Building a distributed fabric

Neil Soman
EMC?



Yay! Cloud!

Systems need to scale out to do useful things
Self service

Always available

Isolate users from bare metal & OS

Users have dedicated (& root) access to compute

Wide area, but (generally) infrastructure has a single
owner

Commodity, off-the-shelf systems
— Storage may not be

Security

Provide applications with a base layer of services
— laas, Paas, etc.

Simple to program against



Fabric

Distributed software infrastructure on top of
Linux hosts

Provides APl & semantics to deploy & manage
applications

Applications: Object, low latency block storage,
big data, user apps
EMC’s converged infrastructure

— Storage and compute on same physical hardware

— Dense appliance SKUs with with replaceable high
capacity disks (typically 60 x 6TB per node)

— Customer hardware: DIY
— Disk monitoring and failure detection
— Containerized




Building a fabric

What services do you need to provide?

What is your topology like?
— Converged?

Management layer & user applications

What is the scale you expect to handle?
— Build to the scale you expect

What should the API look like?

— Do not over-generalize APIs/models

Fault tolerant
— Minimum: No single point of failure
— Better: Handle multiple failures over time.



Provisioning

e AP| & Contract

e EC2 Model

— VM instance with root access

— Instance types

— We give you the tools, you manage it
— Not a lot of control over placement
— Autoscaling

— Not very performant for disk bound
e Can pay for more CPU, IOPs, etc.



Provisioning

Managed
— “Fabric” manages application lifecycle

Hard vs soft constraints

— Node/rack tagging

— Run the object storage application on “yellow” nodes
— Need at least xx CPU

— SAS drives preferred

More control over hardware

— Applications are isolated but not necessarily adversarial
— Direct access to disks

Contract

— Fabric will keep application up

— Provide services to coordinate tasks, perform rolling
upgrade, etc.



Tiered architecture

Cluster Manager

Geo Services

Cluster Manager

Cluster Manager

Node
Manager

Node
Manager

Node
Manager

Node
Manager

Node
Manager

Node
Manager

Node
Manager




Node management

* Compute
— Virtual Machines
— Containers

* Storage
— Raw disk enclosures
— Direct attached arrays
— Filesystems

* Networking

— Programmable network fabric
— VLANSs
— Iptables



Cluster management

Nodes aggregated into “clusters”
— Nodes may not be homogenous

Responsible for allocation, failure detection,
recovery, notification & migration

Expansion

Must itself be fault tolerant
— Multiple cluster manager instances

Credentials/certificate authority/distribution
Application lifecycle services



Lifecycle

e Goal State: What is the “desired state” of an
application?
— e.g. versioned image, CPU, disks, ports, affinity
* Provisioning can take a long time
— Format disks, create filesystems, open ports, create VLANS,

download binaries
— Drive towards goal state until delta is zero

* Respond to failures, requests for additional capacity
(i.e. scale up/down)
* Changes performed by staging an update and then
flipping a bit
— Only the latter needs to be atomic



Geo/Wide Area

Credential Service

Licensing

Federation & membership

— Dynamic, clusters can join/leave

Secure communication between clusters



Upgrades

* Upgrade with downtime
— Easier and okay for management software
— Not if the application is in the data path

* Rolling upgrades
— Service must continue to function & accept requests

— Run multiple versions in cluster and gradually switch
over

— Rollback
— Versioning
* Transferring binaries or images
— Layered filesystems: updates are diffs
— Should not be a single point of failure



Image Management Service

Version 0, config 0, port 80, 2TB

Version 0, config 0, port 80,

Version 0, config 0, port 80,
2TB

a8 Image for version 1, config 1,
port 8080, 4TB
Application Lifecycle Service
I
i —————————— Register-——————— > :
! l
| [
| [
! J-m———— Shutdown? — — = — = ———— |
1
i ——————————— Wait-———————— > !
! Jmm———— Shutdown? —— — — = —— —— |
I
| e Wait-———————— > !
| [
| [
| [
! J-m————— Shutdown? = — === ———— |
1
ittt OK————————— N
I
v Y




Polling vs events

Polling

— Periodically ask for state information
On timeout, take some action

— Declare component as “unhealthy”
— Initiate failover

Events: push out state changes in “real time”

— More responsive, don’t need to wait for next poll period
In practice, need a combination

— Events may be lost

“Eventing” can be made reliable

— Seq numbers, persistence, compact encoding, etc.

— Accessible over REST (give me events starting at seq # X)



Failures & redundancy

* Fault domains
— Set of components that share a single point of failure

— Physical and software

e Distribute components based on fault domains

— Fault isolation: If a failure occurs, system is still
available

— Performance

e System should return to “non degraded” state



Cluster Manager

Node 0

Cluster Manager

Node 1

Node k+1

Cluster Manager

Node k+2

Node p

Node k

Node p+1

Node 2k

Node n




Fault domain

eeeeeeeeeeeeeeeeeeeeeeeeeeee

ST I Q NI




Handling faults

Cluster Manager

Node 0

Cluster Manager

Node 1

Node k+1

Node k+2

Node k

Node 2k




Handling faults

*\V/’
Clus%nager

Node 0

Node 1

Node k

Cluster Manager

%

Node k+1

Node k+2

Node 2k




Clus%nager

Cluster Manager

Cluster Manager

Node 1

Node k+1

Node k+2

Node k

Node 2k

Cluster Manager is an Application!




Handling faults

Cluster Manager

Node 0

-

Node 1

Node k

Cluster Manager

Node k+1

Node k+2

Node 2k




Operator friendliness

Provide guidelines for infrastructure
— e.g. sane naming for nodes/racks, redundant switches, etc.

Notifications: Send events out
Have a consistent command line experience

Be able to take over node/cluster & enter maintenance
mode
Configuration management

— Ability to dynamically update node or cluster-wide defaults
from a single terminal

— Accessible over web services

— If possible, standardize, but not always possible
* e.g. OS commands might be different

Your system will break
— Yay, but you designed a good upgrade experience!



Software design principles

Immutability

— Do not pass around entities with “nullable” fields
Get your primitives right

— Threading, profiling, logging, etc.
Know where your state is

— State changes should be explicit

— Avoid side effects

— Should be able to reason about state changes
Snapshots, events & replay
Abstraction

— Pluggable: can run on laptop or a dense cluster
Don’t assume you will get notified

— Component software defects can cause a cascade

— Push events along with polling
Audit logs

— Required for sanity & compliance



