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ABSTRACT

Computation off-loading, i.e., remote execution, has been shown
to be effective for extending the computational power and battery
life of resource-restricted devices, e.g., hand-held, wearable, and
pervasive computers. Remote execution systems must predict the
cost of executing both locally and remotely to determine when off-
loading will be most beneficial. These costs however, are depen-
dent upon the execution behavior of the task being considered and
the highly-variable performance of the underlying resources, e.g.,
CPU (local and remote), bandwidth, and network latency. As such,
remote execution systems must employ sophisticated, prediction
techniques that accurately guide computation off-loading. More-
over, these techniques must be efficient, i.e., they cannot consume
significant resources, e.g., energy, execution time, etc., since they
are performed on the mobile device.

In this paper, we present NWSLite, a computationally efficient,
highly accurate prediction utility for mobile devices. NWSLite is an
extension to the Network Weather Service (NWS), a dynamic fore-
casting toolkit for adaptive scheduling of high-performance Com-
putational Grid applications. We significantly scaled down the
NWS to reduce its resource consumption yet still achieve accuracy
that exceeds that of extant remote execution prediction methods. We
empirically analyze and compare both the prediction accuracy and
the cost of NWSLite and a number of different forecasting methods
from existing remote execution systems. We evaluate the efficacy
of the different methods using a wide range of mobile applications
and resources.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance—Modeling and predic-
tion, Measurements

General Terms
Measurement, Performance

Keywords
Prediction, Network Performance Estimation, CPU Availability Es-
timation, Fidelity, Remote Execution, Resource-restricted devices
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1. INTRODUCTION
Remote execution is emerging as a promising technique to ex-

tend the computational power and battery life of resource-restricted
environments, e.g., hand-held, wearable, and pervasive computers.
Using remote execution, parts of program execution are off-loaded
from battery-powered mobile devices to wall-powered, higher per-
formance platforms. As such, remote execution can significantly
extend the usefulness of devices by enabling execution of a wide-
range of resource-intensive applications, e.g., augmented reality,
natural language translation, feature recognition, collaborative com-
puting, etc., in a mobile environment.

Key to the successful implementation of remote execution, is
prediction. That is, we must predict when the cost of perform-
ing remote execution will not outweigh its benefits. For example,
if a task will take significantly less time if executed remotely due to
superior resource performance, the system should off-load the task.
Alternately, if the cost of remote execution will exceed that of local
execution, e.g., if significant amounts of data must be transfered
to perform the task or if the remote host is busy, then the system
should perform the operation locally.

The cost of a remotely executed operation consists of the time
to transfer data (and possibly code) from the device to the target,
the time to transfer result information, e.g., data, status, rendered
graphics, etc., from the target back to the device, and the time to
execute the operation at the target. The cost of a locally executed
operation is the local execution time. These costs can be decom-
posed or translated to consider other metrics, e.g., battery consump-
tion, response time, application fidelity. However, regardless of
their form, these values must reflect what the costswill be when
the operation is eventually performed.

To complicate matters, each of these costs is dependent upon
the highly variable performance available from the underlying re-
sources as well as the application input data. Network bandwidth
and latency dictate the time required for communication and CPU
availability on both the device and the target impacts local and re-
mote execution time, respectively. Moreover, execution cost is de-
pendent upon the length of time the application tasks will execute,
which is commonly dependent upon program inputs.

To predict these costs, extant remote execution systems employ
statistical techniques that use past behavior to predict the future [23,
8, 10, 2]. The goal of these systems is to enable high prediction
accuracy. That is, they attempt to reduce prediction error – the
difference between predicted values and the measurement values
that they predict. Techniques that result in large prediction errors
can cause incorrect decisions to be made about the best execution
choice for the device. As such, prediction accuracy plays an impor-
tant role in the performance of a remote execution system.

