
Node-RED
A Visual Tool for Building the Internet of Things

Live Self-Learning

• NodeRED editor
◦ https://users.sensetecnic.com/login?
◦ User name: iot017
◦ Pwd: iot2017

• UI: https://iot017.fred.sensetecnic.com/api/ui/#/0

323

https://users.sensetecnic.com/login
https://iot017.fred.sensetecnic.com/api/ui/

Chapter Outline

• Motivation
• What is Node-RED?
• Architecture
• Basic Nodes
◦ Input Nodes
◦ Processing Nodes
◦ Output Nodes

• Limitation of Node-RED
• Conclusions

324

325

326

I

327

Why Node-RED

• We have

◦ Processors for editing Words

◦ Spreadsheets for working with Numbers

◦ Powerpoint for arranging Pictures and Ideas

• But we don't have a simple tool for coordinating Events

◦ Business events – status of processes, alerts from machines

◦ Social events – tweets, alerts

◦ IoT events – temperatures, weather, lights, doors

• Something that anyone can use to build situational applications
“Wouldn't it be neat if, when x happens it can tell me...

• … and alert somebody...

• … and kick off the xyz process...

• … or just go ping !”

328

What is NodeRED

• NodeRED

◦ Based on Node.js

◦ Taking full advantage of its event-driven, non-blocking IO model

• Originally developed as an open source project at IBM in 2013

• A toolkit for „piecing“ together IoT applications by wiring together

hardware devices, APIs and online services

◦ An application composition tool

◦ LEGO-lize application building

• It uses a visual programming approach

◦ Easy to use

• Free logic engine

• http://nodered.org

329

http://nodered.org/

What is NodeRED

• Nodes: predefined code blocks
◦ Input nodes
◦ Processing nodes
◦ Output nodes

• Flows: A set of connected nodes to perform a task
• A rich library of nodes and flows
• Simple to extend to add new capabilities
• Web-based programming environment
◦ Javascript

330

Node-RED

331

Flow definition

Info / Debug

Deploy

Menu

Nodes

Node-RED Strengths

Node-RED’s power comes from a combination of two factors:
• Node-RED has a flow-based programming model
◦ Messages representing events flow between nodes, triggering processing

that results in output.

◦ The flow-based programming model maps well to typical IoT applications
which are characterized by real-world events that trigger some sort of
processing which in turn results in real-world actions.

• The set of built-in nodes
◦ Node-RED offers developers powerful building blocks to allow them to

quickly put together flows that accomplish a lot, without having to worry
about the programming details.

332

Wiring the Internet of Things: Stakeholders and
Requirements

• New developers & education

◦ Short learning curve

◦ Easy to use

◦ Low barrier to entry

• Community Developers

◦ Open standards

◦ Flexibility

◦ Ability to share

• App Developers

◦ Rapid prototyping

◦ Easy to integrate with existing tools and

applications

◦ Easy to extend with richer/bespoke

functionality

• Hackers

◦ Runs on Raspberry Pi, Beaglebone,

other low power devices.

◦ Works with Arduino, etc

333

Nodes
Node-RED is already capable of
connecting to many things, including:
• Local services:

– Network sockets
– Files
– Serial ports
– Execute local commands
– Raspbery Pi / BeagleboneBlack GPIO pins
– MongoDB
– Redis

• Online services:
– Twitter
– IRC
– XMPP Chat
– RSS/ATOM
– Email

• Processing functions:
– User-defined functions, written in JavaScript
– Sentiment analysis
– XML to JavaScript handling

334

More Nodes

335

Adding Palette Nodes

• http://flows.nodered.org

• sudo apt-get install npm

• cd ~/.node-red

• npm install node-red-{example node name}

336

http://flows.nodered.org/

Architecture

§ Runs on node.js

§ Can exploit the 29,000+ open-source modules available via npm to add new
functionality...

§ Node-RED nodes provide integration with other systems. Each node is defined
in their own pair of JavaScript and html files using a simple API and are
dynamically loaded by the engine.

§ Web interface can be secured or run headless.

337

Run Local, Even on Constrained Devices …

338

The lightweight runtime is
ideal to run on Edge-of-
Network devices, such as
the Raspberry Pi.

The node library makes it
easy to create simply,
effective applications.

Here, the board lights
LEDs.

