
Predicting Bounds on Queuing Delay for Batch-scheduled Parallel Machines

John Brevik, Daniel Nurmi, and Rich Wolski∗

Computer Science Department
University of California, Santa Barbara

Santa Barbara, California 93106

Abstract

Most space-sharing parallel computers presently operatedby
high-performance computing centers use batch-queuing systems
to manage processor allocation. In many cases, users wishing to
use these batch-queued resources have accounts at multiplesites
and have the option of choosing at which site or sites to submit
a parallel job. In such a situation, the amount of time a user’s
job will wait in any one batch queue can significantly impact the
overall time a user waits from job submission to job completion. In
this work, we explore a new method for providing end-users with
predictions for the bounds on the queuing delay individual jobs
will experience. We evaluate this method using batch scheduler
logs for distributed-memory parallel machines that cover a9-year
period at 7 large HPC centers.

Our results show that it is possible to predict delay bounds re-
liably for jobs in different queues, and for jobs requestingdifferent
ranges of processor counts. Using this information, scientific ap-
plication developers can intelligently decide where to submit their
parallel codes in order to minimize overall turnaround time.

1. Introduction

Typically, high-performance multi-processor compute resources
are managed usingspace sharing, a scheduling strategy in which
each program is allocated a dedicated set of processors for the du-
ration of its execution. In production computing settings,users
prefer space sharing to time sharing, since dedicated processor ac-
cess isolates program execution performance from the effects of
a competitive load. Because processes within a partition donot
compete for CPU or memory resources, they avoid the cache and
translation look-aside buffer (TLB) pollution effects that time slic-
ing can induce. Additionally, inter-process communication occurs
with minimal overhead, since a receiving process can never be pre-
empted by a competing program.

For similar reasons, resource owners and administrators prefer
space sharing as well. As long as the time to allocate partitions to,
and reclaim partitions from, parallel programs is small, nocom-
pute cycles are lost to time-sharing overheads, and resources run
with maximal efficiency. Thus, at present, almost all production
high-performance computing (HPC) installations use some form
of space sharing to manage their multi-processor and cluster ma-
chines.
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Because each program in a space-shared environment runs in
its own dedicated partition of the target machine, a programcannot
be initiated until there are a sufficient number of processors avail-
able for it to use. When a program must wait before it can be initi-
ated, it is queued as a “job”1 along with a description of any pa-
rameters and environmental inputs (e.g. input files, shell environ-
ment variables) it will require to run. However, because of the need
both to assign different priorities to users and to improve the over-
all efficiency of the resource, most installations do not usea simple
first-come-first-served (FCFS) queuing discipline to manage the
queue of waiting jobs. Indeed, a number of queue-management
systems, including PBS [28], LoadLeveler [1], EASY [19], NQS/
NQE [23], Maui [21] and GridEngine [16] each offers a rich and
sophisticated set of configuration options that allow system admin-
istrators to implement highly customized priority mechanisms.

Unfortunately, while these mechanisms can be used to balance
the need for high job throughput (which ensures machine effi-
ciency) with the desires of end-users for rapid turnaround times,
the interaction between offered workload and local queuingdis-
cipline makes the amount of time a given job will wait highly
variable and difficult to predict. Users may wait a long time –
considerably longer the the job’s eventual execution time –for a
job to begin executing. Many users find this potential for unpre-
dictable queuing delay particularly frustrating since, inproduction
settings, theycan make fairly reliable predictions of how long a
program will execute once it starts running. Without an ability to
predict its queue waiting time, however, users cannot plan reliably
to have results by a specific point in time.

In this paper, we present theBinomial Method Batch Predictor
(BMBP) – a new methodology for predicting bounds, with quan-
titative confidence levels, on the amount of time an individual job
will wait in queue before it is initiated for execution on a pro-
duction “batch scheduled” resource. BMBP bases its predictions
only one the observed history of previous waiting times. Thus, it
automatically takes into account the effects of varying workload
and customized local queuing discipline. In addition, we observe
that the queuing behavior exhibited by all of the machines weex-
amined in this study (7 supercomputers operated by the National
Science Foundation and the Department of Energy over a9-year
period) is highly variable. In response to hardware and software
upgrades, failures, and configuration changes, changing organiza-
tional priorities, user turnover, security events,etc., administrators
appear to tune and adjust their local queuing policies, often in a
way that is not obvious to the user community. BMBP attempts to
detect thesechange pointsadaptively so that it uses only relevant

1We will use the term “job” throughout this paper to refer to a de-
scription of a program and its execution requirements that aqueu-
ing system can use to initiate a program once the necessary re-
source become available.



history to make each prediction.

We verify both the efficacy and generality of BMBP using the
logging information recorded by various batch schedulers that were
in use during the time each machine in our study was in operation.
All of the installations except the Lawrence Livermore National
Laboratory maintained a variety of queues for each machine.We
presume that a qualitative queuing policy has been published to
the user community for each queue (e.g., jobs in the “Low” queue
at the San Diego Supercomputer Center would be given lower pri-
ority than those in the “Normal” queue, which would, in turn,have
lower priority than those in the “High” queue). In this way these
installations attempt to provide their respective users communi-
ties with a rudimentary and qualitative prediction capability since,
in general, lower-priority jobs can be expected to wait longer in
queue.

However, in each case the batch scheduler must choose among
jobs that are waiting in a number of queues, each of which is gov-
erned by a specific policy. Moreover, the algorithm used to select a
particular job at a particular time from amongst the variousqueues
is not typically published and can potentially change underad-
ministrator control. Thus, while the implementation of multiple
policies for a given machine through multiple queues can provide
a high-level, qualitative expectation of how a specific job will be
treated, it substantially complicates the problem of making a quan-
titative prediction for that job’s wait time.

