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Abstract. We present the latest instantiation of GridSAT (Chrabakh and Wolski,
2003), a distributed and complete satisfiability solver that is explicitly designed
to aggregate grid resources for application performance. GridSAT was previously
shown to outperform the state-of-the-art sequential solvers. In this work, we ex-
plore the unprecedented solving power GridSAT enables through algorithmic and
implementation innovations. We describe the implementation techniques that al-
low GridSAT to leverage a variety of high-end batch-scheduled resources, clusters,
interactive workstations, and personal computing resources through autonomous
scheduling, checkpoint scheduling, and work migration. These innovations have al-
lowed GridSAT to solve a set of “hard” and previously unsolved industrial and
community satisfiability problems. In addition to this new solution power, GridSAT
also outperforms the otherwise highest performance general solvers on the annual
SAT competition (SAT Competition, 2005) performance benchmarks.
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1. Introduction

Grid computing (Foster and Kesselman ed., 1998; Berman et al ed.,
2002) is an emergent field in computer science that focuses, in part, on
the aggregation of geographically distributed and federated computa-
tional resources. These resource aggregations can be harnessed by grid
applications to solve problems in science and engineering (Wilfred et
al., 2004; Gabrielle et al., 2001) which require large computing power.
Solving such challenging problems and enabling new scientific results
is an integral part of the grid computing vision.

One such challenging problem is propositional satisfiability. This
problem involves finding a set of binary assignments to variables that
satisfies a set of constraints (i.e. makes a binary expression evaluate
to “true”). The problem of solving satisfiability instances is impor-
tant from both theoretical and practical perspectives and is, in gen-
eral, NP-complete. In practice, many engineering disciplines require
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2 Chrabakh and Wolski

the solution to domain specific instances of satisfiability. Such disci-
plines include scheduling (Ramn Bjar and Felip Many, 2000), model
checking (Li et al., 2003), security (Alessandro Armando and Luca
Compagna, 2003), Artificial Intelligence (Henry Kautz and Bart Sel-
man, 1992), software verification (”D. Jackson and M. Vazir, 2000),
and the the area of Electronic Design Automation (EDA) which in-
cludes circuit design (Silva, 1995), Field-Programmable Gate Arrays
(FPGA) detailed routing (Nam et al., 2001), combinational equivalence
checking (Kunz and Stoffel, 1997) and automatic test and pattern
generation (Larrabee, 1992).

As a result, an extensive body of research has focused on the de-
velopment of highly-efficient satisfiability solvers (Moskewicz et al.,
2001; Goldberg and Novikov, 2002; Hirsch and Kojevnikov, 2001; Biere,
2001). The results of this research have lead their wide-spread use in
industrial and research settings where the solution to general satisfi-
ability problems is essential (Silva, 1995; Nam et al., 2001; Li et al.,
2003). These solvers use different techniques to navigate the entire
search space of possible truth assignments for the variables of a given
expression. The best (fastest and most comprehensive) of these solvers
use learning optimizations that permit the search space to be “pruned”
during execution. Learning (Silva and Sakallah, 1996) introduces new
deduced propositions which improve the solver’s efficiency by obviating
subtrees in the space of possible variable assignments.

Because learning requires a large, centralized database of intermedi-
ate propositions to be searched and updated frequently, the most suc-
cessful solvers resulting from prior work are sequential. These sequential
solvers are characterized by heavy use of compute power (CPU) as
well as the memory of the host machine as the database must be kept
memory-resident (or the speed becomes unacceptably low).

Research in parallel solvers (Chrabakh and Wolski, 2003; Jurkowiak
et al., 2001; Sinz et al., 2001; Forman et al., 2002), shows that using a
large pool of computational resources can lead to better performance
for some problems. The aggregate CPU power and memory of the hosts
allows the solver to navigate the search space faster. However, because
the clause database used in learning is accessed so frequently, with the
exception of (Chrabakh and Wolski, 2003), these initial parallel efforts
have not been able to take advantage of learning optimizations in a
distributed environment. Thus the fastest solutions to the largest num-
ber of problems (i.e. the most generally successful approach) have been
achieved by sequential solvers that employ learning (SAT Competition,
2002,2003) prior to our work.

By carefully leveraging the resources in grid settings, our goal is to
build a parallel and distributed satisfiability (SAT) solver that correctly
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determines the solution to previously infeasible industrial problem in-
stances, the answers for which cannot be determined in any other way.
Secondarily, we would like to be able to improve upon the fastest time
to solution for problems that have previously been solved by either
parallel or sequential solvers.

Our previous work with GridSAT (Chrabakh and Wolski, 2003;
Chrabakh and Wolski, 2003) demonstrates the latter. By dynamically
acquiring and releasing resources under the control of an automatic
scheduler, GridSAT improves the time to solution for various feasi-
ble SAT instances. Indeed, GridSAT outperforms the previously best-
performing solver on all problems that this leading solver can com-
plete (SAT Competition, 2002,2003). We have also been able to use
GridSAT to solve several previously unsolved problems using non-dedicated,
wide-area grid resources. It is these new domain-science results, and the
techniques we have employed to achieve them, that are the subject of
this paper.

In particular, by combining different batch-controlled super-computers
with interactive workstations and user desktop machines, we have ap-
plied GridSAT to hard SAT problems – ones that are not only un-
solved but for which previous attempts at solution using other general
techniques have failed. This pattern of combining different types of
resources is new and different from that used by existing parallel SAT
implementations (Jurkowiak et al., 2001; Sinz et al., 2001). Moreover,
we know of no distributed (i.e. network and/or grid enabled) SAT
implementations, efficient or otherwise, at the time of this writing.

