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Abstract

We present the latest instantiation of GridSAT [5], a distited and complete satisfiability solver that
is explicitly designed to aggregate grid resources for aggilon performance. GridSAT was previously
shown to outperform the state-of-the-art sequential gslvia this work, we explore the unprecedented
solving power GridSAT enables through algorithmic and enpéntation innovations. We describe
the implementation techniques that allow GridSAT to legera variety of high-end batch-scheduled
resources, clusters, interactive workstations, and peas@computing resources through autonomous
scheduling, checkpoint scheduling, and work migrationesghinnovations have allowed GridSAT to
solve a set of “hard” and previously unsolved industrial acmimmunity satisfiability problems. In ad-
dition to this new solution power, GridSAT also outperfothesotherwise highest performance general
solvers on the annual SAT competition performance bendksnar
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1 Introduction

Grid computing [11] is an emergent field in computer scieiheg focuses, in part, on the aggregation
of geographically distributed and federated computatiogsources. These resource aggregations can
be harnessed by grid applications to solve problems in seiand engineering [21, 1] which require
large computing power. Solving such challenging problems @nabling new scientific results is an
integral part of the grid computing vision.

One such challenging problem is propositional satisfigbillhis problem involves finding a set of
binary assignments to variables that satisfies a set of reonist (i.e. makes a binary expression evaluate
to “true”). The problem of solving satisfiability instanassmportant from both theoretical and practi-
cal perspectives and is, in general, NP-complete. In m@cthany engineering disciplines require the

*This work was supported by grants from the National SciermaBation, numbered CAREER-0093166, EIA-9975020,
ACI-0103759, and CCR-0331654.



solution to domain specific instances of satisfiability. ISdisciplines include scheduling, model check-
ing, security, Artificial Intelligence, software verificah, and the the area of Electronic Design Au-
tomation (EDA) which includes circuit design [29], Fieldadgrammable Gate Arrays (FPGA) detailed
routing [23], combinational equivalence checking [18] automatic test and pattern generation [20].

Because satisfiability solvers [22, 12, 15, 3] have becomeerafficient, they are now widely used
in many industrial and research settings. There has beertanse/e research effort geared towards
the development of gradually more efficient satisfiabiliojvers [22, 12, 15, 3]. These solvers use
different techniques to navigate the entire search spgeessible truth assignments for the variables of a
given expression. The best (fastest and most comprehégositheese solvers udearningoptimizations
that permit the search space to be “pruned” during executi@arning [28] introduces new deduced
propositions which improve the solver’s efficiency by oltvig subtrees in the space of possible variable
assignments.

Because learning requires a large, centralized databasteohediate propositions to be searched and
updated frequently, the best known solvers are sequefitiase sequential solvers are characterized by
heavy use of compute power (CPU) as well as the memory of thierhachine as the database must be
kept memory-resident (or the speed becomes unacceptably lo

Research in parallel solvers [5, 17, 30, 8], shows that usilagge pool of computational resources
leads to better performance for most problems. The aggregBt) power and memory of the hosts
allows the solver to navigate the search space faster. Thamputational grid populated by a a large
pool of resources offers potential improvements in solpeiesl. With the exception of those results re-
ported in [5], however, the fastest solutions to the largestber of problems is generated by sequential
solvers [26, 25].

By carefully leveraging the resources in grid settings, goal is to build a parallel and distributed
satisfiability (SAT) solver that correctly solves previbumfeasible industrial problem instances, the
answers for which cannot be determined in any other way. r&kedy, we would like to be able to
solve faster the problems that sequential solvers findijésasi

Our previous work with GridSAT [5, 4] demonstrates the lattBy dynamically acquiring and re-
leasing resources under the control of an automatic sceedalidSAT improves the time-to-solution
for various feasible SAT instances. Indeed, GridSAT outgers the best-known solver on all prob-
lems that this leading solver can complete [26, 25]. We hdse laeen able to use GridSAT to solve
several previously unsolved problems using non-dedicatgdie-area grid resources. It is these new
domain-science results, and the techniques we have engptoyechieve them, that are the subject of
this paper.

