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Abstract—In this paper, we present Justice, a fair-share
deadline-aware resource allocator for big data cluster managers.
In resource constrained environments, where resource contention
introduces significant execution delays, Justice outperforms the
popular existing fair-share allocator that is implemented as part
of Mesos and YARN. Justice uses deadline information supplied
with each job and historical job execution logs to implement
admission control. It automatically adapts to changing workload
conditions to assign enough resources for each job to meet
its deadline “just in time.” We use trace-based simulation of
production YARN workloads to evaluate Justice under different
deadline formulations. We compare Justice to the existing fair-
share allocation policy deployed on cluster managers like YARN
and Mesos and find that in resource-constrained settings, Justice
improves fairness, satisfies significantly more deadlines, and
utilizes resources more efficiently.

Keywords—resource-constrained clusters; deadlines; admission
control; resource allocation; big data;

I. INTRODUCTION

Scalable platforms such as Apache Hadoop [1] and Apache
Spark [2] implement batch processing of distributed analytics
applications, often using clusters (physical or virtual) as in-
frastructure. However, cluster administrators do not use space-
sharing job schedulers (e.g. [16, 33, 34, 54]) to partition
cluster resources for these platforms. Instead, many “big data”
systems are designed to work with a cluster manager such
as Mesos [24] or YARN [44], which divide cluster resources
(processors and memory) at a more fine-grained level to
facilitate effective resource sharing and utilization.

Cluster managers implement fair-share resource alloca-
tion [15, 20] via per-application negotiation. Each big data
framework (e.g. Hadoop or Spark instance) negotiates with the
cluster manager to receive resources and uses these resources
to run the tasks of the associated submitted jobs (i.e. user
applications). The cluster manager tracks the current allocation
of each job and the available cluster resources and uses a fair-
share algorithm to distribute resources to the frameworks as
jobs arrive.

In this work, we investigate the efficacy of fair-share
schedulers in cluster settings that are used increasingly by
applications for the emerging “Internet-of-Things” (IoT) do-
main – distributed systems in which ordinary physical objects
are equipped with Internet connectivity so that they may be
accessed (in terms of their sensing capabilities) and actuated
automatically. IoT applications combine data gathered via
simple, low-power sensing devices with data analytics, to make
data-driven inferences, predictions, and actuation decisions.

Increasingly, IoT analytics are offloaded to more capable,
“edge computing” systems that provide data aggregation, anal-
yses, and decision support near where data is collected to
provide low-latency (deadline-driven) actuation of edge de-
vices and to reduce the bandwidth requirements of large-scale
IoT deployments [14, 46]. Edge computing [19] (also termed
Fog computing [5]) hypothesizes that these edge systems be
small or medium-sized cluster systems capable of acting as an
extension of more centralized infrastructure (i.e. as a kind of
“content distribution network” for cloud-based analytics).

Edge analytics for IoT represents a shift in the requirements
imposed on big-data frameworks and cluster managers, both
of which were designed for very large-scale, resource-rich
clusters and e-commerce applications (which co-locate data
fusion, analysis, and actuation in the cloud). In this paper,
we investigate the suitability of existing fair-share resource
allocators given this shift in cluster or cloud settings where
deadlines are necessary to provide low-latency actuation, and
resource contention imposes significant overhead on job turn-
around time.

We compare existing fair-share algorithms employed by
Mesos [24] and YARN [44] to a new approach, called Justice,
which uses deadline information for each job and historical
workload analysis to improve deadline satisfaction and fair-
ness. Rather than using fairness as the allocation criterion as
is done for Mesos and YARN, Justice estimates the fraction
of the requested resources that are necessary to complete each
job just before its deadline expires. It makes this estimate
when the job is submitted using the requested number of
resources as the number necessary to complete the job as
soon as possible. It then relaxes this number according to a
running tabulation of an expansion factor that is computed
from an on-line post-mortem analysis of all previous jobs run
on the cluster. Because the expansion factor is computed across
jobs (i.e. globally for the cluster) each analytics framework
receives a “fair penalty” for its jobs, which results in a better
fair-share, subject to the deadlines associated with each job.
Further, Justice “risks” running some jobs with greater or fewer
resources than it computes they need so that it can adapt its
allocations automatically to changing workload characteristics.

We describe the Justice approach and compare it to the
baseline allocator employed by Mesos and YARN, to simple
intuitive extensions to this allocator, and to a job workload
“oracle”, which knows precisely (i.e. without estimation error)
the minimum number of resources needed for each job to
meet its deadline. For evaluation, our work uses large produc-
tion workload traces from an industry partner that provides



commercial big-data services using YARN1. The original jobs
in this trace were not resource constrained nor did they
require completion according to individual deadlines. For these
reasons we use a discrete-event, trace-driven simulation to rep-
resent how these workloads would execute with significantly
fewer cluster resources under different deadline formulations
found in related work [17, 32, 47, 48, 57].

Our results show that Justice performs similarly to the
oracle in terms of fairness and deadline satisfaction, and sig-
nificantly better than the baseline Mesos and YARN allocator.
In addition, Justice achieves greater productivity and signifi-
cantly better utilization than its counter-parts when resources
are severely constrained. We next describe Justice and its
implementation. We then overview our empirical methodol-
ogy (Section III) and the characteristics of the workload we
evaluate (Section IV). We present our results in Section V. In
Sections VI and VII, we discuss related work and conclude.

