
Node-RED
A Visual Tool for Building the Internet of Things



Live Self-Learning

• NodeRED editor
◦ https://users.sensetecnic.com/login? 
◦ User name: iot017
◦ Pwd: iot2017

• UI: https://iot017.fred.sensetecnic.com/api/ui/#/0
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Chapter Outline

• Motivation
• What is Node-RED?
• Architecture
• Basic Nodes
◦ Input Nodes
◦ Processing Nodes
◦ Output Nodes

• Limitation of Node-RED
• Conclusions
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Why Node-RED

• We have

◦ Processors for editing Words  

◦ Spreadsheets for working with Numbers

◦ Powerpoint for arranging Pictures and Ideas

• But we don't have a simple tool for coordinating Events  

◦ Business events – status of processes, alerts from machines  

◦ Social events – tweets, alerts

◦ IoT events – temperatures, weather, lights, doors

• Something that anyone can use to build situational applications 
“Wouldn't it be neat if, when x happens it can tell me...

• … and alert somebody...

• … and kick off the xyz process...

• … or just go ping !”
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What is NodeRED

• NodeRED

◦ Based on Node.js

◦ Taking full advantage of its event-driven, non-blocking IO model

• Originally developed as an open source project at IBM in 2013

• A toolkit for „piecing“ together IoT applications by wiring together 

hardware devices, APIs and online services

◦ An application composition tool

◦ LEGO-lize application building

• It uses a visual programming approach

◦ Easy to use

• Free logic engine

• http://nodered.org
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What is NodeRED

• Nodes: predefined code blocks
◦ Input nodes
◦ Processing nodes 
◦ Output nodes

• Flows: A set of connected nodes to perform a task
• A rich library of nodes and flows
• Simple to extend to add new capabilities
• Web-based programming environment
◦ Javascript
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Node-RED
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Node-RED Strengths

Node-RED’s power comes from a combination of two factors:
• Node-RED has a flow-based programming model 
◦ Messages representing events flow between nodes, triggering processing 

that results in output. 

◦ The flow-based programming model maps well to typical IoT applications 
which are characterized by real-world events that trigger some sort of 
processing which in turn results in real-world actions. 

• The set of built-in nodes
◦ Node-RED offers developers powerful building blocks to allow them to 

quickly put together flows that accomplish a lot, without having to worry 
about the programming details.
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Wiring the Internet of Things: Stakeholders and
Requirements

• New developers & education

◦ Short learning curve  

◦ Easy to use

◦ Low barrier to entry

• Community Developers  

◦ Open standards  

◦ Flexibility

◦ Ability to share

• App Developers

◦ Rapid prototyping

◦ Easy to integrate with existing tools and

applications

◦ Easy to extend with richer/bespoke  

functionality

• Hackers

◦ Runs on Raspberry Pi, Beaglebone,

other low power devices.

◦ Works with Arduino, etc
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Nodes
Node-RED is already capable of 
connecting to many things, including:
• Local services:

– Network sockets
– Files
– Serial ports
– Execute local commands
– Raspbery Pi / BeagleboneBlack GPIO pins
– MongoDB
– Redis

• Online services:
– Twitter
– IRC
– XMPP Chat
– RSS/ATOM
– Email

• Processing functions:
– User-defined functions, written in JavaScript
– Sentiment analysis
– XML to JavaScript handling
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More Nodes
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Adding Palette Nodes

• http://flows.nodered.org

• sudo apt-get install npm

• cd ~/.node-red

• npm install node-red-{example node name}
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Architecture

§ Runs on node.js

§ Can exploit the 29,000+ open-source modules available via npm to add new
functionality...

§ Node-RED nodes provide integration with other systems. Each node is defined 
in their own  pair of JavaScript and html files using a simple API and are 
dynamically loaded by the  engine.

§ Web interface can be secured or run headless.
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Run Local, Even on Constrained Devices …

338

The lightweight runtime is 
ideal to  run on Edge-of-
Network devices,  such as 
the Raspberry Pi.

The node library makes it 
easy to  create simply, 
effective  applications.

Here, the board lights
LEDs.



Raspbian Jessie

• http://nodered.org/docs/hardware/raspberrypi.html

• Start: Desktop: Menu->Programming->Node-RED
◦ Or: node-red-start

• Stop: node-red-stop

• Editor: http://ipaddress:1880

• GUI: http://ipaddress:1880/ui
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… or in the Cloud

Example: http://www.bluemix.net/
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Popular Nodes (1)

• Inject Node
◦ Allows manual triggering of flows
◦ Can be scheduled to automatically inject at fixed intervals

• Debug Node
◦ Shows message content, either just payload or entire object in the 

debug sidebar

• Function Node
◦ Runs user-defined js against the message flowing past

• Logic Nodes
◦ Comparisons, re-scaling, re-mapping
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Popular Nodes (2)

