Minimizing the Network Overhead of Checkpointing in
Cycle-harvesting Cluster Environments

Daniel Nurmi, John Brevik, Rich Wolski
University of California Santa Barbara
Deptartment of Computer Science
Santa Barbara, CA
{nurmi,jbrevik,richt @cs.ucsb.edu

Abstract

Cycle-harvesting systems such as Condor have been deddtmpgke desktop machines in a
local area (which are often similar to clusters in hardwarnéiguration) available as a compute
platform. To provide a dual-use capability, opportunigbbs harvesting cycles from the desktop
must be checkpointed before the desktop resources arémaaaby their owners and the job is
evacuated.

In this paper, we investigate a new system for computingegfficheckpoint schedules in cycle-
harvesting environments. Our system records the histbaveailability from each resource and
fits a statistical model to the observations. Because clodglipg must often traverse the network
(i.e. the desktop hosts do not provide sufficient persistendge for checkpoints), we combine this
model with predictions of network performance to the stersige to compute a checkpoint sched-
ule. When an application is initiated on a particular resoeythe system uses the computed distri-
bution to parameterize a Markov state-transition modeltfer application’s execution, evaluates
the expected time and network overhead as a function of thekpbint interval, and numerically
optimizes with respect to time.

We report on the performance of and implementation of thésesy using the Condor cycle-
harvesting environment at the Universiity of Wisconsin. a® evaluate the efficiencies we
achieve for a variety of network overheads using trace-asmulation. Finally, we validate
our simulations against the observed performance with @on@ur results indicate that while
the choice of model distribution has a relatively small bositive effect on time efficiency, it has a
substantial impact on network utilization.

*This work was supported by grants from the National ScieraBation, numbered NGS-0305390 and CCR-
0331654.

1 Introduction

As a computing platform, a cluster of commodity workstasionterconnected via local-area
networking technology offers an extremely high price-perfance ratio among the available al-
ternatives. However, for many organizations a dedicatestef represents a non-trivial investment,
both in terms of hardware and maintenance expense. Foreg®n, “cycle-harvesting” systems
such as Condor have been developed to make desktop maahiadsdal area (which are often
similar to a cluster in hardware configuration) availabl@asmpute platform opportunistically.
To provide this dual-use capability, opportunistic jobsvesating cycles from the desktop must be
checkpointed before the desktop resources are reclaimteelyowners and the job is evacuated.

These “virtual clusters,” implemented by resource-hamgssystems such as Condor [23],
SETI@Home [21], Folding@Home [29], UUCS [8], and Entropta 11], offer vast computing
potential by leveraging the unused capacity of relativellatile desktop and “personal” comput-
ing resources. From the perspective of the programmer arwisting to tap this potential, the
proffered resources appear significantly less stable tbarabclusters. Each resource typically
has a primary owner or user who may reclaim or reboot the mackithout warning: It is the
unused capacity that is available for harvest. Even whesetheclamations are controllee.g,
the resource-harvesting system notices user activity saduates any guest load), the effect on
the application is the same as if a resource fails: The resagmo longer available for processing,
and any application state stored on that resource is in darfigpeing lost.

Checkpointing is an obvious and widely studied techniqueafaeliorating the effects of re-
source volatility in high-performance parallel computard distributed system settings [2, 4, 13,

24, 25, 26, 27]. However, checkpointing introduces bothstesy performance overhead (in the

form of additional network and storage load) and an exenyterformance overhead (the delay
required to generate a checkpoint) that can be particusglyificant in desktop settings. Often,
application checkpoints cannot be stored locally on theues, either because of security con-
cerns or because resource owners simply do not wish to gideskstorage to guest applications.
In this case, the checkpoint state must be stored remotay the network. While the use of
spare cycles on unused workstations only impacts thosestaditins, over-utilization of a shared
network resource will negatively impact the performancalbivorkstations, whether they are ac-
tively contributing to the cycle-harvesting system or notaddition, while the typical dedicated
compute cluster commonly includes a dedicated high-padoce network which can handle the
load of a parallel application checkpoint, resource-hstiag clusters are commonly connected
via a relatively low-speed shared network, and thus mosdligént network usage strategies are
required to get high performance during parallel checkinagn

In this paper, we investigate the effects of optimizing &p&int overhead on both application
execution performance and network load in resource-hamgesettings. Our work automatically
derives a checkpoint schedule for an application, basekdearhount of state that must be saved in
each checkpoint and the historically observed failure asthmation behavior of each resource it
uses. When an application is assigned to a resource by theroesharvesting system, our system
automatically computes a checkpoint schedule.

We use a Markov model to develop a checkpoint schedule “offyth&r applications running
in the Condor [23] environment. We investigate how the caaitdistribution that our system au-
tomatically fits (which is either Weibull, hyperexponeiht@ exponential) to historical availability
data affects the efficiency of the schedule. We describe #taadology and its implementation,

detail its performance for Condor, probe a range of perfolceaesponse using trace-based sim-

ulation, and validate the simulation against observatiOuur results indicate that the choice of
parametric distribution affects application executionfpenance to a small degree but has a dra-

matic effect on induced network load.

