Masseuse*: Flexible Quality of Service for Internet Services

Abstract practice” in current commercial settings is to deploy in-

In this paper we describe Masselise non-invasive approach to dependent clusters for each service (hardware partition-
scalable quality-of-service provisioning that uses teaffiaping, ~ 1"9) €ach of which comprises enough capacity to service
admission control, and response monitoring at the bordanof Worst-case” load conditions (over-provisioning). Un-
Internet site to ensure throughput and response time gie@sn fortunately, because load fluctuations can be substantial,
We experimentally compare an implementation of Masseusd'ardware partitioning and over-provisioning incurs a po-
both to hardware over-provisioning and to leading softveare tentially high cost (sufficient resources must be available
proaches using real world workloads. Our results show thafn €ach partition to handle load spikes) and low resource
Masseuse can enforce the same QoS guarantees as either of #fdlization (the extra resources are idle between spikes),
compared approaches, while achieving better resourdeadtii Making this approach inefficient.
tion than over-provisioning and without the applicatiomrig- As a result, software-based approaches have been pro-
ing overhead required by intrusive software approaches. Wgosed and developed to make better use of the resources
also demonstrate that our implementation can successfatly  employed to host Internet services. These approaches fo-
dle extreme situations such as sudden traffic surges, afipic  cus on embedding QoS logic at different levels of the
misbehavior and node failures. Furthermore, we demoestratsite’s internal software, including operating systein,
the flexibility of Masseuse by providing QoS guarantees for a?, ?], middleware P, ?, ?], and application code?] ?, ?].
complex and heterogeneous Internet service that cannat-be i It is the function of this logic to distribute, effectivelhe
plemented by other current software approaches. workload among the cluster resources as a way of improv-
ing both resource utilization and client experience. Low-
level techniques have been shown to provide a tight con-
trol on the utilization of resources (e.g., disk bandwidth

The current commercial importance of Internet servicesO" Processor usage) while techniques that are closer to the
make it imperative for companies relying on Web_baseoappllcatlon_Iayer are abl_e to satisfy QOS requirements that
technologies to offer and guarantee predictable, consigdf€ more dlregtly exper!enced by clients. However, thgse
tent, and differentiated quality of service (QoS) to their Software soluthns require the hosted application sesvice
consumers. For example, e-commerce companies ofteéd1d/0r the hosting operating system to be customized for
want to provide faster response times for purchasing thaR0S provisioning, thereby limiting flexibility and exten-
for catalog browsing to ensure that no sale is lost dueslb|l|ty: Furthe_rmore, most current Internet sites inaud

to the perception of an unresponsive transaction. Differ& myrlad of different hard_ware and SOﬁware pl.atforr.ns
entiated QoS also enables more general and flexible agYhich are constantly evolving and changing. An invasive
plication hosting environments. For example, a serviceQ0S solution that requires the reprogramming of hosted
provider that hosts a personalized webmail portal for sevService code carries with it high development and test-
eral companies wants to guarantee different levels of sefd COSts when new services are introduced, or the exist-
vice to its customers and to ensure that these service gudfd Site components (hardware and software) are recon-
antees are provided to each customer independently, régured, upgraded, extended, etc. More problematically,
gardless of overload or misbehavior of the others. the source code for many service components hosted at

To meet large demand, scalable Internet services ar@ site may not be available for proprietary reasons. This
commonly hosted using clustered architectures where KCK of source code makes the necessary software repro-
number of machines, rather than a single server, work to9ramming remarkably difficult. Thus the growing com-
gether in a distributed and parallel manner to serve rePlexity associated with Internet service hosting in com-
quests. Delivering reliable service quality guarantees ifnercial settings makes intrusive software QoS strategies
this distributed setting is the difficult challenge that our €SS attractive as the need for extensibility and flexpilit
work addresses. Increases.

Both research and commercial Internet service com- To address these needs, we propose a new approach
munities have explored hardware-based and softwarde QoS provisioning for Internet services. Our ap-
based approaches to QoS provisioning. The “state-of-thgdroach offers reliable QoS guarantees at a lower cost than

*Our use of the name Masseuse is inspired by the observation th state-of-the-practice techniques, while giving the smvi

we are massaging both the input traffic to relieve the stretealuster proyiders the _mUCh needed flexibility that th.ey require to
and the title of the paper for the purposes of blind submissio rapidly reconfigure, upgrade and extend their complex set

1 Introduction




of services. In this paper we preséviisseusgea non-
invasive software approach that treats the cluster and the
services it is hosting as a “black-box” system and uses
only feedback-driven techniques to control dynamically
which and when each of the requests from the clients is ®

efficiency and the degree to which they maintain
QoS guarantees for both throughput and response
times.

We show the robustness of Masseuse in successfully

overcoming extreme situations (i.e., sudden traffic
surges, application misbehavior and node failures)
which arise in current commercial settings.

forwarded into the cluster. Because traffic shaping and
admission control is done at the entrance of the site, and
the system uses only the observed request and response
streams for its control algorithms, new services can be
added, old ones upgraded, and resources reconfigured'
without re-engineering the necessary QoS mechanisms
into the services themselves or the system software that
supports them.

We report on an implementation of Masseuse and it The remainder of this paper is organized as follows.
experimental comparison with the state-of-the-practicesection 2 introduces Masseuse’s approach and further de-
(i.e., over-provisioning) and state-of-the-art (i.e.,(Né  gcripes its architecture. Secti®f experimentally com-
tune [?, 7]) software solutions using realistic services, nares Masseuse to the best of the known approaches. In
client request traces and clustered machines. Nep®ine [section?? we demonstrate the robustness of Masseuse
7] is a research and now commercially successful midy,nger extreme situations and also show its flexibility in
dleware system that implements QoS for Internet serprqyiding reliable QoS guarantees in complex heteroge-

vices, but which requires the services themselves to be rgjeqys services. In Section 5 we discuss related work, and
written to use Neptune primitives. Using tiileoma[?) we conclude in Sectio?.

search engine, which is explicitly programmed so it can

use Neptune, we show that Masseuse can enforce the

same QoS guarantees as Neptune for Neptune-enabléd The Masseuse Architecture

services, but without the additional engineering overhead

associated with modifying the services that it supports.TO describe the Masseuse architecture, we begin by out-
Furthermore, we illustrate Masseuse’s ability to handlelining the model of Internet service transactions we use.
extreme situations such as sudden traffic surges, or intelVe treat Internet services (see Figure 1) as a stream of
nal application misbehavior — capabilities that are necrequests coming from clients that are received at the en-
essary for a successful deployment in large-scale, retrance of the site, processed by the internal resources, and
alistic settings. We also demonstrate the flexibility of returned back to the clients upon completion. In the case
Masseuse by showing how it can provide QoS guarantee®f system overload or internal error condition, requests
for complex heterogeneous Internet services which cancan be dropped before completion and thus may not be re-
not be modified — a capability that none of the published turned to the client. Requests can be classified or grouped

pre-existing software approaches is Capab]e of achievinb’]to differentservice classeaccording to a combination
at present. of service type and client identity. We view the QoS chal-

lenge as the ability to guarantee, at all times, a predefined
quantitative characterization of the traffic in each sexvic
class as measured at the output of the cluster.