Distinct resource types are utilized in different ways during applica-
tion execution. In general, the resources in a computational grid may
be of two different types: time-shared or batch controlled. In the case
of time-shared resources the application will compete with other user
applications running simultaneously on the host machine. However,
since these resources are always available the application can continue
to make progress. Other resources which are controlled by a batch
scheduler, will participate intermittently in the application through
some of their nodes. But these systems will provide significant compute
power depending on the size of the application’s request.

In order to enable a grid implementation of a SAT solver to use many
resources simultaneously, we need to address two types of challenges.
First the solver’s algorithm needs to be modified so that it can run
in parallel while ensuring that the parallel components cooperate to
improve over-all efficiency. Using a parallel algorithm makes it possible
to reason about additional optimizations which were not possible in the
sequential case. These optimizations are related to sharing intermedi-
ate results between parallel components during execution. The second
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challenge is developing a framework capable of running the parallel
solver in a very volatile computational environment while maintaining
overall solver efficiency.

Solving the above two problems was at the core of our method-
ology in designing the application components and their interactions.
Implementing this methodology can be achieved by selecting suitable
technologies. Examples of these technologies include those from par-
allel computing, which predate grid computing, such as MPI (MPI,
1994). The more relevant technologies are those which were the out-
come of grid-specific research projects such as Globus (Foster and
Kesselman, 1997), Web Services (W3C, 2003) and related standards.
We discuss in this paper the requirements imposed by the application’s
dynamic behavior and constraints on the technology so that a successful
implementation is realized. We also describe the current design and
implementation of the application.

Using the above methodology we have developed GridSAT, a dis-
tributed satisfiability solver capable of running on a computational
grid. GridSAT implements a parallel algorithm for solving satisfiability
problems based on Chaff (Moskewicz et al., 2001). GridSAT distributes
and shares the internal proposition database among processors in a way
that takes advantage of dynamic resource performance predictions to
achieve new levels of solver efficiency.

In this paper, we detail the current, most capable version of Grid-
SAT. Our most recent improvements in the clause sharing and resource
scheduling algorithms have made it possible to solve previously un-
solved satisfiability problems from the field of FPGA routing as well as
artificially generated benchmarks specifically designed to foil automatic
SAT solvers.

The paper is organized as follows. In section 2 we present Grid-
SAT’s parallel version of the algorithm and the improvements added
over previous implementations. Section 3 presents the GridSAT archi-
tecture and scheduler. The implementation methodology is detailed
in section 4. We present experimental setup and results in section 5.
Finally, we conclude in section 6.

2. GridSAT: SAT Solver for the Grid

A satisfiability problem is expressed as a boolean formula over a set
of variables. Most solvers operate on formulas expressed in Conjunc-
tive Normal Form (CNF) in which an expression conjoins (logically
“ANDs”) a set of clauses, each of which may contain disjoined (“ORed”)
literals. A literal is either an instance of a variable (V ) or its com-
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plement (∼V ) and variables are boolean. A SAT problem instance is
termed satisfiable if there exists a set of variable assignments that makes
the formula evaluate to true where “true” corresponds to a boolean 1
algebraically. If such an assignment does not exist the the problem is
declared unsatisfiable.

GridSAT is based on Chaff (Moskewicz et al., 2001), a sequential
SAT solver algorithm. Chaff, in turn, builds upon the DPLL (Davis-
Putnam-Loveland-Logemann) (Davis et al., 1962) algorithm which
solves a SAT instance by making a set of speculative variable assign-
ments (termed “decisions”) stored in a decision stack. When these
decisions are propagated through the clauses they could lead to a
cascade of implications. Implications are assignments of boolean values
to different variables as deductive consequences of previous speculative
decisions. These speculative decisions and the resulting implications
may lead to logical conflicts – deduced contradictions in which a vari-
able must take on both boolean values because of different clauses in
the original problem. In Chaff, as well as other solvers, the perfor-
mance of the algorithm is enhanced by using techniques for adding
new deduced clauses after a conflict occurs. This technique is called
Learning (Schulz and Auth, 1989; Larrabee, 1990; Silva and Sakallah,
1996). Using learning, the algorithm may generate a vast number of
additional clauses during execution. These clauses consume memory,
possibly overwhelming the capacity of the host, and also may slow
the algorithm as they can add to the search complexity of the clause
database.

GridSAT’s distributed solver addresses three significant challenges
to improving solver performance. First, GridSAT parallelizes the search
algorithm that is navigating the space of possible truth assignments.
Second, certain learned clauses from the various solvers are selected
to be distributed and shared across resources. Finally, the GridSAT
application components are dynamically scheduled at runtime to take
advantage of those available resources which can enhance the solver’s
performance.

To apply a parallel search technique to SAT, we split the original
problem into subproblems (having decision stacks with different truth
assignments), each of which is independently investigated for satisfia-
bility. Subproblems, themselves, may be split in the same way, forming
a recursive tree, each node of which is assigned to a logically distinct
processor. Clause sharing is facilitated by identifying and sharing only
important clauses.
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2.1. Sharing Learned Clauses

Each client can share newly learned clauses with other clients to help
prune their search spaces further. Fortuitously, smaller clauses have the
greater effect on pruning the search space (Chrabakh and Wolski, 2003),
but the point in the algorithm in which new clauses are considered
can affect the efficiency of clause sharing. We consider three different
methods for merging shared clauses after they are received by a remote
processor: the lazy, immediate and periodic methods.

The lazy method is the simplest to implement. The client stores
received clauses until the local solver backtracks to the highest level
in the decision stack. The advantage of this approach is that clauses
are introduced without modifying the current decision stack “in-flight.”
However, if received clauses are considered earlier, then they will help
direct the search and make the solver more efficient.