2 Related Work

In this paper, we are building upon a great deal of work frora 8gparate but related fields.
The first field of interest is that of modeling machine faifarailability distributions. Work such
as [7, 10, 22, 30, 31] typically assume an exponential éstion to model machine lifetime data
for use in their applications. Usually the exponential iss#n due to the relative simplicity of
the distribution as opposed to an actual belief that the eaptal represents the data accurately.
Other works, most notably works by Lomg. al.[14] and Planket. al.[17, 18] show that indeed
the exponential is a poor fit to their data; sometimes, howeasein [17], the poor fit does not
significantly impact their application of the model. In [B]2researchers have suggested the
use of a Weibull distribution to model machine availabililyrations but provide no quantitative
measure of goodness-of-fit. Others, including [12, 16]wshtat hyperexponential distributions
accurately model certain characteristics of their macfaitere data.

The second field of interest for this paper is that of solvimg problem of optimal checkpoint
interval selection [4]. A great deal of literature has beaitten on this topic, more than we
can comment on here, but we attempt to give the reader somanmyriand more recent reading.
Fundamental work was done on finding optimal checkpointwalls on transaction processing sys-
tems [2]. The work continued, shifting focus to high-peni@nce computing environments and
distributed systems [25, 27]. Work in this area is typicahgdicated on one of two simplifying

assumptions. Most authors have assumed that the distribatiavailability times is exponen-

tial, because the PDF and CDF formulas are simple enoughoiw alosed-form solutions to the
equations involved in finding optimal checkpoint intervafSther authors, such as Tantawi and
Ruschitzka [24] and Lingt. al.[13], consider the problem for general availability distriions,
but they make the common assumption that failures do notrakming a checkpoint or recovery
in order to produce expressions that are analytically atatale. While assuming no failures during
checkpoint or recovery is justified when individual chedkpand recovery times are insignificant
compared to time taken performing computation, we feel gsi@ption is too restrictive to be
applied generally. Clusters provided by cycle-harvesgngironments, the focus of this work,
provide an example of a system in which a job may be requiradstce large checkpoints over the
network during relatively small availability durations.

In this work, we build upon the checkpoint interval modeldésed by Vaidya [26], without
however making the assumption that availability is modégdn exponential distribution. Since
Vaidya’'s model makes no inherent assumptions regardihgréai during recovery or checkpoint-

ing, our approach is free of both of the simplifying assuimpsidiscussed above.

3 Methodology

In this section, we give a brief description of the statatimethods we use to characterize
resource availability. These include the strategies ueeditfing statistical distributions to data
and the Markov model we use to derive the formula for cheakpmierhead to be minimized.

3.1 Fitting a Distribution to Availability Data

In this study, we consider three families of distributiomsponential, Weibull, and hyperex-

ponential. The exponential distribution has been usedskitely to model resource availability

because it is computationally simple to use and becausg ‘hgmoryless” property, as discussed
below, which allows one to specify a single checkpoint ivaiethroughout the execution of a job.

In contrast, the two distribution families that consishefiit the data we have gathered most
accurately are the Weibull and the hyperexponential. Wegbull distributionis often used to
model the lifetimes of objects, including physical systesmponents [20, 1]. Hyperexponentials
have been used to model machine availability previously, [t it is numerically difficult to find
estimators which have statistically desirable propefoesheir parameters.

3.2 Probability Function Definitions

We will denote probability density functions using lowexsef and distribution functions using
upper-casé’. For an exponential distribution, the probability densitgction fr and distribution

function F; are given respectively as

fo(z) = Xe™ 1)
Fp(z)=1—e 2
where is a positive real number.
The density and distribution function$, and Fy, respectively for a Weibull distribution are
given by

fiw (@) = ap ozt #0" (3)

Fy(z)=1—e @0 (4)

The parameterr > 0 is called theshapeparameter, an@ > 0 is called thescaleparameter.!

Whena = 1, the Weibull reduces to an exponential distribution.

1The general Weibull density function has a third paramegeloication, which we can ignore since our data has
minimum values close t0.

Hyperexponentials are distributions formed as the wewjhtan of exponentials, each having a

different parameter. The density function is given by

k

fu(@) = Ipi fe,(2)], 2 >0 (5)

=1
where
fe(x) = N (6)

defines the density function for an exponential having patam,. In the definition offy(z),

all \; # \; fori # j, andezlpi = 1. The distribution function is defined as

k
FH(.CL') =1- ZpZ : eiAix (7)

Note that for a hyperexponential distribution, one must §pecify the number of phasésthe
distribution is then determined by an additiogal— 1 parameters, namely the and all but one

3.3 The Distribution of Future Lifetimes

Suppose that resource availability lifetimes are represeas a random variablg with proba-
bility distribution F', and lett be a nonnegative real number. Itis natural to consider stelolition
of future lifetimes beyond, which we will denote byF,(x), based on the conditional distribution
function of F’ given thatX > ¢. Specifically,

Flt+a)—F() -

Fi(z) = Fxsi(t +z) = an Lt >

computes the probability that a resource will fail withie thextr seconds given that it has been
available fort seconds. Thus when an application is assigned to a res@mdegt any point in

time thereafter, we can compute the probability it will barigated within the next seconds,

assuming the model distribution to be accurate and giveratheunt of time the resource has
already been available.

In the case of an exponential distribution, the distributid future lifetimes(Fx); reduces to
the original distribution for all values af This is referred to as thmemorylesgroperty of the
exponential.

