
GridSAT: A Chaff-based Distributed SAT Solver for the Grid

Wahid Chrabakh
and

Rich Wolski
Department of Computer Science

University of California Santa Barbara�
chrabakh,rich � @cs.ucsb.edu �

Abstract

We present GridSAT, a parallel and complete satisfiability
solver designed to solve non-trivial SAT problem instances
using a large number of widely distributed and heterogeneous
computational resources.

The GridSAT parallel algorithm (based on Chaff) uses intel-
ligent backtracking, distributed and carefully scheduled shar-
ing of learned clauses, and clause reduction. Our implemen-
tation for Computational Grid settings focuses on dynamic
resource acquisition and release as a way of optimizing appli-
cation execution. We show how the large number of compu-
tational resources that are available from a Grid can be man-
aged effectively for the application by an automatic scheduler
and effective implementation. GridSAT execution speed is
compared against the best sequential solver as rated by the
SAT2002 competition using a wide variety of problem in-
stances. The results show that GridSAT delivers speed-up for
all but one of the test problem instances that are of significant
size. In addition, we describe how GridSAT has solved previ-
ously unsolved satisfiability problems and the domain science
contribution these results make.

Keywords: Parallel, Distributed, Satisfiability, Computa-
tional Grid.

1 Introduction

The problem of determining propositional satisfiability (SAT)
for arbitrary boolean expressions is an important problem in
computer science and engineering. A typical SAT problem is
formulated as the question “for a boolean expression, is there
an assignment of boolean values to the variables of the expres-
sion that makes the expression evaluate as true?” In addition
to playing a pivotal role in computability theory (Cook’s orig-
inal NP-completeness proof used SAT as its basis [10]), many
engineering applications in the areas of circuit design [31],�
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FPGA layout [25], Artificial Intelligence [21] scheduling [6]
and Software verification [19] require solutions to arbitrarily
complex SAT problems. In an industrial setting, computa-
tional SAT solvers are required to solve practical problems.

As a result, SAT solver development continues to be an active
area of academic research and software development. There
exists many sequential solvers [2, 16, 18, 5]. Most of these
systems use “learning” – the formulation of additional de-
duced clauses during a solution run – to prune the search
space of possible variable assignments. Learned clauses must
be organized and stored so that the search heuristics can use
them to prove various potential variable assignments infeasi-
ble (i.e. result in a logical conflict). Thus, solvers that employ
clause learning form a local clause database that is heavily ac-
cessed (both read and updated) during a solution, and which
can grow arbitrarily large.

Moreover, it is memory size and speed in addition to CPU
availability that constrains the success of these sequential im-
plementations. Typical solvers run until they have found a
variable assignment that makes the original expression true,
or until the learned clause database overflows the available
memory. In the latter case, the solver cannot make any fur-
ther progress and no information about the satisfiability of the
given expression is produced.

Improvements in networking and CPU speeds in addition to
the availability of clusters make it attractive to use multiple
machines to solve SAT problems. There are many paral-
lel SAT solvers [20, 32, 13]. However, current implemen-
tations do not use large sets of heterogeneous computational
resources. Furthermore, there programming models do not
address the additional requirements imposed by such an envi-
ronment.

In this paper, we describe GridSAT – a new learning SAT
solver implemented for Computational Grid execution – that
dynamically acquires and releases resources during solution
as a way of improving solver power. GridSAT is based on
zChaff [2] which is the current world-record holder among all
SAT solvers tested at the SAT2002 solver competition [28].
It uses zChaff as a solver core but in a new parallel form
and it implements an efficient distributed clause database sub-
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system that can acquire and release memory from a Grid re-
source pool on demand. Thus, while the core of the sequen-
tial computation is based on a previously defined implementa-
tion, GridSAT, using EveryWare, has been designed explicitly
to manage the heterogeneity and dynamism inherent in Grid
resource environments. It is, in this sense, an application de-
veloped from “first-principles” for the Grid and not a legacy
parallel application that has been modified for Grid execution.

We describe the implementation of GridSAT using the Every-
Ware [35, 36] application development toolkit, and detail the
resulting solver performance in terms of the SAT2002 chal-
lenge benchmark suite. Using a non-dedicated nationally dis-
tributed, and shared Grid, GridSAT outperforms zChaff (for
the problems zChaff can solve) when it is run on the fastest
processor available to our experiment in dedicated mode. In
addition, GridSAT is able to solve problems from the bench-
mark suite that no other solver (including zChaff) has pre-
viously been able to solve, but for which analytical results
are known. Finally, GridSAT has solved outright three pre-
viously unsolved problems in satisfiability for which neither
analytical nor automatic techniques have previously proved
successful. With these new results in the field of satisfiabil-
ity, GridSAT is one of the first Grid programs developed from
first principles to generate new domain science. Thus the con-
tributions this paper makes can be summarized as

� an exposition of the GridSAT parallelization, schedul-
ing, and implementation techniques that enabled suc-
cessful Grid execution of a fine-grained storage-
intensive application,

� an analysis of the performance comparison between
GridSAT and the currently best-performing SAT solver
known, and

� a discussion of the new domain science results that the
GridSAT investigation has generated.

These results stem from two important innovations which, to-
gether, result in an automatic SAT solver that outperforms the
best previously known solvers as measured by [28].

� Scalable Distributed Learning: We report on a
method we have developed for distributed learning and
sharing of automatically deduced clauses among a large
set of hosts connected via a network. We believe that
this methodology is effective enough to enable large,
nationally distributed collections of machines to be
used in parallel on individual problem instances.

� Adaptive Resource Scheduling: We describe an
implementation of this technique for Computational
Grid [14] execution environments. The goal of Grid
systems is to permit resource intensive applications to
dynamically acquire and release resources. These re-
sources could be dedicated resources or they could be-
long to a globally available “pool” that is shared by all

Grid users. We have developed an adaptive schedul-
ing methodology that enables high-performance SAT
solutions using shared Grid resources that are widely
dispersed geographically.

