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In this paper, we present GridSAT – a distributed and high
performance complete satisfiability solver – and its applica-
tion to a set of complex and previously unsolved satisfiability
problems. Based on the sequential Chaff [32] algorithm, we
combine new distributed clause “learning” techniques withan
efficient and autonomous grid implementation both to speed
the time to solution and to solve problems too complex for
other general solvers. By automatically adapting to changes
in the availability of machines and carefully distributingthe
clause database, we show how GridSAT has been able to use,
continuously, a diverse and dynamically changing resource
pool to solve previously unsolved problems from the SAT
2002 [39] and the SAT 2003 [42] competitions. We describe
our enhancements to the Chaff learning algorithm that have
enabled an efficient distributed implementation, and detail the
technological approach we have taken to realizing this imple-
mentation. In addition, we present a web portal for GridSAT
that accepts problem instances through a standard browser
and returns status and results while shielding users from the
complexities associated with running the application manu-
ally.

Keywords: Parallel, Distributed, Scheduling, Satisfiability,
Computational Grid.

1 Introduction

Grid computing [23] is an emerging field in computer science
which enables the aggregation of geographically distributed
and federated computational resources. One important goal
outlined in the original grid vision [19] is the ability to apply
computing and storage capabilities aggregated from a wide

1This work was supported by grants from the National Science Founda-
tion, numbered CAREER-0093166, EIA-9975020, ACI-0103759, and CCR-
0331654.

variety of sources to problems that require more “power” than
is available from any single site. While several applications
have attempted to achieve this goal [30, 2, 36] they have done
so sharing two important characteristics. First, these scientific
applications exhibit fairly regular and predictable computa-
tional patterns. Secondly, while they have been able to em-
ploy widely dispersed resources, the resources they use must
be dedicated exclusively to each program execution. That is,
using the parlance of the grid metaphor, most applications to
date have predictable power requirements and require dedi-
cated power generators to achieve acceptable performance.

For grid computing to become a successful technique that is
more generally applicable in a wider setting, it must be ableto
support applications which solve problems that require data
dependent (e.g. unpredictable) execution patterns and also
can take advantage of non-dedicated resources. One such
challenging problem is propositional satisfiability – the deter-
mination of a set of assignments to boolean variables in an ar-
bitrary expression that makes the expression’s value logically
“true.” The ability to solve satisfiability problem instances
is important from both theoretical and practical perspectives.
Satisfiability (SAT) is theoretically significant because it was
the first problem to be proven NP-complete [11]. Thus solv-
ing SAT instances, in general, requires large computational
power for extended time periods.

In practice, many engineering disciplines require the solution
of domain-specific instances of satisfiability. Such disciplines
include scheduling [7], model checking [3], security [1], Ar-
tificial Intelligence [26] and software verification [24]. Satis-
fiability is especially important in the area of Electronic De-
sign Automation (EDA). EDA encompasses a variety of prob-
lems such as circuit design [45], Field-Programmable Gate
Arrays (FPGA) detailed routing [33], combinational equiva-
lence checking [27, 35] and, automatic test and pattern gen-
eration [29]. Our goal is to be able to find solutions to those
practical problem instances that do not require an exponen-
tial number of possible variable assignments to be tested to
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determine whether the instance is satisfiable or not.

There are many related problems to satisfiability which
are also computationally intensive, such examples include
#SAT andsolution enumeration. The#SAT problem only
asks to determine the number of solutions for a given SAT
problem instance. Solution enumeration problems, however,
require the listing of all solutions to a SAT problem and not
just the number of solutions or whether the problem is satis-
fiable or not. The solution enumeration problem is important
because in many cases it is desirable to find all solutions to a
problem or at least a representative subset of the solution set.
In [24], the author presents a motivation for solution enumer-
ation and how it can be used to improve software testing pro-
cedure. Similarly, solution enumeration could generate mul-
tiple solutions to a scheduling problem [7]. These solutions
would present alternative solutions to choose from insteadof
being restricted to a single one. In another example, a cir-
cuit designer with access to multiple solutions can select the
solution that best suits his needs. Moreover, in cases where
satisfiable solutions represent design errors multiple solutions
provide more information about the sources of error and may
lead to quicker determination of the source of error. Solutions
to the#SAT and solution enumeration problems can be de-
rived from solutions to the original satisfiability problem.

There has been extensive research efforts focused on the de-
velopment of efficient satisfiability solvers [32, 20, 22, 5].
These solvers use different techniques to navigate the en-
tire search space. When possible, the most efficient of these
solvers use optimizations which permit parts of the search
space to be discarded or “pruned” during execution. However,
because the general problem is NP-complete, there is no the-
oretical framework for comparing solvers or evaluating which
solver is best suited to a particular problem or problem class.
The solvers and the techniques they implement are evaluated
based on empirical results by comparing the speed with which
they can solve a diverse set of benchmarks and/or the number
of complex or “hard” problems they can solve. Thus while the
general problem remains theoretically intractable, heuristic-
based approaches have yielded SAT solvers that serve as valu-
able verification tools in many disciplines.

Most modern solvers [32, 20, 22, 5] are sequential and em-
ploy heuristic improvements to one of a small set of fun-
damental search algorithms. Fewer parallel solvers such
as [9, 25, 46, 17] exist, and even fewer of those parallel
solvers use a heretofore sequential optimization termedlearn-
ing. Learning (discussed in detail in Section 2.2) improves
solver speed by adding propositions that the algorithm de-
duces to an internal database that is global to the solver. These
additional “learned” propositions improve the efficiency of
SAT solvers substantially, but they make the problem of par-
allelizing and/or distributing a solver daunting. The global
clause database must be searched and updated frequently as

the algorithm progresses making an efficient large-scale par-
allel or distributed implementation difficult. As a result,the
best known solvers (in terms of speed and solution power)
have until recently been sequential. One of the innovations
we explore is a new technique for partially sharing learned
clauses between distributed solver elements that yields im-
proved solver speed despite the additional communication
and storage overhead implied by a distributed implementa-
tion.

These sequential solvers are characterized by heavy use of
compute power (CPU) as well as the memory of the host
machine (which is used to hold the clause database). As a
solver progresses, and more clauses are learned, it uses more
of the host’s memory typically until non-paged memory is ex-
hausted. Thus, the typical sequential solver completes when
one of three conditions have occurred: a variable assignment
satisfying the expression is found, a user-specified timeout on
the solution has expired, or the machine has run out of non-
paged memory. Most sequential solvers can be configured to
avoid this last termination condition by selectively deleting
some of the learned clauses according to heuristics that at-
tempt to determine which clauses are least helpful in directing
the search. In this case the solver may progress slower sinceit
has to remove some of the previously learned clauses used in
pruning the search space and potentially relearn them. Both
the design of these heuristics and techniques for determining
the “best” memory size to use are currently active areas of
research.

Another major difficulty facing the SAT solver community
is the problem of predicting the time to solution for a given
SAT instance. One heuristic examines internal solver stateto
estimate both the rate at which the solver is pruning the search
space and the rate at which it is exhausting memory and then
extrapolates time-to-solution from these rates. If the ratio of
the speed with which the solver prunes the search space to the
rate at which it is consuming memory is low, the problem is
perceived as being “hard” according to this heuristic. For a
hard problem, a learning solver will either run out of memory
and terminate, or prematurely discard and then subsequently
relearn clauses to avoid memory exhaustion and, because it
must run longer, incur a user timeout.

In the rest of this paper, we use the term “hard” or “complex”
to refer to problems which require a long time to solve or a
great deal of memory or both. We also use the term “easy”
to describe those problems which are solved quickly by the
solver under consideration. Note that due to the interaction
between learning heuristics and the data dependent nature of
SAT problems, a SAT problem instance may be perceived dif-
ferently by two SAT solvers. For example, while one solver
may find a problem instance hard, another solver may find the
same problem instance easy depending on the heuristics each
employs. However, there are SAT problems which are con-
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sidered hard by all known SAT solvers because, at present, no
solver has been able to find a solution.

One approach to improving solver performance is through
parallelization. Previous implementations of parallel solvers
show that better performance is obtained when a large pool of
computational resources is used for some problem instances.
The aggregate CPU power and memory of the hosts make
it possible to navigate the search space faster. However,
these solvers typically do not employ learning as paralleliz-
ing access to the clause database (particularly when shared
memory is not available as in a cluster setting) carries with
it a potentially heavy synchronization cost. Our approach is
to parallelize the solver algorithm and to have the program
automatically decide if and when additional resources should
be employed in parallel based on a prediction of whether the
synchronization cost can be successfully amortized. Because
resources will be added “on-demand,” our solver must be pre-
pared to change its resource usage dynamically in response
to the way in which a particular solution is evolving. Simi-
larly, if resource availability fluctuates causing the amount of
available compute power to change, the program adjusts its
resource usage to minimize its predicted time-to-solution.

Thus, the nature of our work takes the form of two contri-
butions. First, we have developed a new, efficient method for
parallelizing access to the clause database that is well suited to
distributed computing environments. This methodology repli-
cates a minimal set of clauses synchronously, and multicasts
a set of “intermediate” clauses asynchronously. In this paper
we present and compare three different methods for effecting
distribution and sharing of the clause database in the context
of parallel solvers distributed-memory solvers.

It is still an open research question to decide when using
more resources increases the solver’s performance. But re-
search in parallel solvers, shows that using more resources
can be (but not always is) a performance booster. Thus a
computational grid populated by a a large pool of resources
offers potential improvements in solver speed. These speed
improvements can also enable a parallel SAT solver to solve
previously unsolved problems which would have otherwise
taken prohibitively longer durations to solve using a sequen-
tial solver.

The goal of our research is to develop a satisfiability solver
capable of harnessing the computational power provided by a
grid infrastructure. In order to enable a grid implementation
of a SAT solver to use many resources simultaneously, we
need to address two types of challenges.

In order to meet the first challenge, the solver’s algorithm
needs to be modified so that it can run in parallel while ensur-
ing that the parallel components cooperate to improve over-all
efficiency. In the context of a parallel solver, the individual
components can share intermediate results. In this paper we

present and compare three different methods for sharing par-
tial results in a parallel solver. ¿¿¿¿¿¿¿ 1.13

The second contribution is the development of a framework
for running the parallel solver in a heterogeneous and very
volatile computational environment. In particular, we target
a grid [19,?] setting in which resources can be categorized
into two different types: time-shared and batch controlled. In
the case of time-shared resources, the application will com-
pete with other user applications running simultaneously on
the host processors. These processors may be part of a time-
shared cluster, a laboratory of time shared workstations, desk-
top machines, etc. Their distinguishing feature, however,is
that they are available immediately if they are available atall.
That is, a job or process need to wait in a queue for exclusive
access to them.