The future lifetime distribution for a Weibull reduces to

(Fw)e(z) = 1 — lt/8° /A%, (9)

The future lifetime distribution for the hyperexponentigtribution defined above is

(FH)t(x) —1_ (Zf:l bi- 6_>\i(t+E)> (10)

Zle pZ . e*)\i(x)

3.4 Parameter Estimation

Each of the above-mentioned statistical distributionslves some number of unspecified pa-
rameters which must be estimated in order to “fit” a particdiatribution to the observed data.
The generally accepted approach to the general problemrafmger estimation is based on the
principle ofmaximum likelihoodThe maximum likelihood estimator (MLE) is calculated forya
data set, based on the assumptions that each of the sampleailsiisz; is drawn from a random
variable X; and that theX; are independent and identically distributed (i.i.d.). V8e Watlab [15]
to estimate MLE parameters for exponential and Weibullritistions throughout. Finding MLE
parameters for hyperexponential distributions is soméwiae difficult. Therefore, we use the
EMPht software package [5] in place of the Matlab MLE roufioreall estimated hyperexponential
parameters in this paper. We have implemented a softwatensykat takes a set of measurements

as inputs and computes Weibull, exponential, and hyperexqutal parameters automatically.

START

T+C NN\

3|

Figure 1. Diagram of a single checkpoint interval. We wish to find the value of 1" which
maximizes time spent performing useful computation on vola tile resources.

3.5 Optimal Checkpoint Intervals

The optimal interval between checkpoints in an applicagigcution balances the cost of check-
pointing (lost execution time while each checkpoint is gatexl) with the cost of recovering from
a failure by restoring execution from the last checkpointhid/many solutions to this problem
have been proposed, we have chosen to use the descriptido ¥a&lya [26] for this work be-
cause it takes into account that failures may occur duririg bleeckpoint and recovery phases. In
a resource-harvesting context, we believe that failure tdureclamation) during checkpointing

and/or recovery is significantly more likely than in othettisgs.

The interval between checkpoints is composed of a computgthase whose duration 1S
seconds (to which we will sometimes refer aswgk time interva) and a checkpoint phase using
C seconds. If the application is restarting after a failutayill begin with a recovery phase of
duration R seconds. Figure 3.5 shows the decomposition of a singlekpbet interval. Note
that we are making the explicit assumption that recoverppmatation, and checkpointing occur

sequentially without overlap.

With this phased model of application execution, one canpmdmthe expected time spent
during the work associated with a single checkpoint intengng a three-state Markov model
(shown in Figure 2). The transition probabilities betweke states depend on both the work
time interval selected and the statistical model chosethi@rfuture lifetime distribution. These
probabilitiesP,; and the cost function&’;; associated with moving from statéo statej are given
by the following equations, in which represents the set of parameters intrinsic to the distabsit

used to model resource availability.

POl(A,C,T):l—F(A,C+T)
KOl(C,T) — O"—T
POQ(A,C,T) :F(A,C+T)

Tt f(AY
Ko(A,C,T) = — Tt
02()) /0 F(A,C+T)

Poy(AR,T,L)=1—F(\,L+R+T)
Ko (RT,L)=L+R+T
Po(A,R,T,L) = F(A,L+R+T)

t-f(A,t)
ANL+R+T)

L+R+T
K ARJUJ:/
S S

Vaidya’s work defines these functions explicitly in termglod exponential distribution and uses
them to calculate a single periodic (because the exponentreemoryless) checkpoint interval for
the application’s execution duration.

Our work generalizes this approach to use other distribat{@ our case, Weibull and hyper-

exponential, but in fact one can use any family of distribog in this context, as long as one

0 No Failure
Interval Begin

Resource
Failure

No Failure

2

Failure Occurred

Resource
Failure

Figure 2. Three-state Markov model describing a single chec kpoint interval in a long-running

job.
has a method for estimating parameters and evaluating theeaxpressions numerically) and to
compute a checkpoint schedule as a sequence of intervalefapplication.

Denote byl the expected value of the amount of time to move from 4t statel in the

Markov model.I' can be calculated from the above formulas as

P.
F:]301'K01+Poz'(K()2+K22']3—22—1‘K20) (11)
21

Note that% measures the factor by which we can expect the amount of grmedsng useful
work to be multiplied within a work time interval. Therefotlee problem of finding an optimal
work time interval can be expressed as the problem of mirmhgi{z with respect tdl". We use the
Golden Section Search method as implemented in Numeriaap&g[19] for this optimization

problem. Definél,,, to be the optimal work time interval.

Note that the probability and cost calculations made abavst e made consideririgturelife-

time distributions. Therefore, when calculatiig , Ko, Py, and Ky, in the cases of the Weibull
and hyperexponential distributions, we must take into antthe amount of time that thepecific
resourcethat the application is using has already been availabiegsias noted above, the future
lifetime distribution changes as time passes. On the otted hsince a failure has just occurred if
we are in state, the otherP;; and K;; formulas are calculated using the ordinary unconditional
versions of the distributions.

