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ABSTRACT

The Computational Grid [12] has been proposed for
the implementation of high-performance applications us-
ing widely dispersed computational resources. The goal of
a Computational Grid is to aggregate ensembles of shared,
heterogeneous, and distributed resources (potentially con-
trolled by separate organizations) to provide computa-
tional “power” to an application program.

In this paper, we provide a toolkit for the development
of globally deployable Grid applications. The toolkit,
called EveryWare, enables an application to draw compu-
tational power transparently from the Grid. It consists of a
portable set of processes and libraries that can be incorpo-
rated into an application so that a wide variety of dynam-
ically changing distributed infrastructures and resources
can be used together to achieve supercomputer-like perfor-
mance. We provide our experiences gained while building
the EveryWare toolkit prototype and an its use in imple-
menting a large-scale Grid application.

Keywords: Computational Grid, EveryWare, Ramsey
Number search, grid infrastructure, ubiquitous computing,
distributed supercomputer

I. INTRODUCTION

Increasingly, the high-performance computing commu-
nity is blending parallel and distributed computing tech-
nologies to meet its performance needs. A new architec-
ture, known asThe Computational Grid[12], has recently
been proposed which frames the software infrastructure re-
quired to implement high-performance applications using
widely dispersed computational resources. The goal of a
Computational Grid is to aggregate ensembles of shared,
heterogeneous, and distributed resources, potentially con-
trolled by separate organizations, to provide computational
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“power” to an application program. Applications should
be able to draw compute cycles, network bandwidth, and
storage capacity seamlessly from the Grid∗ in a way analo-
gous to the way in which household appliances draw elec-
trical power from a power utility.

The framers of the Computational Grid paradigm iden-
tify four qualitative criteria for the concept to be realized.
According to [12] (page 18), a Computational Grid must
deliverconsistent, dependable, pervasive, andinexpensive
cycles to the end user. In this paper, we outline five quan-
titative requirements which, if met, fulfill the qualitative
criteria from [12]. We also describeEveryWare— a
toolkit for constructing Computational Grid programs —
and evaluate quantitatively how well an example Every-
Ware program fulfills the Computational Grid vision.

Our evaluation is based on five quantitative metrics:
1. Execution Rate: measures the sustained computational

performance of the entire application. Although not
mentioned explicitly as a criterion, the Grid must be
able to deliver efficient execution performance which we
measure in terms of sustained execution rate.

2. Adaptivity : measures the difference between the per-
formance variability exhibited by the underlying re-
sources and the performance variability exhibited by the
application itself. If program execution is stable, inde-
pendent of fluctuations in resource performance (i.e. the
program adapts to varying performance conditions suc-
cessfully) we suggest that the program is able to sustain
consistentexecution.

3. Robustness: measures the overall duration of continu-
ous program execution in the presence of resource fail-
ures. A program that can continue to execute effectively
in the presence of unpredictable resource failure is ade-
pendableprogram.

4. Ubiquity : measures the the degree of heterogeneity a
program can exploit in terms of the number of different
resource types used by the application. If a program can
execute using any and all available resources (both soft-
ware and hardware) it is apervasiveprogram.

5. Expense: measures the cost of the resources necessary
to implement the infrastructure. This metric maps di-
rectly to the the expense criterion described in [12].

∗We will capitalize the word “Grid” when referring to “Computa-
tional Grid” throughout this paper.
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Therefore, a program that achieves a highexecution rate,
which is able toadapt to rapidly changing performance
conditions, which isrobustto resource failures, which can
executeubiquitouslyand which requires little addedex-
penseover a single-machine program possess all of the
qualities described in [12] that a Grid program must pos-
sess.

EveryWare is a software toolkit consisting of of three
separate components:
• a portable lingua francathat is designed to allow pro-

cesses using different infrastructures and operating sys-
tems to communicate,

• a set ofperformance forecasting libraries that enable
an application to make short-term resource and applica-
tion performance predictions in near-real time, and

• a distributed state exchangeservice that allows appli-
cation components to manage and synchronize program
state in a dynamic environment.

The goal is to allow a user to write Grid programs that
combine the best features of different Grid infrastructures
such as Globus [11], Legion [19], Condor [36], or Net-
Solve [6] as well as the native functionality provided by
Java [18], Windows NT [27], and Unix to the performance
advantage of the application. EveryWare is implemented
as a highly portable set of libraries and processes that can
“glue” different locally available infrastructures together
so that a program may draw upon these resources seam-
lessly. If sophisticated systems such as Globus, Legion,
or Condor are available, the EveryWare program must be
able to use the features provided by those systems ef-
fectively. If only basic operating system functionality is
present, however, an EveryWare program should be able to
extract what ever functionality it can, realizing that these
resources may be less effective than those supporting bet-
ter infrastructure. The ability to execute ubiquitously with
respect to all of the resources accessible by the user is key
to meeting the pervasiveness criterion. By leveraging the
most performance-efficient infrastructure that is presenton
those resources, an EveryWare application can ensure the
best possible execution performance and the greatest de-
gree of robustness possible.

Designed to be quickly and easily portable, EveryWare
is intended to be the thinnest middleware layer capable
of unifying heterogeneous resources with various software
infrastructures to accomplish a computational task. In a
Grid environment with several incompatible software in-
frastructure choices, it has been challenging to build a dis-
tributed application running everywhere, until EveryWare.

We have implemented a prototype toolkit to test the ef-
ficacy of the EveryWare approach. In an experiment en-
tered as a contestant in the High-Performance Computing
Challenge [22] at SC98, we were able to use this proto-
type to leverage Globus, Legion, Condor, and NetSolve

Grid computing infrastructures, the Java language and ex-
ecution environment, native Windows NT, and native Unix
systemssimultaneouslyin a single, globally distributed ap-
plication. The application, a program that searches for
Ramsey Number counter-examples, does not perform an
exhaustive search, but instead uses search heuristics such
as simulated annealing to negotiate the enormous search
space. Effectively implementing this approach requires
careful dynamic scheduling to avoid substantial communi-
cation overheads. Moreover, by focusing on enhancing the
interoperability of the resources in our pool, we were able
to combine the Tera MTA[37] and the NT Supercluster[30]
- two unique and powerful resources- with several more
commonly available systems, including parallel supercom-
puters, PC-based workstations, shared-memory multipro-
cessors, and Java-enabled desk-top browsers. With non-
dedicated access to all resources, under extremely heavy
load conditions, the EveryWare application was able to
sustain supercomputer performance levels over long peri-
ods of time. As such, the Ramsey Number Search applica-
tion using EveryWare represents an example of a true Grid
program- the computational “power” of all resources that
were available to the application’s user was assessed, man-
aged, and delivered to the application.

