
Enabling Personal Clusters on Demand for Batch Resources Using
Commodity Software

Yang-Suk Kee, Carl Kesselman
Information Sciences Institute, University of Southern California

{yskee,carl}@isi.edu
Daniel Nurmi, Rich Wolski

University of California, Santa Barbara
{dan,rich}@cs.ucsb.edu

Abstract

Providing QoS (Quality of Service) in batch resources
against the uncertainty of resource availability due to
the space-sharing nature of scheduling policies is a
critical capability required for high-performance
computing. This paper introduces a technique called
personal cluster which reserves a partition of batch
resources on user’s demand in a best-effort manner. A
personal cluster provides a private cluster dedicated to
the user during a user-specified time period by
installing a user-level resource manager on the
resource partition. This technique not only enables
cost-effective resource utilization and efficient task
management but also provides the user a uniform
interface to heterogeneous resources regardless of
local resource management software. A prototype
implementation using a PBS batch resource manager
and Globus Toolkits based on Web Services shows that
the overhead of instantiating a personal cluster of
medium size is small, which is just about 1 minute for a
personal cluster having 32 processors.

1. Introduction

Best-effort batch queuing is the most popular
resource management paradigm used for high
performance and Grid computing. Most clusters in
production today employ a variety of batch scheduling
software such as PBS (Portable Batch System) [1],
Condor [2], LSF (Load Sharing Facility) [3], and so on
for efficient resource management and a space-sharing
resource management policy for QoS (Quality of
Service). The major goal of this resource management

paradigm is to achieve high throughput across a cluster
system and maximize the system utilization.

By contrast, the common interest of the users who
use these systems is to achieve the best performance of
their applications in a cost-effective way. However,
these systems are unlikely to optimize the turnaround
time of a single application especially consisting of
multiple tasks against the fair sharing of resources
between jobs. For instance, other applications’ jobs
can intervene between the jobs of the application being
submitted to batch queues, which makes the final
execution time of the application unpredictable. We
understand that batch systems with user-level advance
reservation [4] can be a promising alternative to secure
performance and being actively studied in the high-
performance computing community. However, user-
level advance reservation is still neither popular nor
cheap in general because it adversely affects the
fairness and the efficient resource utilization.

Therefore, we need to lessen conflicts of interest
between end users and resource providers. Especially,
this paper discusses about QoS and cost-effectiveness
in resource allocation. We introduce a technique called
personal cluster (PC) which enables private dedicated
clusters on demand for best-effort batch resources. We
call a partition of batch resources allocated for an
application and managed by its own resource manager
as personal cluster. Personal cluster makes the
resources available for the application’s lifetime by
automatically installing a placeholder instead of actual
jobs. Residing on the allocated resources, the
placeholder provides a uniform interface to resources
and task management services regardless of local
resource management software. Specifically, three
major benefits from personal clusters include:

• Cost-effective resource allocation: since a
personal cluster acquires batch resources via
default best-effort schedulers of resource
providers and releases them immediately to the
host cluster at termination, it requires neither any
modifications of local schedulers nor extra cost for
reservation.

• Efficient task/resource management: a personal
cluster provides an exclusive access to a partition
of resources and enables efficient task/resource
management via commodity software.

• Uniform interfaces to heterogeneous resources:
a personal cluster can provide a uniform
job/resource management environment over
heterogeneous resources (e.g., PBS interfaces in
our prototype system) regardless of system-level
resource management paradigms.

This paper is organized as follows. Firstly, we
discuss the high-level idea of personal cluster and its
implementation using a PBS installation and Globus
Toolkits in Section 2. Then, we analyze the overhead
of installing personal clusters on a cluster system in
Section 3. We discuss other related studies in Section 4
and finally conclude in Section 5.

2. Personal Cluster

A personal cluster is a private cluster instantiated on

demand from batch resources, which gives an illusion
to the user as if the instant cluster is dedicated to the
user for a certain time period. Personal cluster enables
the uniform, cost-effective resource use for batch
resources in a simple manner.

