Implementing a Performance Forecasting System for
Metacomputing: The Network Weather Service*

Rich Wolski
Neil Spring
Chris Peterson'

July 10, 2002

Abstract

In this paper we describe the design and implementation of a system called the
Network Weather Service (NWS) that takes periodic measurements of deliverable
resource performance from distributed networked resources, and uses numerical mod-
els to dynamically generate forecasts of future performance levels. These performance
forecasts, along with measures of performance fluctuation (e.g. the mean square pre-
diction error) and forecast lifetime that the NWS generates, are made available to
schedulers and other resource management mechanisms at runtime so that they may
determine the quality-of-service that will be available from each resource.

We describe the architecture of the NWS and implementations that we have devel-
oped and are currently deploying for the Legion [13] and Globus/Nexus [7] metacom-
puting infrastructures. We also detail NWS forecasts of resource performance using
both the Legion and Globus/Nexus implementations. Our results show that simple
forecasting techniques substantially outperform measurements of current conditions
(commonly used to gauge resource availability and load) in terms of prediction accu-
racy. In addition, the techniques we have employed are almost as accurate as substan-
tially more complex modeling methods. We compare our techniques to a sophisticated
time-series analysis system in terms of forecasting accuracy and computational com-
plexity.

1 Introduction

Fast networks have made it possible to connect distributed, heterogeneous computing re-
sources to form a high performance computational platform, or metacomputer. While

*Supported by NSF grant ASC-9308900 and Advanced Research Projects Agency/ITO, Distributed Ob-
ject Computation Testbed, ARPA order No. D570, Issued by ESC/ENS under contract #F19628-96-C-0020.
Chris Peterson supported in part by ARPA/NCCOSC (Naval Command Control & Ocean Surveillance Cen-
ter) N66001-96-C-8523.

Temail: rich@cs.ucsd.edu, nspring@cs.ucsd.edu, cpeterso@microsoft.com

metacomputing offers tremendous potential performance, realizing that potential depends,
in part, on the ability to manage the effects of resource contention on application perfor-
mance. In particular, resource allocation and scheduling decisions must be based on pre-
dictions of the performance each resource will be able to deliver to an application during
a specified time frame. Fixed estimates based on manufacturer’s performance specifications
are typically inadequate as they fail to reflect the performance loss due to fair sharing and
contention. Moreover, these contention effects vary dynamically as competing applications
vary their resource demands.

We have designed and implemented a system that takes periodic measurements of the
currently deliverable performance (in the presence of contention) from each resource and
uses numerical models to generate forecasts of future performance levels dynamically. Fore-
cast data is continually updated and distributed so that resource allocation and scheduling
decisions may be made at run time based on expected levels of deliverable performance. To
the extent that network performance conditions can be thought of as the “network weather”,
this functionality is roughly analogous to weather forecasting and hence we term the system
the Network Weather Service (NWS).

Since the NWS measures and forecasts performance deliverable to the application level,
it must be implemented using the same communication and computation mechanisms that
applications use so that forecasts accurately reflect the true performance an application can
expect to obtain. Initially, we have developed separate implementations of the NWS using
sockets (based on the netperf [15] utility) and for the Globus/Nexus [8] and Legion [13]
metacomputing environments, each of which provides a software infrastructure that supports
high-performance distributed and parallel computing. As part of the AppLeS (Application-
Level Schedulers) project [2, 1] we are developing scheduling agents that make decisions based
on application-level performance estimates. The functionality of the NWS is motivated by
the requirements of these agents. In addition, quality-of-service guarantees in shared network
environments (e.g. The Internet) are difficult to achieve. NWS forecasts provide statistical
estimates of available service quality from each resource, as well as the degree to which those
estimates are likely to be accurate [17].

In this paper, we focus on the architecture and implementation of the Legion and
Globus/Nexus Network Weather Service versions. Section 2 describes the high-level ar-
chitecture of the system and discusses some of the details specific to the Legion and Nexus
implementations (the socket version is described more completely in [16]). In section 3, we
present comparative forecasting results and we conclude with an evaluation of the current
system and a description of future research in section 4.

