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Abstract. Utility computing, elastic computing, and cloud computing are all terms that refer to 
the concept of dynamically provisioning processing time and storage space from a ubiquitous 
“cloud” of computational resources. Such systems allow users to acquire and release the 
resources on demand and provide ready access to data from processing elements, while 
relegating the physical location and exact parameters of the resources. Over the past few years, 
such systems have become increasingly popular, but nearly all current cloud computing 
offerings are either proprietary or depend upon software infrastructure that is invisible to the 
research community. In this work, we present Eucalyptus, an open-source software 
implementation of cloud computing that utilizes compute resources that are typically available 
to researchers, such as clusters and workstation farms. In order to foster community research 
exploration of cloud computing systems, the design of Eucalyptus emphasizes modularity, 
allowing researchers to experiment with their own security, scalability, scheduling, and 
interface implementations. In this paper, we outline the design of Eucalyptus, describe our own 
implementations of the modular system components, and provide results from experiments that 
measure performance and scalability of a Eucalyptus installation currently deployed for public 
use. The main contribution of our work is the presentation of the first research-oriented open-
source cloud computing system focused on enabling methodical investigations into the 
programming, administration, and deployment of systems exploring this novel distributed 
computing model. 

1.  Introduction 
Scalable Internet services [1, 2, 3, 4] deliver massive amounts of computing power (in aggregate) on 
demand to large, internationally distributed user communities through well-defined software 
interfaces. Until recently, however, access to these services has been restricted to human-oriented and 
simple query-style application programming interfaces (APIs). With few exceptions, an application 
programmer wishing to incorporate such a service as a software component had little ability to direct 
and control computation inside the service explicitly. 

Cloud computing [5, 6] has emerged as a new paradigm for providing programmatic access to 
scalable Internet service venues.1 While significant debate continues with regard to the “optimal” level 
                                                      
1 The term “cloud computing” is considered by some to be synonymous with the terms “elastic computing,” 
“utility computing,” and occasionally “grid computing.” For the purposes of this paper, we will use the term 
“cloud computing” to refer to cloud, elastic, or utility computing but not to grid computing. The difference is 
explained in Section 4. 
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of abstraction that such programmatic interfaces should support (c.f., software-as-a-service versus 
platform-as-a-service versus infrastructure-as-a-service [7, 8, 9, 10]), the general goal is to provide 
users with the ability to program resources within a verylarge-scale resource “cloud” so that they can 
take advantage of the potential performance, cost, and reliability benefits that access to scale makes 
possible. 

In short, the model is to provide a large user base with the ability to program some specified 
fraction of the resources hosted by a scalable service provider (e.g., Google [3], Amazon [2], 
SalesForce [4], 3Tera [1], etc.) through one or more well defined service interfaces. However, while 
the interfaces are public, the infrastructure maintained by the various service providers is almost 
exclusively proprietary. Thus it is not possible (or at least not easy) for researchers to build, deploy, 
modify, instrument, or experiment with a cloud infrastructure under their own control. 

In this paper, we describe the design and implementation of Eucalyptus — an open-source software 
infrastructure architected specifically to support cloud computing research and infrastructure 
development. The design of Eucalyptus is distinctive in that it 

• must be able to deploy and execute in hardware and software environments not under the 
control of its designers, and 

• must be modularized to allow component-wise modification or replacement, 
while achieving the greatest degree of scalability possible. This work describes the system 
architectural tradeoffs imposed upon the design by these two requirements, the way in which they 
have been addressed by the current version of Eucalyptus that is currently available and in use, and the 
degree to which these trade-offs impact the functionality and performance of the overall system. 

The motivation for Eucalyptus is an exploratory one. Cloud computing as an emerging concept has 
great potential, but the speed of commercial engineering leaves fundamental questions either not fully 
defined or unanswered. Thus, while cloud systems are providing users a valuable service, the closed 
nature of the software has created a situation where researchers interested in cloud computing topics 
are finding it difficult to formulate experiments due to the lack of a common, flexible framework in 
which they can work. 

1.1.  Open-source infrastructure as a service 
Although most existing cloud computing implementations share the common high-level notion of 
flexible, scalable, and dynamic computational “provisioning,” there is significant variation in exactly 
how that power is presented to the end user. Some systems, such as Amazon’s Elastic Compute Cloud 
(EC2) [11] and Enomalism [12], allow users to allocate entire virtual machines (VMs) on demand, 
thus providing what is commonly referred to as Infrastructure as a Service (IaaS). Here, the user is 
responsible for providing the operating system kernel, base OS software, and any user level software 
and applications they wish to run and the IaaS system provisions physical resources and instantiates 
the user’s VMs. 

