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Abstract

Most space-sharing parallel computers presently operdted
high-performance computing centers use batch-queuingprsgs
to manage processor allocation. In many cases, users vgghin
use these batch-queued resources have accounts at maitigpde
and have the option of choosing at which site or sites to submi
a parallel job. In such a situation, the amount of time a user’
job will wait in any one batch queue can significantly impdue t
overall time a user waits from job submission to job comptetin
this work, we explore a new method for providing end-useth wi
predictions for the bounds on the queuing delay individwdhlsj
will experience. We evaluate this method using batch sdbedu
logs for distributed-memory parallel machines that covérygear
period at 7 large HPC centers.

Our results show that it is possible to predict delay boureds r
liably for jobs in different queues, and for jobs requestiiiferent
ranges of processor counts. Using this information, sdierdap-
plication developers can intelligently decide where torsitttheir
parallel codes in order to minimize overall turnaround time

1. Introduction

Typically, high-performance multi-processor computeteses
are managed usingpace sharinga scheduling strategy in which
each program is allocated a dedicated set of processotsefoiut
ration of its execution. In production computing settingsers
prefer space sharing to time sharing, since dedicated gsoceac-
cess isolates program execution performance from thetsftdc
a competitive load. Because processes within a partitionato

Because each program in a space-shared environment runs in
its own dedicated partition of the target machine, a progranmot
be initiated until there are a sufficient number of processwomil-
able for it to use. When a program must wait before it can be ini
ated, it is queued as a “job® along with a description of any pa-
rameters and environmental inpuésd. input files, shell environ-
ment variables) it will require to run. However, becausénefrieed
both to assign different priorities to users and to imprdwedver-
all efficiency of the resource, most installations do notaisenple
first-come-first-served (FCFS) queuing discipline to mantte
queue of waiting jobs. Indeed, a humber of queue-management
systems, including PBS [28], LoadLeveler [1], EASY [19], BQ
NQE [23], Maui [21] and GridEngine [16] each offers a rich and
sophisticated set of configuration options that allow systemin-
istrators to implement highly customized priority meclsans.

Unfortunately, while these mechanisms can be used to balanc
the need for high job throughput (which ensures machine effi-
ciency) with the desires of end-users for rapid turnaroumes,
the interaction between offered workload and local queulisg
cipline makes the amount of time a given job will wait highly
variable and difficult to predict. Users may wait a long time —
considerably longer the the job’s eventual execution tinfer-a
job to begin executing. Many users find this potential forrneap
dictable queuing delay particularly frustrating sincepinduction
settings, theycan make fairly reliable predictions of how long a
program will execute once it starts running. Without anigbtb
predict its queue waiting time, however, users cannot pahably
to have results by a specific point in time.

In this paper, we present tiBnomial Method Batch Predictor
(BMBP) — a new methodology for predicting bounds, with quan-

compete for CPU or memory resources, they avoid the cache anditative confidence levels, on the amount of time an indigidab

translation look-aside buffer (TLB) pollution effects thiane slic-
ing can induce. Additionally, inter-process communicatecurs
with minimal overhead, since a receiving process can neverd-
empted by a competing program.

For similar reasons, resource owners and administratefemr
space sharing as well. As long as the time to allocate parstio,
and reclaim partitions from, parallel programs is small,com-
pute cycles are lost to time-sharing overheads, and reseuum
with maximal efficiency. Thus, at present, almost all prdauc
high-performance computing (HPC) installations use soonemn f
of space sharing to manage their multi-processor and closte
chines.

*This work was supported by grants from the National Science

Foundation numbered CCF-0331654 and NGS-0305390, and by.

the San Diego Supercomputer Center.

will wait in queue before it is initiated for execution on aopr
duction “batch scheduled” resource. BMBP bases its priedist
only one the observed history of previous waiting times. Sihu
automatically takes into account the effects of varying khaad
and customized local queuing discipline. In addition, wearke
that the queuing behavior exhibited by all of the machineexve
amined in this studyq supercomputers operated by the National
Science Foundation and the Department of Energy ovkeyear
period) is highly variable. In response to hardware andisott
upgrades, failures, and configuration changes, changganaa-
tional priorities, user turnover, security evergs;, administrators
appear to tune and adjust their local queuing policies naftea
way that is not obvious to the user community. BMBP attempts t
detect thesehange point&daptively so that it uses only relevant

1we will use the term “job” throughout this paper to refer toea d
scription of a program and its execution requirements toatea-

ing system can use to initiate a program once the necessary re
source become available.



history to make each prediction.

We verify both the efficacy and generality of BMBP using the
logging information recorded by various batch scheduleaswere
in use during the time each machine in our study was in operati
All of the installations except the Lawrence Livermore Idatl
Laboratory maintained a variety of queues for each machivie.
presume that a qualitative queuing policy has been puldisbe
the user community for each queteed, jobs in the “Low” queue
at the San Diego Supercomputer Center would be given lovirer pr
ority than those in the “Normal” queue, which would, in tunaye
lower priority than those in the “High” queue). In this wayete
installations attempt to provide their respective usermsroani-
ties with a rudimentary and qualitative prediction cagabgince,
in general, lower-priority jobs can be expected to wait lemm
queue.

The remainder of this paper details BMBP and describes its
evaluation. In so doing, the paper makes the following tweeho
contributions.

e We describe a new predictive methodology for bounding
queuing delay that is quantitative, non-parametric, anmd ge
eral. As a result, the method works automatically, without
ancillary analysis or human “tuning” for a specific site or a
specific queue.

e We evaluate this methodology by comparing its performance
to an alternative parametric approach based on the assump-
tion that the underlying distribution is either log-nornaal
Weibull. Our results show that our new approach achieves
both the desired confidence levels and the tightest bounds
(in aggregate) for the cases under study.

