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Abstract— The goal of our work is to simplify and expedite the
construction and evaluation of machine learning models using
autoscaled cloud computing systems and services. To enable
this, we develop an open source system, Seneca, that leverages
the serverless programming model and its implementation in
Amazon Web Services (AWS) Lambda. Seneca takes a machine
learning application, dataset, and a list of possible hyper-
parameter options. It automatically constructs an AWS Lambda
handler that ingresses and splits the dataset into training and
testing subsets, and constructs, tests, and evaluates (i.e. scores) a
machine learning model for a given set of hyperparameter values.
Seneca concurrently invokes functions for all combinations of the
hyperparameters specified. It then returns the configuration (or
model) that results in the best score to the user.

We present the design and implementation of Seneca and
introduce an extension to the system that automatically optimizes
memory use by the functions. Our empirical evaluation using
multiple predictive machine learning applications for regression
and classification shows that Seneca is able to quickly identify
the best performing model for the programs and datasets that
we consider. Moreover, its memory optimization reduces the cost
of using Seneca by 10–35% for the applications studied.

Keywords-Serverless computing; Model optimization; Hyper-
parameter tuning

I. INTRODUCTION

The scale and elasticity of cloud computing systems have
fueled remarkable innovation and unprecedented commercial
investment. Cloud users “rent” virtualized resources (while
sharing the underlying physical resources) on a pay-per-use
basis in exchange for availability guarantees specified via
service level agreements (SLAs). Uniquely, cloud systems can
be configured to add and remove (i.e. auto-scale) resources
and services automatically, based on the dynamic resource
requirements and service needs of executing applications.

To date however, clouds are used more for enterprise ser-
vices (object stores, databases, application servers, etc.) than
for elastic applications. The reason is that it is challenging
to configure complex distributed systems for application use,
and to leverage the auto-scaling that clouds offer. To address
this challenge, cloud providers have started to offer program-
ming and execution environments that obviate the need for
server configuration, under the serverless moniker [1], [2],
[3]. Serverless platforms automatically configure, manage, and
scale applications to significantly simplify cloud use.

Using the serverless model, application developers upload
arbitrary computations in high level languages as stateless
functions to cloud-hosted, serverless platforms, where func-
tions are triggered automatically by the cloud in response to
updates from other cloud services (e.g. storage, queues, notifi-
cation services, and API gateways, among others). Serverless
functions must execute under a time bound (e.g. 15 minutes)
and an allocated memory size (e.g. 3GB) or else the platform
will terminate the function. They communicate, persist, and
access data only through their inputs or via shared storage
services. As a result, serverless applications are inherently
elastic and can implement highly concurrent and parallel tasks.
In public clouds, users pay a small fee for the resources their
functions use during execution, resulting in very low cost cloud
use. Although now available from all public cloud providers
and as open source for private cloud systems, Amazon Web
Services (AWS) Lambda [4] was the first and is the most
widely used serverless public cloud platform.

In this work, we investigate the efficacy of using AWS
Lambda for tuning machine learning applications in parallel.
To date, Lambda is not widely used for training and eval-
uating machine learning models because of a concern that
doing so will result in high overhead (i.e. be costly) because
of the stateless nature of serverless functions [2]. At the
same time, identifying the “best” configuration for advanced
machine learning models is challenging given the large number
of configuration options (i.e. hyperparameters) typical for
models today. Hyperparameters govern the learning process
of machine learning applications. Given that parameter sweeps
are embarrassingly parallel, we believe that such tuning is a
good fit for the serverless model. To investigate this potential,
its overhead, and to simplify the use of Lambda for training,
testing, and evaluation of machine learning models, we design
and develop a new system and toolset called Seneca.

Seneca implements, packages, and deploys machine learn-
ing applications as stateless functions to AWS Lambda. It then
orchestrates exhaustive evaluation of specified hyperparameter
settings to identify the best performing model (for a given
dataset) by comparing error and accuracy across models.
We consider prediction accuracy (as opposed to explanatory
power) as the scoring metric (mean squared prediction error
for regression and accuracy percentage for classification).
Users present Seneca with their application, a range of values



Fig. 1: The Seneca Architecture.

for each hyperparameter (or the default can be used), and a
representative dataset. Seneca produces, tests, and evaluates
models for all combinations of hyperparameters and returns
to the user the set of parameters (or the model itself) that
produces the best cross-validation score. Users can employ
this model for other datasets (with Seneca if desired) without
retraining the model to amortize the cost of Seneca further.