Eucalyptus implements IaaS, with the key differentiations being that it is specifically designed to 
be easy to install and maintain in a research setting, and that it is easy to modify, instrument, and 
extend. Specifically, commercial cloud infrastructures take advantage of the ability to control the local 
resource configuration (hardware versioning, O.S. versioning, network and storage policies, etc.) and 
access to large collections of potentially expensive resources (e.g., publicly visible and routable 
Internet addresses). In a research setting, it is unlikely that the cloud infrastructure can mandate a 
specific configuration for all hardware and software it manages, nor is it possible to predicate 
functionality on the availability of very large resource sets. 

Further, because IaaS systems each typically target a specific installation, they are not engineered 
with extensibility or portability as a primary concern, nor is the need for ease of system administration 
given primacy in the design. The difficulties are compounded by the need to be able to incorporate 
multiple compute clusters into a single resource pool from which cloud allocations are to be drawn. 
Few open-source software packages of any kind are designed to install and deploy on multiple 
compute clusters that then operate together as an ensemble. Thus, Eucalyptus is a relatively unique 
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example of IaaS and also a harbinger of future multi-cluster open-source design experiences. The way 
in which it frames and then addresses the challenges that arise as a result, forms the basis of the 
contribution this paper makes. 

Specifically, we describe 
• a simple open architecture for implementing cloud functionality at the IaaS level, 
• experiences with implementing this architecture using open-source Web-service software as 

the intrinsic technology, and 
• performance results demonstrating the viability of the resulting cloud computing system. 
IaaS, however, is not the only approach to implementing cloud computing that the commercial 

sector is currently pursuing. Amazon and Google also both provide Data as a Service (DaaS) 
capabilities, through the Simple Storage Service (S3) [13] and parts of App Engine [14] respectively, 
where users can both store and access massive amounts of data from the provided computational 
resources. In addition, Google’s App Engine [14], also provides a language-level abstraction, making 
it generically categorizable as Platform as a Service (PaaS), where access to computational power and 
storage is gained through language-specific APIs and libraries. Finally, companies such as 
Salesforce.com [4] provide a number of high-level software service packages (e.g., Web-accessible 
Customer Relationship Management, Enterprise Resource Planning, Inventory Control, Payroll, etc.). 
This higher-level approach is often described as Software as a Service (SaaS). 

We have chosen to focus Eucalyptus at the IaaS level for two reasons. First, Amazon.com’s EC2 is 
perhaps the most commercially successful cloud computing endeavor to date and it implements IaaS. 
Eucalyptus is interface-compatible with EC2, making it possible to test its functionality against one of 
the most mature commercial examples of cloud computing. This availability of a “gold standard” 
greatly influenced the design since it is possible to gauge immediately how closely our open-source 
rendition of the functionality matches its exemplar. Second, higher-level cloud computing abstractions 
all seem to depend on similar IaaS functionality, at least conceptually. We do not claim that all cloud 
computing infrastructures include an IaaS layer in their software architecture. However, for the 
purposes of further research and open-source development, we speculate that self-contained IaaS 
functionality that can be layered upon will prove both foundational and beneficial. 

2.  Eucalyptus design 
The Eucalyptus design is primarily motivated by two engineering goals: extensibility and non-
intrusiveness. Eucalyptus is extensible as a result of its simple organization and modular design. 
Further, we have implemented Eucalyptus using open-source Web-service technologies, which serve 
to illuminate its internals. As a collection of Web services, Eucalyptus components have well defined 
interfaces (described by WSDL documents), support secure communication (using WS-Security 
policies), and rely upon industry-standard Web-services software packages (Axis2, Apache, and 
Rampart). This choice of implementation technology also supports the second design goal — that of 
nonintrusive or “overlay” deployment. We do not assume that researchers interested in Eucalyptus are 
necessarily willing to dedicate entire collections of machines to Eucalyptus alone (although this model 
of operation is also supported), nor do we assume that they are willing to allow Eucalyptus to modify 
the local software configuration in potentially disruptive ways. Intrusiveness is admittedly a subjective 
metric. For the purposes of our work, we assume that a site wishing to use Eucalyptus is willing to 
support virtualized execution through Xen [15] and to host Web services. With these two requirements 
fulfilled, Eucalyptus can be deployed and executed without modification to the underlying 
infrastructure. 

