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1 Introduction predictive capabilities [5], new scheduling capabilit[@s]

and efforts to translate machine availability to applicati
Recent research results [4, 11, 12, 27, 9] and infrastrectigvel performance measurements [17]. Taken together, this
efforts [25, 24, 36, 15, 1] demonstrate the potential eifeet effort embodies a new and comprehensive approach to mod-
ness of large-scale distributed computing. However, &ffec eling Global computing systems.
scheduling in these environments depends, increasingly, o
the ability to tolerate the dynamic performance response ex . Lo .
hibited by the underlying resources. Our approach has needt Automatically Deter mining an Avail-
use first modeling (to understand the dynamics) and then pre- abil ity Distribution
diction (to allow schedulers to avoid unfavorable condigp

as a way of obtaining performance in these settings [6].  \we have gathered machine availability data from from the
In this work, we investigate the dynamics exhibited by thynilla universe in the University of Wisconsin Condor pool
production Condor [35] pool at the University of Wisconsi[]sing theNetwork Weather Service (NWS) [39, 40, 41, 27],a
with the goal of understanding its distributional propesti gjstributed, robust, and scalable performance monitcaimnd
Condor is a cycle-harvesting service originally designed fyrecasting system developed to support Grid and globat com
launch and control “guest” user jobs (in batch mode) on idigiting. After studying individual machine traces, we have
workstations. Since its inception in 1985, however, it has &ound that the two distribution families that consisterfily
panded to include the ability to run in dedicated mode on-clyge availability data we have gathered most accurately are
ters, to “glide in” to systems that are not strictly dedichte the \Weibull and the Log-normal. These results are some-
Condor, and to “flock” jobs from one site to another based Qhat surprising, since a variety of previous efforts have fo
pre-determined Service Level Agreements (SLAs). Thusglised on either exponential [37, 19, 31, 32, 20, 33, 42] or
has developed from an enterprise-wide desktop system inegeto [14, 30, 29, 38, 8, 18] models of behavior. We com-
full-fledged global computing infrastructure over its tifae. pare the effectiveness of these more traditional appraaiche
The Condor project maintains a large active Condor pool#j, findings in the next section.
the University of Wisconsin that comprises campus desktoprheeibull distribution is often used to model the lifetimes
machines, dedicated clusters, and an automatic migrasion g objects, including physical system components [3, 22]
pability (called flocking) that can farm jobs to the Nationg{ng also to model computer resource availability distribu-
Center for Supercomputer Applications (NCSA) and othgpns [16, 34]. Hyperexponentials have been used to model
sites. In what is termed the “vanilla universe,” a job subMigyachine availability previously [23] and are especiallgfus
ted to Condor is directed to an idle machine, whence the jols$ observed data requiring a model that can approximate a
standard input and output are redirected back to the submigse variety of different shapes. Following are the fornsula
sion machine. When a user or non-Condor job becomes actyerhe statistical models we compare in this work, alongwit
on the resource (i.e. the machine is no longer availablerfor@description of how we automatically estimate the model pa-
external Condor job) the Condor job using the machine is tesmeters from given a sample data set. Thus, with this system
minated. we extract historical availability information from the NWS
During the 26-month period from April 1, 2003 throughand generate a statistical models of previous availablifg

July 1, 2005 we deployed an availability sensor designed i then compare these models in terms of their accuracy and
the Network Weather Service (NWS) to sample the duratiofg »

of availability that “standard” jobs in the vanilla univerex-
perience. In this paper, we describe our efforts to model . T
distribution of availability which we measure as the durati tﬂe"‘ Weibull Distribution
of time between when Condor schedules a job to a machifng density and distribution functiorfg, andF,, respectively
and when the job is terminated due to eviction. The resuigg a Weibull distribution are given by
we have obtained are part of a larger effort that includes new L w
fulw) = af=a" e /D) (1)
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The parametear is called theshape parameter, and is called data set, based on the assumptions that each of the sample
the scale parametef. Note that the Weibull distribution re-data pointsz; is drawn from a random variablg; an that the

duces to an exponential distribution when= 1. X; are independent and identically distributed (i.i.d.). The
method defines thékelihood function L, depending on the
2.2 Hyperexponential Distribution parameters of the distribution, as the product of the densit

function evaluated at the sample points. Thus in the case of
Hyperexponentials are distributions formed as the weiyjhtée Weibull distribution,L will be a function ofa: andg3 given
sum of exponentials, each having a different parameter. Thye
density function is given by