However, another characteristic of prediction techniques that is



often not considered, is computational cost – performing the pre-
diction itself consumes device resources. This cost can be high
(particularly in terms of power consumption) since statistical tech-
niques commonly use floating-point operations and most mobile
devices do not implement a floating-point co-processor. Instead,
they rely on software emulation of floating-point instructions mak-
ing them highly resource-intensive operations.

In this paper, we consider both the accuracy and cost of com-
monly used forecasting technologies in remote execution settings.
We evaluate techniques that are currently used for remote execu-
tion and present a novel resource performance prediction utility for
resource-restricted devices, calledNWSLite. NWSLite is a low-
cost, yet, highly accurate prediction service that is an extension of
the Network Weather Service (NWS), a resource performance mea-
surement and prediction toolkit originally developed for scheduling
high-performance, scientific applications in Computational Grid [11]
environments [30, 33, 4, 29, 28]. We modified the NWS forecast-
ing model to reduce its resource consumption footprint to enable
its use in a mobile setting.

NWSLite can be incorporated into any mobile framework that
uses prediction. It makes non-parametric forecasts of any resource
for which measurement values can be supplied. As such, we can
use it for prediction of CPU load, memory availability, and network
bandwidth and latency, as well as file I/O and execution time of an
application’s operations (tasks).

In this study, we empirically compare both the accuracy and cost
of NWSLite to the original NWS as well as to two prediction algo-
rithms (described in [23] and [21]) currently used for prediction in
remote execution frameworks. We analyze these performance char-
acteristics for a wide range of applications and resources: applica-
tion execution time, availability, wired-network bandwidth and la-
tency, and wireless bandwidth. Our results show that NWSLite en-
ables prediction accuracy that in many cases significantly exceeds
that of the predictors to which we compare. In addition, it con-
sumes significantly less computational resources than its predeces-
sor (the original NWS).

In summary, the contributions we make with this paper are:
• A light-weight, highly-accurate, prediction utility for resource-

restricted environments,

• A predictive framework that uses algorithms that arenon-
parametric, i.e., they do not require externally determined,
resource-specific parameters or manual fine-tuning,

• A general utility for mobile devices that can be used to fore-
cast efficiently the performance of a wide range of resources,

• A comparison of the prediction accuracy and execution cost
of the NWSLite to popular predictive techniques, and

• An empirical evaluation that shows that NWSLite can sig-
nificantly improve prediction accuracy for remote execution.

In the following sections, we overview the use of resource per-
formance prediction to facilitate remote execution. In Section 3, we
describe the prediction methodologies for two popular remote exe-
cution systems to which we compare our work. We then detail the
design and implementation of NWSLite in Section 4 and present an
empirical evaluation of its efficacy both in terms of prediction ac-
curacy and resource consumption (Section 5). Finally, we conclude
in Section 6.

2. BACKGROUND
Remote execution is a popular technique that is used to extend

the computational capability of mobile, resource-restricted, devices [8,
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Figure 1: Components of a typical remote execution system.
The decision process includes forecasting the available resource
supply both at the client and server and application resource
demand.

24, 23, 16, 35]. Figure 1 depicts the general design of a remote
execution system. Using remote execution, application tasks are
off-loaded from battery-powered mobile devices to wall-powered,
higher-performance servers.

To decide whether a particular task should be off-loaded, a re-
mote execution system must first compute thedemand of the appli-
cation task. In this work, we define demand as task execution time,
however, additional constraints can be applied to this value, e.g.,
response time, computational fidelity, power consumption, etc., ac-
cording to the overall goals of the system.

