Tracing Function Dependencies Across Clouds

Wei-Tsung Lin, Chandra Krintz, Rich Wolski
Dept. of Computer Science, UC Santa Barbara

Abstract—In this paper, we present Lowgo, a cross-
cloud tracing tool for capturing causal relationships in
serverless applications. To do so, Lowgo records de-
pendencies between functions, through cloud services,
and across regions to facilitate debugging and reason-
ing about highly concurrent, multi-cloud applications.
We empirically evaluate Lowgo using microbenchmarks
and multi-function and multi-cloud applications. We
find that Lowgo is able to capture causal dependencies
with overhead that ranges from 2-12%, which is less
than half that of the best-performing, cloud-specific
approach.

I. Introduction

To accelerate and simplify application development
for the next generation of Internet-of-Things (IoT), mo-
bile, and web applications, a new, event-based, cloud
programming and execution model has emerged. Using
this model, developers upload arbitrary computations
as simple functions to a cloud-hosted service along with
a specification of the inputs and conditions under which
each function should be triggered. The facility for host-
ing and managing these functions is termed “Functions
as a Service” (FaaS), and colloquially, as “serverless”
computing since developers need not provision virtual
servers or software stacks directly for their functions -
the FaaS platform handles all the complexity associated
with server management.

Serverless application functions are short-lived,
stateless, and ephemeral (executing only in response to
events), and they use cloud datastore services for per-
sistence. A subset of cloud services act as event sources
(triggers), including datastore and queue updates,
notifications, log activity, HTTP requests, blob/object
store updates, and function invocations (scheduled or
triggered by other functions). Serverless platforms
place limits on the execution duration, memory use,
request/response payload size, local temporary disk
space, code storage, and other resources that functions
use [1] to achieve simplicity, scale, and system stability.
Users pay only for the resources their functions use and
the system automatically scales the number of function
executions according to event load.

Because of its low cost and simplified model, server-
less is increasingly employed for a wide range of ap-
plications, from websites, web APIs, test frameworks,
and log analysis, to large-scale batch and streaming
data fusion, transformation, and analytics [2], [3], [4],
[5]. Given the popularity of this model, all public
cloud providers (and many private cloud systems) offer

serverless platforms with similar functionality [6], [7],
[81, [9], [10].

Despite this interest and availability, programming
tools and debugging support for serverless applications
are nascent. Because serverless applications can con-
sist of thousands of concurrent functions, tools are
needed to track their interdependencies and to identify
when problems occur and why. Few tools exist that
provide such tracking, and those that do, are cloud-
specific, suffer data loss, and only capture performance
metrics [11], [12], [13].

To address this need, we investigate cross-cloud,
end-to-end causal order tracking for serverless appli-
cations, called Lowgo (an acronym for Logging for
the Wide-area in Go). Like previous distributed event
logging systems [14], [15], [16], Lowgo produces a
distributed, eventually consistent, partially ordered log
of events. However, it also tracks and captures event
dependencies, both explicitly between functions and
through cloud service “triggers” that invoke functions
as a result of a native cloud service request. Causality
is an important building block employed in concurrent
and distributed systems [17], [18], [19], [20]. However,
the lack of support for causal event tracking in server-
less settings limits the degree to which developers
can understand their applications and identify the root
cause of errors, performance bottlenecks, and potential
cost optimizations.

To track causal dependencies efficiently across
clouds, a Lowgo instance operates a multi-stage
pipeline co-located in each cloud with serverless func-
tions. Multiple Lowgo instances interoperate transpar-
ently across clouds to share a uniform view of the
causal dependencies within an application. Functions
report events to their local instance, which propagates
event records and causal relationships to instances
in other clouds. Lowgo reorders event records based
on causal dependencies specified by developers as
part of application configuration and deployment, using
this per-instance pipeline, to maintain a geo-replicated,
causally consistent log across clouds.

We empirically evaluate Lowgo using serverless
microbenchmarks and multi-function and multi-cloud
serverless applications. In our tests, Lowgo is able to
capture causal dependencies with minimal overhead.
The overhead that Lowgo introduces ranges from 2-
12% which is less than half that of a competitive,
single-cloud approach for AWS [13]. We find that the
overhead is proportional to the number of events;

short-running applications tend to have higher over-
head, while computation-heavy applications typically
have lower overhead. The throughput of Lowgo ranges
from 109K to 30K records per second, depending on
dependency depth.