As an empirical verification of these results, we compare
our system to sequential zChaff [2] from which the core of
our solver is derived. We use the SAT2002 [26, 27] bench-
mark suite as test applications, and a Computational Grid pro-
vided by our lab machines, the Grid Application Development
Software (GrADS) project [3] and in some experiments Blue
Horizon [7].

The rest of the paper is organized as follows. Section 2
presents the how SAT solvers work in general and how Chaff
is implemented in particular. In section 3 we present our
parallel version of the SAT algorithm. Section 3.3 describes
the programming model we have used to implement the par-
allel solver in a Grid environment. We present a discussion
of the experimental performance results in section 4. Finally
we present related work and conclude in sections 5 and 6
respectively.

2 SAT Solvers and the Chaff Algorithm

A satisfiability problem is expressed as a boolean formula.
Most solvers operate on formulas expressed in Conjunctive
Normal Form (CNF). A CNF is a conjunction (logical AND)
of clauses. A clause is an injunction (logical OR) of liter-
als. A literal is either an instance of a variable (

�
) or its

complement( �
�

). A problem is called satisfiable if there ex-
ists a set of variable assignments that makes the formula eval-
uate to true. If such an assignment does not exist the the prob-
lem is declared unsatisfiable. CNF has two important prop-
erties: any boolean formula can be algebraically converted to
CNF, and for the original formula to be satisfiable all con-
stituent clauses must be satisfiable.

The Chaff solver uses a basic solver algorithm. The perfor-
mance of the algorithm is enhanced by using techniques for
adding new deduced clauses. In this section we explain the
basic algorithm and how conflicts are used to generate new
clauses. We also present an example to illustrate how Chaff
works. Chaff specific optimizations which require a larger
problem to demonstrate are discussed at the end of this sec-
tion.

2.1 The basic algorithm:
The basis of Chaff and many modern SAT solvers is the
Davis-Putnam-Logeman-Loveland (DPLL) [12] algorithm.
This algorithm and its derivatives belong to the family of
“complete” solvers that are guaranteed to find an instance
of satisfiability if the problem is satisfiable, or to terminate
once all possible variable assignments have been examined
proving that the problem is unsatisfiable. The algorithm uses
heuristics to assign values to variables speculatively, but in
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an order that is likely to yield a truth assignment quickly if
one exists. The speculative assignment of values to variables
is called a decision. Because decisions are speculative (and
may be undone) and because decisions have deductive impli-
cations, they are maintained as a stack. Each decision has a
unique level in the decision stack with the first level in the de-
cision stack containing variable assignments necessary for the
problem instance to be satisfiable. For example, variables in
clauses composed of a single literal will be added to this level.
Other variables will be added as the algorithm proceeds.

After a new decision, the algorithm searches for unit clauses.
A unit clause is a clause with only one literal (variable or its
complement), without a determined truth value, and having
the remaining literals all set to false. In a unit clause, the last
remaining literal must have the value true for the clause to be
true. When the algorithm encounters a unit clause, it forcibly
set the previously unknown literal to true. When a literal is set
to true because of a unit clause, this is called an implication.
The corresponding variable is assigned the value that makes
the literal true and is pushed onto the current decision level.
Even though an implication is a direct result of the previous
assignment, it is also predicated on all the previous variable
assignments.

In DPLL a variable assignment (i.e. a variable is assigned
a truth value) occurs when a decision is made or a variable
is implied. After each variable assignment, the algorithm in-
spects the clause database in search of unit clauses. This pro-
cess is called Boolean Constant Propagation (BCP).

When a decision is made, resulting implications are added to
the current decision level. More implications might be added
in a cascade because of earlier implications. This process con-
tinues until no more implications are found or contradicting
assignments to the same variable are detected. In the case
when there are no more implication, a new decision is made
and an additional decision level is added. In the latter case, a
conflict happened. A conflict occurs when the implied vari-
able is found to have been previously assigned the opposite
value. When a conflict happens then it should be resolved.
In order to remedy a conflict, a simple approach is to flip the
value of the previous decision and then try again. In case
when a decision has been tried both ways, the first previous
decision which can be flipped is tried. If the algorithm cannot
find a previous decision which was not tried both ways then
the problem is found to be unsatisfiable. This method is slow
and requires trying all

���
combinations of variable assign-

ments when the problem is unsatisfiable, where � is the num-
ber of variables. More sophisticated conflict analysis tech-
niques are presented in the next section. The conflict analysis
points to a level in the decision stack to which the algorithm
can back-jump. Non-chronological back-jumping [40] occurs
if the algorithm jumps by more than one decision level.

Eventually the algorithm terminates under one of two pos-
sible conditions. If the problem is satisfiable, a set of vari-
able assignments which result in all clauses evaluating to true

is found. This termination condition occurs when there are
no more unknown variables to assign. However if the algo-
rithm backtracks completely to the first decision level, there
is a conflict due to deduced variable assignments at this de-
cision level. Since assignments at this level are necessary for
problem satisfiability then the algorithm concludes that the
formula is unsatisfiable.

2.2 Conflict analysis and Learning
A more sophisticated and effective method to do conflict anal-
ysis is Learning. Learning [29, 22, 30] is the augmentation
of the initial formula with additional implicates. The new
clauses indicate search spaces which were found to have no
solution because they result in conflicts. The presence of
these clauses prevents the solver from retrying those parts of
the search tree. Learned clauses represent redundant infor-
mation because they can be deduced from the initial set of
clauses. Thus learned clauses can be discarded without ef-
fecting the satisfiability of the solution.

In DPLL with learning new implicate clauses are deduced due
to a conflict. Conflict analysis is based on implication graphs.
An implication graph is a DAG which expresses the implica-
tion relationships of variable assignments. The vertices of the
implication graph represent assigned variables. The incident
edges on a vertex originate from those variables that triggered
the implication of the represented variable assignment. The
implication graph is not maintained explicitly in memory. In-
stead each implied variable points to the clause that caused its
implication. That is, the clause that has previously become a
unit clause and caused this variable to be implied (i.e. assume
some truth value). This clause is called the antecedent of this
variable. Note that decision variables have no antecedent be-
cause they are not implied. In practice decision variables are
given a fictitious clause. Initial and learned clauses are given
indexes greater than 1, thus we use clause 0 (which does not
exist) in this paper as antecedent for decision variables.