2 Architecture

In this section, we present some high-level design issues that shaped the architecture of the
Network Weather Service (NWS). The NWS was designed as a modular system to provide
performance information for distributed application scheduling. Some of its forecasting mod-
els (described more completely in [17]) require long-term history information. As such, we

network link
sensor

CPU sensor memory sensor

Sensory Subsystem

(Sensor Data

aoeprajuy Surpoday

Forecasting Subsystem

method 1 method 2 method 3

forecasting methods

Figure 1: The Logical Structure of the Network Weather Service.

have designed the system to be persistent with the intention that it be a continually available
service within the metacomputing environment. Since workstation users must retain auton-
omy over their own machines, and the chances of resource failure scale with the size of the
computing environment, the system must be robust with respect to resource failure. Fur-
thermore, metacomputers are dynamically changing in structure and composition. Resources
may be added, deleted, or modified (upgraded, reconfigured, etc.) under the control of their
respective owners and managers. The NWS, therefore, must be dynamically reconfigurable
to accommodate changes in the underlying metacomputing system.
We have separated the Network Weather Service functionality into three modules:

e a sensory subsystem that monitors system-wide resource performance levels,

e a forecasting subsystem that predicts future conditions and passes this information
to

e areporting subsystem that disseminates the forecast information in various formats.

Figure 1 depicts this logical organization. Measurement data is collected independently
from the resource sensors and stored in a physically distributed database by the sensory
subsystem. Forecasting models are applied to measurement histories (which may be treated
as time series) to generate predictions. The forecasting subsystem also tracks prediction error
and maintains accuracy information for each prediction so that the quality of each prediction

may be gauged. External programs, such as user applications, system schedulers, or quality-
of-service mechanisms can access forecast information generated by the NWS through the
public interface exported by the reporting subsystem.

2.1 Sensory Subsystem

The information given to a scheduler should represent deliverable performance that resources
can provide to an application. For this reason, measurements of resource performance are
taken at the application level, using the facilities provided by the underlying resource man-
agement system. By using the same facilities that are available to an application, NWS
measurements are subject to the overheads imposed by the resource management system.
Lower level monitoring tools may not capture the effect of such overheads at the application-
level, particularly with respect to contention.

The Network Weather Service distinguishes between passive sensors and active sensors.
A passive sensor, such as the CPU availability sensor, exercises an external system utility
and scans the utility’s output to obtain information describing a number of resources. For
example, memory usage and CPU availability can be tracked by executing the Unix utilities
vmstat on each machine and processing the output. It is important that the external
utilities be non-privileged with respect to an application. If the information provided by the
NWS can only be obtained by a privileged process, it would not only violate local security
constraints, but it would not truly represent what is visible to a typical application.

An active sensor, on the other hand, must explicitly measure the availability of the
resource it is monitoring. To test a resource, an active sensor will conduct a performance
experiment that is intended to be representative of a typical resource access. Again, such
accesses must be made with standard user privileges so that they reflect true application-level
performance.

2.1.1 Sensing the Network

The NWS currently monitors both process-to-process latency and throughput throughout
the system using an active sensor. Figure 2 details the performance experiment conducted by
NWS network sensors. Network latency is the minimum transit delay when transmitting a
message. The NWS approximates the one-way message latency as one-half of the round-trip
time for an arbitrarily small message.

Network throughput is defined to be the effective rate at which bits can be sent from one
process to another. To perform a throughput experiment, a message of significant size is sent
between processes and the time required to complete the transfer and receive an acknowl-
edgement is recorded on the sending side. The length of this message is parameterizable,
depending on the speed of the connection, the physical proximity of the machines, and the
degree of intrusiveness a particular connection can support. In the current implementations,
this size is set by the NWS administrator, although we are considering ways in which it can

time /

data size

bytes
data transfer y

time

Figure 2: Throughput and Latency Experiments.

be determined automatically by the NWS itself. Throughput is calculated as

data size

effective throughput = - - —
data transfer time - predicted round-trip time

where the predicted round-trip time comes from the forecast for latency between the two
processes.

The sensory subsystem must control all network experiments so that they do not consume
an appreciable portion of the resource they monitor. Setting the transfer size to be large
yields lower prediction errors (e.g. high quality point estimates of available throughput).
However, the throughput that is consumed by the experiment is unavailable for application
use while the experiment is underway. That is, the experiment, itself, may contend with
the application. Alternatively, a small transfer size will yield less accurate predictions, but
intrude less on the available network performance. Deriving the best transfer size value
for each network setting is the subject of our current work. The implementations we have
deployed currently use transfer sizes that we have observed to work well in practice.

