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ABSTRACT “power” to an application program. Applications should
The Computational Grid [12] has been proposed fOlge able to drayv compute cycles, netwo_r_k bandwidth, and
the implementation of high-performance applications ug;orage capacity seamlessly from the Giita way analo-

ing widely dispersed computational resources. The goal%?uS to the way in which household appliances draw elec-

a Computational Grid is to aggregate ensembles of sharetHCal power from a power utility.

heterogeneous, and distributed resources (potentialty cq, The framers of the Computational Grid paradigm iden-

trolled b ¢ i ¢ ” ¢ fy four qualitative criteria for the concept to be realize
folle . y se,|’oara € organiza lons) to provide compu ab'\ccording to [12] (page 18), a Computational Grid must
tional “power” to an application program.

deliver consistentdependablgpervasive andinexpensive

In this paper, we providg a toolkit fpr the deveIOpm(_aQ,chles to the end user. In this paper, we outline five quan-
of globally deployable Grid applications. The toolkitgiaiive requirements which, if met, fulfill the qualitaéiv

called EveryWare, enables an application to draw COmpyriteria from [12]. We also describEveryWare— a

tational power transparently from the Grid. It consists of gyqkit for constructing Computational Grid programs —
portable set of processes and libraries that can be incorpgngd evaluate quantitatively how well an example Every-
rated into an application so that a wide variety of dynamp/are program fulfills the Computational Grid vision.
ically changing distributed infrastructures and resowsce Qur evaluation is based on five quantitative metrics:
can be used together to achieve supercomputer-like perfer-Execution Rate measures the sustained computational
mance. We provide our experiences gained while buildingerformance of the entire application. Although not
the EveryWare toolkit prototype and an its use in imple-mentioned explicitly as a criterion, the Grid must be
menting a large-scale Grid application. able to deliver efficient execution performance which we
measure in terms of sustained execution rate.
Keywords: Computational Grid, EveryWare, Ramsey. Adaptivity : measures the difference between the per-
Number search, grid infrastructure, ubiquitous compytingformance variability exhibited by the underlying re-
distributed supercomputer sources and the performance variability exhibited by the
application itself. If program execution is stable, inde-
pendent of fluctuations in resource performance (i.e. the
program adapts to varying performance conditions suc-
Increasingly, the high-performance computing commu-cessfully) we suggest that the program is able to sustain
nity is blending parallel and distributed computing tech-consistenexecution.
nologies to meet its performance needs. A new archités- Robustness measures the overall duration of continu-
ture, known a§’he Computational Grigll2], has recently ous program execution in the presence of resource fail-
been proposed which frames the software infrastructure reres. A program that can continue to execute effectively
guired to implement high-performance applications usingn the presence of unpredictable resource failureds-a
widely dispersed computational resources. The goal of pendableprogram.
Computational Grid is to aggregate ensembles of sharddUbiquity : measures the the degree of heterogeneity a
heterogeneous, and distributed resources, potentiatly coprogram can exploit in terms of the number of different
trolled by separate organizations, to provide computation resource types used by the application. If a program can
*Supported by the National Partnership for Advanced Contiouizl execute using any ar_]d_ all ava”able resources (both soft-
Infrastructure (NPACI), NSF grant ASC-9701333, Advancesiéarch ~ Ware and hardware) it isgervasiveprogram.
Projects Agency/ITO under contract #N66001-97-C-8531. 5. Expense measures the cost of the resources necessary
"University of California, Santa Barbara — rich@cs.ucsb.ed to implement the infrastructure. This metric maps di-

‘Holycross University — brevik@math.holycross.edu rectly to the the expense criterion described in [12].
§University of Calfornia, San Diego — graziano@cs.ucsd.edu

TUniversity of Washington — nspring@cs.washington.edu *We will capitalize the word “Grid” when referring to “Compast
Il University of California, San Diego — alsu@cs.ucsd.edu tional Grid” throughout this paper.
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Therefore, a program that achieves a higfecution rate Grid computing infrastructures, the Java language and ex-
which is able toadaptto rapidly changing performanceecution environment, native Windows NT, and native Unix
conditions, which isobustto resource failures, which cansystemsimultaneouslyn a single, globally distributed ap-
executeubiquitouslyand which requires little addeeix- Plication. The application, a program that searches for

penseover a single-machine program possess all of tikg@msey Number counter-examples, does not perform an
qualities described in [12] that a Grid program must pogxhaustlve search, but instead uses search heuristics such

sess as simulated annealing to negotiate the enormous search

EveryWare is a software toolkit consisting of of thregPace Effect_wely |mpI<_ament|ng .th's appro_ach requires
) Careful dynamic scheduling to avoid substantial communi-
separate components:

. . . cation overheads. Moreover, by focusing on enhancing the
- aportable lingua francathat is designed to allow pro-jneroneranility of the resources in our pool, we were able
cesses using dlff_erent infrastructures and operating sy$tombine the Tera MTA[37] and the NT Supercluster[30]
tems to communicate, - two unique and powerful resourceswith several more
« a set ofperformance forecasting librariesthat enable commonly available systems, including parallel supercom-
an application to make short-term resource and appligatters, PC-based workstations, shared-memory multipro-
tion performance predictions in near-real time, and  cessors, and Java-enabled desk-top browsers. With non-
« adistributed state exchangeservice that allows appli- dedicated access to all resources, under extremely heavy
cation components to manage and synchronize progriyad conditions, the EveryWare application was able to
state in a dynamic environment. sustain supercomputer performance levels over long peri-
The goal is to allow a user to write Grid programs th&ds of time. As such, the Ramsey Number Search applica-

combine the best features of different Grid infrastrucsurdOn using EveryWare represents an example of a true Grid
such as Globus [11], Legion [19], Condor [36], or Ne rogram- the computational “power” of all resources that

Solve [6] as well as the native functionality provided by €re available to the application’s userwas assessed, man-
éged, and delivered to the application.

Java [18], Windows NT [2?]’ and Unix to th(_e performanc In detailing our Computational Grid experiences, this
advantage of the application. EveryWare is implement g

: L er makes four important contributions.
as a highly portable set of libraries and processes that .alg)defines five quantitative metrics that can be used to

“glue” different locally available infrastructures toger  measure the effectiveness of Grid applications.

so that a program may draw upon these resources se@mrdemonstrates, using these quantitative metrics, the po-
lessly. If sophisticated systems such as Globus, Legionential power of globally distributed Grid computing.

or Condor are available, the EveryWare program must bet details our experiences using most of the relevant dis-
able to use the features provided by those systems efributed computing technology available to us in the fall
fectively. If only basic operating system functionality is of 1998.

present, however, an EveryWare program should be able t§ describes a new programming model and methodol-
extract what ever functionality it can, realizing that taes 0gy for writing Grid programs. _

resources may be less effective than those supporting bet! the next section we motivate the design of Every-
ter infrastructure. The ability to execute ubiquitouslytwi Ware in the context of current Computational Grid re-

respect to all of the resources accessible by the user is rcr\}v In '[Se(l:lil'?n ”cll \(/jve de_tba|l ttr?e functlonall_ty of ”:je |
to meeting the pervasiveness criterion. By leveraging t sryvvare toolkit and describe the programming mocde

most performance-efficient infrastructure that is present implements. Section IV discusses the Ramsey Number
P P Search application we used in this experiment and in Sec-

those resources, an EveryWare application can ensuré{& v/ e detail the performance results we were able to
best possible execution performance and the greatest Gémin in terms of the four metrics described above. We

gree of robustness possible. _ conclude in Section VI with a description of future re-
Designed to be quickly and easily portable, EveryWakgarch directions.