A learned clause is obtained by partitioning the implication
graph into two sides. One partition called the reason side
has decision variables. The other partition which contains the
conflict is called the conflict side. Different learning schemes
are generated from different partitioning methods. However
not all cuts generate clauses which lead to a more efficient
algorithm. A cut must be selected in order to make learning
effective [40] in improving the algorithm’s performance.

The new learned clause is obtained by using the complement
of the variables on the reason side with edges intersecting the
cut. In addition the conflict clauses causes the solver to per-
form a non-chronological backtrack. After backtracking, the
new decision level is the highest decision level among all the
variables in the new learned clause. Chaff [2] uses a method
called FirstUIP. This method is based on finding a dominant
node to the conflict nodes defined as a node where all paths
from the current decision to the conflict pass through. Since
there might be many such nodes, the FirstUIP method uses
the node closest to the conflict. In this case the cut is made
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such that all implications between the dominant point and the
conflict site are on the conflict side. The next section presents
an example to illustrate this method.

2.3 An Example SAT Problem Instance
The SAT formula for this example is shown at the top of Fig-
ure 1. It is made up of nine clauses and 14 variables. We start
with an empty decision stack and with current decision level
set to 0. First since clause 9 is a unit clause then variable

� ��� is
set to true as it must be true for the original problem to be true.
It is put in level 0 because this assignment should hold if the
problem is to be satisfiable. Since there are no implications,
we make a new decision and push another decision level. We
choose (arbitrarily in this example) to set

� ��� to false and add
it to level 1 as a decision variable. Like all other arbitrary de-
cisions in this example, this decision might not be optimal but
it is just used to illustrate how a SAT solver functions. After

� ��� is set to false, clause 8 only has one unknown �
� ��� while

the other literal
� ��� is already assigned the value false. The

assignment of false to
� ��� leads to an implication and �

� ���
is set to true. Because �

� ��� is an implication it is added to
current decision level (level 1). We use this same procedure
until we get to level 6. In this level we decide to set

� ��� to true
making

� ��� the decision variable for level 6. In this case we
have a cascading series of implications that lead to a conflict.
The implication graph in Figure 1 shows how the implications
cascade. The black nodes (

�	��
 ���

�

����

�

���
 � ��� ) represent
previous assignment decisions, whereas the white ones rep-
resent implications at the current decision level. The conflict
as shown in the graph is due to

� � being implied to both true
and false because of clauses 6 and 7 respectively. The Firs-
tUIP node is

��
. It is a node through which all paths from the

decision variable at the current level (
� ��� in the figure) to the

conflict nodes must pass.

The implication graph in the figure shows how zChaff would
make a cut. Other learning algorithms use different cut rules
from zChaff generating different learned clauses for this ex-
ample. The subject of cut determination is an active research
area among competing SAT solvers. The figure also shows
the conflict and reason sides defined by the zChaff cut. All
decisions that have edges intersecting the cut and the im-
plication point (

�	�
shown crosshatched in the figure along

the path from
� ��� to the conflict point) represent the rea-

son for this conflict. Thus, we learn from this conflict that
� ����� � � � �

� � � �
� � � ��

should not all be true simultaneously
making the new learned clause �

� ����� �
� � � � � � � � � �

���
.

We back track to the maximal decision level of all the decision
variables involved in the conflict. This level is 4 which the de-
cision level of �

��
. The new decision stack is also shown in

Figure 1. Note that when using this method the new learned
clause leads to an implication after backtracking involving the
FirstUIP variable. In this implication the FirstUIP node

���
is

set to false.

2.4 Chaff Specific Optimizations
zChaff is an implementation of Chaff by L. Zhang from
Princeton. There is another implementation mChaff [2, 24]
which was independently developed by M. Moskewicz. Both
versions implement the same optimizations which Chaff
makes but differ in the implementation details. Chaff intro-
duces two optimizations to the basic stack-based algorithm: a
more efficient method for BCP and a new heuristic for choos-
ing decision variables.

BCP accounts for a significant percentage (more than 90%) of
execution time for most problems [2]. The goal of BCP is to
find those clauses which result in an implication. An intuitive
way to check for unit clauses is to check all clauses that have
one of their literals set to false by the last variable assign-
ment. Thus a clause composed of n literals will be checked
(n-1) times before it becomes a unit clause. However, a clause
need only be visited when there are two unknown literals left.
To approximate this behavior Chaff marks two literals from
each clause. When one of the marked literals becomes false
because its variable has been assigned a value (i.e. true or
false), then that literal is unmarked. If another literal with
unknown value – that is not marked – from the same clause
exists then it is marked. If no such literal exists then the clause
is unit and the other marked literal is implied to be true. This
technique reduces the number of times a clause is visited be-
fore it becomes a unit clause. Also it reduces the number of
clauses visited after a variable assignment. The overall result
is a more efficient BCP.

For making decisions Chaff uses Variable State Independent
Decaying (VSIDS). In this heuristic each literal (

�
or �

�
) is

assigned a counter that initializes to zero. When a clause is
added to the database all counters for literals occurring in the
clause are incremented. The literal with the highest count is
chosen for assignment. Periodically all counts are divided by
a constant so that more recent clauses have more influence on
the next choice than older clauses. This method is found to
have lower overhead compared to other heuristics.

3 GridSAT: SAT for the Grid

To build a Grid-enabled SAT solver using Chaff as the core
algorithm, we need to address three significant challenges.
GridSAT must

� parallelize the search algorithm that is navigating the
space of possible truth assignments,

� distribute and share the clause database across Grid re-
sources, and

� schedule the GridSAT application components dynam-
ically so that they may take advantage of the best possi-
ble resources at the time and they can be used profitably
by the algorithm.
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Figure 1: Example of conflict analysis with learning and non-chronological backtracking

SAT problems vary in terms of their resource requirements.
Some problems are easy because they can be solved using
one CPU in a short time span. Other problems however are
hard because they require many CPUs and a long time period.
A parallel SAT solver should be able to use the resources ac-
cording to the needs of the problem at hand.

