Chapter 1

PERFORMANCE INFORMATION SERVICES
FOR COMPUTATIONAL GRIDS"

Rich Wolski
Lawrence J. Miller
Graziano Obertelli

Martin Swany

Department of Computer Science
University of California
Santa Barbara, CA 93106

Abstract

Grid schedulers or resource allocators (whether they be human or
automatic scheduling programs) must choose the right combination of
resources from the available resource pool while the performance and
availability characteristics of the individual resources within the pool
change from moment to moment. Moreover, the scheduling decision
for each application component must be made before the component
is executed making scheduling a predictive activity. A Grid scheduler,
therefore, must be able to predict what the deliverable resource per-
formance will be for the time period in which a particular application
component will eventually use the resource.

In this chapter, we describe techniques for dynamically character-
izing resources according to their predicted performance response to
enable Grid scheduling and resource allocation. These techniques rely
on three fundamental capabilities: extensible and non-intrusive per-
formance monitoring, fast prediction models, and a flexible and high-

*This work was supported, in part, by a grant from the National Science Foundation’s NGS
program (EIA-9975020) and NMI program (ANI-0123911) and by the NASA IPG project.

performance reporting interface. We discuss these challenges in the con-
text of the Network Weather Service (NWS) — an on-line performance
monitoring and forecasting service developed for Grid environments.
The NWS uses adaptive monitoring techniques to control intrusiveness,
and non-parametric forecasting methods that are lightweight enough to
generate forecasts in real-time. In addition, the service infrastructure
used by the NWS is portable among all currently available Grid re-
sources and is compatible with extant Grid middleware such as Globus,
Legion, and Condor.

1. Introduction

The problem of scheduling and resource allocation is central to Grid
performance. Applications are typically composed of concurrently ex-
ecuting and communicating components resulting in the “traditional”
tension between the performance benefits of parallelism and the commu-
nication overhead it introduces. At the same time, Grid resources (the
computers, networks, and storage systems that make up a Grid) differ
widely in the performance they can deliver to any given application, and
this deliverable performance fluctuates dynamically due to contention,
resource failure, etc. Thus an application scheduler or resource alloca-
tor (whether it be a human or an automatic scheduling program) must
choose the right combination of resources from the available resource
pool while the performance and availability characteristics of the indi-
vidual resources within the pool change from moment to moment.

To assign application components to resources so that application
performance is maximized requires some form of resource valuation or
characterization. A scheduler must be able to determine the relative
“worth” of one resource versus another to the application and choose the
ones that are most valuable in terms of the performance they deliver.
If the scheduling decision is to be made by an automatic scheduling
or resource allocation program (e.g. AppLeS (Berman et al., 1996;
Spring and Wolski., 1998) or GrADSoft (Berman et al., 2001; Petitet
et al., 2001; Ripeanu et al., 2001)) this valuation must be in terms of
quantifiable metrics that can be composed into a measure of application
performance. Moreover, the scheduling decision for each application
component must be made before the component is executed making
scheduling a predictive activity. A Grid scheduler, therefore, must be
able to predict what the deliverable resource performance will be for the
time period in which a particular application component will eventually
use the resource.

Performance Information Services for Computational Grids' 3

The performance characteristics associated with a resource can be
roughly categorized as either static characteristics or dynamic charac-
teristics according to the speed with which they change. While the
delineation can be rather arbitrary, static characteristics are ones that
change slowly with respect to program execution lifetimes. For example,
the clock-speed associated with a CPU is a relatively static (and quan-
tifiable) performance metric. It is not completely invariant, however, as
a given CPU may be replaced by one that is faster without changing
other measurable characteristics. From the perspective of a Grid user,
a CPU that has been upgraded to a faster clock-speed may look identi-
cal in terms of its other characteristics (memory size, operating system,
etc.) before and after the upgrade.

Conversely, dynamic performance characteristics change relatively quickly.
CPU loads and network throughput, for example, fluctuate with fre-
quencies measured in minutes or seconds. It is such dynamic fluctua-
tions that make Grid scheduling complex and difficult. Moreover, many
studies have shown that the statistical properties associated with these
performance fluctuations are difficult to model in a way that generates
accurate predictions (Harchol-Balter and Downey, 1996; Crovella and
Bestavros, 1997; Gribble et al., 1998; Harchol-Balter, 1999). The chief
difficulties are either that the distribution of performance measurements
can be modeled most effectively by a “power law” (i.e. the distribution
is said to be “heavy-tailed”) or that a time series of measurements for a
given resource characteristic displays a slowly-decaying autocorrelation
structure (e.g. the series is self-similar). Despite these statistical prop-
erties, however, users routinely make predictions of future performance
levels based on observed history. For example, students in a University
computer laboratory often use the advertised Unix load average as an
indication of what the load will be for some time into the future.

Grid Resource Performance Prediction

Reconciling the theoretical difficulty associated with dynamic per-
formance prediction with the practical observation that some kind of
prediction is necessary in any scheduling context requires a careful for-
mulation of the prediction problem. For Grid scheduling and resource
allocation, two important characteristics can be exploited by a sched-
uler to overcome the complexities introduced by the dynamics of Grid
performance response.

m Observable Forecast Accuracy — Predictions of future perfor-
mance measurements can be evaluated dynamically by recording

the prediction accuracy once the predicted measurements are ac-
tually gathered.

m Near-term Forecasting Epochs — Grid schedulers can make
their decisions dynamically, just before execution begins. Since
forecast accuracy is likely to degrade as a function of time into the
future for the epoch being forecast, making decisions at the last
possible moment enhances prediction accuracy.

