
Predicting the CPU Availability
of Time-shared Unix Systems on the Computational Grid

�

Rich Wolski
�

, Neil Spring
�

, and Jim Hayes
�

Abstract

In this paper we focus on the problem of making short
and medium term forecasts of CPU availability on time-
shared Unix systems. We evaluate the accuracy with which
availability can be measured using Unix load average, the
Unix utility vmstat, and the Network Weather Service
CPU sensor that uses both. We also examine the autocor-
relation between successive CPU measurements to deter-
mine their degree of self-similarity. While our observations
show a long-range autocorrelation dependence, we demon-
strate how this dependence manifests itself in the short and
medium term predictability of the CPU resources in our
study.

1 Introduction

Improvements in network technology have made the dis-
tributed execution of performance-starved applications fea-
sible. High-bandwidth, low-latency local-area networks
form the basis of low-cost distributed systems such as the
HPVM [?], the Berkeley NOW [?], and various Beowulf [?]
configurations. Similarly, common carrier support for high-
performance wide-area networking is fueling an interest
in aggregating geographically dispersed and independently
managed computers. These large-scale metacomputers are
capable of delivering greater execution performance to an
application than is available at any one of their constituent
sites [?]. Moreover, performance-oriented distributed soft-
ware infrastructures such as Globus [?], Legion [?], Con-
dor [?], NetSolve [?], and HPJava [?] are attempting to knit
vast collections of machines into computational grids [?]
from which compute cycles can be obtained in the way elec-
trical power is obtained from an electrical power utility.

One vexing quality of these ensemble systems is that

�
Supported by NSF grant ASC-9701333 and Advanced Research

Projects Agency/ITO under contract #N66001-97-C-8531.�
email: rich@cs.utk.edu�
email: nspring@cs.washington.edu�
email: jhayes@cs.ucsd.edu

their performance characteristics vary dynamically. In par-
ticular, it is often economically infeasible to dedicate a large
collection of machines and networks to a single application,
particularly if those resources belong to separate organiza-
tions. Resources, therefore, must be shared, and the con-
tention that results from this sharing causes the deliverable
performance to vary over time. To make the best use of the
resources that are at hand, an application scheduler (be it a
program or a human being) must make a prediction of what
performance will be available from each.

In this paper, we examine the problem of predicting
available CPU performance on Unix time-shared systems
for the purpose of building dynamic schedulers. In this vein,
the contributions it makes are:

� an exposition of the measurement error associated
with popular Unix load measurement facilities with re-
spect to estimating the available CPU time a process
can obtain,

� a study of one-step-ahead forecasting performance
obtained by the Network Weather Service [?, ?] (a
distributed, on-line performance forecasting system)
when applied to CPU availability measurements,

� an analysis of this forecasting performance in terms of
the autocorrelation present between consecutive mea-
surements of CPU availability, and,

� verification of this analysis through its application to
longer-term forecasting of CPU availability.

Our results are somewhat surprising in that they demon-
strate the possibility of making short and medium term pre-
dictions of available CPU performance despite the presence
of long-range autocorrelation and potential self-similarity.
Since chaotic systems typically exhibit self-similar perfor-
mance characteristics, self-similarity is often interpreted as
an indication of unpredictability. The predictions we ob-
tained, however, exhibited a mean absolute error of less than
10%, typically making them accurate enough for use in dy-
namic process scheduling.

In the next section (Section ??), we detail the accuracy
obtained by three performance measurement methodologies

when applied to a collection of compute servers and work-
stations located in the U.C. San Diego Computer Science
and Engineering Department. Section ?? briefly describes
the Network Weather Service (NWS) [?, ?] – a distributed
performance forecasting system designed for use by dy-
namic schedulers. The NWS treats measurement histories
as time series and uses simple statistical techniques to make
short-term forecasts. Section ?? also presents the analy-
sis the forecasting errors generated by the NWS forecasting
system for the resources we monitored in this study. Finally,
we conclude with a discussion of these results in the con-
text of dynamic scheduling for metacomputing and compu-
tational grid systems, and point to future research directions
in Section ??.