We examine the predictive power of BMBP when it is applied
to the various queues implemented at each site by detailing how
well our new method predicts in a quantitative way the qualita-
tive characteristics attached to each queue. With implicitpriority
mechanisms such as backfilling [18] in use at some of the sites,
however, users have come to expect that processor count alsoaf-
fects wait time. In particular, jobs in a particular queue requesting
small numbers of processors are believed, typically, to wait for
shorter periods, since they can be “backfilled” into the machine
around larger jobs. We therefore also examine how well BMBP
predicts the bounds on waiting times for jobs based on the queue
to which they were submitted and the number of processors they
specified. In all cases – covering over1 million jobs – the method
makes predictionsfor each job, which are “correct” in a very spe-
cific statistical sense which we will discuss below, for the bounds
on the waiting time.

This ability to make predictions for individual jobs distinguishes
our work from other previous efforts. An extensive body of re-
search [29, 7, 8, 11, 14, 5, 10, 12] investigates the statistical prop-
erties of offered job workload for various HPC systems. By pro-
viding a rigorous statistical characterization of job interarrival times
and program execution times, the resulting statistical properties as-
sociated with queuing time can be derived through simulation. De-
spite these extensive characterization studies, however,we know
of few previous research efforts that treat the problem of predict-
ing queuing delay in a quantitative way. We emphasize, however,
that our goal is strictly to provide a predictive mechanism for users
and application schedulers rather than to investigate the distribu-
tional properties exhibited by HPC systems. In particular,BMBP
makes a prediction for each individual job’s queuing delay rather
than a statistical characterization of the queuing delay experienced
by a set of jobs (e.g. using an estimate of the mean waiting time).

The remainder of this paper details BMBP and describes its
evaluation. In so doing, the paper makes the following two novel
contributions.

• We describe a new predictive methodology for bounding
queuing delay that is quantitative, non-parametric, and gen-
eral. As a result, the method works automatically, without
ancillary analysis or human “tuning” for a specific site or a
specific queue.

• We evaluate this methodology by comparing its performance
to an alternative parametric approach based on the assump-
tion that the underlying distribution is either log-normalor
Weibull. Our results show that our new approach achieves
both the desired confidence levels and the tightest bounds
(in aggregate) for the cases under study.

We have developed BMBP to provide a practically realizable pre-
dictive capability for deployment as a user and scheduling tool.
Therefore our reportage focuses on the results generated bya work-
ing prototype that is currently undergoing integration with various
batch scheduling systems, and our results are, ultimately,empiri-
cal.

2. Related Work

Smith, Taylor, and Foster in [29] use a template-based approach
to categorize and then predict job execution times. From these
execution-time predictions, they then derive queue delay predic-
tions by simulating the future behavior of the batch scheduler in
faster-than-real time. Our work differs from this approachin two
significant ways. To be effective, the Smith-Foster-Taylormethod
depends both on the ability to predict job execution time accurately
for each job and on explicit knowledge of the scheduling algorithm
used by the batch scheduler. Other work [17, 6] suggests thatmak-
ing such predictions may be difficult for large-scale production
computing centers. Moreover, the exact details of the scheduling
policy implemented at any specific site is typically unpublished.
While the algorithm may be known, the specific instance of the
algorithm and the definition of any parameters it requires are the
prerogative of the site administrators and, indeed, may be changed
as conditions and site-specific needs warrant. In contrast,our ap-
proach uses only the observed queue delays. By doing so, it does
not require execution-time predictions, and it automatically takes
into account any site-specific effects induced by the local schedul-
ing policy (whether static or dynamically changing).

Downey [7, 8] uses the log-uniform distribution to model the
remaining lifetimes of jobs executing in all machine partitions as
a way of predicting when a “cluster” of a given size will become
available and thus when the job waiting at the head of the queue
will start. Our work differs from Downey’s in that we do not use
predictions of the time until resources become free to estimate the
start time of a job. Rather, we work directly from the observed
queuing delays.

Finally, our approach differs from both of these related ap-
proaches in that it attempts to establish rigorous bounds onthe
time an individual job will wait rather than a specific, single-valued
prediction of its waiting time. We contend that the highly variable



nature of observed queue delay is better represented to potential
system users as quantified confidence bounds than as a specific
prediction, since users can “know” the probability that their job
will fall outside the range.

3. Problem Definition: Predicting Bounds on
Queuing Delay

If we are to treat the problem of predicting queuing delay sta-
tistically, the best possible outcome (from the job submitter’s per-
spective) is the ability to predict bounds on the delay a job will
experience, and to do so with a quantifiable measure of confi-
dence. However, much of the observed queue delay data is highly
skewed making moment-based descriptive statistics such asmean
and standard deviation potentially deceptive. In such cases, order
statistics (such as median and quartiles) are generally considered
more appropriate (cf. [22], chapter 1, section 2). For example,
knowing that themeanwait time a user can expect is24 hours is
likely to be less useful than knowing that there is a75% chance
that the wait time will be less than15 minutes – which is not an
unrealistic state of affairs for a batch queue.

Now, suppose that a scheduler or machine user would like to
know the maximum amount of time a job is likely to wait in a
batch queue before it is executed. In order to be precise, we quan-
tify the word “likely” to mean that we wish to generate a predicted
number of seconds so that we are95% certain that our job will
begin execution within that number of seconds, in the sense that,
over time,95% of our predictions will be at least as great as the
actual wait-times of the jobs. If we regard the wait time of a given
job as a random variable, then, this amounts to finding an estimate
for the95th percentile, or0.95 quantile, of this variable’s distri-
bution. Note that an estimate of the mean and standard deviation
provides little predictive information for this question.

Since the distribution of interest is unknown, any of its param-
eters in which we might be interested must be estimated, typically
from a sample. Standard methods of statistical inference allow us
to use a sample to produce an interval (which may be infinite on
one end) that we can assert contain the parameter with a speci-
fied level ofconfidence, roughly corresponding to the “probabil-
ity” that our interval has captured the true parameter of thepop-
ulation. In general, the more confident we wish to be, the wider
the confidence range; for example, a99% confidence interval for
the estimated0.95 quantile is wider than an80% confidence in-
terval, because the higher level of confidence demands that we
be more certain that the true parameter lies in our interval.For
the purposes of this paper, we will typically be consideringupper
confidenceboundson quantiles, which correspond to left-infinite
intervals(−∞,B].

