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ABSTRACT

Sensor network computing can be characterized as resoanstrained
distributed computing using unreliable, low bandwidth coomi-
cation. This combination of characteristics poses siggnifisoft-
ware development and maintenance challenges. Effectivefin
cient debugging tools for sensor network are thus critiEalstent
development tools, such as TOSSIM, EmStar, ATEMU and Ayrora
provide useful debugging support, but not with the fidelityale
and functionality that we believe are sufficient to meet teeds of

the next generation of applications.

In this paper, we propose a debugger, callé®B, based on a
distributed full system sensor network simulator with hfigtelity
and scalable performance, DiSenS. By exploiting the piztieot
DiSenS as a scalable full system simulatdiDB extends conven-
tional debugging methods by adding novel device level, g
source level, group level, and network level debuggingrabsons.
The performance evaluation shows that all these debuggatgres
introduce overhead that is generally less thafs into the simula-
tor and thus making%DB an efficient and effective debugging tool
for sensor networks.

Categories and Subject Descriptors

D.2.5 [Software Engineering: Testing and Debugging; |.&imulation
and Modeling]

General Terms
Experimentation, Performance
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1. INTRODUCTION

Sensor networks, comprised of tiny resource-constraieettes
connected by short range radios and powered by batteri@gdpr
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an innovative way to implement pervasive and non-intrusive-
ronmental instrumentation and (potentially) actuatiohe Tesource-
constrained nature of sensor network devices poses seymtifoft-
ware development and maintenance challenges. To proldtenpa
life and promote miniaturization, most devices have litiemory,
use low-power and unreliable radios, and run long duty cycle
addition to these per-device constraints, by definitiorseemet-
works are also distributed systems, with all of the concantisyn-
chronization and consistency concerns that distributeddination
implies.

For these reasons, effective debugging support is critfcalim-
ber of sensor network development systems [2, 18, 3, 17,113, 6
provide debugging support for individual devices and/@& ¢bm-
plete network. However, they all have their limitations n®orely
on hardware support, subject to the same resource corstthat
as the programs on which they operate. Some only monitoretie n
work radio traffic. And most importantly, as networks scaese
tools become difficult to apply to the details of collectiaisnter-
acting sensor nodes.

In this paper, we present a new approach that is based otkrala
full system sensor network simulation with enhanced deimggg
features. Our debugging tool is called®B (where $ stands for
Simulation and Sensor network). The goal DB is to adapt
conventional debugging methods to sensor network apjgitsiso
that we can have better control of hardware details and detmig
complete sensor network in a coordinated way. Our appragigsr
upon four principle innovations in the area of debugginguese
constrained devices.

e Atthe single device level, we introduce the concepetfug-
ging point—a generalized notion of break point, watch point,
and state interrogation — that permits state display frdm al
sensor device subsystems (flash pages, buffers, etc.);

Also at the device level, we introduce virtual registershivit

the simulator to support source level instrumentation eamd t
ing. The access to these registers does not affect the torrec
functioning of other components;

At the multi-device level, we introduce a coordinated break
condition, which enables the coordinated execution contro
of multiple devices;

Finally, at the network level, we provide a “time traveling”
facility to use with network level trace analysis, so thaber
site can be rapidly restored for detailed inspection.

S?DB is built upon DiSenS [25], a scalable distributed full sys
tem sensor network simulator DiSenS has a distributed sitioul
framework. Individual sensor devices are emulated in sgpdrop-
erating system threads. DiSenS then partitions and scethese



device emulations to the computer nodes of a cluster, andaies
inter-device communication at the radio level (i.e. belbw tom-
munication protocol stack and radio hardware device iates).
Sensor device emulations in DiSenS are cycle-accurateeder,

a plugin mechanism allows the insertion of power models adibr
models with different fidelity levels. Thus DiSenS is cagad ac-
curate, large-scale sensor network simulation where thkcagion
and operating system code can be executed, unmodified o nati
hardware.

work activities for a physical sensor network. These toasisally
use a software data collecting module running on sensorsniode
the network. The collected data is transferred using flapdin
multihop routing to the gateway node. The gateway node then f
wards the data to a PC class machine for analysis or vistializa
These tools are useful for displaying the network topolagy and
analyzing the dynamics of data flow, particularly with restpe
specific inter-node communication events. Tools like Sytmpa
even specialize in detecting and localizing sensor netiahlres

DiSenS benefits our design and implementation in many aspect in data collection applications. However, these monitprimay be

Its simulator infrastructure gives us the full control of/de states,
which enables the design @ébugging poirt. Its high performance
makes our debugger execute efficiently. Its scalabilityolesaus
to debug large-scale sensor networks. While the avaitglmfi a
high-fidelity radio model for sensor network radio remaihsive
(making many senor network implementors reluctant to epgra
simulation and/or emulation), we believe the ability todgkensor
network programs at scale as a precursor to actual depldymikn
cut development time and reduce the amourindfitu debugging
that will be required in an actual deployment.

intrusive in that they share many of the scarce device ressthey
use with the applications they are intended to instrumentes@
tools may complement what we have withl® . When a commu-
nication anomaly is detected, for example, often a progemt

debugger may still be necessary to pinpoint the exact locaif

error in code.

More generally, while debugging on real hardware is the ul-
timate way to verify the correctness of sensor network appli
tions, simulation based debuggers provide complementirgra
tages that have been successfully demonstrated by othecto

We also wish to emphasize that in this paper we do not claim Many sensor network simulators, like TOSSIM [13], ATEMU [17

S?DB adequately addresses many of the thorny difficultiesgsso
ated with all debugging tools (e.g. the ability to debug wyted
code). Rather our focus is on innovations that we believarare
portant to the development of large-scale senor networkogep
ments and that also improve the current state-of-the-jpeaict sen-
sor network debugging. In Section 2, we first give the backgdo
of sensor network debugging. In Section 3, we briefly intasu
the features and details of DiSenS that are relevant to dungde
ging purpose. In Section 4, we introduce ttebugging poinand
its use with break conditions. We also present the desigriroef v
tual hardware based source level instrumentation. In @eétiwe
discuss how to control the execution of multiple devices itpa
ordinated way. We focus on the implementation detail in DSe
infrastructure. In Section 6, we talk about the checkpaimple-
mentations for fast time traveling. We evaluate the perforoe of
our enhancing techniques in Section 7. And we conclude odk wo
in Section 8.