If performance measurements are being gathered from which scheduling
decisions are to be made, predictions of future measurements can also
be generated. By comparing these predictions to the measurements they
predict when those measurements are eventually gathered, the scheduler
can consider the quantitative accuracy of any given forecast as part of
its scheduling decisions. Applications with performance response that is
sensitive to inaccuracy can be scheduled using more stable resources by
observing the degree to which those resources have been predictable in
the past.

Grid schedulers can often make decisions just before application exe-
cution begins, and rescheduling decisions while an application is execut-
ing (either to support migration or for still-uncomputed work). Thus the
time frame for which a prediction is necessary begins almost immediately
after the scheduler finishes its decision-making process.

To exploit these characteristics, the forecasting infrastructure must,
itself, be a high-performance, robust, long-running application. When
scheduling decisions are made at run time, the time required to make
the necessary forecasts and deliver them will be incurred as run time
overhead. Hence, the forecasting system must be “fast” with respect to
the application and scheduler execution times. If forecast information
(even if it is only performance monitor data) that is not available because
the system serving it has failed, “blind” and potentially performance-
retarding decisions must be made. Finally, if forecast accuracy is to
be considered as part of the scheduling process, the forecasting system
must be constantly gathering historical measurement data and generat-
ing predictions from it.

In this chapter, we describe the functionality that is necessary to
support resource allocation based on performance measurements taken
from Grid resources. We detail our experiences with implementing this
functionality as part of the Network Weather Service (NWS) (Wolski
et al., 1999) — a distributed monitoring and forecasting service that
is compatible with many different Grid infrastructures. We discuss the
design and implementation decisions that are at the core of the system
and outline its monitoring and forecasting capabilities. We conclude

Performance Information Services for Computational Grids® 5

with a discussion of future research and development challenges that
must be overcome to make dynamic resource allocation more accessible
to Grid programmers.

2. Grid Monitoring and Forecasting
Infrastructure

Any system that is designed to support resource allocation based on
performance data should provide three fundamental functionalities.

s Monitoring: Data from a distributed set of performance monitors
must be gathered and managed so that it can be served.

m Forecasting: Resource allocators require forecasts of future per-
formance. It is the forecast data (and not the monitor data) that
ultimately must be served.

s Reporting: The information served by the system must be avail-
able in a wide-range of formats so that different scheduling and
allocation implementations may be supported.

In Grid settings, these functionalities present some unique challenges.

Grid performance systems must be robust with respect to resource
failure and/or restart, and must be carefully implemented so that their
intrusiveness is minimized. Resource monitors, particularly those that
probe resources by loading them, must be able to withstand frequent
resource failure. Often, it is the faulty resources in a Grid that are of
the most performance concern. If a monitor process requires manual
intervention at restart, for example, there may be long periods of time
for which no data is available precisely from the resources that must be
most carefully monitored.

Moreover, if implemented as middleware, system administrators may
not view performance monitoring and analysis systems as having the
same level of importance as native operating system functionality. If
and when a performance problem is reported by a user, the most fre-
quent early response by many system administrators is to terminate
any non-operating system monitoring processes for fear that they are
cause of the observed difficulties. It is rare, however, for a monitor that
has been prophylactically killed to be restarted once the true source of
the performance problem is located. Therefore, middleware-based per-
formance monitors must be self-reinitializing and they must be able to
store the data that they produce in persistent storage that survives local
intervention or system failure.

Another problem that Grid performance monitors must face stems
from their use of the resources that they are monitoring. The intru-

network
sensor network

machine

Sensor
Control

Persistent

Forecasting

Figure 1.1. The Logical Architecture of the NWS

siveness of performance monitors, in terms of their induced CPU load,
memory footprint, and storage footprint, constitutes system overhead
and, thus, must be tightly controlled.

2.1 The Network Weather Service

The Network Weather Service (NWS) is a Grid monitoring and fore-
casting tool that has been designed to support dynamic resource alloca-
tion and scheduling. Figure 1.1 depicts its logical architecture in terms
of independent subsystems. Sensors (typically independent processes)
generate time-stamp, performance measurement pairs. For robustness
and to limit intrusiveness, the system supports a sensor control subsys-
tem that is distributed and replicated. Sensor processes can put control
of their measurement cycle, sensor restart, etc. under the control of the
NWS by adopting either a socket-based API, or an internal library API.

The NWS also assumes that performance sensors will be stateless,
both to improve robustness and as a way of minimizing memory and
storage footprints. To capture and preserve measurement data, the Per-
sistent State subsystem exports a simple socket-based API that allows
sensors to store their measurements remotely in time-series order. The
number of Persistent State repositories, as well as the location and stor-
age footprint of each are specifiable as installation parameters. In ad-
dition, new repositories can be added to the running system without
reconfiguration.

Forecasts of future performance levels draw the historical data they
require from the Persistent State system (and not the sensors). Thus,
any process that can exercise the storage API exported by the Persistent
State system, can inject measurements into the system for forecasting.

Performance Information Services for Computational Grids® 7

The forecasting subsystem is extensible, allowing the inclusion of new
forecasting models into a forecaster library through a configuration-time
API. To allow applications a way of trading off system complexity for
performance, the NWS forecasting library can either be compiled into a
Forecaster process and accessed remotely (thereby saving the local CPU
and memory overhead) or loaded directly with the application.