To estimate an upper bound, then, we need to choose two val-
ues: the quantile and the desired level of confidence for the bound.
Returning to the example, to say that a particular statistical method
produces a99%-confidence upper bound on the0.95 quantile is to
say that, if the method is applied a large number of times, thevalue
it produces fails to be greater than the0.95 quantile no more than
1% of the time. We will term an upper-bound prediction ascorrect
if the observed value falls below the predicted value; we will term
a prediction method on a set of datacorrect if the proportion of

correct predictions it makes is at least as great as the quantile it is
predicting.

In this work, we have chosen to use the value0.95 for each. We
have identified the0.95 quantile as appropriate for a level of how
certain we wish to be about how long a job will wait in the queue.
At the same time,95% is fairly standard from the standpoint of
statistical inference as a level of confidence. Note that because it is
the0.95 quantile we are estimating, a user should expect that there
is at most a1 in 20 chance that the actual wait time experienced by
a job exceed the predicted wait time (provided, of course, that the
prediction method is correct in the sense of the above paragraph).

Our aim in producing predictions is not only that they be cor-
rect at least95% of the time, but also that they be meaningful
to the user. If we were to make extremely conservative predic-
tions, based, say, on the maximum wait time ever observed in the
queue, the percentage of correct predictions would doubtless in-
crease; however, the extremely large predictions producedwould
have little utility to someone wishing to use these values for plan-
ning purposes. One sees, then, that there is a trade-off between
having a high percentage of correct predictions and those predic-
tions reflecting what a “typical” wait time might be: If the predic-
tions are correct at a substantially higher rate than advertised, it is a
sign that they are overly conservative and therefore less meaning-
ful than they could be. Thus the fact that, in general, only slightly
more than95% of our predictions are correct for each queue, as
we will see in Section 6, shows that they are meaningful for the
purpose for which they are designed.

Note also that, while we have presented the problem in terms
of estimating an upper bound on queuing delay, it can be similarly
formulated to produce lower confidence bounds, or two-sidedcon-
fidence intervals, at any desired level of confidence. It can also be
used, of course, for any population quantile. For example, while
we have focused in this paper on the relative certainty provided by
the .95 quantile, our method estimates confidence bounds for the
median (i.e., the point of “50-50” probability) with equal effec-
tiveness. We note that the quantiles at the tail of the distribution
corresponding to rarely occurring but large values are morevari-
able, hence more difficult to estimate, than those nearer thecenter
of the distribution. Thus, in a typical batch queue setting,which
is characterized by large numbers of jobs experiencing short wait
times and a few jobs experiencing long wait times, the upper quan-
tiles provide the greatest challenge for a prediction method. By
focusing on an upper bound for the.95 quantile, we are testing the
limits of what can be predicted for queue delay.

4. Inference for Quantiles

In this section, we describe our approach to the problem of de-
termining upper bounds, at a fixed level of confidence, for quan-
tiles of a given population whose distribution is unknown. As de-
scribed previously, our intention is to use this upper boundas a
conservative estimate for the queuing delay, and to report the de-
gree of conservatism as the quantified confidence level.

4.1 The Binomial Method Batch Predictor



Our approach, which we term theBinomial Method Batch Pre-
dictor (BMBP), is based on the following simple observation: If
X is a random variable, andXq is theq quantile of the distribution
of X, then a single observationx from X will be greater thanXq

with probability (1 − q). (For our application, if we regard the
wait time, in seconds, of a particular job submitted to a queue as
a random variableX, the probability that it will wait for less than
X.95 seconds is exactly.95.)

Thus (provisionally under the typical assumptions of indepen-
dence and identical distribution) we can regard all of the obser-
vations as a sequence of independent Bernoulli trials with proba-
bility of success equal toq, where an observation is regarded as
a “success” if it is less thanXq . If there aren observations, the
probability of exactlyk “successes” is described by a Binomial
distribution with parametersq andn. Therefore, the probability
that more thank observations are greater thanXq is equal to

1 −

k
X

j=0

 

n

j

!

· (1 − q)j
· q

n−j (1)

Now, if we find the smallest value ofk for which Equation 1 is
larger than some specified confidence levelC, then we can assert
that we are confident at levelC that thekth value in a sorted set
of n observations will be greater than or equal to theXq quantile
of the underlying population – in other words, thekth sorted value
provides alevel-C upper confidence boundfor Xq .

Clearly, as a practical matter, neither the assumption of inde-
pendence nor that of identical distribution (stationarityas a time
series) hold true for observed sequences of job waiting times from
the real systems, and these failures present distinct potential diffi-
culties for our method. In the remainder of this section, we address
the statistical characteristics of these difficulties. Section 6 demon-
strates the effectiveness of (and, as a result, the impact ofthese
assumptions on) BMBP when applied to batch queuesin situ.

Let us first address the issue of independence, assuming for the
moment that our series is stationary but that there may be some
autocorrelation structure in the data. We hypothesize thatthe time-
series process associated to our data isergodic, which roughly
amounts to saying that all the salient sample statistics asymptot-
ically approach the corresponding population parameters.Ergod-
icity is a typical and standard assumption for real-world data sets;
cf., e.g.,[15]. Under this hypothesis, a given sample-based method
of inference will, in the long run,provide accurate confidence
bounds2 The high numbers of jobs at large-scale centers allow the
long-run nature of the bounds produce by BMBP to take effect and
produce the desired rate of success.

