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Abstract

We present the latest instantiation of GridSAT [5], a distributed and complete satisfiability solver that
is explicitly designed to aggregate grid resources for application performance. GridSAT was previously
shown to outperform the state-of-the-art sequential solvers. In this work, we explore the unprecedented
solving power GridSAT enables through algorithmic and implementation innovations. We describe
the implementation techniques that allow GridSAT to leverage a variety of high-end batch-scheduled
resources, clusters, interactive workstations, and personal computing resources through autonomous
scheduling, checkpoint scheduling, and work migration. These innovations have allowed GridSAT to
solve a set of “hard” and previously unsolved industrial andcommunity satisfiability problems. In ad-
dition to this new solution power, GridSAT also outperformsthe otherwise highest performance general
solvers on the annual SAT competition performance benchmarks.
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1 Introduction

Grid computing [11] is an emergent field in computer science that focuses, in part, on the aggregation
of geographically distributed and federated computational resources. These resource aggregations can
be harnessed by grid applications to solve problems in science and engineering [21, 1] which require
large computing power. Solving such challenging problems and enabling new scientific results is an
integral part of the grid computing vision.

One such challenging problem is propositional satisfiability. This problem involves finding a set of
binary assignments to variables that satisfies a set of constraints (i.e. makes a binary expression evaluate
to “true”). The problem of solving satisfiability instancesis important from both theoretical and practi-
cal perspectives and is, in general, NP-complete. In practice, many engineering disciplines require the
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solution to domain specific instances of satisfiability. Such disciplines include scheduling, model check-
ing, security, Artificial Intelligence, software verification, and the the area of Electronic Design Au-
tomation (EDA) which includes circuit design [29], Field-Programmable Gate Arrays (FPGA) detailed
routing [23], combinational equivalence checking [18] andautomatic test and pattern generation [20].

Because satisfiability solvers [22, 12, 15, 3] have become more efficient, they are now widely used
in many industrial and research settings. There has been an extensive research effort geared towards
the development of gradually more efficient satisfiability solvers [22, 12, 15, 3]. These solvers use
different techniques to navigate the entire search space ofpossible truth assignments for the variables of a
given expression. The best (fastest and most comprehensive) of these solvers uselearningoptimizations
that permit the search space to be “pruned” during execution. Learning [28] introduces new deduced
propositions which improve the solver’s efficiency by obviating subtrees in the space of possible variable
assignments.

Because learning requires a large, centralized database ofintermediate propositions to be searched and
updated frequently, the best known solvers are sequential.These sequential solvers are characterized by
heavy use of compute power (CPU) as well as the memory of the host machine as the database must be
kept memory-resident (or the speed becomes unacceptably low).

Research in parallel solvers [5, 17, 30, 8] , shows that usinga large pool of computational resources
leads to better performance for most problems. The aggregate CPU power and memory of the hosts
allows the solver to navigate the search space faster. Thus acomputational grid populated by a a large
pool of resources offers potential improvements in solver speed. With the exception of those results re-
ported in [5], however, the fastest solutions to the largestnumber of problems is generated by sequential
solvers [26, 25].

By carefully leveraging the resources in grid settings, ourgoal is to build a parallel and distributed
satisfiability (SAT) solver that correctly solves previously infeasible industrial problem instances, the
answers for which cannot be determined in any other way. Secondarily, we would like to be able to
solve faster the problems that sequential solvers find feasible.

Our previous work with GridSAT [5, 4] demonstrates the latter. By dynamically acquiring and re-
leasing resources under the control of an automatic scheduler, GridSAT improves the time-to-solution
for various feasible SAT instances. Indeed, GridSAT outperforms the best-known solver on all prob-
lems that this leading solver can complete [26, 25]. We have also been able to use GridSAT to solve
several previously unsolved problems using non-dedicated, wide-area grid resources. It is these new
domain-science results, and the techniques we have employed to achieve them, that are the subject of
this paper.

