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Abstract—In this paper, we present CLOUDRUNNER, a frame-
work that extracts arbitrary programs from a source code
repository (e.g. GitHub), wraps them in a web service and tasking
system, and deploys them over disparate cloud infrastructures
and local clusters, automating their portability. In particular,
CLOUDRUNNER automatically creates and configures virtual
machines so that they can execute the applications, provides a
web UI with which users parameterize their applications, deploys
instances of the program as background tasks, and collects the
results for easy access via a browser. CLOUDRUNNER is an
ideal framework for deploying scientific simulation applications
portably and as such, we use it to implement StochSS - Stochastic
Simulation as-a-service (now available at http://www.stochss.org).
We use StochSS to evaluate CLOUDRUNNER overheads and find
that they are small, consistent, and amortized for even short
running applications.
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I. INTRODUCTION

Cloud computing is a highly customizable, pay-per-use,
service-oriented methodology that offers many attractive fea-
tures. Foremost, it simplifies the use of large-scale distributed
systems through transparent and adaptive resource manage-
ment, and automation for configuration and deployment of
entire systems and applications. Cloud computing enables
arbitrary users to employ potentially vast numbers of multicore
cluster resources that are not necessarily owned, managed, or
controlled by the users themselves. By reducing the barrier to
entry on the use of such distributed systems, cloud technolo-
gies encourage innovation and implementation of applications
and systems by a broad and diverse developer base — a base
that might not otherwise have access to such resource scale.

To date, however, cloud computing has been used primarily
to implement commercial information technologies and to
support web services (multi-tier systems that encapsulate and
integrate business logic, user presentation/interface, and a
database engine). As a result, cloud systems (and the tools
that facilitate their use) typically focus on support for the web
service application domain. Users interested in other domains
(e.g. scientific simulation and large scale data analysis) are
left to devise their own toolsets. For clouds, such tooling
requires that significant expertise, experience, time, and labor
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be devoted to the customization, configuration, deployment,
and management of virtual machines (VMs).

In addition, for competitive reasons, clouds operated by
different vendors support different application programming
interfaces (APIs) for what amounts to the same (or a similar)
set of services. Language bindings, scaling control, service
level guarantees, pricing models, and usage policies vary
from vendor to vendor although they are logically constituent
components of every cloud. The sheer multitude of offerings
and options make it challenging for new and expert software
developers to determine which set of services is best for
their applications, for some definition of “best” (e.g. price,
performance, scale, configurability, familiarity, ease of use,
other). Moreover, once users choose a cloud technology, code
their program to its service interfaces, and configure it for that
system, they become “locked in” to both the cloud fabric and
to its service interfaces. This lock-in occurs because moving
an application to a different provider, even to a similar service,
requires significant developer porting effort (coding changes
in the application). Developing expertise with each of today’s
vast offerings is simply untenable and distracts many scientists
and data analysts from their investigations.

The goal of our work is to develop a distributed software
platform that leverages successful cloud technologies and
extends them to support automatic deployment and man-
agement of high-performance, compute-intensive scientific
simulations. Toward this end, we have designed a toolset
called CLOUDRUNNER that takes arbitrary programs and
turns them into virtual machine “images” (i.e. executables)
that workers (agents that execute tasks on behalf of a user)
execute using different cloud infrastructures. Users employ
the toolset to execute their applications in different settings
without requiring that the users become experts in any one
of them; CLOUDRUNNER takes only the user’s credentials for
the clouds she wishes to employ and automates the rest of the
cloud deployment and execution process on which ever cloud
target she has chosen.

We have designed CLOUDRUNNER for task-parallel work-
loads and in particular, those for scientific simulations in which
potentially thousands of instances of the same program execute



(each with different inputs or seed values). The only con-
straints we place on CLOUDRUNNER applications is that their
individual tasks execute on a single machine (i.e. independent,
disconnected tasks with respect to communication), that they
take their inputs from arguments or files passed to them, that
they produce files as output, and that they execute over a
Linux-based operating system.