The other class of resources our solver is able to use are those
resources which are controlled by some form of batch sched-
uler. For these resources, our solver must submit requests
for processing (jobs) that are queued until sufficient resources
are available. These batch-controlled resources are typically
space shared so a job can request multiple resources (typi-
cally processors or nodes) be allocated simultaneously, and
once resource are allocated to a job, the job has them exclu-
sively for some site-specific maximum amount of occupancy
time.

Large-scale batch resources are also, typically, oversub-
scribed (hence the need for queuing to implement space-
sharing). Thus, job turnaround time often is characterized
by long queuing delays compared to relatively short maxi-
mum possible occupancy periods. To a long-running Grid-
SAT instance, these batch systems offer periodic “bursts” of
computing power separated by lengthy intervening hiatuses.
Moreover, while the amount of time a GridSAT job will be
able to execute is known once the job begins executing, pre-
dicting the queuing delay associated with an individual job
submission remains a difficult research problem [?, 15, 16].

Thus, the execution model for GridSAT uses immedi-
ately available interactive resources continuously and batch-
controlled resources opportunistically. Each instance begins
execution on a single interactive resource. As the problem ex-
ecution progresses, GridSAT examines the rate of its progress
and issues requests for additional resources in response the
the problem’s perceived difficulty. After a specified number
of interactive resources have been consumed (typically those
local to the launching site), GridSAT begins issuing requests
for large-scale batch resources. While waiting for batch re-
sources to become available, GridSAT maintains a work back-
log (in the form of stored checkpoints) for work it would have
initiated had interactive resources been available. This back-
log is mined whenever a GridSAT batch request is eventually
scheduled on a set of processors. If the request is scheduled
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before a backlog forms, GridSAT checkpoints the “hardest”
of its currently executing subproblems and migrates it one the
newly available processors (to take advantage of the exclu-
sive availability). Finally, GridSAT checkpoints all processes
– on interactive and batch resources – so that a lost process
or a terminated occupancy period does not cause the applica-
tion to halt. It is the seamless “blending” of cheap, readily
available interactive resources and large-scale, heavilyshared
batch resources, combined with GridSAT’s ability to exploit
them effectively, that make it a foremost example of the grid
computing paradigm.

Our initial work with GridSAT [9] shows that dynamically
acquiring resources in the manner described can provide
large reductions in time to solution for particular problemin-
stances. Indeed, GridSAT outperforms the best-known solver
on all problems that this leading solver can complete. At
the same time, GridSAT uniquely has been able to solve
several previously unsolved problems using non-dedicated,
wide-area Grid resources. Thus, by using Grid resources ef-
fectively, GridSAT constitutes a speed improvement over the
fastest-known technique and has achieved new scientific re-
sults that have not previously been possible. Few grid appli-
cations or infrastructures have been able to realize the grid
metaphor as completely, with such effective results.

Having established GridSAT’s performance benefit over the
state-of-the-art, in this paper we focus exclusively on theuse
of GridSAT to attack additional previously unsolved prob-
lem instances. New optimizations and a better integration of
batch and interactive resource usage makes it possible to solve
previously unsolved satisfiability problems from the field of
FPGA [33] routing as well as artificially generated instances.
In this work we also present a version of GridSAT that is ca-
pable of solution enumeration. GridSAT solves the solution
enumeration problem by extending the sequential solver. To
the best of our knowledge, most sequential and all parallel
solvers lack this feature.

We also make the GridSAT solver available to potential
users through a web portalhttp://orca.cs.ucsb.
edu/sat_portal/ . This portal allows users to easily use
a parallel solver deployed over a pool of powerful resources
which are not readily accessible to most users. By hiding
all the complexity of the application and resources used, the
portal makes it accessible for users to experiment with their
domain related problems.

The paper’s remaining sections are organized as follows. Sec-
tion 2 introduces the basic SAT solver algorithm and some of
the more advanced techniques used in modern solvers. In sec-
tion 3 we present GridSAT’s parallel version of the algorithm
and the techniques used to increase its efficiency. In section 4,
we present how solution enumeration is implemented in Grid-
SAT. The architecture and resource scheduler of GridSAT is

presented in section 5. We present experimental setup and
results in section 6. Finally, we conclude in section 7.

2 Sequential Solvers

A satisfiability problem is expressed as a boolean formula
over a set of variables. Most solvers operate on formulas ex-
pressed in Conjunctive Normal Form (CNF). An expression
in CNF is a conjunction (logical AND) ofclauseseach an
injunction (logical OR) ofliterals. A literal is either an in-
stance of a variable (V ) or its complement(∼V ). A problem
is called satisfiable if there exists a set of variable assignments
that makes the formula evaluate totrue. If such an assignment
does not exist the the problem is declaredunsatisfiable. The
CNF has two important properties: any boolean formula can
be algebraically converted to CNF, and for the original for-
mula to be satisfiable all constituent clauses must be satisfi-
able.

GridSAT is based on Chaff [32], a sequential SAT solver. In
Chaff, as well as other solvers, the performance of the al-
gorithm is enhanced by using techniques for adding new de-
duced clauses. In this section we explain the basic algorithm
and how new clauses are generated.

2.1 The Basic Algorithm
The basis of Chaff and many modern SAT solvers is the
Davis-Putnam-Logeman-Loveland (DPLL) [14] algorithm.
Figure 1 shows a simplified flow chart describing the algo-
rithm. This algorithm and its derivatives belong to the family
of “complete” solvers that are guaranteed to find an instance
of satisfiability if the problem is satisfiable, or to terminate
once a sufficient set of all possible variable assignments have
been examined proving that the problem is unsatisfiable. Vari-
ables can be assigned the valuestrue or falsebut they are all
marked asunknowninitially. The algorithm uses heuristics to
assign values to variables speculatively, but in an order that is
likely to yield a truth assignment quickly if one exists. The
speculative assignment of values to variables is called adeci-
sion. Because decisions are speculative (and may be undone)
and because decisions have deductive implications, they are
maintained as a stack. Each decision has a uniquelevel in the
decision stackwith the first level in the decision stack contain-
ing variable assignments necessary for the problem instance
to be satisfiable. For example, variables in clauses composed
of a single literal will be added to this level. Other variables
will be deduced to have a specific value and will be added to
the first level as the algorithm progresses.

After each new decision, the algorithm searches forunit
clauses– ones with a single unassigned literal and all other
truth values false. In a unit clause, the last remaining literal
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Figure 1: Flow chart for the DPLL algorithm

must have the valuetrue for the clause to betrue. When the
algorithm encounters a unit clause, it sets the previously un-
known literal totrue. When a literal is set totrue because of
a unit clause, this is called animplication. The corresponding
variable is assigned the value that makes the literaltrue and
is pushed onto the current decision level. Therefore each new
unit clause results in a new variable being assigned a truth
value. Even though an implication is a direct result of the
previous assignment, it is also predicated on some subset of
the previous variable assignments.

In DPLL a variable assignment occurs when a decision is
made or a variable is implied.Boolean Constant Propaga-
tion (BCP) is the procedure where the algorithm inspects the
clausedatabasein search of unit clauses, after each variable
assignment. We use the termdatabasein the rest of this pa-
per to refer to the set of clauses used by the solver. Actually
we can think of the solver as performing only a very specific
querybut very often. The query is executed after every deci-
sion or implication. The query matches all clauses which con-
tain a specific literal. However since efficiency is of utmost
importance, all clauses with a particular literal occurrence are
indexed using a list of pointers. BCP which occurs after ev-
ery new variable assignment is the most costly operation and
accounts for up to 90% of the runtime [32].

When a decision is made, resulting implications are added to
the current decision level. More implications might be added
in a cascade because of earlier implications. This process con-
tinues until no more implications are found or contradicting
assignments to the same variable are detected. In the case
when there are no more implications and if not all clauses are
satisfied, a new decision is made as shown in figure 1. When
a new decision is made an additional decision level is added
to the decision stack. In the other case where a contradiction

happens, the algorithm has encountered aconflict. A conflict
occurs when a variable is deduced to have two conflicting val-
ues (i.e. beingtrue andfalsesimultaneously). When a con-
flict happens the algorithm resolves the contradiction when
possible before proceeding. In order to remedy a conflict, a
simple approach is to undo the last decision that caused this
conflict. The solver can proceed by flipping the value of the
previous decision and then try again. In case when a decision
has been tried both ways, the first previous decision which
can be flipped is tried. If the algorithm cannot find a previ-
ous decision which was not tried both ways then the problem
is found to be unsatisfiable. This method is slow and may
require trying all2N combinations of variable assignments
when the problem is unsatisfiable, whereN is the number of
variables. More sophisticated conflict analysis techniques are
presented in the next section. These conflict analysis proce-
dures select a level in the decision stack to which the algo-
rithm can back-jump (as opposed to back tracking a single
level). Non-chronological back-jumping [60] occurs if theal-
gorithm jumps by more than one decision level. After back-
jumping the algorithm continues by making a new decisions
or deducing new implications.

Eventually the algorithm terminates under one of two possi-
ble conditions. If the problem is satisfiable, a set of variable
assignments which result in all clauses evaluating totrue is
found. This termination condition occurs when all clauses
are satisfied because of the current set of variable to assign-
ments. Note that not all variables need to be assigned a truth
value for this to happen. The problem is deemed unsatisfiable
if the algorithm backtracks or back-jumps completely to the
first decision level and there is a conflict due to deduced vari-
able assignments at this level. Since the variable assignments
at this level are necessary for the problem to be satisfiable then
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this is a conflict that the algorithm cannot resolve. Therefore,
the algorithm concludes that the formula is unsatisfiable.

2.2 Conflict Analysis and Learning
One of the more sophisticated and effective methods of con-
flict analysis isLearning. Learning [43, 28, 44] is the aug-
mentation of the initial formula with additional implicate
clauses that are deduced during the search procedure. The ad-
dition of these clauses restricts the search space and prevents
the solver from retrying those parts of the search tree. Learned
clauses represent redundant information because they are de-
duced from the initial set of clauses – that is, they carry no ad-
ditional logical information that bears upon the satisfiability
of the original formula. Thus learned clauses can be discarded
without changing the solution set of the initial problem.

In DPLL with learning new implicate clauses are deduced due
to a conflict. Conflict analysis is based on implication graphs.
An implication graphis a DAG which expresses the implica-
tion relationships of variable assignments. The vertices of the
implication graph represent assigned variables. The incident
edges on a vertex originate from those variables that triggered
the implication of the represented variable assignment. The
implication graph is not maintained explicitly in memory. In-
stead each implied variable points to the clause that causedits
implication. That is, the clause that has previously becomea
unit clause and caused this variable to be implied (i.e. assume
some truth value). This clause is called theantecedentof this
variable. Note that decision variables have no antecedentsbe-
cause they are not implied. In practice decision variables are
given a fictitious antecedent clause. Initial and learned clauses
are given indexes greater than 1, thus we use clause 0 (which
does not exist) as antecedent for decision variables.