• TCP/UDP Nodes

◦ Connects out, or listens for incoming connections

• HTTP Nodes

◦ Define http endpoints for incoming REQUESTs, or trigger GETs of 
urls in the middle of a flow

• MQTT Nodes

◦ Define publishers or subscribers to a certain topic on a certain 
MQTT broker

• GPIO Nodes

◦ Read and write from Raspberry Pi GPIO
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Message Object
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… …
„payload“: „Hello World“
„topic“: „Demo/Led“
„socketid“: …
„_msgid“: …

…

Node A Node B



INJECT Node

• Input node

• Allows you to inject messages into a flow, either by clicking the button on the 
node, or setting a time interval between injects.
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DEBUG Node

• Output node

• Causes any message to be displayed in the Debug sidebar. By default, it just 
displays the payload of the message, but it is possible to display the entire 
message object.
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Function Node (1)

• Is a processing node
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Write here your
javaScript code



Function Node (2)

• One or more outputs
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Return msg

Return [msg1, msg2, msg3]

Return [msg1, [msg2, msg3]]



MQTT Nodes

• Input Node: Subscriber
• Output Node: Publisher
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GPIO Nodes

• Input Node: Read PIN
• Output Node: Write PIN
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SIMPLE DEMO



Limitations of Node-RED 

Some situations where Node-RED may not be the first choice include:

• Complex multi-function IoT applications: 
◦ Node-RED excels at rapid application development 

◦ Sub-flows help to master complexity
◦ However, when an application gets above a certain size, it becomes complex 

to visually program and manage through Node-RED.

• Flow-based programming has its weaknesses: 
◦ E.g., Node-RED is cumbersome when handling loops.

• Specific use cases:
◦ Flow-based programming is a general purpose model and not targeted or 

optimized for specific needs, for example Data Analytics or User Interface 
development. 
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Conclusions

• Node-RED wires together building blocks, using a visual tool to 
rapidly create simple flows that actually carry out sophisticated 
real-world tasks. 

• Node-RED is a rapid application development tool for the IoT

• Node-RED has evolved to being used for a variety of tasks, not 
just IoT programming; E.g., web apps, social media apps, back-
office integration, IT task management..

• Node-RED has limitations for complex applications and GUI. 
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IoT Misc: Energy-efficiency, 
Cloud, Big Data, Interoperability, 

Security, etc



Chapter Outline

• Energy Efficiency
• IoT Cloud, IoT Big Data
• Interoperability

354



Energy Efficient Software 
Development for IoT



Outline & Objectives

• Motivation
• Energy efficiency
◦ Large resources but cooling

◦ Less resources but battery 

• Environments
◦ Battery-powered devices (offshore computation to edge or cloud )

◦ Gateways (edge/fog)

◦ Data centers (cloud)

• Tradeoff: {Latency & Energy} or {Space & Time}
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IoT Software Development
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Power vs Energy
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Power Philosophy

• Hardware (HW) dissipates energy …

… Software doesn‘t (but it tells Hardware to!)

à Chose HW technology for best power efficiency
à Use HW in dependency of required computing activities (zero 

activity = zero energy)

• Think System: It‘s how the „box“ performs, not its single 
components
◦ Make OS/App/SW aware of the power and energy performance
◦ Provide OS/App/SW options for controlling power efficiency 

• Think Network of Systems: It‘s how the „networked 
boxes“ perform
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HW-Level: The Power/Flexibility Conflict

360

General-purpose processors

Application-specific instruction set processors (ASIPs)
- Microcontroller
- DSPs (Digital Signal Processors)

Programmable HW
- FPGS (Field-Programmable Gate Arrays)
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SW-Level – OS System Services

• During use
◦ Switch off peripherals when they are not in use.
▪ the best way to save energy with any electronic device is to simply switch 

it off.

▪ facility is not as simple as it sounds, as some types of peripheral (e.g., a 
network interface) take a period of time to configure, or may continue 
transferring data after the SW has finished addressing it.. 

àpower-aware device driver

◦ Adjust the frequency (f) and voltage (v) of the CPU according to the 
current performance requirements ("Dynamic Voltage and Frequency 
Scaling" - DVFS).

P ∝ f * v2 (∝ = is proportional to)
• Low power device modes
◦ Standby, hibernate, etc
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SW-Level – OS System Services

Example:
RTOS (Real-Time 
Operationg System)
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HW power management

Application SW

RTOS power management Framework



SW-Level – Application Programming

• Carefully analyze the application and define the “use cases” 

• Meet user expectations

◦ A wearable medical monitoring device would need to run for >18 

hours on a single charge

◦ A sensor node in a forest: a few years battery lifetime expected.

• Write energy-efficient code

◦ Frugal code: Avoid unnecessary activities (max idle time, reduce 

the total number of instructions)

◦ Exploit duty cycling (idle, sleep, listening, active ..)

