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Abstract

In this paper, we present DrAFTS — a methodology for
predicting the value a user should bid in the AWS Spot
tier to ensure that the request lifetime exceeds a fixed du-
ration with a given probability. DrAFTS uses previous
price histories for each category of request to determine
both the minimum bid value and the concomitant dura-
tion associated with that value that is “guaranteed” with a
specified probability. We also describe how DrAFTS can
be used to determine the duration associated with over-
bidding the minimum by a specific percentage.

1 Introduction

Infrastructure as a Service (IaaS) is a form of cloud com-
puting in which computational infrastructure componen-
try (computers, network connectivity, storage capabili-
ties, delegated identity, etc.) can be “provisioned” via
one or more web-service interfaces. “Public clouds”
such as Amazon’s Amazon Web Services (AWS) [5, 14,
15], Google’s Google Compute Engine [9, 13] imple-
ment laaS using virtualized resources as rentals that are
available to the public. Customers who rent these capa-
bilities via an e-commerce transaction do so under the
terms of a Service Level Agreement (SLA) for each TaaS
service they choose.

The predominant public-cloud vendor of IaaS ser-
vices today is Amazon, and its Elastic Compute Cloud
(EC2) [6] is the most popular venue for renting virtual
machines to the general public.

Virtual machines are available in two quality-of-
service service (QoS) tiers from AWS, each governed by
a different SLA. The SLA for the On-demand tier guar-
antees at least 99.95% availability during each month of
usage or a 10% dollar-cost refund can be issued. Ad-
ditionally, less than 99% availability results in eligibil-
ity for 30% refund, which is the maximum offered. By
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contrast, in the Spot-market tier, the SLA stipulates that
a virtual machine will run until the maximum price its
owner is willing to pay is exceeded by the “Spot price”
set by Amazon as a function of supply and demand [3]
(or an outage occurs, for which no probability is given).

Because the SLA for Spot instances does not pro-
vide a probabilistic guarantee on instance lifetime, the
price of a instance in the Spot tier is often significantly
lower than in the On-demand tier. This discount often
makes the Spot tier attractive to High-performance Com-
puting (HPC) users, particularly is academically funded
research contexts. HPC applications, however, typically
require long-running, uninterrupted access to the com-
puting resources they use and resources in the Spot tier
carry no guarantee of sustained availability.

In this paper we describe a method for determining
probabilistic guarantees of availability for Amazon AWS
Spot instances called DrAFTS which is an acronym for
Durability Agreements From Time Series. DrAFTS
uses a non-parametric statistical prediction algorithm, to
make predictions of bid prices that will “win” in the AWS
spot market. It also quantifies (using back-testing) the
duration over which these bid prices will persist with a
specified probability. Thus, given such a probability as
input, a DrAFTS prediction is an ordered pair consisting
of

e a price — a maximum bid price that an AWS Spot-
market customer should bid in order to minimize the
cost, and

e a duration — the duration over which that bid price
will be sufficiently high to prevent the Spot instance
from being terminated either because the Spot price
has risen or because the supply of available Spot in-
stances (termed the available “Spot pool” by Ama-
zon) has decreased

such that the output price will result in the output dura-
tion with a probability at least as high as the one used



as input. Assuming the probability of outage is negligi-
ble, then, each DrAFTS prediction provides a guarantee
that can be used in an SLA (in terms of availability) for
a Spot instance and the price that the customer must pay
to obtain that guarantee.

DrAFTS Implementation

We describe the DrAFTS prediction methodology and its
implementation as an on-line prediction service that can
be accessed from the URL given in [22]. DrAFTS is
designed to incorporate new pricing data as it becomes
available. The DrAFTS service implementation queries
AWS Spot-market pricing data [2] periodically (every 15
minutes in this study) and updates its predictions so that
they are for the current time frame. We demonstrate, us-
ing historical pricing data available from AWS, the ef-
ficacy of the methodology. We also discuss the trade-
off between accuracy, statistical soundness, and perfor-
mance in the implementation.

2 AWS EC2 Spot Instances and Prices

Under the “EC2-Classic” style of AWS usage (one that
does not use the Virtual Private networking feature) a
user requests a Spot Instance by specifying a three tuple
of

(Region, Instance type,Max_bid_price) Q)

EC2 is organized as independent Regions, each of which
constitutes essentially a separate instantiation of the EC2
functionality. That is. EC2 resources are not shared
across Regions (although cross-Region data sharing is
facilitated by the Simple Storage Service [4, 7]). Each
Region is divided into Availability Zones (AZs), which
define pools of resources with purportedly independent
failure probabilities so that the joint probability of failure
in multiple zones can be determined. Each Spot instance
runs in a single Region and AZ. The user must specify
the Region, and can specify the AZ or can elect to allow
the Spot service itself to select an AZ in the Region. It is
also possible to specify that a group of Spot Instance re-
quests be treated as a unit with respect to initiation (they
will be put in the same AZ) and termination (they will
terminate together).

