To do so, we place battery or solar pow-
ered devices in-situ in various settings and configurations
within inexpensive enclosures. The devices transmit their
CPU temperature wirelessly (via 802.11 or Zigbee) to an
on-farm edge cloud every 5 minutes. As ground-truth, we
consider co-located (device-attached) DHT digital sensors
(thermistors [2]), high-end, on-farm weather stations, and
WeatherUnderground remote weather service [26], which
farmers commonly use to estimate temperature.

Figure 1 shows a two week time series trace (starting May
10th, 2018) of CPU temperature (Pi Zero CPU) from a Rasp-
berry Pi Zero, the outdoor temperature from an attached digi-
tal DHT22 temperature sensor (DHT Temp), and the outdoor
temperature from a nearby WeatherUnderground (WU) sta-
tion (WU Temp). WU measures outdoor temperature at 10
meters and the Pi Zero is at a 1 meter altitude. The Pi Zero is
in a plastic enclosure with a small, covered hole from which
the DHT wires exit; the DHT sensor is outdoors and hanging
freely. The device is located outdoors under constant shade in
Goleta, CA. We refer to this device as Pi1 in later sections of
the paper. The average CPU temperature on the Pi Zero dur-
ing this period is 99.71 �F with a standard deviation of 4.69.

Figure 1: Two week time series trace of outdoor (device-
attached DHT sensor and a nearby (WU) station) and 5-
minute CPU temperature data in Fahrenheit from a Pi Zero
single board computer (Pi1 in the Results section)

Figure 2: Two day time series sub-trace from Fig. 1 of 5-
minute Pi Zero CPU temperature (�F)

The mean and standard deviation for the DHT sensor and WU
station are 61.93 (5.79) and 60.20 (8.35), respectively. DHT
and WU temperature is similar but WU exhibits data dropout
(0 values), more variance, and more extreme temperatures.

From this graph, there appears to be a correlation between
CPU temperature and both outdoor temperature measures for
this location. The CPU values exhibit small oscillations or
noise (making the curve appear darker). A sub-portion (2
days starting May 17th at midnight) of the CPU data alone
is shown in Figure 2 using a different scale. We note that
there are some discrepancies in the shape of different curves.
We observe similar relationships using other types of devices,
locations, and sources for ground-truth (e.g. DHT or WU)
temperature measurements. We next investigate how accu-
rately we can predict outdoor temperature (of these different
sources) using CPU temperature of these devices.

Predicting Air Temperature from CPU Temperature
The data in Figure 1 is typical of the outdoor SmartFarm in-
stallations we have deployed suggesting that linear regres-
sion would be an effective way to predict outdoor temperature
from CPU temperature. Because each single-board computer

is running a multi-user operating system (Linux in this study),
however, the CPU temperature exhibits fluctuations that we
do not observe in the outdoor temperature. Further, because
these fluctuations are caused by programs that are running on
the computer, they are autocorrelated in time.

To account for this autocorrelated “noise” in the CPU temper-
ature series, we apply Single Spectrum Analysis (SSA) [9] to
the CPU series before performing regression. SSA decom-
poses an autocorrelated time series into “basis time series”
which are analogous to principle components [1]. By sum-
ming the most significant basis series (based on a clustering
of the series by eigenvalues), SSA can extract a smooth “sig-
nal” from a noisy time series. To do so, SSA requires the
number of lags over which autocorrelation is significant to be
supplied as a parameter.

To investigate the accuracy with which it is possible to pre-
dict outdoor temperature, our system runs multiple smoothing
passes, each with a successively larger number of lags up to
12 (1 hour). During daylight and nighttime hours, outdoor
temperature can be autocorrelated for several hours, but dur-
ing the early morning (diurnal heating) or early evening (di-
urnal cooling) the significant autocorrelation duration is sig-
nificantly less. For each lag we compute the coefficient of
determination (R2) for a regression covering a previous win-
dow of time and choose the number of lags that generates the
highest R2 value. We refer to this window as the training

window (TW). Typically (but not always) the best R2 value is
for 6 lags indicating that the significant autocorrelation in the
CPU temperature series covers about 30 minutes.