From the same considerations, note that if we use a non-nygserdistribution as our model
for resource availability, we obtain an aperiodic schedil€,,, values rather than a single value.
This schedule takes the form of a sequencd gf values computed from the beginning of the
application’s execution time. We dendfg,,(;) to be theith such valueT,,) is the first interval
and it is computed for the time that the application is ingthusing the amount of time, denoted
Tuapsea, that has elapsed since the resource running the apphdaés failed. Each successive
value of7,,,,;y can then be computed based on the amount of time the resourdeave been
available at the beginning of each work time interval. Nbi& the schedule remains valid for as
long as the resource is available without interruption eA# failure occurs, of course, we need to
calculate a new schedule ©f,, values.

The schedule we derive in this way is “optimal” in the samessdhat Vaidya’s model is optimal:
Given the information we have at the beginning of executard assuming the accuracy of our
model, this schedule minimizésand thus is the best we can do; in fact, the schedule is optimal
at the beginning of each checkpoint interval, again assgmur model, in which checkpoint and
recovery durations are known constants.

We have written a small, portable routine which implemehésdvaluation and optimization of

% to find 7,,;, taking as input the distribution model chosen, the diatidn parameters, the value

of Teiqpsea (Ignored in the case of exponential distributions), andiealforC' and R.

4 The Condor System

Condor [3, 23] is a resource-harvesting system designagoast high-throughput computing.
It runs as a privileged process on desktop workstations ecgpés “batch” job submissions from
Condor users. When Condor detects that a machine has bedten@ge. is not being used by
its owner) it initiates a submitted job on the workstation aaptures its 1/0. Should the owner
reclaim the workstation (by moving the mouse, typing at teydoard, or having a local job start
and change the load average), the Condor job is either atitmityacheckpointed and evacuated
(in the Standard Universeor terminated for later restart (in théanilla Universa.

In this study, we take advantage of the Vaniil&.(terminate-on-eviction) execution environ-
ment to build a Condor occupancy monitor. A set of monitorcesses is submitted to Condor
for execution. When Condor assigns a process to a procése@rocess wakes periodically and
reports the number of seconds that have elapsed since ih lezgauting. When that process is
terminated (due to an eviction) the last recorded elapsed vialue measures the duration of the
occupancy the sensor enjoyed on the processor it was usorgead€h machine Condor uses to
run one of our sensors our system records a sequence oftatyildurations and time stamps (in
UTC units) indicating when those durations occurred.

In this study, Condor used a pool of over 1000 different Limeorkstations to run the monitor
processes over ar8-month long measurement period which is ongoing, of whicholvmined
data for approximately 640 machines. Thus the model fittimgpmonent of our overall system
computes distributions from up-to-date availability m@asents that cover the period from April

2003 until October 2004.

5 Experimental Evaluation

We evaluate the method we have outlined in two ways, both afhwiise the Condor resource-
harvesting system as a target execution platform. Firsyseediscrete event simulation, based on
the execution traces gathered from Condor, to compare taetigeness of exponential, Weibull,
and hyperexponential models. Second, we examine theiecégp effectiveness using the “live”
Condor system and a test application. We repeatedly ladrechgplication in Condor, and when
itis given access to a host, we compute checkpoint intefgathat host based on availability data
we have recorded over the previous 18 months. Because tlitioos change from execution
run to execution run, we compare thevivo results in terms of their average time and network
bandwidth efficiency. Finally, for completeness, we vetifg simulations using post-mortem trace
data we record during the actual Condor runs.

5.1 Simulation Method and Results

For the machines which the Condor scheduler chose to exeautmonitoring process on a
sufficient number of times over 18 months, we divide eachetrado a “training set” containing
the first25 values occurring chronologically and an “experimental senhtaining the remaining
values. We then use each training set to calculate MLE pasast®r an exponential model and a
Weibull model and EM parameters for batkphase an@-phase hyperexponential models. Thus,
we model the training set for each trace by four differentrdtigtions.

In order to capture “steady-state” efficiency, we simulajebethat begins before the first mea-
surement in each training set and continues to run afteratenieasurement in the experimental
set. Note that for each work time interval, the expected iefiy is just the reciprocal of the

quantityl’, defined in the “Methodology” section, evaluated g;.

0.8 — ‘ 120000 — ‘
9 weibull -+ 110000 | weibull -~
0.75 exponential x] ¥ exponential x
0.7 b . hyper » , 100000 = hyper =«
hyper3 = | hyper3d =
> 065 yp] 90000 yp
§ 06 Q; | é 80000 | *
2 70000 | .
£ 055 1 | o
L ! S 60000 | * .
< 0.5 f : 1 o *
5 ? = 50000 f
= 045} o 1 40000 fo ot
04 r x . ' 30000 | o %)
035 | x . 20000 | A
0.3 : : : : : : : 10000 : : : : : : —
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 10001200 1400 1600
Checkpoint Time Checkpoint Time
Figure 3. Simulation experiment: average Figure 4. Bandwidth consumed: average net-
percent machine utilization using exponen- work load (in megabytes) when exponential,
tial, Weibull, and hyperexponential distribu- Weibull, and hyperexponential distributions
tions to compute checkpoint schedules. to compute checkpoint schedules when each

checkpointis 500 megabytes in size.

In order to compare the effectiveness of each model, we densioth application efficiency
and the amount of network load generated when each distibistused to compute a checkpoint
schedule. We assume checkpoint cOsis equal to the recovery cogt since this assignment

reflects our experience with executing long-running jobhevanilla Condor universe.