Our work focuses on simplicity for this class of applications.
Unlike past work [1], [2] which requires a new program-
ming language for configuring tasks, we allow developers
to implement their applications in any language/environment
they wish and provide a portable graphical user interface
(the CLOUDRUNNER “app”) with which users provide their
credentials and manage job deployment. CLOUDRUNNER
automatically constructs this Ul using cloud worker code
(described by a configuration file) drawn from the user’s code
repository (e.g. GitHub). CLOUDRUNNER leverages existing
scripting technologies that developers use today to configure
their environments (e.g. GNU Bash, Puppet, Chef, and others)
and to build their applications from source (e.g. GNU Make,
Ant, Maven, and others). CLOUDRUNNER extracts and uses
these artifacts from the repository and constructs (and tests) a
virtual machine image for each of the deployment targets for
which the user has supplied access credentials. CLOUDRUN-
NER configures this virtual machine with support for database
and file storage, and task worker and queue services.

Once a virtual machine is available on one or more public or
private cloud systems, the user employs the CLOUDRUNNER
web app to specify the program inputs (arguments and files).
The user can also optionally specify which cloud and the
amount of resources (VM instances, memory, CPUs, and disk)
to use to customize her job settings. CLOUDRUNNER then
deploys the jobs across the resources in the selected cloud
infrastructure, links each to their inputs, and monitors the jobs
for termination (normal or exceptional). CLOUDRUNNER also
collects and stores the output from the jobs (any files produced
including logs if needed). Users access the output files via
the user interface in the web app. Users can also execute jobs
locally (on the machine that executes the CLOUDRUNNER UI),
directly or via a local virtual machine instance. Developers use
local execution to work out bugs and to identify inputs they
wish to deploy in the large-scale cloud settings.

In this paper, we describe the overall design and imple-
mentation of CLOUDRUNNER. We employ only open source
technologies for its implementation. In particular, we make
use of a lightweight development server for local Ul execution
from Google App Engine, and connect it to Celery [3] task
workers, a RabbitMQ [4] or public cloud task queuing system,
an HTTP-based file server (object store), and a database.

To investigate the utility of CLOUDRUNNER for scientific
simulation, we use it to implement StochSS — a stochastic
simulation system as-a-service. StochSS is a CLOUDRUNNER-
wrapped implementation of StochKit [5], an extensible C++
application that executes stochastic and multiscale algorithms
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Figure 1. CLOUDRUNNER system overview.

for biochemical systems. We overview the StochSS use case
and describe our customizations to the UL. Our current pro-
totype deploys StochSS simulations locally and via Amazon
Web Services automatically.

We use StochSS to measure end-to-end performance of
CLOUDRUNNER. We find that CLOUDRUNNER introduces a
small consistent overhead for cloud deployment (in particular,
for task management) and no perceivable overhead for local
execution. We also find that without considering task wait time
(e.g. when there are more tasks than workers), the overhead
for task management is amortized by application execution
time for applications that execute longer than one minute.

In the sections that follow, we present the design and im-
plementation of CLOUDRUNNER. Following this, we describe
our experience using CLOUDRUNNER to implement StochSS.
We then discuss our future and on-going work and conclude.

II. CLOUDRUNNER

CLOUDRUNNER is a toolset that provides its users with the
ability to run arbitrary programs on cloud resources without
worrying about the specifics of the cloud infrastructure. The
entire process, from installing dependencies to running the pro-
gram is managed by CLOUDRUNNER. Figure 1 overviews our
CLOUDRUNNER design. Developers use the CLOUDRUNNER
tools to construct automatically an execution engine for their
program. The engine abstractly consists of a set of virtual
resources through which CLOUDRUNNER achieves portability.
The virtual resources enable task execution via Workers, task
management via a Task Queue, File Storage for task output,
and a Database for storing task state and CLOUDRUNNER
metadata. As part of CLOUDRUNNER’s construction of the
execution engine, it also generates a portable web application
with which users parameterize and manage their tasks (running
instances of their program(s)). The CLOUDRUNNER web app
consists of a Web UI and a set of backend services that
interface to virtual resources through a set of application
programming interfaces (APIs).

Figure 2 depicts the CLOUDRUNNER services, virtual re-
sources, and the primary APIs CLOUDRUNNER uses to access
the resources. The Login service provides user authentication,
the Job Manager starts tasks, tracks their progress, and col-
lects their output, and the Cloud Manager interfaces to one
or more public or private cloud technologies to implement
CLOUDRUNNER. We implement the virtual resources with
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Figure 2. CLOUDRUNNER Backend Services

one or more different implementations located on the local
machine or in the cloud. This modular design facilitates
integration of multiple disparate deployment targets and thus
portability of user programs across cloud infrastructures (and
local machines).