In particular, by combining different batch-controlledost-computers with interactive workstations
and user desktop machines, we have applied GridSATatd SAT problems — ones that are not only
unsolved but for which previous attempts at solution usitiggogeneral techniques have failed. This
pattern of combining different types of resources is newdifidrent from that used by existirgarallel
SAT implementations [17, 30]. Moreover, we know of adigtributed(i.e. network and/or grid enabled)
SAT implementations, efficient or otherwise, at the timehad twriting.

The resources in a computational grid may be of two diffetgoes: time-shared or batch controlled.
In the case of time-shared resources the application wilipetie with other user applications running
simultaneously on the host machine. However, since thesmirees are always available the applica-
tion can continue to make progress. Other resources whele@rtrolled by a batch scheduler, will
participate intermittently in the application through soof their nodes. But these systems will provide



significant compute power depending on the size of the agipdic’s request.

In order to enable a grid implementation of a SAT solver to ms@y resources simultaneously, we
need to address two types of challenges. First the solvigrisitnm needs to be modified so that it
can run in parallel while ensuring that the parallel compdseooperate to improve over-all efficiency.
The second challenge is developing a framework capablenoimg the parallel solver in a very volatile
computational environment.

Solving the above two problems was at the core of our metlgyoin designing the application
components and their interactions. Implementing this wadlogy can be achieved by selecting suitable
technologies. Examples of these technologies includestfiom parallel computing, which predate grid
computing,such as MPI [9]. The more relevant technologiegteose which were the outcome of grid-
specific research projects such as Globus [10], Web Ser{8&sand related standards. We discuss
in this paper the requirements imposed by the applicatiog'samic behavior and constraints on the
technology so that a successful implementation is realiz&e also describe the current design and
implementation of the application.

We have developed GridSAT, a distributed satisfiabilityeotapable of running on a computational
grid. GridSAT implements a parallel algorithm for solvingfisfiability problems based on Chaff [22].
GridSAT distributes and shares the internal propositidaloksse among processors in a way that takes
advantage of dynamic resource performance predictionshieee new levels of solver efficiency.

In this paper, we detail the current, most capable versidBr@fSAT. Our most recent improvements
in the clause sharing and resource scheduling algorithwes inade it possible to solve previously un-
solved satisfiability problems from the field of FPGA routamwell as artificially generated benchmarks
specifically design to foil automatic SAT solvers.

2 GridSAT: SAT Solver for the Grid

A satisfiability problem is expressed as a boolean formuéa a\set of variables. Most solvers operate
on formulas expressed in Conjunctive Normal Form (CNF) inclwlan expression conjoins (logically
“ANDs”) a set ofclauses each of which may contain disjoined (“ORed”) literals. fehal is either an
instance of a variablé{) or its complement{1’) and variables are boolean. A SAT problem instance
is termedsatisfiableif there exists a set of variable assignments that makethaula evaluate ttrue
where “true” corresponds to a boolearalgebraically. If such an assignment does not exist the the
problem is declarednsatisfiable

GridSAT is based on Chaff [22], a sequential SAT solver atgor. Chaff, in turn, builds upon the
Davis-Putnam-Loveland-Logemann (DPLL) [7] algorithm alinsolves a SAT instance by making a set
of speculative variable assignments (termed “decisiosed in adecision stack When these deci-
sions are propagated through the clauses they could leadascade ofmplications Implications are
assignments of boolean values to different variables asaliee consequences of previous speculative
decisions. These speculative decisions and the resuftipfications may lead to logical conflicts — de-
duced contradictions in which a variable must take on botildam values because of different clauses
in the original problem. In Chaff, as well as other solveng, performance of the algorithm is enhanced
by using techniques for adding new deduced clauses aftenfictaccurs. This technique is called
Learning[27, 19, 28]. Using learning, the algorithm may generatest mamber of additional clauses
during execution. These clauses consume memory, possiefywbelming the capacity of the host, and
also may slow the algorithm as they can add to the search extpbf the clause database.
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Figure 1. GridSAT resource views

GridSAT’s distributed solver addresses three significhatlenges to improving solver performance.
First, GridSAT parallelizes the search algorithm that igigating the space of possible truth assign-
ments. Second, certain learned clauses from the varioversa@re selected to be distributed and shared
across resources. Finally, the GridSAT application coneptsare dynamically scheduled at runtime to
take advantage of those available resources which can ealiaa solver’s performance.