In detailing our Computational Grid experiences, this
paper makes four important contributions.
• It defines five quantitative metrics that can be used to

measure the effectiveness of Grid applications.
• It demonstrates, using these quantitative metrics, the po-

tential power of globally distributed Grid computing.
• It details our experiences using most of the relevant dis-

tributed computing technology available to us in the fall
of 1998.

• It describes a new programming model and methodol-
ogy for writing Grid programs.
In the next section we motivate the design of Every-

Ware in the context of current Computational Grid re-
search. In Section III we detail the functionality of the
EveryWare toolkit and describe the programming model
it implements. Section IV discusses the Ramsey Number
Search application we used in this experiment and in Sec-
tion V, we detail the performance results we were able to
obtain in terms of the four metrics described above. We
conclude in Section VI with a description of future re-
search directions.

II. COMPUTING WITH COMPUTATIONAL GRIDS

The goal of EveryWare is to enable the construction
of true Grid programs – ones which draw computational
power seamlessly from a dynamically changing resource
pool. Since the field is evolving, a single definition of
“Computational Grid” has yet to be universally adopted.†

In this work, we will use the following definition.

†In [12], the authors define Computational Grids in terms of a set of
criteria that must be met. We address these criteria in our work, but
prefer the definition provided herein for the purpose of illustration.
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Computational Grid: A heterogenous, shared, and feder-
ated collection of computational resources connected by
a network that supports interprocess communication.
By “shared” we mean that it is impractical to dedicate

all of the resources in a Computational Grid to a single
application for an appreciable amount of time. The term
“federated” means that each resource is expected to have
local administration, local resource allocation policies, and
local resource management software. No single overarch-
ing resource management policy can be imposed on all re-
sources.

The resources housed at the National Partnership for
Advanced Computational Infrastructure (NPACI) and Na-
tional Computational Science Alliance (NCSA) constitute
examples of Computational Grids. At these centers, ma-
chines and storage devices of various types are internet-
worked. Each resource is managed by its own resource
manager (e.g. batch scheduler, interactive priority mecha-
nism, etc.) and it is not generally possible to dedicate all
resources (and the network links that interconnect them) at
either site to a single application. Moreover, it is possible
to combine NPACI and NCSA resources together to form
a larger Computational Grid, that has the same character-
istics. In this larger case, it is not even possible to mandate
that a uniform software infrastructure be present at all po-
tentially useful execution sites.

To maximize application performance on a Computa-
tional Grid, a program must bescalable(able to exploit
concurrency for performance),adaptive, robust,andubiq-
uitous.

Other work has met these requirements to different de-
grees. AppLeS [4] (Application Level Scheduling) agents
have enabled applications to meet these requirements in
environments where a single infrastructure is present and
the scheduling agent does not experience resource fail-
ure. An AppLeS agent dynamically evaluates the perfor-
mance that all available resources can deliver to its applica-
tion, and crafts a schedule that maximizes the application’s
overall execution performance. EveryWare supports this
principle but also extends it to wide-area lossy environ-
ments in which several infrastructures may be available.
Note also that the AppLeS agent is a specialized appli-
cation component that performs a single application man-
agement function: scheduling. EveryWare generalizes this
notion to other application management functions in the
form of application-specific services. In Section IV, we
describe application-specific scheduling, persistent-state
management and performance logging for the Ramsey
Number search application in EveryWare.

The MPI (Message Passing Interface) [10], and PVM
(Parallel Virtual Machine) [17] implementations for net-
worked systems allow distributed clusters of machines to
be programmed as a single, “virtual” parallel machine, al-
lowing applications toscale. In addition, portable imple-
mentations that do not require privileged (super-user) ac-
cess for installation or execution [20], [17] are available,

promoting theirubiquity. However, they do not manage
resource heterogeneity on behalf the program nor do they
expose it to the programmer so that it may be managed
explicitly, so are notadaptive.

Grid computing systems such as Globus, Legion, Con-
dor, and HPC-Java [21] include support for resource het-
erogeneity as well, but they are not yetubiquitous. As they
gain in popularity, we anticipate these systems to be more
widely installed and maintained. However, we note that
their level of sophistication makes porting them to new and
experimental environments labor intensive.

EveryWare is similar to Globus [11] in that application
components communicate via different well-defined pro-
tocols to obtain Grid “service.” EveryWare extends this
“sum of service” approach to provide tools for the Grid
programmer to develop application-specific protocols and
services so that the application, and not just the underlying
infrastructure, can be robust and ubiquitous.

It also supports information hiding and location trans-
parency in the same way object-oriented systems such as
Legion [19] and CORBA [31] do. Indeed, it is possible
to leverage the salient features from these object-oriented
systems via EveryWare where advantageous to the appli-
cation.

In particular, we were able to build an application-
specific process location service using EveryWare that is
similar in concept to the functionality provided by JINI [3].
JINI relies on broadcast and multicast facilities, however,
making it difficult to use in wide-area environments. Us-
ing the EveryWareGossipprotocol, we were able to over-
come this limitation, although it is possible that JINI could
be used to implement part of theGossipinfrastructure.

EveryWare complements the functionality provided by
Condor [36] by providing a robust messaging layer. Adap-
tive and robust execution facilities permit Condor to kill
and restart EveryWare processes at will. However, in order
to provide an automatic and seamless checkpointing facil-
ity, Condor only provides a way for tasks to be migrated
between machines of the same architecture. EveryWare’s
Gossip protocol enables a programmer to write an explicit
state-saving facility which is both application and platform
neutral. In conjunction with Condor’s checkpointing facil-
ity, this enables EveryWare programs to span Condor pools
based on different architectures.

Dynamically schedulableadaptiveprograms that are ca-
pable of tolerating resource performance fluctuations have
been developed by the Autopilot [33], Prophet [38], Win-
ner [2] and MARS [16] groups. Most of these systems rely
on a centralized scheduler for each application, sacrificing
robustness. If the scheduler fails or becomes disconnected
from the rest of the application, the program is disabled. In
addition, having a single scheduling agent impedes scala-
bility as communication with the scheduler becomes a per-
formance bottleneck.
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Fig. 1. EveryWare Components

EveryWare is designed as a portable “toolkit” for link-
ing together program components running in different en-
vironments. Individual program components may use
what ever locally available infrastructure is present. In ad-
dition, we provide a low-level “bare-bones” implementa-
tion that is designed to use only basic operating system
functionality. In this way, an EveryWare application does
not assume that any single operating system or infrastruc-
ture, except it’s own, will be accessible from every re-
source. Borrowing from the AppLeS [4] project, Every-
Ware applications characterize all resources in terms of
their quantifiable impact on application performance. In
this way, heterogeneity is expressed as the difference in de-
liverable performance to each application. The EveryWare
toolkit includes support for process replication and perfor-
mance forecasting so that an EveryWare application can
adapt to dynamically changing resource conditions. We
leverage the Network Weather Service [40], [39] forecast-
ing facilities to provide both heterogeneity management
and adaptive resource performance prediction.