The opposite approach – the immediate method – allows clauses
to be merged immediately after they are received. New clauses could
cause implications or conflicts at higher levels in the decision stack.
Therefore, the solver may need to backtrack as a result of clause in-
troduction and modify the decision stack accordingly. Such updates to
the decision stack are complex, both from a logical consistency point
of view and in an engineering context. Moreover, if the introduction
of new clauses does not trigger backtracking, the overhead associated
with interrupting the solver and threading the new clauses into the
database may actually retard performance.

As a compromise, the periodic method is designed to periodically
merge clauses. At present, the periodicity is determined by a user
specified parameter. This periodic method allows the solver to merge
received clauses more frequently than the lazy method while merg-
ing clauses in batches and interrupting the local solver less frequently
than the immediate method. In this paper we set the periodicity to
60 seconds, but we are exploring ways to automatically schedule the
introduction of new clauses as a future enhancement to GridSAT.

3. GridSAT Architecture and Resource Scheduling

GridSAT is implemented as a special form of the coordinator/client
model where individual clients communicate directly and share clauses
(i.e. communication is between peers rather than routed through the
master). The GridSAT application uses two views of the computational
resources as shown in figure 1. The first view employs jobs to classify
processes which belong to the same resource. The second view is flat

master.tex; 31/08/2005; 16:26; p.6



GridSAT 7

Figure 1. GridSAT resource views

Figure 2. GridSAT components and their internal and external interactions. The
external components and systems which GridSAT uses, such as the Globus MDS
and the NWS, are shown in clouds.

where all processes are part of a single pool. Both of these views are
useful for managing resources under GridSAT

The coordinator (or master), shown in figure 2, reflects the resource
views shown in figure 1. It consists of the resource manager, the job
manager, the client manager, the scheduler and the checkpoint server.
We now describe the role of these components.

The resource manager is tasked with loading resource information
from one or more grid information systems such as Globus MDS (Cza-
jkowski et al., 2001) and the NWS (Wolski, 2003; Wolski et al., 1999).
The scheduler, however, is responsible for coordinating the interactions
between all the components. In addition, it handles interactions with
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external resources and monitors them to detect failures. For example,
the scheduler queries the resource manager for resource types. If the
resource is time-shared, then only one GridSAT process is launched.
For batch systems, the scheduler instead submits one job request. Ad-
ditional jobs could be manually submitted and GridSAT will use their
resources when they become available. We term this form of scheduling
active queuing; jobs waiting in queue logically execute on the interactive
resources until the batch-controlled resources become available. At that
time, the scheduler migrates work into the newly available resources.
Thus, the application makes progress using the slower, shared resources
while it waits in queue. The job manager is responsible for monitoring
the status of all submitted jobs which may be active or queued. The
client manager maintains a list of all GridSAT individual processes and
monitors their progress.

The GridSAT scheduler is the focal point and is responsible for
coordinating the rest of the components and launching new processes,
also termed clients. The scheduler uses a progressive scheme for starting
additional clients on remote resources and adding them to the active
resources’ pool. Resources which are no longer performing a task on
behalf of GridSAT are released immediately when possible. The reason
for this approach is the variability and unpredictability of resource
usage for a particular SAT problem. Some problems are solved easily
using a single host after a short time period. Other problems, however,
might be harder and require a large number of hosts and a longer time
period. By starting with a small resource pool and expanding the set
of used resources, GridSAT achieves three goals. First, a small number
of resources will be used to solve the easy problems which results in
a smaller communication overhead and therefore shorter time to solve
the problem. Second, GridSAT can adapt its resource usage to how
difficult it perceives the problem to be. For examples, if the problem is
perceived difficult at a particular stage, then the the size of the resource
pool GridSAT uses will grow. At another stage, the same problem might
be perceived to be easy and a smaller resource set will be used with
excess resources released. Lastly, by remaining as small as possible at
any given point in the execution, GridSAT promotes allocation stability
and sharing. The scheduler does not waste resources needlessly thus
the maximum number of GridSAT instances can co-exist since each
is attempting to use as few resources as possible for its own problem
instance.

The GridSAT scheduler uses the first available client immediately to
start solving the problem. The decision for splitting a problem is made
locally by the client and not by a centralized scheduler. The client makes
this decision by using two measurements. First, each client records the
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time it took to receive the problem data. Second, individual clients mon-
itor their memory usage throughout their execution period. Using both
of these parameters, a client notifies the master that it wants to split
its assigned subproblem with another client when its memory usage
exceeds a specified limit (currently 80% of forecast available memory
which it determines from the NWS) or after running for a specific period
of time. This time period is determined as twice the duration of the the
communication period the client used to obtain the problem data. Using
this method, the scheduler allows for computation time to offset the
communication overhead by using the previous communication period
as a prediction of future overhead. The clients, therefore, do not spend
most of their time splitting instead of doing useful computation. The
splitting process is performed by the cooperation of the master, the
splitting client and an idle client. The idle client is a process which is
not currently assigned a subproblem to investigate.

The GridSAT solver terminates when all subproblems are solved or
one of the clients finds a satisfying assignment. In the latter case the
client which finds the satisfying assignment sends its solution state (in
the form of an “assignment stack”) to the master. Finally, the master
saves the final solution, terminates all running clients and cancels any
pending resource requests. Most solvers in the literature are evaluated
based on the time the first satisfiable instance is found. However there
are cases where knowing all satisfiable instances is desired (”D. Jackson
and M. Vazir, 2000). GridSAT can also enumerate all the instances
where a problem is satisfiable although clearly at a greater resource
cost that is has the potential to be significantly greater than for a
single solution.