To allow compatibility with a variety of Grid computing infrastruc-
tures, the NWS supports multiple reporting interfaces. These interfcaes
communicate with the other subsystems via socket-based remote APIs
as well, improving both flexibility and performance. New reporting for-
mats can be added by providing a process or library that converts the
NWS-internal API to the desired format.

In addition, this organization provides a convenient methodology for
implementing replication and caching. Performance information (both
measurement data and statistical forecasts) flow from the sensors, through
the persistent state repositories and the forecasters to the reporting
APIs, but not in the reverse direction. As such, reporting caches can
be located near where the reports are consumed and can be replicated.
Moreover by interrogating an internal Name Service (see below) the re-
porting caches can determine the frequency with which individual sen-
sors are updating the various persistent state repositories. By doing so,
each cache can refresh itself only when new data is expected from each
sensor. When a scheduler or resource allocator queries a local cache,
it receives up-to-date information without having to directly query the
individual Persistent State repositories where the desired information is
stored.

All components within an NWS installation register with an internal
Name Service. The Name Service keeps track of the type, location (IP
address and port number), and configuration parameters associated with
each NWS process. In addition, all registrations are time limited and
must be refreshed by their various components. Overall system status is
determined by the active registrations that are contained within a given
Name Service instantiation.

Under the current architecture, each instance of the Name Service
defines a self-contained NWS installation. By using the name space to
isolate separate NWS instantiations, multiple installations can overlay
the same set of resources. Debugging or experimentation with alterna-
tive configurations (while a production version continues to run) is made
easier by this design choice. At the same time, all of the components,
including the sensors that are part of the distributed NWS release, run
without privileged access. Thus, separate users can run individual in-
stantiations of the NWS, each with its own Name Service.

8

2.2 The NWS Implementation

The engineering of a Grid performance system, particularly one de-
signed to support resource allocation and scheduling, presents a unique
challenge. In addition to the performance goals (response time and scal-
ability) which are largely architectural issues, the implementation itself
must be ubiquitous, robust, and non-intrusive. Ubiquity stems from
two critical requirements: portability and the need to run with minimal
privilege. Robustness and non-intrusiveness come, in part, from careful
implementation techniques and extensive testing.

Any performance monitoring and forecasting system must be able to
execute on all platforms available to the user. If a scheduler cannot “see”
a system because no performance information is available, the system is
for all intents and purposes not part of the Grid. This need is especially
critical when a Grid is to be used to couple cheap, commodity resources
with a unique instrument or machine. If the Grid infrastructure cannot
execute on or monitor the unique instrument, the instrument cannot
become part of a Grid.

To meet this need for ubiquity, the NWS is written primarily in C. At
the time of this writing, it is the experience of the NWS implementation
team that C is the most portable programming language. Most rare or
unusual architectures support a C compiler and a subset of the Unix
system calls. The NWS (with the exception of some of the sensor code)
has been carefully coded to use only the most basic system services
and generic ANSI C functionality. As a result, the core services have
been quick to port to new systems as they become available. It is worth
noting that the choice of C is not motivated, in this case, by performance
but rather portability. The Java language environment is intended to
provide the kind of portability the NWS requires. Many of the systems
that users wish to access via a Grid, however, are large-scale machines
with unique configurations. To date, the availability of a portable Java
environment to machines of this class lags far behind the availability of C,
if such a Java environment becomes available at all. At the same time,
systems that do support a robust and standardized Java environment
also support the baseline C functionality that is required by the NWS.

Figure 1.2 depicts the software organization of the system. The inter-
nal subsystems, the NWS-supplied sensors, the C and Unix command-
line interface code are written in C. The HTML interface uses a com-
bination of CGI and GNU tools (not distributed with the system) and
the LDAP and SOAP interfaces are derived from open source software
for implementing each protocol.

Performance Information Services for Computational Grids* 9

rnal APls

A 4 A 4
NWS Forecasting NWS Sensor NWS Memory

TCP/IP

sensors

Figure 1.2. The Software Organization of the NWS Implementation

A second design decision alluded to earlier is that all NWS compo-
nents must be able to run without privileged access. If an individual
site wishes to configure a sensor that runs “as root,” the extensibility of
the system will permit it. Often, due to the security concerns associated
with middleware, the need for privileged access tends to delay the de-
ployment of a particular middleware component. Because the forecasting
functionality is critical to resource allocation and scheduling, the NWS
is coded to run with only minimal access privilege (e.g. a standard user
login).

3. Performance Monitors

There are roughly two categories of performance monitor types: pas-
sive and active. A passive monitor is one which reads a measurement
gathered through some other means (e.g. the local operating system).
The best example of a passive monitor that most Grid systems report
is the Unix Load Average metric. Almost all Unix and Linux systems
(and their derivatives) record some measure of the number of jobs in the
run queues of each processor on the machine. The frequency with which
the queue length is sampled is operating system and operating system
version specific. On most systems, however, a 1 minute, 5 minute, and
15 minute average of the run queue length are available although the
way in which the average is calculated (arithmetic, geometric, exponen-
tially smoothed, etc.) is again operating-system specific. This smoothed
average of the run queue length defines the Load Average metric.

Systems such as the Globus Meta Directory Service (Czajkowski et al.,
2001) report Unix Load Average by periodically querying the load aver-
age value and posting the result. Thus, the Globus load sensor passively

10

reads and reports a performance metric (Unix Load Average) that is
gathered and maintained by the native operating system.

