
Using Phase Behavior in Scientific Application to Guide Linux
Operating System Customization∗

Chandra Krintz Rich Wolski
Computer Science Department

University of California, Santa Barbara
{ckrintz,wolski}@cs.ucsb.edu

Abstract

In this paper, we present the design of a system that auto-
matically generates application-specific Linux images for
scientific applications that execute using batched cluster
resources. Key to our approach is the use of recurring pat-
terns in program performance, i.e., phase-behavior, that
can be exploited potentially to guide automatic Linux cus-
tomization and to enable significantly higher levels in pro-
gram performance. We overview project and present a set
of preliminary results that show the potential of our ap-
proach.

1 Introduction

Recent advances in high-performance processor and net-
work technologies are making clusters of workstation-
class computers cost-effective platforms that can sup-
port the next generation of scientific applications. Low
per-unit cost, advances in computing and communication
power, and the availability of Linux as a free, easy-to-
use, and nearly standard operating system, make high-end
computing with these systems accessible both to a very
large developer base and to a wide range of users. As part
of this evolution, Linux has emerged as a nearly ubiqui-
tous, open-source operating system with a wide-range of
readily available programming support tools and special-
ized libraries. It is currently the system-of-choice in aca-
demic and production scientific computing settings and as
a result, many, if not the majority of, scientific program-
mers being trained today are familiar with Linux as a de-
velopment platform.

Moreover, Linux runs both on individual workstations
and in clustered commodity systems, e.g., Beowulf [4]
systems. Thus, scientific programmers can use a lo-
cal (possibly networked) workstation environment to de-
velop, debug, and tune their programs and then transfer

∗This work was sponsored, in part, by a grant from the NationalSci-
ence Foundation numbered ST-HEC-0444412.

them to a production environment with little or no port-
ing effort. The ability to use the same operating system
in both a locally-controlled, highly responsive environ-
ment for development and a batch-controlled production
environment for repeated large-scale execution greatly in-
creases programmer productivity and lowers the “over-
head” associated with the use of high-end computing to
advance science.

A key limitation to the use of Linux for high-end clus-
ter computing however, is its potential performance im-
pact on application execution. Linux, like other general-
purpose operating systems (OSs) with commercial ap-
plication, continues to evolve to support an enormous
range of user requirements and preferences, application
domains, and devices (everything from supercomputers
to hand-helds). In particular, its popularity as a web-
server hosting environment has placed even greater de-
mands on its ability to support quick response times for
many competing small, relatively short-lived, and poten-
tially difficult to predict computations (e.g. web trans-
actions). In contrast, scientific applications executing in
clustered settings are frequently large, resource intensive,
long-running, and use space-sharing to gain exclusive ac-
cess to the machines they use through a batch system.
They do not compete dynamically for processor and I/O
resources since the batch system ensures that any proces-
sors allocated to an application are not time-shared by
other applications.

As a consequence of this tension between application
requirements, the Linux OS includes many features and
built-in policies that do not promote the performance of
high-end scientific applications. In particular, scientific
applications typically do not require the extensive support
for fair resource sharing (since they execute in produc-
tion space-shared, and not time-shared, environments) or
quick response time (since they may not be interactive)
that Linux includes. Much of the functionality built into
Linux is included to support applications with radically
different performance needs than most scientific codes,
and these features can retard the performance of scien-

1



tific programs in high-end computing settings. None the
less, the portability that Linux affords combined with the
familiarity that its wide-spread popularity has bred make
it a de facto standard operating system for clustered archi-
tectures.

The goal of our research is to investigate techniques
that maintain the ease-of-use and cost benefits of Linux
while enhancing the performance achievable by high-
end scientific applications executing in large-scale clus-
ter computing settings. This scenario has been explicitly
identified as vital to the future of High-End computing at
both the2003 Workshop on The Road Map for the Revi-
talization of High-End Computing[10] and more recently
in the 2004 Federal Plan for High-End Computing[30].
To enable this, we will study ways to automatically cus-
tomize the Linux instance an application uses when it is
running in a “production” (i.e., non-development or de-
bugging) setting based on the specific needs of the appli-
cation itself. We will also exploit the exclusive processor
access that batch scheduling implements to relax or elim-
inate unneeded mechanisms that are designed to facilitate
effective time-sharing, but which introduce unnecessary
overhead in a space-sharing context.