A learned clauseis obtained by partitioning the implication
graph into two sides using acut. One partition is called
the reason sideand contains all the decision variables. The
other partition which contains the conflict is called thecon-
flict side. The cut is used to generate a newlearnedclause
using the literals on the reason side with edges intersecting
the cut. Different learning schemes are generated from dif-
ferent partitioning methods. However not all cuts generate
clauses which lead to a more efficient algorithm. A cut must
be selected in order to make learning effective [60] in improv-
ing the algorithm’s performance. A trivial partition wouldre-
sult in a clause which includes all the previous decision vari-
ables made before reaching the current conflict. However, in
many cases not all previous decisions have contributed to the
current conflict. Also a more carefully selected cut would
have fewer intersections and therefore will produce a smaller
clause. Smaller clauses are more effective in pruning the
search space than longer ones [9].

The purpose of the new clause is to prevent, in the future,
the set of simultaneous assignments which led to the current

conflict. The new learned clause is obtained by using the
complement of the variables on the reason side with edges
intersecting the cut. In addition the conflict clauses cause
the solver to perform a non-chronological back-jump. After
back-jumping, the new decision level is the highest decision
level among all the decision levels of the variables in the new
learned clause. Chaff [32] uses a method called FirstUIP. This
method is based on finding adominant nodeto the conflict
nodes defined as a node where all paths from the current de-
cision to the conflict pass through. The variable correspond-
ing to the selected dominant node is the only variable added
to the learned clause which is not a decision variable. Since
there might be many such nodes, the FirstUIP method uses
the node closest to the conflict. In this case the cut is made
such that all implications between the dominant node and the
conflict site are on the conflict side. For a more detailed ex-
planation of the algorithm please refer to [9, 8, 32, 44].

During execution, the number of learned clauses is potentially
very large, thereby consuming and ultimately exhausting the
memory capacity of any given host. Since all learned clauses
represent redundant information, the algorithm can discard
them (at a potential increase in execution cost) without af-
fecting correctness. Chaff implements specific heuristics[32]
(the details of which are beyond the scope of our work) to se-
lect which learned clauses are deleted depending on their size
and other properties. Deleting some of the learned clauses
periodically alleviates memory use and allows the additionof
new learned clauses which are currently more relevant.

3 GridSAT: SAT Solver for the grid

GridSAT’s distributed solver addresses three significant chal-
lenges. First, GridSAT parallelizes the search algorithm that
is navigating the space of possible truth assignments. Second,
certain learned clauses from the various solvers are distributed
and shared across grid resources. Finally, the GridSAT ap-
plication components are dynamically scheduled so that they
may take advantage of the best possible resources availableat
the time and they can be used profitably by the algorithm.

SAT problems vary in terms of their resource requirements.
The two main resources which affect solver performance are
CPU speed and memory size. Greater CPU speed makes ex-
ecution faster and available memory is used to store learned
clauses which may help prune the search space. In practice,
uncontrived industrial example problems benefit considerably
from clause learning As such, a fast CPU with little memory
will result in extremely slow progress.

To apply a parallel search technique to SAT, we split the prob-
lem at hand into subproblems (having decision stacks with
different truth assignments), each of which is independently
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investigated for satisfiability. Subproblems, themselves, may
be split in the same way, forming a recursive tree, each node
of which is assigned to a logically distinct processor. A sub-
problem represents part of the search space. Clause sharing
is facilitated by identifying the important clauses relevant to
each side of a split, and by eliminating clauses from the clause
database pertaining to each side.

The goal of GridSAT is to keep the execution as sequential
as possible and to use parallelism only when it is needed.
Because problem difficulty is unpredictable and parallelism
overhead could be high, GridSAT attempts to add resources
(machines with sizable memory) only when the current re-
source set (which starts with one machine) becomes over-
loaded.

3.1 Parallelizing SAT
GridSAT acquires new resources when existing sub-problems
are split into two sub-problems covering disjoint, but comple-
mentary, parts of the original search space. For GridSAT the
split process modifies the current problem and spawns a new
one as shown in Figure 2. The left part of figure 2 shows the
old decision stack of process A before splitting. This process
(also calledclient in GridSAT parlance) was assigned a sub-
problem and is now splitting its search space with client B.
The right part of figure 2 shows the modified problem stack
for client A and the newly created problem stack for client B
after splitting. The first decision variable in the second deci-
sion level of Client A’s original stack is the pivotal point in
the split. Clients A and B assume two different values for this
variable. Since this variable is given a specific value in both
clients, then it becomes part of the first decision level in both
cases. For client A, all implications which were previously
in the second decision level are now also part of the first de-
cision level of the modified decision stack. Therefore, Client
A’s new decision stack is created by making all variables on
the second decision level of the assignment stack part of the
first decision level. The newly generated problem stack for
client B consists of a set of variable assignments and a set
of clauses. The variable assignments include all assignments
from the first decision level and the complement of the first
assignment in the second decision level of Client A’s original
stack. Thus insuring the splitting of the search space.

After splitting, each process maintains its own separate clause
database. In order to alleviate memory usage, inconsequen-
tial clauses are removed. A clause is removed from a client’s
database when it evaluates totruebecause of the assignments
made at the first level of its decision stack as a result of the
split. In addition, inconsequential clauses are removed every
time the first decision level is augmented.

A notable risk in parallelizing a SAT solver comes from the
possibility of excess overhead introduced by parallel execu-
tion. In particular, because the duration of execution timethat

will be spent to solve a subproblem cannot be predicted easily
beforehand, it is possible for subproblems to be investigated
in such a short amount of time that the overhead associated
with spawning them cannot be amortized. As a result a solver
spends more time communicating the necessary subproblem
descriptions, thinning the database, and collecting the results
than it does actually investigating assignment values. Even
though the solver is advancing, the execution time may be
slower than if it were executed sequentially. This problem is
occasionally referred to as the “ping-pong” effect [25].

In the following sections we will describe optimizations in-
troduced to the splitting procedure and clause sharing to help
improve the overall solver performance. These optimizations
include several aspects:

• Different methods for merging shared clauses

• Adaptive clause sharing

• Reduction of communication overhead during problem
transfer

3.2 Sharing and Distributing the Clause Database
Each GridSAT process is assigned a part of the search space
disjoint from the search space of all other processes. This
is insured by giving each process a unique top decision level
in the stack. This level may be augmented but is never re-
duced. Because of the uniqueness of the stack, solvers will
tend to make different decisions which in turn results in vary-
ing implications. Therefore, the learned clauses, which are
dependent on the decision stack, as well as previous learned
clauses, will most probably differ for various processes. Thus
when these learned clauses produced by one client are shared
with other clients they help prune parts of their search space
which they have not yet investigated. The overall effect is
improved solver performance.

Allowing clause sharing, however, limits the kind of simpli-
fications that can be made. For example, variables (and their
complements) which have known truth assignments (i.e. in
the first decision level) can be removed since they will not in-
fluence future decisions made by the solver. Removing such
variables can be accomplished by deleting the occurrence of
all literals with known values from all clauses. This deletion
results in shorter clauses and more efficient use of the mem-
ory. However, variables of known values in one process might
still be unknown in another process. Thus in order for a clause
to be still valid when shared with another process it must
contain complete variable information. Therefore simplifi-
cations such as removing known variables are not possible
when clauses are shared because they make learned clauses
only valid in the context of the current solver.

When new learned clauses are received from other clients,
they are merged with the local clause database. Next we
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Figure 2: Example of stack transformation when a problem is split intotwo clients

present and analyze three different methods GridSAT uses
for sharing learned clauses. The three methods are: thelazy
method, the immediate methodand theperiodic method. To
our knowledge there has been no previous empirical evalua-
tion of the performance of different sharing methods. In the
next sections, we explain the characteristics of each method
and give motivation for using the two last methods.

3.2.1 The ”Lazy Method” for Sharing Clauses:
This method was the first we implemented because of its sim-
plicity. In this method, the newly obtained clauses are only
merged into the clause database after the algorithm has back-
tracked to the first decision level. We call this method the
Lazy methodbecause it might take a long time before the
solver backtracks to the first decision level. When using this
method, merging the new clause does not involve any stack
manipulation because the stack in this case contains one level
and no speculative decisions. The only variables to take into
consideration are in the first level of the stack. The truth val-
ues of these variables will not be altered by subsequent deci-
sions.

Under the conditions outlined previously, merging a received
clause is straightforward. The literals of the received clause
are examined for their truth values which can be eithertrue,
falseor unknown. For a given clause there are four possibili-
ties:

• If the clause contains at least onetrue literal, then the
entire clause istrue. Since the decision stack contains
no speculative decisions, then the variable correspond-
ing to the true literal could only come from the first
decision level. Since this variable will always betrue,
then the clause will always be satisfied. Therefore the
clause is of no value to the solver since it does not help
restrict the search space and is discarded. In the rest of
the cases we assume that no literal istrue.

• If the clause has only oneunknownliteral, and the re-

maining literals arefalsethen an implication is gener-
ated. The newly implied variable assignment is there-
fore predicated only on variables on the first decision
level. Thus the implied variable is added to the first
level of the decision stack. The clause under consider-
ation is marked as the antecedent for the newly implied
variable.

• If the clause has more than oneunknownliteral, then
the clause can be used to restrict the search space. In
this case the clause is added to the set of learned clauses
and the decision stack is not altered.

• If the clause has all literals set tofalse, then this clause
is not satisfied by the existing variable assignments and
a conflict exists. Since the decision stack contains no
speculative decisions, then all the variables in the new
clause must be in the first decision level. Therefore we
have a conflict because of variable assignments which
should becorrect if the subproblem were satisfiable.
Thus the subproblem is unsatisfiable.

The clauses are processed in batches where no BCP is per-
formed until all clauses in the same batch are inspected. Dur-
ing the batch processing, some clauses may be added to the
database while new implications are saved to a temporary
queue. If there is no conflict after all new clauses are pro-
cessed, the solver continues by retrieving the queued implica-
tions one at a time, adding them to the first decision level and
performing BCP as described earlier. If a clause in the batch
causes a conflict then the solver terminates immediately.