The sensory subsystem must also take care not to inadvertently measure the effects of its
own probes as ambient contention. For example, simultaneous throughput experiments con-
ducted by separate hosts attached to a single ethernet segment will interfere. Figure 3 depicts
the effects of this interference. Each data point represents the throughput (in megabits per
second) that was obtained by a pair of processes performing 64 kilobyte transfers over an eth-
ernet segment using the Mentat [12] communication primitives available with Legion [13]*.
The time at which each experiment was conducted is represented along the horizontal axis
so that the graph shows a time series of measurements. One measurement was made every
ten seconds over a twenty-four hour period. At the time corresponding to the vertical line

1The Mentat Programming Language is an object oriented dialect of C++ which allows program-level
access to the Legion metacomputing software infrastructure.

8.0

Throughput (mbits/s)

0.0 I I I I
12:00 PM 4:00 PM 8:00 PM 12:00 AM 4:00 AM 8:00 AM 12:00 AM

Figure 3: Throughput FExperiment Interference

in the figure, (approximately twelve hours after the beginning of the time series) we started
a second set of periodic measurements (also using 64 kilobyte transfers) between a different
pair of hosts connected to the same ethernet segment. To measure the worst-case effect, we
endeavored to make the network probes collide as much as possible. The difference between
the left hand side of the figure and the right results from the collision of, and subsequent
contention between, simultaneous network experiments.

Note that the contention effects depicted in Figure 3 affect the forecast that the NWS
should report to an application scheduler. If one probe is periodically active, the time series
on the left hand side of the figure should be used to generate a forecast. If two probes
are periodically active, the right hand side data should be used. Visually, it is clear that
any reasonable forecasting technique will yield different predictions for the two different
time series. The right hand time series is particularly problematic. It is largely bimodal,
but a periodogram [11, 14] fails to reveal predictable cycles within the data. That is, the
measurements do not switch periodically between one mode and the other. Consequently,
to make a reasonable forecast from this data, an application of time series analysis requires
four distributions: one for each mode, and one each describing the transitions between
modes. Deriving these distributions and then using them effectively to generate forecasts is
considerably more complex than in the unimodal case. Further, if the two probes are allowed
to contend randomly, the resulting series will be some combination of the two shown in the
figure. As more hosts are added, the effect becomes more pronounced and less predictable.

There are several ways to address the problem of controlling the possible interference
between network probes. The method we have chosen to implement first is a token passing
scheme that ensures mutual exclusion between experiments. When a network sensor receives
a token, it is entitled to conduct a single network performance experiment and then to pass

the token on to a successor. Since only one performance experiment can be active at a time,
collisions between experiments are avoided. In addition, we incorporate a simple token-
recovery scheme in case of a resource failure. If the token cannot be passed to a host, that
host is automatically configured out of the system until its continued functionality can be
verified. If a system crashes while holding the token, a pre-elected “master” detects token-
death via a timeout. The token master can be switched dynamically between hosts should
the master, itself, fail.

It is obvious that this token-passing method for ensuring non-interference between ex-
periments does not scale. While we are investigating ways to filter the effects of possibly
contending network experiments, we are planning to implement a large-scale NWS as a hier-
archy of potentially synchronizing pools of hosts. For example token passing instances (called
cliques in our terminology) can be organized as a tree where each level in the tree forms a
clique. The leaves of the tree represent individual machines. In each clique (corresponding to
a level in the tree), an individual representative node is designated to also participate in the
clique above it (at the next lower level). Data up to the nearest common ancestral clique be-
tween two hosts need only be considered when estimating the network performance between
them. We will also consider methods other than token-passing for controlling interference
between network experiments within a clique, in future implementations.