We plan to explore both runtime and compile-time ap-
proaches to customizing the Linux instance used by each
application. Each of which will allow the scientific pro-
grammer to use unmodified Linux as a local development
and debugging environment and then to apply our tech-
niques as an additional compilation step before initiating
high-end cluster execution.

In the runtime approach, we will fit the installed Linux
with a kernel adaptation callthat exports a generalized
system call for the application to use to “tune” the kernel
it is using. To prevent the programmer from assuming the
burden of becoming a kernel tuning expert, we will also
develop the compiler analysis and code-generation tech-
nology necessary to automatically insert kernel adaptation
calls into an application program to enhance performance.
Thus, the compiler will direct runtime customization of
the kernel by modifying the application on behalf of the
programmer.

Our approach relies on two key observations about
high-end scientific applications. First, scientific applica-
tions commonly exhibit regular and course-grained execu-
tion “phases”. We will develop static and dynamic off-line
profiling techniques to identify key patterns in resource
use that we will use to guide customization. Secondly,
application execution instances do not require extensive
time-sharing support when run in production cluster set-
tings (e.g., TeraGrid). Since the OS instance is not shared
between competing applications, each receiving a small
time slice from the processors, it can be customized to the
needs of each individual application. We are currently in-
vestigating compiler and runtime techniques that exploit

these observations through (1) specialization of critical
paths through the OS, and (2) dynamic component-wise
performance adaptation of both the OS and the applica-
tion.

Much prior work in the area of application-specific op-
erating systems (OSs) has thoroughly studied extensibil-
ity, specialization, and minimization of the OS in gen-
eral [12, 36, 3, 5, 38]. In addition, many of the techniques
for dynamic adaptation come from our extensive experi-
ence with dynamic and adaptive optimization for Internet
computing [22, 23, 29, 45, 43]. However, our system is
novel in that it combines and extends these efforts into
a system that automatically customizes the Linux operat-
ing system for asingle application runand is specifically
focused on the application domain of scientific comput-
ing using high-performance clusters. At the same time,
our use of Linux ensures that the environment for scien-
tific applications developers remains familiar and unified
across the development and production platforms they use
thereby promoting ease-of-use, programmer productivity,
and efficient program management.

In the sections that follow, we describe our system in
which we specialize the Linux kernel for a specific in-
stance of a scientific-computing application for execution
using batched cluster resources. We then overview our
phase-detection system and present preliminary evidence
of phase behavior in scientific computing programs (Sec-
tion 3). In Section 4, we present preliminary results that
indicate the potential of phase-based Linux specialization.
We then present related work in Section 5 and conclude in
Section 6.

2 Application-Specific Linux

Currently, batched, distributed-memory, cluster-based
systems for high-end computing, e.g., TeraGrid clus-
ters [32], Red Storm [37], Tungsten [47], Lightning [24],
Lone Star [25], and others, operate as follows. The sys-
tem administrator installs and maintains an identical ver-
sion and configuration of Linux on all of the machines in
the cluster. The administrator also installs a batch sys-
tem for job execution that implements space-sharing of
cluster processors. User jobs can only gain access to the
processors of the cluster via batch job submission. Most
clusters do provide a small number (often only 1) of in-
teractive “head” nodes that can be used for program com-
pilation and job submission. Long-term execution on the
head node or nodes, however, is typically prohibited.

A job is submitted to the batch system typically speci-
fies the resources required (number of machines), the pri-
ority of the job (in the form of a queue name or identifier)
and any necessary accounting information. When the job
is selected for execution, the required number of proces-



(a) (b) (c) (d)

Figure 1: Phase behavior in scientific computing codes. We show the upper triangle of the similarity matrix (black =
similar, white = dissimilar) for each program. Each point represents the similarity (Manhattan distance) between two
snapshots of program execution. The behavior in these programs varies little (large dark sections) over the lifetime
of the programs. The last two matrices are the same program executing different inputs; the phase behavior is very
similar across inputs. The dotted arrows point to computational phases; the solid arrows to I/O bound phases.

sors is allocated exclusively to the job from a pool of avail-
able processors. No other job is assigned to those pro-
cessors until the job voluntarily terminates, or the batch-
queuing software forcibly terminates the job because it
has exceeded a pre-determined time limit.