3.1. Active Queuing: Efficient Use of Batch Jobs

Batch controlled systems are usually very powerful supercomputers
and clusters which can provide large computational power. Because the
GridSAT application has dynamic resource requirements, the schedul-
ing policy adopted by GridSAT aims at accomplishing two goals. First,
these resources must be used efficiently so that allocated processors
spend very little time idle when batch jobs start executing. The second
goal is to use batch jobs only when it is justifiable for the application
to use such large computational power. Since GridSAT has variable
resource requirements throughout runtime the policy is designed so
that large batch jobs are only used when it advantageous to solving
the current problem.

Initially, the GridSAT scheduler submits batch job requests that are
large with a high number of nodes and long duration. This leads to a
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long waiting period in the scheduler’s batch queue. Thus, if a job is not
solved after this long waiting period, then it most probably is a hard
problem. Therefore batch jobs are only used when the problem is hard.
When a batch job starts execution, GridSAT migrates work (as a check-
point file) to achieve more efficient use of batch nodes. Remote GridSAT
nodes, which are numerous, will migrate their work immediately to
occupy batch nodes. After migration takes place and since networks
are fast within super-computing nodes, splitting happens at higher
rates especially after the above mentioned reductions in communication
overhead. Moreover the GridSAT scheduler senses the additional band-
width between clients executing on a supercomputer or cluster. It then
increases the size and number of clauses shared by subproblems inside
the tightly coupled resource as a further improvement. Thus, through
a combination of introspection and the NWS, GridSAT automatically
senses the performance topology available to it and reorganizes itself to
take the best advantage of the resources at hand. Note that the number
of active nodes (i.e. those with subproblems) will increase exponentially.
This happens because the number of new subproblems is increased in
proportion to the number of existing active solvers.

3.2. Components Design

There are two types of components in GridSAT: coordinator and client.
Both components have similar basic designs even though they perform
different functions. The basic features they share is that they are both
threaded and handle asynchronous communication. These features al-
low each component to perform different tasks simultaneously. Also
when one task takes a long time to process other tasks are not starved.
For example, if a remote resource experiences failure while the coordi-
nator is sending to, or receiving a message from, this resource, the
communication timeout would be very long. If the application was
single threaded or did not handle asynchronous communication, the
coordinator would not be able to communicate with any other resource
until the failed resource times out or recovers. Furthermore, Every-
Ware (Wolski et al., 1999) –the communication system currently used
by GridSAT– provides additional reliability and performance through
adaptive time-out discovery.

In GridSAT, we have identified three types of messages which are
managed differently by the application components. These message
types are categorized based on their scope and reliability requirements.
The three message types are:

− Control Messages: These messages are sent from the coordinator
to the clients or vice versa. There are many such messages but
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overall these messages are sent intermittently. Thus they do not
represent a high communication overhead. These messages are
delivered directly between the clients and the coordinator.

− Broadcast Messages: Broadcast messages are sent from the coordi-
nator to the clients or from a specific client to all the other clients.
In the first case, the coordinator broadcasts messages only when
it asks all clients to terminate or when a specific solver parameter
is to be globally modified. In the second case, however, a client
who obtains an intermediate clause which satisfies the sharing
criteria, would want to share this result with all other clients.
In order to minimize communication overhead, a tree structure
is established where the root is at the sender and the leafs are the
recipients. GridSAT uses a single tree where the initial root is the
coordinator. This tree can trivially be used to broadcast messages
originating at the coordinator from top to bottom. When a client
broadcasts a messages it assumes that it is the root of the same tree
and messages are broadcast along the same edges but in opposite
direction is some cases. The tree is constructed dynamically where
each job represents a new branch in the tree. The first client in that
job is responsible for forwarding messages emanating to or from
the job. This nodes is called the hub-node. The broadcast tree can
also self-heal after node failures. If the hub-node fails another client
from the job is chosen to be the hub-node. Once the new hub-node
is selected, the coordinator directs the rest of the clients in the job
to use the new node to forward their broadcast messages.

− Peer-to-peer Messages: Peer-to-peer messages are used by Grid-
SAT clients in order to communicate directly without using the
coordinator as an intermediary. This type of messages is used to
reduce the communication and processing load on the coordina-
tor node. More importantly it is used to reduce communication
overhead for very large messages. Some the messages exchanged
by GridSAT clients are very large and can be more that 0.5 GB

in size. Therefore, direct peer-to-peer communication makes such
message transfer faster (especially when clients are running inside a
machine with a fast network and the coordinator is located outside
that machine). However, this form of communication needs to be
setup by the coordinator so that the sender is aware of the recipient
of a given message. In the setup process the coordinator uses the
smaller control messages to disseminate the required information
to the interested clients.
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The implementation of the messaging system for all three types of
communication is similar. A message can be delivered through any of
the messaging types by simply changing the message type when the
message is initialized.

In addition, the message types described above are general and can
be used to implement other grid-applications which are similar to Grid-
SAT. Such applications include branch-and-bound like applications as
well as master-client applications.

4. Grid Implementation

4.1. Application Characteristics

The GridSAT application is different from most high-performance com-
puting applications in terms of programming model and resource usage.
In general, the programming model for these applications is character-
ized as a set of alternating steps involving computation and communi-
cation. In addition, the computation and communication intervals do
not overlap. These communication steps are also used as synchroniza-
tion barriers which enable the various components of the application
to exchange information. From the resource usage perspective, these
applications use a predetermined set of compute resources throughout
their execution.