However, in each case the batch scheduler must choose amongVe have developed BMBP to provide a practically realizalée p

jobs that are waiting in a number of queues, each of whichwvs go
erned by a specific policy. Moreover, the algorithm used fecta
particular job at a particular time from amongst the varigusues
is not typically published and can potentially change urafér
ministrator control. Thus, while the implementation of tiple
policies for a given machine through multiple queues canigeo

a high-level, qualitative expectation of how a specific joll e
treated, it substantially complicates the problem of mgkiguan-
titative prediction for that job’s wait time.

We examine the predictive power of BMBP when it is applied
to the various queues implemented at each site by detaitimg h
well our new method predicts in a quantitative way the gaalit
tive characteristics attached to each queue. With imppicdrity

dictive capability for deployment as a user and schedulow. t
Therefore our reportage focuses on the results generated/bgk-
ing prototype that is currently undergoing integrationhwitirious
batch scheduling systems, and our results are, ultimasipiri-

cal.

2. Related Work

Smith, Taylor, and Foster in [29] use a template-based agpro
to categorize and then predict job execution times. Frorsehe
execution-time predictions, they then derive queue detadip-
tions by simulating the future behavior of the batch schexdir
faster-than-real time. Our work differs from this approactwo

mechanisms such as backfilling [18] in use at some of the, sites significant ways. To be effective, the Smith-Foster-Tayt@thod

however, users have come to expect that processor courdfalso
fects wait time. In particular, jobs in a particular queuguesting
small numbers of processors are believed, typically, ta Veai
shorter periods, since they can be “backfilled” into the ntaeh

around larger jobs. We therefore also examine how well BMBP

predicts the bounds on waiting times for jobs based on theegue

to which they were submitted and the number of processoys the

specified. In all cases — covering ovemillion jobs — the method
makes predictionfor each joh which are “correct” in a very spe-
cific statistical sense which we will discuss below, for tlo&ibds
on the waiting time.

This ability to make predictions for individual jobs digginishes
our work from other previous efforts. An extensive body of re
search [29, 7, 8, 11, 14, 5, 10, 12] investigates the stzaigbirop-
erties of offered job workload for various HPC systems. Bg-pr
viding arigorous statistical characterization of job nateival times
and program execution times, the resulting statisticgl@ries as-
sociated with queuing time can be derived through simulatize-
spite these extensive characterization studies, howeseknow
of few previous research efforts that treat the problem efijmt-
ing queuing delay in a quantitative way. We emphasize, hewev
that our goal is strictly to provide a predictive mechanismusers
and application schedulers rather than to investigate igtelal-
tional properties exhibited by HPC systems. In particlBBP
makes a prediction for each individual job’s queuing dekther
than a statistical characterization of the queuing del@gegnced
by a set of jobs (e.g. using an estimate of the mean waiting)tim

depends both on the ability to predict job execution timeueaiely

for each job and on explicit knowledge of the scheduling athm
used by the batch scheduler. Other work [17, 6] suggestsihiat
ing such predictions may be difficult for large-scale prdihrc
computing centers. Moreover, the exact details of the sdheg
policy implemented at any specific site is typically unpsbéd.
While the algorithm may be known, the specific instance of the
algorithm and the definition of any parameters it requiresthe
prerogative of the site administrators and, indeed, mayhaaged

as conditions and site-specific needs warrant. In conastap-
proach uses only the observed queue delays. By doing scgst do
not require execution-time predictions, and it automdtidakes
into account any site-specific effects induced by the loclaédul-

ing policy (whether static or dynamically changing).

Downey [7, 8] uses the log-uniform distribution to model the
remaining lifetimes of jobs executing in all machine péotis as
a way of predicting when a “cluster” of a given size will beam
available and thus when the job waiting at the head of the gueu
will start. Our work differs from Downey’s in that we do notais
predictions of the time until resources become free to edérthe
start time of a job. Rather, we work directly from the obsedrve
queuing delays.

Finally, our approach differs from both of these related ap-
proaches in that it attempts to establish rigorous boundthen
time an individual job will wait rather than a specific, siaglalued
prediction of its waiting time. We contend that the highlyighle



nature of observed queue delay is better represented tatiabte

correct predictions it makes is at least as great as the itpiirns

system users as quantified confidence bounds than as a specifipredicting.

prediction, since users can “know” the probability thatitheb
will fall outside the range.

3. Problem Definition: Predicting Bounds on
Queuing Delay

If we are to treat the problem of predicting queuing delay sta
tistically, the best possible outcome (from the job subenitper-
spective) is the ability to predict bounds on the delay a jolb w

experience, and to do so with a quantifiable measure of confi-
dence. However, much of the observed queue delay data iy high

skewed making moment-based descriptive statistics sunfeas
and standard deviation potentially deceptive. In suchs;aseler
statistics (such as median and quartiles) are generallyidemed
more appropriatecf. [22], chapter 1, section 2). For example,
knowing that themeanwait time a user can expect 24 hours is
likely to be less useful than knowing that there i85% chance
that the wait time will be less thatb minutes — which is not an
unrealistic state of affairs for a batch queue.

In this work, we have chosen to use the vedug for each. We
have identified th®.95 quantile as appropriate for a level of how
certain we wish to be about how long a job will wait in the queue
At the same time95% is fairly standard from the standpoint of
statistical inference as a level of confidence. Note thaabee it is
the0.95 quantile we are estimating, a user should expect that there
is at most a in 20 chance that the actual wait time experienced by
a job exceed the predicted wait time (provided, of coursa, tthe
prediction method is correct in the sense of the above papayr

Our aim in producing predictions is not only that they be cor-
rect at least95% of the time, but also that they be meaningful
to the user. If we were to make extremely conservative predic
tions, based, say, on the maximum wait time ever observeukein t
queue, the percentage of correct predictions would dossbile
crease; however, the extremely large predictions producadd
have little utility to someone wishing to use these valuegpfan-
ning purposes. One sees, then, that there is a trade-ofebatw
having a high percentage of correct predictions and thoseigr
tions reflecting what a “typical” wait time might be: If theqatic-

Now, suppose that a scheduler or machine user would like to tions are correct at a substantially higher rate than aideettit is a

know the maximum amount of time a job is likely to wait in a
batch queue before it is executed. In order to be precise yar-q
tify the word “likely” to mean that we wish to generate a padd
number of seconds so that we &&% certain that our job will
begin execution within that number of seconds, in the semsg t
over time,95% of our predictions will be at least as great as the
actual wait-times of the jobs. If we regard the wait time ofveeg
job as a random variable, then, this amounts to finding ameagti
for the 95" percentile, 010.95 quantile of this variable’s distri-
bution. Note that an estimate of the mean and standard dwgviat
provides little predictive information for this question.