2.1.  Architectural overview 
Academic research groups have access to a number of resources; for instance, small clusters, pools of 
workstations, and various server/desktop machines. Since public IP addresses are usually scarce, and 
the security ramifications of allowing complete access from the public Internet can be daunting, 
system administrators commonly deploy clusters as pools of “worker” machines on private, unroutable 
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networks with a single “head node” responsible for routing traffic between the worker pool and a 
public network. Although this configuration provides security while using a minimum of publicly 
routable addresses, it usually means that, while most machines can initiate connections to external 
hosts, external hosts cannot typically connect to machines running within each cluster. 

For example, an administrator might configure two small Linux clusters, a small server pool, and a 
collection of computer lab workstations. The clusters each have a single front-end machine with a 
publicly accessible IP address, while the nodes are connected via a private network such that they can 
only contact each other and their respective front-ends. The server and workstation machines have 
public IP addresses, but the workstations are behind a firewall and can not be contacted from the 
outside world. In this scenario, it is clear that it is not possible to install a fully connected system, 
since many of the machines can only initiate connections to external hosts or are entirely isolated from 
external networks. In addition, the two sets of cluster nodes may even have overlapping IP addresses 
since their networks are fully private and unroutable. In order to make all of these types of resources 
part of a single cloud, we reflect the hierarchical nature of this typical configuration in the architecture 
of Eucalyptus, as depicted in figure 1, where the three hierarchical levels are shown. These 
hierarchical components are sufficiently general to accommodate installation on common network 
hierarchies found within many institutions, an example of which is depicted in figure 2. 

 

  
Figure 1. Eucalyptus employs a hierarchical 
design to reflect underlying resource 
topologies. 

Figure 2. Example location of CLC, CC and NC 
components running within a typical resource 
environment. 

 

2.1.1.  Node Controller 
The Node Controller (NC) is the component that executes on the physical resources that host VM 
instances and is responsible for instance start up, inspection, shutdown, and cleanup. There are 
typically many NCs in a Eucalyptus installation, but only one NC needs to execute per physical 
machine, since a single NC can manage multiple virtual machine instances on a single machine. The 
NC interface is described via a WSDL document that defines the instance data structure and instance 
control operations that the NC supports (runInstance, describeInstance, terminateInstance, 
describeResource and startNetwork). The run, describe, and terminate operations on an instance 
perform minimal system setup, followed by calls to the underlying hypervisor (Xen in the current 
implementation) to control and inspect running instances. The describeResource operation reports 
current physical resource characteristics (compute cores, memory, and disk capacity) to the caller and 
the startNetwork operation sets up and configures the virtual networking described in more detail in 
Section 2.2. 

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012051 doi:10.1088/1742-6596/180/1/012051

4



 
 
 
 
 
 

2.1.2.  Cluster Controller 
A collection of NCs that logically belong together report to a single Cluster Controller (CC) that 
typically executes on a cluster head node or server that has access to both private and public networks. 
The CC is responsible for gathering state information from its collection of NCs, scheduling incoming 
VM instance execution requests to individual NCs, and managing the configuration of public and 
private instance networks. The WSDL that describes the CC interface is similar to the NC interface, 
except that each operation is plural instead of singular (runInstances, describeInstances, 
terminateInstances, describeResources). The describe and terminate instance control operations are 
merely pass-thru operations to the relevant NC module. When a CC receives a runInstances request, it 
performs a simple scheduling task of determining which NCs can support the incoming instance by 
querying each NC through describeResource and choosing the first NC that has enough free resources. 
The CC also implements a describeResources operation, however, instead of reporting actual physical 
resources available, this operation takes as input a description of resources that a single instance could 
occupy, and returns the number of instances of that type can be simultaneously executed on the NCs. 

2.1.3.  Cloud Controller 
Each Eucalyptus installation includes a single Cloud Controller (CLC) that is the user-visible entry 
point and global decision-making component of an Eucalyptus installation. The CLC is responsible for 
processing incoming user-initiated or administrative requests, making high-level VM instance 
scheduling decisions, processing service-level agreements (SLAs) and maintaining persistent system 
and user metadata. 

The CLC itself is composed of a collection of services (figure 3) that handle user requests and 
authentication, persistent system and user metadata (e.g., VM images and ssh key pairs), and the 
management and monitoring of VM instances. The services are configured and managed by an 
enterprise service bus (ESB) [16] that publishes services and mediates handling of user requests while 
decoupling the service implementation from message routing and transport details. Our design 
emphasizes transparency and simplicity in order to foster experimentation and extension of 
Eucalyptus, particularly with respect to cloud behavior. To achieve extensibility at this level of 
granularity, the architectural components of the CLC (including, but not limited to the VM scheduler, 
SLA engine, and user/administrative interfaces) are mutually isolated behind well-defined internal 
interfaces where ESB configuration controls their orchestration. With this as a foundation, our CLC 
implementation can function as an Amazon EC2 work-alike by interoperating with the EC2 client 
tools using bothWeb-services and Query interfaces (Amazon publishes specification documents 

 
Figure 3. Overview of services that comprise the 
Cloud Controller. Lines indicate the flow of 
messages where the dashed lines correspond to 
internal service messages. 
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describing these interfaces). We chose EC2 because it is relatively mature, has a large existing user 
community, and because it implements a well-defined IaaS functionality. However, the interface 
parsing is modularized so that Eucalyptus can support different interfaces, either as a way of emulating 
other infrastructures or to allow interface customization. 