k

L(Oé7ﬁ | {‘rl}) = Hf(ll | aaﬁ) = Haﬂiaiﬂiailei(m/ﬁ)a

fa(@) = [pi- fe()] ®) ®)
i=1 Roughly speaking, maximizing is equivalent to maximiz-
where ing the joint probability that each random variable will ¢gak
() = N Nio (4) on the sample value. Large values of the density function

correspond to data that is “more likely” to occur, so larger
defines the density function for an exponential having paragy|es ofL, correspond to values of the parameters for which
eter);. In the definition offx (), all \; # A; fori # j, and the data was “more likely” to have been produced. Thus, the
S°F_ . pi = 1. The distribution function is defined as MLE for the parameters is simply the choice of parameters
. (if it exists) which maximized.. Our approach to computing
e MLE parameters numerically is to set the partial derivative
Fu(x)=1- Zpi € ©) of log —likelihood function equal ta) and solve for the dis-
=t tribution parameters.
for the same definition of., (z). Thus, to fit a hyperexpo- We have implemented a software system that takes a set of
nential to a given data set, the valuekgleach); and eaclp; measurements as an ordinary text file and computes the MLE

must be estimated. Weibull and Log-normal automatically (as well as a variety
of other distributions). Perhaps unsurprisingly, the gyaif
2.3 Log-normal Distribution the numerical methods that we use is critical to the success

of the method. In particular, the MLE computations can in-
A population has a Log-normal distribution if the logarithmolve hundreds or thousands of terms (the data sets can be
of the values in question has a normal distribution The dgnsijuite large) and thus require robust and efficient techrique
and distribution functiong;,, () and F},, (z) respectively are At present, the implementation uses a combination of the Oc-

given by tave [28] numerical package, Mathematica [21] (for solver
) , quality). The resulting system, however, takes data (as de-
fin(z) = (1/(zov/2r))e @) =)/ (2207 (6) scribed in Section 3) and automatically determines thesiece

sary parameters.
Fyp(x) = 1/2%1/2(er f((In(x) — 1)/(0v/2)))  (7)  The case of the hyperexponential is somewhat different.

wherey, ando are the mean and standard deviation of loghor @ specified value df (which indicates how many phases
rithm of the population values aref is the “error function” Will be included in the hyperexponential), one can in prnci

or cumulative distribution function from a standard normal Ple set up and solve the necessary optimization problem to
find MLE values for the remainin@k — 1 parameters. How-

T . . ever, this problem, even small values/gfis in general too
24  Didtribution Parameter Estimation complex for commonly available computers to solve, espe-

For repeatability, we describe the exact method used to paglly for the larger data sets. Therefore, we used the EMpht
form all of the model fitting in this work. Given a set oSoftware package [10] for all estimated hyperexponentials
sample datgz;...z, }, there are many common techniquelis paper. EMpht implements thestimation-maximization

for estimating distribution parameters based on some se{f#) algorithm described in [2]. While this software was able
sample data, including visual inspectiomg{ using a two- to compute the EM estimate of tRephase hyperexponential
dimensional graph) and analytic methods. A commonly gearameters for the smaller data set described in Sectiors4, i
cepted approach to the general problem of parameter estifitd-too computationally intensive for us to use with thegler

tion is based on the principle afiaximum likelihood. The datasets. We are studying this issue as part of our futurke.wor
maximum likelihood estimator (MLE) is calculated for any The number of exponential phases (denoted)ipat make

- bl density function h b _ up a hyperexponential, on the other hand, is a parameter that
The general Weibull density function has a third parametetdzation, i ; -
which we can eliminate from the density simply by subtractimgminimum must be specified rather than estimated. Our approach is is

lifetime from all measurements. In this paper, we will work witte two- O use EMpht to estimate parameters and then to CalCUla_te the
parameter formulation. log-likelihood values produced by the data for succesgivel




larger values of. The algorithm terminates when an addibetween assignments during which a particular machine is ei
tional phase produces no discernible improvement in the ntber busy because its owner is using it, or because Condor as
rics. scheduled other useful work.