is intended to be the thinnest middleware layer capable

of unifying heterogeneous resources with various software !I. COMPUTING WITH COMPUTATIONAL GRIDS

infrastructures to accomplish a computational task. In aThe goal of EveryWare is to enable the construction

Grid environment with several incompatible software iref true Grid programs — ones which draw computational

frastructure choices, it has been challenging to build a digower seamlessly from a dynamically changing resource

tributed application running everywhere, until EveryWargool. Since the field is evolving, a single definition of
We have implemented a prototype toolkit to test the efComputational Grid” has yet to be universally adopted.

ficacy of the EveryWare approach. In an experiment el this work, we will use the following definition.

tered as a contestant in the High-Performance Compuann [12], the authors define Computational Grids in terms oétao$

Challenge [22] at SC98, we were able to use this protgieria that must be met. We address these criteria in ouk vt
type to leverage Globus, Legion, Condor, and NetSolgefer the definition provided herein for the purpose ofifation.



Computational Grid: A heterogenous, shared, and fedepromoting theirubiquity. However, they do not manage
ated collection of computational resources connected fggsource heterogeneity on behalf the program nor do they
a network that supports interprocess communication. expose it to the programmer so that it may be managed

By “shared” we mean that it is impractical to dedicatgypiicitly, so are noadaptive

all of the resources in a Computational Grid to a single Grig computing systems such as Globus, Legion, Con-

application for an appreciable amount of time. The terghr. and HPC-Java [21] include support for resource het-

“federated” means that each resource is expected to h@Y&‘geneity as well, but they are not yisiquitous As they

local administration, local resource aIIocatior_1 policesd 5 in popularity, we anticipate these systems to be more
!ocal resource management spftware. No single overar dely installed and maintained. However, we note that
'Snogu:izgurce management policy can be imposed on all {feir level of sophistication makes porting them to new and
The résources housed at the National Partnership %(Iperimental environments labor intensive.
: EveryWare is similar to Globus [11] in that application
Advanced Computanona_ll Infrastr_ucture (NPAC) and_ NabmporZents communicate via diff[ere]nt Well—dg‘?ned pro-
tional Computational Science Alliance (NCSA) constitut® . - T .
cols to obtain Grid “service.” EveryWare extends this

examples of Computational Grids. At these centers, mEQ o _ ;
chines and storage devices of various types are intern&ldM Of service” approach to provide tools for the Grid

worked. Each resource is managed by its own resouRf@9rammer to develop application-specific protocols and
manager (e.g. batch scheduler, interactive priority mecif€rvices so that the application, and not just the undelyin
nism, etc.) and it is not generally possible to dedicate &fTastructure, can be robust and ubiquitous.
resources (and the network links that interconnect them) aft @lso supports information hiding and location trans-
either site to a single application. Moreover, it is possibParency in the same way object-oriented systems such as
to combine NPACI and NCSA resources together to forkggion [19] and CORBA [31] do. Indeed, it is possible
a larger Computational Grid, that has the same charactérleverage the salient features from these object-oente
istics. In this larger case, it is not even possible to mand&ystems via EveryWare where advantageous to the appli-
that a uniform software infrastructure be present at all peation.
tentially useful execution sites. In particular, we were able to build an application-
To maximize application performance on a Computapecific process location service using EveryWare that is
tional Grid, a program must bgcalable(able to exploit similar in concept to the functionality provided by JINI [3]
concurrency for performancegdaptive, robustandubig-  JINI relies on broadcast and multicast facilities, however
uitous making it difficult to use in wide-area environments. Us-
Other work has met these requirements to different deig the EveryWareSossipprotocol, we were able to over-
grees. AppLeS [4]Apdication Level Scheduling) agents come this limitation, although it is possible that JINI adul
have enabled applications to meet these requirementg#ysed to implement part of ti@ossipinfrastructure.
environments where a single infrastructure is present ang=yen\ware complements the functionality provided by
the scheduling agent does not experience resource falbndor [36] by providing a robust messaging layer. Adap-
ure. An AppLeS agent dynamically evaluates the perfqfye and robust execution facilities permit Condor to kill
mance that all available resources can deliver to its applic,, restart EveryWare processes at will. However, in order
tion, and crafts a schedule that maximizes the app|IC$I0lEIO provide an automatic and seamless checkpointing facil-

overall execution performance. EveryWare supports tl'ﬁ Condor only provides a way for tasks to be migrated

pr|n0|pl_e but_also extenqls it to wide-area lossy EMVIrOR ween machines of the same architecture. EveryWare’s
ments in which several infrastructures may be availab

Note also that the AppLeS agent is a specialized app ossip protocol enables a programmer to write an explicit

cation component that performs a single application ma ate-saving facility which is both application and platfo

agement function: scheduling. EveryWare generalizes tﬁguthr_al. In (t:)(l)njugctlor:Nth Condor's checkpogltlng facil I
notion to other application management functions in tf¥: tis enables EveryWare programs to span Condor pools

form of application-specific services. In Section Iv, w8@sed on different architectures.
describe application-specific scheduling, persisteatest Dynamically schedulabladaptiveprograms that are ca-
management and performance logging for the Ramgegple of tolerating resource performance fluctuations have
Number search application in EveryWare. béen developed by the Autopilot [33], Prophet [38], Win-
The MPI (Message Passing Interface) [10], and PVRET [2] and MARS [16] groups. Most of these systems rely
(Parallel Virtual Machine) [17] implementations for neton a centralized scheduler for each application, sacrgficin
worked systems allow distributed clusters of machines t@pustnesslf the scheduler fails or becomes disconnected
be programmed as a single, “virtual” parallel machine, &rom the rest of the application, the program is disabled. In
lowing applications tescale In addition, portable imple- addition, having a single scheduling agent impedes scala-
mentations that do not require privileged (super-user) dility as communication with the scheduler becomes a per-
cess for installation or execution [20], [17] are availablédormance bottleneck.



franca NWS dynamic forecasting libraries (small trian-
gles in the figure) can be loaded with application com-
ponents directly. These libraries, in conjunction with the
performance forecasts provided by the NWS, permit the
program to anticipate performance changes and adapt ex-
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dynamic ;Wf‘[ ecution accordingly. The distributed state-exchange ser-
benchmarking vices provide a mechanism for synchronizing and repli-
libraries A ( cating important program state to ensure robustness and
o Tenes scalability.