To apply a parallel search technique to SAT, we split the prob-
lem at hand into subproblems (having decision stacks with
different truth assignments), each of which is independently
investigated for satisfiability. Subproblems, themselves, may
be split in the same way, forming a recursive tree, each node
of which is assigned to a logically distinct processor. A sub-
problem represents part of the search space. Clause shar-
ing is facilitated by identifying the important clauses relevant
to each side of a split, and by eliminating clauses from the
database pertaining to each side. Finally, because the prob-
lem is so database intensive, the GridSAT scheduler attempts
to add resources (machines and, more importantly, memory)
only when the current resource set (which starts with one ma-
chine) becomes overloaded. In other words, the goal of the
scheduler is to keep the execution as sequential as possible
and to use parallelism only when it is needed.

3.1 Parallelizing SAT
For GridSAT the split process modifies the current problem
and spawns a new one as shown in Figure 2. The old prob-
lem is modified by making all variables on the second deci-
sion level of the assignment stack part of the first decision
level. The new problem generated consists of a set of vari-
able assignments and a set of clauses. The variables assign-
ments include all assignments from the first decision level and
the complement of the first assignment in the second decision
level. Thus insuring the splitting of the search space.

After splitting, each process (termed client in the GridSAT
parlance) maintains its own separate clause database. In or-
der to alleviate memory usage, inconsequential clauses are

removed. A clause is removed from a client’s database when
it evaluates to true because of the assignments made at level 0
of its decision stack as a result of the split. In the example in
Figure, 2 client A can remove clauses 8 and 9 because �

� ���
and

� ��� are true respectively. Client B can remove clauses
7, 9 and also the newly learned clause because of �

� ��� , � ���
and �

� ��� are true respectively. Because scarcity of memory
is often the limiting factor, we also implemented this pruning
optimization in the sequential version of zChaff that we use
for comparison.

A notable risk in parallelizing a SAT solver comes from the
possibility of excess overhead introduced by parallel execu-
tion. In particular, because the duration of execution time that
will be spent to solve a subproblem cannot be predicted easily
beforehand, it is possible for subproblems to be investigated
in such a short amount of time that the overhead associated
with spawning them cannot be amortized. As a result a solver
spends more time communicating the necessary subproblem
descriptions, thinning the database, and collecting the results
than it does actually investigating assignment values. Even
though the solver is advancing, the execution time will be
slower than if it were executed sequentially. This problem
is occasionally referred to as the “ping-pong” effect [20].

3.2 Sharing and Distributing The Clause Database
Learned clauses from a client when shared with other clients
can help prune a part of their search space. On the other hand,
sharing clauses limits the kind of simplifications that can be
made. For example, variables with known assignments (i.e.
in first decision level) can be removed. However, removing
them might make learned clauses only valid for the current
client.

When new learned clauses are received from other clients,
they are merged with the local clause database. These clauses
will only be merged after the algorithm has backtracked to
the first decision level. This simplification allows for a more
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Figure 2: Example of stack transformation when a problem is split into two clients

straight forward implementation. It also insures that clauses
are merged in batches. A learned clause can result in one of
four cases:

� If the clause has only one unknown literal then it results
in an implication.

� If the clause has more than one unknown literal then the
clause is simply added to the set of learned clauses.

� If the clause has all literals false then there is a conflict
and the subproblem is unsatisfiable.

� If the clause evaluates to true then the clause is dis-
carded since it does not prune any part of the search
space.

As described in [32], the exact effect of sharing clauses is
not yet known. In addition, when a large number of clients
are sharing even a small number of clauses the total commu-
nication overhead becomes significant. Therefore GridSAT
clients only share “short” clauses in order to minimize com-
munication cost. Also short clauses are expected to have a
higher impact on pruning the search space and are more prob-
able to generate implications. In fact the pruning effect of a
clause is inversely proportional to its size (i.e. number of its
literals). While we do not yet have a way of determining the
length of the clauses to share automatically, GridSAT takes
the maximum clause length as a parameter. As described in
Section 4, the lengths we use in this investigation are 10 and
3.

3.3 GridSAT Scheduler Design and Application Imple-
mentation
GridSAT uses a master-client programming model. The ex-
ecution starts at the master. The master is responsible for
reading the problem file and generating the final output re-
sults. Only clients, but not the master, are assigned part of the
search space to investigate. The master assumes three main
functions:

� Resource Manager: Selects and monitors the set of
available resources. Such information is culled from

the Grid information system (e.g. Globus MDS [11],
the NWS [37, 33, 38], etc.).

� Client Manager: Monitors the state of each client. It
also allows more clients to join at runtime. These
clients can be a result of a batch job reaching the head
of its queue or other additional resources becoming
available.

� Scheduler: maps a given subproblem to the processor it
deems best to add to the application’s resource pool.

After initialization the master queries for the list of available
resources and launches an empty client on each resource. If
a resource is a batch controlled system, it simply submits a
job request. When a clients starts successfully it contacts the
master and registers with it. The master ranks the set of regis-
tered clients based on the resources they are running on. The
rank of a computational resource is defined according to its
processing power and memory capacity as forecast by the
Network Weather Service [34, 37]. GridSAT uses static in-
formation and application instrumentation to determine these
performance measures when it is not configured to use NWS
or Globus MDS information. In this case each client queries
the system for the size of free memory and will only use up to
60% of it. This strategy is implemented to avoid running the
system of of memory even when other less memory intensive
applications are later launched by other users. In this manner
the application evades being killed by some Operating Sys-
tems1. On some systems, it is only possible to query for the
size of total memory and not the size of free memory. In this
case the maximum memory a client can use is provided as an
argument. GridSAT clients will terminate if the initial free
memory size is below a given minimum (currently set to 128
MBytes). Clients which run on low memory resources are
less likely to solve a given subproblem. In addition, they will
experience memory shortages quickly and will tend to split
more frequently causing a lot of communication overhead.