Since the distribution of interest is unknown, any of itsgrar
eters in which we might be interested must be estimated;ailpi
from a sample. Standard methods of statistical infererioavals

sign that they are overly conservative and therefore lessing-

ful than they could be. Thus the fact that, in general, orityhsly
more than95% of our predictions are correct for each queue, as
we will see in Section 6, shows that they are meaningful fer th
purpose for which they are designed.

Note also that, while we have presented the problem in terms
of estimating an upper bound on queuing delay, it can be aityil
formulated to produce lower confidence bounds, or two-soded
fidence intervals, at any desired level of confidence. It ¢sm lze
used, of course, for any population quantile. For examplelew
we have focused in this paper on the relative certainty peavby
the .95 quantile, our method estimates confidence bounds for the
median {.e. the point of “50-50" probability) with equal effec-
tiveness. We note that the quantiles at the tail of the Bistion

to use a sample to produce an interval (which may be infinite on corresponding to rarely occurring but large values are mare
one end) that we can assert contain the parameter with a speciable, hence more difficult to estimate, than those nearesethter

fied level of confidenceroughly corresponding to the “probabil-
ity” that our interval has captured the true parameter ofpibe-
ulation. In general, the more confident we wish to be, the wide
the confidence range; for example9@% confidence interval for
the estimated.95 quantile is wider than a80% confidence in-

of the distribution. Thus, in a typical batch queue settingich
is characterized by large numbers of jobs experiencingt steit
times and a few jobs experiencing long wait times, the uppang
tiles provide the greatest challenge for a prediction nmethBy
focusing on an upper bound for tt@ quantile, we are testing the

terval, because the higher level of confidence demands that w limits of what can be predicted for queue delay.

be more certain that the true parameter lies in our interizair
the purposes of this paper, we will typically be consideripger
confidenceboundson quantiles, which correspond to left-infinite
intervals(—oo, BJ.

To estimate an upper bound, then, we need to choose two val-

ues: the quantile and the desired level of confidence fordhead.
Returning to the example, to say that a particular stasistethod
produces &9%-confidence upper bound on theé)5 quantile is to
say that, if the method is applied a large number of timesyahge
it produces fails to be greater than the5 quantile no more than
1% of the time. We will term an upper-bound predictioncasrect
if the observed value falls below the predicted value; wé teiim
a prediction method on a set of datarrectif the proportion of

4. Inference for Quantiles

In this section, we describe our approach to the problem-of de
termining upper bounds, at a fixed level of confidence, fongua
tiles of a given population whose distribution is unknowrs de-
scribed previously, our intention is to use this upper boaad
conservative estimate for the queuing delay, and to repertle-
gree of conservatism as the quantified confidence level.

4.1 The Binomial Method Batch Predictor



Our approach, which we term tignomial Method Batch Pre-
dictor (BMBP), is based on the following simple observation: If
X is arandom variable, an, is theq quantile of the distribution
of X, then a single observationfrom X will be greater thanX,
with probability (1 — ¢). (For our application, if we regard the
wait time, in seconds, of a particular job submitted to a guasl
a random variableX, the probability that it will wait for less than
X 95 seconds is exactly5.)

Thus (provisionally under the typical assumptions of iretep
dence and identical distribution) we can regard all of theesb
vations as a sequence of independent Bernoulli trials wibha
bility of success equal tg, where an observation is regarded as
a “success” if it is less thaiX,. If there aren observations, the
probability of exactlyk “successes” is described by a Binomial
distribution with parameterg andn. Therefore, the probability
that more thark observations are greater thaf is equal to

1)

1‘2(?) (1—q) -q"7?

Now, if we find the smallest value &ffor which Equation 1 is
larger than some specified confidence leVekhen we can assert
that we are confident at leve! that thek*" value in a sorted set
of n observations will be greater than or equal to figquantile
of the underlying population — in other words, #& sorted value
provides devel-C upper confidence bourfdr X,.

Clearly, as a practical matter, neither the assumption aé-in
pendence nor that of identical distribution (stationagya time
series) hold true for observed sequences of job waitingstifren
the real systems, and these failures present distinct faiteliffi-
culties for our method. In the remainder of this section, dadrass
the statistical characteristics of these difficulties.tl&®d demon-
strates the effectiveness of (and, as a result, the impaittese
assumptions on) BMBP when applied to batch quenestu.

Let us first address the issue of independence, assumirfgefor t
moment that our series is stationary but that there may be som
autocorrelation structure in the data. We hypothesizettiegtime-
series process associated to our datargodic which roughly
amounts to saying that all the salient sample statisticenpsyt-
ically approach the corresponding population parametergod-
icity is a typical and standard assumption for real-worlthdzets;
cf., e.9.[15]. Under this hypothesis, a given sample-based metho
of inference will, in the long run, provide accurate confidence
bound$ The high numbers of jobs at large-scale centers allow the
long-run nature of the bounds produce by BMBP to take effedt a
produce the desired rate of success.

Although our method is not invalidated by dependence in the

series of measurements we examine to make a prediction, we dq5

not claim that our method yields uncorrelated errors, wisch
typical and desirable property for time-series-basedredion;
rather, our method produces bounds that will in the long ren b
correct the desired fraction of the time, even when the datg h
complex correlation structure, as long as the series iwatal.