We demonstrate that the flexibility provided by
Masseuse enables more efficient deployments of
complex, heterogeneous Internet services than can
currently be supported by existing approaches.

1.1 Contributions

This paper makes five main contributions: Dontons
‘'orkloa

(requests+arrivals) Cluster Resources

e We present Masseuse as a novel approach to QoS =
provisioning for large-scale Internet services that <=
uses only observed input request and output responseg!a
streams to control the load within the site so that =~
quality guarantees are met.

Requests

) % ST - T L]
==
== e
Responses
« Response Time P

Figure 1:System model for Internet services.

n

{B} Dropped

Requests

e We describe a working implementation and demon-
strate its viability using a large cluster system host-
ing commercial and community benchmark Internet

services. o . .
In Masseuse, the QoS policy is specified as a liQo$&

e We compare Masseuse with the best state-of-theelassesdescribing the quality that must be ensured for
practice and state-of-the-art approaches in terms oéach class of service. We define QoS class as a tuple that



QoS Classification Output Guarantees
Cii Moz g o) | oty vice classes defined in the QoS class. Thad Control
Si'iﬁg;ﬁp EEE;’;jz;jj‘l’izr;"zgj;il/ o oo module determines the pace (for the entire system and
all client request streams) at which Masseuse releases re-
Table 1: Example QoS policy for a service provider quests into the cluster. THRequest Precedenceodule

hosting webmail portals for two different companies. dictates the proportions with which requests of different

describes: 1) how to identify requests of this cladagsi- cl_asses are released to the cluster. B_Iedaective Drop- )
fication ruleg and, 2) what type of QoS must be enforced ping module drops requests of a service class to avoid
(output guaranteds In the same way as level-7 load- introducing work accumulation that would cause a QoS
balancers?, 2, 7], Masseuse classifies requests based on ¥|olat|on. 'Th|s .module _also maintains responsiveness
combination of parameters such as IP address, port, URIYNEN the incoming service demands for a class exceed
and path. Output guarantees are specified in terms otpe processing capacity that it has been guaranteed. In the

guaranteed minimum throughput and maximum respons@ext sections we detail further the implementation of the
time. For example, Table 1 describes a QoS policy Con1\/Ias:seuse modules. We explicitly exclude the details as-
| ociated with Classification since it is a well understood

taining two QoS classes for a service provider hostingS 2 € .
webmail portals for two different companies. In the ex- problem that has already been studied in the literatjre [
ample,BigCorp has a much higher guaranteed through-
put due to an expected higher traffic volume &dall- 2 1 [oad Control
Corp requires much tighter response time guarantees for
its users. Notice that the definition of output guaranteed’he functionality of the Load Control module is two-
includes both throughput and response time requirementfold. First, it prevents large amounts of incoming traf-
While it is often possible to meet one type of guarantee afic from overloading the internal resources of the cluster.
the expense of the other, our solution accommodates bothVhen the internal resources become overloaded, the in-
Additionally, Masseuse allows throughput and responséernal software (i.e., operating system, web serversj-appl
time guarantees to be expressed using either percentiles eations, etc.) will delay or drop requests without regard
averages since the way in which each customer wishes tr their QoS classification. Second, it maintains the re-
view a guarantee varies. In both cases, however, the timgources within the cluster at a high level of utilization to
frame over which the average or percentile is computed i€chieve good system performance. The goal of the Load
substantially longer than the time required to service arControl module is to have the cluster operate at maximum
individual request. capacity so that the largest possible capacity guarantees
Masseuse uses a single-policy enforcement engine tgan be met, while also preventing overload conditions that
intercept and control in-bound traffic at the entrance ofwould cause response time guarantees to be violated.
the site hosting the services. By tracking the responses to Our implementation exploits the direct correlation be-
requests that are served within the site, our system autdween the amount of work accumulation inside the cluster
matically determines when new requests can be allowednd the time required for requests to be computed by the
entry such that a specified set of QoS guarantees wilhosted services. In general, more work introduced into
be enforced. No knowledge of the internals of the sitethe cluster corresponds to longer compute times for each
are needed and no instrumentation is required. In otheservice (given a fixed amount of resources) once the num-
words, to make an Internet site capable of providing QoSer of parallel requests exceeds the number of resources.
guarantees it is enough to deploy Masseuse at its entrand¥ith this in mind, the Load Control module can directly
point and define the desired QoS policy to be enforced. affect the amount of time that requests take to be com-
puted inside the cluster (i.e., compute time) by contrgllin
how much traffic is “in progress” at any time.
Lugter Similar to TCP, our implementation uses a sliding win-
dow scheme that defines the maximum number of re-
quests that can be outstanding at any time (see Figure 4).
The basic operation of the Masseuse engine consists of
J successively incrementing the size of the window until
the compute times of the QoS class with the most restric-
tive response times approaches the limits defined by its
Figure 2 depicts the architecture of Masseuse, consisguarantees . Our currentimplementation uses a simple al-
ing of four different modules each of which implements gorithm (see Figure 3.a) that increments (or decrements)
part of the functionality that is necessary to enforce athe window linearly until it observes a maximum compute
QoS policy. TheClassificationmodule categorizes the time that is half the most restrictive of all the guarantees.
intercepted requests from the clients into one of the serThe choice of ‘half’ is a compromise motivated by the

Masseuse

Load Control

Request
Precedence

Selective
Dropping

Classification

Drops

Figure 2:The architecture of Masseuse.



Load Control Algorithm

recalculateWindow() //every A milliseconds
CT(t) = Observed Compute Times (t,t-A)
RTG,,, = Strictest Response Time Guarantee
if CT(t) < RTG,,/2 then

min
window++ // linear increase
else

window-- // linear decrease

getNextRequest()

Request Precedence Scheduler

(minUsage = «)
foreach class C

//compute its weighted instant usage

usage = C.outstanding/C.weight

//save class with less usage

if usage<minUsage and ! C.isEmpty()

targetClass = C ; minUsage = usage

return targetClass.dequeueRequest()

Selective Dropping Algorithm

isDroppable(request)

CT(t) = Observed Compute Times (t,t-A)
RT,... = Response Time Guarantee
expectedRT = request.waitingTime + CT(t)
if expectedRT > RT_, then

return true // Drop
else

return false // Forward

(@)

(b)

(©

Figure 3:Simplified pseudo-code for the algorithms of the three maidufes of Masseuse.

Incoming

to enjoy a level of service that is higher than what they

traffic
é - > Cluster have been guaranteed. At the same time, the Request
= o=y A Precedence module ensures that those classes that are not
4 rarget Aperture .'“['. : a |:|D using their maximum allowable share of the overall ca-
Qos Load e Al pacity none-the-less receive enough capacity to meet their
Guarantees Controller | ':'.El - E guarantees. By continually calculating and adjusting the
output ) |:|. a0 \m fraction of c'luster capacity that is given to each cla§s,
9 Metrics . .tl r Mas_s_eu_se differs from an approach that relies on phys_lcal
@% flan, a 0 partitioning of the resources where temporary reassign-
Output

ment cannot be implemented.

