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Abstract—We present CENTAURUS, a scalable, easy to use,
cloud service and pluggable framework for k-means clustering
that automatically deploys and executes multiple k-means vari-
ants concurrently, and then scores them to provide a clustering
recommendation. CENTAURUS scores clustering results using
Bayesian Information Criterion to determine the best model fit
across cluster results. CENTAURUS visualization and diagnostic
tools help users interpret clustering results. We empirically
evaluate CENTAURUS and compare it to MZA, a popular desktop
tool that uses k-means clustering to extract farm management
zones from soil electroconductivity data. We show that CENTAU-
RUS produces better results, is more scalable, and requires less
guidance from the user.

Index Terms—K-means Clustering, Mahalanobis, Cloud.

I. INTRODUCTION

The environment in which we live is increasingly accessible

via sensing, observation, and monitoring. As a result, data

resources, and the opportunity to analyze them, has grown

explosively as “analytics” have become critical to business,

government, social, and scientific advances. As a result of this

pervasiveness, analysis must now become a tool available to

people with an ever widening range of expertise and skill sets.

Statistical clustering, also known as a separation of measure-

ments into related groups, is a key requirement for solving

many analytics problems. Lloyd’s algorithm [1], commonly

called k-means, is one of the most widely used approaches [2].

K-means is an unsupervised learning algorithm, requiring no

training or labeling, that partitions data into K clusters, based

on their “distance” from K centers in a multi-dimensional

space. Its basic form is simple to implement and has become

an indispensable component of pattern recognition, data min-

ing, image processing, information retrieval, and recommen-

dation applications across fields ranging from marketing and

advertising to astronomy and agriculture.

While conceptually simple, there are a myriad of k-means

algorithm variants based on how distances are calculated in the

problem space. Some k-means implementations also require

“hyper parameters” that control for the amount of statistical

variation in clustering solutions. Identifying which algorithm

variant and set of implementation parameters to use in a

given analytics setting is often challenging and error prone

for novices and experts alike.

In this paper, we present CENTAURUS as an approach to

simplifying the application of k-means through the use of

cloud-computing. CENTAURUS is a web-accessible, cloud-

hosted service that automatically deploys and executes multi-

ple k-means variants concurrently, producing multiple models.

It then scores the models to select the one that best fits the data

– a process known as model selection. It also allows for the

experimentation with different hyper parameters and provides

a set of data and diagnostic visualizations so that users can

best interpret its results. From a systems perspective, CEN-

TAURUS defines a pluggable framework into which clustering

algorithms and k-means variants can be chosen. When users

upload their data, CENTAURUS executes and automatically

scales its k-means variants concurrently using public or private

cloud resources. To perform model selection, CENTAURUS

employs a scoring component based on information criteria.

CENTAURUS computes a score for each result (across variants,

cluster sizes, and repeat runs) and provides a recommendation

of the best clustering to the user. Users can also employ

CENTAURUS to visualize their data, its clusterings, and scores,

and experiment with different parameterizations of the system

(e.g., the number of repeat runs, the combination of features

to cluster, and the dimensions to display).

We implement CENTAURUS using production-quality, open-

source software and validate it using synthetic datasets with

known clusters. We also apply CENTAURUS in the context of

a real-world, agricultural analytics application and compare

its results to the industry standard clustering approach. The

application analyzes fine-grained soil electrical conductivity

(EC) measurements, GPS coordinates, and elevation data from

a field to produce a “map” of differing soil zones. These zones

are then used by farmers and farm consultants to customize

management of different zones on the farm (application of wa-

ter, fertilizer, pesticides, etc.) [3]–[6]. We compare CENTAU-

RUS to the state of the art clustering tool (MZA [3]) for farm

management zone identification and show that CENTAURUS

is more robust, obtains more accurate clusters, and requires

significantly less input and effort from its users.

In the sections that follow, we motivate our work and discuss

related research. We then describe the general form of the k-

means algorithm and variants for computing covariance matri-

ces that CENTAURUS employs (Section III). In Section IV, we

detail CENTAURUS’s model scoring, system architecture, and

implementation. Finally, we present our datasets, an empirical

evaluation of CENTAURUS, and our conclusions.

