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Abstract

Failure identification is a fundamental operation concern-
ing exceptional conditions that network programs must be
able to perform. In this paper, we explore the use of
timeouts to perform failure identification at the applica-
tion level. We evaluate the use of static timeouts, and of
dynamic timeouts based on forecasts using the Network
Weather Service. For this evaluation, we perform experi-
ments on a wide-area collection of 31 machines distributed
in eight institions. Though the conclusions are limited to
the collection of machines used, we observe that a single
static timeout is not reasonable, even for a collection of
similar machines over time. Dynamic timeouts perform
roughly as well as the best static timeouts, and more im-
portantly, they provide a single methodology for timeout
determination that should be effective for wide-area appli-
cations.

1 Introduction

The current trend in high performance computing is to ex-
tend computing platforms across wider and wider areas.
This trend is manifested by the national efforts in Com-
putational Grid computing [?, ?, ?, ?, ?], and commercial
endeavors such as Entropia [?], Parabon [?], and United
Devices [?]. As computational processes attempt to com-
municate over wider areas, the need to identify and tol-
erate failures greatens, and most communication software
packages, initially developed for tightly coupled comput-
ing environments (a notable example is MPI [?]), do not

deal with exceptional or faulty conditions smoothly.
Most wide-area communication libraries base their

message-passing on TCP/IP sockets. TCP/IP has been de-
signed to keep most networking applications functioning
smoothly in the face of link and node failures, and mes-
sage congestion. However, its failure semantics as pre-
sented to a message-passing library are limited, and high-
performance applications often have a difficult time run-
ning robustly in the presence of failures.

In this paper, we address one important exceptional con-
dition: identification of network failures using timeouts.
We present a discussion of typical timeout management
strategies that are currently employed by most distributed
computing systems. We then propose timeout determina-
tion methods based on both standard static values and on-
line monitoring and prediction via the Network Weather
Service [?]. We assess the effectiveness of the various
timeout determinations using a collection of 30 machines
distributed throughout the United States and one in Eu-
rope. Although the dynamic timeout determinations do
not perform better than the best static methods, they do
provide a uniform methodology for timeout determination
that should be applicable in a variety of network computing
settings.

2 The Problem of Failure Identifica-
tion

One key difficulty associated with using the Internet to sup-
port computation is the presence of frequent communica-
tion failures. The typical communication abstraction used



by most applications today is the Unix socket abstraction.
The failure with which we will concern ourselves is one
where a socket connection is no longer valid. This appears
in a running process as one of the two following scenarios:

� The process is performing a read() operation on the
socket, and the read will never complete because ei-
ther the writer is gone, or the corresponding write()
operation has been partitioned away from the reader.

� The process is performing a write() operation on the
socket, and the bytes will never get to the reader.

For a wide-area application to be successful, these two
scenarios must result in the identification of a failure so
that the application may deal with it appropriately. The
methods of dealing with the failure are beyond the scope
of this paper. They may involve aborting the program and
starting anew, attempting a reconnection of the socket to
retry the communication, or perhaps performing rollback
recovery to a saved state so that the loss of work due to the
failure is minimized [?, ?, ?]. No method of dealing with
the failure will be successful, however, unless the failure is
properly identified.

The default failure identification method in TCP/IP
sockets is a method of probing called “keep-alive.” At reg-
ular intervals, if a socket connection is idle, the operating
system of one side of the socket attempts to send a packet
(typically a packet with a previously acknowledged se-
quence number) to its communication partner. The TCP re-
sponse to the arrival of a previously acknowledged packet
over an existing connection is to send an acknowledgement
packet with the correct sequence number to the other end
of the connection. If, however, the connection is not rec-
ognized by the receiver as valid (e.g. the receiver has re-
booted since the last packet exchange) a reset packet will
be sent in response indicating that the connection should
be terminated. Similarly, if the receiver simply does not
respond within a given short period of time, the keep-alive
sender assumes that the connection has failed and that the
socket should be terminated.