3 Experimental Data 4 Results

Condor [7, 35] is a cycle-harvesting system designed to sWjge are interested in the utility of different automaticéity
port high-throughput computing. Under the Condor modehodels in describing the Condor data. We begin with a graph-
the owner of each machine allows Condor to launch an ésal analysis in which we compare the fits of an MLE Weibull
ternally submitted jobi(e., one not generated by the ownerfjaving parameters = 0.46 andj3 = 6227 and a Log-normal
when the machine becomes “idle.” Each owner is expectedistribution in whichy, = 7.6 ando = 2.2 to the empiri-
specify when his or her machine can be considered idle wital data in cumulative distribution form (CDF) (Figure 1p T
respect to load average, memory occupancy, keyboard adwetter show any differences in convexity, we put thexis

ity, etc. When Condor detects that a machine has become idlea log scale. In the figure, the empirical CDF includes alll
it takes an unexecuted job from a queue it maintains and as-

signs it to the idle machine for execution. If the machine’s

owner begins using the machine again, Condor detects the lo- April 2003 through July 2005, 900 hosts

1 —

cal activity and evacuates the external job. The resultas th 0.9 TEmrel -
resource owners maintain exclusive access to their own re- 0.8 | —veioul
sources, and Condor uses them only when they would other- 2 g:
wise be idle. “ 0.5

In this study, we take advantage of the vaniliee.( g > 7
terminate-on-eviction) execution environment to buildan€ 0.2 /4
dor occupancy monitor. A set of monitor processes (10 in this 0-(1’ o ,:::;

study) are submitted to Condor for execution. When Condor
assigns a process to a processor, the process wakes period-
ically and reports the number of seconds that have elapsed
since it began executing. When that process is terminated
(due to an eviction) the last recorded elapsed time value Megyure 1: Comparison of Weibull and Log-normal Fits to Em-
sures the occupancy the sensor enjoyed on the processgital Availability Data.
was using. We associate availability with Internet addeews
port number; therefore, if a monitor process is subsequent!
restarted on a particular machine (because Condor detedmiavailability measurements taken from @00 hosts during the
the machine to be idle), the new measurements will be assatiservation period. The Weibull curve does not fit the tdils o
ated with the machine running the process. In our study, Caime distribution as well as the Log-normal does as evidenced
dor used 900 different Linux workstations to run the monitty the greater density near the left tail of its curve in tharfig
processes over th#-month measurement period. In contrast, the Log-normal fit is quite good throughout. No-
Measuring processor availability in this way introducdge, however, that the empirical curve seems to have a pair o
“load” into Condor system in the form of sensor processaslection points near its center that neither method castur
that use their occupancy time simply to record their occli-may be that a hyperexponential distribution will be alde t
pancy time. Condor uses a sophisticated (and unrevealeature this feature better than either Weibull or Log-relrm
scheduling mechanism to decide when processes should distributions. the computational complexity associatéth w
and on what machine. It is possible that by introducing sensatomatically fitting even &-phase hyperexponential to this
load our measurements are preventing “real” work from beata makes it a subject of our future work.
ing done, and such a perturbation affects the idle-busyecycl Thus, itis clear from the figure that the two-parameter Log-
of each machine. Note that the name of the binary launchearmal distribution is a good candidate for modeling avail-
by Condor is obfuscated, however, so a machine owner caradatity in the general Condor pool. A second question we
make a reclamation decision based on the name of the Conglished to investigate is whether the distributional chemac
processes running on his or her machine. That is, the machsties Condor were the for desktop machines as they are for
owners at the University of Wisconsin could not tell the dithe dedicated clusters. Recall that the Wisconsin Condalr po
ference between our sensors and other computational wiadtudes both cycle-harvested desktop resources andcecdust
Condor assigned to the various machines. Notice also thathiat serve as dedicated Condor “compute engines.”
this study we consider only the availability of each machine While we do not possess detailed information on the actual
to a Condor user once the machine is assigned to a prodesal administration policies governing each machine, oy e
running on behalf of that user. We do not consider the tiaenining the Domain Name Services (DNS) names associated
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with each IP address in the study, we were able to perform a

rough classification. In so doing, we divide the data set into ) April 2003 through July 2005, 170 hosts
one containing availability 0.0
In Figure 2 we compare the MLE Log-normal to the em- 0.8 —

.. 0.7 log-normal
pirical CDF for only those hosts whose DNS name seemed to 206 v
indicate that they were part of a cluster. The parameters for §0.5 S

v 0.4
* 0.3
0.2
April 2003 through July 2005, 730 hosts 0.1
. 1]
0_; — empirica /// 0.1 10 1000 100000 10000000
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206
§os 7
g 0.4 Figure 3: Comparison of Various Fits to Empirical Availabil
0.3 . . .
02 ity Data for Hosts without Cluster-like DNS Names.
0.1
0 _——
0.1 10 1000 100000 10000000
Process Lifetime Intervals (Seconds) the MLE Log-normal argx = 6.1 ande = 1.35. In this

case, because the dataset is smaller, we were also able to use

] _ ] ] B _the EM algorithm to fit a hyperexponential with parameters
Figure 2: Comparison of Log-normal Fit to Empirical AvallpO —0.88, \o = —0.002, and\; = —0.00005.