To apply a parallel search technique to SAT, we split theinaigoroblem into subproblems (having
decision stacks with different truth assignments), eachlo€h is independently investigated for satis-
fiability. Subproblems, themselves, may be split in the samg forming a recursive tree, each node
of which is assigned to a logically distinct processor. Gasharing is facilitated by identifying and
sharing only important clauses.

3 GridSAT Architecture and Resource Scheduling

GridSAT is implemented as a special form of the coordinatiemt model where individual clients
communicate directly and share clauses (i.e. communicatioetween peers rather than routed through
the master). The GridSAT application uses two views of thematational resources as shown in fig-
ure 1. The first view employs jobs to classify processes whathng to the same resource. The second
view is flat where all processes are part of a single pool. Bétihese views are useful for managing
resources under GridSAT

The coordinator (or master), shown in figure 2, reflects tls®uece views shown in figure 1. It
consists of the resource manager, the client manager, tieelsler and the checkpoint server. We now
describe the role of these components.

The resource manager is tasked with loading resource ifitomfrom one or more grid informa-
tion systems such as Globus MDS [6] and the NWS [37]. The sdbechowever, is responsible for
coordinating the interactions between all the compondntsddition, it handles interactions with ex-



ternal resources and monitors them to detect failures. ¥ample, the scheduler queries the resource
manager for resource types. If the resource is time-sh#red,only one GridSAT process is launched.
For batch systems, the scheduler instead submits one jolesegAdditional jobs could be manually
submitted and GridSAT will use their resources when theyobex available. We term this form of
schedulingactive queuingjobs waiting in queue logically execute on the interactegources until the
batch-controlled resources become available. At that,tthreescheduler migrates work into the newly
available resources. Thus, the application makes progigsg the slower, shared resources while it
waits in queue. It is the client manager that maintains afiatl GridSAT processes (active and queued)
and monitors their progress.

The GridSAT scheduler is the focal point and is
responsible for coordinating the rest of the co
ponents and launching new processes, also terme
clients. The scheduler uses a progressive scherm
for starting additional clients on remote resources
and adding them to the active resources’ pool.
Resources which are no longer performing a task
on behalf of GridSAT are released immediately
when possible. The reason for this approach is
the variability and unpredictability of resource us- Check-point
age for a particular SAT problem. Some problems Storage
are solved easily using a single host after a short
time period. Other problems, however, might be
harder and require a large number of hosts and
a longer time period. By starting with a small
resource pool and expanding the set of used re
sources, GridSAT achieves three goals. First, a
small number of resources will be used to solve
the easy problems which results in a smaller com-
munication overhead and therefore shorter time to solvetbblem. Second, GridSAT can adapt re-
source usage to how difficult the problem is perceived. If padicular stage the problem is perceived
difficult, the size of the resource pool used will grow. At #mer stage, the same problem might be per-
ceived to be easy, a smaller resource set will be used, amd&xesources will be released. Lastly, by
remaining as small as possible at any given pointin the exetuGridSAT promotes allocation stability
and sharing. The scheduler does not waste resources regdies the maximum number of GridSAT
instances can co-exist since each is attempting to use ae$ources as possible for its own problem
instance.

The GridSAT scheduler uses the first available client imraedy to start solving the problem. Each
client records the time it took to receive the problem dateer@s also monitor their memory usage. The
decision for splitting a problem is made locally by the ctiand not by a centralized scheduler. A client
notifies the master that it wants to split its assigned sulidpro with another client when its memory
usage exceeds a specified limit (currently 80% of availabéenory) or after running for a specific
period of time. This time period is determined as twice theatdan of the communication period the
client used to obtain the problem data. Using this methagl stheduler allows for computation time
to offset the communication overhead by using the previammounication period as a prediction of
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and Failure
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External Resources

Figure 2. GridSAT components and their in-
ternal and external interactions. The ex-
ternal components and systems which Grid-
SAT uses, such as the Globus MDS and the
NWS, are shown in clouds.



future overhead. The clients, therefore, do not spend nfdkeo time splitting instead of doing useful
computation. The splitting process is performed by the eoatjion of the master, the splitting client and
anidle client. Theidle client is a process which is not currently assigned a sulbpnoko investigate.