We deploy Seneca on AWS Lambda and evaluate its tuning
performance, cost, and memory use for five machine learning
applications and datasets. We find that Seneca is fast, inex-
pensive, and effective for model construction and comparison.
Seneca is also able to identify automatically the best memory
configuration for each application, further lowering its cost by
10-35%. Relative to execution in AWS EC2, we observe a
benefit/cost ratio (computed as speedup/(dollar cost) cost of
294 on the average in the experiments we consider. We intend
to make Seneca, its applications, and their datasets publicly
available when/if this paper is accepted for publication. We
next overview our design and implementation of Seneca and
then present our empirical methodology and results.

II. SENECA

To facilitate model search and selection using the serverless
architecture, we have developed Seneca, a framework for
tuning the hyperparameters of machine learning applications
in AWS Lambda. The Seneca pipeline consists of packag-
ing, deployment, function optimization, and hyperparameter
tuning. Figure 1 shows the architecture of Seneca. In the the
upper-right-front, we show the three inputs that Seneca expects
from its users: (A) a hyperparameter configuration file, (B) a
dataset URL, and (C) the lambda function of the machine
learning application. The configuration file specifies a set of
values for each hyperparameter that the application expects.
Seneca creates the Cartesian product of all options in this
configuration as the search space. The dataset URL refers
to a valid dataset stored in the AWS Simple Storage Service
(S3) [5].

Based on the specified machine learning application, Seneca
automatically builds and deploys an AWS Lambda application
by launching a Docker container that mirrors the AWS Lambda

Fig. 2: The relationship between allocated memory and recip-
rocal of billed duration, which represents compute power for
a compute-bound Lambda function.

execution environment, checks and installs the machine learn-
ing application and any libraries it requires, compresses the
application and uploads it to S3 (a work-around for the 10MB
AWS Lambda function size restriction). Seneca constructs an
AWS Lambda function from a template that, when executed,
will download the dataset and split it into a training and
testing set, and construct, test, and evaluate a model using
the application and a set of hyperparameter values passed in
by Seneca as arguments. Users can specify the train/test split
ratio that should be used by Seneca; the default is 80%/20% for
classification tasks. The function returns a testing score. Upon
completion of this process, the container deploys the function
to AWS Lambda using the AWS Command Line Interface [6]
and the developers credentials.

A. Optimizing Memory Use

The cost of using AWS Lambda (i.e. compute charge)
is the billed duration (execution time rounded up to the
nearest 100ms) [7] multiplied by the allocated memory of
each invoked function. One goal of our work is to optimize
memory use of these applications in order to reduce cost, and
to investigate the trade-offs of doing so.

Currently, allocated memory for a Lambda function can
be set from 128MB to 3008MB in increments of 64MB.
AWS documentation [8] states that Lambda allocates CPU to
functions corresponding to allocated memory size, as is done
for general purpose AWS EC2 instance types.

To evaluate the relationship between memory, CPU, and
cost, we analyze a 3-D matrix multiplication serverless bench-
mark [9] using AWS Lambda. We configure different functions
to use each of the 46 possible allocated memory options.
Figure 2 shows the relationship between allocated memory (x-
axis) and reciprocal of billed duration (y-axis). Figure 3 shows
the relationship between memory size (x-axis) and compute
charge (y-axis). We observe that for this benchmark, billed
duration plateaus after 1600 MB, at which point compute
charge increases. That is, we achieve no further execution time
benefit (only cost increase) after this point.



Fig. 3: The relationship between allocated memory and com-
pute charge for a compute-bound Lambda function.

We use this relationship within Seneca to optimize its
cost (compute charge) via an extension that enables it
to automatically identify the appropriate setting for allocated
memory for each application. However, instead of exhaustively
testing all 46 possible memory configurations as we did for
the matrix benchmark, which may be costly, Seneca employs
the heuristic outlined in Algorithm 1.

The Seneca optimizer first configures and invokes the
function using a user-defined payload. From this run, Seneca
obtains the maximum memory used by the function as
reported by AWS Cloudwatch, and uses it as the starting
point in its search. Seneca then defines two double-ended
queues (deque) of length N, to store allocated memory
and compute charge data of different invocations. While
the current allocated memory is less than or equal to 3008
MB, the optimizer reconfigures and invokes the function using
the next increment for memory allocation. It calculates the
compute charge for each invocation using current allocated
memory and billed duration.