III. T HE EVERYWARE TOOLKIT

The EveryWare toolkit is composed of three separate
software components: a portablelingua franca that al-
lows processes using different infrastructures and operat-
ing systems to communicate, a set of performance fore-
casting services and libraries that enable an application
to make short-term resource and application performance
predictions in near-real time, and a distributed state ex-
change service that allows application components to man-
age and synchronize program state in a dynamic environ-
ment. Figure 1 depicts the relationship between these
components. Application components that are written to
use different Grid infrastructure features can communicate
amongst themselves, with the EveryWare state exchange
service, and with other multi-infrastructure services such
as the Network Weather Service [40] using thelingua

franca. NWS dynamic forecasting libraries (small trian-
gles in the figure) can be loaded with application com-
ponents directly. These libraries, in conjunction with the
performance forecasts provided by the NWS, permit the
program to anticipate performance changes and adapt ex-
ecution accordingly. The distributed state-exchange ser-
vices provide a mechanism for synchronizing and repli-
cating important program state to ensure robustness and
scalability.

The toolkit we have implemented is strictly a prototype
designed to expose the relevant programming issues. As
such, we do not describe the specific APIs supported by
each component (we expect them to change dramatically
in our future implementations). Rather, in this section,
we motivate and describe the functionality of each Every-
Ware component and discuss our overall implementation
strategy. Our intent is to use the prototype first to imple-
ment a variety of applications so that we may determine
what functionality is required, and then to provide a “user-
friendly” implementation of EveryWare for public release.

A. Lingua Franca

Thelingua francaprovides a base set of resource control
abstractions that are portable across infrastructures. They
are intended to be simple, easy to implement using differ-
ent Grid technologies, and highly portable. Initially, we
have developed simpleprocess, datagram message, and
storage bufferabstractions for EveryWare. Theprocessab-
straction creates and destroys a single execution thread on
a target resource that is capable of communicating via both
the EveryWare datagram message abstraction, and any lo-
cal communication facilities that are present. EveryWare
datagram messagesare sent between processes via non-
blocking send and blocking receive calls and processes can
block waiting for messages from multiple sources. Pro-
cesses can also create and destroystorage bufferson arbi-
trary resources (e.g. by creating “memory” processes that
respond to read and write requests to their own memory).

We implemented thelingua francausing C and TCP/IP
sockets. To ensure portability, we tried to limit the im-
plementation to use only the most “vanilla” features of
these two technologies. For example, we did not use non-
blocking socket I/O nor did we rely upon keep-alive sig-
nals to inform the system about end-to-end communication
failure. In our experience, the semantics associated with
these two useful features are specific to the vendor and, in
some cases, to the operating system release level. We tried
to avoid controlling the portability of EveryWare through
C preprocessor flags whenever possible so that the system
could be ported quickly to new architectures and environ-
ments. Similarly, we chose not to rely upon XDR [35]
for data type conversion for fear that it would not be read-
ily available in all environments. Another important deci-
sion was to strictly limit our use of signals. Unix signal
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semantics are somewhat detailed and we did not want to
hinder the portability to non-Unix environments (e.g. Java
and Windows NT). More immediately, many of the cur-
rently available Grid communication infrastructures such
as Legion [19] and Nexus [14] take over the user-level sig-
nal mechanisms to facilitate message delivery. Lastly, we
avoided the use of threads throughout the architecture as
differences in thread semantics and thread implementation
quality has been a source of incompatibility in many of our
previous Grid computing efforts.

Above the socket level, we implemented rudimentary
packet semantics to enable message typing and delin-
eate record boundaries within each stream-oriented TCP
communication. Our approach takes its inspiration from
the publicly available implementation ofnetperf [23].
However, the actual implementation of the messaging
layer comes directly from the current Network Weather
Service (NWS) [40], where it has been stress-tested in a
variety of Grid computing environments.

Note that the EveryWarelingua franca differs from
other message passing implementations such as PVM [17]
or MPI [20] in several important ways. First, these other
interfaces are designed to support arbitrary parallel pro-
grams in environments where resource failure is rare (i.e.
on parallel machines). As such, they include useful prim-
itives (such as global barrier synchronization) that make
them attractive programming facilities, but sometimes dif-
ficult to implement in Grid environments. Often, when
a resource fails, the entire PVM or MPI program must
be restarted. EveryWare assumes that resource availabil-
ity will be dynamically changing. As such, all primitives
obey user-specified time outs, success and failure status
is reported explicitly, and only those primitives that can
fail individually (that is, without affecting more than the
process calling them) are implemented. We do not intend
the lingua francato replace any of the existing message-
passing or remote invocation systems that are available to
Grid programmers. Rather, we will provide the minimal
functionality required to allow these infrastructures to in-
teroperate efficiently so that programs can span Grid in-
frastructures. We expect that the portability of thelingua
francawill also benefit from this minimalist approach.

B. Forecasting Services

We also borrowed and enhanced the NWS forecasting
modules for EveryWare. To make performance forecasts,
the NWS applies a set of light-weight time series fore-
casting methods and dynamically chooses the technique
that yields the greatest forecasting accuracy over time [39].
The NWS collects performance measurements from Grid
computing resources (CPUs, networks, etc.) and uses
these forecasting techniques to predict short-term resource
availability. For EveryWare, however, we needed to be
able to predict the time required to perform arbitrary but

repetitive program events. Our strategy was to manually
instrument the various EveryWare components and appli-
cation modules with timing primitives, and then pass the
timing information to the forecasting modules to make pre-
dictions. We refer to this process asdynamic benchmark-
ing as it uses benchmark techniques (e.g. timed program
events) perturbed by ambient load conditions to make per-
formance predictions.

For example, we use the NWS forecasting modules and
NWS dynamic benchmarking to predict the response time
of each EveryWare state-exchange server. We first iden-
tify instances of request-response interactions in the state-
server code. At each of these “events” we instrument the
code to record an identifier indicating the address where
the request is serviced and the message type, and time re-
quired to get the corresponding response. By forecasting
how quickly a server responds to each type of message, we
are able to dynamically adjust the message time-out inter-
val to account for ambient network and CPU load condi-
tions. This dynamic time-out discovery is crucial to overall
program stability. Using the alternative of statically de-
termined time-outs, the system frequently misjudges the
availability (or lack thereof) of the different EveryWare
state-management servers causing needless retries and dy-
namic reconfigurations.

In general, the NWS forecasting services and NWS dy-
namic benchmarking allow both the EveryWare toolkit,
and the application using it, to dynamically adapt itself to
changing load and performance response conditions. We
use standard timing mechanisms available on each system
to generate time stamps and event timings. However, we
anticipate that more sophisticated profiling systems such
as Paradyn [28] and Pablo [9] can be incorporated to yield
higher-fidelity measurements.