The GridSAT solver terminates when all subproblems aressbidw one of the clients finds a satisfying
assignment. In the latter case the client which finds thesfyaig assignment sends its stack to the
master. Finally, the master saves the final solution, temtesall running clients and cancels any pending
resource requests. Most solvers in the literature are atedubased on the time the first satisfiable
instance is found. However there are cases [16] where kigpalinsatisfiable instances is helpful.
GridSAT can also enumerate all the instances where a problseatisfiable.

3.1 Active Queuing: Efficient Use of Batch Jobs

In GridSAT, initial batch job requests are large with a highmber of nodes and long duration. This
leads to a long waiting period in the scheduler’s batch qu&hes, if a job is not solved after this long
waiting period, then it most probably is a hard problem. Efae batch jobs are only used when the
problem is hard. When a batch job starts execution, GridSAJrates work (as a checkpoint file) to
achieve more efficient use of batch nodes. Remote GridSAEs)ashich are numerous, will migrate
immediately to occupy batch nodes. After, migration takieee and since networks are fast within
super-computing nodes, splitting happens at higher rafgsocgally after the above mentioned reductions
in communication overhead. Moreover the GridSAT schedideses the additional bandwidth between
clients executing on a supercomputer or cluster. It thereases the size and number of clauses shared
by subproblems inside the tightly coupled resource as aduitmprovement. Note that the number
of active nodes (i.e. those with subproblems) will increasponentially. This happens because the
number of new subproblems is increased in proportion to timeber of existing active solvers. Problem
migration leads to a more efficient use of batch jobs.

4 Grid Implementation
4.1 Application Characteristics

The GridSAT application is different from most high-perftance computing applications. In gen-
eral, these applications are composed of alternating stepk/ing computation and communication.
The computation and communication intervals do not overfdpo the communication steps are used
as synchronization barriers which enable the various compis of the application to exchange infor-
mation. Moreover, these applications use a predetermieedfscompute resources throughout their
execution.

Our application differs in much of the above aspects. Thel&AIl application has variable resource
requirements depending on the problem instance. The nuohibesources and duration of use of those
resources cannot be predicted in general for satisfialnigtances. In fact, the set of active resources
which are assigned parts of the search space during rurgicthgnamic. Resources are added each time
the problem is split. Also resources are released immdygiatieer a subproblem is solved. There can be
many simultaneous acquiring of new resources, throughgmobplitting, and release of other unneeded
resources at any given instance. Moreover, the applicabomponents shared intermediate results as
soon as they are produced. These results are asynchronseslyy all the receiving clients.



Therefore, all the GridSAT segments are event driven andts\ae produced and consumed asyn-
chronously. The solver components, for instance, can samebusly perform communication and com-
putation. All application modules are designed and impletee to allow for efficient management and
responsiveness to these events.

Dynamic resource usage are needed, in general, to efficisolve any satisfiability problem [5].
Solving “hard” satisfiability problems represents furtbballenges. For “hard” problems, a small num-
ber of resources would be exhausted in a relatively shosd.tifme CPU and memory resources would
be saturated and additional resources are required in twraheake progress in solving the problem un-
der investigation. Therefore, we wanted to use all compmrtat resources at our disposal, in order to
render the solution of the hardest problems more plausitiie. set of available resources varied from
desktop machines, to small-size clusters, to supercomguihis collection of resources was heteroge-
neous in terms of hardware, Operating Systems and resowacagament software. This heterogeneity
represents a further challenge to the deployment of thacatiain.

These application characteristics described above represtrue Computational Grid application.
Moreover, these characteristics are not unique to Grid&Xher branch-and-bound or coordinator-
worker applications can benefit from a similar use of comipurtal resources.

A major challenge before implementing the various applcatomponents was to develop an im-
plementation strategy. The final implementation aims atgiall the available grid resources efficiently
while dynamically adjusting to the application behaviod aesource needs.