ability Data for Hosts with Cluster-like DNS Names. From the figure, it is not clear which method fits “best.” The

Weibull distribution overestimates the probability depsat
) o the left end by substantial amount. The empirical datalfjtse
the MLE Log-normal shown in this figure aje = 7.7 and  ghows a probability density that is more concentrated fear t
o = 2.2. Clearly, the shape of the availability curve is IS presanter of the curve than any of the models are able to capture.

dominantly determined by machines that are part of CONGgy the left of the mode, the Log-normal is closer, but to the
clusters and not desktops. For the cluster systems, 0CCYP3Yht of it, the2-phase hyperexponential is closest.
is determined by competitive load and by the priority schedu

ing mechanisms that Condor uses internally as well as exter-
nal load introduced by local cluster users. From Figure 2 the  Dijscussion
distribution of availability durations that was availalideour
sensor is well-modeled by a Log-normal distribution. In terms of model fitting, the strength of these results are
This observation indicates that the Condor schedulingixed. For dedicated Condor clusters, the quality of the fit
mechanisms are effective in delivering reasonable avliijab provided by an MLE determined Log-normal appears quite
periods to user applications. It has been well-documemhi@d tgood. In a simulation context, for example, this correspon-
process lifetimes are well-modeled by heavy-tailed distri dence is probably good enough to warrant its use. This cir-
tions [13]. Despite the potential for large variance intlifee cumstance is particularly fortuitous since the Log-norisal
which might, in turn, impose a large variance in availapilitrelatively easy to implement and cheap to compute. This re-
the actual observed availability durations are not heailpd sult is especially important since no existing simulaticechn
due to Condor’s scheduling algorithms. anisms of which we are aware currently hypothesize or advo-
In Figure 3 we show the empirical CDF for the availabilitgate the use of the Log-normal for Global computing systems
durations that we observed from machines in the Condor peuth as Condor.
with DNS names that did not imply membership in a cluster. For desktop machines, however, the results are less clear.
Note that in the case of cluster processors, this catedmnizaCertainly, the availability durations are far from heawayled
methodology is most likely conservative; the DNS names ae the Weibull (the distribution among those we tested with
fairly obviously part of a cluster. The complement, howevahe greatest right-tail weight) seems to fit the least wetl. |
is less certain as it is possible that cluster machines meg htnis case, the decision on which distribution to use may de-
been identified by only their head node, and the head ngmad on whether it is more important to be “close” on the left
did not have an obvious cluster-like name. The curves in tiisle of the mode or on the right. That is, if one were intekste
figure are difficult to differentiate without the use of coltr in in a small quantile, then an MLE Log-normal would most
print form, moving from left to right the order in which eachikely to yield a good result. Alternatively, if a large quan
curve touches the-axis is Weibull,2-phase hyperexponent-ile is the statistic of interest, an EM-determinghhase hy-
tial, Log-normal and empirical. The parameters for the MLBerexponential might be more appropriate. Again, however,
Weibull, in this case, aree = 0.56 and3 = 975 and for we know of no simulation environment in which these results



have been actualized.
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(13]

Conclusion
[14]

The focus of this effort is on an examination of which au-

tomatically determined models best capture the distidimati

[15]

M. Harchol-Balter and A. Downey. Exploiting process life-
time distributions for dynamic load balancing. Pnoceedings

of the 1996 ACM Sigmetrics Conference on Measurement and
Modeling of Computer Systems, 1996.

M. Harcol-Balter and A. Downey. Exploiting process lifetime
distributions for dynamic load balancindhCM Transactions
on Computer Systems, 15(3):253-285, 1997.

The NASA Information Power Grid Home Pagéttp://

properties of Condor — an active and successful Global com-" \yy, i pg. nasa. gov.

puting system. To facilitate this study, we have gathered @) x. J., K. Z., and I. R. K. Networked windows nt system field
extensive survey of Condor availability using a new NWS
sensing capability. We present methodologies for autemdfi?]
cally fitting parametric models to machine availability alat
We find that the Log-normal model most suitable for part of
the Condor survey (those machines that appear to be part of

a Condor-dedicated cluster) but that for desktop machirees,
single model seems definitively best.

(18]

Taken as part of a larger effort [5, 17, 26] this work consti-
tutes an important step toward achieving a new and powerful
global computing infrastructure. Through a combination ¢19]
newly developed modeling and prediction techniques, their
application in simulation to the problem of scheduling, and

their empirical verification with simulation and functiowgj

application, our goal is to lay the groundwork for the scien-

tific study of next generation distributed computing.

(21]

[22]
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