When a client starts it does not have a problem to solve so
we call it “idle”. GridSAT uses a limited form of recovery.

1Linux kernel implements a memory-shortfall policy that is more likely
to kill a large-memory job when the machine runs out of memory.
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When an idle client is killed for any reason, the master be-
comes aware of it and marks the resource as “free”. In case
the master needs more resources, it tries to restart clients on
free resources.

The first client to register with the master is sent the entire
problem to solve. Each client monitors its own memory and
CPU usage and when it predicts that its resources are about
to be exhausted it notifies the master. Thus, the decision to
add a resource is made locally by a client that has over-run its
resource limits and not by a central scheduler. Upon receipt
of a notification from a client that a problem split is required,
the master searches within the resource pool for the highest
ranked idle resource.

Once a resource is selected, an empty client is initiated on
the machine if needed. The client running on the selected
resource then contacts the original client requesting a split
and communicates with it directly to divide the problem and
obtain relevant shared clauses with which to initially populate
its database. Clients can communicate through the master.
However the use of direct client-to-client communication is
more efficient especially for the messages sent during split
which are very large (up to 100s of MBytes in size).

A client decides to split its problem when it “believes” it will
soon run out of memory, or when it deems the problem it
is working on solving big enough to warrant splitting. The
former decision, as previously discussed, is based on avail-
able machine memory. If a memory shortfall is predicted (be-
cause the memory loads have changed or the clause database
is growing) the client requests a split. Determining the “dif-
ficulty” of a particular subproblem, however, is challenging
since it is problem specific. In the current version of Grid-
SAT, the client uses a simple time out heuristic based on the
notion that a subproblem having run for a “long” time is a
subproblem that probably benefit from added resource.

A client records the time it required to send or receive a prob-
lem. When twice this time period expires, the client requests
more resource from the master to help solve the current sub-
problem on the assumption that a long running problem will
continue to be a long running problem. This time out period
is used to offset communication cost so that clients are not
busy splitting a problem instead of doing useful work. This
cost becomes more significant because of the large number
of possible clients and communication overhead. An easy
subproblem is better handled by one machine. The harder
it becomes (represented in GridSAT by the length of time it
runs) the more resources are needed. Generated subproblems
(i.e. assignment stack and clauses) are large and require a
significant period of time to send over a wide area network.
Thus, the scheduler must attempt to balance the benefit of ex-
tra processing power against the expense of communicating
the necessary state.

An example communication scenario is shown is Figure 3.
The figure shows the communication messages involved in

splitting the subproblem assigned to client A. The figure
shows five messages. In (1) client A notifies the master that it
wishes to split its subproblem. The master replies by message
(2) indicating which of client A’s peers, client B in this case,
is available to split the problem with client A. At this stage
client A communicates directly with client B using message
(3) which contains the new subproblem. Using Peer-to-peer
communication to send this message enhances the overall per-
formance since this is by far the largest message sent. This
message varies in size from 10 KBytes to 500 MBytes, but
is 100s of MBytes in size on average. Using messages (4)
and (5) clients B and A respectively notify the master of the
success or failure of their communications.

3.4 Work Backlog
For some long running instances all available resources might
become busy. At the same time, clients may request the mas-
ter to split their subproblems. The master records these re-
quests and keeps backlog so that at a later time when a a re-
source becomes idle, the master can choose a client that has
requested a split, and allow that split to proceed. The mas-
ter splits clients which have been running the longest on the
same subproblem. This strategy gives more resources to those
parts of the search space that take the longest. In addition, the
master can direct a client to migrate the current problem in-
stead of splitting it. This migration is useful when a problem
is migrated from a single remote resource to a set of well-
connected more powerful idle nodes. For example jobs from
a single machine are migrated to a cluster of machines when
the cluster becomes free. Because clients communicate as
peers when a split occurs, moving a “hard” subproblem from
a single remote resource to a field of idle resources allows the
master to select machines that are near the splitting client. Af-
ter migration the scheduler can direct the client to split with
near-by clients leading to more efficient use of the available
bandwidth resource.

Finally, the master terminates in one of three cases:

� All the clients are idle which means that the instance is
unsatisfiable.

� one of the clients finds a satisfiable solution. This client
sends the assignment stack to the master which verifies
that the stack satisfies the problem. This procedure is
accomplished in order of the size of the problem.

� An error occurs when the master times out or a client
runs out of memory and is killed by the operating sys-
tem.

For a fair comparison between the performance of GridSAT
and zChaff we assume that there are no resource failures dur-
ing the experiments. As mentioned earlier, GridSAT imple-
ments a limited form of resilience in the presence of failures.
The current implementation, however, will not tolerate a ma-
chine crash or a Linux “out-of-memory killer” process termi-
nation for clients which are working on a subproblem.
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Figure 3: Communication scenario of splitting the subproblem assigned to client A with client B

In future versions of GridSAT, we will provide a better way
for the program to continue in the presence of resource failure.
We can use two types of checkpoints:

� Light checkpoint: Only checkpoint level 0 for each
client. In this case checkpoints for a client will be up-
dated only when more variables are added to decision
level 0.

� Heavy checkpoint: In addition to the light checkpoint,
we add all newly learned clauses. It is also possible
to save the top levels of the decision stack in order to
reconstruct the exact decision levels after restart. This
type of checkpoints can be at regular time intervals in
addition to the instances when level 0 is augmented.

In both cases, the initial set of clauses are obtained from the
problem file. The light checkpoint is necessary to record
progress but does not require a lot of disk space. However
check-pointing learned clauses requires a lot space (about .5
Gigabytes per client). The heavy checkpoint method would
require a system capable of handling large checkpoints. We
have implemented an experimental prototype of GridSAT
which supports a comprehensive form of check-pointing and
fault-tolerance which we have not analyzed yet. We will re-
port on this in the future.