4.2 Implementation Strategy

Given these resource usage patterns, which are typicatfoe &rid application, we had to choose an
implementation strategy which would satisfy these requéets. There are several technology choices
to select for the implementation of the application. Suchiams include, among others, MPI [9],
Globus [10], vanilla Web Services [33] and later improvetsesuch as WSRF [24].

According to our experience with GridSAT we have learned thauccessful implementation tech-
nology should allow for three pivotal capabilities: dynamesource pool, error detection and universal
deployment.

The first capability is to allow the use of dynamic a resouroel pThis feature, for example, was not
available in MPI-I which did not allow for dynamic Communtoes. MPI-2 has introduced extensions
to allow for dynamic creation and destruction of commurocait Globus and Web services also allow
for a dynamic set of resources.

The second capability is error detection and reportingc&iBridSAT runs for extended periods of
time using a set of geographically distributed resourdasn inetwork and resource failures are more
frequent. Therefore in order to implement this applicatinneed a technology which allows for the
detection of these errors. From the perspective of the egapdn, the distinction between resource and
network failures is not important. It suffices for the apation to obtain a feedback if a certain operation
is not successful after a certain time period.

Error detection and recovery is very important because imesperience all resources experience a
failure at some point. Even those resources which are iofeslly maintained can become unrespon-
sive from the application’s perspective. Those resoutttasdo not experience hardware and software
failures usually have scheduled routine preventive maartee periods or a combination of software
and hardware upgrades. From the point of view of the appdicaihese are “scheduled” or “anticipated”



failures. Without rigorous error handling the applicatiwould not be able to run for extended periods
as shown later in the results section.

Different technologies provide some form of error handliktiPI-I allows for error handling in a lim-
ited scope which is expanded further in MPI-2. Globus GRAMws$ for error handling and call-back
functions for job management. In Web Services, WS-Notitecaf14], WS-BaseFaults [34] and related
standards could be used to provide this functionality. Tésrdble error handling for our application is
to provide a time period for some actions after which sommfof error handling should be performed.
Sometimes if an action fails, then all is needed is to retrnyntother cases, it is assumed that the re-
source (or the connecting network) has failed. This formrodrehandling is not available for the grid
technologies mentioned above and can be implemented gpphieation level.

The last desirable capability for a suitable grid technglisginiversal deployment. This is not entirely
a characteristic of the technology but of the computatiengironment as well. A widely deployed tech-
nology is advantageous because it reduces the developrerhead since one version can be deployed
on all available resources.In our experience there was idaegghnology that was universally adopted
and deployed which would enable us to combine all computatieesources at our disposal.

Furthermore, in order to deploy our application over a lasge of resources,we had to interface
with many types of resource managers. For example, resbwamadd be managed by one of many
Batch schedulers, Condor [31] or simply shared. Our goaltwase all these resources simultaneously
regardless of what systems they originate from. This is mptished by determining a general job
description which can be instantiated differently usingafic launchers for each resource manager. For
instance, shared resources can be accessed directly &thdatch systems, however, are accessed by
submitting a batch script with syntax tailored to the schedused. Whenever, Globus is deployed we
use it to launch and monitor job submissions.

4.3 GridSAT Implementations

We believe that many of these technologies could be usedvelaje GridSAT. In fact, we have
developed a previous versions of GridSAT called GrADSAT (dgte the “A” in the spelling) using
GrADSoft GrADSoft is a set of programming abstractions where theslbees grid infrastructure is
provided by Globus and the NWS. GrADSoft is part of Beid Application DevelopmentSoftware
(GrADS) project [2, 13] which is a comprehensive researébrestudying grid programming tools and
application development. To facilitate experimental agtion research and testing, the project main-
tains a nationally distributed grid of resources for use psoaluction testbed. Since the GrADS tools
were universally deployed on this testbed we were able togleur application with little overhead on
the entire testbed.

The current version of GriDSAT uses EveryWare [36] a ventgdade communication library. Every-
Ware has been designed explicitly to manage the heterdgeral dynamism inherent in grid resource
environments. EveryWare can be easily deployed as libmargliathe resources. In addition, all com-
munication calls use a timeout argument, as desired, for datection.

