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Abstract

Cycle-harvesting systems such as Condor have been developed to make desktop machines in a
local area (which are often similar to clusters in hardware configuration) available as a compute
platform. To provide a dual-use capability, opportunisticjobs harvesting cycles from the desktop
must be checkpointed before the desktop resources are reclaimed by their owners and the job is
evacuated.

In this paper, we investigate a new system for computing efficient checkpoint schedules in cycle-
harvesting environments. Our system records the historical availability from each resource and
fits a statistical model to the observations. Because checkpointing must often traverse the network
(i.e. the desktop hosts do not provide sufficient persistentstorage for checkpoints), we combine this
model with predictions of network performance to the storage site to compute a checkpoint sched-
ule. When an application is initiated on a particular resource, the system uses the computed distri-
bution to parameterize a Markov state-transition model forthe application’s execution, evaluates
the expected time and network overhead as a function of the checkpoint interval, and numerically
optimizes with respect to time.

We report on the performance of and implementation of this system using the Condor cycle-
harvesting environment at the Universiity of Wisconsin. Wealso evaluate the efficiencies we
achieve for a variety of network overheads using trace-based simulation. Finally, we validate
our simulations against the observed performance with Condor. Our results indicate that while
the choice of model distribution has a relatively small but positive effect on time efficiency, it has a
substantial impact on network utilization.

∗This work was supported by grants from the National Science Foundation, numbered NGS-0305390 and CCR-
0331654.



1 Introduction

As a computing platform, a cluster of commodity workstations interconnected via local-area

networking technology offers an extremely high price-performance ratio among the available al-

ternatives. However, for many organizations a dedicated cluster represents a non-trivial investment,

both in terms of hardware and maintenance expense. For this reason, “cycle-harvesting” systems

such as Condor have been developed to make desktop machines in a local area (which are often

similar to a cluster in hardware configuration) available asa compute platform opportunistically.

To provide this dual-use capability, opportunistic jobs harvesting cycles from the desktop must be

checkpointed before the desktop resources are reclaimed bytheir owners and the job is evacuated.

These “virtual clusters,” implemented by resource-harvesting systems such as Condor [23],

SETI@Home [21], Folding@Home [29], UUCS [8], and Entropia [6, 11], offer vast computing

potential by leveraging the unused capacity of relatively volatile desktop and “personal” comput-

ing resources. From the perspective of the programmer or user wishing to tap this potential, the

proffered resources appear significantly less stable than actual clusters. Each resource typically

has a primary owner or user who may reclaim or reboot the machine without warning: It is the

unused capacity that is available for harvest. Even when these reclamations are controlled (e.g.,

the resource-harvesting system notices user activity and evacuates any guest load), the effect on

the application is the same as if a resource fails: The resource is no longer available for processing,

and any application state stored on that resource is in danger of being lost.

Checkpointing is an obvious and widely studied technique for ameliorating the effects of re-

source volatility in high-performance parallel computingand distributed system settings [2, 4, 13,

24, 25, 26, 27]. However, checkpointing introduces both a system performance overhead (in the



form of additional network and storage load) and an execution performance overhead (the delay

required to generate a checkpoint) that can be particularlysignificant in desktop settings. Often,

application checkpoints cannot be stored locally on the resource, either because of security con-

cerns or because resource owners simply do not wish to give updisk storage to guest applications.

In this case, the checkpoint state must be stored remotely over the network. While the use of

spare cycles on unused workstations only impacts those workstations, over-utilization of a shared

network resource will negatively impact the performance ofall workstations, whether they are ac-

tively contributing to the cycle-harvesting system or not.In addition, while the typical dedicated

compute cluster commonly includes a dedicated high-performance network which can handle the

load of a parallel application checkpoint, resource-harvesting clusters are commonly connected

via a relatively low-speed shared network, and thus more intelligent network usage strategies are

required to get high performance during parallel checkpointing.

In this paper, we investigate the effects of optimizing checkpoint overhead on both application

execution performance and network load in resource-harvesting settings. Our work automatically

derives a checkpoint schedule for an application, based on the amount of state that must be saved in

each checkpoint and the historically observed failure and reclamation behavior of each resource it

uses. When an application is assigned to a resource by the resource-harvesting system, our system

automatically computes a checkpoint schedule.