Under Masseuse, Request Precedence is implemented
by a scheduling algorithm that logically partitions the
window of outstanding requests (as dictated by the Load
tradeoff between the need to maintain cluster occupancgontrol module) according to the throughput guarantees
and limited internal queuing space necessary to absorgpecified in the QoS classes. This method exploits (and
peaks of traffic. We are currently working on an opti- depends on) the time-shared nature of current operating
mized version that can dynamically adapt this thresholdsystems which assign time slices on resources equally
to allow more queuing without adversely affecting overallamongst all running tasks. As a result, it is possible to
system performance. A more sophisticated (and reactivehcrease the share of the cluster resources for a particular
version of the algorithm using non-linear variation of the service class by increasing the number of tasks that are
window sizes is also under study. devoted to computing its requests. However, Masseuse
has no direct knowledge of processes inside the cluster.
Instead, by increasing or decreasing the number of out-
standing requests for each class independently, the Re-
The main function of Request Precedence is to Virtua”yquest Precedence module can indirecﬂy increase or de-

partition the cluster resources among each of the servicgrease the proportions of resources allocated to each of
classes. Resource isolation is a necessary functionalighem.

that allows each service class to enjoy a minimum amount
of processing capacity, independent of potential overload
or misbehavior of others. This module is able to parti-
tion externally the service delivered by the cluster, by-con
trolling the proportions in which the input traffic for each
class is forwarded to the internal resources. Thus, the goal
of this module is to ensure that the fraction of the overall
cluster capacity devoted to each class is large enough to
satisfy the guarantees for that class at all times.

The Request Precedence module also attempts to max-
imize performance in overload situations without allow- Our scheduler assigns a weighj to each of the QoS
ing guarantees to lapse. It reassigns unclaimed resourcelasses and uses this weight to partition proportionaéy th
to other QoS classes demanding more processing pow&indow accordingly (see Figure 5). Instead of allocat-
than they have been granted. Reassigning unutilized cang a fixed number of slots of the window per class, our
pacity allows the QoS engine to take full advantage of thealgorithm (see Figure 3.b) uses a dynamic method that
available cluster resources allowing some service classexchieves similar characteristics to Weighted Fair Queuing

Traffic

Figure 4:Structure of Load Control module.

2.2 Request Precedence

Cluster

Window 4=p Capacity

Class A:
1000 req/s

® =2

Incoming

traffic 3
o
ge]
£

;

Figure 5:Function of Request Precedence module.

Class B:
500 reg/s




disciplines [, ?, ?] in terms of proportional rate guaran- be met for all requests that can be serviced. It does so by
tees and reassignment of surplus. However the guaramdependently observing each of the QoS queues of the
tees in our case apply to window sizes instead of servicengine and discarding the requests that have been sitting
rates (i.e., throughput). The reason for this choice is thatin the queue for so long that the deadline for their ser-
throughput for a given service class can only be guaranvice cannot be met. In our implementation (Figure 3.c),
teed when the computing requirements of the requests aerequest will be dropped if the time left for meeting the
known. In other words, the capacity necessary to achievdeadline once it gets at the head of the queue is less than
a given throughputis directly related to the computationathe expected time of computation of its class. In other
complexity of the requests. On the other hand, assigning ords, a request will be dropped if we expect it to miss
particular window size corresponds to guaranteeing a porits deadline according to how other requests of the same
tion of the cluster capacity, independently from the com-class are currently performing.
puting complexity of the incoming request stream. There- | \Masseuse, Selective Dropping works closely with
fore, in Masseuse the guarantees are computed in temMjge |oad Control module by signaling ahead of time when
of capacity (i.e., resources) for each class, instead of ming service class is likely to become overloaded. This
imum throughputs. module leverages the queuing inside Masseuse to absorb
By working with a capacity measure (i.e., proportions safely peaks of traffic during transient overload condiion
of outstanding requests), Masseuse can provide effectigithout violating the response time guarantees. For ef-
isolation between classes when their computing requireficiency reasons, the module delays the dropping of re-
ments are not knowa priori or can change dramatically. quests to prevent discarding traffic in transient situation
It uses capacity as a fungible metric that links outputon]y to realize a moment later that the requests could have
throughput and computing requirements such that an inpeen served within the allowed response time limits. The
crease in one can be made to force a decrease in the othgplementation of independent dropping techniques, cou-
For example a capacity equivalent to 10 nodes may corrésled with strong capacity guarantees given by the Request
spond to an output throughput of 500 reg/s at a comput@recedence, allow this module to isolate response times of
cost of 20ms/req, but also to 1000 reg/s if the computgyne class against misbehavior of others.

e oo Sioceted " Combined. the uncions o all our Masseuse -
9 9 ules (Classification, Load Control, Request Precedence

put (as expressed in the QoS class) ancHpectedom- and Selective Dropping) enable cluster responsiveness,

putation requirements of the requests (as agreed upon beﬁ. , oo L :
: icient r r ilization ity isolation andagel
tween the provider and the consumer). In the cases wherg '€ t resource utilization, capacity isolation a

. o . . fferentiation, thus guaranteeing capacity and response
the computation complexity is violated (i.e., higher than ! 1l us gu Ing capactly P

; . - times for each independent service class.
agreed upon) for a particular class, instead of dropping

the traffic of the faulty class, Masseuse will gracefully de-
grade its throughput to maintain the same internal capac3 Experimental Performance Comparison
ity allocation.

In this section we demonstrate that the four modules of
Masseusecan provide QoS guarantees under realistic con-
The function of Selective Dropping is to discard the ex-ditions even though they treat the cluster resources and
cessive traffic received for a QoS class in the situationdnternet services as a “black-box”. We have performed
where there is not enough available capacity to fulfill its extensive studies of each of the presented modules, both
incoming demands. A dropping module is necessary tan isolation as well as operating together. Due to space
prevent large delays from occurring in overloaded situ-constraints we do not include them in this paper, but the
ations where requests would otherwise accumulate andetails of these studies can be found . [Instead, in
then be dropped inside the cluster without regard to theithis section we focus on examining the performance of
QoS significance. That is, the Masseuse engine will conMasseuse as a complete system, and study how it com-
trol which requests are dropped so that all guarantees wilbares to the best of the known approaches. Our inves-
be met. In the case where one class exceeds its allocatéidation is empirical and is based on the deployment of
capacity, its requests should be targeted while requests f@an Internet search service usedTgoma[?] using a 68-

the “well-behaved” classes are allowed to proceed. ALCPU cluster. We analyze how five different techniques
a result, the QoS guarantees will be observed for all re{representing both state-of-the-practice and stat&ef-t
guests of a class that are serviced, but if input load exceedst) offer differentiated quality to distinct groups of eus
the maximum level that can be supported for the giventomers using generated message traffic based on web-
guarantee, some requests will be dropped. Our Selectiveearch traces. We then quantify the observed the quality
Dropping implementation ensures that the guarantees wilbf service delivered by each method.

2.3 Selective Dropping



3.1 Experimental Methodology 12« Clients e 10x Teoma Search

Front-Ends

Our experimental setup consists of several client ma-, {% ) Gateway @

i i H Load Balancer / s
chines accessing a cluster system through an interme- 4!@ g‘ \M) ~
diate gateway/load-balancer machine. Accessing the Q

Neptune
middleware

) [ﬁjﬂ:h

services through a load balancer machine is the most <= |

==

commonly used architecture in current Internet services. =| .