The resource management system interfaces with resouhsels use batch systems as well as desk-
top machines which are accessed through SSH. All resoullatedeoperations have been implemented
to allow for a specific timeout. If the resource is not respanafter the timeout period expires, then the
resource is considered unreachable.

In the future, we will explore other technologies as theydmee more widely used. Our goal would



be to make GridSAT implementation independent where we sanan API for interfacing the appli-
cation with the underlying communication infrastructube a result different grid technologies can be
substituted without affecting the application.

5 Experimental Apparatus and Results

Since GridSAT is a true grid application, (robust, portalbleterogeneous, pervasive, etc. [11]) we
ran a set of experiments to show that GridSAT can run for edrperiods of time robustly using
a wide variety of resources and also solve previously umsbhard satisfiability instances. In these
experiments we simultaneously use computational ressufwd belong to collections of individual
machines, small size research clusters and super-corg@aite clusters. The computational resources
we use are composed from four main sources:(1) 40 machiasstfre VGrADS [35] testbed located
at UTK, UCSD and UCSB, (2) Blue Horizon at SDSC, (3) TeraGiid at SDSC, (4) TeraGrid site at
NCSA and (5) DataStar at SDSC.

The TeraGrid [32] project is a multi-site national scalejpco which is aimed at building the worlds
largest distributed infrastructure for open scientificaash.

During our experiments, none of the resources we used welieaded to our use. As such, other
applications shared the computational resources withgplication. It is, in fact, difficult to determine
the degree of sharing that might have occurred across alleoavailable machines after the fact. In
batch controlled system such as Blue Horizon, Data Startendié¢raGrid, the queue wait time incurred
is highly variable because of jobs submitted by other users.

Thus, if it were possible to dedicate all of the VGrADS resagsrto GridSAT, we believe that the
results would be better. As they are, they represent whatrisiatly possible using non-dedicated Grids
in a real-world compute setting.

These experiments also use a more diverse set of resourdesder periods of time (up to a month
in duration) and multiple job requests. We chose a set olegé problems from both SAT2002 [25]
and SAT2003 [26] benchmarks. These benchmarks are usedge and compare the performance of
automatic SAT solvers at the annual SAT conference. All tieblems in the benchmarks are shuffled
to insure that submitted benchmarks are not biased in favagainst any solver. These benchmarks
are used to rate all competing solvers. They include industnd hand-made or randomly generated
problem instances that can be roughly divided into two aaieg: solvableandchallenging The solv-
able category contains problem instances that some SAErsohave solved correctly. They are used
for comparing the speed of competing solvers. Alternagjvéile challenging problem suite contains
problem instances that have yet to be solved by an automaticad or which have only been solved
by one or two automatic methods, but are nonetheless ititeyes the SAT community. Some of these
problems have known solutions that are known through aisalyhethods (i.e. the problem has a known
solution by construction), but several of these problenasogen questions in the field of satisfiability
research.

In these experiments, we only chose problems from the cigilig set. These problems were deemed
hard by all participating solvers in both the 2002 and 2003 $8mpetitions. We investigate seven
previously unsolved problems where three instances are fh@ SAT 2003 benchmark category, and
four are instances from the SAT 2002 benchmark categorgf athich we have not been able to solve
using previous versions of GridSAT.

This group of problems represent a variety of fields wherdleras are reduced to instances of sat-



| File name | Description | SAT/UNSAT/* | Time | GridSAT Result|

3bitadd-31.cnf theoretical UNSAT 8 days -
k2fix-gr-rcs-w8.cnf| FPGA Routing | * 83261 sec ( 23 hours)UNSAT
k2fix-gr-rcs-w9.cnf| FPGA Routing | * 14 days and 8 hours| UNSAT
cnt10.cnf Theoretical SAT 13134 sec ( 4hours) | SAT

combl.cnf Model Checking| * 11 days -

f2clk50.cnf Model Checking| * 9 days -

hanoi6.cnf Theoretical SAT 23 days -

(*): problem solution initially unknown

Table 1. GridSAT results using VGrADS testbed, Blue Horizon , Data Star and TeraGrid. All these
problems were not previously solved by any other solver.

isfiability and solvers are used to determine the solutidiee problems contain a pair of problems in
FPGA routing and model checking. These two disciplines fieheavily from efficient SAT solvers.
The remaining problems are of theoretical nature. In adiditive set the absolute minimum size of
shared clauses to two and absolute maximum to 15. This rdlogesdor sharing clauses which would
help prune the search space without significant communbicatrerhead.