The frequency with which keep-alive packets are sent
determines the resolution with which a failure can be de-
tected. A timeout occurs when the keep-alive mechanism
detects a failed connection. Unfortunately, for network-
based computing, this default keep-alive mechanism is not
of great practical use. It was developed, primarily, to al-
low remote login facilities to terminate terminal connec-
tions when the remote machine reboots after a long period
of idle time. The timeout values are typically not user-
settable. They differ from machine to machine or operat-
ing system vendor to operating system vendor, and they
tend to be arbitrarily chosen. Thirty seconds is common,

although IETF RFC 1122 specifies only that the keep-alive
time be less than 120 minutes (two hours) by default [?].
Keep-alive timing is typically set when the operating sys-
tem is configured. Nowadays, its primary use to to allow
server processes to reclaim used network state if clients
quietly disconnect. For performance-oriented applications
that use TCP sockets for interprocess communication, the
standard keep-alive values can cause serious performance
degradations.

It is possible to turn off keep-alive probing on a socket.
Indeed, by default on most Unix systems, sockets are not
conditioned to use keep-alive. When keep-alive is dis-
abled, the first scenario above (a read not being satisfied)
is never identified by the operating system, since no prob-
ing is performed to see if the writer is alive. The second
scenario is only identified when the reader shuts down the
connection and its operating system explicitly refuses to
accept packets from the writer. If the reader’s machine be-
comes unreachable, the writer simply attempts retransmis-
sion of its message until the kernel socket buffer fills or
some unspecified retry limit is reached. The typical rem-
edy is for the application itself to choose a timeout value
for each connection, and to use the Unix signal mechanism
(driven by a user-settable timer) to interrupt an indefinitely-
blocked read() or write() call.

Thus, applications must choose one of two methods to
perform failure identification – either use the default keep-
alive probing with its limitations, or turn off keep-alive
probing, and use some sort of heuristic to perform its own
failure identification, typically by setting its own timeout
values. This paper goes under the assumption that the ap-
plication employs the latter strategy. Regardless, there are
important tradeoffs to the selection of the timeout value.

Large timeouts impose less stress on the network, but
they greaten the latency of failure detection, which in turn
reduces the performance of the applications that rely on ac-
curate failure detection to proceed efficiently. Small time-
outs impose more stress on the network, and additionally,
they may be too aggressive in labeling a sluggish network
as failed. For example, suppose an application processes
for ten minutes between communication. If the network
happens to be unavailable for a majority of that ten minute
interval, it does not affect the application so long as the net-
work is restored when the application needs to communi-
cate. In such a situation, a small timeout value will impede
application performance, as it will force the application to
recover from a failure that is not preventing the application
from proceeding.

We propose that for better performance, an application
must be able to control the timeouts for failure identifi-
cation. This may be done either by a configurable keep-
alive timeout, or by implementing the same functionality
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Figure 1: Topology for a 31-node tree-based reduction.

at the user level by interrupting read()/write() system calls
with an alarm signal, or by using variants of read()/write()
that support timeouts. A large body of literature (see re-
cent ACM SIGCOMM proceedings) addresses the issue of
timeouts in networking. In our approach, we are taking
the networking implementation as a given, and addressing
strategies that the network computing application may em-
ploy to deal with failure identification.

3 Static vs. Dynamic Timeouts

There are two ways that an application may select timeouts
– statically or dynamically. Obviously, static timeouts are
simple to implement. However, they have two limitations.
First, a static timeout value, especially if it is arbitrarily
chosen, may not by ideal for an application and network-
ing environment. Second, even if a static timeout starts out
ideal, a changing network or application may result in its
being not ideal. For this reason, we explore dynamic time-
outs.

Dynamic timeouts require more complexity in imple-
mentation and also need to be chosen to have effective val-

ues. We propose to use monitoring and prediction to se-
lect timeouts. That is, a connection monitors its past com-
munication parameters and predicts a timeout value that is
most likely to result in a correct identification of a failure.
We base our prediction on the Network Weather Service
(NWS) [?].

The NWS uses an adaptive time-series forecasting
methodology to choose among a suite of forecasting mod-
els based on past accuracy. The details of each model are
beyond the scope of this paper and are discussed in [?].
However, what is important is how the NWS blends the
various forecasting models. Each model in the suite is
used to predict a measurement that has been previously
recorded. Since both the past values and the predictions
of them are available, it is possible to characterize each
forecasting method according to the accuracy of its fore-
casts in the past. At the time a forecast for an unknown
value is required, the forecasting method having the low-
est aggregate error so far is selected. Both the forecast,
and the aggregate forecasting error (represented as mean-
square error) are presented to the client of the NWS fore-
casting API [?]. NWS is supported on every architecture
– the reader is referred to http://nws.cs.utk.edu