We employ two exit conditions. The first is when the
compute charge monotonically increases across deque. The
second is when the increase in slope is greater than a threshold.
When the optimizer finds that both conditions hold, it pops the
left-most value from deque and configures the function to use
that value for allocated memory for all future invocations. If
these two conditions can not be satisfied during search, the
allocated memory will be configured as the memory size that
results in minimal compute charge within the deque. After
extensive experimentation, we find that N = 5 and a slope
threshold of 1 work best, but these values are configurable.
In addition, this optimization can be turned on or off via a
command line argument to Seneca.

B. Tuning Process

To facilitate parallel function invocation, Seneca integrates
Celery [10]. Celery is an asynchronous task queue that uses
distributed message passing. Celery workers are processes that
take tasks from the queue, execute the tasks with the arguments
specified, and store the result that is returned in a database (we
use Redis [11] in our prototype).

Algorithm 1: Seneca Optimizer Heuristic
Data: Typical payload
Result: Optimal allocated memory

1 Find memory used by payload as starting point;
2 Define deque for allocated memory & compute charge;
3 while allocated memory ≤ 3008 MB do
4 if compute charge monotonically increases in deque

& slope ≥ threshold then
5 popleft from deque;
6 configure allocated memory as optimum;
7 exit();
8 else
9 increase allocated memory by 64 MB;

10 probe lambda function;
11 append memory and compute charge to deque;
12 end
13 end

Application Description
Prophet Time series decomposition and prediction
Multi-Regression Multiple linear regression/prediction of time series
XGBoost Regression and classification by gradient boosting
SVC Classification based on support vector machine
Neural-Net Classification by layered artificial neural network

TABLE I: Machine learning applications used to evaluate
Seneca.

Based on the configuration file, Seneca creates and enqueues
a list of payloads (function arguments) for each combination
of hyperparameter values. The Seneca celery workers invoke
the application’s Lambda function by each payload for model
construction. Upon function termination, the worker records
a score for the hyperparameter configuration in the database.
When the queue is drained and all workers have completed,
Seneca extracts and reports the best score, configuration, and
model from the database. Users can then use the model for
inference given other datasets without retraining to amortize
the time/cost of Seneca.

We assume that the dataset supplied to Seneca by the user
is representative of datasets on which the resulting model will
be used. As part of future work, we are considering using
multiple datasets and a ranges of hyperparameter values to
preclude the need for users to specify them and to consider a
wider range of values.

III. EVALUATION

In this section, we empirically evaluate Seneca in terms of
machine learning (ML) model output quality, performance,
and cost. We first overview the ML applications that we
consider and our experimental methodology. We then present
our results.

A. Benchmark Applications and Training/Testing Datasets

The ML applications that we use to evaluate Seneca are
described in Table I. Prophet, Multi-Regression, and XGBoost
are regression applications; XGBoost, SVC, and NN are classi-
fication applications (XGBoost implements both regression



Hyperparameter Default Tuning options
growth linear [linear, logistic]
changepoint prior scale 0.05 [0.05, 0.5]
holidays prior scale 10 [1, 5, 10]
seasonality prior scale 0.5 [0.1, 0.5]
fourier order 10 [5, 10, 15, 20]
seasonality mode additive [additive, multiplicative]
interval width 0.8 [0.5, 0.8]

TABLE II: Hyperparameters Seneca considers for Prophet.

Hyperparameter Default Tuning options
max depth 3 [3, 4]
learning rate 0.1 [0.1, 0.01]
N estimators 100 [100, 400]
objective reg:linear [reg:linear, rank:pairwise]
booster gbtree [gbtree, gblinear, dart]
min child weight 1 [0.1, 1]
scale positive weight 1 [1, 2]
base score 0.5 [0.5, 10]

TABLE III: Hyperparameters Seneca considers for XGBoost.

and classification tasks). The regression applications compute
the mean square error (MSE) as 1

n

∑n
i=1(Yi− Ŷi), where Ŷi is

the ground truth, Yi is model prediction and n is the number
of data points. The applications return the average MSE across
cross validations. The classification applications compute and
return a classification accuracy percentage, which is calculated
as 1

n

∑n
i=1 1(Yi = Ŷi), where Yi is the prediction class, Ŷi is

the true class, n is the number of samples, and 1(x) is the
indicator function.

