
The Livny and Plank-Beck Problems: Studies in Data Movement
on the Computational Grid

�����

Matthew S. Allen
Computer Science Department

University of California, Santa Barbara

Rich Wolski
Computer Science Department

University of California, Santa Barbara

Over the last few years the Grid Computing research
community has become interested in developing data in-
tensive applications for the Grid. These applications face
significant challenges because their widely distributed na-
ture makes it difficult to access data with reasonable speed.
In order to address this problem, we feel that the Grid com-
munity needs to develop and explore data movement chal-
lenges that represent problems encountered in these appli-
cations. In this paper, we will identify two such problems
that we have dubbed the Livny Problem and the Plank-Beck
Problem. We will also present data movement scheduling
techniques that we have developed to address these prob-
lems.

1 Introduction

In recent years, many applications have developed that de-
mand access to large amounts of data. Scientific applica-
tions like particle physics [20, 1], fluid modeling [9], and
others, require access to terabytes of information. Often,
these applications work with data sets that are either too
large to be stored at a single site, or are distributed among
a group of cooperating organizations, or both.

For these reasons, efficient movement of large data sets
is the subject of much current research in Computational
Grid computing [6, 14, 11, 5, 13, 18, 12, 22, 16]. The
chief performance goals of these systems are to provide the
fastest possible remote access and ensure that the access is
reliable.�
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Research on scheduling this data management has fo-
cused on both the problem of distributing the storage load
among a set of servers and on replication as a way of en-
suring reliability and data proximity. In order to store large
data sets and keep their load balanced across many hosts,
many applications choose to divide these sets into sections
and distribute them. To access these files reliably in spite of
individual host failures, these sections are frequently repli-
cated across many file servers.

While the projects cited above have each explored these
problems in different ways, commonalities among the var-
ious successful solutions are beginning to emerge. In this
paper, we investigate two such commonalities, identified
by noted researchers in the field: Dr. Miron Livny [4]
from the University of Wisconsin, and Dr. James Plank [2]
and Dr. Micah Beck [3] from the University of Tennessee,
Knoxville. During various conversations and collaborative
activities with each of them, they have independently posed
separate challenge problems that we believe are germane to
the field at large. As such, we have named each problem
after its progenitor. Briefly described, the Livny Problem
focuses on optimizing a set of independent transfers to a
given target location with the goal of improving the time to
arrival of the greatest number of transfers. The Plank-Beck
Problem involves the dynamic construction of a data stream
from replicated and distributed stream segments. We de-
scribe these problems in greater detail and investigate how
effective dynamic scheduling can be used to address them.

Thus, the contribution that this paper makes is twofold:

� Begin the process of identifying relevant community
challenge problems for data intensive Grid applica-
tions.

� Investigate efficient scheduling techniques in terms of
their ability to address these challenges.

The first contribution, we believe, is a necessary step to-
ward the definition of realistic and pertinent benchmarks
for Grid computing. To date, despite various efforts to de-
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velop viable benchmarks [23], a well-accepted set remains
elusive. We believe that challenge problems, independently
formulated and addressed, will aid these efforts, particu-
larly for data intensive applications. With network capac-
ity as the bottleneck resource, efficient use is imperative to
promote both individual application performance and the
scalability of the Grid to multiple competing applications.
Our scheduling work, based on the network monitoring and
forecasting information provided by the Network Weather
Service [26], attempts to detail effective ways of address-
ing these problems using currently available and supported
Grid infrastructure.

In particular, this paper will describe a methodology we
developed for selecting replicas and scheduling file trans-
fers using NWS measurements and forecasts. We will com-
pare algorithms that use these measurements with other so-
lutions to these scheduling problems. We demonstrate our
results in terms of two applications we have written: an un-
ordered file aggregation application modeled on the Livny
Problem and a data streaming application with replicated
segments modeled on the Plank-Beck Problem. We will
formally describe the Livny and Plank-Beck Problems in
section 2, and we will describe our algorithms for address-
ing them in section 3. Section 4 details our experiment’s
implementation and section 5 will show our results. We
conclude with section 6.

2 The Livny and Plank-Beck Prob-
lems

The Livny and Plank-Beck Problems are generalizations of
common requirements that arise frequently in data inten-
sive Grid applications. They are both motivated by specific
needs within the Condor [21, 15] project lead by Dr. Miron
Livny at the University of Wisconsin and the LBONE [12]
project headed by Dr. Micah Beck and Dr. James Plank at
the University of Tennessee, Knoxville. In this section, we
will formally define these problems and we will describe
the applications that best embody them.

The Livny Problem stems from a discussion of network
monitoring and forecast efficacy that took place between
one of the authors and Dr. Livny during a Grid research
workshop. Livny posed, as an investigative challenge, the
problem of optimizing unordered collective downloads to a
single location from a set of remote locations. More pre-
cisely,

Given
�

files of uniform size that are distributed
across

�
hosts in a Grid setting, optimize the

transfer of all files to a central location so that
the maximum number of files arrive in the mini-
mum amount of time.

The goal is to schedule the downloading of these files
such that the largest number of files are downloaded in the
shortest period of time. In this situation, it is impossible
to improve the time it takes to download the entire collec-
tion of files since “slow” ones must necessarily be slow (i.e.
there is no replication). Notice also that stated in this form,
“tree” reductions in which a file may make multiple hops
(as a log function of the number of hosts) are also possible.
After discussing the problem further with Dr. Livny, we
determined that for this initial investigation, all communi-
cation channels had to be directly between the individual
remote sites and the collection site.