The toolkit we have implemented is strictly a prototype
designed to expose the relevant programming issues. As
such, we do not describe the specific APIs supported by
each component (we expect them to change dramatically
in our future implementations). Rather, in this section,
we motivate and describe the functionality of each Every-
Ware component and discuss our overall implementation
_ _ _ ~strategy. Our intent is to use the prototype first to imple-
~ EveryWare is designed as a portable “toolkit” for linkient a variety of applications so that we may determine
ing together program components running in different efyn functionality is required, and then to provide a “user-

vironments.  Individual program components may US$gendly” implementation of EveryWare for public release.
what ever locally available infrastructure is present.dn a

dition, we provide a low-level “bare-bones” implementaA. Lingua Franca

tion that is designed to use only basic operating systeMry,qingua francaprovides a base set of resource control
functionality. In this way, an EveryWare application doegyqactions that are portable across infrastructuresy Th
not assume that any single operating system or infrastruga i iended to be simple, easy to implement using differ-
ture, except it's own, will be accessible from every resn Grig technologies, and highly portable. Initially, we
source. Borrowing from the AppLeS [4] project, Everyp. e developed simplprocess datagram messageand
Ware applications characterize all resources in terms é%rage buffeabstractions for EveryWare. Theocessb-
their quantifiable impact on application performance. W4ction creates and destroys a single execution thread on
this way, heterogeneity is expressed as the difference-in dgarget resource that is capable of communicating via both
liverable performance to each application. The EveryWayig, EveryWare datagram message abstraction, and any lo-
toolkit includes support for process replication and perfo.g| communication facilities that are present. EveryWare
mance forecasting so that an EveryWare application cgfkagram messageare sent between processes via non-
adapt to dynamically changing resource conditions. Wg,cking send and blocking receive calls and processes can
leverage the Network Weather Service [40], [39] forecasiiock waiting for messages from multiple sources. Pro-
ing facilitie_s to provide both heterogene_ity_ managemegbsses can also create and desstoyage bufferon arbi-
and adaptive resource performance prediction. trary resources (e.g. by creating “memory” processes that
respond to read and write requests to their own memory).
We implemented théngua francausing C and TCP/IP
The EveryWare toolkit is composed of three separageckets. To ensure portability, we tried to limit the im-
software components: a portabiegua francathat al- plementation to use only the most “vanilla” features of
lows processes using different infrastructures and opengiese two technologies. For example, we did not use non-
ing systems to communicate, a set of performance fotslecking socket 1/0 nor did we rely upon keep-alive sig-
casting services and libraries that enable an applicatigals to inform the system about end-to-end communication
to make short-term resource and application performarfediure. In our experience, the semantics associated with
predictions in near-real time, and a distributed state ekese two useful features are specific to the vendor and, in
change service that allows application components to maome cases, to the operating system release level. We tried
age and synchronize program state in a dynamic enviraa-avoid controlling the portability of EveryWare through
ment. Figure 1 depicts the relationship between theSepreprocessor flags whenever possible so that the system
components. Application components that are written ¢ould be ported quickly to new architectures and environ-
use different Grid infrastructure features can commueicanents. Similarly, we chose not to rely upon XDR [35]
amongst themselves, with the EveryWare state excharigedata type conversion for fear that it would not be read-
service, and with other multi-infrastructure serviceshsudly available in all environments. Another important deci-
as the Network Weather Service [40] using firgua sion was to strictly limit our use of signals. Unix signal

X
user-written

application
components

Fig. 1. EveryWare Components
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semantics are somewhat detailed and we did not wantrépetitive program events. Our strategy was to manually
hinder the portability to non-Unix environments (e.g. Javastrument the various EveryWare components and appli-
and Windows NT). More immediately, many of the cureation modules with timing primitives, and then pass the
rently available Grid communication infrastructures sudiming information to the forecasting modules to make pre-
as Legion [19] and Nexus [14] take over the user-level sidictions. We refer to this process dgnamic benchmark-
nal mechanisms to facilitate message delivery. Lastly, wey as it uses benchmark techniques (e.g. timed program
avoided the use of threads throughout the architectureeaents) perturbed by ambient load conditions to make per-
differences in thread semantics and thread implementatformance predictions.
quality has been a source of incompatibility in many of our For example, we use the NWS forecasting modules and
previous Grid computing efforts. NWS dynamic benchmarking to predict the response time
Above the socket level, we implemented rudimentagf each EveryWare state-exchange server. We first iden-
packet semantics to enable message typing and detify instances of request-response interactions in the-sta
eate record boundaries within each stream-oriented T&€#tver code. At each of these “events” we instrument the
communication. Our approach takes its inspiration frooode to record an identifier indicating the address where
the publicly available implementation ofet per f [23]. the request is serviced and the message type, and time re-
However, the actual implementation of the messagimgired to get the corresponding response. By forecasting
layer comes directly from the current Network Weathdrow quickly a server responds to each type of message, we
Service (NWS) [40], where it has been stress-tested ira@ able to dynamically adjust the message time-out inter-
variety of Grid computing environments. val to account for ambient network and CPU load condi-
Note that the EveryWardingua franca differs from tions. This dynamic time-out discovery is crucial to overal
other message passing implementations such as PVM [fpifdgram stability. Using the alternative of statically de-
or MPI [20] in several important ways. First, these othégermined time-outs, the system frequently misjudges the
interfaces are designed to support arbitrary parallel p@zsailability (or lack thereof) of the different EveryWare
grams in environments where resource failure is rare (istate-management servers causing needless retries and dy-
on parallel machines). As such, they include useful primamic reconfigurations.
itives (such as global barrier synchronization) that makeln general, the NWS forecasting services and NWS dy-
them attractive programming facilities, but sometimes difiamic benchmarking allow both the EveryWare toolkit,
ficult to implement in Grid environments. Often, whemnd the application using it, to dynamically adapt itself to
a resource fails, the entire PVM or MPI program musthanging load and performance response conditions. We
be restarted. EveryWare assumes that resource availaldle standard timing mechanisms available on each system
ity will be dynamically changing. As such, all primitivesto generate time stamps and event timings. However, we
obey user-specified time outs, success and failure stamngicipate that more sophisticated profiling systems such
is reported explicitly, and only those primitives that caas Paradyn [28] and Pablo [9] can be incorporated to yield
fail individually (that is, without affecting more than thehigher-fidelity measurements.
process calling them) are implemented. We do notintend .
the lingua francato replace any of the existing messagée=- Distributed State Exchange Service

passing or remote invocation systems that are available tqo function in the current Grid computing environ-
Grid programmers. Rather, we will provide the minimahents, a program must be robust with respect to resource
functionality required to allow these infrastructureste i performance failure while at the same time able to leverage
teroperate efficiently so that programs can span Grid igvariety of different target architectures. EveryWare-pro
frastructures. We expect that the portability of tiigua vides a distributed state exchange service that can be used
francawill also benefit from this minimalist approach.  in conjunction with application-level checkpointing to-en
sure robustness. EveryWare state-exchange servergl(calle
Gossi) allow application processes to register for state
We also borrowed and enhanced the NWS forecastisgnchronization by providing a contact address, a unique
modules for EveryWare. To make performance forecastsgssage type, and a function that allowSa@ssipto com-
the NWS applies a set of light-weight time series forgsare the “freshness” of two different messages having the
casting methods and dynamically chooses the technicgame type. All application components wishing to use
that yields the greatest forecasting accuracy over time [3&ossipservice must also export a state-update method for
The NWS collects performance measurements from Gedch message type they wish to synchronize.
computing resources (CPUs, networks, etc.) and use®©nce registered, an application component periodically
these forecasting techniques to predict short-term resoureceives a request from@ossipprocess to send a fresh
availability. For EveryWare, however, we needed to lmopy of its current state, identified by message type. Using
able to predict the time required to perform arbitrary bilhe previously registered comparator function, &eassip