2 Measurements and measurement error

For dynamic process scheduling, the goal of CPU pre-
diction is to gauge the degree to which a process can be ex-
pected to occupy a processor over some fixed time interval.
For example, if “50% of the CPU” is available from a time-
shared CPU, a process should be able to obtain 50% of the
time-slices over some time interval. Typically, the availabil-
ity percentage is used as an expansion factor [?, ?, ?, ?] to
determine the potential execution time of a process. If only
50% of the time-slices are available, for example, a process
is expected to take twice as long to execute as it would if the
CPU were completely unloaded1. We have used CPU avail-
ability to successfully schedule parallel programs in shared
distributed environments [?, ?]. Other scheduling systems
such as Prophet [?], Winner [?], and MARS [?] use Unix
load average to accomplish the same purpose.

In this section, we detail the error that we observed
while measuring CPU availability. We report results gath-
ered by monitoring a collection of workstations and com-
pute servers in the Computer Science and Engineering De-
partment at UCSD. We used the CPU monitoring facilities
currently implemented as part of the Network Weather Ser-
vice [?]. Each series of measurements spans a 24 hour pe-
riod of “production” use during August of 1998. Despite
the usual summertime hiatus from classwork, the machines
in this study experienced a wide range of loads as many of
the graduate students took the opportunity to devote them-
selves to research that had been neglected during the school
year. As such, we believe that the data is a representative
sample of the departmental load behavior.

1This relationship assumes that the execution interval is sufficiently
large with respect to the length of a time-slice so that possible truncation
and round-off errors are insignificant.

2.1 Measurement methods

For each system, we use the NWS CPU monitor to pe-
riodically generate three separate measurements of current
CPU availability. The first is based on the Unix load av-
erage metric which is a one-minute smoothed average of
run queue length. Almost all Unix systems gather and re-
port load average values, although the smoothing factor and
sampling rates vary across implementations. The NWS sen-
sor uses the utility uptime to obtain a load average read-
ing without special access privileges2. Using a load average
measurement, we compute the available CPU percentage as

�����������
	���� ������������ ��������� "! #$&% �(' ��)*��+ ����,�- "! #
. � /#�#�0

(1)
indicating the percentage of CPU time that would be avail-
able to a newly created process. Fearing load average
to be insensitive to short-term load variability, we imple-
mented a second measurement technique based on the util-
ity vmstat which provides periodically updated readings
of CPU �(+���� time, consumed �213�/4 time, and consumed1/5
1/67�38 time, presented as percentages.

�������(�9�
	���� 7��� ��:<;�=���= ���>��+����?- �21/�34
4��@-

-BA �
1/5
1/67�38
4��C-

.
(2)

where 4�� is a smoothed average of the number of running
processes over the previous set of measurements, and A is
a weighting factor equal to �21/�34 time. The rationale is that
a process is entitled to the current idle time, and a fair share
of the user and system time. However, if a machine is used
as a network gateway (as was the case at one time in the
UCSD CSE Department) user-level processes may be de-
nied CPU time as the kernel services network-level packet
interrupts. In our experience, the percentage of system time
that is shared fairly is directly proportional to the percentage
of user time, hence the A factor.

Lastly, we implemented a hybrid sensor that combines
Unix load average and vmstatmeasurements with a small
probe process. The probe process occupies the CPU for a
short period of time (currently 1.5 seconds) and reports the
ratio of the CPU time it used to the wall-clock time that
passed as a measure of the availability it experienced. The
hybrid runs its probe process much less frequently than it
measures �����������
	��9� ��D� ������� ����� and �����������
	��9� ��D� ��:<;�=���=
as these quantities may be obtained much less intrusively.
The method (vmstat or load average) that reports the
CPU availability measure closest to that experienced by the
probe is chosen to generate all measurements until the next

2The current implementation of the NWS runs completely without priv-
ileged access, both to reduce the possibility of breeching site security and
to provide data that is representative of the performance an “average” user
can obtain. For a more complete account of the portability and implemen-
tation issues associated with the NWS, see [?].

probe is run. In the experiments described in this paper,
the NWS hybrid sensor calculated �����������
	���� ���� ��� � � �����
and �����������
	��9� ��D����: ;(=���= every 10 seconds (6 times per
minute), and probed once per minute. The method that was
most accurate with respect to the probe was used for the
subsequent 5 measurements each minute.