Raspbian Jessie

• http://nodered.org/docs/hardware/raspberrypi.html

• Start: Desktop: Menu->Programming->Node-RED
◦ Or: node-red-start

• Stop: node-red-stop

• Editor: http://ipaddress:1880

• GUI: http://ipaddress:1880/ui

339

http://nodered.org/docs/hardware/raspberrypi.html
http://ipaddress:1880/
http://ipaddress:1880/ui

… or in the Cloud

Example: http://www.bluemix.net/

340

Node-RED editor

Popular Nodes (1)

• Inject Node
◦ Allows manual triggering of flows
◦ Can be scheduled to automatically inject at fixed intervals

• Debug Node
◦ Shows message content, either just payload or entire object in the

debug sidebar

• Function Node
◦ Runs user-defined js against the message flowing past

• Logic Nodes
◦ Comparisons, re-scaling, re-mapping

341

Popular Nodes (2)

• TCP/UDP Nodes

◦ Connects out, or listens for incoming connections

• HTTP Nodes

◦ Define http endpoints for incoming REQUESTs, or trigger GETs of
urls in the middle of a flow

• MQTT Nodes

◦ Define publishers or subscribers to a certain topic on a certain
MQTT broker

• GPIO Nodes

◦ Read and write from Raspberry Pi GPIO

342

Message Object

343

… …
„payload“: „Hello World“
„topic“: „Demo/Led“
„socketid“: …
„_msgid“: …

…

Node A Node B

INJECT Node

• Input node

• Allows you to inject messages into a flow, either by clicking the button on the
node, or setting a time interval between injects.

344

DEBUG Node

• Output node

• Causes any message to be displayed in the Debug sidebar. By default, it just
displays the payload of the message, but it is possible to display the entire
message object.

345

Function Node (1)

• Is a processing node

346

Write here your
javaScript code

Function Node (2)

• One or more outputs

347

Return msg

Return [msg1, msg2, msg3]

Return [msg1, [msg2, msg3]]

MQTT Nodes

• Input Node: Subscriber
• Output Node: Publisher

348

GPIO Nodes

• Input Node: Read PIN
• Output Node: Write PIN

349

SIMPLE DEMO

Limitations of Node-RED

Some situations where Node-RED may not be the first choice include:

• Complex multi-function IoT applications:
◦ Node-RED excels at rapid application development

◦ Sub-flows help to master complexity
◦ However, when an application gets above a certain size, it becomes complex

to visually program and manage through Node-RED.

• Flow-based programming has its weaknesses:
◦ E.g., Node-RED is cumbersome when handling loops.

• Specific use cases:
◦ Flow-based programming is a general purpose model and not targeted or

optimized for specific needs, for example Data Analytics or User Interface
development.

351

Conclusions

• Node-RED wires together building blocks, using a visual tool to
rapidly create simple flows that actually carry out sophisticated
real-world tasks.

• Node-RED is a rapid application development tool for the IoT

• Node-RED has evolved to being used for a variety of tasks, not
just IoT programming; E.g., web apps, social media apps, back-
office integration, IT task management..

• Node-RED has limitations for complex applications and GUI.

352

IoT Misc: Energy-efficiency,
Cloud, Big Data, Interoperability,

Security, etc

Chapter Outline

• Energy Efficiency
• IoT Cloud, IoT Big Data
• Interoperability

354

Energy Efficient Software
Development for IoT

Outline & Objectives

• Motivation
• Energy efficiency
◦ Large resources but cooling

◦ Less resources but battery

• Environments
◦ Battery-powered devices (offshore computation to edge or cloud)

◦ Gateways (edge/fog)

◦ Data centers (cloud)

• Tradeoff: {Latency & Energy} or {Space & Time}

356

IoT Software Development

357

Developer Computer

IoT Embedded System

Source.c

Developer

Compiler

Binary code
Flash RAM

Processor

Binary
Code

OS

Simulator
Debugger

Debugger

Load binary code

Debug interface

Sensors
Actuators
Power
supply

! = # $(&)(&
!)(

*&+,&

Power vs Energy

358

20 20 40Power (P in Watt)

Energy (E in
Jule=Watt*Sec)

0 10 20

Need for both: Power Efficiency and Energy Efficiency

P(t)

20

10
E1 E2

Time (t)

Energy
Consumer

Start of
use

Change
of use

End of
use

E2
E1E1 E2

Power Philosophy

• Hardware (HW) dissipates energy …

… Software doesn‘t (but it tells Hardware to!)

