GridSAT: A System for Solving Satisfiability Problems Usinga
Computational Grid

Wahid Chrabakh
and
Rich Wolski
Department of Computer Science
University of California Santa Barbara
{chrabakh,rich @cs.ucsb.edu

In this paper, we present GridSAT — a distributed and higtariety of sources to problems that require more “powerhtha
performance complete satisfiability solver — and its agplic is available from any single site. While several applicagio
tion to a set of complex and previously unsolved satisfigbili have attempted to achieve this goal [30, 2, 36] they have done
problems. Based on the sequential Chaff [32] algorithm, weo sharing two important characteristics. First, thesergific
combine new distributed clause “learning” techniques w&ith applications exhibit fairly regular and predictable corgu
efficient and autonomous grid implementation both to spedibnal patterns. Secondly, while they have been able to em-
the time to solution and to solve problems too complex foploy widely dispersed resources, the resources they use mus
other general solvers. By automatically adapting to changée dedicated exclusively to each program execution. That is
in the availability of machines and carefully distributittge using the parlance of the grid metaphor, most applications t
clause database, we show how GridSAT has been able to udate have predictable power requirements and require dedi-
continuously, a diverse and dynamically changing resour@ated power generators to achieve acceptable performance.
pool to solve previously unsolved problems from the SAor grid computing to become a successful technique that is
2002 [39] and the SAT 2003 [42] competitions. We describgore generally applicable in a wider setting, it must be &ble
our enhancements to the Chaff learning algorithm that hawgsnort applications which solve problems that requira dat
enabled an efficient distributed implementation, and ttai jependent (e.g. unpredictable) execution patterns amd als
technological approach we have taken to realizing thisépl can take advantage of non-dedicated resources. One such
mentation. In addition, we present a web portal for GridSAthgajlenging problem is propositional satisfiability — theset-

that accepts problem instances through a standard browgghation of a set of assignments to boolean variables in-an ar
and returns status and results while shielding users frem thjyrary expression that makes the expression’s value ddigic
complexities associated with running the application manuyye” The ability to solve satisfiability problem instaes

ally. is important from both theoretical and practical perspesti
Keywords: Parallel, Distributed, Scheduling, Satisfiability, Satisfiability (SAT) is theoretically significant becausaas
Computational Grid. the first problem to be proven NP-complete [11]. Thus solv-

ing SAT instances, in general, requires large computationa
power for extended time periods.

In practice, many engineering disciplines require thetimhu

of domain-specific instances of satisfiability. Such discgs
include scheduling [7], model checking [3], security [1}-A

_) _ o _ tificial Intelligence [26] and software verification [24]ats-
Grid computing [23] is an emerging field in computer sciencgapjlity is especially important in the area of ElectronieD
which enables the aggregation of geographically disteédut gj5n Automation (EDA). EDA encompasses a variety of prob-
and federated computational resources. One important g s such as circuit design [45], Field-Programmable Gate
outlined in the original grid vision [19] is the ability to ply Arrays (FPGA) detailed routing [33], combinational equiva
computing and storage capabilities aggregated from a wigig,ce checking [27, 35] and, automatic test and pattern gen-

TThis work was supported by grants from the National Sciermenfia- eration [29]. Our goal is to be able to find solutions to those

tion, numbered CAREER-0093166, EIA-0975020, ACI-0103z58i CCR- Practical problem instances that do not require an exponen-
0331654, tial number of possible variable assignments to be tested to

1 Introduction

p.1

determine whether the instance is satisfiable or not. the algorithm progresses making an efficient large-scate pa

There are many related problems to satisfiability whicRllel or distributed implementation difficult. As a resithe

are also computationally intensive, such examples includst known solvers (in terms of speed and solution power)
#S AT andsolution enumerationThe#SAT problem only have until recently been sequential. One of the innovations
asks to determine the number of solutions for a given SA¥e explore is a new technique for partially sharing learned
problem instance. Solution enumeration problems, howevé&lauses between distributed solver elements that yields im
require the listing of all solutions to a SAT problem and noproved solver speed despite the additional communication
just the number of solutions or whether the problem is sati@nd storage overhead implied by a distributed implementa-
fiable or not. The solution enumeration problem is importarfton-:

because in many cases it is desirable to find all solutions toTdese sequential solvers are characterized by heavy use of
problem or at least a representative subset of the solution scompute power (CPU) as well as the memory of the host
In [24], the author presents a motivation for solution enttmemachine (which is used to hold the clause database). As a
ation and how it can be used to improve software testing prgelver progresses, and more clauses are learned, it uses mor
cedure. Similarly, solution enumeration could generaté muof the host’'s memory typically until non-paged memory is ex-
tiple solutions to a scheduling problem [7]. These soligionhausted. Thus, the typical sequential solver completesiwhe
would present alternative solutions to choose from instdad one of three conditions have occurred: a variable assighmen
being restricted to a single one. In another example, a csatisfying the expression is found, a user-specified tirneou
cuit designer with access to multiple solutions can seleet t the solution has expired, or the machine has run out of non-
solution that best suits his needs. Moreover, in cases wheraged memory. Most sequential solvers can be configured to
satisfiable solutions represent design errors multipletgsis avoid this last termination condition by selectively delgt
provide more information about the sources of error and maspme of the learned clauses according to heuristics that at-
lead to quicker determination of the source of error. Sohgi tempt to determine which clauses are least helpful in dirgct

to the#S AT and solution enumeration problems can be dehe search. In this case the solver may progress slowerisince
rived from solutions to the original satisfiability problem has to remove some of the previously learned clauses used in

There has been extensive research efforts focused on the BBINING the search space and potentially relearn them. Both
velopment of efficient satisfiability solvers [32, 20, 22, 5]the design of these heuristics and techniques for detemgini
These solvers use different techniques to navigate the dhe “best” memory size to use are currently active areas of
tire search space. When possible, the most efficient of thegsearch.

solvers use optimizations which permit parts of the searchnother major difficulty facing the SAT solver community
space to be discarded or “pruned” during execution. Howevas the problem of predicting the time to solution for a given
because the general problem is NP-complete, there is no tI®AT instance. One heuristic examines internal solver state
oretical framework for comparing solvers or evaluatingebhi estimate both the rate at which the solver is pruning thechear
solver is best suited to a particular problem or problemsclasspace and the rate at which it is exhausting memory and then
The solvers and the techniques they implement are evaluadrapolates time-to-solution from these rates. If theorat
based on empirical results by comparing the speed with whithe speed with which the solver prunes the search space to the
they can solve a diverse set of benchmarks and/or the numbate at which it is consuming memory is low, the problem is
of complex or “hard” problems they can solve. Thus while th@erceived as being “hard” according to this heuristic. For a
general problem remains theoretically intractable, fetigri hard problem, a learning solver will either run out of memory
based approaches have yielded SAT solvers that serve as vand terminate, or prematurely discard and then subseguent!
able verification tools in many disciplines. relearn clauses to avoid memory exhaustion and, because it

Most modern solvers [32, 20, 22, 5] are sequential and erfllust run longer, incur a user timeout.

ploy heuristic improvements to one of a small set of funin the rest of this paper, we use the term “hard” or “complex”
damental search algorithms. Fewer parallel solvers suth refer to problems which require a long time to solve or a
as [9, 25, 46, 17] exist, and even fewer of those parallgireat deal of memory or both. We also use the term “easy”
solvers use a heretofore sequential optimization tefegsth- to describe those problems which are solved quickly by the
ing. Learning (discussed in detail in Section 2.2) improvesolver under consideration. Note that due to the interactio
solver speed by adding propositions that the algorithm dé&etween learning heuristics and the data dependent ndture o
ducesto aninternal database that is global to the solves@h SAT problems, a SAT problem instance may be perceived dif-
additional “learned” propositions improve the efficiendy oferently by two SAT solvers. For example, while one solver
SAT solvers substantially, but they make the problem of pamay find a problem instance hard, another solver may find the
allelizing and/or distributing a solver daunting. The gibb same problem instance easy depending on the heuristics each
clause database must be searched and updated frequentlgraploys. However, there are SAT problems which are con-

p. 2

sidered hard by all known SAT solvers because, at present, pesent and compare three different methods for sharing par
solver has been able to find a solution. tial results in a parallel solver. ¢¢,¢.¢.¢.¢.¢ 1.13

One approach to improving solver performance is throughhe second contribution is the development of a framework
parallelization. Previous implementations of paralld/ecs for running the parallel solver in a heterogeneous and very
show that better performance is obtained when a large poolwblatile computational environment. In particular, wegetr
computational resources is used for some problem instancasgrid [19,?] setting in which resources can be categorized
The aggregate CPU power and memory of the hosts makeo two different types: time-shared and batch controlled

it possible to navigate the search space faster. Howevéne case of time-shared resources, the application will-com
these solvers typically do not employ learning as paraleli pete with other user applications running simultaneously o
ing access to the clause database (particularly when shatbd host processors. These processors may be part of a time-
memory is not available as in a cluster setting) carries witbhared cluster, a laboratory of time shared workstatiozsk-d

it a potentially heavy synchronization cost. Our approach itop machines, etc. Their distinguishing feature, howeiger,

to parallelize the solver algorithm and to have the prograthat they are available immediately if they are availablaliat
automatically decide if and when additional resources EhouThat is, a job or process need to wait in a queue for exclusive
be employed in parallel based on a prediction of whether tteecess to them.

synchronization cost can be successfully amortized. B&caurhe other class of resources our solver is able to use are thos
resources will be added “on-demand,” our solver must be prgssources which are controlled by some form of batch sched-
pared to change its resource usage dynamically in responggr, For these resources, our solver must submit requests
to the way in which a particular solution is evolving. Simi-gq, processing (jobs) that are queued until sufficient reses:
larly, if resource availability fluctuates causing the amioaf 5.6 gvailable. These batch-controlled resources areajypic
available compute power to change, the program adjusts ¥§ace shared so a job can request multiple resources (typi-
resource usage to minimize its predicted time-to-solution cally processors or nodes) be allocated simultaneousty, an
Thus, the nature of our work takes the form of two contrionce resource are allocated to a job, the job has them exclu-
butions. First, we have developed a new, efficient method faively for some site-specific maximum amount of occupancy
parallelizing access to the clause database thatis widista time.

distributed computing environments. This methodologyirep Large-scale batch resources are also, typically, oversub-
cates a minimal set of clauses synchronously, and mulicagiyriped (hence the need for queuing to implement space-
a set of “intermediate” clauses asynchronously. In thipapgharing). Thus, job turnaround time often is characterized
we present and compare three different methods for ef@ctir‘by long queuing delays compared to relatively short maxi-
distribution and sharing of the clause database in the gbntg,ym possible occupancy periods. To a long-running Grid-
of parallel solvers distributed-memory solvers. SAT instance, these batch systems offer periodic “bursts” o
It is still an open research question to decide when usingbmputing power separated by lengthy intervening hiatuses
more resources increases the solver’'s performance. But Mereover, while the amount of time a GridSAT job will be
search in parallel solvers, shows that using more resourcaisle to execute is known once the job begins executing, pre-
can be (but not always is) a performance booster. Thusdicting the queuing delay associated with an individual job
computational grid populated by a a large pool of resourcesibmission remains a difficult research problémls, 16].
offers potential improvements in solver speed. These spegflys the execution model for GridSAT uses immedi-
improvements can also enable a parallel SAT solver to SOlgely available interactive resources continuously artdrba
previously unsolved problems which would have otherwisggyntrolled resources opportunistically. Each instanagirtse
taken prohibitively longer durations to solve using a s@gue execution on a single interactive resource. As the problem e
tial solver. ecution progresses, GridSAT examines the rate of its pssgre
The goal of our research is to develop a satisfiability solveand issues requests for additional resources in respoase th
capable of harnessing the computational power provided bytlae problem’s perceived difficulty. After a specified number
grid infrastructure. In order to enable a grid implememtati of interactive resources have been consumed (typicallyetho
of a SAT solver to use many resources simultaneously, wecal to the launching site), GridSAT begins issuing redgies
need to address two types of challenges. for large-scale batch resources. While waiting for batch re
In order to meet the first challenge, the solver’s algorithr§ources to become available, GridSAT maintains a work back-

needs to be modified so that it can run in parallel while ensu}@d (in the form of stored checkpoints) for work it would have

components can share intermediate results. In this paper #deduled on a set of processors. If the request is scheduled

p.3

before a backlog forms, GridSAT checkpoints the “hardestiresented in section 5. We present experimental setup and
of its currently executing subproblems and migrates it tiee t results in section 6. Finally, we conclude in section 7.