II. RELATED WORK

To design and implement CENTAURUS, we leverage Mur-

phy [7]. This prior work identifies multiple ways of computing

the covariance matrices and using them to determine distances

and log likelihood.

The research and system that is most closely related to

CENTAURUS, is MZA [3]. MZA is a computer program

widely used by farmers to identify clusters in soil electro-

conductivity (EC) data to aid farm zone identification and
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to optimize management. MZA uses fuzzy k-means [8], [9],

computes the global covariance matrix, and employs either

Euclidean, diagonal, or Mahalanobis distance to compute

distance between points. MZA computes the covariance matrix

based on all the data points and uses this same matrix in

each iteration. MZA compares clusters using two different

scoring metrics: fuzziness performance index (FPI) [10] and

normalized classification entropy (NCE) [9].

We compare MZA and CENTAURUS in Section VI using

synthetic data and show that CENTAURUS achieves a lower

error percentage than MZA. Moreover, CENTAURUS resolves

many of the limitations of MZA (which is only available as

desktop software, does not account for poor initial cluster

assignments, and places a burden on the user to determine

which cluster size and k-means variant to employ).

EZZone [11] is a web service that is similar to CENTAURUS

in that it provides univariate clustering based on the Jenks

natural break optimization [12]. Users input the number of

clusters and the tool reports the Goodness of Variance Fit, a

measure of the homogeneity of the clusters, as a metric of

how well the clustering performed.

The authors of x-means [13] use Bayesian Information

Criterion (BIC) [14] (which CENTAURUS also employs) as a

score for the univariate normal distribution. The authors do not

discuss how to extend the algorithm and scoring to multivariate

distributions however. CENTAURUS provides six different ways

of computing covariance matrix for k-means for multivariate

data and examples that illustrate the differences. CENTAURUS

is also pluggable enabling other algorithms to be added and

compared.

III. K-MEANS CLUSTERING

The goal of k-means clustering algorithm is to separate

similar data points (represented as vectors) into K clusters for

a given K. In its basic form (that is, assuming equal cluster

variances), it attempts to find a clustering that minimizes the

sum of the squared distances of each point to the center of

its cluster. The algorithm begins with an initial set of K
centers and alternates between assigning points to the cluster

represented by the nearest center, and recomputing the centers.

Finding the optimal assignment is NP-hard. However, it

is typically possible to find a local optimum quickly by

terminating the algorithm when cluster assignments do not

change from iteration to iteration. In this case, the choice

of starting centers determines the specific local optimum

the algorithm will reach. Thus the termination state of the

algorithm is dependent on the initial assignment. Note, also,

that the sum-of-squared distances within from data points to

the center of their assigned cluster provides a way to compare

local optima – the lower the sum of the distances, the closer

to a global optimum a specific clustering is.

Note, also, that it is possible to use different measures

of distance to account for per-cluster differences in variance,

or co-variance between measurements (e.g. Mahalanobis dis-

tance [15]). Thus, for a given data set, the algorithm can

generate a number of different k-means clusterings – one for

each combination of starting center and distance measure.

More generally, k-means is equivalent to implementing Ex-

pectation Maximization under the assumptions of a Gaussian

Mixture Model (GMM) with “hard” cluster assignment (i.e.

for each point there is a cluster to which it belongs with

probability 1.0) [2], [16], [17]. As such, the centers correspond

to the maximum likelihood estimates of the cluster means.

For this reason it is possible to use information criteria based

on maximum log-likelihood (e.g. the Bayesian Information

Criterion [14] or the Akaike Information Criterion [18]) to

compare the local optima generated from different variants

of k-means and, ultimately, to choose the “best” one under

the assumptions of the GMM [13]. We discuss the use of

information criteria as a “scoring” method across multiple runs

of multiple variants in Section IV-A.

The two most common techniques for measuring distance

between points are Euclidean [19] and Mahalanobis [15] met-

rics. Euclidean distance is the straight line distance between

two points and assumes that the dimensions of the space

are orthogonal. However, dimensions often correspond to

measurements that are correlated and it is possible to transform

the feature space using Mahalanobis distance to correct for

inter-dimensional correlation.

We implement k-means in its general form using Maha-

lanobis distance in CENTAURUS using the following steps:

1) Randomly select K points from the data and assign these

as the initial cluster centers μ(k), where K is the number

of clusters, k is the cluster index, and k = 1, . . . ,K.