II. JUSTICE

Justice is a fair-share preserving and deadline-aware re-
source allocator with admission control for resource negotia-
tors such as Mesos [24] and YARN [44] that manages batch
applications with deadlines for resource-constrained, shared
clusters. Justice employs a black-box, framework-agnostic
prediction technique (based on measurements of historical job
execution times) to estimate the minimum number of CPUs
(parallelism) that a job requires to meet its deadline.

Prior work has shown that most fair-share allocators (possi-
bly designed for the “infinite” resources available in a cloud)
fail to preserve fairness when resources are limited [11, 22,
53]. This shortfall is due, in part, to their greedy allocation
(a result of their inability to predict future demand) and lack
of corrective mechanisms (ex: job preemption or dropping).
Instead, Justice improves upon these techniques by proactively
adapting to future demand and cluster conditions through its
resource allocation and admission control mechanisms.

Existing fair-share allocators are deadline-insensitive. They
assume that a job submitted by a user has value to that user
regardless of how large the turn-around time may be. For Jus-
tice, we assume that because cluster resources may be scarce,
each job is submitted with a “maximum runtime” parameter
that tells the resource negotiator when the completion of each
job is no longer valuable. Henceforth, we term this parameter
the “deadline” for the job. The only assumption we make about
this user-specified deadline is that the deadline is feasible,
i.e., an optimal allocation in an empty cluster is sufficient to
complete the job before its deadline.

Note that current resource negotiators such as Mesos and
YARN do not include a provision for specifying job maximum
runtime. Instead, many cluster administrators statically split
their clusters with the use of a capacity scheduler [6], or
require users to reserve resources in advance [8, 43] to create
differentiated service classes with respect to turn-around time.
However, such approaches are inefficient and impractical in
resource-constrained clusters, as they further limit peak cluster
capacity. In contrast, Justice incorporates deadline information

1The partner wishes to remain anonymous for reasons of commercial
competitiveness.

Algorithm 1 Justice TRACK JOB Algorithm

1: function TRACK JOB(compTime, requestedTasks,
deadline, numCPUsAllocd, success)

2: deadlineCPUs = compTime/deadline
3: maxCPUs = min(requestedTasks, cluster capacity)
4: minReqRate = deadlineCPUs/maxCPUs
5: minReqRateList.add(minReqRate)
6: MinCPUFrac = min(minReqRateList)
7: MaxCPUFrac = max(minReqRateList)
8: LastCPUFrac = numCPUsAllocd/maxCPUs
9: LastSuccess = success

10: end function

to drive its resource allocation, admission-control, and job-
dropping decisions.

A. Resource Allocation

To determine how many CPUs to allocate to a new job,
Justice uses execution time data logged for previously exe-
cuted jobs. Justice analyzes each completed job and uses this
information to estimate the minimum number of CPUs that
the job would have needed to have finished by its deadline
“just-in-time” (represented as the deadlineCPUs variable in
Algorithm 1). Justice assumes that this minimum required ca-
pacity utilizes perfect parallelism (speedup per CPU) and that
the number of tasks for a job (the division of its input size and
the HDFS block size) is the maximum parallelization possible
for the job. We refer to this number as the requestedTasks
for the job. Therefore, the maximum number of CPUs that
can be assigned to any job (maxCPUs) at any given time is
the minimum between the requestedTasks and the total
cluster capacity (cluster_capacity).

To bootstrap the system, Justice admits all jobs regardless
of deadline, i.e., it allocates requestedTasks CPUs to the
jobs. For any job for which there are insufficient resources
for the allocation, Justice allocates the number of CPUs
available. When a job completes either by meeting or by
exceeding its deadline, Justice invokes the pseudocode function
TRACK_JOB shown in Algorithm 1.

TRACK_JOB calculates the minimum number of CPUs
required (deadlineCPUs) if the job were to complete by
its deadline, using its execution profile available from cluster
manager logs. Line 2 in the function is derived from the
equality:

numCPUsAllocd ∗ jobET = deadlineCPUs ∗ deadline

On the left is the actual computation time by individ-
ual tasks, which we call compTime in the algorithm.
numCPUsAllocd is the number of CPUs that the job used
during execution and jobET is its execution time without
queuing delay. The right side of the equation is the to-
tal computation time consumed across tasks if the job had
been assigned deadlineCPUs, given this execution profile
(compTime). deadline is the time (in seconds) specified in
the job submission. By dividing compTime by deadline,
we extract deadlineCPUs for this job.

Next, Justice divides deadlineCPUs by the maxi-
mum number of CPUs allocated to the job. The result-



ing minReqRate is a fraction of the maximum that Jus-
tice could have assigned to the job and still have it
meet its deadline. Justice adds minReqRate to a list
of fractions (minReqRateList) that contains the min-
imum required rates (fractions of deadlineCPUs over
requestedTasks) across all completed jobs. Then it cal-
culates from this list the global minimum (MinCPUFrac)
and maximum (MaxCPUFrac) fractions. It also tracks
the observed fraction allocated to the last completed job
(LastCPUFrac) and whether the job satisfied or exceeded
its deadline (LastSucess). Justice then uses MaxCPUFrac
and MinCPUFrac to predict the allocatable fractions of future
jobs. MaxCPUFrac and MinCPUFrac are always less than
or equal to 1. The tighter the deadlines, the more conservative
(nearer to 1) these fractions and the corresponding Justice’s
resource provisioning will be.

Then, to compute the cpu allocation fraction
(alocCPUFrac) for each newly submitted job, Justice takes
the average of the LastCPUFrac and either MinCPUFrac
or MaxCPUFrac, depending on whether the last completed
job met or violated its deadline respectively. In other words,
consecutive successes make Justice more aggressive and
it allocates smaller resource fractions (alocCPUFrac
converges to MinCPUFrac) while deadline violations make
Justice more conservative and it increases the allocated fraction
to prevent future violations (alocCPUFrac converges to
MaxCPUFrac).