Although no specific application was presented by Dr.
Livny in this challenge, we speculate that it is related to
checkpoint file management. Condor supports automatic
process checkpoint and migration when resource owners
reclaim their resources. Since hosts are being reclaimed,
it is not clear that they would be available to participate in
a large tree reduction of checkpoint files, or that the par-
allelism such a reduction would bring would be beneficial
(e.g. if the hosts were connected to a shared network). As
such, we chose the simpler formulation of the problem in
which each remote host is constrained to communicate di-
rectly with the collection site.

The Plank-Beck Problem was taken directly from a
demonstration made by Dr. Plank during SC02 in both
the National Partnership for Advanced Computational In-
frastructure (NPACI) and University of Tennessee (UTK)
research exhibits. The application, developed by Plank
and Beck’s group at UTK, uses an XML registry to keep
track of segmented MP3 or DVD files in which the seg-
ments are replicated across Internet Backplane (IBP) de-
pots [17]. An IBP-enabled player automatically fetches the
segments in the order required to play the stream back se-
quentially [10, 19]. Moreover, the player begins playing
as soon as the first segment arrives and will “stall” when a
missing segment is encountered until it is delivered. Thus,
the goal of the data movement system is to deliver segments
reliably (no segments can be missing) at a rate fast enough
to keep the player from stalling.

More precisely

Given a single large file divided into
�

ordered
segments of uniform length in which each seg-
ment has � replicas distributed across hosts, min-
imize the time necessary to deliver each segment
in order.

Strictly speaking, this formulation is not representative
of the problems faced by Plank and Beck’s application. For
their application, each segment has a unique deadline that
is determined by the segment’s relative location in the file
and the speed of the player. Thus, minimizing the time for
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each segment is not necessary as long as each time pro-
ceeds its corresponding deadline. We ignore this require-
ment to simplify and generalize the challenge problem for
this initial investigation. Although our graphs will show
some common audio requirements, we will not spend time
discussing delivery deadlines in this paper.

We believe the Livny Problem to be representative of
a variety of Grid applications that benefit from collecting
a portion of a distributed data set as quickly as possible.
Also, the Plank-Beck Problem is germane to similar appli-
cations in which streaming or ordered delivery of aggre-
gated data objects is essential. At the same time, we do not
claim that the Livny and the Plank-Beck Problems com-
pletely cover the space of representative challenge prob-
lems. Rather, they are the first we have encountered from
deployed systems that, in our judgment, have potentially
wide applicability. Our goal with this exposition is to en-
courage the community at large to identify and formulate
others.

3 Methodology

For our experiments, we present a set of strategies to ad-
dress the Livny and Plank-Beck Problems respectively. For
the Livny Problem, our scheduling algorithm tries to exe-
cute the faster transfers sooner as a way of improving the
arrival distribution. For the Plank-Beck Problem, our goal
is to provide fast transfer performance without the need for
wasted transfers.

To expose the efficacy of our solutions to the Livny and
Plank-Beck Problems, we try to improve on some strategies
suggested as “control” examples. For the Livny Problem,
we followed the suggestion of Livny himself, who specu-
lates that our solution will not be able to substantially out-
perform a random scheduling algorithm. Given the dynam-
ics of network transfers, it is possible that simply choosing
hosts at random is a performance optimizing strategy. We
test our strategy against this possibility at Dr. Livny’s re-
quest.

For the Plank-Beck Problem, we compare our results
with two algorithms implemented for the application orig-
inally deployed at SC02. The first is a greedy approach
which issues parallel fetches for each segment as a way
of optimizing throughput and maximizing fault tolerance.
This method retrieves each segment quickly because when
it downloads all segments at once the fastest arrives first.
It also exhibits good fault tolerance because even if one
download fails, another fetch will still deliver the data.

The second algorithm implemented as part of the orig-
inal Plank application is an improvement on the first that
addresses the problem that arises when multiple downloads
overload the network, dubbed the progress-driven redun-

dancy algorithm [19]. This algorithm does not use parallel
streams to fetch multiple replicas of the same segment in
parallel. Instead, it fetches different segments from mul-
tiple replica servers. The number of threads fetching seg-
ments is equal to the degree of replication (ie. with 5 replica
sites there are 5 threads fetching segments). If one of the
fetches lags and enough segments past it have been down-
loaded, more fetches are issued for the lagging segment. In
this way, each segment is downloaded only once unless it
begins to hold up the stream.

However, for correctness, this version of the Plank-Beck
algorithm requires that segments within each replica be co-
located. That is, files must be stored in their entirety at each
replicating site. The algorithm uses a work-queue model in
which fetching threads take responsibility for an unfetched
segment on the queue, fetch that segment from their replica,
dequeue the segment identifier when the fetch is complete,
and acquire another segment to fetch. “Fast” replicas will
deliver more segments than “slow” ones since their threads
will “grab” more of the unfetched segments.

By requiring all segments of a given replica to be stored
on the same server, this scheme limits the size of the file
that can be replicated to the minimum available space at
any of the potential replication sites. For example, if there
are four servers available to replicate a file, and they have
10, 20, 30, and 40 megabytes of available space respec-
tively, only a 10 megabyte file could be replicated across
all four servers. This storage architecture severely limits
the flexibility and scalability of the system.

Thus, we also investigate a general progress-driven re-
dundancy algorithm. In this version, each segment is repli-
cated across sites chosen from the host pool for the exper-
iment. Like the algorithm described above, the scheduler
maintains a pool of threads and a work queue of segments
that have yet to be downloaded. Also, as before, threads
“grab” work from the queue until there are no more seg-
ments to transfer. In this generalized case, however, when
a thread decides to download a segment, it chooses a replica
server storing that segment at random since it does not have
access to proximity information. If we need to duplicate
a fetch, it chooses another server at random and begins a
fetch from there. We implement both the original algorithm
and this general algorithm in this paper.

