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ABSTRACT

In this paper we propose DrAFTS – a methodology for implement-
ing probabilistic guarantees of instance reliability in the Amazon
Spot tier. Amazon o�ers “unreliable” virtual machine instances
(ones that may be terminated at any time) at a potentially large dis-
count relative to “reliable” On-demand and Reserved instances. Our
method predicts the “bid values” that users can specify to provision
Spot instances which ensure at least a �xed duration of execution
with a given probability. We illustrate the method and test its va-
lidity using Spot pricing data post facto, both randomly and using
real-world workload traces. We also test the e�cacy of the method
experimentally by using it to launch Spot instances and then ob-
serving the instance termination rate. Our results indicate that it
is possible to obtain the same level of reliability from unreliable
instances that the Amazon service level agreement guarantees for
reliable instances with a greatly reduced cost.

CCS CONCEPTS

• Networks → Cloud computing; • General and reference →
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1 INTRODUCTION

One of the fundamental tenets of cloud computing is that resources
(e.g., machines, network connectivity, storage, etc.) be characterized
by their capacity and capability characteristics rather than their
physical construction. Programmers and users reason about the use
of cloud resources in terms of these characteristics (in principle)
without regard to the physical infrastructure that is used to deliver
them. For example, instances (virtual machines) available from
Amazon’s Elastic Compute Cloud (EC2 [4]) are advertised as rough
equivalents to various models of physical processors (in terms of
clock speed, cache size, etc.), but Amazon provides no guarantee
that these speci�c processor models will be used to ful�ll a speci�c
user’s request or are even available in their cloud. Instead, users
enter into a “Service Level Agreement” (SLA), that quanti�es the
minimum capability that a particular request will receive.

Cloud computing vendors may o�er di�erent SLAs at di�erent
price points so that users can control the value transaction at a
�ne level of granularity. Vendors such as Amazon and Google [11]
o�er a preemptible tier of service where resources are o�ered (at
a cheaper price) without a reliability SLA. Amazon o�ers these
instances as “Spot instances” [3], for which reliability is based (in
part) on the maximum amount of money a user agrees to pay for
them. When the user makes a request for an instance having a
speci�c set of characteristics (termed an “instance type”), he or
she includes a “maximum bid price” indicating the maximum that
the user is willing to be charged for the instance. Amazon creates
a market for each instance type and satis�es the requests of the
highest bidders. Periodically, Amazon recalculates the market price
and terminates those instances whose maximum bid is below the
new market price. The market-clearing mechanism is published,
but individual user bids (and some of the other market parameters)
are not. Thus, each user must devise an individual bidding strategy
that meets his or her own reliability needs [15, 27].

Amazon also o�ers the same instance types under a �xed reli-
ability SLA at a �xed price (i.e., On-demand instances). Because
the Spot instance market mechanism does not provide a way to
guarantee how long an instance will run before it is terminated as
part of an SLA, Spot market prices are often signi�cantly lower—
by up to an order of magnitude—than �xed prices for the same
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instances with a reliability SLA. That is, because a user cannot
determine a bid that will ensure a speci�c level of reliability in
the Spot market, this uncertainty generally leads to lower prices.
However, in many cases, our results indicate that users must often
bid higher in the Spot tier than they would pay for a �xed price
instance (which is covered by the Amazon reliability SLA) in order
to get the same level of reliability. While a large body of work has
investigated bidding strategies for optimizing the use of the Spot
tier [12, 13, 16, 22, 24, 25, 29, 30], there is no published strategy of
which we are aware that gives users the ability to determine at
the time of a request “how high” they must bid to prevent their
instances from being terminated.

In this paper we present a methodology for determining a min-
imized bid price that will ensure a �xed level of reliability in the
Amazon Spot tier.1 The methodology – called DrAFTS2 – applies
a non-parametric time-series forecasting technique to the pricing
history for a speci�c instance type. Using forecasts generated by
the technique, DrAFTS determines a minimized bid price that will
ensure a given level of durability (expressed as the probability that
an instance of this type will not be terminated before a given dead-
line) in the Amazon Spot tier. DrAFTS takes the probability and the
deadline as parameters. Thus, a user who knows the duration over
which an instance must persist can select a success probability that
matches, or exceeds the reliability guarantee o�ered by Amazon as
part of its �xed-price SLA. In this way, users of DrAFTS can get
a functional equivalent of the �xed-price reliability (guaranteed at
least probabilistically) while paying the lower Spot tier price.

It is possible for a user of the Amazon Spot tier to achieve a
high level of reliability by simply bidding a large maximum value.
However, the size of the bid de�nes the possible cost (i.e., �nancial
risk) associated with the transaction. The goal of DrAFTS is to
minimize this risk while, at the same time, providing a probabilistic
guarantee of reliability.

This paper makes the following contributions:
• It describes the DrAFTS methodology in terms of the statis-

tical forecasting techniques it employs and the algorithm
it uses to make probabilistic reliability predictions.

• It veri�es the probabilistic guarantees and quanti�es the
risk mitigation provided by DrAFTS using “backtesting”
and historical Amazon Spot tier pricing data.

• It demonstrates the e�ectiveness of DrAFTS by detailing
the execution of both synthetic and “real-world” applica-
tion workloads using DrAFTS-determined bids.

• It demonstrates how DrAFTS can be used to optimize the
cost of using Amazon EC2.

It does so using a combination of after-the-fact analysis of price-
history data and “live” experimentation with applications running
in AWS. These latter experiments make use of a DrAFTS on-line
service that has been operational in prototype form since late 2015
as part of the Aristotle project [5]. We also compare DrAFTS to
other plausible methodologies for determining bids and �nd that
it is the only method among those tested that is able to achieve

1Amazon terms its cloud o�ering “Amazon Web Services,” commonly abbreviated as
“AWS.” We will use the term “Amazon Spot tier” or “Spot tier” to refer to the Amazon
“EC2 Spot Instances” product – cf. https://aws.amazon.com/ec2/spot/.
2DrAFTS is an acronym for Durability Agreements from Time Series.

a probabilistic durability guarantee. These contributions and our
experiences with the DrAFTS service indicate that it is possible to
make e�ective predictions of bounds on future price �uctuations
in the Amazon Spot tier.

