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Abstract. In this paper, we consider the problem of modeling machine
availability in enterprise-area and wide-area distributed computing set-
tings. Using availability data gathered from three different environments,
we detail the suitability of four potential statistical distributions for each
data set: exponential, Pareto, Weibull, and hyperexponential. In each
case, we use software we have developed to determine the necessary pa-
rameters automatically from each data collection.
To gauge suitability, we present both graphical and statistical evaluations
of the accuracy with each distribution fits each data set. For all three data
sets, we find that a hyperexponential model fits slightly more accurately
than a Weibull, but that both are substantially better choices than either
an exponential or Pareto.
These results indicate that either a hyperexponential or Weibull model
effectively represents machine availability in enterprise and Internet com-
puting environments.

1 Introduction

As performance-oriented distributed computing (often heralded under the moniker
“Computational Grid” computing [13]) becomes more prevalent, the need to
characterize accurately resource reliability emerges as a critical problem. To-
day’s successful Grid applications uniformly rely on run-time scheduling [1, 6, 9,
10, 27, 29] to identify and acquire the fastest, least loaded resources at the time an
application is executed. While these applications and systems have been able to
achieve new performance heights, they all rely on the assumption that resources,
once acquired, will not fail during application execution. In many resource en-
vironments such an assumption is valid, but in order to employ nationally or
globally distributed resource pools (e.g. in the way SETI@Home [30] does) or
enterprise-wide desktop resources (as many commercial endeavors do [3, 12, 36]),
performance-oriented distributed applications must be able either to avoid or to
tolerate resource failures.

Designing the next generation of Grid applications requires an accurate model
of resource failure behavior. There has been a great deal of work [14, 18, 21, 20,
25] on the problem of modeling resource failure (or, equivalently, resource avail-
ability) statistically. More recently, peer-to-peer systems have used statistical



distributions as the basis of their availability assumptions [32, 39]. As Plank
and Elwasif point out in their landmark paper [28], however, most of these ap-
proaches assume that the underlying statistical behavior can be described by
some form of exponential distribution or hyperexponential distribution [21]. In
addition, they go on to note that, despite the popularity of these models, they
often fail to reflect empirical observation of machine availability. In other con-
texts, such as process lifetime estimation [16] and network performance [22, 26,
37], researchers often advocate the use of “heavy-tailed” distributions, especially
the Pareto. Other work has been done showing that a Weibull distribution is an
appropriate model for various resource availability data [38, 17], but this work
lacks a detailed analysis of model fitting and verification.

Our goal with this work is to develop an automatic method for modeling
the availability of enterprise-wide and globally distributed resources. Automatic
model determination has several important engineering applications. We plan
to incorporate such models into Grid programming systems, such as the Grid
Application Development Software [5] system, NetSolve [9], and APST [6], in or-
der to enable effective resource allocation and scheduling. Commercial-enterprise
computing systems such as Entropia [12], United Devices [36], and Avaki [3] will
also be able to take advantage of automatically determined models as they tune
themselves to the characteristics of a particular site. We believe this work will
be particularly important to the development of credible and effective Grid and
Autonomic Computing [19] simulations. Because Grid architectures are driven
by the dynamic resource sharing of competing users, repeatable “en vivo” ex-
periments are difficult or impossible. Several effective emulation [31] and simula-
tion [7, 8, 33] systems have been developed for Grid environments. These systems
will benefit immediately from the more accurate models our method produces.

We propose an approach to modeling machine availability based on fitting
statistical distributions to observed data, which is outlined in the following man-
ner. In Section 2 we define the statistical distributions used throughout this work
and describe our method for estimating the necessary parameters from a given
set of availability measurements. We also outline the three data sets used in this
study in Section 2. To gauge the effectiveness of our modeling methodology, we
detail and analyze the degree to which an automatically generated model fits
three diverse sets of empirical observations in Section 3, in which we compare
the generated models for all three data sets both visually and through the use of
two Goodness of Fit (GOF) tests to complement our visual analysis. In Section 4
we discuss the conclusions we draw from this work and point to future research
directions it enables.