newly available processors (to take advantage of the exclu-

sive availability). Finally, GridSAT checkpoints all presses

— on interactive and batch resources — so that a lost process .

or a terminated occupancy period does not cause the applica- 2 Sequential Solvers

tion to halt. It is the seamless “blending” of cheap, readily

available interactive resources and large-scale, heshidyed A satisfiability problem is expressed as a boolean formula
batch resources, combined with GridSAT's ability to exploiover a set of variables. Most solvers operate on formulas ex-
them effectively, that make it a foremost example of the grigressed in Conjunctive Normal Form (CNF). An expression
computing paradigm. in CNF is a conjunction (logical AND) otlauseseach an

Our initial work with GridSAT [9] shows that dynamically injunction (logical OR) ofliterals. A literal is either an in-
acquiring resources in the manner described can provigéance of a variablel{) or its complement{V). A problem
large reductions in time to solution for particular problem is called satisfiable if there exists a set of variable assggrts
stances. Indeed, GridSAT outperforms the best-known solvéiat makes the formula evaluatettoe. If such an assignment
on all problems that this leading solver can complete. Agoes not exist the the problem is declatetsatisfiable The

the same time, GridSAT uniquely has been able to solveNF has two important properties: any boolean formula can
several previously unsolved problems using non-dedicate®® algebraically converted to CNF, and for the original for-
wide-area Grid resources. Thus, by using Grid resources éfula to be satisfiable all constituent clauses must be satisfi
fectively, GridSAT constitutes a speed improvement over thable.

fastest-known technique and has achieved new scientific I@+idSAT is based on Chaff [32], a sequential SAT solver. In
sults that have not previously been possible. Few grid applChaff, as well as other solvers, the performance of the al-
cations or infrastructures have been able to realize thee ggorithm is enhanced by using techniques for adding new de-
metaphor as completely, with such effective results. duced clauses. In this section we explain the basic algorith

Having established GridSAT’s performance benefit over th@nd how new clauses are generated.

state-of-the-art, in this paper we focus exclusively onube

of GridSAT to attack additional previously unsolved prob2.1 The Basic Algorithm

lem instances. New optimizations and a better integratfon @he basis of Chaff and many modern SAT solvers is the
batch and interactive resource usage makes it possiblé/® soDavis-Putnam-Logeman-Loveland (DPLL) [14] algorithm.
previously unsolved satisfiability problems from the fiefld o Figure 1 shows a simplified flow chart describing the algo-
FPGA [33] routing as well as artificially generated instasice rithm. This algorithm and its derivatives belong to the figmi

In this work we also present a version of GridSAT that is caof “complete” solvers that are guaranteed to find an instance
pable of solution enumeration. GridSAT solves the solutiosf satisfiability if the problem is satisfiable, or to termiea
enumeration problem by extending the sequential solver. Thce a sufficient set of all possible variable assignments ha
the best of our knowledge, most sequential and all parallgeen examined proving that the problem is unsatisfiablé- Var
solvers lack this feature. ables can be assigned the valtre or falsebut they are all

We also make the GridSAT solver available to potentianarked asinknowninitially. The algorithm uses heuristics to
users through a web portdittp://orca.cs.ucsb. assign values to variables speculatively, but in an ordsrih
edu/sat_portal/ . This portal allows users to easily uselikely to yield a truth assignment quickly if one exists. The
a parallel solver deployed over a pool of powerful resourcespeculative assignment of values to variables is calléeicé
which are not readily accessible to most users. By hidingion Because decisions are speculative (and may be undone)
all the complexity of the application and resources useal, tfnd because decisions have deductive implications, theey ar

portal makes it accessible for users to experiment withr thehaintained as a stack. Each decision has a urleyein the
domain related problems. decision stackvith the first level in the decision stack contain-

The paper’s remaining sections are organized as follows. Séng Va”a,b"? assignments necessary for t.he problem instanc
tion 2 introduces the basic SAT solver algorithm and some &, € §at:sf||§1ble.| Fﬂlr Exarggleé Varl;’:\.bl?s InI clau;,es Coglgose
the more advanced techniques used in modern solvers. In 58[:55l single literal will be adde ,t(,)t IS [evel. Ot. ervar

tion 3 we present GridSAT's parallel version of the algarith will be deduced to have a_\specmc value and will be added to
and the techniques used to increase its efficiency. In se¢tio the first level as the allg.orlthm progres.ses. _

we present how solution enumeration is implemented in Gridifter each new decision, the algorithm searches dait

SAT. The architecture and resource scheduler of GridSAT fauses— ones with a single unassigned literal and all other
truth values false. In a unit clause, the last remainingdlte

p. 4

Problem is
Satisfiable.

All clauses
satisfied?

Conflict at Problem is

Make decision

first level? Unsatisfiable. & update stack
Analyze and Yes/\ No
recover from Conflict
found?

conflict
Figure 1: Flow chart for the DPLL algorithm

must have the valugue for the clause to b&ue. When the happens, the algorithm has encounteredflict A conflict
algorithm encounters a unit clause, it sets the previously uoccurs when a variable is deduced to have two conflicting val-
known literal totrue. When a literal is set ttrue because of ues (i.e. beindrue andfalsesimultaneously). When a con-

a unit clause, this is called amplication The corresponding flict happens the algorithm resolves the contradiction when
variable is assigned the value that makes the liteted and possible before proceeding. In order to remedy a conflict, a
is pushed onto the current decision level. Therefore eash nsimple approach is to undo the last decision that caused this
unit clause results in a new variable being assigned a trutionflict. The solver can proceed by flipping the value of the
value. Even though an implication is a direct result of th@revious decision and then try again. In case when a decision
previous assignment, it is also predicated on some subsethafs been tried both ways, the first previous decision which
the previous variable assignments. can be flipped is tried. If the algorithm cannot find a previ-
In DPLL a variable assignment occurs when a decision RUS decision which was not tried both ways then the problem
made or a variable is impliedBoolean Constant Propaga- IS found to be unsatisfiable. This method is slow and may
tion (BCP) is the procedure where the algorithm inspects tHgduire trying all2"" combinations of variable assignments
clausedatabasen search of unit clauses, after each variabld/hen the problem is unsatisfiable, wheves the number of
assignment. We use the tedatabasén the rest of this pa- Variables. More sophisticated conflict analysis techrscare

per to refer to the set of clauses used by the solver. ActualRfésented in the next section. These conflict analysis proce
we can think of the solver as performing only a very specifilures select a level in the decision stack to which the algo-
querybut very often. The query is executed after every decfithm can back-jump (as opposed to back tracking a single
sion or implication. The query matches all clauses which coeVel). Non-chronological back-jumping [60] occurs if thie

tain a specific literal. However since efficiency is of utmosg0rithm jumps by more than one decision level. After back-
importance, all clauses with a particular literal occuceare JUMPping the algorithm continues by making a new decisions
indexed using a list of pointers. BCP which occurs after e’ deducing new implications.

ery new variable assignment is the most costly operation afentually the algorithm terminates under one of two possi-
accounts for up to 90% of the runtime [32]. ble conditions. If the problem is satisfiable, a set of vddab

When a decision is made, resulting implications are added &Signments which result in all clauses evaluatingue is

the current decision level. More implications might be atidefound. This termination condition occurs when all clauses
in a cascade because of earlier implications. This proess c &€ satisfied because of the current set of variable to assign
tinues until no more implications are found or contradigtin Ments. Note that not all variables need to be assigned a truth
assignments to the same variable are detected. In the c¥3&/€ for this to happen. The problem is deemed unsatisfiable
when there are no more implications and if not all clauses afethe algorithm backiracks or back-jumps completely to the
satisfied, a new decision is made as shown in figure 1. whérst decision level and there is a conflict due to deduced vari
a new decision is made an additional decision level is add@®!€ assignments at this level. Since the variable assigrsme
to the decision stack. In the other case where a contradicti@t this level are necessary for the problem to be satisfiable t

p.5

this is a conflict that the algorithm cannot resolve. Tharsfo conflict. The new learned clause is obtained by using the
the algorithm concludes that the formula is unsatisfiable. complement of the variables on the reason side with edges
intersecting the cut. In addition the conflict clauses cause
2.2 Conflict Analysis and Learning the solver to perform a non-chronological back-jump. After
One of the more sophisticated and effective methods of cohack-jumping, the new decision level is the highest denisio
flict analysis isLearning Learning [43, 28, 44] is the aug- level among all the decision levels of the variables in the ne
mentation of the initial formula with additional implicate learned clause. Chaff [32] uses a method called FirstUIR. Th
clauses that are deduced during the search procedure. Them@g@thod is based on findingdominant nodeo the conflict
dition of these clauses restricts the search space andrpsevenodes defined as a node where all paths from the current de-
the solver from retrying those parts of the search tree.naghr cision to the conflict pass through. The variable correspond
clauses represent redundant information because theyare ifg to the selected dominant node is the only variable added
duced from the initial set of clauses — that is, they carryaho a to the learned clause which is not a decision variable. Since
ditional logical information that bears upon the satistighi there might be many such nodes, the FirstUIP method uses
of the original formula. Thus learned clauses can be digzhrdthe node closest to the conflict. In this case the cut is made
without changing the solution set of the initial problem. such that all implications between the dominant node and the

In DPLL with learning new implicate clauses are deduced du(éonfllc.t site are on thg conflict side. For a more detailed ex-
to a conflict. Conflict analysis is based on implication giph Planation of the algorithm please refer to [9, 8, 32, 44].

An implication graphis a DAG which expresses the implica- During execution, the number of learned clauses is potgntia
tion relationships of variable assignments. The vertiéése Very large, thereby consuming and ultimately exhaustireg th
implication graph represent assigned variables. The émtid memory capacity of any given host. Since all learned clauses
edges on a vertex originate from those variables that treghe represent redundant information, the algorithm can déscar
the implication of the represented variable assignmene Tiihem (at a potential increase in execution cost) without af-
implication graph is not maintained explicitly in memorg-| fecting correctness. Chaff implements specific heuri§82
stead each implied variable points to the clause that catssed(the details of which are beyond the scope of our work) to se-
implication. That is, the clause that has previously becamelect which learned clauses are deleted depending on tizeir si
unit clause and caused this variable to be implied (i.e.rassu and other properties. Deleting some of the learned clauses
some truth value). This clause is called treecedenof this ~ periodically alleviates memory use and allows the additibn
variable. Note that decision variables have no antecethents new learned clauses which are currently more relevant.
cause they are not implied. In practice decision varialies a
given afictitious antecedent clause. Initial and learnadszs

are given indexes greater than 1, thus we use clause 0 (which
does not exist) as antecedent for decision variables.