We believe that with a different approach we can op-
timize performance and eliminate the need for parallel
fetches in these Plank-Beck solutions. Our approach is
based on network performance measurements and forecasts
generated by the Network Weather Service (NWS) — a dis-
tributed Grid middleware service designed to support high-
performance dynamic application scheduling. NWS sensor
processes on each machine measure the availability of re-
sources like bandwidth, cpu, and memory using periodic,
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non-intrusive tests. Other NWS applications are used to
analyze a measurement series and generate a forecast using
a set of non-parametric statistic techniques. These forecasts
can be used to predict how available a resource will be in
the future. Our methods are based on NWS predictions of
available bandwidth.

For the purpose of selecting a file for download, this
means that we can use the NWS bandwidth predictions to
determine which files are “closest” to the application that
needs them. A file is said to be closer than another if the
link to that file provides higher bandwidth than the other. In
many of these scenarios, access times can be improved by
giving priority to the files that will arrive the quickest. The
proximity of a file can be discovered in many ways, but our
success in the past addressing similar problems with NWS
predictions suggests that they are effective.

For the Livny Problem, we provide two algorithms we
wish to explore. These algorithms compare our predic-
tion based approach with an approach that uses explicit
application-level information on download times. Our con-
trol algorithm generates a random ordering of hosts to
download from. This algorithm would be the performance
of the file aggregation with no scheduling policy.

Our first algorithm, called the last-time algorithm, at-
tempts to use information gathered at the application level
to schedule file downloads. This algorithm records the
download times from each host during a run of the appli-
cation. It then schedules the file downloads based on the
last file download time for each host, from fastest to slow-
est. There are inherent advantages and disadvantages to us-
ing application level information. Using performance data
gathered at the application level means that the information
will be fine tuned to the program’s requirements. However,
a scheduler based on instrumentation data alone might not
have a recent antecedent to base its schedule on.

Thus, the second Livny Problem algorithm, referred to
as the NWS-prediction algorithm, uses the NWS to deter-
mine which host will be the closest to the collection point.
It schedules the file downloads based on the NWS predic-
tion of bandwidth to the file servers, from highest to lowest.
Like using application level data, there are pros and cons to
this approach. Using external data from the NWS requires
additional setup overhead and the measurements may not
be indicative of true application usage. However, it pro-
vides consistent and complete information independent of
the application’s recent behavior. Predictions are also less
susceptible to anomalies like routing changes or network
partitions that may affect one download, but not others.

For Plank and Beck’s greedy algorithm, we use predic-
tions to eliminate the need fetch the same section in paral-
lel. In contrast to Plank and Beck’s greedy algorithm, ours
downloads only one file at a time based on which server the

NWS predicts has the highest bandwidth connection. This
is able to find the closest replica without causing contention
between multiple downloads. To achieve fault tolerance,
we select the next closest replica in the case of a failure.
The tradeoff is that the time spent detecting a failure and
fetching another segment is lost.

However, as mentioned previously, part of Plank and
Beck’s goal is to ensure that each segment arrives and does
not stall. In our work, we use dynamic timeout discov-
ery [8] as a way of ameliorating transient network failures.
The original Plank and Beck solution works in the presence
of machine failure, but failure of a host is rare compared to
the “failure” of a particular socket connection. By dynam-
ically learning how long to wait for a connection to com-
plete, our system can automatically retry slow connections.
We investigate how effective this strategy is at ensuring ap-
plication throughput.

To compare with Plank and Beck’s progress-driven re-
dundancy algorithm, our second NWS-prediction algorithm
is modified slightly. For this version, we create a number
of threads equal to the number of replicas just as in their
algorithm. Each thread then chooses the first segment that
no other thread is downloading and fetches the predicted
fastest replica. No parallel fetches are issued because it as-
sumes it is retrieving the closest replica.

4 Experiment

To respond to the challenges presented by the Livny and
Plank-Beck Problems and to test the usefulness of NWS
predictions, we implement two experiments. Both these
test applications are based directly on these two problems,
and are written to make use of different scheduling strate-
gies. The first is a file aggregation application based on
the questions posed in the Livny Problem. The Plank-Beck
Problem is addressed by an application that downloads a
file stream from a set of replicated stream segments.

Both experimental applications follow the same format.
At the core is a scheduler application that runs on the col-
lection point and aggregates files. This scheduler imple-
ments algorithms to order downloads to optimize for the
Livny or Plank-Beck Problems. This scheduler then con-
tacts file servers located on all the machines in the host
pool to download files. The file servers are very simple
processes that are distributed across all hosts in the experi-
ments. When a client establishes a connection with the file
server and requests a file, it replies with the file’s contents.
The scheduler takes measurements at every step of its run
time so we can analyze the various algorithms’ effective-
ness. There are 50 file servers for the Livny experiments,
and 48 for the Plank-Beck experiments.
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4.1 Network Weather Service

For all of our experiments we set up NWS network sen-
sors on each of our file server machines. Each sensor in
the experiment pool runs periodic tests with a sensor that
runs on the collection point. These tests consist of 64KB
network probes run every 30 seconds. Also on the sched-
uler’s host is an NWS forecasting demon, which uses mea-
surements made by the sensors to calculate performance
predictions for each of the file server hosts. The scheduler
queries this forecaster for NWS bandwidth predictions for
the file servers.

We have deliberately chosen to use short NWS network
probes in this experiment as a way of determining their
resolution power. Probes of this size, particularly for net-
work connections with large bandwidth-delay products, do
not give accurate absolute estimates of available network
throughput, but the amount of additional network load they
introduce is insignificant. They are also not representa-
tive of the size of the files we are downloading. However,
the forecast required is a forecast of relative rank rather
than absolute throughput speed. In these experiments, we
wished to investigate the ability of short probes to make
rank forecasts. The goal is to keep NWS network probes as
small as possible to support scheduling and resource allo-
cation, even if this makes them non-representative of true
application usage.