We exploit this batch model in an effort to extract high-
performance from scientific applications. That is, since
only a single application executes at once, we can cus-
tomize the Linux kernel to remove (unload) support for
any service not used by the application of interest. More-
over, we can specialize the kernel according to the usage
patterns of the application. We currently rebuild the ker-
nel for each application. However, we are also investigat-
ing the use of a virtual machine monitor (VMM) for the
batched machines. e.g., a minimal Linux kernel that runs
a specialized user-mode Linux [49] kernel or the Adeos
nanokernel [21] that runs a specialized actual Linux ker-
nel. Using a VMM, the batch system can install the spe-
cialized kernel (submitted with the application) upon in-
stalling the application itself.

The specialized Linux kernel employs an extended in-
terface that implements akernel adaptation call. The ker-
nel adaptation call exposes kernel internals to the appli-
cation. Our system implements and controls customiza-
tion of the application and the OS using a modified gcc
compiler which inserts kernel adaptation calls into the
application automatically. The kernel adaptation call is
a software device interface that does not support access
to an actual hardware component, i.e., it is a “pseudo-
device”. The Linux device driver implementation is well-
understood and relatively standardized making it an at-
tractive method for adding a system call to arbitrary ver-
sions of Linux. To perform effective Linux customization,
we must collect dynamic program behavior that identifies

specialization opportunities. To enable this, we collect
program phase behavior.

3 Phase Behavior
in Scientific Applications

Research by ourselves and others [29, 39, 40, 14] has
shown that general-purpose and Internet computing pro-
grams commonly do not behave randomly but instead,
execute as a series of repeated behaviors termedphases.
During a particular phase, the behavior of the program
is relatively stable for some amount of time, after which
the behavior may change significantly. Furthermore, these
same phases may then re-occur at some point later in time.
This phase behavior is architecture-independent but ac-
curately reflects how the program consumes the available
hardware resources [39]. Although Internet programs typ-
ically exhibit a large number of distinct phases, identifica-
tion of phase behavior has the potential for significantly
reducing the complexity of analysis and the efficacy of
profile-guided program optimization.

Anecdotally, it has long been maintained by pro-
grammers in the scientific computing community, how-
ever, that scientific programs contain large-scale, course-
grained program phases. To confirm this postulation, we
applied a phase profiling and analysis tool [29] that we de-
veloped for Internet applications to a set scientific bench-
mark programs.

A visualization of the phase data for the scientific
codes is shown in Figure 1. For each program, we show a
similarity matrix which is an easily-rendered, gray-scale
representation of the phase behavior in a program. The
tool partitions the execution of each program into a set of



Figure 2: Phase behavior in a general-purpose (non-
scientific) application using two different inputs.

user-specifiedintervals (100 billion instructions each in
this experiment). Each interval contains the basic block
frequencies weighted by the number of instructions in the
basic block normalized by the length of the interval. The
tool then computes the Manhattan distance [34] between
each and renders it into the gray-scale range (0-64K) for
display. In the visualization, black indicates two intervals
are completely similar (the Manhattan distance is small)
and white shows that that they are dissimilar. Thex and
y axes order interval identifiers chronologically from the
first interval executed by the program to the last. There-
fore, by moving from left to right across a row, we can
visualize the similarity between the interval (represented
by the row) and every interval that follows it in the pro-
gram’s execution. We omit the symmetric lower triangle
to clarify the visualization.

The programs in Figure 1 include (a) A benchmark for
dense linear algebra computations [18] that performs fac-
torizations (LU, Cholesky, QR, SVD) and symmetric/non-
symmetric eigenvalue operations; (b) A collection of
low-level kernels, including Euler, Monte Carlo, search,
molecular dynamics, and ray tracing algorithms [19]
(each described in detail here [20]); and (c) Pattern-
Hunter [26], a state-of-the-art, large-scale applicationfor
fast DNA homology searches from Bioinformatics So-
lutions [6]. Subfigure (d) shows the phase behavior for
PatternHunter using a different input (mouse DNA as op-
posed to fruitfly DNA used in (c)).