Firstly, personal clusters enable efficient job and
resource management for best-effort batch resources.
Under best-effort resource environment, the tasks
submitted for an application have to compete for
resources with other applications. For instance, a
common use pattern of the users who conduct
parameter studies with best-effort batch resources is to
submit a series of jobs into the queues, anticipating
short turnaround time. However, the jobs can be
interrupted by other applications’ tasks because any
job can be presented to the system while the series of
jobs are being submitted. If an application is
interrupted by a long-running job, the overall
turnaround time of the application can be delayed
significantly. In order to prevent the performance
degradation due to such interruptions, the user can
cluster the tasks together and submit a single script that
runs the actual tasks when the script is executed.
However, this clustering technique cannot be benefited
by the common capabilities for efficient scheduling

such as backfilling provided by resource management
systems.

By contrast, a personal cluster holds resources for
the application lifetime on the behalf of the application
and provides an execution environment similar to the
host cluster. In other words, a resource manager is
installed as a placeholder on the allocated resources
and plays as a gateway, taking care of resource-
specific access mechanisms as well as task launching
and scheduling. In consequence, the users can have a
dedicated cluster under the control of a private
resource manager. However, it is redundant and
unnecessary to implement a new job/resource manager
for this purpose. As an alternative, we utilize
commodity tools for job and resource management.
The commodity tools provide a vehicle for efficient
resource management and make the application
development simple.

In the sense that a resource partition is dedicated for
the application, a promising solution is to have batch
scheduler support user-level advance reservation.
However, user-level advance reservation is not
common yet and it can be cost-ineffective because the
users have to pay for the entire reservation period
regardless of whether they use the resources or not.
Furthermore, the resource provider may charge more
on the users for reservation since reservation can be
adverse to efficient resource utilization of the entire
system and the fairness between jobs. By contrast,
personal clusters can have the same benefits without
the host cluster having any special scheduler as the
batch systems with advance reservation. Personal
clusters do not cause any surcharge for reservation
since the resources are allocated in a best-effort
manner. Moreover, they can terminate at any time
without any penalty because the allocated resources
will be returned to the host cluster immediately at
termination.

To execute a job on batch resources, the users have
to write a job submission script. If the users want to
run their applications on heterogeneous resources such
as TeraGrid [5], they have to write multiple job
descriptions for each resource management software.
Personal clusters lessen this kind of burdens from the
users by providing a uniform runtime environment
regardless of local resource management software.
That is, the commodity batch scheduler installed for
the allocated resources makes the execution
environment homogeneous and consistent bypassing
the system-level resource managers. For instance, we
use a PBS job manager as a placeholder in our
prototype system. As such, the users only need to write
a PBS script regardless of the kinds of the system-level
job managers (e.g., LSF, Condor, PBS, SGE).

2.1 Implementation

We have implemented personal clusters for best-

effort batch systems, using WS-based Globus Toolkits
[6] and a PBS installation. We assume a conservative
cluster configuration where a remote user can access
the cluster via public gateway machines while the
individual nodes behind the PBS system are private
and the accesses to the allocated resources are allowed
only during the time period of resource allocation.
Then, the batch scheduler allocates a resource partition
and launches placeholders on the resources via remote
launching tools such as rsh, ssh, pbsdsh, mpiexec, etc,
depending on the administrative preference.

A client component called PC factory instantiates
personal clusters on the behalf of users, submitting
requests to the system-level batch schedulers,
monitoring the progress status, and installing software
components. In essence, the actual job the factory
submits sets up a private, temporary version of PBS on
a per application basis. This user-level PBS installation
has access to the resources and accepts actual jobs
from the user. As foundation software, we use the most
recent open source Torque package [7] and made
several source level modifications to enable a user-
level execution. We can use any resource managers
that can run at the user-level.