Our application differs in much of the above aspects. The GridSAT
application has variable resource requirements depending on the prob-
lem instance. The number of resources and duration of use of those
resources cannot be predicted in general for satisfiability instances. In
fact, the set of active resources which are assigned parts of the search
space during runtime is dynamic. On the one hand, resources are added
each time the problem is split. On the other hand, resources are released
immediately after a subproblem is solved. At any given instance, there
can be many simultaneous acquiring of new resources, through prob-
lem splitting, and release of other unneeded resources. Moreover, the
application components share intermediate results as soon as they are
produced. These results are asynchronously used by all the receiving
clients.

Therefore, all the GridSAT segments are event driven and events are
produced and consumed asynchronously. The solver components, for
instance, can simultaneously perform communication and computation.
All application modules are designed and implemented to allow for
efficient management and responsiveness to these events.

Dynamic resource usage has been shown to help solve efficiently
a large set of satisfiability problems (Chrabakh and Wolski, 2003).
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Solving “hard” satisfiability problems represents further challenges. For
“hard” problems, a small number of resources would be exhausted in
a relatively short time. The CPU and memory resources would be sat-
urated and additional resources are required in order to make progress
in solving the problem under investigation. Therefore, we wanted to
use all computational resources at our disposal, in order to render the
solution of the hardest problems more plausible. The set of available
resources varied from desktop machines, to small-size clusters, to su-
percomputers. This collection of resources was heterogeneous in terms
of hardware, Operating Systems and resource management software.
This heterogeneity represents a further challenge to the deployment of
the application.

These application characteristics described above represent a true
Computational Grid application. As “power” is added to the grid Grid-
SAT can access, it makes efficient use of that power without undue
waste. At the same time, fluctuations in available power are tolerated
automatically so that the overall application remains maximally effi-
cient while it is executing. Thus, GridSAT is one of the first programs to
realize the vision of grid computing originally articulated in (Foster and
Kesselman ed., 1998) and to demonstrate this capability by generating
new domain science. Moreover, these characteristics are not unique to
GridSAT. Other branch-and-bound or coordinator-worker applications
can benefit from a similar use of computational resources.

A major challenge before implementing the various application com-
ponents was to develop an implementation strategy. The final imple-
mentation aims at using all the available grid resources efficiently while
dynamically adjusting to the application behavior and resource needs.

4.2. Implementation Strategy

Given these resource usage patterns, which are typical for a true Grid
application, we had to choose an implementation strategy which would
satisfy these requirements. There are several technology choices to se-
lect for the implementation of the application. Such options include,
among others, MPI (MPI, 1994), Globus (Foster and Kesselman, 1997),
vanilla Web Services (W3C, 2003) and later improvements such as
WSRF (OASIS, 2003).

According to our experience with GridSAT we have learned that a
successful implementation technology should allow for three pivotal ca-
pabilities: dynamic resource pool management, error detection/reporting,
and universal deployment.

The first capability is to allow the use of a dynamic resource pool.
This feature, for example, was not available in MPI-I which did not
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allow for dynamic Communicators. MPI-2 has introduced extensions to
allow for dynamic creation and destruction of communicators. Globus
and Web services also allow for a dynamic set of resources.

The second capability is error detection and reporting. Since Grid-
SAT runs for extended periods of time using a set of geographically
distributed resources, then network and resource failures are more fre-
quent. Therefore in order to implement this application we need a
technology which allows for the detection of these errors. From the
perspective of the application, the distinction between resource and
network failures is not important. It suffices for the application to
obtain a feedback if a certain operation is not successful after a certain
time period.

Error detection and recovery is very important because in our ex-
perience all resources experience a failure at some point. Even those
resources which are professionally maintained can become unrespon-
sive from the application’s perspective. Those resources that do not
experience hardware and software failures usually have scheduled rou-
tine preventive maintenance periods or a combination of software and
hardware upgrades. From the point of view of the application these are
“scheduled” or “anticipated” failures. Without rigorous error handling
the application would not be able to run for extended periods as shown
later in the results section.

Different technologies provide some form of error handling. MPI-I
allows for error handling in a limited scope which is expanded further in
MPI-2. Globus GRAM allows for error handling and call-back functions
for job management. In Web Services, WS-Notification (Graham et al.,
2004), WS-BaseFaults (Tuecke et al., 2005) and related standards could
be used to provide this functionality. The desirable error handling for
our application is to provide a time period for some actions after which
some form of error handling should be performed. Sometimes if an
action fails, then all that is needed is to retry it. In other cases, it
is assumed that the resource (or the connecting network) has failed.
This form of error handling is not available for the grid technologies
mentioned above and can be implemented at the application level.

The last desirable capability for a suitable grid technology is univer-
sal deployment. This is not entirely a characteristic of the technology
but of the computational environment as well. A widely deployed tech-
nology is advantageous because it reduces the development overhead
since one version can be deployed on all available resources. In our
experience there was no grid technology that was universally adopted
and deployed which would enable us to combine all computational
resources at our disposal. Thus a multi-infrastructure approach such
as EveryWare (Wolski et al., 2001; Wolski et al., 1999) was necessary.
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Furthermore, in order to deploy our application over a large set of re-
sources,we had to interface with many types of resource managers. For
example, resources could be managed by one of many Batch schedulers,
Condor (Tannenbaum and Litzkow, 1995) or simply shared. Our goal
was to use all these resources simultaneously regardless of what systems
they originate from. This is accomplished by determining a general job
description which can be instantiated differently using specific launch-
ers for each resource manager. For instance, shared resources can be
accessed directly using SSH. Batch systems, however, are accessed by
submitting a batch script with syntax tailored to the scheduler used.
Whenever, Globus is deployed we use it to launch and monitor job
submissions.