To implement CLOUDRUNNER, we use the Python pro-
gramming language for portability. In addition, we build upon
and extend a number of extant open source technologies
and make CLOUDRUNNER available as open source. In the
subsections that follow, we provide more details on each of
the primary components of CLOUDRUNNER.

A. Deploying and Building Cloud-Enabled Programs with
CLOUDRUNNER

We refer to the process of adding new programs to
CLOUDRUNNER, i.e. encapsulating programs in a web service
and integrating them as part of a background task execution
engine, as “service-izing” the programs. To enable this, the
CLOUDRUNNER tool CRBuild takes a source code repository
URL and downloads, configures, and installs one or more pro-
grams. CRBuild does so directly if local execution is desired,
and within a virtual machine if remote (cloud-based) execution
is desired. To enable this, CLOUDRUNNER relies on a set of
named files that invoke standard and popular technologies for
installing software to be present in the source code repository.
In particular, it expects an executable file called CRBuild.sh
(a GNU Bash script) that invokes the installation process for
the program, and an executable file called CRTest.sh (a GNU
Bash script) that executes a test input on the program. In
addition, CLOUDRUNNER expects a text file in the YAML
format [6], called CR.yaml, for each program to be service-
ized that specifies each of the parameters the program takes as
input. If there is more than one program, name expects the CR
filename to be suffixed with integers in increasing order, e.g.
CRI1.yaml and CR2.yaml. Figure 3 depicts a CLOUDRUNNER-
built VM configured for a service-ized program. For local
execution, CLOUDRUNNER skips the VM creation step and
attempts to build and test the program locally.

In our experience, CRBuild.sh typically calls a script that
performs the configuration and installation of the program (e.g.
INSTALL or configure; make; make install) that developers
currently provide. Thus, the CLOUDRUNNER additions are
the test script that sets up the environment and invokes
the program with representative arguments and the YAML
file that describes the programs arguments in a well-formed
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Figure 3. A example of a CLOUDRUNNER VM.

manner. Our current CLOUDRUNNER prototype expects that
the developer is able to build and run their program in a Linux
distribution (CentOS or Ubuntu is currently supported) and
in a modern Mac OS X system. Once scripts are available
that automate this process, developers simply wrap them in
the appropriate CLOUDRUNNER programs to facilitate service-
ization.

CRBuild automatically constructs a virtual machine for
each cloud infrastructure on which the user is ultimately
interested in executing. CRBuild uses the interface for each
of the infrastructures to do so. Our current prototype supports
Amazon EC2 [7] and Eucalyptus [8] (an on-premise private
cloud infrastructure that is API compatible with Amazon
EC2). We are currently working on extending our prototype
to other cloud infrastructures (Microsoft Windows Azure and
Rackspace); doing so is straightforward as CLOUDRUNNER
only requires APIs for starting, stopping, and querying the
status on VM instances for which each provider provides a
similar APIL.

The CR.yaml file describes the program’s command line
parameters, executable name, and how parameters are passed
in. CLOUDRUNNER currently expects a minimum set of keys
(i.e. key-value pairs) in this file. The first required key is
“executable” and the value of this key should be the name of
the program’s executable. The next required keys are closely
related, “parameter_prefix” and “parameter_suffix” and their
values represent strings used to prefix and suffix command
line parameter key names, respectively. The parameter suffix
is only used for file parameters, i.e. parameters that take a
file name as an argument, and value parameters, i.e. all other
parameters that take an argument. The user is responsible for
keeping any user-modified web forms in the CLOUDRUNNER
UI synchronized with the CR[?] . yaml file(s) if they change.