Prophet [12] is an open source time series analysis library
developed by Facebook. The input dataset we consider is a
time series of view counts of Peyton Manning’s Wikipedia
page (Dec. 2007–Jan. 2016). The dataset exhibits both sea-
sonality and a holiday effect (e.g. around super bowl games).
We use the first 6 years as the training set and the last 2 years
as the testing set. We use a cross-validation horizon (sliding
window) of 1-year, and a period (sliding pace) of 180 days.
As such, Seneca performs three cross-validations for a 2-year
test range.

Prophet expects multiple hyperparameters: growth specifies
linear or logistic trend model growth and prior scale indicates
the strength of the sparse prior probability. There are three
prior scale hyperparameters for change point, holidays, and
seasonality. Since Prophet uses a Fourier sum to estimate
seasonality, the fourier order is the number of terms in the
partial Fourier sum. Seasonality mode indicates that the effect
of seasonality is either multiplicative or additive. Finally, the
width of uncertainty intervals is set using interval width.

Each application has default hyperparameter settings (i.e.
default values or those recommended by the application main-
tainer). The hyperparameters, their default and optional values
that we consider for Prophet are listed in the Table II.

Multi-Regression is a regression application developed by
others as part of an Internet-of-Things (IoT) project [13]
(which has been extended from linear regression described in
the citation to multiple linear regression by the authors of this
prior work). The application uses multiple linear regression

Hyperparameter Default Tuning options
C 1.0 [0.5, 1.0]
kernel rbf [rbf, linear, poly, sigmoid]
degree 3 [3, 4]
gamma auto [auto, scale]
coef0 init 0.0 [0.0, 1.0]
probability False [False, True]
tol 1e-3 [1e-3, 1e-4]
decision function shape ovr [ovo, ovr]

TABLE IV: Hyperparameters Seneca considers for SVC.

Hyperparameter Default Tuning options
activation relu [identity, tanh, relu]
solver adam [lbfgs, sgd, adam]
learning rate constant [constant, invscaling, adaptive]
learning rate init 0.001 [0.001, 0.0001]
power T 0.5 [0.1, 0.5]
tol 1-e4 [1e-4, 1-e5]
n iter no change 10 [10, 20]

TABLE V: Hyperparameters Seneca considers for NN.

models to predict outdoor temperature from the processor
temperature of single board computers (SBCs). The training
dataset consists of eight input time series (one per SBC, each
containing 5-minute measurements) from Apr. 5th to Dec.
10th, 2018.

Hyperparameter configuration for Multi-Regression is a
subset of input SBC time series. Seneca considers all 2N − 1
non-empty potential subsets (for N input time series). For this
application, the default parameterization is the full set of input
time series (8 in this case). The test dataset is a time series of
the outdoor temperature (ground truth) over the same period.
The application makes predictions for each of these outdoor
temperatures using the regression coefficients constructed from
the training set for each new value in the test set.

XGBoost [14], SVC [15], and NN [16] are the classi-
fication applications that we consider. XGBoost [14] is an
open source framework for gradient boosting, which performs
both regression and classification. The hyperparameters and
their default values are listed in Table III, their definitions
can be found in [17]. SVC uses support vector machines to
implement classification as part of the libsvm [18] library.
The hyperparameters and their defaults that Seneca uses for
SVC in this study are listed in Table IV with definitions
in [19]. NN is a machine learning application leveraging neural
network to identify patterns from an input dataset. Here we
implement a feed-forward multi-layer perceptron model [20]
for classification. The hyperparameters and their defaults for
NN are listed in Table V with definitions in [21].

For these classification applications, we use a labeled
dataset for training, testing, and evaluation from another IoT
project [22]. The dataset contains measurements of individual
citrus fruit (e.g. oranges, mandarins, lemons, etc.) taken by
a fruit sorting and grading device using a large number
of sensors. The measurements (i.e. features) include size,
shape, weight, color, diameter, flatness, among other char-
acteristics, for each fruit. The dataset has been filtered to
remove correlated features (those with an absolute value of the
Pearson correlation coefficient greater than 0.8). The dataset



has been balanced by down-sampling and the resulting dataset
contains 33926 rows (individual fruit) distributed evenly across
5 targets. Each row has 18 features. The label identifies the
field from which the individual fruit was harvested.