Although our method is not invalidated by dependence in the
series of measurements we examine to make a prediction, we do
2As an example, imagine tossing a coin which has the strange
property that, if a head is tossed, the probability that the next toss
will be a head is.9, and likewise, if a tail is tossed, the probabil-
ity that the next toss will be a tail is.9. The proportion of heads
we will see in the first few tosses is quite variable and depends
strongly on the first toss, and the tosses are not independent; nev-
ertheless, in the long run the proportion of heads will converge to
.5.

not claim that our method yields uncorrelated errors, whichis a
typical and desirable property for time-series-based estimation;
rather, our method produces bounds that will in the long run be
correct the desired fraction of the time, even when the data has
complex correlation structure, as long as the series is stationary.

A separate issue from thevalidity of our method is that exploit-
ing any autocorrelation structure in the time series should, in prin-
ciple, produce more accurate predictions than a Binomial Method
which ignores these effects. Indeed, most time-series analysis and
modeling techniques are primarily focused on using dependence
between measurements to improve forecasting [3]. For the present
application, however, there are a number of confounding factors
that foil time-series methods. First of all, for a given job entering
a queue, there are typically several jobs in the queue, so that the
most recent available wait-time measurement is for severaltime-
lags ahead. The correlation between the most recent measurement
at the time a job enters the queue and that job’s eventual waittime
is typically modest, around0.1, and does not reliably contribute to
the accuracy of wait-time predictions. Another issue is thecom-
plexity of the underlying distribution of wait times: They typically
have more weight in their tails than exponential distributions, and
many queues exhibit bimodal or multimodal tendencies as well.
All of this makes any linear analysis of data relationships (which
is the basis of the “classical” time-series approach) very difficult.
Thus while the data is not independent, it is also not amenable to
a standard time-series approach for exploiting correlation.

Non-stationarity and Changepoint Analysis
Unlike the issue of independence and correlation, the issueof non-
stationaritydoesplace limitations on the applicability of our method.
Clearly, for example, it will fail in the face of data with a “trend,”
for example a mean value that increases linearly with time. On
the other hand, insisting that the data be stationary is too restric-
tive to be realistic: Large compute centers change their schedul-
ing policies to meet new demands, new user communities migrate
to or from a particular machine,etc. It seems to be generally
true across the spectrum of traces we have examined (described
in Section 5.2) that wait-time data is typically stationaryfor a rel-
atively long period and then undergoes a “changepoint” intoan-
other stationary regime with different population characteristics.
We thus present the BMBP as a prediction method for data which
are stationary for periods and for which the underlying distribution
changes suddenly and relatively infrequently; we next discuss the
problem of detecting changepoints in this setting.

The problem of changepoint analysis in time series typically
focuses on the case when a family of models is specified and the
data are analyzeda posteriorifor points at which the parameters of
the model change. This outlook is unsatisfactory for our purposes
for at least two reasons. First, we adopted our non-parametric
approach to the batch-queue problem precisely in order to avoid
specifying a model for the data, which may typically exhibitmul-
timodal behavior (even during a stationary regime) and is resis-
tant to accurate parametric modeling. Second, we wish to detect
changepoints on the fly, as rapidly as possible, in order to avoid
long periods of wildly inaccurate predictions.

We address the problem of finding changepoints in the follow-
ing way. Given an independent sequence of data from a random



variableX, we deem that the occurrence of three values in a row
aboveX.95 constitutes a “rare event” and one which should be
taken to signify a changepoint. Why three in a row? To borrow a
well-known expression from Tukey3, two is not enough and four is
too many; this comes from consideration of “Type I” error. Under
the hypothesis of identical distribution, a string of two consecutive
high or low values occurs every400 values in a time series, which
is an unacceptable frequency for false positives. Three in arow
will occur every8000 values; this strikes a balance between sensi-
tivity to a change in the underlying distribution of the population
and certainty that a change is not being falsely reported.

Now, suppose that the data, regarded as a time series, exhibits
some autocorrelation structure. If the lag-1 autocorrelation is fairly
strong, three or even five measurements in a row above the.95
quantile might not be such a rare occurrence, since, for example,
one unusually high value makes it more likely that the next value
will also be high. In order to determine the number of consecu-
tive high values (top5% of the population) that constitute a “rare
event” approximately in line with the criterion spelled outfor inde-
pendent sequences, we conducted a Monte Carlo simulation with
various levels of lag-1 autocorrelation inAR(1) time series [15],
observed the frequencies of occurrences of consecutive high and
low values, and generated a lookup table for rare-event thresholds.

For a given set of data, then, we use the autocorrelation struc-
ture from its “training period” to determine its rare-eventthresh-
old, and then periodically update the threshold as new data ap-
pears. There is one subtlety to note, however: In keeping with
the spirit of non-parametric treatment of the data and in order
to make direct comparisons as much as possible, we “normalize”
the measurements of each data set to have underlying distribution
N(0, 1). We also suspected (and have subsequently confirmed)
that the normalization process has the effect of linearizing some of
the time-series characteristic of the data, so that the autocorrela-
tions become somewhat stronger. Note that this process is harm-
less for our method of inference, since it is invariant underany
order-preserving transform of the data.

When we observe the determined number of consecutive in-
correct predictions that constitute a rare event, we assumethat the
data has changed in some fundamental way so that old data is no
longer relevant for our predictions. Accordingly, we trim the his-
tory as much as we are able to while still producing meaningful
confidence bounds.

For example, it follows from formula 1 above that in order to
produce a95% confidence bound for the.95 quantile the mini-
mum history from which a statistically meaningful inference can
be drawn is59: Setj = 0, so that the sum gives the probability
that at least one is more thanXq ; the smallestn for which this sum
is at least.95 is 59. Therefore, for this specific quantile and level
of confidence, upon seeing the assigned number of missed predic-
tions in a row (determined by the first autocorrelation observed
during training), we would trim our history to the most recent 59

3We refer here to Tukey’s notorious explanation why the
“whiskers” in a boxplot should extend1.5 IQRs, namely that “1 is
too small and2 is too large”; beyond its beautiful “sound bite”
quality, Tukey’s quote serves as a reminder that any statistical
threshold, such as95% confidence or.05 significance level, is an
artificial entity ultimately chosen for its usefulness.