B. Forecasting Services



compares the current state with the latest state messaggimilarly, the consistency model required by the appli-
received from other application components. When tleation program dramatically affects its suitability as an E
Gossipdetects that a particular message is out-of-date eityWare application, in particular, and as a Grid applica-
sends a fresh state update to the application compongéo in general. The development of a high-performance
that originated the out-of-date message. state replication facilities that implement tight bounds o
To allow the system to scale, we rely on three assumgsnsistency is an active area of research. EveryWare does
tions: first, that theGossipprocesses cooperate; seconahot attempt to solve the distributed state consistency-prob
that the number of application components wishing to sylem for all consistency models. Rather, it specifies the in-
chronize is small; finally, that the granularity of synchroelusion of replication and synchronization facilities as a
nization events is relatively coarse. Cooperation betweeonstituent service. For the application that describe in
Gossipprocesses is required so that the workload asgbe next Section (Section 1V), we implemented a loosely
ciated with the synchronization protocol may be evenljonsistent service based on t@®@ssipprotocol. Other,
distributed. Gossig dynamically partition the responsi-more tightly synchronized services can be incorporated,
bility for querying and updating application componentgach with its own performance characteristics. We note,
amongst themselves. For the SC98 experiment, we dtawever, that applications having tight consistency con-
tioned severaGossi at well-known addresses around thetraints are, in general, difficult to distribute while main
country. When an application component registered, it wining acceptable performance levels. EveryWare is not
assigned a responsib&ossipwithin the pool of available intended to change the suitability of these programs with
Gossip whose job it was to keep that component synchreespect to Grid computing, but rather enables their imple-
nized. mentation and deployment at what ever performance level
In addition, we allow the&Gossippool to fluctuate. New they can attain.
Gossipprocesses register themselves with one of the well- )
known sites and are announced to all other functionifty The EveryWare Programming Model
Gossi. Within theGossippool, we use the NWS clique  An EveryWare application is structured as a set of
protocol [40] (a token-passing protocol based on leademputational application clientshat request run-time
election [15], [1]) to manage network partitioning anéhanagement services from a set aplication-specific
Gossipfailure. The clique protocol allows a clique of proservers Application clients perform the actual “work”
cesses to dynamically partition itself into subcliqguese(dwvithin the application using the features of a native Grid
to network or host failure) and then merge when conditionsfrastructure. They may themselves be parallel or dis-
permit. The EveryWar&ossippool uses this protocol to tributed programs, and they are not constrained to use
reconfigure itself and rebalance the synchronization loagdly the lingua francafor communication, process con-
dynamically in response to changing conditions. trol, and storage management. For operations that re-
The assumptions about synchronization count and grajuire more global control, such as scheduling, user inter-
ularity are more restrictive. Because edgbssipdoes a action, etc., the computational application clients appea
pair-wise comparison of application component stafé, to application-specific servers, also written by the aplic
comparisons are required fo¥ application components.tion programmer. Like the clients, the application-specifi
Moreover, if the overhead associated with state synchs&ervers are not constrained to use any single communica-
nization cannot be amortized by useful computation, peien or process control mechanismthey may be written
formance will suffer. We believe that the prototype statée use any native Grid infrastructure. However, using the
exchange protocol can be substantially optimized (or hingua francaenables arbitrary client and server interac-
placed by a more sophisticated mechanism) and that caies and ensures portability across infrastructures.
ful engineering can reduce the cost of state synchronizafigure 2 depicts the structure of an application.
tion over what we were able to achieve. However, w&pplication clients (denoted “A” in the figure) can exe-
hasten to acknowledge that not all applications or applicaite in a number of different environments, such as Net-
tion classes will be able to use EveryWare effectively f@olve, Globus, Legion, Condor, etc. They communi-
Grid computation. Indeed, it is an interesting and open reate with application-specific scheduling servers to recei
search question as to whether large-scale, tightly syachsaheduling directives dynamically. Persistent state man-
nized application implementations will be able to extraeigers, tuned for the application, control and protect any
performance from Computational Grids, particularly if thprogram state that must survive host or network failure.
Grid resource performance fluctuates as much as we h&plication performance logging servers allow arbitrary
typically observed [41], [39]. EveryWare does not alloumessages to be logged by the application. Finally, all ap-
any application to become an effective Grid applicatioplication components use the EveryWdBessipservice
Rather, it facilitates the deployment of Grid-suitablelapp to synchronize state. To anticipate load changes, the vari-
cations, enabling them to ubiquitously draw computationalis application components consult the Network Weather
power from a set of fluctuating resources. Service (NWS).



bounds of classical Ramsey numbers. T classical

application

“ EveryWare

Java  dents Lo application-specific or symmetric Ramsey numbA&y, = R, ,, is the smallest
( I\ seiee numberk such that any complete two-colored graphkon
& vertices must contain a complete one-colored subgraph on
A) = _ n of its vertices. It can be proven in a few minutes that
@\l e @ R3 = 6; itis already a non-trivial result that, = 18, and
Persistant \ '\ SEVICE the exact values aR,, for n > 4 are unknown.
Service A(A) Observe that to show that a certain numpés a lower

A\ bound forR,,, one might try to produce a particular two-
AR H i colored complete graph ofy — 1) vertices that has no
Condor A 'S AR~ A one-colored complete subgraph on anyf its vertices.
®@Netsolve onx AR We will refer to such a graph as a “counter_—example” for
lobus n then!” Ramsey number. Our goal was to find new lower
bounds for Ramsey numbers by finding counter-examples.
This application addresses an unsolved problem in com-
binatorics using new search techniques. It is not a “clas-
sic” scientific application, however, since it does not mode
_This application architecture offers several advantag@gm_woﬂd phenomena, nor does it provide better applied
First, the overall program can be constructed increme&phematical or computational techniques for such model-
tally. Most concurrent programs are not structured so thal, However, this application was especially attractige a
some parts may execute while others are being revised, £t test of EveryWare because of its loose synchroniza-
hanced, or debugged. By structuring an EveryWare pigs, raquirements and its resistance to exhaustive search

gram as a communicating set of application-specific S¢Lupnigues like those employed in cryptographic factor-
vices, however, it is possible to interface new pieces fﬁfg [24], [5]

C?‘:ﬁ with dthe”runnlng application. ;I'hg _adapgveﬂzlatureThiS resistance arises from the combinatorial complex-
gro eoStOW?\ilae ?r\]'\éscgzvg Ecr)?]fi?]iséesstooejftlar(\:uﬁg ginsési of the problem. For example, if one wishes to find a
do ﬁot have to restart the application ever tirﬁe we wis w lower bound forft;, one must search in the space
P yur of complete two-colored graphs a3 vertices, since the
to add a new program component, we can improve and . ,
. S . nown lower bound is currentl¢3 ([32]). Since such a
evolve the running application dynamically. Another ad-

43\ _ 03 270 diffar-
vantage is that it allows us to implement infrastructurélraph hag’;) = 903 edges, there ™ > 10°1" differ

specific clients that can get the best possible performarﬁgaI t\A_/o-coI1<)2red g_raphs_on 43 vertices. Even if one CO.UId
by running in “native” mode. Since the clients need onl aminel0"“ configurations every second, an exhaustive

250
speak the protocol required by each server, we do not n g@rch would take ove0™" years.

to put a complete software veneer between the computa- heref%re, we muithuse heunstlfc techniques to Ico_gtrol_
tional code and the native infrastructure. the search process. The process of counter-example identi-

Note that the EveryWare programming model is fyrication is related to distributed “branch-and-bound” estat

damentally different from that used by most procePace searching.
dure oriented Grid infrastructures such as NetSolve [§], . :
NINF [29], CORBA [31] and NEOS [26]. These e Application Clients
tructures typically support applications structured ama s Our goal was to create a dynamically changing popula-
gle controlling client that makes remote-procedure calls ion of computational processes executing different lseuri
remote computational servers. Under the EveryWare piigs. Heuristic design is an active area of research in com-
gramming model, computation is centered at the clierh#atorics [32]. As such, we designed the application to be
and program control is coordinated by a set of cooperatiafle to incorporate different heuristic algorithms corcur
application-specific servers. Since the roles or client arehtly, each of which implemented as a single application
server are reversed, we term this application architectuni@ent. The clients would then use thiegua francato

an inverted client-servemodel. This novel application communicate with a set of application servers to receive
structure offers EveryWare applications greater scatgbilscheduling directives and state management services.