C. Distributed State Exchange Service

To function in the current Grid computing environ-
ments, a program must be robust with respect to resource
performance failure while at the same time able to leverage
a variety of different target architectures. EveryWare pro-
vides a distributed state exchange service that can be used
in conjunction with application-level checkpointing to en-
sure robustness. EveryWare state-exchange servers (called
Gossips) allow application processes to register for state
synchronization by providing a contact address, a unique
message type, and a function that allows aGossipto com-
pare the “freshness” of two different messages having the
same type. All application components wishing to use
Gossipservice must also export a state-update method for
each message type they wish to synchronize.

Once registered, an application component periodically
receives a request from aGossipprocess to send a fresh
copy of its current state, identified by message type. Using
the previously registered comparator function, theGossip
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compares the current state with the latest state message
received from other application components. When the
Gossipdetects that a particular message is out-of-date, it
sends a fresh state update to the application component
that originated the out-of-date message.

To allow the system to scale, we rely on three assump-
tions: first, that theGossipprocesses cooperate; second,
that the number of application components wishing to syn-
chronize is small; finally, that the granularity of synchro-
nization events is relatively coarse. Cooperation between
Gossipprocesses is required so that the workload asso-
ciated with the synchronization protocol may be evenly
distributed. Gossips dynamically partition the responsi-
bility for querying and updating application components
amongst themselves. For the SC98 experiment, we sta-
tioned severalGossips at well-known addresses around the
country. When an application component registered, it was
assigned a responsibleGossipwithin the pool of available
Gossips whose job it was to keep that component synchro-
nized.

In addition, we allow theGossippool to fluctuate. New
Gossipprocesses register themselves with one of the well-
known sites and are announced to all other functioning
Gossips. Within theGossippool, we use the NWS clique
protocol [40] (a token-passing protocol based on leader-
election [15], [1]) to manage network partitioning and
Gossipfailure. The clique protocol allows a clique of pro-
cesses to dynamically partition itself into subcliques (due
to network or host failure) and then merge when conditions
permit. The EveryWareGossippool uses this protocol to
reconfigure itself and rebalance the synchronization load
dynamically in response to changing conditions.

The assumptions about synchronization count and gran-
ularity are more restrictive. Because eachGossipdoes a
pair-wise comparison of application component state,N2

comparisons are required forN application components.
Moreover, if the overhead associated with state synchro-
nization cannot be amortized by useful computation, per-
formance will suffer. We believe that the prototype state-
exchange protocol can be substantially optimized (or re-
placed by a more sophisticated mechanism) and that care-
ful engineering can reduce the cost of state synchroniza-
tion over what we were able to achieve. However, we
hasten to acknowledge that not all applications or applica-
tion classes will be able to use EveryWare effectively for
Grid computation. Indeed, it is an interesting and open re-
search question as to whether large-scale, tightly synchro-
nized application implementations will be able to extract
performance from Computational Grids, particularly if the
Grid resource performance fluctuates as much as we have
typically observed [41], [39]. EveryWare does not allow
any application to become an effective Grid application.
Rather, it facilitates the deployment of Grid-suitable appli-
cations, enabling them to ubiquitously draw computational
power from a set of fluctuating resources.

Similarly, the consistency model required by the appli-
cation program dramatically affects its suitability as an Ev-
eryWare application, in particular, and as a Grid applica-
tion in general. The development of a high-performance
state replication facilities that implement tight bounds on
consistency is an active area of research. EveryWare does
not attempt to solve the distributed state consistency prob-
lem for all consistency models. Rather, it specifies the in-
clusion of replication and synchronization facilities as a
constituent service. For the application that describe in
the next Section (Section IV), we implemented a loosely
consistent service based on theGossipprotocol. Other,
more tightly synchronized services can be incorporated,
each with its own performance characteristics. We note,
however, that applications having tight consistency con-
straints are, in general, difficult to distribute while main-
taining acceptable performance levels. EveryWare is not
intended to change the suitability of these programs with
respect to Grid computing, but rather enables their imple-
mentation and deployment at what ever performance level
they can attain.

D. The EveryWare Programming Model

An EveryWare application is structured as a set of
computational application clientsthat request run-time
management services from a set ofapplication-specific
servers. Application clients perform the actual “work”
within the application using the features of a native Grid
infrastructure. They may themselves be parallel or dis-
tributed programs, and they are not constrained to use
only the lingua franca for communication, process con-
trol, and storage management. For operations that re-
quire more global control, such as scheduling, user inter-
action, etc., the computational application clients appeal
to application-specific servers, also written by the applica-
tion programmer. Like the clients, the application-specific
servers are not constrained to use any single communica-
tion or process control mechanism- they may be written
to use any native Grid infrastructure. However, using the
lingua francaenables arbitrary client and server interac-
tion and ensures portability across infrastructures.

Figure 2 depicts the structure of an application.
Application clients (denoted “A” in the figure) can exe-
cute in a number of different environments, such as Net-
Solve, Globus, Legion, Condor, etc. They communi-
cate with application-specific scheduling servers to receive
scheduling directives dynamically. Persistent state man-
agers, tuned for the application, control and protect any
program state that must survive host or network failure.
Application performance logging servers allow arbitrary
messages to be logged by the application. Finally, all ap-
plication components use the EveryWareGossipservice
to synchronize state. To anticipate load changes, the vari-
ous application components consult the Network Weather
Service (NWS).
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Fig. 2. EveryWare Application Structure

This application architecture offers several advantages.
First, the overall program can be constructed incremen-
tally. Most concurrent programs are not structured so that
some parts may execute while others are being revised, en-
hanced, or debugged. By structuring an EveryWare pro-
gram as a communicating set of application-specific ser-
vices, however, it is possible to interface new pieces of
code with the running application. The adaptive nature
of the code allows new processes to join and others to
drop out while the code continues to execute. Since we
do not have to restart the application every time we wish
to add a new program component, we can improve and
evolve the running application dynamically. Another ad-
vantage is that it allows us to implement infrastructure-
specific clients that can get the best possible performance
by running in “native” mode. Since the clients need only
speak the protocol required by each server, we do not need
to put a complete software veneer between the computa-
tional code and the native infrastructure.

Note that the EveryWare programming model is fun-
damentally different from that used by most proce-
dure oriented Grid infrastructures such as NetSolve [6],
NINF [29], CORBA [31] and NEOS [26]. These infras-
tructures typically support applications structured as a sin-
gle controlling client that makes remote-procedure calls to
remote computational servers. Under the EveryWare pro-
gramming model, computation is centered at the clients
and program control is coordinated by a set of cooperating
application-specific servers. Since the roles or client and
server are reversed, we term this application architecture
an inverted client-servermodel. This novel application
structure offers EveryWare applications greater scalability
and robustness than a single-client approach.