The figure illustrates two important conjectures regard-
ing scientific applications that we can exploit via opti-
mization and specialization. The first is that scientific pro-
grams contain a small number of large phases. In each
subfigure, the large contiguous dark regions support this
conjecture in the three applications depicted. Secondly,
we conjecture that the phase behavior of scientific pro-
grams does not vary dramatically based on program input
making profiling techniques especially attractive. Subfig-
ures (c) and (d) support this supposition. Moreover, the
compute and I/O phases of PatternHunter are readily visi-

ble. The dotted arrows indicate compute intensive phases
of execution and the solid arrows point to I/O phases.

Compare these results to the similarity matrices
shown in Figure 2 showing the phase behavior for a
commonly-used Internet application benchmark (a Java
compiler) [44] on two different program inputs. In sub-
figure (a) the phase behavior varies widely and there is
only one extended period of repeated behavior (during
which time the program is performing I/O). Moreover,
subfigures (a) and (b) differ dramatically indicating that
the program has a highly input-dependent execution pro-
file. Thus, off-line profiling is likely to be significantly
more effective for the scientific programs depicted in Fig-
ure 1 than the Internet benchmark shown in Figure 2.

A key benefit to this approach (using phase behav-
ior) is that a single interval (and its statistics) represents
the entire phase (all other intervals to which it is simi-
lar). As such, we need only analyze and specialize for
the “hot” intervals, those that occur in the largest, most
common phases. Moreover, we can use information about
infrequently executed intervals (and their interaction with
hot intervals) to identify opportunities for optimizations
that allow us to avoid memory hierarchy pollution. Us-
ing phase behavior for scientific programs significantly
simplifies our optimization framework since it inherently
identifies code regions (and thus a small set of important
optimization opportunities) on which our system should
focus.

4 Linux Specialization Potential

To implement automatic run-time tuning of the kernel, we
addedkernel adaptation callto the Linux implementation
that is installed on the high-end system (either by the sys-
tem administrator or as part of an on-demand installation
supported by a VMM). The compilation system, guided
by phase behavior and analysis, inserts kernel adaptation
calls into the application instance before it is launched on
the high-end resource. For example, for multi-threaded
and computational steering applications, the compiler in-
serts this system call, into the code at appropriate points
to adjust the quantum automatically so that the application
achieves the best performance possible. Notice that with
respect to the application programmer, the code remains
unchanged.

Using our phase profile information, we identify sys-
tem calls that are frequently executed and use the com-
piler to specialize these calls according to how they are
used by the program. In particular, in addition to schedul-
ing opportunities, we are interested in specializing disk
and socket I/O calls. For disk I/O, we can specialize file
manipulation routines for a particular inode in use (by-
passing much of the general-purpose code along the crit-



ical path) and customize file access (sequential or using
access patterns indicated by the profile) to improve per-
formance. We use similar specialization techniques to re-
duce the overhead of socket communication. We use our
compiler to insert kernel adaptation calls that employ the
specializations into the application when it is built for the
production system.

In the following subsections, we present preliminary
evidence of the efficacy of using Linux specialization
techniques for improving the performance of scientific-
computing applications. For these studies, we employed
User-Mode Linux (UML) [49]. UML is one option for en-
abling efficient installation of a customized Linux kernel
on batched, cluster resources, as mentioned previously.
In this scenario, the cluster machines implement a min-
imal Linux kernel that is specialized for UML execution.
When a user submits a job to the cluster, she submits the
customized UML image with the application (both gener-
ated automatically by our specialization toolkit).

4.1 Example: Customized Time Quanta

To evaluate the potential of application-specific Linux on
scientific- program performance, we evaluated the effi-
cacy of specializing the Linux time quantum in the op-
erating system scheduler. We found that by extending the
CPU time quantum beyond what the Linuxnice inter-
face does, we can dramatically improve compute intensive
program performance. We modified a version UML to
support a 5-second CPU occupancy quantum and compare
the observed performance (in terms of execution time and
context switches) to defaultnice 0 execution of simple
Fibonacci and LINPACK [17] LU decomposition. (with-
out ATLAS [50] optimization).

Default
Benchmark Total Time (s) Context Switches

Fibonacci 85.52 35562
LINPACK LU 87.31 60844

5s Quantum
Total Time (s) Context Switches

Fibonacci 60.69 11.8
LINPACK LU 72.23 29.5

Table 1: Performance impact of extending the quantum
for a computationally intensive process.

