
Cloud Platform Support for API Governance
Chandra Krintz, Hiranya Jayathilaka, Stratos Dimopoulos, Alexander Pucher, Rich Wolski, and Tevfik Bultan

Dept. of Computer Science, University of California, Santa Barbara
To Appear: IC2E Future Of PaaS Workshop, March 2014

Abstract—As scalable information technology evolves to a
more cloud-like model, digital assets (code, data and software
environments) increasingly require curation as web-accessible
services. “Service-izing” digital assets consists of encapsulating
assets in software that exposes them to web and mobile applica-
tions via well-defined yet flexible, network accessible, application
programming interfaces (APIs). In this paper, we postulate that
recent advances in cloud computing make cloud platforms as-a-
service (PaaS) ideal for deployment, lifecycle management, and
policy-based control – i.e. API governance – for extant and future
digital assets. Toward this end, we overview API governance as a
PaaS technology and outline some early results generated by our
investigation of a prototype we are developing, called EAGER,
for implementing API governance at scale.

Index Terms—API Governance; PaaS; cloud platforms; API
similarity;

I. INTRODUCTION

Cloud computing is fostering a model of application de-
velopment that combines authored code with functionality
provided by extant, curated web services. Consumer-targeting
applications (particularly those designed for mobile platforms)
interact with highly scalable and reliable “back-end” web ser-
vices that are constantly maintained in well-connected, secure
data centers. In addition, enterprise Information Technology
(IT) strategies are focusing on deploying both hardware and
software infrastructure to host their digital assets as web
services for controlled access by their employees via internally
developed applications or by their customers via software and
data “as-a-service”.

This rapidly proliferating model of application development
and IT operations is designed to scale, both in the number
of applications that access the IT-managed services, and in
the number of services that must be hosted and curated.
Each service exports one or more Application Programming
Interfaces (APIs) that must be accessible by users, user ap-
plications, and/or other services. Because applications encode
their internal logic in terms of remote “calls” to curated
services, these APIs define functional boundaries that must
be incorporated into the application architecture.

Despite the primacy of APIs in the emerging digital econ-
omy, few advances have yet been developed to implement
API governance – combined policy, implementation, and
deployment control of APIs for IT-managed services and
digital assets. Some commercial technologies exist that aid
implementation of digital assets (including the necessary APIs)
and many focus on support for packaging and cataloging
APIs [1], [2]. However, technologies for providing stewardship
of APIs through all phases of governance are rare.

We believe that recent advances in cloud platform as-a-
service (PaaS) technologies make PaaS systems ideally posi-
tioned to help IT management with this new yet increasingly
important responsibility of API governance. PaaS systems are
inherently distributed, scalable, and fault tolerant and have
proven successful in automating configuration, deployment,
monitoring, and management of a wide variety of web services
and their implementations [3], [4], [5], [6]. In addition, PaaS
systems provide high-level control over the abstractions they
implement and over the software they deploy and manage.

Moreover, some PaaS systems (e.g. Google App Engine and
AppScale) take an API-centric approach (verses one based on
software stacks) which significantly simplifies implementation
of API governance solutions at scale. These PaaS systems
decouple the implementation of digital asset access from the
technologies that are used to manage and store the assets. That
is, while the assets may remain the same, the technologies
used to serve and implement them can change, particularly
as technological advances reduce implementation costs. This
level of indirection can be leveraged to enforce organizational
policies that ensure predictable and economic operation of web
services and the digital assets they expose.

In the sections that follow, we overview our vision for
the next generation of PaaS systems. In particular, we define
EAGER – the Enforced API Governance Engine for REST
– PaaS support implementing and enforcing API governance.
EAGER leverages recent PaaS advances and employs App-
Scale [3] for its implementation. In this paper, we overview
the functionalities and capabilities that we believe are required
for API governance for curated digital assets accessed via web
services and describe our initial investigations.