IV. EXAMPLE APPLICATION: RAMSEY NUMBER

SEARCH

The application we chose to implement to test the ef-
fectiveness of EveryWare attempts to improve the known

bounds of classical Ramsey numbers. Thenth classical
or symmetric Ramsey numberRn = Rn,n is the smallest
numberk such that any complete two-colored graph onk

vertices must contain a complete one-colored subgraph on
n of its vertices. It can be proven in a few minutes that
R3 = 6; it is already a non-trivial result thatR4 = 18, and
the exact values ofRn for n > 4 are unknown.

Observe that to show that a certain numberj is a lower
bound forRn, one might try to produce a particular two-
colored complete graph on(j − 1) vertices that has no
one-colored complete subgraph on anyn of its vertices.
We will refer to such a graph as a “counter-example” for
thent h Ramsey number. Our goal was to find new lower
bounds for Ramsey numbers by finding counter-examples.

This application addresses an unsolved problem in com-
binatorics using new search techniques. It is not a “clas-
sic” scientific application, however, since it does not model
real-world phenomena, nor does it provide better applied
mathematical or computational techniques for such model-
ing. However, this application was especially attractive as
a first test of EveryWare because of its loose synchroniza-
tion requirements and its resistance to exhaustive search
techniques like those employed in cryptographic factor-
ing [24], [5].

This resistance arises from the combinatorial complex-
ity of the problem. For example, if one wishes to find a
new lower bound forR5, one must search in the space
of complete two-colored graphs on43 vertices, since the
known lower bound is currently43 ([32]). Since such a
graph has

(

43

2

)

= 903 edges, there are2903 > 10270 differ-
ent two-colored graphs on 43 vertices. Even if one could
examine1012 configurations every second, an exhaustive
search would take over10250 years.

Therefore, we must use heuristic techniques to control
the search process. The process of counter-example identi-
fication is related to distributed “branch-and-bound” state-
space searching.

A. Application Clients

Our goal was to create a dynamically changing popula-
tion of computational processes executing different heuris-
tics. Heuristic design is an active area of research in com-
binatorics [32]. As such, we designed the application to be
able to incorporate different heuristic algorithms concur-
rently, each of which implemented as a single application
client. The clients would then use thelingua franca to
communicate with a set of application servers to receive
scheduling directives and state management services.

The heuristics that we used all involveddirected search,
by which we mean the following: On the search space of
two-colored complete graphs of a particular size, there is
a numerical “score” which assigns to each graph the de-
gree to which it fails to be a counter-example in some
suitable sense. There is also a set of manipulations called
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“moves” (transformations) that one can perform on a par-
ticular graph to produce other graphs. The algorithm, then,
is roughly to start with an arbitrary graph and perform a se-
quence of moves with a view toward lowering the score by
each successive move. Note that in any such heuristic, it
is necessary to provide some possibility of making a move
that worsens the score; otherwise, there is the danger that
the search will get trapped at a local minimum which is not
a global minimum.

In our case, the score assigned to a two-colored graph
is simply the number of “violations,” or complete one-
colored subgraphs onn vertices, that it possesses; thus a
graph is a counter-example if and only if its score is0.

Various algorithms employed used slightly different
definitions for their moves. The simplest and most com-
mon was to change the color of a single edge. Thus, for a
graph on43 vertices possessing903 edges, there are903
possible moves that can be made from any given graph.
In other algorithms, a move comprised changing the col-
ors of3 edges. Still other algorithms worked in restricted
search spaces which partitioned the edges and only con-
sidered those graphs for which all the edges in any given
partition were the same color; in such a case a move com-
prised changing the colors of all the edges within a partic-
ular partition.

The two classes of search heuristics employed were
those based ontabu search[32] andsimulated annealing.
In a tabu search, the algorithm keeps a list (the tabu list) of
a fixed length recording the most recent moves that have
been made. From a given configuration, it examines all
moves not in the tabu list, finds the one that gives the low-
est score, and makes and records this move. The tabu list
is in place to avoid loops; in practice, some element of
randomness is necessary in order to avoid large loops. We
employed two variants of the tabu search, namely one that
allowed a particular move to be made no more than twice
on the list and another that allowed a particular move onto
the list if its last appearance was with a different predeces-
sor.

The simulated annealing heuristic mimics the physical
behavior of a mass as it undergoes cooling; in this case,
the score of a configuration is analogous to the tempera-
ture of the mass. Generally, from a given configuration the
algorithm chooses a move at random and makes the move
if it results in a lower score; otherwise, it rejects the move
and chooses another at random from the same configura-
tion. However, the algorithm will accept a random move,
regardless of the resulting score, with a small probability
that decreases as the score drops; here again, this random-
ness has the effect of keeping the algorithm from getting
trapped in a local minimum.

A.1 Scheduling Service

To schedule the EveryWare Ramsey Number applica-
tion, we use a collection of cooperating, independent
scheduling servers to control application execution dy-
namically. Each computational client periodically contacts
a scheduling server and reports its algorithm type, the IP
address of the machine on which it is running, the progress
it has made since it last made a scheduling decision, and
the amount of time that has elapsed since its last contact.
Servers are programmed to issue different control direc-
tives based on the type of algorithm the client is executing,
how much progress the client has made, and the most re-
cent computational rate of the client.

Scheduling servers are also responsible for migrating
work. Clients report the number of violations in the graph
they are testing when they check in. If the number is low
the server will ask the client for a copy of the graph it is
currently considering. If it is high, the server sends the
client a better graph and directs it to continue from a differ-
ent point in the search space. The clients are programmed
to randomize their starting point in different ways to pre-
vent the system from dwelling irrevocably in a local mini-
mum. In addition, the thresholds for identifying a “good”
graph (one with a low number of violations), a bad one,
and the number of times a good one can be migrated to
serve as a new starting point in the search space, are tun-
able parameters.

The schedulers also make decisions based on dynamic
performance forecasting information. If a scheduler pre-
dicts that a client will be slow based on previous perfor-
mance, it may choose to migrate that client’s current work-
load to a machine that it predicts will be faster. Rather
than basing that prediction solely on the last performance
measurement for each client, the scheduler uses the NWS
lightweight forecasting facilities to make its predictions.
Note that this methodology is inspired by some of our pre-
vious work in building application-level schedulers (Ap-
pLeS) [34], [4]. AppLeS is an agent-based approach in
which each application is fitted with a customized ap-
plication scheduler that dynamically manages its execu-
tion. For the Ramsey Number Search application, how-
ever, a single scheduling agent would have been insuf-
ficient to control the entire application, both because it
would limit the scalability of the application and because
the agent would constitute a single-point-of-failure. We
designed an application-specific scheduling service that
forms organized and robust, but dynamically changing
groups of cooperating processes that can make progress
if and when the network partitions. As such, we term this
type of scheduling Organized Robust AutoNomous Group
Scheduling (ORANGS). ORANGS and AppLeS are, in-
deed, similar in that they use NWS performance forecasts
to make application-specific scheduling decisions. How-
ever, the distributed and robust nature of the ORANGS
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service made it a more appropriate choice for the Ramsey
Number Search application.