(so that we can at least make some sort of predictions) and start
making predictions based on the shortened history, keepingthe
history “window” at59 until our history lies entirely after the de-
tected changepoint. Thus our method automatically adapts to the
longest history that is clearly relevant to the current prediction.

For the data sets considered, our method produces (conserva-
tive) predictions for the.95 quantile for each wait time so that, for
each data set, our predictions are correct at least95% of the time.
The rare-event detection method is effective in handling change-
points (although prediction errors near changepoints tended to be
more frequent) , and the relatively high level of confidence chosen
enables the predictor to work well in spite of possible effects of
short-term non-stationarity in the data.

4.2 Model-Fitting Using Log-Normal and Weibull
Distributions

In [7], Downey hypothesizes that the job at the head of a FCFS
queue experiences a delay that is well-modeled by alog-uniform
distribution. In a private communication with the author, he ex-
pressed a belief that overall wait times are well modeled bylog-
normal distributions; recall that that the distribution of a random
variableX is log-normal if log X is normally distributed. This
observation suggests another approach to the problem of produc-
ing quantile estimates for batch-queue wait times; specifically, one
can fit a parametric distribution to the data using, preferably, the
method of maximum likelihood estimation (MLE) [20], and then
produce the desired population quantile from a lookup tableor the
inverse of the cumulative distribution function. Our previous ex-
periences with predicting process lifetime durations [25,4, 26]
and visual inspection of the data suggest that the Weibull distri-
bution might also serve as a good model for wait-time data. Thus
we compare BMBP to predictions generated from log-normal and
Weibull models.

In order to make a strict comparison between model-based meth-
ods and BMBP, it may be pointed out that it would be necessary,
rather than generating estimates using MLE, to produce an up-
per confidence bound on the estimates. In fact, we found that
the MLE-based estimates already tend to be conservative, and this
conservatism would only be exacerbated with upper confidence
bounds, so we choose to report the model-based method that per-
forms the best according to our criteria. Moreover, computing con-
fidence bounds for quantiles assuming a Weibull model requires
significant computational effort. This effort does not seemwar-
ranted, since it would only serve to make the predictions even more
conservative.

Initially, we implemented our model-based predictors to use
the full history of available measurements in each case. However,
in light of the long-term non-stationarity phenomenon discussed
above, incorporating the same history-truncation strategy that we
use with BMBP improves the performance of the model-based ap-
proaches as well. Indeed, we observed a substantial improvement
in both correctness and accuracy in both model-based techniques
when we incorporated our changepoint detector. Therefore,in
this study, the log-normal and Weibull parametric approaches we
investigate use the same history-trimming methodology as does
BMBP.



5. Evaluation

Our goal is both to determine the statistical correctness ofBMBP
and to investigate its accuracy. Recall that a method is correct
if, provided the number of job predictions is large enough tooff-
set short-term statistical anomalies, the percentage of correct pre-
dictions is at least as large as the specified quantile. Whilewe
have examined several different combinations of quantile and con-
fidence level as part of our research, for the purpose of brevity,
we report only on a single combination – the95th percentile with
confidence level0.95 – in this work. As a measure of accuracy,
we detail the degree of over-prediction each upper bound gener-
ates as the square root of the mean square over-prediction error.
That is, in the cases when BMBP and the other tested methodolo-
gies correctly produce a success percentage greater than95%, we
wish to detail how “tight” (in aggregate) the successful predictions
are. For example, notice that a simple prediction method in which
the predictor repeatedly guesses an astronomically large number
19 times followed by a single guess of a very small number will
generate predictions that are above the corresponding observations
exactly95% of the time and therefore, under our definitions, is
“correct.” On the other hand, it is not an “accurate” predictor, in a
way that we will discuss.

While we have deployed BMBP in production computing set-
tings (cf. Subsection 6.3), to first determine its efficacy, we use a
trace-based event-driven simulation (described in the next subsec-
tion). Logging data from a variety of HPC sites (described inSub-
section 5.2) records the queue name, arrival time, queue delay, and
processor count for all of the jobs submitted to each system.Be-
cause we can replay each submission trace we can compare BMBP
to alternative approaches based on a dynamically fit log-normal
and Weibull distributions determined by an MLE over the same
job workloads. For each job in each trace we record the prediction
that the job’s userwould have been givenif the particular method
under test were in place when the job was submitted. However,
since users might change their submission decisions based on the
predictions furnished, this comparison only demonstratesthat the
method retroactively captures the dynamics that were present at
the time of each submission.

We have also been able to obtain preliminary timings for BMBP
from its use in simulation. Using a1-gigahertz Pentium III, the av-
erage time required to make a prediction over the approximately
1.1 million predictions we examine across all batch queue logs is8
milliseconds. Clearly BMBP is efficient enough to deliver timely
forecasts.

5.1 Simulation Implementation

Our simulator takes as input a file containing historical batch-
queue job wait times from a variety of machines/queue combina-
tions and parameters directing the behavior of our models. For
each machine/queue for which we have historical information, we
were able to create parsed data files which contain one job entry
per line comprising the UNIX time stamp when the job was sub-
mitted and the duration of time the job stayed in the queue before
executing.

The steady state operation of the simulation reads in a line from

the data file, makes a prediction based on the current model being
used, and stores the job in a “pending queue”. We then increment
a virtual clock until one of two events occur.

• The virtual time specified for the job to wait in the pending
queue expires.

• A new job enters the system according to the virtual clock.

When the first case occurs, the job is simply added to a growing
list of historical job wait times that are available for forecasting.
Although the waiting time for the job is carried in the trace,the
predictor is only entitled to “see” the waiting times for jobs that
have completed their waiting periods.