Figure 1 illustrates how to configure a personal
cluster using user-level PBS and WS-GRAM service
when the resources are under the control of a batch
system and Globus Toolkits based on Web Services

provide the access mechanisms. We preinstalled a
user-level GRAM server and a user-level PBS on the
cluster and configured the user-level GRAM-PBS
adaptor to communicate with the user-level PBS. The
coordinator first launches a kick-start script to identify
allocated hosts and then invokes a bootstrap script for
configuring PBS daemons on each node. The kick-start
script assigns an ID for each node, not each processor,
and identifies the number of processors allocated for
each node. For batch resources, the system batch
scheduler will launch this kick-start script on the
resources via a system-level GRAM adaptor (e.g.,
GRAM-PBS, GRAM-LSF). Once the kick-start script
has started successfully, the system resource manager
retreats and the factory has control of the allocated
resources. At last, the bootstrap script configures a
user-level PBS for the resources on a per-node basis.
The node with the ID 0 hosts a PBS server (i.e.,
pbs_server) and a PBS scheduler (i.e., pbs_sched)
while the others do the PBS workers (i.e., pbs_mom).
The bootstrap script creates default directories for log,
configuration files, and so on; generates a file for the
communication with the personal GRAM-PBS adaptor
(i.e., globus-pbs.conf), configures queue management
options; and starts the daemon executables, based on
its role. Finally, the factory starts a personal WS-
GRAM server via the system-level GRAM-FORK
adaptor on a gateway node of the resources.

Host Cluster

User PBS
worker
daemon

User PBS
worker
daemon

User PBS
server/worker

daemons

Compute
nodeSystem

 G
R

A
M

B
atch Q

ueue

U
ser G

R
A

M

1

6

5

9

get

done

run

done

allocate2
3

7 submit
8 schedule

kick start &
bootstrap

A
pplication E

xecution
PC

 Instantiation

4 start

Personal Cluster

Figure 1. Instantiating a personal cluster using a user-level PBS installation and a WS-GRAM container

Once a user-level PBS and GRAM are in service,
the user can bypass the system-level resource
management and utilize the resources as if a dedicated
cluster is available. Now a personal cluster is ready
and the user can submit multiple jobs via this private,

temporary WS-GRAM service using the standard WS-
GRAM schema or directly submit them to the private
PBS, leveraging a variety of PBS features for
managing the allocation of jobs to resources.

3. Evaluation

We estimate the overhead of installing personal

clusters by measuring the set up time of user-level PBS
and WS-GRAM service on a host cluster that consists
of 16 compute nodes with 3.2 GHz dual Xeon
processors. Each node is connected to a 1.0 Gigabit
Ethernet network and the users’ home directories are
mounted via NFS. Globus Toolkits 4.0.1 and an
OpenPBS 1.2.0 are installed for system-level resource
management while Globus Toolkits 4.0.3 and a Torque
2.1.2 package including a PBS installation are used for
personal clusters.

The overhead of personal clusters based on Globus
and PBS consists of 5 major factors: O_GRAM,
O_PBS, O_GT4, O_OS, and O_NTF. O_GRAM
represents the processing time for GRAM service that
the GT4 container spends until it submits a PBS job
request for configuring personal clusters to the system
PBS, which include parsing WS-GRAM schema,
delegating credentials, generating scripts for PBS job
submission, invoking the GRAM-PBS scheduling
adaptor, and so on. O_PBS denotes the time to make a
user-level PBS system ready on the allocated
resources, which includes launching the kick-start
script, starting pbs_server and pbs_moms on compute
nodes, and synchronizing resource status across the
PBS system. O_GT4 is the time spent to launch a user-

level Globus container. O_OS is the operating system
overhead mostly for file state synchronization via NFS.
Finally, O_NTF represents the event notification
overhead of the system Globus Container.

0

10

20

30

40

50

60

70

1 2 4 8 16 32

PC size (# of processors)

T
im

e
(s

ec
) O_NTF

O_OS
O_GT4
O_PBS
O_GRAM

Figure 2. The overhead of installing personal clusters based on a PBS installation and a WS-GRAM container
on a cluster consisting of 16 nodes with dual Xeon processors connected by a Gigabit Ethernet

The experimental results are shown in Figure 2.
Overall, the overhead of small scale personal clusters
increases in proportion to the number of processors
approximately in a log scale. The overhead of personal
clusters with 2 processors is almost same to that of
personal clusters with single processor because a PBS
worker daemon is spawned per node, not per
processor. The only additional delay that personal
clusters with 2 processors experience is due to
launching the kick-start script on the other processor
on the same node through ssh.