2 Fitting a Distribution to Availability Data

In this study, the two distribution families that consistently fit the data we
have gathered most accurately are the Weibull and the hyperexponential. The
Weibull distribution is often used to model the lifetimes of objects, including
physical system components [4] and also to model computer resource availabil-
ity distributions [38, 17]. Hyperexponentials have been used to model machine



availability previously [25] especially when observed data requires a model which
can approximate a wide variety of shapes. In order to fit most of the statistical
distributions used in this paper to observed data, we implemented Matlab [24]
scripts which found the MLE (Maximum Likelihood Estimation) parameters.
The problem of finding MLE parameters for the hyperexponential, however,
tends to be numerically intractable for large data sets, so instead we use EM-
pht software [2]. Following are the equations for the models we compare in this
work, along with a description of how we estimate the model parameters given
a sample data set.

2.1 Statistical Distributions

Throughout this paper, we will use small f for density functions and capital F
for distribution functions, subscripted to differentiate among the various types of
distribution. These functions, fW and FW respectively, for a Weibull distribution
are given by

fW (x) = αβ−αxα−1e−(x/β)α

(1)

FW (x) = 1 − e−(x/β)α

(2)

The parameter α is called the shape parameter, and β is called the scale param-
eter 1. Note that the Weibull distribution reduces to an exponential distribution
when α = 1.

Hyperexponentials are distributions formed as the weighted sum of exponen-
tials, each having a different parameter. The density function is given by

fH(x) =

k
∑

i=1

[pi · fEi
(x)] (3)

where
fEi

(x) = λie
−λix (4)

defines the density function for an exponential having parameter λi. In the defi-
nition of fH(x), all λi 6= λj for i 6= j, and

∑k
i=1 pi = 1. The distribution function

is defined as

FH(x) = 1 −

k
∑

i=1

pi · e
−λix (5)

for the same definition of fei
(x).

The probability density and distribution functions for the exponential and
Pareto distributions, respectively, are as follows:

fE(x) = λe−λx (6)

FE(x) = 1 − e−λx (7)

1 The general Weibull density function has a third parameter for location, which we
can eliminate from the density simply by subtracting the minimum lifetime from all
measurements. In this paper, we will work with the two-parameter formulation.



fP (x) =
αβα

xα+1
(8)

FP (x) = 1 −

(

β

x

)α

(9)

2.2 Data Sets

In this work, we use three data sets which we believe exhibit availability behavior
typical of hosts currently residing on the Internet. The first data set is from
UCSB’s CSIL computer science student lab. Each measurement records the time
from when a workstation is able to run a user process to when it no longer can
do so. The second data set is drawn from the Condor [34] pool running at the
University of Wisconsin. Each condor availability measurement is the time from
when the Condor scheduler starts one of our monitoring processes to when the
allocated workstation evicts our monitor process. Finally, we have obtained the
dataset from a work by Long, Muir, and Golding [23] in which they remotely
measured Internet host availability. We measured 83 machines in the CSIL lab
for 8 weeks. The Condor dataset comes from 210 during a 6-week period, and
Long, Muir and Golding gathered data from 1170 machines over a 3 month
experimental period.

Before attempting to capture the distribution behavior of our data sets, we
wanted to explore the data characteristcs of independence and identical distri-
bution. We assume data independence since we intuitively believe, for instance,
that one uptime interval on some machine has no effect on the length of the
next uptime interval. To inspect the identical distribution characteristics of the
data, we performed a Kruskal-Wallis test for identical location. The test strongly
rejected the null hypothesis that the data is i.d. This is not, however, entirely
surprising as the machines we are monitoring have a wide range of usage models
which impact their availability. This does imply, however, that although we can
use models which fit combined machine availability data, we cannot infer from
these models any information about the individual machines that make up the
combined data set.

3 Analysis

Data Set Weibull Hyperexponential Exp. Pareto
α β p1 p2 p3 λ1 λ2 λ3 λ α β

CSIL .545 275599 .464 .197 .389 1 ∗ 10−6 2 ∗ 10−4 8 ∗ 10−6 2 ∗ 106 .087 1

Condor .49 2403 .592 .408 NA 3 ∗ 10−3 7 ∗ 10−5 NA .00018 .149 1.005

Long .61 834571 .282 .271 .474 3 ∗ 10−7 1 ∗ 10−5 1 ∗ 10−6 7 ∗ 107 .079 1

Table 1. Table of fitted model parameters

The goal of our study is to determine the value of using Weibull and hy-
perexponential distributions to model resource availability. Our method is to
compare the MLE-determined Weibull and EMpht-determined hyperexponen-
tial to the MLE exponential and Pareto for each of the data sets discussed in



the previous section. For reference, we have included the MLE-determined and
EMpht-determined model parameters that were used for all fitted distributions
discussed and shown in this work (Table 1). As we noted in the introduction,
both exponential and the Pareto models have been used extensively to model
resource and process lifetime. Thus the value we perceive is the degree to which
the Weibull and hyperexponential models more accurately fit each data set.