When the second case occurs, the current prediction value is
used to make a prediction for the job entering the queue, the sim-
ulation checks to see if the predicted time for that job is greater
than or equal to the actual time the job will spend in the pending
queue (success), or the predicted time was less than the actual job
wait time (failure). The success or failure is recorded, andthe job
is placed on the pending queue. Note that in a “live” setting this
success or failure can only be determined after the job completed
its waiting period.

We also arbitrarily discard the first 30 days in all traces. In
developing our prediction methodology, we noticed that in agreat
many of the traces, the initial values were substantially different
than the remainder of the trace. Moreover, trend behavior (dis-
cussed in Section 6 below) is prevalent in these initial periods. We
speculate that the introduction of a new machine or new queue
on an existing machine typically initiates a “burn-in” period dur-
ing which users and administrators tune the queue’s controlpol-
icy and priority. During the burn-in, we observe long blockages
followed by sudden “waves” of released jobs. We attribute this
initial burstiness to administrator intervention in response to the
recognition (perhaps at the hands of an irate user community) of
an unforeseen policy consequence. For the most part (all buttwo
of the traces) this initial period lasts no more than 30 days,how-
ever. We will further discuss the “burn-in” feature of our data sets
in the results section.

5.2 Batch Queue Data

We obtained7 archival batch-queue logs from different high-
performance production computing settings covering different ma-
chine generations and time periods. From each log, we extracted
data for the various queues implemented by each site. For allsys-
tems except the ASCI Blue Pacific system at Lawrence Livermore
National Laboratory (LLNL), each queue determines, in part, the
priority of the jobs submitted to it. For example, jobs submitted
to the interactivequeue at the National Energy Research Science
Center (NERSC) are presumably given higher-priority access to
available processors than those submitted to theregularlongqueue
in an effort to provide interactive users with shorter queuing de-
lays.

Typically, a center publishes a set of constraints that willbe
imposed on all jobs submitted to a particular queue. These con-
straints include maximum allowable run time, maximum allow-
able memory footprint, and maximum processor count which the



batch-queue software enforces. The priority mechanism used by
the scheduler to select jobs from across the advertised queues,
however, is either partially or completely hidden from the user
community and may change over time. For example, the center
may choose temporarily to give higher priority to long-running
large jobs immediately before a site review or nationally visible
demonstration. While the user community may be informed of the
change and its duration, they may not be told exactly how it will
affect the priority given to jobs submitted to other queues.

Typically, however, centers do provide qualitative guidance re-
garding the priorities given to jobs as a function of their processor
count. Large jobs (with high processor counts) may either been-
couraged (as at the San Diego Supercomputer Center) by enjoying
a higher priority, or given a lower priority in an effort to improve
throughput. To capture these differences, we further subdivide
the data in each queue according to the number of processors re-
quested by each job. The processor ranges we use are1-4, 5-16,
17-64 and65+ 4. Because subdividing the logging data reduces
the number (and potentially the frequency) of jobs considered by
each method, we discard any case for which the total number of
jobs available is less than1000. Since each of the logs spans a year
or more, we believe it will be difficult to achieve significantresults
when fewer than 4 jobs per day, on the average, of a particular
node count are submitted.

For this study, we consider trace data composed of 1.1 mil-
lion jobs covering9 years of operation at National Science Foun-
dation and Department of Energy “open” computing centers. In
particular, we consider job submission data from three machines
operated by the San Diego Supercomputer Center during threedif-
ferent periods: the Intel Paragon (January 1996 to January 1997),
the IBM SP-2 (April 1998 to April 2000), and the IBM Power-4
system (Datastar, April 2004 to April 2005). We also use traces
from the Los Alamos National Laboratory’s (LANL’s) SGI Origin
2000 (December 1999 to April 2000), Lawrence Livermore Na-
tional Laboratory’s (LLNL’s) SP-2 (Blue Pacific, January 2002 to
October 2002), the SP-2 located at the National Energy Research
Center (NERSC) at Lawrence Berkeley Laboratory (LBL, March
2001 to March 2003), and the Cray-Dell cluster operated by the
Texas Advanced Computing Center (TACC, January 2004, March
2005). The LANL, SDSC SP-2 traces are available from Dror Fei-
telson’s workload web site [9]. The Paragon trace is courtesy of
Allen Downey, the NERSC trace is from Leonid Oliker at LBL,
LLNL trace is from Brent Gorda at LLNL, and an initial TACC
trace comes from Karl Schulz at TACC. In providing access to
such detailed data, we cannot overstate the contribution these peo-
ple have made to this work. Both the Datastar and eventual TACC
traces we use were gathered using a Network Weather Service [27,
30] automatic sensor and predictor we developed for this project
(cf. Section 6.3).

6. Results

In this section we investigate the efficacy of various methods
for predicting queue delay quantiles with a quantified levelof con-
4These processor ranges were suggested to us by Jay Boisseau,
Karl Schulz, and Warren Smith of the Texas Advanced Computing
Center (TACC) based on experience with the TACC user commu-
nity.

Machine Queue 1-4 5-16 17-64 65+

datastar TGhigh B,W,L - - -
datastar TGnormal B,W - - -
datastar express B,W B,W - -
datastar high none B,W,L - -
datastar normal B,W,L B,W,L B,W,L -
datastar normal32 B,W,L - - -
lanl mediumd - - - B,W,L
lanl short - - B,W -
lanl chammpq B,W,L - B,W,L -
lanl small none B,W,L B,W,L B,W
lanl shared B,W B,W,L - -
lanl scavenger B,W,L B,W B,W B,W,L
llnl all B,W B,W B,W -
nersc debug B,W,L B,W,L - -
nersc low B,W,L W,L B,W,L -
nersc premium B,W B,W,L - -
nersc regular B,W,L B,W,L none -
nersc reglong B,W,L - - -
sdsc normal B,W B,W,L B,W,L -
sdsc high B,W,L B,W,L B,W,L -
sdsc low B,W,L B,W,L B,W,L -
sdsc express B,W - - -
tacc2 normal B,W,L B,W,L B,W,L B,W
tacc2 devel B,W,L B,W,L - -
tacc2 serial B,W - - -

Table 1. BMBP simulation results indicating
percentage of correct job wait time predic-
tions.

fidence. The simulation results are intended to describe theactual
results a “live” prediction system would have generated if it had
been available during the time epoch described by each traceun-
der the assumption that the availability of these predictions would
not affect submission or execution times. While it appears from
our simulations that it is indeed possible to provide reliable esti-
mates of the bounds on the delay quantile – and to do so in a way
that takes into account the non-stationary nature of each series –
there is considerable variation among the various methodologies
we tested in terms of their accuracy and computational cost.