A separate issue from tivalidity of our method is that exploit-
ing any autocorrelation structure in the time series shanlgrin-
ciple, produce more accurate predictions than a Binomial Method
which ignores these effects. Indeed, most time-serieysisand
modeling techniques are primarily focused on using deperele
between measurements to improve forecasting [3]. For sent
application, however, there are a number of confoundingpfac
that foil time-series methods. First of all, for a given joftering
a queue, there are typically several jobs in the queue, sdhba
most recent available wait-time measurement is for sevenea-
lags ahead. The correlation between the most recent measuoire
at the time a job enters the queue and that job’s eventualiveit
is typically modest, around.1, and does not reliably contribute to
the accuracy of wait-time predictions. Another issue isdbm-
plexity of the underlying distribution of wait times: Theypically
have more weight in their tails than exponential distribog, and
many queues exhibit bimodal or multimodal tendencies as wel
All of this makes any linear analysis of data relationshiphi¢h
is the basis of the “classical” time-series approach) véificdlt.
Thus while the data is not independent, it is also not amenabl
a standard time-series approach for exploiting corretatio

Non-stationarity and Changepoint Analysis

Unlike the issue of independence and correlation, the isEnen-
stationaritydoesplace limitations on the applicability of our method.
Clearly, for example, it will fail in the face of data with arénd,”

for example a mean value that increases linearly with time. O
the other hand, insisting that the data be stationary isestic-
tive to be realistic: Large compute centers change theiecidh

ing policies to meet new demands, new user communities gigra
to or from a particular machinegtc. It seems to be generally
true across the spectrum of traces we have examined (dedcrib
in Section 5.2) that wait-time data is typically station&oy a rel-
atively long period and then undergoes a “changepoint” arteo
other stationary regime with different population chagsistics.
We thus present the BMBP as a prediction method for data which
are stationary for periods and for which the underlyingrébstion
changes suddenly and relatively infrequently; we nextutiseche

d problem of detecting changepoints in this setting.

The problem of changepoint analysis in time series typicall
focuses on the case when a family of models is specified and the
data are analyzeglposteriorifor points at which the parameters of
the model change. This outlook is unsatisfactory for ouppses
for at least two reasons. First, we adopted our non-par&netr
approach to the batch-queue problem precisely in order aa@av
pecifying a model for the data, which may typically exhihitl-

2As an example, imagine tossing a coin which has the strangetimodal behavior (even during a stationary regime) and sisre

property that, if a head is tossed, the probability that & toss
will be a head is9, and likewise, if a tail is tossed, the probabil-
ity that the next toss will be a tail i9). The proportion of heads
we will see in the first few tosses is quite variable and depend
strongly on the first toss, and the tosses are not indepenukant
ertheless, in the long run the proportion of heads will cogedo

5.

tant to accurate parametric modeling. Second, we wish tectlet
changepoints on the fly, as rapidly as possible, in order ¢idav
long periods of wildly inaccurate predictions.

We address the problem of finding changepoints in the follow-
ing way. Given an independent sequence of data from a random



variable X, we deem that the occurrence of three values in a row (so that we can at least make some sort of predictions) and sta

above X g5 constitutes a “rare event” and one which should be
taken to signify a changepoint. Why three in a row? To borrow a
well-known expression from Tukey two is not enough and four is
too many; this comes from consideration of “Type I” error.dén

the hypothesis of identical distribution, a string of twameecutive
high or low values occurs every)0 values in a time series, which

is an unacceptable frequency for false positives. Threerowa
will occur every8000 values; this strikes a balance between sensi-
tivity to a change in the underlying distribution of the pégtion

and certainty that a change is not being falsely reported.

Now, suppose that the data, regarded as a time series, tsxhibi
some autocorrelation structure. If the lagutocorrelation is fairly
strong, three or even five measurements in a row abovedthe
guantile might not be such a rare occurrence, since, for pleam
one unusually high value makes it more likely that the neltea
will also be high. In order to determine the number of consecu
tive high values (top% of the population) that constitute a “rare
event” approximately in line with the criterion spelled doitinde-
pendent sequences, we conducted a Monte Carlo simulattbn wi
various levels of lag- autocorrelation irMAR(1) time series [15],
observed the frequencies of occurrences of consecutivedrd
low values, and generated a lookup table for rare-evenshiotds.

For a given set of data, then, we use the autocorrelation-stru
ture from its “training period” to determine its rare-evehtesh-
old, and then periodically update the threshold as new data a
pears. There is one subtlety to note, however: In keeping wit
the spirit of non-parametric treatment of the data and ireord
to make direct comparisons as much as possible, we “noreializ
the measurements of each data set to have underlying disdrib

making predictions based on the shortened history, keehieg
history “window” at59 until our history lies entirely after the de-
tected changepoint. Thus our method automatically adaptset
longest history that is clearly relevant to the current féah.

For the data sets considered, our method produces (conserva

tive) predictions for thed5 quantile for each wait time so that, for
each data set, our predictions are correct at I¢&&t of the time.
The rare-event detection method is effective in handlirangfe-
points (although prediction errors near changepointseend be
more frequent) , and the relatively high level of confidencesen
enables the predictor to work well in spite of possible dffeaf
short-term non-stationarity in the data.

4.2 Model-Fitting Using Log-Normal and Weibull
Distributions

In [7], Downey hypothesizes that the job at the head of a FCFS
gueue experiences a delay that is well-modeled lgauniform
distribution. In a private communication with the authoe, éx-
pressed a belief that overall wait times are well modeledolgy
normal distributions; recall that that the distribution of a rando
variable X is log-normal iflog X is normally distributed. This
observation suggests another approach to the problem déipro
ing quantile estimates for batch-queue wait times; spedificone
can fit a parametric distribution to the data using, prefigrabe
method of maximum likelihood estimation (MLE) [20], and the
produce the desired population quantile from a lookup tabtee
inverse of the cumulative distribution function. Our p@w ex-
periences with predicting process lifetime durations [2526]

N(0,1). We also suspected (and have subsequently confirmed)and visual inspection of the data suggest that the Weibsttiei

that the normalization process has the effect of lineagigmme of
the time-series characteristic of the data, so that thecacrela-
tions become somewhat stronger. Note that this processns ha
less for our method of inference, since it is invariant undey
order-preserving transform of the data.