The last two required keys are “required_file_parameters”
and “required_value_parameters”. The values of both of these
keys are lists of the actual parameter names, which can
be left empty if the program has no required file or value
parameters. The file parameters actually need to be specified
as a list of parameter name and input file extension pairs
(represented by lists of size 2). If the parameter accepts file
names with arbitrary extensions (i.e. text files) then the file
extension can be specified as a blank string. The CLOUDRUN-
NER toolset also currently supports an optional version of
both of these keys, i.e. “optional_file_parameters” and “op-



tional_value_parameters”, as well as a third optional key called
“optional_boolean_parameters”. The value of this third op-
tional key, if included, should be a list of parameter names for
boolean parameters, i.e. parameters whose inclusion/exclusion
signify their value. A sample YAML program description
file is included below for a program with only 4 accepted
command line parameters, 3 required value parameters and 1
optional boolean parameter.

executable: do_something
parameter_prefix: —
parameter_suffix: =
required_file_parameters: []
required_value_parameters:

— valuel

— value2

— value3
optional_boolean_parameters:

— skip—nonsense

CRTest.sh is a script that sets up any necessary environment
variables and executes each of the programs for which there
are CR.yaml files. The script must exit with a zero value upon
successfully executing each of the programs. CLOUDRUNNER
considers any non-zero exit value as an error which it reports
back to the user and terminates the CRBuild process (after
cleaning up all resources it has allocated including virtual
machines as necessary). The user is responsible for including
all of the necessary executables and arguments in the test to
ensure that CLOUDRUNNER can execute the application with-
out error as cloud-based tasks. To help users with this process,
we provide them with a VirtualBox VM (Debian-based and
RedHat-based Linux distributions) with which they can locally
test their build and test scripts directly to validate correctness.
The CLOUDRUNNER prototype currently supports git-based
source code repositories (e.g. GitHub, Bitbucket, local git
repositories). CLOUDRUNNER uses the standard git clone
command on the HTTPS repository name that the user passes
to the CLOUDRUNNER tool CRBuild (i.e. USAGE: CRBuild
https://github.com/myaccount/myrepo.git).

B. The CLOUDRUNNER Login Service

The login service provided by CLOUDRUNNER is typical of
that employed in modern multi-user web services today. The
service allows for both administrator (admin) and regular users
to co-exist and provides admin users with the ability to approve
each new user before they are allowed to create an account in
the system. Prospective users are able to request an account
from the admin, who then can approve or reject the request.
CLOUDRUNNER provides a login service to securely manage
per-user credentials for different cloud infrastructures. Past
work [1] does not support security and multi-user capabilities.

To implement the login service, we augment a basic
open source login interface (described below as part of
the CLOUDRUNNER frontend) with SSL support to facilitate
secure login and production use in multi-user settings. To

enable this, CLOUDRUNNER automatically launches an Nginx
server to serve requests to the CLOUDRUNNER web app.
The server is configured for SSL-only access and is used by
CLOUDRUNNER as a reverse proxy for the app. CLOUDRUN-
NER automatically configures and deploys this server as part
of its frontend.

To bootstrap the authentication system with the adminis-
trator account, a CLOUDRUNNER tool initiates a handshake
as part of CLOUDRUNNER installation and initial deployment.
This process creates an admin user using a secret token that
it stores in the database resource. Once the secret token is
injected, the tools return the value of the secret token back
to the application which is responsible for displaying it to the
user. Using this token, the admin can create her account and
log into the system. Upon doing so, the token is invalidated.
The admin user has the ability to approve and deny user
account requests, explicitly whitelist approved users by their
email address and delete current users. The admin is treated
as a trusted entity within the system and is also allowed to
reset the password of any user to a random string of digits,
characters and special characters generated automatically. This
tool uses the database resource to store information about each
user of the system.

C. The CLOUDRUNNER Job Manager

CLOUDRUNNER’s job manager controls the task queue and
worker resources. In particular, the job manager is responsible
for executing jobs locally and remotely, querying their status,
killing jobs, and cleaning up job artifacts. The CLOUDRUN-
NER UI interacts with the job manager via the RunJob,
KillJob, and Clean APIs. The UI is responsible for indicating
whether a user wishes that his job be executed locally or
remotely, and with which program arguments (or files). The
job manager uses this information to construct and deploy a
task-based implementation of the program accordingly. The
job manager periodically checks the status of the tasks it
deployed and updates the status in the database resource. When
a job terminates (normally or exceptionally), the job manager
collects the output files and makes them available for user
access via a link on a page in the CLOUDRUNNER UL

The job manager relies on two internal CLOUDRUNNER
virtual resources for executing tasks: the task queue and task
workers. The task queue is a fault-tolerant and distributed
message passing service that facilitates execution of tasks by
workers (execution engines). The configuration and setup of
this queuing system is handled entirely by CLOUDRUNNER
and requires no input from the user. CLOUDRUNNER invokes
one or more workers per VM depending upon the resources
that the VM has at its disposal (number of CPUs and amount
of memory). This is customizable and defaults to one worker
per CPU. If a worker crashes while it is executing a task, the
task is automatically made available to another worker by the
queuing service.