4.2 The Livny Problem

To investigate the Livny Problem, we use a file aggregation
program that is implemented as follows. There are 50 hosts
in the experiment that run file servers, and each stores a file
10 megabytes in size. The centralized scheduler downloads
these files according to one of the scheduling policies. The
scheduler accumulates all of these files and aggregates their
contents. The experiment completes when all 50 files arrive
at the the scheduler.

For these experiments our goal is to test the various
scheduling strategies for downloading the fastest files first.
The scheduler generates a list of files sorted on what it
believes will be the fastest to the slowest. The last-time
scheduler uses application level data gathered at the im-
mediately preceding random run of the experiment. This
means that all last time measurements are as fresh as pos-
sible. Although it is unreasonable to assume that you will
have immediately fresh last-time measurements, we imple-
ment this primarily to understand the effectiveness of the
NWS-prediction strategy. The NWS-prediction scheduler
sorts all the files based on the freshest NWS predictions as
well, and during run time it recomputes the schedule for the
remaining hosts periodically. Thus, it also attempts to use
the freshest forecasts.

By comparing the NWS-prediction schedule with the
last-time application performance schedule, we can test the
loss of accuracy caused by the use of a non-intrusive NWS
network probe to “read” the network conditions. We as-
sume that the NWS is part of the Grid middleware fabric
and, as such, is constantly monitoring network conditions.
Thus, an application run at any time will have access to
“fresh” NWS data.

As an intermediate step between the Livny Problem
and the Plank-Beck Problem, we want to understand how
these Livny Problem algorithms work with simultaneous
file transfers. The scheduler generates an ordered list of
files to be downloaded based on the scheduling strategy. It
then spawns some number of threads to begin downloading
these files in parallel. Each thread takes the first file off the
list that has not been downloaded and is not being down-
loaded and issues a fetch for it. When the download com-
pletes, it fetches the next file on the list that meets the same
requirements. Thus, at all times the scheduler is download-
ing multiple files at once. We ran these experiments with 2,
4, and 8 simultaneous downloads.

4.3 The Plank-Beck Problem

To explore the Plank-Beck Problem, we implement an ex-
periment to test the effectiveness of using predictions for
replica selection. In this experiment, our goal is to down-
load a 700Mb file that is distributed across the host pool.
This file has been divided into 70 10Mb segments, and each
segment is stored on � different hosts. At the beginning
of each iteration of the experiment, these replicas are ran-
domly distributed across the replica servers. Each segment
is assigned to � randomly selected different hosts. The ran-
domization process attempts to distribute the load evenly
across all the hosts, so that if there are 4 replicas and 35
hosts, each host will be responsible for 8 different segment
replicas. Our goal is to download these segments in order
in the least time possible.

The greedy algorithm is implemented as described pre-
viously. The scheduler simultaneously downloads the next
segment by beginning a download from all � of the replica
sites. When the first download completes, all other down-
loads are halted and the scheduler proceeds to download
the next segment. The NWS-prediction scheduling algo-
rithm only downloads one segment at a time, chosen from
the � replica sites based on data from the NWS. When it
needs to download a segment, it sorts the � replicas sites
from fastest to slowest. It then retrieves the segment from
the nearest file server. We run these experiments with �

values of 2, 4, 6, and 8.
We also establish a methodology for dealing with fail-

ures in this application. When using the greedy algorithm,
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errors are handled by default. If one of the downloads fails,
the other downloads continue until one of them completes.
In the NWS-prediction method, if there is a failure during
connection or download, the scheduler downloads from the
next fastest replica and downloads the complete segment
regardless of how much was downloaded before the failure.
The number of failures in individual replica downloads and
overall section downloads is recorded.

We implement both the Plank’s original and the general
progress-driven redundancy algorithm as discussed earlier.
Both algorithms behave as follows. The scheduler spawns
� threads to fetch segments, where � is the number of repli-
cas of each segment. Each thread selects a segment in the
stream to download based on the following requirements.
If there is a segment in the stream that has not been com-
pletely downloaded and there are three segments that fol-
low it that have, this segment is considered to be holding up
the stream. To rectify this, the thread issues another fetch
for a different replica of that segment. Only two downloads
are allowed per segment, so once two downloads have been
initiated for a segment, no more will be issued for it. If
there is no segment that is holding up the stream, the thread
instead issues a fetch for the first segment that has not been
downloaded and is not currently being downloaded.

The general version of the algorithm differs in how the
file is distributed and how a thread chooses which host
to download from. In the original progress-driven redun-
dancy, � random sites are chosen at the beginning of the
experiment, and each holds a complete copy of the file.
Each thread is bound to one site, and when it chooses to
download a segment it always downloads from that site.
This is the version presented by Plank and Beck, and it uti-
lizes the topology because it is likely that a thread bound
to a fast server will finish quickly and will eventually start
duplicating downloads from a slower server. In the general
progress-driven redundancy version, the file’s segments are
distributed randomly across all hosts as described in the be-
ginning of this section. When a thread decides to download
a segment, it chooses a replica site at random and fetches
from it. This utilizes topology because when a duplicate
fetch is issued for a slow segment, it is likely that it will be
from a faster server. Although the general method may not
be as strong as the original algorithm, it does represent what
we believe to be a more general formulation of the problem
that is likely to occur in heavily used Grid environments.

5 Results

The experiments ran as described in the previous sec-
tion from March to May of 2003. Experiments were run
throughout the day so that they would not be limited to a
single time period.