A learned clausas obtained by partitioning the implication o o
graph into two sides using eut One partition is called GrdSAT's distributed solver addresses three significaat-c

the reason sideand contains all the decision variables. Thdenges. First, GridSAT parallelizes the search algorithat t
other partition which contains the conflict is called ten- IS havigating the space of possible truth assignments.riseco
flict side. The cut is used to generate a rlearnedclause certain learned clauses from the various solvers areloliséd
using the literals on the reason side with edges intersgctifnd shared across grid resources. Finally, the GridSAT ap-
the cut. Different learning schemes are generated from diflication components are dynamically scheduled so that the
ferent partitioning methods. However not all cuts generat®ay take advantage of the best possible resources avaalable
clauses which lead to a more efficient algorithm. A cut mudf€ time and they can be used profitably by the algorithm.

be selected in order to make learning effective [60] in inwpro SAT problems vary in terms of their resource requirements.
ing the algorithm'’s performance. A trivial partition wouled- The two main resources which affect solver performance are
sult in a clause which includes all the previous decisiofvarCPU speed and memory size. Greater CPU speed makes ex-
ables made before reaching the current conflict. However, ecution faster and available memory is used to store learned
many cases not all previous decisions have contributeceto thlauses which may help prune the search space. In practice,
current conflict. Also a more carefully selected cut wouldincontrived industrial example problems benefit constalgra
have fewer intersections and therefore will produce a gmnallfrom clause learning As such, a fast CPU with little memory
clause. Smaller clauses are more effective in pruning thell result in extremely slow progress.

search space than longer ones [9]. To apply a parallel search technique to SAT, we split the prob
The purpose of the new clause is to prevent, in the futurem at hand into subproblems (having decision stacks with
the set of simultaneous assignments which led to the curratifferent truth assignments), each of which is indeperigent

3 GridSAT: SAT Solver for the grid

p. 6

investigated for satisfiability. Subproblems, themselweay will be spent to solve a subproblem cannot be predictedyeasil
be split in the same way, forming a recursive tree, each notbeforehand, it is possible for subproblems to be invesijat

of which is assigned to a logically distinct processor. A-subin such a short amount of time that the overhead associated
problem represents part of the search space. Clause sharith spawning them cannot be amortized. As a result a solver
is facilitated by identifying the important clauses relevto spends more time communicating the necessary subproblem
each side of a split, and by eliminating clauses from thesgdau descriptions, thinning the database, and collecting thelt®
database pertaining to each side. than it does actually investigating assignment values.nEve

The goal of GridSAT is to keep the execution as sequentiffough the solver is advancing, the execution time may be
as possible and to use parallelism only when it is needegjower than if it were executed sequentially. This problem i
Because problem difficulty is unpredictable and parafelis 0ccasionally referred to as the “ping-pong” effect [25].
overhead could be high, GridSAT attempts to add resourcésthe following sections we will describe optimizations in
(machines with sizable memory) only when the current reroduced to the splitting procedure and clause sharingl he
source set (which starts with one machine) becomes ovémprove the overall solver performance. These optimizetio
loaded. include several aspects:

3.1 Parallelizing SAT o Different methods for merging shared clauses

GridSAT acquires new resources when existing sub-problems agaptive clause sharing

are split into two sub-problems covering disjoint, but coeap

mentary, parts of the original search space. For GridSAT the e Reduction of communication overhead during problem
split process modifies the current problem and spawns a new transfer

one as shown in Figure 2. The left part of figure 2 shows the

old decision stack of process A before splitting. This pesce 3.2 Sharing and Distributing the Clause Database

(also callecclientin GridSAT parlance) was assigned a subEach GridSAT process is assigned a part of the search space
problem and is now splitting its search space with client Bdisjoint from the search space of all other processes. This
The right part of figure 2 shows the modified problem stacls insured by giving each process a unique top decision level
for client A and the newly created problem stack for client Bn the stack. This level may be augmented but is never re-
after splitting. The first decision variable in the secondide duced. Because of the uniqueness of the stack, solvers will
sion level of Client A's original stack is the pivotal point i tend to make different decisions which in turn results iryvar
the split. Clients A and B assume two different values fog thiing implications. Therefore, the learned clauses, whigh ar
variable. Since this variable is given a specific value irhbotdependent on the decision stack, as well as previous learned
clients, then it becomes part of the first decision level ithbo clauses, will most probably differ for various processdsug’
cases. For client A, all implications which were previouslywhen these learned clauses produced by one client are shared
in the second decision level are now also part of the first devith other clients they help prune parts of their search spac
cision level of the modified decision stack. Therefore, @lie which they have not yet investigated. The overall effect is
A's new decision stack is created by making all variables oimproved solver performance.

the second decision level of the assignment stack part of th@owing clause sharing, however, limits the kind of simpli
first decision level. The newly generated problem stack fGjcations that can be made. For example, variables (and their
client B consists of a set of variable assignments and a sg§mplements) which have known truth assignments (i.e. in
of clauses. The variable assignments include all assigtemeghe first decision level) can be removed since they will net in
from the first decision level and the complement of the firsfiyence future decisions made by the solver. Removing such
assignment in the second decision level of Client A's 0agin yariables can be accomplished by deleting the occurrence of
stack. Thus insuring the splitting of the search space. all literals with known values from all clauses. This dedeti
After splitting, each process maintains its own separatesd results in shorter clauses and more efficient use of the mem-
database. In order to alleviate memory usage, inconsequemny. However, variables of known values in one process might
tial clauses are removed. A clause is removed from a client&ill be unknown in another process. Thusin order for a @daus
database when it evaluategitoe because of the assignmentsto be still valid when shared with another process it must
made at the first level of its decision stack as a result of thentain complete variable information. Therefore simplifi
split. In addition, inconsequential clauses are removedyev cations such as removing known variables are not possible
time the first decision level is augmented. when clauses are shared because they make learned clauses

A notable risk in parallelizing a SAT solver comes from the®nly valid in the context of the current solver.
possibility of excess overhead introduced by parallel execWhen new learned clauses are received from other clients,
tion. In particular, because the duration of execution tina¢ they are merged with the local clause database. Next we

p.7

New decision stack of Client A:

Decision stack of client A:)

Level 0: |v,

Level 2:

Level 3: | _y, Split problem

Level 4: ~Vy ~Vs

Level 0: |y,

Level I: |y,
Level 2:
-

Previously level 1

Level 3: | Ly,

Decision stack of newly split client B:

Inverted literal

Figure 2: Example of stack transformation when a problem is split tato clients

present and analyze three different methods GridSAT uses
for sharing learned clauses. The three methods ardatye
method theimmediate methodnd theperiodic method To

our knowledge there has been no previous empirical evalua-
tion of the performance of different sharing methods. In the
next sections, we explain the characteristics of each mdetho
and give motivation for using the two last methods.

3.2.1 The "Lazy Method” for Sharing Clauses:
This method was the first we implemented because of its sim-
plicity. In this method, the newly obtained clauses are only
merged into the clause database after the algorithm has back
tracked to the first decision level. We call this method the
Lazy methodbecause it might take a long time before the
solver backtracks to the first decision level. When using thi
method, merging the new clause does not involve any stack
manipulation because the stack in this case contains oek lev
and no speculative decisions. The only variables to take int
consideration are in the first level of the stack. The truth va
ues of these variables will not be altered by subsequent deci
sions.

maining literals ardalsethen an implication is gener-
ated. The newly implied variable assignment is there-
fore predicated only on variables on the first decision
level. Thus the implied variable is added to the first
level of the decision stack. The clause under consider-
ation is marked as the antecedent for the newly implied
variable.

If the clause has more than onaeknownliteral, then

the clause can be used to restrict the search space. In
this case the clause is added to the set of learned clauses
and the decision stack is not altered.

If the clause has all literals set talse then this clause

is not satisfied by the existing variable assignments and
a conflict exists. Since the decision stack contains no
speculative decisions, then all the variables in the new
clause must be in the first decision level. Therefore we
have a conflict because of variable assignments which
should becorrect if the subproblem were satisfiable.
Thus the subproblem is unsatisfiable.

Under the conditions outlined previously, merging a reeéiv The clauses are processed in batches where no BCP is per-
clause is straightforward. The literals of the receivediséa formed until all clauses in the same batch are inspected-. Dur

are examined for their truth values which can be eitheg,

ing the batch processing, some clauses may be added to the

falseor unknown For a given clause there are four pOSSib”i'database while new imp"cations are saved to a temporary

ties:

o If the clause contains at least otrae literal, then the
entire clause isrue. Since the decision stack contains
no speculative decisions, then the variable correspon@-
ing to thetrue literal could only come from the first
decision level. Since this variable will always trae,
then the clause will always be satisfied. Therefore the
clause is of no value to the solver since it does not hel
restrict the search space and is discarded. In the rest
the cases we assume that no literatis.

queue. If there is no conflict after all new clauses are pro-
cessed, the solver continues by retrieving the queueddanpli
tions one at a time, adding them to the first decision level and
erforming BCP as described earlier. If a clause in the batch
auses a conflict then the solver terminates immediately.

3.2.2 The Immediate Method for Sharing Clauses:
e made an important observation while running different
periments especially with problems that were hard ankl too
a very long time without making progress. We realized that

when the problem was hard, all processes were not able to

o If the clause has only onenknownliteral, and the re-

use the clauses received from other processes because none

p.8

of them were able to achieve enough progress to backtrackto queuing an implication in the same way as the previous
the first level of the decision stack. Therefore, all the sHar case.

clauses which were saved by local solvers wasted valuable o

memory space but were never used. Thus sharing clauses® If the clause has all its literals set false then the
did not have the desired effect of helping to prune the search ~ clause has resulted in a conflict. In fact if this clause
space of the local solver. Instead performance was degraded ~Was available when decision levielselit maxdl was
because of wasted memory space. The solution we imple- Still being populated by implications then this clause
mented allows immediate integration of received clauses in would have caused a conflict at this level. This con-
the solver’s clause database. This method is callednthe flict would have helped direct the search, if detected.
mediate methoblecause clauses are merged immediately af- ~ 1hus the solver backtracks to make use of this con-
ter they are received. The implementation of this solut®n i flict. However, if the conflict is at the first decision
more complex compared with the algorithm above because level, then this situation is the same as the fourth case

the decision stack may contain multiple levels of specusati in the previous merging algorithm mentioned above.
decisions. Therefore the sub-problem is unsatisfiable. If the con-

. . . : flict is at a higher level, then the solver backtracks to
The algorlt_hm for merging clausgs starts by_lnspectlng the falselit_maxdl. Also previous decision at this level is
r_1ew|y o_btamed clause. The algorithm determines how many saved in a temporary queue in the same way as the pre-
literals in the clause have valuege, falseor unknown Also Vious two cases
the algorithm determines for clauses with a single liteeal b '
ing true, the decision levetrue lit_dl of such a literal. For ¢ Ifnone of the above cases apply then the clause is added
the given clause it determines the maximum decision level immediately to the clause database without altering the
(falselit_maxdl) amongst the decision levels of the literals decision stack.
set tofalse After determining these value there are only five
possible outcomes: When a new clause is merged, the decision stack is modified
and a backtrack is performed in three of the five cases pre-
e If the clause is satisfied because of a variable assigsented above. In addition, every backtrack reduces th& stac
ment at the first decision level, then this clause is usetepth, unless the top level is reached. When the stack depth i
less for the local solver and is discarded. This case igduced the implication queue is cleared before any new im-
similar to the first case in the old merging algorithm. plications are added. Also the decision level from which the
] solver will start is also cleared so that the solver can recon
o If the clause has only onenknownliteral and notrue g4t the resulting implications while taking the new cles
literals, then the clause results in an implication. ActUnq consideration. When the solver backtrack to the firatlle
ally if the clause was available when the solver was stilfy the gecision stack, the new merging method becomes the
generating implications fofalselit-maxd| decision g5me asthe simpler previous method.

level, then this clause would have become a unit clau
rff_he effect of backtracking to a higher level in the decision

and generated an implication. Because generating i fack helos th ver investigate a more relevant partef th
plications as early as possible is very important for gi>acK Neips the solve estigale a more refevant parte

recting the search, we allow the solver to backtrack ijﬁamh space ?uﬁ to éhel newlyffoundtlr:nphc?tmn or iﬁnfl'(;t'
order to make use of this implication. In this case, th € merging of shared clauses from other SOvVers restnets

solver backtracks to decision levialse lit_maxdl and search space and prevents the solver from wastefully revis-

the clause is inserted to the clause database. After tﬁ'@g somf(fa p?rt_s c_}f trle sea(;ch _speipe. I\Igerg(;ng _nevt_/ clagzes
solver backtracks téalselit_maxdl decision level, the 2> @n elfect simiiar to randomization. Randomiza lon [32]

same previous speculative decision at this level is ptiﬁ a process where the decision stack is cleared aft.er a time-
in temporary queue. out period and then start_s at another random location in the
search space. The hope is that the restart will lead to anothe

e If the clause has only on&ue literal and noun- location in the search space which will result in solving the
knownliterals, then iffalselit_maxdl is smaller than Problem faster. Randomization is used by most solvers and
true_lit_dl then this is indeed an implication. This has been shown to improve solver performance. By merging
restriction is necessary because there might be cad#®W clauses, more relevant search spaces are chosen based on
where the clause has only otree variable but it does NeW implications and conflicts and not by random chance.
not represent an implication. In such casestitue As described in [46], the exact effect of sharing clausesis n
variable was set at a level while some of the remainyet known. In addition, when a large number of clients are
ing literals wereunknowrbut are now set tfalse The sharing even a small number of clauses the total communica-
solver proceeds by backtrackingfedselit_maxdland tion overhead becomes significant. Shared clauses could be

p.9

streaming into the solver at sometimes high rates, especiathared clauses, may lead to one of two possible bad scenarios
if the number of processes used is high. Therefore mergiridrst, if the value is too small the processes will not geteera
the clauses immediately will cause frequent preemptiohef t clauses smaller than the suggested value and no clauseghari
solver. When the solver is preempted it stops until the rewill happen. In the second scenario, the used maximal clause
ceived clauses are merged. The next method we presensige is low causing a large number of clauses to be shared.
designed to mitigate this problem. As a result, an influx of learned clauses may overwhelm the