We are interested in the deliverable performance avail-
able for a full-priority Unix process that occupies the CPU
for an appreciable amount of time. However, both Unix
load average and the vmstat method are unable to sense
the presence of lower priority or “nice” processes. It is
our experience that users frequently run low-priority, back-
ground processes, particularly on shared resources to try
and soak up any unused CPU time without arousing the
ire of the departmental system administrators. To over-
come this problem, the hybrid sensor uses the difference
between the probe process and the most accurate method
as a bias value and adjusts all subsequent measurements by
this value. The assumption is that the probe will not be af-
fected by lower-priority processes and hence will be able to
bias the skewed measurements derived from the Unix load
average or vmstat.

The advantage of using load average, vmstat, and the
NWS-hybrid to derive measurements of CPU availability
is that they are relatively non-intrusive. Both vmstat
and uptime read protected Unix devices to access perfor-
mance statistics maintained in the kernel. Presumably, these
are not heavy-weight operations in most Unix implementa-
tions. Indeed, we notice little difference in CPU availability
if two instances of either method are executing, which in-
dicates that the load they generate is not measurable given
their relative sensitivities. The NWS-hybrid, however, uses
a short term spinning process which (in this study) executes
once per minute. We have determined though experimen-
tation that the shortest probe duration that is useful is 1.5
seconds. The overhead, then is �! ����� # seconds or 2.5%.

2.2 Measurement accuracy

To determine the accuracy of these three methods, we
compare the readings they generate with the percentage of
CPU cycles obtained by an independent ten-second, CPU-
bound process which we will refer to as the test process.
The test process executes and then reports the ratio of CPU
time it received (obtained through the getrusage() sys-
tem call) to total execution time (measured in wall-clock
time) as the percentage of the CPU it was able to obtain.
Measurement error, then, is defined as
� � ��1/��4*�/8 � % 6�� 4 4) 4 = � (3)
� � � �
1/�D4*�38 � % 6 =
	�� �*1/6��4*)*��*131�� 	 1/�34 ����6���) % = �

where
� � �
1/�D4*�38 � % 6 = is the measurement of CPU avail-

ability taken at time 6 , and � �*1/6��4)* � 1 1�� 	 1/�34 ����6���) % =

Host Name Load Average vmstat NWS Hybrid

thing2 9.0% 11.2% 11.1%
thing1 6.4% 7.5% 6.1%
conundrum 34.1% 32.7% 4.4%
beowulf 6.3% 6.5% 7.5%
gremlin 4.0% 3.2% 4.1%
kongo 12.8% 12.9% 41.3%

Table 1. Mean Absolute Measurement Errors during
a 24-hour, mid-week period

is the availability observed by a test process at time 6 . To
avoid possible contention between the sensors and the test-
process, we use the measurement taken most immediately
before the test process executes as

� � �
1/�D4*�38 � % 6 = .
Table ?? details the measurement errors we observed for

different hosts at UCSD. Each column shows the mean ab-
solute difference between the CPU availability percentage
quoted by the corresponding measurement method, and the
availability percentage observed by the test process.

The hosts thing1, thing2, and conundrum are interac-
tive workstations used for research by graduate students,
while beowulf, gremlin, and kongo are general departmental
servers available to faculty and students. Most of the errors
are reasonably small and fairly equivalent across methods,
given the dynamic nature of the systems we monitored. An
error of 10% or less, for example, is considered useful for
scheduling [?]. The notable exceptions are conundrum and
kongo. On conundrum, a background process was running
with Unix nice priority of 19 in an attempt to use other-
wise unused CPU cycles. However, the test process runs
with full priority, pre-empting the background process. The
Unix load average and vmstat methods do not consider
process priority, however, and record the system as being
busy. The probe bias used by the NWS-hybrid method,
however, correctly recognizes the priority difference and
yields a more accurate measurement.