The overhead of personal clusters with single
processor is about 50 seconds and the overhead
increases with the PC size. The most dominant factor
is O_PBS, which explains more than 64% of the
overhead when the PC size is 1 and increases as the PC
size is bigger. Precisely, O_PBS spends most of its
time in waiting until the PBS worker daemons report
their states as free while launching the PBS server and
workers themselves takes less than 1 second. By
contrast, the other factors are constant regardless of the
PC size. The overhead of processing a GRAM service
request is about 2 seconds while launching a Globus
container takes about 3 seconds. The OS-related
overhead is about 2.1 seconds which consists of 2
second sleep for retrial and the net OS overhead of one
hundred milliseconds. Finally, the delay due to
notification of Globus container is about 2 seconds.

4. Related Work

The virtual cluster or COD (Cluster on Demand)

technology [8] shares the goal with our study in the
sense that it provides an illusion to the user as if a set
of processors is dedicated on demand. We understand
that virtual cluster based on VM (Virtual Machine)
technology is promising and provide a variety of
sophisticated features for deployment, security, fault-
tolerance, reproducibility, and so on. However,
overcoming the performance degradation due to
virtualization overhead is critical especially for high
performance computing [9]. By contrast, personal
cluster can exploit full performance of resources since
it is simple and is directly implemented on top of
physical resources. Note that personal clusters can be
deployed to virtual clusters or COD as well.

In the meantime, Condor-G [10] allows the users to
dynamically add resources via the Condor GlideIn
mechanism to its resource pool on demand when
Condor-G is integrated with Condor-controlled
resources. In terms of mechanism, personal cluster is
similar to Condor GlideIn since a job manager slides
into the allocated resources. Different from Condor
GlideIn, however, personal clusters can be arbitrarily
coupled with a variety of batch systems including PBS,
LSF, Condor, SGE, and Loadleveler. Moreover, an
application has a dedicated resource manager while
jobs submitted to Condor-G still go through shared
Condor queues for Condor-G.

Cluster host = new Cluster (“bowhead.cs.ucsb.edu”, // front-end hostname
“PBS” // host resource manager name
32, // maximum number of processors
16, // maximum number of hosts
60 * 12 // maximum duration

);
Cluster guest = new Cluster (“bowhead.cs.ucsb.edu”, // front-end hostname

“PBS”, // my job manager name
16, // # of processors
8, // # of hosts
60 // duration

);
PersonalClusterFactory factory = new PersonalClusterFactory ();
factory.registerHostCluster (host);
PersonalCluster pc = factory.createPersonalCluster (guest);

if (pc.isReady ()) {
// do something with this personal cluster

}

Cluster host = new Cluster (“bowhead.cs.ucsb.edu”, // front-end hostname
“PBS” // host resource manager name
32, // maximum number of processors
16, // maximum number of hosts
60 * 12 // maximum duration

);
Cluster guest = new Cluster (“bowhead.cs.ucsb.edu”, // front-end hostname

“PBS”, // my job manager name
16, // # of processors
8, // # of hosts
60 // duration

);
PersonalClusterFactory factory = new PersonalClusterFactory ();
factory.registerHostCluster (host);
PersonalCluster pc = factory.createPersonalCluster (guest);

if (pc.isReady ()) {
// do something with this personal cluster

}

Figure 3. An example of creating a personal cluster using JAVA APIs

5. Conclusion

In this paper, we presented a personal cluster

technique that provides a homogeneous dedicated
computing environment over heterogeneous clusters.
This technique not only provides the user a uniform
interface to the allocated resources but also enables
efficient task management in a cost-effective manner,
exploiting the features of commodity tools. Personal
cluster can not only be flexibly coupled with popular
batch systems but also exploit full performance of
resources without performance degradation. A
prototype implementation based on Globus GRAM
service and a PBS installation shows that personal
clusters can be instantiated with small overhead.