We use a Markov model to develop a checkpoint schedule “on thefly” for applications running

in the Condor [23] environment. We investigate how the choice of distribution that our system au-

tomatically fits (which is either Weibull, hyperexponential, or exponential) to historical availability

data affects the efficiency of the schedule. We describe the methodology and its implementation,

detail its performance for Condor, probe a range of performance response using trace-based sim-



ulation, and validate the simulation against observation.Our results indicate that the choice of

parametric distribution affects application execution performance to a small degree but has a dra-

matic effect on induced network load.

2 Related Work

In this paper, we are building upon a great deal of work from two separate but related fields.

The first field of interest is that of modeling machine failure/availability distributions. Work such

as [7, 10, 22, 30, 31] typically assume an exponential distribution to model machine lifetime data

for use in their applications. Usually the exponential is chosen due to the relative simplicity of

the distribution as opposed to an actual belief that the exponential represents the data accurately.

Other works, most notably works by Longet. al. [14] and Planket. al. [17, 18] show that indeed

the exponential is a poor fit to their data; sometimes, however, as in [17], the poor fit does not

significantly impact their application of the model. In [9, 28], researchers have suggested the

use of a Weibull distribution to model machine availabilitydurations but provide no quantitative

measure of goodness-of-fit. Others, including [12, 16], show that hyperexponential distributions

accurately model certain characteristics of their machinefailure data.

The second field of interest for this paper is that of solving the problem of optimal checkpoint

interval selection [4]. A great deal of literature has been written on this topic, more than we

can comment on here, but we attempt to give the reader some primary and more recent reading.

Fundamental work was done on finding optimal checkpoint intervals on transaction processing sys-

tems [2]. The work continued, shifting focus to high-performance computing environments and

distributed systems [25, 27]. Work in this area is typicallypredicated on one of two simplifying

assumptions. Most authors have assumed that the distribution of availability times is exponen-



tial, because the PDF and CDF formulas are simple enough to allow closed-form solutions to the

equations involved in finding optimal checkpoint intervals. Other authors, such as Tantawi and

Ruschitzka [24] and Linget. al. [13], consider the problem for general availability distributions,

but they make the common assumption that failures do not occur during a checkpoint or recovery

in order to produce expressions that are analytically intractable. While assuming no failures during

checkpoint or recovery is justified when individual checkpoint and recovery times are insignificant

compared to time taken performing computation, we feel the assumption is too restrictive to be

applied generally. Clusters provided by cycle-harvestingenvironments, the focus of this work,

provide an example of a system in which a job may be required tomake large checkpoints over the

network during relatively small availability durations.

In this work, we build upon the checkpoint interval model described by Vaidya [26], without

however making the assumption that availability is modeledby an exponential distribution. Since

Vaidya’s model makes no inherent assumptions regarding failures during recovery or checkpoint-

ing, our approach is free of both of the simplifying assumptions discussed above.

3 Methodology

In this section, we give a brief description of the statistical methods we use to characterize

resource availability. These include the strategies used for fitting statistical distributions to data

and the Markov model we use to derive the formula for checkpoint overhead to be minimized.

3.1 Fitting a Distribution to Availability Data

In this study, we consider three families of distributions:exponential, Weibull, and hyperex-

ponential. The exponential distribution has been used extensively to model resource availability



because it is computationally simple to use and because of its “memoryless” property, as discussed

below, which allows one to specify a single checkpoint interval throughout the execution of a job.

In contrast, the two distribution families that consistently fit the data we have gathered most

accurately are the Weibull and the hyperexponential. TheWeibull distributionis often used to

model the lifetimes of objects, including physical system components [20, 1]. Hyperexponentials

have been used to model machine availability previously [16], but it is numerically difficult to find

estimators which have statistically desirable propertiesfor their parameters.

3.2 Probability Function Definitions

We will denote probability density functions using lower-casef and distribution functions using

upper-caseF . For an exponential distribution, the probability densityfunctionfE and distribution

functionFE are given respectively as

fE(x) = λe−λx (1)

FE(x) = 1 − e−λx (2)

whereλ is a positive real number.

The density and distribution functionsfW andFW respectively for a Weibull distribution are

given by

fW (x) = αβ−αxα−1e−(x/β)α

(3)

FW (x) = 1 − e−(x/β)α

(4)

The parameterα > 0 is called theshapeparameter, andβ > 0 is called thescaleparameter.1

Whenα = 1, the Weibull reduces to an exponential distribution.

1The general Weibull density function has a third parameter for location, which we can ignore since our data has
minimum values close to0.