2.1.4.  Client interface 
The CLC’s client interface service essentially acts as a translator between the internal Eucalyptus 
system interfaces (i.e., the NC and CC instance control interfaces) and some defined external client 
interface. For example, Amazon provides a WSDL document that describes a Web-service SOAP-
based client interface to their service as well as a document describing an HTTP Query-based 
interface, both of which can be translated by the CLC user interface service into Eucalyptus internal 
objects. We use JiBX [17] binding tool to specify a mapping of XML elements onto instances of Java 
objects, which we have used to create bindings that map the body of EC2 SOAP messages onto 
internal Eucalyptus objects. 

The Query interface does not lend itself to this model however. First, there is no XML document to 
consume. Second, the authentication mechanism is different and in conflict with the WS-Security 
policy enforced. Third, conflicts exist between the structure of SOAP requests and Query requests for 
the same field of the same kind of request. 

The solution stems from the observation that the Query interface for EC2 is a strict subset of the 
SOAP interface. As a result, we have developed a simple binding framework that maps HTTP 
Parameter names onto object fields guided by annotations. We then rely on annotations of the target 
object to aid in de-obfuscating inconsistencies such as elided lists and unwrapped complex types (i.e., 
field names of a child class). Ultimately, JiBX is used to marshal the bound object using the 
namespace for the EC2 SOAP interface. The result is two-fold: First, JiBX will validate the object that 
is actually a legal SOAP interface request, hence, a legal EC2 client request. Second, the marshalled 
XML document can be supplied as the SOAP body to allow further processing to continue along the 
exact same path it would have taken if the message had been SOAP to begin with. 

2.1.5.  Administrative interface 
In addition to supporting primary tasks, such as starting and stopping instances, a cloud infrastructure 
must support administrative tasks, such as adding and removing users and disk images. Eucalyptus 
supports such tasks though aWebbased interface, implemented by the cloud controller, and command-
line tools. Unlike the client interface, however, the administrative interface is unique to Eucalyptus. 
That is, while cloud purveyors do publish their client interfaces they do not generally publish 
administrators’ interfaces. Thus, we have defined one for the system that is independent of any 
specific client interface or intrinsic IaaS functionality. 

Users are added to a Eucalyptus installation either through the action of an administrator or by 
filling out an on-line form that is sent to the administrator for approval. Control over account creation 
thus rests in the hands of a human being, which we found necessary given the absence of automated 
approval methods, such as credit card verification used by Amazon. It is up to the cloud administrator 
to try to ensure that a new account will not be misused. By forcing new users to confirm their interest 
in the account by clicking on a link received in an email message, Eucalyptus maps the identity of a 
user to the their email address. If that is not sufficient, the administrator may choose to verify the 
identity of the applicant with the help of other information on the sign-up form. Once added, a user 
account can be temporarily disabled or permanently removed by an administrator.  At any point, the 
administrator can find out which instances a user is executing and terminate them. 

Currently, disk images in Eucalyptus can be added to the system only by an administrator. An 
image consists of a Xen-compatible guest OS kernel, a root file system image, and, optionally, a RAM 
disk image. Adding an image constitutes uploading these three components into the system and 
naming the image. After a image is added, any user can run instances of that image. Administrators 
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may temporarily disable or permanently remove the image. Finally, the administrator is in charge of 
adding and removing nodes from cluster controller’s configuration. 

2.1.6.  Instance control 
Creation of virtual machine instance metadata in Eucalyptus is managed by a component of the CLC 
named the VmControl service. VmControl continuously maintains a simple local representation of the 
state of underlying resources (i.e., number of instances each CC could potentially create). When 
instance creation events are initiated, it coordinates with the other services in the CLC to resolve user 
request references to image, keypairs, networks, and security groups. Allocation then consists of 
validating references to metadata, application of an allocation strategy producing a “pre-allocation,” 
meaning that as far as the VmControl component is concerned, the resources have been locally 
reserved. Messages are then disseminated to the CCs involved in the allocation. Each such CC will 
schedule the instance request to its locally controlled NCs which, finally, create the virtual machine 
instance itself and respond accordingly. 