3.1 Intrusiveness versus Accuracy

The main advantage of passive sensing is that it is non-intrusive. The
Unix Load Average is a measure that is already being generated. The
sensor need only format and transmit the measured values appropriately.
The difficulty with quantities such as Unix Load Average, however, is
that they are sometimes complex to understand from a resource allo-
cation perspective. For example, using load average as a measure of
machine “busy-ness” allows machines of equivalent processing power to
be ranked in terms of their expected execution speeds. The assertion
that most Grid resource schedulers make is that in a pool of identical
machines, the one with the smallest load average value is the one that
will execute a sequential piece of code the fastest.

Using Unix load average to rank execution speeds implies that the
presence of other jobs in each run queue will affect the performance of
the scheduled application in the same way. Unix and Linux use an expo-
nential aging algorithm to determine execution priority. Furthermore,
the aging factor on some systems grows larger with occupancy time. The
goal of this algorithm is to permit jobs that have recently completed an
I/0O operation to get the CPU immediately as an aid to response time.
Consider interactive text editors as an example. After each key stroke,
the editor is scheduled at a very high priority so that it can echo the
character and then reblock waiting for the next key stroke. However,
the priority aging algorithm rapidly lowers a processes priority to its set
level if it does not immediately re-sleep after an I/O. Consider a system
with a load average value of 2.0 where the two jobs are rapidly sleep-
ing and waking. A CPU-bound Grid job sharing this system will get a
different fraction of the CPU than on a system in which both jobs in
the run queue are, themselves, CPU bound. In this latter case, the typ-
ical Unix scheduling algorithm degenerates into a round robin scheme.
Thus, the load average implies a performance impact on a scheduled job
that depends on the qualities of the other jobs that are running. This
information, even it were published on a job-by-job basis, is difficult
to interpret because it is the way in which jobs of different priorities
interact that ultimately defines how load affects scheduling.

As an alternative method, a Grid performance monitor can periodi-
cally load the resource it is monitoring and record the observed perfor-
mance response. This active approach has the advantage of disambiguat-
ing the relationship between a monitored quantity and performance im-

Performance Information Services for Computational Grids® 11

pact. Returning to the load average example, if a CPU monitor were to
simply run a CPU bound process periodically, it could record the uti-
lization that process enjoyed during each run. The fraction of wall-clock
time that the process occupied the CPU can be used as the inverse of
the slowdown caused by competing jobs on that system (e.g. a process
getting 20% utilization can be thought of as 5 times slower than if it had
received 100% utilization). The obvious difficulty with this approach is
that the monitor must completely load the resource in order to measure
it thereby leaving less resource available for actual computation.

There is an inherent tension between monitor accuracy and monitor
intrusiveness that must be considered when designing a Grid perfor-
mance sensor. The accuracy that active sensing makes possible must be
balanced against the amount of resource it consumes. If good passive
sensing techniques are available, it is sometimes possible to combine the
two methods through some form of automatic regression technique.

As part of the Network Weather Service (NWS) Grid monitoring in-
frastructure, we have implemented a CPU sensor that combines Unix
Load Average with active CPU probing. The sensor reads the 1 minute
Load Average value periodically, according to a parameter set when the
sensor is initialized. It also initiates a register-only CPU bound process
(called the CPU probe) with a much lower periodicity and records the
utilization that it experiences. The duration of the CPU probes exe-
cution is also a parameter. Anecdotally, we have found that a probe
duration of 1.5 seconds is typically enough to yield accurate results.

Next, the sensor converts Unix Load Average to a utilization estimate.
It assumes that the run queue will be serviced round-robin and that all
jobs are CPU bound hence an equal fraction of time will be given to each.
The sensor combines both the probe utilization and the Load Average
reading by automatically calculating a bias value. If, for example, the
utilization predicted by Load Average is 10% less than observed, the bias
is computed as +10. Should the Load Average over-estimate utilization,
the bias is negative.

The sensor reports as a measurement a utilization estimate that is
generated by biasing the load average with the last bias recorded. Since
load average is sampled much more frequently than the probe is run,
the intrusiveness is less than if only the probe were used. At the same
time, the probe captures some of the interaction between itself and other
contending jobs in the run queue.

Finally, the NWS CPU sensor controls the periodicity with which the
probe is executed based on the changing size of the bias. If the bias value
is fluctuating the sensor assumes that the load is highly fluctuating and
the CPU should be probed again in a relatively short period of time. If

12

Measured and Actual Available Time Slices
24-Hour Period
Passive Unix Load Average Sensor

100 - o QR e
.

Percentage of CPU Time
Slices Available
B
o
o :
<o
23
<o
howe

20 « Based on Load Average

o observed by application

Time of Day

Figure 1.8. A Comparison of Available CPU Cycles as Measured with Unix Load
Average to Actual Observed Occupancy Percentage

the bias is relatively stable, the probe frequency is decreased. Both the
maximum and minimum frequencies as well as the stability threshold
are configuration parameters to the sensor.

Figures 1.3 and 1.4 depict the effects of this sensing technique using
a workstation as an example. In Figure 1.3, the solid circles show the
percentage of available CPU time slices (over a 10 second period) that are
measured by Unix Load Average. The y—axis values are measurements,
and the z — azis values show time of day. One measurement occurs at
every 10 second interval, and the total trace covers a 24-hour period.
This particular workstation was being used by a graduate student at
the time to finish her Ph.D. thesis, making the load variation (however
non-synthetic) potentially atypical.