The method recomputes both the smoothed series and the re-
gression coefficients every time a new outdoor measurement
is generated (every 5 minutes in this study). Thus the ap-
proach is a “piecewise” linear regression approach where the
data is re-smoothed using the “best” number of lags (based
on R2 value) before each regression.

When a new CPU value arrives, we use the regression co-
efficients to compute a prediction of outdoor temperature.
Prior to applying smoothed regression coefficients, we ap-
pend the new CPU value to the training window (and remove
its head, effectively sliding the window right). We compute
the prediction using the smoothed CPU value (last value of
the smoothed training window). We then compare this value
to the actual outdoor measurement to compute the absolute
difference and square difference as the error.

To summarize, the steps of our algorithm are as follows.

1. Match the temperature and CPU series using the nearest
timestamps

2. Divide the matched series into a training window (TW)
and test window (TE)

3. If SSA is used, smooth the CPU series using different
smoothing parameters.

4. Compute the regression coefficients, i.e. y-intercept and
slope, for each to model the linear relationship between

temperature (the dependent variable) and CPU (the ex-
planatory variable) in TW

5. Extract the best parameterization for each smoothing tech-
nique using largest coefficient of determination (R2)

6. For each matched pair of measurements in the TE, append
the pair of measurements to TW and remove the first pair
in TW , effectively sliding the training window right

7. Predict outdoor temperature by applying the regression
coefficients to the latest CPU value (smoothed or non-
smoothed), and compute and record the error (differ-
ence from actual, matched outdoor temperature); for the
smoothed case, we smooth across the updated TW .

8. Repeat starting at Step 3 above and end when there are no
more new measurement pairs in the test window (TE)

We refer to this configuration as a “limit study” because we
believe that it provides us with an upper bound on the efficacy
of our approach. However, it requires that the device and
temperature sensor be co-located so that we can continuously
update the regression coefficients.

We therefore consider a second configuration that does not
continuously update the coefficients using the most recent
temperature data. We refer this configuration as a “practi-
cal application” of our approach. For this configuration, we
co-locate a temperature sensor with each device for a short,
fixed period of time, which we refer to as the calibration pe-

riod. We then remove the temperature sensor (and use it to
calibrate other in-situ devices as needed). We apply the re-
gression coefficients from the calibration period (which do
not change) to CPU measurements reported by the device to
predict the outdoor temperature at the device.

For the calibrated results, we use the algorithm above with
minor modifications. The remote device transmits only its
CPU measurement values via low-power radio to the edge
cloud every 5 minutes. The edge cloud keeps a CPU history
from the device for the same duration as the calibration pe-
riod. It smooths these values if necessary and chooses the
best-performing smoothing parameterization (e.g. lags) us-
ing R2. The edge cloud then computes a prediction using the
last CPU value it received (smoothed or non-smoothed). For
the results in this paper, we compare this prediction against
that from a co-located temperature sensor. However, we only
use data from this co-located sensor to compute the prediction
error after the devices have been “separated”.

RESULTS

Devices and Data Sets
The devices we consider as temperature sensors in this study
include the Raspberry Pi Zero Version 1.3 with a 1GHz
ARMv7 processor and 512MB of RAM and the Raspberry
Pi 3 Model B with a 1.2GHz ARMv8 processor and 1GB of
RAM. Each Pi is equipped with 32GB of storage. We also
evaluate an Arduino Uno with a ATmega328P processor with
2KB of data memory and 32KB of program memory, and
an Intel Next Unit of Computation (NUC) with 8 Intel Core
i7 processors (each 2.6GHz), 32GB of memory, and 1TB of

SSD storage. The devices cost $5, $35, $22, and $1619 for
the Pi Zero, Pi3, Uno, and NUC, respectively.