2.1.7.  SLA implementation and management 
Service-level agreements (SLAs) are implemented as extensions to the message handling service 
which can inspect, modify, and reject the message, as well as the state stored by VmControl. 
Ultimately, the VmControl rationally arbitrates access to resources and enforces system-wide or user-
specific service-level agreements. These decisions require data about the state of resources that is 
captured in a system model and the result of update events (i.e., either a change to the model or 
information about a failure). We have implemented an extensible SLA scheme, which couples the 
state model with event handling to support further work in quantitative study of service level 
agreements. 

The VmControl relies on a local model for decision-making purposes. To keep the model up to 
date, each CC is passively polled to obtain the state of its instance availability, allocations, virtual 
network, and registered images. Information gathered via polling is treated as ground truth and user 
requests are handled in transactions that commit only when they are reflected on the resources. 

Nonetheless, the model may become inconsistent, causing the system to agree to an SLA with a 
user that is unsatisfiable. This can happen when when messages are lost (e.g., due to network 
partition) and the state of resources changes (the period between polling events can be thought of as a 
network partition). However, loss of messages can be identified (polling is semi-synchronous) and 
times when the model is in an invalid state can, ultimately, also be detected (after the system recovers 
and ground truth can be inspected). Consequently, the likelihood that the model will be incorrect at a 
given moment can be computed. 

We have implemented a simple yet powerful initial SLA that allows users to control the high-level 
network topology of their instances. While resource providers typically think of collections of 
machines in terms of “clusters” or “pools”, we have adopted the more general concept of “zones” that 
is currently used by Amazon EC2. Within EC2, a “zone” is correlated to a vague geographic location 
such as “east coast U.S.” or “west coast U.S.”, while we use the term to refer to a logical collection of 
machines that has several NC components and a single CC component. Eucalyptus allows users to 
specify a zone configuration upon instance execution, which allows an instance set to reside within a 
single cluster or potentially across clusters. Each configuration offers different administrative and 
network performance characteristics, which we explore in more detail in Section 2.2. In addition, 
Eucalyptus further co-opts the notion of zone, extending it to support different SLAs with respect to 
tradeoffs between the number of resources acquired and their relative topology. In the current 
implementation, the default set of zones supplied allows users to request a specific cluster, the 
emptiest cluster, any single cluster unless no cluster provides the minimum requested, and multiple 
clusters. 
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2.2.  Virtual networking 
Perhaps one of the most interesting challenges in the design of a cloud computing infrastructure is that 
of VM instance interconnectivity. One of the most attractive characteristics of cloud systems stems 
from the fact that although the underlying physical machines may have complex and restrictive 
networking topologies, a simpler, more configurable VM interconnection topology can be presented to 
the user through virtualization. When designing Eucalyptus, we recognized that the VM instance 
network solution must address connectivity, isolation, and performance. 

First and foremost, every virtual machine that Eucalyptus controls must have network connectivity 
to each other, and at least partially to the public Internet (we use the word “partially” to denote that at 
least one VM instance in a “set” of instances must be exposed externally so that the instance set owner 
can log in and interact with their instances). Because users are granted super-user access to their 
provisioned VMs, they may have super-user access to the underlying network interfaces. This ability 
can cause security concerns, in that, without care, a VM instance user may have the ability to acquire 
system IP or MAC addresses and cause interference on the system network. In addition, if two 
instances are running on one physical machine, a user of one VM may have the ability to snoop and 
influence network packets belonging to another. Thus, in a cloud shared by different users, VMs 
belonging to a single cloud allocation must be able to communicate, but VMs belonging to separate 
allocations must be isolated. Note that current hypervisor offerings do not support this notion of 
grouping directly. Finally, one of the primary reasons that virtualization technologies are just now 
gaining such popularity is that the performance overhead of virtualization has diminished significantly 
over the past few years, including the cost of virtualized network interfaces. Our design attempts to 
maintain inter-VM network performance as close to native as possible. 

Each instance controlled by Eucalyptus is given two virtual network interfaces; one is referred to as 
“public” while the other is termed “private”. The public interface is assigned the role of handling 
communication outside of a given set of VM instances, or between instances within the same 
availability zone as defined by the SLA. For example, in an environment that has available public IP 
addresses, they may be assigned to VM instances at instance boot time, allowing communication both 
to and from the instance. In environments where instances are connected to a private network with a 
router that supports external communication through network address translation (NAT), the public 
interface may be assigned a valid private address giving it access to systems outside the local network 
through the NAT-enabled router. The instance’s private interface, however, is used only for inter-VM 
communication across zones, handling the situation where two VM instances are running inside 
separate private networks (zones) but need to communicate with one another. 

