CS 170 - Week 1

Dani Kudrow & Jasen Hall

Your TAS

Dani Kudrow Jasen Hall

Office hours: TR 10:00-11:00am Office hours: R 12:00-1:00pm
Phelps 3525 F 1:00-2:00pm
Phelps 3525

Email: dkudrow@cs.ucsb.edu Email: jasen@cs.ucsb.edu

Projects

e Discussion sections will focus on projects
e Start early!
o Each project builds on the last - you don’t want to fall behind!
o No solutions will be posted - your code must work!
e Prerequisites
o C
o Unix utilities (man, make, gdb, gcc, etc.)

Project1 - jshell

e The shell provides an interface to the operating system kernel

e Performs two tasks
o Interpret user commands
o Execute those commands

Parsing

e You will need to be able to identify the following symbols from an entered
command line:

o <, > >>
m Input and output redirection
o |
m Pipelining
o &
m Background process

e $ man bash
© /REDIRECTION
o /Pipelines

File Redirection

e You can replace STDIN with a file
o $ sort < /etc/passwd
o $ jsh < testcommands.txt

e You can replace STDOUT with a file, too
o $lIs -l > filelist.txt
o §$ jsh < testcommands.txt > testoutput.txt
m /mportant. if the file you are writing STDOUT to already exists,
you will overwrite it. This is called clobbering.

e You can replace STDOUT with a file, but append to it
o $ jsh < testcommands.txt >> testoutput.txt
m This will create a new output file only if it doesn’t already exist.
Otherwise. it will append to it.

Pipelining and Background

e You can connect the output of one command to the input of another using
a pipe
o §$ sort < /etc/passwd | less
o $ jsh < badcommands.txt | grep ‘command not found’

e By placing a command in the background, you allow it to run without
blocking your further use of the shell
o §$ calculate_pi.py &
[1] 1889

[1]+ Done calculate pi.py

System Calls

e System calls allow user programs to invoke kernel procedures

o MOV 0x29, %rax ;; specify dup() system call
o MOV 0x1, %rbx ;; sSpecify argument
o SYSCALL ;; Lrap to operating system

e #include <unistd.h> /* Unix system call wrappers */

e By convention:
o On failure, return -1 and set errno (errno.h)

e Man pages
o The C system call wrappers have man pages in section 2
m $ man 2 open

System Calls

fork

exec
wait/waitpid
pipe

dup

System Calls - fork()

int child_pid = fork(); [* create a new process */

if (0 > child_pid) {
[* Fork failed! */
}
else if (0 == child_pid) {
/* This code will execute in the child process */
}
else {
/* This code will execute in the parent process */
[* retval here contains the PID of the child process */

System Calls - walit()

int child_pid = fork()
int status;

else {
/* block until a child process terminates */
wait(&status);

/* don’t block, even if no child has terminated */
waitpid(-1, &status, WNOHANG);

}

System Calls - exec()

char *args|[3];
int child_pid = fork();
int status;

args[0] = “Is”; args[1] = “-I"; args[2] = NULL,;

if(child_pid == 0)
execvp(args|[0], args);
else
wait(&status);

System Calls - pipe()

int pipefd[2]; /* create our pipe array */
char bufout[] = "Pipe\0";
char bufin[6];

pipe(pipefd); /* create our in/out pipes */
write(pipefd[1], bufout, strlen(bufout)); /* 2nd element is the write pipe */
read(pipefd[0], bufin, strlen(bufout)); /* 1st element is the read pipe (ikr!) */

/* bufin now contains “Pipe\0” */

System Calls - dup()

int fd, newfd;

fd = open("dupfile.txt", O WRONLY|O_ CREAT);

newfd = dup(fd); /* dup() creates a new file descriptor
opened to the same file as fd */

write(newfd, "Writing to dup'ed file descriptor.\0", 256);

close(newfd);

close(fd);

[* String written to dupfile.txt using duplicated descriptor */

What are you (not) responsible for?

e You need to create the shell program and turn in:
o Source code
o Makefile

e You DO NOT need to write:
o Is, mkdir, cd, grep
o Anything else?

Strategy

1. Create a loop that only exits on a CTRL-D or the command “exit”
a. How does C interpret CTRL-D?
2. Write string handling functions that can parse a command
a. What is the command and what are it's arguments?
b. Is /O being redirected, and if so to where?
c. Is the user chaining multiple commands together with a pipe?
3. Create the process(es) to run your commands
a. fork()? exec()? pipe()?
4. Make sure the spawned process completes
a. Ordon’t depending on how the user called the program.

Any questions?