In particular, by combining different batch-controlled super-computers with interactive workstations
and user desktop machines, we have applied GridSAT tohard SAT problems – ones that are not only
unsolved but for which previous attempts at solution using other general techniques have failed. This
pattern of combining different types of resources is new anddifferent from that used by existingparallel
SAT implementations [17, 30]. Moreover, we know of nodistributed(i.e. network and/or grid enabled)
SAT implementations, efficient or otherwise, at the time of this writing.

The resources in a computational grid may be of two differenttypes: time-shared or batch controlled.
In the case of time-shared resources the application will compete with other user applications running
simultaneously on the host machine. However, since these resources are always available the applica-
tion can continue to make progress. Other resources which are controlled by a batch scheduler, will
participate intermittently in the application through some of their nodes. But these systems will provide



significant compute power depending on the size of the application’s request.
In order to enable a grid implementation of a SAT solver to usemany resources simultaneously, we

need to address two types of challenges. First the solver’s algorithm needs to be modified so that it
can run in parallel while ensuring that the parallel components cooperate to improve over-all efficiency.
The second challenge is developing a framework capable of running the parallel solver in a very volatile
computational environment.

Solving the above two problems was at the core of our methodology in designing the application
components and their interactions. Implementing this methodology can be achieved by selecting suitable
technologies. Examples of these technologies include those from parallel computing, which predate grid
computing,such as MPI [9]. The more relevant technologies are those which were the outcome of grid-
specific research projects such as Globus [10], Web Services[33] and related standards. We discuss
in this paper the requirements imposed by the application’sdynamic behavior and constraints on the
technology so that a successful implementation is realized. We also describe the current design and
implementation of the application.

We have developed GridSAT, a distributed satisfiability solver capable of running on a computational
grid. GridSAT implements a parallel algorithm for solving satisfiability problems based on Chaff [22].
GridSAT distributes and shares the internal proposition database among processors in a way that takes
advantage of dynamic resource performance predictions to achieve new levels of solver efficiency.

In this paper, we detail the current, most capable version ofGridSAT. Our most recent improvements
in the clause sharing and resource scheduling algorithms have made it possible to solve previously un-
solved satisfiability problems from the field of FPGA routingas well as artificially generated benchmarks
specifically design to foil automatic SAT solvers.

2 GridSAT: SAT Solver for the Grid

A satisfiability problem is expressed as a boolean formula over a set of variables. Most solvers operate
on formulas expressed in Conjunctive Normal Form (CNF) in which an expression conjoins (logically
“ANDs”) a set ofclauses, each of which may contain disjoined (“ORed”) literals. A literal is either an
instance of a variable (V ) or its complement(∼V ) and variables are boolean. A SAT problem instance
is termedsatisfiableif there exists a set of variable assignments that makes the formula evaluate totrue
where “true” corresponds to a boolean1 algebraically. If such an assignment does not exist the the
problem is declaredunsatisfiable.

GridSAT is based on Chaff [22], a sequential SAT solver algorithm. Chaff, in turn, builds upon the
Davis-Putnam-Loveland-Logemann (DPLL) [7] algorithm which solves a SAT instance by making a set
of speculative variable assignments (termed “decisions”)stored in adecision stack. When these deci-
sions are propagated through the clauses they could lead to acascade ofimplications. Implications are
assignments of boolean values to different variables as deductive consequences of previous speculative
decisions. These speculative decisions and the resulting implications may lead to logical conflicts – de-
duced contradictions in which a variable must take on both boolean values because of different clauses
in the original problem. In Chaff, as well as other solvers, the performance of the algorithm is enhanced
by using techniques for adding new deduced clauses after a conflict occurs. This technique is called
Learning[27, 19, 28]. Using learning, the algorithm may generate a vast number of additional clauses
during execution. These clauses consume memory, possibly overwhelming the capacity of the host, and
also may slow the algorithm as they can add to the search complexity of the clause database.



Figure 1. GridSAT resource views

GridSAT’s distributed solver addresses three significant challenges to improving solver performance.
First, GridSAT parallelizes the search algorithm that is navigating the space of possible truth assign-
ments. Second, certain learned clauses from the various solvers are selected to be distributed and shared
across resources. Finally, the GridSAT application components are dynamically scheduled at runtime to
take advantage of those available resources which can enhance the solver’s performance.

