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Abstract
In this paper we describe Masseuse∗, a non-invasive approach to
scalable quality-of-service provisioning that uses traffic shaping,
admission control, and response monitoring at the border ofan
Internet site to ensure throughput and response time guarantees.

We experimentally compare an implementation of Masseuse
both to hardware over-provisioning and to leading softwareap-
proaches using real world workloads. Our results show that
Masseuse can enforce the same QoS guarantees as either of the
compared approaches, while achieving better resource utiliza-
tion than over-provisioning and without the application rewrit-
ing overhead required by intrusive software approaches. We
also demonstrate that our implementation can successfullyhan-
dle extreme situations such as sudden traffic surges, application
misbehavior and node failures. Furthermore, we demonstrate
the flexibility of Masseuse by providing QoS guarantees for a
complex and heterogeneous Internet service that cannot be im-
plemented by other current software approaches.

1 Introduction

The current commercial importance of Internet services,
make it imperative for companies relying on web-based
technologies to offer and guarantee predictable, consis-
tent, and differentiated quality of service (QoS) to their
consumers. For example, e-commerce companies often
want to provide faster response times for purchasing than
for catalog browsing to ensure that no sale is lost due
to the perception of an unresponsive transaction. Differ-
entiated QoS also enables more general and flexible ap-
plication hosting environments. For example, a service
provider that hosts a personalized webmail portal for sev-
eral companies wants to guarantee different levels of ser-
vice to its customers and to ensure that these service guar-
antees are provided to each customer independently, re-
gardless of overload or misbehavior of the others.

To meet large demand, scalable Internet services are
commonly hosted using clustered architectures where a
number of machines, rather than a single server, work to-
gether in a distributed and parallel manner to serve re-
quests. Delivering reliable service quality guarantees in
this distributed setting is the difficult challenge that our
work addresses.

Both research and commercial Internet service com-
munities have explored hardware-based and software-
based approaches to QoS provisioning. The “state-of-the-

∗Our use of the name Masseuse is inspired by the observation that
we are massaging both the input traffic to relieve the stress of the cluster
and the title of the paper for the purposes of blind submission.

practice” in current commercial settings is to deploy in-
dependent clusters for each service (hardware partition-
ing), each of which comprises enough capacity to service
“worst-case” load conditions (over-provisioning). Un-
fortunately, because load fluctuations can be substantial,
hardware partitioning and over-provisioning incurs a po-
tentially high cost (sufficient resources must be available
in each partition to handle load spikes) and low resource
utilization (the extra resources are idle between spikes),
making this approach inefficient.

As a result, software-based approaches have been pro-
posed and developed to make better use of the resources
employed to host Internet services. These approaches fo-
cus on embedding QoS logic at different levels of the
site’s internal software, including operating system [?, ?,
?, ?], middleware [?, ?, ?], and application code [?, ?, ?].
It is the function of this logic to distribute, effectively,the
workload among the cluster resources as a way of improv-
ing both resource utilization and client experience. Low-
level techniques have been shown to provide a tight con-
trol on the utilization of resources (e.g., disk bandwidth
or processor usage) while techniques that are closer to the
application layer are able to satisfy QoS requirements that
are more directly experienced by clients. However, these
software solutions require the hosted application services
and/or the hosting operating system to be customized for
QoS provisioning, thereby limiting flexibility and exten-
sibility. Furthermore, most current Internet sites include
a myriad of different hardware and software platforms
which are constantly evolving and changing. An invasive
QoS solution that requires the reprogramming of hosted
service code carries with it high development and test-
ing costs when new services are introduced, or the exist-
ing site components (hardware and software) are recon-
figured, upgraded, extended, etc. More problematically,
the source code for many service components hosted at
a site may not be available for proprietary reasons. This
lack of source code makes the necessary software repro-
gramming remarkably difficult. Thus the growing com-
plexity associated with Internet service hosting in com-
mercial settings makes intrusive software QoS strategies
less attractive as the need for extensibility and flexibility
increases.

To address these needs, we propose a new approach
to QoS provisioning for Internet services. Our ap-
proach offers reliable QoS guarantees at a lower cost than
state-of-the-practice techniques, while giving the service
providers the much needed flexibility that they require to
rapidly reconfigure, upgrade and extend their complex set
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of services. In this paper we presentMasseuse, a non-
invasive software approach that treats the cluster and the
services it is hosting as a “black-box” system and uses
only feedback-driven techniques to control dynamically
which and when each of the requests from the clients is
forwarded into the cluster. Because traffic shaping and
admission control is done at the entrance of the site, and
the system uses only the observed request and response
streams for its control algorithms, new services can be
added, old ones upgraded, and resources reconfigured
without re-engineering the necessary QoS mechanisms
into the services themselves or the system software that
supports them.

We report on an implementation of Masseuse and its
experimental comparison with the state-of-the-practice
(i.e., over-provisioning) and state-of-the-art (i.e., Nep-
tune [?, ?]) software solutions using realistic services,
client request traces and clustered machines. Neptune [?,
?] is a research and now commercially successful mid-
dleware system that implements QoS for Internet ser-
vices, but which requires the services themselves to be re-
written to use Neptune primitives. Using theTeoma[?]
search engine, which is explicitly programmed so it can
use Neptune, we show that Masseuse can enforce the
same QoS guarantees as Neptune for Neptune-enabled
services, but without the additional engineering overhead
associated with modifying the services that it supports.
Furthermore, we illustrate Masseuse’s ability to handle
extreme situations such as sudden traffic surges, or inter-
nal application misbehavior – capabilities that are nec-
essary for a successful deployment in large-scale, re-
alistic settings. We also demonstrate the flexibility of
Masseuse by showing how it can provide QoS guarantees
for complex heterogeneous Internet services which can-
not be modified – a capability that none of the published,
pre-existing software approaches is capable of achieving
at present.

1.1 Contributions

This paper makes five main contributions:

• We present Masseuse as a novel approach to QoS
provisioning for large-scale Internet services that
uses only observed input request and output response
streams to control the load within the site so that
quality guarantees are met.

• We describe a working implementation and demon-
strate its viability using a large cluster system host-
ing commercial and community benchmark Internet
services.

• We compare Masseuse with the best state-of-the-
practice and state-of-the-art approaches in terms of

efficiency and the degree to which they maintain
QoS guarantees for both throughput and response
times.