To convert a load average measurement to an available occupancy
percentage, the NWS passive sensor uses the formula

load_avg_available_cpu = 100.0/(load_average + 1.0) (1.1)

where the load average covers 1 minute. Again, based on the assumption
that all processes in the run queue have equal priority, the available
fraction of CPU time for a new process is 1 divided by the number of
currently runnable processes plus an additional process. Multiplying by
100 simply converts this number into a percentage.

Diamond shapes (drawn in outline with a light-colored fill) show the
occupancy observed by a test program that occurs at less frequent in-
tervals (every 10 minutes) in the trace. When executed, the test pro-
gram spins in a tight loop for 30 seconds, measured in wall-clock time,
and records the user and system occupancy time during the execution.
The ratio of actual occupancy time to wall-clock time is the observed
availability fraction. Both the 10 minute interval, and the 30 second

Performance Information Services for Computational Grids® 13

Measured and Actual Available Time Slices
24-Hour Period
NWS CPU Sensor

100 4

@
o

20 « NWS CPU Sensor

Percentage of CPU Time
Slices Available

< observed by application
‘ ‘Tir‘ne‘of‘Da‘y‘ T
Figure 1.4. A Comparison of Available CPU Cycles as Measured with NWS CPU
Sensor to Actual Observed Occupancy Percentage

execution duration allow the smoothed load average value to “recover”
from the load introduced by the test program. During the measurement
period, the test program and the load average sensor were coordinated so
that a load average measurement was taken immediately before each test
program run, and both were assigned the same time stamp. Thus the
vertical distance between each light colored diamond and correspond-
ing solid circle in the figure shows graphically the measurement error
associated with each measurement.

Figure 1.4 shows the same accuracy comparison for the NWS CPU
sensor. In it, each solid circle represents the biased NWS sensor value
and, as in the previous figure, each light-colored diamond shows the oc-
cupancy observed by the test program. By learning and then applying a
bias value, the NWS sensor is better able to measure the true availability
experienced by the test application with little added intrusiveness.

More generally, however, this example illustrates the need for Grid
resource monitoring systems to capture measurement error. Many such
systems report the metrics that are available to users (e.g. Unix Load
Average) but few provide estimates of how those measurements trans-
late into observable application performance. For resource allocation
and scheduling purposes, the measurement error associated with passive
measurements is a useful and often overlooked quantity.

3.2 Intrusiveness versus Scalability

Another important design point concerns the trade-off between in-
trusiveness and scalability. Consider the problem of gathering periodic
end-to-end network probe information. The naive implementation fur-
nishes each sensor with a list of other sensors to contact within a Grid,

14

TCP/IP Performance Over
10 mb ethernet

T o

Time

Bandwidth (mb/s)
o = N W s~ OO,

Figure 1.5. TCP/IP Sensor Contention

and a periodicity. Each sensor operates on its own clock and with the
specified periodicity probes all of the other sensors.

In Figure 1.5 we show a network performance time series of the
TCP/IP performance observed between a pair of Unix hosts connected
via 10 megabit-per-second Ethernet. Each bandwidth reading is gen-
erated by timing a 64 kilobyte transfer using a TCP /IP socket with 32
kilobyte socket buffers. During the first half of the trace (the left side of
the figure) only one pair of hosts — a sender and a receiver — was prob-
ing the network. Midway through the trace, a second host pair began
to probe the network simultaneously. The loss of available bandwidth,
which is visually apparent from the trace, results from the interaction of
colliding network probes.

To produce a complete end-to-end picture of network performance
between N hosts, 2 * (N2 — N) such measurements would be required
(i.e. one in each direction and hosts do not probe themselves). If each
host uses its own local clock to determine when to probe the network,
the likelihood of probe contention goes up at least quadratically as the
Grid scales.

To prevent probe contention, the NWS end-to-end network sensor
uses a token-passing protocol to implement mutual exclusion between
“cliques” of hosts. Hosts within a specified clique pass the entire clique
list in a token. The NWS clique protocol implements a simplified leader
election scheme that manages token loss/recovery, and network parti-
tioning. If a token is lost because the host hold it fails, the other hosts
in the clique will time out and attempt to elect themselves leader by re-
generating and sending out a new token. Time stamps on the token are
used to resolve the possibility of multiple simultaneous time outs. When
a host encounters two different tokens (from two different leaders) it will

Performance Information Services for Computational Grids’ 15

UTK Host A.utk
Host B.utk

Hgst Dtk Host Cutk
UCsB

Host A.ucsb Host A.isi IsI

Host D.ucsb Host C.ucsb Host D.isi ~ Host C.isi

Figure 1.6. Example NWS Clique Hierarchy

“kill” the older one. This scheme also manages network partitioning.
If the network partitions, the hosts that are separated from the current
leader will elect a new leader on their side of the partition. When the
partition is resolved, the two tokens will once again circulate across the
entire host list, and one of them (the older one) will be annihilated. This
form of active replication makes the clique protocol robust to both host
and network failure.

To permit extensibility and scalability, sensors can participate in mul-
tiple cliques at the same time, and each clique can contain any number
of hosts greater than or equal to 2. Thus, the clique organization can
capture a variety of non-clique monitoring topologies if probe contention
is not a concern. For example, one common topology that many sites
wish to monitor is a “star” topology: one distinguished host connected
to a set of satellite hosts, without connectivity between the satellites. If
probe contention is not an issue, one clique consisting of a satellite node
and the central node can be created for each satellite node. Since the
central node participates in multiple cliques simultaneously, this orga-
nization implements the desired measurement topology. This, the NWS
clique abstraction can be used to implement other monitoring topologies
according to the needs of each individual installation.