II. Background and Related Work

Serverless computing is a cloud execution model
in which the cloud platform manages the underlying
machine resources (servers) for developers. Typically,
serverless applications consist of fine-grained, short-
lived functions that are invoked by the platform in re-
sponse to system-wide events (e.g. storage updates, no-
tifications, messages received, changes in state, custom
events, etc.). For this reason, serverless is also referred
to as Functions-as-a-service (FaaS). We consider two
popular, public cloud serverless offerings in this work:
AWS Lambda and Microsoft Azure Functions.

AWS Lambda is a serverless platform for functions
written in Python, Java, C#, and Node.js. The AWS
Lambda runtime has built-in AWS SDK support, which
developers use to invoke other AWS services. Lambda
functions can be triggered by updates to the Simple
Object Storage(S3) and DynamoDB, Simple Notifica-
tion Service (SNS) events, and HTTP requests, among
others. The Lambda platform deploys user functions
using extensible, isolated Linux containers equipped
with essential runtime and library support.

Microsoft Azure Functions provides a similar plat-
form for the Azure cloud. The Azure Function App
enables developers to upload function code bodies
to the service and interact with Azure services. The
officially supported runtimes are C# and JavaScript,
while Python and other languages are available as
experimental options. When creating a Function App,
users choose between Windows NT or Linux (preview)
instances to host their function(s). We use Windows
NT for this work. Azure Functions can be triggered
by updates to Azure Blob Storage, Cosmos DB, HTTP
requests, and Queue Storage, among other services.

A. Serverless Tracing Systems

There are multiple tools for tracking the perfor-
mance of serverless applications and tracing their in-
terdependencies. X-Ray [11] is a tracing tool for AWS
that samples the entry and exit of Lambda function
instances using unique trace identifiers. It records
function duration and times SDK calls and HTTP ac-
cesses that a function makes. This data is sent to an X-
Ray logging service via UDP. The X-Ray logging service
visualizes and presents data to developers as logs and
dependency trees, called service graphs. Google em-
ploys a similar tracing tool for its cloud-wide services
called Dapper [12].

Both X-Ray and Dapper can infer relationships be-
tween serverless functions but cannot capture causal

order of events. Causality is an important tool employed
in concurrent and distributed systems that enables de-
velopers to reason about, analyze, and draw inferences
from their applications [19], [21], [22]. Dapper and
X-Ray are unable to capture causal dependencies in
serverless applications because (i) they only sample
events, missing uncommon and rare events, and (ii)
they do not trace through the services that functions
access (which trigger other functions). For example, if
a function F writes to an S3 bucket which then triggers
function G, X-ray (and Dapper in the Google cloud) only
record the relationship between F and S3 (or F and
Google Cloud Storage (GCS) in Google). They do not
capture the dependency chain from F to S3 to G (or F
to GCS to G) so G appears unrelated.

GammaRay [13] attempts to solve these problems
for AWS Lambda. It captures causal dependencies in
Lambda applications by profiling events. GammaRay
uses X-Ray to extract (sampled) performance data for
each event and DynamoDB Streams to record their de-
pendencies. By doing so, GammaRay is able to capture
causal relationships and timings for AWS Lambda func-
tions across serverless applications and AWS regions,
as well as through AWS services. That is, in the example
above, GammaRay captures the dependency from F to
S3 to G. Unfortunately, GammaRay is tightly coupled
to AWS and cannot be used across clouds. Moreover,
it introduces significant overhead (12-43%) on Lambda
function performance (for synchronous writes to Dy-
namoDB via the Streams functionality).

B. Causal Ordering for Non-Serverless Settings

Causal log ordering is a popular subject of research
in non-serverless settings. Chariots is a distributed
logging service [14] designed for multi-datacenter set-
tings. It supports multiple datacenters by providing a
global shared log that consists of all records generated
at all datacenters. The log records are maintained by
a group of log maintainers, which span multiple data-
centers and collectively persist to a single shared log.
Clients send records to a local Chariots instance, which
records and replicates them to other datacenters. In
the process, geo-replication preserves the causal order
of records. When persisted in a log maintainer, a record
is assigned a total order ID. All replicas of the record
share the same total order ID. Chariots uses this ID to
order records from the same datacenter.

Different from other geo-replicated shared logs such
as Google Megastore [23], Chariots does not require
all clients to write to the head of log, thus eliminating
the single point of contention. In addition, Chariots’
pipeline design allows each stage to be scaled seam-
lessly and independently. This design enables the sys-
tem to adapt to performance bottlenecks automatically.