6.1 Predicting By Queue Name and Processor Count

With scheduling improvements such as backfilling [18], dy-
namically changing user priorities (often at the behest of besieged
system administrators or center personnel struggling to meet the
requirements of an important demonstration), and statically de-
fined priorities based on job size, users of modern batch systems
have come to expect that processor count affects queuing delay.
Thus, a common user desire is to be able to predict, at any point
in time, an upper bound on delay for potential job submissions of
different job sizes in a single queue.

To explore our ability to meet this need, we subdivide the jobs
in each queue according to the number of processors specifiedin
each submission request. Each subdivision corresponds to arange
of processor counts as discussed in Section 5.2.



Machine Queue 1-4 5-16 17-64 65+

datastar TGhigh 1.32,2.20 - - -
datastar TGnormal 2.93,F - - -
datastar express 2.07,F 1.53,F - -
datastar high fail 1.62,2.27 - -
datastar normal 2.45,2.82 3.16,2.89 1.60,1.87 -
datastar normal32 3.23,7.92 - - -
lanl mediumd - - - 1.04,0.56
lanl short - - 2.02,F -
lanl chammpq 0.28,0.08 - 1.80,4.77 -
lanl small fail 1.45,4.27 2.55,3.45 0.46,F
lanl shared 1.38,F 0.31,0.10 - -
lanl scavenger 1.01,0.97 0.71,F 2.90,F 1.51,1.68
llnl all 1.32,2.25 3.43,4.65 1.97,6.42 -
nersc debug 4.95,21.12 1.32,0.94 - -
nersc low 2.78,2.93 fail 1.69,4.76 -
nersc premium 1.90,F 1.76,1.70 - -
nersc regular 5.37,5.01 2.81,3.13 fail -
nersc reglong 1.53,3.77 - - -
sdsc normal 5.39,F 2.08,7.64 1.74,3.36 -
sdsc high 0.82,1.35 0.65,1.62 1.32,2.87 -
sdsc low 1.36,2.54 1.27,2.42 1.96,9.73 -
sdsc express 1.10,F - - -
tacc2 normal 3.01,5.35 2.57,9.15 2.79,2.18 1.22,F
tacc2 devel 0.57,0.13 1.12,0.38 - -
tacc2 serial 1.13,F - - -

Table 2. Simulation results showing the mean square error of successful predictions for three pre-
diction methods.

Table 1 shows the results of predicting the upper bound on the
0.95 quantile with95% confidence for BMBP, Weibull, and log-
normal in terms of success percentage. The first column shows
the site and machine associated with each trace and shows thesec-
ond column contains the queue name. The data in the remain-
ing four columns shows which of the three methods (denotedB,
W, L for Binomial, Weibull, log-normal respectively) achievesa
success percentage of95% or greater, rounded to the nearest per-
cent. In cases where there is insufficient data, we show a dash,
and the wordnoneindicates that no method achieves95%. Of the
55 traces with1000 jobs or more, BMBP is successful for51, the
Weibull method succeeds in52 cases, and the log-normal in36
cases.

Note that while space considerations prevent a more thorough
characterization of the data, both the number of jobs in eachsubdi-
vision and the time period covered by that subdivision vary consid-
erably. In general, thenormalor regular queues see considerably
more small job counts than the more “exotic” queue names and
tend to span greater portions of each overall trace chronologically.
As such, the time-series characteristics are quite different across
the spectrum of these test cases.

Table 2 shows the ratio of root mean square over- prediction
as defined in Section 5 of the Weibull and log-normal methods to
that generated by BMBP. In each cell of the table, the first number
is the ratio of Weibull to BMBP, and the second number is that
for log-normal to BMBP. We indicate cases where either method

failed to achieve95% and BMBP is successful with the character
F. Additionally, we denote cases where BMBP fails to achieve
95% with the word fail. We do not consider the error ratios in
failed cases any prediction error is possible if the target success
percentage is not achieved.

From Table 1, it is clear that the log-normal method is inferior
to both BMBP and the Weibull method in terms of success rate:
not only does it fail on the largest number of cases, but thereare
no cases where it is the only successful method. If we comparethe
more accurate BMBP and Weibull methods, we see from the ra-
tios shown in Table 2 that BMBP is more accurate than the Weibull
method. Among the51 cases where both methods are successful,
the Weibull method achieves a tighter bound only7 times. The
Weibull method does achieve a95% success rate for a single case
that fails for BMBP (NERSC,low queue,5 - 16 processors) but
as we discuss below, this failure would most probably be recored
as a success if a few more jobs had been available in the trace.
Moreover, the median root mean square over-prediction error ra-
tio for Weibull to BMBP is1.62. Thus, we assert that BMBP in
aggregate yields tighter, hence more meaningful, bounds onqueu-
ing delay across the spectrum of test cases than does the Weibull,
while achieving the same level of correctness on all but one of the
cases tested.

6.2 Analysis of BMBP Failures



For four of the subdivided traces shown in Table 1 BMBP fail
to achieve a success percentage of95% or better. These failures
occur as a result of two distinct conditions in the data. The first
is best illustrated by the time-series representation of the queue
waiting times and the corresponding predictions of them forthe
Datastarhigh queue for jobs requesting1-4 processors, depicted
in Figure 1.