2 AMAZON SPOT INSTANCES

To request an instance in the Amazon Spot tier, a user submits what
amounts to a 4-tuple consisting of

(Region, Availability_zone, Instance_type, Max_bid_price). (1)

Amazon organizes its “Elastic Compute Cloud” (EC2) service (from
which virtual machines may be rented) into independent Regions,
each of which constitutes essentially a separate instantiation of
the service. That is, EC2 resources are not shared across Regions.
Each Region is further divided into Availability Zones (AZs), which
de�ne collections of resources with independent failure probabili-
ties so that the joint probability of failure in multiple zones can be
quanti�ed. A virtual machine (termed an instance) launched by a
user runs in a speci�c Region and AZ. In the Spot tier, the user must
specify the Region and may specify the AZ, although if the AZ is
missing from the request, Amazon will choose one (without regard
for price). Note that the Region name is carried in the AZ name. For
example, the us-east-1 Region comprises �ve AZs named us-east-1a,
us-east-1b, us-east-1c, us-east-1d, and us-east-1e respectively.

The instance type determines the nominal capabilities in terms
of CPU, memory, and local storage capacity of the virtual machine
that will be instantiated. For example an m3.medium instance type
currently includes 1 “virtual” CPU, 3.75 gigabytes of memory, and 4
gigabytes of local disk storage. EC2 currently supports 57 di�erent
current generation instance types in the Spot tier, although not all
types are available in all Regions and AZs.

A request to launch an instance in the Spot tier must include a
maximum bid price, which determines the maximum hourly rate
that the user is willing to pay for the instance.3 This price is not
revealed to the other users of the Spot tier. In addition, Amazon
does not reveal the number of resources that are available. Instead,
Amazon sets a market price for each AZ that is advertised to all
users [1]. Requests carrying a maximum bid that is greater than
the current market price are accepted and the instances to which
they refer are initiated or are allowed to continue executing.

2.1 Pricing

Amazon computes the market price so that the (hidden) supply is
exhausted. It sorts the currently active maximum bids by value and
allocates resources to maximum bids (taking into account request
size) in descending order of bid value. The lowest maximum bid
that corresponds to a “taken” resource determines the market price.
It follows that, in principle, the market price changes whenever
a new request is presented, when an active request is terminated
by its user, or when the supply allocated to the resource pool by
Amazon changes. In practice, we observe that many price changes
and/or repeated price announcements occur with approximately
a 5-minute periodicity, perhaps indicating that prices are adjusted
according to a more deterministic schedule.

3Since the maximum bid is the only bid that a user submits, we will use the term “bid”
and “maximum bid” interchangeably.

https://aws.amazon.com/ec2/spot/
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Instances that are running in the Spot tier are charged by the
hour. When an instance is executing, its user is charged the current
market price that occurs at the beginning of each hour of execution
for that hour’s duration. When the instance is terminated by its
user, the user is charged for the complete hour of execution in
which the termination occurs. That is, Amazon “rounds up” to the
nearest hour when a user terminates an instance.

If the market price exceeds the maximum bid price for a running
instance, the instance is terminated by Amazon; if the market price
becomes equal to the maximum bid price, the instance may be ter-
minated or may be left running. Thus, the duration that an instance
will run before it is terminated is determined (assuming that the
probability of hardware failure is negligible) by the time until the
market price becomes greater than or equal to the maximum bid
price for the instance.

Further, the di�erence between the market price computed at
the beginning of each hour the instance runs (i.e., the price the
user will be charged) and the maximum bid price determines the
worst-case �nancial risk associated with the instance. That is, the
user “risks” paying up to the maximum bid price for each hour the
instance executes but usually pays less.

2.2 Spot Instance Price Histories

Amazon makes up to 90 days of market price history for each
instance type in each Region and AZ available for programmatic
access. In this study, we have accumulated price histories for all
AZs in the us-east-1, us-west-1, and us-west-2 Regions spanning the
period from October 2015 to April 2017.

Note also that Amazon prevents “herding” behavior in AZ se-
lection by remapping AZ names on a user-by-user basis. Thus,
di�erent users selecting us-east-1a, for example, do not necessarily
make requests from the same pool of resources. It is possible to
compare market price histories from di�erent users to determine a
globally consistent AZ naming scheme. DrAFTS does not depend
on this deobfuscation for its function, but using DrAFTS as a ser-
vice does. In this work, when we have used the DrAFTS service to
generate results, we have performed this deobfuscation manually.

Finally, we observe that the price updates are frequently (but not
always) available on a 5-minute periodicity. Moreover, the Amazon
web pages quote the cheapest price (across AZs) in each Region with
a 5-minute update frequency. Thus it is likely (but not guaranteed)
that any price quote will persist for approximately 5 minutes.

3 METHODOLOGY

From the perspective of a user of the Amazon Spot tier, DrAFTS
attempts to �nd the lowest maximum bid price that ensures an
instance will run for the speci�ed duration before being terminated
with probability at least as large as the probability associated with
the user’s desired reliability level. Note that DrAFTS bids provide
statistical guarantees that are slightly more restrictive than the
reliability SLAs currently provided by Amazon for its other classes
of service4 in that they are for continuous availability durations.

4Amazon o�ers several classes of service with respect to instances under the same
SLA including “On-demand,” and “Reserved” instances. Only instances in the Spot
tier do not carry a reliability SLA. See http://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/instance-purchasing-options.html for a description of the current purchase
options.

While these SLA guarantees are both probabilistic (the AWS
SLA is not a deterministic guarantee), the nature of these SLAs
is di�erent. The Amazon SLA speci�es a percentage of availabil-
ity time that is cumulative over a �xed time period. As long as
the instance appears available for a speci�ed percentage of time
within the time period (say, 99% in a month) the SLA is ful�lled.
For example, one second of unavailability occurring in every non-
overlapping 100-second period of time (technically) ful�lls a 99%
reliability guarantee. In contrast, the DrAFTS probability refers not
to the cumulative availability but to the continuous availability of
a speci�c instance request. To make the distinction clear, we will
henceforth use the term “durability” to refer to the more restrictive
form of probabilistic guarantee.