Justice also utilizes a Kalman filter mechanism to cor-
rect inaccuracies of its initial estimations. Every time a job
completes its execution, Justice tracks the estimation error;
the divergence of the given allocation fraction from the ideal
minimum fraction (deadlineCPUs). To correct the allo-
cation estimations, Justice calculates a weighted average of
the historical errors. It can be configured to assign the same
weights to all past errors or use exponential smoothing and
“trust” more recent errors. Lastly, a validation mechanism
ensures that the corrected fraction is still between allowable
limits (the fraction should not be less than the minimum
observed MinCPUFrac or greater than 1).

After alocCPUFrac is calculated, corrected, and vali-
dated as described above, Justice multiplies alocCPUFrac
by the number of tasks requested in the job submission
(rounding to the next largest integer value). It uses this value
(or the maximum cluster capacity, whichever is smaller) as
the number of CPUs to assign to the job for execution. If
this number of CPUs is not available, it enqueues the job.
Justice performs this process each time a job is submitted or
completes. It also updates the deadlines for jobs in the queue
(reducing each by the time that has passed since submission),
recomputes the CPU allocation of each enqueued job and drops
any enqueued jobs with infeasible deadlines.

B. Admission Control

After estimating the resources that jobs need to meet their
deadlines, Justice implements a proactive admission control
so that it can prevent infeasible jobs (jobs likely to miss
their deadlines) from ever entering the system and consuming
resources wastefully. This way, Justice attempts to maximize
the number of jobs that meet their deadline even under

severe resource constraints (i.e. limited cluster capacity or high
utilization). Justice also tracks jobs that violate their deadlines
and selectively drops some of them to avoid further waste
of resources. It is selective in that it terminates jobs when
their requestedTasks exceed a configurable threshold.
Thus, it still able to collect statistics on “misses” to improve
its estimations by letting the smaller violating jobs complete
their execution while at the same time it prevents the bigger
violators (which are expected to run longer) from wasting
cluster resources.

Justice admits jobs based on a pluggable priority policy. We
have considered various policies for Justice and use a policy
that prioritizes minimizing the number of jobs that miss their
deadlines. For this policy, Justice gives priority to jobs with a
small number of tasks and greatest time-to-deadline. However,
all of the policies that we considered (including shortest time-
to-deadline) perform similarly. Once Justice has selected a job
for admission, it allocates the CPUs to the job and initiates
execution. Once a job run commences, its CPU allocation does
not change.

III. EXPERIMENTAL METHODOLOGY

We compare Justice to the fair-share allocator that currently
ships with the open-source Mesos [24] and YARN [44] using
trace-based simulation. Our system is based on Simpy [40]
and replicates the execution behavior of industry-provided
production traces of big data workloads (cf Section IV).

The current Mesos and YARN fair-share allocator does
not take into account the notion of deadline. When making
allocation decisions, it (tacitly) assumes that each job will
use the resources allocated to it indefinitely and that there is
no limit on the turn-around time a job’s owner is willing to
tolerate. We hypothesize a straight-forward modification to the
basic allocator that allows it to consider job deadlines (which
would need to be submitted with each job) when making
decisions.

Finally, we implement an “oracle” allocator that has perfect
foreknowledge of the minimum resource requirements each
job needs to meet its deadline exactly. Note that the oracle
does not implement system-wide prescience – its prediction
is perfect on a per-job basis. That is, the oracle does not try
all possible combinations of job schedules to determine the
optimal allocation. Instead, the oracle makes its decision based
on a perfect prediction of each job’s needs. These allocation
policies are summarized as follows:

Baseline FS: This allocator employs a fair sharing pol-
icy [4, 18, 20, 41, 50] without admission control. Its behavior is
similar to that of the default allocator in Mesos and YARN and,
as such, runs all jobs submitted regardless of their deadlines
and resource requirements.

Reactive FS: This allocator extends Baseline FS by al-
lowing the allocator to terminate any job that has exceeded its
deadline. That is, it “reacts” to a deadline miss by freeing the
resources so that other jobs may use them.

Oracle: This allocator allocates the minimum number of
resources that a job requires to meet its deadline. If sufficient
resources are unavailable, the Oracle queues the job until the
resources become available or until its deadline has passed (or



(a) CDFs of number of tasks per job (b) CDFs of computation time per job (c) Job computation time vs number of tasks

Fig. 1: Workload Characteristics: Number of tasks per job, computation time per job, and computation time relative to jobs
size (in number of tasks). Small jobs are large in number but consume a very small proportion of trace computation time.

is no longer achievable). For the queued jobs, Oracle gives
priority to jobs with fewer required resources and longer time
until the deadline.

Justice: As described in Section II, this allocator proac-
tively drops, enqueues, or admits jobs submitted. It estimates
the share of each job as a fraction of its maximum demand.
This fraction is based on the historical performance of jobs
in the cluster. For the queued jobs, Justice gives priority to
jobs with fewer required resources and longer computation
times. Justice drops any jobs that are infeasible based on a
comparison of their deadlines with a prediction of the time to
completion. Jobs that are predicted to miss their deadlines are
not admitted (they are dropped immediately) as are any jobs
that exceed their deadlines.

A. Deadline Types

We evaluate the robustness of our approach by running
experiments using deadline formulations from prior work [17,
32, 47, 48, 57] and interesting variations on them. In particular,
we assign deadlines that are multiples of the optimal execution
time of a job (which we extract from our workload trace). We
use two types of multiples: Fixed and variable.