Hyperexponentials are distributions formed as the weighted sum of exponentials, each having a

different parameter. The density function is given by

fH(x) =
k
∑

i=1

[pi · fEi
(x)], x ≥ 0 (5)

where
fEi

(x) = λie
−λix (6)

defines the density function for an exponential having parameterλi. In the definition offH(x),

all λi 6= λj for i 6= j, and
∑k

i=1 pi = 1. The distribution function is defined as

FH(x) = 1 −
k
∑

i=1

pi · e
−λix (7)

Note that for a hyperexponential distribution, one must first specify the number of phasesk; the

distribution is then determined by an additional2k − 1 parameters, namely theλi and all but one

of thepi.

3.3 The Distribution of Future Lifetimes

Suppose that resource availability lifetimes are represented as a random variableX with proba-

bility distributionF , and lett be a nonnegative real number. It is natural to consider the distribution

of future lifetimes beyondt, which we will denote byFt(x), based on the conditional distribution

function ofF given thatX ≥ t. Specifically,

Ft(x) = FX≥t(t + x) =
F (t + x) − F (t)

1 − F (t)
, t ≥ 0 (8)

computes the probability that a resource will fail within the nextx seconds given that it has been

available fort seconds. Thus when an application is assigned to a resource,and at any point in

time thereafter, we can compute the probability it will be terminated within the nextx seconds,



assuming the model distribution to be accurate and given theamount of time the resource has

already been available.

In the case of an exponential distribution, the distribution of future lifetimes(FE)t reduces to

the original distribution for all values oft. This is referred to as thememorylessproperty of the

exponential.

The future lifetime distribution for a Weibull reduces to

(FW )t(x) = 1 − e[(t/β)α−(x/β)α]. (9)

The future lifetime distribution for the hyperexponentialdistribution defined above is

(FH)t(x) = 1 −

(

∑k
i=1 pi · e

−λi(t+x)

∑k
i=1 pi · e−λi(x)

)

(10)

3.4 Parameter Estimation

Each of the above-mentioned statistical distributions involves some number of unspecified pa-

rameters which must be estimated in order to “fit” a particular distribution to the observed data.

The generally accepted approach to the general problem of parameter estimation is based on the

principle ofmaximum likelihood. The maximum likelihood estimator (MLE) is calculated for any

data set, based on the assumptions that each of the sample data pointsxi is drawn from a random

variableXi and that theXi are independent and identically distributed (i.i.d.). We use Matlab [15]

to estimate MLE parameters for exponential and Weibull distributions throughout. Finding MLE

parameters for hyperexponential distributions is somewhat more difficult. Therefore, we use the

EMPht software package [5] in place of the Matlab MLE routinefor all estimated hyperexponential

parameters in this paper. We have implemented a software system that takes a set of measurements

as inputs and computes Weibull, exponential, and hyperexponential parameters automatically.
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Figure 1. Diagram of a single checkpoint interval. We wish to find the value of T which
maximizes time spent performing useful computation on vola tile resources.

3.5 Optimal Checkpoint Intervals

The optimal interval between checkpoints in an applicationexecution balances the cost of check-

pointing (lost execution time while each checkpoint is generated) with the cost of recovering from

a failure by restoring execution from the last checkpoint. While many solutions to this problem

have been proposed, we have chosen to use the description dueto Vaidya [26] for this work be-

cause it takes into account that failures may occur during both checkpoint and recovery phases. In

a resource-harvesting context, we believe that failure (due to reclamation) during checkpointing

and/or recovery is significantly more likely than in other settings.

The interval between checkpoints is composed of a computation phase whose duration isT

seconds (to which we will sometimes refer as thework time interval) and a checkpoint phase using

C seconds. If the application is restarting after a failure, it will begin with a recovery phase of

durationR seconds. Figure 3.5 shows the decomposition of a single checkpoint interval. Note

that we are making the explicit assumption that recovery, computation, and checkpointing occur

sequentially without overlap.



With this phased model of application execution, one can compute the expected time spent

during the work associated with a single checkpoint interval using a three-state Markov model

(shown in Figure 2). The transition probabilities between the states depend on both the work

time interval selected and the statistical model chosen forthe future lifetime distribution. These

probabilitiesPij and the cost functionsKij associated with moving from statei to statej are given

by the following equations, in whichΛ represents the set of parameters intrinsic to the distributions

used to model resource availability.