Notice that, for the Ramsey Number search application,
the scheduling service considers the use ofall available
resources. When an application client checks in with a
scheduling server, the server evaluates the client in terms
of the performance it will be able to deliver to the appli-
cation (using the forecasting services) and decides on the
amount and type of work that client should receive. In
all cases, the Ramsey Number search clients receive some
amount of work to perform. For other applications, how-
ever, the scheduling service may decide that the use of a
particular resource will hinder rather than aid performance
and, hence, should be excluded. Therefore, while resource
selection is not an issue for Ramsey Number search, the
EveryWare programming model supports its implementa-
tion.

Schedulers within the scheduling service communicate
non-persistent state amongst themselves via theGossip
service. In particular, the IP addresses and port numbers
of all servers are circulated so that new server instances
can be added dynamically. Clients are furnished with a
list of active servers when they make contact so that they
can contact alternates in the event of a failed server com-
munication. Similarly, scheduling servers learn of differ-
entGossipservers, persistent state managers, and logging
servers viaGossipupdates.

A.2 Persistent State Management Service

To improve robustness, we identify three classes of pro-
gram state within the application:
Local : State that can be lost by the application due to

machine or network failure (e.g. local variables within
each computational client).

Volatile-but-replicated: State that is passed between pro-
cesses as a result ofGossip updates, but not written
to persistent storage (e.g. the up-to-date list of active
servers).

Persistent: State that must survive the loss of all active
processes in the application (e.g. the largest counter-
example that the application finds).
We use a separate persistent state service for three rea-

sons. First, we want to limit the size of the file system
footprint left by the application. Many sites restrict the
amount of disk storage a guest user may acquire. By sep-
arating the persistent storage functionality, we are able to
dynamically schedule the application’s disk usage accord-
ing to available capacities. Secondly, we want to ensure
that persistent state is ultimately stored in “trusted” envi-
ronments. For example, we maintained a persistent state
server at the San Diego Supercomputer Center because we
were assured of reliable storage and regular tape back-ups.
Lastly, we are able to implement run-time sanity checks on
all persistent state accesses. If a process attempts to store

a counter-example, for example, the persistent state man-
ager first checks to make sure the stored object is, indeed, a
Ramsey counter-example for the given problem size. This
is a significant advantage to application-specific state man-
agement.

To implement this functionality, all persistent state ob-
jects must be typed. For each persistent type used in the
program, the state manager needs a set of sanity-checks
(performed when an object is accessed) and a comparator
operator so that the state may be synchronized by theGos-
sip service. We acknowledge that developing this func-
tionality for all Grid applications may not be possible.
However, we note that many Computational Grid infras-
tructures currently support mechanisms that can be used
to implement the state management functionality we re-
quire for Ramsey Number search. For example, the san-
ity checks performed by the state manager were imple-
mented, primarily, to prevent errant or malicious processes
from damaging program state. Instead, Globus authenti-
cation mechanisms [13] could be used to provide access
control so that only trusted processes may modify persis-
tent state. Similarly, the Legion class management sys-
tem [25] tracks object instances in a way that could be used
to identify stale state. We wanted to ensure that all appli-
cation components (computational clients and application-
specific servers) would be portable to any environment so
we did not choose to rest any of the application’s func-
tionality on a particular infrastructure. Future versionsof
the Ramsey Search application may relax this restriction
to further benefit from maturing Computational Grid tech-
nologies.

A.3 Logging Service

To track the performance of the application dynam-
ically, we implemented a distributed logging service.
Scheduling servers base their decisions, in part, on perfor-
mance information they receive from each computational
client. Before the information is discarded, it is forwarded
to a logging server so that it can be recorded. Having a
separate service, again, allows us to limit and control the
storage load generated by the application. For example,
NPACI loaned our group a pair of file servers so that we
could capture a performance log that spanned the time of
the conference.

As with the persistent state managers and the schedul-
ing servers, the logging servers register themselves with
the Gossipservice. Any application process wishing to
log performance information learns of a logging server
through the server list that is circulated. The logging
servers do not register a state synchronization function,
however. They use theGossipservice only to join the run-
ning application.
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V. RESULTS

To test the efficacy of our approach, we deployed the
Ramsey Number search application on a globally dis-
tributed set of resources during SC98. As part of the test,
we entered EveryWare in the High-performance Comput-
ing Challenge [22] (an annual competition held during the
conference) as we believed that the fluctuating loads gen-
erated by our competitors would test the capabilities of our
system vigorously.

We instrumented each application client to maintain a
running count of the computational operations it performs
so that we could monitor the performance of Ramsey
Number search application. The bulk of the work in each
of the heuristics (see Section IV) are integer test and arith-
metic instructions. Since each heuristic has an execution
profile that depends largely on the point in the search space
where it is searching, we were unable to rely on static in-
struction count estimates. Instead, we inserted counters
into each client after every integer test and arithmetic op-
eration. Since the ratio of instrumentation code to com-
putational code is essentially one-to-one (one integer in-
crement for every integer operation) the performance es-
timates we report are conservative. Moreover, we do not
include any instrumentation instructions in the operation
counts nor do we count the instructions in the client inter-
face to EveryWare- only “useful” work delivered to the
application is counted. Similarly, we include all communi-
cation delays incurred by the clients in the elapsed timings.
The computational rates we report include all of the over-
heads imposed by our software architecture and the ambi-
ent loading conditions experienced by the program during
SC98. That is, all of the results we report in this section are
conservative estimates of the sustained performancedeliv-
eredto the application during the experiment.

A. Execution Rate

As a Computational Grid experiment, we wanted to de-
termine if we could obtain high application performance
from widely distributed, heavily used, and non-dedicated
computational resources. In Figure 3, we show the sus-
tained execution performance of the entire application dur-
ing the twelve-hour period including and immediately pre-
ceding the judging of our High-performance Computing
Challenge entry at SC98 on November 12, 1998.‡

The x-axis shows the time of day, Pacific Standard
Time,§ and they-axis shows the average computational
rate over a five-minute time period. The highest rate that

‡We demonstrated the system for a panel of judges between 11:00
AM and 11:30 AM PST.

§SC98 was held in Orlando, Florida which is in the Eastern timezone.
Our logging and report facilities, primarily located at stable sites on the
west coast, used Pacific Standard Time. As such, we report alltime-of-
day values in PST.