For example, Google?] funnels traffic through sev- Q Q @

eral Netscaler 7] load-balancing systems to balance = & -

the search load presented to each of its internal web Figure 6: Experimental test-bed used for our bench-
servers ). mark using Teoma’s search service.

To perform our experiments in the most realistic possi- . . .
. When running as Masseuse engine, the gateway is con-
ble manner, we have deployed a commercial-grade Inte

= . .
net service on a 68-CPU cluster system and replayed regpured o enforce the QOS policy defined for the exper-

traffic traces from its commercial operatioh.[ The ser- iment. Both the load-balancer and Masseuse engine are

vice deployed is the index search component of the Teomgntlrely implemented in user-level software. The gate-

. ; : way is implemented as an event-driven Java application
commercial search servic@][ The index search compo- y P PP

. . . . which makes extensive use of the new libraries for im-
nent consists of traversing an index database and retriev-

ing the list of URLSs that contain the set of words SpECiﬁEdeglvriiéﬁngi\r/]i?r: E@T;ﬂh!\@aﬁz Seu:o‘cl‘lgégo\]na\s/:tt\i/:_ S
in the search query. The total size of the index databas Y9 g 9

used is 12GB and is fully replicated at each node. The&” performance tests show that our implementation can

index search application from Teoma is specifically buiItaChleve a peak performance of 12Kreq/s (i.e., around 70K

for the Neptune middleware, a cluster-based software packets/sec) for certain client workloads. Thus the perfor

. . o . mance of our base-level system is high enough to be used
infrastructure that provides replication, aggregatiod an . .

. . ._in load levels that are comparable to current commercial
load balancing for network-based services. The Version o e (e.g. Google reports around 2500 reqeA§k
of Neptune we use also provides QoS mechanisms allow?” 9. g P 9

ing the specification of proportional throughput guaran—Jeeves around 1000 req/sép{Both ourimplementation

tees and response times constraints through the defi pf a load-balancer and the Masseuse engine are based on
) . pons . g {he same core software for fielding and forwarding HTTP
tion of yield functions P]. As it is the case with com-

: , requests.
mercial search engines, our system accesses the service

through a set of front-end machines that transform the e For th.'s exlpzrlmerj; O(;J,: mte:)h%dé)logy CO?S'StS ofrlétsmf%
ceived URLs into internal queries that are then forwarded"® Previously described test-bed to recreate searctetraff

to the middleware servicing the search database for proa_md to explore the effectiveness with which five different

cessing. To mimic the environment at Teoma, we imple_approaches can enforce a particular QOS policy for a sin-

ment the front-end with an Apache web servéirdnd a gle service with multiple client groups. The five compared
custom-built Apache module that interfaces with the Nep_approaches are.

tune infrastructure. This module is necessary to utilize th

middleware functionality to locate other Neptune—enabled’
nodes and appropriately balance the requests based on the
current load of the available servers. The cluster config-
uration used in our experiments is depicted in Figure 6.
The hardware configuration of the cluster consists of 2.6
MHz Intel Xeon processors each with 3 gigabytes of main
memory organized into nodes with either two or four pro-
cessors per node. The network interconnect between pro-

cessors is switched gigabit Ethernet and the host operappysical partitioning A separate group of machines are
ing system is RedHat Linux/ Fedora Core release 1, using ~ yedicated for each of the existing QoS classes. We

kernel version 2.4.24. configure the load-balancer to forward requests of a
Our gateway node is a 4-CPU dedicated machine that  particular class only to its restricted set of reserved

can function in two different modes: as a load-balancer or nodes.

as the Masseuse engine. When running in load-balancer

mode, the machine is configured to implement the typi-Overprovisioning The size of each physical partition is

cal (Weighted) Round Robin and maximum connections  increased such that the resulting capacity and re-

options available in most commercial hardwaPg?, 7. sponse time guarantees can be achieved as specified

oad Balancer The gateway machine is configured as

a load balancer and tuned to match common high
performance settings of Internet sites. Specifically,
we configure it to use the least connections load-
balancing algorithm and limit the maximum number

of open connections for each front-end to match their
configured maximum (i.e., 250 processes for Apache
server and 150 for the Tomcat engine).



QoS Classification| Output Guarantees | | Experimental Workload —
Load  Physical Overpro- Nept
Class | Loyer 7 pattern | VoVt [Response Tl | bt | gor i status Class Inpt  Guaraniee| pojgncer pariioning visioning QoS 25°€%5°
A Host: A 375 200 185 | Not Overloaded | A 18 375 148 185 185 185 185
B Host: B 937 600 1718 Overloaded B 1718 937 1333 986 1718 1133 1059
Cc | Hostc 562 300 557 | Fully Utilized BN 443 857 567 548|867
Table 2: QoS guarantees and traffic workload of the o p— Load  Fhysical Overpro- Nepune y,

Teoma search engine benchmark. ass Harantee Balancer Partitioning visioning QoS R

A 200 13335 40 40 45 121

by the QoS policy (possibly at the expense of under| B~ 600( 13395 18937 75 2% 600

C 300 13487 305 19 62 134

utilized resources).

. . Table 3:Experimental results for Teoma search engine.
Neptune QoS The gateway is configured as a load bal-

ancer and the QoS mechanisms of Neptune are erbetter visual comparison since the delays differ substan-
abled to implement the QoS policy under study. tially. Table 3 summarizes these results in tabular form to
. further aid their comparison.
Masi\‘?#i(s:ﬁ %’i rrl?egtaste(;v:g ;l:wrzjstmaeir’:{I:rS:aelucslﬁs(tagrg:Z? We begin by analyzing the quality of the service
sources implement only the Internet service. (i.e achieved by a load-balancer-only teghmque. Throgghput
: o I © V"7results show that the amounts of traffic served in this case
QoS functionality in Neptune is disabled) are directly dependent on the levels of incoming traffic

In order to benchmark Masseuse and the other contather than driven by the specified QoS policy, thus isola-
sidered QoS methodologies, client requests are replaydiPn between classes is not achieved. In this case we see
from a request trace supplied by Teoma that spans 3 difthat the dominance of class B traffic induces drops in A
ferent days of commercial operatiol]| We also use and C, even though the demands for these classes are al-
Teoma-supplied traces of word sequences to generate régpys below (in the case of class A) or never exceed (for
search queries. The levels of incoming traffic are designeglass C) the guaranteed capacity for each class. At the
so that the input demands of the different clients are fasame time, the large response times shown in the lower
below (class A), far above (class B) and coinciding with figure, demonstrate that simple connection limiting tech-
(class C) the capacity constraints specified in their respedliques employed by the load-balancer are not enough to
tive QoS classes. Clients for each QoS class use differefrevent large delays in response times (e.g. up to 14 sec-
inter-arrival times, corresponding to one of the three dif-onds per request), rendering this technique inadequate to
ferent days of the original traces. Table 2 further depictgorovide QoS guarantees.
the details of the QoS policy and input workload used in  When resources are physically dedicated through Phys-
the experiment, including the capacity and response timéeal Partitioning, the system is able to serve the expected
guarantees for each QoS class. amount of traffic for each of the classes and drop requests