On kongo the NWS-hybrid performs dismally. During
the monitor period, a long-running, full-priority process
was executing on kongo. Typical Unix systems increase
the rate at which process priority degrades while execut-
ing as a function of their CPU occupancy. A long-running
process, therefore, will be temporarily evicted in favor of a
short-running, full-priority process like the probe used by
the NWS-hybrid sensor. The 1.5 second execution time of
the probe is not long enough for it to contend with the long-
running process, so the NWS-hybrid method does not sense
its presence. The ten-second test process, however, executes
long enough to share the processor with the resident long-
running process and, consequently, receives a fraction better
measured by both load average and vmstat. It is possible
to increase the probe time of the NWS-hybrid sensor, with
a corresponding increase in intrusiveness. We are working

on less intrusive techniques to address this problem.
For the purposes of predicting availability, the measure-

ment error we observe serves as a upper bound on the accu-
racy of our forecasts. That is, we do not expect to forecast
with greater accuracy that we can measure. In general, at
UCSD, the measurement errors we can obtain from these
three methodologies are small enough so that measurements
prove useful for scheduling. However, obtaining an accu-
rate measure is complicated by the process priority mech-
anisms employed by Unix, and care must be taken when
choosing a measurement methodology.

3 Forecasting

Forecasting, in this setting, is the prediction of the CPU
availability that the test process will observe. We treat his-
tories of measurements generated by the each of the meth-
ods described in Section ?? as statistical time series. In this
section, we discuss our methodology for using these time
series to predict CPU availability, then compare the pre-
dictions generated with both subsequent measurements and
subsequent test process observations to understand the error
involved in the processes of prediction and forecasting. In
Section ?? we discuss autoregressive and self-similar char-
acteristics of these time series, and describe the effect of
these characteristics on the accuracy of the predictions. In
Section ?? we discuss the implications these characteris-
tics have on predictions made for a longer time frame, and
present additional results to show the increase in prediction
error.

In previous work describing the NWS [?, ?, ?], we have
proposed a methodology for making one-step-ahead predic-
tions using computationally inexpensive time-series analy-
sis techniques. Rather than use a single forecasting model,
the NWS applies a collection of forecasting techniques to
each series, and dynamically chooses the one that has been
most accurate over the recent set of measurements. This
method of dynamically identifying a forecasting model has
been shown to yield forecasts that are equivalent to, or
slightly better than, the best forecaster in the set [?]. To
be efficient, each of the techniques must be relatively cheap
to compute. We have borrowed heavily from methodologies
used by the digital signal processing community [?] in our
implementation. A complete description of each method
and its relative advantages is provided in [?], [?], and [?].
Briefly summarized, each method uses a “sliding window”
over previous measurements to compute a one-step-ahead
forecast based either on some estimate of the mean or me-
dian of those measurements.

To evaluate the accuracy of each forecast, we examine
two forms of error. The first, given by Equation ??, com-
pares a forecast for a specific time frame to the test process
observation that is eventually made in that time frame. We

Host Name Load Average vmstat NWS Hybrid
thing2 8.9% (9.0%) 8.6% (11%) 10% (11%)
thing1 6.4% (6.4%) 7.0% (7.5%) 5.3% (6.1%)
conundrum 34% (34%) 32% (32%) 4.3% (4.4%)
beowulf 6.2% (6.3%) 6.8% (6.5%) 6.9% (7.5%)
gremlin 4.0% (4.0%) 2.6% (3.2%) 3.0% (4.1%)
kongo 12% (12%) 12% (12%) 41% (41%)

Table 2. Mean True Forecasting Errors and Corre-
sponding Measurement Errors (in parentheses) for
UCSD Hosts during a 24-hour, mid-week period

term this form of error the true forecasting error as it rep-
resents the actual error a scheduler would observe. Note
that, in the one-step-ahead case, the time at which the fore-
cast is generated occurs immediately before the time frame
in which the test process runs, hence the subscripts on the
terms

�) 4*� ��
1/6�=���� and � � 1/6��4*)*��*1 1 � 	�13�34 ����6���) % = re-
spectively. To distinguish the amount of error that results
from measurement inaccuracy from error introduced by pre-
diction, we also compute the one step ahead prediction er-
ror as given by Equation ??. This error represents the in-
accuracy in predicting the next measurement that will be
gathered in a particular series capturing the predictability of
the series.