# of Machines
Location Collection 1 Collection 2 Collection 3
University of Tennessee in Knoxville 11 11 10
University of California, San Diego 5 7 8
University of Illinois at Urbana-Champaign 8 8 8
Harvard University 2 2 1
University of Minnesota 2 2 2
Vrije University, the Netherlands 1 1 1
Internet2 Distributed Storage Machine, Chapel Hill, North Carolina 1 0 1
Internet2 Distributed Storage Machine, Indianapolis, Indiana 1 0 0

Table 1: Composition of the three collections of 31 nodes
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Figure 2: Scatter plot of reduction times as a function of test number for both 31-node collections.

for the most recent NWS distribution.
We use the NWS to determine a dynamic timeout for

each network connection, based on previous response time
readings. The NWS can forecast the time required to send a
message and receive a response. The forecasting error pro-
vides a measure of how accurate this estimate is likely to
be. By adding the error to the estimate, we have a “worst-
case” (in terms of accuracy) estimate for the response time.

For example, if the NWS predicts that a message re-
sponse will occur in 20 seconds, and the mean-square fore-
casting error is 16 ���������	�
��� , then one can use the error
deviation (the square-root of the mean-square forecasting
error) as an estimate of how much “slack” to build into the
prediction. The estimate plus two deviations (8 seconds in
this example) would set the timeout at 28 seconds.

In order for this methodology to be successful, the time-
out prediction must improve upon a static timeout selection
in one of two ways:

� It correctly identifies a failure in a shorter time period
than the static timeout.

� It correctly identifies a non-failure state by waiting

longer than the static timeout (i.e. avoids a greater
number of false timeouts).

In the sections below, we use a very simple application
on a wide-area network to explore the effects of automat-
ically setting network timeouts based on dynamically per-
ceived response delay.

4 Experimental Validation

We choose a simple application to test the effects of time-
out determination. The application finds the maximum
value amongst a set of values that is partitioned across pro-
cessors and then broadcasts it so that all processors have a
valid copy of the maximum. Specifically, we have � com-
puting nodes, each of which holds a set of � values. Let
the 
 -th value of node � be ���� . When the reduction is com-
plete, ���� is the same for any fixed value of 
 , and is equal
to the maximum value of ���� for all � .

We perform this reduction by arranging the nodes into
a logical tree, an example of which is depicted in Figure 1.
The reduction proceeds in two phases. In the first phase,



values are passed up the tree from children to parents, cal-
culating maximum values as they are passed. At the end of
this phase, the root node � holds the proper values of � �� .
The second phase is a broadcast of all the � � down the tree.
When the second phase is complete, each node � holds cor-
rect values of ���� .

While not all distributed applications use a methodol-
ogy such as this, reductions (and similarly barriers) are
common in parallel programming. For instance, many
communication libraries (e.g. MPI) contain basic primi-
tives for reductions. We do not claim, however, that the
method of reduction we to validate this work is optimal.
Rather, we use it to provide some insight into the impor-
tance of timeout tuning for distributed applications that in-
clude reductions.

To test the effect of timeout determination on the wide
area, we used three collections of thirty-one machines,
whose compositions are listed in Table 1.

Note, these are collections of thirty machines from the
continental United States and one from Europe. We ar-
ranged the machines into a five-level tree as exemplified
in Figure 1, which depicts Collection 1. We did not try
to cluster machines from a single location, so that we
more closely approximate a random collection of widely-
dispersed machines.

We performed 4453 reductions of 16K integers (64
Kbytes) on Collection 1, 2939 reductions on Collection 2
and 2997 on Collection 3. Scatter plots of the maximum
reduction times for each reduction are plotted in Figure 2.
The connectivity to the Internet2 machines was the limit-
ing link in Collections 1 and 3. This is responsible for
the larger reduction times. When these machines were
removed from the tests, the reduction times were lower.
Moreover, they show more variability as a result of net-
work traffic. The tests of Collection 1 were done over a
three day period starting March 9, 2001; the tests of Col-
lection 2 were done over a one-day period starting March
18, 2001, and the tests of Collection 3 where done over an
eight day period starting August 8.