P01(Λ, C, T ) = 1 − F (Λ, C + T )

K01(C, T ) = C + T

P02(Λ, C, T ) = F (Λ, C + T )

K02(Λ, C, T ) =

∫ C+T

0

t · f(Λ, t)

F (Λ, C + T )
dt

P21(Λ, R, T, L) = 1 − F (Λ, L + R + T )

K21(R, T, L) = L + R + T

P22(Λ, R, T, L) = F (Λ, L + R + T )

K22(Λ, R, T, L) =

∫ L+R+T

0

t · f(Λ, t)

F (Λ, L + R + T )
dt

Vaidya’s work defines these functions explicitly in terms ofthe exponential distribution and uses

them to calculate a single periodic (because the exponential is memoryless) checkpoint interval for

the application’s execution duration.

Our work generalizes this approach to use other distributions (in our case, Weibull and hyper-

exponential, but in fact one can use any family of distributions in this context, as long as one



Resource
Failure

Resource
Failure

2

No Failure

No Failure

0
Interval Begin

Failure Occurred

Interval End
1

Figure 2. Three-state Markov model describing a single chec kpoint interval in a long-running
job.

has a method for estimating parameters and evaluating the above expressions numerically) and to

compute a checkpoint schedule as a sequence of intervals forthe application.

Denote byΓ the expected value of the amount of time to move from state0 to state1 in the

Markov model.Γ can be calculated from the above formulas as

Γ = P01 · K01 + P02 · (K02 + K22 ·
P22

P21
+ K20) (11)

Note thatΓ
T

measures the factor by which we can expect the amount of time spending useful

work to be multiplied within a work time interval. Thereforethe problem of finding an optimal

work time interval can be expressed as the problem of minimizing Γ
T

with respect toT . We use the

Golden Section Search method as implemented in Numerical Recipes [19] for this optimization

problem. DefineTopt to be the optimal work time interval.

Note that the probability and cost calculations made above must be made consideringfuturelife-



time distributions. Therefore, when calculatingP01, K01, P02, andK02 in the cases of the Weibull

and hyperexponential distributions, we must take into account the amount of time that thespecific

resourcethat the application is using has already been available, since, as noted above, the future

lifetime distribution changes as time passes. On the other hand, since a failure has just occurred if

we are in state2, the otherPij andKij formulas are calculated using the ordinary unconditional

versions of the distributions.

From the same considerations, note that if we use a non-memoryless distribution as our model

for resource availability, we obtain an aperiodic scheduleof Topt values rather than a single value.

This schedule takes the form of a sequence ofTopt values computed from the beginning of the

application’s execution time. We denoteTopt(i) to be theith such value.Topt(0) is the first interval

and it is computed for the time that the application is initiated using the amount of time, denoted

Telapsed, that has elapsed since the resource running the application has failed. Each successive

value ofTopt(i) can then be computed based on the amount of time the resource will have been

available at the beginning of each work time interval. Note that the schedule remains valid for as

long as the resource is available without interruption. After a failure occurs, of course, we need to

calculate a new schedule ofTopt values.

The schedule we derive in this way is “optimal” in the same sense that Vaidya’s model is optimal:

Given the information we have at the beginning of execution,and assuming the accuracy of our

model, this schedule minimizesΓ
T

and thus is the best we can do; in fact, the schedule is optimal

at the beginning of each checkpoint interval, again assuming our model, in which checkpoint and

recovery durations are known constants.

We have written a small, portable routine which implements the evaluation and optimization of

Γ
T

to findTopt, taking as input the distribution model chosen, the distribution parameters, the value



of Telapsed (ignored in the case of exponential distributions), and values forC andR.

4 The Condor System

Condor [3, 23] is a resource-harvesting system designed to support high-throughput computing.

It runs as a privileged process on desktop workstations and accepts “batch” job submissions from

Condor users. When Condor detects that a machine has become idle (i.e. is not being used by

its owner) it initiates a submitted job on the workstation and captures its I/O. Should the owner

reclaim the workstation (by moving the mouse, typing at the keyboard, or having a local job start

and change the load average), the Condor job is either automatically checkpointed and evacuated

(in theStandard Universe) or terminated for later restart (in theVanilla Universe).

In this study, we take advantage of the Vanilla (i.e., terminate-on-eviction) execution environ-

ment to build a Condor occupancy monitor. A set of monitor processes is submitted to Condor

for execution. When Condor assigns a process to a processor,the process wakes periodically and

reports the number of seconds that have elapsed since it began executing. When that process is

terminated (due to an eviction) the last recorded elapsed time value measures the duration of the

occupancy the sensor enjoyed on the processor it was using. For each machine Condor uses to

run one of our sensors our system records a sequence of availability durations and time stamps (in

UTC units) indicating when those durations occurred.