à Chose HW technology for best power efficiency
à Use HW in dependency of required computing activities (zero

activity = zero energy)

• Think System: It‘s how the „box“ performs, not its single
components
◦ Make OS/App/SW aware of the power and energy performance
◦ Provide OS/App/SW options for controlling power efficiency

• Think Network of Systems: It‘s how the „networked
boxes“ perform

359

HW-Level: The Power/Flexibility Conflict

360

General-purpose processors

Application-specific instruction set processors (ASIPs)
- Microcontroller
- DSPs (Digital Signal Processors)

Programmable HW
- FPGS (Field-Programmable Gate Arrays)

Pe
rfo

rm
an

ce

Po
w

er
-e

ffi
ci

en
cy

Application-specific integrated circuits (ASICs)

Flexibility

SW-Level – OS System Services

• During use
◦ Switch off peripherals when they are not in use.
▪ the best way to save energy with any electronic device is to simply switch

it off.

▪ facility is not as simple as it sounds, as some types of peripheral (e.g., a
network interface) take a period of time to configure, or may continue
transferring data after the SW has finished addressing it..

àpower-aware device driver

◦ Adjust the frequency (f) and voltage (v) of the CPU according to the
current performance requirements ("Dynamic Voltage and Frequency
Scaling" - DVFS).

P ∝ f * v2 (∝ = is proportional to)
• Low power device modes
◦ Standby, hibernate, etc

361

SW-Level – OS System Services

Example:
RTOS (Real-Time
Operationg System)

362

HW power management

Application SW

RTOS power management Framework

SW-Level – Application Programming

• Carefully analyze the application and define the “use cases”

• Meet user expectations

◦ A wearable medical monitoring device would need to run for >18

hours on a single charge

◦ A sensor node in a forest: a few years battery lifetime expected.

• Write energy-efficient code

◦ Frugal code: Avoid unnecessary activities (max idle time, reduce

the total number of instructions)

◦ Exploit duty cycling (idle, sleep, listening, active ..)

◦ Controlled degradation of user experience

◦ Suppress/reject unnecessary data

◦ Minimize movement of data

363

Data Movement Energy Overhead

Moving data consumes significant energy

364

On-chip Off-chip Via-network

Wifi, 2003

SW-Level – Application + Middleware

• Maximize data locality
• Bring processing to data

IoT Device

Sensors
Actuator
s

IoT Device

Flash RAM
Micro
processor

Sensors
Actuator
s

Power supply

Design (distributed/middleware) algorithms to minimize data movement!

Power supply

Comm.

Flash RAM
Micro
processor

Comm.

Reduce IoT Data Movement

◦ Bring computation to data (IoT
devices) rather than data to
computation (cloud)
◦ Move Information rather than

Data

IoT Gateway

IoT Cloud

IoT device

C
om

pu
ta

tio
n

D
ata

Inform
ation

366

Tools for Developers

367

Developer Computer

Embedded System

Source.c

Developer

Compiler

Binary code
Flash RAM
Micro
processor

Binary
Code

OS

Simulator
Debugger

Debugger

Load code to ES

Debug interface

Sensors
Actuator
s
Power
supply

Compiler
optimizations
targeting
energy usage

You can only improve what you
can measure!

Power
debugging,
tracing,
profiling

Principles of Energy-Efficient IoT

• System-level thinking
◦ Cross network-layer

◦ Cross abstraction layers

• HW-SW-MW-OS co-design
◦ Architect HW & SW as efficiently as possible (reflecting the task)
▪ Strive for no work à no power

• The arrangement of your data matters
◦ Do not move data, move information

◦ Process data locally

368

IoT Cloud and Big IoT Data

Challenges that Could Slow IoT Growth

• Security & Privacy
• Underutilized data
• Fragmentation of vertical marketsà Interoperability and

standards
◦ IT/OT and control/data integration
◦ Legacy infrastructure

370

Towards Unprecedented Values

371

Src: Intel, AMS Research, Gartner, IDC, McKinsey Global Institute

Convergence of IoT, Big Data and Cloud

• For IoT, connectivity is just an enabler but the real value of
IoT is on data (business insight/data-driven economy)