4.1 Static Timeouts

We wrote our reduction so that it identified an application
failure if any node took more than 45 seconds to perform
the reduction. Given this metric, there were ten timeouts in
Collection 1, none in Collection 2, and 25 in Collection 3.
If we assume that a 45-second timeout correctly identifies
failures, then Figure 4 displays how shorter timeouts fare in
correctly identifying failures. In this and subsequent exper-
iments in Section 4, a timeout is defined to occur when any
node determines that the reduction is taking longer than the
timeout value.

Note that in Figure 4, the true failures are indeed iden-
tified by shorter timeouts, but the shorter timeouts also in-
correctly identify slowness as failure. The interesting fea-
ture of this graph is that the three collections, though sim-
ilar in composition, have vastly different characteristics,
and depending on the definition of “optimal,” require dif-
ferent timeout values for optimality. For example, suppose
we define optimal to be the shortest timeout that correctly
identifies at least 95 percent of the failures (depicted by the
thick dotted line in Figure 4). Then Collection 1 would
employ a 27-second timeout, Collection 2 would employ a
17-second timeout, and Collection 3 would employ a 40-
second timeout. Note, in contrast, that the mean reduction
time is 20.4 seconds for Collection 1, 9.40 seconds in Col-
lection 2 and 13.8 seconds for Collection 3.
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Figure 4: Percentage of correct failure identifications by
static timeouts.

While percentage of correct timeout identifications is a
valid metric for selecting a timeout, we must also assess
the implications of the timeout selection on the applica-
tion. This is hard to do in practice, since network condi-
tions are continuously changing, which makes it difficult to
run controlled experiments. In an attempt to assess the im-
plications, Figure 3 uses the data from the three collections
to approximate the average running time of the reductions
when timeouts are determined statically. For each time-
out value in the graph, we attempt to simulate the running
time of each reduction in the data sets as follows. If the
actual reduction time is less than or equal to the simulated
timeout, than that is used as the simulated reduction time.
If the actual reduction time is greater than the simulated
timeout, then we assume that the reduction is attempted
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Figure 3: Simulated average running times for static timeout values
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Figure 5: Percentage of correct failure identifications for the seven different dynamic timeout selection methods.

anew. The timeout is added to a total reduction time, and
the next reduction in the data set is employed as the time
for the retried reduction. We continue in this manner for
each reduction in each data set, and average the simulated
reductions.

As the graphs show, for each collection, there is a min-
imum timeout value beyond which higher timeout val-
ues yield approximately similar average reduction times.
Horeover, the 95-percent timeout value, as depicted by the
vertical gray line in each graph, is not a good indicator of
where this minimum timeout value lies. It should be noted
that all curves in Figure 3 are not strictly decreasing. Col-
lection 1 reaches its minimum at a timeout of 38 seconds
and Collection 3 at 23 seconds. Collection 2 reaches its
minimum at at 22 seconds, and stays there for larger time-

out values.

4.2 Dynamic Timeouts

To assess the effectiveness of dynamic timeout determina-
tion, we fed the reduction times into the Network Weather
Service forecasting mechanism. For each reduction, the
NWS comes up with a forecast of the next reduction
time, plus two error metrics – a mean forecasting error to
this point, and a mean square forecasting error. We use
these values to assess seven different timeout determina-
tion strategies:

� F: the forecast itself
� F + � *error: the forecast plus � times times the mean

error. � � 1, 2.
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Figure 6: Reduction times along with dynamic timeout determinations using Network Weather Service forecasts plus
twice the error deviation.
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Figure 7: Simulated average running times for dynamic timeout values

� F + � *errdev: the forecast plus � times the error devi-
ation (square root of the mean square error). � � 1, 2,
3, 4.

We plot the effectiveness of these strategies for all three
collections in Figure 5. Since the forecast is an estimate
of the next reduction time, setting the timeout to the fore-
cast is obviously a bad strategy, because any reduction that
takes slightly longer will fail prematurely. This is reflected
in Figure 5. However, when the error metrics are added in,
the dynamic timeout determinations become much better.
In both collections, adding two times the error deviation
brings the correct timeout determination above 95 percent.

To get an idea of what the predicted timeouts are using
this method, see Figure 6, where the F +

�
*error predic-

tions are plotted along with the reduction times. Note that
in all three collections, the timeout values follow the trends
in the data, reacting to the changing network conditions ac-
cordingly.

Next, we performed simulations of using the collection
data to calculate average reduction times as in Figure 3.
However, instead of using static timeouts, we used fore-
casted values. The results are in Figure 7. Note that the
best static value is plotted along with the dynamic values.
Although the dynamic forecasts appear to follow the data,
they do not yield lower average reduction times — in fact
the best static and dynamic values appear to to roughly
equal. This will be discussed in Section 5 below.