Unlike previous experiments there was no timeout value@dhe maximum execution time. Every
problem was run using different job description for the haggstems. Jobs on the different batch queues
were manually re-launched at random intervals. Job re-g#iom could have been automated but we
wanted more control over rationing our limited compute ketddo specific experiments based on their
perceived progress. Experiments where GridSAT was makiogress were allotted bigger jobs with
longer durations and more nodes. The progress of the sokgfjwdged by inspecting how often the
checkpoints were updated. We can also inspect the intesatalaf a particular solver using some of the
tools we developed. The VGrADS nodes were used during theeehtration of each experiment unless
the hosts experienced failures.

5.1 Results

The experimental results are summarized in Table 1. Thecbiamn contains the problem file name.
The second column indicates the field from which this probiestance in obtained. The third column
contains the solution to the instance: satisfiable (SAT$atisfiable (UNSAT), or unknown. We have
marked those problem instances which were previously ogisfiability problems with an asterisk (*).
If a problem was originally unknown and was later solved byglaer, then we still keep it marked with
an asterisk for completeness. The fourth column represkattotal wall-clock time that the problem
was tried. Finally, the fifth and last column represents thieiteon obtained by GridSAT which is
represented by SAT, UNSAT or (-) if we terminated the expentrbefore GridSAT found an answer.
Note that while we terminated these problem instances nilgreethat we could complete this paper,
each can be continued from its last checkpoint (which we basfeived).

Table 1 shows that GridSAT was able to solve three problehaos @hich were not previously solved.
Two of the problems were found unsatisfiable and they are toth the field of FPGA routing. The



first problemk2fix-gr-rcs-w8.cnfvas solved using the VGrADS testbed only. Batch jobs whichewe
submitted for this experiment were canceled when the pnobl@as solved. On the other hand the
second problenk2fix-gr-rcs-w9.cntook much longer to solve, it took more than two weeks. Table 2
gives a more detailed description of the resource usedglthiia experiment. For each job a number of
GridSAT solver components were launched as indicated ifastecolumn of table 2. In table 3 a break
down of the CPU-hours used on each resource are tabulated.tihd the VGrADS testbed machines
were able to deliver a sizable amount of compute power becdney were available in a shared mode
for the duration of the experiment.

'_I’he last problenent10.cnfvas also sol\{eo_l Compute Job 1 Job Node | procs
using the VGrADS tes_tbed only under simiy (aqqurce count | dur.(hr) | count| /node
lar circumstances th2fix-gr-rcs-w8.cnfWe BlueHorzon | 2 10 100 3
previously tried solving this problem in [5] Blue Horizon| 1 " 100 T3
using the same testbed for four days in ad-
dition to Blue Horizon for 12 hours but were DataStar 2 Y B 11
not successful. We believe the improvemen[t'cTG@S’DSC 1 10 40 2
made to the solver and especially the ne TGd@SDSC| 1 12 40 2
clause sharing method have helped achie dCG@SDSC | 3 10 4 2
this result. TG@SDSC | 4 S 4 2

In order to illustrate further GridSAT’s sucp T S@NCSA | 3 10 4 2
cess in using all the above variety of resourgeEGC@NCSA | 4 S 4 2

run using instanchanoi6.cnf This problem 14 days 7 hours and 44 minutes

is a SAT representation of thdanoi Towers

problem using six disks. A six day snapshot Table 2. Batch jobs used to solve the k2fix-gr-rcs-

from a 23 day run is shown in figure 3(a) w9.cnf instance from SAT 2003 benchmark

using logarithmic scale. The figure shows

several jobs from Blue Horizon, Data Star and TeraGrid ggticipating in the execution. This figure
shows that GridSAT was able to make use of the available resauhen some of their nodes became
available and then continued to run after the nodes wera tak@y to serve other users. GridSAT pro-
cesses continue to run on the batch controlled resourcéghescheduler decides to terminate them.
This abrupt termination has no effect on the applicationciwldeals with these events as (scheduled)
resource failures. GridSAT was able to manage up to 350 pseserunning on different resources as
show in this figure.