4.3. GridSAT Implementations

We believe that many of these technologies could be used to develop
GridSAT. In fact, we have developed a previous versions of GridSAT
called GrADSAT (Chrabakh and Wolski, 2003) (note the “A” in the
spelling) using GrADSoft. GrADSoft is a set of programming abstrac-
tions where the baseline grid infrastructure is provided by Globus and
the NWS. GrADSoft is part of the Grid Application Development
Software (GrADS) project (Berman et al., 2001; GrADS Web, ) which
is a comprehensive research effort studying grid programming tools
and application development. To facilitate experimental application
research and testing, the project maintains a nationally distributed
grid of resources for use as a production testbed. Since the GrADS
tools were universally deployed on this testbed we were able to deploy
our application with little overhead on the entire testbed.

The current version of GriDSAT uses EveryWare (Wolski et al.,
2001; Wolski et al., 1999) a very portable communication library. Ev-
eryWare has been designed explicitly to manage the heterogeneity and
dynamism inherent in grid resource environments. EveryWare can be
easily deployed as library on all the resources. In addition, all commu-
nication calls use a timeout argument, as desired, for error detection.

The resource management system interfaces with resources which
use batch systems as well as desktop machines which are accessed
through SSH. All resource related operations have been implemented
to allow for a specific timeout. If the resource is not responsive after the
timeout period expires, then the resource is considered unreachable.

In the future, we will explore other technologies as they become
more widely used. Our goal would be to make GridSAT implementation
independent where we can use an API for interfacing the application
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with the underlying communication infrastructure. As a result different
grid technologies can be substituted without affecting the application.

5. Experimental Apparatus and Results

We present two sets of experiments. The first set relates to the algo-
rithmic innovations introduced and compares the three clause merging
methods described earlier. The second set demonstrates the ability of
the GridSAT application to use a large set of heterogeneous and geo-
graphically distributed resources to solve previously unsolved problems.

5.1. Clause Merging Techniques

In this set of experiments we study the effectiveness of the three dif-
ferent learning methods: the lazy method, the immediate method and
the periodic method. These methods use different algorithms to share
intermediate clauses. The experiments are conducted using the set
of 33 benchmark problems used by the different satisfiability com-
petitions (SAT Competition, 2002,2003) and previous evaluations of
GridSAT (Chrabakh and Wolski, 2003). The experiments were con-
ducted on a set of dedicated nodes on a cluster available at UCSB.
The cluster nodes are Pentium IV CPUs with 2.66 GHz frequency
and 2 GB of memory. Each experiment uses ten nodes and one of the
three methods. The experiments are grouped into three sets where the
maximal size of a shared clause is varied between 5, 10 and 15.

5.1.1. Results

The experimental results are shown in table I. This table shows exper-
imental results for using a maximal size of shared clauses of 5, 10 and
15 respectively. The table contains three sections, one for each size of
shared clauses used. Each section shows to total time for each of the
three methods and the relative speed-up compared to the lazy method.

In order to save space in this paper we omit the runtimes for the
individual problems, But from inspecting each of the three experimental
sets, we learned that no particular method outperforms the other two
methods across all problem instances. To determine aggregate improve-
ment, then, we use the total runtime of all the problems to compare
the efficiency of the methods. Note that using the total runtime for all
problems in a benchmark is the standard method for comparing solvers.

We notice that in each case both the immediate and periodic meth-
ods outperform the lazy method. The immediate method outperforms
the lazy method by an average of about 7%. The periodic method was
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Table I. GridSAT results comparing all three learning
methods with maximal learn clause size equal to 5, 10
and 15. The total times are in seconds.

Lazy Immediate Periodic

Method Method Method

Maximum size of shared clause = 5

Total 76776 68620 64675

% Speedup (base) 10.6 15.8

Maximum size of shared clause = 10

Total 71860 67292 63400

% Speedup (base) 6.4 11.8

Maximum size of shared clause = 15

Total 69527 67292 63400

% Speedup (base) 3.2 8.8

the most efficient and showed a speedup of about 12% on average com-
pared to the lazy method. We also notice that the speedup decreased as
the size of maximal shared clause increased. These experiments show
that using the periodic method gives the best overall performance by
balancing the overhead of merging with the additional solver power that
comes from clause sharing. In addition, since the periodicity is fixed at
60 seconds in this experiment, believe that further improvements are
possible by explicitly scheduling the time and size of clause sharing.

5.2. Solving Hard Satisfiability Problems

Since GridSAT is a true grid application, (robust, portable, heteroge-
neous, pervasive, etc. (Foster and Kesselman ed., 1998)) we ran a set
of experiments to show that GridSAT can run for extended periods of
time robustly using a wide variety of resources and also solve previously
unsolved hard satisfiability instances. In these experiments we simul-
taneously use computational resources that belong to collections of
individual machines, small size research clusters and super-computing
scale clusters. The computational resources we use are composed from
four main sources:(1) 40 machines from the VGrADS (VGrADS Web,
2004) testbed located at UTK, UCSD and UCSB, (2) Blue Horizon at
SDSC, (3) TeraGrid site at SDSC, (4) TeraGrid site at NCSA and (5)
DataStar at SDSC.
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The TeraGrid (TeraGrid, 2000) project is a multi-site national scale
project which is aimed at building the worlds largest distributed infras-
tructure for open scientific research.

During our experiments, none of the resources we used were dedi-
cated to our use. As such, other applications shared the computational
resources with our application. It is, in fact, difficult to determine the
degree of sharing that might have occurred across all of the available
machines after the fact. In batch controlled system such as Blue Hori-
zon, Data Star and the TeraGrid, the queue wait time incurred is highly
variable because of jobs submitted by other users.