Fixed Deadlines: With fixed deadlines, we use a dead-
line that is a multiple of the optimal execution time (a
formulation found in [32, 57]). Each deadline is expressed as
Di = x · Ti, where Ti is the optimal runtime of the job and
x >= 1.0 is some fixed multiplicative expansion factor. In our
experiments, we use constant factors of x = 1 and x = 2,
which we refer to as Fixed1x and Fixed2x respectively.

Variable Deadlines: For variable deadlines, we com-
pute deadline multiples by sampling distributions. We consider
the following variable deadline types:

• Jockey: We pick with equal probability a deadline
expansion factor x from two possible values (a for-
mulation described in [17]). In this study, we use the
intervals from the sets with values (1, 2) and (2, 4) to
choose x and, again, compute Di = x · Ti, where Ti

is the minimum possible execution time. We refer to
this variable deadline formulation as Jockey1x2x and
Jockey2x4x.

• 90loose: This is a variation of the Jockey1x2x dead-
lines, in which the deadlines take on the larger value

CPUs Jobs Comp.
Time
(Hours)

1-Task
Pct

1-Task
Time Pct

9345 159194 8585673 58% 0.1%

TABLE I: Trace Summary. Columns are peak cluster capacity,
total number of jobs, total computation time in hours, percent-
age of 1-task jobs, and percentage of 1-task job computation
time.

(i.e. are loose) with a higher probability (0.9) while
the other uses the smaller value.

• Aria: The deadline multiples of this type are uniformly
distributed in the intervals [1, 3] and [2, 4] (as de-
scribed in [47, 48]); we refer to these deadlines as
Aria1x3x and Aria2x4x, respectively.

IV. WORKLOAD CHARACTERIZATION

To evaluate Justice, we use a 3-month trace from pro-
duction Hadoop deployments executing over different YARN
clusters. The trace was recently donated to the Justice effort
by an industry partner on condition of anonymity. The trace
contains a job ID, job category, number of map and reduce
tasks, map and reduce time (computation time across tasks),
job runtime, among other data. It does not contain information
about the scheduling policy or HDFS configuration used in
each cluster. Thus we assume a minimum of one CPU per task
and use this minimum to derive cluster capacity; we are con-
sidering sub-portions of CPUs (vcores) as part of future work.
Justice uses the number of map tasks (as requestedTasks
in Algorithm 1) and map time (as compTime in Algorithm 1).

Table I summarizes the job characteristics of the trace. The
table shows the peak cluster capacity (total number of CPUs),
the total number of jobs, the total computation time across all
tasks in the jobs, the percentage of jobs that have only one
task, and the percentage of computation time that single-task
jobs consume across jobs. There are 159194 jobs submitted



and the peak observed capacity (maximum number of CPUs
in use) is 93452.

The table also shows that even though there are many
single-task jobs, they consume a small percentage of the total
computation time. To understand this characteristic better, we
present the cumulative distribution of number of tasks in
Fig. 1a and computation time in Fig. 1b per job in logarithmic
scale. Approximately 60% of the jobs have a single task and
70% of the jobs have fewer than 10 tasks. Only 13% of the
jobs have more than 1000 tasks. Also, the vast majority of
jobs have short computation times. Approximately 70% of jobs
have computation time that is less than 1000 CPU*seconds, i.e.
their execution would be 1000 seconds if they were running
in one CPU core.

The right graph in the figure compares job computation
time with the number of tasks per job (both axes are on a
logarithmic scale). 80% of the 1-task jobs and 60% of the 2-
10 task jobs have computation time of fewer than 100 seconds.
Their aggregate computation time is less than 1% of the total
computation time of the trace. Jobs with more than 1000 tasks
account for 98% of the total computation time. Finally, job
computation time varies significantly across jobs.

We have considered leveraging the job ID and number of
map and reduce tasks to track repeated jobs, but find that for
this real-world trace such jobs are small in number. 18% of
the jobs repeat more than once and 12% of the jobs repeat
more than 30 times. Moreover, we observe high performance
variation within each job class. Previous research has reported
similar findings and limited benefits from exploiting job re-
peats for production traces [17].

V. RESULTS

We evaluate Justice using the production trace for different
resource-constrained cluster capacities (number of CPUs). We
compare Justice against different fair share schedulers and
an Oracle using multiple deadline strategies: a fixed multiple
(Fixed), a random multiple (Jockey), a uniform multiple (Aria)
of the actual computation time, and mixed loose and strict
deadlines (90loose), as described on Section III.

A. Fairness Evaluation

We use Jain’s fairness index [28] applied to the fraction
of demand each scheduler is able to achieve as a measure of
fairness. For each job i, among n total jobs, we define the
fraction of demand as Fi = Ai

Di
where Di is the resource

request for job i and Ai is the allocation given to job i. When
Ai >= Di the fraction is defined to be 1. Jain’s fairness index
is then |

∑n
i=1 Fi|2

n∗
∑n

i=1 F 2
i

.

Figure 2 presents the fairness index averaged over 60-sec
intervals for all the allocation policies and deadlines considered

2We have tested Justice on a second trace that contains more than 1
million job entries from the same industry partner. The distribution properties
of job sizes are remarkably similar to the trace we have chosen to use.
However, because many of the jobs in this larger trace repeat (creating more
autocorrelation in the job series), we believe that the smaller trace is a greater
challenge for Justice’s predictive mechanisms. The results for this larger trace
are, indeed, better than the results we present in this paper. We have omitted
them for brevity.

in this study and for two resource-constrained cluster sizes;
very constrained cluster with 2250 CPUs (left graph) and
moderately constrained cluster with 4500 CPUs (right graph).
The results show that in resource constrained settings, fair-
shair allocation policies generate substantially lower fairness
indices compared to Justice.