3.2.2 The Immediate Method for Sharing Clauses:
We made an important observation while running different
experiments especially with problems that were hard and took
a very long time without making progress. We realized that
when the problem was hard, all processes were not able to
use the clauses received from other processes because none
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of them were able to achieve enough progress to backtrack to
the first level of the decision stack. Therefore, all the shared
clauses which were saved by local solvers wasted valuable
memory space but were never used. Thus sharing clauses
did not have the desired effect of helping to prune the search
space of the local solver. Instead performance was degraded
because of wasted memory space. The solution we imple-
mented allows immediate integration of received clauses into
the solver’s clause database. This method is called theim-
mediate methodbecause clauses are merged immediately af-
ter they are received. The implementation of this solution is
more complex compared with the algorithm above because
the decision stack may contain multiple levels of speculative
decisions.

The algorithm for merging clauses starts by inspecting the
newly obtained clause. The algorithm determines how many
literals in the clause have valuestrue, falseor unknown. Also
the algorithm determines for clauses with a single literal be-
ing true, the decision leveltrue lit dl of such a literal. For
the given clause it determines the maximum decision level
(false lit max dl) amongst the decision levels of the literals
set tofalse. After determining these value there are only five
possible outcomes:

• If the clause is satisfied because of a variable assign-
ment at the first decision level, then this clause is use-
less for the local solver and is discarded. This case is
similar to the first case in the old merging algorithm.

• If the clause has only oneunknownliteral and notrue
literals, then the clause results in an implication. Actu-
ally if the clause was available when the solver was still
generating implications forfalse lit maxdl decision
level, then this clause would have become a unit clause
and generated an implication. Because generating im-
plications as early as possible is very important for di-
recting the search, we allow the solver to backtrack in
order to make use of this implication. In this case, the
solver backtracks to decision levelfalse lit maxdl and
the clause is inserted to the clause database. After the
solver backtracks tofalse lit maxdl decision level, the
same previous speculative decision at this level is put
in temporary queue.

• If the clause has only onetrue literal and noun-
knownliterals, then iffalse lit maxdl is smaller than
true lit dl then this is indeed an implication. This
restriction is necessary because there might be cases
where the clause has only onetrue variable but it does
not represent an implication. In such cases thetrue
variable was set at a level while some of the remain-
ing literals wereunknownbut are now set tofalse. The
solver proceeds by backtracking tofalse lit maxdl and

queuing an implication in the same way as the previous
case.

• If the clause has all its literals set tofalse, then the
clause has resulted in a conflict. In fact if this clause
was available when decision levelfalse lit maxdl was
still being populated by implications then this clause
would have caused a conflict at this level. This con-
flict would have helped direct the search, if detected.
Thus the solver backtracks to make use of this con-
flict. However, if the conflict is at the first decision
level, then this situation is the same as the fourth case
in the previous merging algorithm mentioned above.
Therefore the sub-problem is unsatisfiable. If the con-
flict is at a higher level, then the solver backtracks to
false lit maxdl. Also previous decision at this level is
saved in a temporary queue in the same way as the pre-
vious two cases.

• If none of the above cases apply then the clause is added
immediately to the clause database without altering the
decision stack.

When a new clause is merged, the decision stack is modified
and a backtrack is performed in three of the five cases pre-
sented above. In addition, every backtrack reduces the stack
depth, unless the top level is reached. When the stack depth is
reduced the implication queue is cleared before any new im-
plications are added. Also the decision level from which the
solver will start is also cleared so that the solver can recon-
struct the resulting implications while taking the new clauses
into consideration. When the solver backtrack to the first level
in the decision stack, the new merging method becomes the
same as the simpler previous method.

The effect of backtracking to a higher level in the decision
stack helps the solver investigate a more relevant part of the
search space due to the newly found implication or conflict.
The merging of shared clauses from other solvers restricts the
search space and prevents the solver from wastefully revis-
iting some parts of the search space. Merging new clauses
has an effect similar to randomization. Randomization [32]
is a process where the decision stack is cleared after a time-
out period and then starts at another random location in the
search space. The hope is that the restart will lead to another
location in the search space which will result in solving the
problem faster. Randomization is used by most solvers and
has been shown to improve solver performance. By merging
new clauses, more relevant search spaces are chosen based on
new implications and conflicts and not by random chance.

As described in [46], the exact effect of sharing clauses is not
yet known. In addition, when a large number of clients are
sharing even a small number of clauses the total communica-
tion overhead becomes significant. Shared clauses could be
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streaming into the solver at sometimes high rates, especially
if the number of processes used is high. Therefore merging
the clauses immediately will cause frequent preemption of the
solver. When the solver is preempted it stops until the re-
ceived clauses are merged. The next method we present is
designed to mitigate this problem.

There is a chance that some of the newly merged clauses
which are added to the clause database can be duplicates of
other previously existing clauses. Only clauses which do not
result in implications or conflicts can be duplicates. Duplicate
clauses will waste valuable memory space. Checking each
new clause received by a solver to insure that it is not a dupli-
cate before adding it to the database is computationally expen-
sive. It requires scanning the entire database and comparing
the new clause with every clause in the database. However,
since GridSAT broadcasts clauses immediately after they are
learned then all solvers are aware of the new clause quickly.
Once a solver has a copy of the clause in its database it will
not re-learn it. Therefore there is a slim chance that dupli-
cate clauses will become an overwhelming problem. In fu-
ture work, we will instrument GridSAT to find out how much
duplication really occurs for a given set of problems.

3.2.3 The Periodic Method for Sharing Clauses:
The two previous methods represent two opposite extremes in
how long a shared clause is delayed before it is merged with
the local clause database. On the one hand, the lazy method
delays delays the merging for a long time which potentially
hinders the effectiveness of clause sharing and wastes valu-
able memory space. On the other hand, the immediate method
merges clauses as soon as they are received which leads to
frequent interruption of the local solver.

The periodic methodis designed to tune the periodicity of
clause merging. When using this method the local solver
merges the clauses at periodic intervals. The periodicity is de-
termined by a user specified parameter. The periodic method
allows the solver to merge received clauses more frequently
than the lazy method. Also the periodic method merges
clauses in batches and interrupts the local solver less fre-
quently than the immediate method of sharing clauses. In this
paper we set the periodicity to 60 seconds.

3.2.4 Dynamically Adjusting Size of Shared Clauses:
GridSAT clients only share “short” clauses in order to mini-
mize communication cost. Short clauses are expected to have
a higher impact on pruning the search space and are more
probable to generate implications. In fact the pruning effect
of a clause is inversely proportional to its size (i.e. number
of its literals). Previous GridSAT implementations take the
maximum length of shared clauses as a static parameter.

Using a static value for determining the maximal size of

shared clauses, may lead to one of two possible bad scenarios.
First, if the value is too small the processes will not generate
clauses smaller than the suggested value and no clause sharing
will happen. In the second scenario, the used maximal clause
size is low causing a large number of clauses to be shared.
As a result, an influx of learned clauses may overwhelm the
solvers with unnecessary communication and computational
overhead. In addition, it is hard to determinea priory what
the maximal clause size should be for a given SAT instance.
In order to avoid both of these scenarios, the maximal clause
size can be varied during the application execution using a
given problem instance.

In the current implementation of GridSAT, the maximal size
of shared clauses is determined dynamically. We set the abso-
lute minimum for the maximal size to two. The maximal size
of learned clauses is adjusted depending on a user supplied
maximum rate of communication overhead due to clause shar-
ing. The user can supply a maximal rate for shared clauses
or use the default (set to 3). A process monitors the rate of
shared clauses and calculates it periodically every five min-
utes. When this process notices that the maximal rate was
exceeded, it broadcasts immediately an incremental decrease
of the maximal clause size. This step insures that communica-
tion overhead resulting from shared clauses will only exceed
its maximum for a short period of time. If the rate is below
the maximal rate, then the monitoring process waits for half
an hour before increasing the maximal rate and broadcasting
the new value to the rest of the solvers. This allows the com-
munication overhead to remain under its maximum value for
a long time period. The user can also set an absolute maximal
size for shared clauses.

4 GridSAT with Solution Enumeration

When a satisfiability problem is satisfiable, it may have more
than one solution. However, the basic DPLL algorithm is
designed to terminate after the first solution is determined.
There are multiple ways to alter a DPLL-based sequential
solver in-order to enable solution enumeration. For exam-
ple, a simple approach would be to augment the initial set of
clauses with a clause for every solution encountered. The ad-
dition of each solution clause would prevent the solver from
generating the same solution in later steps. Such clauses
are usually long because satisfiable instances often include
most of the variables. In addition, these clauses will not be
deleted in the future unlike learned clauses which are dispens-
able. A major drawback of such a solution is the need to use
more memory to store an additional clause for each new solu-
tion. As the number of solutions is usually high, the memory
needed to store the clauses produced by solutions becomes
very large. This makes to solver less efficient as less memory
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Figure 3: Example decision and secondary stack modifications after a solution is encountered. In the secondary stackX and O stand
for flipped and not flipped respectively.

is available for clauses obtained through learning.

GridSAT with enumeration uses a different approach which
uses little memory overhead which does not increase with the
number of solutions found. This method could easily be in-
tegrated to other DPLL-based solvers and is not specific to
zChaff. In the next section, we describe this method as it
applies to a sequential solver. We will also present the ramifi-
cations of this method for parallel solvers such as GridSAT.

4.1 Solution Enumeration with Modified DPLL
The DPLL-based solver with solution enumeration we
present, uses an additional stack in order to prevent itselffrom
reproducing identical solutions. After each solution is found,
the solver continues search for satisfiable solutions by moving
to a different part of the search space. The solver terminates
when the search space is exhausted and the last portion of the
search space is determined to have no solutions (i.e. unsatis-
fiable).

The enumeration solver in GridSAT uses an additional stack
called, thesecondary stack, to track the state of each decision
variable on each level of the decision stack. Thus the size of
the secondary stack is equal to the size of the decision stack
and is at most the number of variables in the original SAT
problem. A variable on the secondary stack could be either
flippedor not flipped. In the following description we also
use the equivalent pair of termsinvertedandnon-inverted

Initially all entries on the secondary stack are marked as not
flipped. When a solution is found the current variable assign-
ments are saved in a repository external to the solver pro-
cess. After the solution is saved then both stacks are mod-
ified. First, the decision variable in the highest level of the
decision stack is inverted. Second, the corresponding entry
in the secondary stack is marked asflipped. The solver con-
tinues by clearing the highest decision level and assuming the

inverted value of the same decision variable. After both stacks
are updated, the sequential solver proceeds as usual by mak-
ing more speculative decisions, augmenting the decision stack
and backtracking when a conflict is encountered leading to
a reduction in the decision stack. When the decision stack
shrinks because of backtracking all states in the secondary
stack above the current decision level are cleared and marked
as non-inverted.