There is a chance that some of the newly merged clausglvers with unnecessary communication and computational
which are added to the clause database can be duplicate®¥grhead. In addition, it is hard to determiagoriory what
other previously existing clauses. Only clauses which do n§€ maximal clause size should be for a given SAT instance.
result in implications or conflicts can be duplicates. Degte In order to avoid both of these scenarios, the maximal clause
clauses will waste valuable memory space. Checking ea8#€ can be varied during the application execution using a
new clause received by a solver to insure that it is not a dup@iven problem instance.

cate before adding it to the database is computationallgexp In the current implementation of GridSAT, the maximal size
sive. It requires scanning the entire database and congpariof shared clauses is determined dynamically. We set the abso
the new clause with every clause in the database. Howevhkite minimum for the maximal size to two. The maximal size
since GridSAT broadcasts clauses immediately after they aof learned clauses is adjusted depending on a user supplied
learned then all solvers are aware of the new clause quickipaximum rate of communication overhead due to clause shar-
Once a solver has a copy of the clause in its database it wilg. The user can supply a maximal rate for shared clauses
not re-learn it. Therefore there is a slim chance that dupler use the default (set to 3). A process monitors the rate of
cate clauses will become an overwhelming problem. In fushared clauses and calculates it periodically every five min
ture work, we will instrument GridSAT to find out how muchutes. When this process notices that the maximal rate was
duplication really occurs for a given set of problems. exceeded, it broadcasts immediately an incremental deerea
of the maximal clause size. This step insures that communica
tion overhead resulting from shared clauses will only egcee
its maximum for a short period of time. If the rate is below
maximal rate, then the monitoring process waits for half
hour before increasing the maximal rate and broadcasting

3.2.3 The Periodic Method for Sharing Clauses:
The two previous methods represent two opposite extreme
how long a shared clause is delayed before it is merged wi

the local clause database. On the one hand, the lazy methgd .\ y4jue to the rest of the solvers. This allows the com-

dgzlays delays the. merging for a long tim.e which pcjtentiall¥nunication overhead to remain under its maximum value for
hinders the effectiveness of clause sharing and wastes vaéluI ng time period. The user can also set an absolute maximal
able memory space. On the other hand, the immediate methé)I o for shared clauses

merges clauses as soon as they are received which leads to
frequent interruption of the local solver.

The periodic methods designed to tune the periodicity of
clause merging. When using this method the local solver
merges the clauses at periodic intervals. The periodiEitet
termined by a user specified parameter. The periodic meth¥¢fien a satisfiability problem is satisfiable, it may have more
allows the solver to merge received clauses more frequentfj@n one solution. However, the basic DPLL algorithm is
than the lazy method. Also the periodic method mergedesigned to terminate after the first solution is determined
clauses in batches and interrupts the local solver less frébere are multiple ways to alter a DPLL-based sequential
quently than the immediate method of sharing clauses. 4n thgolver in-order to enable solution enumeration. For exam-

paper we set the periodicity to 60 seconds. ple, a simple approach would be to augment the initial set of
clauses with a clause for every solution encountered. The ad

dition of each solution clause would prevent the solver from

3.2.4 Dynamically Adjusting Size of Shared Clauses: generating the same solution in later steps. Such clauses
GridSAT clients only share “short” clauses in order to miniyre ysually long because satisfiable instances often iaclud
mize communication cost. Short clauses are expected to haygst of the variables. In addition, these clauses will not be
a higher impact on pruning the search space and are m{gleted in the future unlike learned clauses which are dispe
probable to generate implications. In fact the pruningaffe gpje. A major drawback of such a solution is the need to use
of a clause is inversely proportional to its size (i.e. nuUMb&ynere memory to store an additional clause for each new solu-
of its literals). Previous GridSAT implementations take th tion. As the number of solutions is usually high, the memory
maximum length of shared clauses as a static parameter. needed to store the clauses produced by solutions becomes
Using a static value for determining the maximal size o¥ery large. This makes to solver less efficient as less memory

4 GridSAT with Solution Enumeration

p. 10

Secondary Decision

stack stack
Level 0: |X Vi Backtrack after Level0: |X Vi
Level 1: [0] [vi, |-v. Solution is found | ...; 1. [O] Vi Vi,
— 1] —— =
Level2: |O v, Level 2: |X ~V, ¥ Newly flipped
p— — decision variable
Level 3: [X ~Vq Level 3: (O
— — Entries reset to
Level 4: (X ~Vy | ~Vs Level4: 10 xnon-ﬂipped in

secondary stack

Figure 3: Example decision and secondary stack modifications after a#ution is encountered. In the secondary stack and O stand
for flipped and not flipped respectively.

is available for clauses obtained through learning. inverted value of the same decision variable. After botbksta

GridSAT with enumeration uses a different approach whicAre updated, the sequential solver proceeds as usual by mak-
uses little memory overhead which does not increase with tffgd more speculative decisions, augmenting the decisamkst
number of solutions found. This method could easily be in@nd backtracking when a conflict is encountered leading to
tegrated to other DPLL-based solvers and is not specific greduction in the decision stack. When the decision stack
zChaff. In the next section, we describe this method as $1inks because of backtracking all states in the secondary
applies to a sequential solver. We will also present thefiami stack apove the current decision level are cleared and mharke
cations of this method for parallel solvers such as GridSAT.as non-inverted.

When a solution is encountered and the current decisioh leve

in the secondary stack is marked as inverted, the solver pro-
4.1 Solution Enumeration with Modified DPLL ceeds by removing the highest decision levels and backtrack
The DPLL-based solver with solution enumeration weéng to a level where the decision variable on the secondary
present, uses an additional stack in order to prevent fteelf stack is not flipped. When such a level is found before reach-
reproducing identical solutions. After each solution isrfd, ing the second decision level, the solver marks that level as
the solver continues search for satisfiable solutions byimgov flipped and continues by assuming the inverted value at the
to a different part of the search space. The solver termsénatsame decision level. For example, in figure 3 we suppose that
when the search space is exhausted and the last portion of theolution was encountered at level four as shown on the left
search space is determined to have no solutions (i.e. ansatiide of the figure. The right hand side shows how the decision
fiable). and secondary stacks are modified. The solver backtracks to
The enumeration solver in GridSAT uses an additional stadvel 2 since itis the first non-flipped entry encounterechen t
called, thesecondary stagko track the state of each decisionsecondary stack. This entry is marked with@(not-flipped)
variable on each level of the decision stack. Thus the size Bgfore the solution is found. The same entry is marked with
the secondary stack is equal to the size of the decision sta®®R X (flipped) after the solution is found. Notice that entries
and is at most the number of variables in the original SATN the secondary stack (level 3 and 4) below the new decision
problem. A variable on the secondary stack could be eithé&vel (level 2) are cleared and marked as not-flipped after th
flippedor not flipped In the following description we also solution is found. Also the variable at the new decision leve
use the equivalent pair of terrirs/ertedandnon-inverted V7 is flipped in the modified decision stackd/7. After up-

Initially all entries on the secondary stack are marked ds ng?:'hng both itaCkS’ the solver then proceeds to exploretite r
flipped. When a solution is found the current variable assigﬁ) € search space.

ments are saved in a repository external to the solver er_the solver backtracks to the second decision level, then t
cess. After the solution is saved then both stacks are mogPRlver has finished sweeping the branch of the search space
ified. First, the decision variable in the highest level of th Wwhich assumes the current value of the decision variable at
decision stack is inverted. Second, the corresponding enfhe this level. Therefore, the solver can assume the opposit
in the secondary stack is markedfagped The solver con- value of this variable for the remaining search space. Thus,
tinues by clearing the highest decision level and assurhiag tthe solver backtracks to the first decision level. and augsnen

p. 11

this level with the inverted value of the decision variable-p tions in the availability and composition of the resourcelpo
viously found at the second decision level. The solver tha@yigSAT is implemented as a special form of the master/tlien
proceeds by searching for implications produced by theyiewodel where individual clients communicate directly and
assumed values. share clauses. The master consists of four main components:
The secondary stack is used as an additional mechanismthe resource manager, the client manager, the scheduler and
restrict the search space after a solution is found. In eaigit the checkpoint server. A general architecture of the master
the new extension to the basic algorithm does not restrict tiprocess is shown is figure 4. External components with which
efficient sequential algorithm in any fashion. The solvar-co the master interacts are shown as “clouds.”

tinues to navigate and prune the search space as before. i@ resource manager loads resource information from one

producing the same solutions unnecessarily. and the NWS [58, 47, 59]. The scheduler as shown in fig-
ure 4 is responsible for coordinating the interactions leetw
4.2 Parallel Solver with Solution Enumeration all the components. In addition it handles interactionswit

Deploying parallel solvers with solution enumerationrieggl external resources and monitors them to detect failures. Th
only modifications to the sequential solver. The role of theesource manager is aware of the different types of reseurce
parallel solver infrastructure is to collect all the soduts ina For shared resources only one GridSAT process per host is
repository. launched. For batch systems, the resource manager launches
In the parallel version, described in section 3.1, whichsuse€®n€ job at the start of the execution. Additional, jobs could
the basic DPLL a|g0rithm, each solver is given an initial debe manua”y submitted and GridSAT will use their resources
cision stack and a clause database. In the parallel sohiehwh When they become available. Actually the client managér wil
uses solution enumeration, each client is given the same d&cept any additional clients launched from newly avadabl
cision stack and an additional secondary stack. In order f§sources or previously submitted batch jobs. It is the oble
illustrate how the secondary stack is split in the case ofra pdhe client manager to maintain the list of active clients and
allel solver with solution enumeration, we use the same eXd0nitor their progress.

ample as in figure 2. Before splitting, client A has both a secFhe GridSAT scheduler is the focal point and is responsible
ondary stack and a decision stack. After splitting, botardli for coordinating the rest of the components. Itis also raspo

A and B receive the same decision stack and clause databasie¢e for launching the clients. The scheduler uses a psagre
as described in section 3.1. Also, the old client (A) will resive scheme for acquiring resources and adding them to the
ceive the same original secondary stack except that lewel oresource pool. Also resources which are no longer perfaymin
is deleted. The new client (B), however, receives a totallg task on behalf of GridSAT are released immediately when
blank secondary stack. possible. The reason for this approach is the variability an
Now we show that this method of solution enumeration willnpredictability of resource usage for a particular SATHero
not produce redundant solutions. In a parallel solver, ead@m- Some problems are solved easily using a single host
client starts from a distinct initial decision stack as disr ~ after a short time period. Other problems, however, might be
earlier. If any client finds a solution the initial decisicack harder and require a large number of hosts and a longer time
will be a subset of that solution. Therefore, it is guaradteePeriod. By starting with a small resource pool and expanding
that no two clients will produce the same solution since aff@ set of used resources, GridSAT achieves two goals, First
clients start from distinct initial decision stacks. Fetmore, & Small number of resources will be used to solve the easy
no client will produce the same solution more than once p&roblems which results in a smaller communication overhead
cause the decision stack is different for each iteratiornef t @nd therefore shorter time to solve the problem. Second; Gri

DPLL algorithm. Therefore, the above algorithm will pro-SAT can adapt resource usage to how difficult the problem is
duce the a set of distinct solutions. perceived. If at a particular stage the problem is perceived

difficult the size of the resource pool used will grow. At an-
other stage, the same problem might be perceived to be easy

and a smaller resource set will be used, and excess resources
5 GridSAT Architecture and Resource Scheduling will be released.