The applications train a model on a random subset (80%)
of the data. Each then uses this model to predict the field
from which each fruit originates for the remaining 20%. To
study the impact of random data split, we consider multiple
80%/20% splits in our evaluation.

B. Empirical Methodology

To evaluate Seneca, we measure model output quality,
execution time, memory use, and monetary cost. For output
quality (prediction accuracy) our metrics are mean squared
prediction error (MSE) for regression and percentage accuracy
for classification as described above.

We compare results for the default, best (Seneca’s recom-
mendation), and worst performing hyperparameter configura-
tions for each application type. Seneca computes all possible
combinations of the hyperparameter settings specified in the
configuration to extract each of these results. default repre-
sents results that a novice or first time user might experience
when using these applications as a “black box.” The worst
shows how bad the results can be when parameters are poorly
tuned. Finally, the best is the upper bound on what is possible
from tuning the hyperparameters for the values and datasets
specified (e.g. using expert knowledge or Seneca).

Seneca deploys the applications automatically over AWS
Lambda and extracts execution time and memory use from
AWS CloudWatch [23] logs. We compute monetary cost using
the AWS Lambda pricing model [7]. Each function downloads
the training/testing dataset of the application from AWS S3
upon function invocation. We do not consider the cost of
dataset storage in our cost computations, because it is very
small. For XGBoost that makes most S3 requests among
others, the cost is less than 2.5 cents for storage and request
combined in a month. We also evaluate Seneca’s automatic
memory optimization capabilities. To do so we compare the
execution performance and cost of the applications using the
maximum allocatable memory size to the performance and
cost when run with Seneca’s automatically determined mem-
ory size. Even though maximum memory used reported by
AWS CloudWatch can fluctuate, we have verified that the op-
timized allocated memory is sufficient for all hyperparameter
configurations to complete successfully. We have also verified
that the memory requirements across hyperparameter settings
do not vary significantly. We plan to consider applications
for which hyperparameter settings require different maximum
memory sizes as part of future work.

C. Application Efficacy

We first evaluate the quality of the output generated by each
ML applications when Seneca determines the hyperparameter
settings. We first show the results for the regression appli-
cations in Table VI. The first row of data is the number
of hyperparameter configurations that Seneca considers for

Prophet Multi-Regression XGBoost
# of Combinations 384 255 768

Default MSE 0.284 11.446 0.118
Worst MSE 1.266 43.752 8.981

Best MSE (Seneca) 0.220 9.621 0.065

TABLE VI: Hyperparameter configuration count and MSE
for the default, best (Seneca’s recommendation), and worst
configurations for the three regression applications. For the
MSE values (rows 3-5), lower is better.

Fig. 4: Box plot of MSE from the three regression applications
across the hyperparameter tuning search space. The red notch
shows the MSE from the default settings. The colored dia-
monds are outliers beyond two interquartile ranges. Seneca
selects the points indicated by blue triangle. Lower MSE
values are better.

each. The last three rows show the MSE for the default,
worst, and best performing (Seneca’s recommendation) hyper-
parameter configuration (lower is better). Seneca reduces
MSE by 22.56%, 15.94%, and 44.88%, for Prophet, Multi-
Regression, and XGBoost, respectively, for the datasets and
training methodologies that we consider. Compared to the
worst case, Seneca reduces MSE by 82.62%, 78.01%, and
99.28%, respectively.

Figure 4 shows the MSE box plot for the hyperparameter
search space for these applications (lower is better). The
central rectangle covers the interquartile range (IQR), which
is defined as the range of data points from first quartile to
third quartile (Q3 − Q1). The upper whisker extends to the
last datum less than (Q3 + 2 ∗ IQR) and the lower whisker
extends to the first datum greater than (Q1 − 2 ∗ IQR). The
data points beyond the whiskers are considered outliers and are
plotted as colored diamonds. The red notch identifies the MSE
that results from training the model using the default settings
of hyperparameter. The blue triangle identifies the MSE of
Seneca. The difference between red notch and blue triangle
is the improvement brought about by the use of Seneca, over
using the default parameter setting. The plot also shows that



80%-20% XGBoost SVC NN
# of Combinations 768 512 432
Default Accuracy 95.65% 21.77% 79.53%
Worst Accuracy 0.00% 14.08% 19.15%
Best Accuracy (Seneca) 98.11% 40.81% 83.32%

TABLE VII: Accuracy for the default, best (Seneca’s recom-
mendation), and worst hyperparameter configurations for the
three classification applications using 80% of the data to train
and 20% of the data as a test set. Higher accuracy is better.