2) Compute initial covariance matrix Σ using all data points:

Σij =
1

n

n∑
p=1

(x
(p)
i − μi)(x

(p)
j − μj)

where, Σij is (i, j)-th component of the matrix Σ, x
(p)
i

is the i-th component of the p-th data point, and μi is the

i-th component of the global mean.

3) Assign all the points to the closest cluster center using

Mahalanobis distance metric:

D(x(p),μ(k)) =
(
(x(p) − μ(k))TΣ−1(x(p) − μ(k))

)−1/2

where, μ(k) is the center of the k-th cluster.

4) Compute covariance matrix Σ(k) for each cluster using

their cluster center μ(k).

5) Compute the cluster centers: For all the points in a cluster,

calculate the sum of its distances to all the other points

in the same cluster. Assign the point with the minimum

sum as the new cluster center, μ(k).

6) Repeat (4) and (5) until convergence or completion of a

maximum number of iterations. The convergence criteria

is calculated by summing up the distances of new cluster

centers from the old cluster centers.

The covariance matrix represents the covariance and vari-

ance observed in a sample between the dimensions of the

dataset. There are multiple ways to compute the covariance
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matrix in step 4 of the algorithm [7], [16], [17], [20], each of

which has bearing on the output of the algorithm.

The most common methods for computing Σ are:

• Full: Compute the entire covariance matrix Σ and use

all of its elements to compute distance between points x
and y:

D(x,y) =
(
(x− y)TΣ−1(x− y)

)−1/2

This variant is commonly associated with the use of

Mahalanobis distance.

• Diagonal: Compute the variance matrix, i.e., the covari-

ance matrix with its off-diagonal elements set to zero. If

the data are orthogonal, the full covariance matrix is a

diagonal matrix with the non-zero elements representing

the variance across dimensions. This approach ignores

the covariance observed between the dimensions of the

dataset.

• Spherical: Set the diagonal of the covariance matrix to

the variance computed across all dimensions and set all

off-diagonal elements to zero. This variant assumes that

the data is best represented by a GMM in which each

Gaussian (corresponding to each cluster) has a single

variance across dimensions. It is also commonly referred

to as using Euclidean distance.

In addition, each of these approaches for computing the

covariance matrix can be Tied or Untied. Tied means that

we compute a covariance matrix per cluster, take the average

across all clusters, and then use the averaged covariance
matrix to compute distance. Untied means that we compute

a separate covariance matrix for each cluster, which we use

to compute distance. Using a tied set of covariance matrices

assumes that the covariance among dimensions is the same

across all clusters, and that the variation in the observed

covariance matrices is due to sampling variation. Using an

untied set of covariance matrices assumes that each cluster is

different in terms of its covariance between dimensions.

CENTAURUS considers all six combinations of meth-

ods for computing covariance matrices: Full-Tied, Full-
Untied, Diagonal-Tied, Diagonal-Untied, Spherical-Tied, and

Spherical-Untied. The output of the algorithm is a list of

cluster labels, one per data point, indicating the cluster index

to which the data point belongs.

Once the labels are computed for each data point, we can

compute the likelihood (a function of the data given the model)

using the equation for GMM with hard assignment [16], [17],

as:

f (X|μ,Σ) =

n∏
p=1

K∏
k=1

π
�pk

k · N
(
x|μ(k),Σ(k)

)�pk

where, p is a data point, k is a cluster index, πk is the ratio

of the number of points in cluster k and the total number of

points, and �pk is an identity coefficient that is 1 if the point

p belongs to the cluster k and 0 otherwise, μ(k) is the k-th

cluster center.

The log-likelihood function is needed to compute infor-

mation criteria that CENTAURUS uses to score a particular

clustering. We compute the log-likelihood function as:

l (X|μ,Σ) = ln f (X|μ,Σ)

=
K∑

k=1

nk ·
(
ln

(nk

n

)
− d

2
ln (2π)− 1

2
ln |Σ(k)|

)

− 1

2

n∑
p=1

K∑
k=1

�pk · (x(p) − μ(k))T (Σ(k))−1(x(p) − μ(k))

IV. THE CENTAURUS SYSTEM

CENTAURUS implements a service for k-means cluster-

ing that takes advantage of cloud-based, large-scale dis-

tributed computation, automatic scaling (where computational

resources are added or removed on-demand), data management

to support visualization, and browser-based user interaction.