CLOUDRUNNER employs task workers locally and remotely
using slightly different semantics. Remote task execution



governs how the workers execute the programs on different
cloud infrastructures and store their results. Every task has a
unique identifier and an associated status, which is updated
by the worker at specific, pre-defined intervals throughout
its execution. Depending on the actual value of the tasks
status, the task may additionally have some relevant metadata
such as the location of the output results or the reason for
failure. All of this information about a task is stored in
the database resource using the tasks unique identifier as
the primary access key. For remote, cloud-based execution,
we implement the task queue resource using RabbitMQ and
Amazon Simple Queuing Service (SQS); for task workers we
integrate Celery. Celery is a scalable, open source interface to
a wide range of queue services (including RabbitMQ and SQS)
that implements asynchronous dequeuing and execution of
tasks. CLOUDRUNNER'’s cloud tasks store their results locally
and upload them to the cloud file system (virtual resource)
upon termination. We implement CLOUDRUNNER’s cloud file
system using Amazon Simple Storage Service (S3). The job
manager provides links to the URIs of these files in the
CLOUDRUNNER UI when available.

CLOUDRUNNER’s local execution spawns processes for
task execution on the same physical machine on which the
CLOUDRUNNER app is hosted. That is, CLOUDRUNNER by-
passes the use of a queue service and implements workers
using operating system processes for simplicity (since the
local machine is likely to be resource-limited relative to the
cloud). The job manager checks the status of a local task by
querying its process identifier on the local operating system.
CLOUDRUNNER assumes that the local machine employs a
Linux-based operating system (Mac OSx included). For Win-
dows users, we provide a virtual machine for the CLOUDRUN-
NER app that the users can instantiate locally (e.g. using
the freely available virtualization system VirtualBox). Local
execution allows users to run and debug their applications
directly without requiring Internet access and prior to using
cloud resources. Local tasks store their output files to the local
file system which the job manager provides links to within the
frontend UI upon termination.

D. The CLOUDRUNNER Cloud Manager

The final backend service provided by CLOUDRUNNER
is the cloud manager. The cloud manager is responsible for
interfacing with all of the supported cloud infrastructures and
abstracting away all of their differences. The CLOUDRUNNER
UI is responsible for transmitting cloud credentials to the
cloud manager and for calling the StartVM/StopVM APIs if
optionally selected by the user. The user need not manage
cloud VMs manually as CLOUDRUNNER will automatically
start and stop VMs when jobs are deployed. The user can
specify the maximum number of VMs to place a limit on VM
instance use. If a user chooses to terminate a VM that has
running jobs in it, the jobs are terminated as well. Users also
have the option of specifying the instance types to use in the
cloud; this dictates how much memory and the number of CPU

cores and disk space tasks are given.

As part of the CLOUDRUNNER VM creation process, we
also configure timers that identify when a VM instance has
been idle for more than ten minutes (a configurable value).
When a VM instance is executing within a cloud infrastructure,
the cloud manager terminates the VM to keep costs down.
Moreover, the cloud manager is able to do so at the pricing
granularity of the public cloud so that it keeps VM instances
up (warm) for use in task execution, but terminates idle
instances before they enter the next billing increment (e.g. hour
boundaries in Amazon EC2). In this way CLOUDRUNNER
reduces the cost of using the public cloud when possible
without involving the user.

E. The CLOUDRUNNER Web-based User Interface

The CLOUDRUNNER front end is a web-based graphical
user interface (GUI). CLOUDRUNNER automatically generates
a basic implementation of this UI that the user can cus-
tomize and build from. CLOUDRUNNER constructs web pages
for user login, cloud credentials, job input specification and
deployment, and job management (and output acquisition).
CLOUDRUNNER links these web pages to the CLOUDRUNNER
backend services as part of a simple web application (app).