A user initiating a Spot instance request specifies a
maximum bid price. The Spot service keeps the maxi-
mum prices hidden from other users. An Spot instance
request will be initiated when the maximum bid price ex-
ceeds the current market price and the user is charged the
market price per hour that the instance runs. If the mar-
ket price exceeds the maximum bid price, the instance is
terminated. If the market price is equal to the maximum
bid price, the instance may be terminated if the size of
the Spot pool decreases. Amazon does not describe the
conditions under which capacity will be removed from
or added to the Spot pool.

The market price is set as follows. When a new request
is issued or the Spot pool shrinks, the outstanding max-
imum bids are sorted in descending order and resources
from the pool are allocated (based on request size) ex-
haustively in order of bid size until no more requests can
be accommodated. The smallest maximum bid price for
a request that can be accommodated is the market price.

Thus, the duration that an instance will run before
it is terminated is determined (assuming that the hard-
ware failure probability is negligible) by the time until
the market price exceeds the maximum bid price for the
instance. The goal of DrAFTS is to predict a combi-
nation of maximum bid price and duration at the time
of an instance request that will ensure that the predicted
maximum bid price does not exceed the market price for
at least the duration of time predicted with the specified
probability.

Spot Instance Price Histories

AWS makes the Spot price history for each instance type,
in each Region and AZ available via a web-accessible
Application Programming Interface (API). The histories
record the time when the market price changes and up
to 90 days of previous time period are available for each
history.

In this study, we have accumulated price histories for
the us-east-1, us-west-1, and us-west-2 AZs spanning the
period from November 2014 to December 2015. The
API is queried every 15 minutes for the previous 2 hour
period (to account for possible dropout) and duplicate en-
tries are removed. We further restrict the DrAFTS pre-
dictions discussed in Section 4 to the Linux/UNIX images
(Suse and Windows images are also available in the Spot
market at different price points).

The price data is updated every 5 minutes, and there
are two sources are available for this information. Ama-
zon publishes the lowest spot price for each instance type
in each region (i.e. the lowest spot price across all AZs
in a region) via a publicly accessible web page. How-
ever, it also discourages the practice of “scraping” this
page for the current regional Spot price for reasons that
are unclear to us.

The second source, and the one recommended by
Amazon, is via the AWS web-services API. Rather than
providing pricing data on a regional basis, the web-
service API returns prices for each instance in each AZ of
each region. The regional Spot price from this data is the
minimum (at any given time in the pricing history) across
all AZs in the region. In this study, we use this aggrega-
tion method (and not “scraped” data) to determine the
regional Spot price. We hope to develop an AZ-specific

capability as part of our future work.

Also, the documentation for the API indicates that
each element in the price history “merely indicates the
last time that the price changed.” However, some histo-



ries include consecutive records that do not show a price
change. For example, consider the following segment
from the price history for the ¢/.micro instance type in
the us-east-1b AZ.

.0031 2014—-12—-01T15:17:24
.0031 2014—-12-02T15:18:39
.0031 2014—-12-03T15:21:08
.0031 2014—12—-04T15:23:25
0031 2014—-12—-05T15:25:19
0031 2014—-12—-06T15:26:58
.0031 2014—-12—-07T15:28:11
.0031 2014—-12—-08T15:31:13

us—east—1b tl.micro
us—east —1b tl.micro
us—east—1b tl.micro
us—east—1b tl.micro
us—east—1b tl.micro
us—east—1b tl.micro
us—east—1b tl.micro
us—east—1b tl.micro

[eNeoBoNoNoNoNo =]

Notice that the time stamps occur more frequently than
every 5 minutes and that the prices do not change.

The explanation for this discrepancy is not entirely
clear. One reason may be that the data is being slightly
obscured to help balance the load across AZs. Amazon
attempts to prevent its community of users from over-
loading any one AZ by changing the AZ names that are
reported based on the user ID associated with the API
request. Apparently, users have a preference for for AZ
names that are “lower” and thus occur earlier in a lexi-
graphic sorting of the names. To prevent such “herd be-
havior,” Amazon ensures that each user gets a different
mapping of AZ names to resources. Indeed, it is likely
that the reason only regional and not per-AZ data is avail-
able via a public web page is that the web request does
not require a valid AWS user ID.

One way to circumvent this obscured mapping would
be to compare Spot-price histories from different users.
It may be that Amazon is changing the histories slightly
so that the time stamps cannot be used to determine a
globally consistent naming scheme for AZs.

Another alternative possibility is that each time stamp
represents either a price change or a change in the size
of the Spot Pool. Note that there are two circumstances
under which a Spot instance will be terminated: Either
the maximum bid price associated with the instance is
exceeded by the market spot price, or the maximum bid
price is equal to the market price and the size of the “Spot
Pool” shrinks. AWS does not make data about the size of
the Spot Pool available since, presumably, it is affected
by demand for non Spot resources and overall AWS load
is held as a trade secret. Therefore, in this study we as-
sume that each record in the price history either indicates
a price change or is a duplicate that does not convey any
new information.