We are currently using this mechanism to actualize
Virtual Grid [11-13]. Java APIs for embedding this
feature into users’ programs and a script package for
command line tool are available for Globus-based
personal cluster while a script package is available for
secure shell based personal cluster. Figure 3 presents
an example of code segment that creates personal
clusters using Java APIs. With these simple APIs, for
instance, the users can easily embed the feature of
personal cluster into their application managers. More
details about the personal cluster packages will be
available at http://csag.ucsd.edu/individual/yskee.

6. Reference

[1] R. L. Henderson, "Job Scheduling Under the

Portable Batch System," in Lecture Notes in
Computer Science, vol. 949, IPPS '95 Workshop
on Job Scheduling Strategies for Parallel
Processing: Springer, 1995, pp. 279-294.

[2] M. Litzkow, M. Livny, and M. Mutka, "Condor -
A Hunter of Idle Workstations," in IEEE
International Conference on Distributed
Computing Systems (ICDCS-8): IEEE, 1988, pp.
104-111.

[3] S. Zhou, "LSF: Load sharing in large-scale
heterogeneous distributed systems," in
International Workshop on Cluster Computing:
IEEE, 1992.

[4] K. Yoshimoto, P. Kovatch, and P. Andrews, "Co-
Scheduling with User-Settable Reservations," in
Lecture Notes in Computer Science, vol. 3834,
Workshop on Job Scheduling Strategies for
Parallel Processing: Springer, 2005, pp. 146-156.

[5] F. Berman, "Viewpoint: From TeraGrid to
Knowledge Grid," Communications of the ACM,
vol. 44, pp. 27-28, 2001.

[6] I. Foster, "Globus Toolkit Version 4: Software for
Service-Oriented Systems," in Lecture Notes in
Computer Science, vol. 3779, IFIP International
Conference on Network and Parallel Computing:
Springer, 2005, pp. 2-13.

[7] C. R. Inc., "TORQUE v2.0 Admin Manual."
[8] J. Chase, D. Irwin, L. Grit, J. Moore, and S.

Sprenkle, "Dynamic Virtual Clusters in a Grid
Site Manager," in IEEE Symposium on High
Performance Distributed Computing (HPDC-12).
Seattle, Washington: IEEE, 2003.

[9] Y. Dong, S. Li, A. Mallick, J. Nakajima, K. Tian,
X. Xu, F. Yang, and W. Yu, "Extending Xen with
Intel Virtualization Technology," Intel
Technology Journal, vol. 10, pp. 193-204, 2006.

[10] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and
S. Tuecke, "Condor-G: A Computation
Management Agent for Multi-Institutional Grids,"
in IEEE International Symposium on High
Performance Distributed Computing (HPDC-10):
IEEE, 2001, pp. 55-63.

[11] Y.-S. Kee, D. Logothetis, R. Huang, H.
Casanova, and A. A. Chien, "Efficient Resource
Description and High Quality Selection for
Virtual Grids," in ACM/IEEE International
Symposium on Cluster Computing and the Grid
(CCGRID'05). Cardiff, United Kingdom: IEEE,
2005, pp. 598-606.

[12] Y.-S. Kee, K. Yocum, A. A. Chien, and H.
Casanova, "Improving Grid Resource Allocation
via Integrated Selection and Binding," in
ACM/IEEE International Conference on High
Performance Computing and Communication
(SC'06). Tampa, United States: IEEE, 2006.

[13] Y.-S. Kee and C. Kesselman, "Grid Resource
Abstraction, Virtualization, and Provisioning for
Time-targeted Applications," in ACM/IEEE
International Symposium on Cluster Computing
and the Grid (CCGRID'08): IEEE, 2008.