Figure 3 shows the results of our simulation using fits of exgmaial, Weibull, and hyperexpo-
nential models to machine availability. On theaxis we indicate the time, in seconds, necessary
to effect one checkpoint or recovery, and onghaxis we show the fraction of time the application
spends doing useful work. Because the overhead varies byinea@ach data point represents the
average overhead ratio across all machines in the simalafibe figure shows that all four dis-
tributions yield approximately the same average efficieampss machines. In Table 1 we show

each average from the figure along with its 95% confidencevale

We indicate statistically significant differences withiscl row between the results for two dis-

CTime | Exp. | Weib. | 2-phase Hyperexp.| 3-phase Hyperexp. |

50 0.754 £ 0.013 0.767 + 0.012 (,2,3)] 0.754 & 0.014 0.762 £ 0.013

100 | 0.677 £0.017 (2) | 0.688 £ 0.016 (e,2,3)| 0.669 & 0.017 0.679 £ 0.017 (2)
200 | 0.600 =+ 0.020 0.614 £ 0.019 (€,2,3)] 0.597 =+ 0.020 0.606 & 0.020 (2)
250 | 0.576 & 0.020 0.584 & 0.021 0.581 &= 0.020 (€) | 0.591 & 0.020 (€,2)

400 | 0.518 & 0.020 0.535 £ 0.020 (e) 0.543 £ 0.020 (€) | 0.551 =+ 0.020 (e,w,2)
500 | 0.489 =+ 0.020 0.508 £ 0.021 (e) 0.521 =+ 0.020 (e,w) | 0.528 = 0.020 (e,w,2)
750 | 0.433+£0.020 0.456 £ 0.021 (e) 0.476 £ 0.021 (e,w) | 0.483 £ 0.021 (e,w)
1000 | 0.390 + 0.020 0.416 £ 0.021 (e) 0.441 £ 0.021 (e,w) | 0.447 £ 0.021 (e,w)
1250 | 0.356 + 0.020 0.388 £ 0.020 (e) 0.409 £ 0.021 (e,w) | 0.416 £ 0.021 (e,w,2)
1500 | 0.329 +0.019 0.363 = 0.020 (e) 0.387 £ 0.021 (e,w) | 0.391 £ 0.021 (e,w)

Table 1. 95% confidence intervals for mean efficiency for various checkpo int sizes of the four
tested distributions.

tributions by placing within each cell symbols standing &y distributions whose efficiencies
were statistically significantly smaller for that checkptaduration. (In this scheme, “e” stands for
exponential, “w” for Weibull, 2” for 2-phase hyperexponential, angl’‘for 3-phase hyperexpo-
nential.) For example, the (e,w) in t3@0-second row of the-phase hyperexponential column
indicates that the efficiency for tlzephase hyperexponential with a checkpoint duratiosofsec-
onds is statistically significantly larger than those fopexential and Weibull distributions with
the same checkpoint duration; on the other hand, the absdrsteh symbols in the50-second
Weibull cell indicates that its value is not statisticallgraficantly larger than those for any of the
other distributions. We measure statistical significarsiegitwo-sided pairetitests between each
pair of distributions at each checkpoint duration, at aificgmce level of05.

Although the differences are small within some rows, théetahows that for checkpoint dura-
tions shorter thaf50 seconds, the Weibull-based checkpoint schedule outpesftite others. For
longer checkpoint intervals, tiiephase hyperexponential generally does best. Thesegésntt

to support those reported in [17], in which the authors aslat an exponential model of machine

C=50| C=50 | C=500| C=500
Distribution All | First25| All First 25
Exponential .896 | .896 .695 .695
Weibull .891 | .891 .685 .691
2-Phase Hyper .862 .817 .690 671
3-Phase Hypef .895 | .897 .670 .695

Table 2. Application efficiency when machine availability i s defined by a Weibull distribution
with shape = (.43 and scale = 3409. We show simulation results with C' = 50 and C' = 500,
using all 5000 data points to model fit and only the first 25 values to model fit.

availability can be used to develop a checkpoint schedaleistclose to optimal.

To quantify the difference as precisely as possible, we g@aa synthetic machine availability
trace containing000 values in which each availability duration is drawn randpimbm a heavy-
tailed Weibull distribution with known parameters. To detee the parameters, we compute the
MLE Weibull parameter values for a machine trace chosenratam. For the chosen machine,
the MLE value for the shape parameteis 0.43, and that for the scale parametgis 3409.

Using our synthetic trace, we repeat the simulation expaninusingC' = 50 andC' = 500
to reflect empirical observations. Table 2 details the tesdlhe Weibull model used to compute
checkpoint intervals is precisely the same model that wad tsgenerate the artificial trace. For
the exponential cases, we use MLE-determined model andhéohyperexponentials we use the
EM-determined models. Thus, the Weibull results are ogdtana the others are approximate.
Clearly, using either an exponential or hyperexponentiahbdel the heavy-tailed Weibull data
causes only a slight loss of efficiency. Moreover, using dhé/first25 values does not degrade

the accuracy with which each approximates the Weibull-geed trace, as shown in Table 2.

While the different statistical models of machine avalili#pyield approximately the same ap-

plication efficiency, they do not result in the same amourngesferated network traffic. In Figure 4

| CTime | Exp. | Weib. | 2-phase Hyperexg. 3-phase Hyperexg.