Within Eucalyptus, the cluster controller currently handles the set up and tear down of instance 
virtual network interfaces. The CC can be configured to set up the public interface network in three 
ways corresponding to three common environments we currently support. The first configuration 
instructs Eucalyptus to attach the VM’s public interface directly to a software Ethernet bridge 
connected to the real physical machine’s network, allowing the administrator to handle VM network 
DHCP requests the same way they handle regular DHCP requests. The second configuration allows 
the administrator to define a dynamic pool of IP addresses that will be assigned via a DHCP server 
that is executed by the CC. In this configuration, the administrator defines a network, an interface on 
the CC that is connected to that network, and a range of IP addresses that are dynamically assigned as 
instances are started. Finally, we support a configuration that allows an administrator to define static 
Media Access Control (MAC) and IP address tuples. In this mode, each new instance created by the 
system is assigned a free MAC/IP tuple, which is released when the instance is terminated. 

Another requirement of the virtual network is that it supports instance network traffic isolation. We 
require that if two instances, owned by separate users, are running on the same host or on different 
hosts connected to the same physical Ethernet, they do not have the ability to inspect or modify each 
other’s network traffic. To meet this requirement, each set of instances owned by a particular user is 
assigned a tag that is then used as a virtual local area network (VLAN) identifier assigned to that 
user’s instances. Eucalyptussupports a VLAN enabled networking mode (called MANAGED mode) in 
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which the system assigns VLANs dynamically to user requests. Each VM gets a private network 
address and “Elastic IPs” (public addresses that can persist across user requests) are supported via IP-
tables at the cluster head-node. 

3.  Experiment 
To illustrate the performance characteristics of Eucalyptus as well as to observe its functionality under 
user load not generated by the development team, we have installed Eucalyptus on a small research 
Linux cluster at our home institution and made it available for general use to the wider community as 
a “public cloud.” The hardware configuration comprises 7 compute nodes and one head-node. The 
compute nodes are on an isolated network, while the frontend is publicly accessible. Each system has 
two Intel Xeon 3.2GHz processors, 3GB of RAM and approximately 40GB of available disk (single 
SCSI drive). We are running a single CLC on the front-end, a single CC on the front-end, and one NC 
per compute node. 

Users request access to the Eucalyptus Public Cloud (EPC) by requesting credentials from the CLC 
through the user signup web page. Subsequent cloud allocation requests are limited to 4 instances 
which will be terminated automatically after 6 hours. A reverse firewall prevents EPC hosted instances 
from making network connections to external network addresses (public Linux distribution sites are 
excepted to allow instance configuration) to avoid inadvertent “spambot” hosting. Only a local EPC 
zone is available as an externally accessible SLA. 

All experiments detailed in this section have been conducted using the EPC in the presence of 
ambient induced load. That is, unless otherwise indicated, we measured the performance of the EPC in 
the presence of load being generated by its users (i.e. in a non-dedicated mode). 

3.1.  Instance throughput 
The first experiment we perform is designed to measure the performance of VM instance control 
operations. Because Eucalyptus is interface compatible with Amazon’s EC2, we are able to perform 
the same experiments on both Eucalyptus and EC2 without customization. The primary purpose in 
doing so is to verify that the EC2 functionality is, indeed, fully replicated by Eucalyptus. Less 
rigorously, the quantitative comparison serves as a high-level test for whether our implementation is 
pathologically inefficient. In fact, during early phases of Eucalyptus design we discovered a number of 
performance “bugs” through comparisons with EC2. 

Because one of the primary functions of Eucalyptus is to control the execution of VM instances on 
a collection of resources, we perform an “instance throughput” experiment where we measure the time 
from when a user wishes to execute a collection of instances to the time the instances are booted and 
available for use on the network. For this experiment, we measure the total time between an instance 
execution request to the point when we can first detect that the instance is running. In order to measure 
the instance state, we rely on the Amazon EC2 command-line tool “ec2- describe-instances”, which 
simply queries the cloud server for information about a user’s instances and prints the information to 
the user’s terminal. To gather a single data point, we first take a timestamp followed immediately by a 
launch of an instance or set of instances using the client tool “ec2-run-instances”. Then, we repeatedly 
poll the server using “ec2-describe-instances” until our initiated instance enters a “running” state, at 
which point we take another timestamp. The difference between the two timestamps constitutes a 
single data point that represents the number of seconds between a user instance creation request and 
the user becoming aware that the instance(s) are available for use. Each trial is characterized by four 
variables and timings are reported in seconds. The first variable is the VM type requested, where the 
VM type is defined as the number of cores, amount of RAM, and allocated disk space. The second 
variable is the instance image itself, which we control by loading identical copies inside both EC2 and 
the EPC. For this experiment we run trials for a “small” VM type with a corresponding image called 
“ttylinux” [18]; a compact Linux image that boots very quickly and offers a minimal networked Linux 
installation when fully booted. The third variable of interest is the number of instances simultaneously 
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requested, which we vary from one to eight instances. The final variable is of course the system used; 
either Eucalyptus or Amazon EC2. 