only in the cases when the demands of incoming traffic
3.2 QoS Results exceed the aIIo_cated capacity. Throughpu_tguarantees are

met, however, if we observe the results in terms of re-
Figure 7 presents the results in terms of achieved averag@onse time, we see that the overloaded partition B expe-
throughput and average response times for the five Qo8ences a delay more that 30 times higher than the maxi-
methodologies using the same input request streams. Threum allowed by the QoS policy. Thus while physically
upper portion of the figure shows how the totality of in- partitioning resources is able to provide capacity guaran-
coming traffic for a class (represented by the height of dees, it fails to ensure response times constraints for arbi
bar) has been divided into traffic that is served and traffidrary incoming demands. It is worth noting that the reason
that is dropped. Horizontal marks delimit the minimum for partition B serving more throughput than its guaran-
amount of traffic that has to be served if the QoS guartee is that the raw performance of the partition is slightly
antees are met. Note that a resulting throughput belovhigher than the QoS guarantee defined in the policy.
the horizontal marks still meets the QoS guarantee for a When each of the partitions is augmented with enough
class if the totality of its incoming traffic is successfully resources (i.e., over-provisioning) all requests are suc-
served (i.e., the system cannot serve more traffic than it isessfully served. The response times are also reduced be-
received). The lower part of Figure 7 presents the resultéow the maximum allowed delay. In this case, class B and
in terms of response times. For response times, we usdass C require an additional 10 and 2 CPUs respectively
horizontal marks to denote the maximum response times order to meet the specified response time guarantees.
allowed by the QoS policy and denote with a darker colorThus over-provisioning is the first of the techniques that
the classes that do not meet the guarantees. We presaran successfully provide both throughput and response
these response time results using a logarithmic scale fdime guarantees. However, meeting the QoS guarantees



Load Balancer Physical Partitioning Overprovisioning Neptune QoS Masseuse
1750 — — —

+——— Tput Guarantee

& 180 [ served
S 1250 [ valid Drops
= [— Invalid Drops
é iy H=— H—H H=— H=— H—

2 750

<
£ 500

. — — — — —

2 250
< B [ [ m [

0 T T T T T T T T T T
A B c A B C A B c A B c A B c

100000
I +— RT Guarantees
£ 100001 Bl Over Limit

2 [ Under Limit
= 1000

o — —

2 —_— o —_—

s — — — —

2 100 1 ]

2

3
[i4

o 10+ e e = e

g
<

1 R T T T T

A B [ A B [ A B [ A B c A B [

Figure 7:Experimental comparison of current approaches using Tsmearch engine.

through over-provisioning comes with a high cost. In ourapproaches in its ability to enforce both response time
experiment, the increase in cost of overprovisioning wasand throughput QoS guarantees. In particular, Masseuse
60% (i.e., from 20 to 32 CPUs) with a resource utilization has less cost and achieves better resource utilization than
declining to 80%. Further, these numbers represent thever-provisioning techniques due to its ability to reassig
minimumamount of over-provisioning that allowed us to unutilized capacity to those service classes that need it.
achieve the QoS goals. In general, between load spikeAt the same time, it achieves comparable QoS guaran-
the extra resources needed to serve surges in load lay idlzes to an integrated and commercially available system
Thus, given the wide load fluctuations that most commersuch as Neptune, incurring only a small performance cost
cial Internet services experience we expect the resourcg@.e., 3%). In the next section (Section 4.4) we illustrate
utilization of over-provisioned systens situ to become its flexibility by showing how it can provide reliable QoS
much worse than what we observe in this experiment. guarantees in a complex and heterogeneous site running

Neptune QoS and Masseuse both meet the specifiddiree different services.
throughput and response time guarantees. Both tech-

niques serve at least the necessary amount of traffic ang  Robhustness under Extreme Conditions
are able to keep response time below the maximum de-

lays associated with each guarantee. Furthermore, boi this section we investigate the robustness of Masseuse
techniques are able to successfully reassign the capacigh its QoS enforcement capabilities under scenarios that
not utilized by class A to the greedy clients of class B.gmy|ate the extreme conditions experienced by many cur-
We observe that direct control the resources and servicggnt |nternet services. To do so, we first study the reac-
in the cluster (due to its invasiveness) allows Neptune Qjon of Masseuse to three circumstances: sudden traffic
achieve a slightly better throughput than Masseuse (i.ef,ctuations (Section 4.1), sudden changes in computing
3%). This slight performance penalty can be seen as thgaquirements (Section 4.2) and node failures and recov-
cost that an external solution such as Masseuse has to payjes (Section 4.3). We then present a larger-scale exper-
for not modifying any of the software internals. However, jment in which we detail its response to the same con-
given the completely non-invasive nature of Masseusegitions in a substantially more complex Internet hosting
we were surprised by how closely it matched the perfor-cenario (Section 4.4).

mance achieved by the invasive and commercially devel- 14 conduct the initial set of isolated robustness studies

oped Neptune system. Figure 7 also shows that the rgye yse two service classes: A and B. Service class A is
sulting response times from Neptune are somewhat lowe mishehaving class that begins with an input load that
than Masseuse. This difference is because Masseuse dgp, pe fully serviced with its allocated capacity, and then
only designed to enforce maximum delay constraints andanges its demands to surpass the capacity required to
it is not concerned about minimizing the overall delay of yeet its guarantees as well as to drive the overall system
service times. We are currently working on a prototypeinig overload. Service class B is a well-behaved class that
that can both ensure response time constraints and lowggcejves a constant demand of traffic that is always below
response delays when possible. the traffic level that can be serviced under its guarantees.
Summarizing, this experiment demonstrates the effecFor each of the experiments, we detail how well Masseuse
tiveness of Masseuse empirically, using a commercial Ininsulates the quality of service experienced by the well-
ternet service and commercial traffic levels. Masseus®ehaved class B from the fluctuations introduced by class
in this setting is competitive with the best of the currentA. We also investigate how the quality of service given



to class A degrades gracefully during the periods whenits ~ *® ‘ ‘ ‘ ‘ ‘ j——y

Class B «eeee

demands exceed the capacity allocated to meet its guaran-g 2o imucessa

tees. In particular, our goal is to provide as much capacity j_ 1500

to A as possible without violating the guarantees made to f” 1000 | win | \ |
either A or B. As described in subsection 2.2, however, the } - | S

500

capacity allocated to A and B is fungible and constantly
adjusted by Masseuse as it responds to changes in load
conditions.