The system implements the six different variants of k-means

(described in Section III) and runs them each for a succession

of values of K ranging from 1 to a user-assigned large number,

max k. For each clustering, CENTAURUS computes a pair

of scores based on both the Bayesian Information Criterion

(BIC) [14] and the Akaike Information Criterion (AIC) [18].

It also allows the user to change the number of independent,

randomly seeded runs (referred to as experiments) to account

for statistical variation. Finally, it provides ways for the user

to graph and visualize both two-dimensional “slices” of all

clusterings as well as the relative BIC and AIC scores. It

also implements a decision support feature in which the “best”

clustering is identified based on BIC score across all variants.

CENTAURUS is extensible in that different clustering algo-

rithms can be “plugged in” easily, and automatically deployed

with and compared against others. For this work, we plug in

the k-means variants described in the previous section. The

variants include different distance computations (Euclidean

and Mahalanobis), input data scaling (e.g. whether or not to

scale each dimension to have zero mean and unit standard

deviation), and the six combinations of covariance matrices.

A. CENTAURUS Scoring

CENTAURUS performs N experiments for a particular K
value (where K = 1, ...,max k), each of which consists of

M initial cluster assignments to the k-means algorithm. Each

algorithm iterates until convergence or a maximum number of

iterations is reached (in CENTAURUS this value is 300). Thus,

CENTAURUS executes N ∗M runs of an algorithm for each

value of K. Across M initial cluster assignments, CENTAU-

RUS chooses the best performing one using the maximum log

likelihood.

The scoring component takes label assignments from a

clustering result for a particular K value and returns a score.

CENTAURUS then computes the average score (across the N
experiment runs) and uses it as part of its recommendation

and visualization services.

We currently integrate two different information criteria as

plug-ins to CENTAURUS: BIC and AIC. BIC and AIC measure

1137



the goodness of fit of an estimated statistical model. In our

case, we use them to measure the fit of the models (clustering

results) that are output from the various k-means algorithms

that CENTAURUS implements. When a user requests a single

recommendation, CENTAURUS uses the BIC score to make this

recommendation.

We compute the BIC score for a model with K clusters as:

BICK = l(X|μ̂, Σ̂)− rK
2

log n

where, μ̂ is the maximum likelihood estimator for the cluster

centers, Σ̂ is the maximum likelihood estimator for the cluster

covariance matrices, l(X|μ̂, Σ̂) is the maximum log likeli-

hood, and rK is the number of free parameters in the model.

rK is computed as the sum of K−1 cluster probabilities (πk),

K · d coordinate parameters for all the cluster centers, and
d·(d+1)

2 parameters for a symmetric cluster covariance matrix:

rK = (K − 1) +K · d+ d(d+ 1)

2

Similarly, we compute the AIC score for a model with K
clusters as:

AICK = l(X|μ̂, Σ̂)− rK

Note that because these techniques require estimates of the

covariance matrix for each cluster, there must be a minimum

number of data points per cluster for this estimate to be

meaningful. As a result, CENTAURUS discards (does not score

or consider in the scoring average) any clustering result

which has one or more clusters with fewer elements than this

minimum. This minimum threshold is user configurable with

a default setting of 10 data points in the current system.

B. Implementation

The CENTAURUS implementation consists of a user-facing

web service and distributed cloud-enabled backend. Users

upload their datasets to the web service Frontend as files in a

simple format: as comma-separated values (CSV files). Users

can then modify the following CENTAURUS parameters:

• n exp: The number of experiments (N ) per K to run.

The default is 3 with a minimum of 1 and maximum of

100.

• max k: Maximum number of clusters to fit to the data.

CENTAURUS runs a set of experiments for clusters of size

1 through max k. The default is 10 with a minimum of

1 and maximum of 15.

• n init: Number of times to initialize the k-means clus-

tering (M ). The default is 10 with a minimum of 1 and

maximum of 100.

• covars: The type(s) of covariance matrix to use for the

analysis. All options – Full-Tied, Full-Untied, Diagonal-
Tied, Diagonal-Untied, Spherical-Tied, and Spherical-
Untied – are selected by default.