2. RELATED WORK

Like most embedded devices, sensor network devices can-be de

bugged with special hardware support. For motes (e.g. MacaR
Micaz), Atmel's AVR JTAG ICE (In-Circuit Emulator) [2] is om
of the popular hardware-based debuggers. Atmel's AVR famil
of microcontrollers (that are currently used as the prangssle-
ments in many mote implementations) has built-in debugging
port, called On-Chip Debugging (OCD). Developers can acties
OCD functions via JTAG [10] hardware interface. With JTAGEC
developers can set break points, step-execute programuerg q

hardware resources. JTAG ICE can also be used with GUI inter-
faces or a GDB debugging console. Hardware-based appmache

such as JTAG ICE typically have their limitations. For exaenjit
is not possible to synchronize the states of program e>atutith
1/0 systems in debugging. This is because when the program ex
cution is stopped in JTAG ICE, the 1/O system continues toaun
full speed [1]. Also since the debugging support is only mted
with the processing unit (i.e. the microcontroller), it istreasy to
interrogate the state of other on-board systems, like flasmany.
In contrast, by working with the full system DiSenS simuas,
S?DB does not suffer from these limitations.

At network level, many monitoring and visualization toalel
Sympathy [18, 19], SpyGlass [3], Surge Network Viewer [28f a
Mote-VIEW [16] provide a way to trace, display and analyzé ne

Avrora [23] and EmStar [6], provide significant debuggingaa
bilities. TOSSIM is a discrete event simulator for TinyO$kqa-
tions. It translates the TinyOS code into emulation code lanhd
with the emulator itself. So debugging with TOSSIM is actyal
debugging the emulator. Developers have to keep in theidmin
the internal representation of device states. While discegent
simulators are useful for verifying functional correctaethey typ-
ically do not capture the precise timing characteristicsl®fice
hardware, and thus have limited capability in exposing rerio
program logic. In contrast, full system simulators, sucABEEMU
and Avrora, have much higher fidelity. ATEMU features a seurc
level debugger XATDB, which has a graphic frontend for easy.u
XATDB can debug multiple sensor devices, but can only foaus o
one at a time. Avrora provides rich built-in support for pliof
and instrumentation. User code can be inserted at any progda
dress, watches can be attached to memory locations, anificpec
events can be monitored. These facilities can be quite ufmfu
debugging purposes. Indeed, we extend Avrora’s probe atchwa
concepts in the development ot[3B’s debugging points (cf. Sec-
tion 4). In addition to this support for simulator instruntegtion,
S?DB also provides a source code level instrumentation fggili
via virtual debugging registers, since it is easier to usestone
debugging problems.

Time traveling for debugging is currently the subject of fmuc
research [11, 20] in the field of software system developraedt
virtualization. Flashback [20] is a lightweight extensifam roll-
back and replay for software debugging. Flashback usesshad
processes to take snapshots of the in-memory states of agunn
process and logs the process’ I/0 events with the undergyatem
to support deterministic rollback or replay. VMM (virtualachine
monitor) level logging is used in [11] for replaying the syst exe-
cuting in a virtual machine. Checkpointing the state of adfystem
simulator is easier than that in a real OS or virtual machioaitor
since all the hardware are simulated in software. Our reshiow
that time traveling support in DiSenS has very low overhassltd
the simpleness of sensor hardware it emulates.

3. THE DiSenS SIMULATOR

S?DB is built upon DiSenS [25], a distributed sensor network
simulator designed for high fidelity and scalable perforoeaiS-
enS provides sensor network applications an executiorr@mvi
ment as “close” to real deployment as possible. DiSenS dsadite



to simulate a sensor network with hundreds of nodes in res ti  scalability is useful because it translates into simutatipeed, and

speed using computer clusters. In this section, we brieftgdiuce thus debugging efficiency.
the design aspects of DiSenS that are relevant to the implame DiSenS achieves its scalability by using a simple yet eiffect
tion of S’DB . The complete discussion and evaluation of DiSenS synchronization protocol for radio simulation and apply@uto-
are in papers [25, 24]. matic node partition algorithms to spread the simulation/ation
workload across machines in a computer cluster. In DiSes1%$®
3.1 Full System Device Simulation nodes are simulated in parallel, each running in its own atjrey
The building blocks of DiSenS are full system device simagt ~ System thread and keeping its own virtual clock. Sensor siote
Supporting popu'ar sensor network devicesl including |F{AQ tera_.Ct Wlth ea.Ch Othel’ Only n the rad|0.tr.ansm|ss.|0n, Cglwmlch
Stargate [21] and Mica2/MicaZ motes [15]. In this paper, we-c ~ radio packets are exchanged. The radio interaction of sewsies

mote applications. However, the same functionality is enpénted ~ radio channel. The analysis [25] shows that only when a nedésr
for more complex devices such as the iPAQ and Stargate. A more fadio channel, it needs to synchronize its clock with itghbors

full examination of debugging for heterogeneous sensoicds\s (i.e., potential radio transmitters in its radio range).isTénsureS
the subject of our future work. that each receiving node receives all the packets it is sgzhto
The mote device simulator in DiSenS supports most of the Mica 'eceive. A primitive calledvait on.syncis introduced to perform
and MicaZ hardware features, including the AVR instructie, this synchronization, which forces the caller to wait foighgor
the ATmegal128L microcontroller (memories, UARTS, timé®) nodes to catch up with its current clock time. To implemens th

and ADC, etc.), the on-board Flash memory, CC1000 (Mica#l) an Protocol, each node also has to keep its neighbors updated iab
CC2420 (MicaZ) radio chips and other miscellaneous compsne  clock advance by periodically sending out its current clocle. A

(like sensor board, LEDs, etc.). more detailed description and analysis of this protocah i$45].