A typical execution will start by launching the master. The
The design of the GridSAT application has three main goalgaaster will examine the problem to find any obvious variable
The first goal is to allow for an efficient parallel SAT SO|Verassignment5 and remove any inconsequential clauses. Some
which adjusts to the variable resource usage of the problgshoblems might be solved at this stage because of an easily

being solved. The second goal is to use the available ressurgletectable conflict. After this stage, the master requésts t
efficiently. The final goal is to make GridSAT adapt to varia-

p. 12

OV f
Client Manager
A

Scheduler

Client messages
and Failure
detection

Checkpoint Manager

Check-point

Storage
g External Resources

Figure 4: GridSAT components and their internal and external interactions. The external components and systems which GridSAT
uses, such as the Globus MDS and the NWS, are shown in clouds.

resource list available from deployed Grid services such@s A determines which of its peers it will split the problem with
MDS [12] and NWS [58] or simply a configuration file. The Client A then proceeds to communicate directly with client B
schedulerimmediately submits any batch jobs to their espeby sending it message (3). In previous GridSAT implementa-
tive queues. When a remote client starts running it contadi®ns, message (3) is very large and varies in size from 10 KB
the client manager and registers with it. The schedulersanko 500 MB. By using direct peer-to-peer communication the
the set of available clients based on their processing poweverall communication overhead is reduced. When the split-
and available memory as provided by the NWS [58, 47}ing is successfully completed, both clients alert the erast
Static values for these resource parameters can be used wheimg messages (4) and (5). In Message (4), client A sends
GridSAT is configured without NWS or the Globus MDS. new stacks for both clients A and B. Each stack is used as a

The GridSAT scheduler uses the first available client to imeheckpoint for its respective client. Both messages ard use
mediately start solving the problem. Each client records trs0 that GridSAT can recover gracefully if one or both clients
time it took to receive the problem data. Clients also manitd@il during the splitting procedure. Also if only one of the
their memory usage. The decision for splitting a problem iglients fail, then only that client will be restarted becatise
made locally by the client and not by a centralized scheduléécknowledgements (4) and (5) are received separately.

A client notifies the master when it wants to split its ass@jneMessage (3) above allows the transfer of a newly created sub-
subproblem with another client because its memory usage gtoblem to the idle client. This message is the largest ngessa
ceeded a certain limit or after running for a specified periodnd contains three different parts:

of time. This time period is determined as two times the du-)) o
ration of the communication period the client used to obtain ® The assignment stack: It is the smallest part and is in
the problem data. Using this method, the scheduler allows fo ~ the order of the number of variables.

C(_)mputation time to offset the communication_ 0_/erhead_. '_rhe e The set of original problem clauses: This could be as
pllents, there_fore, do not spend_most of their time splittin large as the initial problem file

instead of doing useful computation.

The splitting process is performed by the cooperation @fehr
components: the master, the splitting client anddeclient.
Theidle clientis a process which was not previously assigned _ o
a sub-problem to investigate. Figure 5 shows the steps takert Reducing Communication Overhead

during the splitting process. Client A which has presumabl?’”dSAT reduc_es the commt_mlcatlon ov_erhead of the solver
been solving a sub-problem, has detected that it needsito sg} tWo ways. First, problem files are copied only once where
its search space. Client A, then notifies the master using m&§veral hosts share a common file system. Therefore split
sage (1). Upon receiving this message the master selects fA@SSages to the same set of hosts will be smaller since it will

highest ranked client and includes it in message (2) which R0t include the second part of message (3) mentioned above.
sends to client A. Using the information in message (2) ¢lienf "€ second modification makes it possible for the new client
to proceed with its computations immediately after it reesi

e The database of learned clause: Itis the largest compo-
nent and is 100s of Mega-Bytes in size.

p. 13

E Master node covery. First, the grid application should establish a naech

i nism for detecting the failure of remote components. Grid-
SAT uses heartbeat messages to decide when a remote solver
has failed. Second, the grid application should be able to
restart with minimal work loss when failures occur. The cur-
rent version of GridSAT uses check-pointing to recover from
such failures. Each checkpoint belongs to one remote solver
and represents a SAT sub-problem that can be restarted when
combined with the initial SAT problem. GridSAT can use two
types of checkpoints:

Client A Client B e Light checkpoints: This method requires little storage
_ space and communication overhead. Only the top level
Figure 5: Communication scenario of splitting the subproblem of the assignment is recorded for each client. In this
assigned to client A with client B case checkpoints for a client will be updated only when

more variables are added to the first decision level.

the assignment stack and load the problem file from the shared o Heavy checkpoints: In addition to the light checkpoint
file system. Since learned clauses contain redundant isform data, we save all newly learned clauses. Itis also possi-
tion, then they are not required to start solving the new sub- ple to save the top levels of the decision stack in order to
problem. Therefore they are sent in a separate message. This reconstruct the exact decision levels after restart. This
message takes a |0ng time to transfer, and the new clauges wil type of Checkpoints can be saved at regu|ar time inter-
be merged as they are received using the clause merging algo- vals in addition to the instances when the top level is
rithms mentioned above. Using this methods the new client gugmented.

(client B in figure 5) will not have to idly wait for the entire

message to arrive before starting solving the newly asdign&he master stores and updates the checkpoints as they are re-
sub-problem. The old client (client A in figure 5) still waits ceived from the clients. The checkpoints can be stored ei-
because the clause database is locked until the transfamis ¢ ther on a local file system or in a distributed fashion using
pleted. Making an additional copy of the clause database iBP [34]. Idle clients are assigned new sub-problems either
order to preventthe old client from stalling is not pradtlo@ through splitting or from saved checkpoints. Sometimes the
cause the size of the clause database is very large and$henguimber of checkpoints exceeds the number of active clients.
not sufficient memory to hold a separate copy. The old clienthis happens when a large number of previously active dient
waits and does not proceed until the clause database destiferminate leaving behind their checkpoints. In this cage th
for the new client is transferred. Transferring these @aus scheduler keeps a list of checkpoints and assigns them to
to the new client is essential to the efficiency of the solvenewly created clients or those that have just finished solv-
Eliminating this transfer would slow the solver signifidgnt ing their own sub-problem. Idle clients are assigned probkle
Finally the GridSAT solver terminates when all sub-probdemthrough splitting only after all checkpointed sub-probesne
have been solved or one the clients finds a satisfying assigssigned to active clients.

ment. In the latter case the client which finds the satisfyingvhen the master fails, GridSAT can recover by simply re-
assignment sends its stack to the master. The master verifiestantiating the master process on another machine ifsaece
that the set of truth assignments it received does indetsfysat sary. If checkpoints are available, the new master procass c
all clauses in the initial problem. Most solvers in the ltiere use them to recover pre-failure state. Also a user couldecaus
are evaluated based on the time the first satisfiable instancenintentionalfailure by halting the master while it is solving
found. But there are cases [24] where knowing all satisfla problem in order to start another problem for example. The
able instances is helpful. GridSAT can also enumerate ell thyser can later resume solving the previous problem using the
instances where a problem is satisfiable. In all cases, wheaved set of checkpoints.

the master determines that the problem is solved, it sends a

message to all clients requesting them to terminate. 5.3 Efficient Use of Batch Jobs
Batch schedulers are usually used to control super-congputi
5.2 Failure Recovery and Check-pointing System facilities [6, 49] and collections of grid resources sucktas-

In a computational grid environment resource failures exe f dor [10, 48]. Users in these environments are given a budget
quent. Therefore a grid application has to be able to recovére. a quota of CPU-hours) to use. Since this is valuable tim
from such failures. There are two components to failure ratis important from the user’s perspective to use it effeati.

p. 14

The scheduler bills the user and deducts from his budget thew batch jobs reach the head of their waiting queue and start
total time the nodes in the batch job are assigned to his jotunning. GridSAT migrates problems from dispersed nodes
The user is billed for the time used and not the time he into processes which are part of a batch job.

tially requested. Thus if a job terminates early the usenig o The scheduler identifies batch processes in a static fasision
billed for the time during which his job actually ran. From ajnq their host names. Instead of creating a new sub-problems
user's perspective, the goal is to minimize the cumulatNe i through splitting with a remote node, the scheduler reguest
time for all nodes during a batch job execution. the remote node to migrate to one of the clients in the batch
In traditional parallel applications, which mostly usejob. Migration allows future splitting to happen betweee e
MPI [18], the number of processes spawned is sufficient teelonging to the same batch jobs. This leads to reduction in
insure that all nodes have a slice of the work assigned to themaerall communication overhead. In future versions of &Grid
during the entire duration of the execution. All nodes stai$AT, determining when migration happens will be achieved
and stop execution simultaneously. This scenario leads to through a more dynamic approach.

efficient use of the batch jobs. GridSAT is not a traditional
parallel application. In the case of GridSAT, the number of
jobs (i.e. sub-problems) varies during execution. Actyall
when a new large batch job becomes available the number of
workers might be much larger than the number of available
sub-problems. The goal of GridSAT is to make good use df the experimental section we present three experimental
the newly available and valuable processing power. Itisipos sets. The first set of experiments allows the selection of the
ble to immediately split a sufficient number of sub-problemsgest strategy for merging learned clauses by comparindgthe e
This will lead to more efficient use of batch jobs but may affectiveness of those strategies as used in a parallel SA&rsol
fect negatively the solver’s performance. If GridSAT, how-The second set of experiments compares the performance of
ever, waits till enough problems split to populate all thecha GridSAT to that of the sequential solver zChaff. The thirt se
nodes, it may lead to an inefficient use of super-computingf result show how GridSAT is used to coordinate a large pool
nodes. of resource for extended time periods to solve “hard” satisfi

In GridSAT, initial batch job requests are large with a higtP!lty Problems.

number of nodes and long duration. This leads to a long wait-

ing period in the scheduler's batch queue. Thus if a job 6.1 Learning Methods Experiments

not solved after this long waiting period than it most probaln these set of experiments we study the effectiveness of the
bly is a hard problem. Thus batch jobs are only used whehree different learning methods: the lazy method, the imme
the problem is hard. When a batch job starts execution, Grigiate method and the periodic method. The experiments are
SAT uses problem migration to achieve more efficient use ¢onducted using the set of 33 benchmark problems used by
batch nodes. Remote GridSAT nodes, which are numerouiBg different satisfiability competitions [37, 40] and pimays

will migrate immediately to occupy batch nodes. After, mi-€valuations of GridSAT [9]. The experiments were conducted
gration takes place and since networks are fast within sup&n set of dedicated nodes on a cluster available at UCSB. Each
computing nodes, splitting happens at higher rates edpeciaexperiment uses ten nodes and one of the three methods. The
after the above mentioned reductions in communication-ovegxperiments are grouped into three sets where the maximal
head. Actually the number of active nodes (i.e. those withize of a shared clause is varied between 5, 10 and 15. The
sub-problems) will increase exponentially. This happess bcluster nodes are Pentium V CPUs with 2.66 GHz frequency
cause the number of new sub-problems is increased in p@2d 2 GB of memory. During these experiments automatic
portion to the number of existing active solvers. Therefore@djustment of shared clause size was disabled.

problem migration leads to a more efficient use of batch jobs.

6 Experimental Apparatus and Results

6.1.1 Results for Comparing Different Learning
5.4 Multiple Site Scheduling and Migration Methods: The experimental results are shown in table 1.
GridSAT processes communicate as peers during proble-Fh‘iS table shows experimental results for using a maximal
splitting. Even after the implementation of the optimizaSize of shared clauses of 5, 10 and 15 respectively. The

tion presented above which reduce communication overhed@bPle contains three section, one for each of size of shared
peer-to-peer messages are still the largest. Thereforee mé&lauses used. Each section shows to total time for each of the

efficient problem splitting will improve the overall solver three methods and the relative speed-up compared to the lazy
efficiency. More efficient problem splitting could be accommethod.

plished when clients belong to a pool of well connected rdn order to save space the runtimes for the individual prob-
sources. Such pools of resources are usually presented wiems were not included. But from inspecting each of the three

p. 15

| Method [Lazy | Immediate | Periodic | instances that SAT solvers have been known to solve cor-

Maximum size of shared clause =5 rectly. They are useful for comparing the speed of compet-
Total 76776 68620 64675 itive solvers since it is likely that each solver in the cotipe
% Speedup | (base) 10.6 15.8 tion will be able to generate an answer when the competition
Maximum size of shared clause = 10 is held. Alternatively, the challenging problem suite @ns
Total 71860 672902 63400 problem instar)ces that have yet to be solved by an automatic
% Speedup | (base) 6.4 118 metho_d or which have only been solve_d by one or two au-
s : tomatic methods, but are nonetheless interesting to the SAT
Maximum size of shared clause = 15 community. Of these problems, many have solutions that are
Total 69527 67292 63400 known through analytical methods, but several are openques
% Speedup | (base) 3.2 8.8 tions in the field of satisfiability research.