Fig. 5: Box plot of accuracy reported for three classification
applications across the hyperparameter search space. The
red notch indicates the accuracy that results from default
hyperparameter values. The diamonds are outliers beyond two
interquartile ranges. Seneca selects the points indicated by blue
triangle. Higher accuracy is better.

Prophet and Multi-Regression have a significant number of
outliers, indicating that a comprehensive search is critical to
finding the best configurations.

We next empirically evaluate Seneca’s model output quality
for the three classification applications: XGBoost (classi-
fication), SVC, and NN. Table VII presents the accuracy
percentage (higher is better) for each application (3 right-
most columns) for the default, worst, and best (Seneca’s
recommendation) hyperparameter tuning configurations (data
rows 2-4). The first row reports the number of configurations
that Seneca considers in its search space. Using a random
80/20 (train/test) percent split, Seneca increases accuracy by
2.46%, 19.04%, and 3.79%, for XGBoost (classification),
SVC, and NN applications, respectively. Because XGBoost
and NN use a well-tuned default parameter set that works
well for most datasets, Seneca provides only modest improve-
ments. Compared to the worst case however, Seneca improves
accuracy by 98.11%, 26.74%, and 64.17%, respectively.

Figure 5 presents the accuracy box plot across the hyper-
parameter search space for these applications (higher is better).

Exec Time (Secs) Memory Use (MB) Best Accuracy
XGBoost 1 1244.42 (32.58) 228.74 (15.92) 98.11%
XGBoost 2 1280.56 (38.47) 225.10 (19.67) 97.70%
SVC 1 116.73 (1.11) 224.44 (19.64) 40.81%
SVC 2 115.33 (3.96) 228.55 (16.20) 44.12%
NN 1 116.10 (6.05) 328.84 (16.40) 83.32%
NN 2 121.29 (2.18) 327.57 (16.44) 83.92%

TABLE VIII: The mean and standard deviation (in parenthe-
ses) for execution time and memory use (across 30 runs), and
best accuracy score for the classification applications using
two different random splits.

The central rectangle covers the first-third quartile (Q3−Q1)
and the whiskers span from (Q3+2∗IQR) to (Q1−2∗IQR).
The red notch indicates the accuracy metric from the model
trained using the default settings and colored diamonds show
outliers beyond the whiskers. The blue triangle at the top
identifies the accuracy percentage reported by Seneca.

The model output quality results across applications, show
that prediction accuracy (for a given dataset) is dramatically
affected by hyperparameter settings. Predictably, the default
settings are near the “good” end of the spectrum, however,
Seneca is able to find the parameterization that improves
output quality over the default settings in each case.

To investigate the potential impact of Seneca’s 80/20 percent
data split for the classification applications, we next evaluate
the quality of the output generated from each when we
consider different 80/20 random splits. For that purpose, we
run Seneca 30 times to obtain execution time, memory use, and
best accuracy score. We report the mean and standard deviation
(in parentheses) for execution time and memory use across
runs, and the best accuracy score in Table VIII. Each pair of
rows shows the results for two different random splits. Our
earlier results use input 1; this table adds results for a second,
80/20 random split of the input (we also considered other
random splits, which we omit for brevity, and the results are
similar). The performance and Seneca score is similar across
splits. This result indicates that for these applications, users
can repeatedly employ the recommended models for inference
on other datasets or splits, to amortize the cost of using Seneca.

D. Cost Analysis

We next analyze the monetary cost incurred by Seneca with
and without Seneca’s memory optimization. We consider the
use of the maximum allocatable memory (3GB) and Seneca’s
automatic detection and configuration of allocated memory.
This optimization requires that Seneca intelligently probe to
determine the best memory size to use. We report the cost of
these probes as Optimizer Cost.