2.1.2 Sensing the Machines

To measure the availability of a machine, the Network Weather Service uses a passive sensor
module. Currently, the CPU sensor starts the Unix vmstat system utility as a background
process and periodically scans the output. The vmstat output is parsed to pick out the num-
ber of running processes, and the percentage of the total time the system is spending in user
and supervisor state respectively. The Network Weather Service computes the percentage of
the time that a processor will be available to each running process as

availableCPU = T;ge + (Tuser/TP)
+ (Tuse'r * Tsystem/rp)

where
Ti;qe = percentage of time cpu is idle
Tuser = percentage of time cpu is exe-
cuting user code
Tsystem = percentage of time cpu is exe-
cuting executing system code
rp = runnable processes

Using this value, a scheduler can compute the CPU slowdown a process will experience
due to contention. The rationale for this formula is that a new job (running with standard
priority) should be entitled to all of the idle time, and a fair share of the available user state
time. Our experience has been that system cycles (represented Tyystem in the equation) are
shared fairly in proportion to the amount of time the system, as a whole, spends executing in

7

0.36 X 0.46 ~ 018
T Tidle T

user

system

0.03

0.18 0.46

availableCPU

Figure 4: Available CPU calculation. rp = 2 runnable processes. Tyger = 0.36, of which
half (0.18) would be usable to a second process. T;ge = 0.46, all of which is available for
computation. Tgsygtem = 0.18, of which 0.03 can be shared. The total availableCPU =
0.67.

user state. While this empirically derived formula has worked well for some applications [3],
the NWS can easily accommodate more sophisticated techniques such as those described
in [5].

2.2 Reporting Subsystem

Network Weather predictions are accessible via an exported reporting interface. The intru-
siveness of the interface (i.e. the network and computational resources required to dissem-
inate forecast information) is a key concern in its design. Stored data is distributed across
the system to balance the storage load and to avoid a bottleneck at the interface. Each host
maintains a copy of the current state of the network, and the one-step-ahead predictions of
future conditions. To amortize the overhead associated with exchanging state, each NWS
server sends a copy of its local state as part of every throughput communication experiment
it conducts. The data stored at each host is shown in Figure 5. Storing a global image of
the current and predicted state of the network on each host allows clients to access this data
from a number of different sources, each of which has a copy. Time series history informa-
tion is stored by individual hosts, and is transferred only by the request of an interested
client. This form of on-demand transfer minimizes the amount of data stored on each host,
while still providing detailed forecast information to clients efficiently. Access to both remote
and local data is provided through the communication primitives of the underlying resource
management system.

Users can view NWS weather reports using the World Wide Web. The Network Weather
Service on each machine continuously generates a publicly accessible HTML file containing
a “snapshot” of the most recent forecasts. With their web browers, users can watch current
and predicted network conditions fluctuate as the Network Weather Service monitors the
network.

3 Results

To forecast resource performance, the NWS treats periodic measurements taken from a
particular sensor as a time series, and then uses different statistical models to predict the

Host

Global Snapshot

Subset of
time series

Figure 5: Data stored on each host.

next value in the series. In this section, we report the performance of the forecasting system
(in terms of prediction accuracy) for several different resources. We compare measurements
and forecasts made using the Legion and Globus/Nexus systems to consider the effect of
the underlying resource management system on performance forecasting. We also provide a
brief investigation of the relationship between the computational complexity associated with
generating a forecast and its accuracy.

3.1 Forecasting Subsystem

The Network Weather Service uses a number of predictive algorithms to anticipate perfor-
mance fluctuations. Sensory data is ordered by time stamp so that the forecasting models
may treat each prediction history as a time series. In [16, 17] we detail the specific algorithms
that are part of the current NWS implementations. From the perspective of the forecasting
subsystem’s implementation, each forecasting model is an independent module that imports
and exports a common interface. When a forecast is required, the NWS evaluates a set
of different forecasting models and then automatically chooses between them based on the
accuracy history of each model. Currently, the models that are included are computationally
cheap to compute so that the system can adapt them dynamically to changing conditions.
We discuss this issue further in Section 3.3.