• We show the robustness of Masseuse in successfully
overcoming extreme situations (i.e., sudden traffic
surges, application misbehavior and node failures)
which arise in current commercial settings.

• We demonstrate that the flexibility provided by
Masseuse enables more efficient deployments of
complex, heterogeneous Internet services than can
currently be supported by existing approaches.

The remainder of this paper is organized as follows.
Section 2 introduces Masseuse’s approach and further de-
scribes its architecture. Section?? experimentally com-
pares Masseuse to the best of the known approaches. In
Section?? we demonstrate the robustness of Masseuse
under extreme situations and also show its flexibility in
providing reliable QoS guarantees in complex heteroge-
neous services. In Section 5 we discuss related work, and
we conclude in Section??.

2 The Masseuse Architecture

To describe the Masseuse architecture, we begin by out-
lining the model of Internet service transactions we use.
We treat Internet services (see Figure 1) as a stream of
requests coming from clients that are received at the en-
trance of the site, processed by the internal resources, and
returned back to the clients upon completion. In the case
of system overload or internal error condition, requests
can be dropped before completion and thus may not be re-
turned to the client. Requests can be classified or grouped
into differentservice classesaccording to a combination
of service type and client identity. We view the QoS chal-
lenge as the ability to guarantee, at all times, a predefined
quantitative characterization of the traffic in each service
class as measured at the output of the cluster.

Figure 1:System model for Internet services.

In Masseuse, the QoS policy is specified as a list ofQoS
classesdescribing the quality that must be ensured for
each class of service. We define QoS class as a tuple that
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Table 1: Example QoS policy for a service provider
hosting webmail portals for two different companies.

describes: 1) how to identify requests of this class (classi-
fication rules) and, 2) what type of QoS must be enforced
(output guarantees). In the same way as level-7 load-
balancers [?, ?, ?], Masseuse classifies requests based on a
combination of parameters such as IP address, port, URL
and path. Output guarantees are specified in terms of
guaranteed minimum throughput and maximum response
time. For example, Table 1 describes a QoS policy con-
taining two QoS classes for a service provider hosting
webmail portals for two different companies. In the ex-
ample,BigCorp has a much higher guaranteed through-
put due to an expected higher traffic volume andSmall-
Corp requires much tighter response time guarantees for
its users. Notice that the definition of output guarantees
includes both throughput and response time requirements.
While it is often possible to meet one type of guarantee at
the expense of the other, our solution accommodates both.
Additionally, Masseuse allows throughput and response
time guarantees to be expressed using either percentiles or
averages since the way in which each customer wishes to
view a guarantee varies. In both cases, however, the time
frame over which the average or percentile is computed is
substantially longer than the time required to service an
individual request.

Masseuse uses a single-policy enforcement engine to
intercept and control in-bound traffic at the entrance of
the site hosting the services. By tracking the responses to
requests that are served within the site, our system auto-
matically determines when new requests can be allowed
entry such that a specified set of QoS guarantees will
be enforced. No knowledge of the internals of the site
are needed and no instrumentation is required. In other
words, to make an Internet site capable of providing QoS
guarantees it is enough to deploy Masseuse at its entrance
point and define the desired QoS policy to be enforced.

Figure 2:The architecture of Masseuse.

Figure 2 depicts the architecture of Masseuse, consist-
ing of four different modules each of which implements
part of the functionality that is necessary to enforce a
QoS policy. TheClassificationmodule categorizes the
intercepted requests from the clients into one of the ser-

vice classes defined in the QoS class. TheLoad Control
module determines the pace (for the entire system and
all client request streams) at which Masseuse releases re-
quests into the cluster. TheRequest Precedencemodule
dictates the proportions with which requests of different
classes are released to the cluster. TheSelective Drop-
ping module drops requests of a service class to avoid
introducing work accumulation that would cause a QoS
violation. This module also maintains responsiveness
when the incoming service demands for a class exceed
the processing capacity that it has been guaranteed. In the
next sections we detail further the implementation of the
Masseuse modules. We explicitly exclude the details as-
sociated with Classification since it is a well understood
problem that has already been studied in the literature [?].

2.1 Load Control

The functionality of the Load Control module is two-
fold. First, it prevents large amounts of incoming traf-
fic from overloading the internal resources of the cluster.
When the internal resources become overloaded, the in-
ternal software (i.e., operating system, web servers, appli-
cations, etc.) will delay or drop requests without regard
for their QoS classification. Second, it maintains the re-
sources within the cluster at a high level of utilization to
achieve good system performance. The goal of the Load
Control module is to have the cluster operate at maximum
capacity so that the largest possible capacity guarantees
can be met, while also preventing overload conditions that
would cause response time guarantees to be violated.

Our implementation exploits the direct correlation be-
tween the amount of work accumulation inside the cluster
and the time required for requests to be computed by the
hosted services. In general, more work introduced into
the cluster corresponds to longer compute times for each
service (given a fixed amount of resources) once the num-
ber of parallel requests exceeds the number of resources.
With this in mind, the Load Control module can directly
affect the amount of time that requests take to be com-
puted inside the cluster (i.e., compute time) by controlling
how much traffic is “in progress” at any time.

Similar to TCP, our implementation uses a sliding win-
dow scheme that defines the maximum number of re-
quests that can be outstanding at any time (see Figure 4).
The basic operation of the Masseuse engine consists of
successively incrementing the size of the window until
the compute times of the QoS class with the most restric-
tive response times approaches the limits defined by its
guarantees . Our current implementation uses a simple al-
gorithm (see Figure 3.a) that increments (or decrements)
the window linearly until it observes a maximum compute
time that is half the most restrictive of all the guarantees.
The choice of ‘half’ is a compromise motivated by the
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(a) (b) (c)

Figure 3:Simplified pseudo-code for the algorithms of the three main modules of Masseuse.

Figure 4:Structure of Load Control module.

tradeoff between the need to maintain cluster occupancy
and limited internal queuing space necessary to absorb
peaks of traffic. We are currently working on an opti-
mized version that can dynamically adapt this threshold
to allow more queuing without adversely affecting overall
system performance. A more sophisticated (and reactive)
version of the algorithm using non-linear variation of the
window sizes is also under study.