The core of the device simulator is a cycle-accurate AVRrirtst To utilize distributed computing resources, DiSenS parté nodes
tion emulator. The instruction emulator interacts withesthard- into groups, each simulated on one machine within a clutem-
ware simulation components via memory mapped 1/0. When an Munication between sensor nodes assigned to the same machin
application binary is executed in the simulator, each meln- is via a shared-memory communication channel. Howevernwhe
struction is fed into the instruction emulator, shiftingtimternal ~ Motes assigned to distinct machines communicate, that com
representation of hardware states accordingly and falighfsyn- cation and synchronization must be implemented via a messag

chronous state change is modelled as events. Events adutmthe ~ Pass between machines. Due to the relatively large overbbad
by hardware components and kept in an event queue. Thednstru eémote synchronization via message passing (caused byrhetw

tion emulator checks the event queue for each instructieciex  latency), partitioning of simulated nodes to cluster maehiplays
tion, triggering timed events. The collection of simulatedtdware an important role in making the ensemble simulation efficien
features is rich enough to boot and execute unmodified lsinar To address this problem, graph-partitioning algorithmsgio
TinyOS [8] and most sensor network applications, includiugge, nally developed for tightly-coupled data-parallel higérjprmance
TinyDB [14] and Deluge [4]. By correctly simulating hardwear ~ computing applications, are employed. DiSenS uses a popata
components, the device simulator ensures the cycle aggymae titioning package [7] to partition nodes nearly optimally.
viding the basis of faithful simulation of a complete senset- Our S'DB debugging tool is built upon DiSenS , whose design
work. has huge impact on how the debugging facilities that we hawe i
The full system device simulator in DiSenS also presents ex- Plemented, including both advantages and limitationshémiext 3
tension points or “hooks” for integrating power and radiodeis. sections, we'll discuss how DiSensS interacts witfD8 to support
This extensible architecture provides a way to support theld both conventional and novel debugging techniques.

opment of new models and to trade simulation speed for leivel o

accuracy. For debugging, this extensibility enables dpesis to 4. DEBUGGING INDIVIDUAL DEVICES

test applications with different settings. For exampléjoanodels S?DB was first built as a conventional distributed debugger on
representing different environments (like outdoor, indetc.) can  the piSenS simulator. Each group of sensor nodes has a kinada
be plugged in to test applications under different circamses. debugging proxy waiting for incoming debugging commands. A

In its default configuratio_n, DiSenS incorporates anadewawer  depugger console thus can attach to each individual semste n
model from [12], a simple linear battery model, a basic lessira-  yja this group proxy and perform debugging operations. Tae b
dio model, and a simple parameterized statistical modeg. sfiuc- sic $DB includes most functions in a conventional debugger, like
ture of the system, however, incorporates these models dale® state (register and memory) checking, break points andestequ-
that can be replaced with more sophisticated counterparts. tion, etc.

.. . . In this section, we discuss how we exploit the potential dfraus

3.2 Scalable Distributed Simulation lation environment to devise novel techniques for debuggingle

DiSenS’s ability to simulate hundreds of mote devices udisg sensor devices.

tributed cluster computing resources is its most distwecteature. . .
This level of scalability makes it possible to experimenthwarge 4.1 DebUggmg Point

sensor network applications before they are actually gepland Debugging is essentially a process of exposing program’s in
to explore reconfiguration options “virtually” so that orihhe most ternal states relevant to its abnormal behavior and pinipgjrihe
promising need to be investigatéd situ. As a debugging tool, cause. Visibility of execution states is a determining dacf how
DiSenS’s scalability allows developers to identify andreot prob- difficult the debugging task is. Building upon a full systeims-

lems associated with scale. For example, a data sink afipica  lator for each device gives’BB a great potential to expose time
may work well in a network of dozens of nodes, but fails when th  synchronized state.

network size increases to hundreds, due to the problemsasich Conventional debuggers essentially manipulate threesstidta
insufficient queue or buffer size. Even for small scale neltwthe program: register, memory and program counter (PC). Sitonda



Component Parameters Value Interrupt  Watchable Overhead
PC (o microcontroller none Int No Yes Large
Register (eg) microcontroller address Int No Yes Large
Memory Read iemrd) SRAM address Boolean No Yes Small
Memory Write fnemwr) SRAM address Boolean No Yes Small
Memory (memn) SRAM address Int No Yes Small
Flash Accessflashaccesy Flash command, address  Boolean No Yes Small
Flash glash Flash address Int No Yes Small
Power Changepowel Power Model none Float No Yes Small
Timer Match (imer) Timers none Boolean Yes No Small
Radio Data Readyspi) SPI (radio) none Boolean Yes No Small
ADC Data Readyddc ADC (radio/sensor) none Boolean Yes No Small
Serial Data Receivedirt) UART none Boolean Yes No Small
Clock (clock Virtual none Int No Yes Minimal
Radio Packet Readyécke} Radio Chip none Packet No Yes Small
Program Definedoustom Virtual Debugging Hardware ID Int No Yes Program defined

Table 1: The current set of debugging points in 8DB .

can provide much more abundant state information, which may

enable or ease certain debugging tasks. For example, t@debu
TinyOS module that manages on-board flash memory, it is impor
tant for the internal buffers and flash pages to be displayredtty;.

It is straightforward for DiSenS but rather difficult in a c@mtional
debugger, which has to invoke complex code sequence tositees
flash indirectly.