In figure 4 we show the results of the instance throughput experiment. The figure shows two 
empirical cumulative distribution functions that allow us to examine both the magnitude and variance 
of time taken to create instances in EC2 and the EPC. Each data point represents the percentage (Y 
axis) of instance creation trials that took at least the number of seconds denoted at the point’s 
corresponding position on the X axis. 

 

 
Figure 4.  Empirical CDFs comparing number of seconds taken to start one and eight VM 
instances within EC2 and Eucalyptus. 
 
Notice that for both cases (one and eight concurrent instance creation trials), though the range of 

creation times overlap, all empirical quantiles in the EPC case are lower than those of EC2. For 
example, 98 percent of the eight concurrent instance creation trials completed in less than 24 seconds 
within EPC, while only 75 percent completed in less than 24 seconds within EC2. For the one instance 
case, the difference is even more striking, with 98 percent of the trials completing in less than 17 
seconds within the EPC and only 32 percent completing in less than 17 seconds within EC2. 

This result, we believe, indicates that the Eucalyptus implementation is relatively efficient given its 
target environment. However it does not indicate that the EPC is outperforming EC2. The actual EC2 
harnesses a vast resource pool and, as such, should almost certainly incur a measurable performance 
overhead over an Eucalyptus implementation running on a small cluster. At the same time, the 
implementation of the EPC does seem to compare well with that of the system it emulates indicating 
that its implementation is, at least, relatively high performance. This supposition is further supported 
by the (somewhat surprising) similarity in the shapes of two distribution plots. Both are unimodal with 
relatively similar tail weights. At present we are unable to go beyond this observation and to make a 
direct inference (say from confidence bounds on the variance) about the similarity of the two 
performance profiles however doing so is something we hope to achieve in the near future. 

4.  Related work 
Cloud computing stems from recent innovations in operating system virtualization and scalable 
Internet services. It also shares intellectual underpinning with grid computing, although the precise 
nature of this sharing is a matter of some debate. 

Machine virtualization projects producing VM hypervisor software [15, 19, 20, 21] have enabled 
new mechanisms for providing resources to users. In particular, these efforts have influenced hardware 
design [22, 23, 24] to support transparent operating system hosting. The “right” virtualization 
architecture remains an open field of study [25]): analyzing, optimizing, and understanding the 
performance of virtualized systems [26, 27, 28, 29, 30] is an active area of research. Eucalyptus 
implements a cloud computing “operating system” using Xen-based virtualization as its initial target 

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012051 doi:10.1088/1742-6596/180/1/012051

10



 
 
 
 
 
 

hypervisor and this work, particularly with respect to performance benchmarking, serves as a starting 
point for studying the overheads introduced by Eucalyptus. 

Thanks in part to the new facilities provided by virtualization platforms, a large number of systems 
have been built using these technologies for providing scalable Internet services [1, 31, 32, 33, 34, 3, 
4], that share in common many system characteristics: they must be able to rapidly scale up and down 
as workload fluctuates, support a large number of users requiring resources “on-demand”, and provide 
stable access to provided resources over the public Internet. While the details of the underlying 
resource architectures on which these systems operate are not commonly published, Eucalyptus is 
almost certainly shares some architectural features with these systems due to shared objectives and 
design goals. 

In addition to the commercial cloud computing offerings mentioned above (Amazon EC2/S3, 
Google AppEngine, Salesforce.com, etc.), which maintain a proprietary infrastructure with open 
interfaces, there are open-source projects aimed at resource provisioning with the help of 
virtualization. Usher [35] is a modular open-source virtual machine management framework from 
academia. Enomalism [12] is an open-source cloud software infrastructure from a start-up company. 
Virtual Workspaces [36] is a Globus-based [37] system for provisioning workspaces (i.e., VMs), 
which leverages several pre-existing solutions developed in the grid computing arena. The Cluster-on-
demand [38] project focuses on the provisioning of virtual machines for scientific computing 
applications. oVirt [39] is a Web-based virtual machine management console. 