In each case, we use three different techniques to evaluate model fit: graphical;
the Kolmogorov-Smirnov [11] (KS) test; and the Anderson-Darling [11] (AD)
test. Graphical evaluation is often the most compelling method [35] but it does
not provide the security of a quantified result. The other two tests come under
the general heading of “goodness-of-fit” tests. 2

3.1 Graphical Analysis of The Availability Measurements
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Fig. 1. CSIL data with
Weibull fit
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Fig. 2. CSIL data with hy-
perexponential fit
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Fig. 3. CSIL data with ex-
ponential and Pareto fits
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Fig. 4. Condor data with
Wiebull fit
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Fig. 5. Condor data with
hyperexponential fit
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Fig. 6. Condor data with
exponential and Pareto fits

To gauge the fit of a specific model distribution to a particular data set, we
plot the cumulative distribution function (CDF) for the distribution and the

2 The best known goodness-of-fit test is the Chi-squared test. Both the Kolmogorov-
Smirnov and the Anderson-Darling tests are considered more appropriate for contin-
uous distributions than the Chi-squared test, which is designed for categorical data
and would thus require artifical “binning” of data. We therefore use these methods
in place of the more familiar one.
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Fig. 7. Long data with
Weibull fit
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Fig. 8. Long data with hy-
perexponential fit
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Fig. 9. Long data with ex-
ponential and Pareto fits

empirical cumulative distribution for the data set. The form of the CDF for the
Weibull, hyperexponential, exponential and Pareto are given by equations 2, 5,
7, and 9 respectively (cf. Section 2). The empirical distribution function (EDF)
is the CDF of the actual data; it is calculated by ordering the observed values
as X1 < X2 < · · · < Xn and defining

Fe(x) = j/n, Xj ≤ x < X(j+1) (10)

We start by comparing the empirical observations from the CSIL data set
(as an EDF) to the CDF determined by the EMpht-estimated hyperexponential,
and the MLE-estimated Weibull, exponential, and Pareto distributions (shown
in Figures 1, 2, and 3). In all of the figures depicting distributions in this pa-
per, the units associated with the x-axis are seconds of machine availability. We
use a log scale for the x-axis to better expose the nature of each fit. Both the
hyperexponential and the Weibull fit the data substantially better than either
an exponential or Pareto; the hyperexponential is also able to capture the slight
inflection around 10,000 seconds. Since automatic selection of the number of
phases to use when fitting a hyperexponential is not part of the EMpht soft-
ware, we have devised our own method. To determine the number of phases, we
begin with a 2-phase hyperexponential, test the resulting fit with a Kolmogorov-
Smirnov test, and then repeat with an increased number of phases until the KS
test result shows no improvement. In this case, for the CSIL data, the algorithm
terminated using three phases.

For the Condor data set, the comparison (shown in Figures 4, 5, and 6) is
more striking. Again, the hyperexponential (a 2-phase, in this case) appears to fit
the shape of the curve most closely, and the Weibull appears a better choice than
either exponential or Pareto. Note in particular how again the hyperexponential
is able to capture the inflection points of the Condor EDF around 1000 seconds,
while the Weibull is unable to do so.

Finally, the fits (3-phase hyperexponential in this case) for the Long, Muir,
and Golding data are shown in Figures 7, 8, and 9.

The comparison is similar to that for the CSIL data. The multi-phase hyper-
exponential fits slightly better than a Weibull, and both are substantially better
than an exponential or Pareto.



Of particular interest are the way in which each hypthetical distribution ap-
pears to match the tail of an EDF. In many application contexts, “tail behavior”
can be important, especially if the presence or absence of rare occurrences must
be modeled accurately. For example, previous research [15, 16] reveals Unix pro-
cess lifetimes to be “heavy-tailed” and well-modeled by a Pareto distribution.
Thus schedulers and process management systems must be designed for infre-
quently occurring processes that have very long execution times.