To apply a parallel search technique to SAT, we split the original problem into subproblems (having
decision stacks with different truth assignments), each ofwhich is independently investigated for satis-
fiability. Subproblems, themselves, may be split in the sameway, forming a recursive tree, each node
of which is assigned to a logically distinct processor. Clause sharing is facilitated by identifying and
sharing only important clauses.

3 GridSAT Architecture and Resource Scheduling

GridSAT is implemented as a special form of the coordinator/client model where individual clients
communicate directly and share clauses (i.e. communication is between peers rather than routed through
the master). The GridSAT application uses two views of the computational resources as shown in fig-
ure 1. The first view employs jobs to classify processes whichbelong to the same resource. The second
view is flat where all processes are part of a single pool. Bothof these views are useful for managing
resources under GridSAT

The coordinator (or master), shown in figure 2, reflects the resource views shown in figure 1. It
consists of the resource manager, the client manager, the scheduler and the checkpoint server. We now
describe the role of these components.

The resource manager is tasked with loading resource information from one or more grid informa-
tion systems such as Globus MDS [6] and the NWS [37]. The scheduler, however, is responsible for
coordinating the interactions between all the components.In addition, it handles interactions with ex-



ternal resources and monitors them to detect failures. For example, the scheduler queries the resource
manager for resource types. If the resource is time-shared,then only one GridSAT process is launched.
For batch systems, the scheduler instead submits one job request. Additional jobs could be manually
submitted and GridSAT will use their resources when they become available. We term this form of
schedulingactive queuing; jobs waiting in queue logically execute on the interactiveresources until the
batch-controlled resources become available. At that time, the scheduler migrates work into the newly
available resources. Thus, the application makes progressusing the slower, shared resources while it
waits in queue. It is the client manager that maintains a listof all GridSAT processes (active and queued)
and monitors their progress.

The GridSAT scheduler is the focal point and is

Figure 2. GridSAT components and their in-
ternal and external interactions. The ex-
ternal components and systems which Grid-
SAT uses, such as the Globus MDS and the
NWS, are shown in clouds.

responsible for coordinating the rest of the com-
ponents and launching new processes, also termed
clients. The scheduler uses a progressive scheme
for starting additional clients on remote resources
and adding them to the active resources’ pool.
Resources which are no longer performing a task
on behalf of GridSAT are released immediately
when possible. The reason for this approach is
the variability and unpredictability of resource us-
age for a particular SAT problem. Some problems
are solved easily using a single host after a short
time period. Other problems, however, might be
harder and require a large number of hosts and
a longer time period. By starting with a small
resource pool and expanding the set of used re-
sources, GridSAT achieves three goals. First, a
small number of resources will be used to solve
the easy problems which results in a smaller com-
munication overhead and therefore shorter time to solve theproblem. Second, GridSAT can adapt re-
source usage to how difficult the problem is perceived. If at aparticular stage the problem is perceived
difficult, the size of the resource pool used will grow. At another stage, the same problem might be per-
ceived to be easy, a smaller resource set will be used, and excess resources will be released. Lastly, by
remaining as small as possible at any given point in the execution, GridSAT promotes allocation stability
and sharing. The scheduler does not waste resources needlessly thus the maximum number of GridSAT
instances can co-exist since each is attempting to use as fewresources as possible for its own problem
instance.

The GridSAT scheduler uses the first available client immediately to start solving the problem. Each
client records the time it took to receive the problem data. Clients also monitor their memory usage. The
decision for splitting a problem is made locally by the client and not by a centralized scheduler. A client
notifies the master that it wants to split its assigned subproblem with another client when its memory
usage exceeds a specified limit (currently 80% of available memory) or after running for a specific
period of time. This time period is determined as twice the duration of the communication period the
client used to obtain the problem data. Using this method, the scheduler allows for computation time
to offset the communication overhead by using the previous communication period as a prediction of



future overhead. The clients, therefore, do not spend most of their time splitting instead of doing useful
computation. The splitting process is performed by the cooperation of the master, the splitting client and
an idle client. Theidle client is a process which is not currently assigned a subproblem to investigate.