50 110296 + 10317 (2,3) | 108687 + 11448 (2,3) | 95535 + 8952 99788 4 10495
100 80323 + 7400 (2,3) 78638 + 8163 (2,3) 60777 £+ 5740 64692 £ 7306
200 | 59153+ 5317 (2,3) | 57557 + 5820 (2,3) | 39603 £ 3641 43415 + 5122 (2)
250 53404 + 4775 (2,3) 68561 + 17864 (2,3) | 35171 + 3225 38926 + 4601 (2)
400 42350 4+ 3802 (2,3) 40638 + 4125 (2,3) 27487 4+ 2494 30553 + 3645 (2)
500 | 37546 & 3407 (2,3) | 35809 + 3678 (2,3) | 24474 £ 2248 27193 + 3291 (2)
750 | 29746 £ 2794 (2,3) | 28041 £ 3002 (2,3) | 19664 £ 1368 21671 £ 2673 (2)
1000 | 25099 + 2427 (2,3) | 23398 & 2590 (2,3) | 16897 + 1652 18458 + 2314 (2)
1250 21970 + 2172 (w,2,3) | 20310 + 2308 (2,3) 15031 £ 1502 16262 £+ 2065
1500 19693 4+ 1983 (w,2,3) | 18137 + 2112 (2,3) 13671 £ 1390 14549 + 1860

Table 3. 95% confidence intervals for mean bandwdith for various checkpo int sizes of the four

tested distributions.

we show the number of megabytes transferred if each chetkwere500 megabytes in length as

a function of checkpoint duration.

As in Figure 3, along the-axis we show the time required to checkpoint or recoverpbuhe
y-axis we show the average number of megabytes that travérseetwork. Note that the duration
C or R associated with 800-megabyte transfer depends on the speed of the networkdjrikie
resource with the checkpoint storage location. As desdribéhe next subsection, most of the
available machines in the Condor cluster have at |eEstmegabytes of memory, motivating our
choice of500 megabytes as a representative size. Table 3 shows the avatags, their respective
95% confidence intervals, and notation for statistically sigant differences within a single row
identical to that in Table 1. Note that in this table, sigrfidy larger values are undesirable, as

they correspond to more consumed bandwidth.

From the table, we see that the exponential-based chedkqdiedule significantly (and sub-

stantially) underperforms all of the other approaches. mhbst bandwidth-parsimonious approach

is that of the2-phase hyperexponential, which used at 1885t less bandwidth than the exponen-
tial for checkpoint overheads 200 seconds.

From these results, we conclude that while the applicatificiency is good for all availability
models, there is a noticeable difference in the network tpeatkrated by the different models.

The reason for this difference is that checkpoint overheadpises both the delay associated
with a checkpoint or recovery and the amount of lost work thatt be recomputed from the
last successful checkpoint when a failure occurs. The h&lgd models tend to produce longer
intervals between checkpoints, which results in fewer kpemts generated but more lost work
on average at the time of each failure. On the other hand,®penential model favors shorter
intervals, more checkpoints, and less lost work. It is ausithat these factors balance almost
precisely to produce the same application efficiency in Hrege of checkpoint costs we have
investigated.

5.2 Empirical Method and Results

While the simulation permits a quantitative comparisongdanential, Weibull, and hyperexpo-
nential models using the same machine traces, it includesaesimplifications that could affect
the results in practice. First of all, the checkpoint andwecy costs (' and R respectively) are
held constant in each simulation. Variation of network perfance, particularly in the wide area,
makes these costs variable when the system is actually #8ed, Condor imposes some addi-
tional overhead at job start-up and termination that isaiftior impossible to determine externally
using our measurement methodology. Finally, if the modelsise are sensitive to inaccuracies in
the parameters supplied to them, the simulation resultsldmmisleading.

To gauge the impact of these issues, we have developed annmesited test process that im-

plements the recovery-execution-checkpoint cycle thahaxe simulated. In the experiment, we
repeatedly submit copies of the test process to Condor. Wiosdlor assigns a process to a ma-
chine, the process opens a network connection to a chedkpaimager. The checkpoint manager
initiates a500-megabyte transfer to the process in order to emulate aalirecovery of the avail-
able memory, and the test process times the trarisféf the test process is terminated during
the initial transfer, the checkpoint manager detects thedaonnection and records the amount
of time as recovery overhead. We cho686 megabytes for two reasons: Our target application
requires this size checkpoint; and the Condor machines e hed all had at lea5t 2 megabytes

of memory.

As part of the initial transfer, the checkpoint manager asnds the test process a message
indicating which model to use to determine a checkpoint daleeand the parameters for that
model. Using the initial transfer time as a measuremeit ahdC', the test process then computes
one checkpoint interval’,,; using the specified model and sends the quantities to th&jobiet
manager for logging. It then begins emulating a computdbypispinning in a tight loop, which
it interrupts every 10 seconds so that it can send the chatkp@mnager a heartbeat message.
The heartbeat message contains the cumulative time sieqarticess began running, which the
checkpoint manager records as execution time. If the jokrimihated, the trace of heartbeats
simply ends. At the end of the interval, if the process hasbean terminated, it transfef0
megabytes back to the checkpoint manager to emulate a ahiackwhich it also times. This
new time is used as a current measuremerit',cind i, and it computes, based on these values

and the amount of time it has been running, a new checkpadietval 7,,,, and sends this data

2Strictly speaking, it records the time from when it sendscauest for recovery to the checkpoint manager until the
transfer completes, but the latency of the initial requestsignificant compared with the time for the data transfer.