The results from these experiments, averaged over the
last 10 of 11 executions (we omit the first to elide any
paging effects), are shown in Table 1. We ran each of
these experiments on a quiescent machine under the iden-
tical conditions. Columns two and three show the execu-
tion time (in seconds) and number of context switches,
respectively, for the default quantum setting. Columns

four and five show the same statistics when we give the
single-threaded process a quantum of 5 seconds. The data
indicates that by extending the quantum for a computa-
tionally bound process, we can eliminate most of the con-
text switches and thus significantly improve performance,
by 29% for the toy Fibonacci program and 17% for LIN-
PACK LU.

Quanta specialization, however, is undesirable in a
time-shared setting where CPU-bound applications can
lock out response-time sensitive applications (editors,
email clients, etc.) for long periods. Moreover, long
quanta may not be compatible with all configured de-
vices, particularly those with tight real-time requirements
(such as streaming media). Indeed, to affect this experi-
ment, we had explicitly to disable sanity checks and as-
sertions in the Linux kernel designed to prevent a kernel-
programming bug or overly aggressive device driver from
modifying the maximum allowable quantum. However,
this simple experiment illustrates the degree to which even
the basic mechanisms included in Linux to support time-
sharing (which could be substantially modified in a batch-
controlled setting) can retard scientific application perfor-
mance. We also understand that these results are perti-
nent to UML only. However, it may be possible to build a
Linux-specific VMM for the UML (as described above).
As such, we are investigating the performance character-
istics of UML initially.

Simply tuning the resident version of Linux for long-
running, in-core execution may reduce the performance
of other more complex scientific applications. In par-
ticular, multi-threaded codes that use threads to overlap
communication with execution (a common parallel pro-
gramming optimization) or codes that stream data while
they execute to an external visualization system (e.g., for
the purposes of computational steering [8, 9]) extending
the quantum may degrade performance by starving the
threads assigned to I/O. Under Linux, context-switchable
threads (such as POSIX threads [33]) use the same CPU
scheduling algorithm as competing, separate processes.
Thus, our customizations must be tailored to the charac-
teristics of the application rather than implemented as a
blanket set of shared tuning enhancements. More specifi-
cally, our techniques must be adaptive given the dynamic
behavior of the program. The program phase informa-
tion provides us with such information. Our compiler
uses this behavior to place kernel adaptation calls so that
the quanta is set appropriately for compute-intensive and
non-compute-intensive (e.g. interactive or I/O intensive)
execution intervals.

4.2 Example: Customized Socket Sends

We also investigated the efficacy of customizing socket
I/O within a specialized version of Linux. Scientific pro-



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

512 1024 2048 4096 8192 16384 32768 65536

TCP/IP Socket Send Size (bytes)

P
er

ce
nt

 R
ed

uc
tio

n 
in

 T
ot

al
 S

en
d 

T
im

e

5GB Data

10GB Data

20GB Data

Figure 3: Percent improvement in socket send time we
specialize send calls for a particular send size. The per-
formance improvements result since we avoid crossing the
kernel-user space boundary.

grams commonly perform communication between clus-
ter nodes. Our goal with this experiment was to evaluate
the efficacy of exploiting communication patterns. In par-
ticular, we generated customized TCP/IP socket send calls
for a particular hand-coded program that performed a sin-
gle socket send of parameterized by different send sizes.

The customized send calls (invoked by the applica-
tion as kernel adaptation calls) exploit the communica-
tion patterns of the program to avoid crossing the kernel
boundary. For each program instance, we employed a
customized send routine that sent all of the data at once
thereby avoiding repeated send calls. This experiment is
a very simple and naive test; however, it lends insight into
its potential.

Figure 3 shows the total time for send calls using dif-
ferent customized send calls (one for each amount of data
sent). Thex-axis is the size of each send call – the size
dictates the number of system calls required for the user
space version. They-axis is the percent reduction in total
send time for each of the three transfer sizes (5GB, 10GB,
20GB). The time for kernel send calls is relatively con-
stant for each send size (13s, 25s, 50s). The data confirms
other studies [5, 41] (as well as our study on application-
specific quanta) that indicate that there is significant over-
head imposed by crossing the user-kernel boundary. For
small send sizes, the gains range from 30-70%; using a
large send size, there are many fewer system calls, result-
ing in gains of 2-10%

5 Related Work

Our research builds upon an extensive body of research
on extensible operating system kernels [12, 35, 15, 5] Ex-
tant approaches to such systems assume that extensibility
is the common case. By enabling general and safe ex-
tensibility, such systems necessarily introduce additional
runtime overhead. The bulk of the optimization effort then
centers on minimizing this overhead [36, 3, 5, 38]. In con-
trast, our approach relies on the batch system to ensure
safety by preventing competing applications from time-
sharing processors.