In this study, Condor used a pool of over 1000 different Linuxworkstations to run the monitor

processes over an18-month long measurement period which is ongoing, of which weobtained

data for approximately 640 machines. Thus the model fitting component of our overall system

computes distributions from up-to-date availability measurements that cover the period from April

2003 until October 2004.



5 Experimental Evaluation

We evaluate the method we have outlined in two ways, both of which use the Condor resource-

harvesting system as a target execution platform. First, weuse discrete event simulation, based on

the execution traces gathered from Condor, to compare the effectiveness of exponential, Weibull,

and hyperexponential models. Second, we examine their respective effectiveness using the “live”

Condor system and a test application. We repeatedly launch the application in Condor, and when

it is given access to a host, we compute checkpoint intervalsfor that host based on availability data

we have recorded over the previous 18 months. Because the conditions change from execution

run to execution run, we compare thein vivo results in terms of their average time and network

bandwidth efficiency. Finally, for completeness, we verifythe simulations using post-mortem trace

data we record during the actual Condor runs.

5.1 Simulation Method and Results

For the machines which the Condor scheduler chose to executeour monitoring process on a

sufficient number of times over 18 months, we divide each trace in to a “training set” containing

the first25 values occurring chronologically and an “experimental set” containing the remaining

values. We then use each training set to calculate MLE parameters for an exponential model and a

Weibull model and EM parameters for both2-phase and3-phase hyperexponential models. Thus,

we model the training set for each trace by four different distributions.

In order to capture “steady-state” efficiency, we simulate ajob that begins before the first mea-

surement in each training set and continues to run after the last measurement in the experimental

set. Note that for each work time interval, the expected efficiency is just the reciprocal of the

quantityΓ, defined in the “Methodology” section, evaluated atTopt.
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In order to compare the effectiveness of each model, we consider both application efficiency

and the amount of network load generated when each distribution is used to compute a checkpoint

schedule. We assume checkpoint costC is equal to the recovery costR since this assignment

reflects our experience with executing long-running jobs inthe vanilla Condor universe.

Figure 3 shows the results of our simulation using fits of exponential, Weibull, and hyperexpo-

nential models to machine availability. On thex-axis we indicate the time, in seconds, necessary

to effect one checkpoint or recovery, and on they-axis we show the fraction of time the application

spends doing useful work. Because the overhead varies by machine, each data point represents the

average overhead ratio across all machines in the simulation. The figure shows that all four dis-

tributions yield approximately the same average efficiencyacross machines. In Table 1 we show

each average from the figure along with its 95% confidence interval.

We indicate statistically significant differences within each row between the results for two dis-



CTime Exp. Weib. 2-phase Hyperexp. 3-phase Hyperexp.

50 0.754 ± 0.013 0.767 ± 0.012 (e,2,3) 0.754 ± 0.014 0.762 ± 0.013
100 0.677 ± 0.017 (2) 0.688 ± 0.016 (e,2,3) 0.669 ± 0.017 0.679 ± 0.017 (2)
200 0.600 ± 0.020 0.614 ± 0.019 (e,2,3) 0.597 ± 0.020 0.606 ± 0.020 (2)
250 0.576 ± 0.020 0.584 ± 0.021 0.581 ± 0.020 (e) 0.591 ± 0.020 (e,2)
400 0.518 ± 0.020 0.535 ± 0.020 (e) 0.543 ± 0.020 (e) 0.551 ± 0.020 (e,w,2)
500 0.489 ± 0.020 0.508 ± 0.021 (e) 0.521 ± 0.020 (e,w) 0.528 ± 0.020 (e,w,2)
750 0.433 ± 0.020 0.456 ± 0.021 (e) 0.476 ± 0.021 (e,w) 0.483 ± 0.021 (e,w)
1000 0.390 ± 0.020 0.416 ± 0.021 (e) 0.441 ± 0.021 (e,w) 0.447 ± 0.021 (e,w)
1250 0.356 ± 0.020 0.388 ± 0.020 (e) 0.409 ± 0.021 (e,w) 0.416 ± 0.021 (e,w,2)
1500 0.329 ± 0.019 0.363 ± 0.020 (e) 0.387 ± 0.021 (e,w) 0.391 ± 0.021 (e,w)

Table 1. 95% confidence intervals for mean efficiency for various checkpo int sizes of the four
tested distributions.

tributions by placing within each cell symbols standing forany distributions whose efficiencies

were statistically significantly smaller for that checkpoint duration. (In this scheme, “e” stands for

exponential, “w” for Weibull, “2” for 2-phase hyperexponential, and “3” for 3-phase hyperexpo-

nential.) For example, the (e,w) in the500-second row of the2-phase hyperexponential column

indicates that the efficiency for the2-phase hyperexponential with a checkpoint duration of500 sec-

onds is statistically significantly larger than those for exponential and Weibull distributions with

the same checkpoint duration; on the other hand, the absenceof such symbols in the250-second

Weibull cell indicates that its value is not statistically significantly larger than those for any of the

other distributions. We measure statistical significance using two-sided pairedt-tests between each

pair of distributions at each checkpoint duration, at a significance level of.05.