Similar logging systems include X-trace [24], Kro-
nos [25], LogBase [16], and Corfu [15]. X-trace recon-
structs Internet services dependency trees. X-Trace ap-

pends metadata to network operations and propagates
them across layers and applications. X-Trace requires
a specialized TCP/IP stack and application instrumen-
tation for use. Kronos tracks dependencies and pro-
vides time-ordering for distributed applications. Kronos
builds and maintains a service dependency graph inter-
nally. It relies on a centralized implementation and was
not designed for cross-cloud use. LogBase is a multi-
version log-structured database. It adopts an append-
only approach to eliminate write bottlenecks. It reduces
write overhead by appending all write operations to
the head of the log. Corfu is a similar append-only
shared log that is built on distributed flash devices.
Corfu maintains a static mapping between log position
and flash page. Clients ask a sequencer to determine
the next available position of the log.

III. Lowgo

Lowgo is a cloud-agnostic casual event tracing sys-
tem for multi-function, multi-cloud serverless appli-
cations. Lowgo captures causal dependencies across
functions and through cloud services. It automatically
infers dependencies within applications by Lowgo cap-
turing calls that functions make via cloud software
development kits (SDKs), which access cloud services
that are potential event sources or to invoke other
functions. Alternatively, developers can specify a subset
of such dependencies to trace as part of application
deployment using Lowgo tools.

Key to the Lowgo design is that it avoids syn-
chronized writes, does not block application progress
for record sequence assignment, and minimizes cross-
cloud communication. To enable this, Lowgo comprises
multiple instances co-located with serverless functions
in different clouds. Functions in one cloud only commu-
nicate with their co-located Lowgo instance. Records
generated in different clouds are replicated across in-
stances by Lowgo to compose a consistent, distributed
shared log.

Lowgo avoids application delays by determining
event position after events are reported to Lowgo.
Functions generate event records that contain event
details and dependency information and send them via
the Lowgo interface. Upon receipt, Lowgo reorders
records using the dependency information prior to per-
sisting them to the log so that log order reflects causal
order.

To enable both causal event tracing and causal log
order, Lowgo implements a three-stage pipeline simi-
lar to that proposed by Chariots. However, Lowgo is
significantly simpler than Chariots, since it needs only
capture a partial order of events (those with detected or
with specified dependencies). Lowgo also uses a simpli-
fied record structure which replaces Chariot’s total or-
der ID (which does not capture event dependency) with
a record ID and parent ID pair representing the event
dependency. We detail both the pipeline and record

O— A
||II Lowgo
|

== Lowgo

c

$ 2%
&
@ e

VAN VAN

Multi-Cloud Serverless Application ‘

Fig. 1: Lowgo overview. The figure shows a distributed
application spanning two clouds. In each cloud there
is a Lowgo instance deployed. When an event gen-
erated by cloud service, a corresponding record with
causality information is sent to local Lowgo instance.
Records are replicated across remote Lowgo instances
with their causal dependencies preserved maintain a
consistent record history.

| Azure_function:entry |

N O
| 3 PutObject: }
R

| S3 PutObjectiexit |

Lambda_function:entry
'

Lambda_function:exit

| Azure_function:exit |

Fig. 2: Multi-cloud serverless application example using
Microsoft Azure Functions and AWS Lambda.

structure in the next section. Events pass through the
pipeline and are stored in a local data storage in causal
order as depicted in Figure 1.

The figure also depicts an example serverless appli-
cation that executes using both AWS and Azure. Cloud
functions access cloud services via cloud SDKs. A sub-
set of service operations also serves as event sources
that trigger functions (defined by each serverless plat-
form). Upon invocation of this application, a function
in Microsoft Azure writes to an AWS S3 bucket via the
AWS SDK. This write triggers a function invocation in
AWS Lambda.

To trace events through cloud services and across
clouds, Lowgo records function entry and exit and each
SDK call that a function makes. These records contain
information about the event source (for functions), the
SDK operation, and the SDK arguments. Lowgo records
SDK calls (only those that are potential event sources)
via minor modifications to each cloud SDK. Function
entry/exit instrumentation (function wrapping) occurs
during serverless application deployment to each cloud
platform via a Lowgo tool.

Figure 2 shows the service graph that Lowgo
records for this application. The arrows indicate causal
relationships, i.e. A—B means event A causes event B.
The records on the left of the graph are generated in
Azure, while the records on the right are generated
in AWS. Records generated locally are propagated to

other Lowgo instance. All instances observe the same
causal relationship graph.