The Pi devices read their CPU temperature via a “thermal
zone” which reports temperature in Celsius. The Uno reads
the internal analog to digital converter using the 8th channel
of the micro-controller (currently without the noise reduction
feature). The NUC reads its CPU via the sensors utility.
We convert all values to degrees Fahrenheit for this study.

The locations include a residential backyard in Goleta, CA, an
experimental citrus farm at the Lindcove Research and Ex-
tension Center (LREC) in Exeter, CA, and an experimental
almond farm on the campus of the California State Univer-
sity, in Fresno, CA. There are multiple Pi Zero devices at the
Goleta location (referred to as Pi1, Pi2, Pi4, and Arduino, pre-
fixed with “Goleta-” in the results section), a Pi Zero (LREC-
PiZ) and Pi 3 (LREC-Pi3) at LREC, and a NUC at Fresno
State (Fresno-NUC). All devices are in shaded, weather proof
enclosures outdoors; the NUC is in a tin shed housing a pow-
ered irrigation pump next to the almond orchard. Each loca-
tion is very different in terms of its vegetation and topography.
LREC is located in the foot hills of the Sierra mountains; the
Fresno State farm is flat and in the central valley of Califor-
nia; and the Goleta residence is near the ocean.

We measure atmospheric temperature (ground truth mea-
surements used for calibration and empirical evaluation
of accuracy) using device-attached temperature (AM2302
DHT22 [2]) sensors which we refer to as DHT for Goleta
devices, a high end weather station at LREC called the Flux
tower, and the nearest WeatherUnderground (WU) station
(station 30) in Fresno. We also consider a WeatherUnder-
ground station (station 8) for Goleta devices.

Regression, Prediction Error, and Training Window
We begin by examining the effect of smoothing on each re-
gression as part of a “limit study”. To do so, we compare
SSA and no smoothing over a number of different training
window sizes. As described previously, we use the regres-
sion coefficients for the number of lags for SSA that results
in the highest R2 value. We detail the effect of using smooth-
ing and training window size to enhance regression on tem-
perature prediction. At time step t we predict the outdoor
temperature at time step t+ 1 (5 minutes later). Since an ap-
plication may need the temperature at an arbitrary moment in
time (and not on a precise 5-minute periodicity), this predic-
tion error serves as an upper bound on the error that an appli-
cation which is not time synchronized with the measurement
system might experience. We then compare different sources
for predictions (locally attached DHT vs Internet-accessible
WeatherUnderground) and we conclude with results showing
the application of our approach in a practical IoT setting.

Prediction Error
In Figure 3 we show the Mean Absolute Error (MAE) for the
one-step ahead prediction as a function of history size 1. Each
graph compares the effect on prediction accuracy of different
1Most typically, the prediction error is presented as the Mean Square
Error (MSE) or the Root Mean Square Error (RMSE) in an error
analysis. While these statistics offer insights into the distributional

(a) MAE for Goleta-Pi1-DHT (b) MAE for Goleta-Arduino-DHT

(c) MAE for Goleta-Pi1-WU (d) MAE for Fresno-NUC-WU

(e) MAE for LREC-Pi3 (f) MAE for LREC-PiZ

Figure 3: Mean Absolute Error in degrees Fahrenheit for predictions of outdoor from CPU temperature of different devices, loca-
tions, and sources of ground-truth temperature (DHT= high quality temperature sensor; WU=WeatherUnderground; LREC=high-
end on-farm weather station) for two methods: Non-Smoothing (NS) and Single Spectrum Analysis (SSA).

Pi1 Pi2 Pi4
h NS SSA NS SSA NS SSA
1 5.5 4.5 6.4 6.5 10.4 14.6
4 5.5 4.5 2.6 2.4 1.9 1.6
8 2.7 2.6 1.5 1.5 1.4 1.4
12 2.2 2.2 1.5 1.6 1.5 1.6
24 1.4 1.4 1.4 1.4 1.5 1.5
48 1.5 1.6 1.4 1.4 1.3 1.3
72 1.3 1.3 1.4 1.4 1.3 1.4
96 1.3 1.4 1.4 1.4 1.3 1.4
168 4.8 4.8 1.4 1.4 1.3 1.3
336 4.8 4.8 1.4 1.4 1.3 1.3

Table 1: Mean Absolute Error (�F) with No Smoothing (NS)
and SSA for different calibration periods in hours (h).

smoothing methods for the different locations and devices for
a prediction period of 3 days. The x-axis is the training win-
dow size; the y-axis shows errors in �F .