In resource constrained clusters, when CPU demands ex-
ceed available cluster resources, fair-share mechanisms can
violate fairness. This occurs because these mechanisms do
not anticipate the arrival of future workload. Thus jobs that
require large fractions of the total resource pool get their full
allocations, causing jobs that arrive later to block or to be
under-served [11]. Moreover, jobs that are waiting in queue
may miss their deadlines while waiting (i.e. receive an Ai

value of zero) or receive an under allocation once they are
released.

Note that adding the ability to simply drop jobs that have
missed their deadlines does not alleviate the fairness problem
entirely. The Reactive FS policy (described in Section III)
achieves better fairness than the Baseline fair-share scheduler,
but does not achieve the same levels as Justice. When a large
job (one with a large value of Di) can meet its deadline (i.e.
it is not dropped by Reactive FS), it may only get a small
fraction of its requested allocation (receiving a small value
of Ai) thereby contributing to the fairness imbalance when
compared to Justice. Because the confidence intervals between
Reactive FS and Justice overlap, we also conducted a Welch’s
t-test [51] for all deadline-types and cluster sizes. We find that
in all cases, the P-value is very small (e.g. significantly smaller
than 0.01). Thus the probability that the means are the same
is also very small.

The reason Justice is able to achieve fairness is because
it uses predictions of future demand to implement admission
control. Justice uses a running tabulation of the average frac-
tion of Ai/Di that was required by previous jobs to meet their
deadline to weight the value of Ai/Di for each newly arriving
job. Justice computes this fraction globally by performing
an on-line “post mortem” of completed jobs. Then, for each
new job, Justice allocates a fraction of the demand requested
using this estimated fraction. Justice continuously updates its
estimate of this fraction so that it can adapt to changing
workload conditions. As a result, every requesting job gets
the same share of resources as a fraction of its total demand,
which is by definition the best possible fairness according to
Jain’s formula.

Interestingly, Justice achieves a better fairness index than
the Oracle for variable deadlines (e.g. Aria1x3x). The Oracle
allocates to every job the minimum amount of resources
required to meet the deadline. Consequently, when the deadline
tightness across jobs differ, the fraction of resources that each
job gets compared to its maximum resources will also differ.
This leads to inequalities in terms of fairness. To avoid the
paradox of an Oracle not giving perfect fairness, we could
modify Jain’s formula by replacing the maximum demand of
a job with the minimum required resources in order to meet
a deadline. However, we wish to use prior art when making
comparisons to the existing fair-share allocators, and so the
Oracle (under this previous definition) also does not achieve
perfect fairness. In other words, Oracle is an oracle with
respect to minimum resource requirements needed to satisfy



(a) Fairness Index with 2250 CPUs (b) Fairness Index with 4500 CPUs

Fig. 2: Fairness Evaluation: Average of Jain’s fairness index (and 0.95 error bars) with constrained cluster capacity of 2250
CPUs (left graph) and moderately constrained capacity of 4500 CPUs (right graph). Experiments denoted as Fixed have deadlines
multiples of 1 and 2. Experiments denoted as Jockey have deadline multiples picked randomly from a set with two values (1,
2) and (2, 4). Experiments denoted as 90loose have 90% deadlines with a multiple of 2 and 10% deadlines with a multiple of
1. Experiments denoted as Aria have deadline multiples drawn from uniformly distributed intervals [1, 3] and [2, 4]

each job’s deadline and not a fairness oracle for the overall
system.

Although Justice yields the best fairness results compared
to other allocators, it is not optimal (i.e. the fairness index
is not 1). In particular, when queued jobs are released they
may miss their deadlines, but while doing so, cause other
jobs to receive little or no allocation. To compensate for
this, Justice attempts to further weight their allocation by the
ratio of the deadline to the time remaining to the deadline
( deadline
deadline−queueTime ), or if achieving the deadline is not pos-

sible, Justice drops them to avoid wasted occupancy. The cost
of this optimization is an occasional fairness imbalance but
this cost is less than that for the other allocators we evaluate.

Integer CPU assignment is another source of fairness
imbalance. Because jobs require an integer number of CPUs
each allocation must be rounded up when it is weighted by the
current success fraction. For small jobs, the additional fraction
constitutes a significant overhead in terms of fairness. While
the industry traces contain large numbers of small jobs, they
are often short lived allowing Justice to adapt overall fairness
quickly. We are considering sub-CPU allocations as part of
future work.

B. Deadline Satisfaction

We next evaluate how well the allocators perform in terms
of deadline satisfaction. Our goal with this set of experiments
is to verify that Justice is not simply achieving fairness by
dropping a large fraction of jobs – so that those that remain
receive a fair allocation.

To investigate this, we compute the Satisfied Deadline
Ratio (SDR) as the fraction of the jobs that complete before
their deadline over the total number of submitted jobs. For the
set of all the submitted jobs J1, J2, ..., Jn, if m < n is the
subset of successful jobs J1, J2, ...Jm, then SDR is:

∑m
i=1 Ji∑n
j=1 Jj

.

