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Abstract

We experiment with variations of a method for constructing low-density parity-

check codes to investigate the effect on decoding performance under the sum-

product algorithm. The method uses circulant permutation matrices or affine per-

mutation matrices as building blocks. We have developed an algorithm to choose

these matrices so as to maximize the girth of the parity-check matrix. Substantial

performance gains result from requiring large girth, but other factors also play a

role.

Simulations were conducted using a wide-area computational grid program,

which allowed investigation of high signal-to-noise ratios and their corresponding

low output bit error rates.

1 Introduction

In this article we analyze the performance of low-density parity-check (LDPC) codes
generated by three methods, all based on the same general construction. We find that, in
all methods, the codes with the largest possible girth substantially outperformed those
with smaller girth. In fact, for two check matrices with the same girth g, we observed a
correlation between the number of cycles of length g and error correction performance.
In order to achieve a fair comparison, all codes tested were (3, 6)-regular, had designed
rate 1

2
and were of one of three lengths. We used the sum-product algorithm with a

maximum of 200 iterations. To determine the bit error rate for each code, we developed
a wide-area computational grid program capable of decoding a large number of randomly
generated input vectors simultaneously. By aggregating the computational power from
several large installations, we are able to investigate high signal-to-noise ratios and their
corresponding low output bit error rates.
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CAREER-0093166, ANR-0213911, CHE-0321368, and CHE–0216563, the San Diego Supercomputer

Center, and by Hewlett-Packard.



We build on a standard approach for constructing low-density matrices, which is to
write the matrix H as an R × L composite of submatrices:

H =









A11 A12 . . . . . . A1L

A21 A22 . . . . . . A2L

. . . . . . . . . . . .
AR1 AR2 . . . . . . ARL









(1)

The parameters R and L are usually relatively small and the Arl have a simple description.
This leads to a compact description of H , which should be advantageous in hardware
implementation.

There have been several articles using circulant permutation matrices for each Arl,
for example [3, 5, 12], while [1] introduced the use of affine permutation matrices. A
method for achieving large girth in the bipartite graph associated to H was presented in
[6] and generalized in [8]. Here we use three methods based on the general construction
in [8] for choosing the submatrices. The first method takes each Arl to be a circulant,
the second uses either the zero matrix or a circulant. In the third method, each Arl is a
sum of affine permutation matrices.

2 The construction

In this section we apply the general construction and results concerning girth from [8]
to the three methods. Since the girth is a property of the bipartite graph of H , the
construction is described using the language of graphs (see also [11, 7]). We define a
bipartite graph as a set of edges, E, two disjoint sets of vertices, L and R, and two
structural maps, λ : E → L and ρ : E → R designating the ends of each edge e.

Construction 2.1. Let E, L, R, λ, ρ be a finite bipartite graph. We will call it the seed
graph for the following construction. Let G = {1, . . . , N}. For each e ∈ E fix a permu-

tation θe of G. We define a new bipartite graph with edge set E × G, vertex sets L × G
and R × G and structural maps λ̄(e, g) = (λ(e), g) and ρ̄(e, g) = (ρ(e), θe(g)). We will

call the resulting graph the covering graph.

For each l ∈ L and r ∈ R, there is a subgraph of the covering graph consisting of two
vertex sets {(l, g) : g ∈ G} and {(r, g) : g ∈ G}, each with N elements, and having edge
set {(e, g) ∈ E × G : λ(e) = l and ρ(e) = r}. Let Arl be the N × N incidence matrix
for this subgraph. It is the sum of the permutation matrices for the θe satifying ρ(e) = r
and λ(e) = l. The incidence matrix for the covering graph is then





A1,1 . . . A1,#L

. . . . . . . . .
A#R,1 . . . A#R,#L





We consider first the case where the seed graph is a complete bipartite graph and each
θe is a cyclic shift permutation given by θe(x) ≡ x + ce mod N . The following result
shows how to choose the ce to construct a graph with given girth less than or equal to 12.

Proposition 2.2. In Construction 2.1, let the seed graph be a complete bipartite graph.

Let each θe be a translation, by ce modulo n. Let Y be the submodule of Z
E defined by

∑

e∈ρ−1(r)

ye = 0 and
∑

e∈λ−1(l)

ye = 0 (2)



Suppose that M ≤ 5, and suppose that for any y ∈ Y of L1-norm at most 2M ,
∑

e∈T

yece 6≡ 0 mod N (3)

Then the covering graph has girth at least 2M + 2.