Four important hardware events are definedefsugging poirg:
timer match eventtimer), radio (SPI) data readyspi), ADC data
ready @dc) and serial data readydrt). They are all transient and
all related to an interrupt. Theskebugging poirg provide a nat-
ural and convenient way to debug sensor network prograneg sin
many of these programs are event-driven, such as TinyOStsind i
application suite. As an example, if we want to break the oy

We carefully studied the device states in DiSenS and defined aexecution at the occurrence of a timer match event, we caplgim

series ofdebugging pointsA debugging points the access point
to one of the internal states of the simulated device. Thécdev
state that is exposed bydebugging pointan then be used by the
debugger for displaying program status and controllinggpm
execution, e.g., break and watch, as that in a conventicetalgt
ger. In this sensajebugging poirg have extended our debugger's
capability of program manipulation.

Table 1 lists the current set débugging poirg defined in 8DB.

It is not a complete list since we are still improving our implen-
tation and discovering more meaningfiébugging poirg. In the
table, the first column shows thldebugging poinhame and the
abbreviated notation (in parentheses) used by the debugger
sole. The corresponding hardware component thdelaugging
pointbelongs to is listed in the second column. The third and Fourt
columns specify the parameters and return value délaugging
point For example, the “memory” point returns the byte content
by the given memory address. The fifth column tells whettag-a
bugging pointhas an interrupt associated. And the sixth column
specifies whether a watch can be added to the point. The Iast co
umn estimates the theoretical performance overhead oftorong

a particulardebugging point

As we see in the table, the common program states intermbgate
by conventional debuggers, i.e. register, memory and progiounter,
are also generalized @ebugging poirg in DB , listed asreg,
memand pc. For memory, we also introduced two extlabug-
ging poins, memrd andmemwr, to monitor the access to memory
in terms of direction. Notice thatebugging poirg have different
time properties: some are persistent while others arei@matnsin
the memory case, the memory contemiem is persistent, while
memory accessespemrd and memwr, are transient. They are
valid only when memory is read or written.

Similarly, the on-board flash has two defindebugging poirg:
one for the page conterfldsh and the otherflashaccessfor the
flash access, including read, program and erase pdtverdebug-
ging point is used to access the simulated power state oftfiedal
which may be useful for debugging power-aware algorithms.

invoke the command:
> break when tinmer()

true

In a more conventional debugger, a breakpoint is typicalyis
the interrupt handling code, the name of which must be knawn t
the programmer. Furthermore, breaking on these eventliese
bugging poing is much more efficient than breaking on a source
code line (i.e., a specific program address). This is becaaseh-
ing program addresses requires a comparison after the teoecu
of each instruction while matching event-basbugging poirg
only happens when the corresponding hardware events gre tri
gered, which occur much less frequently. We will discuss ow
usedebugging poirt to set break conditions and their overhead in
later this subsection.

The clock debugging point provides a way for accurate timing
control over program execution. It can be used to fast faivttae
execution to a certain point if we know that the bug of ourries¢
will not occur until after a period of time. It would be rathaiffi-
cult to implement this in a conventional debugger sincedli®no
easy way to obtain accurate clock timing across device Stbs)s.

Itis also possible to analyze the states and data in the afordb
extract useful high-level semantics and use them to buiNdmecked
debugging poirgt. An example is the recognition of radio packet.
The Mica2 sensor device uses the CC1000 radio chip, which ope
ates at the byte level. Thus an emulator can only see the togtns
transmitted from/to neighbor nodes and not packet boueslaFor
application debugging, however, it is often necessary ¢alopro-
gram execution when a complete packet has been transmitted o
received. A typical debugging strategy is to set a breakpnoithe
radio software stack at the the line of code line that finigheacket
reception. However, this process can be both tedious arediaiole
(e.g. software stack may change when a new image is installed
especially during development or maintenance of the ratgicks
itself. Fortunately, in the current TinyOS radio stack ietpenta-
tion, the radio packet has a fixed format. We implementedya tin
radio packet recognizer in the radio chip simulation codéraflio
packet ready”fjacke} debugging point is defined to signal the state



when a complete packet is received. These extracted highde-
mantics are useful because we can debug applications witbou
lying on the source code, especially when the applicatioatyiis
optimized code and it is hard to associate exact prograneades
with specific source code line. However, discovering theseas-
tics using low-level data/states is challenging and novieals (at
least, to us) and as such continues to be a focus of our omrgoin
research in this area.

4.1.1 Break Conditions Using Debugging Points

Debugging poirg are used in a functional form. For example, if
we want to print a variablé&’, we can use:

> print nmen(X)

To implement conditional break or watch points, they canrbe i
cluded in imperatives such as:

> break when flash_access(erase, 0x1)

which breaks the execution when the first page of the flaslageel
It is also possible to compose them:

> break when tinmer() && mem(Y) > 1

which breaks when a timer match event occurs and a statélaria
Y, like a counter, is larger thah

The basic algorithm for monitoring and evaluating break-con
ditions is as follows. Eacklebugging pointmaintains a monitor
queue. Whenever a break point is set, its condition is adolduket
queue of everylebugging pointhat is used by the condition. Ev-
ery time the state changes atl@bugging pointthe conditions in
its queue is re-evaluated to check whether any of them isfieati
If so, one of the break points is reached and the executiounsis s
pended. Otherwise, the execution continues.

Note that the monitoring overhead varies for differédabugging
points revealing the possibility for optimization of the basindd
tion evaluating algorithm. The monitoring overhead is detaed
by the frequency of state change alebugging point Obviously,
pc has the largest overhead because it changes at each iiastruct
execution. Event related debugging points have very lowtead
since hardware events occur less frequently. For exantgeimer
event may be triggered for every hundreds of cyclétock logi-
cally has a large overhead since it changes every clock.ciyice-
ever, in simulation, clock time is checked anyway for evegger-
ing. By implementing the clock monitoring itself as an evemé
introduce no extra overhead for monitoricigck debugging point.