DrAFTS applies a non-parametric time-series forecasting tech-
nique (described in the next Subsection) to the history of prices from
the Spot tier to determine its bid predictions. The methodology is a
two-step process. In the �rst step, DrAFTS computes a time series
of upper bounds on market prices at each moment in a price history.
These bounds are probabilistic guarantees that the next value in
the market price series will be less than the bounds and, thus, could
have served as a maximum bid at each point in time. That is, this
upper bound series is the series of smallest bids that would have
guaranteed an instance would “survive” until the next market price
update in the series. In the second step, it repeatedly increments
this bid fractionally and computes a series of time durations until
the bid would have been equaled or exceeded by market price. It
then computes a probabilistic lower bound on this series of time
durations. The process generates pairs of bids and lower-bounds
on durations where each bid guarantees (at a minimum, probabilis-
tically) the duration with which it is paired. Note that as bids get
larger, the durations must increase monotonically for a �xed target
probability according to the price-setting mechanism described in
the previous section.

3.1 Non-parametric Bounds Prediction

DrAFTS uses Queue Bounds Estimation from Time Series (QBETS) [20,
21], a non-parametric time series analysis method to determine
bounds, dynamically, from observed price and durability duration
series. QBETS adapts to changes in the underlying time series dy-
namics (both change-points and autocorrelations) making it useful
in settings where forecasts are required from arbitrary data with
widely varying characteristics.

A bounds forecast from this method requires three inputs:

(1) A time series of data.
(2) A quantile for which a con�dence bound should be pre-

dicted (q ∈ (0, 1)).
(3) The con�dence level of the prediction (c ∈ (0, 1)).

To estimate an upper bound on the qth quantile of the time
series, it treats each observation in the time series as a Bernoulli
trial with probability q of success. If there are n observations, the
probability of there being exactly k successes is described by a
Binomial distribution (assuming observation independence) having
parameters n and q. If Q is the qth quantile of the distribution from

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-purchasing-options.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-purchasing-options.html


SC17, November 12–17, 2017, Denver, CO, USA Rich Wolski, John Brevik, Ryan Chard, and Kyle Chard

which the observations have been drawn, the equation
k∑
j=0

(
n

j

)
· (1 − q) j · qn−j (2)

gives the probability that no more than k observations are greater
than Q . As a result, the kth largest value in a sorted list of n ob-
servations gives an upper c con�dence bound on Q when k is the
smallest integer value for which Equation 2 is larger than c . Taking
k to be the largest integer for which this formula is smaller than
1 − c gives a lower con�dence bound for Q .

The model described above assumes that the series is stationary.
As a result, the “current” bound on the qth quantile is also a predic-
tion of the bound for the next observation. In practice, empirical
time series taken from systems often exhibit change points and
other forms of non-stationarity. The method attempts to correct for
these events automatically to improve the accuracy of its forecasts.

Note that typical values of c for upper bounds are relatively
close to 1, which makes the bound estimates conservative. The
value returned as a bound prediction is larger than the true qth

quantile with probability c under the assumptions of the model.
However, as a prediction based on con�dence bounds, the degree
to which it is larger is not estimated.

More succinctly, the implementation of the method sorts obser-
vations in a history of observations, and computes the value of k
that constitutes an index into this sorted list that is either the upper
c or lower c (user selectable) con�dence bound on the qth quantile.
The methodology assumes that the time series of observations is
ergodic, so that in the long run the con�dence bounds are correct in
a conservative sense. However, to improve prediction performance,
the method also attempts to detect change points in the time series
of observations so that it can apply this inference technique to only
the most recent segment of the series that appears to be stationary.

Note also that the algorithm itself can be implemented e�ciently
if the time series state needed to determine change points is per-
sistent so that it is suitable for on-line use. Details of this imple-
mentation as well as a fuller accounting of the statistical properties
(including correction for autocorrelation via use of a table that
captures the e�ect of the �rst autocorrelation on rare events) and
detailed assumptions are presented in [19–21].

3.2 DrAFTS Prediction Methodology

DrAFTS uses QBETS to predict an upper bound on maximum bid
price and a lower bound on the time the bid will be su�cient to pre-
vent a termination due to market price. We term this time the “bid
duration.” It uses the square root of the desired target probability as
the qth quantile and, in the study, a value of 0.99 for the con�dence
level c . While other probability combinations are possible to reach
the target probability, our experience has shown that using square
roots strikes a good balance between keeping a bid low (i.e., near
the current price) and yielding a usable duration.

For example, to compute the DrAFTS prediction with probability
0.95 for an instance type at a particular moment in time, DrAFTS
computes an upper bound prediction of the q = 0.975 quantile for
all elements of the series up to that moment (roughly the square
root of 0.95) and c = 0.99. The time series method returns an upper
con�dence bound on the 0.975 quantile of the next market price for

each element of the time series. That is, DrAFTS creates a history
of upper bound predictions, one for each point in the price history
series where pricing data is available.

Based on this price history, DrAFTS then generates a series
of durations for which the upper bound prediction would have
remained above the market price. Each element of this series is the
duration from when the prediction is made until the market price
exceeds it. Thus, each prediction is paired with a duration until it
is equal to or less than the market price.

DrAFTS then uses the time series method again to predict a
lower con�dence bound (again with c = 0.99) on the (1 − q)th

quantile of the new duration series. Note here that this prediction
is based on the conditional probability that the price allows the
instance to run in the �rst place.

Note that Amazon may or may not terminate an instance when
its maximum bid is exactly equal to the market price. QBETS as-
sumes that the bound on the desired target quantile is contained in
the observed time series. Because the methodology is attempting
to use only the most recently relevant history, it is possible that
the upper bound on the market price is equal to the current market
price (exactly).

To account for the possibility that the current Spot price is equiva-
lent to the upper bound prediction, DrAFTS adds $0.0001 (the small-
est cost increment allowed by the Spot tier interface) to each upper
bound prediction so that it must be larger than the quoted market
price returned in all cases. This premium ensures that DrAFTS
predicts the minimum time until a Spot instance is eligible to be
terminated because of price rather than the time until the Spot
price absolutely exceeds the maximum bid. This estimate is a con-
servative lower bound on the time until the instance actually will
be terminated. We refer to this bound on the time until an instance
may be terminated as the durability of the prediction.

3.3 Performance

For all experiments described in Section 4 (except those in Sub-
section 4.3) each DrAFTS maximum bid was computed using the
previous 3 months pricing data requiring approximately 2 minutes
to generate using server class machines. In a production setting, the
predictor state can be updated incrementally (in a few milliseconds)
whenever a new price data point is available.