3 Methodology

The DrAFTS prediction mechanism takes, as a parame-
ter, a target probability (say, 0.95) and returns the lowest
maximum bid price and the duration the price will meet
or exceed the market with at least that probability. Thus,
from the perspective of a user of the Spot tier, it answers
the question

For a specified probability, can we meaning-
fully generate a price and a duration so that
bidding that price gives a probability at least
as great as that specified that the job will run
for that duration before being terminated?

That is, DrAFTS attempts to find the lowest maximum
price to bid that will guarantee a duration of execution
such that the probability of “success” — defined as the in-
stance running for at least the time duration returned by
DrAFTS - is greater than or equal to the target probabil-
1ty.

Note that as the price approaches the current market
price the duration approaches zero since any bid at mar-
ket price is immediately eligible for termination. No-
tice also that any bid price above the DrAFTS predicted
bid price will also meet the probability target (any prob-
ability greater than the target is acceptable). A bid price
above the DrAFTS bid will also potentially increase the
durability of the bid but with the added risk associated
with paying a higher price.

DrAFTS applies QBETS (described in the next Sub-
section) to the most recent time series of price history
data from AWS to determine both the maximum bid price
and the duration. It is intended to be used on-line, as part
of a service like the one available from [22]. The ser-
vice queries the AWS for the “latest” price history data
for a specific AWS instance type, executes the DrAFTS
mechanism using this price history and a target proba-
bility as inputs, and produces a predicted maximum bid
price and predicted duration for that instance type. If
the user makes a request using this “fresh” prediction,
then, it should be instantiated and “survive” for at least
the quoted duration with the probability given.

In this way, DrAFTS predictions play the same role
that a quantified reliability quotation does in a reliabil-
ity SLA. However, they are slightly more restrictive than
the SLAs given by Amazon in that they are for contin-
uous availability durations. Technically, the AWS SLA
specifies a percentage of availability time that is cumu-
lative. That is, as long as the instance appears available
for for 99.95% of the seconds in a month, the AWS SLA
is fulfilled. The DrAFTS probability refers not to the cu-
mulative availability, but to the continuous availability of
a specific instance request.

QBETS: Quantile Bounds Estimation from

Time Series

DrAFTS uses Queue Bounds Estimation from Time Se-
ries (QBETS) [17, 19], a non-parametric time series anal-
ysis method that we developed in prior work. We origi-
nally designed QBETS for predicting the scheduling de-
lays for the batch queue systems used in high perfor-
mance computing environments but it has proved effec-
tive in other settings where forecasts from arbitrary times



series are needed [16, 8, 20, 12]. In particular, it is both
non-parametric and it automatically adapts to changes in
the underlying time series dynamics making it useful in
settings where forecasts are required from arbitrary data
with widely varying characteristics.

A QBETS analysis requires three inputs:

1. A time series of data.

2. The quantile for which a confidence bound should
be predicted (p € (0,1)). .

3. The confidence level of the prediction (c € (0, 1)).

QBETS uses this information to predict an upper
bound for the ¢’ quantile of the time series. It does so by
treating each observation in the time series as a Bernoulli
trial with probability g of success. If there are n observa-
tions, the probability of there being exactly k successes
is described by a Binomial distribution (assuming obser-
vation independence) having parameters n and ¢. If Q is
the ¢'" quantile of the distribution from which the obser-
vations have been drawn, the equation

k

¥ (1) 1= @

=0\
gives the probability that no more than k observations
are greater than Q. As a result, the k" largest value in
a sorted list of n observations gives an upper ¢ confi-
dence bound on Q when £ is the smallest integer value
for which Equation 2 is larger than c.

QBETS also attempts to detect changepoints in the
time series of observations so that it can apply this in-
ference technique to only the most recent segment of
the series that appears to be stationary. Details of an
efficient implementation as well as a fuller account-
ing of the statistical properties (including correction for
autocorrelation) and detailed assumptions are available
in[17, 19, 16, 8, 18].

DrAFTS Prediction Methodology

DrAFTS uses QBETS to predict an upper bound on max-
imum bid price and a lower bound on duration. It uses
the square root of the desired target probability as the ¢'"
quantile and, in the study, a value of 0.99 for the confi-
dence level c. While other probability combinations are
possible to reach the target probability, experience shows
us that using square roots strikes a good balance between
keeping a bid low (i.e. near the current price) and yield-
ing a usable duration. Similarly, we choose ¢ = 0.99 to
illustrate how DrAFTS could be used as the basis for an
SLA. If a statistical guarantee that is less stringent is use-
ful, then smaller values of ¢ can be used.