The collection point was located at a workstation at
UCSB. The file servers were distributed across a set of ma-
chines in the U.S and Netherlands. Many of these machines
were provided by the Grid Application Development Soft-
ware (GrADS) Project [7], which hosts a testbed for de-
veloping Grid applications. Our accounts were all non-
superuser accounts provided graciously by various collab-
orators. Table 1 shows our host pool, including the num-
ber of hosts we had access to. Also included are statis-
tics drawn from our experiment data on the average time to
download a 10 Mb file and the variance in those download
times.

Graphically, we present our results throughout the paper
using Cumulative Distribution Functions (CDF) of the ag-
gregate data. For all of these graphs, the x-axis represents
the time (in seconds) since the beginning of the run of an
experiment. The y-axis is the percentage of files that have
arrived at the collection point as aggregated across all ex-
periments. Thus, we can say that � seconds into the aggre-
gation, on average � percent of the files have arrived. Using
figure 1 as an example, we see that 200 seconds into the ex-
periment, 36% of the files have arrived using the random
algorithm, and 63% have arrived using the NWS-predicted
algorithm. Also, we can tell that on average 50% of the
files have arrived in 278 seconds using the random algo-
rithm, which takes 103 seconds with the NWS-predicted
algorithm.

5.1 Livny Problem

Our initial results focus on the Livny problem to show the
effectiveness of scheduling file transfers. We used data ac-
cumulated from 326 runs of each algorithm using all differ-
ent parameters. In this case, we ran each of the 3 algorithms
with 4 different thread counts, for a total of 3,912 total ag-
gregations. Figure 1 shows the results of the Livny prob-
lem experiments with only one download at a time. The
random ordering produces results much like we would ex-
pect, with the percentage of files aggregated linear to time
on average. From this graph it appears that there are only
two data sets being plotted, which is because both our last
time and NWS-prediction ordering produce almost iden-
tical results. This means that NWS predictions rank host
download times just as effectively as the freshest possible
last time values. This result is important to notice because
it means that with no knowledge of the application’s needs,
the NWS provides information that is just as useful as data
gathered directly from the application. Furthermore, either
algorithm yields a significant improvement and gets 70%
of the files in two thirds of the time of the random strategy.

Table 2 extends these results to cover the behavior of
parallel sockets, where we actively download more than
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Table 1: Experiment Host Pool
Domain Hosts Average Download Time Download Time Variance
University of California, Santa Barbara 14 0. 95s 0. 02
California State, Northridge 1 7. 81s 42. 95
University of California, San Diego 12 3. 32s 3. 70
University of Illinois, Urbana-Champaign 14 16. 98s 6. 15
Indiana University 1 23. 82s 23. 42
University of Tennessee, Knoxville 13 14. 30s 8. 15
University of Minnesota 1 22. 49s 444. 97
Vrije University in Amsterdam 2 40. 50s 55. 15
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Figure 1: Livny Aggregation CDF (no parallel down-
loads)

Table 2: Livny Aggregation Times with Simultaneous
Downloads (seconds)

Random Last Time Predicted
2 downloads

25% 69 13 13
50% 132 46 46
75% 196 125 127
90% 231 195 194

4 downloads
25% 34 13 13
50% 71 34 34
75% 105 80 81
90% 127 115 116

8 downloads
25% 26 15 15
50% 49 36 36
75% 69 63 63
90% 83 81 81

one file at a time (these results are presented graphically in
the Appendix). Each column of the graph shows the time
it takes (in seconds) to download a percentage of the files
for a specific strategy. For example, the second row of this
table shows us that if we keep two simultaneous downloads
throughout the aggregation, we will download 50% of the
files in 132 seconds with the random strategy or 46 seconds
with either the last time or NWS-prediction strategy.

We show these results to demonstrate that the trends we
observe in figure 1 still hold in the parallel transfer situa-
tion. As we can see from the graphical representation of
this data for 8 downloads in figure 2, both strategies still
offer an improvement over the random strategy.

It is worth noting that performance for aggregating the
fastest files degrades as there is more contention between
downloads. This can be seen by comparing the time to
reach the 50% quantile n the last time strategy for 4 and 8
downloads in table 2. Although it takes 34 seconds to reach
this quantile with 4 active downloads, it takes two seconds
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Figure 2: Livny Aggregation CDF (8 parallel down-
loads)

longer with twice as many simultaneous downloads. So
with 4 downloads, it takes 5.4 seconds to download one
of the closest 25 files on average (5.4 seconds * 25 files
/ 4 download streams = 34 seconds). Doubling the num-
ber of downloads means it takes 11.5 seconds on average
to download one of the fastest files (11.5 seconds * 25 files
/ 8 downloads streams = 36 seconds). At this point, dou-
bling the contention for bandwidth at the collection point
increases the download time for each of the closest files by
over a factor of two. This observation will be applicable
to the Plank-Beck problems when we discuss the tradeoff
between finding a close file and using multiple download
streams.

Based on these results, we believe that NWS proximity
information, even with unrepresentative network probes, is
a powerful tool for building schedulers to optimize data
transfer. For these experiments, scheduling algorithms are
able to make a difference in the time it takes to accumulate
a large percentage of the total files. This is accomplished
with a slight amount of additional bandwidth consumed by
the NWS network probes. NWS forecasts do not show bet-
ter results than a fairly simple application level method.
However, the application level method we describe has ex-
plicit download data on all the hosts it interacts with as well
as exceptionally fresh last time measurements. In a grid
setting, hosts would be entering and leaving this operation,
and we cannot expect to have information on their previous
download times. Also, as the measurements taken during
runs become more stale, it is likely they lose their effec-
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Figure 3: Plank-Beck Aggregation CDF (Greedy only)

tiveness as a scheduling metric [25, 24]. Thus, application
level data of this quality is not realistic for a Grid setting.
For this reason, we consider the fact that NWS-predictions
perform as well as this best case application level schedul-
ing a success.