For the experiments described in Subsection 4.3 we also wanted
to experiment with DrAFTS’s operation as a stand-alone web
service. Our goal was to understand how DrAFTS might func-
tion as a decision-support tool or cloud-based service available
to application scheduling programs. The service is available at
http://predictspotprice.cs.ucsb.edu. The DrAFTS service implemen-
tation operates asynchronously. It periodically queries the Amazon
price-history API and computes a set of maximum-bid predictions
for each instance type and AZ. To access these bids, clients use a
Representational State Transfer (REST) [10] API, via which they can
request a set of DrAFTS maximum bids for a speci�c instance type
and AZ. The service computes duration predictions associated with
increasing maximum bid values in increments of 5% for both the
0.95 and 0.99 probability levels. It starts with the smallest predicted
bid that can guarantee any duration with the speci�ed probability
and computes bid predictions up to 4 times this minimum value

http://predictspotprice.cs.ucsb.edu
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in increments of 5%. It is currently con�gured to recompute all
bid predictions every 15 minutes. Note the service does not yet
deobfuscate AZs perfectly (it uses a heuristic) and therefore, in this
work we precon�gured the AZ mapping for each client.

4 RESULTS

We validate the e�ectiveness of the DrAFTS method for determin-
ing maximum bids in the Spot tier using four sets of experiments
that span the operational lifetime of the DrAFTS service. We �rst
evaluate DrAFTS’s ability to correctly satisfy the requested dura-
bility guarantee for many combinations of instance type, AZ, and
Region. We then explore DrAFTS’s e�cacy using a lower target
probability and instantiating a large number of identical instances
for a �xed time period. In the third set of experiments, we incorpo-
rate DrAFTS bid predictions into a production analysis platform
and explore its ability to reduce cost and risk when provisioning in-
stances. Finally, we show the cost savings that would have resulted
from using DrAFTS as part of a simple cost-optimization strategy.

4.1 Correctness

We term a bid to be correct when it is su�cient to prevent the
instance for which it is made from being terminated by Amazon
due to a change in market price. We measure the correctness of the
overall methodology though backtesting. To do so, we repeatedly
choose a time at random in the market price history for each combi-
nation of AZ and instance type and run the DrAFTS algorithm with
a speci�c target probability p using the data before that time in the
history. We then choose a random instance duration and compute
the DrAFTS-predicted maximum bid. Finally, we test whether this
bid would have prevented a termination by Amazon by comput-
ing the time from that point in the history until the predicted bid
price is greater than or equal to the observed market price. If the
duration of the instance is longer than the interval until the market
price is greater than or equal to the predicted maximum bid, the
prediction succeeds in preventing a termination. Otherwise, it fails.
We record the fraction of successes from a suitably large set of such
experiments and compare it to the success probability p supplied to
DrAFTS in the test. If the success fraction is greater than or equal
to p, DrAFTS would have appeared to be functioning “correctly” in
terms of its ability to provide a probabilistic guarantee to a �ctitious
user who had submitted the random instances over the time period
that has been “backtested.”

We treat each combination of AZ and instance type as a sepa-
rate category of resource. This categorization is necessary because
users of the Spot tier must decide on and specify which Region,
AZ, and instance type to use. Thus while it may be possible to
achieve an overall success fraction that meets the probability target
across all possible combinations, users require that DrAFTS meet
its probability target for each combination separately. We tested
all instance types available from the us-east-1, us-west-1, and us-
west-2 Regions.5 Amazon reported 9 total AZs were available in
these three Regions. There were 53 di�erent instance types at the
time of the study, but not all instance types are available from all

5We conducted the experiments with an ordinary Amazon user account. When this
account queried AWS for the available AZs, it reported that 4were available in us-east-1,
2 were available in us-west-1, and 3 were available in us-west-2.

AZs. The total number of combinations of AZ and instance type
we backtested was 452.

For each combination we generated 300 Spot tier requests be-
ginning at random times between October 2016 and December
2016. Each request had a duration drawn from a uniform random
distribution between 0 and 12 hours in length. For each request,
we computed the maximum bid using each method and then de-
termined whether that bid would have been su�cient to prevent
Amazon from terminating the request.

Table 1 shows the percentage of AZ-instance type combinations
that achieved < 0.99, 0.99, or 1.0 success fraction for four di�erent
methods of computing a bid: DrAFTS, On-demand price, AR(1) and
the empirical cumulative distribution function (CDF).

Method Correctness fractions
<0.99 0.99 1

DrAFTS 0.2% 27.0% 72.8%
On-demand 37% 12% 51%
AR(1) 29% 17% 54%
Emperical-CDF 6% 62% 32%

Table 1: Backtested correctness fractions for all instance types

in us-east-1, us-west-1, and us-west-2 using di�erent meth-

ods to compute the maximum bid, October 1, 2016 through

December 1, 2016, with a sample size of 300 and a random

instance duration between 0 and 12 hours.

4.1.1 DrAFTS correctness. The DrAFTS target probability was
set to 0.99 with con�dence bound c = 0.99. When using DrAFTS ,
this target was met in all but 0.2% of the combinations. The 1 (out
of 452) that “failed” to achieve a success fraction of at least 0.99 had
a success fraction of 0.98.

Note that due to autocorrelation in the price data it is possible
for DrAFTS to fail to meet its probability goal (but almost to meet
it) for contiguous periods of time due to random variation. That is,
the methodology �nds the upper bound from the “population” but
depending on the random time stamps chosen, it is possible to see
success fractions that are slightly below the probability target for
short periods. Thus we did not expect to see a success fraction of
1.0 but something near it, as shown in the table. Indeed, to test the
hypothesis that the one case in which DrAFTS failed to achieve
a 0.99 or better guarantee, we re-ran the simulations for the one
failure separately using a di�erent random number seed and the
success probability for this second run was 0.99. With the durability
guarantee set at 0.99, DrAFTS is correct as long as the miss fraction
is 0.01 or less due to random variation and 1 out of 452 is well below
this fraction.