2.2 Request Precedence

The main function of Request Precedence is to virtually
partition the cluster resources among each of the service
classes. Resource isolation is a necessary functionality
that allows each service class to enjoy a minimum amount
of processing capacity, independent of potential overload
or misbehavior of others. This module is able to parti-
tion externally the service delivered by the cluster, by con-
trolling the proportions in which the input traffic for each
class is forwarded to the internal resources. Thus, the goal
of this module is to ensure that the fraction of the overall
cluster capacity devoted to each class is large enough to
satisfy the guarantees for that class at all times.

The Request Precedence module also attempts to max-
imize performance in overload situations without allow-
ing guarantees to lapse. It reassigns unclaimed resources
to other QoS classes demanding more processing power
than they have been granted. Reassigning unutilized ca-
pacity allows the QoS engine to take full advantage of the
available cluster resources allowing some service classes

to enjoy a level of service that is higher than what they
have been guaranteed. At the same time, the Request
Precedence module ensures that those classes that are not
using their maximum allowable share of the overall ca-
pacity none-the-less receive enough capacity to meet their
guarantees. By continually calculating and adjusting the
fraction of cluster capacity that is given to each class,
Masseuse differs from an approach that relies on physical
partitioning of the resources where temporary reassign-
ment cannot be implemented.

Under Masseuse, Request Precedence is implemented
by a scheduling algorithm that logically partitions the
window of outstanding requests (as dictated by the Load
Control module) according to the throughput guarantees
specified in the QoS classes. This method exploits (and
depends on) the time-shared nature of current operating
systems which assign time slices on resources equally
amongst all running tasks. As a result, it is possible to
increase the share of the cluster resources for a particular
service class by increasing the number of tasks that are
devoted to computing its requests. However, Masseuse
has no direct knowledge of processes inside the cluster.
Instead, by increasing or decreasing the number of out-
standing requests for each class independently, the Re-
quest Precedence module can indirectly increase or de-
crease the proportions of resources allocated to each of
them.

Figure 5:Function of Request Precedence module.

Our scheduler assigns a weightΦi to each of the QoS
classes and uses this weight to partition proportionally the
window accordingly (see Figure 5). Instead of allocat-
ing a fixed number of slots of the window per class, our
algorithm (see Figure 3.b) uses a dynamic method that
achieves similar characteristics to Weighted Fair Queuing
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disciplines [?, ?, ?] in terms of proportional rate guaran-
tees and reassignment of surplus. However the guaran-
tees in our case apply to window sizes instead of service
rates (i.e., throughput). The reason for this choice is that,
throughput for a given service class can only be guaran-
teed when the computing requirements of the requests are
known. In other words, the capacity necessary to achieve
a given throughput is directly related to the computational
complexity of the requests. On the other hand, assigning a
particular window size corresponds to guaranteeing a por-
tion of the cluster capacity, independently from the com-
puting complexity of the incoming request stream. There-
fore, in Masseuse the guarantees are computed in terms
of capacity (i.e., resources) for each class, instead of min-
imum throughputs.

By working with a capacity measure (i.e., proportions
of outstanding requests), Masseuse can provide effective
isolation between classes when their computing require-
ments are not knowna priori or can change dramatically.
It uses capacity as a fungible metric that links output
throughput and computing requirements such that an in-
crease in one can be made to force a decrease in the other.
For example a capacity equivalent to 10 nodes may corre-
spond to an output throughput of 500 req/s at a compute
cost of 20ms/req, but also to 1000 req/s if the compute
cost is only 10ms/req. The internal capacity allocated for
a class is calculated from thenominalguaranteed through-
put (as expressed in the QoS class) and theexpectedcom-
putation requirements of the requests (as agreed upon be-
tween the provider and the consumer). In the cases where
the computation complexity is violated (i.e., higher than
agreed upon) for a particular class, instead of dropping
the traffic of the faulty class, Masseuse will gracefully de-
grade its throughput to maintain the same internal capac-
ity allocation.

2.3 Selective Dropping

The function of Selective Dropping is to discard the ex-
cessive traffic received for a QoS class in the situations
where there is not enough available capacity to fulfill its
incoming demands. A dropping module is necessary to
prevent large delays from occurring in overloaded situ-
ations where requests would otherwise accumulate and
then be dropped inside the cluster without regard to their
QoS significance. That is, the Masseuse engine will con-
trol which requests are dropped so that all guarantees will
be met. In the case where one class exceeds its allocated
capacity, its requests should be targeted while requests for
the “well-behaved” classes are allowed to proceed. As
a result, the QoS guarantees will be observed for all re-
quests of a class that are serviced, but if input load exceeds
the maximum level that can be supported for the given
guarantee, some requests will be dropped. Our Selective
Dropping implementation ensures that the guarantees will

be met for all requests that can be serviced. It does so by
independently observing each of the QoS queues of the
engine and discarding the requests that have been sitting
in the queue for so long that the deadline for their ser-
vice cannot be met. In our implementation (Figure 3.c),
a request will be dropped if the time left for meeting the
deadline once it gets at the head of the queue is less than
the expected time of computation of its class. In other
words, a request will be dropped if we expect it to miss
its deadline according to how other requests of the same
class are currently performing.

In Masseuse, Selective Dropping works closely with
the Load Control module by signaling ahead of time when
a service class is likely to become overloaded. This
module leverages the queuing inside Masseuse to absorb
safely peaks of traffic during transient overload conditions
without violating the response time guarantees. For ef-
ficiency reasons, the module delays the dropping of re-
quests to prevent discarding traffic in transient situations
only to realize a moment later that the requests could have
been served within the allowed response time limits. The
implementation of independent dropping techniques, cou-
pled with strong capacity guarantees given by the Request
Precedence, allow this module to isolate response times of
one class against misbehavior of others.

Combined, the functions of all four Masseuse mod-
ules (Classification, Load Control, Request Precedence
and Selective Dropping) enable cluster responsiveness,
efficient resource utilization, capacity isolation and delay
differentiation, thus guaranteeing capacity and response
times for each independent service class.

3 Experimental Performance Comparison

In this section we demonstrate that the four modules of
Masseusecan provide QoS guarantees under realistic con-
ditions even though they treat the cluster resources and
Internet services as a “black-box”. We have performed
extensive studies of each of the presented modules, both
in isolation as well as operating together. Due to space
constraints we do not include them in this paper, but the
details of these studies can be found in [?]. Instead, in
this section we focus on examining the performance of
Masseuse as a complete system, and study how it com-
pares to the best of the known approaches. Our inves-
tigation is empirical and is based on the deployment of
an Internet search service used byTeoma[?] using a 68-
CPU cluster. We analyze how five different techniques
(representing both state-of-the-practice and state-of-the-
art) offer differentiated quality to distinct groups of cus-
tomers using generated message traffic based on web-
search traces. We then quantify the observed the quality
of service delivered by each method.