4 Experimental Apparatus and Results

To investigate the efficacy of GridSAT, we combine resources
from the GrADS [3] testbed grid with additional UCSB
machines and (possibly) nodes culled from the IBM Blue
Horizon [7] located at the San Diego Supercomputer Cen-
ter (SDSC). The Grid Application Development Software
(GrADS) project [3, 17] is a comprehensive research effort
studying Grid programming tools and application develop-
ment. To facilitate experimental application research and test-
ing, the project maintains a nationally distributed grid of re-
sources for use as a production testbed. The baseline Grid
infrastructure is provided by Globus and the NWS, upon

which is layered a set of programming abstractions collec-
tively termed GrADSoft. GrADSAT [9] (note the “A” in the
spelling) is an early prototype SAT solver we developed us-
ing GrADSoft tools. In this work we extend GrADSAT to
use other resources (such as non-GrADS machines at UCSB
and the IBM Blue Horizon) that do not currently benefit from
these sophisticated Grid programming tools. GridSAT com-
ponents (i.e. master and client) use the EveryWare [35, 36]
messaging system for communication.

During our experiments, none of the resources we used were
dedicated to our use. The GrADS testbed, the UCSB ma-
chines, and the Blue Horizon were all in continuous use by
various researchers and application scientists at the time of
the experiment. As such, other applications shared the com-
putational resources with our application. It is, in fact, dif-
ficult to determine the degree of sharing that might have oc-
curred across all of the available machines. We consider this
to be a realistic scenario for Computational Grid computing,
but it makes repeatable timings of similar problems (particu-
larly those that run for long periods) difficult. In particular,
the Blue Horizon is a batch controlled system where a user
presents a request for a number of nodes and a maximum du-
ration. After waiting in the job queue, the user’s job runs with
exclusive access to the nodes during execution, but the queue
wait time incurred before execution begins is highly variable.
However, the effect of resource contention is almost assuredly
a performance-retarding one. Thus, if it were possible to ded-
icate all of the GrADS resources to GridSAT, we believe that
the results would be better. As they are, they represent what is
currently possible using non-dedicated Grids in a real-world
compute setting.

As a set of test applications, we chose a suite of challenge
problems used to judge the performance of automatic SAT
solvers at the SAT2002 conference [26]. These benchmarks
are used to rate all competing solvers. They include indus-
trial and hand-made or randomly generated problem instances
that can be roughly divided into two categories: solvable and
challenging [27]. The solvable category contains problem
instances that SAT solvers have been known to solve cor-
rectly. They are useful for comparing the speed of compet-
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itive solvers since it is likely that each solver in the competi-
tion will be able to generate an answer when the competition
is held. Alternatively, the challenging problem suite contains
problem instances that have yet to be solved by an automatic
method or which have only been solved by one or two au-
tomatic methods, but are nonetheless interesting to the SAT
community. Of these problems, many have solutions that are
known through analytical methods, but several are open ques-
tions in the field of satisfiability research.

We selected examples from both categories in order to have
the widest possible instance variety and so as not to bias our
results unduly in favor of “easy” problems. The total number
of instances we investigate is 42 divided as composed

� 22 instances from the solvable industrial benchmark
category,

� 15 instances from the solvable hand-made/random
benchmark category,

� 11 instances from the challenging benchmark category,

In the first set of experiments, we used 34 machines from
the GrADS testbed and an additional machine (that we could
completely instrument) as a master node. The machines were
distributed among three sites: two clusters (separated by cam-
pus networking) at the University of TN, Knoxville (UTK),
two clusters at the University of Illinois, Urbana-Champaign
(UIUC) and 8 desktop machines at the University of San
Diego (UCSD). The master node was also at UCSD. The
machines had varying hardware and software configurations,
with one of the UTK clusters having the best hardware con-
figuration. For each zChaff (single machine) test we used a
dedicated node from this cluster.

In these experiments the maximum size of learned clauses
shared is 10. Learned clauses bigger than 10 are not shared.
This size allows for sharing of important clauses which would
have maximal effect without increasing significantly the over-
head of clause sharing. Also the time out for clients to request
that their problems be partitioned is set to 100 seconds. For
the solvable problems we set an overall maximum execution
time out to a total of 6000 seconds for GridSAT. That is, if
the entire problem is not solved in 6000 seconds, the applica-
tion gives up and terminates without a definitive answer. For
the challenging benchmarks, we double the overall time out
to 12000 seconds.

In all of the experiments, we compare GridSAT to zChaff run-
ning in dedicated mode on the fastest processor to which we
have access with an 18000 second total time out. However, in
an effort to complete this submission, we noted that for all of
the cases where zChaff terminated, less than 12000 seconds
were used. We then chose 12000 seconds for the challeng-
ing set. Note that in the actual 2002 competition, using faster
machines than the fastest we had available, zChaff was only
able to complete a few instances from this set using a six-hour

(21600 second) time out. Thus we believe that the compari-
son between the two using the machines in the GrADS testbed
offer useful insight into the additional capability provided by
GridSAT.

In the second set of experiments we used 27 machines an ad-
ditional machine as a master node, and nodes from the IBM
Blue Horizon (once they became available). The machines
are distributed among three sites: one cluster of 16 nodes at
UIUC, 3 desktop machines at UCSD and 8 desktop machines
at the University of California, Santa Barbara (UCSB). Only
the UIUC and UCSD machines are part of the GrADS testbed.
The machines had a variety of hardware and software config-
urations.

In these experiments the maximum size of learned clauses
shared is 3. During these experiments we started immediately
running on the set of machines described previously. We also
submitted a request to the Blue Horizon scheduler for 100
node job lasting twelve hours. Each Blue Horizon node had
8 CPUs per node and 4 gigabytes of memory per node. The
wait period for such a job on the average is about 33 hours.
If a problem was not solved by the end of the 12-hour Blue
Horizon job, the whole GridSAT run terminated. If the prob-
lem was solved before the batch job ran then GridSAT will
terminate and the job queued from the Blue Horizon is can-
celed.