4.3 Experiments with Static and Dynamic
Link Timeouts

The above determination has focused on whole reduction
timeouts. In other words, each node calculates a time-
out for the entire reduction, and the entire application is
flagged with a failure if any of the processing nodes senses
a timeout. This experiment is reasonable, since it is an im-
plementation strategy that would be suitable to a wide-area
application where the application has little control over the
kernel of the nodes, or perhaps even the message-passing
substrate (for example a MPI or PVM application).

As a further exploration, we instrumented our reduction
so that each link can set its own timeout, and if that timeout
expires, it triggers a resend of the data, but does not shut
down the application. The application is shut down when
the reduction has not been completed in 90 seconds. We
then performed roughly 1000 iterations on the machines of
Collection 3, where each iteration performs six reductions:

� Static timeout of 1.5 seconds.

� Static timeout of 5 seconds.

� Static timeout of 15 seconds.

� Static timeout of 45 seconds.

� Dynamic timeouts using all previous reduction data,
where the timeout is equal to the forecast plus the er-
ror deviation.

� Dynamic timeouts using all previous reduction data,
where the timeout is equal to the forecast plus two
times the error deviation.

The results are tabulated below, and plotted in Figure 8.

Timeout Average Average Reduction
Determination Reduction Retries Shut
Method Time (sec) Per Node Downs
Static,

������� �
16.96 0.199 15

Static,
�����

13.56 0.002 8
Static,

�����	�
13.47 0.000 5

Static,
����
��

13.71 0.000 8
Dyn., F + errdev 13.69 0.021 24
Dyn., F + 
 errdev 14.31 0.062 19

There is little appreciable difference between the dy-
namic timeout determinations, and the static timeouts
greater than five seconds per link.

5 Discussion

In the above experiments, we have compared the effective-
ness of static and dynamic timeout determinations in terms
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Figure 8: Average running times with different link
timeouts

of percentage of correct timeout determinations, simulated
reduction times using reduction trace data, and performing
live experiments with link timeouts built in. We believe
the following significant observations may be made con-
cerning these experiments:

1. In terms of the smallest effective static timeout
value, there is no one system-wide value. This is a direct
observation from the three graphs in Figure 3. Although
the composition of the three collections does indeed differ,
the collections are similar enough to each other to think
that a single static timeout value may exist. Both Figures 3
and 4 imply that this is not the case.

2. The Network Weather Service forecasts can gen-
erate timeouts that follow the trends in the data. In all
three collections, using forecasts plus two times the error
deviation generated timeouts that both followed the chang-
ing network conditions (as demonstrated in Figure 6), and
yielded timeout determinations that were correct in over 95
percent of the cases.

3. Although the dynamic timeout determinations did
not outperform the static timeouts in either the simu-
lations or the live experiments, the two methodologies
produced similar results in their best cases. This is sig-
nificant, since a single optimal static timeout cannot be de-
termined for all cases. However, the NWS forecasts do
present a single methodology that can yield good timeout



performance in all cases.
4. More work needs to be done in this area. Since this

work deals with long-term averages and exceptional con-
ditions, it is hard to draw far-reaching conclusions without
an enormous amount of data. We look forward to perform-
ing more work on larger collections of machines, differing
applications, and longer time durations.

6 Conclusion

In order for high performance applications to run effec-
tively across the wide area, failure identification must be
performed by either the application or the message-passing
substrate. In this paper we have assessed the effect of static
and dynamic timeout determination on a wide-area collec-
tive operation. Though the data is limited, it shows that
a single system-wide timeout is certainly not effective for
multiple computing environments. Additionally, we show
that dynamic timeout prediction via the Network Weather
Service can be effective, and is advantageous when the net-
work conditions change over time.

Our long-term goal with this research project is to de-
velop a message-passing library suited to the development
of high performance applications that can execute on the
wide area. This library will be based on the communi-
cation primitives of EveryWare, a project that has sus-
tained high performance in an extremely wide-area, het-
erogeneous processing environment [?]. We view the is-
sue of failure identification to be a central first step toward
the effective development of this library, and we believe
that further exploration into the nature of effective failure
identification will reap benefits for future distributed and
network programming environments.
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