4.1.2 Comparison with On-Demand. The On-demand price is
the hourly price a user must pay for an instance to obtain the Ama-
zon reliability SLA. Currently, that SLA guarantees 99.95% instance
availability over the course of 1 month or the user is entitled to a
10% refund [2]. If the availability is less than or equal to 99%, the
refund is 30%. Amazon sets On-demand prices by Region. That is, a
user pays the same On-demand price in each AZ within a Region.
Table 1 shows that the On-demand price, when used as a maximum
bid, does not ensure a correctness fraction of 0.99 for many of the
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possible AZ and instance-type combinations (approximately 37%
of those tested).
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Figure 1: CDF of BacktestedDrAFTS correctness fractions less

than 0.99 for all instance types inus-east-1, us-west-1, andus-

west-2 using the On-demand price as amaximumbid October

1, 2016 through December 1, 2016 with a sample size of 300
and a random instance duration of 12 hours.

Further, many of the success fractions when the On-demand
price was used as a maximum bid are substantially smaller than
0.99. Figure 1 shows the empirical CDF of the correctness fractions
that were less than 0.99 generated by the backtesting experiment
with the On-demand price as the maximum bid. Indeed, some of the
success fractions were even zero. That is, the On-demand price for
these combinations of AZ and instance type was never su�cient
to prevent a termination due to price. For example, the cg1.4xlarge
instance type, in the us-east-1 Region had a price of $2.1 at the time
of the experiment. The smallest price we observed when backtesting
cg1.4xlarge in what appeared to our test account as us-east-1c was
$2.10010. That is, the Spot tier market price of a cg1.4xlarge in
us-east-1c was at least one tenth of a cent higher than the On-
demand price for each of the 300 randomly generated instances.
We cannot yet determine whether this phenomenon (which we
observed for several other combinations) is a natural consequence
of the Amazon Spot tier market-making mechanism or an arti�ce
designed to discourage the use of the Spot tier for those speci�c
combinations. However, the overall results indicate that the On-
demand price does not determine a maximum bid that guarantees
the same level of durability for the instance durations and time
period we tested.

4.1.3 Comparison with othermethodologies. ComparingDrAFTS
to other predictive methodologies for Spot pricing is problematic in
that the other approaches reported in the literature do not predict
probabilistic bounds (to be used as a durability guarantee) nor do
they typically provide a parametric model from which quantiles
may be determined. One exception is the work by Yehuda et al. [1]
in which the authors show that Spot prices may be well-modeled
by an AR(1) [6] series. If so, then each price value is the sum of a
fraction of the previous price value and a normal random variable.
Using this formulation, it is possible to estimate the bounds of such
empirically with a su�ciently large sample size.

Yehuda et al. note that an AR(1) model is only applicable for seg-
ments of the price time series that are stationary and that the series
they examine contain many such segments. That is, a long-term
price series is composed of separate but contiguous segments, each
of which can be well modeled by an AR(1) model. Note: in a repub-
lished version of this article the authors state that recent market
prices are no longer consistent with an AR(1) model [1]. However,
they show this change for a single series. Our work explores many
more instance types, across AZs, and with more samples. We see
several series that are, in fact, well-modeled by an AR(n) process
and some that are not.

To compare the e�cacy of this approach toDrAFTS, we modi�ed
the software to use an AR(1) model in conjunction with the same
non-parametric binomial change-point detection method used by
DrAFTS. The software treats segments of the time series between
change points as stationary AR(1) time series and computes the
target quantile based on this AR(1) assumption for each series. To
make a durability prediction at an arbitrary point in time, the system
uses the quantile from the series beginning at the change point
detected most recently before that point in time. This quantile is
treated as a bound on the series for future values. Thus this approach
uses an AR(1) model in place of the non-parametric QBETS to
determine bounds. Note that without change-point detection, the
comparison would unfairly penalize the AR(1) approach since it
only holds for regions of stationarity in the price series.

Table 1 shows the use of an AR(1) model to be similar in quantity
to using the On-demand price. The approach meets the probabilistic
target for some of the AZ and instance-type combinations, but for
many (29%) it fails to do so. Interestingly, these results do not
contradict the results in the Yehuda et al. study. In our results, the
AR(1) method correctly determines a guarantee for the same AZ and
instance-type combinations that Yehuda and his colleagues tested.
However, DrAFTS is correct, in terms of a durability guarantee,
for all combinations, indicating that some of them may not be as
accurately modeled as an AR(1) (or indeed AR(n)) series.

Finally, one methodology that has been suggested for determin-
ing a bid price is to use the empirically determined quantile from
the observed price series as a bid. Table 1 also shows the correct-
ness fractions when the empirical CDF is used to determine the
bid for a 0.99 durability target. In this case, a large fraction of the
AZ and instance-type combinations meet the 0.99 target, but 6%
(26 out of 452 combinations) show a lower success rate. While this
methodology is simple to implement and understand, it does not
provide the guarantee and level of certainty that is provided by
DrAFTS.

4.2 Instance Launch Experiments

To further test the e�cacy of DrAFTS, we used its bid predictions
to launch instances in the Spot tier. To control expense, we chose in-
expensive instance types and a duration of 3300 seconds (5 minutes
less than 1 hour). This latter decision stems from early experimen-
tation in which the time between when our experimental apparatus
decided to terminate an instance and the actual termination time
recorded by Amazon could take up to 5 minutes. As a result, du-
rations of close to an hour would occasionally be charged for two
hours as the recorded termination “rolled over” the one hour mark.
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Figure 2: DrAFTS Maximum Bids, p=0.95, 100 experimental

instance launches of type c4.large in the us-east-1 Region, No-

vember 15 through November 22, 2015.

In each experiment, a script computed the DrAFTS maximum
bid that would ensure a 3300 second duration with probability
p = 0.95. We chose 0.95 (instead of the 0.99 described in the previous
subsections) so that we could initiate approximately 100 instances
and observe a meaningful failure count. Rather than choosing a
single AZ, however, we allowed the experiment to choose the AZ
in a speci�ed Region that currently had the lowest predicted price
upper bound. That is, we used the predicted price upper bound for
each AZ in a given Region as a “�tness function” so that �nancial
risk associated with each experiment would be minimized.

For a given Region the script repeatedly computed the current
price upper bound and DrAFTS bid in each AZ, chose the AZ
that had the lowest predicted price upper bound, and requested an
instance from that AZ with the corresponding bid. Once Amazon
reported the instance as being in the “running” state, the script
would then pause for 3300 seconds and afterwards interrogate
Amazon to determine whether the instance was still running. If not
it recorded a failure, otherwise it recorded a success.