When we observe the determined number of consecutive in-

correct predictions that constitute a rare event, we asshatehe

bution might also serve as a good model for wait-time dataisTh
we compare BMBP to predictions generated from log-normdl an
Weibull models.

In order to make a strict comparison between model-baseld-met
ods and BMBP, it may be pointed out that it would be necessary,
rather than generating estimates using MLE, to produce an up
per confidence bound on the estimates. In fact, we found that

data has changed in some fundamental way so that old data is n@he MLE-based estimates already tend to be conservatidethim

longer relevant for our predictions. Accordingly, we tritrethis-
tory as much as we are able to while still producing meaningfu
confidence bounds.

For example, it follows from formula 1 above that in order to
produce a5% confidence bound for the)5 quantile the mini-
mum history from which a statistically meaningful inferencan
be drawn is59: Setj; = 0, so that the sum gives the probability
that at least one is more thaf,; the smallest for which this sum
is at least95 is 59. Therefore, for this specific quantile and level
of confidence, upon seeing the assighed number of misseitpred
tions in a row (determined by the first autocorrelation obser
during training), we would trim our history to the most retsf

*We refer here to Tukey's notorious explanation why the
“whiskers” in a boxplot should extend5 IQRs, namely that1' is

too small and is too large”; beyond its beautiful “sound bite”
quality, Tukey’s quote serves as a reminder that any Statist
threshold, such a$5% confidence or05 significance level, is an
artificial entity ultimately chosen for its usefulness.

conservatism would only be exacerbated with upper confilenc
bounds, so we choose to report the model-based method that pe
forms the best according to our criteria. Moreover, comyution-
fidence bounds for quantiles assuming a Weibull model regquir
significant computational effort. This effort does not seear-
ranted, since it would only serve to make the predictions evere
conservative.

Initially, we implemented our model-based predictors te us
the full history of available measurements in each case. dery
in light of the long-term non-stationarity phenomenon dised
above, incorporating the same history-truncation stgatbgt we
use with BMBP improves the performance of the model-based ap
proaches as well. Indeed, we observed a substantial impeve
in both correctness and accuracy in both model-based tpobsi
when we incorporated our changepoint detector. Therefare,
this study, the log-normal and Weibull parametric appreschve
investigate use the same history-trimming methodology aes d
BMBP.



5. Evaluation

Our goal is both to determine the statistical correctne 88wiB P
and to investigate its accuracy. Recall that a method isecorr
if, provided the number of job predictions is large enougloffe
set short-term statistical anomalies, the percentageroéciopre-
dictions is at least as large as the specified quantile. Winde
have examined several different combinations of quantitecon-
fidence level as part of our research, for the purpose of tyrevi
we report only on a single combination — h&th percentile with
confidence levebd.95 — in this work. As a measure of accuracy,
we detail the degree of over-prediction each upper bounérgen
ates as the square root of the mean square over-prediction er

That is, in the cases when BMBP and the other tested methodolo

gies correctly produce a success percentage greatefibawe
wish to detail how “tight” (in aggregate) the successfuldicgons
are. For example, notice that a simple prediction methodhichv
the predictor repeatedly guesses an astronomically langebar

the data file, makes a prediction based on the current modd be
used, and stores the job in a “pending queue”. We then inareme
a virtual clock until one of two events occur.

e The virtual time specified for the job to wait in the pending
gueue expires.

e A new job enters the system according to the virtual clock.

When the first case occurs, the job is simply added to a growing
list of historical job wait times that are available for foesting.
Although the waiting time for the job is carried in the tratiee
predictor is only entitled to “see” the waiting times for pthat
have completed their waiting periods.

When the second case occurs, the current prediction value is
used to make a prediction for the job entering the queue,ithe s
ulation checks to see if the predicted time for that job isatge
than or equal to the actual time the job will spend in the pegdi

19 times followed by a single guess of a very small number will queue (success), or the predicted time was less than tha gt

generate predictions that are above the correspondingvaitieas

wait time (failure). The success or failure is recorded, tiredjob

exactly95% of the time and therefore, under our definitions, is g placed on the pending queue. Note that in a “live” setthig t

“correct.” On the other hand, it is not an “accurate” preglicin a
way that we will discuss.

While we have deployed BMBP in production computing set-

success or failure can only be determined after the job cateqbl
its waiting period.

We also arbitrarily discard the first 30 days in all traces. In

tings (cf. Subsection 6.3), to first determine its efficacy, we use a developing our prediction methodology, we noticed that great

trace-based event-driven simulation (described in the sigdbsec-
tion). Logging data from a variety of HPC sites (describe8 -
section 5.2) records the queue name, arrival time, queag,deid
processor count for all of the jobs submitted to each systen.

cause we can replay each submission trace we can compare BMBR

to alternative approaches based on a dynamically fit logaabr

many of the traces, the initial values were substantialfiedint
than the remainder of the trace. Moreover, trend behavigr (d
cussed in Section 6 below) is prevalent in these initialqukri We
speculate that the introduction of a new machine or new queue
on an existing machine typically initiates a “burn-in” pmatidur-
ing which users and administrators tune the queue’s copobl

and Weibull distributions determined by an MLE over the same icy and priority. During the burn-in, we observe long blogka

job workloads. For each job in each trace we record the piiedic
that the job’s usewould have been givehthe particular method

followed by sudden “waves” of released jobs. We attribuis th
initial burstiness to administrator intervention in respe to the

under test were in place when the job was submitted. However, recognition (perhaps at the hands of an irate user commusfity

since users might change their submission decisions bastteo
predictions furnished, this comparison only demonstrttasthe
method retroactively captures the dynamics that were ptese
the time of each submission.

We have also been able to obtain preliminary timings for BMBP

from its use in simulation. Usinggigahertz Pentium Ill, the av-
erage time required to make a prediction over the approxiyat
1.1 million predictions we examine across all batch queue Is§s i
milliseconds. Clearly BMBP is efficient enough to delivenély
forecasts.