The GridSAT solver terminates when all subproblems are solved or one of the clients finds a satisfying
assignment. In the latter case the client which finds the satisfying assignment sends its stack to the
master. Finally, the master saves the final solution, terminates all running clients and cancels any pending
resource requests. Most solvers in the literature are evaluated based on the time the first satisfiable
instance is found. However there are cases [16] where knowing all satisfiable instances is helpful.
GridSAT can also enumerate all the instances where a problemis satisfiable.

3.1 Active Queuing: Efficient Use of Batch Jobs

In GridSAT, initial batch job requests are large with a high number of nodes and long duration. This
leads to a long waiting period in the scheduler’s batch queue. Thus, if a job is not solved after this long
waiting period, then it most probably is a hard problem. Therefore batch jobs are only used when the
problem is hard. When a batch job starts execution, GridSAT migrates work (as a checkpoint file) to
achieve more efficient use of batch nodes. Remote GridSAT nodes, which are numerous, will migrate
immediately to occupy batch nodes. After, migration takes place and since networks are fast within
super-computing nodes, splitting happens at higher rates especially after the above mentioned reductions
in communication overhead. Moreover the GridSAT schedulersenses the additional bandwidth between
clients executing on a supercomputer or cluster. It then increases the size and number of clauses shared
by subproblems inside the tightly coupled resource as a further improvement. Note that the number
of active nodes (i.e. those with subproblems) will increaseexponentially. This happens because the
number of new subproblems is increased in proportion to the number of existing active solvers. Problem
migration leads to a more efficient use of batch jobs.

4 Grid Implementation

4.1 Application Characteristics

The GridSAT application is different from most high-performance computing applications. In gen-
eral, these applications are composed of alternating stepsinvolving computation and communication.
The computation and communication intervals do not overlap. Also the communication steps are used
as synchronization barriers which enable the various components of the application to exchange infor-
mation. Moreover, these applications use a predetermined set of compute resources throughout their
execution.

Our application differs in much of the above aspects. The GridSAT application has variable resource
requirements depending on the problem instance. The numberof resources and duration of use of those
resources cannot be predicted in general for satisfiabilityinstances. In fact, the set of active resources
which are assigned parts of the search space during runtime is dynamic. Resources are added each time
the problem is split. Also resources are released immediately after a subproblem is solved. There can be
many simultaneous acquiring of new resources, through problem splitting, and release of other unneeded
resources at any given instance. Moreover, the applicationcomponents shared intermediate results as
soon as they are produced. These results are asynchronouslyused by all the receiving clients.



Therefore, all the GridSAT segments are event driven and events are produced and consumed asyn-
chronously. The solver components, for instance, can simultaneously perform communication and com-
putation. All application modules are designed and implemented to allow for efficient management and
responsiveness to these events.

Dynamic resource usage are needed, in general, to efficiently solve any satisfiability problem [5].
Solving “hard” satisfiability problems represents furtherchallenges. For “hard” problems, a small num-
ber of resources would be exhausted in a relatively short time. The CPU and memory resources would
be saturated and additional resources are required in orderto make progress in solving the problem un-
der investigation. Therefore, we wanted to use all computational resources at our disposal, in order to
render the solution of the hardest problems more plausible.The set of available resources varied from
desktop machines, to small-size clusters, to supercomputers. This collection of resources was heteroge-
neous in terms of hardware, Operating Systems and resource management software. This heterogeneity
represents a further challenge to the deployment of the application.

These application characteristics described above represent a true Computational Grid application.
Moreover, these characteristics are not unique to GridSAT.Other branch-and-bound or coordinator-
worker applications can benefit from a similar use of computational resources.

A major challenge before implementing the various application components was to develop an im-
plementation strategy. The final implementation aims at using all the available grid resources efficiently
while dynamically adjusting to the application behavior and resource needs.