To run these experiments we use a system consisting of
4-CPUs for client machines accessing a 16-CPU cluster
through a gateway machine implementing the Masseuse
engine. Each of the servers runs the Tomcat application e e
server [], providing a “CPU-loop service” consisting of ) Time (sec)

a servlet that loops a number of times so that it utilizes a ~ Figure 8: Masseuse's reaction to extreme fluctua-
certain amount of CPU (as specified in the HTTP parame- 0N of incoming traffic.

ters of each incqming request)._ This artificial emulation of esponse times, while they climb, are always kept below
a true web service allows precise control of the CPU loa

. . . he maximum guaranteed delay. In response to the traf-
requirements associated with each request. Requests e surge, Masseuse quickly shifts any uncommitted re-

ceived from the clients are classified into QoS classes 3%ources to class A. Strictly speaking, it is consistent with

cording to the host field name found in the HTTP header, - ;
the guarantee given to class A simply to cap throughput at
of the request (i.e., host: A or host: B). g g Yy P anp

900 reg/s for that class. However, by automatically sens-

The QoS policy defined for the experimen?s aIIocate51 g the degree to which is can slow down B’s response
the same guarantees for both classes of service (Table mes (without violating B's guarantees) and committing

Note that unlike the previous qxperiments, the reSPONSEqgitional resources to A, Masseuse is able to give A as
time guarantees are expressed in terms of 95th percentiles | ., throughput as can be spared while remaining within
and not averages — a much more challenging but POtent o constraints of both guarantees

tially more deswab_lg metric to_ enforce, e_speC|aIIy 9VeN " \ne should note that the slight spike in response times
the range of conditions to which we subject the cluster.

) ) . . . ) rring in nd 12 r n n f our
All figures in this section depict the resulting average ofOCCU g in second 120 appears a consequence of ou

the observed throughput (upper graph) and the 95th pers_hort sampling period. We wish to depict circumstances

. . hat stress the capabilities of Masseuse and as such, we
centile of response times (lower graph) over two-secon : ) N
L calculate the percentiles with a two-second periodicity.
sampling intervals.

In practice, it is unlikely that a commercial system will
need to ensure QoS guarantees on such a fine-grained time

[
500

)

@

400

300

200

100

95th% Response Time (m:

QoS Classification| Output Guarantees

Class | tayer7paten | juc'0) | b oams) scale,despefcially Wheln ulsing percentiles to specify guar-
Vg. reg/s % ms
- e o) sl anteed performance levels.
B Host: B 900 400

Table 4:QoS policy used in the studies. 4.2 Computing Requirements Overload

4.1 Sudden Traffic Fluctuations In_ this e>_<p<_arime_nt we investigate hovy Masseuse handles
wide variations in the computing requirements associated
In this experiment we show how Masseuse manages wideith a request stream. These types of variations can occur
fluctuations of incoming traffic. To demonstrate this prop-in situations such as application misbehavior (e.g., soft-
erty we subject the service for class A to a sudden-butware bugs that cause excessive resources to be used in
sustained impulse of incoming traffic that is four times its computing a request) or changes in the workload char-
normal rate. This sudden increase in demand is enougéacteristics (e.g., requests incurring in unusually lond an
to bring the cluster to full utilization. Figure 8 shows expensive database queries). We induce this anomaly by
the results from the experiment. In the Figure, the traf-suddenly increasing the computing requirements for class
fic fluctuation (labeled as “Input Class A’) increases in- A from 8ms to 40ms of exclusive CPU time. Again, the
stantly from 600 reqg/s to 2400 reqg/s 120 seconds after thgoal is to protect the performance of class B while de-
experiment has begun. Despite the sudden and sustaingdading the throughput given to class A to a level that
increase in As traffic the degree to which service class Bis both maximal and consistent with the guarantees for
meets its guarantees is isolated from the change in inpuioth classes. To better observe the expected service for
conditions. B’s throughput is virtually unaffected and its class A we include the throughput guarantees normalized



1200 T T T T T T T 1600 T
Class A Class A

T T T T T
Class B seeeeese ] 1400 F Cluster loses 2 of 8 nodes Class B «reeerer

1000 Min. G

800 [ ; =~ Normalized Guarantee

i|_A's requirements increase 5x ___{ for Class A ]
400 | ‘ ’ q
. . . .

1000  Min

Avg. Throughput (regs/s)
@
3
3

Avg. Throughput (reqs/s)
©
3
3

Max. Guaranteed '\ N
e e Vo VAV

Max. Guaranteed

95th% Response Time (ms)
95th% Response Time (ms)

. . . . | . . . . .
80 100 120 140 160 180 200 220 240 80 100 120 140 160 180 200 220 240
Time (sec) Time (sec)

Figure 9:Behavior of Masseuse when requests of class
A suddenly require five times more resources for their
computation.

Figure 10:Masseuse’s reaction to a failure of 2 nodes.

in response time during the two-second interval spanning

to its incoming computing requirements (i.e., the normal-S€cond 120 in the trace.
ized throughput is five times lower than the nominal when
requests are five times more difficult to compute). ) _

Results from the experiment are depicted in Figure 94.3 Node Failures and Recoveries
As in the previous experiment the throughput given to ) ) ) )
class B remains virtually unaffected by the increase inl" this éxperiment, we depict Masseuse’s response to sig-
computing requirements (seconds 120-180), and its r,3.!3|f|cant node_fanures and recoveries. At second 120, we
sponse times are always kept below the guarantees. Apduce the failure of 2 out of the 8 nodes and then recover
the same time, in response to the increase in computinﬁ‘e nodes 60 seconds later. To introduce these fallgres
demands for the misbehaving class A, Masseuse immed¥€ Program our load-balancer module to stop forwarding
ately decreases A's throughput. Although degraded, Aystfrafflc _to the “falled” nodes. We have also mc_reased the
throughput is always maintained above the normalizedcoming traffic rate for class A to 1300 req/s in order to
guarantee corresponding to the internal capacity allocamake the resulting change in throughput more visible.
tion Masseuse made for this guarantee. We show the results of the experiment in Figure 10.

Recall from Section 2.2 the Request Precedence mod¥hen the nodes fail, Masseuse rapidly reduces the
ule guarantees enough resources to class A to fulfill théhroughput given to class A to its 900 reg/s guarantee.
nominal throughput guarantee of 900 req/s assuming 8miotice that this adjustment, again, does not violate the
of computing time. When the computing requirementsqua"ty of the service guarantees given to class B. As with
increase to 40ms/req the throughput must be lowered tée previous two experiments, the throughput for B is un-
180 reqg/s to preserve enough capacity for B’s guarantee@_ﬁ:ected while the response times growtoa level well be-
Thus we expect the system to enforce a throughput guatow their maximum guaranteed delay.
antee of 180 req/s for class A during the period in which We should note that in this example it was possible to
its requests require 40ms of CPU time, as shown by thenforce the QoS policy, even under the degraded opera-
normalized guarantee line. However, between secondson, because there was enough spare capacity that B was
120 and 180 of the experimental period, class A is re-not utilizing which could successfully be reassigned to A.
ceiving a throughput of 280 req/s, which includes a sur-In the cases where there are not enough resources to ful-
plus of 100 req/s corresponding to the resources that claddl the guarantees across all classes, Masseuse reacts by
B is not utilizing. If B’s requirements were to suddenly degrading the service of each class proportionally to the
increase, Masseuse would reduce A's throughput to 18Quarantee associated with that class. For example, if the
reqg/s and and change the proportion of B's requests admitnput demands for class B had been above the guaran-
ted to reallocate more resources to B. Note also that thiseed 900 req/s, the Masseuse would have evenly assigned
constant allocation and reallocation of capacity is sensed throughput of 700 reg/s for each class since the degraded
by the Masseuse engine automatically based on the olezapacity of the system would support 1400 reg/sec in to-
served responses leaving the cluster, and not based d¢al, and the guarantees for both A and B are the same. We
predefined parameters or instrumentation describing thbelieve that other non-proportional mechanisms for reap-
CPU requirements for each type of request. As is the casportioning fungible capacity when QoS policies become
with the previous experiment, the short time scale oveiinfeasible are highly desirable and we plan to investigate
which each percentile is computed causes a single “spikethem further in our future work.