• scale: Scale the data so that each dimension has zero

mean and unit standard deviation. This option is selected

by default.

CENTAURUS considers each parameterization that the user

chooses (including the default) as a “job”. Each job consists

of multiple tasks (experiment runs) that CENTAURUS deploys.

Users can also use the service to check the status of a job

or to view the report for a job (when completed). The status

page provides an overview of all the tasks for a job showing a

progress bar for the percentage of tasks completed and a table

showing task parameters and outcomes.

CENTAURUS uses the report page to provide its recommen-

dation. The recommendation consists of the number of clusters

and k-means variant that produces the best BIC score. This

page also shows the cluster assignments, spatial plots using

longitude and latitude (if included in the original data set), BIC

and AIC scores plots. Finally, CENTAURUS provides cluster

labels in CSV files that the user can download.

C. System Architecture

The software architecture of CENTAURUS is shown in

Figure 1. We implement CENTAURUS using Python v3.4.3

and integrate a number of open source software, packages,

and cloud services. The cloud system is a private cloud that

runs Eucalyptus software v4.4 [21], [22] and integrates virtual

servers with 2 CPUs and 1GB of memory each. CENTAURUS

consists of five primary components:

1) Frontend: We couple the Python Flask [23] (v0.12.1) web

framework with Gunicorn [24] (v19.7.1) web server and

NGINX [25] (v1.4.6) reverse proxy server to provide a

robust application hosting service.

2) Backend Worker: We use Python Celery [26] (v4.0.2), a

distributed computation framework, to perform analysis

computation tasks asynchronously and at scale [27]. We

leverage autoscaling groups in Eucalyptus to automati-

cally grow and shrink the number of workers performing

the computation according to the demand for each job.

3) Backend Queue: We use RabbitMQ [28] (v3.2.4) message

broker to send information about each job from the

Frontend to the Workers. This enables to Frontend to

quickly off-load its work to the Queue where it is sent

systematically to the Workers as and when they become

available.

4) Backend Database: We use MongoDB [29] Community

Edition (v3.4.4) database to store parameters and results

for jobs and tasks.

5) Backend File Store: We use Amazon Simple Storage

System (S3) [30] to store files uploaded by users.

Other packages that CENTAURUS leverages include Numpy

[31] (v1.12.1), Pandas [32] (v0.19.2), SciKit-Learn [33]

(v0.18.1), and SciPy [34] (v0.19.0) for data processing.

CENTAURUS uses Matplotlib [35] (v2.0.1) and Seaborn [36]

(v0.7.1) to provide data visualization and plots.

V. DATASETS

We use both synthetic and real-world datasets to evalu-

ate CENTAURUS empirically. We generate the synthetic data

sets with known clusters (as “ground truth”), which we use

to validate and measure the accuracy of the CENTAURUS

implementation. Using the real-world application data from

precision agriculture, we also compare the results generated
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Fig. 1: System architecture for CENTAURUS.

(a) Dataset-1 (b) Dataset-2 (c) Dataset-3

Fig. 2: Synthetic datasets shown with ground truth assignment.

by CENTAURUS for management zone determination to the

industry standard and use them to illustrate the CENTAURUS

visualization capabilities.

A. Synthetic Datasets

We first create multiple 2-dimensional synthetic datasets

using multivariate Gaussian distributions. The datasets have

three clusters with 1,000 points per cluster and varying degrees

of inter-dimensional correlation in each cluster. Figure 2 shows

these datasets with their ground truth cluster assignments.

The clusters in Dataset-1 have no correlation and have equal

standard deviations of 0.2 for each dimension. Cluster centers

are set at positions (1, 0), (−1, 0), and (0, 2) as can be seen

in Figure 2a.

In Dataset-2, the cluster centered at (0.25, 0) has two

dimensions that are independent (not correlated) with the

same standard deviations of 0.2. The cluster centered at (1, 1)
has correlation 0.70 between dimensions, while the cluster

centered at (0.5, 1) has correlation 0.97 between dimensions.

When all three clusters are combined the correlation between

the two dimensions is 0.75.

In Dataset-3, the cluster centered at (1, 0) has two inde-

pendent dimensions, while the clusters centered at (0.75, 1.5)
and (0.35,−0.35) have correlations of 0.98 and −0.89 respec-

tively. The correlation of the entire set is 0.2.