DrAFTS uses QBETS to create a history of predic-
tions, one each each point in the price history series
where pricing data is available. It then records the du-
ration in the previous history over which each predic-
tion is “valid,” where a valid prediction is one that is

greater than or equal to the Spot price it predicts. That
is, for each QBETS prediction in the prediction history,
DrAFTS computes the duration until that prediction is
no longer sufficient to prevent AWS from terminating a
Spot-instance due to price if the QBETS-predicted price
had been used as the maximum bid price. This proce-
dure generates a history of durations, one per QBETS
prediction. DrAFTS then uses QBETS again to predict
a lower confidence bound bound (again with ¢ = 0.99)
on the 0.025 (= 1 —.975) quantile of the duration — note
here that we use the conditional probability that the price
allows the instance to run in the first place — based on the
duration history.

Backtesting

Both as a diagnostic and to improve the credibility of
the bid forecasts, DrAFTS uses backtesting for each in-
stance type price history and reports the fraction of suc-
cessful predictions. That is, each time a DrAFTS pre-
diction is generated, the method also generates a random
sample of previous predictions for which the outcomes
can be observed. To do so, it repeatedly chooses a time
stamp at random in the previous price history and runs
the DrAFTS algorithm using the data before that time
stamp in the history. The fraction of correct predictions
over the sample is reported as the observed success prob-
ability.

4 Results

We begin with an example of the predictions generated
by DrAFTS. For each region, Table 1 shows the cur-
rent predicted bid price (plain-faced text), the duration in
hours (bold-faced text) and the probability that the pre-
dicted price will prevent an eviction for at least the du-
ration shown based on a back-testing sample size of 100
using the previous months pricing history.

While there are 129 different possible combinations of
instance type and region, Amazon supports 120 of them.
The 9 that are not supported are represented by blank ele-
ments in the table. This particular example was gathered
on September 2, 2015 from the on-line service located
at the URL shown in [22]. The target probability set for
the service is at least 0.95. That is, the table shows the
price to bid in the region to achieve at least a 0.95 prob-
ability of having the instance “survive” for the duration
shown. The probability shown in the table is a verifica-
tion (through backtesting over the previous month’s price
history) that the predicted duration is valid. Thus, when
the probability in the table is greater than or equal to
0.95, the prediction methodology has been successful at
least 95% of the time in identifying a lower bound on the
duration associated with a predicted price during the pre-
vious month. For these entries, it is then “reasonable” to
assume the given predicted maximum bid will generate