Further, we designed each experiment to take place over the
course of a week and to run approximately 100 instances during
that week. To prevent Amazon from detecting a regular periodicity
and performing some unseen optimization on our behalf, we varied
the time between experiments by selecting an inter-experiment
interval from a normal distribution with a mean of 2748 seconds
and a standard deviation of 687 seconds.

Figure 2 shows a time series of DrAFTS maximum bids recorded
for the week between November 15 and November 22, 2015, for
the c4.large instance type in the us-east-1 Region. In the �gure, the
x-axis shows the instance launch number and the y-axis depicts
the value, in U.S. dollars, of the DrAFTS-determined maximum bid.
We chose this Region and instance type believing that the generally
low hourly price in the Spot tier would induce variability due to its
popularity. However all 100 instances completed successfully (i.e.
were not terminated due to price). Backtesting this combination
along with the AZ selection methodology revealed that at the 0.95
target probability level, DrAFTS predictions were relatively con-
servative. Often, the backtested results exhibited a success fraction
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Figure 3: DrAFTS Maximum Bids, p=0.95, 100 experimental

instance launches of type c3.2xlarge in the us-west-1 Region,

January 7 through January 14, 2016.

greater than 0.99 making it plausible that a test consisting of 100
instance launches would contain no failures.

In Figure 3 we show similar results for a second experiment
where backtesting showed that DrAFTS would be less conservative
at the 0.95 level in the us-west-1 Region for the c3.2xlarge instance
type in January of 2016. The experiment recorded 4 failures over
the course of the week (instance invocation numbers 69 through 72
shown in dark red in the �gure), which is consistent with the target
success probability of 0.95 we had chosen. Further, the four failures
occurred “back to back,” further lending credence to the hypothesis
that the failure percentage using DrAFTS shown in Table 1 is due
to autocorrelation in the price data. Finally, the third failure of the
four was not a price termination but rather a failure of the instance
to launch due to the bid being below the current market price.

We conducted three similar experiments using di�erent instances
types and Regions (during non-overlapping week-long time periods)
with nearly identical results (graphs omitted for brevity). In all cases
the DrAFTS bids achieved the target guarantee probability.

4.3 Application-Driven Experiments

As a more realistic test of DrAFTS e�cacy, we integrated it with
the Globus Galaxies platform [17]—a production, cloud-hosted anal-
ysis platform that underlies the Globus Genomics service [18]. The
platform enables users to de�ne and execute work�ows composed
of various analysis applications. Executed work�ows are decom-
posed into individual jobs, which are then queued for execution.
Importantly, most jobs are tolerant of delays and users are therefore
willing to incur increased execution time (due to instance revoca-
tion) to obtain lower costs. The platform implementation includes a
provisioner [7] that monitors the job queue and provisions instances
in the Spot tier to execute individual applications. The platform
is a particularly good example for the DrAFTS methodology as it
includes approximate computational pro�les—descriptions of the
requirements of a particular application (e.g., CPU and memory
requirements) and estimated execution time [8]. However, these
pro�les are used only to select suitable instance types. Indeed, be-
fore the work described herein, there was no reliable way to use
the execution times to in�uence bid determinations.
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Figure 4: Bid-duration relationship, in the us-east-1a AZ for

the “Linux/UNIX (Amazon VPC)” c3.4xlarge instance type at

10:16 AM PDT on April 18, 2016.

To testDrAFTSwe modi�ed the provisioner to fetch theDrAFTS
graph for each instance type from the DrAFTS service (cf. Sec-
tion 3). Figure 4 shows an example of such a graph illustrating the
relationship between predicted duration until an instance will be
terminated due to market price and DrAFTS-predicted maximum
bid cost in U.S. dollars. Using this graph (which is also supplied in
a machine-readable format) a client of this service can determine
what maximum bid to use to ensure a speci�c instance duration.

To evaluate performance we used a workload recorded from
production usage of the platform. The workload included 8452 jobs
over a 24-hour period. In order to reduce the execution time and cost
of running experiments we used only the �rst 1000 jobs (requiring
366 instances). This represents a 3 hour and 20 minute period of
submissions, for a total of approximately 8 hours of execution. To
enable the workload to be “replayed” in the Spot tier at di�erent
times, we transformed the submission time of each job into a relative
submission time o�set by the time of the day the job was submitted.

We �rst explored using DrAFTS to select instance type and
AZ for each job: using a required duration of one hour. This il-
lustrates a baseline experiment in which accurate pro�les might
not be available. We con�gured DrAFTS with probability 0.99 for
each candidate instance type and AZ and selected the one with the
smallest maximum bid.

Method Cost Maximum Bid Cost
Original (80% On-demand) $106.10 $176.98
DrAFTS Bid $91.78 $98.60

Table 2: Comparison of Original Spot tier usage to selection

using DrAFTS, February 28 and 29, 2016.

Table 2 compares the results of one replay experiment to com-
plete the workload which took place on April 28 and 29, 2016 using
DrAFTS methods for selecting and pricing instances as well as the
service’s original bid determination method (80% of the On-demand
price). The table shows the overall cost for all instances used and
maximum (worst-case) cost that could have been incurred (i.e., the
risked cost) if the instances were charged at the bid value rather
than the market price

The entire application run consisted of 366 instance requests
to the Spot tier with each method. In both cases all 366 instances
completed without being terminated by Amazon. This is consistent
with the DrAFTS requested success probability of 0.99. While no
termination di�erences were observed, DrAFTS both reduced the
overall cost and the �nancial risk.

To further investigate the ability for DrAFTS to be used in an
on-line setting we developed a simulator plugin to the provisioning
service [9]. This simulator replicates AWS market conditions at
a particular time and thus enables low cost experimentation un-
der identical market conditions. The simulator is calibrated using
observed distributions for AWS (e.g., instance request time) and
provisioner overheads (e.g., job submission). Table 3 shows the re-
sults of running 35 simulated experiments when using the original
method, DrAFTSbids based on 1 hour duration and when using
pro�les. The experiments were run on April 1 and 2, 2017 using the
same 1000-job workload. It reports the average number of instances
provisioned and terminated, as well as the average cost and risk
across 35 experiments. The table shows that the DrAFTS methods
again reduce costs. In this case, DrAFTS also signi�cantly reduces
the potential risk by more than a factor of 2. These results also
demonstrate the (slight) advantage of using accurate job pro�les to
compute the DrAFTS bid. The di�erence in this case is small with
respect to cost, as the workload contains few jobs that last longer
than one hour. However, even in this “worst-case” scenario the risk
is reduced by almost 7%. As expected the number of terminations
increases as the pro�le-based method produces a “tighter” bid price
(to meet a shorter durability guarantee).