Distribution Avg. | Total Time| Megabytes Used Megabytes/Hour Sample Size
Exponential .680 | 749695 338420 3842 81
Weibull .689 | 768808 363356 2734 85
2-phase Hyper .726 | 789304 150166 1313 84
3-phase Hyper .676 | 718094 329034 2374 89

Table 4. Average application efficiency and bandwidth consu
the Condor cluster with the checkpoint manager located at th

med using four distributions and
e University of Wisconsin.

Distribution Avg. | Total Time | Megabytes Used Megabytes/Hour Sample Size
Exponential .629 | 491048 183339 1344 40
Weibull .590 | 491900 167195 1223 48
2-phase Hyper .659 | 491454 96264 705 56
3-phase Hyper .604 | 428626 110920 931 59

Table 5. Average application efficiency and bandwidth consu
the Condor cluster with the checkpoint manager located at ou

med using four distributions and
r home institution.

to the manager for logging before it begins emulating comfport again. If the transfer back to
the checkpoint manager is interrupted, the manager retloeddapsed transfer time as checkpoint
overhead. The manager keeps a log file for each test processihich the overhead ratio can be

calculatedpost facto

Tables 4 and 5 show the results of the Condor experiment instef the average application
efficiency we observed across all machines in two differénagons. To generate the results in
Table 4, we locate the checkpoint manager on a machine atrtiverdity of Wisconsin so that all
checkpoint traffic would traverse only the campus networkuriily the experiment, the average
checkpoint time i94 10 seconds. Thus the efficiency values in coluhrmay be compared to ro
of Table 1.

Column2 of Table 4 indicates the total execution time for the testliappon and columrs

shows the number intervals we computed for each method.eTalshows the same data, but

for a configuration in which the checkpoint manager is lodattour home institution, which is
separated from the University of Wisconsin by the Interfiéte average checkpoint duration in
this case i475 seconds, making these results most comparable t6 miwable 1. As the previous
simulations indicate, as the application runs for longerlanger periods, the values will converge
to the same average efficiency.

Table 4 also shows the average network loads observed foatiaus statistical models when
the checkpoint manager is located at the University of Wisag Table 5 shows the same numbers
with the checkpoint manager at our home institution. Thedtbolumn of each table may be com-
pared to the simulation results shown in ranand2, respectively, of Table 3, because the average
checkpoint times are similar to the parameters set in th@ge.rThe third column indicates the
total network load, and the forth column reports the averageber of megabytes per hour trans-
ferred in each case. These results confirm the phenomenadhaiserved in our simulation data,
namely that the differences among the various distribsteare relatively small for our application
efficiency metric but quite considerable for network usage.

Note that for an individual job, the network savings arelijike be important to the site network
administrators (since non-Condor users will see a lessasiag network). For a parallel job,
however, where multiple jobs may be checkpointing simdtarsly, the network load savings are
likely to improve application efficiency since network ¢sibns will lengthen the amount of time
necessary for a checkpoint. We are considering a model allpaworkload that captures the
interaction between colliding checkpoints and checkpleimgth as part of our future work. In this
study, however, the heavy-tailed models parallelize thexloeyad by incurring it as lost execution

work and not sequential network load.

5.3 Validating the Simulation

In terms ofvalidation, we noticed some discrepancies which contribute to themiffces be-
tween the empirical results and the results predicted bgithelation (Tables 4 and 1 respectively).
First the experimental period only spanned 2 days whilertirihg set spanned 18 months, which
tends toright censorthe data. Second, the Markov model uses constant valu@saofl R while
in reality these values are variable. Close analysis lead® believe that these factors are not
drastically effecting the simulations, but do explain dndgdcrepancies between simulation and

empirical results.

6 Conclusion

In our work, we examine the effectiveness of four differemaiability distributions — exponen-
tial, Weibull, 2-phase hyperexponential, aBgphase hyperexponential — as the basis for determin-
ing checkpoint schedules. We use availability traces tdk@n the Condor resource-harvesting
system at the University of Wisconsin and simulate bothiappbn efficiency and generated net-
work load. We also conduct experiments with the “live” Condgstem in which we observe
both efficiency and load for a test application that can u8erént models to compute its check-
point schedule. Finally, we verify and validate our simiadas against the empirical data we have
gathered.

Our results indicate that application efficiency is relaiyvinsensitive to the choice of probability
distribution (among those we investigate) used to modeLne® availability. While the differences
in average efficiencgre for the most part statistically significant, they are smakbsolute terms

for the instances we examine. However, the average netwadslgenerated by schedules derived

from the different distributions are substantially di#fat. In particular, the checkpoint schedule
generated from the-phase hyperexponential results in considerably lessvaiatinl consumption
than when either the exponential or Weibull are used, amghtdyi less than that of the-phase
hyperexponential. Moreover, as the duration of checkpamak recovery increases, differences in
network load become more pronounced. Providing a modeltwgnieatly reduces network band-
width is particularly important for cycle-harvesting ssists since the network is a shared resource
which, unlike unused workstation cycles, cannot be failgcated. Additionally, when loosely
coupled resources are combined to form a cluster on whicdlpbapplications can execute, care-
ful usage of the network is crucial to attaining high perfamoe. Thus we conclude that from
the perspective of an application user or designer, thecehafi availability distribution has little
effect on perceived efficiency, but from the perspectivdefresource and network administration,

heavy-tailed hyperexponential distributions yield cdesably better results.