Inst. Type

[ us-east-1

[ us-west-1

[ us-west-2

cl.medium $0.0163, 3.71 (hrs), 0.97 $0.0163, 0.99 (hrs), 0.95 $0.0162, 4.12 (hrs), 0.99
cl.xlarge $0.0643, 0.68 (hrs), 0.95 $0.0645, 0.88 (hrs), 0.98 $0.0653, 0.11 (hrs), 0.99
c3.2xlarge $0.1126, 0.05 (hrs), 0.95 $0.1142, 0.04 (hrs), 0.97 $0.0712, 0.08 (hrs), 0.96
c3.4xlarge $0.2001, 0.04 (hrs), 0.99 $0.2199, 0.06 (hrs), 0.95 $0.2003, 0.08 (hrs), 0.93
c3.8xlarge $0.7501, 0.09 (hrs), 0.97 $0.3427, 0.03 (hrs), 0.97 $0.3887, 0.05 (hrs), 0.99
c3.large $0.0196, 0.10 (hrs), 0.97 $0.0178, 0.03 (hrs), 0.96 $0.0180, 0.10 (hrs), 0.97
c3.xlarge $0.0394, 0.08 (hrs), 0.96 $0.0397, 0.06 (hrs), 1.00 $0.0363, 0.08 (hrs), 0.99
c4.2xlarge $0.0877, 0.10 (hrs), 0.99 $0.0651, 0.06 (hrs), 0.99 $0.0737, 0.08 (hrs), 0.96
c4.4xlarge $0.4233, 0.06 (hrs), 0.96 $1.1042, 0.06 (hrs), 0.97 $0.9281, 0.25 (hrs), 0.98
c4.8xlarge $0.4948, 0.10 (hrs), 0.90 $0.7201, 0.09 (hrs), 0.99 $0.6760, 0.08 (hrs), 0.97
c4.large $0.0255, 0.10 (hrs), 0.96 $0.0171, 0.12 (hrs), 0.97 $0.0206, 0.10 (hrs), 1.00
c4.xlarge $0.0414, 0.04 (hrs), 0.96 $0.0551, 0.06 (hrs), 1.00 $0.0658, 0.08 (hrs), 0.93
cc2.8xlarge $0.3225, 0.10 (hrs), 0.95 $0.2858, 0.08 (hrs), 0.98
crl.8xlarge $0.3497, 0.07 (hrs), 0.98 $0.2677, 0.19 (hrs), 0.96
d2.2xlarge $0.1579, 0.16 (hrs), 0.97 $0.1501, 0.31 (hrs), 0.97
d2.4xlarge $0.2888, 0.15 (hrs), 0.95 $0.3468, 0.48 (hrs), 0.92
d2.8xlarge $0.5809, 0.10 (hrs), 0.96 $0.6661, 0.10 (hrs), 0.99
d2.xlarge $0.0889, 0.67 (hrs), 0.97 $0.0734, 0.24 (hrs), 1.00
g2.2xlarge $0.1498, 0.00 (hrs), /.00 $0.4001, 0.03 (hrs), 0.99 $0.6501, 0.08 (hrs), 0.99
22.8xlarge $1.1210, 0.10 (hrs), 0.99 $0.9063, 0.09 (hrs), 0.95 $0.4441, 0.10 (hrs), 0.99
hil.4xlarge $0.1750, 0.30 (hrs), 0.96 $0.1550, 0.10 (hrs), 0.97
ml.large $0.0161, 24.65 (hrs), 0.97 $0.0173, 0.21 (hrs), 0.97 $0.0172, 0.08 (hrs), 0.96
ml.medium $0.0081, 21.38 (hrs), 0.97 $0.0100, 0.23 (hrs), 1.00 $0.0108, 0.08 (hrs), 0.97
ml.small $0.0071, 31.21 (hrs), 0.98 $0.0082, 5.44 (hrs), 0.98 $0.0082, 0.25 (hrs), 0.99
ml.xlarge $0.0321, 22.19 (hrs), 1.00 $0.0323, 2.97 (hrs), 1.00 $0.0335, 0.16 (hrs), 1.00
m2.2xlarge $0.0384, 0.14 (hrs), /.00 $0.0327, 2.06 (hrs), 1.00 $0.0447, 0.08 (hrs), 0.99
m?2.4xlarge $0.0962, 0.09 (hrs), 1.00 $0.1075, 0.00 (hrs), 1.00
m2.xlarge $0.0354, 0.04 (hrs), 1.00 $0.0216, 0.16 (hrs), 1.00
m3.2xlarge $0.0736, 0.10 (hrs), 1.00 $0.0906, 0.03 (hrs), 0.99 $0.0686, 0.08 (hrs), 0.98
m3.large $0.0204, 0.09 (hrs), 0.99 $0.0171, 0.06 (hrs), 1.00 $0.0167, 0.08 (hrs), 1.00
m3.medium $0.0095, 0.62 (hrs), 1.00 $0.0181, 0.09 (hrs), 1.00 $0.0121, 0.10 (hrs), 1.00
m3.xlarge $0.0527, 0.06 (hrs), 0.99 $0.0354, 0.06 (hrs), 1.00 $0.0392, 0.08 (hrs), 0.99
m4.10xlarge $0.3298, 0.13 (hrs), /.00 $0.4797, 0.27 (hrs), 1.00 $0.3385, 0.08 (hrs), 0.99
m4.2xlarge $0.0530, 0.03 (hrs), /.00 $0.0593, 0.29 (hrs), 0.99 $0.0544, 0.10 (hrs), 0.99
m4.4xlarge $0.1053, 0.10 (hrs), 0.99 $0.1333, 0.14 (hrs), 1.00 $0.3501, 0.15 (hrs), 0.99
m4.large $0.0140, 0.00 (hrs), 1.00 $0.0144, 0.03 (hrs), 1.00 $0.0141, 0.72 (hrs), 1.00
mé.xlarge $0.0270, 0.09 (hrs), 1.00 $0.0287, 0.06 (hrs), /.00 $0.0270, 0.26 (hrs), 0.99
13.2xlarge $0.2501, 0.05 (hrs), 1.00 $0.1667, 0.06 (hrs), 1.00 $0.0893, 0.08 (hrs), 0.99
13.4xlarge $0.2401, 0.07 (hrs), 0.99 $0.3288, 0.12 (hrs), 1.00 $0.3453, 0.07 (hrs), 0.99
r3.8xlarge $0.6780, 0.12 (hrs), /.00 $0.4947, 0.09 (hrs), 1.00 $0.5188, 0.00 (hrs), 0.99
r3.large $0.0195, 0.04 (hrs), 1.00 $0.0637, 0.06 (hrs), 0.99 $0.0174, 0.16 (hrs), 1.00
r3.xlarge $0.2201, 0.09 (hrs), 1.00 $0.0940, 0.06 (hrs), 1.00 $0.0492, 0.08 (hrs), 0.99
tl.micro $0.0031, 23.00 (hrs), 1.00 $0.0035, 1.16 (hrs), 0.99 $0.0032, 0.75 (hrs), 1.00

Table 1: DrAFTS predictions for AWS instance types in
us-east-1, us-west-1, and us-west-2 gathered on Septem-
ber 2, 2015. Missing entries indicate data not available
via the AWS price history APL

at least the duration of lifetime with at least a probability
of 0.95.