G Legio

Fig. 2. EveryWare Application Structure

and robustness than a single-client approach. The heuristics that we used all involvdiected search
. by which we mean the following: On the search space of
IV. EXAMPLE APP'—'CQT'ON' RAMSEY NUMBER two-colored complete graphs of a particular size, there is
EARCH

a numerical “score” which assigns to each graph the de-
The application we chose to implement to test the afree to which it fails to be a counter-example in some
fectiveness of EveryWare attempts to improve the knoveaitable sense. There is also a set of manipulations called



“moves” (transformations) that one can perform on a pak.1 Scheduling Service

ticular graph to produce other graphs. The algorithm, then,t4 schedule the EveryWare Ramsey Number applica-
is roughly to start with an arbitrary graph and perform asgsn we use a collection of cooperating, independent

quence of moves with a view toward lowering the score kyheduling servers to control application execution dy-

each successive move. Note that in any such heuristicadimically. Each computational client periodically congac

is necessary to provide some possibility of making a mogescheduling server and reports its algorithm type, the IP
that worsens the score; otherwise, there is the danger thadress of the machine on which it is running, the progress
the search will get trapped at a local minimum which is ngthas made since it last made a scheduling decision, and
a global minimum. the amount of time that has elapsed since its last contact.

In our case, the score assigned to a two-colored grapfrvers are programmed to issue different control direc-
is simply the number of “violations,” or complete onelives based on the type of algorithm the client is executing,

colored subgraphs on vertices, that it possesses; thus 0W much pro_gresls the c1!|ehnt hlas made, and the most re-
graph is a counter-example if and only if its scor@.is cent computational rate of the client.

\(a_rlpus algonthms employed gsed slightly dncferer\5\/ork. Clients report the number of violations in the graph
definitions for their moves. The smplest and most Conﬂiey are testing when they check in. If the number is low
mon was to change the color of a single edge. Thus, fof" server will ask the client for a copy of the graph it is
graph ord3 vertices possessing)3 edges, there aré03  cyrrently considering. If it is high, the server sends the
possible moves that can be made from any given gragflent a better graph and directs it to continue from a differ
In other algorithms, a move comprised changing the c@nt point in the search space. The clients are programmed
ors of 3 edges. Still other algorithms worked in restricte¢b randomize their starting point in different ways to pre-
search spaces which partitioned the edges and only ceent the system from dwelling irrevocably in a local mini-
sidered those graphs for which all the edges in any giverum. In addition, the thresholds for identifying a “good”
partition were the same color; in such a case a move co@taph (one with a low number of violations), a bad one,

prised changing the colors of all the edges within a partignd the number of times a good one can be migrated to
ular partition. serve as a hew starting point in the search space, are tun-

The two classes of search heuristics employed Wé'],glehpara;nztelrs. I e decisions based on d .
those based otabu searct{32] andsimulated annealing The schedulers also make decisions based on dynamic

. . : rformance forecasting information. If a scheduler pre-
In gtabu search, the glgorlthm keeps alist (the tabu “St)gﬁ:ts that a client will bg slow based on previous per?or-
a fixed length recording the most recent moves that h Eémce, it may choose to migrate that client’s current work-

been madg. From a given configuration, it examines flhd to a machine that it predicts will be faster. Rather
moves not in the tabu list, finds the one that gives the |O\€h—an basing that prediction solely on the last performance
est score, and makes and records this move. The tabufiglasurement for each client, the scheduler uses the NWS
is in place to avoid loops; in practice, some element p§htweight forecasting facilities to make its predictson
randomness is necessary in order to avoid large loops. Méte that this methodology is inspired by some of our pre-
employed two variants of the tabu search, namely one thédus work in building application-level schedulers (Ap-
allowed a particular move to be made no more than twipkeS) [34], [4]. AppLeS is an agent-based approach in
on the list and another that allowed a particular move ontdhich each application is fitted with a customized ap-

the list if its last appearance was with a different predece¥ication scheduler that dynamically manages its execu-
sor. tion. For the Ramsey Number Search application, how-

The simulated annealing heuristic mimics the physicg¥eh @ single scheduling agent would have been insuf-

behavior of a mass as it undergoes cooling: in this ca gjent to control the entire application, both because it

the score of a configuration is analogous to the tempe\AéQUId limit the scalability of the application and because

ture of the mass. Generally, from a given configuration file agent would constitute a single-point-of-failure. We

. d%si ned an application-specific scheduling service that
algorithm chooses a move at random and makes the m g PP P g

o . ) SR s organized and robust, but dynamically changing
if it results in a lower score; otherwise, it rejects the mov&roups of cooperating processes that can make progress

and chooses another at random from the same configyfang when the network partitions. As such, we term this
tion. However, the algorithm will accept a random MOVQype of scheduling Organized Robust AutoNomous Group
regardless of the resulting score, with a small probabiliycheduling (ORANGS). ORANGS and AppLeS are, in-
that decreases as the score drops; here again, this randgged, similar in that they use NWS performance forecasts
ness has the effect of keeping the algorithm from getting make application-specific scheduling decisions. How-
trapped in a local minimum. ever, the distributed and robust nature of the ORANGS

Scheduling servers are also responsible for migrating



service made it a more appropriate choice for the Ramsegounter-example, for example, the persistent state man-
Number Search application. ager first checks to make sure the stored object is, indeed, a
Notice that, for the Ramsey Number search applicatioRamsey counter-example for the given problem size. This
the scheduling service considers the uselbfavailable is a significant advantage to application-specific state-man
resources. When an application client checks in withagement.
scheduling server, the server evaluates the client in termsro implement this functionality, all persistent state ob-
of the performance it will be able to deliver to the applifacts must be typed. For each persistent type used in the
cation (using the forecasting services) and decides on Hyggram, the state manager needs a set of sanity-checks
amount and type of work that client should receive. lfherformed when an object is accessed) and a comparator

all cases, the Ramsey Number search clients receive SQfBSrator so that the state may be synchronized b@te

amount of work to perform. For other applications, hows, service. We acknowledge that developing this func-
ever, the scheduling service may decide that the use q

: S . oq'lality for all Grid applications may not be possible.
particular resource will hinder rather than aid pe_rforrman owever, we note that many Computational Grid infras-
and, hence, should be excluded. Therefore, while resou

o . ﬁuectures currently support mechanisms that can be used
selection is not an issue for Ramsey Number search, the : .
0 implement the state management functionality we re-

EveryWare programming model supports its implementa- .
tion y prog g PP P quire for Ramsey Number search. For example, the san-