5



3.1 Experimental Methodology

Our experimental setup consists of several client ma-
chines accessing a cluster system through an interme-
diate gateway/load-balancer machine. Accessing the
services through a load balancer machine is the most
commonly used architecture in current Internet services.
For example, Google [?] funnels traffic through sev-
eral Netscaler [?] load-balancing systems to balance
the search load presented to each of its internal web
servers [?].

To perform our experiments in the most realistic possi-
ble manner, we have deployed a commercial-grade Inter-
net service on a 68-CPU cluster system and replayed real
traffic traces from its commercial operation [?]. The ser-
vice deployed is the index search component of the Teoma
commercial search service [?]. The index search compo-
nent consists of traversing an index database and retriev-
ing the list of URLs that contain the set of words specified
in the search query. The total size of the index database
used is 12GB and is fully replicated at each node. The
index search application from Teoma is specifically built
for the Neptune middleware [?], a cluster-based software
infrastructure that provides replication, aggregation and
load balancing for network-based services. The version
of Neptune we use also provides QoS mechanisms allow-
ing the specification of proportional throughput guaran-
tees and response times constraints through the defini-
tion of yield functions [?]. As it is the case with com-
mercial search engines, our system accesses the service
through a set of front-end machines that transform the re-
ceived URLs into internal queries that are then forwarded
to the middleware servicing the search database for pro-
cessing. To mimic the environment at Teoma, we imple-
ment the front-end with an Apache web server [?] and a
custom-built Apache module that interfaces with the Nep-
tune infrastructure. This module is necessary to utilize the
middleware functionality to locate other Neptune-enabled
nodes and appropriately balance the requests based on the
current load of the available servers. The cluster config-
uration used in our experiments is depicted in Figure 6.
The hardware configuration of the cluster consists of 2.6
MHz Intel Xeon processors each with 3 gigabytes of main
memory organized into nodes with either two or four pro-
cessors per node. The network interconnect between pro-
cessors is switched gigabit Ethernet and the host operat-
ing system is RedHat Linux/ Fedora Core release 1, using
kernel version 2.4.24.

Our gateway node is a 4-CPU dedicated machine that
can function in two different modes: as a load-balancer or
as the Masseuse engine. When running in load-balancer
mode, the machine is configured to implement the typi-
cal (Weighted) Round Robin and maximum connections
options available in most commercial hardware [?, ?, ?].

Figure 6:Experimental test-bed used for our bench-
mark using Teoma’s search service.

When running as Masseuse engine, the gateway is con-
figured to enforce the QoS policy defined for the exper-
iment. Both the load-balancer and Masseuse engine are
entirely implemented in user-level software. The gate-
way is implemented as an event-driven Java application
which makes extensive use of the new libraries for im-
proved I/O performance [?]. We use Sun’s 1.5 Java vir-
tual machine with low-latency garbage collection settings.
Our performance tests show that our implementation can
achieve a peak performance of 12Kreq/s (i.e., around 70K
packets/sec) for certain client workloads. Thus the perfor-
mance of our base-level system is high enough to be used
in load levels that are comparable to current commercial
systems (e.g. Google reports around 2500 req/sec [?], Ask
Jeeves around 1000 req/sec [?]). Both our implementation
of a load-balancer and the Masseuse engine are based on
the same core software for fielding and forwarding HTTP
requests.

For this experiment our methodology consists of using
the previously described test-bed to recreate search traffic
and to explore the effectiveness with which five different
approaches can enforce a particular QoS policy for a sin-
gle service with multiple client groups. The five compared
approaches are:

Load Balancer The gateway machine is configured as
a load balancer and tuned to match common high
performance settings of Internet sites. Specifically,
we configure it to use the least connections load-
balancing algorithm and limit the maximum number
of open connections for each front-end to match their
configured maximum (i.e., 250 processes for Apache
server and 150 for the Tomcat engine).

Physical Partitioning A separate group of machines are
dedicated for each of the existing QoS classes. We
configure the load-balancer to forward requests of a
particular class only to its restricted set of reserved
nodes.

Overprovisioning The size of each physical partition is
increased such that the resulting capacity and re-
sponse time guarantees can be achieved as specified
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Table 2: QoS guarantees and traffic workload of the
Teoma search engine benchmark.

by the QoS policy (possibly at the expense of under
utilized resources).

Neptune QoS The gateway is configured as a load bal-
ancer and the QoS mechanisms of Neptune are en-
abled to implement the QoS policy under study.

Masseuse QoSThe gateway runs the Masseuse engine
which implements QoS and the internal cluster re-
sources implement only the Internet service. (i.e.,
QoS functionality in Neptune is disabled)

In order to benchmark Masseuse and the other con-
sidered QoS methodologies, client requests are replayed
from a request trace supplied by Teoma that spans 3 dif-
ferent days of commercial operation [?]. We also use
Teoma-supplied traces of word sequences to generate real
search queries. The levels of incoming traffic are designed
so that the input demands of the different clients are far
below (class A), far above (class B) and coinciding with
(class C) the capacity constraints specified in their respec-
tive QoS classes. Clients for each QoS class use different
inter-arrival times, corresponding to one of the three dif-
ferent days of the original traces. Table 2 further depicts
the details of the QoS policy and input workload used in
the experiment, including the capacity and response time
guarantees for each QoS class.

3.2 QoS Results

Figure 7 presents the results in terms of achieved average
throughput and average response times for the five QoS
methodologies using the same input request streams. The
upper portion of the figure shows how the totality of in-
coming traffic for a class (represented by the height of a
bar) has been divided into traffic that is served and traffic
that is dropped. Horizontal marks delimit the minimum
amount of traffic that has to be served if the QoS guar-
antees are met. Note that a resulting throughput below
the horizontal marks still meets the QoS guarantee for a
class if the totality of its incoming traffic is successfully
served (i.e., the system cannot serve more traffic than it is
received). The lower part of Figure 7 presents the results
in terms of response times. For response times, we use
horizontal marks to denote the maximum response times
allowed by the QoS policy and denote with a darker color
the classes that do not meet the guarantees. We present
these response time results using a logarithmic scale for

Table 3:Experimental results for Teoma search engine.

better visual comparison since the delays differ substan-
tially. Table 3 summarizes these results in tabular form to
further aid their comparison.