Thus we are able to optimize the implementation of condition
evaluation. For example, considering the following breakdi-
tion:

> break when pc() foo && memyY) > 1

Using the basic algorithm, the overhead of monitoring thedion
is the sum ofpc’'s overhead andnen’s overhead. However, since
the condition is satisfied when bottebugging poirg match their
expression, we could only trackemsince it has smaller overhead
thanpc. Whenmemis satisfied, we then continue to chep& In
this way, the overall overhead reduces.

Now we present the general condition evaluation algoritGiwen
a condition as a logic expressiad, it is first converted into canon-

ical form using product of maxterms:
C=tiNtao A ... \Ntn (l)

wheret; is a maxterm. The overhead functig, is defined as the
total overhead to monitor all thédebugging poirg in a maxterm.

Then we sort the maxterms by the valuefef (¢;) in incremental
order, sayitk,, ..., tk,,. We start the monitoring o first using
maxtermt, by addingC to all thedebugging poirg that belong
to tx,. Whenty, is satisfied, we re-evaluat€ and stop if it is
true. Otherwise, we remowv€' from t¢,’s debugging poirg and
start monitoring, . If ¢,, is monitored and” is still not satisfied,
we loop back t¢x, . We repeat this process undl is satisfied. If
C is unsatisfiable, this process never ends.

Debugging poirg give us powerful capability to debug sensor
network programs at a level between the hardware level amd th
source-code level. However, a direct instrumentation efsthurce
code is sometimes easiest and most straight-forward detmggethod.
The typical methodology for implementing source-levetiusen-
tation is to use print statements to dump states. Printioggekier,
can introduce considerable overhead that can mask thespndis-
ing tracked.

In S’DB we include an instrumentation facility based on virtual
registers that serves the same purpose with reduced oderidéa
introduce our instrumentation facility in the next subgmtt

4.2 Virtual Hardware Based Source Code
Instrumentation

Sensor devices are usually resource-constrained, latténgec-
essary facility for debugging in both hardware and softwada
a Mica2 sensor device, the only I/0 method that can be used for
display internal status by the program is to flash the threBg,E
which is tedious and error-prone to decode. DiSenS faithfuiin-
ulates the sensor hardware, thus inheriting this limitat®ecause
we insist that DiSenS maintain binary transparency withnidtg/e
hardware it emulates, the simulated sensor network progsaot
able to perform a simple “printf”.

To solve this problem, we introduce three virtual registesan
1/0 channel for the communication between application and s
ulator. Their I/O addresses are allocated in the reservadane
space of ATmegal28L. Thus the access of these virtual eegist
will not affect the correct functioning of other componerntable 2
lists the three registers and their functions.

Address Name Functionality
0x75 VDBCMD Command Register
0x76 VDBIN Input Register
ox77 VDBOUT Output Register

Table 2: Virtual registers for communication between applica-
tion and simulator.

The operation of virtual registers is as follows: an appiaa
first issues a command in the command regisSt&BCMD, then
the output data is transferred WeDBOUT register and the input
data is read from em VDBIN register. The simplest appligatio
of virtual registers is to print debugging messages by fiestds
ing a “PRINT” command and then continuously writing the ASCI
characters in a string to théDBOUT register until a new line is
reached. On the simulator side, whenever a command is isgsued
either reads from th#DBOUTregister or sending data ¥DBIN.

In the print case, when the simulator gets all the chara¢eeded
by a new line), it will print out on the host console of the slating
machine.

A more advanced use of virtual registers is to contrdeaug-
ging point We term this combination of virtual registers and de-
bugging points arogram defined debugging poiftustom as listed
in the last line of Table 1). The state ofastomdebugging point is
generated by the instrumentation code in the program. Todbe
instrumentation code first sends a “DEBUG” command to\tbe



BCMD register, then outputs the debugging data onBBOUT Update Transmit
register, in the form of a tuples id, value >. Theid is used to Y B D -
identify the instrumentation point in the source code amdbtiue ; ;

is any value generated by the instrumented code. If therbrigak

clock update/ /
1

1
condition registered at this point, it will be checked agaihe tu- l\ ! \ , clock update & byte transmissior
ple and execution will stop when it is matched. As an examiple, v ‘\"
we want to break at thé0Oth entry of a function, we can instru- X v v -
ment the function and keep a counter of entries. Every tinge th A C .
Receive Receive

counter changes, we output the counter value via virtuaste.
The break condition will be satisfied when the value equal$to . . o
To make it easy to use, we developed a small C library for ac- Figure 1: lllustration of synchronization between sensor mdes

cessing the virtual registers transparently. Developersiovoke in DiSensS . Dashed arrows indicate the update and transmis-
accessing functions on these registers by simply callia@t#Pls, sion messagesd < B < C' < D.
for example, in a TinyOS program.

Instrumentation via the virtual registers has the mininmadu- 2. All nodes must periodically broadcast their clock update
siveness on application execution. When generatidetagging neighbors;
point event by sending & id, value > tuple, only three register . i )
accesses are needed if both values in the tupl&-bits each (one 3. Before any wait, a node must first send its clock update (to
for the command and two for the data). avoid loop waiting);