A. Implementation

Events generated by application are represented as
records in Lowgo. Records contain application context
and causal information. Context is used for debugging
and analysis; causal information identifies details about
the event that caused invocation of the function. Each
Lowgo record has the following fields:

e Record ID: A 128-bit statistically unique ID
(UUID v4) that serves as identifier of the record.

e Host: An integer that identifies the Lowgo
instance for which this record is generated.
For example, in Figure 2, records generated
in Azure have the same host, while records
generated in AWS have a different host.

e Trace ID: A 128-bit ID shared by a series of
records that are part of the same causal event
chain. A Trace ID is generated when a function
without a parent (i.e. not triggered directly
or indirectly by another function) is invoked.
A Trace ID is transmitted downstream to all
records generated by this root function and
downstream functions via Lowgo SDK use.

e Parent ID: The record ID of the parent (i.e. the
function that directly or indirectly triggered this
function). Lowgo ensures that parent records
are persisted prior to their child records in the
log. This field is empty for a root function.

e Payload: Application context information.
Lowgo allows developers to customize what
information is recorded.

e TLog ID: A unique and monotonically increasing
number that represents the record’s position in
the log. Log ID provides an alternative way to
infer causal dependency other than checking
each record’s parent ID. The order of multiple
records which have the same trace ID can be
obtained by comparing their log IDs.

Each of these fields, except for Log ID, is filled in as
part of Lowgo SDK use. Since Log ID assignment (i.e.
determining record position in the log) is a complex
task, Lowgo separates assignment from SDK to keep
overhead low. The overhead that Lowgo imposes on
serverless applications thus includes record construc-
tion and round trip communication of records and ac-
knowledgments between functions and the co-located
Lowgo instance.

Figure 3 illustrates the architecture of a Lowgo
instance. The solid arrows represent the flow of records
and the dotted arrows represent information exchange.
A Lowgo pipeline isolates intra-datacenter communica-
tion, record ordering, and geo-replication using three

:I_‘

Receivers

\

- Queue R Queue R Queue

—Client/Propagation———>| Propagate

Senders

Controller

Fig. 3: The architecture of a Lowgo instance. The solid
arrows show the forwarding path of records. Queues
form a ring. A token is passed around the queue ring
to update the latest Log ID. Queues also send queries
to the storage to see if a buffered records’ parent is
persistent in storage.

stages: receiver, queue, and sender. Each stage can
be scaled independently based on network congestion
and workload.

A Receiver receives records sent by a local SDK
or propagated by other Lowgo instances. Application
clients can send records to any receiver using either
gRPC or HTTP POST. Co-located receiver instances
are load balanced via HAProxy. Also, since records are
sent individually by each SDK, receiver buffer incoming
records to reduce communication overhead. Receivers
send batched records to a queue when the buffer fills
or is flushed.

The Queue orders records and assigns the record
position (log ID) to each record. Queues buffer records
until they can be sent (in batches) to the next stage. A
record is batched when either (i) the record does not
have a parent ID or (ii) the record’s parent ID record is
found in storage. The queue periodically queries Lowgo
storage for parent IDs of buffered records. If there is
a match, the queue assigns a log ID to the buffered
record and forwards it to a sender. By doing so, queues
ensure that log IDs of records coming from same root
function (trace ID) are in order. Thus, the log ID of a
dependent record is larger than that of its parent.

For concurrency, multiple queue instances process
records simultaneously and receivers can send records
to any of queue instances. Queues avoid duplicating log
IDs using token passing (a database can be used as a
sequencer but doing so introduces a significant bottle-
neck and single point of failure). The token carries the
current maximum log ID for the Lowgo instance and
passes between queue instances in a ring. Only the
queue holding the token assigns and increments the
log ID. It assigns log IDs for all of its batched records.
The queue then passes the token to its neighbor and
communicates the batch to a sender.

The Sender persists and geo-replicates records.
Instances write records to the log in any order (avoid-

ing synchronization) and can employ log ID sharding
for additional scale and performance. Senders send
batched copies of records (replicas) to other Lowgo
instances after removing their log ID. When a record
is received by a Lowgo instance (receiver stage), the
receiver determines whether it is a replica by checking
its host ID. Replicated records proceed through the
instance’s pipeline and receive a new log ID.

Log IDs of the same record across clouds can differ
and records from different event chains will be inter-
leaved in the log of each Lowgo instance. This approach
enables Lowgo to maintain causal order via parent
IDs across instances (clouds) with very low overhead
by enabling Lowgo instances to operate independently
and concurrently at scale.

The final two components of each Lowgo instance
are Storage and the Controller. Storage is where
each Lowgo physically stores its log records; storage
in different Lowgo instances are independent and do
not interoperate. Lowgo storage responds to queries
from queues and persists records sent from senders
and so can be implemented using any database. Repli-
cation is not necessary since it is inherently sup-
ported across clouds by Lowgo. As mentioned previ-
ously, sharding and multi-index support can reduce the
overhead of database use if available. The controller
maintains Lowgo’s system-wide configuration. Commu-
nication between cross-cloud controllers occurs only at
Lowgo startup or when resources/instances are added
or removed.