Based on this proposition (actually a generalization of it), we implemented an algo-
rithm in Magma that chooses the constants ce recursively. The algorithm first computes
the “short” elements of Y (those of L1-norm at most 2M), and, given an enumeration
of the edges, sorts the short vectors by the maximum element of the support. For each
edge e in turn, it generates a list of elements of Z/N that would violate the constraints
imposed on ce by (3). It then chooses ce outside of this set.

It should be clear that a cycle in the covering graph yields a cycle in the seed graph,
by projection onto the first coordinate. One may think, in Construction 2.1, of using the
permutations to “break open” the small cycles in the seed graph. In fact, a sequence of
edges e1, f1, e2, . . . , em, fm determining a cycle in the seed graph is opened if and only if
the composition

θ−1
fm

θem
· · · θ−1

f1
θe1

(4)

has a fixed point [1, 3]. We distinguish between two types of cycles, balanced and un-

balanced. In a balanced cycle, each edge is traversed in each direction the same number
of times. For example, if the seed graph has three edges between some pair of vertices,
then it has a balanced 6-cycle. Similarly, a complete bipartite graph with at least 2 right
vertices and 3 left vertices has a balanced 12-cycle. In Construction 2.1, balanced cycles
cannot be broken if the permutations are all translations (or, more generally, if they
commute), since the composition (4) is the identity. Consequently, the method presented
in Proposition 2.2 can only achieve girth 12 as observed in [5] .

The second method uses a sparser seed graph that has no balanced 12-cycles. Its
incidence matrix is the concatenation of two incidence matrices for Fano planes:

W =





















1 1 1 0 0 0 0 1 1 1 0 0 0 0
1 0 0 1 1 0 0 1 0 0 1 1 0 0
1 0 0 0 0 1 1 0 0 1 1 0 1 0
0 1 0 1 0 1 0 0 1 0 0 1 1 0
0 1 0 0 1 0 1 1 0 0 0 0 1 1
0 0 1 0 1 1 0 0 1 0 1 0 0 1
0 0 1 1 0 0 1 0 0 1 0 1 0 1





















With this seed matrix, we used the Magma algorithm outlined above to construct a
girth-14 covering graph which yields a rate 1

2
code of length 34, 118. The parity-check

matrix may be described by giving the dimensions of the circulants (N = 2437) and, for
each of the 42 edges in the seed graph, the corresponding row, column and the shift for
the circulant. These may be written as sequences:

ρ = [1, 2, 3, 1, 4, 5, 1, 6, 7, 2, 4, 7, 2, 5, 6, 3, 4, 6, 3, 5, 7,

1, 2, 4, 1, 3, 6, 1, 5, 7, 2, 3, 5, 2, 6, 7, 3, 4, 7, 4, 5, 6]

λ = [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7,

8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14]

c = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 5, 11, 0, 10, 32, 0, 39, 72,

0, 14, 78, 0, 96, 226, 0, 177, 363, 0, 230, 490, 0, 431, 907, 0, 411, 1001, 0, 774, 1726]



We also constructed a covering graph of girth 12 from this matrix that yielded a rate 1
2

code of length 6, 072, which, as we will later show, performed quite well as compared to
the previous method.

The third method for code construction uses a smaller seed graph and affine permu-

tations rather than circulants. Consider the affine map f on Z/N given by

f(x) = ax + b.

When a is coprime to N , f gives a permutation of Z/N . The corresponding affine
permutation matrix has a 1 in the i, j position if and only if i ≡ aj + b mod N . Note
that when a = 1, this permutation matrix is circulant.

For rate-1
2

codes with (3, 6)-regular parity-check matrices, we used the simplest pos-
sible seed graph, one with incidence matrix [3, 3]. The check matrix is then

[M1 + M2 + M3 M4 + M5 + M6],

where each Mi is an N×N affine permutation matrix. Let us write the affine permutations
as x 7→ aex + be mod N for e = 1, . . . , 6. Our technique for obtaining large girth is to
handle balanced cycles and unbalanced cycles separately, using the Chinese Remainder
Theorem. The condition for breaking balanced cycles depends on polynomials Zπ, defined
for each permutation π ∈ Sm as

Zπ(u1, . . . , um, v1, . . . , vm) =

m
∑

i=1

vi



(

i−1
∏

j=i

uπ(j))(

m
∏

j=i+1

uj) − (

π(i)−1
∏

j=i

uπ(j))(

m
∏

j=π(i)+1

uj)





Proposition 2.3. In Construction 2.1, suppose that p and q are coprime integers, N =
pq, and G = Z/N . Suppose that each θe is an affine permutation θe(x) ≡ aex+ce mod N
and that ae ≡ 1 mod p. Let Y be the submodule of Z

E defined in Proposition 2.2 above.