To implement this web app, CLOUDRUNNER builds upon
and extends the Google App Engine software development kit
(SDK) [9]. The SDK is an open source web server that pro-
vides interfaces for basic web application functionality (login,
database access, request handling). To construct CLOUDRUN-
NER, we extend this SDK with new implementations for
these basic service APIs to form the CLOUDRUNNER backend
services and APIs. In particular, we extend user authentication
with SSL support (login service), we extend the database
API to use a cloud database service (instead of a flat file)
for remote task management by the job manager, and we
extend the application runtime (sandbox) with new features
that facilitate local file I/O, a wider range of Python libraries,
and execution (forking of subprocesses) of locally deployed
background tasks by the job manager. Finally, we added
support for interacting with a remote task queue by the cloud
manager.

F. Design Choices

Our CLOUDRUNNER design is based on two guiding prin-
ciples. The first is the decoupling of the UI from the backend
execution. All of the components of CLOUDRUNNER are
provided as individual services each with its own set of
APIs. Users of CLOUDRUNNER can take these individual
services and use them to build their own custom interfaces
to encapsulate the underlying feature provided by the service.

The second is specific to the types of programs that can
be executed. CLOUDRUNNER restricts the programs it runs to
those that are independent with regard to their communication
and interoperation and that execute using a single (virtual) ma-
chine. This characteristic is common for scientific simulations



that are run multiple times with a number of different parame-
ters or random seeds (our target application domain). A major
benefit of this requirement of communication independence is
that a single invocation of a program, i.e. a task, represents
a single unit of parallelizable work. The parallel computing
aspect comes from ability of CLOUDRUNNER to run as many
tasks as the user requests, with the only limit on the number of
concurrent tasks being the number of cores in worker virtual
machines that CLOUDRUNNER is allowed to launch.

III. CLOUDRUNNER USE CASE: STOCHSS

We next employ CLOUDRUNNER for a scientific simulation
application called StochKit. StochKit is a widely used exe-
cution engine, written in C++, for stochastic and multiscale
algorithms that simulate biochemical systems. In this section,
we show how we use CLOUDRUNNER to implement StochSS
— Stochastic Simulation as-a-Service.

A. “Service-izing” StochKit

We first augment the StochKit git repository (in GitHub)
with the structure and files that CLOUDRUNNER expects.
In particular, we have a StochKit directory under which
there are files CR.yaml, CRBuild.sh, and CRTest.sh.
CRBuild.sh installs the libxml2 development library
(checking first which distribution it is installing into). The
script then executes configure (StochKit uses the Linux
autoconf utility), make, and make install. To construct
CRBuild. sh, we create it and call an extant StochKit build
script called install.sh.

CRTest . sh is a bash script that executes the StochKit ap-
plication with arguments from the command line. We include
each executable that we are service-izing in the script:

export STOCHKIT HOME=$PWD/ StochKit
export STH=$STOCHKIT _HOME
mkdir —p /tmp/StochKit
$STH/ssa —m $STH/models
/examples/dimer_decay.xml —r 1 —t
—out—dir /tmp/StochKit —force
$STH/tau_leaping —m
$STH/ models/examples/
dimer_decay .xml —r 1 —t 1 —i 1
—out—dir /tmp/StochKit —force
rm —rf /tmp/StochKit

1 —i 1

The final files that we add to the repository are CR1.yaml
and CR2.yaml because there are two executables to service-
ize (ssa and tau_leaping as shown in the test script above).
In CRl.yaml, we specify each of the parameters that the
application expects for the ssa executable. This file identifies
the executable name, the parameter prefix and suffix charac-
ters, and the names of the required and optional parameters.
CLOUDRUNNER supports file argument, boolean argument,
and value (all other) argument types. Our CR1 . yaml file has
the following contents (we omit CR2.yaml for brevity):

executable: ssa
parameter_prefix: —
parameter_suffix: °~ ~°
required_file_parameters:

— [model, xml]
required_value_parameters:
— time

— realizations
optional_value_parameters:

— intervals

— bins

— species

— out—dir

— seed

— processes

— epsilon

— threshold
optional_boolean_parameters:

— no—stats

— keep—trajectories

— keep—histograms

— label

— force

— no—recompile

CLOUDRUNNER uses these files to generate a web form that
facilitates user entry for each of the parameters. The form
shows each of the required parameters and hides the optional
parameters (which can be shown/hidden via button toggle);
at the bottom CLOUDRUNNER inserts a Run Locally and
a Run in Cloud button. Users can customize this form to
improve esthetics and user experience.