When a solution is encountered and the current decision level
in the secondary stack is marked as inverted, the solver pro-
ceeds by removing the highest decision levels and backtrack-
ing to a level where the decision variable on the secondary
stack is not flipped. When such a level is found before reach-
ing the second decision level, the solver marks that level as
flipped and continues by assuming the inverted value at the
same decision level. For example, in figure 3 we suppose that
a solution was encountered at level four as shown on the left
side of the figure. The right hand side shows how the decision
and secondary stacks are modified. The solver backtracks to
level 2 since it is the first non-flipped entry encountered on the
secondary stack. This entry is marked with anO (not-flipped)
before the solution is found. The same entry is marked with
anX (flipped) after the solution is found. Notice that entries
in the secondary stack (level 3 and 4 ) below the new decision
level (level 2) are cleared and marked as not-flipped after the
solution is found. Also the variable at the new decision level
V7 is flipped in the modified decision stack to∼V7. After up-
dating both stacks, the solver then proceeds to explore the rest
of the search space.

If the solver backtracks to the second decision level, then the
solver has finished sweeping the branch of the search space
which assumes the current value of the decision variable at
the this level. Therefore, the solver can assume the opposite
value of this variable for the remaining search space. Thus,
the solver backtracks to the first decision level. and augments
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this level with the inverted value of the decision variable pre-
viously found at the second decision level. The solver than
proceeds by searching for implications produced by the newly
assumed values.

The secondary stack is used as an additional mechanism to
restrict the search space after a solution is found. In addition,
the new extension to the basic algorithm does not restrict the
efficient sequential algorithm in any fashion. The solver con-
tinues to navigate and prune the search space as before. The
role of the secondary stack is to prevent the solver from re-
producing the same solutions unnecessarily.

4.2 Parallel Solver with Solution Enumeration
Deploying parallel solvers with solution enumeration requires
only modifications to the sequential solver. The role of the
parallel solver infrastructure is to collect all the solutions in a
repository.

In the parallel version, described in section 3.1, which uses
the basic DPLL algorithm, each solver is given an initial de-
cision stack and a clause database. In the parallel solver which
uses solution enumeration, each client is given the same de-
cision stack and an additional secondary stack. In order to
illustrate how the secondary stack is split in the case of a par-
allel solver with solution enumeration, we use the same ex-
ample as in figure 2. Before splitting, client A has both a sec-
ondary stack and a decision stack. After splitting, both client
A and B receive the same decision stack and clause databases
as described in section 3.1. Also, the old client (A) will re-
ceive the same original secondary stack except that level one
is deleted. The new client (B), however, receives a totally
blank secondary stack.

Now we show that this method of solution enumeration will
not produce redundant solutions. In a parallel solver, each
client starts from a distinct initial decision stack as described
earlier. If any client finds a solution the initial decision stack
will be a subset of that solution. Therefore, it is guaranteed
that no two clients will produce the same solution since all
clients start from distinct initial decision stacks. Furthermore,
no client will produce the same solution more than once be-
cause the decision stack is different for each iteration of the
DPLL algorithm. Therefore, the above algorithm will pro-
duce the a set of distinct solutions.

5 GridSAT Architecture and Resource Scheduling

The design of the GridSAT application has three main goals.
The first goal is to allow for an efficient parallel SAT solver
which adjusts to the variable resource usage of the problem
being solved. The second goal is to use the available resources
efficiently. The final goal is to make GridSAT adapt to varia-

tions in the availability and composition of the resource pool.

GridSAT is implemented as a special form of the master/client
model where individual clients communicate directly and
share clauses. The master consists of four main components:
the resource manager, the client manager, the scheduler and
the checkpoint server. A general architecture of the master
process is shown is figure 4. External components with which
the master interacts are shown as “clouds.”

The resource manager loads resource information from one
or more Grid information systems such as Globus MDS [12]
and the NWS [58, 47, 59]. The scheduler as shown in fig-
ure 4 is responsible for coordinating the interactions between
all the components. In addition it handles interactions with
external resources and monitors them to detect failures. The
resource manager is aware of the different types of resources.
For shared resources only one GridSAT process per host is
launched. For batch systems, the resource manager launches
one job at the start of the execution. Additional, jobs could
be manually submitted and GridSAT will use their resources
when they become available. Actually the client manager will
accept any additional clients launched from newly available
resources or previously submitted batch jobs. It is the roleof
the client manager to maintain the list of active clients and
monitor their progress.

The GridSAT scheduler is the focal point and is responsible
for coordinating the rest of the components. It is also respon-
sible for launching the clients. The scheduler uses a progres-
sive scheme for acquiring resources and adding them to the
resource pool. Also resources which are no longer performing
a task on behalf of GridSAT are released immediately when
possible. The reason for this approach is the variability and
unpredictability of resource usage for a particular SAT prob-
lem. Some problems are solved easily using a single host
after a short time period. Other problems, however, might be
harder and require a large number of hosts and a longer time
period. By starting with a small resource pool and expanding
the set of used resources, GridSAT achieves two goals. First,
a small number of resources will be used to solve the easy
problems which results in a smaller communication overhead
and therefore shorter time to solve the problem. Second, Grid-
SAT can adapt resource usage to how difficult the problem is
perceived. If at a particular stage the problem is perceived
difficult the size of the resource pool used will grow. At an-
other stage, the same problem might be perceived to be easy
and a smaller resource set will be used, and excess resources
will be released.

A typical execution will start by launching the master. The
master will examine the problem to find any obvious variable
assignments and remove any inconsequential clauses. Some
problems might be solved at this stage because of an easily
detectable conflict. After this stage, the master requests the
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Figure 4: GridSAT components and their internal and external interactions. The external components and systems which GridSAT
uses, such as the Globus MDS and the NWS, are shown in clouds.

resource list available from deployed Grid services such asthe
MDS [12] and NWS [58] or simply a configuration file. The
scheduler immediately submits any batch jobs to their respec-
tive queues. When a remote client starts running it contacts
the client manager and registers with it. The scheduler ranks
the set of available clients based on their processing power
and available memory as provided by the NWS [58, 47].
Static values for these resource parameters can be used when
GridSAT is configured without NWS or the Globus MDS.

The GridSAT scheduler uses the first available client to im-
mediately start solving the problem. Each client records the
time it took to receive the problem data. Clients also monitor
their memory usage. The decision for splitting a problem is
made locally by the client and not by a centralized scheduler.
A client notifies the master when it wants to split its assigned
subproblem with another client because its memory usage ex-
ceeded a certain limit or after running for a specified period
of time. This time period is determined as two times the du-
ration of the communication period the client used to obtain
the problem data. Using this method, the scheduler allows for
computation time to offset the communication overhead. The
clients, therefore, do not spend most of their time splitting
instead of doing useful computation.

The splitting process is performed by the cooperation of three
components: the master, the splitting client and anidle client.
Theidle client is a process which was not previously assigned
a sub-problem to investigate. Figure 5 shows the steps taken
during the splitting process. Client A which has presumably
been solving a sub-problem, has detected that it needs to split
its search space. Client A, then notifies the master using mes-
sage (1). Upon receiving this message the master selects the
highest ranked client and includes it in message (2) which it
sends to client A. Using the information in message (2) client

A determines which of its peers it will split the problem with.
Client A then proceeds to communicate directly with client B
by sending it message (3). In previous GridSAT implementa-
tions, message (3) is very large and varies in size from 10 KB
to 500 MB. By using direct peer-to-peer communication the
overall communication overhead is reduced. When the split-
ting is successfully completed, both clients alert the master
using messages (4) and (5). In Message (4), client A sends
new stacks for both clients A and B. Each stack is used as a
checkpoint for its respective client. Both messages are used
so that GridSAT can recover gracefully if one or both clients
fail during the splitting procedure. Also if only one of the
clients fail, then only that client will be restarted because the
acknowledgements (4) and (5) are received separately.

Message (3) above allows the transfer of a newly created sub-
problem to the idle client. This message is the largest message
and contains three different parts:

• The assignment stack: It is the smallest part and is in
the order of the number of variables.

• The set of original problem clauses: This could be as
large as the initial problem file

• The database of learned clause: It is the largest compo-
nent and is 100s of Mega-Bytes in size.

5.1 Reducing Communication Overhead
GridSAT reduces the communication overhead of the solver
in two ways. First, problem files are copied only once where
several hosts share a common file system. Therefore split
messages to the same set of hosts will be smaller since it will
not include the second part of message (3) mentioned above.
The second modification makes it possible for the new client
to proceed with its computations immediately after it receives

p. 13



Figure 5: Communication scenario of splitting the subproblem
assigned to client A with client B

the assignment stack and load the problem file from the shared
file system. Since learned clauses contain redundant informa-
tion, then they are not required to start solving the new sub-
problem. Therefore they are sent in a separate message. This
message takes a long time to transfer, and the new clauses will
be merged as they are received using the clause merging algo-
rithms mentioned above. Using this methods the new client
(client B in figure 5 ) will not have to idly wait for the entire
message to arrive before starting solving the newly assigned
sub-problem. The old client (client A in figure 5) still waits
because the clause database is locked until the transfer is com-
pleted. Making an additional copy of the clause database in
order to prevent the old client from stalling is not practical be-
cause the size of the clause database is very large and there is
not sufficient memory to hold a separate copy. The old client
waits and does not proceed until the clause database destined
for the new client is transferred. Transferring these clauses
to the new client is essential to the efficiency of the solver.
Eliminating this transfer would slow the solver significantly.

Finally the GridSAT solver terminates when all sub-problems
have been solved or one the clients finds a satisfying assign-
ment. In the latter case the client which finds the satisfying
assignment sends its stack to the master. The master verifies
that the set of truth assignments it received does indeed satisfy
all clauses in the initial problem. Most solvers in the literature
are evaluated based on the time the first satisfiable instanceis
found. But there are cases [24] where knowing all satisfi-
able instances is helpful. GridSAT can also enumerate all the
instances where a problem is satisfiable. In all cases, when
the master determines that the problem is solved, it sends a
message to all clients requesting them to terminate.

5.2 Failure Recovery and Check-pointing System
In a computational grid environment resource failures are fre-
quent. Therefore a grid application has to be able to recover
from such failures. There are two components to failure re-

covery. First, the grid application should establish a mecha-
nism for detecting the failure of remote components. Grid-
SAT uses heartbeat messages to decide when a remote solver
has failed. Second, the grid application should be able to
restart with minimal work loss when failures occur. The cur-
rent version of GridSAT uses check-pointing to recover from
such failures. Each checkpoint belongs to one remote solver
and represents a SAT sub-problem that can be restarted when
combined with the initial SAT problem. GridSAT can use two
types of checkpoints:

• Light checkpoints: This method requires little storage
space and communication overhead. Only the top level
of the assignment is recorded for each client. In this
case checkpoints for a client will be updated only when
more variables are added to the first decision level.