We begin by analyzing the quality of the service
achieved by a load-balancer-only technique. Throughput
results show that the amounts of traffic served in this case
are directly dependent on the levels of incoming traffic
rather than driven by the specified QoS policy, thus isola-
tion between classes is not achieved. In this case we see
that the dominance of class B traffic induces drops in A
and C, even though the demands for these classes are al-
ways below (in the case of class A) or never exceed (for
class C) the guaranteed capacity for each class. At the
same time, the large response times shown in the lower
figure, demonstrate that simple connection limiting tech-
niques employed by the load-balancer are not enough to
prevent large delays in response times (e.g. up to 14 sec-
onds per request), rendering this technique inadequate to
provide QoS guarantees.

When resources are physically dedicated through Phys-
ical Partitioning, the system is able to serve the expected
amount of traffic for each of the classes and drop requests
only in the cases when the demands of incoming traffic
exceed the allocated capacity. Throughput guarantees are
met, however, if we observe the results in terms of re-
sponse time, we see that the overloaded partition B expe-
riences a delay more that 30 times higher than the maxi-
mum allowed by the QoS policy. Thus while physically
partitioning resources is able to provide capacity guaran-
tees, it fails to ensure response times constraints for arbi-
trary incoming demands. It is worth noting that the reason
for partition B serving more throughput than its guaran-
tee is that the raw performance of the partition is slightly
higher than the QoS guarantee defined in the policy.

When each of the partitions is augmented with enough
resources (i.e., over-provisioning) all requests are suc-
cessfully served. The response times are also reduced be-
low the maximum allowed delay. In this case, class B and
class C require an additional 10 and 2 CPUs respectively
in order to meet the specified response time guarantees.
Thus over-provisioning is the first of the techniques that
can successfully provide both throughput and response
time guarantees. However, meeting the QoS guarantees
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Figure 7:Experimental comparison of current approaches using Teoma’s search engine.

through over-provisioning comes with a high cost. In our
experiment, the increase in cost of overprovisioning was
60% (i.e., from 20 to 32 CPUs) with a resource utilization
declining to 80%. Further, these numbers represent the
minimumamount of over-provisioning that allowed us to
achieve the QoS goals. In general, between load spikes
the extra resources needed to serve surges in load lay idle.
Thus, given the wide load fluctuations that most commer-
cial Internet services experience we expect the resource
utilization of over-provisioned systemsin situ to become
much worse than what we observe in this experiment.

Neptune QoS and Masseuse both meet the specified
throughput and response time guarantees. Both tech-
niques serve at least the necessary amount of traffic and
are able to keep response time below the maximum de-
lays associated with each guarantee. Furthermore, both
techniques are able to successfully reassign the capacity
not utilized by class A to the greedy clients of class B.
We observe that direct control the resources and services
in the cluster (due to its invasiveness) allows Neptune to
achieve a slightly better throughput than Masseuse (i.e.,
3%). This slight performance penalty can be seen as the
cost that an external solution such as Masseuse has to pay
for not modifying any of the software internals. However,
given the completely non-invasive nature of Masseuse,
we were surprised by how closely it matched the perfor-
mance achieved by the invasive and commercially devel-
oped Neptune system. Figure 7 also shows that the re-
sulting response times from Neptune are somewhat lower
than Masseuse. This difference is because Masseuse is
only designed to enforce maximum delay constraints and
it is not concerned about minimizing the overall delay of
service times. We are currently working on a prototype
that can both ensure response time constraints and lower
response delays when possible.

Summarizing, this experiment demonstrates the effec-
tiveness of Masseuse empirically, using a commercial In-
ternet service and commercial traffic levels. Masseuse
in this setting is competitive with the best of the current

approaches in its ability to enforce both response time
and throughput QoS guarantees. In particular, Masseuse
has less cost and achieves better resource utilization than
over-provisioning techniques due to its ability to reassign
unutilized capacity to those service classes that need it.
At the same time, it achieves comparable QoS guaran-
tees to an integrated and commercially available system
such as Neptune, incurring only a small performance cost
(i.e., 3%). In the next section (Section 4.4) we illustrate
its flexibility by showing how it can provide reliable QoS
guarantees in a complex and heterogeneous site running
three different services.

4 Robustness under Extreme Conditions

In this section we investigate the robustness of Masseuse
and its QoS enforcement capabilities under scenarios that
emulate the extreme conditions experienced by many cur-
rent Internet services. To do so, we first study the reac-
tion of Masseuse to three circumstances: sudden traffic
fluctuations (Section 4.1), sudden changes in computing
requirements (Section 4.2) and node failures and recov-
eries (Section 4.3). We then present a larger-scale exper-
iment in which we detail its response to the same con-
ditions in a substantially more complex Internet hosting
scenario (Section 4.4).

To conduct the initial set of isolated robustness studies
we use two service classes: A and B. Service class A is
a misbehaving class that begins with an input load that
can be fully serviced with its allocated capacity, and then
changes its demands to surpass the capacity required to
meet its guarantees as well as to drive the overall system
into overload. Service class B is a well-behaved class that
receives a constant demand of traffic that is always below
the traffic level that can be serviced under its guarantees.
For each of the experiments, we detail how well Masseuse
insulates the quality of service experienced by the well-
behaved class B from the fluctuations introduced by class
A. We also investigate how the quality of service given
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to class A degrades gracefully during the periods when its
demands exceed the capacity allocated to meet its guaran-
tees. In particular, our goal is to provide as much capacity
to A as possible without violating the guarantees made to
either A or B. As described in subsection 2.2, however, the
capacity allocated to A and B is fungible and constantly
adjusted by Masseuse as it responds to changes in load
conditions.

To run these experiments we use a system consisting of
4-CPUs for client machines accessing a 16-CPU cluster
through a gateway machine implementing the Masseuse
engine. Each of the servers runs the Tomcat application
server [?], providing a “CPU-loop service” consisting of
a servlet that loops a number of times so that it utilizes a
certain amount of CPU (as specified in the HTTP parame-
ters of each incoming request). This artificial emulation of
a true web service allows precise control of the CPU load
requirements associated with each request. Requests re-
ceived from the clients are classified into QoS classes ac-
cording to the host field name found in the HTTP header
of the request (i.e., host: A or host: B).