Avg. Avg. Avg. Max Avg.
Method Instances Cost Bid Cost Terminations
Original 226.4 $69.83 $219.69 0
DrAFTS (1-hr) 225.4 $66.39 $85.08 0.24
DrAFTS (pro�les) 228.5 $66.36 $79.29 1.03

Table 3: Comparison of Original Spot tier usage to selection

using DrAFTS, April 1–2, 2017. Results are reported as aver-

age values from 35 experiments with each method.

This application example further supports our belief thatDrAFTS
is capable of implementing probabilistic guarantees of duration in
the Spot tier. In both sets of experiments DrAFTS met its target
probability and reduced both the overall cost and the �nancial risk.

4.4 Cost Optimization

The purpose of DrAFTS is to be able to predict the minimum bid
that will ensure a user-speci�ed level of durability. While DrAFTS
does appear to be able to obtain a speci�c durability guarantee, it
is also possible to use it to optimize the cost of reliable execution
in AWS. Speci�cally, by setting the DrAFTS durability target prob-
ability to the same probability provided by the On-demand SLA
(0.99) the two can be considered functionally equivalent in terms
of providing a “guarantee” to the user.

Note that DrAFTS is “conservative” in that it uses the upper and
lower bounds to indicate the worst case cost that will ensure the
speci�ed durability probability. In some cases, this worst-case bid
is greater than the On-demand price for the same instance type
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in the same AZ. In many cases, however, the worst-case DrAFTS
bid is less than the On-demand price indicating that even if the
user pays the maximum DrAFTS cost, it would still be less than
the On-demand cost. Further, the actual cost in the Spot tier can be
considerably less than the DrAFTS bid when the probability target
is high (e.g. 0.99). One might ask how “tight” (close to optimal)
are DrAFTS’s predictions with respect to the market price. While
this is heavily dependent on the variability of the particular series,
we refer readers to our technical report in which we investigate
tightness for all instance types and AZ pairs and show ratios of
between 4.8 and 7.5 on average [28].

The relationship between DrAFTS and On-demand pricing sug-
gests the following strategy for provisioning instances. When a
user wishes to submit a request for an instance type in a speci�c
AZ with a known maximum duration, she can consult DrAFTS for
a maximum bid that will ensure 0.99 durability and compare that
bid with the current On-demand price for the same instance type in
the same AZ. If the DrAFTS bid is lower, she requests the instance
with the DrAFTS bid. If it is equivalent or higher, she requests an
On-demand instance.

In so doing, she ensures that regardless of which request she
chooses to make, the resulting instance will have at least a 0.99
probability of running for its maximum duration. That is, from
the AWS SLA, the availability probability is 0.99 for On-demand
instances so she is assured of at least this availability. As mentioned,
availability, as speci�ed in the SLA is weaker than durability in that
the availability SLA does not specify that the availability time be
contiguous. For the purposes of cost optimization, however, we will
consider availability equivalent to durability when the maximum
duration is considerably smaller than the availability SLA period.

On-demand DrAFTS-based
AZ Cost Strategy Cost Savings
us-east-1b $47277.1 $35983.2 23.89%
us-east-1c $49883.2 $41298.2 17.21%
us-east-1d $47756.6 $40536 15.12%
us-east-1e $33777.2 $32657.2 3.32%
us-west-1a $32876.9 $18362.1 44.15%
us-west-1b $34303.2 $20452.4 40.38%
us-west-2a $50367.1 $32670.2 35.14%
us-west-2b $48659.4 $28505.1 41.42%
us-west-2c $22326.6 $13094.3 41.35%

Table 4: Comparison ofOn-demandCost toDrAFTSCost for

a durability guarantee of 0.99 backtested instances, October

1, 2016 through December 1, 2016.

Table 4 shows the cost savings obtained from using DrAFTS
bids in this way for all of the backtested instances used to generate
the results in Section 4.1. Column 1 of the table shows the AZ in
which the instances are located, column 2 the total On-demand cost
that would have been paid if each experimental instance in that
AZ were launched as an On-demand instance, column 3 shows the
cost if each instance is launched using either the DrAFTS bid in
the Spot tier or the On-demand price in the On-demand tier based
on whether the bid is lower than the price, and column 4 shows the

percentage savings that this cost optimization strategy generates
over the On-demand tier.

Notice that the savings varies considerably by AZ. Part of this
variation is due to considerable volatility in Spot-tier prices for spe-
ci�c AZ and instance-type combinations. For example, the c4.4xlarge
instance type in the us-east-1e AZ has a spot price that varied be-
tween $0.13 and $9.5—almost two orders of magnitude—during the
test period. Because of this variation, DrAFTS had to choose a bid
price that is relatively high compared to the On-demand price.

Alternatively, in the same experiment, the maximum bid deter-
mined by DrAFTS for a m1.large instance type in the us-west-2c
AZ over the 300 experimental trials was $0.10 (the smallest bid was
$0.02) and the On-demand price for an m1.large in the us-west-2
Region was $0.175. In this case, the DrAFTS bid was below the
On-demand price for each instance. Because the bid is the most
that a user would need to spend (the actual cost of the instance
was less), substantial savings are possible with the same level of
durability as is prescribed in the On-demand SLA.

Table 5 shows the cost savings using backtesting over the same
time period when DrAFTS uses a durability guarantee probability
of 0.95 rather than 0.99. In this experiment, the success probability

On-demand DrAFTS-based
AZ Cost Strategy Cost Savings
us-east-1b $280316 $164786 41.21%
us-east-1c $292009 $178920 38.73%
us-east-1d $273276 $170587 37.58%
us-east-1e $202290 $181591 10.23%
us-west-1a $198719 $52983.1 73.34%
us-west-1b $196362 $63882.8 67.47%
us-west-2a $309716 $159324 48.56%
us-west-2b $303714 $136608 55.02%
us-west-2c $67483.6 $21236 68.53%

Table 5: Comparison ofOn-demandCost toDrAFTSCost for

a durability guarantee of 0.95 backtested instances, October

1, 2016 through December 1, 2016.

of 0.95 is correctly determined (graph omitted for space consid-
erations) for all AZ and instance-type combinations. Notice that
the savings (compared to the savings with a 0.99 probability target
shown in Table 4) can be signi�cantly higher. If the application
could tolerate the premature termination of 5% of its Spot tier re-
quests, the user could obtain substantial savings using DrAFTS.