• Heavy checkpoints: In addition to the light checkpoint
data, we save all newly learned clauses. It is also possi-
ble to save the top levels of the decision stack in order to
reconstruct the exact decision levels after restart. This
type of checkpoints can be saved at regular time inter-
vals in addition to the instances when the top level is
augmented.

The master stores and updates the checkpoints as they are re-
ceived from the clients. The checkpoints can be stored ei-
ther on a local file system or in a distributed fashion using
IBP [34]. Idle clients are assigned new sub-problems either
through splitting or from saved checkpoints. Sometimes the
number of checkpoints exceeds the number of active clients.
This happens when a large number of previously active clients
terminate leaving behind their checkpoints. In this case the
scheduler keeps a list of checkpoints and assigns them to
newly created clients or those that have just finished solv-
ing their own sub-problem. Idle clients are assigned problems
through splitting only after all checkpointed sub-problems are
assigned to active clients.

When the master fails, GridSAT can recover by simply re-
instantiating the master process on another machine if neces-
sary. If checkpoints are available, the new master process can
use them to recover pre-failure state. Also a user could cause
an intentionalfailure by halting the master while it is solving
a problem in order to start another problem for example. The
user can later resume solving the previous problem using the
saved set of checkpoints.

5.3 Efficient Use of Batch Jobs
Batch schedulers are usually used to control super-computing
facilities [6, 49] and collections of grid resources such asCon-
dor [10, 48]. Users in these environments are given a budget
(i.e. a quota of CPU-hours) to use. Since this is valuable time,
it is important from the user’s perspective to use it effectively.
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The scheduler bills the user and deducts from his budget the
total time the nodes in the batch job are assigned to his job.
The user is billed for the time used and not the time he ini-
tially requested. Thus if a job terminates early the user is only
billed for the time during which his job actually ran. From a
user’s perspective, the goal is to minimize the cumulative idle
time for all nodes during a batch job execution.

In traditional parallel applications, which mostly use
MPI [18], the number of processes spawned is sufficient to
insure that all nodes have a slice of the work assigned to them
during the entire duration of the execution. All nodes start
and stop execution simultaneously. This scenario leads to an
efficient use of the batch jobs. GridSAT is not a traditional
parallel application. In the case of GridSAT, the number of
jobs (i.e. sub-problems) varies during execution. Actually,
when a new large batch job becomes available the number of
workers might be much larger than the number of available
sub-problems. The goal of GridSAT is to make good use of
the newly available and valuable processing power. It is possi-
ble to immediately split a sufficient number of sub-problems.
This will lead to more efficient use of batch jobs but may af-
fect negatively the solver’s performance. If GridSAT, how-
ever, waits till enough problems split to populate all the batch
nodes, it may lead to an inefficient use of super-computing
nodes.

In GridSAT, initial batch job requests are large with a high
number of nodes and long duration. This leads to a long wait-
ing period in the scheduler’s batch queue. Thus if a job is
not solved after this long waiting period than it most proba-
bly is a hard problem. Thus batch jobs are only used when
the problem is hard. When a batch job starts execution, Grid-
SAT uses problem migration to achieve more efficient use of
batch nodes. Remote GridSAT nodes, which are numerous,
will migrate immediately to occupy batch nodes. After, mi-
gration takes place and since networks are fast within super-
computing nodes, splitting happens at higher rates especially
after the above mentioned reductions in communication over-
head. Actually the number of active nodes (i.e. those with
sub-problems) will increase exponentially. This happens be-
cause the number of new sub-problems is increased in pro-
portion to the number of existing active solvers. Therefore,
problem migration leads to a more efficient use of batch jobs.

5.4 Multiple Site Scheduling and Migration
GridSAT processes communicate as peers during problem
splitting. Even after the implementation of the optimiza-
tion presented above which reduce communication overhead,
peer-to-peer messages are still the largest. Therefore, more
efficient problem splitting will improve the overall solver’s
efficiency. More efficient problem splitting could be accom-
plished when clients belong to a pool of well connected re-
sources. Such pools of resources are usually presented when

new batch jobs reach the head of their waiting queue and start
running. GridSAT migrates problems from dispersed nodes
to processes which are part of a batch job.

The scheduler identifies batch processes in a static fashionus-
ing their host names. Instead of creating a new sub-problems
through splitting with a remote node, the scheduler requests
the remote node to migrate to one of the clients in the batch
job. Migration allows future splitting to happen between peers
belonging to the same batch jobs. This leads to reduction in
overall communication overhead. In future versions of Grid-
SAT, determining when migration happens will be achieved
through a more dynamic approach.

6 Experimental Apparatus and Results

In the experimental section we present three experimental
sets. The first set of experiments allows the selection of the
best strategy for merging learned clauses by comparing the ef-
fectiveness of those strategies as used in a parallel SAT solver.
The second set of experiments compares the performance of
GridSAT to that of the sequential solver zChaff. The third set
of result show how GridSAT is used to coordinate a large pool
of resource for extended time periods to solve “hard” satisfia-
bility problems.

6.1 Learning Methods Experiments
In these set of experiments we study the effectiveness of the
three different learning methods: the lazy method, the imme-
diate method and the periodic method. The experiments are
conducted using the set of 33 benchmark problems used by
the different satisfiability competitions [37, 40] and previous
evaluations of GridSAT [9]. The experiments were conducted
on set of dedicated nodes on a cluster available at UCSB. Each
experiment uses ten nodes and one of the three methods. The
experiments are grouped into three sets where the maximal
size of a shared clause is varied between 5, 10 and 15. The
cluster nodes are Pentium V CPUs with 2.66 GHz frequency
and 2 GB of memory. During these experiments automatic
adjustment of shared clause size was disabled.

6.1.1 Results for Comparing Different Learning
Methods: The experimental results are shown in table 1.
This table shows experimental results for using a maximal
size of shared clauses of 5, 10 and 15 respectively. The
table contains three section, one for each of size of shared
clauses used. Each section shows to total time for each of the
three methods and the relative speed-up compared to the lazy
method.

In order to save space the runtimes for the individual prob-
lems were not included. But from inspecting each of the three
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Method Lazy Immediate Periodic

Maximum size of shared clause = 5
Total 76776 68620 64675

% Speedup (base) 10.6 15.8

Maximum size of shared clause = 10
Total 71860 67292 63400

% Speedup (base) 6.4 11.8

Maximum size of shared clause = 15
Total 69527 67292 63400

% Speedup (base) 3.2 8.8

Table 1: GridSAT results comparing all three learning methods
with maximal learn clause size equal to 5, 10 and 15.

experimental sets, we learned that no particular method out-
performed the other two methods all the time. Instead each
method outperforms the other two methods for a subset of the
problems. We use the total runtime of all the problems to
compare the efficiency of the methods. Using the total run-
time for all problems in a benchmark is the standard method
for comparing solvers.

We notice that in each case both the immediate and periodic
methods outperform the lazy method. The immediate method
outperforms the lazy method by an average of about 7%. The
periodic method was the most efficient and showed a speedup
of about 12% on average compared to the lazy method. We
also notice that the speedup decreased as the size of maximal
shared clause increased. These experiments show that using
the periodic method gives the best overall performance.

6.2 Comparing GridSAT and the Sequential Solver
In the first set of experiments, we used 34 machines from
the GrADS testbed and an additional machine (that we could
completely instrument) as a master node. The machines were
distributed among three sites: two clusters (separated by cam-
pus networking) at the University of TN, Knoxville (UTK),
two clusters at the University of Illinois, Urbana-Champaign
(UIUC) and 8 desktop machines at the University of San
Diego (UCSD). The master node was also at UCSD. The
machines had varying hardware and software configurations,
with one of the UTK clusters having the best hardware con-
figuration. For each zChaff (single machine) test we used a
dedicated node from this cluster.

As a set of test applications, we chose a suite of challenge
problems used to judge the performance of automatic SAT
solvers at the SAT2002 conference [37]. These benchmarks
are used to rate all competing solvers. They include indus-
trial and hand-made or randomly generated problem instances
that can be roughly divided into two categories:solvableand
challenging[38]. The solvable category contains problem

instances that SAT solvers have been known to solve cor-
rectly. They are useful for comparing the speed of compet-
itive solvers since it is likely that each solver in the competi-
tion will be able to generate an answer when the competition
is held. Alternatively, the challenging problem suite contains
problem instances that have yet to be solved by an automatic
method or which have only been solved by one or two au-
tomatic methods, but are nonetheless interesting to the SAT
community. Of these problems, many have solutions that are
known through analytical methods, but several are open ques-
tions in the field of satisfiability research.

In these experiments the maximum size of learned clauses
shared is 10. Learned clauses bigger than 10 are not shared.
This size allows for sharing of important clauses which would
have maximal effect without increasing significantly the over-
head of clause sharing. Also the time out for clients to request
that their problems be partitioned is set to 100 seconds. For
the solvable problems we set an overall maximum execution
time out to a total of 6000 seconds for GridSAT. That is, if
the entire problem is not solved in 6000 seconds, the applica-
tion gives up and terminates without a definitive answer. For
the challenging benchmarks, we double the overall time out
to 12000 seconds.

In all of the experiments, we compare GridSAT to zChaff run-
ning in dedicated mode on the fastest processor to which we
have access with an 18000 second total time out. For the
challenging set we used 12000 seconds as the timeout value.
Note that in the actual 2002 competition, using faster ma-
chines than the fastest we had available, zChaff was only able
to complete a few instances from this set using a six-hour
(21600 second) time out. Thus we believe that the compari-
son between the two using the machines in the GrADS testbed
offer useful insight into the additional capability provided by
GridSAT.