The QoS policy defined for the experiments allocates
the same guarantees for both classes of service (Table 4).
Note that unlike the previous experiments, the response
time guarantees are expressed in terms of 95th percentiles
and not averages – a much more challenging but poten-
tially more desirable metric to enforce, especially given
the range of conditions to which we subject the cluster.
All figures in this section depict the resulting average of
the observed throughput (upper graph) and the 95th per-
centile of response times (lower graph) over two-second
sampling intervals.

Table 4:QoS policy used in the studies.

4.1 Sudden Traffic Fluctuations

In this experiment we show how Masseuse manages wide
fluctuations of incoming traffic. To demonstrate this prop-
erty we subject the service for class A to a sudden-but-
sustained impulse of incoming traffic that is four times its
normal rate. This sudden increase in demand is enough
to bring the cluster to full utilization. Figure 8 shows
the results from the experiment. In the Figure, the traf-
fic fluctuation (labeled as “Input Class A”) increases in-
stantly from 600 req/s to 2400 req/s 120 seconds after the
experiment has begun. Despite the sudden and sustained
increase in A’s traffic the degree to which service class B
meets its guarantees is isolated from the change in input
conditions. B’s throughput is virtually unaffected and its
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Figure 8: Masseuse’s reaction to extreme fluctua-
tion of incoming traffic.

response times, while they climb, are always kept below
the maximum guaranteed delay. In response to the traf-
fic surge, Masseuse quickly shifts any uncommitted re-
sources to class A. Strictly speaking, it is consistent with
the guarantee given to class A simply to cap throughput at
900 req/s for that class. However, by automatically sens-
ing the degree to which is can slow down B’s response
times (without violating B’s guarantees) and committing
additional resources to A, Masseuse is able to give A as
much throughput as can be spared while remaining within
the constraints of both guarantees.

We should note that the slight spike in response times
occurring in second 120 appears a consequence of our
short sampling period. We wish to depict circumstances
that stress the capabilities of Masseuse and as such, we
calculate the percentiles with a two-second periodicity.
In practice, it is unlikely that a commercial system will
need to ensure QoS guarantees on such a fine-grained time
scale, especially when using percentiles to specify guar-
anteed performance levels.

4.2 Computing Requirements Overload

In this experiment we investigate how Masseuse handles
wide variations in the computing requirements associated
with a request stream. These types of variations can occur
in situations such as application misbehavior (e.g., soft-
ware bugs that cause excessive resources to be used in
computing a request) or changes in the workload char-
acteristics (e.g., requests incurring in unusually long and
expensive database queries). We induce this anomaly by
suddenly increasing the computing requirements for class
A from 8ms to 40ms of exclusive CPU time. Again, the
goal is to protect the performance of class B while de-
grading the throughput given to class A to a level that
is both maximal and consistent with the guarantees for
both classes. To better observe the expected service for
class A we include the throughput guarantees normalized
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Figure 9:Behavior of Masseuse when requests of class
A suddenly require five times more resources for their
computation.

to its incoming computing requirements (i.e., the normal-
ized throughput is five times lower than the nominal when
requests are five times more difficult to compute).

Results from the experiment are depicted in Figure 9.
As in the previous experiment the throughput given to
class B remains virtually unaffected by the increase in
computing requirements (seconds 120-180), and its re-
sponse times are always kept below the guarantees. At
the same time, in response to the increase in computing
demands for the misbehaving class A, Masseuse immedi-
ately decreases A’s throughput. Although degraded, A’s
throughput is always maintained above the normalized
guarantee corresponding to the internal capacity alloca-
tion Masseuse made for this guarantee.

Recall from Section 2.2 the Request Precedence mod-
ule guarantees enough resources to class A to fulfill the
nominal throughput guarantee of 900 req/s assuming 8ms
of computing time. When the computing requirements
increase to 40ms/req the throughput must be lowered to
180 req/s to preserve enough capacity for B’s guarantees.
Thus we expect the system to enforce a throughput guar-
antee of 180 req/s for class A during the period in which
its requests require 40ms of CPU time, as shown by the
normalized guarantee line. However, between seconds
120 and 180 of the experimental period, class A is re-
ceiving a throughput of 280 req/s, which includes a sur-
plus of 100 req/s corresponding to the resources that class
B is not utilizing. If B’s requirements were to suddenly
increase, Masseuse would reduce A’s throughput to 180
req/s and and change the proportion of B’s requests admit-
ted to reallocate more resources to B. Note also that this
constant allocation and reallocation of capacity is sensed
by the Masseuse engine automatically based on the ob-
served responses leaving the cluster, and not based on
predefined parameters or instrumentation describing the
CPU requirements for each type of request. As is the case
with the previous experiment, the short time scale over
which each percentile is computed causes a single “spike”
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Figure 10:Masseuse’s reaction to a failure of 2 nodes.

in response time during the two-second interval spanning
second 120 in the trace.

4.3 Node Failures and Recoveries

In this experiment, we depict Masseuse’s response to sig-
nificant node failures and recoveries. At second 120, we
induce the failure of 2 out of the 8 nodes and then recover
the nodes 60 seconds later. To introduce these failures
we program our load-balancer module to stop forwarding
traffic to the “failed” nodes. We have also increased the
incoming traffic rate for class A to 1300 req/s in order to
make the resulting change in throughput more visible.

We show the results of the experiment in Figure 10.
When the nodes fail, Masseuse rapidly reduces the
throughput given to class A to its 900 req/s guarantee.
Notice that this adjustment, again, does not violate the
quality of the service guarantees given to class B. As with
the previous two experiments, the throughput for B is un-
affected while the response times grow to a level well be-
low their maximum guaranteed delay.

We should note that in this example it was possible to
enforce the QoS policy, even under the degraded opera-
tion, because there was enough spare capacity that B was
not utilizing which could successfully be reassigned to A.
In the cases where there are not enough resources to ful-
fill the guarantees across all classes, Masseuse reacts by
degrading the service of each class proportionally to the
guarantee associated with that class. For example, if the
input demands for class B had been above the guaran-
teed 900 req/s, the Masseuse would have evenly assigned
a throughput of 700 req/s for each class since the degraded
capacity of the system would support 1400 req/sec in to-
tal, and the guarantees for both A and B are the same. We
believe that other non-proportional mechanisms for reap-
portioning fungible capacity when QoS policies become
infeasible are highly desirable and we plan to investigate
them further in our future work.
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Figure 11:Setup of the complex, heterogeneous Internet site.