Also suppose that the following conditions hold:

1. For any y ∈ Y of L1-norm at most 2M ,

∑

e∈E

yebe 6≡ 0 mod p

2. For any m ≤ M , for any permutation π on {1, . . . , m} and for any e : {1, . . . , m} →
E, such that e and e◦π satisfy e(i) 6= e(π(i)), e(i) 6= e(π(i−1)), ρ(e(i)) = ρ(e(π(i)))
and λ(e(i)) = λ(e(πǫ(i))) we have

Zπ(ae(1), . . . , ae(m), be(1), . . . , be(m)) 6≡ 0 mod q

Then the covering graph has girth at least 2M + 2.

The Magma program discussed earlier computes the values be mod p. A separate
Magma program recursively computes ae mod q and be mod q, base on item (2) of the
proposition. The Chinese Remainder Theorem is then employed to get ae and be modulo
pq.



3 Experimental Results

To investigate the error performance of each LDPC code, we have written a grid pro-
gram [4] that is capable of marshaling a large heterogeneous collection of machines. The
program consists of a control infrastructure that we execute on machines located at the
University of California, Santa Barbara (UCSB) and ”computational engines” that can
be run on any machine connected to the Internet running a variant of Unix or Linux.
Each computational engine contacts the control programs via a network connection it
establishes between itself and UCSB. The control programs send each engine an LDPC
code to test, a signal-to-noise ratio (SNR) to test, and the number of tests to perform
before checking back for further instructions.

When a computational engine receives these parameters from a control program
(which it contacts immediately when it starts) it begins testing the graph by gener-
ating random error vectors according to the transmitted SNR. Each input vector is then
decoded using the sum-product algorithm with a maximum of 200 iterations, and the
results are checked. When a decoding failure occurs, both the input vector that failed
to decode correctly and the resulting output vector are sent to the control program for
logging. For each signal-to-noise ratio, test vectors were generated until 200 vectors failed
to decode. The total number of bits in all tested code words as well as the number of
bit failures are also sent and aggregated by the control program to compute an overall
bit-error rate.

In this study, we used approximately 850 different processors from 9 sites, with as
many as 450 actively computing at any one time. We combined large-scale clusters (some
behind firewalls) with a pool of approximately 500 machines managed by Condor [10]
at the University of Wisconsin. Condor is a cycle-harvesting system that spawns pro-
cesses submitted to it on the machines it controls. When those machines are reclaimed
by their respective users (by the activation of the machine console or the presence of
locally-generated processes) the Condor-spawned processes are terminated. In this way
it uses the “idle” cycles that are available from machines running Condor. At present,
the Condor pool at Wisconsin is able to harvest cycles from approximately 2000 Linux,
Solaris, and IRIX machines located on the University of Wisconsin campus, and at the
National Center for Supercomputing Applications (NCSA) in Urbana-Champaign, Illi-
nois. The 500 machines we use from Condor in this study are chosen by the Condor
system itself based on the availability of machines, and the other Condor jobs with which
our application must compete. Our program uses EveryWare [2] to combine the com-
putational power provided by this opportunistic Condor access with jobs launched via
different batch-queuing mechanisms on various high-performance cluster machines. The
result is a nationally-distributed program for determining the bit-error rate of a graph
that can use all of the processors given to it (by Condor or any other local scheduling
mechanism).

The results of these experiments are shown in the performance curves below. Each
shows the bit-error rate after decoding as a function of the signal to noise ratio of a
symmetric memoryless Gaussian noise channel. We discuss here codes of length 282,
length 1000 (approximately) and length 6000 (approximately). In these graphs, a solid
line is used for codes from the first method (using circulants), a dashed line for codes
constructed from the third method (affine permutations), and dot-dash line for the second
method (using the seed matrix from the Fano plane). Some of the graphs include the
performance of randomly generated codes, which are shown using a dotted line. A symbol



is used to indicate the girth, a triangle for girth 6, a square for girth 8, a pentagram for
girth 10, and a hexagram for girth 12.