Figure 1. Measurements and Predictions For
Datastar highQueue for 1-4 Processors Shown
by Job Sequence Number.

Note that the circled region in the figure corresponds to a se-
quence of consecutive jobs that had unusually long wait times.
These jobs were all in the queueat the same time, so that BMBP
did not have the long wait time for the first job available in time to
correct its predictions for the jobs that followed. This is an exam-
ple of the correlated prediction errors in the discussion from Sec-
tion 4, which are characteristic of this method. It also illustrates
the point that BMBP is a long-run method; observe that for thelast
few values in the trace, the predictor detected a changepoint and
adjusted its predictions accordingly. This type of behavior was
observed in many other queues; however, in most of the traces,
there were enough subsequent jobs that the overall success rate of
BMBP climbed back above95%. We also note that immediately
before the long sequence of high values, the percentage of correct
predictions was at better than95% for the trace. The failure in the
NERSC low queue for5-16 processors was due to a similar phe-
nomenon. A changepoint farther from the end of the trace (i.e. few
more jobs submitted to the queue) would have most likely caused
BMBP to record a success in this case.

The second type of failure is associated with the beginning of
the trace and is attributable to “burn-in,” as previously mentioned.
More formally, we think of a “burn-in” phase as the period of time
for which the data have not found any sort of limiting distribution.
This may be due to heavy dependence on initial conditions, rapidly
fluctuating policy, or other effects; in any event, it is a behavior
characteristic of new machines and not observed in any traceaf-
ter a sufficient amount of time has passed. Figure?? depicts the
queue wait times for the LANL small queue for jobs requesting1-
4 processors. Note that data within the circled regions in thefirst
part of the trace exhibit strong upward trends – exactly the sort of
data that BMBP cannot handle (again, see the discussion in Sec-
tion 4). Indeed, if a series of wait-time data were characterized

by trended periods, BMBP would fail to produce successful pre-
dictions. In this case, however, it seems to be due to the machine
having been new at the time the trace started. We chose30 days,
somewhat arbitrarily, as a “burn-in” period for each trace,and for
this particular machine, it is evident that the queue wait times did
not reach any sort of “steady state” until later. We note thatwhen
we re-ran our predictor with the burn-in period to60 days, our suc-
cess rate is better than95%. This phenomenon was also observed
for the failure of BMBP in the NERSC regular queue for17-64
processors.

Note that The total number of jobs contained in the four failed
traces is16, 269 which is approximately1.4% of the total sur-
vey. Moreover, only a single trace generates a success percentage
below 93% and in all failure cases BMBP is the most accurate
(lowest error) method.

6.3 Characterizing Queue Delay for Users

The potential value of such predictions is illustrated in Figure 3.
In the figure, we show the BMBP prediction of the upper bound
on the0.95 quantile with95% confidence for February 24, 2005
in thenormalqueue on Datastar at SDSC and Lonestar at TACC.
The black line shows the predicted queue delay for Datastar and
the gray line, the delay for Lonestar. The units in the figure are
seconds, and they-axis is shown on a log scale.

From between approximately 6:50 AM and 3:25 PM on the
24th, a user with a choice between running a job (of any proces-
sor count) in thenormalqueue at SDSC and at TACC would have
been able to predict that the job would have started in12 seconds
or less if submitted at TACC with at least95% certainty. Simi-
larly, the same user could have predicted that the job, if submitted
at SDSC during the same24-hour period, would have started exe-
cution in less than4 days, with the same95% certainty. We recog-
nize that few users have the luxury, at present, of choosing between
top-quality resources such as Lonestar and Datastar. However as
grid computing [13, 2] becomes more prevalent, and multi-site re-
sources such as TeraGrid [24] become more popular, we believe
that the need for effective prediction of this type will be important.

Figure 2. Measurements and Predictions For
LANL small queue for 1-4 Processors Shown
by Job Sequence Number.



Figure 3. Predicted queue delay upper
bounds on SDSC Datastar (black line) and
1 TACC Lonestar (gray line) for February 24,
2005

To attempt to realize this capability for HPC users, we have de-
ployed BMBP at a variety of computing centers including SDSC
and TACC (from whence we gathered data for this study) and the
TeraGrid [24] sites. We have also implemented prototype web-
based browsers for the data so that users can view predictions for
the these systems generated by the Network Weather Service in
real time. These browsers are currently accessible fromhttp://
pompone.cs.ucsb.edu/∼nurmi/batchq/nindex.htmlandhttp:
//pompone.cs.ucsb.edu/∼rgarver/bqindex.php in proto-
type form, however we plan to transition them into production the
near future. Thus while we have demonstrated BMBP using an
analysis of historical job data and a simple simulation, we note
that it constitutes a functioning system with real deployments as
well.

7. Conclusion

High-performance computing centers rely heavily on space-
sharing systems to support their users’ computational demands.
These systems typically employ a batch scheduler to handle multi-
ple jobs requesting access to the machines, which introduces queu-
ing delays that users experiences as delay in job turn-around time.
While users can usually predict job execution time once sched-
uled, queuing delay, which can often exceed execution time,is
more difficult to predict.

In this work, we propose a novel batch job wait time prediction
method which uses as input a historical trace of job wait times, a
quantile of interest (corresponding to a level of certaintyas to how
soon the job will execute), and a confidence bound on the quan-
tile prediction. With this information, the BMBP method canpro-
duce a prediction for the specified quantile at the given confidence
level which we have shown to be both reliable and robust in sim-
ulation. Our experiment compares the BMBP method to model-
fitting methods based on the Weibull and log-normal distributions
and finds it superior to both. In particular, it is more correct than
the method that uses log-normal distributions and more accurate
than the one that uses Weibull distributions.
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