CLOUDRUNNER integrates this web form into its applica-
tion (app) which provides support for user authentication and
login, cloud credential handling and VM management, and
task deployment locally and over different cloud infrastruc-
tures. The webform is generated via the ——generate-UI
flag to CRBuild. CLOUDRUNNER does not generate it by de-
fault to avoid overwriting a previously generated and possibly
customized version.

The CRBuild script creates a VM (and credentials page) for
each of the cloud infrastructures where a program has been
built successfully. Users identify the infrastructures using the
——infra parameter to CRBuild. This parameter takes one or
more, comma delimited infrastructure names. In our case, the
complete call to CRBuild is as follows. We then update the
web form to provide a customized UI for StochSS.

CRBuild —infra=aws —generate —UI
https :// github .com/user/project. git

B. Running StochKit Simulations

To use the CLOUDRUNNER app, users simply invoke the
CRRun tool. This tools launches the CLOUDRUNNER app
and directs a browser window to its server (now running
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Figure 4. StochSS Web UI constructed using CLOUDRUNNER.

locally). A screen shot of the customized StochSS web form is
shown in Figure 4 (top left). The other pages provided by the
CLOUDRUNNER app are those for login, for specifying cloud
credentials and managing VMs, and for job management. We
include the latter two in the figure (bottom left and right,
respectively). To invoke a job, the user logs in, navigates to
the application’s web form and enters arguments for each of
the parameters of interest. The user clicks the Run Locally
button to execute the job locally (to test that CLOUDRUNNER
is working correctly). The job status, output, and any error
files are accessible via the Job Management page. Users click
the job when finished to access the output files.

To run jobs in the cloud, the user navigates to the Cloud
page and enters her credentials. She can also start VMs here
to avoid VM spin-up time upon initial job submission. The
user specifies the program arguments via the web form and
presses the Run in Cloud button. CLOUDRUNNER then
spawns a worker VM if none are running and submits the
job to the message broker. A worker in the system retrieves
the job from the message broker, executes the task, copies
any output files to cloud storage, and contacts the message
broker for completion. The user can terminate worker VMs
via the Cloud page or wait for CLOUDRUNNER to terminate
them automatically (after an idle period of 10 minutes).

IV. RESULTS

We next empirically evaluate CLOUDRUNNER using the
StochSS prototype. For local execution, we use a 2011 iMac
with 12GB 1333MHz DDR3 memory and a 2.7GHz quad core
Intel Core i5 processor. For cloud execution, we use Amazon
Web Services (AWS). For AWS, we employ Elastic Compute
Cloud (EC2) instance size c3.large, the Simple Storage Service
(S3) for cloud storage, and the Simple Queue System (SQS)
for the message broker CLOUDRUNNER implementations.

We first present the time for the various stages of
CLOUDRUNNER deployment (compilation, installation of de-
pendencies, repository cloning, and image creation). These
times are specific to StochKit but provide insight into where
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Figure 5. StochSS end-to-end deployment time for StochKit
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Figure 6.  CloudRunner average execution time (in seconds) with 95%
confidence for different StochSS job sizes.

time is spent in this process. The StochKit compilation (build)
time consumes a majority of time (9.5 minutes). The second
largest consumer is image creation in AWS (2 minutes).
CLOUDRUNNER introduces no additional overhead that we
were able to measure. The percentage breakdown for an end-
to-end deployment us shown in Figure 5.

We next consider end-to-end execution time when using
CLOUDRUNNER for local and cloud job deployments. End-
to-end time consists of CLOUDRUNNER job management,
execution of the program, and storage of job output (in the
local file system for local jobs and in persistent storage for
cloud jobs). For cloud execution, this time also includes
task processing time in the queuing system (i.e. the time
between job submission and when a worker dequeues a task
for execution). End-to-end execution time is job-dependent
but our presentation of these values for individual StochSS
jobs enables us to distinguish CLOUDRUNNER overheads. The
typical use of CLOUDRUNNER, however, is to use the cloud
for large numbers of concurrent jobs or for long running jobs.