Biographies

Yang-Suk Kee is a post-doctoral research associate
under the supervision of Dr. Carl Kesselman in the
Information Sciences Institute at the University of
Southern California. He received a Ph.D. in Electrical
Engineering and Computer Science, a Master of
Science degree in Computer Engineering, and
Bachelors degrees in Computer Engineering from
Seoul National University. He was a visiting scholar
and post-doctoral researcher at University of California,
San Diego under the supervision of Dr. Andrew Chien
and Dr. Henri Casanova.

Carl Kesselman is Fellow in the Information Sciences
Institute at the University of Southern California. He is
the Director of the Center for Grid Technologies at the
Information Sciences Institute and a Research
Professor of Computer Science at the University of
Southern California. He received a Ph.D. in Computer
Science from the University of California, Los Angeles,
a Master of Science degree in Electrical Engineering
from the University of Southern California, and
Bachelors degrees in Electrical Engineering and
Computer Science from the University at Buffalo. Dr.
Kesselman also serves as Chief Scientist of Univa
Corporation, a company he founded with Globus co-
founders Ian Foster and Steve Tuecke. Dr.
Kesselman’s current research interests are all aspects
of Grid computing, including basic infrastructure,
security, resource management, high-level services and
Grid applications. He is the author of many significant
papers in the field. Together with Dr. Ian Foster, he
initiated the Globus Project™, one of the leading Grid
research projects. The Globus project has developed
the Globus Toolkit®, the de facto standard for Grid
computing. Dr. Kesselman received the 1997 Global
Information Infrastructure Next Generation Internet
award, the 2002 R&D 100 award, the 2002 R&D
Editors choice award, the Federal Laboratory
Consortium (FLC) Award for Excellence in

Technology Transfer and the 2002 Ada Lovelace
Medal from the British Computing Society for
significant contributions to information technology.
Along with his colleagues Ian Foster and Steve Tuecke,
he was named one of the top 10 innovators of 2002 by
InfoWorld Magazine. In 2003, he and Dr. Foster were
named by MIT Technology Review as the creators of
one of the "10 technologies that will change the
world." In 2006 Dr. Kesselman received an Honorary
Doctorate from the University of Amsterdam.

Dan Nurmi is a Ph.D. candidate at the University of
California Santa Barbara under the advisorship of Dr.
Rich Wolski. He has studied computer science at the
University of Minnesota (Minneapolis Campus),
Tulane University and the University of Chicago
where he received an M.S. in computer science in
2002. From 1998 to 2002, he held a position as
Systems Engineer at the Math and Computer Science
department of Argonne National Laboratory near
Chicago, where he help design and develop software
and management techniques for several large scale
HPC systems. His research efforts include large scale
system management, resource failure prediction, batch
queue delay prediction, distributed workflow
scheduling, and virtual resource definition.

Rich Wolski is a Professor in the Computer Science
department at the University of California, Santa
Barbara (UCSB). Having received his M.S. and Ph.D.
degrees from the University of California at Davis
(while he held a full-time research position at
Lawrence Livermore National Laboratory) he has also
held positions at the University of California, San
Diego, and the University of Tennessee. He is
currently also a strategic advisor to the San Diego
Supercomputer Center and an adjunct faculty member
at the Lawrence Berkeley National Laboratory. Dr.
Wolski heads the Middleware and Applications
Yielding Heterogeneous Environments for
Metacomputing (MAYHEM) Laboratory which is
responsible for several national scale research efforts
in the area of high-performance distributed computing
and grid computing. These efforts have resulted in
nationally supported production-quality software tools
such as the Network Weather Service (currently
distributed as part of the NSF Middleware Initiative's
baseline software distribution) and a supported
international user-community in addition to an
extensive scholarly corpus. His most recent efforts
have focused on both the implementation of nationally
distributable tightly-coupled programs as well as the
development of statistical predictive techniques for

resource-constrained power usage, resource failure
prediction, and batch queue delay prediction.

	1. Introduction
	2. Personal Cluster
	2.1 Implementation

	3. Evaluation
	4. Related Work
	5. Conclusion
	6. Reference