Table IX shows the results with and without the Seneca
memory optimization for each of the five applications. The first
two rows show the results when we use the maximum allocated
memory for the Lambda functions. We present execution time
in minutes (row 1) and monetary cost in cents (row 2). Rows
3–6 show the performance and cost when using Seneca’s mem-
ory optimization. Exec time opt is the execution time in
minutes. Optimizer Cost is monetary cost in cents of



Prophet MR XGBoost SVC NN
Exec time max (mins) 7.78 2.71 20.85 0.87 2.06
Cost max (cents) 22.16 7.58 59.92 2.21 5.92
Exec time opt (mins) 12.60 4.09 29.07 2.08 3.06
Optimizer Cost (cents) 2.02 1.27 0.05 0.04 0.04
Cost opt (cents) 17.81 4.47 39.76 1.38 4.39
Total Cost (cents) 19.83 5.74 39.81 1.43 4.44
Savings (cents) 2.33 1.84 20.11 0.78 1.48
Savings (%) 10.49% 24.23% 33.57% 35.42% 24.98%

TABLE IX: Seneca Memory Optimization: Rows 1–2 show
the execution time and monetary cost of using Seneca without
its memory optimization (allocated memory = 3G). Rows 3-
6 is the execution time and cost, respectively, when using the
Seneca memory optimizer. Rows 7-8 show the savings in cents
and percentage, respectively.

Prophet Multi Reg XGBoost SVC NN
EC2 exec time (mins) 73.79 21.99 359.87 7.74 15.92
EC2 total cost ($) 0.083 0.042 0.25 0.042 0.042
yield 50.86 340.23 83.36 0.00 1875.56
ideal yield 25.43 170.12 41.68 0.00 937.78

TABLE X: Seneca VS EC2 cost analysis. Execution time
(mins) and cost (dollars) for executing the applications serially
in EC2 (t2.medium). Rows 3–4 show yield – the additional
speedup that Seneca can achieve for each additional dollar
spent for these applications. Yield for SVC is 0 (infinite)
because Seneca costs less than EC2 in this case. Ideal yield
shows the yield when we execute the applications in parallel
(assuming 2x perfect parallelism).

Seneca’s memory size detector. Cost opt is monetary cost
in cents of using Seneca’s memory optimizer. Total cost
is the overall cost of using Seneca to perform hyperparameter
tuning for these applications and datasets (sum of Optimizer
Cost and Cost opt). The last two rows show the monetary
savings in cents (row 7) and percent savings (row 8) of using
Seneca’s memory optimization. Seneca’s memory optimization
reduces the monetary cost of its use from 10–35% (25% on
average).

Table IX illustrates two important points. First, using AWS
Lambda, full hyperparameter space exploration is inexpensive
in absolute dollar cost terms and Seneca’s automatic memory
size optimization decreases this cost further. Second, memory
optimization reduces cost but can increase the total execution
time for parameter search since the functions must operate un-
der additional memory constraints (versus using the maximum
allocated memory). In addition, this cost fluctuates depending
on the quality of the Lambda execution environment (number
of CPUs, Linux container overhead, multitenancy, etc.). We
omit this data due to space constraints but analyze it here. The
average absolute difference in cost across the five applications
(30 runs) is $0.05. Moreover, we have verified that the highest
cost of execution under optimized memory is still cheaper than
the lowest cost of execution under maximum memory for all
five applications.

Finally, we compare the cost of Seneca to the cost of using
AWS Elastic Compute Cloud (EC2). We measure the exe-
cution time of Seneca using the least expensive EC2 instance

type in which the applications will run (t2.medium, which
has 2 multi-tenant cores and 4GB of memory). Note that EC2
instances are charged for by the hour; Lambda charges are only
imposed when functions execute, but Lambda may execute the
functions concurrently. For this comparison, Seneca (because
Lambda’s automatic exploitation of concurrency) enables a
speedup over EC2 (where we execute the parameter sweep
sequentially) of 3.72x – 12.38x (6.51x on average). This
speedup comes at an additional cost of $0.01–$0.15 over EC2
for all but SVC (which executes for significantly less than an
hour).