� 4 � � �) 4*� ��
1/6�� % , � 4 4*) 4 = � (4)
� �) 4*�3 ��1/6�=���� 	�� � 1/6 �4*)*��*1 1�� 	�13�343����6���) % = �

) % � 1/67��� ����� ��+ ��4*� +"���6���) % �34 4) 4 � (5)
� �) 4*� ��
1/6 =���� 	 � � �
1 ��4*�38 � % 6 = �

where
�) 4*�3 ��1/6 =���� is the NWS forecast of CPU

availability made at time 6 	 for time 6 and
� �*1/6 �4*)*��*1 1 � 	�13�34 ����6���) % = and

� � ��1/��4*�/8 � % 6�=
are defined in Section ??.

Table ?? shows both the mean true forecasting error in
boldface type and the mean measurement error (defined in
Equation ?? and presented in Table ??) in parentheses.If the
true forecasting errors and measurement errors are approx-
imately the same, the process of predicting what the next
measurement will be is not introducing much error. Ta-
ble ?? illustrates this observation further. In it, we show
the mean one-step-ahead prediction error, using the NWS
forecasting techniques, for each measurement method on
each of the systems that we studied. On each of these sys-
tems, the one-step-ahead prediction error is less than 5%.
It is somewhat surprising that the one-step-ahead prediction
error does not contribute more to the overall inaccuracy as-
sociated with predicting the test process values.

The instances in which forecast accuracy is better than
measurement accuracy are curious. An analysis of the mea-
surement and forecasting residuals is inconclusive with re-
spect to the significance of this difference. Since the effect

Host Name Load Average vmstat NWS Hybrid

thing2 1.2% 4.9% 1.8%
thing1 1.7% 3.1% 2.8%
conundrum 0.4% 0.2% 0.2%
beowulf 1.8% 3.1% 3.5%
gremlin 1.0% 2.1% 2.0%
kongo 0.1% 0.1% 0.1%

Table 3. Mean Absolute One-step-ahead Prediction
Errors during a 24-hour, mid-week period

0

10

20

30

40

50

60

70

80

90

100

12:00 PM 12:00 PM12:00 AM
0

10

20

30

40

50

60

70

80

90

100

12:00 PM 12:00 PM12:00 AM

Figure 1. CPU Availability Measurements (using Unix
Load Average) for thing1 (left) and thing2 (right).

is generally small, however, we omit that analysis in favor of
brevity and make the less precise observation that measure-
ment and forecasting accuracy are approximately the same.

3.1 CPU autocorrelation and predictability

A plot of the autocorrelations as a function of previous
lags reveals that CPU availability changes slowly with re-
spect to time and hence can be predicted relatively accu-
rately in the short term. Figure ?? shows time series plots
of CPU availability measurements using Unix load average
taken from thing1 and thing2. In Figure ?? we show the
first 360 autocorrelations for each series.

From both the time series and the plot of the autocor-
relations, it is clear that events occurring even hours apart
are correlated. However, the slow rate of decay in the au-
tocorrelation function is suggestive of self-similarity, and
self-similarity is often a manifestation of an unpredictable,
chaotic series [?]. Recent studies of network packet traf-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2
4

4
7

7
0

9
3

1
1

6

1
3

9

1
6

2

1
8

5

2
0

8

2
3

1

2
5

4

2
7

7

3
0

0

3
2

3

3
4

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2
4

4
7

7
0

9
3

1
1

6

1
3

9

1
6

2

1
8

5

2
0

8

2
3

1

2
5

4

2
7

7

3
0

0

3
2

3

3
4

6

Figure 2. CPU Availability Autocorrelations using
Unix Load Average for thing1 (left) and thing2 (right).