4.1 Results
We compare the solvers by comparing the time it takes to
solve a SAT problem. Since performance is important we
disabled the instrumentations in the application. Therefore
this section does not contain resource performance metrics as
instrumentation influences performance negatively. In [35],
it mentions that instrumentation reduces performance by as
much as 50%.

The first set of results are presented in Table 1. The second
column contains the solution to the instance: satisfiable(SAT),
unsatisfiable(UNSAT), or unknown. We have marked those
problem instances that were previously open satisfiability
problems with an asterisk (*). If a problem was originally
unknown and was later solved by a solver, then we still keep
it marked with an asterisk for completeness. The last column
shows the maximum number of active clients during the ex-
ecution of an instance. For all instances this number starts at
one and varies during the run. The maximum it could reach
is 34, the number of hosts in the testbed, but the scheduler
may choose to use only a subset. This column records the
maximum that the scheduler chose during each particular run.
When a problem is solved the number of active clients col-
lapses to zero. Speedup is measured as the ratio of the fastest
sequential execution time of zChaff (on the fastest, dedicated
machine) to the time recorded by GridSAT.

The problem instances in Table 1 are split into three cate-
gories. The first section represents the set of instances which
were solved by both zChaff and GridSAT (taken from both the
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solvable and challenging categories of the SAT2002 bench-
mark suite since zChaff was able to solve some of the lat-
ter). On the small instances (ones that complete in less than
300 seconds) where communication costs are significant we
notice that zChaff running on a single machine outperforms
GridSAT. The slowdown however is not very significant be-
cause the actual time is short. For instances with long running
times GridSAT shows a wide range of speed-ups ranging from
almost none to almost 20 for dp12s12. Because GridSAT was
using more machines it was capable of covering much more
of the search space even when the run times were compara-
ble. In only one relatively long running instance, grid 10 20,
did GridSAT show a slowdown. The maximum number of
active clients for the entire problem only reached a maximum
of twelve during its execution. With this little sharing, paral-
lelism did not seem to improve performance. This particular
problem comes from a non-realizable circuit design illustrat-
ing the data-dependent nature of SAT solver performance re-
sults.

The second category of problems represent those that Grid-
SAT was able to solve while zChaff either timed-out or ran
out of memory. In addition, only three out of the ten prob-
lems in this category were solved by another solver during the
SAT2002 competition [28]. Note that zChaff was crowned
the overall winner because of its cumulative performance
across benchmarks. Individual instances may have been bet-
ter solved by particular solvers, but because the competition
attempts to identify the best general method, aggregate time
is used, and zChaff is the best on aggregate.

The rest of the seven instances in this second category have
only been solved by GridSAT to the best of our knowledge.
Three of the solved instances were part of the challenging
benchmark for which results were originally unknown con-
stituting new domain science in the field of satisfiability. The
other four had known analytical answers, but no automatic
generalized solver had been able to correctly generate them
indicating the additional solution power that a Grid imple-
mentation brings to the field.

The final set of input files represent the SAT problems which
were not solved by either GridSAT nor zChaff. In the second
set of experiments shown in Table 2 we removed the slower,
less-well provisioned machines (250 MHz Pentium IIs with
128 megabytes of memory each at UIUC) from considera-
tion and added the possibility of running on the IBM Blue
Horizon. At the time of application initiation, a batch job re-
questing 100 nodes from the Blue Horizon was submitted. If
and when the nodes were allocated, the clients running there
would contact the application master and request work. Until
that time, however, the application would run using the nodes
available to it from the GrADS testbed and UCSB thereby
covering the start-up latency (approximately 33 hours on av-
erage) associated with the Blue Horizon.

Because we avoided allocating work to slower resources,
both instances rand-net70-25-5.cnf and glassybp-v399-

s499089820.cnf were solved before the Blue Horizon job
started causing GridSAT to cancel the job request. The par32-
1-c.cnf problem ran for 33 hours on the GrADS testbed and
UCSB machines before the Blue Horizon nodes were allo-
cated and an additional 8 hours on the Blue Horizon before
GridSAT solved it. To determine the Blue Horizon savings
that the interactive grid resources bring, we re-launched the
application on the Blue Horizon alone. After waiting again
for approximately 33 hours in queue, the 300 Blue Horizon
processors solved the problem instance in approximately 12
hours. Thus, the non-dedicated, nationally distributed Grid
time saved approximately
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processor hours of Blue Horizon time
while shortening the time to solution by 4 hours.

4.2 Discussion
The results show that the parallel solver is more efficient than
a sequential one. This may be explained as the combination
of the following reasons:

� More resources – specifically CPUs – can cover more
of the search space during the same time than a single
CPU would be able to.

� The splitting process and removal of inconsequential
clauses results in smaller subproblems.

� As the algorithm progresses, a lot of memory is de-
voted to storing antecedent clauses. Once a clause be-
comes an antecedent it is only used for backtracking.
It is the clauses which can lead to new implications
that are valuable to the current search step. A sequen-
tial solver cannot delete antecedent clauses and might
have no memory space to store new clauses. This mem-
ory shortage causes new learned clauses to be deleted
shortly as their space is used to store more recently
learned clauses. The result is a degradation of the al-
gorithms performance. In a parallel solver a client that
runs into this problem might be relieved when it splits.
This happens because unnecessary clauses will be dis-
carded and therefore more memory will be available.

5 Related Work:

This paper covers both parallel SAT solvers and master-client
applications in a Grid environment. We discuss related work
in both of these areas.