Figure 3 presents the SDR for each combination of allo-
cator and deadline type. For all deadline types, Justice meets
significantly more deadlines than the fair-share policies and
performs similarly to the Oracle. Justice satisfies at least 88%
more deadlines than Baseline FS and from 83% to 207%
more deadlines than Reactive FS. Justice outperforms fair-
share policies because these policies do not consider deadline
information and share resources naively and greedily. Because
Justice is able to use both job deadlines and historical job
behavior in its allocation decision, it is able to meet a larger
fraction of deadlines than existing allocators while achieving
greater fairness.

In particular, without admission control, the Baseline and
Reactive FS allocators must admit a large fraction of jobs
that ultimately do not meet their deadlines. This “wasted”
work has two consequences on deadline performance. First,
it causes unnecessary queuing of jobs that, because of the
time spent in queue, may also miss their deadlines. Second,
it causes resource congestion, thereby reducing the fraction of
resources allocated to all jobs. Consequently, some jobs, which
would otherwise succeed, miss their deadlines. By attempting
to identify those jobs most likely to miss and dropping those
jobs proactively, Justice is able to achieve a larger fraction of
deadline successes overall.

Fair-share policies fail to meet deadlines when resources
are constrained also because of their use of greedy allocation.
They allocate as many resources as are available until they
run out of resources regardless of what jobs require to meet
their deadlines. As a consequence, jobs with looser deadlines
get more resources than what they actually need to finish by
their deadline, wasting valuable resources that are needed for
future jobs with tighter deadlines. In contrast, Justice attempts
to identify, based on the fraction of demand that previous
successful jobs needed in order to meet their deadlines, the
minimum number of resources required to meet their deadlines
“just in time.”



(a) Satisfied Deadlines with 2250 CPUs (b) Satisfied Deadlines with 4500 CPUs

Fig. 3: Deadline Satisfaction: Satisfied Deadlines Ratio (SDR) with constrained cluster capacity of 2250 CPUs (left graph) and
moderately constrained capacity of 4500 CPUs (right graph) for different deadline types.

Finally, as noted previously, the Oracle does not have
perfect information (i.e., it does not have a global optimal
schedule). Instead it knows the actual job computation time
(compTime). Thus, it is able to assign the minimum number
of CPUs to each job to satisfy its deadline. SDR for Oracle
is not 100% because it must drop (refuse to admit) jobs for
which there is insufficient capacity to meet their deadline.

C. Efficient Resource Usage

We next evaluate workload productivity, i.e. the measure
of productive time (i.e. the work done by jobs that complete
by their deadlines) and wasted time (i.e. work done by jobs
that miss their deadline) via the metrics Productive Time Ratio
(PTR) and Wasted Time Ratio (WTR). For the set of all the
submitted jobs J1, J2, ..., Jn and their corresponding runtimes
T1, T2, ..., Tn we consider the subset of m < n successful jobs
J1, J2, ..., Jm and the subset of k < n failed or dropped jobs
J1, J2, ..., Jk where n = m+ k. PTR is

∑m
i=1 Ti∑n
j=1 Tj

and WTR is∑k
i=1 Ti∑n
j=1 Tj

.

Figure 4 and Figure 5 present PTR and WTR, respectively,
for different allocation policies and deadline type for two
constrained clusters. For all cases, Baseline FS spends a very
small ratio of computation time productively, i.e. it spends
almost all the computation time on jobs that missed their
deadlines. Reactive FS improves over Baseline FS by reac-
tively dropping jobs that have already violated their deadlines.
Justice, performs significantly better (up to 221% higher PTR
and up to 100% lower WTR than Reactive FS) and slightly
worse than the Oracle (up to 33% lower PTR) for the 2250
CPUs cluster. Justice outperforms fair-share policies because
it proactively drops jobs with violated deadlines and jobs that
it predicts are likely to miss their deadline.

Our experiments also show that the more constrained or
utilized the cluster is, the better Justice performs in terms of
PTR and WTR, relative to the other allocators we consider.
Baseline FS fails to satisfy deadlines of bigger jobs because
it shares a very limited resources equally between bigger and
smaller jobs. This share, under resource constrained settings, is
not sufficient for the bigger jobs to complete on time. Reactive

FS improves PTR and WTR because it drops jobs that violate
their deadlines, freeing up resources for other jobs. Justice
wastes significantly fewer resources compared to Reactive FS
because it drops jobs with large expected computation times
using its pluggable priority policy (Section II), as soon as they
become infeasible.

When the cluster is less constrained (e.g. 4500 CPUs in the
right graphs), Justice’s PTR is significantly better than Baseline
FS (from 146% on Aria2x4x up to 926% on Fixed1x). It also
outperforms Reactive FS up to 72% and performs similarly to
the Oracle, for deadline types with less variation (Fixed and
90loose). However, it achieves slightly (14% for Jockey1x2x)
or moderately (44% for Aria1x3x) less PTR for high variable
deadline types, even though it still satisfies significantly more
deadlines compared to Reactive FS for the these deadline types
(recall Justice’s SDR on Figure 3 is 44% and 33% higher than
reactive FS for Jockey1x2x and Aria1x3x respectively).

Specifically, as resource scarcity is reduced for a fixed
workload, large jobs that are admitted by the Baseline FS and
Reactive FS allocators stand a better chance of getting the
“extra” resources necessary to complete, and thus, add to the
PTR compared to Justice, which might have excluded them
due to admission control. However, when deadlines are vari-
able, Justice’s admission control is conservative, prioritizing
fairness and deadline success over resource saturation. This
result indicates that extant fair-share allocators may be more
appropriate for maximizing productive work when resources
are more plentiful and the need to meet deadlines less of a
concern. Put another way, when resources are plentiful, the
cost of meeting a higher fraction of deadlines with greater
fairness is a lower PTR due to admission control.