H = 0.70

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5

Log10(d)

L
o

g
1

0
(R

(d
)/

S
(d

))

H = 0.70

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5

Log10(d)

L
o

g
1

0
(R

(d
)/

S
(d

))

Figure 3. Pox Plot of CPU Availability using Unix
Load average from thing1 (left) and thing2 (right)

fic [?], World-Wide-Web traffic [?], network protocol per-
formance [?], transmitted video traffic [?], and networked
file systems [?] all point to self-similarity as an inherent
property of modern distributed systems. Of particular in-
terest is the work by Dinda and O’Halloran [?] in which the
authors rigorously analyze Unix load average data from a
large number of computational settings. The focus of their
analysis is on the degree of self-similarity and long-range
autocorrelation present in a set of traces taken from a large
population of machines. In almost all cases, their work
shows that CPU load (for the cases that they examined) is
self-similar.

While there are several ways to characterize the de-
gree of self-similarity in a series, the most common tech-
niques estimate the Hurst parameter for the series. We de-
fer to the work of Mandelbrot, Taqqu, Willinger, Leland,
and Wilson [?, ?, ?], as well as the references cited in
the previous paragraph, for a thorough exposition of the
Hurst effect, its relationship to self-similarity, and various
techniques for Hurst parameter estimation. For the pur-
poses of determining self-similarity, though, it is enough
to show that the Hurst parameter

�
of a series is likely to

be between #�! � and �! # . To estimate
�

for the data we
gathered as part of this study, we use R/S analysis [?, ?]
and pox plots [?]. Briefly, for a given set of observa-
tions ��������� �
	��	 ! !�!�	 % . , with sample mean � � % .
and sample variance ��� � % . , the rescaled adjusted range
statistic or R/S statistic is calculated as � � % . � � � % . �� 8 ��' � #	 A � 	 A � 	 ! ! ! A��

. 	 8 � % � #	 A � 	 A � 	/!�! ! A��
.�� � � � % .

where A�� � ��� � -�� � - ! ! ! -���� . 	 � � � % . ����� � # . .
The expected value �

� � � % . � � � % .��� %"! for some some
constant as

%$# %
where

�
is the Hurst parame-

ter for the series. By partitioning the series of length &
into non-overlapping segments of length + , and calculating
� ��+ . � � ��+ . for each segment, as � �' + ' & .

we obtain(+ � &*) samples of � ��+ . � � ��+ . . Plotting ��)3, �,+�� � ��+ . � � ��+ . .
versus �9)3, �,+"��+ . for each of these samples yields a pox plot
for the series. Figure ?? shows pox plots of CPU availabil-
ity measurements using Unix load average for thing1 and
thing2 over a one-week long period.

The two dotted lines in each figure depict slopes of

! � and �! # . By inspection, any sort of “best fit” line for

this data is likely to have a slope greater that #�! � and less
than "! # , hence we can conclude that the Hurst parame-
ter

�
falls somewhere in this range. In the figures, we

show a least-squares regression line (solid) for the average��)3, �,+"� � ��+ . � � ��+ . . value for each value of ��)3, �,+��9+ . . The
slope of this line estimates the Hurst parameter as 0.70
for both thing1 and thing2 in the figure. In the second
column of Table ??, we give the Hurst parameter estima-
tions for each of the hosts in our study using this tech-
nique. The pervasiveness of these observations across our
set of experiments supports the previous work of Dinda and
O’Halloran. We, therefore, surmise that the CPU availabil-
ity exhibits long-range autocorrelation and is either self-
similar (as noted in [?]) or short-term self-similar as de-
scribed in [?].

3.2 Longer term prediction of CPU availability

Despite the long-range autocorrelation present in CPU
availability measurements, the data in Tables ?? and ??
show that one-step-ahead CPU availability is relatively pre-
dictable. The slowly decaying autocorrelation between
measurements means that recent history is often a good pre-
dictor of the short-term future. That is, self-similarity does
not imply short-term unpredictability.