There are several parallel solvers. PSATO [39] is based on the
sequential solver PSATO. PSATO is concentrated on solving
3-SAT and open quasi-group problems. An other solver is
Parallel SATZ [20] which is the parallel implementation of
SATZ [23]. Unlike GridSAT, both solvers only use a set of
workstations connected by a fast local area network. This
setup results in low communication overhead. PSATO and
Parallel Satz do not include clause exchange. PaSAT [32] im-
plements a different algorithm for clause sharing. In addition,
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File name SAT/UNSAT/ zChaff GridSAT Speed-Up Max # of
UNKNOWN (sec) (sec) clients

Problem solved by zChaff and GridSAT

6pipe.cnf UNSAT 6322 4877 1.23 34
avg-checker-5-34.cnf UNSAT 1222 1107 1.10 9
bart15.cnf SAT 5507 673 8.18 34
cache 05.cnf SAT 1730 1565 1.11 34
cnt09.cnf SAT 3651 1610 2.27 12
dp12s12.cnf SAT 10587 532 19.90 8
homer11.cnf UNSAT 2545 1794 1.42 10
homer12.cnf UNSAT 14250 4400 3.24 33
ip38.cnf UNSAT 4794 1278 3.75 11
rand net50-60-5.cnf UNSAT 16242 1725 9.42 20
vda gr rcs w8.cnf SAT 1427 681 2.10 15
w08 14.cnf SAT 14449 1906 7.58 34
w10 75.cnf SAT 506 252 2.01 2
Urquhart-s3-b1.cnf UNSAT 529 526 1.01 4
ezfact48 5.cnf UNSAT 127 196 0.65 1
glassy-sat-sel N210 n.cnf SAT 7 68 0.10 1
grid 10 20.cnf UNSAT 967 3165 0.31 12
hanoi5.cnf SAT 2961 1852 1.60 33
hanoi6 fast.cnf SAT 1116 831 1.34 4
lisa20 1 a.cnf SAT 181 243 0.75 2
lisa21 3 a.cnf SAT 1792 337 5.32 4
pyhala-braun-sat-30-4-02.cnf SAT 18 84 0.21 1
qg2-8.cnf SAT 180 224 0.80 2

Problems solved by GridSAT only

7pipe bug.cnf SAT TIME OUT 5058 – 34
dp10u09.cnf UNSAT TIME OUT 2566 – 26
rand net40-60-10.cnf UNSAT TIME OUT 1690 – 30
f2clk 40.cnf UNSAT(*) TIME OUT 3304 – 23
Mat26.cnf UNSAT MEM OUT 1886 – 21
7pipe.cnf UNSAT MEM OUT 6673 – 34
comb2.cnf UNSAT(*) MEM OUT 9951 – 34
pyhala-braun-unsat-40-4-01.cnf UNSAT MEM OUT 2425 – 34
pyhala-braun-unsat-40-4-02.cnf UNSAT MEM OUT 2564 – 34
w08 15.cnf SAT(*) MEM OUT 3141 – 34

Remaining problems
comb1.cnf * TIME OUT TIME OUT – 34
par32-1-c.cnf SAT TIME OUT TIME OUT – 34
rand net70-25-5.cnf UNSAT TIME OUT TIME OUT – 34
sha1.cnf SAT TIME OUT TIME OUT – 34
3bitadd 31.cnf UNSAT TIME OUT TIME OUT – 34
cnt10.cnf SAT TIME OUT TIME OUT – 34
glassybp-v399-s499089820.cnf SAT TIME OUT TIME OUT – 34
hgen3-v300-s1766565160.cnf * TIME OUT TIME OUT – 34
hanoi6.cnf SAT TIME OUT TIME OUT – 34

(*): problem solution is unknown

Table 1: GridSAT and zChaff SAT2002 Benchmark Results on GrADS testbed
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File name SAT/UNSAT/UNKOWN GridSAT(sec)

comb1.cnf * X
par32-1-c.cnf SAT 33hrs+(8hrs on BH)
rand-net70-25-5.cnf UNSAT 30837
sha1.cnf SAT X
3bitadd-31.cnf UNSAT X
cnt10.cnf SAT X
glassybp-v399-s499089820.cnf SAT 5472
hgen3-v300-s1766565160.cnf * X
hanoi.cnf SAT X

(*): problem solution is unknown

Table 2: GridSAT results using testbed and Blue Horizon on the harder problems. All these problems were not solved by zChaff or any
other solver before.

PaSAT uses a global lemma(clause) store whereas GridSAT
shares clauses globally as soon as they are generated.

A different approach is presented by NAGSAT [13]. Instead
of search space partitioning, NAGSAT uses nagging to enable
asynchronous parallel searching. Nagging uses a master node
which proceeds as a complete sequential solver. The clients
or naggers request a search subtree and apply a problem trans-
formation function. The master incorporates any valuable in-
formation returned by the clients. The solver is only applied
to a set of randomly generated 3-SAT instances.

A parallel scheme based on a multiprocessor implementation
is presented in [41]. The configurable processor core was
augmented with new instructions to enhance performance.
Data parallelism is used to speed-up execution of common
functions in the DPLL algorithm. Unlike GridSAT, this ap-
proach relies on specific hardware.

In the area of Grid Computing there has been a great deal of
research into the scheduling of master-slave applications [4,
8, 1, 15]. NetSolve [8] is dedicated to providing support for
access to scientific libraries remotely. Nimrod-G [1] is tar-
geted to the exploration of range of parameters for scientific
applications. These master-client systems use a predefined
number of clients with an established set of resources. This is
not the case for GridSAT where the number of clients changes
depending on the problem and uses any clients available. The
satisfiability problem is different from most existing applica-
tions because it does not have a predictable runtime or re-
source needs .

6 Conclusion

The paper presents a new application which would benefit
when run in a Grid environment. This application is a SAT
solver. We implement – GridSAT – a satisfiability solver
which runs on a set of widely distributed commodity com-
putational resources. The distributed solver dynamically ac-
quires and releases computational nodes. In addition, new

clients can join dynamically. The solver is adaptive to the
problem’s resource needs. Easy problems which take shorter
time to solve use a small number of resources. Other harder
instances which take longer to solve use more resources.

The experimental results show that a variable amount of
speed-up is obtained compared to a highly optimized sequen-
tial solver over a wide range of instances. The more signifi-
cant result was that GridSAT solved harder instances. Some
of these instances were not solved before. We conclude that
the use of dynamic resource acquisition and release coupled
with an effective, first-principles Grid implementation yields
a faster time to solution on problems that have known solu-
tions, and will continue to generate new satisfiability results
for academic and industrial researchers.
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