◦ Controlled degradation of user experience

◦ Suppress/reject unnecessary data 

◦ Minimize movement of data
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Data Movement Energy Overhead

Moving data consumes significant energy
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On-chip Off-chip Via-network

Wifi, 2003



SW-Level – Application + Middleware 

• Maximize data locality
• Bring processing to data

IoT Device

Sensors
Actuator
s

IoT Device

Flash RAM
Micro
processor

Sensors
Actuator
s

Power supply

Design (distributed/middleware) algorithms to minimize data movement!

Power supply

Comm.

Flash RAM
Micro 
processor

Comm.



Reduce IoT Data Movement

◦ Bring computation to data (IoT 
devices) rather than data to 
computation (cloud)
◦ Move Information rather than 

Data

IoT Gateway

IoT Cloud

IoT device

C
om

pu
ta

tio
n

D
ata

Inform
ation
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Tools for Developers
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Developer Computer

Embedded System

Source.c
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Binary code
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Debugger

Debugger
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Compiler 
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Principles of Energy-Efficient IoT

• System-level thinking
◦ Cross network-layer

◦ Cross abstraction layers

• HW-SW-MW-OS co-design
◦ Architect HW & SW as efficiently as possible (reflecting the task)
▪ Strive for no work à no power

• The arrangement of your data matters
◦ Do not move data, move information

◦ Process data locally
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IoT Cloud and Big IoT Data



Challenges that Could Slow IoT Growth

• Security & Privacy
• Underutilized data
• Fragmentation of vertical marketsà Interoperability and 

standards
◦ IT/OT and control/data integration
◦ Legacy infrastructure
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Towards Unprecedented Values
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Src: Intel, AMS Research, Gartner, IDC, McKinsey Global Institute



Convergence of IoT, Big Data and Cloud

• For IoT, connectivity is just an enabler but the real value of 
IoT is on data (business insight/data-driven economy)

• For Big Data, data collection is one of the main concern, and 
IoT can play an important roles for data collection and data 
sharing 

• For Big Data, data is nothing without real business value insight
• Cloud offers Everything as a Service business model for IoT 

and big data. 
• IoT is a King, Big data is a Queen and Cloud is a Palace 
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Key Requirements of IoT-Big Data Platform

Intelligent and 
dynamic

Distributed and 
decentralized 

Security and 
privacy

Scalable 

Real-time 

373



Cloud-based IoT Big Data Applications 

Massive 
monitoring 

Real-time 
actionable 

insight 

Observation

Performance 
and 

optimization

Proactive and 
predictive

Prescriptive 
and 

descriptive
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Everything/Sensor as a Service

Sensors as a Service
Sensor 

Processing 
as a Service 
(could use

MapReduce)

A larger sensor ………

Output Sensor
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SaaS, PaaS, IaaS



Interoperability to Break Silos
Challenge: Semantic 

Interoperability



Current Challenge in IoT: Weak Interoperability
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Src: H2020 BiG-IoT Project



Coping with Weak Interoperability

• Fragmented value chains can kill innovations!
• The biggest challenges of IoT are (a) achieving interoperability 

between platforms & applications, and (b) creating standards & 
interfaces.

à Cross-domain middleware is critical
à Standardization activities are important for scaling IoT



Scaling IoT Through Interoperability
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What is Interoperability?

• Uniform move of data from one system to another, i.e., 2 or more 
systems can share data AND use it.

• Levels of Interoperability
◦ Technical: Systems can communicate data to each other

◦ Syntactic: A system can READ received data

◦ Semantic: A system can UNDERSTAND received data (through a 
data model)
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BIG-IoT Approach

382Src: H2020 BiG-IoT Project

Interoperability via:
- A single language + 
API („ears and 
mouths“)
- Marketplace: remove 
obstacles and create 
incentives to break 
down barriers



Five interoperability patterns
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(a) Cross-Plattform Access (b) Cross-Application Domain Access (c) Plattform Independence

(d) Plattform-Scale Independence (e) Higher-Level Service Facades



The IoT Ecosystem
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IoT Standardization to Foster Interoperability

• 7 SDO (ETSI, ATIS, TIA, CCSA, TTA, ARIB, TTC): OneM2M (since July 2012)

• ETSI: M2M service layer standard (published Jan 2012)

• Oasis MQTT
• IETF: CORE (Constrained RESTful Environments), ROLL, RPL, 6LoWPAN, CoAP

• OMA LWM2N
• 3GPP Machine Type Communication (MTC)
• AllSeen Alliance, AllJoin standard

• OpenADR (Open Auto-Demand-Response) for smart grids

• IEEE 802.14.5, WirelessHART, ZigBee, DASH7, Bluetooth, UWB, ..
• LoRa Alliance, Sigfox UNB, ..

• Eclipse Open Source
• Etc



Summary

• IoT cuts across nearly every vertical sector
• Security & interoperability are primary concerns across the 

industry
• Protocol normalization enables developers to write applications 

that connect into legacy systems and protocols seamlessly
• API‘s are critical to scaling and developing IoT systems
• Turning Data into insights requires edge to cloud analytics
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END

Thank you for your attention!