II. API GOVERNANCE FOR THE NEXT GENERATION OF
PAAS SYSTEMS

With the advent of cloud computing, digital assets (code,
data, and software environments) and not infrastructure are
becoming the resources that must capture scientific and re-
search investment and innovation. With high-quality, low-cost
compute and storage infrastructure available from public and
on-premises clouds, IT management must increase its focus on
the maintenance, protection, and lifecycle control of the digital
assets – the code, software environments, and data – that
comprise the “computational” component of any innovative
endeavor.

Moreover, these digital assets are increasingly encapsulated
and exposed as services via web application programming
interfaces (APIs) for easy access by clients and users via a



network. APIs both define and control what operations can be
performed on each asset, by whom, and under what conditions.
Moreover, the lifecycle of the API follows the lifecycle of its
assets and not the lifecycle of the surrounding technologies
which typically change at a more rapid pace.

The combination of recent advances in cloud platforms, the
exploding proliferation of “service-ized” digital assets, and
the separation of concerns that both PaaS systems and APIs
facilitate, exposes new opportunities for advancing the state-
of-the-art in IT management of digital assets. PaaS systems
today simplify and automate distributed deployment, elasticity,
and fault tolerance of web applications (apps), services, and
their runtime ecosystems. Moreover, they decouple digital
asset implementation from the technologies that manage and
store them. APIs provide a common entry point through
which digital assets are accessed that can be monitored and
controlled. By leveraging both, we can investigate and develop
the next generation in PaaS technologies to facilitate API
governance, i.e., the combined policy, implementation, and
deployment control of APIs for IT-managed digital asset
services.

To facilitate API governance, extant approaches to PaaS
must be extended with new functionality (in additional to
extant/typical API management features such as cataloging,
search, deployment support, etc.) that provides

• Change Control – When API changes are necessary, the
extent of the effects of the change must be predictable
and implemented in a uniform, consistent way. If changes
need to be rolled back, the return to previous functionality
is likewise consistent, complete, and managed. This re-
quires development of efficient automated change-impact
analysis techniques that can determine the potential ef-
fects of a proposed change.

• Policy Specification and Analysis – Since APIs are
gateways to digital assets, they should allow only the
authorized clients access these resources. API governance
requires development of mechanisms for specification
of access control policies, and analysis and runtime
enforcement of these policies.

• Consistent Policy Implementation – Policies governing
the use of digital assets and/or their APIs are implemented
consistently across all assets regardless of the constituent
technologies that are used to implement the assets them-
selves.

• Implementation Portability – API implementation is de-
coupled from the implementation of the digital assets.
As technologies evolve or, more problematically, devolve
when they sunset, API integrity must be maintained
across different implementations.

• Monitoring and Auditing – API governance must include
a unified approach to monitoring and auditing API ac-
tivity. A unified approach is particularly important when
digital assets make heavy use of open source as many
research and educational environments do today. Using
runtime monitoring, erroneous or malicious behaviors
can be identified and resolved by appropriate exception

handling mechanisms. This is necessary since clients that
interact with an API are typically not controlled by the
organization that governs that API.

Toward this end, we propose to leverage PaaS technologies
and to extend them with these key functionalities to provide
a unifying framework for implementing and enforcing API
governance called EAGER – the Enforced API Governance
Engine for REST. Governance policies in EAGER specify
the conditions that must be met before an API is exposed to
users and while it is in service. The policies themselves cover
IT management functions such as change control, versioning
and dependency management, auditing, and access control. In
a dynamic and scalable cloud setting, such IT governance
functions must be implemented in a reliable, auditable, and
automated way to preserve the scaling benefits that cloud
computing makes possible.

EAGER also extends PaaS with support for the specifica-
tion and analysis of governance policies for APIs and their
application to cloud-hosted web services statically, during
deployment, and at runtime. EAGER targets RESTful web
services since REST is the predominant service architecture
used for web and cloud APIs and REST governance solutions
are incomplete and ad hoc. In summary, EAGER supports and
provides automation for API policy specification, static and
dynamic policy verification, and scalable load-time and run-
time policy enforcement throughout the lifecycles of APIs.