Fig. 3. Application Speed

Fig. 4. Application Host Count

the application was able to sustain was 2.39 billion in-
teger operations between 9:51 and 9:56 during a test an
hour before the competition The judging for the compe-
tition itself (which required a “live” demonstration) be-
gan at 11:00. As several competing projects were being
judged simultaneously, and many of our competitors were
using the same resources we were using, the networks in-
terlinking the resources suddenly experienced a sharp load
increase. Moreover, many of the competing projects re-
quired dedicated access for their demonstration. Since we
deliberately did not request dedicated access, our applica-
tion suddenly lost computational power (as resources were
claimed by and dedicated to other applications) and the
communication overheads rose (due to increased commu-
nication load). The sustained performance dropped to 1.1
billion operations as a result. The application was able to
adapt to the performance loss and reorganize itself so that
by 11:10 (when the demonstration actually took place), the
sustained performance had climbed to 2.0 billion opera-
tions per second.

This performance profile clearly demonstrates the po-
tential power of Computational Grid computing. With
non-dedicated access, under extremely heavy load condi-
tions, the EveryWare application was able to sustain super-
computer performance levels.

In Figure 4, we show the number of hosts used during
the same time period. In this figure, each data point rep-
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resents the number of hosts checking in during the cor-
responding five-minute period.¶ Note that the maximum
host count (266) occurs at 23:51 as we ran a large scale test
of the system the night before the competition. However,
the maximum host count does not correspond to the max-
imum sustained rate. While we were able to incorporate
many new and powerful resources on the morning of the
competition, we lost some of the workstations that were
loaned to us by Condor during the night. Also, these host
count numbers are based on unique IP addresses (and not
process id) making them very conservative. Since some
systems use the same IP address for all hosts (e.g. the NT
Supercluster) the actual host population was much higher.
However, we could not distinguish between multiple pro-
cesses on different hosts with the same IP address, and
multiple process restarts due to eviction for the combined
host population. As a result, we report the more conserva-
tive estimates.

B. Adaptivity

We also wanted to measure the smoothness of the per-
formance response the application was able to obtain from
the Computational Grid. For the Grid vision to be imple-
mented, an application must be able to draw “power” uni-
formly from the Computational Grid as a whole despite
fluctuations and variability in the performance of the con-
stituent resources. In Figures 5 and 6 we compare the
overall performance response obtained by the application
(graph (c) in both figures) with the performance and re-
source availability provided by each infrastructure. Fig-
ure 5 makes this comparison on a linear scale and Figure 6
shows the same data on a log scale so that the wide range
of performance variability may be observed. In Figures 5a
and 6a we detail the number of cycles we were able to suc-
cessfully deliver from each Grid infrastructure during the
twelve hours leading up to the competition. Similarly,
in Figures 5b and 6b, we show the host availability from
each infrastructure for the same time period. Together,
these graphs show the diversity of the resources we used
in the SC98 experiment.

Specifically, Condor supports a dynamic loan-and-
reclaim resource usage model. Users agree to loan idle
workstations to the Condor system for use by other pro-
cesses. When a user-specified keyboard activity or load
threshold is exceeded, the resource is declared busy and
any Condor jobs that are running at the time are evicted.
Note that Condor processing power and host count fluctu-
ated through the night and then fell off as the day began
in Wisconsin and user activity caused their workstations
to be reclaimed. For Java, the performance trajectory was
the opposite. We fitted the Java applets with the necessary
logging features at approximately 4:30 AM, although we

¶The maximum time between check-ins for any computational client
was set to five minutes during the test.

(a)

(b)

(c)

Fig. 5. Execution Rate by Infrastructure (a), Host Count by
Infrastructure (b), and Total Sustained Execution Rate (c)

had a small number of test hosts running before then. At
approximately 8:00 AM, we announced the availability of
the Java implementation and solicited participation from
“friendly” sites. In addition, we began to execute the Java
applet using HotJava [18] on workstations that had been
brought to SC98 for general use by conference attendees.
At about the same time, Legion (which had been down
since approximately midnight) became available again and
the application immediately began to take advantage of the
newly available resources. Our Globus utilization, how-
ever, was low until just after the competition ended at
11:30 AM, when it suddenly spiked. The Globus group
entered the High-performance Computing Challenge with
two separate entries. As we did not request dedicated ac-
cess or special access priority for the demonstration, our
application was able to leverage these resources only af-
ter higher-priority Globus processes finished. NetSolve
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(a)

(b)

(c)

Fig. 6. Log Scale – Sustained Processing Rate (a) and Host
Count (b) by Infrastructure, and Total Sustained Rate (c)

gave us access to the student workstation laboratories and
several resources in the Innovative Computing Laboratory
at the University of Tennessee. We detected a bug in the
performance logging portion of the NetSolve implementa-
tion at approximately 8:00 AM, hence we have no reliable
performance numbers to report for the period before then.
The bulk of the NT hosts we were able to leverage came
from the Superclusters [30] located at the National Com-
putational Science Alliance (NCSA) and in the the Com-
puter Systems Architecture Group [7] (CSAG) located at
the University of California, San Diego. These systems
used batch queues to provide space-shared access to their
processors. Unix host count remained relatively constant
throughout the experiment, but performance jumped at the
end as the Tera MTA (the fastest Unix host) was added to
the resource pool.

In Figure 5c we reproduce Figure 3 for the purpose of
comparison. Figure 6c shows this same data on a log scale.

By comparing graphs (a) and (b) to (c) on each scale we
expose the degree to which EveryWare was able to real-
ize the Computational Grid paradigm.Despite fluctua-
tions in the deliverable performance and host availabil-
ity provided by each infrastructure, the application it-
self was able to draw power from the overall resource
pool relatively uniformly . As such, we believe the Every-
Ware example constitutes the first application to be writ-
ten that successfully demonstrates the potential of high-
performance Computational Grid computing. It is one of
the first examples of a truly adaptive Grid program.

Fig. 7. Total Cycle Count by Infrastructure

C. Aggregate Performance

Figure 7 shows the total number of integer operations
the application was able to obtain during the twelve hours
before the competition (on a log scale). With the excep-
tion of Java and NetSolve, all infrastructures were within
an order of magnitude in terms of the cycles they delivered.
Interpreted Java applet performance was typically between
3 and 5 times slower than native binary execution, and the
NetSolve computational servers were shared by other Net-
Solve jobs and student projects.