5.1 Simulation Implementation

Our simulator takes as input a file containing historicathat
gueue job wait times from a variety of machines/queue coaibin

an unforeseen policy consequence. For the most part (atiMout
of the traces) this initial period lasts no more than 30 dapsy-
ever. We will further discuss the “burn-in” feature of outaaets
in the results section.

5.2 Batch Queue Data

We obtainedr archival batch-queue logs from different high-
performance production computing settings covering cifiema-
chine generations and time periods. From each log, we ¢gttac
data for the various queues implemented by each site. Feys
tems except the ASCI Blue Pacific system at Lawrence Liveemor
National Laboratory (LLNL), each queue determines, in pitue
priority of the jobs submitted to it. For example, jobs sutted
to theinteractivequeue at the National Energy Research Science
Center (NERSC) are presumably given higher-priority asdes

tions and parameters directing the behavior of our modets. F available processors than those submitted tadgelarlongqueue

each machine/queue for which we have historical infornmatice

in an effort to provide interactive users with shorter qagude-

were able to create parsed data files which contain one joig ent lays.

per line comprising the UNIX time stamp when the job was sub-

mitted and the duration of time the job stayed in the queuerbef
executing.

The steady state operation of the simulation reads in arame f

Typically, a center publishes a set of constraints that kgl
imposed on all jobs submitted to a particular queue. These co
straints include maximum allowable run time, maximum alow
able memory footprint, and maximum processor count whieh th



batch-queue software enforces. The priority mechanisrd bge | Machine | Queue 1-4 [516 [17-64 [ 65+ |

the scheduler to select jobs from across the advertisedegueu datastar | TGhigh B,W,L | - - -
however, is either partially or completely hidden from theeu datastar | TGnormal | BW - - -
community and may change over time. For example, the center | datastar | express B,W B,W - -
may choose temporarily to give higher priority to long-rimgn datastar | high none BWL |- N
large jobs immediately before a site review or nationallyiblie datastar | normal BWL | BWL|BWL] -
demonstration. While the user community may be informedhef t datastar | normal32 | B,W_L | - - -
change and its duration, they may not be told exactly how it wi lani mediumd | - - - BW.L
affect the priority given to jobs submitted to other queues. lani short - . BW |-
) . o ) lanl chammpq | BW,L | - BWL | -
Typlcally, h_ovv_e_ver, _centers_ do provide qu_alltatlve g_unntare- Tani small none | BWL | BWL | BW
garding the pr.lormes given to jobs as a function of theqqﬂssor Tani shared BW BWL |- .
count. Large jobs (with hlgh processor counts) may elthe_erbt_a Tani scavenger| BW,.L | BW B.W BWL
couraged (as at the San Diego Supercomputer Center) byiragjoy i all BW BW BW -
a higher priority, or given a lower priority in an effort to prove . . .
. s nersc debug B,wW,.L | BWL | - -
throughput. To capture these differences, we further sidli
the data in each queue according to the number of processors r nersc low - BWL | WL BWL |-
quested by each job. The processor ranges we usk-4ré-16, nersc premium | B.W BWL | - -
17-64 and65+ *. Because subdividing the logging data reduces nersc regular BWL | BWL | none | -
the number (and potentially the frequency) of jobs considésy nersc reglong | BWL | - - -
each method, we discard any case for which the total number of | SASC normal BW | BWL | BWL] -
jobs available is less thar®00. Since each of the logs spans ayear | SdSC high BWL | BWL | BWL | -
or more, we believe it will be difficult to achieve significarsults sdsc low BWL | BWL|BWL| -
when fewer than 4 jobs per day, on the average, of a particular | Sdsc express BW |- - -
node count are submitted. tacc2 normal B,w,.L | BW,L | BWL | BW
tacc2 devel BW.L |BWL ]| - -
For this study, we consider trace data composed of 1.1 mil- | tacc2 serial BW |- - -
lion jobs coveringd years of operation at National Science Foun-
dation and Department of Energy “open” computing centers. | Table 1. BMBP simulation results indicating
particular, we consider job submission data from three ina@sh percentage of correct job wait time predic-
operated by the San Diego Supercomputer Center duringdifree tions.

ferent periods: the Intel Paragon (January 1996 to Janiggy)1l
the IBM SP-2 (April 1998 to April 2000), and the IBM Power-4
?r)ésr;em e(ILDg;a:It:rrﬁ(ﬁspl(llgﬁgggl tfaﬁgrr!é?y(?: )(.LX:/\leL’zl)sgéjls g.et.mgac fidence. 1:he fimulqtiqn results are intended to describaahgal
2000 (December 1999 to April 2000), Lawrence Livermore Na- results a . live prec_ilctlon system would hav_e generated ifad
tional Laboratory’s (LLNL'S) SP-2 (Blue Pacific, January020to been available d.unng the time gpogh described by gagh trace
October 2002), the SP-2 located at the National Energy Resea der the assumpt_lor_] that the ava|_lab|l|_ty of thesg pr_edmilwould
Center (NERSC) at Lawrence Berkeley Laboratory (LBL, March not affect S.me'SS'On or gxecunon “'T‘es- Wh"e. I appgammf
2001 to March 2003), and the Cray-Dell cluster operated by th our simulations that it is indeed poss'b'?‘ to provide rébad:x_stl-
Texas Advanced Computing Center (TACC, January 2004, March mates of th_e bounds on the delay qL_Jantlle —andto do S0 Inaway
2005). The LANL, SDSC SP-2 traces are available from Dror Fei that takes into account the non-stationary nature of eaghsse
telson’s workload web site [9]. The Paragon trace is coyrtés there is co_n&derable va_natlon among the various metiogtes
Allen Downey, the NERSC trace is from Leonid Oliker at LBL, we tested in terms of their accuracy and computational cost.
LLNL trace is from Brent Gorda at LLNL, and an initial TACC o
trace comes from Karl Schulz at TACC. In providing access to 6.1 Predicting By Queue Name and Processor Count
such detailed data, we cannot overstate the contributiesetheo-
ple have made to this work. Both the Datastar and eventualCTAC With scheduling improvements such as backfilling [18], dy-
traces we use were gathered using a Network Weather Se®vice [ namically changing user priorities (often at the behestesi¢ged
30] automatic sensor and predictor we developed for thifepto  system administrators or center personnel struggling tet rifie
(cf. Section 6.3). requirements of an important demonstration), and stéick-
fined priorities based on job size, users of modern batclesyst
have come to expect that processor count affects queuimy.del
Thus, a common user desire is to be able to predict, at any poin
in time, an upper bound on delay for potential job submissioin