D. Cluster Utilization

The final set of experiments that we perform investigate
how allocation policies for resource constrained clusters impact
cluster utilization and CPU idle times. Justice considers a CPU
to be idle when the allocator has not assigned to it any tasks
to run and and to be busy when the CPU is running a task.
We then define Cluster Utilization as busy

idle+busy where busy



(a) Productive Time with 2250 CPUs (b) Productive Time with 4500 CPUs

Fig. 4: Productivity: Productive Time Ratio (PTR) with constrained cluster capacity of 2250 CPUs (left graph) and moderately
constrained capacity of 4500 CPUs (right graph) for different deadline types.

(a) Wasted Time with 2250 CPUs (b) Wasted Time with 4500 CPUs

Fig. 5: Resource Waste: Wasted Time Ratio (WTR) with constrained cluster capacity of 2250 CPUs (left graph) and moderately
constrained capacity of 4500 CPUs (right graph) for different deadline types. Lower is better.

is the total busy time and idle is the total idle time across a
workload.

Figure 6 shows the cluster utilization for 2250 CPU (left
graph) and 4500 CPU (right graph) cluster sizes, for the differ-
ent deadline types that we consider. The results in the left graph
(2250 CPU) are particularly surprising and somewhat counter-
intuitive. Given severe resource constraints, Justice achieves
lower utilization than the other allocators, but (as presented
previously in Figures 4a and 5a respectively) exhibits higher
PTR and lower WTR. So Justice enables more productive work
with less waste and less cluster utilization. One might assume
that the utilization difference is due to less productivity or
more overhead but as these results show, the lower utilization
is simply because Justice does not need the capacity to meet
a greater fraction of deadlines (cf Figure 3a) while achieving
greater fairness (cf Figure 2a).

These results are also interesting in that they reveal a
potential opportunity to introduce more workload (to take
advantage of the available utilization that is not used by Justice

Fig. 7: CDFs of idles times of 10 and 100 CPU groups.

) when resources are severely constrained. To investigate this
potential, we extract and analyze the number and duration
of idle CPUs that correspond to the experiments shown in



(a) Utilization with 2250 CPUs (b) Utilization with 4500 CPUs

Fig. 6: Cluster Utilization: Utilization with constrained cluster capacity of 2250 CPUs (left graph) and moderately constrained
capacity of 4500 CPUs (right graph) for different deadline types.

Figure 6a for the Aria1x3x deadline type. Figure 7 presents
the cumulative distribution of idle time for CPUs that are
simultaneously idle in groups of 10 (red, dotted curve) and
100 (blue, solid curve). We find that for deadline types that
yield lower utilizations, idle time durations are even larger; we
omit these results for brevity.

From these results, we observe that 81% of the 10-CPU
groups remain idle more than 100 seconds, 68% more than
500 seconds and 59% more than 1000 seconds. Similarly
for 100-CPU groups, 80%, 52%, and 41% have idle times
of 100 seconds, 500 seconds and 1000 seconds, respectively.
From these results, we can derive that 10-CPU and 100-CPUS
idle groups exist at any given time of the trace duration with
probabilities 98% and 76% respectively.

We next consider the workload characteristics of the trace
that we study (Section IV). We have shown (Figure 1b) that
40% of jobs compute for less than 100 CPU*seconds, 60%
compute for less than 500 CPU*seconds, and 70% compute
less than 1000 CPU*seconds. Moreover, approximately 60% of
the jobs employ a single task, 70% of the jobs have fewer than
10 tasks, and 80% less than 100 tasks (Figure 1a). As a result,
Justice is able to free up enough cluster capacity for sufficient
durations to as to admit significant additional workload. That
is, if the trace contained more jobs with these characteristics,
Justice would likely have been able to achieve similar fairness,
deadline, and productive work results via increased utilization.
We are currently investigating this potential and how to best
exploit it as part of on-going and future work.

VI. RELATED WORK

Sharing on Multi-tenant Resource Allocators: Cluster man-
agers like Mesos [24] and YARN [44] enable the sharing
of cluster resources by multiple data processing frameworks.
Recent research [13, 21, 39] builds on this sharing, to allow
users to run jobs without knowledge of the underlying data
processing engine. In these multi-analytics settings, the goal
of the resource allocator is to provide performance isolation
to frameworks by sharing the resources between them [4, 6,
15, 20]. However, under resource-constrained cluster settings,

the fair-shair policies [15, 20] fail to preserve fairness (Section
V-A). Also, all the sharing policies in these works are deadline-
agnostic. To meet deadlines, administrators add cluster re-
sources, use a capacity scheduler [6], or require users to reserve
resources in advance [3, 8, 43]. Such solutions are costly,
inefficient, or impractical, especially for resource constrained
clusters.

Another issue encountered in multi-analytics systems, is
that frameworks like Hadoop and Spark, which run on top of
these resource allocators, have their own intra-job schedulers
that greedily occupy the resources allocated to them, even
when they are not using them [11, 22, 53]. CARBYNE [22]
attempts to address this issue by exploiting task-level resource
requirements information and DAG dependencies. It also uses
prior runs of recurring jobs to estimate task demands and
durations. Then, it intervenes both at the higher level, on the
resource allocator, and internally, on framework task sched-
ulers. It withholds a fraction of job resources from jobs that
do not use them while maintaining similar completion times.
PYTHIA [12] is addressing the same issue by introducing
framework-independent admission control that resource allo-
cators can use to support dynamic fair-sharing of the cluster
and deadline driven workflows for either Hadoop or Spark
jobs, without requiring task-level information or depending on
recurring jobs. Similar to PYTHIA (and contrary to CAR-
BYNE), Justice utilizes admission control without requiring
job-repetitions and task-level information. Moreover, Justice
adapts to changing cluster conditions to avoid resource over-
provisioning and preserves fair-sharing on top of satisfying
deadlines.