3.2 Process-to-Process Throughput

We monitored the effective throughput using the Legion version of the NWS between two
adjacent sun workstations on an ethernet segment in the Parallel Computation Lab (PCL)

H Predictor ‘ MAE H

LAST 0.28
RUN_AVG 0.23
SW_AVG 0.23
MEDIAN 0.18

Table 1: Forecasting Error for PCL Throughput using Legion. Lower values indicate better
predictor performance.

at UCSD. Once every sixty seconds over a 24 hour period (starting at midnight on Tuesday,
February 4, 1997), the NWS moved a 64 kilobyte array via a Mentat method invocation
between the two hosts and timed the transfer. Figure 6(a) shows the time series of mea-
surements and Figure 6(b) shows the corresponding predictions made by the NWS. The
units of measurement are megabits per second and the mean absolute error (MAE) for the
prediction is 0.18. That is, during the measurement period, at each time step the prediction
of a measurement differed from the actual measurement it was predicting by an average of
0.18 megabits per second. Table 1 summarizes the predictive performance of several differ-
ent forecasting methods. The NWS currently supports a variety of forecasting techniques,
the details of which are more completely described in [16, 17]. In the interest of brevity,
we demonstrate its functionality using only forecasters that are based on the common sum-
mary statistics shown in the table. The complete battery of techniques includes these simple
ones shown in the table as well as other, more sophisticated methods. For the purposes of
illustration, however, we restrict ourselves here to a simple set.

The LAST predictor uses the last measurement as a prediction of the next measurement.
RUN_AV G keeps a running tabulation of the average measurement and uses that as a
prediction at each time step. SW _AV G uses the average of the current measurement and
the previous 20 measurements (a sliding window of 21 measurements) as a predictor of the
next value and M EDI AN uses the median over the same sliding window as a predictor.
By tracking the prediction error made by each predictor, the NWS was able to identify
MEDIAN as the most accurate (yielding the lowest average error).

Note that LAST, by comparison, is not a good predictor yielding an absolute prediction
error that is an average of 0.1 megabits per second (55%) greater than that generated by
MEDIAN. In general, our experience has been that the last measurement is a poor
predictor of future network performance. Performance monitoring systems often use current
measurement data as an estimate of the available throughput. Clearly, even for a predictable
network like the one shown in Figure 6, simple probes measuring current conditions are poor
indicators of the performance that will be available in the next time step.

In Figure 7 we show throughput measurements and predictions generated using Nexus
remote service requests between processes running on workstations in the UCSD PCL and
at the San Diego Supercomputer Center (SDSC). As in the previous experiment, the NWS
moved 64 kilobytes of data every 60 seconds and timed the transfer. The resulting throughput
between the PCL and SDSC was recorded in units of megabits per second. Figure 7(b) shows

10

8.0

Throughput (mbits/s)
N
o

12:00 AM 4:00 AM 8:00 AM 12:00 PM 4:00 PM 8:00 PM 12:00 AM
Time

(a)

8.0

4.0

Throughput (mbits/s)

| | | | |
12:00 AM 4:00 AM 8:00 AM 12:00 PM 4:00 PM 8:00 PM 12:00 AM
Time

(b)

Figure 6: Legion Throughput Measurements (a) and Predictions (b) in the PCL

11

4.0

Throughput (mbits/s)

0
12:00 AM 4:00 AM 8:00 AM 12:00 PM 4:00 PM 8:00 PM
Time

(a)

4.0

Throughput (mbits/s)

| | | | |
12:00 AM 4:00 AM 8:00 AM 12:00 PM 4:00 PM 8:00 PM
Time

(b)

Figure 7: Nexus Throughput Measurements (a) and Predictions (b) from the PCL to SDSC

12

Using Nexus Using Legion
Predictor | MAE Predictor | MAE
LAST 0.46 LAST 1.40
RUN_AVG 0.49 RUN_AVG 1.40
SW_AVG 0.39 SW_AVG 1.30
MEDIAN 0.38 MEDIAN 1.30

Table 2: Forecasting Error for PCL to SDSC Throughput

the predictions made by the NWS and Table 2 summarizes the accuracy of each predictor in
terms of mean absolute error. In this case, the average absolute error in megabits per second
generated by M EDI AN is 0.08 megabits per second lower than LAST and 0.11 megabits
per second lower than RUN_AV G. The forecasts shown in Figure 7(b) are a combination of
SW_AV G and MEDIAN as the NWS switched back and forth between them depending
on which yielded the lowest MAE at any given point in time. This combinational forecast
also yielded a mean absolute prediction error of 0.38 megabits per second.