4.2 Implementation Strategy

Given these resource usage patterns, which are typical for atrue Grid application, we had to choose an
implementation strategy which would satisfy these requirements. There are several technology choices
to select for the implementation of the application. Such options include, among others, MPI [9],
Globus [10], vanilla Web Services [33] and later improvements such as WSRF [24].

According to our experience with GridSAT we have learned that a successful implementation tech-
nology should allow for three pivotal capabilities: dynamic resource pool, error detection and universal
deployment.

The first capability is to allow the use of dynamic a resource pool. This feature, for example, was not
available in MPI-I which did not allow for dynamic Communicators. MPI-2 has introduced extensions
to allow for dynamic creation and destruction of communicators. Globus and Web services also allow
for a dynamic set of resources.

The second capability is error detection and reporting. Since GridSAT runs for extended periods of
time using a set of geographically distributed resources, then network and resource failures are more
frequent. Therefore in order to implement this applicationwe need a technology which allows for the
detection of these errors. From the perspective of the application, the distinction between resource and
network failures is not important. It suffices for the application to obtain a feedback if a certain operation
is not successful after a certain time period.

Error detection and recovery is very important because in our experience all resources experience a
failure at some point. Even those resources which are professionally maintained can become unrespon-
sive from the application’s perspective. Those resources that do not experience hardware and software
failures usually have scheduled routine preventive maintenance periods or a combination of software
and hardware upgrades. From the point of view of the application these are “scheduled” or “anticipated”



failures. Without rigorous error handling the applicationwould not be able to run for extended periods
as shown later in the results section.

Different technologies provide some form of error handling. MPI-I allows for error handling in a lim-
ited scope which is expanded further in MPI-2. Globus GRAM allows for error handling and call-back
functions for job management. In Web Services, WS-Notification [14], WS-BaseFaults [34] and related
standards could be used to provide this functionality. The desirable error handling for our application is
to provide a time period for some actions after which some form of error handling should be performed.
Sometimes if an action fails, then all is needed is to retry it. In other cases, it is assumed that the re-
source (or the connecting network) has failed. This form of error handling is not available for the grid
technologies mentioned above and can be implemented at the application level.

The last desirable capability for a suitable grid technology is universal deployment. This is not entirely
a characteristic of the technology but of the computationalenvironment as well. A widely deployed tech-
nology is advantageous because it reduces the development overhead since one version can be deployed
on all available resources.In our experience there was no grid technology that was universally adopted
and deployed which would enable us to combine all computational resources at our disposal.

Furthermore, in order to deploy our application over a largeset of resources,we had to interface
with many types of resource managers. For example, resources could be managed by one of many
Batch schedulers, Condor [31] or simply shared. Our goal wasto use all these resources simultaneously
regardless of what systems they originate from. This is accomplished by determining a general job
description which can be instantiated differently using specific launchers for each resource manager. For
instance, shared resources can be accessed directly using SSH. Batch systems, however, are accessed by
submitting a batch script with syntax tailored to the scheduler used. Whenever, Globus is deployed we
use it to launch and monitor job submissions.

4.3 GridSAT Implementations

We believe that many of these technologies could be used to develop GridSAT. In fact, we have
developed a previous versions of GridSAT called GrADSAT [4](note the “A” in the spelling) using
GrADSoft. GrADSoft is a set of programming abstractions where the baseline grid infrastructure is
provided by Globus and the NWS. GrADSoft is part of theGr id ApplicationDevelopmentSoftware
(GrADS) project [2, 13] which is a comprehensive research effort studying grid programming tools and
application development. To facilitate experimental application research and testing, the project main-
tains a nationally distributed grid of resources for use as aproduction testbed. Since the GrADS tools
were universally deployed on this testbed we were able to deploy our application with little overhead on
the entire testbed.

The current version of GriDSAT uses EveryWare [36] a very portable communication library. Every-
Ware has been designed explicitly to manage the heterogeneity and dynamism inherent in grid resource
environments. EveryWare can be easily deployed as library on all the resources. In addition, all com-
munication calls use a timeout argument, as desired, for error detection.