According to Figures 3, 6, and 9, however, a Pareto distribution would over-
estimate the probability of very long-lived resources by a considerable amount.
Indeed, it may be that while Unix process lifetime distributions are heavy tailed,
if they are executed in distributed or global computing environments, many of
them will be terminated by resource failure since the resource lifetime distribu-
tions (both EDFs and their matching Weibull and hyperexponential fits) have
considerably less tail weight.

Even beyond the differences in the tails, however, we can clearly see that the
general shape of the exponential and Pareto distributions do not seem to fit the
sample CDFs well.

3.2 Goodness-of-fit Analysis

For this analysis we use both KS and AD goodness-of-fit tests with randomly
chosen subsamples from our data sets each having size 100. We then repeat the
tests, with different random subsamples, 1000 times to get a range of test results
and then we use the average test statistic value to compute the p-value. Rejection
at size 100 indicates that with as few as 100 data points it is evident that the
tested distribution is inappropriate. The addition of more data points to the test
will only confirm this inappropriateness further.

Table 2 shows the GOF test results which are the average p-values from the
1000 iterations of the experiment.

Data Set Weibull Exponential Pareto Hyperexponential
AD KS AD KS AD KS AD KS

CSIL 0.071 0.36 0 0.0002 0 0.0005 0.59280 0.47

Condor 0 0.07 0 0 0 0 0.68291 0.42

Long 0.132 0.41 0 0.001 0 0.0005 0.77247 0.48

Table 2. Table of p-value results from GOF tests

From the table, it is clear that both the exponential and Pareto perform
poorly on these tests for all three data sets. This is not entirely surprising, since
the visual fit was clearly inferior for all three data sets. The hyperexponential
performs substantially better than all of the other models for all of the data
sets; again this is not surprising since the hyperexponential model can increase its
number of phases as needed. For the Weibull, we fail to reject the null hypothesis
at α = 0.05 significance level on average for subsamples of size 100 using the
KS test for all three data sets. We fail to reject the null hypothesis at α =



0.05 significance using the AD test for the CSIL and Long data sets, but reject
for the Condor data set, supporting the graphical evidence that the Condor
data set is less-well modeled by a Weibull than the CSIL or Long-Muir-Golding
data. Although GOF tests cannot provide a positive result, note that if we were
taking a random sample directly from a continous distribution, the GOF test
would on average result in a p-value of 0.5. This being the case, we consider an
empirical data set p-value result close to 0.5 to be essentially indistinguishable,
with respect to the GOF test being used, from data actually drawn from a
statistical distribution. p-values of this magnitude were clearly obtained for all
three data sets and both tests when performed against a hyperexponential null
hypothesis, and to a lesser degree for the CSIL and Long data sets from the KS
test against the Weibull null hypothesis.

4 Conclusions

From the results presented in this paper, we feel that there is a compelling case
for the superiority of Weibull or hyperexponential distributions in the modeling
of resource availability data.

The need to model resource availability and to characterize groups of re-
sources in terms of their availability is critical to desktop Grid, peer-to-peer,
and global computing paradigms. Previous related work has used exponential
(memoryless) or Pareto distributions, but our work shows that Weibull and
hyperexponential distributions are more accurate choices. Visual evidence and
GOF results (when applied repeatedly to subsamples) make a compelling case
for the use of either a Weibull or hyperexponential distribution to approximate
the behavior of resources in our three environments. The choice of which to use
depends on the application for which the model is needed, and how complex
a model can be handled under application constraints. The hyperexponential,
although it generally shows a better fit for the data, is significantly more com-
plex than the Weibull models due to its larger number of estimated parameters,
the fact that the phase parameter is free and must be decided iteratively, and
its resistance to the MLE methods used for the other distributions presented.
The Weibull distribution, with its two MLE-computable parameters and relative
mathematical simplicity, seems a better choice if speed and complexity are of
interest. Regardless, the methods we use in this paper can be used to automat-
ically decide which model is best at any given moment based on GOF analysis.
Both the Weibull and hyperexponential are significantly better at capturing the
distribution of availability time than the exponential or Pareto, and both can be
computed automatically from availability measurement data.

From these results, we hope to generate individual resource models and to
improve the quality of simulation and modeling for volatile distributed systems.
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