From the graphs in Figure 3, we see that SSA improves pre-
diction accuracy compared to the absence of smoothing (NS).
In this study, 15 minutes corresponds to 3 measurements.
When the temperature is slowly changing (e.g. the CPU tem-
perature does not change over a 15 minute period) regression
becomes numerically unstable (i.e. the co-variance matrix
has values that are nearly zero on the diagonal). Compared
to Fresno or Goleta, for example, the CPU temperatures at
LREC is more stable since the devices are sited near a large ir-
rigation reservoir. SSA smooths the previous 3 measurements
more than the other methods, occasionally generating regres-
sion coefficients that are very large or numerically infinite
(i.e. NaN) as a result of trying to invert the co-variance ma-
trix. Our system detects this condition and disables smooth-
ing when it leads to a failed regression.

Also note that the errors are relatively small. All of the lo-
cations we have tested are located in California and during
the prediction periods, the temperature varied from the mid
40s to the mid 80s �F . In each case, the MAE error is under
1�F for a TW of 1 hour or less. The Arduino Uno (Goleta-
Arduino-DHT) produces the lowest error and the error does
not grow with window size. We believe this is due to the very
consistent and slowly changing temperature of the location
during the prediction period (i.e. it is nearer to the ocean than
the other Goleta devices and the 3 day prediction period is in
May vs March for the other locations). The accuracy of our
approach is similar regardless of location (e.g. Goleta, Lind-
cove (LREC), or Fresno) and source of ground truth temper-
ature measurement (DHT, Flux tower (LREC), or WU) for a
TW of 1 hour or less.

Practical Application
The data and analysis presented in the previous subsection
show the minimum error that is possible. That is, they verify
that it is possible to predict the outdoor temperature from the
internal CPU temperature sensor with a high degree of accu-
racy in a variety of meteorological settings. To be practically

properties of the errors, our experience with professional agricul-
tural personnel has led us to concentrate on the MAE as a practical
error metric since it can be interpreted as how far “off” the measure-
ments are “on the average.” We omitted the RMSE results in favor
of brevity.

useful, however, the technique must be able to predict outdoor
temperature without the presence of an outdoor thermometer
(i.e. from CPU temperature alone). That is, our goal is to
investigate whether we can use the CPU temperature sensor
(which will be present by virtue of the need for a controller)
as a replacement for a localized outdoor thermometer.

Specifically, in a practical application of this technique, with
no outdoor thermometer, it is not possible to perform a re-
gression at each time step using the current outdoor temper-
ature reading. Instead, our approach is to generate a regres-
sion coefficients from a calibration period that we then use
over a later prediction period. We site single-board computers
in each location with an attached DHT outdoor temperature
sensor for a fixed, continuous calibration period. Then we
remove the DHT sensor (so it can be used for another calibra-
tion) and estimate outdoor temperature from the computer’s
CPU temperature using the regression coefficients we com-
puted at the end of the calibration period. Table 1 shows the
Mean Absolute Errors for different calibration periods and
three Pi Zero devices.

Pi1, Pi2, and Pi4 are all Raspberry Pi Zero single-board com-
puters with externally attached DHT temperature sensors. All
three were located in the same outdoor setting in Goleta,
California. We chose a random date between January 1st,
2018 and May 15th, 2018 in each case to use as the start of
the test/prediction period. We installed the Arduino too late
to include in this study, but we plan to include it once we
collect sufficient data. In each experiment, we use a trace
of the DHT external measurements and the corresponding
CPU measurements over a fixed calibration period (shown
in column 1, measured in hours) to compute a set of regres-
sion coefficients. We then use the coefficients to predict the
DHT measurements from the CPU measurements (without
re-regressing) for the next two weeks following the calibra-
tion period. Columns 2 through 7 show the Mean Abso-
lute Error (MAE) during the measurement period immedi-
ately following calibration without smoothing and with SSA
for the calibration regression. Thus, this table shows the er-
rors when one set of regression coefficients is used to predict
the next two weeks of outdoor temperature (as a function of
calibration period).