4. Radio byte is always sent with a clock update at the end of

5. COORDINATED PARALLEL DEBUGGING its last bit transmission.

OF MULTIPLE DEVICES Figure 1 illustrates the process. At time poititnodeX receives.
DiSenS's scalability and performance enablé®B to debug It first sends an update of its clock and wait for its neighlor
large cooperating ensembles of sensors as a simulated s&1s0  (ryle 3 & 1). Y runs toB and sends its clock update (rule 2), which

work deployment. Like other debuggers,IB permits its userto  wakes upX. X proceeds ta&” and receives agair’ starts a byte
attach to and “focus” on a specific sensor while the other@ens  transmission af3. At D, the last bit transmitted and so the byte

in the ensemble execute independently. However, oftene sys- along with a clock update is sent & (rule 4). X receives the
tematic errors emerge from the interactions among sensEsno byte, knowingY passes its current time’ and proceedsl

even when individual devices and/or applications are fangtg

correctly. To reveal these kinds of errors, developers mestble Last update Next update
to interrogate and control multiple sensor devices in adioated B e
way. Y + o
Debugging a program normally involves displaying prograan s 1
tus, breaking program execution at arbitrary points, steseuting, update for breaj \Q
etc. By extending this concept to parallel debugging, wetw@he A Break point
able to: | Vi
\' :
1. Display the status of multiple devices in parallel; X AL\ ; |
2. Break the execution of multiple devices at certain common Receive
point;
) . Figure 2: Break at a certain point of time. Dashed arrows in-
3. Step-execute multiple devices at the same pace. dicate the update and transmission messagesB3 < A < C.
The first and third items in the above “wish list” are easy tplien
ment in a simulation context.?®B can simply “multicast” its de- Now, let’s see what happens when we ask multiple nodes to stop

bugging commands to a batch of sensor nodes once their émcut at the same time. Figure 2 shows one case of the situation.
stop at a certain common point. As for the second item, sirile D  receives at timed and sends an update and waits Yor Y sends

ensS is, in effect, executing multiple parallel simulatiomghout an update aB. Its next update time i€’. But we want to break at

a centralized clock, implementing a time-correlated anthroon a point beforeC' but afterA. SinceY breaks (thus waits), it sends

breakpoint shares the same coordination challenges withralel an update (rule 3).X receives the update, wakes up, proceeds to

debugging counterpart. the break point and stops. Now ba¥h andY are stopped at the

The simplest form of coordinated break is to pause the eketut  same time point.

of a set of involved nodes at a specific virtual tirfie, In Figure 3, the situation is similar to the case in Figure Be T
difference is that now the break point is in the middle of aebyt

> :break when clock() == transmission fof’’. Y can not just send an update 1 and let

X proceeds to break point as in Figure 2. becausk ijets the

update fromY’, it believesY has no byte to send up to the break

point and will continue its radio receiving logic. Thus tharial

byte fromY is lost. This problem is caused by rule 4. We solve

it by relaxing the rule: Whenever a node is stopped (thus itsya

in the middle of a byte transmission, the bytepig-transmitted

1. A node that receives or samples radio channel must wait for with the clock update. We can do this because mote radio alway
all its neighbors to catch up with its current clock time; transmits in byte unit. Once a byte transmission starts, lveady

where the colon before “break” indicates that it is a batahiwand
and will be sent to all the nodes in a global batch list (maied
by other commands).

It is necessary to review DiSenS’s synchronization meamani
first. We summarize the major rules as follows:
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update & pre—transmit | : \Q
| i Break point
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Figure 3: Extension to the synchronization protocol: pre-
transmission. Dashed arrows indicate the update and transmis-
sion messagesB < A < C.

know its content. Also, in DiSenS , each byte received by &nsd
buffered with timestamp. It will be processed only when tineet
matches the local clock. With this relaxed rule, we are nole &b
stop multiple sensor nodes at the same virtual time.

The next question is how to perform a conditional break on-mul
tiple nodes. Notice that we cannot simply implement:

> :break when nem(X) > 3

because it asks the nodes to break independently. Wheneweea
breaks at some point, other nodes with direct or indireaghir-
hood relationship with it will wait at indeterminate poirdsie to
the synchronization requirement. Whether they all satiséycon-
dition is not clear. A reasonable version of this command is:

> :break when *.nem(X) > 3
or

> : break when nodel.men(X) > 3
&& ... && nodek.nmem X) > 3

which means “break wheX > 3 for all the nodes”. In the gen-
eral form, we define aoordinated brealas a break with condition
condi A conda A ... A\ condy, Wherecond; is a logic expression
for node:.

. C(I)ndition satisfi?d
X — 7777 G

Y —— 777 %

Y

A B C

e

SEEN

Figure 4: Coordinated break. The shaded boxes represent the
time range during which a local condition is satisfied. Betwen
C and D, the global condition is satisfied.A < B < C < D.

Figure 4 illustrates the meaning of this form of breakpoiFite

shaded boxes are the time period during which the local eondi

tion for a node is satisfied. In Figure 4, the global conditioe.
condz A condy A cond., is satisfied between tim& andD. Time
C'is the exact point where we want to break.

Before we present the algorithm that implemeat®rdinated

break we need to first introduce a new synchronization scheme.

We call it partially ordered synchronizationBy default DiSenS
implementgeer synchronizatiarall the nodes are running in arbi-
trary order except synchronized during receiving or sangpliThe

new scheme imposes a partial order. In this scheme, a nodemmas
is first specified. Then all the other nodes proceed by foliguthe
master node. That is, at any wall clock timg.;; (i.e., the real
world time), for anynode;, clock; <= clockmaster-

B D
Y T »
.

X . e
A C
B D

i -
Y T
//i //i
o
/ by |
| |

X L4 LD -
A C E

Figure 5: TOP: peer synchronization in DiSenS .A < B <

D < C. BOTTOM: partially ordered synchronization for SDB.
A< C < E,B = C,D = E. Dashed arrows indicate the
update and transmission messages. (Some update messages ar
omitted)

Figure 5 illustrates the two synchronization schemes. Bpe t
part shows DiSenSgeer synchronizatioscheme. Node& waits
at A. Y sends update aB and wakesX. ThenY waits atD,
waken byX's update at’. X andY proceed in parallel afterwards.
The bottom part shows?®B’s partially ordered synchronization
scheme. Her&” is the master. X first waits atA. Y sends its
update atB. X receives the update and runs to the updated point,
which isC (=B). Then X waits again. WherY” runs toD and
sends updateX can proceed td& (=D). If Y needs to wait to
receive,X will wake it up whenX reaches? according to rule 3.
Obviously, in this schemeX always followsY .

