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Yay! Cloud!

Systems need to scale out to do useful things
Self service

Always available

Isolate users from bare metal & OS

Users have dedicated (& root) access to compute

Wide area, but (generally) infrastructure has a single
owner

Commodity, off-the-shelf systems
— Storage may not be

Security

Provide applications with a base layer of services
— laas, Paas, etc.

Simple to program against



Fabric

Distributed software infrastructure on top of
Linux hosts

Provides APl & semantics to deploy & manage
applications

Applications: Object, low latency block storage,
big data, user apps
EMC’s converged infrastructure

— Storage and compute on same physical hardware

— Dense appliance SKUs with with replaceable high
capacity disks (typically 60 x 6TB per node)

— Customer hardware: DIY
— Disk monitoring and failure detection
— Containerized




Building a fabric

What services do you need to provide?

What is your topology like?
— Converged?

Management layer & user applications

What is the scale you expect to handle?
— Build to the scale you expect

What should the API look like?

— Do not over-generalize APIs/models

Fault tolerant
— Minimum: No single point of failure
— Better: Handle multiple failures over time.



Provisioning

e AP| & Contract

e EC2 Model

— VM instance with root access

— Instance types

— We give you the tools, you manage it
— Not a lot of control over placement
— Autoscaling

— Not very performant for disk bound
e Can pay for more CPU, IOPs, etc.



Provisioning

Managed
— “Fabric” manages application lifecycle

Hard vs soft constraints

— Node/rack tagging

— Run the object storage application on “yellow” nodes
— Need at least xx CPU

— SAS drives preferred

More control over hardware

— Applications are isolated but not necessarily adversarial
— Direct access to disks

Contract

— Fabric will keep application up

— Provide services to coordinate tasks, perform rolling
upgrade, etc.



Tiered architecture
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Node management

* Compute
— Virtual Machines
— Containers

* Storage
— Raw disk enclosures
— Direct attached arrays
— Filesystems

* Networking

— Programmable network fabric
— VLANSs
— Iptables



Cluster management

Nodes aggregated into “clusters”
— Nodes may not be homogenous

Responsible for allocation, failure detection,
recovery, notification & migration

Expansion

Must itself be fault tolerant
— Multiple cluster manager instances

Credentials/certificate authority/distribution
Application lifecycle services



Lifecycle

e Goal State: What is the “desired state” of an
application?
— e.g. versioned image, CPU, disks, ports, affinity
* Provisioning can take a long time
— Format disks, create filesystems, open ports, create VLANS,

download binaries
— Drive towards goal state until delta is zero

* Respond to failures, requests for additional capacity
(i.e. scale up/down)
* Changes performed by staging an update and then
flipping a bit
— Only the latter needs to be atomic



Geo/Wide Area

Credential Service

Licensing

Federation & membership

— Dynamic, clusters can join/leave

Secure communication between clusters



Upgrades

* Upgrade with downtime
— Easier and okay for management software
— Not if the application is in the data path

* Rolling upgrades
— Service must continue to function & accept requests

— Run multiple versions in cluster and gradually switch
over

— Rollback
— Versioning
* Transferring binaries or images
— Layered filesystems: updates are diffs
— Should not be a single point of failure



Image Management Service

Version 0, config 0, port 80, 2TB
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Polling vs events

Polling

— Periodically ask for state information
On timeout, take some action

— Declare component as “unhealthy”
— Initiate failover

Events: push out state changes in “real time”

— More responsive, don’t need to wait for next poll period
In practice, need a combination

— Events may be lost

“Eventing” can be made reliable

— Seq numbers, persistence, compact encoding, etc.

— Accessible over REST (give me events starting at seq # X)



Failures & redundancy

* Fault domains
— Set of components that share a single point of failure

— Physical and software

e Distribute components based on fault domains

— Fault isolation: If a failure occurs, system is still
available

— Performance

e System should return to “non degraded” state
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Fault domain
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Handling faults
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Handling faults
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Handling faults
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Operator friendliness

Provide guidelines for infrastructure
— e.g. sane naming for nodes/racks, redundant switches, etc.

Notifications: Send events out
Have a consistent command line experience

Be able to take over node/cluster & enter maintenance
mode
Configuration management

— Ability to dynamically update node or cluster-wide defaults
from a single terminal

— Accessible over web services

— If possible, standardize, but not always possible
* e.g. OS commands might be different

Your system will break
— Yay, but you designed a good upgrade experience!



Software design principles

Immutability

— Do not pass around entities with “nullable” fields
Get your primitives right

— Threading, profiling, logging, etc.
Know where your state is

— State changes should be explicit

— Avoid side effects

— Should be able to reason about state changes
Snapshots, events & replay
Abstraction

— Pluggable: can run on laptop or a dense cluster
Don’t assume you will get notified

— Component software defects can cause a cascade

— Push events along with polling
Audit logs

— Required for sanity & compliance