5.2 Plank-Beck Problem

Having established that predictions are an effective met-
ric for scheduling file downloads, we apply these results
to the Plank-Beck Problem. The following results are
collected from 276 runs each of the Plank-Beck greedy
and NWS-predicted download strategies for all parameters.
This means with 276 runs of two algorithms with 4 differ-
ent levels of replication there were 2,208 aggregations in
total. For each level of replication, the replicas were ran-
domly distributed throughout the host pool and then both
algorithms were run with that configuration. For every ex-
periment using the Plank-Beck greedy strategy, there is an
equivalent experiment using the NWS-Predicted strategy.

Figure 3 demonstrates only the Plank-Beck greedy algo-
rithm with various degrees of replication. As we can see,
as the number of replicas increases the average download
time decreases. The reason is that for each segment it is
more likely that there will be a replica close to the aggrega-
tion point. Figure 4 is the same graph except it shows the
CDF’s for the NWS-prediction based strategy. This figure
demonstrates that our method exhibits similar performance
benefits for higher degrees of replication.

Table 3 provides insights into how these algorithms ac-
complish better download times with more replication. The
table shows how frequently hosts from each domain were
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Table 3: Replica Sites Responsible for Segment Delivery
Plank-Beck greedy NWS-Predicted

domain hosts 2 4 6 8 2 4 6 8
ucsb.edu 9 34. 17 52. 12 61. 02 67. 32 34. 34 54. 79 67. 07 75. 55
ucsd.edu 11 32. 20 37. 09 36. 17 31. 89 32. 03 34. 41 30. 12 23. 66
uiuc.edu 12 8. 31 0. 50 0. 03 0. 01 8. 39 0. 56 0. 04 0. 01
umn.edu 1 0. 84 0. 18 0. 03 0. 01 0. 79 0. 12 0. 02 0. 01
utk.edu 12 24. 33 10. 12 2. 75 0. 78 24. 32 10. 11 2. 76 0. 78
vu.nl 2 0. 15 0. 00 0. 00 0. 00 0. 13 0. 00 0. 00 0. 00
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Figure 4: Plank-Beck Aggregation CDF (NWS-
Predicted only)

responsible for delivering segments. Here, we can see the
number of hosts housing replicas that were used for this
experiment on the left. On the right are the percentage of
times hosts from those domains were responsible for de-
livering the segment to the scheduler. Both of the algo-
rithms presented attempt to download the closest replica to
reduce the overall aggregation time. For instance, we know
from table 1 that ucsb.edu can deliver a segment 2.4 sec-
onds quicker than ucsd.edu on average. Although ucsd.edu
has more hosts and thus is responsible for more replicas (re-
call that each host is responsible for an equivalent number
of replicas), more of the segments were actually delivered
by ucsb.edu for all levels of replication. Also, as the level
of replication increases, it becomes more likely that there
will be a replica on domains close to the collection point
(ucsb.edu and ucsd.edu, in this case). Because most of the
files are downloaded from these close hosts, the overall run
time of the application decreases.

The weakness of the greedy Plank-Beck algorithm is
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Figure 5: Plank-Beck Greedy and NWS-Predicted Ag-
gregation CDF (2 replicas)
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Figure 6: Plank-Beck Greedy and NWS-Predicted Ag-
gregation CDF (8 replicas)

Table 4: Plank-Beck Greedy and NWS-Predicted Ag-
gregation Times (seconds)

Replicas
4 6 8

Plank-Beck greedy
50% 100 73 63
75% 149 108 94
95% 199 144 123

NWS-predicted
50% 85 53 40
75% 127 78 60
95% 169 103 77

that when we download multiple files at once, there is con-
tention between the downloads. It consumes unnecessary
bandwidth downloading data that is discarded once the first
arrives. Intuitively, if we download from the closest replica
only, our aggregation would gain the speedup from repli-
cation without the overhead of multiple streams. When
there are a small number of replicas, as shown in figure
5, there is a slight but insignificant decrease in aggregation
time for the NWS-predicted algorithm because it uses only
one download stream. However, with such a low number
of replicas we have poor fault tolerance because only two
transfers need to fail to make a segment unaccessible.

As we increase the number of replicas, we increase the
fault-tolerance and the chance we will have a close prox-
imity file. However, with the greedy strategy increasing the
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Figure 7: Progress-Driven and NWS-Predicted Aggre-
gation CDF (2 replicas)

number of replicas increases the contention between down-
loads and the amount of bandwidth consumed. Looking
at table 4, we can see that with more replicas the NWS-
prediction based algorithm avoids this contention and gains
a substantial speedup by only downloading the predicted
fastest replica (this information is presented in graphical
form in the Appendix). This is most obvious comparing
the Plank-Beck greedy algorithm and the NWS-prediction
based algorithms for 8 replicas, as shown in figure 6. Here
we see that the NWS-prediction algorithm reaches each
quantile in roughly 65% of the time of the Plank-Beck
greedy algorithm. This is because we are able to use the
fastest replica while only consuming 12.5% of the band-
width of the greedy strategy.

In comparison with the Plank-Beck greedy algorithm,
our NWS-prediction based algorithm performs quite well.
Because the greedy method causes contention between
the multiple download streams, choosing only the fastest
replica server increases the download speed. Downloading
from only one site also consumes a fraction of the band-
width used by the greedy algorithm. In the worst case,
if almost every replicated copy is downloaded in its en-
tirety, then that means the greedy algorithm moves � times
as much data across the network (where � is the level of
replication). Although this is a worst-case estimate, it still
remains the case that the greedy algorithm gains its perfor-
mance speedup only by inducing more load on the network.