Although the differences are small within some rows, the table shows that for checkpoint dura-

tions shorter than250 seconds, the Weibull-based checkpoint schedule outperforms the others. For

longer checkpoint intervals, the3-phase hyperexponential generally does best. These results tend

to support those reported in [17], in which the authors assert that an exponential model of machine



C=50 C=50 C=500 C=500
Distribution All First 25 All First 25

Exponential .896 .896 .695 .695
Weibull .891 .891 .685 .691
2-Phase Hyper .862 .817 .690 .671
3-Phase Hyper .895 .897 .670 .695

Table 2. Application efficiency when machine availability i s defined by a Weibull distribution
with shape = 0.43 and scale = 3409. We show simulation results with C = 50 and C = 500,
using all 5000 data points to model fit and only the first 25 values to model fit.

availability can be used to develop a checkpoint schedule that is close to optimal.

To quantify the difference as precisely as possible, we generate a synthetic machine availability

trace containing5000 values in which each availability duration is drawn randomly from a heavy-

tailed Weibull distribution with known parameters. To determine the parameters, we compute the

MLE Weibull parameter values for a machine trace chosen at random. For the chosen machine,

the MLE value for the shape parameterα is 0.43, and that for the scale parameterβ is 3409.

Using our synthetic trace, we repeat the simulation experiment usingC = 50 andC = 500

to reflect empirical observations. Table 2 details the results. The Weibull model used to compute

checkpoint intervals is precisely the same model that was used to generate the artificial trace. For

the exponential cases, we use MLE-determined model and for the hyperexponentials we use the

EM-determined models. Thus, the Weibull results are optimal and the others are approximate.

Clearly, using either an exponential or hyperexponential to model the heavy-tailed Weibull data

causes only a slight loss of efficiency. Moreover, using onlythe first25 values does not degrade

the accuracy with which each approximates the Weibull-generated trace, as shown in Table 2.

While the different statistical models of machine availability yield approximately the same ap-

plication efficiency, they do not result in the same amount ofgenerated network traffic. In Figure 4



CTime Exp. Weib. 2-phase Hyperexp.3-phase Hyperexp.

50 110296 ± 10317 (2,3) 108687 ± 11448 (2,3) 95535 ± 8952 99788 ± 10495
100 80323 ± 7400 (2,3) 78638 ± 8163 (2,3) 60777 ± 5740 64692 ± 7306
200 59153 ± 5317 (2,3) 57557 ± 5820 (2,3) 39603 ± 3641 43415 ± 5122 (2)
250 53404 ± 4775 (2,3) 68561 ± 17864 (2,3) 35171 ± 3225 38926 ± 4601 (2)
400 42350 ± 3802 (2,3) 40638 ± 4125 (2,3) 27487 ± 2494 30553 ± 3645 (2)
500 37546 ± 3407 (2,3) 35809 ± 3678 (2,3) 24474 ± 2248 27193 ± 3291 (2)
750 29746 ± 2794 (2,3) 28041 ± 3002 (2,3) 19664 ± 1868 21671 ± 2673 (2)
1000 25099 ± 2427 (2,3) 23398 ± 2590 (2,3) 16897 ± 1652 18458 ± 2314 (2)
1250 21970 ± 2172 (w,2,3) 20310 ± 2308 (2,3) 15031 ± 1502 16262 ± 2065
1500 19693 ± 1983 (w,2,3) 18137 ± 2112 (2,3) 13671 ± 1390 14549 ± 1860

Table 3. 95% confidence intervals for mean bandwdith for various checkpo int sizes of the four
tested distributions.

we show the number of megabytes transferred if each checkpoint were500 megabytes in length as

a function of checkpoint duration.