In these experiments the maximum size of learned clauses

Table 1: GridSAT results comparing all three learning methodsshared is 10. Learned clauses bigger than 10 are not shared.
with maximal learn clause size equal to 5, 10 and 15. This size allows for sharing of important clauses which wioul

have maximal effect without increasing significantly theev

head of clause sharing. Also the time out for clients to retjue
experimental sets, we learned that no particular method oyhat their problems be partitioned is set to 100 seconds. For
performed the other two methods all the time. Instead eaghe solvable problems we set an overall maximum execution
method outperforms the other two methods for a subset of tithe out to a total of 6000 seconds for GridSAT. That is, if
problems. We use the total runtime of all the problems tehe entire problem is not solved in 6000 seconds, the applica
compare the efficiency of the methods. Using the total runion gives up and terminates without a definitive answer. For
time for all problems in a benchmark is the standard methagle challenging benchmarks, we double the overall time out
for comparing solvers. to 12000 seconds.

We notice that in each case both the immediate and periodigall of the experiments, we compare GridSAT to zChalff run-

methods outperform the lazy method. The immediate methefing in dedicated mode on the fastest processor to which we

outperforms the lazy method by an average of about 7%. Tl@wve access with an 18000 second total time out. For the

periodic method was the most efficient and showed a speedgtallenging set we used 12000 seconds as the timeout value.

of about 12% on average compared to the lazy method. Wote that in the actual 2002 competition, using faster ma-

also notice that the speedup decreased as the size of maxigighes than the fastest we had available, zChaff was ondy abl

shared clause increased. These experiments show that usth@omplete a few instances from this set using a six-hour

the periodic method gives the best overall performance. (21600 second) time out. Thus we believe that the compari-
son between the two using the machines in the GrADS testbed

6.2 Comparing GridSAT and the Sequential Solver offer useful insight into the additional capability proei by

In the first set of experiments, we used 34 machines frofaridSAT.

the GrADS testbed and an additional machine (that we could

completely instrument) as a master node. The machines were g2 1 Results: The first set of results are presented in

distributed among three sites: two clusters (separatediy C Taple 2. The second column contains the solution to the in-
pus networking) at the University of TN, Knoxville (UTK), stance: satisfiable(SAT), unsatisfiable(UNSAT), or unknow
two clusters at the University of lllinois, Urbana-Chan@@i e have marked those problem instances that were previously
(UIUC) and 8 desktop machines at the University of Sagpen satisfiability problems with an asterisk (*). If a preini
Diego (UCSD). The master node was also at UCSD. Thgas originally unknown and was later solved by a solver, then
machines had varying hardware and software configuratioRge still keep it marked with an asterisk for completenes® Th
with one of the UTK clusters having the best hardware congst column shows the maximum number of active clients dur-
figuration. For each zChaff (single machine) test we usedjgg the execution of an instance. For all instances this rermb
dedicated node from this cluster. starts at one and varies during the run. The maximum it could
As a set of test applications, we chose a suite of challengeach is 34, the number of hosts in the testbed, but the sched-
problems used to judge the performance of automatic SATler may choose to use only a subset. This column records the
solvers at the SAT2002 conference [37]. These benchmanksximum that the scheduler chose during each particular run
are used to rate all competing solvers. They include indus¥hen a problem is solved the number of active clients col-
trial and hand-made or randomly generated problem inssandapses to zero. Speedup is measured as the ratio of thetfastes
that can be roughly divided into two categoriesivableand sequential execution time of zChaff (on the fastest, deeita
challenging[38]. The solvable category contains problenmachine) to the time recorded by GridSAT.

p. 16

The problem instances in Table 1 are split into three cateaay be less than two. Actually there is no theoretical guar-
gories. The first section represents the set of instanceshwhiantee that dividing the search space will result in spee@dp b
were solved by both zChaff and GridSAT (taken from both theause of all the heuristics involved. In practice, howepar;
solvable and challenging categories of the SAT2002 benctitioning the search space causes performance improvement
mark suite since zChaff was able to solve some of the latrost of the time. The contribution of GridSAT is not only to
ter). On the small instances (ones that complete in less thprovide speedup over sequential solvers but also to ertable t
300 seconds) where communication costs are significant welution of problems that were previously unsolved as shown
notice that zChaff running on a single machine outperformsy the next set of experiments.

GridSAT. The slowdown however is not very significant be-

cause the actual time is short. For instances with long ngni 6.3 Solving Hard Problems

times GridSAT shows a wide range of speed-ups ranging froBince GridSAT is a true grid application we ran a set of ex-
almost none to almost 20 faip12s12Because GridSAT was periments to show that GridSAT can run for extended peri-
using more machines it was capable of covering much moggis of time robustly using a wide variety of resources and
of the search space even when the run times were compaggso solve previously unsolved hard satisfiability insemc
ble. In only one relatively long running instan@gid_10.20, |n these experiment we simultaneously use computational re
did GridSAT show a slowdown. The maximum number okources which belong to collections of individual machjnes
active clients for the entire problem only reached a maximumall size research clusters and super-computing scae clu

of twelve during its execution. With this little sharing,ra& ters. The computational resources we used are composed
lelism did not seem to improve performance. This particulafom four main sources:

problem comes from a non-realizable circuit design illatstr
ing the data-dependent nature of SAT solver performance re- o VGrADS [55] testbed with additional machines from
sults. the University of California, Santa Barbara (UCSB)

The second category of problems represent those that Grid-
SAT was able to solve while zChaff either timed-out or ran
out of memory. In addition, only three out of the ten prob-
lems in this category were solved by another solver durigth e TeraGrid [54] site at the San Diego Super Computing
SAT2002 competition [39]. Note that zChaff was crowned Center (SDSC)

the overall winner because of its cumulative performance

across benchmarks. Individual instances may have been bet- ® TeraGrid [53] site at the National Center for Super-
ter solved by particular solvers, but because the comgetiti computing Applications (NCSA)

attempts to identify the best general method, aggregae tim
is used, and zChalff is the best on aggregate.

The rest of the seven instances in this second category hamge TeraGrid [49] project is a national scale project which
only been solved by GridSAT to the best of our knowledges aimed at building the worlds largest distributed in-
Three of the solved instances were part of the challengirigastructure for open scientific research. It includes five
benchmark for which results were originally unknown consites at SDSC [54],NCSA [53], Argonne National Labora-
stituting new domain science in the field of satisfiabilitheT tory [50], Pittsburgh Super Computing center [52] and Cal-
other four had known analytical answers, but no automatiech CACR [51]. Additional sites and resources are planned
generalized solver had been able to correctly generate theinOak Ridge National Lab (ORNL); Purdue University, In-
indicating the additional solution power that a Grid implediana; Indiana University, Bloomington; and the Texas Ad-
mentation brings to the field. vanced Computing Center (TACC) at The University of Texas
These results show that GridSAT provides a speedup cotAustin.

pared to existing sequential solvers. This speed up ismot liThe Virtual Grid Application Development Software

ear with respect to the number of resources used because ({BADS) project [55], a continuation of GrADS [4, 21] is
DPLL algorithm used to solve SAT instances is a branch-an@-comprehensive research effort studying Grid programming
bound algorithm. In such search based algorithms the time fgols and application development. GrADS includes a set of
solution is not always proportionally related to the numiifer programming tools for managing grid applications using per
times the search space is divided. For example, dividing thérmance models. Scheduling applications in GrADS uses
search space in half may not cause a two-fold speedup in tirgempiler pre-processing of the programs and introduced in-
to solution. In fact, the two sub-problems may have very difstrumentation combined with NWS data. The tools GrADS
ferenttimes to solution. In this case, even though therdoeil uses are included in a software package ter@esDSoft To

an overall improvement by using two resources, the speedtgilitate experimental application research and testthg

e Blue Horizon [6] located at the San Diego Supercom-
puter Center (SDSC)

e Data Star [13] supercomputer at SDSC

p. 17

File name SAT/UNSAT/ | zChaff GridSAT Speed-Up| Max # of
UNKNOWN | (sec) (sec) clients

| Problem solved by zChaff and GridSAT
6pipe.cnf UNSAT 6322 4877 1.23 34
avg-checker-5-34.cnf UNSAT 1222 1107 1.10 9
bartl5.cnf SAT 5507 673 8.18 34
cache05.cnf SAT 1730 1565 1.11 34
cnt09.cnf SAT 3651 1610 2.27 12
dpl2s12.cnf SAT 10587 532 19.90 8
homer11.cnf UNSAT 2545 1794 1.42 10
homer12.cnf UNSAT 14250 4400 3.24 33
ip38.cnf UNSAT 4794 1278 3.75 11
rand.net50-60-5.cnf UNSAT 16242 1725 9.42 20
vdagr_rcsw8.cnf SAT 1427 681 2.10 15
w08.14.cnf SAT 14449 1906 7.58 34
w10.75.cnf SAT 506 252 2.01 2
Urquhart-s3-b1.cnf UNSAT 529 526 1.01 4
ezfact485.cnf UNSAT 127 196 0.65 1
glassy-sat-selN210.n.cnf SAT 7 68 0.10 1
grid_10.20.cnf UNSAT 967 3165 0.31 12
hanoi5.cnf SAT 2961 1852 1.60 33
hanoi6fast.cnf SAT 1116 831 1.34 4
lisa201 a.cnf SAT 181 243 0.75 2
lisa213.a.cnf SAT 1792 337 5.32 4
pyhala-braun-sat-30-4-02.cnf | SAT 18 84 0.21 1
gg2-8.cnf SAT 180 224 0.80 2

| Problems solved by GridSAT only
7pipebug.cnf SAT TIME_OUT | 5058 - 34
dp10u09.cnf UNSAT TIME_OUT | 2566 - 26
rand.net40-60-10.cnf UNSAT TIME_OUT | 1690 - 30
f2clk_40.cnf UNSAT(*) TIME_OUT | 3304 - 23
Mat26.cnf UNSAT MEM_OUT | 1886 - 21
7pipe.cnf UNSAT MEM_OUT | 6673 - 34
comb2.cnf UNSAT(*) MEM_OUT | 9951 - 34
pyhala-braun-unsat-40-4-01.cnflUNSAT MEM_OUT | 2425 - 34
pyhala-braun-unsat-40-4-02.cnfUNSAT MEM_OUT | 2564 - 34
w08.15.cnf SAT(*) MEM_OUT | 3141 - 34

| Remaining problems
combl.cnf * TIME_OUT | TIME_OUT | — 34
par32-1-c.cnf SAT TIME_OUT | TIME_OUT | — 34
rand.net70-25-5.cnf UNSAT TIME_OUT | TIME_OUT | — 34
shal.cnf SAT TIME_OUT | TIME_OUT | — 34
3bitadd31.cnf UNSAT TIME_OUT | TIME_OUT | — 34
cntl0.cnf SAT TIME_OUT | TIME_OUT | — 34
glassybp-v399-s499089820.cnfSAT TIME_OUT | TIME_OUT | — 34
hgen3-v300-s1766565160.cnf * TIME_OUT | TIME_OUT | — 34
hanoi6.cnf SAT TIME_OUT | TIME_OUT | — 34

Table 2: GridSAT and zChaff SAT2002 Benchmark Results on GrADS &btb

(*): problem solution is unknown

p. 18

project maintains a nationally distributed grid of res@gfor SAT solvers have solved correctly. They are used for com-
use as a production testbed. The baseline Grid infrasteictyparing the speed of competing solvers. Alternatively, the

is provided by Globus and the NWS, upon which is layeredhallenging problem suite contains problem instances that
a set of programming abstractions. In this work we extenidave yet to be solved by an automatic method or which have
GridDSAT to use all resources that do not currently benenly been solved by one or two automatic methods, but are
fit from these sophisticated Grid programming tools. Gridnonetheless interesting to the SAT community. Some of these
SAT components (i.e. master and client) use the Everproblems have known solutions that are known through an-
Ware [56, 57] messaging system for communication. alytical methods (i.e. the problem has a known solution by