B. Lowgo SDK

We provide a Lowgo SDK for developers to deploy
serverless function with Lowgo causal tracing enabled.
The Lowgo SDK consists of three components: a Lowgo
instance deployment tool, Lowgo client API, and server-
less function deployment tool for each cloud. Using
these tools in combination enables developers to use
Lowgo without modifying their serverless applications.

Developers use Lowgo instance deployment tool to
generate configuration files used to deploy Lowgo in-
stance with Docker Swarm. The configuration consists
of the number of instances per pipeline stage, debug-
ging flags, and port numbers to use. The tool generates
Docker Swarm stack files and configuration files for
instances in each cloud. The deployed Lowgo instance
uses the configuration file to set up the pipeline and
load balancing.

The Lowgo client API is a simple library that sends
records to a Lowgo instance. It uses gRPC framework
and HTTP POST to send records to Lowgo receivers.
We choose gRPC for its performance and portability. If a
programming language used to implement a serverless
function does not have gRPC support, Lowgo uses
HTTP POSTs. Currently, the Lowgo client API is avail-
able for Python, Node.js, and Java. Although application

modification is not required to use Lowgo, developers
can add custom tracing via the Lowgo client API. The
Lowgo client module exposes two variables: traceid
and parentid. The serverless application deployed us-
ing the Lowgo function deployment tool automatically
updates these variables so developers can use them to
tailor record information.

The Lowgo function deployment tool uploads func-
tions to serverless cloud platforms. The tool takes
the function source code and libraries, intercepts the
function entry point with a Lowgo wrapper (to record
entry/exit of functions and trace IDs), and constructs
a deployment package. Lowgo currently supports AWS
Lambda and Azure. A Lowgo SDK is also integrated
within the package and loaded at runtime by the wrap-
per, for each cloud SDK that the application uses. A
Lowgo SDK for a particular cloud is the cloud SDK
modified to insert dependency information, to build
name records, and to send records to a local Lowgo
instance. The records sent by the Lowgo wrapper and
SDKs provide the minimal amount of information nec-
essary to enable Lowgo to track causal order between
functions, through cloud services, and across clouds.

IV. Evaluation

We evaluate Lowgo performance using serverless
microbenchmarks and applications (multi-function and
multi-cloud). We first overview these applications and
our experimental methodology, and then present our
empirical results.

A. Experimental Methodology

In our evaluation, we co-locate a Lowgo instance in
each cloud and region in which the serverless functions
in an application are deployed. A Lowgo instance con-
sists of a Docker Swarm (v17.12.0-ce) with five nodes.
Nodes include a Lowgo receiver, controller, sender, and
two queues. Each Lowgo instance also integrates a
MongoDB (v2.6.10) database. In our experiments, we
deploy Docker Swarm and MongoDB using instance
type c4d.large in AWS EC2 and our Eucalyptus private
cloud, and instance type Standard.D2 v2 in Azure.

We evaluate the overhead of Lowgo using three
microbenchmarks and three multi-function serverless
applications. Functions that run in AWS are written
in Python 2.7 and use the boto3 AWS SDK to access
AWS services. Azure functions are written in node.js.
All other Lowgo tools are written in Python 2.7. We
execute each experiment 100 times with and without
Lowgo. We attempt to isolate cold start overhead by
running the applications 10 times prior to performing
our measurements. Serverless cold starts occur when
the system must load both the function and container
in which it executes prior to function invocation. Cloud
providers maintain the container for a short (unspeci-
fied) duration following function invocation (optimizing

for temporal locality), to avoid this overhead for poten-
tial repeat invocations.

The microbenchmarks are single function appli-
cations and include a function that simply returns
(EMPTY), a function that performs a gRPC request with
a payload of 1125 bytes (gRPC SDK), and a function
that performs an HTTP POST with a payload of 1125
bytes (REST SDK). We use these applications to isolate
the overhead of Lowgo SDK use.