III. INITIAL INVESTIGATIONS INTO EAGER

To implement EAGER, we employ the AppScale PaaS as
our research vehicle and software infrastructure. AppScale is
a distributed, scalable, and elastic runtime system that we
have developed in prior work to facilitate research into and
development of the next-generation of cloud programming
systems. AppScale is open source, is easy to use and deploy
over on-premise or public IaaS systems, and modularly in-
tegrates, via a unifying set of APIs, a wide range of cloud
services, technologies, and research innovations that can be
compared, contrasted, extended, and empirically evaluated. We
extend AppScale to provide the capabilities required to support
EAGER (scalable API governance) within an open source
distributed cloud platform. In particular, we extend AppScale
with

• Policy language support that unifies policy specification
across different API policy types (e.g., business, main-
tenance, security and access, and performance) that is
amenable to fast verification and analysis,

• Policy verification and translation techniques for statically
checking the correctness of policies and for automatically
generating test cases, deployment, and runtime checks,

• Deployment techniques that manage the distributed envi-
ronment into which APIs and policies are added, updated,
and removed, and

• Runtime techniques that enforce runtime policies, syn-
chronize test/dev and production deployments, and pro-
vide API deployment rollback.



Our early investigations into EAGER have two foci:
deployment-time and runtime API policy enforcement, and
tools for API analysis that facilitate change control. To enable
the former, we integrate API management (i.e. the WSO2
API Manager [7]) into AppScale. For end-to-end policy en-
forcement for APIs, we decouple the API manager from the
extensive web services technologies to which it is linked and
extend it with new features that integrate it into the cloud
platform and interoperate with our EAGER language tools,
deployment service, and runtime mechanisms. The EAGER
API manager intercepts API deployment and access requests
in the PaaS and enforces policies at deployment and run time.

To facilitate change control, we provide a tool that devel-
opers, IT staff, and business stakeholders can use to reason
about the differences between related APIs, so that they may
ultimately control the impact of API churn on their API con-
sumers via EAGER governance policies. API “churn” refers
to the rapid evolution (versioning and replacement) that APIs
experience as a result of consumer demands, competition, and
market pressure. Churn has become increasingly frequent for
many popular APIs and is particularly disruptive when API
changes require client-side code modification. For example,
there have been 86 releases of the Amazon EC2 service from
August 2006 to August 2013 [8]. Twitter released the version
1.1 of their web API on September 2012, and pulled the
version 1.0 of out of production on May 2013 [9]. eBay has
released 13 versions of their trading API during the first two
quarters of year 2013 alone [10]. The licensing terms of the
Amazon Product Advertising API have changed twice between
the years of 2011 and 2013 [11]. This churn has impacted vast
numbers of individuals and client-side technologies.

Our approach employs a formal and automated mechanism
for quantifying the similarity of two APIs or two API versions.
Our tool uses this information to estimate client-side “porting
effort”, i.e. the work that is needed to modify code that
consumes and accesses the API so that it can consume and
access a new or different version of the API. Key to our
approach is that we estimate porting effort (via API similarity)
without requiring client-side code analysis (requiring such is
not scalable and is infeasible in many cases).

API similarity can be analyzed from two perspectives:

• Syntactic similarity – Similarity of the inputs and outputs
of web APIs, and

• Semantic similarity – Functional and behavioral similarity
of web APIs.

Of the two, checking for syntactic similarity is a solved
problem. Given a machine-readable description of the inputs
and outputs of the APIs, static analysis methods can be used
to verify whether two web services APIs are syntactically
compatible. However, checking the semantic compatibility of
web APIs is significantly more challenging. Existing semantic
matchmaking methods solve this problem using semantic
ontologies, process models or state machine models (e.g. [12],
[13], [14], [15], [16]), all of which are complex, laborious
and potentially computationally intensive. We address this

limitation via a significantly more efficient technique that is
simple and scalable to implement.