6.2.1 Results: The first set of results are presented in
Table 2. The second column contains the solution to the in-
stance: satisfiable(SAT), unsatisfiable(UNSAT), or unknown.
We have marked those problem instances that were previously
open satisfiability problems with an asterisk (*). If a problem
was originally unknown and was later solved by a solver, then
we still keep it marked with an asterisk for completeness. The
last column shows the maximum number of active clients dur-
ing the execution of an instance. For all instances this number
starts at one and varies during the run. The maximum it could
reach is 34, the number of hosts in the testbed, but the sched-
uler may choose to use only a subset. This column records the
maximum that the scheduler chose during each particular run.
When a problem is solved the number of active clients col-
lapses to zero. Speedup is measured as the ratio of the fastest
sequential execution time of zChaff (on the fastest, dedicated
machine) to the time recorded by GridSAT.
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The problem instances in Table 1 are split into three cate-
gories. The first section represents the set of instances which
were solved by both zChaff and GridSAT (taken from both the
solvable and challenging categories of the SAT2002 bench-
mark suite since zChaff was able to solve some of the lat-
ter). On the small instances (ones that complete in less than
300 seconds) where communication costs are significant we
notice that zChaff running on a single machine outperforms
GridSAT. The slowdown however is not very significant be-
cause the actual time is short. For instances with long running
times GridSAT shows a wide range of speed-ups ranging from
almost none to almost 20 fordp12s12. Because GridSAT was
using more machines it was capable of covering much more
of the search space even when the run times were compara-
ble. In only one relatively long running instance,grid 10 20,
did GridSAT show a slowdown. The maximum number of
active clients for the entire problem only reached a maximum
of twelve during its execution. With this little sharing, paral-
lelism did not seem to improve performance. This particular
problem comes from a non-realizable circuit design illustrat-
ing the data-dependent nature of SAT solver performance re-
sults.

The second category of problems represent those that Grid-
SAT was able to solve while zChaff either timed-out or ran
out of memory. In addition, only three out of the ten prob-
lems in this category were solved by another solver during the
SAT2002 competition [39]. Note that zChaff was crowned
the overall winner because of its cumulative performance
across benchmarks. Individual instances may have been bet-
ter solved by particular solvers, but because the competition
attempts to identify the best general method, aggregate time
is used, and zChaff is the best on aggregate.

The rest of the seven instances in this second category have
only been solved by GridSAT to the best of our knowledge.
Three of the solved instances were part of the challenging
benchmark for which results were originally unknown con-
stituting new domain science in the field of satisfiability. The
other four had known analytical answers, but no automatic
generalized solver had been able to correctly generate them
indicating the additional solution power that a Grid imple-
mentation brings to the field.

These results show that GridSAT provides a speedup com-
pared to existing sequential solvers. This speed up is not lin-
ear with respect to the number of resources used because the
DPLL algorithm used to solve SAT instances is a branch-and-
bound algorithm. In such search based algorithms the time to
solution is not always proportionally related to the numberof
times the search space is divided. For example, dividing the
search space in half may not cause a two-fold speedup in time
to solution. In fact, the two sub-problems may have very dif-
ferent times to solution. In this case, even though there will be
an overall improvement by using two resources, the speedup

may be less than two. Actually there is no theoretical guar-
antee that dividing the search space will result in speedup be-
cause of all the heuristics involved. In practice, however,par-
titioning the search space causes performance improvements
most of the time. The contribution of GridSAT is not only to
provide speedup over sequential solvers but also to enable the
solution of problems that were previously unsolved as shown
by the next set of experiments.

6.3 Solving Hard Problems
Since GridSAT is a true grid application we ran a set of ex-
periments to show that GridSAT can run for extended peri-
ods of time robustly using a wide variety of resources and
also solve previously unsolved hard satisfiability instances.
In these experiment we simultaneously use computational re-
sources which belong to collections of individual machines,
small size research clusters and super-computing scale clus-
ters. The computational resources we used are composed
from four main sources:

• VGrADS [55] testbed with additional machines from
the University of California, Santa Barbara (UCSB)

• Blue Horizon [6] located at the San Diego Supercom-
puter Center (SDSC)

• TeraGrid [54] site at the San Diego Super Computing
Center (SDSC)

• TeraGrid [53] site at the National Center for Super-
computing Applications (NCSA)

• Data Star [13] supercomputer at SDSC

The TeraGrid [49] project is a national scale project which
is aimed at building the worlds largest distributed in-
frastructure for open scientific research. It includes five
sites at SDSC [54],NCSA [53], Argonne National Labora-
tory [50], Pittsburgh Super Computing center [52] and Cal-
tech CACR [51]. Additional sites and resources are planned
at Oak Ridge National Lab (ORNL); Purdue University, In-
diana; Indiana University, Bloomington; and the Texas Ad-
vanced Computing Center (TACC) at The University of Texas
at Austin.

The Virtual Gr id Application Development Software
(GrADS) project [55], a continuation of GrADS [4, 21] is
a comprehensive research effort studying Grid programming
tools and application development. GrADS includes a set of
programming tools for managing grid applications using per-
formance models. Scheduling applications in GrADS uses
compiler pre-processing of the programs and introduced in-
strumentation combined with NWS data. The tools GrADS
uses are included in a software package termedGrADSoft. To
facilitate experimental application research and testing, the
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File name SAT/UNSAT/ zChaff GridSAT Speed-Up Max # of
UNKNOWN (sec) (sec) clients

Problem solved by zChaff and GridSAT

6pipe.cnf UNSAT 6322 4877 1.23 34
avg-checker-5-34.cnf UNSAT 1222 1107 1.10 9
bart15.cnf SAT 5507 673 8.18 34
cache05.cnf SAT 1730 1565 1.11 34
cnt09.cnf SAT 3651 1610 2.27 12
dp12s12.cnf SAT 10587 532 19.90 8
homer11.cnf UNSAT 2545 1794 1.42 10
homer12.cnf UNSAT 14250 4400 3.24 33
ip38.cnf UNSAT 4794 1278 3.75 11
randnet50-60-5.cnf UNSAT 16242 1725 9.42 20
vda gr rcs w8.cnf SAT 1427 681 2.10 15
w08 14.cnf SAT 14449 1906 7.58 34
w10 75.cnf SAT 506 252 2.01 2
Urquhart-s3-b1.cnf UNSAT 529 526 1.01 4
ezfact485.cnf UNSAT 127 196 0.65 1
glassy-sat-selN210 n.cnf SAT 7 68 0.10 1
grid 10 20.cnf UNSAT 967 3165 0.31 12
hanoi5.cnf SAT 2961 1852 1.60 33
hanoi6fast.cnf SAT 1116 831 1.34 4
lisa20 1 a.cnf SAT 181 243 0.75 2
lisa21 3 a.cnf SAT 1792 337 5.32 4
pyhala-braun-sat-30-4-02.cnf SAT 18 84 0.21 1
qg2-8.cnf SAT 180 224 0.80 2

Problems solved by GridSAT only

7pipebug.cnf SAT TIME OUT 5058 – 34
dp10u09.cnf UNSAT TIME OUT 2566 – 26
randnet40-60-10.cnf UNSAT TIME OUT 1690 – 30
f2clk 40.cnf UNSAT(*) TIME OUT 3304 – 23
Mat26.cnf UNSAT MEM OUT 1886 – 21
7pipe.cnf UNSAT MEM OUT 6673 – 34
comb2.cnf UNSAT(*) MEM OUT 9951 – 34
pyhala-braun-unsat-40-4-01.cnfUNSAT MEM OUT 2425 – 34
pyhala-braun-unsat-40-4-02.cnfUNSAT MEM OUT 2564 – 34
w08 15.cnf SAT(*) MEM OUT 3141 – 34

Remaining problems
comb1.cnf * TIME OUT TIME OUT – 34
par32-1-c.cnf SAT TIME OUT TIME OUT – 34
randnet70-25-5.cnf UNSAT TIME OUT TIME OUT – 34
sha1.cnf SAT TIME OUT TIME OUT – 34
3bitadd31.cnf UNSAT TIME OUT TIME OUT – 34
cnt10.cnf SAT TIME OUT TIME OUT – 34
glassybp-v399-s499089820.cnfSAT TIME OUT TIME OUT – 34
hgen3-v300-s1766565160.cnf * TIME OUT TIME OUT – 34
hanoi6.cnf SAT TIME OUT TIME OUT – 34

(*): problem solution is unknown

Table 2: GridSAT and zChaff SAT2002 Benchmark Results on GrADS testbed
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project maintains a nationally distributed grid of resources for
use as a production testbed. The baseline Grid infrastructure
is provided by Globus and the NWS, upon which is layered
a set of programming abstractions. In this work we extend
GridDSAT to use all resources that do not currently bene-
fit from these sophisticated Grid programming tools. Grid-
SAT components (i.e. master and client) use the Every-
Ware [56, 57] messaging system for communication.

During our experiments, none of the resources we used were
dedicated to our use. The VGrADS testbed, the UCSB ma-
chines, and the super-computing resources were all in contin-
uous use by various researchers and application scientistsat
the time of the experiment. As such, other applications shared
the computational resources with our application. It is, infact,
difficult to determine the degree of sharing that might have
occurred across all of the available machines. Sometimes we
were requested to temporarily vacate some specific resources
because some users wanted to run experiments without in-
terference from other applications. We consider this to be
a realistic scenario for Computational Grid computing, but
it makes repeatable timings of similar problems (particularly
those we ran for long periods) difficult. In particular, in batch
controlled system such as Blue Horizon, Data Star and the
TeraGrid, a user presents a request for a number of nodes
and a maximum duration. After waiting in the job queue,
the user’s job runs with exclusive access to the nodes dur-
ing execution, but the queue wait time incurred before execu-
tion begins is highly variable. However, the effect of resource
contention is almost assuredly a performance-retarding one.
Thus, if it were possible to dedicate all of the VGrADS re-
sources to GridSAT, we believe that the results would be bet-
ter. As they are, they represent what is currently possible us-
ing non-dedicated Grids in a real-world compute setting.

In previous experiments [9] we showed how GridSAT can si-
multaneously use small clusters and a collection of lab ma-
chines in conjunction with high end supercomputers such as
Blue Horizon. The experiments used a single job request on
the Blue Horizon with a maximum timeout of 12 hours.

The set of experiments we present in this paper use a more
diverse set of resources for longer periods of time (up to a
month in duration) and multiple job requests. We chose a
set of challenge problems from both SAT2002 conference
[37] and SAT2003 benchmarks [40]. These benchmarks are
used to judge and compare the performance of automatic SAT
solvers at the SAT2002 [39] and SAT2003 [42] conferences.
All the problems in the benchmarks are shuffled to insure
that submitted benchmarks are not biased in favor or against
any solver. These benchmarks are used to rate all compet-
ing solvers. They include industrial and hand-made or ran-
domly generated problem instances that can be roughly di-
vided into two categories:solvableandchallenging[38, 41].
The solvable category contains problem instances that some

SAT solvers have solved correctly. They are used for com-
paring the speed of competing solvers. Alternatively, the
challenging problem suite contains problem instances that
have yet to be solved by an automatic method or which have
only been solved by one or two automatic methods, but are
nonetheless interesting to the SAT community. Some of these
problems have known solutions that are known through an-
alytical methods (i.e. the problem has a known solution by
construction), but several of these problems are open ques-
tions in the field of satisfiability research. We only chose
problems which are hard so that we can demonstrate the abil-
ity of the GridSAT system to solve such challenging prob-
lems. These problems were deemed hard by all participating
solvers.