These predictions are conservative in several ways.
First, as noted in Section 3, QBETS generates a conser-
vative bound. Thus, each QBETS prediction is larger
or smaller that the “true” quantile with the (high) prob-
ability supplied to it as parameters. Second, the price
prediction is intended to serve as the maximum bid for
a Spot instance. The actual price a user of DrAFTS will
pay is statistically guaranteed to be less than or equal to
this maximum bid price. Finally, the times shown are
the time until the instance is eligible to be terminated be-
cause of price. AWS does not document the algorithm
it uses to determine which instances will be terminated
due to a supply shortfall when the size of the Spot Pool
shrinks; this makes it difficult to quantify the degree of
underestimation. However, it is noteworthy that even
with such conservative estimates, relatively long statis-
tical guarantees are possible for some instance types in
some regions. For example, from Table 1 on September
2, 2015 a maximum bid $0.0071 for a m/.small instance
type in the us-east-1 region results in the instance start-
ing and being eligible for termination (with probability at

DrAFTS Predicted Maximum Bid Bound Tightness

Avg. Ratio of DAFTS bid to Current Price
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Figure 1: Average ratio of DrAFTS prediction to current
price, month ending September 2, 2015.

least 0.95) no sooner than 31.21 hours after it is instan-
tiated and the fraction of DrAFTS predictions that were
successful for this instance type-region combination over
the previous month is 0.98.

Prediction Correctness versus Tightness

Implicit in this exposition is the notion that a DrAFTS
prediction of bid price and duration is correct if the du-
ration an instance will experience until it is terminated
the predicted duration. The probability quoted with each
prediction is the fraction of recent previous predictions
(taken from a random sample) that have proved correct
in this way.

While this definition is sufficient with respect to the
provision of a minimum statistical guarantee of future
availability, it does not take into account the degree of
over-estimation that this level of statistical certainty en-
genders. For example, it is possible to construct a pre-
dictor that is trivially correct with a fraction of 0.95 un-
der this definition by choosing a large maximum bid
price (say, $1000) and a short duration (300 seconds)
for 95 out of every 100 predictions made and a low bid
price with a long duration for the other 5 predictions per
100. Overall, the predictor would be correct “95% of the
time,” but the correct predictions would be impractically
conservative.

To investigate the tightness of the DrAFTS method-
ology with respect to bid price, we show the average ra-
tio of the DrAFTS-predicted maximum bid price versus
Spot price from a sample taken over one month’s period
in Figure 1. Due to space considerations, we show the
data in graphical form rather than tabular form. As a
result, the specific instance-type and region names asso-
ciated with each measurement are not shown in in the
figure. Instead, we enumerate the instance-type-region
pairs shown in Table 1 using row-major order. That is,
us-east-1-cl.medium has index 1, us-west-1-cl.medium
has index 2, us-west-2-cl.medium has index 3, us-east-
I-cl.xlarge has index 4 and so forth. In the figure, the
x-axis shows the index of each combination and the y-
axis the average ratio of DrAFTS maximum bid price to
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Figure 2: Average difference in lower bound predic-
tions of duration-until-termination eligibility between
DrAFTS and empirical quantiles. The units are seconds.

current Spot price over the month under study. A ratio of
1.0 indicates, on the average, that the DrAFTS prediction
for the maximum bid price was equal to the Spot price at
the time of the prediction. We see from the graph that the
average ratio exceeds 2.0 for only 12 of the 120 different
possible instance-type-region combinations, and only 3
exceed a ratio of 3.0. For the majority of the combina-
tions, the ratio is substantially below 2.0 indicating that
a maximum bid that is less than twice the current Spot
price (on the average) is sufficient to achieve a 0.95 prob-
ability bound.

Determining the tightness of DrAFTS predictions with
respect to duration is more problematic since the “true”
duration information is not available from Amazon. Fur-
ther, running Spot instances to generate a sample of
observed durations for all 120 different instance-type-
region combinations over the course of a month rep-
resents a considerable expense for a significant sample
size. Instead, in Figure 2 we compare the DrAFTS dura-
tion prediction to a prediction made using the empirical
quantile value taken from the data.

The empirical quantile is simply the quantile taken
from a sample of the data. For example, the empiri-
cal 0.95 quantile from a sample of size 100 is the 951
largest value in the sample. From a practical perspective,
many practitioners often use the empirical quantile from
the AWS price history data as an estimate of the “true”
quantile. However, since it is drawn from a random sam-
ple, it is itself a random variable that varies “around” the
true quantile of the distribution from which the sample is
drawn.

Figure 2 shows the average difference between the
0.95 lower bound on Spot-instance duration when com-
puted using DrAFTS and using the empirical quantiles
in place of DrAFTS predictions (including the correc-
tion for equality). For each combination of instance-type
and region, we generate a random sample of 100 time
stamps from the month preceding September 2, 2015.
We then use backtesting (described in Section 3) to gen-
erate equivalent analogous predictions using DrAFTS
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Figure 3: Correctness Comparison between DrAFTS and
Empirical Quantiles, 500 samples, for the month end-
ing September 2, 2015. Correctness fractions of 0.95 or
greater meet the correctness target for the experiment.

empirical quantiles and show the average difference (in
seconds) in the figure. Because the predictions are ob-
tained in identical manners except for the use of the em-
pirical quantile instead of QBETS in each prediction, the
result shows the average degree of “conservativeness” in
duration prediction that DrAFTS introduces over simply
using the observed quantiles at each point in time. That
is, the larger the value shown in Figure 2, the shorter the
time-to-termination eligibility (i.e. the durability) pre-
dicted by DrAFTS relative to using the empirical quan-
tile to make the same prediction. This difference (which
for some combinations is substantial) represents the de-
gree conservativeness DrAFTS adds to the empirically
observed quantiles to ensure that its predictions are cor-
rect with respect to the specified target probability.