Our approach uses axiomatic semantics to describe the
functionality and behavior of web APIs. We document the
semantics in a machine-readable manner using a Python subset
specifically designed to capture web service API characteris-
tics. We keep our approach simple by disallowing complex
programming constructs (e.g. loops, functions etc.), and re-
stricting the subset to a side-effect-free programming model
when documenting API semantics. Then we derive abstract
syntax tree (AST) representations [17] of semantic predicates
expressed in our language to compare and reason about the
semantic similarity of different web APIs. We use a Dice
coefficient [18] based AST similarity algorithm and Hoare’s
consequence rule [19] to compute a porting effort score for
any two given web APIs.

IV. INITIAL FINDINGS

To assess our approach for estimating porting effort and
API similarity, we have implemented a EAGER prototype.
Using this prototype, we have empirically evaluated its efficacy
using randomly generated APIs with which we can control API
similarity a priori. We have also analyzed the prototype using
a number of web APIs from popular e-commerce and social
networking venues. Our experimental results indicate that our
mechanism is efficient, and delivers accurate results under
most circumstances. We have further tested the validity of our
approach by comparing the results computed by our formal
mechanism with those provided by some human developers
when manually analyzing several web APIs.

Unsurprisingly, the initial experiments performed using ran-
domly generated web API specifications show that the porting
effort between APIs tends to increase with the number of
semantic predicates. As the number of semantic predicates
increases, the API consumer (e.g. the developer of the ap-
plication consuming the API) is put under more and more re-
strictions. Therefore, when porting among different web APIs,
the developer has to take more constraints into account, and
do more patchwork to reconcile the differences among these
restrictions. These activities increase porting effort and the
experimental results suggest that our porting effort evaluation
mechanism captures this phenomenon accurately.

When considering real world web APIs, we observe a
fairly large proportion of the API pairs within a set of APIs
ostensibly serving the same function, have a low porting
effort score. For example, we looked at three API populations:
social media, airline e-commerce, and video search. In each
of them, 50% of the pairs have a low porting effort score, a
modal characteristic not present in the data obtained from the
randomly generated APIs. Again, this result is confirmational
with respect to intuition. In API populations that serve similar
web services most APIs have a lot in common with each
other. For example, most social media login APIs have similar
constraints on username and password. Most airline APIs have
similar requirements with respect to specifying departure and
arrival cities, travel dates and the number of passengers. Most



video search APIs also have some constraints in common,
in the sense most APIs at least accept simple text queries
to perform keyword-based search. These similarities explain
how current mobile and desktop applications currently manage
multiple APIs in e-commerce and social computing settings.

Finally, we asked student developers who were in the
process of building applications to access some of these venues
for their respective scoring of the difficulty associated with
porting from on API to another. We then applied statisti-
cal clustering to both the scoring results generated by our
methodology and to the results given to us by the developers.
The clustering results show a strong mapping between our
methodology and human perception of porting effort with
respect to categorizing a particular port as ”hard” or ”easy.”

V. FUTURE WORK

EAGER’s API similarity toolset provides a way for develop-
ers and business stakeholders to reason about how clients/con-
sumers of their APIs will be impacted by potential changes.
We plan to extend this toolset to automate analysis syntactic of
syntactic compatibility as part of future work. Most web APIs
use data types such as XML and JSON for receiving inputs
and sending outputs. This uniformity enables modeling the
web service inputs and outputs using a structured data model
consisting of a simple type system. Once we formulate such
a data model, it is straightforward to automate the process.

We also believe that our approach to semantic specification
of APIs in machine readable form can be extended to specify
access control policies. Using a restricted form of an existing
programming language (such as Python) provides two benefits:
1) It does not require the users to learn a new language for
policy specification, 2) It allows us to appropriately restrict the
language to enable automated analysis. Using this approach,
we plan to develop automated techniques for policy analysis,
such as checking if a policy is stronger or weaker than another
policy, and change-impact analyses that identify the effects
of a policy change. We plan to implement these analyses by
translating the analysis questions to satisfiability queries in
decidable theories and then using automated decision proce-
dures (such as SAT-Solvers or SMT-Solvers). Focusing on API
usage and using a restricted policy language will enable us to
develop a scalable static analysis framework for API policies.