To gain scalability, cliques can be organized into a hierarchy. At the
bottom level of the hierarchy are cliques of hosts. Each clique “pro-
motes” a distinguished representative to participate in a higher-level
clique, forming a tree. Consider the example shown in Figure 1.6. In
it, five hosts (labeled A, B, C, D, and E) are configured into “base”
cliques at each of three sites: UCSB, ISI, and UTK. One distinguished
host from each site participates in a higher-level clique that captures
inter-site connectivity.

16

Notice that this organization can capture the full N? matrix of con-
nectivity if the inter-site connectivity performance is similar for all nodes
communicating between sites. For example, if UCSB is the University of
California in Santa Barbara, and UTK is the University of Tennessee, in
Knoxville, any host in the UCSB clique communicating with any host in
the UTK clique will likely observe the same network performance since
much of the network between the two will be shared. That is, since vir-
tually all UCSB-to-UTK network traffic will traverse common network
elements, a single UCSB-UTK pair can measure the inter-site connec-
tivity. By using the inter-site measurements of the distinguished pair in
the higher-level clique in place of the missing measurements, the NWS
can construct a full N? picture without conducting N? measurements.
At the same time, measurements within each clique will not contend.

4. Forecasting

The problem of determining a resource allocation or schedule that
maximizes some objective function is inherently a predictive one. When
a decision is made about the resources to allocate, some assumption
about the future behavior of the resources or application is either im-
plicitly or explicitly included. For example, if a large MPI program is to
be assign to a parallel machine because of the processor speeds, mem-
ory capacity, and interconnect speed, the scheduler or resource allocator
making that decision is making an assumption of what the processor
speeds, memory availability, and interconnect speed will be when the
MPI program runs. Users of space-shared parallel machines often as-
sume that these predictions are easy to make statically. Interconnect
speed, however, may be influenced by parallel jobs running in other par-
titions, so even in traditional parallel computing settings, predictions of
dynamically changing behavior may be required.

In Grid settings, however, where resources are federated and intercon-
nected by shared networks, the available resource performance can fluc-
tuate dramatically. The same scheduling decisions based on predictions
of future resource performance are necessary if application are to obtain
the performance levels desired by their users. Therefore, some method-
ology is required to make forecasts of future performance levels that
upon which scheduling decisions can be based. Note that even though
we have outlined the need for forecasting explicitly, all Grid users go
through this activity either explicitly or implicitly. When a user chooses
a particular data repository, for example, because it is connected to a
“faster” network, he or she is making the prediction that the network
will be faster when it is used to access the user’s data. Most often this

Performance Information Services for Computational Grids® 17

forecast is based on past experience with the resource. The NWS in-
cludes statistical methods that attempt to mechanize and automate the
forecasting process for the user based on similar historical experience.

4.1 The NWS Non-Parametric Forecasting
Method

The principle behind the NWS forecasting technique is that the best
forecasting technique amongst a number of available options can be de-
termined from past accuracy. FEach forecasting method is configured
into the system with its own parameters. It must be able to generate,
on demand, a prediction based on a previous history of measurements
and forecasts. That is, for each forecasting method f at measurement
time £,

predictiony(t) = METHODj(history;(t)) (1.2)
where
predictiony(t) = the predicted value made by method f for the mea-
surement value at ¢+ 1,
historys(t) = a finite history of measurements, forecasts, and fore-

cast errors generated previously to time ¢ using
method f, and

METHOD; = forecasting method f.

Each method is presented with a history of previous measurements (rep-
resented as a time series) and maintains its own history of previous pre-
dictions and accuracy information. In particular,

errs(t) = value(t) — predictions(t — 1) (1.3)

is the error residual associated with a measurement value(t) taken at
time ¢ and a prediction of that measurement generated by method f
generated at time ¢ — 1.

The primary forecasters are able to produce a forecast based on time-
series data and some set of parameters. The forecaster interface is gen-
eral enough to accept a variety of forecasting techniques. Because the
autocorrelation structure of many performance series is complex, and be-
cause series stationarity is unlikely, a large set of fast, simple predictors
that can be constantly re-evaluated is the most effective configuration.

The primary techniques to produce forecasts include mean-based and
median-based methods for producing completely non-parametric fore-
casts. Based on the observation that more recent data is often more in-
dicative of current conditions, the primary forecasters make use of vary-
ing amounts of history using “sliding window” techniques. In this same

18

spirit exponential smoothing techniques, parameterized by the amount
of gain, are used to produce forecasts as well. Each of these forecasting
modules accepts data as a time-series and computes a forecast from that
data and any parameters that the module accepts.

4.2 Secondary Forecasters: Dynamic Predictor
Selection

The NWS operates all of the primary forecasters (and their various
parameterizations) simultaneously at the time a forecast is requested
through the API. It then uses the error measure calculated in Equa-
tion 1.3 to produce an overall fitness metric for each method. The
method exhibiting the lowest cumulative error at time ¢ is used to gen-
erate a forecast for the measurement at time ¢ + 1 and that forecast is
recorded as the “winning” primary forecast. The NWS conducts two
such error tournaments for each forecast: one based on the mean square
error and one based on the mean absolute error.

MSE(t) i (erry(i (1.4)
z:O
and the mean absolute prediction error
1 &
MPE(t) = = 3" |(errs () (L5)

We then define

MIN_MSE(t) = predictorg(t) if MSE¢(t) is the minimum over all

methods at time ¢
(1.6)

and

MIN_MAE(t) = predictory(t) if MAE(t) is the minimum over all

methods at time t.
(1.7)

That is, at time ¢, the method yielding the lowest mean square prediction
error is recorded as a forecast of the next measurement by MIN_MSE.
Similarly, the forecasting method at time ¢ yielding the lowest overall
mean absolute prediction error becomes the MIN_M AE forecast of the
next measurement.