Comparing Correctness of DrAFTS and Empirical
Quantiles
Because the DrAFTS durability conservativeness rela-
tive to the empirical quantile is so large in some cases,
it is worth investigating where the empirical quantile
method is a reasonable alternative to the use of QBETS
for DrAFTS. Figure 3 shows a comparison of correct-
ness (using backtesting with a sample size of 500 from
the month ending September 2, 2015) between DrAFTS
duration predictions and duration predictions made us-
ing the empirical quantiles. The target probability in both
cases is 0.95 and the only difference (as is the case in Fig-
ure 2) between the two cases is in how the bounds are de-
termined. The x-axis in the figure shows the index of the
instance-type-region combinations (as in Figure 1). The
y-axis shows the fraction of correct predictions, from a
random sample of 500 time stamps taken from the month
ending September 2, 2015, determined during back test-
ing. The light-colored bars are for DrAFTS predictions,
and the dark-colored bars depict correctness fractions for
the empirical quantile method.

In this experiment, the target fraction is 0.95 (indi-
cated by the thick horizontal line in the graph). Thus



any correctness fraction that is less than 0.95 fails to
achieve the desired target correctness set for the exper-
iment. DrAFTS predictions for all 120 combinations for
which there is historical Spot price data in this experi-
ment meet the correctness criteria (all light-colored bars
are at or above the thick horizontal line).

From the coloration in the figure, it is clear that many,
but not all of the empirical quantile predictions are “cor-
rect” under our definition (not all dark bars reach the
thick horizontal line). Thus by being conservative in the
degree shown in Figure 2, DrAFTS is able to achieve
correctness for all instance-type and region combinations
automatically without the need for additional analysis.
In contrast, the empirical quantile method is correct for
some but does not provide a “guaranteed” correctness for
all.

Determining the Price of Durability
Most typically, users of the AWS Spot tier require a way
to answer the question

What bid minimizes the potential spend while
guaranteeing a specific target duration?

For example, a high-performance computing user who
knows that her job will not exceed 1 hour in duration
would like to know what to bid to both minimize the cost
and guarantee at least 1 hour before an eviction is possi-
ble.

DrAFTS generates answers to such queries by incre-
mentally computing the durations associated with suc-
cessively larger amount of “overbidding” with respect to
the minimum. Note that in the same way DrAFTS com-
putes the minimum time until eviction for the minimum
bid, it can also compute the minimum time until eviction
for the minimum bid plus a small percentage. Further, as
the percentage of “overbid” increases, the minimum time
until eviction should either remain the same or increase.

For example, Figure 4 shows the relationship between
bid price and guaranteed duration for the c4.large in-
stance type in the us-east-1 region on October 30, 2015.
Each duration along the x-axis corresponds to a bid (on
the y-axis) which, when submitted, assures that duration
with a probability of at least 0.95. To generate this graph,
DrAFTS computes the durations associated with over-
bids up to 400% above the DrAFTS minimum in incre-
ments of 5%. We choose 400% because AWS limits the
maximum bid that will be accepted to be less than or
equal to 400% of the current Spot price.

From the graph, it is possible to determine what maxi-
mum bid to offer that both ensures a specific duration and
limits the potential expenditure to the minimum achiev-
able by the prediction methodology. For example, a user
wishing to guarantee at least 4 hours (14400 seconds)
before her c4.large instance would be eligible for ter-
mination (with probability at least 0.95) would submit a
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Figure 4: DrAFTS minimum bid price versus guaranteed
duration with probability 0.95 or better for the c4.large
instance type in us-east-1 on October 30, 2015
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Figure 5: Correctness of DrAFTS minimum bid price for
duration of 1 hour with probability 0.95 or better us-
west-2 for two weeks ending December 2, 2015

maximum bid of $0.025 to the Spot tier. Notice that this
bid determines the maximum she will pay for each of the
4 hours of occupancy. Thus, using DrAFTS, a user can
know what bid is sufficient to assure a desired duration of
execution and, in so doing, determine the maximum cost
that should be paid to achieve this duration. At the same
time, this cost is the minimum achievable according to
the underlying price dynamics detected by DrAFTS.

We do not contend that the DrAFTS prediction is “the”
minimum bid that is possible. That is, another prediction
methodology might be able to provide a lower potential
cost while also making the same statistical guarantee of
duration, but as of this writing, we are not aware of an
alternative approach that is more effective.