Schedulers within the scheduling service communicdfé €hecks performed by the state manager were imple-
non-persistent state amongst themselves viaGbesip Mented primarily, to prevent errant or malicious processe
service. In particular, the IP addresses and port numb&RN damaging program state. Instead, Globus authenti-
of all servers are circulated so that new server instan&@¥ion mechanisms [13] could be used to provide access
can be added dynamically. Clients are furnished withG@ntrol so that only trusted processes may modify persis-
list of active servers when they make contact so that th&pt state. Similarly, the Legion class management sys-
can contact alternates in the event of a failed server cot@ [25] tracks object instances in a way that could be used
munication. Similarly, scheduling servers learn of diffefto identify stale state. We wanted to ensure that all appli-
entGossipservers, persistent state managers, and loggi¢gfion components (computational clients and application

servers vigGossipupdates. specific servers) would be portable to any environment so
we did not choose to rest any of the application’s func-
A.2 Persistent State Management Service tionality on a particular infrastructure. Future versiafs
To improve robustness, we identify three classes of pitle Ramsey Search application may relax this restriction
gram state within the application: to further benefit from maturing Computational Grid tech-

Local : State that can be lost by the application due twlogies.
machine or network failure (e.g. local variables within
each computational client). A.3 Logging Service

Volatile-but-replicated: State that is passed between pro- 14 track the performance of the application dynam-
cesses as a result @ossipupdates, but not written ooy we implemented a distributed logging service.
to persistent storage (e.g. the up-to-date list of aCtI§?:hedu|ing servers base their decisions, in part, on perfor

servers). mance information they receive from each computational

Persistent: State that must survive the loss of all active,. . Before the information is discarded, it is forwadde

processes in the appllca_tlon_(e.g. the largest count?or-a logging server so that it can be recorded. Having a
example that the application finds).

We use a separate persistent state service for three ﬁ—%-eé)-aratel sec;wce, agfug, S”%VS us tl(') |ITI'[ ang control tr;e
sons. First, we want to limit the size of the file syster'ﬁ orage load generated Dby the application.  For example,

footprint left by the application. Many sites restrict th&PAC! loaned our group a pair of file servers so that we
amount of disk storage a guest user may acquire. By SgByld capture a performance log that spanned the time of

arating the persistent storage functionality, we are aple!f'® conference.

dynamically schedule the application’s disk usage accord-AS With the persistent state managers and the schedul-
ing to available capacities. Secondly, we want to ensuf§ servers, the logging servers register themselves with
that persistent state is ultimately stored in “trusted”ienithe Gossipservice. Any application process wishing to
ronments. For example, we maintained a persistent sti@@ performance information learns of a logging server
server at the San Diego Supercomputer Center becausdiweugh the server list that is circulated. The logging
were assured of reliable storage and regular tape back-igggvers do not register a state synchronization function,
Lastly, we are able to implement run-time sanity checks tnowever. They use th@ossipservice only to join the run-

all persistent state accesses. If a process attempts & sbang application.
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V. RESULTS Program Performance
) 5 Minute Averages

To test the efficacy of our approach, we deployed the_ 5,
Ramsey Number search application on a globally dis-§,; |
tributed set of resources during SC98. As part of the testE 20|
we entered EveryWare in the High-performance Comput-£ , ;|
ing Challenge [22] (an annual competition held during the &, |
conference) as we believed that the fluctuating loads gerkg

erated by our competitors would test the capabilities of ourz

0.5 4

0.0

system vigorously. 2336 036 136 236 336 436 536 636 736 836 936 10:36 1136
We instrumented each application client to maintain a Time of Day
running count of the computational operations it performs Fig. 3. Application Speed

so that we could monitor the performance of Ramsey

Number search application. The bulk of the work in each Host Count
of the heuristics (see Section 1V) are integer test and-arith 5 Minute Intervals
metic instructions. Since each heuristic has an execution
profile that depends largely on the point in the search space
where it is searching, we were unable to rely on static in- 2°1
struction count estimates. Instead, we inserted counter;i’:‘:awof
into each client after every integer test and arithmetic op- 1w
eration. Since the ratio of instrumentation code to com-
putational code is essentially one-to-one (one integer in- e
crement for every integer operation) the performance es- 23ss o3s 136 236 336 436 536 636 7:36 836 9:36 10:36 11:31
timates we report are conservative. Moreover, we do not Time of Day

include any instrumentation instructions in the operation Fig. 4. Application Host Count

counts nor do we count the instructions in the client inter-

face to EveryWare only “useful” work delivered to the . . L
y y the application was able to sustain was 2.39 billion in-

application is counted. Similarly, we include all communi: ) ) . ;
cation delays incurred by the clients in the elapsed timin goer operations betwegr_l 9:51 ar_ld 9_'56 during a test an
our before the competition The judging for the compe-

The computational rates we report include all of the owv
heads imposed by our software architecture and the anth i . .
ent loading conditions experienced by the program durit n at 1_1:00' As several competing projects were being
SC98. Thatis, all of the results we report in this section d _ged simultaneously, and many of our competitors were

conservative estimates of the sustained performeatie- USINg the same resources we were using, the networks in-
eredto the application during the experiment terlinking the resources suddenly experienced a sharp load

increase. Moreover, many of the competing projects re-
A. Execution Rate quired dedicated access for their demonstration. Since we
ﬁ_eliberately did not request dedicated access, our applica

ign itself (which required a “live” demonstration) be-

As a Computational Grid experiment, we wanted to d i
on suddenly lost computational power (as resources were

termine if we could obtain high application performance . . o
from widely distributed, heavily used, and non-dedicateg®med by and dedicated to other applications) and the

computational resources. In Figure 3, we show the Sl5:,§>_mmun|cat|on overheads rose (due to increased commu-

tained execution performance of the entire application dgcatlon load). The sustained performance dropped to 1.1

ing the twelve-hour period including and immediately pr villion operations as a result. The application was able to

ceding the judging of our High-performance Computingdapt. to the performance loss _and reorganize itself so that
Challenge entry at SC98 on November 12, 1998. y 11:10 (when the demonstration actually took place), the

The x-axis shows the time of day, Pacific Standargustained performance had climbed to 2.0 billion opera-

Time$ and they-axis shows the average computationdf®ns per second. _
rate over a five-minute time period. The highest rate that 1 NiS performance profile clearly demonstrates the po-
tential power of Computational Grid computing. With
fWe demonstrated the system for a panel of judges betwee® 11{bn-dedicated access, under extremely heavy load condi-

AM and 11:30 AM PST. o _ tions, the EveryWare application was able to sustain super-
$5C98 was held in Orlando, Florida which is in the Eastern tioree.
computer performance levels.