Both of these error metrics use the cumulative error spanning the
entire history available from the series. In an attempt to address the
possibility that the series is non-stationary, the system also maintains
error-minimum predictors where the error is recorded over a limited

Performance Information Services for Computational Grids’ 19

previous history. The goal of this approach is to prevent error recordings
that span a change point in the series from polluting the more recent
error performance of each predictor. More formally

MIN_MSEw (t,w) = predictory(t) if MSE;(t) is the minimum over
all methods at time ¢ for the

most recent w measurements
(1.8)

and

MIN_MAEyy (t,w) = predictory(t) if M AEf(t) is the minimum over
all methods at time ¢ for the
most recent w measurements

(1.9)

where w is a fixed window of previous measurements.

4.3 The NWS Forecast

Finally, the NWS forecast that is generated on demand is the one
that “wins” an error tournament at time ¢ for the set of primary and
secondary forecasters described in this section. That is

NWS_MSE(t) = predictory(t) if MSEf(t) is the minimum over all
primary and secondary methods at

time ¢
(1.10)

and

NWS_MAEw(t) = predictory(t) if MAE(t) is the minimum over
all primary and secondary

methods at time ¢.
(1.11)

Table 1.1 summarizes the primary and secondary methods that are
the NWS uses for analysis. The NWS combines these methods to pro-
duce an NWS_MSE and NWS_M AFE forecast for each value in each
series presented to the forecasting subsystem. Because many of the
primary forecasters can be implemented using computationally efficient
algorithms, the overall execution cost of computing the final NWS fore-
casts is low. For example, on a 750 megahertz Pentium III laptop, each
NWS_MSE and NWS_M AFE requires 161 microseconds to compute.

Table 1.1 summarizes the primary and secondary methods that are
the NWS uses for analysis.

5. Conclusions, Current Status, Future Work

The heterogeneous and dynamic nature of Grid resource performance
makes effective resource allocation and scheduling critical to application

20

|| Predictor Description Parameters

LAST last measurement
RUN_AVG running average
EXPsu exponential smoothing g=0.05
EXPsy exponential smoothing g=0.10
EXPsy exponential smoothing g=0.15
EXPsy exponential smoothing g=10.20
EXPsuy exponential smoothing g=0.30
EXPsy exponential smoothing g=0.40
EXPsy exponential smoothing g=10.50
EXPsy exponential smoothing g=0.75
EXPsy exponential smoothing g=10.90
EXPsyT exponential smooth+trend g = 0.05,tg = 0.001
EXPsur exponential smooth+trend g =0.10,tg = 0.001
EXPsyr exponential smooth+trend g=0.15,tg = 0.001
EXPsyr exponential smooth+trend g =0.20,tg = 0.001
MEDIAN median filter K =31
MEDIAN median filter K=5
SW_AVG sliding window avg. K =31
SW_AVG sliding window avg. K=5
TRIM_MEAN | a-trimmed mean K=3l,a=0.3
TRIM_MEAN | a-trimmed mean K=51,a=0.3
ADAPT_MED | adaptive window median maz = 21, min =5
ADAPT_MED | adaptive window median max = 51, min = 21
MIN_MSE adaptive minimum MSE
MIN_MAE adaptive minimum MAE
MIN_MSEw | windowed adaptive minimum MSE | w=1
MIN_MAEw | windowed adaptive minimum MAE | w=1
MIN_MSEw | windowed adaptive minimum MSE | w =15
MIN_MAEw | windowed adaptive minimum MAE | w =
MIN_MSEw | windowed adaptive minimum MSE | w =10
MIN_MAEw | windowed adaptive minimum MAE | w =10
MIN_MSEw | windowed adaptive minimum MSE | w = 30
MIN_MAEw | windowed adaptive minimum MAE | w = 30
MIN_MSEw | windowed adaptive minimum MSE | w = 50
MIN_MAEw | windowed adaptive minimum MAE | w = 50
MIN_MSEw | windowed adaptive minimum MSE | w = 100
MIN_MAEw | windowed adaptive minimum MAE | w = 100

Table 1.1. Summary of Forecasting Methods

Performance Information Services for Computational Grids'® 21

performance. The basis for these critical scheduling functionalities is is
a predictive capability that captures future expected resource behavior.
Typically, Grid users and schedulers will use the immediate performance
history (the last observed value or a running average) to make an implicit
prediction of future performance. However, there are several important
ways in which such an ad hoc methodology can be improved.

To be truly effective, the performance gathering system must be ro-
bust, portable, and non-intrusive. Simply relying on available resource
performance measurements, or building naive probing mechanisms can
result in additional resource contention and a substantial loss of ap-
plication performance. Moreover, by carefully considering measurement
error, it is possible to automatically and adaptively balance the accuracy
of explicit resource probing with the non-intrusiveness of passive mea-
surement. Similarly, overhead introduced by the performance gathering
system must be explicitly controlled, particularly if probes can contend
for resources. The ability to implement this control in a way that scales
with the number of resources requires an effective system architecture
for the performance monitoring system.

By using fast, robust time-series techniques, and running tabula-
tions of forecast error, it is possible to improve the accuracy of perfor-
mance predictions with minimal computational complexity. In addition
to point-valued predictions, these same adaptive techniques can gener-
ate empirical confidence intervals and automatic resource classifications
thereby improving scheduler design and scalability.