The resource management system interfaces with resources which use batch systems as well as desk-
top machines which are accessed through SSH. All resource related operations have been implemented
to allow for a specific timeout. If the resource is not responsive after the timeout period expires, then the
resource is considered unreachable.

In the future, we will explore other technologies as they become more widely used. Our goal would



be to make GridSAT implementation independent where we can use an API for interfacing the appli-
cation with the underlying communication infrastructure.As a result different grid technologies can be
substituted without affecting the application.

5 Experimental Apparatus and Results

Since GridSAT is a true grid application, (robust, portable, heterogeneous, pervasive, etc. [11]) we
ran a set of experiments to show that GridSAT can run for extended periods of time robustly using
a wide variety of resources and also solve previously unsolved hard satisfiability instances. In these
experiments we simultaneously use computational resources that belong to collections of individual
machines, small size research clusters and super-computing scale clusters. The computational resources
we use are composed from four main sources:(1) 40 machines from the VGrADS [35] testbed located
at UTK, UCSD and UCSB, (2) Blue Horizon at SDSC, (3) TeraGrid site at SDSC, (4) TeraGrid site at
NCSA and (5) DataStar at SDSC.

The TeraGrid [32] project is a multi-site national scale project which is aimed at building the worlds
largest distributed infrastructure for open scientific research.

During our experiments, none of the resources we used were dedicated to our use. As such, other
applications shared the computational resources with our application. It is, in fact, difficult to determine
the degree of sharing that might have occurred across all of the available machines after the fact. In
batch controlled system such as Blue Horizon, Data Star and the TeraGrid, the queue wait time incurred
is highly variable because of jobs submitted by other users.

Thus, if it were possible to dedicate all of the VGrADS resources to GridSAT, we believe that the
results would be better. As they are, they represent what is currently possible using non-dedicated Grids
in a real-world compute setting.

These experiments also use a more diverse set of resources for longer periods of time (up to a month
in duration) and multiple job requests. We chose a set of challenge problems from both SAT2002 [25]
and SAT2003 [26] benchmarks. These benchmarks are used to judge and compare the performance of
automatic SAT solvers at the annual SAT conference. All the problems in the benchmarks are shuffled
to insure that submitted benchmarks are not biased in favor or against any solver. These benchmarks
are used to rate all competing solvers. They include industrial and hand-made or randomly generated
problem instances that can be roughly divided into two categories:solvableandchallenging. The solv-
able category contains problem instances that some SAT solvers have solved correctly. They are used
for comparing the speed of competing solvers. Alternatively, the challenging problem suite contains
problem instances that have yet to be solved by an automatic method or which have only been solved
by one or two automatic methods, but are nonetheless interesting to the SAT community. Some of these
problems have known solutions that are known through analytical methods (i.e. the problem has a known
solution by construction), but several of these problems are open questions in the field of satisfiability
research.

In these experiments, we only chose problems from the challenging set. These problems were deemed
hard by all participating solvers in both the 2002 and 2003 SAT competitions. We investigate seven
previously unsolved problems where three instances are from the SAT 2003 benchmark category, and
four are instances from the SAT 2002 benchmark category, allof which we have not been able to solve
using previous versions of GridSAT.

This group of problems represent a variety of fields where problems are reduced to instances of sat-



File name Description SAT/UNSAT/* Time GridSAT Result

3bitadd-31.cnf theoretical UNSAT 8 days -
k2fix-gr-rcs-w8.cnf FPGA Routing * 83261 sec ( 23 hours)UNSAT
k2fix-gr-rcs-w9.cnf FPGA Routing * 14 days and 8 hours UNSAT
cnt10.cnf Theoretical SAT 13134 sec ( 4hours) SAT
comb1.cnf Model Checking * 11 days -
f2clk50.cnf Model Checking * 9 days -
hanoi6.cnf Theoretical SAT 23 days -

(*): problem solution initially unknown

Table 1. GridSAT results using VGrADS testbed, Blue Horizon , Data Star and TeraGrid. All these
problems were not previously solved by any other solver.

isfiability and solvers are used to determine the solutions.The problems contain a pair of problems in
FPGA routing and model checking. These two disciplines benefit heavily from efficient SAT solvers.
The remaining problems are of theoretical nature. In addition, we set the absolute minimum size of
shared clauses to two and absolute maximum to 15. This range allows for sharing clauses which would
help prune the search space without significant communication overhead.