While SSA improves the errors in the piecewise regression
case (cf Figure 3), it is less effective when one set of coeffi-
cients must be used over a long period of time when a suf-
ficiently long calibration period is available. Note that for
some short calibration periods, SSA can improve accuracy,
but only when there is sufficient variation to maintain numer-
ical stability in the regression. Further, the calibration period
should include at least one full diurnal cycle to be effective.
Finally, the minimum error is consistently 1.3�F or 1.4�F .

Finally, not all time periods during a diurnal cycle may be
needed for certain applications. As part of SmartFarm, for
example, we are developing a new algorithm for computing
localized evapotranspiration (ET) [21]. ET is an often-used
metric for computing crop water stress or water requirements
and it is typically based on meteorological measurements that
cover large areas (e.g. a county or zip code). ET computa-

Pi1 Pi2 Pi4
h NS SSA NS SSA NS SSA
24 1.1 1.4 2.5 2.1 1.3 1.2
48 1.2 1.6 0.7 0.9 0.9 1.3
72 1.1 1.2 0.7 1.0 1.3 0.9
96 1.1 1.2 0.8 1.0 0.9 1.0
168 4.1 4.1 0.7 0.7 0.8 0.8
336 4.1 4.1 0.7 0.7 0.8 0.8

Table 2: Mean Absolute Error in degrees Fahrenheit with
No Smoothing (NS) and SSA for different calibration peri-
ods (measured in hours (h)) using data from noon to 3 PM.

Pi1 Pi2 Pi4
h NS SSA NS SSA NS SSA
24 1.1 1.4 1.4 1.4 1.3 1.4
48 1.2 1.4 1.4 1.4 1.3 1.3
72 1.1 1.2 1.5 1.4 1.3 1.3
96 1.3 1.4 1.5 1.4 1.3 1.3
168 4.1 4.1 1.5 1.5 1.4 1.4
336 4.1 4.1 1.6 1.6 1.4 1.3

Table 3: Mean Absolute Error in degrees Fahrenheit with
No Smoothing (NS) and SSA for different calibration peri-
ods (measured in hours (h)) using data from 10 PM to 7 AM.

tions rely, in part, on outdoor temperature measured during
“solar max” – typically between noon and 3 PM in North
America. Similarly, frost prevention using wind machines
mixes warm air aloft (e.g. at 10 meters) with colder air that
has settled near the ground during the nighttime hours (e.g.
between 10:00 PM and 7:00 AM). Thus, it may be that it is
possible to obtain more accurate measurements by including
only those hours that are of interest during a diurnal cycle.

Tables 2 and 3 show the MAE for non-smoothed and SSA
calibration using only data gathered from noon to 3 PM and
from 10 PM to 7 AM respectively. We show only results for
calibration periods of at least 24 hours since the calibration
period must span at least one diurnal cycle. In most cases
(particularly for the solar max predictions) the best predic-
tion (lowest MAE) improves when we use only the periods
of interest for the regression. However, the improvements are
small in absolute terms (often 0.1�F). We have yet to deter-
mine whether the additional accuracy is necessary for either
localized ET calculation or frost prevention. Doing so is the
subject of the on-going SmartFarm work that is leveraging
this technique.

RELATED WORK
Accurate micro-climate modeling is essential for agriculture
operations such as irrigation scheduling and frost protection
[8, 24, 13, 23, 10]. We investigate the use of simple, low cost,
single board computers to estimate air temperature for use in
these applications. Although such devices are increasingly
integrated into IoT solutions for agriculture (e.g. providing
alerts, irrigation control, communication of sensor data [19,
15, 25, 18, 5, 30]), there are no studies of which we are aware
that use the devices themselves as thermometers.