B. Application Datasets

The farm data that we use consists of measurement of

electrical conductivity (EC) of soil measured (at 30cm and

90cm depths) using an instrument manufactured by Veris

Technologies Inc. [37]. The surveyor collects EC as well as

the GPS cordinates and elevation data associated with each EC

measurement. The approach produces a data file containing

Variant Dataset-1 Dataset-2 Dataset-3
Full-Untied 0.0% 3.6% 0.1%
Full-Tied 0.0% 37.6% 57.5%
Diagonal-Untied 0.0% 26.2% 26.0%
Diagonal-Tied 0.0% 34.4% 55.2%
Spherical-Untied 0.0% 27.3% 11.2%
Spherical-Tied 0.0% 34.4% 56.6%

TABLE I: Percentage error (out of 3,000 points per dataset)

for the six k-means variants of CENTAURUS for the synthetic

datasets. Values are the percentage of points incorrectly labeled

by the variant (i.e. assigned to the wrong cluster).

five dimensions of data: longitude, latitude, elevation, EC at

30cm depth (EC1), and EC at 90cm depth (EC2).

The EC datasets come from three different farms. Cal
Poly: a 12-acre lemon field at California Polytechnic State

University, San Louis Obispo, California for which we have

3,233 data points. UNL: a 91-acre field at University of

Nebraska, Lincoln, for which we have 5,823 data points.

Sedgwick: a 30-acre field located in the Santa Ynez Valley,

California for which we have 7,920 data points.

VI. RESULTS

To evaluate the efficacy of CENTAURUS, we deploy the

service and run it on the datasets described in Section V

for each of the k-means variants described in Section III.

In this section, we refer to the variants as Full-Untied, Full-
Tied, Diagonal-Untied, Diagonal-Tied, Spherical-Untied, and

Spherical-Tied.

For the results that follow, we parameterize CENTAURUS

with K = 1, . . . , 10 and 100 experiments each with 100 ran-

dom initial cluster center assignments (for a total of 10,000 k-

means algorithm invocations per variant). CENTAURUS stores

the cluster assignments (labels) for each experiment, which is

the result with the largest log-likelihood value across initial

assignments. This CENTAURUS instance only considers clus-

tering results when all clusters have at least 10 points, in its

computation of BIC and AIC. Finally, as described above,

CENTAURUS reports the result with the highest average BIC

score the “best” clustering across every K considered for all

variants.

A. Validation Using Synthetic Data

For the datasets with known clusters (those that we have

generated synthetically) we report classification percentage

error, i.e. the percentage of incorrectly classified points out of

all the points in the dataset (3,000 data points per dataset in

this case). Table I shows these results for each of the synthetic

datasets (Dataset-1, Dataset-2, and Dataset-3) for each of the

six k-means variants.

Note that Dataset-1 was generated using a GMM where all

dimensions are independent of each other and are identically

distributed. Thus the “perfect” classification results (0% error)

generated by the Full and Diagonal methods indicate that

they correctly disregard any observed sample variance or

covariance.

The results for Full-Untied with Dataset-2 and Dataset-3 il-

lustrate CENTAURUS ’s ability to correct for cross-dimensional
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correlation. The generating GMM in both cases is untied (i.e.

each cluster has a distinct covariance matrix). Also, unlike in

Dataset-1 where there are three distinct clusters with separated

centers, we purposefully placed the cluster centers of Dataset-2

and Dataset-3 near each other and generated distributions that

overlap. Doing so poses challenges for k-means clustering and

all variants misclassified some points.

B. Real Datasets

We have used CENTAURUS to analyze the farm EC datasets

collected from the Cal Poly, UNL, and Sedgwick locations.

These datasets consist of five features: longitude, latitude,

EC1, EC2, and elevation. For reasons of brevity, we present an

analysis of the data only from Cal Poly as it is representative

of all of our experiments.

The left-hand side of Figure 3 shows CENTAURUS’s vi-

sualization of the label assignments generated for the six

variants, with the best one shown in bold. The longitude and

latitude dimensions are used for plotting as the x-axis and y-

axis, respectively, by default when included in the uploaded

dataset. The clustering for these results is based on the EC2

and elevation dimensions.