As in Figure 3, along thex-axis we show the time required to checkpoint or recover, buton the

y-axis we show the average number of megabytes that traversedthe network. Note that the duration

C or R associated with a500-megabyte transfer depends on the speed of the network linking the

resource with the checkpoint storage location. As described in the next subsection, most of the

available machines in the Condor cluster have at least512 megabytes of memory, motivating our

choice of500 megabytes as a representative size. Table 3 shows the average values, their respective

95% confidence intervals, and notation for statistically significant differences within a single row

identical to that in Table 1. Note that in this table, significantly larger values are undesirable, as

they correspond to more consumed bandwidth.

From the table, we see that the exponential-based checkpoint schedule significantly (and sub-

stantially) underperforms all of the other approaches. Themost bandwidth-parsimonious approach



is that of the2-phase hyperexponential, which used at least30% less bandwidth than the exponen-

tial for checkpoint overheads≥ 200 seconds.

From these results, we conclude that while the application efficiency is good for all availability

models, there is a noticeable difference in the network loadgenerated by the different models.

The reason for this difference is that checkpoint overhead comprises both the delay associated

with a checkpoint or recovery and the amount of lost work thatmust be recomputed from the

last successful checkpoint when a failure occurs. The heavy-tailed models tend to produce longer

intervals between checkpoints, which results in fewer checkpoints generated but more lost work

on average at the time of each failure. On the other hand, the exponential model favors shorter

intervals, more checkpoints, and less lost work. It is curious that these factors balance almost

precisely to produce the same application efficiency in the range of checkpoint costs we have

investigated.

5.2 Empirical Method and Results

While the simulation permits a quantitative comparison of exponential, Weibull, and hyperexpo-

nential models using the same machine traces, it includes several simplifications that could affect

the results in practice. First of all, the checkpoint and recovery costs (C andR respectively) are

held constant in each simulation. Variation of network performance, particularly in the wide area,

makes these costs variable when the system is actually used.Also, Condor imposes some addi-

tional overhead at job start-up and termination that is difficult or impossible to determine externally

using our measurement methodology. Finally, if the models we use are sensitive to inaccuracies in

the parameters supplied to them, the simulation results could be misleading.

To gauge the impact of these issues, we have developed an instrumented test process that im-



plements the recovery-execution-checkpoint cycle that wehave simulated. In the experiment, we

repeatedly submit copies of the test process to Condor. WhenCondor assigns a process to a ma-

chine, the process opens a network connection to a checkpoint manager. The checkpoint manager

initiates a500-megabyte transfer to the process in order to emulate an initial recovery of the avail-

able memory, and the test process times the transfer2. If the test process is terminated during

the initial transfer, the checkpoint manager detects the failed connection and records the amount

of time as recovery overhead. We choose500 megabytes for two reasons: Our target application

requires this size checkpoint; and the Condor machines we used had all had at least512 megabytes

of memory.

As part of the initial transfer, the checkpoint manager alsosends the test process a message

indicating which model to use to determine a checkpoint schedule and the parameters for that

model. Using the initial transfer time as a measurement ofR andC, the test process then computes

one checkpoint intervalTopt using the specified model and sends the quantities to the checkpoint

manager for logging. It then begins emulating a computationby spinning in a tight loop, which

it interrupts every 10 seconds so that it can send the checkpoint manager a heartbeat message.

The heartbeat message contains the cumulative time since the process began running, which the

checkpoint manager records as execution time. If the job is terminated, the trace of heartbeats

simply ends. At the end of the interval, if the process has notbeen terminated, it transfers500

megabytes back to the checkpoint manager to emulate a checkpoint, which it also times. This

new time is used as a current measurement ofC, andR, and it computes, based on these values

and the amount of time it has been running, a new checkpoint intervalTopt, and sends this data

2Strictly speaking, it records the time from when it sends a request for recovery to the checkpoint manager until the
transfer completes, but the latency of the initial request is insignificant compared with the time for the data transfer.



Distribution Avg. Total Time Megabytes Used Megabytes/Hour Sample Size
Exponential .680 749695 338420 3842 81
Weibull .689 768808 363356 2734 85
2-phase Hyper. .726 789304 150166 1313 84
3-phase Hyper. .676 718094 329034 2374 89

Table 4. Average application efficiency and bandwidth consu med using four distributions and
the Condor cluster with the checkpoint manager located at th e University of Wisconsin.