While these projects produced software artifacts that are similar to Eucalyptus, there are several 
differences. First, Eucalyptus was designed from the ground up to be as easy to install and as non-
intrusive as possible, without requiring sites to dedicate resources to it exclusively (one can even 
install it on a laptop for experimentation). Second, the Eucalyptus software framework is highly 
modular, with industry-standard, language-agnostic communication mechanisms, which we hope will 
encourage third-party extensions to the system and community development. Third, the external 
interface to Eucalyptus is based on an already popular API developed by Amazon. Finally, Eucalyptus 
is unique among the open-source offerings in providing a virtual network overlay that both isolates 
network traffic of different users and allows two or more clusters to appear to belong to the same 
Local Area Network (LAN). 

Grid computing must also be acknowledged as an intellectual sibling of, if not ancestor to, cloud 
computing [40, 41, 42, 43]. The original metaphor for a computational utility, in fact, gives grid 
computing its name. While grid computing and cloud computing share a services oriented approach 
[44, 45] and may appeal to some of the same users (e.g., researchers and analysts performing loosely-
coupled parallel computations), they differ in two key ways. First, grid systems are architected so that 
individual user requests can (and should) consume large fractions of the total resource pool [46]. 
Cloud systems often limit the size of an individual request to be tiny fraction of the total available 
capacity [47] and, instead, focus on scaling to support large numbers of users. 

A second key difference concerns federation. From its inception, grid computing took a 
middleware-based approach as a way of promoting resource federation among cooperating, but 
separate, administrative domains [37]. Cloud service venues, to date, are unfederated. That is, a cloud 
system is typically operated by a single (potentially large) entity with the administrative authority to 
mandate uniform configuration, scheduling policies, etc. Eucalyptus conforms to the design 
constraints governing cloud systems. 

Several research projects and white papers in the last few years have studied the performance 
ramifications of deploying specific workloads (often scientific ones) in today’s commercial clouds. 
For example, Palankar et al. [48] benchmarked Amazon’s S3 cloud storage solution for scientific 
applications, pointing out several current characteristics of the system that need to be addressed before 
it is appropriate for access to scientific data. Garfinkel [49] analyzed Amazon’s EC2 management, 
performance and security facilities and reported on their experience with moving large scale research 
application to the cloud. This work, while valuable by itself, could be significantly augmented through 
experimentation with Eucalyptus, both in terms of experimental verification and by allowing the 
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researchers of these works to more precisely understand the measured resource performance response 
through system instrumentation. In addition, the performance results presented in this paper are 
directly relevant to these other benchmarking efforts. 

Overall, we find that there are a great number of cloud computing systems in design and operation 
today that expose interfaces to proprietary and closed software and resources, a smaller number of 
open-source cloud computing offerings that typically require substantial effort and/or dedication of 
resources in order to use, and no system antecedent to Eucalyptus that has been designed specifically 
with support academic exploration and community involvement as fundamental design goals. 

5.  Conclusion and future work 
In this work, we have presented the Eucalyptus open-source cloud computing software framework. 
We have shown that Eucalyptus is distinctive among other cloud computing IaaS systems in that it 
supports an industry standard interface (Amazon EC2), deploys as an overlay atop existing commonly 
encountered resource configurations (small clusters, workstation pools, etc), and has been designed as 
a modular system where components may be replaced or enhanced in order to foster future cloud 
computing research efforts. The entire Eucalyptus system is available for download and has been 
successfully installed both on clusters and numerous personal computing environments. 

Benchmarking Eucalyptus against EC2 reveals that it is relatively efficient. While it outperforms 
EC2 in absolute terms, it does so in an environment with significantly fewer resources. Only when a 
process-level virtual network overlay is employed is performance substantially degraded. However, by 
adapting the concept of availability zone from EC2, Eucalyptus allows users to trade network 
performance for scalability explicitly though a default set of SLAs supplied with the system. This 
adaptation supports the claim that Eucalyptus allows new cloud computing techniques and policies to 
be developed. Thus we conclude that Eucalyptus is not inherently inefficient and provides facilities for 
cloud computing research that are otherwise unavailable.  

In addition to constantly supporting new features, we are particularly interested in using Eucalyptus 
as a platform for experimenting with novel cloud computing concepts such as dynamic SLA 
generation, new virtual networking topologies for floating static IP addresses across clouds, 
investigations on how to implement a truly secure cloud infrastructure, and investigating novel user 
and administrative cloud interfaces. 
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