In Figure 8 we show throughput measurements and predictions for the same PCL-to-
SDSC communication link using Legion. Compared to the equivalent set of Nexus mea-
surements shown in Figure 7a, the Legion measurements vary through a wider range. A
scatter plot of the Legion measurement data (shown in Figure 8c) reveals a multimodal dis-
tribution of measurements. We attribute this multimodality to the use of UDP as Legion’s
underlying messaging protocol. The timeout value for a lost packet (due to gateway conges-
tion) is one second in the current Legion prototype implementation? causing a substantial
loss of throughput when a packet is lost. At present, the NWS is unable to predict in which
mode a successive measurement will fall at any given moment. Neither a periodogram [11]
nor a state-transition analysis [4] yield exploitable predictive information. Consequently,
the forecast errors for Legion throughput measurements, shown in Table 2, are higher than
for Nexus. Note that the NWS distributes its quantification of forecasting error so that
schedulers and quality-of-service mechanisms, such as those proposed in [6], can consider
the performance predictability of a resource. If, for example, both the Nexus and Legion
messaging systems were available to an application communicating between the PCL and
SDSC, a scheduler might choose to use Nexus for the communication due to its greater pre-
dictability. Conversely, in a local area setting where packet loss is rare, Legion’s messaging
system might be more appropriate.

3.3 Forecasting Complexity versus Accuracy

The choice of computationally simple forecasting techniques is not only motivated by our
desire to build initial prototypes with which to experiment, but also by our experiences with
the use of more elaborate statistical methods in a dynamic setting. Specifically, it is often the

2Legion is currently being reimplemented. In the next release of the system, it is our understanding that
more robust communication protocols will be available.

13

Throughput (mbits/s)

Throughput (mbits/s)

4.0

Throughput (mbits/s)

0 | | | | |
12:00 AM 4:00 AM 8:00 AM 12:00 PM 4:00 PM 8:00 PM 12:00 AM
Time

(a)

4.0

| | | | |
12:00 AM 4:00 AM 8:00 AM 12:00 PM 4:00 PM 8:00 PM 12:00 AM
Time

(b)

4.0

*e. @ - 2 .00 o .
3 LB i P
." .. ? . .o Q0 .. .’:.:o . o%%e.
. J;o '3.‘.0.. % o ® ~°:’.° .:
: .;;. ‘) S : : : .. :

' LN] .

.~ . :. e 0t .,

g, T T .

f. ..:0 ! . °®

‘.. ’

| Predictor | Description |

RUN_AVG running average
SW_AVG sliding window avg.
LAST last measurement
ADAPT_AVG | adaptive window average
MEDIAN median filter

ADAPT_MED | adaptive window median
TRIM_MEAN | a-trimmed mean

GRAD stochastic gradient
AR autoregression
MIN_MAE adaptive minimum absolute error

Table 3: Summary of Forecasting Methods

case that the additional accuracy provided by a sophisticated, but computationally complex,
forecasting technique cannot be amortized effectively.

For example, consider the time series shown in Figure 9(a) which depicts a series of
process to process throughput measurements between two workstations connected via ether-
net within the UCSD Parallel Computation Laboratory. Each measurement represents the
throughput observed by timing a 64 kilobyte transfer between the two workstations using
TCP/IP sockets. One measurement was taken every thirty seconds over a twenty-four hour
period beginning at 6:00 PM on Thursday, September 19, 1996.

To investigate the relationship between model complexity and accuracy, we compare the
predictive performance of a model fitted using Semi-Nonparametric Time Series Analysis
(SNP) developed by Gallant and Tauchen [10, 9] to the current set of NWS forecasting
methods (shown in Table 3). A complete description of each NWS technique is given in [16].
To make a forecast using these methods, the NWS runs them all every time a forecast
is required, and then uses the method that yields the minimum absolute error (denoted
MIN _M AE in the table) as the published forecast. In this way, the forecasting system
can identify which method has been most accurate over time and use that method for
subsequent forecasts. Moreover, if conditions change and another method becomes more
accurate, the NWS notices the change and switches methods dynamically. Since all methods
must be evaluated every time a forecast is required, we include only those for which we have
a computationally efficient implementation.