10



@ QoS Classification| Output Guarantees
- Th hput | Re: Ti
@ @ H4 N e Class Layer 7 pattem ( A\I/—gfj?eé)/:) (sggﬁr;zensl;m
@® Teoma Port=8888 450 600
@ @ CPU-Loop | Port=9999 1350 3000
L ® RUBIS Port=10000 700 3500
§ @ G Table 5:QoS policy for the complex and
A T 2 O heterogeneous Internet site.
g
A ] nodes that are shared by more than one service. In partic-
ular, the CPU-loop service shares 7 of the 8 nodes used by
O[] A the Search component of Teoma, and also with 2 of the 5
‘eoma CPU-Loop RUBIS . . . . . .
¢ o nodes running the RUBIS auction. Our intention is to cap-

WS = Web Server

S =Search Service

L =CPU-Loop Servlet
As = Application Server
DB = Relational Database

ture both the fluid sharing of cluster resources as well as
the static capacity planning that we believe will always be
present in a commercial system.
Figure 11:Setup of the complex, heterogeneous Internet site. ~ Also for this experiment we program our Masseuse en-
gine with the QoS policy defined in Table 5, deploy it at
the entrance of the site (with no other information than
Through the previous set of controlled experiments wethe QoS policy), and observe how well it performs in re-
have shown that Masseuse can both enforce service isol§ponse to the same three types of changes explored in the
tion as well as gracefully degrade the service of misbehavprevious subsections. Similarly, we generate three types
ing classes even under extreme operating conditions. Wef input load. For the Teoma service, we introduce in-
now show how Masseuse reacts to the same three sevegeming traffic that exceeds what can be completely ser-
circumstances for a larger-scale and substantially morgiced under the constraints of its guarantee. Alternatjvel
complex Internet site that hosts three different servicesfor the RUBIS service, we keep the incoming traffic load
Additionally, this experiment illustrates the flexibilipf ~ below the maximum serviceable level. We then vary the
Masseuse’s “black-box” approach: its ability to provide input for the CPU-loop service to create a peak of demand
QoS guarantees using heterogeneous hardware configduring the period from seconds 140 to 220 and to increase
rations and multi-tiered software architectures where thdts computing requirements from 8ms to 40ms during the
source code of the applications cannot be modified. Aperiod between seconds 300 and 420. Finally we kill one
present, we know of no other published infrastructure thapf the Teoma back-end nodes at second 475 and restart it
can provide QoS for this complex Internet hosting sce-120 seconds later.
nario. Figure 12 shows the evolution of throughputs (above)
To perform this experiment we host the Teoma searctand response times (below) for each of the three differ-
and CPU-loop services (described previously) togetheent services during the 11 minute run, in which a total of
with a third service called RUBIS?[ using shared set 1.1 million requests were served. Vertical lines separate
of cluster resources. RUBIS is a publicly available auc-the three different conditions (input increase, compatati
tion site modeled after eBay that has been used by severgicrease, node failure) to which Masseuse must respond.
researchers for evaluating application server performancThroughput guarantees are again normalized to the ex-
scalability [?, ?]. We use the version of RUBIS that is im- pected computing requirements. Only CPU-loop service
plemented using Enterprise Java Beans (EJB) deployeshows a deviation form the nominal throughput guaran-
on top of JONAS application server (v3.3.6) and Tomcatees since it is the only service that suffers a change in its
(v4.1) servlet engine. The Tomcat servers are configuredomputation requirements. From the first segment of the
with session replication and the JOnAS application servefigure, it is evident that Masseuse protects the RUBIS ser-
is configured to balance the execution of EJBs across eadtice and also reassigns the the available resources such
of its nodes according to their respective loads. The aucthat the two overloaded classes during the peak period
tion data is stored using a mySQL database back-end withre served according to the QoS policy. As we observed
the same configuration and size as the benchmark déa Section 4.1, the amount of surplus service received by
scribed in P]. Traffic for the RUBIS auction is gener- Teoma during the peak period, is given back to the CPU-
ated by the client emulator supplied with the RUBIS soft-loop service so that both classes can operate at their limits
ware which performs typical user actions of an auctionof throughput and response times.
user such as browsing, bidding or buying items. In the second segment of the figure, the computing re-
Figure 11 depicts the hardware and software configuguirements of CPU-loop service increase to 5 times their
ration used for this experiment. Notice that we includeoriginal levels. In this case we induce a change in the
both nodes that are dedicated to a single service as well a®mputing requirements that it is more gradual than the

4.4 Complex Heterogenous Services

11



1800

Sudden Traffic Fluctuation

Computing
Requirements Overload

Node Failure

' Teoma Search i

1600 CPU-Loop |

CPU-Loop Servlet ======= -
RUBIS +reeeee

1400 | CPU-Loop Guaranteed

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

1200

eoma Node Fails

1000

RUBIS Guaranteed

Avg. Throughput (regs/s)

-| Teoma Guaranteed

RUBIS Guaranteed

3000 CPU-Loop Guaranteed

1000 | i i
H i Teoma Guaranteed

95th% Response Time (ms)

0 T TTTTLIIRPPPRTID )

200 300 500 600

Time (sec)

Figure 12:QoS results for a complex, heterogeneous Internet site.

sharp change shown in Section 4.2 to better emulate homfrastructure to provide bandwidth allocation and packet
a true Internet site might degrade. Masseuse reassigmelay guarantees over the Internet. At a higher level, ap-
capacity not needed to meet Teoma’'s guarantees to throaches such as Content Distribution Networ{sfro-
CPU-loop service while maintaining the guarantees forvide similar features by appropriately managing an over-
RUBIS. Also, the CPU-loop service suffers a degradatioriay network to content “closer” to the end-user. These
in throughput that is inversely proportional to the inceeas approaches focus on the communication component and
in its computing requirements, thus maintaining the fungi-do not address the computational requirements associ-
ble capacity described by its guarantee. In this case, theraed with the servicing of Internet requests. In contrast
are no extra resources to be used in aiding the overloadedasseuse works at the boundary of the cluster hosting the
CPU-loop class, thus its resulting throughput is cappedervices and, as such, complements approaches that en-
exactly at its normalized guarantee. sure quality of network service between the client and the
In the third segment of the experiment the dedicatectluster.
search back-endfrpmthe Tt_eqma service fails. In this case Load balancers[?, 2, 7] are perhaps one of the the
we induce drue failure by killing the server process of