During our experiments, none of the resources we used wef@nstruction), but several of these problems are open ques-
dedicated to our use. The VGrADS testbed, the UCSB mions in the field of satisfiability research. We only chose
chines, and the super-computing resources were all inrcontProblems which are hard so that we can demonstrate the abil-
uous use by various researchers and application scieatistdty Of the GridSAT system to solve such challenging prob-
the time of the experiment. As such, other applicationse;har'ems- These problems were deemed hard by all participating
the computational resources with our application. Itigast, Solvers.

difficult to determine the degree of sharing that might havéVe investigate seven previously unsolved problems divided
occurred across all of the available machines. Sometimes ae follows:

were requested to temporarily vacate some specific resource

because some users wanted to run experiments without in- ® 3 instances from the SAT 2003 benchmark category,

terference from other applications. We consider this to be | 4instances from the SAT 2002 benchmark category, all
a realistic scenario for Computational Grid computing, but of which we have not been able to solve using previc,)us
it makes repeatable timings of similar problems (partidyla versions of GridSAT.

those we ran for long periods) difficult. In particular, int@

controlled system such as Blue Horizon, Data Star and thenis group of problems represent a variety of fields where
TeraGrid, a user presents a request for a number of nodg®blems are reduced to instances of satisfiability andesslv
and a maximum duration. After waiting in the job queueare used to determine the solutions. The problems contain a
the user’s job runs with exclusive access to the nodes dyair of problems in FPGA routing and model checking. These
ing execution, but the queue wait time incurred before exectwo disciplines benefit heavily from efficient SAT solvers.
tion begins is highly variable. However, the effect of remau The remaining problems are of theoretical nature.

contention is almost assuredly a performance-retardi®g oM, his set of experiments, the resource pool included 40

Thus, if it were possible to dedicate all of the VGrADS réy,chines from the VGrADS testbed and an additional ma-
sources to GridSAT, we believe that the results would be belpine (that we could completely instrument) as a master node
ter. As they are, they represent what is currently possisle Urne machines were distributed among three sites: three clus
ing non-dedicated Grids in a real-world compute setting. ters (separated by campus networking) at the University of
In previous experiments [9] we showed how GridSAT can si¥N, Knoxville (UTK), five desktop machines at the Univer-
multaneously use small clusters and a collection of lab maity of San Diego (UCSD) and ten machines from the MAY-
chines in conjunction with high end supercomputers such &M [31] lab at the University of California, Santa Bar-
Blue Horizon. The experiments used a single job request @ara. An additional node, designated the master node, was
the Blue Horizon with a maximum timeout of 12 hours. at UCSB. The machines had varying hardware and software
The set of experiments we present in this paper use a mgrenfigurations.

diverse set of resources for longer periods of time (up to ja these experiments we set the absolute minimum size of
month in duration) and multiple job requests. We chose ghared clauses to two and absolute maximum to 15. This
set of challenge problems from both SAT2002 conferenaginge allows for sharing clauses which would help prune
[37] and SAT2003 benchmarks [40]. These benchmarks afige search space without significant communication overhea
used to judge and compare the performance of automatic SAhlike previous experiments there was no timeout value set
solvers at the SAT2002 [39] and SAT2003 [42] conferencesor the maximum execution time. Every problem was run
All the problems in the benchmarks are shuffled to insurgsing different job description for the batch systems. Jobs
that submitted benchmarks are not biased in favor or againgi the different batch queues were manually re-launched at
any solver. These benchmarks are used to rate all compgindom intervals. Job re-submission could have been auto-
ing solvers. They include industrial and hand-made or rammated but we wanted more control over rationing our lim-
domly generated problem instances that can be roughly died compute budgets to specific experiments based on their
vided into two categoriessolvableandchallenging[38, 41]. perceived progress. Experiments where GridSAT was mak-
The solvable category contains problem instances that sonfg progress were allotted bigger jobs with longer duration

p. 19

and more nodes. The progress of the solver was judged the above variety of resources mentioned earlier we present
inspecting how often the checkpoints were updated. We cansection of a run using instanbanoi6.cnf This problem
also inspect the internal state of a particular solver usarge is a SAT representation of theéanoi Towersproblem using
of the tools we developed. The VGrADS nodes were usesix disks. A six day snapshot from a 23 day run is shown in
during the entire duration of each experiment unless theshodigure 6. The figure shows several jobs from Blue Horizon,
experienced failures. Data Star and TeraGrid sites participating in the execution
Note that the processor count is represented in logarithmic
6.3.1 Results: Solving Hard Satisfiability Problems: scale. This figure shows that GridSAT was able to make use
The experimental results are summarized in Table 3. Tt the available resource when some of their nodes became
first column contains the problem file name. The second covailable and then continued to run after the nodes weretake
umn indicates the field from which this problem instance i@way to serve other users. GridSAT processes continue to run
obtained. The third column contains the solution to the inen the batch controlled resources until the scheduler dscid
stance: satisfiable(SAT), unsatisfiable(UNSAT), or unknow to terminate them. This abrupt termination has no effect on
We have marked those problem instances which were prethe application which deals with these events as (schejluled
ously open satisfiability problems with an asterisk (*). If aresource failures. In figure 7 we show the total number of
problem was originally unknown and was later solved by @rocesses used by GridSAT during the same period. GridSAT
solver, then we still keep it marked with an asterisk for comwas able to manage up to 350 processes running on different
pleteness. The fourth column represents the total watlkclo resources as show in this figure.
time that the problem was tried. Finally, the fifth and ladt co The satisfiability solver performs mostly integer, bramghi
umn represents the solution obtained by GridSAT which ignd load/store operations. The number of floating point-oper
represented by SAT, UNSAT or (-) if we terminated the exations is very low (less than .1 FLOPS). Floating point opera
periment before GridSAT found an answer. In such casegons are only used to handle time related events. We present
experiments could be continued using the saved checkpoinis figure 8 an estimate of the total number of instructions per
Table 3 shows that GridSAT was able to solve three problensecond during the same six day period. Since instrument-
all of which were not previously solved. Two of the prob-ing GridSAT can cause significant slow down, we conducted
lems were found unsatisfiable and they are both from the fieg®me benchmarking on some machines at UTK to determine
of FPGA routing. The first problerk2fix-gr-rcs-w8.cnfvas the average efficiency of the solver. Since the solver code
solved using the VGrADS testbed only. Batch jobs whiclis mostly sequential, we assume that at the maximum only
were submitted for this experiment were still waiting in theone instruction per cycle can be finished by the processor.
queue. Thus when the problem got solved before they got Tde determined efficiency is 70%. We estimated that other
the head of the queue the batch jobs were canceled. On thydware and OS combinations will exhibit equal efficieacie
other hand the second problé®fix-gr-rcs-w9.cnfook much The number of operations provided by a resource is estimated
longer to solve, it took more than two weeks. We expect th&® be the product of its peak performance and the estimated
some Grid applications will require running for such extedid €efficiency. The total number of instructions in figure 8 is
periods of time. Table 4 gives a more detailed descriptiofie sum of operations of all active resources. We notice that
of the resource used during this experiment. For each jobtle VGrADS testbed is able to deliver about 20 Billion in-
number of GridSAT solver components were launched as igtructions per second(IPS). In the middle of the graph gther
dicated in the last column of table 4. The number of processissa batch job from Blue Horizon which failed suddenly while
per node is determined so that each process gets a minimi#ifing the GridSAT execution. This might have happened
of 1/2 GByte or 1 GByte of memory. In table 5 a break dowrbecause the Blue Horizon machine became unavailable for
of the CPU-hours used on each resource are tabulated. Négheduled maintenance. The total number of IPS was multi-
that the VGrADS testbed machines were able to deliver a siglied by more than five times when some batch jobs became
able amount of compute power because they were availatsietive. It reached up to 110 Billion IPS.
in a shared mode for the duration of the experiment. Another measure of performance, is how much of the batch
The last problemcntl0.cnfwas also solved using the job maximum computational power is actually used by Grid-
VGrADS testbed only under similar circumstanceskgfix- SAT processes. Most other parallel jobs run on all the pro-
gr-rcs-w8.cnf We previously tried solving this problem in cesses from start to finish with little overhead. In this case
[9] using the same testbed for four days in addition to Blubatch jobs are efficiently used. In the of case GridSAT, how-
Horizon for 12 hours but were not successful. We believever, there are two main sources of inefficiency. First, some
the improvements made to the solver and especially the néoPs might wait idly at the start. Batch jobs usually include
clause sharing method have helped achieve this result. ~ a large number of processes. Some of these processes have
In order to illustrate further GridSAT’s success in using alt® Wait until a sufficient number of splits occur to generate

p. 20

| File name | Description | SAT/UNSAT/* | Time | GridSAT Result|

3bitadd-31.cnf theoretical UNSAT 8 days -
k2fix-gr-rcs-w8.cnf| FPGA Routing | * 83261 sec (23 hoursg) UNSAT
k2fix-gr-rcs-w9.cnf| FPGA Routing | * 14 days and 8 hours | UNSAT
cntl0.cnf Theoretical SAT 13134 sec (4hours) | SAT

combl.cnf Model Checking| * 11 days -

f2clk50.cnf Model Checking| * 9 days -

hanoi6.cnf Theoretical SAT 23 days -

any other solver.

(*): problem solution initially unknown

Table 3: GridSAT results using VGrADS testbed, Blue Horizon, Datarsind TeraGrid. All these problems were not previouslyembly

| Computational resourck Job count| Job duration(hours) Number of nodeg processes/nodg
Blue Horizon 2 10 100 3
Blue Horizon 1 12 100 3
DataStar 2 10 8 11
TeraGrid @ SDSC 1 10 40 2
TeraGrid @ SDSC 1 12 40 2
TeraGrid @ SDSC 3 10 4 2
TeraGrid @ SDSC 4 5 4 2
TeraGrid @ NCSA 3 10 4 2
TeraGrid @ NCSA 4 5 4 2

in addition to 40 machines from VGrADS testbed for 14 days dre@nd 44 minutes

Table 4: Batch jobs used to solve the k2fix-gr-rcs-w9.cnf instanoenfSAT 2003 benchmark

| Computational resourck node-hours) CPUs/node] CPU-hours |

Blue Horizon 3200 8 25600
Data Star 160 11 1760
TeraGrid @ SDSC 1080 2 2160
TeraGrid @ NCSA 200 2 400
GrADS testbed(*) 13750 1 13750

(*) machines were shared with other users

Table 5: CPU-hours per resource used to solve the k2fix-gr-rcs-vifthstance from SAT 2003 benchmark

p. 21

1000
—— GrADS testebed nodes
—— SDSC TeraGrid nodes
—_— —_— —— NCSA TeraGrid nodes
—— BlueHorizon nodes
» — DataStar nodes
% 100 -———-—==———————1 i H I S - -
g)
3]
(=]
5 T —
-
o
1=
(7]
£
4 10 St B o A St Bt e Bt | i el
1 T T T T T 1
12:00:00 AM 12:00:00 AM 12:00:00 AM 12:00:00 AM 12:00:00 AM 12:00:00 AM 12:00:00 AM

Time

Figure 6: A six day snapshot representing GridSAT processor coumgeufsam the different resources in logarithmic scale.