To enable this, we estimate outdoor temperature from CPU
temperature linear regression of temperature time series. Oth-
ers have shown that doing so is useful for other applications

and analyses[11, 28, 16, 29]. Our work is complementary to
these and is unique in that it combines SSA (noise reduction)
with regression to improve prediction accuracy. As in other
work, we leverage edge computing to facilitate low latency
response and actuation for IoT systems [3, 7].

CONCLUSIONS
In this paper, we investigate an alternative, low cost way
of measuring and predicting outdoor temperature using in-
expensive, single board computers as temperature sensors.
Our approach uses linear regression to model the relation-
ship between outdoor temperature and device CPU tempera-
ture at each device and employs SSA to account for autocor-
relation in the time series. We calibrate each in-situ device
using a high quality temperature sensor for a fixed duration
of time; we use the regression coefficients from the calibra-
tion period (which do not change) to predict outdoor tem-
perature from CPU temperature thereafter, using different de-
vices and ground truth temperature sensor/stations (e.g. on-
farm weather station, thermistor, WeatherUnderground sta-
tion). We empirically evaluate the approach using different
amounts of training data, calibration durations, and locations.
Our results show that this approach can generate average er-
rors of 1.5�F or lower in real-world precision agricultural
deployments.

As part of on-going work, we continue to collect data from
different sites and devices for analysis and prediction. Go-
ing forward, we plan to investigate the impact of deployment
characteristics (e.g. humidity, wind speed, shade vs full sun)
and device use (computation and communication) on predic-
tion accuracy. In addition, we will investigate the use of other
time series prediction techniques to perform prediction and
identify other ways in which simple, single board computers
can be used to infer and predict environmental conditions.

REFERENCES
1. Abdi, H., and Williams, L. Principal component

analysis. Wiley Interdisciplinary Reviews:

Computational Statistics 2, 4 (2010).
2. Adafruit AM2302 Wired DHT22 Temperature and

Humidity Sensor. [Online; accessed 22-Jun-2018]
https://www.adafruit.com/product/393.

3. Alturki, B., Reiff-Marganiec, S., and Perera, C. A hybrid
approach for data analytics for internet of things. In Int.

Conf. on the Internet of Things (2017).
4. Arduino. [Online; accessed 15-Nov-2017]

https://www.arduino.cc.
5. Beckwith, R., Teibel, D., and Bowen, P. Report from the

field: results from an agricultural wireless sensor
network. In Local Computer Networks (2004).

6. Elias, A. R., Golubovic, N., Krintz, C., and Wolski, R.
Wheres the bear?–automating wildlife image processing
using iot and edge cloud systems. In ACM Conference

on IoT Design and Implementation (2017).
7. Feng, L., Kortoçi, P., and Liu, Y. A multi-tier data

reduction mechanism for iot sensors. In Intl Conf on the

Internet of Things (2017), 6.

8. Ghaemi, A. A., Rafiee, M. R., and Sepaskhah, A. R.
Tree-temperature monitoring for frost protection of
orchards in semi-arid regions using sprinkler irrigation.
Agricultural Sciences in China 8, 1 (2009), 98–107.

9. Golyandina, N., and Zhigljavsky, A. Singular Spectrum

Analysis for time series. Springer Science & Business
Media, 2013.

10. Gonzalez-Dugoa, V., Zarco-Tejadaa, P., Bernia, J.,
Suareza, L., Goldhamerb, D., and Fereres, E. Almond
tree canopy temperature reveals intra-crown variability
that is water stress-dependent. Tech. rep., Agricultural
and Forest Meteorology, 2011.

11. Guestrin, C., Bodik, P., Thibaux, R., Paskin, M., and
Madden, S. Distributed regression: an efficient
framework for modeling sensor network data. In Intl

Symp on Information processing in sensor networks

(2004).