Now we can give our algorithm focoordinated break Using
Figure 4 as the example, we first designafeas the master. At
point A, X's condition is satisfied.X stops atA. SinceY and
Z follow X, they all stop atA. Then we choose the next node as
the new master, whose condition is not satisfied yet. KisX
and Z follow Y until Y reachesB. Next, similarly, we choos&
as new master. At timé€, we find cond, A condy A cond, =
true. We break the execution ard is exactly our break point. In
this algorithm, the aforementiongme-transmissioralso plays an
important role in that it enables us to stop all nodes at theesame
point precisely.

Coordinated break, however, does not work with arbitrany-co
ditions. Consider the case where the local conditions imfeigh
are connected by injunction instead of conjunction. Theakre
point now should be at timel. Since we are not able to predict
which node will first satisfy its condition, it is not possibfor us
to stop all the nodes together at tirdeunless we synchronize all
the nodes cycle by cycle, which would limit the scalabilindahe
performance significantly. For the same reason, we can haoipse
multiple coordinated break pointsWe reiterate that these limita-



tions are a direct result of our desire to scale DiSenS and¢o u
S?DB on large-scale simulated networks. That is, we have sacri
ficed generality in favor of the performance gained throuafajbel
and distributed-memory implementation.

Although the generality ofoordinated breaks limited, it is still
useful in many situations. For example, for a data sink appbn,

we may want to determine why data is lost when a surge of data

flows to the sink node. In this case, we would break the exaecuti
of the sink node based on the condition that its neighbor sibdee
sent data to it. Then we step-execute the program runningpen t
sink node to determine why the data is being lost. To implémen

the condition of data sent on neighbor nodes we can simply use

source code instrumentation exportinguwstomdebugging point.
Thus this example also illustrates how the single-devitridging
features discussed in the previous section can be intelgrétte the
group debugging features.

6. FAST TIME TRAVELING FOR
REPLAYABLE DEBUGGING

Even with the ability to perform coordinated breakpointse t
normal debugging cycle of break/step/print is still cungo@ne when
the complete sensor network is debugged, especially ifideecs
network is large. The high level nature of some systematiorer
requires a global view of the interactions among sensorsoéle
alternative model for debugging sensor networks is:

e Asimulation is conducted with tracing. Trace log is anatyze
to pinpoint the anomaly.

e Quickly return to the point when the anomaly occurs to per-
form detailed source code level debugging.

To achieve this, we need to trace the simulation and restme t
state of network at any point in the trace. Tdebugging poirg
and virtual hardware based instrumentation discussedciinset
can be used to trace the simulation in a way similar to [23thia
section, we present thé BB’s design of fast time traveling, which
enables the restoration of network states.

The basic mechanism required to implement time traveling is
a periodic checkpoint. A checkpoint of a simulation is a com-
plete copy of the state of the simulated sensor network. I8Se
an object oriented framework in representing device coraptm
When a checkpoint is initiated, the state saving functidnieked
first at the highest level “machine” object. Recursivelye gub-
components in the “machine” invoke their own state savingcfu
tions. The saved state is comprised of registers, mem@RAK,
EEPROM, etc.) and auxiliary state variables in each commone
It also includes some simulation related states. For exanmpé
need to save the event queue content, the received radiobgte
in the radio model and the status of the power model, etc. The
complete binary of the state is saved into a timestampedTihe.
result checkpoint file for DiSenS has a size46fl8 bytes, mostly
comprised of SRAM4KB) content.

Checkpoint for the on-board flash has to be handled diffgrent
Motes have &12KB flash chip used for sensor data logging and
in-network programming. If flash content is saved as othen-co
ponents, the checkpoint file will be as large as over half iogiga
which is 128 times larger than the one without flash. So if flash is
also saved in a snapshot way, it is both extremely space ar& ti
inefficient for a large scale sensor network. We solve thidbigm
by saving flash operations in a log file. Since most sensorar&tw
applications use flash infrequently and flash content is tedia
page unit, the overhead of saving log is much smaller thamgav

flash snapshots. Notice that the flash buffers have to be satieel
snapshot checkpoint file.

Once a simulation is finished, we have a set of snapshot check-
points and a continuous flash log. Given an arbitrary time{sbj
to restore the state of system includes the following steps:

1. Restore find the latest checkpoir® P that is prior toT" and
load the snapshot checkpoint file;

2. Replay if flash is used, replay the flash operation log up to
CP’'stime;

3. Re-run start fromC P, re-run the simulation until tim&’.

Checkpoints can also be initiated by methods other thandid n
to take a periodic snapshot. For example, unddpBs a break
point can be associated with a checkpoint so that once thauexe
tion breaks, a checkpoint is generated. Thus, a developenose
between the checkpoints to find the exact point when erranrscc
during a replayed simulation. Checkpoint can also be teitidy a
debugging pointespeciallycustomdebugging points. By allowing
checkpoint to be triggered in conjunction witlebugging points
S’DB integrates the replay and state-saving capabilitiege¢o
efficiently re-examine an error condition with the execatimntrol
over state changes.

7. EVALUATION

Since $DB is built upon DiSenS , its performance is highly de-
pendent on DiSenS itself. We begin this section by focusmthe
the performance of DiSenS simulation/emulation and thewghe
overhead introduced by varioud[3B debugging facilities. All ex-
periments described in this section are conducted usingreodé
cluster in which each host has dual 3.2GHz Intel Xeon pragsss
with 1GB memory. The hosts are connected via switched digabi
Ethernet. To make fair comparison, we use the same sensor net
work applicationCntToRfrrfor evaluation.

7.1 Performance of DiSenS

For brevity, we present only the typical simulation speeDi&-
enS on the cluster. A more thorough examination of scatgbili
and performance under different configurations can be faupd-
per [25].