The three multi-function applications are called
Map-Reduce, Rekognition, and Thumbnail. Map-
Reduce is an application implemented by AWS
engineers and is based on one of the Big-Data-
Benchmark programs. This application implements
the map-reduce protocol via AWS Lambda and S3.
The dataset is pavlo/text/1node/uservisits, which
contains 24.4GB data of IP addresses that have visited
particular websites. We place the dataset in S3 in the
same region as the Lambda functions that accesses it
(US West). The application invokes 29 mapper Lambda
functions, each of which operates on a different section
of the input. Each mapper function reads its data from
S3, counts the number of access per IP prefix for a
range of IPs and stores the results in S3. A coordinator
function is triggered by this S3 write. The coordinator
checks if all mapper functions have finished, i.e. all 29
partial results are available in S3. When all mappers
complete, coordinator function invokes the reducer
function, which downloads the partial results and
performs a reduction over them to produce the final
per-IP count which it stores in S3. We evaluate this
application with and without Lowgo support using a
single cloud (AWS).

Rekognition uses the AWS image processing ser-
vice called Rekognition, to label images. A function
is triggered when a file with jpg suffix is uploaded
to S3 bucket in its region. The function calls AWS
Rekognition API, which returns labels and probabilities
that describe the image. The function uploads the result
to an AWS DynamoDB table. We use a 152KB 640%427
jpeg file to trigger the application. We evaluate this
application with and without Lowgo support using a
single cloud (AWS).

Thumbnail is a multi-cloud application. We deploy a
Python script in a private cloud instance that uploads
images to AWS S3. The S3 upload event triggers a
function in AWS, which creates a thumbnail of the
uploaded image. The function uploads the thumbnail to
Azure Blob Storage. This Blob update triggers an Azure
function, which loads the image from Blob Storage
module and measures the time for doing so. We use
a 2.6MB (6000x4000) jpeg file as input. The resulting
jpeg thumbnail size is 12.5KB (300x200).

B. Performance With and Without Lowgo

We first evaluate the overhead of using the Lowgo
SDK by measuring the time to send records to Lowgo.

AWS Time | AWS Memory
EMPTY Oms 19MB
gRPC_SDK | 2085ms 36MB
REST SDK | 2391ms 27MB

TABLE I: Lowgo microbenchmark average duration and
memory use in AWS.

Lowgo microbenchmark performance

Cumulative probability

—— gRPC SDK
REST SDK

2000 2100 2200 2300 2400 2500 2600
Milliseconds
Fig. 4: Lowgo microbenchmark performance CDFs
(gRPC _SDK and REST SDK). The means are 2085ms
and 2391ms, respectively.

For this test, we employ the serverless microbench-
marks and AWS. We present the average execu-
tion times in milliseconds (ms) and memory used in
megabytes (MB) in Table I for each microbenchmark.
To measure time, we insert timers at function entry
and exit; the function logs the duration prior to exiting.
The Lowgo tools collect, aggregate, and summary these
log entries, as well as the timings and memory usage
recorded by the service (which is CloudWatch in AWS)
and used for billing.

Since EMPTY simply returns upon being invoked, its
duration is Oms, the durations of other two applications
translate to the cost of sending 100 records using dif-
ferent protocols. It takes an average of 2085ms to send
100 records using gRPC protocol, and 2391ms to send
100 records using HTTP POST, which translates to ap-
proximately 21ms and 24ms to send a record to Lowgo
using gRPC and HTTP POST, respectively. Figure 4
shows the full distribution of times as empirical cumu-
lative distribution functions (CDFs) for both tests. The
gRPC SDK test has a standard deviation of 63ms with
1991ms minimum and 2289ms maximum. The REST
SDK test has a standard deviation of 58ms with 2331ms
minimum and 2661ms maximum. In terms of memory
use, gRPC uses 17MB, and HTTP uses 8MB, respec-
tively, over EMPTY. The difference between Lowgo and
CloudWatch log measurements represents the function
setup time. This difference is 6.3ms (stdev=8.7ms) for
gRPC SDK and 0.48ms (stdev=1.70ms) for REST SDK.

We next investigate the dollar cost of importing the
Lowgo SDK. We find that AWS Lambda only imports
modules during cold starts (when a container is not
reused). In such cases, we also find that Amazon does
not charge for codes executed outside Lambda handler

Application Duration with and without Lowgo

Map-Reduce %"
With Lowgo ™ Without Lowgo

500 1000 1500 2000 2500 3000 3500 4000
Duration (map-reduce in seconds, others in milliseconds)

Fig. 5: Average application performance with and with-
out Lowgo. Error bars show the 95% confidence inter-
vals.

when under 10 seconds. Since the time Lambda takes
to import Lowgo SDK is well under 10 seconds thresh-
old, importing the Lowgo SDK does not introduce extra
cost. The average time to import Lowgo SDK is 128ms
for gRPC and 61ms for REST in AWS Python 2.7, and
13ms for REST in Node.]JS 6.10.