The right-hand side of Figure 3 graphs the corresponding

BIC/AIC scores for the Cal Poly clusters in the six graphs

shown on the left. In these graphs, the x-axis is the number of

clusters (K) and the y-axis is BIC and AIC score. The values

are the average score across the 100 experiments. Error bars

indicate the 95% confidence interval for BIC and AIC values

over all repeated runs as determined by the Python Seaborn

package. Higher scores indicate a better model fit. Missing

values are due to experiments that result in clusters with fewer

than 10 points across all 100 experiments. CENTAURUS omits

these experiments in its computation of BIC and AIC score

since there are too few values in one or more clusters to com-

pute covariance in a manner that is trustworthy statistically.

C. Visualization Customization

In addition to reporting a recommendation (a data clustering

that results in the best BIC score), CENTAURUS enables users

to customize the clustering computation and their visualization

of results. For example, a user of CENTAURUS can select any

two plotting dimensions to visualize the cluster assignments.

The graphs shown above use longitude and latitude dimensions

as the plotting dimensions. Figure 4 shows the same clustering

assignment as Figure 3, potted using dimensions EC2 and

elevation. This visualization shows the clustering that the k-

means variants “saw” when they clustered the data.

Figure 4 illustrates both the challenges to developing a fully

automated EC mapping technique based on clustering, and the

utility of CENTAURUS as a decision support tool. For the Full-

Untied case, the best BIC score shows two clusters separated

by what appears to be a hard linear boundary. Comparing this

case to the Full-Tied case (where there is a single cluster) one

either sees two centroids or not. Thus while a novice with

no domain experience may have no choice but to trust the

BIC score as identifying the best clustering, a more informed

user can use these visualizations to support domain-specific

knowledge. In this case, for example, soil samples taken from

the field as well as records detailing the history of how the

field has been used over time point to the validity of the two-

cluster mapping.

D. Comparison with MZA

We next compare CENTAURUS against MZA for the syn-

thetic datasets. We use the number that both FPI and NCE

scores report for MZA as the optimal number of clusters. We

then use the respective cluster assignment (labels) to compute

the error rates. Figure 5 shows the best assignments produced

by CENTAURUS and MZA and Table II shows the percentage

of incorrectly classified points (out of 3,000 points) in each

dataset, for the same assignments.

For MZA, the best assignment is achieved by Mahalanobis

distance and for CENTAURUS the best assignment is achieved

by Full-Untied. MZA clusters the Dataset-1 correctly and

reports K = 3 as the ideal number of clusters (as does

CENTAURUS).

For Dataset-2, MZA correctly identifies K = 3 but has a

higher error rate of 13.8% than CENTAURUS’ 3.6%. A possible

reason for this is that MZA only considers a single initial

assignment of cluster centers, which in this case converges

to a local minimum that is different from the global mini-

mum. CENTAURUS avoids this kind of error by performing

several runs (10,000 in this case, specified by n exp× n init)
of k-means algorithm before suggesting the optimal cluster

assignment.

Dataset-3 consists of clusters with correlation across fea-

tures. CENTAURUS provides better results than MZA for this

dataset, achieving a percentage error of only 0.1% compared to

MZA’s 11.6%. A possible reason for this is that MZA employs

a global covariance matrix and does not consider Tied and

Untied options as CENTAURUS does, which results in better

label assignments.

Another limitation of MZA is that it uses a free variable,

called the fuzziness parameter, and multiple scoring tech-

niques. It is challenging (especially for novices) to determine

how to set the fuzziness value even though the results are

highly sensitive to this value. For the results in this section, we

chose the default fuzziness parameter of m = 1.3 as suggested

by the author [10].

Furthermore, for the farm datasets, the MZA scoring metrics

(NCE and FPI) do not aways agree, providing conflicting

recommendation and forcing the user to choose the best

clustering. In combination, these limitations make MZA hard

to use as a recommendation service for growers who lack

the data science background necessary to interpret its results.

CENTAURUS addresses these limitations by providing high

enough number of k-means runs, no free parameters, and more

sophisticated ways of computing the covariance matrix in each

iteration of its clustering algorithm. It uses a unique scoring

method to decide what is a single best clustering that will

be presented to a novice user while it provides the diagnostic

capabilities that are needed for more advanced users.