References

[1] C. E. Beldica, H. H. Hilton, and R. L. Hinrichsen. Viscastic beam damping and piezoelectric
control of deformations, probabalistic failures and sua/times.

[2] K. M. Chandy and C. V. Ramamoorthy. Rollback and recovanategies for computer programs.
IEEE Trans. on Computerg:546-556, June 1972.

[3] Condor home pagehkttp://ww. cs. wi sc. edu/ condor/ .

[4] M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson. A sey of rollback-recovery protocols in
message passing systems. Technical Report CMU-CS-965t8bpl of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, USA, Oct. 1996.

[5] Empht home page. Available on the World-Wide-Webht t p: // ww. mat hs. I t h. se/
mat st at/ st af f/ asnmus/ pspapers. htm .

[6] The Entropia Home Pagétt p: // www. ent r opi a. com

[7] A. L. Goel. Software reliability models: Assumptiongnitations, and applicability. IWEEE Trans.
Software Engineering, vol SE-11, pp 1411-14R8&c 1985.

[8] A. Gupta, B. Lin, and P. Dinda. Measuring and understagdiser comfort with resource borrowing.
In HPDC-13 2004.

[9] T.Heath, P. M. Martin, and T. D. Nguyen. The shape of falu

[10] R. K. Iyer and D. J. Rossetti. Effect of system workloadaperating system reliabilty: A study on
IBM 3081. InIEEE Trans. Software Engineering, vol SE-11, pp 1438-1848 1985.

[11] D. Kondo, M. Taufer, C. Brooks, H. Casanova, and A. Chi€haracterizing and Evaluating Desktop
Grids: An Empirical Study. IProceedings of the International Parallel and DistributBdocessing
Symposium (IPDPS’04), Santa Fe, NAbril 2004.

[12] I. Lee, D. Tang, R. K. lyer, and M. C. Hsueh. Measuremeaded evaluation of operating system fault
tolerance. INEEE Trans. on Reliability, Volume 42, Issue 2, pp 238;24Me 1993.

[13] Y. Ling, J. Mi, and X. Lin. A variational calculus apprclato optimal checkpoint placemenEEE
Trans. on Computer$0:699 — 708, July 2001.

[14] D.Long, A. Muir, and R. Golding. A longitudinal surveyioternet host reliability. IriL4th Symposium
on Reliable Distributed Systensages 2—-9, September 1995.

[15] Matlab by Mathworksht t p: // www. mat | ab. com

[16] M. Mutka and M. Livny. Profiling workstations’ availablcapacity for remote execution. Rro-
ceedings of Performance '87: Computer Performance MatgllMeasurement, and Evaluation, 12th
IFIP WG 7.3 International Symposiyrecember 1987.

[17] J. Plank and W. Elwasif. Experimental assessment okstation failures and their impact on check-
pointing systems. 128th International Symposium on Fault-Tolerant Computpapges 48-57, June
1998.

[18] J.Plank and M. Thomason. Processor allocation andkgloétt interval selection in cluster computing
systems.Journal of Parallel and Distributed Computing1(11):1570-1590, November 2001.

[19] W.H. Press, S. A. Teukolsky, W. T. Vetterling, and B. Rirthery.Numerical Recipes in CCambridge
University Press, 1992.

[20] M. H. Seo, M. L. Realff, M. C. Boyce, P. Schwartz, and ScBer. Mechanical properties of fabrics
woven from yarns produced by different spinning technaegiyarn failure in fabric.

[21] SETI@homehtt p://seti at hone. ssl . berkel ey. edu, March 2001.

[22] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and Kl@aishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. limProc. SIGCOMM (2001)2001.

[23] T. Tannenbaum and M. Litzkow. The condor distributedgassing system.Dr. Dobbs Journal
February 1995.

[24] A. Tantawi and M. Ruschitzka. Performance analysishafakpointing strategiesACM Trans. Com-
puter System<(2):123-144, May 1984.

[25] N. Vaidya. On checkpoint latency. roceedings of Pacific Rim Symposium on Fault-tolerant Sys-
tems December 1995.

[26] N. Vaidya. Impact of checkpoint latency on overheadboraf a checkpointing schemeEEE Trans-
actions on Computey€6(8):942—947, August 1997.

[27] K. F. Wong and M. A. Franklin. Distributed computing $ss and checkpointing. HPDC, pages
224-233, 1993.

[28] J. Xu, Z. Kalbarczyk, and R. K. lyer. Networked Window3 ISystem field failure data analysis.

[29] B. Zagrovic, C. Snow, M. Shirts, and V. Pande. Simulatd folding of a small alpha-helical protein
in atomistic detail using world-wide distributed compugtinJournal of Molecular Biology323:927—
937, 2002.

[30] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, andubiatowicz. A resilient global-scale
overlay for service deploymen(to appear) IEEE Journal on Selected Areas in Communication

[31] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: Andasfructure for fault-tolerant wide-area loca-
tion and routing. Technical Report UCB/CSD-01-1141, U.€rk&ley Computer Science Department,
April 2001.