Self-similarity does mean, however, that averaging val-
ues over successively larger time scales will not produce
time series which are dramatically smoother. For a self-
similar series � � 	 � � 	/!�! ! � � , with Hurst parameter

�
, and

aggregation level 8 , the averaged series � � :��
has variance� ��4���� � :�� .� �8 ���

	 � � 	�� � � as 8 # %
where� � :��

is the series � � :��� �
	���������������� 	���: 	 ��� � . In
other words, the variance of the average values of � � :��

de-
creases more slowly than the aggregation level 8 increases
as 8 # %

.
It is an estimate of average CPU availability (and not

a one-step-ahead prediction for the next 10 second time
frame) that is most useful to a scheduler, as process exe-
cution time may be span minutes, hours, or days. By the
relationship shown above, we would expect the variance as-
sociated with a prediction of the average availability over
interval 8 to be no worse than that for a one-step-ahead
prediction. Table ?? compares the variance of an aggre-
gated series � � :��

where 8 corresponds to a five-minute
interval with that of the original series for each of the hosts
in our study. Except for kongo and the NWS hybrid sen-
sor running on conundrum, the variance in each aggregated
series is lower, as expected3.

3The conundrum case is curious as it appears self-similar, but the vari-
ance increases as the series is aggregated. We are studying this case to de-
termine why this experiment defies the conventional analysis. The kongo
value for the NWS hybrid sensor, however, is due to the leading constant� in the expression ����� �"!$#&%�')(+* �-,/.�0 . Additional aggregation of this

Host Est. Load Average vmstat NWS Hybrid! orig. 300s orig. 300s orig. 300s

thing2 0.70 0.0348 0.0338 0.0431 0.0351 0.0321 0.0315
thing1 0.70 0.0081 0.0062 0.0103 0.0048 0.0147 0.0090
conund. 0.79 0.0002 0.0001 0.0003 0.0000 0.0006 0.0009
beowulf 0.82 0.0058 0.0039 0.0063 0.0019 0.0151 0.0057
gremlin 0.71 0.0038 0.0023 0.0034 0.0011 0.0032 0.0001
kongo 0.69 0.0001 0.0001 0.0001 0.0001 0.0004 0.0008

Table 4. Variance of Original Series and 5 Minute
Averages (in bold face)

Host Name Load Average vmstat NWS Hybrid

thing2 2.4% (1.2%) * 1.7% (4.9%) * 1.3% (1.8%)
thing1 4.9% (1.7%) 3.5% (3.1%) 3.9% (2.8%)
conundrum 0.7% (0.4%) 0.2% (0.2%) 0.3% (0.2%)
beowulf 3.4% (1.8%) * 2.3% (3.1%) 4.5% (3.5%)
gremlin 2.6% (1.0%) * 1.2% (2.1%) * 1.3% (2.0%)
kongo 0.2% (0.1%) 0.1% (0.1%) 0.2% (0.1%)

Table 5. Mean Absolute One-step-ahead Prediction
Errors for 5 Minutes Aggregated during a 24-hour,
mid-week period. Unaggregated error, from Table ??,
is parenthesized.

Note that the decrease in variance resulting from aggre-
gation does not necessarily imply that the aggregated se-
ries is more predictable. Table ?? shows the mean absolute
one-step-ahead prediction error (Equation ??) for each of
the aggregated series using the NWS forecasting methodol-
ogy. The one-step-ahead prediction for the aggregated se-
ries is typically less accurate than for the original series.
For the cases denoted by a * in the table, however, the ag-
gregated prediction is more accurate than the corresponding
one-step-ahead, 10 second, prediction. We hypothesize that
smoothing may be more effective for certain time frames
(aggregation levels) than for others. The prediction error,
therefore, may improve for these aggregation levels, and the
smoothed series may be predicted more accurately. This hy-
pothesis supports the similar observations made in [?] and
[?] regarding the smoothness of aggregated series. In gen-
eral, however, the improvement should be small and there
is no trend as a function of aggregation level that we can
detect.

To gauge the true forecasting error in the aggregated
case, we examine the difference between the forecasted
value and the the value observed by a test process. This
new test process runs for 5 minutes at a time, every 60 min-
utes. The new forecasted value is derived from the averaged
series �21 + , which is calculated as �21 += � 	�35476 � 374 �8� ����� 	�354761 +
for 6 varying from 1 to the number of entries in each trace,
counting by 30. Since we obtain a measurement every 10
seconds, each � 1 + value is an average the measurements
taken over five minutes. We then consider a one-step-ahead

series reveals a decreasing variance.