We chose three different StochKit parameterizations arbi-
trarily to represent different job lengths (we targeted 5, 60,
and 120 second jobs, which we refer to as small, medium,
and large in our graph). We execute each job 10 times and
present the average and 95% confidence bounds. The results
are shown in Figure 6. We show the confidence interval from
the student T distribution with 9 degrees of freedom. The Local
bars show end-to-end execution time for local job deployment
and file system storage. Cloud bars show the same deployment
via our distributed tasking service using AWS resources.



Above each Local bar is the percentage of time spent in
computing (local storage time is statistically insignificant).
Above each Cloud job is the percentage of time spent
computing (C) and storing job results (S). CLOUDRUNNER
overhead for local deployment is statistically insignificant;
CLOUDRUNNER overhead for cloud deployment varies by
job size. CLOUDRUNNER imposes overhead on end-to-end
execution for queue processing. This overhead can consume
a significant portion of this time for short running jobs and
is amortized by long running jobs. Cloud storage to persist
job output also consumes a significant portion of overall time
relative to local file system storage.

Included in these Cloud execution times is task queue time
(due to message brokering) with no contention. We observe
this time to be independent of task size (it is 5 seconds on
average across job sizes). In addition, we spawned the task
worker VMs in this study ahead of time. Spawning time
in our experience varies between 1 and 3 minutes in AWS.
Since CLOUDRUNNER triggers spawning when there are tasks
waiting in the queue (up to the maximum number of VMs
identified by the user), tasks may wait this additional duration
to be serviced. Moreover, once the maximum number of VMs
is spawned, task wait time will be impacted by contention
with already running tasks (for which completion time is
application specific).

V. RELATED WORK

CLOUDRUNNER is most similar to work that we investi-
gated previously on a domain specific language for deploying
high-performance computing applications in the cloud, called
Neptune [1], [2]. The work presented herein is a significantly
simpler approach that automates much of the specification
work required to use Neptune. In particular, CLOUDRUNNER
consumes programs from a source code repository, requiring
only that developers wrap their existing installation and build
scripts in well-defined file names and to specify their program
usage (parameters) as a YAML file. CLOUDRUNNER also
extends beyond Neptune to provide a web interface to user
programs and supports secure, multi-user access to the service.

Other related work includes cloudinit.d from Nim-
bus [10]. cloudinit .d provides an API that users employ
to automatically launch, configure, and deploy nodes in a cloud
infrastructure. Other related tools, such as Nimbus Context
Broker [10] and Mesos [11] and emerging IT tools (e.g. Pup-
pet, Chef, and SaltStack) help users to automate configuration
of VMs, but none provide the end-to-end service-ization that
CLOUDRUNNER provides, which includes automatic UI gener-
ation, local web service deployment, and execution of arbitrary
programs locally and over disparate cloud infrastructures.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a new approach to simplify-
ing the use of cloud infrastructures for the deployment of
arbitrary Linux applications. In particular, we present the
design and implementation of CLOUDRUNNER, a toolkit that

wraps applications within a simple web service so that users
can parameterize and execute their programs locally or via
one or more cloud infrastructures (public and on-premise)
directly through their browser. Users provide CLOUDRUNNER
with their Git repository to which they have added simple
configuration scripts. CLOUDRUNNER uses these scripts to
create and configure a virtual machine image that it then
instantiates to execute their applications as a cloud task that
the user parameterizes via the CLOUDRUNNER web app.
CLOUDRUNNER automates many of the steps in converting
an executable to a web and cloud based application so that
users can focus on their innovation, science, and results.

To evaluate CLOUDRUNNER, we use it to implement
StochSS — a Stochastic Simulation Service, from the StochKit
application from UC Santa Barbara. With StochSS, scientists
use the CLOUDRUNNER web app to run a wide range of sim-
ulation algorithms on biochemical models. We use StochSS to
measure end-to-end performance of CLOUDRUNNER. We find
that CLOUDRUNNER introduces a small consistent overhead
for cloud deployment (in particular, for task management) and
no perceivable overhead for local execution. We also find that
without considering task wait time (e.g. when there are more
tasks than workers), that the overhead for task management
is amortized by application execution and storage time for
applications that execute longer than one minute. As part of
future work, we are augmenting CLOUDRUNNER with support
for map-reduce jobs, for providing users with more control
over job output and data visualization, and for estimating the
costs of cloud use.

This work was funded in part by Google, IBM, NSF grants
CNS-0546737, CNS-0905237, CNS-1218808, and NIH grant
1RO1EB014877-01.
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