Unlike previous experiments there was no timeout value set for the maximum execution time. Every
problem was run using different job description for the batch systems. Jobs on the different batch queues
were manually re-launched at random intervals. Job re-submission could have been automated but we
wanted more control over rationing our limited compute budgets to specific experiments based on their
perceived progress. Experiments where GridSAT was making progress were allotted bigger jobs with
longer durations and more nodes. The progress of the solver was judged by inspecting how often the
checkpoints were updated. We can also inspect the internal state of a particular solver using some of the
tools we developed. The VGrADS nodes were used during the entire duration of each experiment unless
the hosts experienced failures.

5.1 Results

The experimental results are summarized in Table 1. The firstcolumn contains the problem file name.
The second column indicates the field from which this probleminstance in obtained. The third column
contains the solution to the instance: satisfiable (SAT), unsatisfiable (UNSAT), or unknown. We have
marked those problem instances which were previously open satisfiability problems with an asterisk (*).
If a problem was originally unknown and was later solved by a solver, then we still keep it marked with
an asterisk for completeness. The fourth column representsthe total wall-clock time that the problem
was tried. Finally, the fifth and last column represents the solution obtained by GridSAT which is
represented by SAT, UNSAT or (-) if we terminated the experiment before GridSAT found an answer.
Note that while we terminated these problem instances manually so that we could complete this paper,
each can be continued from its last checkpoint (which we havearchived).

Table 1 shows that GridSAT was able to solve three problems all of which were not previously solved.
Two of the problems were found unsatisfiable and they are bothfrom the field of FPGA routing. The



first problemk2fix-gr-rcs-w8.cnfwas solved using the VGrADS testbed only. Batch jobs which were
submitted for this experiment were canceled when the problem was solved. On the other hand the
second problemk2fix-gr-rcs-w9.cnftook much longer to solve, it took more than two weeks. Table 2
gives a more detailed description of the resource used during this experiment. For each job a number of
GridSAT solver components were launched as indicated in thelast column of table 2. In table 3 a break
down of the CPU-hours used on each resource are tabulated. Note that the VGrADS testbed machines
were able to deliver a sizable amount of compute power because they were available in a shared mode
for the duration of the experiment.

The last problemcnt10.cnfwas also solved Compute Job Job Node procs
resource count dur.(hr) count /node

BlueHorizon 2 10 100 3
Blue Horizon 1 12 100 3
DataStar 2 10 8 11
TG@SDSC 1 10 40 2
TGd@SDSC 1 12 40 2
TG@SDSC 3 10 4 2
TG@SDSC 4 5 4 2
TG@NCSA 3 10 4 2
TG@NCSA 4 5 4 2
in addition to 40 machines from VGrADS testbed for
14 days 7 hours and 44 minutes

Table 2. Batch jobs used to solve the k2fix-gr-rcs-
w9.cnf instance from SAT 2003 benchmark

using the VGrADS testbed only under simi-
lar circumstances tok2fix-gr-rcs-w8.cnf. We
previously tried solving this problem in [5]
using the same testbed for four days in ad-
dition to Blue Horizon for 12 hours but were
not successful. We believe the improvements
made to the solver and especially the new
clause sharing method have helped achieve
this result.