In Figure 5 we show the correctness results obtained
by backtesting the bid calculation for a 1 hour assured
duration and probability at least 0.95 over all instance
types in the us-west-2 region for a two-week period end-
ing on December 2, 2015. We show these results for
a single region zone (as opposed to all regions as in
Figure 1 and Figure 2) so that the correctness fraction
for each instance type may be represented explicitly (in-
stead of by row-major index). To generate these results,
we captured the price history for each instance type us-
west-2 over a two week period. We then chose 200
non-overlapping intervals in each trace and computed the
cost-duration graph (as in Figure 4) at the beginning of



each random interval. We then compared the price cor-
responding to a 1-hour assured duration to the maximum
price that AWS reported during the interval. Figure 5
shows the fraction of correct predictions made. Each
fraction of 0.95 or greater corresponds to a correct pre-
diction. That is, DrAFTS determined a correct bid to
assure at least 1 hour of occupancy with probability at
least 0.95 for every instance type in us-west-2 over the
test period. The results for us-west-1 and us-east-1 are
similar (and omitted for the sake of brevity).

Summarizing, DrAFTS is able to determine what
maximum bid to submit to ensure that a specific min-
imum duration interval is guaranteed by that bid with
a specified probability. For a fixed success probability
(0.95 in these experiments) it computes a minimum in-
terval and bid price necessary to achieve that interval for
each instance type in each region. It then generates a
two-dimensional graph of durations and bid prices by
incrementally calculating the durations associated with
overbidding for each region-instance type pair. From
these graphs, the minimum DrAFTS bid that should be
used to ensure a specific duration with the given proba-
bility may be determined.

5 Related Work

In [11] the authors examine the question of using “live
migration” to avoid downtime when a web service is
hosted in the Spot tier. Using nested hypervisors, they
describe a scheduler that can migrate a running web ser-
vice between Spot instances and to do so without incur-
ring an outage, their scheduler must predict when a Spot
instance will be terminated in the future. Our work com-
plements this approach in that it attempts to provide a
way to determine the probability and duration until a ter-
mination may happen.

The work described [10] postulates the use of Paxos
(a distributed consensus algorithm) to manage replicated
application state Spot instances. It then attempts to solve
a cost minimization that is based on a Markovian state
model. The authors estimate transition probabilities di-
rectly from the Spot price histories.

Our work differs from this work in several ways. First,
we focus exclusively on predicting the time until Spot in-
stance termination as a function of the probability target
provided to the DrAFTS algorithm. Using QBETS our
technique also takes into account the effects of autocor-
relation in each Spot price history. However, because it
provides a bound on duration, it may be possible to use
DrAFTS as a method of estimating the Spot instance fail-
ure probabilities that their methodology requires.

The authors of [21] describe a neural-network based
approach to predicting prices in the Spot tier. Their ap-
proach (based on a mixture of Gaussians and a Box-
Jenkins time series methodology) generates one-step

ahead predictions (with a granularity of 1.3 hours) for the
spot market that are quite accurate. However they point
out that predicting the market for longer time frames
should be encouraged as future research. DrAFTS con-
stitutes such research in that it combines QBETS pre-
dictions of the bounds on price (for the next 5 minute
interval) with a duration prediction essentially providing
predictive bounds for arbitrary durations into the future.
The length of the prediction interval is determined by the
probability of the bounds being too high.

Finally, the authors of [1] investigate, at some length,
the market dynamics associated with the AWS Spot tier.
Their hypothesis is that pricing in the Spot tier is not
driven solely by client demand (i.e. AWS introduces hid-
den externalities that affect pricing). We concur with the
analysis presented in [1], motivating us to turn to QBETS
as an efficient adaptive technique. Again, DrAFTS is
only providing a statistical bound predicted price and,
thus, need not recover the “true’”” underlying market dy-
namic completely. The efficiency of QBETS combined
with its non-parametric nature makes it possible to adapt
to any introduced externalities “fast enough” to make on-
line prediction possible.

6 Conclusions and Future Work

In this work, we present DrAFTS (Durability
Agreements from Time Series) as a methodology
for predicting bounds on the prices to be bid in the
Amazon AWS Spot tier and the durability of these bids.
DrAFTS is adaptive, automatic, and non-parametric
making it possible to be used without human inter-
vention (e.g. as part of an on-line prediction service).
We verify that DrAFTS is able to achieve a specified
probabilistic bound on future survivability of instances
in the Spot tier for a large set of instance-type-AWS
region combinations. We also compare DrAFTS to a
simple non-parametric approach (widely used colloqui-
ally) based on empirical observation of pricing data and
find that it is more effective. Finally, we illustrate the
relationship between bid pricing and the durability of
DrAFTS statistical guarantees.

There are several ways in which we wish to im-
prove upon the methodology. In particular, we focus on
DrAFTS illustrations in this paper using regional Spot
tier pricing data, but not at the AZ level because Ama-
zon makes AZ pricing data user-specific. DrAFTS does
work at the AZ level but the results are only meaningful
to the user whose ID requests the pricing data. We wish
to expand DrAFTS so that it is useful to users wishing to
exploit its features for Spot instances launched in specific
AZs.
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