In this section we investigate the efficacy of various meshod different job sizes in a single queue.
for predicting queue delay quantiles with a quantified |@felon-

6. Results

“These processor ranges were suggested to us by Jay Boisseau, '° explore our ability to meet this need, we subdivide thesjob
Karl Schulz, and Warren Smith of the Texas Advanced Comgutin ' €ach queue according to the number of processors speicified
Center (TACC) based on experience with the TACC user commu- €ach submission request. Each subdivision correspondsitge
nity. of processor counts as discussed in Section 5.2.



Machine| Queue | 1-4 | 5-16 [ 17-64 [ 65+ |
datastar | TGhigh 1.32,2.20 | - - -
datastar | TGnormal | 2.93,F - - -
datastar | express 2.07,F 1.53,F - -
datastar | high fall 1.62,2.27| - -
datastar | normal 2.45,2.82 | 3.16,2.89| 1.60,1.87| -
datastar | normal32 | 3.23,7.92 | - - -
lanl mediumd | - - - 1.04,0.56

lanl short - - 2.02,F -

lanl chammpq | 0.28,0.08 | - 1.80,4.77]| -

lanl small fail 1.45,4.27| 2.55,3.45| 0.46,F
lanl shared 1.38,F 0.31,0.10] - -

lanl scavenger| 1.01,0.97 | 0.71,F 2.90,F 1.51,1.68
lInl all 1.32,2.25 | 3.43,4.65| 1.97,6.42| -

nersc debug 4.95,21.12| 1.32,0.94| - -

nersc low 2.78,2.93 | fail 1.69,4.76| -

nersc premium | 1.90,F 1.76,1.70| - -
nersc regular 5.37,5.01 | 2.81,3.13] fail -
nersc reglong 1.53,3.77 | - -
sdsc normal 5.39,F 2.08,7.64| 1.74,3.36| -

sdsc high 0.82,1.35 | 0.65,1.62| 1.32,2.87| -
sdsc low 1.36,2.54 | 1.27,2.42| 1.96,9.73| -
sdsc express 1.10,F - - -
tacc2 normal 3.01,5.35 | 2.57,9.15| 2.79,2.18| 1.22,F
tacc2 devel 0.57,0.13 | 1.12,0.38| - -
tacc2 serial 1.13,F - - -
Table 2. Simulation results showing the mean square error of successful predictions for three pre-

diction methods.

Table 1 shows the results of predicting the upper bound on thefailed to achievé)5% and BMBP is successful with the character
0.95 quantile with95% confidence for BMBP, Weibull, and log-  F. Additionally, we denote cases where BMBP fails to achieve
normal in terms of success percentage. The first column shows95% with the wordfail. We do not consider the error ratios in
the site and machine associated with each trace and shossdahe  failed cases any prediction error is possible if the targetsss
ond column contains the queue name. The data in the remain-percentage is not achieved.
ing four columns shows which of the three methods (denéted
W, L for Binomial, Weibull, log-normal respectively) achievas From Table 1, it is clear that the log-normal method is irderi
success percentage % or greater, rounded to the nearest per- to both BMBP and the Weibull method in terms of success rate:
cent. In cases where there is insufficient data, we show a dashnot only does it fail on the largest number of cases, but theze

and the worchoneindicates that no method achiev&s. Of the no cases where it is the only successful method. If we conthare

55 traces with1000 jobs or more, BMBP is successful fot, the more accurate BMBP and Weibull methods, we see from the ra-
Weibull method succeeds B2 cases, and the log-normal 8% tios shown in Table 2 that BMBP is more accurate than the ileibu
cases. method. Among thé1 cases where both methods are successful,

the Weibull method achieves a tighter bound ofilfimes. The
Note that while space considerations prevent a more thbroug Weibull method does achieveda% success rate for a single case
characterization of the data, both the number of jobs in eabii- that fails for BMBP (NERSClow queue,5 - 16 processors) but
vision and the time period covered by that subdivision vaiysid- as we discuss below, this failure would most probably beresto
erably. In general, theormal or regular queues see considerably as a success if a few more jobs had been available in the trace.
more small job counts than the more “exotic” queue names and Moreover, the median root mean square over-predictiorn earo

tend to span greater portions of each overall trace chrgiaaty. tio for Weibull to BMBP is1.62. Thus, we assert that BMBP in
As such, the time-series characteristics are quite difteaeross aggregate yields tighter, hence more meaningful, boundgien-
the spectrum of these test cases. ing delay across the spectrum of test cases than does thelllVeib

while achieving the same level of correctness on all but drieeo
Table 2 shows the ratio of root mean square over- prediction cases tested.
as defined in Section 5 of the Weibull and log-normal methods t
that generated by BMBP. In each cell of the table, the firstlmem
is the ratio of Weibull to BMBP, and the second number is that
for log-normal to BMBP. We indicate cases where either mgttho

6.2 Analysis of BMBP Failures



For four of the subdivided traces shown in Table 1 BMBP fail
to achieve a success percentag@®iffo or better. These failures
occur as a result of two distinct conditions in the data. Tha fi
is best illustrated by the time-series representation efgheue
waiting times and the corresponding predictions of themtlier
Datastarhigh queue for jobs requestiniy4 processors, depicted
in Figure 1.

Datastar "High" Queue, 1-4 Processors
Wait Times
April 2004 to April 2005

1000000 -

100000 1=

10000

1000

Batch Queue Delay (seconds)

Job Sequence Number

Figure 1. Measurements and Predictions For
Datastar highQueue for 1-4 Processors Shown
by Job Sequence Number.