Figure 1 compares four codes of length 282 and rate 1
2
: a random generated code of

girth 6, a randomly generated code of girth 8, and codes from the first and third method
with girth 8. The difference in performance is not dramatic, but we can see that the
randomly generated code of girth 6 was worst, and the first construction method was
best, the difference between these two being a factor of 10 at SNR 4.5. At this length we
tested altogether ten randomly generated codes of girth 6 and five generated by method
one. We found that among the randomly generated codes there is a significant correlation
(.634; p < .05) between the number of 6-cycles in the associated graph and the logarithm
of the bit error rate. Among all codes of length 282 and girth 6 tested, the correlation is
also .634 (p < .01), and this correlation goes up to .851 (p < .0005) after the removal of
one outlier.
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Figure 1: Comparison of rate-1
2
, length-282 codes.

Figure 2 compares four codes of length roughly 1000 and rate 1
2
: The codes from

methods one and three are from matrices with girth 10. The two methods required
slightly different lengths; we used a length of 1002 for method one and 1010 for method
three. Two codes from randomly generated matrices, of girths 6 and 8, are also shown,
the lengths are 1008 in each case. The difference in performance is much more significant
at this length. The performance for the random matrix of girth 6 is by far the worst;
the random matrix of girth 8 also performs substantially worse than the codes generated
using the other two methods, whose performances are very similar.

Figure 3 compares four codes of rate 1
2

and length roughly 6, 000. We used the first
method with length 6, 078 and a matrix with girth 12. We tried two codes with the
second method each of length 6, 062 and two girths, 8 and 12. A randomly generated
code of girth 6 and length 6, 080 was also tested. At SNR 2 we see that the ouptut BER
for the code from method two is better than the random code by a factor of 103 and
better than the code from method one by a factor of 10.

We observed something surprising in the course of our experiments which is illustrated
in Figure 4. The Magma algorithm discussed above chooses each ce outside of a certain
excluded set Be. We used two methods for choosing ce: One was to choose the minimum
integer not in Be, and the other was to choose a random element not in Be. We found
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Figure 2: Comparison of rate-1
2
, length 1002-1010 codes.
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Figure 3: Comparison of rate-1
2
, codes of length roughly 6000.

that the random choice was signicantly better. Figure 4 compares two girth-8 matrices
of length 282, and two girth-8 matrices of length 1002, in each case one matrix used
the minimimum element of Be and the other a random element. The two matrices
using the minimum choice actually have roughly the same performance, although one
has length 282 and the other length 1002. In this example and in virtually all cases
tested, the random choice was dramatically better than the minimum choice. The only
exception was when the size N of the circulants was very close to the minimal value
necessary to achieve a specified girth. In this case the choices yielded similar results. We
also observed that matrices constructed using the minimum choice had a much larger
number of cycles of length g than those constructed using the random choice. In the
previous three figures and in Figure 5, all matrices for the curves shown were constructed
using the random choice.

Figure 5 shows the effect that increasing girth has in the first construction method. All
three codes tested were of length 1002 and rate 1

2
. The sole difference in the construction
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Figure 4: Comparison of two methods for choosing coefficients at lengths 282 and 1002.

was that we imposed the conditions (3) of Proposition 2.2 for M = 2, M = 3, and M = 4,
respectively, to ensure girths 6, 8, and 10 for the graphs. We used the random choice for
each ce as opposed to the minimum choice as discussed in the previous paragraph. Each
increase of 2 in the girth decreased the bit error rate by a factor of 10 at SNR 3 and
above.

1 1.5 2 2.5 3 3.5 4 4.5 5
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/N
0
 [dB]

B
it 

er
ro

r r
at

e

circ. girth 8
circ. grith 10
circ girth 12

Figure 5: Comparison of rate-1
2
, (3, 6)-regular, length-1002 codes with varying girth.

4 Conclusion

We tested the performance of LDPC codes using three methods for constructing parity-
check matrices. In order to isolate the effect of small cycles in decoding, all codes tested
in our experiments were (3, 6)-regular. For all three methods, we found that large girth
was advantageous. The superior performance at length 6, 000 of the method using a



a seed matrix from two Fano planes, suggests that a sparse seed matrix may also be
advantageous.
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