4.4 Complex Heterogenous Services

Through the previous set of controlled experiments we
have shown that Masseuse can both enforce service isola-
tion as well as gracefully degrade the service of misbehav-
ing classes even under extreme operating conditions. We
now show how Masseuse reacts to the same three severe
circumstances for a larger-scale and substantially more
complex Internet site that hosts three different services.
Additionally, this experiment illustrates the flexibilityof
Masseuse’s “black-box” approach: its ability to provide
QoS guarantees using heterogeneous hardware configu-
rations and multi-tiered software architectures where the
source code of the applications cannot be modified. At
present, we know of no other published infrastructure that
can provide QoS for this complex Internet hosting sce-
nario.

To perform this experiment we host the Teoma search
and CPU-loop services (described previously) together
with a third service called RUBiS [?] using shared set
of cluster resources. RUBiS is a publicly available auc-
tion site modeled after eBay that has been used by several
researchers for evaluating application server performance
scalability [?, ?]. We use the version of RUBiS that is im-
plemented using Enterprise Java Beans (EJB) deployed
on top of JOnAS application server (v3.3.6) and Tomcat
(v4.1) servlet engine. The Tomcat servers are configured
with session replication and the JOnAS application server
is configured to balance the execution of EJBs across each
of its nodes according to their respective loads. The auc-
tion data is stored using a mySQL database back-end with
the same configuration and size as the benchmark de-
scribed in [?]. Traffic for the RUBiS auction is gener-
ated by the client emulator supplied with the RUBiS soft-
ware which performs typical user actions of an auction
user such as browsing, bidding or buying items.

Figure 11 depicts the hardware and software configu-
ration used for this experiment. Notice that we include
both nodes that are dedicated to a single service as well as

Table 5:QoS policy for the complex and
heterogeneous Internet site.

nodes that are shared by more than one service. In partic-
ular, the CPU-loop service shares 7 of the 8 nodes used by
the Search component of Teoma, and also with 2 of the 5
nodes running the RUBiS auction. Our intention is to cap-
ture both the fluid sharing of cluster resources as well as
the static capacity planning that we believe will always be
present in a commercial system.

Also for this experiment we program our Masseuse en-
gine with the QoS policy defined in Table 5, deploy it at
the entrance of the site (with no other information than
the QoS policy), and observe how well it performs in re-
sponse to the same three types of changes explored in the
previous subsections. Similarly, we generate three types
of input load. For the Teoma service, we introduce in-
coming traffic that exceeds what can be completely ser-
viced under the constraints of its guarantee. Alternatively,
for the RUBiS service, we keep the incoming traffic load
below the maximum serviceable level. We then vary the
input for the CPU-loop service to create a peak of demand
during the period from seconds 140 to 220 and to increase
its computing requirements from 8ms to 40ms during the
period between seconds 300 and 420. Finally we kill one
of the Teoma back-end nodes at second 475 and restart it
120 seconds later.

Figure 12 shows the evolution of throughputs (above)
and response times (below) for each of the three differ-
ent services during the 11 minute run, in which a total of
1.1 million requests were served. Vertical lines separate
the three different conditions (input increase, computation
increase, node failure) to which Masseuse must respond.
Throughput guarantees are again normalized to the ex-
pected computing requirements. Only CPU-loop service
shows a deviation form the nominal throughput guaran-
tees since it is the only service that suffers a change in its
computation requirements. From the first segment of the
figure, it is evident that Masseuse protects the RUBiS ser-
vice and also reassigns the the available resources such
that the two overloaded classes during the peak period
are served according to the QoS policy. As we observed
in Section 4.1, the amount of surplus service received by
Teoma during the peak period, is given back to the CPU-
loop service so that both classes can operate at their limits
of throughput and response times.

In the second segment of the figure, the computing re-
quirements of CPU-loop service increase to 5 times their
original levels. In this case we induce a change in the
computing requirements that it is more gradual than the
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Figure 12:QoS results for a complex, heterogeneous Internet site.

sharp change shown in Section 4.2 to better emulate how
a true Internet site might degrade. Masseuse reassigns
capacity not needed to meet Teoma’s guarantees to the
CPU-loop service while maintaining the guarantees for
RUBiS. Also, the CPU-loop service suffers a degradation
in throughput that is inversely proportional to the increase
in its computing requirements, thus maintaining the fungi-
ble capacity described by its guarantee. In this case, there
are no extra resources to be used in aiding the overloaded
CPU-loop class, thus its resulting throughput is capped
exactly at its normalized guarantee.

In the third segment of the experiment the dedicated
search back-end from the Teoma service fails. In this case
we induce atrue failure by killing the server process of
Neptune and use the fail-over and recovery capabilities of
the middleware to detect the change. Note that the failure
of the node only has an effect in reducing the spare ca-
pacity that Teoma service is enjoying. Both the through-
put and response times of CPU-loop and RUBiS are, once
more, unaffected.

5 Related work

There are many approaches to providing QoS for Internet
services, but relatively few that combine flexibility and
extensibility with response time and throughput perfor-
mance. In this section we briefly introduce some of the
most relevant work and compare it to the Masseuse ap-
proach.

QoS for network communication is typically defined
in terms of reliable communication between two end-
points with performance guarantees. Protocols such as
diffserv [?] and intserv [?] leverage the existing routing

infrastructure to provide bandwidth allocation and packet
delay guarantees over the Internet. At a higher level, ap-
proaches such as Content Distribution Networks [?] pro-
vide similar features by appropriately managing an over-
lay network to content “closer” to the end-user. These
approaches focus on the communication component and
do not address the computational requirements associ-
ated with the servicing of Internet requests. In contrast
Masseuse works at the boundary of the cluster hosting the
services and, as such, complements approaches that en-
sure quality of network service between the client and the
cluster.