. o ost closely related approaches to Masseuse. Properl
Neptune and use the fail-over and recovery capabilities oin Y PP pery

the middleware to detect the change. Note that the failur%uuneﬁ%’/ é??ﬁébs elz?\?iiirzﬁcearz dggsegl)élj QZ?Z;;;:? g\:g:ja_lll
of the node only has an effect in reducing the spare €& cts such as Packeted pffer traffic shaping funciion-
pacity that Teoma service is enjoying. Both the through- i O :
. . i h that minimum bandwidth ran n I-
put and response times of CPU-loop and RUBIS are, onca ty such that um bandwidth guarantees can be a

more. unaffected F(_)cated to distinct clients or applications. More_ sophis-

' ' ticated products such as Netscal@} pply intelligent
connection management that protects the internal cluster
nodes from overload in response to large bursts of incom-
ing traffic. However, existing solutions are not aimed at
There are many approaches to providing QoS for Interneproviding throughput and response time guarantees, but
services, but relatively few that combine flexibility and are mainly designed to enhance the overall system perfor-
extensibility with response time and throughput perfor-mance. Futhermore, these techniques rely on the proper
mance. In this section we briefly introduce some of theconfiguration of the load-balancers by an expert operator
most relevant work and compare it to the Masseuse apthat knows and understands the internal operation of the
proach. site to be protected. As such, these are static configura-

QoS for network communication is typically defined tions that are highly tuned for specific settings and that
in terms of reliable communication between two end-must be repeated for any change occuring in the site’s in-
points with performance guarantees. Protocols such arnals. Masseuse differs from these approaches in that
diffserv [?] and intserv P] leverage the existing routing it guarantees QoS in terms of both throughput and re-

5 Related work

12



sponse times. At the same time Masseuse does not neéeim or middleware infrastructure and can directly be used
to be configured explicitly or tuned by an expert for the in their native non-QosS state.
specifics of the hardware or software of the site. Some recent work has investigated resource man-

At the operating systemslevel, the QoS challenge agement techniques usinjon-invasive approaches
is typically addressed in terms of resource managementacade ] is a prototype implementation of a storage
Many research operating systen® P, ?] achieve tight controller that throttles 1/0 requests to a (black-boxkdis
control on the utilization of resources as a way of enforc-array. Similar to Masseuse, it provides response time
ing capacity isolation between service classes. Althougtsolation (but no throughput isolation) for different I/O
these techniques have proven to be effective in terms ojtreams. However, response time guarantees can only be
capacity isolation, they are not designed to provide reenforced as long as the total incoming load is below the
sponse time guarantees. Furthermore, these techniquéapacity of the disk array (i.e., no dropping mechanism is
control the resources within a single machine and thusmplemented). InP], Jin et al. analyze the effectiveness
cannot be easily extended to clustered environments. Or@f several share-based scheduling techniques for differ-
notable exception is Cluster Reserv@k{ a single-node  entiating service quality in networked servers. Some of
approach that has has been scaled to span clustered {8€ project goals are similar in nature to Masseuse, how-
sources. Although this technique is shown to provide re€Vver the analysis is done only through simulation, focuses
source isolation at the cluster level, like its single-mineh ~ only on storage server facilities and does not include a
counterparts, it does not provide response time guararRerformance study in dynamic scenarios. Furthermore,
tees. Masseuse is also a cluster-wide QoS solution thdhe devised method is somewhat invasive since it requires
provides both capacity and response time isolation as wepffline profiling of the workload and more importantly as-
as throughput and response time guarantees. It also difumes that the cost of every single requests can be known
fers from systems such as Cluster Reserves in that it doe® scheduling time. Other work such as Gatekeepr [
not require customization of the operating system used bproposes a proxy system, much like Masseuse, that im-
the cluster’s internal nodes. plements admission control for e-commerce applications.

Middleware systemssuch Neptune?, ?] or Appli- However, Gatekeeper is not designed provide any QoS

cation Server?, 7] include QoS functionality as part of guarantees, but targeted to reduce the overall response

a distributed and potentially scalable infrastructure. Bytimes and improve the performance of the system. Fur-

programming the applications to use these primitives it is'€MOre, it has only been tested in reduced size systems,

possible to construct distributed services that offertelus 't targets database back-ends and relies on extensive pro-

wide QoS guarantees. However in order for these frameliing Of the service applications.

works to be effective each of the constituents of a service

must be integrated with the middleware infrastructure.6 Conclusions and Future Work

This often poses a very restrictive constraint given the het

erogeneity and proliferation of current Internet services Commercial Internet service provisioning depends in-
Similar approaches that embed the QoS logic directly atreasingly on the ability to offer differentiated classés o
theApplication level have also been proposed. For exam-service to groups of potentially competing clients. In
ple, the approach presented in SEPAddvocates the use addition, the services themselves may impose minimum
of a specific framework for constructing well-conditioned QoS requirements for correct functionality. However,
scalable services an@][shows the effectiveness of this providing reliable QoS guarantees in large-scale Internet
framework when explicit QoS mechanisms are built tosettings is a daunting task. Simple over-provisioning and
prevent overload in busy Internet servers. Rather thaphysical partitioning of resources can be effective but in-
building an application with QoS support, other work hasefficient. Invasive software approaches overcome the in-
modified existing applications to include QoS capabili- efficiency problem but at the expense of reprogramming
ties [?, 7. For example, the work done ir?] shows and/or re-engineering of the services within a site to im-
how it is possible to modify the popular Apache web plement QoS functionality.

server to provide differentiated services without the use In this paper we present an alternative, non-invasive
of resource management primitives at the operating syssoftware approach called Masseuse that provides efficient
tem level. However, as is the case with middleware apQoS provisioning for Internet services while allowing
proaches, the large cost of modifying the application codanew levels of flexibility that current service providers re-
to include QoS mechanisms is only effective if the en-quire. The presented system functions at the border of an
tirety of the software deployment is able to function in Internet site and uses traffic shaping, admission control,
a concerted way towards providing QoS. With Masseuseand response feedback to treat the site as a “black-box”
the applications hosted in an Internet site do not need taontrol system. Masseuse intercepts the request and re-
be modified or designed for any particular operating syssponse streams entering and leaving a site to gauge how

13



and when new requests should be forwarded to the hosted
services to ensure throughput and response time guaran-
tees.

We demonstrate the capabilities of our Masseuse im-
plementation by experimentally comparing it to the best
state-of-the-practice and state-of-the-art approadbes.
results show that, despite being non-invasive, Masseuse
can enforce the same QoS guarantees as either of the
compared techniques, while achieving better resource uti-
lization than over-provisioning and without the applica-
tion rewriting overhead required by intrusive software ap-
proaches. We also demonstrate that our implementation
can successfully handle extreme situations such as sudden
traffic surges, application misbehavior or node failures.
Further, we also demonstrate the powerful flexibility of
Masseuse by providing QoS guarantees for a complex and
heterogeneous Internet service that suffers the same type
of harmful conditions. At present, we know of no other
published infrastructure that can provide QoS under these
challenging conditions. Encouraged by the performance
of our results we are currently working on both enhancing
the performance and scalability of the Masseuse engine as
well as improving our algorithms with more sophisticated
control mechanisms. Also we are interested in deploying
Masseuse on a wider array of Internet services including
real commercial sites.

14