• For Big Data, data collection is one of the main concern, and
IoT can play an important roles for data collection and data
sharing

• For Big Data, data is nothing without real business value insight
• Cloud offers Everything as a Service business model for IoT

and big data.
• IoT is a King, Big data is a Queen and Cloud is a Palace

372

Key Requirements of IoT-Big Data Platform

Intelligent and
dynamic

Distributed and
decentralized

Security and
privacy

Scalable

Real-time

373

Cloud-based IoT Big Data Applications

Massive
monitoring

Real-time
actionable

insight

Observation

Performance
and

optimization

Proactive and
predictive

Prescriptive
and

descriptive

374

Everything/Sensor as a Service

Sensors as a Service
Sensor

Processing
as a Service
(could use

MapReduce)

A larger sensor ………

Output Sensor

375

Field
Gate
way

Device Connectivity &
Management

Analytics &
Operationalized Insights

Presentation &
Business
Connectivity

IoT Device & Computing Patterns
D

ev
ic

es
RT

O
S,

 L
in

ux
, A

nd
ro

id
, i

O
S,

 W
in

do
ws

Protocol
Adaptation

Storage
Batch Analytics &
Visualizations

Hot Path Analytics
Computation Presentation &

Business
Connections
Websites, Mobile
Services
Notification Hubs

Hot Path Business Logic
Service Fabric & Actor
Framework

Cloud
Gateway

Event
Hub

376

Edge/Fog Computing Cloud Computing

SaaS, PaaS, IaaS

Interoperability to Break Silos
Challenge: Semantic

Interoperability

Current Challenge in IoT: Weak Interoperability

378

Src: H2020 BiG-IoT Project

Coping with Weak Interoperability

• Fragmented value chains can kill innovations!
• The biggest challenges of IoT are (a) achieving interoperability

between platforms & applications, and (b) creating standards &
interfaces.

à Cross-domain middleware is critical
à Standardization activities are important for scaling IoT

Scaling IoT Through Interoperability

380

Horizontal‘ize
elements

Applications

Sensors/Protocols/Actuators

Security
Manageability
Analytics
Storage
Services, SW, APIs

Applications

Sensors/Protocols/Actuators

What is Interoperability?

• Uniform move of data from one system to another, i.e., 2 or more
systems can share data AND use it.

• Levels of Interoperability
◦ Technical: Systems can communicate data to each other

◦ Syntactic: A system can READ received data

◦ Semantic: A system can UNDERSTAND received data (through a
data model)

381

Interoperability Levels:

Semantic

Syntactic

Technical

BIG-IoT Approach

382Src: H2020 BiG-IoT Project

Interoperability via:
- A single language +
API („ears and
mouths“)
- Marketplace: remove
obstacles and create
incentives to break
down barriers

Five interoperability patterns

383

(a) Cross-Plattform Access (b) Cross-Application Domain Access (c) Plattform Independence

(d) Plattform-Scale Independence (e) Higher-Level Service Facades

The IoT Ecosystem

384

Src: H2020 BiG-IoT Project

IoT Standardization to Foster Interoperability

• 7 SDO (ETSI, ATIS, TIA, CCSA, TTA, ARIB, TTC): OneM2M (since July 2012)

• ETSI: M2M service layer standard (published Jan 2012)

• Oasis MQTT
• IETF: CORE (Constrained RESTful Environments), ROLL, RPL, 6LoWPAN, CoAP

• OMA LWM2N
• 3GPP Machine Type Communication (MTC)
• AllSeen Alliance, AllJoin standard

• OpenADR (Open Auto-Demand-Response) for smart grids

• IEEE 802.14.5, WirelessHART, ZigBee, DASH7, Bluetooth, UWB, ..
• LoRa Alliance, Sigfox UNB, ..

• Eclipse Open Source
• Etc

Summary

• IoT cuts across nearly every vertical sector
• Security & interoperability are primary concerns across the

industry
• Protocol normalization enables developers to write applications

that connect into legacy systems and protocols seamlessly
• API‘s are critical to scaling and developing IoT systems
• Turning Data into insights requires edge to cloud analytics

386

END

Thank you for your attention!