Figure 6 shows the performance achieved by DiSenS when sim-
ulating various numbers of nodes on the cluster in bieth and
2-D topologies. In the figure, th& axis shows the total number
of nodes simulated. ThE-axis is the normalized simulation speed
(compared to real time speed on hardware). Forltietopology,
all nodes are oriented on a straight liri® meters apart (assum-
ing the maximal radio range 80 meters). For th&-D topology,
nodes are arranged in a square grid. Again the distance betwe
two nodes is$50 meters. Both performance curves are very close
except in the middle part, whegD topology has slightly worse
performance.

The simulation speed drops noticeably frdmto 4 nodes but
then the speed curve keeps flat uhfi8 nodes are simulated. After
that, the speed decreases linearly. The transition frontdlén-
ear decrement is because there is not enough computingcesou
within the cluster {6 hosts).

To summarize the results from [25], DiSenS is able to sineulat
one mote9 times faster than real time speed,1@0nodes at near
real time speed, ®048nodes at nearly a tenth of real time speed.
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Figure 6: DiSenS simulation performance in1-D and 2-D
topologies. X-axis is total number of nodes simulated.Y -axis
is normalized simulation speed (compared to execution spee
on real device).

7.2 Performance of a Break Condition on a
Single Device

We first evaluate the cost of monitoring debugging pointérigls-
device debugging. Not all the listed (in Table 1) debugginms
are evaluated since the overhead for some of them is applicat
dependent.

08 1.0
|

Relative Simulation Speed
0

<
o
N
o
=
o
pc memrd  memwr power timer spi

Debugging Point

Figure 7: Relative simulation speed for various debugging
points. X-axis shows the name of debugging pointsY -axis
is the ratio to original simulation speed (without monitoring
debugging points).

Figure 7 gives the relative simulation speed of evaluatamipus
debugging points. For each one, we set a break conditiorg usin
the debugging point and run the simulation. The result shbas

7.3 Performance of a Coordinated Break
Condition with Multiple Devices
We evaluate the overhead of monitoring the coordinatedkbrea
condition in this subsection. We run our experiments with2&
4 x 4 grid of sensor nodes, distributed4rgroups (hosts).

0.90
1

Relative Simulation Speed
>

Involved Groups

Figure 8: Relative simulation speed of monitoring a coordi-
nated break condition for multiple devices. X -axis is the num-
ber of groups (hosts) involved. Y-axis is the ratio to original
simulation speed (without condition monitoring).

Figure 8 shows the speed ratio between the simulation witi-mo
itoring and without. When the group numberlisonly nodes in
one group are involved in the break condition. For group nemb
2, nodes in both groups are used in the break condition, and.so o
The speed ratio curve drops when the number of groups ireseas

The overhead of monitoring coordinated break conditiondsthy
due to the extra synchronization cost introduced by the paw
tially ordered synchronizatioacheme. Obviously, when more nodes
(especially remote nodes) involved, the simulation ovadhis higher.

7.4 Performance of Checkpointing for Time
Traveling

We evaluate the overhead of checkpointing in four configura-
tions:1 x 1,4 x 1,16 x 1 and4 x 4, wherex x y meansr nodes
per group and, groups. For each one, we vary the checkpoint in-
terval from1/8 up to4 virtual seconds.

Figure 9 shows the relative simulation speed when checkpoin
ing the system periodically. Naturally, the overhead iases when
checkpointing more frequently. It is hard to distinguisk #ingle-
group curves since their differences are so small. In géretrack-
pointing in multi-group simulation seems to have largerrbead
than single-group. However, the checkpoint overhead &ively
small. All four curves lie abov86% of original simulation speed,
which translates to less thal¥% of overhead. This result encour-
ages us to use time-traveling extensively in debugging epers
thus can always return to the last break point or a previcarsetr
point with little cost.

To summarize, we find that most of the new debugging facili-
ties we have introduced withi?®B have small overhead (less than

pc has the largest overhead since the PC change occurs for everyl0%). As a result, we are able to debug sensor network applica-

instruction execution. Memory related debugging points less

tions using tools that operate at different levels of alosima while

overhead.Powerand event-based debugging points have the least preserving the high performance and scalability providedIs-

overhead since their states change infrequently.

ens.
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Figure 9: Relative simulation speed for checkpointing.X -axis
is the interval between two checkpoints (in terms of virtual
clock time of mote device).Y -axis is the ratio to original simu-
lation speed (without checkpointing).

8. CONCLUSION

S?DB is an efficient and effective sensor network debuggerdase
on DiSenS, a scalable distributed sensor network simulSt@B
makes four innovations to the conventional debugging seham
different levels of abstraction. For effective debuggirfgsimgle
sensor devicesjebugging poirg are introduced for the interroga-
tion of all interested subsystem states in a sensor devizéacll-
itate source level tracing and instrumentation, we extbedstmu-
lated sensor device hardware with a set of virtual regisiersid-
ing a way for the communication between simulator and sitedla
program. At the multi-device level, we discuss the impletaen
tion of coordinated break condition in the distributed feamork.
This new type of break condition enables coordinated pelraXe-
cution control of multiple sensor devices. A time travelfagility
is introduced for the network level debugging, used for dagi-
ror site restoration when working with sensor network tracaly-
sis. Overall, these debugging features impose overhead®than
10% (generally) to DiSenS, and thus enable efficient debugging o
large scale sensor networks.

S?DB is still an ongoing project that we think to make it a com-
prehensive debugging tool for sensor networks, thereligdtit of
work to do. The most imperative task is to design and impldraen
graphic user interface for intuitive and productive debogg We
are planning to build a plugin in the famous Eclipse [5] depel
ment environment, which controls the debugging and sinurat
functions in SDB and DiSenS. We are also interested in incor-
porating the debugging needs according to people’s expEein
sensor network development and discovering new debugggtg t
nigues, especially at the network level.
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