Most of these systems also require applications to be
written for the specific OS implementation at hand (re-
quiring a new programming methodology) and toselect
the versions of services that will provide them the most
performance benefit. An alternative approach shared by
our work, is to implement an OS thatautomaticallycus-
tomizes the OS interface for the application [36, 3, 42,
28]. Specialization is performed using partial evalua-
tion of system call parameters to reduce the length of
critical paths through the kernel. Such systems sys-
tems focus onspecializingexisting OS code and auto-
matically infer when specialized version should be em-
ployed. In addition, as different applications execute, spe-
cialized code is either selected using a template mecha-
nism [11, 27, 31, 2, 16] ordynamically replacedwith new
versions [36, 42].

These latter systems, and in particular the techniques
in [36] and [28], are most similar to those that we describe
herein. The primary difference is that our goal is to im-
plement tools for the automatic customization of a ubiqui-
tous, popular, open-source OS (Linux); all prior work has
either developed entirely new systems or have extended
upon proprietary OSs (AIX [3], HP-UX [36], and So-
laris [46]). In addition, we plan to investigate such OS
specialization for scientific codes, an area that has been of
focus very few, limited studies, e.g., [46, 1]. Moreover,
studies that focus on scientific code performance have
shown that other types of specialization, e.g., of library
routine, have significant potential [48, 1, 7, 46]. Our work
also differs in that we plan to consider the automation
of application-specific OS customization, profile-guided
compiler optimization of application code, and injection
application tasks into the kernel in combination.

Since, our focus is batched cluster systems, our re-
search is also unique in that, our customization can be
specific for asingle applicationsince a new OS can be
installed as part of the execution of a batch job. Con-
sequently, the resulting system need not be concerned
with safety and fairness issues associated with a multi-
program environment. All prior work has focused on OS
customization for wide range of applications and a large
portion of the research has focused on trying to solve the



safety and dynamic (re-)linking problems inherent in ex-
tensible OS design [13]. To enable our research, we plan
to incorporate, combine, and extend this extensive body
of prior work in the area of extensible operating systems
as well as adaptive compiler and runtime optimization re-
search from other application domains, e.g., Internet com-
puting [29, 39, 40, 14], (as described in Section 3).

6 Conclusions

In this paper, we describe the design of our system
for application-specific Linux customization for scientific
programs. The goal of our work is to enable significantly
higher application performance for scientific programs
that execute using batched, cluster resources (a commonly
used methodology for high-end applications). However,
we intend to do so for the Linux operating system, a free,
easy-to-use, popular, and nearly standard operating sys-
tem. The key limitation of using Linux for high-end com-
puting is that it is general-purpose and continues to evolve
to support an enormous range of user requirements and
preferences, application domains, and devices. By cus-
tomizing Linux according to the needs of asingle ap-
plication (executing alone in a batched environment), we
have the potential of significantly improving performance
while maintaining the familiarity, ease-of-use, and cross-
platform program portability that Linux offers.

To enable this, our system couples and extends extant
compiler and runtime techniques that exploit specializa-
tion opportunities in both the application and Linux op-
erating system. In particular, we employ program phase
behavior to expose frequently executed behavior patterns
in programs. Our compilation system uses phases to guide
generation of customized Linux system call implemen-
tations that execute specific behavioral patterns very ef-
ficiently. We overview phase behavior and provide ev-
idence and characteristics of phase behavior in scien-
tific programs. Moreover, we present two studies that
provide preliminary evidence into the potential of Linux
customization: specialized scheduling quanta and socket
send calls that exploit specific program behaviors.

References

[1] A. Acharya, M. Uysal, R. Bennett, A. Mendelson,
M. Beynon, J. Hollingsworth, J. Saltz, and A. Sussman.
Tuning the Performance of I/O-Intensive Parallel Appli-
cations. InWorkshop on I/O in Parallel and Distributed
Systems, 1996.