Alternatively, forecasting using SNP is a two-phase process. First, a model is fit to the
time series using an iterative search method that can be computationally complex. Once
fit, the model computes the one-step-ahead conditional probability density using a small
number of lags (previous measurements). From the conditional density, the system calculates
a conditional expected value for the next measurement which we use as a forecast.

From a classical time-series analysis perspective, SNP is a powerful technique. The model
fitting phase considers stationary autoregression in various forms (both with Gaussian and
non-Gaussian noise terms), autoregressive, conditionally heteroscedastic (ARCH) models

15

| Method | MAE | Cost/Pred (ms/pred) |

SNP 0.437 | 1090 ms/pred |
NWS [0.450 | 7.29 ms/pred |

Table 4: Comparison of Forecasting Performance

(with and without Gaussian noise), and general non-linear processes with heterogeneous
innovations.

Table 4 compares the performance of forecasts generated using SNP, with the techniques
shown in Table 3 that are implemented by the NWS.

We ran both experiments on a dedicated SPARC 20 workstation and all time series
data fit into real memory. The timing data in the table reflects the average time required
to generate a forecast in milliseconds. In the case of SNP, however, it does not reflect
the time required to fit a model. That is, these times reflect the difference between using
the adaptive technique we have incorporated within the NWS (which requires no model-
fitting phase) versus evaluating the model fit with SNP each time a forecast is required.
Although generating a forecast is three orders of magnitude slower using the more complex
SNP model, it still reasonable with respect to a 30 second measurement cycle. That is, if
a forecast is generated every time a measurement is taken, waiting approximately 1 second
for that forecast (assuming a 30 second cycle) is probably reasonable. Figures 9(b) and 9(c)
show the predictions made by each method.

The SNP model we used to generate the predictions shown in Figure 9(c) took almost
21 hours of dedicated CPU time on the SPARC 20 to fit. We used a trace of the previous
twenty-four hour period to fit a general non-linear model with heterogeneous innovations.
While the delay associated with evaluating the SNP model (approximately 1 second per
forecast on a Sparc 20) might be amortizable, a 21 hour model fitting time is not. Perfor-
mance enhancements to the SNP code itself (e.g parallelization) and faster resources might
reduce this cost, but as Table 4 shows, the improvement in accuracy gained by the more
complex technique is small. The average forecasting error generated by the NWS dynamic
method is 0.02 megabits per second greater that that generated with SNP. Since the values
being forecast are on the order of 6 megabits per second, the small improvement in accuracy
does not seem to warrant the much larger complexity associated with generating and then
evaluating the SNP model. It may be, however, that for other measurement time series less
complex SNP models will perform better. However, for process-to-process TCP/IP perfor-
mance over an ethernet (which is relatively predictable — note the small MAE associated
with each prediction) the dynamic NWS techniques work very nearly as well with much less
computational complexity.

Clearly, much work is to be done to find the balance point between the complexity asso-
ciated with dynamically generating a forecast and its accuracy. We are certain that there are
many ways to streamline and improve the cost of model fitting with SNP, for example, some
of which are outlined by its authors (see [9]). However, since the improvement in forecast
accuracy is slight, we have chosen to incorporate a more dynamic and computationally cheap

16

8.0

I I I
2:00 AM 6:00 AM 10:00 AM

I
10:00 PM

o
<
(s/snqu) indyBnoay .

0.0
6:00 PM

()

I I I
2:00 AM 6:00 AM 10:00 AM

I
10:00 PM

8.0

o
<
(s/snqu) indyBnoay .

0.0
6:00 PM

Time

17

8.0

o
<
(s/snqu) indyBnoay .

methodology in the NWS, at present. Effectively incorporating off-line modeling techniques
like SNP and other time-series systems in a manner which is cost effective (given the dynamic
nature of metacomputing systems) is the subject of our present research.

4 Conclusions and Future Work

In a metacomputing environment, scheduling and quality-of-service mechanisms must have
access to predictions of deliverable resource performance to mitigate the effects of contention.
We have implemented a system called the Network Weather Service that collects periodic per-
formance measurements and generates statistical forecasts, dynamically, based on time-series
analysis techniques. The system is intended to be a ubiquitous service within a metacom-
puter, providing forecast information to all interested schedulers, quality-of-service facilities,
and users.