To further understand the relationship between Seneca
speedup and cost when Seneca is more expensive (but
faster) than using EC2, we define yield as Y =
Tec

Tsc
/(Csc − Cec) | if Csc > Cec where Tec and Tsc are the

execution time, Cec and Csc are the total cost of EC2 instance
and Seneca, respectively. For applications for which Seneca is
cheaper (e.g. SVC), we report yield as 0.00 since there is
no positive benefit/cost ratio. This metric captures the amount
of speed up that Seneca can achieve for each additional dollar
spent. To make the comparison “fair” we also explore yield
for theoretically perfect parallelism in EC2 using 2 cores (e.g.
in a t2.medium).

We present results for this yield metric in Table X for each
of the applications. Rows 1 and 2 show the average execution
time (in minutes) and cost (in dollars) from using EC2 for
each. Rows 3 and 4 show the Seneca yield (speedup/$). Row
3 shows yield for serialized execution in EC2 (t2.medium
instance) and row 4 shows estimated yield if we were to
achieve perfect parallelism (i.e. 2x) using the EC2 instance. On
average across the four applications for which EC2 is cheaper,
Seneca achieves yield of 294 (assuming perfect parallelism in
EC2). That is, Seneca is able to provide a speedup of 294x on
average, for each additional dollar spent for these applications.
It is tempting to attribute this effect to the EC2 full-hour charge
for short running applications, but XGBoost runs for almost
6 hours and the yield is still 41.86 assuming best-case EC2
execution. We plan to study this benefit/cost ratio for Seneca
and Lambda applications as part of future work.

Overall, given the AWS Lambda pricing model and its
Lambda performance variability, Seneca is still able to find
the sweet spot between cost and execution time. Thus Seneca
can be used to trade off time-to-solution for cost as desired by
users, to automatically evaluate the impact of hyperparameter
settings for ML models.

IV. RELATED WORK

As related work, we consider recent advances in evaluating
serverless computing for different application domains, auto-
matic deployment for serverless, and machine learning (ML)
model optimization. For the former, much work has investi-
gated the efficacy and overhead of the serverless programming
model and implementations [1], [2], [24], [25]. The authors
identify challenges with using AWS Lambda to train machine
learning (ML) models. Our work however, shows that it is
possible to leverage the concurrency and parallelism in AWS



Lambda to perform fast grid search for the subset of ML
applications that we consider.

PyWren [1] uses serverless for different distributed comput-
ing models. The technique abstracts away cluster management
overhead and is ideal for embarrassingly parallel jobs. Ex-
Camera [26] presents a framework for running general-purpose
parallel tasks (encoding 4K video) on a commercial serverless
platform using multithreading. Cirrus [27] attempts to train
ML models using a parameter server and serverless functions.

The serverless framework [28] provides automated pack-
aging and deployment for serverless functions across clouds.
GammaRay [29] does so for AWS Lambda to insert profiling
instrumentation. The serverless framework uses CloudForma-
tion [30] for deployment in AWS Lambda, which introduces
additional cost. The cloud infrastructure provisioning frame-
work Terraform [31] also provides automated deployment of
functions to serverless platforms. Seneca uses a local Docker
container to avoid cost and overhead (vs these related works),
which guarantees execution compatibility for AWS Lambda.

Automated hyperparameter tuning is the focus of many
projects. Google Vizier [32] provides a service for black-
box optimization. Optunity [33] and Hyperopt [34] provide
a Python library for hyperparameter tuning. Hyperas [35]
adds another abstraction layer to hyperopt to facilitate hyper-
parameter tuning for Keras [36]. However, we are not aware of
any work that leverages serverless to perform hyperparameter
tuning and memory optimization in parallel for ML applica-
tions.

V. CONCLUSION

We present a new framework, called Seneca, for simplifying
and expediting the training and testing of machine learning
models in AWS Lambda. Users provide Seneca with the
application code and libraries, 1+ datasets, and the list of
possible hyperparameter settings. Seneca uses this informa-
tion to automatically configure and deploy these functions
concurrently for all possible combinations of hyperparameter
values specified. Seneca returns the best scoring model and
configuration to the user for future use on other datasets.

We present the design, implementation, and cost optimiza-
tion for Seneca. The optimizer automatically optimizes func-
tion memory use to reduce the cost of AWS Lambda use. Our
empirical evaluation using multiple applications for regression
and classification, shows that Seneca is able to quickly identify
the best performing hyperparameter setting for the applications
and datasets that we consider. We also find that Seneca enables
average speedups of 294x for each additional dollar spent, and
that its memory optimization reduces the cost of using Seneca
by 10-35% for the applications studied.
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