The satisfiability solver performs mostly integer, bramghand load/store operations. The number
of floating point operations is very low (less than .1 FLOP®E present in figure 3(b) an estimate
of the total number of instructions per second during theesair day period. Since instrumenting
GridSAT can cause significant slow down, we conducted somehmarking on some machines at
UTK to determine the average efficiency of the solver. Sidee dolver code is mostly sequential,
we assume that at the maximum only one instruction per cyaebe finished by the processor. The
determined efficiency is 70%. We estimated that other harelaad OS combinations will exhibit equal
efficiencies. The number of operations provided by a resoigrestimated to be the product of its peak
performance and the estimated efficiency. The total numbarstructions in figure 3(b) is the sum
of operations of all active resources. We notice that the A[03 testbed is able to deliver about 20
Billion instructions per second (IPS). In the middle of thragh, there is a batch job from Blue Horizon



which failed suddenly while joining the GridSAT executiohis might have happened because the
Blue Horizon machine became unavailable for scheduled ter@amce. The total number of IPS was
multiplied by more than five times when some batch jobs becactiee. It reached up to 110 Billion
IPS.

Anot_her measure of performa_mce, is how much of t €Compute node- 1 CPUs/| CPU
batch job maximum computational power is actuall
used by GridSAT processes. Most other parallel jok
run on all the processes from start to finish with little
overhead. In this case, batch jobs are efficiently use #ataStar 160 11 1760
In the of case GridSAT, however, there are two maip G@SDSC | 1080 | 2 2160
sources of inefficiency. First, some jobs might wait id -TG@N(iSA 200 2 400
ally at the start. Batch jobs usually include a large num-GrADS( _) 13750 1 : 13750
ber of processes. Some of these processes have to whit machines were shared with other users
until a sufficient number of splits occur to generate new
sub-problems for all the newly created solvers. Sec- _ _
ond, some batch processes may contain idle solvers fol° SClve the k2fix-gr-rcs-w9.cnf instance
a period of time after they solve the previously assigned/™™m SAT 2003 benchmark
sub-problem. The solver in this case, waits until it is as-
signed a new sub-problem by the master. For the first job imdi@(a), which is a large 100-node job,
the efficiency is 98.9%. Thus GridSAT was able to use batch gificiently. The main reason is that
batch jobs usually wait in the batch queue for a long time teeéxecuting. Thus by the time the job is
executed, GridSAT was unable to solve the problem becauséddrd. This means that batch jobs are
only used when the problem is in deed hard. It is possibleftvatertain problems, the efficiency of
batch jobs might be low. In this case, future versions of &A@ might monitor the batch job efficiency
to determine whether and when a job is to be terminated.

During our experiments, the Blue Horizon super-computes Waing decommissioned. GridSAT
was able to continue running experiments on the set of dtail@sources through this transition. The
scheduler would try to submit jobs but it would notice th& Blue Horizon resource was not responding.
The failure of this single (but important) resource whict dot affect the already running experiments
shows the robustness of GridSAT.

f’resource -hours| node | -hours
;“BlueHorizon 3200 | 8 25600

Table 3. CPU-hours per resource used

6 Conclusion

This paper presents a new version of GridSAT which implesiargarallel, distributed and complete
satisfiability solver. In order to solve harder problemsynmprovements to both the algorithm and
architecture of GridSAT were introduced. GridSAT is capatd dynamically selecting resources to
enable improved overall performance.

The experiments we presented show GridSAT’s ability to rgarend use a diverse set of dynamic
computational grid resources. The experiments lasted émke as a testament to the robustness of the
application. During these experiments new previously luesbproblems from practical and theoretical
fields were solved.
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Figure 3. A six day snapshot representing (a) processor count usage llogarithmic scale and
(b) estimated instructions per second (IPS) usage for all sources during a six day period.
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