To provide accurate performance forecasts, the measurements required to parameterize
the forecasting models must be as non-intrusive as possible. Performance experiments that
sense the available performance at any given time must not interfere with each other, or inac-
curate readings will be incorporated into the generated forecasts. Furthermore, since forecast
information may be used dynamically (i.e. to support dynamic scheduling), the interface
to the system also must be lightweight and non-intrusive. These requirements motivate the
design of the NWS architecture, and the implementations we have constructed for TCP /IP
and Unix sockets, and the Globus/Nexus, and Legion metacomputing environments.

To make forecasts, the NWS automatically identifies and combines different predictive
strategies from a set of potentially useful models. It chooses those models that, at any given
time, have accumulated the lowest aggregate prediction error. Our experience indicates that
this dynamic method of forecasting model selection works well. Moreover, using simple
forecasting techniques like those outlined in Section 3 yields more accurate predictions than
those generated from measurements of current conditions alone. Both forecast data and
accuracy measures are made available to NWS clients so that the predictability of a resource
may be considered. Further, while the forecasting techniques we describe are computationally
simple, our early experiences with them indicate that they perform almost as well as those
which are considerably more complex. The lightweight nature of the forecasting methods we
have implemented makes them appropriate for dynamic computational settings.

Our future work will focus on developing new sensory mechanisms and new forecasting
techniques. Predicting the time a job will wait in a batch queue is especially important
in large-scale computational settings, for example. To make such predictions, we need to
incorporate more sophisticated sensors and forecasting models. We are also planning to
develop a scalable version of the system that can be deployed over large numbers of resources,
based on a hierarchical organization of NWS resource clusters.

18

References

[1]
[2]

[3]
[4]
[5]

[6]

[7]
8]
[9]
[10]

[11]
[12]

[13]
[14]
[15]

[16]

[17]

AppLeS. http://wuw-cse.ucsd.edu/groups/hpcl/apples/apples.html.

F. Berman and R. Wolski. Scheduling from the perspective of the application. In Proceedings
of High-Performance Distributed Computing Conference, 1996.

F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application level scheduling on
distributed heterogeneous networks. In Proceedings of Supercomputing 1996, 1996.

M. Devarakonda and R. Iyer. Predictability of process resource usage: A measurement-based
study on unix. IEEE Transactions on Software Engineering, (12), December 1989.

S. Figueira and F. Berman. Modeling the effects of contention on the performance of hetero-
geneous applications. In Proc. 5th IEEE Symp. on High Performance Distributed
Computing, August 1996.

1. Foster, J. Geisler, C. Kesselman, and S. Tuecke. Managing multiple communication methods
in high-performance networked computing systems. Journal of Parallel and Distributed
Computing, 40:35-48, 1997.

I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. International
Journal of Supercomputer Applications, 1997. to appear.

I. Foster, C. Kesselman, and S. Tuecke. The nexus approach to integrating multithreading
and communication. Journal of Parallel and Distributed Computing, 1997. to appear.
R. Gallant and G. Tauchen. Snp: A program for nonparametric time series analysis. In
http://www.econ.duke.edu/Papers/Abstracts/abstract.95.26.html.

R. Gallant and G. Tauchen. Seminonparametric estimation of conditionally constrained het-
erogeneous processes: Asset pricing applications. Econometrica 57, pages 1091-1120, 1989.
C. Granger and P. Newbold. Forecasting Economic Time Series. Academic Press, 1986.
A. Grimshaw. Easy-to-use object-oriented parallel programming with mentat. IEEE Com-
puter, May 1993.

A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver, and P. F. Reynolds. Legion: The
next logical step towrd a nationwide virtual computer. Technical Report CS-94-21, University
of Virginia, 1994.

W. e. a. Leland. On the self-similar nature of ethernet traffic. IEEE/ACM Transactions
on Networking, February 1994.

Netperf. http://wuw.cup.hp.com/netperf/netperfpage.html.

R. Wolski. Dynamically forecasting network performance using the network weather ser-
vice. Technical Report TR-CS96-494, U.C. San Diego, October 1996. available from
http://www.cs.ucsd.edu/users/rich /publications.html.

R. Wolski. Dynamically forecasting network performance to support dynamic scheduling
using the network weather service. In Proc. 6th IEEE Symp. on High Performance
Distributed Computing, August 1997. to appear.

19