[2] T. Anderson, B. Bershad, E. Lazowska, and H. Levy.
Schedular Activations: Effective Kernel Support for User-
Level Management of Parallelism.ACM Transactions on
Computer Systems, 10(1):53–79, February 1992.

[3] A. Banerji and D. Cohn. An Infrastructure for Application-
Specific Customization. InACM European SIGOPS Work-
shop, September 1994.

[4] D. Becker, T. Sterling, D. Savarese, J. Dorband,
U. Ranawak, and C. Packer. Beowulf: A Parallel Work-
station for Scientific Computation. InInternational Con-
ference on Parallel Processing, August 1995.

[5] B. Bershad, S. Savage, P. Pardyak, E. Sirer, M. Fiuczyn-
ski, D. Becker, S. Eggers, and C. Chambers. Extensibility,
Safety, and Performance of the SPIN Operating System.
In Symposium on Operating System Principles, December
1995.

[6] Bioinformatics Solutions Inc. http://www.
bioinformaticssolutions.com/.

[7] J. Bruck, D. Dolev, C. Ho, M. Rosu, and R. Strong. Ef-
ficient Message Passing Interface (MPI) for Parallel Com-
puting on Clusters of Workstations.Journal of Parallel
and Distributed Computing: Special issue on workstation
clusters and network-based computing, 40(1), 1997.

[8] Computational Steering Overview.http://www.cwi.
nl/projects/cse/anrep.html.

[9] Computational Steering Scientific Applications.
http://discov.cs.kent.edu/resources/
doc/steering/.

[10] Computing Research Association Workshop on The
Roadmap for the Revitalization of High-End Computing,
D. A. Reed, Editor, June 2003.http://www.cra.
org/Activities/workshops/nitrd/.

[11] C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault,
E. Volanschi, J. Lawall, and J. Noye. Tempo: Specializ-
ing Systems Applications and Beyond.ACM Computing
Surveys, 30(3), 1998.

[12] G. Denys, F. Piessens, and F. Matthijs. A survey of cus-
tomizability in operating systems research.ACM Comput-
ing Surveys, 34(4):450–468, 2002.

[13] P. Druschel, V. Pai, and W. Zwaenepoel. Extensible Ker-
nels are Leading OS Research Astray. InHot OS, May
1997.

[14] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Charac-
terizing and predicting program behavior and its variabil-
ity. In International Conference on Parallel Architecture
and Compilation Techniques, September 2003.

[15] D. Engler, M. Kaashoek, and J. O’Toole Jr. Exokernel: An
Operating System Architecture for Application-Level Re-
source Management. InSymposium on Operating System
Principles, December 1995.

[16] K. Harty and D. Cheriton. Application-controlled physical
memory using external page-cache management. InIn-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, October
1992.

[17] Hpl - a portable implementation of the high-performance
linpack benchmark for distributed-memory computers.
http://www.netlib.org/benchmark/hpl/.



[18] Jama: A java matrix package.http://math.nist.
gov/javanumerics/jama/.

[19] Java Grande Forum. http://www.javagrande.
org/.

[20] Java Grande Forum section 3 benchmarks.
http://www.epcc.ed.ac.uk/javagrande/
threads/s3contents.html.

[21] K. Yaghmour, OpenSys Inc. Adaptive Domain Envi-
ronment for Operating Systems.http://home.gna.
org/adeos/.

[22] C. Krintz. Coupling On-Line and Off-Line Profile Infor-
mation to Improve Program Performance. InInternational
Symposium on Code Generation and Optimization (CGO),
March 2003.

[23] C. Krintz and B. Calder. Using Annotation to Reduce Dy-
namic Optimization Time. InProceedings of the ACM
SIGPLAN 2001 Conference on Programming Language
Design and Implementation, pages 156–167, June 2001.

[24] Los Alamos National Laboratory Lightning Linux Clus-
ter. http://www.acl.lanl.gov/source/orgs/
ccs/ccs1/cluster/index.shtml.

[25] Texas Advanced Computing Center Lone Star Linux
Cluster. http://www.tacc.utexas.edu/
resources/hpcsystems/.