12. Intel NUC. https:
//en.wikipedia.org/wiki/Next_Unit_of_Computing
[Online; accessed 1-Feb-2018].

13. Ioslovich, I., Sylaios, G., Plauborg, F., and Battilani, A.
Optimal model-based deficit irrigation scheduling using
aquacrop: A simulation study with cotton, potato and
tomato. Agricultural Water Management 163 (2016).

14. Krintz, C. The appscale cloud platform: Enabling
portable, scalable web application deployment. In
Internet Computing, IEEE (2013).

15. Krintz, C., Wolski, R., Golubovic, N., Lampel, B.,
Kulkarni, V., Sethuramasamyraja, B., Roberts, B., and
Liu, B. SmartFarm: Improving Agriculture
Sustainability Using Modern Information Technology.
In KDD Workshop on Data Science for Food, Energy,

and Water (Aug. 2016).

16. Lane, N. D., Bhattacharya, S., Georgiev, P., Forlivesi, C.,
Jiao, L., Qendro, L., and Kawsar, F. Deepx: A software
accelerator for low-power deep learning inference on
mobile devices. In Information Processing in Sensor

Networks (IPSN) (2016).

17. Levitt, J., et al. Responses of Plants to Environmental

Stress, Volume 1: Chilling, Freezing, and High

Temperature Stresses. Academic Press., 1980.

18. N. Golubovic and C. Krintz and R. Wolski and S. Lafia
and T. Hervey and W. Kuhn. Extracting Spatial
Information from Social Media in Support of
Agricultural Management Decisions. In ACM

SIGSPATIAL Workshop on Geographic Information

Retrieval (2016).

19. Nikolidakis, S. A., Kandris, D., Vergados, D. D., and
Douligeris, C. Energy efficient automated control of
irrigation in agriculture by using wireless sensor
networks. Computers and Electronics in Agriculture 113

(2015), 154–163.

20. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G.,
Soman, S., Youseff, L., and Zagorodnov, D. The
eucalyptus open-source cloud-computing system. In
IEEE Cluster Computing and the Grid (2009).

21. Penman, H. L. Natural evaporation from open water,
bare soil and grass. Proc. R. Soc. Lond. A 193, 1032
(1948), 120–145.

22. Rasberry Pi. https://www.raspberrypi.org. [Online;
accessed 15-Nov-2016].

23. Roberts, B., Fritschi, F., Horwath, W., and Bardhan, S.
Nitrogen Mineralization potential as influenced by
microbial biomass, cotton residues and temperature.
Plant Nutrition (2013).

24. Stombaugh, T. S., Heinemann, P., Morrow, C., and
Goulart, B. Automation of a pulsed irrigation system for
frost protection of strawberries. Applied Engineering in

Agriculture 8, 5 (1992), 597–602.

25. Vasisht, D., Kapetanovic, Z., Won, J., Jin, X., Chandra,
R., Sinha, S. N., Kapoor, A., Sudarshan, M., and
Stratman, S. Farmbeats: An iot platform for data-driven
agriculture. In NSDI (2017), 515–529.

26. WeatherUnderground. [Online; accessed 22-Jun-2018]
http://www.weatherunderground.com/.

27. White, G., and Haas, J. Assessment of Research on
Natural Hazards. Tech. rep., MIT Press, 1975.

28. Xie, C., Tank, A., Greaves-Tunnell, A., and Fox, E. A
unified framework for long range and cold start
forecasting of seasonal profiles in time series. stat 1050

(2017), 23.

29. Yao, S., Hu, S., Zhao, Y., Zhang, A., and Abdelzaher, T.
Deepsense: A unified deep learning framework for
time-series mobile sensing data processing. In WWW

(2017).

30. Zheleva, M., Bogdanov, P., Zois, D.-S., Xiong, W.,
Chandra, R., and Kimball, M. Smallholder agriculture in
the information age: Limits and opportunities. In
Workshop on Computing Within Limits (2017).