Thus, if it were possible to dedicate all of the VGrADS resources
to GridSAT, we believe that the results would be better. As they are,
they represent what is currently possible using non-dedicated Grids in
a real-world compute setting.

These experiments also use a more diverse set of resources for longer
periods of time (up to a month in duration) and multiple job requests.
We chose a set of challenge problems from both (SAT Competition,
2002,2003) benchmarks. These benchmarks are used to judge and com-
pare the performance of automatic SAT solvers at the annual SAT
conference. All the problems in the benchmarks are shuffled to in-
sure that submitted benchmarks are not biased in favor or against
any solver. These benchmarks are used to rate all competing solvers.
They include industrial and hand-made or randomly generated prob-
lem instances that can be roughly divided into two categories: solvable

and challenging. The solvable category contains problem instances that
some SAT solvers have solved correctly. They are used for comparing
the speed of competing solvers. Alternatively, the challenging prob-
lem suite contains problem instances that have yet to be solved by
an automatic method or which have only been solved by one or two
automatic methods, but are nonetheless interesting to the SAT com-
munity. Some of these problems have known solutions that are known
through analytical methods (i.e. the problem has a known solution by
construction), but several of these problems are open questions in the
field of satisfiability research.

In these experiments, we only chose problems from the challenging
set. These problems were deemed hard by all participating solvers
in both the 2002 and 2003 SAT competitions. We investigate seven
previously unsolved problems where three instances are from the SAT
2003 benchmark category, and four are instances from the SAT 2002
benchmark category, all of which we have not been able to solve using
previous versions of GridSAT.

This group of problems represent a variety of fields where problems
are reduced to instances of satisfiability and solvers are used to deter-
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Table II. GridSAT results using VGrADS testbed, Blue Horizon, Data Star and
TeraGrid. All these problems were not previously solved by any other solver.

File name SAT/UNSAT/* Time GridSAT Result

3bitadd-31(T) UNSAT 8 days -

k2fix-gr-rcs-w8(F) * 83261 sec ( 23 hours) UNSAT

k2fix-gr-rcs-w9(F) * 14 days and 8 hours UNSAT

cnt10(F) SAT 13134 sec ( 4hours) SAT

comb1(M) * 11 days -

f2clk50(M) * 9 days -

hanoi6(T) SAT 23 days -

(*): problem solution initially unknown

(T): Theoretical

(F): FPGA Routing

(M): Model Checking

mine the solutions. The problems contain a pair of problems in FPGA
routing and model checking. These two disciplines benefit heavily from
efficient SAT solvers. The remaining problems are of theoretical na-
ture. In addition, we set the absolute minimum size of shared clauses
to two and absolute maximum to 15. This range allows for sharing
clauses which would help prune the search space without significant
communication overhead.

Unlike previous experiments there was no timeout value set for the
maximum execution time. Every problem was run using different job
description for the batch systems. Jobs on the different batch queues
were manually re-launched at random intervals. Job re-submission could
have been automated but we wanted more control over rationing our
limited compute budgets to specific experiments based on their per-
ceived progress. Experiments where GridSAT was making progress were
allotted bigger jobs with longer durations and more nodes. The progress
of the solver was judged by inspecting how often the checkpoints were
updated. We can also inspect the internal state of a particular solver us-
ing some of the tools we developed. The VGrADS nodes were used dur-
ing the entire duration of each experiment unless the hosts experienced
failures.

5.2.1. Results

The experimental results are summarized in Table II. The first col-
umn contains the problem file name. The second column indicates the
field from which this problem instance in obtained. The third column
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Table III. Batch jobs used to solve the k2fixgrrcsw9.cnf
instance from SAT 2003 benchmark

Compute Job Job Node procs

resource count dur.(hr) count /node

BlueHorizon 2 10 100 3

Blue Horizon 1 12 100 3

DataStar 2 10 8 11

TG@SDSC 1 10 40 2

TG@SDSC 1 12 40 2

TG@SDSC 3 10 4 2

TG@SDSC 4 5 4 2

TG@NCSA 3 10 4 2

TG@NCSA 4 5 4 2

in addition to 40 machines from VGrADS testbed for

14 days 7 hours and 44 minutes

contains the solution to the instance: satisfiable (SAT), unsatisfiable
(UNSAT), or unknown. We have marked those problem instances which
were previously open satisfiability problems with an asterisk (*). If a
problem was originally unknown and was later solved by a solver, then
we still keep it marked with an asterisk for completeness. The fourth
column represents the total wall-clock time that the problem was tried.
Finally, the fifth and last column represents the solution obtained by
GridSAT which is represented by SAT, UNSAT or (-) if we terminated
the experiment before GridSAT found an answer. Note that while we
terminated these problem instances manually so that we could complete
this paper, each can be continued from its last checkpoint (which we
have archived).

Table II shows that GridSAT was able to solve three problems all
of which were not previously solved. Two of the problems were found
unsatisfiable and they are both from the field of FPGA routing. The
first problem k2fix-gr-rcs-w8.cnf was solved using the VGrADS testbed
only. Batch jobs which were submitted for this experiment were can-
celed when the problem was solved. On the other hand the second
problem k2fix-gr-rcs-w9.cnf took much longer to solve, it took more
than two weeks. Table III gives a more detailed description of the re-
source used during this experiment. For each job a number of GridSAT
solver components were launched as indicated in the last column of
table III. In table 5.2.1 a break down of the CPU-hours used on each
resource are tabulated. Note that the VGrADS testbed machines were
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Table IV. CPU-hours per resource used to
solve the k2fix-gr-rcs-w9.cnf instance from
SAT 2003 benchmark

Compute node- CPUs/ CPU

resource -hours node -hours

BlueHorizon 3200 8 25600

DataStar 160 11 1760

TG@SDSC 1080 2 2160

TG@NCSA 200 2 400

GrADS(*) 13750 1 13750

(*) machines were shared with other users

able to deliver a sizable amount of compute power because they were
available in a shared mode for the duration of the experiment.