C. Application Performance

We next evaluate the overhead imposed by Lowgo
for the multi-function applications. Figure 5 shows
the average execution time for each with and without
Lowgo. For Map-Reduce, Lowgo introduces an average
overhead of 24 seconds which is 2.3%. This difference
is small but statistically significant according to a t-test
with a = 0.05.

For Rekognition, Lowgo adds an average of 110ms
(11.7%). Because this application is very short running
and invokes multiple services that are potential event
triggers instead of computing, Lowgo SDK overhead
plays larger role in overall execution time. There are 6
records sent to Lowgo by each application instance. Us-
ing our microbenchmark results, we expect an average
overhead of 126ms, which is inline with what we ob-
serve for this application. Specifically, Figure 6 shows
the histogram of execution times with and without
Lowgo for Rekognition. Note the shift of approximately
100ms with and without Lowgo.

Next, we evaluate how Lowgo performs in multi-
cloud setting using the Thumbnail application. Figure 7
shows the results. The average total overhead intro-
duced by Lowgo is 99ms or 2.4% over the uninstru-
mented version. According to a t-test with a = 0.05,
the difference is statistically significant.

Summarizing, Lowgo introduces an average of be-
tween 2 and 12% overhead for the applications we
study. This is significantly lower than the competitive
AWS-only approach (GammaRay [13]) which introduces
12 to 43% overhead for similar applications. The ben-
efits come from Lowgo’s multi-stage pipeline for log
ID assignment and record persistence instead of using
GammaRay’s synchronized, inlined call to DynamoDB
with DynamoDB Streams support.

Histogram of execution time for Rekognition app

W
(=]

—— Without Lowgo
—— With Lowgo

) W 'S
(=} (=} o

Invocation count

—_
(=]

N A

750 1000 1250 1500 1750 2000 2250
Lambda function duration

Fig. 6: A histogram of execution time for Rekognition
with and without Lowgo.

Thumbnail Function Duration Breakdown

Azure function | 1430 4

Lambda function |1age i

Eucalyptus script By
p— With Lowgo ® Without Lowgo
500 1500 2500 3500 4500
Duration (milliseconds)

Fig. 7: Time spent in each component on average for
the Thumbnail application with and without Lowgo.
Error bars show the 95% confidence intervals.

D. Lowgo Throughput

To understand the impact of causal dependencies
between functions on Lowgo performance, we next
evaluate system throughput. We perform this test us-
ing AWS EC2. We launch 6 c4.large EC2 instances
in US West to form a Docker swarm, which consists
of 1 manager node and 5 worker nodes. Each node
is responsible for hosting a Lowgo stage: controller,
receiver, sender, while there are 2 queues hosted on 2
nodes. The remaining node is responsible for hosting
MongoDB. In addition to the Docker swarm nodes, we
launch a c4.large instance in the same region to drive
the throughput benchmark.

Figure 8 shows Lowgo throughput for different
dependency depths. We define dependency depth as
the number of event records with same root cause.
An event chain with dependency depth 1 means that
an event is independent. If one event causes an-
other event, the event chain has dependency depth
2, and so on. When there is no dependency among
records, Lowgo throughput is 106 kilo-records per
second (Krps) compared to 142 Krps for a version of
Chariots we implemented. Recall that Chariots does
not capture dependencies so this difference can be
considered the “base” overhead cost of dependency

Lowgo with different dependency depth

—_
[N}
S

109

—_
DN 0 O
S o O

[N}
o O

1 2 3 4 5 6 7 8

Throughput (records/second)
N
(e}

Dependency depth

Fig. 8: Lowgo throughput. The X-axis is dependency
depth. The Y-axis is records per second.

recognition in Lowgo versus a top-performing logging
system without dependency tracking.

As dependency depth grows, Lowgo throughput
decreases slowly. This is caused by the dependency
resolving mechanism in the queue stage. In this stage
in Chariots, the system checks whether the maximum
total order ID is greater than the buffered parent
total order ID to decide if a buffered record can be
appended to storage. In this stage in Lowgo, the system
checks whether buffered records’ parent record is in
storage. The MongoDB query operation to perform this
check results in the overhead introduced by Lowgo for
dependency resolution. As part of future work, we are
considering ways to reduce this overhead through the
use of more optimized mechanisms for Lowgo local
data persistence.