Performance Prediction: In order to allocate the required
resources and meet job deadlines, much related work focuses
on exploiting historic [9, 25, 30, 31, 47, 48, 55, 57], and run-
time [9, 23, 25, 26, 36, 47, 48, 56, 57] job information, while
other research [9, 17, 29, 42, 45, 56] focuses on building job
performance profiles and scalability models offline. Although,
effective in many situations, we show that approaches similar
to these suffer when used under resource constrained settings.



Strategies that depend solely on repeated jobs, by defini-
tion, do not guarantee performance of ad-hoc queries. While
approaches that use runtime models, sampling, simulations,
and extensive monitoring, impose overheads and additional
costs. Moreover, trace analysis in this paper and other re-
search [17] shows that some production clusters have small
ratio of repeated jobs and these jobs have often large execution
times dispersion. Therefore, approaches based on past execu-
tions might not have the required mass of similar jobs over
a short period of time in order to predict with high statistical
confidence. Furthermore, the vast number of jobs have very
short computation times [7, 17, 32, 35, 37]. Thus, approaches
that adapt their initial allocation after a job has already started
might be ineffective. Lastly, most of these approaches require
task-level information, for the specific framework they target,
either Hadoop [23, 25, 26, 29, 31, 36, 42, 47, 48, 55, 56, 57]
or Spark [38, 49]. For this reason, they cannot be used on top
of resource managers like Mesos.

Justice in contrast, does not depend on job repetitions and
can therefore target clusters with more diverse workloads;
it does not impose overheads to perform extensive runtime
monitoring or use job sampling and offline simulations to
predict performance. Justice is also framework-independent
because it does not require modeling of the different stages
of any particular big data framework. Lastly, unlike all these
approaches, Justice focuses on satisfying job deadlines in
addition to preserving fair-sharing across jobs utilizing the
cluster.

Admission Control: Admission control has been suggested
as a solution for SaaS providers to effectively utilize their
clusters and meet Service Level Agreements (SLAs) [27,
52], to provide map-reduce-as-a-service [10], and to resolve
blocking caused by greedy YARN allocations [53]. Justice is
similar in that but targets multi-analytics, resource-constrained
clusters. We design Justice for use by resource managers for
deadline-driven big data workloads, to be framework and task
independent.

VII. CONCLUSIONS AND FUTURE WORK

We present Justice, a fair-share and deadline-aware re-
source allocator with admission control for multi-analytic
cluster managers like Mesos and YARN. Justice uses historical
job statistics and deadline information to automatically adapt
its resource allocation and admission control mechanisms to
changing workload conditions. By doing so, it is able to
estimate the minimum number of resources to allocate to a job
to meet its deadline “just-in-time”. Thus, it utilizes resources
efficiently and satisfies job deadlines while preserving fair-
share.

We evaluate Justice using trace-based simulation of large
production YARN workloads in resource-constrained settings
and under different deadline formulations. We compare Justice
to the existing fair-share allocator that ships with Mesos and
YARN and find that Justice outperforms it significantly in
terms of fairness, deadline satisfaction and efficient resource
usage. Unlike, fair-share allocators that, when resources are
limited, are unable to adapt their decisions and as a result,
violate fairness and waste significant resources for jobs that
miss their deadlines, Justice monitors the changing cluster

conditions and applies admission control to minimize resource
waste while preserving resource allocation fairness and meet-
ing more deadlines.

Justice is a practical solution that can work on top of ex-
isting open-source resource managers like Mesos and YARN.
Its predictions do not depend on the internal structure of the
processing engines running on top of the resource manager
(e.g., Hadoop, Spark) nor it interacts with them in any way.
Therefore, it is easy to maintain as it does not need to adapt
to the fast evolution of the processing engines but only to the
API changes of the resource manager. Moreover, Justice does
not rely on job repetitions which make it suitable even for
generic workloads that include ad-hoc queries. Justice is ideal
for the constrained IoT analytics settings, not only because
it is optimized to avoid wasting resources for infeasible jobs
but also because it does not perform offline simulations,
sampling, or extensive online monitoring that would require
more computing resources and additional overheads. Lastly,
Justice does not add complexity, as it only requires minimal
information (a deadline and the input size) from the resource
manager and the user.

As future work, we are extending Justice to support more
diverse workloads. We are interested in applications with
differing deadline criticality, including hard and soft deadlines,
but also applications without deadlines. We also plan to
consider infeasible deadlines, i.e., when the cluster cannot meet
the deadline the user specified even under ideal allocation, to
find ways to incentivize users to assign realistic deadlines and
to penalize them when their deadlines are very tight. Moreover,
we plan to evaluate our mechanism taking into consideration
memory use in addition to CPU, as well as to understand the
performance of Justice for different types of applications (e.g.,
CPU Vs I/O bound). Currently, Justice does not depend on job
repetitions and works well for generalized workloads like the
ones we used in this paper. However, for workloads where
recurrent jobs constitute a significant amount, exploiting job
repetitions patterns might further improve allocation efficiency.
Lastly, we plan to evaluate Justice with IoT analytics work-
loads and deploy it in real IoT analytics clusters so we can
derive insights from more field-specific characteristics.
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