Moving on, we now look at 196 runs of data for the
newer progress-driven redundancy algorithm developed by
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Figure 8: Progress-Driven and NWS-Predicted Aggre-
gation CDF (4 replicas)

Plank and Beck. Figure 7 shows the performance of our
NWS-predicted algorithm against both of the progress-
driven implementations for two replicas. In this case, we
can see that the NWS-prediction algorithm clearly per-
forms better than the general progress-driven algorithm.
This holds true for all levels of replication, and likely means
that in the general case (where entire files are not replicated
as contiguous segments) the progress-driven algorithm is
perhaps not an effective approach. Looking at this graph, it
would seem that the original progress-driven performs bet-
ter than either algorithm in most cases at the expense of the
limited architecture discussed previously.

From figure 8 we can see that the progress-driven
algorithm consistently performs better than our NWS-
prediction strategy. However, as the degree of replication
increases, the performance of the NWS-prediction strategy
becomes much closer to the original progress-driven strat-
egy. This is especially true once the aggregation reaches
70%, which is we can see from comparing the 75% rows
from table 5 above (for a graphical representation, refer to
the appendix). This is significant because the architecture
of the NWS-prediction strategy distributes replicas more
widely and evenly. Thus, the NWS algorithm achieves per-
formance similar to the original progress-driven algorithm,
but permits segments to be replicated individually (as op-
posed to contiguously) allowing greater flexibility and scal-
ability.

Based on comparisons with the Plank-Beck greedy
strategy and the newer progress-driven algorithms, NWS-

Table 5: Progress-Driven and NWS-Predicted Aggrega-
tion Times (seconds)

Replicas
3 4 5 6

General Progress-Driven
50% 140 114 102 95
75% 205 167 147 136
95% 278 227 192 177

NWS-Predicted
50% 75 61 60 59
75% 111 84 77 72
95% 199 163 137 113

Progress-Driven
50% 51 46 42 45
75% 91 74 69 73
95% 259 168 131 107

predictions appear to provide a strong basis for replica se-
lection. Because predictions are capable of determining
proximity, there is no need to consume additional band-
width with redundant downloads. Although it is hard to
draw a strong correlation between the progress-driven al-
gorithms and our strategies, we are able to achieve similar
performance for a distributed and scalable storage architec-
ture compared to a more simple and limited architecture.
We are still able to accomplish this without duplicating any
downloads, unlike any of the strategies that do not use pre-
diction.

5.3 Failure Characteristics

In our experiments with the Plank-Beck problem our sys-
tem not result in a significant number of failures, so it
is difficult to compare the two algorithms based on fault-
tolerance. However, it is worth noting that our experiments
did run on a grid testbed designed to characterize a real
grid with a production compute load. Thus, it may be the
case that programs running in this environment do not suf-
fer enough faults to justify the overhead of parallel down-
loads. If this is the case, then the best policy may be to sup-
port less thorough fault recovery and remain well behaved
with regard to other users.

Regardless, if we want to design algorithms that can
function in a distributed and faulty environment, we must
consider the possibility of failures. Therefore, we run ex-
periments where we introduce transient network failures ar-
tificially while we search for “real” network links that ex-
hibit greater loss. To induce failures, we randomly stall 5%
of the transfers by a factor of three. For example, there is
a 1 in 20 chance that a given download, completing in 10
seconds, will be stalled an additional 20 seconds for a total
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Figure 9: Plank-Beck Aggregation with Induced Errors
CDF (4 replicas)

transfer time of 30 seconds. Although this is an artificial
and probably overly-aggressive failure model, it attempts
to address the types of problems that are reported by Plank
and Beck that we did not observe.

Figure 9 shows the effects of these artificially induced
errors on the Plank-Beck greedy and NWS-predicted com-
parison. Here, we can see that the Plank-Beck greedy
method performs slightly better in all cases. The NWS-
predicted method shows some performance degradation
once the aggregation is 95% complete. This is caused by
aggregations where some number of downloads have been
stalled and the NWS-predictive method cannot respond as
quickly as the greedy method. However, this decrease
in performance only affects a small portion of the down-
loads. The performance difference between the two strate-
gies is very slight, and the NWS-prediction algorithm ac-
complishes this performance using only 25% of the band-
width of the greedy method and does not violate TCP con-
gestion control mechanisms.

Figure 10 shows the same comparison with 6 replicas.
Because of the throughput penalty, in this example the
NWS outperforms the Plank algorithm in terms of speed
while achieving the same level of fault tolerance. Again,
through the use of forecasting and effective retry, the NWS
algorithm achieves the same degree of fault-tolerance, uses
less bandwidth, and runs faster than the greedy strategy in
the average case.

In comparison with the Plank-Beck greedy algorithm,
our NWS-prediction based algorithm cannot respond as
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Figure 10: Plank-Beck Aggregation with Induced Er-
rors CDF (6 replicas)

quickly to failures. The greedy strategy initiates one down-
load per replica, which means that if any transfer fails or
is stalled, there is a redundant download in progress that
can be used for recovery. However, as the number of repli-
cas increase, the proximity determining benefit from this
strategy becomes obviated by the overhead of downloading
multiple files. Also, in our experiments with four replicas,
the performance of our NWS-prediction based strategy is
not significantly worse. Given this, using predictions per-
forms reasonably well and behaves much better in terms of
wasting resources than the greedy strategy.

To consider the effects of these error experiments in
terms of the progress-driven algorithm, compare figures 11
and 12 with their counterparts figures 7 and 8. What we
see from this graph is that these errors do not substantially
change the performance of the aggregation except to slow
down all strategies roughly equally. Since the progress-
driven method attempts to only duplicate downloads that
are held back, it is far less aggressive about duplicating
streams. Waiting until the a section has fallen behind does
not seem to be a more aggressive failure detection method
than using NWS-predictions on time to arrival for the same
purpose.