Host Name Load Average vmstat NWS Hybrid

thing2 6.6% 5.3% 6.5%
thing1 5.6% 5.2% 6.7%
conundrum 3.0% 7.4% 10.1%
beowulf 6.0% 11.4% 11.1%
gremlin 4.3% 2.9% 8.3%
kongo 2.1% 1.9% 28.5%

Table 6. Mean True Forecasting Errors for 5 Minute
Average CPU Availability

0

10

20

30

40

50

60

70

80

90

100

12:00 PM 12:00 PM12:00 AM
0

10

20

30

40

50

60

70

80

90

100

12:00 PM 12:00 PM12:00 AM

Figure 4. 5 Minute Aggregated CPU Availability using
Unix Load average from thing1 (left) and thing2 (right).

forecast of each � 1 + value as a prediction of the average
availability during the succeeding five minute period. To
calculate the aggregate true forecasting error, shown in Ta-
ble ??, we again use Equation ??, where 6 now represents 5
minutes. Again, a problem with the bias value used by the
NWS hybrid sensor causes the large discrepancy on kongo.

Note that we execute the test process only once every
60 minutes to prevent the load induced by them from driv-
ing away potential contention. We feared that a more fre-
quent execution of the test process might cause other users
to abandon the hosts we were monitoring in favor of more
lightly loaded alternatives.

Figure ?? shows the Unix load average CPU availability
measurements during the 24-hour experimental period for
hosts thing1 and thing2 as example traces. From this figure,
it is clear that the systems experienced load during the test
period (the apparent periodic signal results from the intru-
siveness of the 5 minute test process). Despite the variance
in each series, however, the average true forecasting error
for a program that occupies the CPU for five minutes is be-
tween 5% and 6%.

4 Conclusions and future work

From the data presented in Sections ?? and ?? we make
the following observations about the workstations and com-
putational servers in the UCSD Computer Science and En-
gineering department during the experimental period:

� Using conventional, non-privileged, Unix utilities the
greatest source of error in making a one-step-ahead

prediction of CPU availability comes from the process
of measuring the availability of the CPU and not from
predicting what the next measurement value will be.

� Traces of CPU availability exhibit long-range autocor-
relation structures and are potentially self-similar.

� Short-term (10 seconds) and medium-term (5 minute)
predictions of CPU availability (including all forms of
error) can be obtained that are, on the average, between
5% and 12%.

In the context of process scheduling, these results are en-
couraging and somewhat surprising. Often, researchers as-
sume that CPU loads vary to such a degree as to make dy-
namic scheduling difficult or impossible. While we cer-
tainly observe variation which is sometimes large, the se-
ries that are generated are fairly predictable. Moreover, the
measurement and forecast error combined are small enough
so that effective scheduling is possible. In [?], for exam-
ple, we used considerably less accurate measurements to
achieve performance gains that were better than 100% in
some cases.

Another important realization is that long-range autocor-
relation and self-similarity do not necessarily imply short-
term unpredictability. Much of the previous excellent anal-
ysis work has focused on identifying and explaining self-
similar performance behavior, particularly of networks. In
these domains, short-term predictability may not be as im-
portant as predicting the long-term. While it is true that
long-term predictions would be useful in a process schedul-
ing context, short-term predictability also has utility.

Lastly, our observations coincide with those made re-
cently by Dinda and O’Halloran [?] with respect to ob-
served autocorrelation structure and Unix load average
measurements. This is fortuitous since several large-scale
metacomputing systems [?, ?, ?] use Unix load average to
perceive system load. We extend this previous work by at-
tempting to quantify the measurement error inherent in us-
ing load average as a measure of CPU availability, and by
quantifying the effectiveness of the current NWS forecast-
ing techniques on this type of data.

In future studies, we wish to expand the types of re-
sources we consider to shared-memory multiprocessors,
and collections of workstations that are combined using
specialized networks (e.g. the Berkeley NOW [?]). We
will also extend our set of experimental subjects to include
workstations and computational servers in different produc-
tion environments.