Thus DrAFTS is able to illuminate where the opportunities are
to obtain substantial savings. While we have aggregated the savings
data on a per-AZ basis for purposes of brevity in this paper, a use of
DrAFTS can determine on an AZ-and-instance-type basis where
the best cost optimization potential might be.

Finally, DrAFTS makes it possible for the user to determine the
SLA (rather than Amazon) in order to best exploit this cost savings
for a particular application. Speci�cally, if the user application can
tolerate a lower success probability associated with each instance
request, DrAFTS can use a tighter price bound (implying a greater
probability of termination) and, thus, obtain greater savings.
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5 RELATEDWORK

There have been many e�orts to model pricing histories and calcu-
late bid prices that satisfy various requirements (e.g., minimizing
cost). In [30] the authors model spot prices and derive optimal
bidding strategies for managing the trade o� between producing
higher bids to avoid revocations and lower bids to reduce costs.
They focus on determining a bid price that ensures (probabilisti-
cally) that a job completes within a (�xed) duration. Our work is
di�erentiated by its focus on providing durability, not cost opti-
mization. Furthermore, the authors make assumptions regarding
bid arrivals being independent and identically distributed, which
our analysis shows is not true, and for which our method takes
into account. Finally, DrAFTS does not require probability density
functions or cumulative distribution functions.

Tang et al. [26] propose an optimal bidding strategy for instances
in the Spot tier. Their approach uses a Constrained Markov Decision
Process to minimize the expected cost of an instance, taking into
account its checkpointing and restart delays. In [14] and [15] the
authors hypothesize a parametric model for price histories (based
on exponentials), which they �t using Expectation-maximization
(E-M). The work described in [12] attempts to solve a cost minimiza-
tion problem that is based on a Markovian state model. The authors
estimate transition probabilities from the Spot price histories. The
authors of [27] describe a neural network-based approach to pre-
dicting prices in the Spot tier. Their approach (based on a mixture
of Gaussians and a Box-Jenkins time series methodology) generates
one-step-ahead predictions (with a granularity of 1.3 hours) with
good accuracy. However, they point out that predicting the market
for longer time frames should be encouraged as future research.
DrAFTS constitutes such research in that it combines time series
predictions of the bounds on price (for the next 5 minute interval)
with a duration prediction essentially providing predictive bounds
for arbitrary future durations.

Our work di�ers from previous work in several ways. DrAFTS
is focused on making equivalent the reliability guarantees avail-
able from Amazon instance services classes (e.g., On-demand) that
carry a reliability SLA with the durability that users can obtain
from the Spot tier. It is not a method for determining a bidding
strategy that minimizes expected instance cost. Also, the breadth of
our study is wider in terms of the time period we observe and the
combinations of Region, AZ, and instance type we test in our veri�-
cation process. Finally, our method is non-parametric and adaptive.
Thus, it includes both change-point detection and autocorrelation
compensation features that parametric approaches do not.

The authors of [1] investigate, at some length, the market dy-
namics associated with the Amazon Spot tier. Their hypothesis is
that pricing in the Spot tier is not driven solely by client demand
(i.e., Amazon introduces hidden externalities that a�ect pricing). We
concur with the analysis presented in [1], motivating us to turn to
the time series mechanism described previously as an e�cient adap-
tive technique. Again, DrAFTS is only providing a statistical bound
predicted price and thus need not recover the “true” underlying
market dynamic completely.

Researchers have also examined the question of using “live mi-
gration” and checkpointing to avoid downtime when a web service
is hosted in the Spot tier [13, 22, 25]. They suggest both a reactive

strategy that sets the maximum bid price to the On-demand price
and performs a migration when the Spot price nears the bid. They
also investigate a proactive strategy that uses a constant factor
(greater than 1.0) to set the maximum bid price. Our work comple-
ments this approach in that it attempts to determine the probability
and duration until a termination may happen.

Finally, the authors of [23] present a unique transient guarantee
that provides probabilistic assurances on revocation characteris-
tics. The general idea of this approach is that spare capacity is
o�ered by providers according to di�erent classes of service. Each
class includes probabilistic assurances with respect to the instances’
mean time to revocation. This approach di�ers from our work, in
that it takes a provider’s perspective rather than a user’s. Thus,
the authors focus on characterizing the performance and value of
users’ use of transient servers while incorporating the overhead of
fault-tolerance.

6 CONCLUSIONS AND FUTUREWORK

Our goal in developing DrAFTS has been to determine the extent
to which it is possible to use on-line statistical forecasting to gener-
ate a probabilistic guarantee of instance durability when a cloud
provider o�ers dynamically priced “Spot” resources. To verify our
overall methodology, which is based on non-parametric forecasting
of univariate time series bounds, as well as to investigate the prac-
tical feasibility of our approach, we have conducted a number of
experiments with the Amazon Spot tier over a long period of time.
Our results combine extensive “backtesting” of previous price histo-
ries, empirical tests that launch instances in the Spot tier and record
the outcomes, an analysis of the “real-world” service usage of the
Spot tier in terms of instance durability and costs, and analysis of
the potential bene�ts available to users when using an adaptive
provisioning strategy. These results indicate that DrAFTS is able to
provide a probabilistic guarantee of durability in the Amazon Spot
tier for large probabilities up to 0.99. This probabilistic guarantee
compares favorably to the reliability guarantee o�ered by Amazon
for its more expensive On-demand tier of service.

Our future work will analyze the degree to which the availability
of DrAFTS predictions may a�ect the market they are serving. It
is clear that widespread use of DrAFTS (if it were to occur) would
change the pricing dynamics of the Amazon Spot tier. We wish to
understand both whether the predictive capability is degraded if
many market participants were to use DrAFTS to determine their
bids and also whether the market, as a whole, will appear more or
less stable than it is currently.

SOFTWARE AVAILABILITY

The DrAFTS service is available at: http://predictspotprice.cs.ucsb.
edu. Spot price histories are available at: http://www.cs.ucsb.edu/
~rich/drafts-sc-2017-price-data/. The application simulator is avail-
able at: https://github.com/globus-labs/SCRIMP.
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