Our logging and report facilities, primarily located attd&asites on the . .
west coast, used Pacific Standard Time. As such, we repairnatof- In Figure 4, we show the number of hosts used during

day values in PST. the same time period. In this figure, each data point rep-
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resents the number of hosts checking in during the cor- Program Performance by Infrastructure Type | —3~Ledion

. . . . . 5 Minute Averages +N$ 8
responding five-minute perict.Note that the maximum 12 —Globus
host count (266) occurs at 23:51 as we ran a large scale test n .| o

. .. § 1.0 \ .| ——Netsolve

of the system the night before the competition. However,g an |l
the maximum host count does not correspond to the maxg °81 ’
imum sustained rate. While we were able to incorporates os | I Bt T el bt | ()

v
many new and powerful resources on the morning of theg,w H
competition, we lost some of the workstations that were: - ,i \
loaned to us by Condor during the night. Also, these hosE 2 .
count numbers are based on unigue IP addresses (and nof, sk e
process id) making them very conservative. Since some 2% 03 136 236 336 423T6im22ifDaﬁfﬁ 736 836 936 /1036 /11:3¢
systems use the same IP address for all hosts (e.g. the NT Host Gount by Infiastucire Type |3~ Logion
Supercluster) the actual host population was much higher.120 5 Minute Averages E(ﬁj”b“”
However, we could not distinguish between multiple pro- iﬁ’a”jéus
cesses on different hosts with the same IP address, and® ——Netsolve
multiple process restarts due to eviction for the combined
host population. As a result, we report the more conservag
tive estimates. g%

g

40

B. Adaptivity 2
We also wanted to measure the smoothness of the per- | L ————— s
formance response the application was able to obtain from 2sss 03s 135 296 335 436 596 636 736 NE:?c?veA;G 10:36 1131
the Computational Grid. For the Grid vision to be imple- Time of Day
. “ ” . Program Performance
mented, an application must be able to draw “power” uni- 5 Minute Averages

formly from the Computational Grid as a whole despite

fluctuations and variability in the performance of the con- ¢ *°
stituent resources. In Figures 5 and 6 we compare théﬁ 251
overall performance response obtained by the applicatior 29}
(graph (c) in both figures) with the performance and re-§1s | (©)
source availability provided by each infrastructure. Fig- 3|
ure 5 makes this comparison on a linear scale and Figure §0_57
shows the same data on a log scale so that the wide range
of performance Vanablllty may be observed. In Flgures Sa -23:36 0:56 1:‘36 2:‘36 3:56 4:‘36 5:‘36 6:56 7:‘36 8:‘36 9:56 10‘:36 11‘:36

and 6a we detail the number of cycles we were able to suc- Time of Day
cessfully deliver from each Grid infrastructure during thgjg 5. Execution Rate by Infrastructure (a), Host Count by
twelve hours leading up to the competition. Similarly, -~ |nfrastructure (b), and Total Sustained Execution Rate (c)

in Figures 5b and 6b, we show the host availability from
each infrastructure for the same time period. Togethéad a small number of test hosts running before then. At
these graphs show the diversity of the resources we usgbroximately 8:00 AM, we announced the availability of
in the SC98 experiment. the Java implementation and solicited participation from
Specifically, Condor supports a dynamic loan-andfriendly” sites. In addition, we began to execute the Java
reclaim resource usage model. Users agree to loan idfsplet using HotJava [18] on workstations that had been
workstations to the Condor system for use by other prgrought to SC98 for general use by conference attendees.
cesses. When a user-specified keyboard activity or loaglabout the same time, Legion (which had been down
threshold is exceeded, the resource is declared busy gﬁlﬁ;e approximately midnight) became available again and
any Condor jobs that are running at the time are evictagle application immediately began to take advantage of the
Note that Condor processing power and host count fluckwly available resources. Our Globus utilization, how-
ated through the night and then fell off as the day beggQer, was low until just after the competition ended at
in Wlscons_ln and user activity caused their W(_)rkstanorlsl:go AM, when it suddenly spiked. The Globus group
to be reclaimed. For Java, the performance trajectory Wasered the High-performance Computing Challenge with

the opposite. We fitted the Java applets with the necessgy senarate entries. As we did not request dedicated ac-
logging features at approximately 4:30 AM, although Weasq or special access priority for the demonstration, our

YThe maximum time between check-ins for any computationenhtl appligation was able to leverage thes? resources only af-
was set to five minutes during the test. ter higher-priority Globus processes finished. NetSolve
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Program Perlormance b resiuture T2 | 2. Condor By comparing graphs (a) and (b) to (c) on each scale we
1E+10 - Globus expose the degree to which EveryWare was able to real-
™ S i ize the Computational Grid paradignDespite fluctua-

1.E+09 Netsolve

F . tions in the deliverable performance and host availabil-
b : ity provided by each infrastructure, the application it-

& =] _ (a)  self was able to draw power from the overall resource
6 . r pool relatively uniformly . As such, we believe the Every-

g e vodone Ware example constitutes the first application to be writ-
=t g0 | ten that successfully demonstrates the potential of high-
P I SR S performance Computational Grid computing. It is one of

2336 036 136 236 336 4:3T6imzrz<:D::y36 736 836 9:36 10:36 113 the first examples of a truly adaptive Grid program.
Host CosuthigthnflsztrraUgC;l;re Type z 's%ﬂggr s Total Cycle Count by Infrastructure Type
1000 —*~Globus

1.E+11

Condor NT —e—Java
\ ——Netsolve
Y M2
- g el ", ¥ * 2

kS
E
k]
100 + Legion % 1.E+10
2 .5 1.E+09
®) %
10 ?’:-’- 1.E+08 4
Q
g 1.E+07 -
£
1.E+06 +
! J J J J M J J J J J ! j Condor  Legion  Globus Netsolve NT Java Unix
23:36 036 1:36 2:36 3.36 4:36 536 6:36 7:36 8:36 9:36 10:36 11:31
N Infrastructure
Time of Day
Total Program Performance .
5 Minute Averages Fig. 7. Total Cycle Count by Infrastructure
1.E+10
2 1Ew09 1 A gt
8 1e0s C. Aggregate Performance
S 1507 ©) Figure 7 shows the total number of integer operations
§1.E+067 the application was able to obtain during the twelve hours
B 16405 before the competition (on a log scale). With the excep-
£ 1E+04 | tion of Java and NetSolve, all infrastructures were within
X — an order of magnitude in terms of the cycles they delivered.
23:36 0:36 1:36 2:36 3:36 4:36 5:36 6:36 7:36 8:36 9:36 10:36 11:36 |nterpreted Java app|et performance was typ|ca||y between
Time of Day 3 and 5 times slower than native binary execution, and the

Fig. 6. Log Scale — Sustained Processing Rate (a) and HN#tSolve computational servers were shared by other Net-
Count (b) by Infrastructure, and Total Sustained Rate (¢) Solve jobs and student projects.

gave us access to the student workstation laboratories gndRobustness
several resources in the Innovative Computing Laboratory, . .
at the University of Tennessee. We detected a bug in thé—llgh-performa_lr_lc_e computer users ofte_n cgmplaln about
performance logging portion of the NetSolve implementgppl'cat'on ser_15|t|V|ty to resource failure in distribditen-
tion at approximately 8:00 AM, hence we have no reliapidronments. Figure 8 shows th_e total number of hosts and
performance numbers to report for the period before théffocesses controlied by each infrastructure that were used
The bulk of the NT hosts we were able to leverage carR¥ the application during the twelve hours leading up to
from the Superclusters [30] located at the National Corfl€ competition. Comparing the number of processes to
putational Science Alliance (NCSA) and in the the ConflOSts gives an |nd|cat|_on of the process fallurg and restart
puter Systems Architecture Group [7] (CSAG) located e during the experiment. Each computational client
the University of California, San Diego. These systen¥¢as programmed to run indefinitely; therefore, in the ab-
used batch queues to provide space-shared access to f@slee of process failure, the number of processes would
processors. Unix host count remained relatively const&ftual the number of hosts. We implemented several “ad-
throughout the experiment, but performance jumped at thec” process restart mechanisms for the environments in
end as the Tera MTA (the fastest Unix host) was addedwdich they were not automatic. However, most of the pro-
the resource pool. cess restarts were due either to deliberate termination on
In Figure 5c¢ we reproduce Figure 3 for the purpose ofuir part while debugging, or dynamic resource reclama-
comparison. Figure 6¢ shows this same data on a log scét by resource owners. On the Condor system, we ran
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Process and Host Counts by Infrastructure Type was executing, more or less continuously during the entire

m DProcesses period. As we concentrated our initial efforts on develop-
WHosts ing the EveryWare toolkit and new Ramsey search heuris-
tics, we did not add performance logging to the running
system until October 26. The program had actually been
running continuously since early June of 1998; however,
we only have performance data dating from the end of Oc-
tober. Note that we were able to add, and then completely
1] revise, the performance logging service while the program