Finally, we visually compare the cluster maps that MZA

1140



Fig. 3: CENTAURUS clustering results for all six variants (left six graphs) of EC2 and elevation dimensions from the Cal

Poly farm data, plotted using longitude and latitude. The best performing number of clusters (K) for each variant is shown

above each graph and the best out of the six is shown in bold. The right six graphs show the BIC and AIC scores for the

corresponding clusterings.

Fig. 4: CENTAURUS clustering results for Cal Poly EC2 and

elevation data plotted using EC2 and elevation dimensions.

(a) CEN.: Dataset-1 (b) CEN.: Dataset-2 (c) CEN.: Dataset-3

(d) MZA: Dataset-1 (e) MZA: Dataset-2 (f) MZA: Dataset-3

Fig. 5: CENTAURUS vs. MZA clustering recommendations for

the synthetic datasets.

generates with those generated by CENTAURUS. Figure 6

shows the MZA clustering of EC2 and elevation using lon-

gitude and latitude as the plotting dimensions, Mahalanobis

distance, and a fuzziness exponent of 1.3.

Dataset-1 Dataset-2 Dataset-3
CENTAURUS 0.0% 3.6% 0.1%
MZA 0.0% 13.8% 11.6%

TABLE II: Percentage error (out of 3,000 data points per

dataset) for CENTAURUS and MZA on the synthetic datasets

for the clustering results in Figure 5.

Fig. 6: Clustering assignment for Cal Poly dataset produced

by MZA based on EC2 and elevation.

For this data set, MZA indicates three clusters using both

FPI and NEC. Curiously, even though the resulting MZA

mapping used Mahalanobis distance, it appears (visually) to

be quite similar to the Diagonal-Tied and Spherical-Tied

CENTAURUS mappings (both which also indicate three clusters

based on BIC score) shown in Figure 3. MZA appears to

choose a clustering of the Cal Poly data that corresponds to

a lower BIC score than the one identified as being “best” by

CENTAURUS (Full-Untied in Figure 3). Using k-means as a

reference, MZA parameterized with a fuzziness exponent of

1.3 appears to “see” the Cal Poly data as having no meaningful

covariance between EC2 and elevation in each cluster.

Note that the BIC scores for the Full-Untied clustering incur

the highest “penalties” in the computation of a BIC score
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among the six k-means variants. Recall that the formulation

of BIC used by CENTAURUS (cf Section IV) attempts to avoid

overfitting by subtracting rK ∗ log(n) from the maximum log-

likelihood estimate for a given clustering. For the Full-Tied

case, rK must account for the d2−d
2 off-diagonal covariance

estimates where in the Diagonal and Spherical cases, it does

not (i.e. the “penalty” for estimated parameters is lower).

Thus if the visual comparison is accurate, CENTAURUS finds

a clustering (Full-Untied) that has a better BIC than MZA

even with the additional penalty for the needed covariance esti-

mates. Since both are making a fundamental GMM assumption

about the data, CENTAURUS appears (based on information

criteria) to find a better clustering. It may be that with a

different fuzziness exponent MZA and CENTAURUS converge

on a “best” clustering but we have yet to determine whether

this convergence does, indeed, occur and, if it does, the best

method for finding the fuzziness exponent that results in a

consistent clustering between the two approaches.

VII. CONCLUSION

With this work, we present CENTAURUS, a scalable, easy

to use, cloud service for clustering multivariate and cor-

related data. CENTAURUS simplifies selection of k-means

clustering variants, provides a recommendation of the best

variant, and enables users to visualize their results in multiple

ways. CENTAURUS leverages cloud resources and services

to automatically deploy, scale, and score k-means clustering

jobs. We empirically evaluate CENTAURUS using synthetically

generated and real datasets and compare it to the popular MZA

clustering tool. Our results show that CENTAURUS provides

better results than MZA and precludes many of its limitations.
In future work, we plan to extend CENTAURUS with other

data analysis methods (DBSCAN, Spectral Clustering, GMM,

etc.) and metrics for model evaluation and selection (Silhou-

ette Score, Rand Index, Mutual Information, etc.). We also

intend to incorporate other publicly available datasets (e.g.,

SSURGO) to improve clustering methods when applicable.
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