D. Robustness

High-performance computer users often complain about
application sensitivity to resource failure in distributed en-
vironments. Figure 8 shows the total number of hosts and
processes controlled by each infrastructure that were used
by the application during the twelve hours leading up to
the competition. Comparing the number of processes to
hosts gives an indication of the process failure and restart
rate during the experiment. Each computational client
was programmed to run indefinitely; therefore, in the ab-
sence of process failure, the number of processes would
equal the number of hosts. We implemented several “ad-
hoc” process restart mechanisms for the environments in
which they were not automatic. However, most of the pro-
cess restarts were due either to deliberate termination on
our part while debugging, or dynamic resource reclama-
tion by resource owners. On the Condor system, we ran
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Fig. 8. Total Host and Process Count by Infrastructure

each computational client as a “vanilla” job which is ter-
minated without notice when the resource on which it is
running is reclaimed, and subsequently restarted when an-
other suitable resource is free. It is interesting that, de-
spite the midweek daytime usage, process restart due to
resource reclamation was relatively infrequent in the Con-
dor environment during the experiment. The Globus com-
parison illustrates the power of the GRAM interface [11].
Globus allows all processes to be launched and terminated
through a single GRAM request. During the time lead-
ing up to the competition, we were improving and debug-
ging our Globus implementation. Having a single control
point allowed us to restart large batches of processes eas-
ily. Under Legion, the concept of process is not defined.
Instead, class “instances” move between blocked and run-
ning states (and vice versa) so we simply report the number
of instances we used during the demonstration. As a re-
sult this level of process restart activity is an estimate. The
numbers are accurate for the Globus, Condor, and Unix en-
vironments but somewhat ambiguous for the other infras-
tructures. Despite the level of process failure we were able
to detect, we were able to obtain the sustained processing
rates shown in Figure 3 during the same time period.

Fig. 9. Sixteen-day Host Counts

Indeed, EveryWare and the application design we used
proved to be quite robust. In Figure 9 we show host counts
over five-minute intervals during the 17 days prior to the
judging on November 12. Some portion of the application

was executing, more or less continuously during the entire
period. As we concentrated our initial efforts on develop-
ing the EveryWare toolkit and new Ramsey search heuris-
tics, we did not add performance logging to the running
system until October 26. The program had actually been
running continuously since early June of 1998; however,
we only have performance data dating from the end of Oc-
tober. Note that we were able to add, and then completely
revise, the performance logging service while the program
was in execution.

E. Ubiquity

For the Computational Grid paradigm to succeed, all
useful resources must be accessible by the application.
Metaphorically, all profitable methods of power generation
must be usable by any power consumer. Figure 10 com-
pares the delivered performance from the fastest host con-
trolled by each infrastructure. The values not only bench-
mark our code on various architectures, but also show the
wide range of resource options we were able to leverage
during the experiment. In each case, we attempted to use
the native, vendor-specific C compiler (as opposed to GNU
gcc) with full optimization enabled. On the top half of the
figure, we compare the best performance from each infras-
tructure. The fastest Unix machine was the Tera MTA [37].
We report only the single-processor performance; how-
ever, the Tera was also able to parallelize the code auto-
matically and achieve an almost linear speed-up on two
processors. The fastest NT-based machine was located at
the University of Wisconsin, but we are unable to deter-
mine its architectural characteristics. An unknown partici-
pant downloaded the NT binary from the EveryWare home
page when we announced that the system was operational
on Wednesday morning. The fastest Condor machine was
a Pentium P6 running Solaris, also located at the Univer-
sity of Wisconsin. Single-processor Pentium P6 perfor-
mance was particularly good (second only to the Tera) for
the integer-oriented search heuristics we developed. The
fastest Legion host was a Digital Equipment Corporation
Alpha processor running Red Hat Linux, located at the
University of Virginia and the fastest Globus machine was
an experimental Convex V class host located at the Con-
vex development facility in Richardson, Texas. Surpris-
ingly, the fastest Java execution was faster than the fastest
NT, Legion, and Globus machines. An unknown partic-
ipant at Kansas State University loaded the applet using
Microsoft’s Internet Explorer on a 300Mhz dual-processor
Pentium II machine running NT. We speculate that a stu-
dent used some form of just-in-time compilation technol-
ogy to achieve the execution performance depicted in the
figure, although we are unable to ascertain how this per-
formance level was reached.

On the bottom half of the figure, we show the best
single-processor performance of other interesting and pop-
ular machines. The NT Superclusters at UCSD and NCSA
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Fig. 10. Host Speeds

generated almost identical per-node processing rates. A
single node of the Cray T3E located at the San Diego Su-
percomputer Center was able to run only slightly faster
than a single node of the Berkeley NOW [8]. This compar-
ison surprised us since the T3E is space shared (meaning
that each process had exclusive access to its processor once
it made it through the batch queue) and the NOW (which
is timeshared) was heavily loaded. The bottom-most en-
try shows the speed of a publicly accessible Apple iMac
workstation located in a coffee shop on the UCSD cam-
pus which is typical of the interpreted Java performance
we were able to achieve.

In addition to detailing the relative performance of dif-
ferent architectures and infrastructures, Figure 10 demon-
strates the utility of EveryWare. It would not have been
possible to include experimental (and powerful) resources
such as the Tera MTA and the NT Superclusters without
the EveryWare toolkit. At the time of the experiment, none
of the existing Grid infrastructures had been ported to ei-
ther architecture. We were able to port EveryWare to both
systems quickly (under 30 minutes for the Tera) allowing
us to couple them with other, more conventional hosts that
did support some form of Grid infrastructure. By provid-
ing execution ubiquity, EveryWare was able to leverage re-
sources that no other Grid computing infrastructure could
access. As such,the Ramsey Number Search applica-
tion is the first program to couple the Tera MTA, both
NT Superclusters, and the Berkeley NOW with parallel
supercomputers such as the Cray T3E, workstations,
and desktop web browsers.

VI. CONCLUSIONS ANDFUTURE WORK

By leveraging a heterogeneous collection of Grid soft-
ware and hardware resources, dynamically forecasting fu-
ture resource performance levels, and employing relatively
simple distributed state management techniques, Every-
Ware has enabled the first application implementation that
meets the requirements for Computational Grid comput-
ing. In [12], the authors describe qualitative criteria that a

Computational Grid must fulfill as the provision ofperva-
sive, dependable, consistent, andinexpensivecomputing.
• Pervasive: At SC98, we were able to use EveryWare

to execute a globally distributed program on machines
ranging from the Tera MTA to a web browser located in
a campus coffee shop at UCSD.

• Dependable: The Ramsey Number Search application
ran continuously from early June, 1998, until the High-
Performance Computing Challenge on November 12.

• Consistent: During the twelve hours leading up to the
competition itself, the application was able to draw uni-
form compute power from resources with widely varying
availability and performance profiles.

• Inexpensive: All the resources used by the Ramsey
Number Search application were non-dedicated and ac-
cessed via a non-privileged user login.
We plan to study how EveryWare can be used to imple-

ment other Grid applications as part of our future efforts.
In particular, we plan to use it to build Grid versions of
a medical imaging code written at the University of Ten-
nessee, and a data mining application from the University
of Torino. We also plan to extend ORANGS to include
storage scheduling directives and memory constraints. Fi-
nally, we plan to leverage our experience with EveryWare
to build new Network Weather Service sensors for differ-
ent Grid infrastructures.
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