Condor  Legion  Globus Netsolve NT Java Unix was in execution.
Infrastructure
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E. Ubiquity

For the Computational Grid paradigm to succeed, all
each computational client as a “vanilla” job which is tersseful resources must be accessible by the application.
minated without notice when the resource on which it Metaphorically, all profitable methods of power generation
running is reclaimed, and subsequently restarted when emist be usable by any power consumer. Figure 10 com-
other suitable resource is free. It is interesting that, deares the delivered performance from the fastest host con-
spite the midweek daytime usage, process restart dudradled by each infrastructure. The values not only bench-
resource reclamation was relatively infrequent in the Comark our code on various architectures, but also show the
dor environment during the experiment. The Globus comdde range of resource options we were able to leverage
parison illustrates the power of the GRAM interface [11furing the experiment. In each case, we attempted to use
Globus allows all processes to be launched and terminatéél native, vendor-specific C compiler (as opposed to GNU
through a single GRAM request. During the time leadycc) with full optimization enabled. On the top half of the
ing up to the Competition, we were improving and debuégure, we compare the best performance from each infras-
ging our Globus implementation. Having a single contréjucture. The fastest Unix machine was the Tera MTA [37].
point allowed us to restart large batches of processes aA€- report only the single-processor performance; how-
ily. Under Legion, the concept of process is not define@Ver, the Tera was also able to parallelize the code auto-
Instead, class “instances” move between blocked and ri@tically and achieve an almost linear speed-up on two
ning states (and vice versa) so we simply report the numipEpcessors. The fastest NT-based machine was located at
of instances we used during the demonstration. As a HB€ University of Wisconsin, but we are unable to deter-
sult this level of process restart activity is an estimatee TMINe its architectural characterlstlcs. An unknown partic
numbers are accurate for the Globus, Condor, and Unix &¢nt downloaded the NT binary from the EveryWare home
vironments but somewhat ambiguous for the other infra29€ When we announced that the system was operational
tructures. Despite the level of process failure we were a8 WWednesday moming. The fastest Condor machine was

to detect, we were able to obtain the sustained processir. egfqu P06nrt_mn|r;gn8|oelarlz, alsoologitr(]etq ;“Sg U”']Y:f'
rates shown in Figure 3 during the same time period. > ISconsin. - Singie-processor I pertor-
mance was particularly good (second only to the Tera) for

16 Day Host Count, 5 Minute Intervals the integer-oriented search heuristics we developed. The
fastest Legion host was a Digital Equipment Corporation
Alpha processor running Red Hat Linux, located at the
University of Virginia and the fastest Globus machine was
an experimental Convex V class host located at the Con-
vex development facility in Richardson, Texas. Surpris-
ingly, the fastest Java execution was faster than the fastes
NT, Legion, and Globus machines. An unknown partic-
- ipant at Kansas State University loaded the applet using
] Microsoft’s Internet Explorer on a 300Mhz dual-processor
Oct. 26, 1998 Nov. 2, 1998 Nov. 11, 1998 Pentium Il machine running NT. We speculate that a stu-
dent used some form of just-in-time compilation technol-
ogy to achieve the execution performance depicted in the
figure, although we are unable to ascertain how this per-
Indeed, EveryWare and the application design we ustedmance level was reached.
proved to be quite robust. In Figure 9 we show host countsOn the bottom half of the figure, we show the best
over five-minute intervals during the 17 days prior to theingle-processor performance of other interesting and pop
judging on November 12. Some portion of the applicatiamar machines. The NT Superclusters at UCSD and NCSA

Fig. 8. Total Host and Process Count by Infrastructure

1000

100

Host Count

Fig. 9. Sixteen-day Host Counts
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Comparison of Fastest Machines Computational Grid must fulfill as the provision pérva-
sive dependablgconsistentandinexpensiveomputing.

UNIX 223
NT ﬂ « Pervasive At SC98, we were able to use EveryWare
CONDOR 153 to execute a globally distributed program on machines
GLOBUS | 1116 ranging from the Tera MTA to a web browser located in

LEGION _“’-2 a campus coffee shop at UCSD.
N :2:2 ' — « Dependable The Ramsey Number Search application
NT Supercluster: LGSD ran continuously from early June, 1998, until the High-
Performance Computing Challenge on November 12.

T3E: SDSC
Berkeley NOW « Consistent During the twelve hours leading up to the

Java Web Browser (iMac) | 0000882 competition itself, the application was able to draw uni-
0 5 10 15 20 25 form compute power from resources with widely varying
Million Operations per Second availability and performance profiles.

o Inexpensive All the resources used by the Ramsey
Number Search application were non-dedicated and ac-
cessed via a non-privileged user login.

generated almost identical per-node processing rates. Ane plan to study how EveryWare can be used to imple-

single node of the Cray T3E located at the San Diego Syent other Grid applications as part of our future efforts.

percomputer Center was able to run only slightly fast@ particular, we plan to use it to build Grid versions of
than a single node of the Berkeley NOW [8]. This compag medical imaging code written at the University of Ten-
ison surprised us since the T3E is space shared (meariggsee, and a data mining application from the University
that each process had exclusive access to its processor @fCgyrino. We also plan to extend ORANGS to include
it made it through the batch queue) and the NOW (Whidiorage scheduling directives and memory constraints. Fi-
is timeshared) was heavily loaded. The bottom-most &f4lly, we plan to leverage our experience with EveryWare

try shows the speed of a publicly accessible Apple IM3g piid new Network Weather Service sensors for differ-
workstation located in a coffee shop on the UCSD camxt rid infrastructures.

pus which is typical of the interpreted Java performance

we were able to achieve. VIl. ACKNOWLEDGEMENTS
In addition to detailing the relative performance of dif-

ferent architectures and infrastructures, Figure 10 demon?I

strates the utility of EveryWare. It would not have bee Ware d . SCo8 A h
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Fig. 10. Host Speeds

It is impossible to acknowledge and thank adequately
of the people and organizations that helped make the

and desktop web browsers We inadequately thank Miron Livny (the progenitor of
Condor and the University of Wisconsin) for first sug-
VI. CONCLUSIONS ANDFUTURE WORK gesting and then insisting that EveryWare happen. Henri

By leveraging a heterogeneous collection of Grid soféasanova, at UCSD, single-handedly ported EveryWare
ware and hardware resources, dynamically forecasting fa-NetSolve after an off-handed mention of the project
ture resource performance levels, and employing relgtivavas carelessly made by a project member within his range
simple distributed state management techniques, Evepj-hearing. Steve Fitzgerald at Cal State Northridge and
Ware has enabled the first application implementation tH&/USC introduced us to the finer and more subtle plea-
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ing. In [12], the authors describe qualitative criteriattha donistic experiences with Legion. Brent Gorda and Ken
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