Thus, effective support for dynamic resource allocation and scheduling
requires an architecture, a set of analysis techniques, and an implemen-
tation strategy that combine to meet the demands of the Grid paradigm.
The Network Weather Service has been developed with these realizations
in mind. It is a robust, portable, and adaptive distributed system for
gathering historical performance data, making on-line forecasts from the
data it gathers, and disseminating the values it collects.

5.1 Status

Currently, the NWS is available as a released and supported Grid
middleware system from the National partnership for Advanced Com-
putational Infrastructure (NPACI) and from the National Science Foun-
dation’s Middleware Initiative (NMI) public distribution. These dis-
tributions include portable CPU, TCP/IP socket sensors, a non-paged
memory sensor for Linux systems, and support for C, Unix, HTML,
and LDAP interfaces (the latter via a caching proxy). In addition, the
NWS team distributes a non-supported version with additional proto-

22

type functionalities that have yet to make it into public release. At the
time of this writing, the working prototypes include an NFS probing file
system sensor, a portable non-paged memory sensor, an I/O sensor, and
a senor that monitors system availability. There is also a prototype Open
Grid Systems Architecture (phy,) interface and a Microsoft .NET/C#
implementation as well.

5.2 Future Work

NWS development will expand the system’s utility in three ways.
First, we are investigating new statistical techniques that enable more
accurate predictions than the system currently generates. While the
NWS forecasts are able to generate useful predictions from difficult se-
ries, the optimal postcast measures indicate that more accurate forecasts
are still possible. We are also studying ways to predict performance char-
acteristics that do not conform well to the time series model. Periodic
measurement is difficult to ensure in all settings and a key feature of the
NWS is its ability to cover the space of Grid forecasting needs. Secondly,
we are exploring new reporting and data management strategies such as
caching OGSA proxies and relational data archives. These new data
delivery systems are needed to support an expanding user community,
some of whom wish to use the NWS for statistical modeling as well as
resource allocation. Finally, we are considering new architectural fea-
tures that will enable the system to serve work in peer-to-peer settings
where resource availability and dynamism are even more prevalent than
in a Grid context.

For Grid resource allocation and scheduling, however, the NWS imple-
ments the functionalities that are necessary to achieve tenets of the Grid
computing paradigm (Foster and Kesselman, 1998) with the efficiency
that application users demand. While we have outlined the requirements
for Grid performance data management in terms of the NWS design, we
believe that these requirements are fundamental to the Grid itself. As
such, any truly effective resource allocation and scheduling system will
need the functionality that we have described herein, independent of the
way in which the NWS implements this functionality. Thus, for the Grid
to be a success, effective forecasts of resource performance upon which
scheduling and allocation decisions will be made, are critical.

References

The physiology of the grid: An open grid services architecture for dis-
tributed systems integration. http://www.gridforum.org/ogsa-wg/.
Berman, F., Chien, A., Cooper, K., Dongarra, J., Foster, I., Dennis Gan-

non, L. J., Kennedy, K., Kesselman, C., Reed, D., Torczon, L., and
Wolski, R. (2001). The grads project: Software support for high-level
grid application development. International Journal of High-performance
Computing Applications, 15(4):XXX.

Berman, F., Wolski, R., Figueira, S., Schopf, J., and Shao, G. (1996).
Application-level scheduling on distributed heterogeneous networks.
In Proceedings of Supercomputing’96. (Pittsburgh).

Crovella, M. and Bestavros, A. (1997). Self-similarity in world wide web
traffic: Evidence and possible causes. IEEE/ACM Transactions on
Networking, 5:XXX.

Czajkowski, K., Fitzgerald, S., Foster, 1., and Kesselman, C. (2001). Grid
information services for distributed resource sharing. In Proceedings
of the 10th IEEE 5’gmposium on High- Performance Distributed Com-
puting.

Foster, I. and Kesselman, C., editors (1998). The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann Publishers, Inc.
Gribble, S. D., Manku, G. S., Roselli, D., Brewer, E. A., Gibson, T. J.,
and Miller, E. L. (1998). Self-similarity in file systems. In Proceedings

of SIGMETRICS ’98.

Harchol-Balter, M. (1999). The effect of heavy-tailed job size distribu-
tions on computer system design. In Proceedings of ASA-IMS Con-
ference on Applications of Heavy Tailed Distributions in FEconomics,
Engineering and Statistics.

Harchol-Balter, M. and Downey, A. (1996). Exploiting process lifetime
distributions for dynamic load balancing. In Proceedings of the 1996
ACM Sigmetrics Conference on Measurement and Modeling of Com-
puter Systems.

24

Petitet, A., Blackford, S., Dongarra, J., Ellis, B., Fagg, G., Roche, K.,
and Vadhiyar., S. (2001). Numerical libraries and the grid. In Pro-
ceedings of IEEE SC’01 Conference on High-performance Computing.

Ripeanu, M., Iamnitchi, A., and Foster., I. (2001). Cactus application:
Performance predictions in a grid environment. In Proceedings of Fu-
ropean Conference on Parallel Computing (EuroPar).

Spring, N. and Wolski., R. (1998). Application level scheduling: Gene
sequence library comparison. In Proceedings of ACM International
Conference on Supercomputing.

Wolski, R., Spring, N., and Hayes, J. (1999). The network weather ser-
vice: A distributed resource performance forecasting service for meta-
computing. Future Generation Computer Systems, 15(5-6).