In order to illustrate further GridSAT’s suc-
cess in using all the above variety of resources
mentioned earlier we present a section of a
run using instancehanoi6.cnf. This problem
is a SAT representation of theHanoi Towers
problem using six disks. A six day snapshot
from a 23 day run is shown in figure 3(a)
using logarithmic scale. The figure shows
several jobs from Blue Horizon, Data Star and TeraGrid sitesparticipating in the execution. This figure
shows that GridSAT was able to make use of the available resource when some of their nodes became
available and then continued to run after the nodes were taken away to serve other users. GridSAT pro-
cesses continue to run on the batch controlled resources until the scheduler decides to terminate them.
This abrupt termination has no effect on the application which deals with these events as (scheduled)
resource failures. GridSAT was able to manage up to 350 processes running on different resources as
show in this figure.

The satisfiability solver performs mostly integer, branching and load/store operations. The number
of floating point operations is very low (less than .1 FLOPS).We present in figure 3(b) an estimate
of the total number of instructions per second during the same six day period. Since instrumenting
GridSAT can cause significant slow down, we conducted some benchmarking on some machines at
UTK to determine the average efficiency of the solver. Since the solver code is mostly sequential,
we assume that at the maximum only one instruction per cycle can be finished by the processor. The
determined efficiency is 70%. We estimated that other hardware and OS combinations will exhibit equal
efficiencies. The number of operations provided by a resource is estimated to be the product of its peak
performance and the estimated efficiency. The total number of instructions in figure 3(b) is the sum
of operations of all active resources. We notice that the VGrADS testbed is able to deliver about 20
Billion instructions per second (IPS). In the middle of the graph, there is a batch job from Blue Horizon



which failed suddenly while joining the GridSAT execution.This might have happened because the
Blue Horizon machine became unavailable for scheduled maintenance. The total number of IPS was
multiplied by more than five times when some batch jobs becameactive. It reached up to 110 Billion
IPS.

Another measure of performance, is how much of theCompute node- CPUs/ CPU
resource -hours node -hours

BlueHorizon 3200 8 25600
DataStar 160 11 1760
TG@SDSC 1080 2 2160
TG@NCSA 200 2 400
GrADS(*) 13750 1 13750
(*) machines were shared with other users

Table 3. CPU-hours per resource used
to solve the k2fix-gr-rcs-w9.cnf instance
from SAT 2003 benchmark

batch job maximum computational power is actually
used by GridSAT processes. Most other parallel jobs
run on all the processes from start to finish with little
overhead. In this case, batch jobs are efficiently used.
In the of case GridSAT, however, there are two main
sources of inefficiency. First, some jobs might wait ide-
ally at the start. Batch jobs usually include a large num-
ber of processes. Some of these processes have to wait
until a sufficient number of splits occur to generate new
sub-problems for all the newly created solvers. Sec-
ond, some batch processes may contain idle solvers for
a period of time after they solve the previously assigned
sub-problem. The solver in this case, waits until it is as-
signed a new sub-problem by the master. For the first job in figure 3(a), which is a large 100-node job,
the efficiency is 98.9%. Thus GridSAT was able to use batch jobs efficiently. The main reason is that
batch jobs usually wait in the batch queue for a long time before executing. Thus by the time the job is
executed, GridSAT was unable to solve the problem because itis hard. This means that batch jobs are
only used when the problem is in deed hard. It is possible thatfor certain problems, the efficiency of
batch jobs might be low. In this case, future versions of GridSAT might monitor the batch job efficiency
to determine whether and when a job is to be terminated.

During our experiments, the Blue Horizon super-computer was being decommissioned. GridSAT
was able to continue running experiments on the set of available resources through this transition. The
scheduler would try to submit jobs but it would notice that the Blue Horizon resource was not responding.
The failure of this single (but important) resource which did not affect the already running experiments
shows the robustness of GridSAT.

6 Conclusion

This paper presents a new version of GridSAT which implements a parallel, distributed and complete
satisfiability solver. In order to solve harder problems, new improvements to both the algorithm and
architecture of GridSAT were introduced. GridSAT is capable to dynamically selecting resources to
enable improved overall performance.

The experiments we presented show GridSAT’s ability to manage and use a diverse set of dynamic
computational grid resources. The experiments lasted for weeks as a testament to the robustness of the
application. During these experiments new previously unsolved problems from practical and theoretical
fields were solved.
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