Finally, we are investigating other aspects of API gover-
nance within the EAGER framework. In particular, we are
developing methodologies for automating policy-based change
control and auditing capabilities to manage APIs in large-scale
deployments. Cloud computing, as both a research and com-
mercial discipline, has developed a number of new approaches
for managing “soft” resources in highly scalable settings. We
plan to leverage many of these developments to develop API
governance methods for scalable systems.

VI. CONCLUSION

APIs have emerged as a key component of the modern
digital economy and we believe the scientific community
will want to leverage the technological developments that

this primacy is engendering. However, even though APIs are
the longest-lived and most expensive software artifacts, little
research has yet focused on what is necessary to implement
good IT governance of them.

Our work is taking an initial step towards the development
of a system for implementing API governance by leveraging
recent advances in cloud platform as-a-service technologies.
This paper describes our approach and platform (called EA-
GER), and overviews our initial investigations into tools that
help developers and business stakeholders reason about API
similarity and change control as part of the API governance
process and that facilitates EAGER enforcement of policy-
based change control. Our initial results are promising, leading
us to conclude that API governance is worthy of on-going
investigation and that it will play a key role in the next
generation of PaaS systems.

VII. ACKNOWLEDGEMENTS

We thank the reviewers for their valuable feedback. This
work was funded in part by NSF (CNS-0905237 and CNS-
1218808) and NIH (1R01EB014877-01).

REFERENCES

[1] “Mashery,” ”http://www.mashery.com” [Online; acc 27-Sept-2013].
[2] “Layer7,” ”http://www.layer7tech.com” [Online; acc 27-Sept-2013].
[3] C. Krintz, “The appscale cloud platform: Enabling portable, scalable

web application deployment,” in Internet Computing, 2013.
[4] “Google app engine,” ”http://code.google.com/appengine/” [Online; acc

27-Sept-2013].
[5] “Microsoft windows azure,” ”http://http://www.windowsazure.com/en-

us/” [Online; acc 27-Sept-2013].
[6] “Amazon Web Services,” ”http://aws.amazon.com” [Online; acc 27-

Sept-2013].
[7] “WSO2 API Manager,” http://wso2.com/products/api-manager/, 2013,

[Online; acc 27-Sept-2013].
[8] “Release Notes: Amazon Web Services,”

http://aws.amazon.com/releasenotes/Amazon-EC2, 2013, [Online;
acc 02-Sept-2013].

[9] “Twitter API v1 Retirement: Final Dates,”
”https://dev.twitter.com/blog/api-v1-retirement-final-dates” [Online;
acc 27-Sept-2013].

[10] “eBay Trading Web Services: Release Notes,”
”http://developer.ebay.com/DevZone/XML/docs/ReleaseNotes.html”
[Online; acc 27-Sept-2013].

[11] “Product Advertising API,” ”https://affiliate-
program.amazon.com/gp/advertising/api/detail/agreement-
changes.html” [Online; acc 27-Sept-2013].

[12] G. Salaun, L. Bordeaux, and M. Schaerf, “Describing and reasoning on
web services using process algebra,” in IEEE Web Services, 2004, pp.
43–50.

[13] Z. Shen and J. Su, “Web service discovery based on behavior signatures,”
in Services Computing, 2005, pp. 279–286.

[14] S. Hallé, T. Bultan, G. Hughes, M. Alkhalaf, and R. Villemaire, “Run-
time verification of web service interface contracts,” IEEE Computer,
vol. 43, no. 3, pp. 59–66, Mar. 2010.

[15] H. S. Kim, S. I. Kim, and W. Jung, “Ontology modeling for rest open
apis and web service mash-up method,” in Information Networking
(ICOIN), 2013, pp. 523–528.

[16] M. Melchiori, “Hybrid techniques for web apis recommendation,” in
International Workshop on Linked Web Data Management, 2011, pp.
17–23.

[17] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Software Maintenance, 1998,
pp. 368–377.

[18] W. B. Frakes, “Stemming algorithms.” 1992.
[19] C. A. R. Hoare, “An axiomatic basis for computer programming,”

Commun. ACM, vol. 12, no. 10, pp. 576–580, Oct. 1969.