Load balancers [?, ?, ?] are perhaps one of the the
most closely related approaches to Masseuse. Properly
tuned, load-balancers can greatly enhance the overall
quality of the service offered by a cluster system. Prod-
ucts such as Packeteer [?] offer traffic shaping function-
ality such that minimum bandwidth guarantees can be al-
located to distinct clients or applications. More sophis-
ticated products such as Netscaler [?] apply intelligent
connection management that protects the internal cluster
nodes from overload in response to large bursts of incom-
ing traffic. However, existing solutions are not aimed at
providing throughput and response time guarantees, but
are mainly designed to enhance the overall system perfor-
mance. Futhermore, these techniques rely on the proper
configuration of the load-balancers by an expert operator
that knows and understands the internal operation of the
site to be protected. As such, these are static configura-
tions that are highly tuned for specific settings and that
must be repeated for any change occuring in the site’s in-
ternals. Masseuse differs from these approaches in that
it guarantees QoS in terms of both throughput and re-
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sponse times. At the same time Masseuse does not need
to be configured explicitly or tuned by an expert for the
specifics of the hardware or software of the site.

At the operating systemslevel, the QoS challenge
is typically addressed in terms of resource management.
Many research operating systems [?, ?, ?] achieve tight
control on the utilization of resources as a way of enforc-
ing capacity isolation between service classes. Although
these techniques have proven to be effective in terms of
capacity isolation, they are not designed to provide re-
sponse time guarantees. Furthermore, these techniques
control the resources within a single machine and thus
cannot be easily extended to clustered environments. One
notable exception is Cluster Reserves [?] – a single-node
approach that has has been scaled to span clustered re-
sources. Although this technique is shown to provide re-
source isolation at the cluster level, like its single-machine
counterparts, it does not provide response time guaran-
tees. Masseuse is also a cluster-wide QoS solution that
provides both capacity and response time isolation as well
as throughput and response time guarantees. It also dif-
fers from systems such as Cluster Reserves in that it does
not require customization of the operating system used by
the cluster’s internal nodes.

Middleware systemssuch Neptune [?, ?] or Appli-
cation Server [?, ?] include QoS functionality as part of
a distributed and potentially scalable infrastructure. By
programming the applications to use these primitives it is
possible to construct distributed services that offer cluster-
wide QoS guarantees. However in order for these frame-
works to be effective each of the constituents of a service
must be integrated with the middleware infrastructure.
This often poses a very restrictive constraint given the het-
erogeneity and proliferation of current Internet services.
Similar approaches that embed the QoS logic directly at
theApplication level have also been proposed. For exam-
ple, the approach presented in SEDA [?] advocates the use
of a specific framework for constructing well-conditioned
scalable services and [?] shows the effectiveness of this
framework when explicit QoS mechanisms are built to
prevent overload in busy Internet servers. Rather than
building an application with QoS support, other work has
modified existing applications to include QoS capabili-
ties [?, ?]. For example, the work done in [?] shows
how it is possible to modify the popular Apache web
server to provide differentiated services without the use
of resource management primitives at the operating sys-
tem level. However, as is the case with middleware ap-
proaches, the large cost of modifying the application code
to include QoS mechanisms is only effective if the en-
tirety of the software deployment is able to function in
a concerted way towards providing QoS. With Masseuse,
the applications hosted in an Internet site do not need to
be modified or designed for any particular operating sys-

tem or middleware infrastructure and can directly be used
in their native non-QoS state.

Some recent work has investigated resource man-
agement techniques usingNon-invasive approaches.
Façade [?] is a prototype implementation of a storage
controller that throttles I/O requests to a (black-box) disk
array. Similar to Masseuse, it provides response time
isolation (but no throughput isolation) for different I/O
streams. However, response time guarantees can only be
enforced as long as the total incoming load is below the
capacity of the disk array (i.e., no dropping mechanism is
implemented). In [?], Jin et al. analyze the effectiveness
of several share-based scheduling techniques for differ-
entiating service quality in networked servers. Some of
the project goals are similar in nature to Masseuse, how-
ever the analysis is done only through simulation, focuses
only on storage server facilities and does not include a
performance study in dynamic scenarios. Furthermore,
the devised method is somewhat invasive since it requires
offline profiling of the workload and more importantly as-
sumes that the cost of every single requests can be known
at scheduling time. Other work such as Gatekeeper [?]
proposes a proxy system, much like Masseuse, that im-
plements admission control for e-commerce applications.
However, Gatekeeper is not designed provide any QoS
guarantees, but targeted to reduce the overall response
times and improve the performance of the system. Fur-
thermore, it has only been tested in reduced size systems,
it targets database back-ends and relies on extensive pro-
filing of the service applications.

6 Conclusions and Future Work

Commercial Internet service provisioning depends in-
creasingly on the ability to offer differentiated classes of
service to groups of potentially competing clients. In
addition, the services themselves may impose minimum
QoS requirements for correct functionality. However,
providing reliable QoS guarantees in large-scale Internet
settings is a daunting task. Simple over-provisioning and
physical partitioning of resources can be effective but in-
efficient. Invasive software approaches overcome the in-
efficiency problem but at the expense of reprogramming
and/or re-engineering of the services within a site to im-
plement QoS functionality.

In this paper we present an alternative, non-invasive
software approach called Masseuse that provides efficient
QoS provisioning for Internet services while allowing
new levels of flexibility that current service providers re-
quire. The presented system functions at the border of an
Internet site and uses traffic shaping, admission control,
and response feedback to treat the site as a “black-box”
control system. Masseuse intercepts the request and re-
sponse streams entering and leaving a site to gauge how
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and when new requests should be forwarded to the hosted
services to ensure throughput and response time guaran-
tees.

We demonstrate the capabilities of our Masseuse im-
plementation by experimentally comparing it to the best
state-of-the-practice and state-of-the-art approaches.Our
results show that, despite being non-invasive, Masseuse
can enforce the same QoS guarantees as either of the
compared techniques, while achieving better resource uti-
lization than over-provisioning and without the applica-
tion rewriting overhead required by intrusive software ap-
proaches. We also demonstrate that our implementation
can successfully handle extreme situations such as sudden
traffic surges, application misbehavior or node failures.
Further, we also demonstrate the powerful flexibility of
Masseuse by providing QoS guarantees for a complex and
heterogeneous Internet service that suffers the same type
of harmful conditions. At present, we know of no other
published infrastructure that can provide QoS under these
challenging conditions. Encouraged by the performance
of our results we are currently working on both enhancing
the performance and scalability of the Masseuse engine as
well as improving our algorithms with more sophisticated
control mechanisms. Also we are interested in deploying
Masseuse on a wider array of Internet services including
real commercial sites.
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