Distribution Avg. Total Time Megabytes Used Megabytes/Hour Sample Size
Exponential .629 491048 183339 1344 40
Weibull .590 491900 167195 1223 48
2-phase Hyper. .659 491454 96264 705 56
3-phase Hyper. .604 428626 110920 931 59

Table 5. Average application efficiency and bandwidth consu med using four distributions and
the Condor cluster with the checkpoint manager located at ou r home institution.

to the manager for logging before it begins emulating computation again. If the transfer back to

the checkpoint manager is interrupted, the manager recordsthe elapsed transfer time as checkpoint

overhead. The manager keeps a log file for each test process from which the overhead ratio can be

calculatedpost facto.

Tables 4 and 5 show the results of the Condor experiment in terms of the average application

efficiency we observed across all machines in two different situations. To generate the results in

Table 4, we locate the checkpoint manager on a machine at the University of Wisconsin so that all

checkpoint traffic would traverse only the campus network. During the experiment, the average

checkpoint time is110 seconds. Thus the efficiency values in column1 may be compared to row2

of Table 1.

Column2 of Table 4 indicates the total execution time for the test application and column3

shows the number intervals we computed for each method. Table 5 shows the same data, but



for a configuration in which the checkpoint manager is located at our home institution, which is

separated from the University of Wisconsin by the Internet.The average checkpoint duration in

this case is475 seconds, making these results most comparable to row6 of Table 1. As the previous

simulations indicate, as the application runs for longer and longer periods, the values will converge

to the same average efficiency.

Table 4 also shows the average network loads observed for thevarious statistical models when

the checkpoint manager is located at the University of Wisconsin; Table 5 shows the same numbers

with the checkpoint manager at our home institution. The third column of each table may be com-

pared to the simulation results shown in rows6 and2, respectively, of Table 3, because the average

checkpoint times are similar to the parameters set in these rows. The third column indicates the

total network load, and the forth column reports the averagenumber of megabytes per hour trans-

ferred in each case. These results confirm the phenomena thatwe observed in our simulation data,

namely that the differences among the various distributions are relatively small for our application

efficiency metric but quite considerable for network usage.

Note that for an individual job, the network savings are likely to be important to the site network

administrators (since non-Condor users will see a less congested network). For a parallel job,

however, where multiple jobs may be checkpointing simultaneously, the network load savings are

likely to improve application efficiency since network collisions will lengthen the amount of time

necessary for a checkpoint. We are considering a model of parallel workload that captures the

interaction between colliding checkpoints and checkpointlength as part of our future work. In this

study, however, the heavy-tailed models parallelize the overhead by incurring it as lost execution

work and not sequential network load.



5.3 Validating the Simulation

In terms ofvalidation, we noticed some discrepancies which contribute to the differences be-

tween the empirical results and the results predicted by thesimulation (Tables 4 and 1 respectively).

First the experimental period only spanned 2 days while the training set spanned 18 months, which

tends toright censorthe data. Second, the Markov model uses constant values ofC andR while

in reality these values are variable. Close analysis leads us to believe that these factors are not

drastically effecting the simulations, but do explain small discrepancies between simulation and

empirical results.

6 Conclusion

In our work, we examine the effectiveness of four different probability distributions – exponen-

tial, Weibull,2-phase hyperexponential, and3-phase hyperexponential – as the basis for determin-

ing checkpoint schedules. We use availability traces takenfrom the Condor resource-harvesting

system at the University of Wisconsin and simulate both application efficiency and generated net-

work load. We also conduct experiments with the “live” Condor system in which we observe

both efficiency and load for a test application that can use different models to compute its check-

point schedule. Finally, we verify and validate our simulations against the empirical data we have

gathered.

Our results indicate that application efficiency is relatively insensitive to the choice of probability

distribution (among those we investigate) used to model resource availability. While the differences

in average efficiencyare for the most part statistically significant, they are small in absolute terms

for the instances we examine. However, the average network loads generated by schedules derived



from the different distributions are substantially different. In particular, the checkpoint schedule

generated from the2-phase hyperexponential results in considerably less bandwidth consumption

than when either the exponential or Weibull are used, and slightly less than that of the3-phase

hyperexponential. Moreover, as the duration of checkpointand recovery increases, differences in

network load become more pronounced. Providing a model which greatly reduces network band-

width is particularly important for cycle-harvesting systems since the network is a shared resource

which, unlike unused workstation cycles, cannot be fairly allocated. Additionally, when loosely

coupled resources are combined to form a cluster on which parallel applications can execute, care-

ful usage of the network is crucial to attaining high performance. Thus we conclude that from

the perspective of an application user or designer, the choice of availability distribution has little

effect on perceived efficiency, but from the perspective of the resource and network administration,

heavy-tailed hyperexponential distributions yield considerably better results.
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