Note that the circled region in the figure corresponds to a se-

quence of consecutive jobs that had unusually long waitgime
These jobs were all in the queaéthe same timeso that BMBP
did not have the long wait time for the first job available imé& to
correct its predictions for the jobs that followed. This isexam-
ple of the correlated prediction errors in the discussiomfiSec-
tion 4, which are characteristic of this method. It alsosthates
the point that BMBP is a long-run method; observe that foldise
few values in the trace, the predictor detected a changepaih
adjusted its predictions accordingly. This type of behavias

by trended periods, BMBP would fail to produce successfat pr
dictions. In this case, however, it seems to be due to the imach
having been new at the time the trace started. We cBoskays,
somewhat arbitrarily, as a “burn-in” period for each traaeq for
this particular machine, it is evident that the queue waies did
not reach any sort of “steady state” until later. We note tia¢n
we re-ran our predictor with the burn-in periodd@days, our suc-
cess rate is better th&3%. This phenomenon was also observed
for the failure of BMBP in the NERSC regular queue fiof-64
processors.

Note that The total number of jobs contained in the four ¢hile
traces is16, 269 which is approximatelyl.4% of the total sur-
vey. Moreover, only a single trace generates a successnagee
below 93% and in all failure cases BMBP is the most accurate
(lowest error) method.

6.3 Characterizing Queue Delay for Users

The potential value of such predictions is illustrated igu¥e 3.
In the figure, we show the BMBP prediction of the upper bound
on the0.95 quantile with95% confidence for February 24, 2005
in the normal queue on Datastar at SDSC and Lonestar at TACC.
The black line shows the predicted queue delay for Datasighr a
the gray line, the delay for Lonestar. The units in the figuee a
seconds, and thg-axis is shown on a log scale.

From between approximately 6:50 AM and 3:25 PM on the
24th, a user with a choice between running a job (of any proces
sor count) in thenormalqueue at SDSC and at TACC would have
been able to predict that the job would have startetRiseconds
or less if submitted at TACC with at lea85% certainty. Simi-
larly, the same user could have predicted that the job, ifmstied
at SDSC during the san®-hour period, would have started exe-
cution in less thad days, with the sam@s% certainty. We recog-
nize that few users have the luxury, at present, of chooshgden
top-quality resources such as Lonestar and Datastar. Hovesv

observed in many other queues; however, in most of the traces grid computing [13, 2] becomes more prevalent, and muiéi1s-

there were enough subsequent jobs that the overall suatessfr
BMBP climbed back above5%. We also note that immediately
before the long sequence of high values, the percentagemefcto
predictions was at better th@3% for the trace. The failure in the
NERSC low queue fob-16 processors was due to a similar phe-
nomenon. A changepoint farther from the end of the traceféwe
more jobs submitted to the queue) would have most likely @dus
BMBP to record a success in this case.

The second type of failure is associated with the beginning o
the trace and is attributable to “burn-in,” as previouslynti@ned.
More formally, we think of a “burn-in” phase as the periodiofi¢
for which the data have not found any sort of limiting distition.
This may be due to heavy dependence on initial conditiomédisa
fluctuating policy, or other effects; in any event, it is a aelr
characteristic of new machines and not observed in any afce
ter a sufficient amount of time has passed. FigRPelepicts the
gueue wait times for the LANL small queue for jobs requesting
4 processors. Note that data within the circled regions irfitise
part of the trace exhibit strong upward trends — exactly treaf
data that BMBP cannot handle (again, see the discussioncin Se
tion 4). Indeed, if a series of wait-time data were charaxter

sources such as TeraGrid [24] become more popular, we believ
that the need for effective prediction of this type will bepiontant.

LANL "Small" Queue, 1-4 Processors
Wait Times
January 2000 to April 2000
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Figure 2. Measurements and Predictions For
LANL small queue for 1-4 Processors Shown
by Job Sequence Number.



TACC and Datastar Upper 95% Predictions
Thursday February 24, 2005
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Figure 3. Predicted queue delay upper

bounds on SDSC Datastar (black line) and
1 TACC Lonestar (gray line) for February 24,
2005

To attempt to realize this capability for HPC users, we have d

8.
(1]
(2]
(3]
(4]

(5]
(6]

(7]
(8]

El
[10]

[11]

ployed BMBP at a variety of computing centers including SDSC [12]

and TACC (from whence we gathered data for this study) and the

TeraGrid [24] sites. We have also implemented prototype-web [13]
based browsers for the data so that users can view predidton
the these systems generated by the Network Weather Service i14]
real time. These browsers are currently accessible fronp: //

ponpone. cs. ucsb. edu/ ~nur ni / bat chg/ ni ndex. ht M andht t p:

/I ponpone. cs. ucsb. edu/ ~r gar ver/ bgi ndex. php in proto-
type form, however we plan to transition them into produttioe

near future. Thus while we have demonstrated BMBP using an

analysis of historical job data and a simple simulation, wéen
that it constitutes a functioning system with real deplogteeas
well.

7.

Conclusion

[15]
[16]
[17]

(18]
[19]

. . . 20
High-performance computing centers rely heavily on space- [21]
sharing systems to support their users’ computational ddma
These systems typically employ a batch scheduler to handlié-m
ple jobs requesting access to the machines, which intredyoeu-
ing delays that users experiences as delay in job turn-drtune.
While users can usually predict job execution time once &éche [%g]
uled, queuing delay, which can often exceed execution time,
more difficult to predict.

In this work, we propose a novel batch job wait time predittio

method which uses as input a historical trace of job wait $inae
quantile of interest (corresponding to a level of certaagyo how
soon the job will execute), and a confidence bound on the quan-[zs]
tile prediction. With this information, the BMBP method caro-
duce a prediction for the specified quantile at the given denfie

level which we have shown to be both reliable and robust ir sim
ulation. Our experiment compares the BMBP method to model-
fitting methods based on the Weibull and log-normal distidns

and finds it superior to both. In particular, it is more cotrian
the method that uses log-normal distributions and morerateu
than the one that uses Weibull distributions.

[22]
[23]

[26]

[27]

[29]

[30]
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