350 7 m

300 T ------------- e e i e

N

(43

o
f
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

200 -

s+ -———""""~"~"~"=——-- i e

Total Number of Processes

100

50

0 T T T T
12:00:00 AM 12:00:00 AM 12:00:00 AM 12:00:00 AM 12:00:00 AM 12:00:00 AM 12:00:00 AM
Time

Figure 7: The total processor count usage from all the resources émame six day snapshot shown in figure 6.

p. 22

new sub-problems for all the newly created solvers. Second, References

some batch processes may contain idle solvers for a period

of time after they solve the previously assigned sub-prable [1] L. C. Alessandro Armando. Abstraction-driven sat-liase
The solver in this case, waits until it is assigned a new sulghalysis of security protocols. [fheory and Applications of Sat-
problem by the master. For the first job in figure 6, WhiCHSflablhty Testing, 6th International Conference, SAT 20pages

: . g . . 257-271, May 2003.
- 0, —
is a large 100-node job, the efficiency is 98.9%. Thus Grlafz] G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu,

_SAT was able to use batch J'C?b_s efficiently. The main I€asGf Radke, E. Seidel, and J. Shalf. The Cactus Worm: Expetsnen
is that batch jobs usually wait in the batch queue for a longiih dynamic resource discovery and allocation in a Gridirems

time before executing. Thus by the time the job is executeghent. The International Journal of High Performance Computing
GridSAT was unable to solve the problem because it is hargpplications 15(4):345-358, 2001.

This means that batch jobs are only used when the problgidi C. W. B. Li and F. Somenzi. Abstraction refinement in sym-
is in deed hard. It is possible that for certain problems, theolic model checking using satisfiability as the only demisproce-
efficiency of batch jobs might be low. In this case, future verdure. December 2003.

sions of GridSAT might monitor the batch job efficiency tol4l_ - Bérman, A. Chien, K. Cooper, J. Dongarra, |. Foster,

determine whether and when a iob is to be terminated L. J. Dennis Gannon, K. Kennedy, C. Kesselman, D. Reed, L-. Tor
]) czon, , and R. Wolski. The GrADS project: Software support

During our experiments, the Blue Horizon super-computéér high-level grid application developmentinternational Jour-
was being decommissioned. GridSAT was able to continual of High Performance Computing Applications5(4), Winter
running experiments on the set of available resources ¢jirou2001. available fronthttp://hipersoft.cs.rice.edu/

this transition. The scheduler would try to submit jobs bugrads/publications_reports.htm" :

it would notice that the Blue Horizon resource was not rel?l ~ A. Biere. http:/www.inf.ethz.ch/personal/

sponding. The failure of this single (but important) resur Piré/projects/immat/

. . . . 6 BlueHorizon. http:// . i.edu/
which did not affect the already running experiments sho |]ueHoriliinlonzon p-Tww.npact.edu

the robustness of GridSAT. [71 R.Bjarand F. Many. Solving the Round Robin Problem Us-
ing Propositional Logic. AAAI/IAAI, 2000.
[8] W. Chrabakh and R. Wolski. GrADSAT: A Parallel SAT
Solver for the Grid. Technical Report 2003-05, UCSB, Mar6b2
[91 W. Chrabakh and R. Wolski. GridSAT: A chaff-based Dis-
tributed SAT solver for the Grid. I'BSupercomputing Conference,
7 Conclusion Phoenix, AZNovember 2003.
[10] Condor home page -http://www.cs.wisc.edu/
condor/
[11] S. A.Cook. The complexity of theorem-proving procezkir
We have described GridSAT a distributed satisfiability solv Third Annual ACM Symposium on Theory of Compuytirgy 1.
for the computational grid. GridSAT is shown capable 0{12_21_ }: Czajkowski, S. ':'tzg?ra.lg' "dFOSter’ and C'.:;e;m
running on a dynamic and heterogeneous set of resourc é;h ITEOErrEn aStlon services for distributed resource shgi roc.
. . . ymp. on High Performance Distributed Compuyting
GridSAT was capable of solving previously unsolved probé001
lems. In order to solve even harder problems, new optimizay 3] ' Data Star http://www.npaci.edu/DataStar/)
tions to both the algorithm and architecture of GridSAT wergi4] M. Davis, G. Logeman, and D. Loveland. A machine pro-
introduced. GridSAT is capable of merging newly receivegram for theory proving. Communications of the ACM, 1962.
shared clauses immediately to the clause database to imprdi5] A. Downey. Predicting queue times on space-sharingledr
the solver’s efficiency. Also communication overhead is recomputers. IrProceedings of the 11th International Parallel Pro-
duced by selectively sending important information firstl an €€SSing Symposiumpril 1997.

avoiding redundancy when possible. The experiments we r[el-G] D. G. Feitelson and L. RudolphParallel Job Scheduling:
9 Y P) P P ISsues and ApproacheSpringer-Verlag, 1995.

sented show GridSAT’s ability to manage and use a diverse s{gy] S. L. Forman and A. M. Segre. Nagsat: A randomized, com-
of dynamic computational Grid resources. The experimenfiete, parallel solver for 3-sat. SAT2002, 2002.

lasted for weeks as a testament to the robustness of the B8] M. P. I. Forum. Mpi: A message-passing interface stamda
plication. During these experiments new previously unsdlv Technical Report CS-94-230, University of Tennessee, Kiflex
problems from practical and theoretical fields were solved. 1994.

We also present a version of GridSAT capable of enumer L9] | Foster and C. Kesselman.The Grid: Blueprint for a
P P ew Computing InfrastructureMorgan Kaufmann Publishers, Inc.,

ing all solutions of a given satisfiability problem. Finalyy ;995

grid portal was developed to enable users to submit their spgo] E. Goldberg and Y. Novikov. BerkMin: A fast and robust
cific problems to GridSAT running transparently on a set o§AT-solver. InDesign, Automation, and Test in Europe (DATE ’02)
computational resources. pages 142-149, March 2002.

p. 23

120.00 ~

100.00 -

80.00 -

60.00 -

40.00 ~

20.00 ~

Total Instructions (Billion Instructions/Second)

VGrADS testbed only

0-00 T T T T T T T T
12:00 AM 12:00AM 12:00 AM 12:00 AM 12:00 AM 12:00 AM 12:00 AM 12:00 AM 12:00 AM

Time

Figure 8: Estimation of Integer Operations per second usage for all reources during the same six day snapshot shown in figure 6.

[21] GrADS. http://hipersoft.cs.rice.edu/grads . [31] MAYHEM home page -
[22] E. A. Hirsch and A. Kojevnikov. UnitWalk: A new SAT http://pompone.cs.ucsb.edu//

solver that uses local search guided by unit clause elimoimat [32] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik
In PDMI preprint 9/2001, Steklov Institute of Mathematics at’Chaff: Engineering an Efficient SAT Solver. 38th Design wuia-
St.Petersburg2001. tion Conference (DAC2001), Las Vegas, June 2001.

[23] C.K.I.Fosterand S. Tuecke. The anatomy of the grid.1200 [33] G. Nam, F. Aloul, K. Sakallah, and R. Rutenbar. A Compara
[24] D. Jackson and M. Vaziri. Finding bugs with a constrainkje stydy of Two Boolean Formulations of FPGA Detailed Ragt
solver. International Symposium on Software Testing and Analysig gnstraints. International Symposium on Physical Design (ISPD),
2000. Sonoma Wine County, Californipages 222-227, 2001.

.[25] B. ‘]L.JrKOWiak’ C.M. L a_nd G. Utard. _Parallelizing Sais- [34] J. Plank, M. Beck, and W. Elwasif. IBP: The internet back
I_PE Dynamic Wor_klogd Balancu_wg: IF'_?r_oceedl_ngs of W,OrkShOp on plane protocol. Technical Report UT-CS-99-426, UniversitTen-
eory and Applications of Satisfiability Testing (SAT'20Pages nessee. 1999

205-211, June 2001. o . .
[26] H. Kautz and B. Selman. Planning as satisfiability. Pio- [3.5] S. Reda ant_j A S_a_llem. Co_mblnatlon_a_l equ!valence checki
. e using boolean satisfiability and binary decision diagrarmsPro-
ceedings of the Tenth European Conference on Atrtificialllinte . . - .
ceedings of the conference on Design, automation and test4in

gence pages 359-379, August 1992.
[27] W. Kunz and D. Stoffel. Reasoning in Boolean Networks: rope, pages 122-126. IEEE Press, 2001. .
[36] M. Russell, G. Allen, G. Daues, |. Foster, E. Seidel,

Logic Synthesis and Verification Using Techniquéduwer Aca-

demic Publishers. Boston. 1997. J. Novotny, J. Shalf, and G. von Laszewski. The astrophysios-
[28] T. Larrabee. Efficient generation of test patterns glsinlation collaboratory: A science portal enabling communitftware
boolean difference. pages 795-802. developmentCluster Computing5(3):297-304, 2002.

[29] T.Larrabee. Test pattern generation using booleasfidtil- [37] SAT 2002 benchmarks.http://www.satlive.org/

ity. In IEEE Transactions on Computer-Aided Desigages 4-15, SATCompetition/2002/submittedbenchs.html
January 1992. [38] SAT 2002 challenge benchmarkhattp://www.ececs.

[30] W.W.Li, R. W. Byrnes, J. Hayes, A. Birnbaum, V. M. Reyes,uc.edu/sat2002/sat2002-challenges.tar.gz

A. Shahab, C. Mosley, D. Pekurovsky, G. B. Quinn, I. N. Shaddy, [39] SAT 2002 Competition. http://www.satlive.org/
H. Casanova, L. Ang, F. Berman, P. W. Arzberger, M. A. Mileend ~ SATCompetition/

P. E. Bourne. The encyclopedia of life project: grid softwvand [40] SAT 2003 benchmarks. http://satlive.org/
deployment.New Gen. Compuyt22(2):127-136, 2004. SATCompetition/2003/

p. 24

[41] SAT 2003 challenge benchmark.http://satlive.
org/SATCompetition/2003/

[42] SAT 2003 Competition. http://satlive.org/
SATCompetition/2003/ .

[43] M. H. Schulz and E. Auth. Improved Deterministic Test
Pattern Generation with Applications to Redundancy |dieation.
IEEE Transactions on ComputerAided Desi@{7):811816, July
1989.

[44] J. M. Silva and K. Sakallah. Grasp - a new search algaorith
for satisfiability. ICCAD. IEEE Computer Society Press, 699

[45] J.P. M. Silva. Search Algorithms for Satisfiability Btems
in Combinational Switching Circuits. Ph.D. Thesis, The iémsity
of Michigan, 1995.

[46] C. Sinz, W. Blochinger, and W. Kuchlin. PaSAT - Parallel
SAT-Checking with Lemma Exchange: Implementation and Appl
cations. InProceedings of SAT200fages 212-217, 2001.

[47] M. Swany and R. Wolski. Building performance topolagie
for computational grids. IfProceedings of Los Alamos Computer
Science Institute (LACSI) Symposium, 2002tober 2002.

[48] T. Tannenbaum and M. Litzkow. The condor distributed-pr
cessing systenDr. Dobbs Journal February 1995.

[49] TeraGrid.http://www.teragrid.org/

[50] TeraGrid at Argonne National Laboratory http://
WWWw-unix.mcs.anl.gov/teragrid-anl/ .

[51] TeraGrid at Caltech Center for Advanced Computing Re-
search. http://www.cacr.caltech.edu/resources/

teragrid/

[52] TeraGrid at Pittsburgh Supercomuting Centehttp://
teragrid.psc.edu/

[53] TeraGrid at the National Center for Scientific Appliceais.
http://teragrid.ncsa.uiuc.edu/

[54] TeraGrid at the San Diego Supercomputlng Cenkétp:
Ilwww.sdsc.edul/teragrid

[55] VGrADS. http://hipersoft.cs.rice.edu/

vgrads .

[56] R. Wolski, J. Brevik, C. Krintz, G. Obertelli, N. Springnd
A. Su. Running EveryWare on the computational grid. SG99
Conference on High-performance Computing Proceedih§99.

[57] R. Wolski, J. Brevik, G. Obertelli, N. Spring, and A. Su.
Writing programs that run everyware on the computationad.gr
IEEE Transactions on Parallel and Distributed Systerhi@(10),
2001. available fromhttp://www.cs.ucsb.edu/rich/
publications/ev-results.ps.gz

[58] R. Wolski, N. Spring, and J. Hayes The network weather
service: A distributed resource performance forecastamgise for
metacomputingFuture Generation Computer Systerhi899.

[59] R.Wolski, N. Spring, and J. Hayes. Predicting the cpailav
ability of time-shared unix systems on the computationa.gin
Proc. 8th IEEE Symp. on High Performance Distributed Corimgt
1999.

[60] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik.
Efficient conflict driven learning in boolean satisfiabilgglver. In
ICCAD, pages 279-285, 2001.

p. 25