V. Conclusions

Serverless computing is an emerging computing
model that facilitates the development of scalable dis-
tributed application. In this paper, we present a tracing
system for serverless, called Lowgo, for multi-cloud
deployments. Lowgo traces application dependencies
through services and across clouds and automatically
integrates itself into serverless applications as part
of the deployment process. We evaluate Lowgo using
microbenchmarks and applications and find that the
overhead introduced by Lowgo ranges from 2-12%. As
part of future work, we are investigating data storage
options for precedent records querying and to improve
system throughput.

Acknowledgments. This work is funded in part by NSF (CNS-1703560, OAC-
1541215, CCF-1539586, CNS-1218808, ACI-1541215), ONR NEEC (N00174-
16-C-0020), and the Huawei Corporation.

References

[1] “AWS Lambda Limits,” http://docs.aws.amazon.com/lambda/
latest/dg/limits.html, [Online; accessed 15-Nov-2016].

[2] Contino, “5 killer use cases for aws lambda,” Sep 2017.

[3] “A guide to serverless computing with aws lambda,”

Feb 2017. [Online]. Available: http://www.cuelogic.com/blog/
a-guide-to-serverless-computing-with-aws-lambda/

(4]

[5]

(6]

[71

[81]

[91

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht,
“Occupy the cloud: Distributed computing for the 99%,” in
SOCC, 2017.

N. K. Mukhi, S. Prabhu, and B. Slawson, “Using a serverless
framework for implementing a cognitive tutor: Experiences and
issues,” in Intl Workshop on Serverless Computing, 2017.

“AWS Lambda,” https://aws.amazon.com/lambda/, [Online; ac-
cessed 15-Nov-2016].

“Google Cloud Functions,” https://cloud.google.com/functions/
docs/, [Online; accessed 15-Nov-2016].

“Azure Functions,” https://azure.microsoft.com/en-us/services/
functions/, [Online; accessed 15-Nov-2016].

“IBM OpenWhisk,” https://developer.ibm.com/openwhisk/, [On-
line; accessed 15-Nov-2016].

“Iron.io,” https://www.iron.io, [Online; accessed 15-Nov-2016].

“AWS X-Ray,” https://aws.amazon.com/xray/, [Online; accessed
11-September-20171].

B. Sigelman, L. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale
distributed systems tracing infrastructure,” Google, Inc., Tech.
Rep., 2010. [Online]. Available: https://research.google.com/
archive/papers/dapper-2010-1.pdf

W.-T. Lin, C. Krintz, R. Wolski, and M. Zhang, “Tracking Causal
Order in AWS Lambda Applications,” in IEEE International
Conference on Cloud Engineering, 2018.

F. Nawab, V. Arora, D. Agrawal, and A. El Abbadi, “Chariots: A
scalable shared log for data management in multi-datacenter
cloud environments.” in EDBT, 2015, pp. 13-24.

M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobbler, M. Wei,
and J. D. Davis, “Corfu: A shared log design for flash clusters,”
in USENIX NSDI, 2012.

H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C. Ooi, “Logbase:
a scalable log-structured database system in the cloud,” VLDB,
vol. 5, no. 10, 2012.

L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Commun. ACM, vol. 21, no. 7, Jul. 1978.
M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto,
“Causal memory: definitions, implementation, and program-
ming,” Distributed Computing, vol. 9, no. 1, Mar 1995.

R. Schwarz and F. Mattern, “Detecting causal relationships in
distributed computations: In search of the holy grail,” Distrib.
Comput., vol. 7, no. 3, Mar. 1994.

N. M. Chakarat Skawratananond and V. K. Garg, “A Lightweight
Algorithm for Causal Message Ordering in Mobile Computing
Systems,” 1999, "http://www.utdallas.edu/ neerajm/publication-
s/conferences/causal.pdf"' Accessed 15-Sep-2017.

M. Raynal, A. Schiper, and S. Toueg, “The causal ordering
abstraction and a simple way to implement it,” Inf. Process.
Lett., vol. 39, no. 6, Oct. 1991.

A. Schiper, J. Eggli, and A. Sandoz, “A new algorithm to
implement causal ordering,” in International Workshop on
Distributed Algorithms, 1989.

J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh,
“Megastore: Providing scalable, highly available storage
for interactive services,” in Proceedings of the Conference
on Innovative Data system Research (CIDR), 2011, pp.
223-234. [Online]. Available: http://www.cidrdb.org/cidr2011/
Papers/CIDR11 Paper32.pdf

R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica, “X-
trace: A pervasive network tracing framework,” in USENIX
NSDI, 2007.

R. Escriva, A. Dubey, B. Wong, and E. Sirer, “Kronos: The design
and implementation of an event ordering service,” in European
Conference on Computer Systems, ser. EuroSys ‘14, 2014.