Because failure detection is no more aggressive in the
progress-driven method, it does not seem to have much ad-
vantage over the NWS-prediction method. In fact, all ver-
sions of these algorithms suffered roughly the same perfor-
mance penalties from this type of error. Because of this and
because our NWS-prediction method supports more scal-
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Figure 11: Progress-Driven Aggregation with Induced
Errors CDF (2 replicas)

0 200 400 600
Time (seconds)

0

20

40

60

80

100

F
ile

s 
A

rr
iv

ed
 (

pe
rc

en
t)

Progress vs. Predicted (4 Replicas)

Progress-Driven (general)
NWS-predicted
Progress-Driven (original)
MP3 reqirements
Audio CD reqirements

Figure 12: Progress-Driven Aggregation with Induced
Errors CDF (4 replicas)

able and distributed architecture, we believe our method is
as fault-tolerant and more flexible than the progress-driven
method.

6 Conclusion and Future Work

There are many difficulties with efficiently accessing data
that is distributed in a wide area network. We have formally
described some of these difficulties with two challenge
problems–the Livny Problem and the Plank-Beck Problem.
As representatives of current data movement challenges,
we feel these problems must be explored to develop effi-
cient data intensive Grid applications.

We present solutions to optimize the goals of these two
challenges. When the goal is to access the closest files first,
one option for determining file proximity is to use mea-
surements and predictions provided by applications like the
NWS. Although it is effective to use information gathered
at the application level, using NWS predictions is equally
powerful. Also, monitoring systems are capable of provid-
ing more complete network information and simplify the
program’s complexity by handling monitoring responsibil-
ities.

In the related problem of replica selection, predictions
can be a useful metric as well. Predictions have the advan-
tage of being able to determine the fastest replica to down-
load. Other methods are either not as effective at ranking
hosts or cause contention between multiple downloads. Al-
though predictions may take longer to respond to failures
than other methods, the performance benefit from using
them makes up for this discrepancy.

Moving forward, there are many other solutions to these
problems that need to be understood to develop the Data
Grids that are one of this community’s current focus points.
Although we present solutions that we believe to be quite
powerful, this is not the only purpose of this paper. We
also want to challenge our fellow researchers to study and
explore these problems. By addressing these challenges,
we will all help to solve many problems faced by current
research projects.
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Appendix

Figures 13 and 16 are duplicates of figures 1 and 2. Figures
14, 15, and 16 graphically represent the data displayed in
table 2 in the results section. These figures show the ran-
dom, last time, and NWS-predicted scheduling strategies
for the Livny problem. Each CDF displays the percent-
age of files that have arrived at any point in the aggrega-
tion’s run time for different numbers of parallel downloads.
These graphs show results for 1, 2, 4, and 8 simultaneous
downloads.

Figures 17 and 20 are duplicates of figures 5 and 6. Fig-
ures 18, 19, and 20 graphically represent the data contained
in table 4 in the results section. These figures show the

14



0 100 200 300 400
Time (seconds)

0

20

40

60

80

100

F
ile

s 
A

rr
iv

ed
 (

pe
rc

en
t)

Random
Last Time
NWS-predicted

Figure 14: Livny Aggregation CDF (2 parallel down-
loads)
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Figure 15: Livny Aggregation CDF (4 parallel down-
loads)
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Figure 16: Livny Aggregation CDF (8 parallel down-
loads)
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Figure 17: Plank-Beck Greedy and NWS-Predicted Ag-
gregation CDF (2 replicas)
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Figure 18: Plank-Beck Greedy and NWS-Predicted Ag-
gregation CDF (4 replicas)
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Figure 19: Plank-Beck Greedy and NWS-Predicted Ag-
gregation CDF (6 replicas)
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Figure 20: Plank-Beck Greedy and NWS-Predicted Ag-
gregation CDF (8 replicas)

Plank-Beck greedy and NWS-predicted scheduling strate-
gies for the Plank-Beck problem. Each CDF displays the
percentage of the complete file that has arrived at any point
in the aggregation’s run time for different levels of replica-
tion. These graphs show results when this experiment was
run with 2, 4, 6, and 8 replicas of each segment.

Figures 21 and 23 are duplicates of figures 7 and 8.
Figures 22, 23, 24, and 25 graphically represent the data
contained in table 5 in the results section. These figures
show the progress-driven redundancy, general progress-
driven redundancy, and NWS-predicted scheduling strate-
gies for the Plank-Beck problem. Each CDF displays the
percentage of the complete file that has arrived at any point
in the aggregation’s run time for different levels of replica-
tion. These graphs show results when this experiment was
run with 2, 3, 4, 5, and 6 replicas of each segment.
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Figure 21: Progress-Driven and NWS-Predicted Aggre-
gation CDF (2 replicas)
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Figure 22: Progress-Driven and NWS-Predicted Aggre-
gation CDF (3 replicas)
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Figure 23: Progress-Driven and NWS-Predicted Aggre-
gation CDF (4 replicas)
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Figure 24: Progress-Driven and NWS-Predicted Aggre-
gation CDF (5 replicas)

17



0 100 200 300 400
Time (seconds)

0

20

40

60

80

100

F
ile

s 
A

rr
iv

ed
 (

pe
rc

en
t)

Progress vs. Predicted (6 Replicas)

Progress-Driven (general)
NWS-predicted
Progress-Driven (original)
MP3 reqirements
Audio CD reqirements

Figure 25: Progress-Driven and NWS-Predicted Aggre-
gation CDF (6 replicas)
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