We investigate seven previously unsolved problems divided
as follows:

• 3 instances from the SAT 2003 benchmark category,

• 4 instances from the SAT 2002 benchmark category, all
of which we have not been able to solve using previous
versions of GridSAT.

This group of problems represent a variety of fields where
problems are reduced to instances of satisfiability and solvers
are used to determine the solutions. The problems contain a
pair of problems in FPGA routing and model checking. These
two disciplines benefit heavily from efficient SAT solvers.
The remaining problems are of theoretical nature.

In this set of experiments, the resource pool included 40
machines from the VGrADS testbed and an additional ma-
chine (that we could completely instrument) as a master node.
The machines were distributed among three sites: three clus-
ters (separated by campus networking) at the University of
TN, Knoxville (UTK), five desktop machines at the Univer-
sity of San Diego (UCSD) and ten machines from the MAY-
HEM [31] lab at the University of California, Santa Bar-
bara. An additional node, designated the master node, was
at UCSB. The machines had varying hardware and software
configurations.

In these experiments we set the absolute minimum size of
shared clauses to two and absolute maximum to 15. This
range allows for sharing clauses which would help prune
the search space without significant communication overhead.
Unlike previous experiments there was no timeout value set
for the maximum execution time. Every problem was run
using different job description for the batch systems. Jobs
on the different batch queues were manually re-launched at
random intervals. Job re-submission could have been auto-
mated but we wanted more control over rationing our lim-
ited compute budgets to specific experiments based on their
perceived progress. Experiments where GridSAT was mak-
ing progress were allotted bigger jobs with longer durations
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and more nodes. The progress of the solver was judged by
inspecting how often the checkpoints were updated. We can
also inspect the internal state of a particular solver usingsome
of the tools we developed. The VGrADS nodes were used
during the entire duration of each experiment unless the hosts
experienced failures.

6.3.1 Results: Solving Hard Satisfiability Problems:
The experimental results are summarized in Table 3. The
first column contains the problem file name. The second col-
umn indicates the field from which this problem instance in
obtained. The third column contains the solution to the in-
stance: satisfiable(SAT), unsatisfiable(UNSAT), or unknown.
We have marked those problem instances which were previ-
ously open satisfiability problems with an asterisk (*). If a
problem was originally unknown and was later solved by a
solver, then we still keep it marked with an asterisk for com-
pleteness. The fourth column represents the total wall-clock
time that the problem was tried. Finally, the fifth and last col-
umn represents the solution obtained by GridSAT which is
represented by SAT, UNSAT or (-) if we terminated the ex-
periment before GridSAT found an answer. In such cases,
experiments could be continued using the saved checkpoints.

Table 3 shows that GridSAT was able to solve three problems
all of which were not previously solved. Two of the prob-
lems were found unsatisfiable and they are both from the field
of FPGA routing. The first problemk2fix-gr-rcs-w8.cnfwas
solved using the VGrADS testbed only. Batch jobs which
were submitted for this experiment were still waiting in the
queue. Thus when the problem got solved before they got to
the head of the queue the batch jobs were canceled. On the
other hand the second problemk2fix-gr-rcs-w9.cnftook much
longer to solve, it took more than two weeks. We expect that
some Grid applications will require running for such extended
periods of time. Table 4 gives a more detailed description
of the resource used during this experiment. For each job a
number of GridSAT solver components were launched as in-
dicated in the last column of table 4. The number of processes
per node is determined so that each process gets a minimum
of 1/2 GByte or 1 GByte of memory. In table 5 a break down
of the CPU-hours used on each resource are tabulated. Note
that the VGrADS testbed machines were able to deliver a siz-
able amount of compute power because they were available
in a shared mode for the duration of the experiment.

The last problemcnt10.cnf was also solved using the
VGrADS testbed only under similar circumstances tok2fix-
gr-rcs-w8.cnf. We previously tried solving this problem in
[9] using the same testbed for four days in addition to Blue
Horizon for 12 hours but were not successful. We believe
the improvements made to the solver and especially the new
clause sharing method have helped achieve this result.

In order to illustrate further GridSAT’s success in using all

the above variety of resources mentioned earlier we present
a section of a run using instancehanoi6.cnf. This problem
is a SAT representation of theHanoi Towersproblem using
six disks. A six day snapshot from a 23 day run is shown in
figure 6. The figure shows several jobs from Blue Horizon,
Data Star and TeraGrid sites participating in the execution.
Note that the processor count is represented in logarithmic
scale. This figure shows that GridSAT was able to make use
of the available resource when some of their nodes became
available and then continued to run after the nodes were taken
away to serve other users. GridSAT processes continue to run
on the batch controlled resources until the scheduler decides
to terminate them. This abrupt termination has no effect on
the application which deals with these events as (scheduled)
resource failures. In figure 7 we show the total number of
processes used by GridSAT during the same period. GridSAT
was able to manage up to 350 processes running on different
resources as show in this figure.

The satisfiability solver performs mostly integer, branching
and load/store operations. The number of floating point oper-
ations is very low (less than .1 FLOPS). Floating point opera-
tions are only used to handle time related events. We present
in figure 8 an estimate of the total number of instructions per
second during the same six day period. Since instrument-
ing GridSAT can cause significant slow down, we conducted
some benchmarking on some machines at UTK to determine
the average efficiency of the solver. Since the solver code
is mostly sequential, we assume that at the maximum only
one instruction per cycle can be finished by the processor.
The determined efficiency is 70%. We estimated that other
hardware and OS combinations will exhibit equal efficiencies.
The number of operations provided by a resource is estimated
to be the product of its peak performance and the estimated
efficiency. The total number of instructions in figure 8 is
the sum of operations of all active resources. We notice that
the VGrADS testbed is able to deliver about 20 Billion in-
structions per second(IPS). In the middle of the graph, there
is a batch job from Blue Horizon which failed suddenly while
joining the GridSAT execution. This might have happened
because the Blue Horizon machine became unavailable for
scheduled maintenance. The total number of IPS was multi-
plied by more than five times when some batch jobs became
active. It reached up to 110 Billion IPS.

Another measure of performance, is how much of the batch
job maximum computational power is actually used by Grid-
SAT processes. Most other parallel jobs run on all the pro-
cesses from start to finish with little overhead. In this case,
batch jobs are efficiently used. In the of case GridSAT, how-
ever, there are two main sources of inefficiency. First, some
jobs might wait idly at the start. Batch jobs usually include
a large number of processes. Some of these processes have
to wait until a sufficient number of splits occur to generate
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File name Description SAT/UNSAT/* Time GridSAT Result

3bitadd-31.cnf theoretical UNSAT 8 days -
k2fix-gr-rcs-w8.cnf FPGA Routing * 83261 sec ( 23 hours) UNSAT
k2fix-gr-rcs-w9.cnf FPGA Routing * 14 days and 8 hours UNSAT
cnt10.cnf Theoretical SAT 13134 sec ( 4hours) SAT
comb1.cnf Model Checking * 11 days -
f2clk50.cnf Model Checking * 9 days -
hanoi6.cnf Theoretical SAT 23 days -

(*): problem solution initially unknown

Table 3: GridSAT results using VGrADS testbed, Blue Horizon, Data Star and TeraGrid. All these problems were not previously solved by
any other solver.

Computational resource Job count Job duration(hours) Number of nodes processes/node

Blue Horizon 2 10 100 3
Blue Horizon 1 12 100 3
DataStar 2 10 8 11
TeraGrid @ SDSC 1 10 40 2
TeraGrid @ SDSC 1 12 40 2
TeraGrid @ SDSC 3 10 4 2
TeraGrid @ SDSC 4 5 4 2
TeraGrid @ NCSA 3 10 4 2
TeraGrid @ NCSA 4 5 4 2
in addition to 40 machines from VGrADS testbed for 14 days 7 hours and 44 minutes

Table 4: Batch jobs used to solve the k2fix-gr-rcs-w9.cnf instance from SAT 2003 benchmark

Computational resource node-hours CPUs/node CPU-hours

Blue Horizon 3200 8 25600
Data Star 160 11 1760
TeraGrid @ SDSC 1080 2 2160
TeraGrid @ NCSA 200 2 400
GrADS testbed(*) 13750 1 13750

(*) machines were shared with other users

Table 5: CPU-hours per resource used to solve the k2fix-gr-rcs-w9.cnf instance from SAT 2003 benchmark
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Figure 6: A six day snapshot representing GridSAT processor count usage from the different resources in logarithmic scale.

Figure 7: The total processor count usage from all the resources for the same six day snapshot shown in figure 6.

p. 22



new sub-problems for all the newly created solvers. Second,
some batch processes may contain idle solvers for a period
of time after they solve the previously assigned sub-problem.
The solver in this case, waits until it is assigned a new sub-
problem by the master. For the first job in figure 6, which
is a large 100-node job, the efficiency is 98.9%. Thus Grid-
SAT was able to use batch jobs efficiently. The main reason
is that batch jobs usually wait in the batch queue for a long
time before executing. Thus by the time the job is executed,
GridSAT was unable to solve the problem because it is hard.
This means that batch jobs are only used when the problem
is in deed hard. It is possible that for certain problems, the
efficiency of batch jobs might be low. In this case, future ver-
sions of GridSAT might monitor the batch job efficiency to
determine whether and when a job is to be terminated.

During our experiments, the Blue Horizon super-computer
was being decommissioned. GridSAT was able to continue
running experiments on the set of available resources through
this transition. The scheduler would try to submit jobs but
it would notice that the Blue Horizon resource was not re-
sponding. The failure of this single (but important) resource
which did not affect the already running experiments shows
the robustness of GridSAT.

7 Conclusion

We have described GridSAT a distributed satisfiability solver
for the computational grid. GridSAT is shown capable of
running on a dynamic and heterogeneous set of resources.
GridSAT was capable of solving previously unsolved prob-
lems. In order to solve even harder problems, new optimiza-
tions to both the algorithm and architecture of GridSAT were
introduced. GridSAT is capable of merging newly received
shared clauses immediately to the clause database to improve
the solver’s efficiency. Also communication overhead is re-
duced by selectively sending important information first and
avoiding redundancy when possible. The experiments we pre-
sented show GridSAT’s ability to manage and use a diverse set
of dynamic computational Grid resources. The experiments
lasted for weeks as a testament to the robustness of the ap-
plication. During these experiments new previously unsolved
problems from practical and theoretical fields were solved.

We also present a version of GridSAT capable of enumerat-
ing all solutions of a given satisfiability problem. Finally, a
grid portal was developed to enable users to submit their spe-
cific problems to GridSAT running transparently on a set of
computational resources.
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