The last problem cnt10 was also solved using the VGrADS testbed
only under similar circumstances to k2fix-gr-rcs-w8. We previously tried
solving this problem in (Chrabakh and Wolski, 2003) using the same
testbed for four days in addition to Blue Horizon for 12 hours but
were not successful. We believe the improvements made to the solver
and especially the new clause sharing method have helped achieve this
result.

In order to illustrate further GridSAT’s success in using all the above
variety of resources mentioned earlier we present a section of a run using
instance hanoi6. This problem is a SAT representation of the Hanoi

Towers problem using six disks. A six day snapshot from a 23 day run
is shown in figure 3 using logarithmic scale. The figure shows several
jobs from Blue Horizon, Data Star and TeraGrid sites participating in
the execution. This figure shows that GridSAT was able to make use
of the available resource when some of their nodes became available
and then continued to run after the nodes were taken away to serve
other users. GridSAT processes continue to run on the batch controlled
resources until the scheduler decides to terminate them. This abrupt
termination has no effect on the application which deals with these
events as (scheduled) resource failures. GridSAT was able to manage
up to 350 processes running on different resources as show in this figure.

The satisfiability solver performs mostly integer, branching and load-
store operations. The number of floating point operations is very low
(less than .1 FLOPS). We present in figure 4 an estimate of the total
number of instructions per second during the same six day period.
Since instrumenting GridSAT can cause significant slow down, we con-
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ducted some benchmarking on some machines at UTK to determine
the average efficiency of the solver. Since the solver code is mostly
sequential, we assume that at the maximum only one instruction per
cycle can be finished by the processor. The determined efficiency is 70%.
We estimated that other hardware and OS combinations will exhibit
equal efficiencies. The number of operations provided by a resource is
estimated to be the product of its peak performance and the estimated
efficiency. The total number of instructions in figure 4 is the sum of
operations of all active resources. We notice that the VGrADS testbed
is able to deliver about 20 Billion instructions per second (IPS). In
the middle of the graph, there is a batch job from Blue Horizon which
failed suddenly while joining the GridSAT execution. This might have
happened because the Blue Horizon machine became unavailable for
scheduled maintenance. The total number of IPS was multiplied by
more than five times when some batch jobs became active. It reached
up to 110 Billion IPS.

Another measure of performance, is how much of the batch job
maximum computational power is actually used by GridSAT processes.
Most other parallel jobs run on all the processes from start to finish with
little overhead. In this case, batch jobs are efficiently used. In the of
case GridSAT, however, there are two main sources of inefficiency. First,
some jobs might wait ideally at the start. Batch jobs usually include a
large number of processes. Some of these processes have to wait until a
sufficient number of splits occur to generate new sub-problems for all
the newly created solvers. Second, some batch processes may contain
idle solvers for a period of time after they solve the previously assigned
sub-problem. The solver in this case, waits until it is assigned a new
sub-problem by the master. For the first job in figure 3, which is a large
100-node job, the efficiency is 98.9%. Thus GridSAT was able to use
batch jobs efficiently. The main reason is that batch jobs usually wait
in the batch queue for a long time before executing. Thus by the time
the job is executed, GridSAT was unable to solve the problem because
it is hard. This means that batch jobs are only used when the problem
is in deed hard. It is possible that for certain problems, the efficiency
of batch jobs might be low. In this case, future versions of GridSAT
might monitor the batch job efficiency to determine whether and when
a job is to be terminated.

During our experiments, the Blue Horizon super-computer was being
decommissioned. GridSAT was able to continue running experiments
on the set of available resources through this transition. The scheduler
would try to submit jobs but it would notice that the Blue Horizon
resource was not responding. The failure of this single (but important)
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Figure 3. A six day snapshot representing GridSAT processor count usage from the
different resources in logarithmic scale.

resource which did not affect the already running experiments shows
the robustness of GridSAT.

6. Conclusion and Future Work

This paper presents a new version of GridSAT which implements a
parallel, distributed and complete satisfiability solver. In order to solve
harder problems, new improvements to both the algorithm and archi-
tecture of GridSAT were introduced. GridSAT is capable to dynami-
cally selecting resources to enable improved overall performance.

We compared three methods for merging shared clauses used by
GridSAT and showed that periodically merging clauses improves the
solver the most. Also communication overhead is reduced by selectively
sending important information first and avoiding redundancy when
possible.

The experiments we presented show GridSAT’s ability to manage
and use a diverse set of dynamic computational grid resources. The
experiments lasted for weeks as a testament to the robustness of the ap-
plication. During these experiments new previously unsolved problems
from practical and theoretical fields were solved.

As a result GridSAT represents one of the first examples of a true
Computational Grid application. As “power” is added to the grid Grid-
SAT can access, it makes efficient use of that power without undue
waste. Its multi-infrastructure implementation using EveryWare makes
it possible to incorporate the widest possible set of resources (i.e. non
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Figure 4. Estimation of Instructions per second usage for all resources during the
same six day snapshot shown in figure 3.

are precluded because a particular infrastructure running at a par-
ticular version is not installed). Fluctuations in available power are
tolerated automatically so that the overall application remains max-
imally efficient while it is executing. Finally, by solving previously
unsolvable industrial problems, GridSAT has used grid computing in
its true form to achieve new domain science.
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