[26] B. Ma, J. Tromp, and M. Li. PatternHunter: Faster
and More Sensitive Homology Search.Bioinformatics,
18(3):440–445, 2002.

[27] R. Marlet, C. Counsel, and P. Boinot. Efficient Incremen-
tal Run-Time Specialization for Free. InACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation (PLDI), 1999.

[28] A. Montz, D. Mosberger, S. O’Malley, L. Peterson, and
T. Proebsting. Scout: A Communications-Oriented Oper-
ating System. InHot OS, May 1995.

[29] P. Nagpurkar and C. Krintz. Visualization and Analysisof
Phased Behavior in Java Programs. InACM Conference on
the Principles and Practice of Programming in Java, June
2004.

[30] NITRD Federal Plan for High-End Computing: Report
of the High-End Computing Revitalization Task Force
(HECRTF), May 2004. http://www.itrd.gov/
pubs/.

[31] F. Noel, L. Hornof, C. Counsel, and Julia Lawall. Auto-
matic, Template-Based Run-Time Specialization: Imple-
mentation and Experimental Study. InInternational Con-
ference on Computer Languages, 1998.

[32] NSF TeraGrid Project. http://www.teragrid.
org/.

[33] POSIX the Portable Operating System Interface.http:
//www.knosof.co.uk/posix.html.

[34] Predictive Patterns Software. Manhattan Distance Func-
tion Metric. http://www.predictivepatterns.
com/docs/WebSiteDocs/Clustering/
Clustering_Pa%rameters/Manhattan_
Distance_Metric.htm.

[35] C. Pu, T. Autrey, A. Black, C. Counsel, C. Cowan, J. In-
ouya, L. Kethana, J. Wapole, and K. Zhang. Optimistic In-
cremental Specialization: Streamlining a Commercial Op-
erating System. InSymposium on Operating System Prin-
ciples, December 1995.

[36] C. Pu, H. Massalin, and J. Ioannidis. The Synthetics Ker-
nel. Computing Systems, 3(1), 1990.

[37] Cray Inc., Red Storm Cluster.http://www.cray.
com/media/2003/october/rsproduct.html.

[38] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien,
M. Guilemont, F. Herrman, C. Kaiser, S. Langois,
P. Leonard, and W. Neuhauser. Overview of the Cho-
rus distributed operating system. InUSENIX Workshop
on Micro-Kernels and Other Kernel Architectures, April
1992.

[39] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically characterizing large scale program behavior.
In 10th International Conference on Architectural Support
for Programming Languages, October 2002.

[40] T. Sherwood, S. Sair, and B. Calder. Phase tracking and
prediction. In30th Annual International Symposium on
Computer Architecture, June 2003.

[41] C. Small and M. Seltzer. VINO: An integrated platform
for operating system and database research. Technical
Report Technical Report TR-30-94, Harvard Univ. Cam-
bridge, MA, 1994.

[42] C. Small and M. Seltzer. Self-monitoring and Self-
adapting Operating Systems. InWorkshop on Hot Topics
in Operating Systems, May 1997.

[43] S. Soman, C. Krintz, and D. Bacon. Dynamic Selection
of Application-Specific Garbage Collectors. InACM SIG-
PLAN International Symposium on Memory Management
(ISMM), October 2004.

[44] SpecJVM’98 Benchmarks.
http://www.spec.org/osg/jvm98.

[45] S. Sucu and C. Krintz. ACE: A Resource-Aware Adap-
tive Compression Environment. InInternational Confer-
ence on Information Technology: Coding and Computing
(ITCC03), April 2003.

[46] A. Tamches and B. Miller. Using Dynamic Kernel In-
strumentation for Kernel and Application Tuning.Inter-
national Journal of High-Performance and Applications,
13(3), 1999.

[47] NCSA Tungsten Linux Cluster.http://www.ncsa.
uiuc.edu/UserInfo/Resources/Hardware/
XeonCluster/.

[48] D. Turner and X. Chen. Protocol-Dependent Message-
Passing Performance on Linux Clusters. InIEEE Cluster
Computing, September 2002.

[49] User Mode Linux Home Page. http://
user-mode-linux.sourceforge.net/.

[50] R. Whaley and J. Dongarra. Automatically tuned linear
algebra software. InSupercomputing, 1998.