To determine how best to accommodate demand, a remote ex-
ecution system must evaluate how best to employ itssupply – the
set of resources, local and remote, that it has available to it for task
execution. The system computes whether computation off-loading
will be beneficial, according to its set of constraints, using a cost
model. When cost of local execution exceeds that of remote execu-
tion (including all necessary communication), the system off-loads
work to the server. The cost model must consider both the task ex-
ecution characteristics as well as the highly-variable performance
of the underlying resources that dictate computation and communi-
cation performance. This cost model can be formulated in terms of
time as:

ETL/CPUL ≤

SZinput

BWL−R
+ (ETR/CPUR) +

SZoutput

BWR−L
+ (HS ∗ LAT )

where the local cost is the time to execute the task locally on the
mobile device (ETL) given the available fraction of the CPU on the
device (CPUL). The remote cost is the sum of the time required
for four constituent operations:

1. The time required for transfer of code and data required for
execution (SZinput bytes) given the available bandwidth be-
tween the device and the remote server (BWL−R);

2. The execution time at the server given the fraction of CPU
available at the server (ETR/CPUR);

3. The time for transfer of results, e.g., data, status, rendered
graphics, etc., (SZoutput bytes) back to the device given the
available bandwidth between the server and device (BWR−L);
and;

4. The time for any handshake protocol to establish remote exe-
cution between the device and the server. This protocol com-
monly consists of very few, small packets (HS); as such, its
communication is impacted by the network latency between
the device and server (LAT ).



Remote execution systems can consider other metrics, e.g., com-
putational fidelity, response time, battery power, by extending this
cost model. For example, the execution time at either end can be
evaluated for different fidelity levels or broken down into fine-grain
tasks to consider response time. Alternately, the execution time,
transfer, and idle time at the device can be translated into battery
consumption for the device.

The cost model must compute what the cost of remote and lo-
cal executionwill be when the task is eventually executed. That is,
remote execution systems mustpredict this coston the device to
determine when to off-load. As such, these systems must employ
sophisticated forecasting techniques to enable accurate prediction
of the cost of remote (and local) execution. We describe the pre-
diction technologies used in extant remote execution systems in the
next section.

3. PREDICTION ALGORITHMS
FOR REMOTE EXECUTION

Two advanced, prediction-based, remote execution systems to
which we compare our work, are Spectra [8] and the remote pro-
cessing framework (RPF) by Rudenko et al [23]. We briefly de-
scribe these systems in this section and discuss the predictors that
each employs.

3.1 Spectra and Odyssey
Spectra is the remote execution component of the Aura [27] per-

vasive computing environment. Spectra allows the user to dictate
goals, such as minimizing energy use, and then tries to achieve this
goal by means of local, remote or hybrid, i.e., partially remote,
execution decisions. To estimate the behavior of an application,
Spectra (running on the device) employs the resource monitoring
and performance prediction functionality implemented in Odyssey,
a second Aura component that implements a set of operating sys-
tem extensions to support mobility and application adaptation [21].

Odyssey usesmulti-computational fidelity to dynamically trade-
off resource demand for application quality [9]. The fidelity ad-
justments are performed at the granularity of anoperation, which
is the smallest unit of execution that can be perceived by the user
as a response to a request [20].

Since the performance of off-loading is dependent upon the un-
derlying resource availability, Odyssey couples task demand with
resource supply. That is, Odyssey makes forecasts of the underly-
ing resource performance for CPU, memory, network bandwidth,
and network latency. Odyssey couples these predictions with those
from the fidelity resource functions to identify opportunities for dy-
namic off-loading.

Odyssey estimates CPU availability using process counts; it as-
sumes that CPU cycles are evenly distributed across all processes
and computes the percent of CPU available as1

P+1
, whereP is

the predicted number of processes that will be executing when the
new process is added. To compute P, Odyssey counts the number
of processes at timet and estimates the number of processes at a
future timet + 1 using a smoothing filter computed as:

Pt+1 = αPt + (1 − α)(ni − p) (1)

whereni is the average CPU load periodically sampled from
/proc/loadavg, p is the load consumed by the process in ques-

tion (1 if running, else 0), andα is e
−tp

T , wheretp is the sampling
period (a0.5 second period was used in [20]) andT is the predic-
tion horizon – this causes more history data to be considered for
longer-term predictions [20].

To predict network bandwidth and latency, Odyssey uses a dif-
ferent prediction model based on exponential smoothing:

ft+1 = γ(mt) + (1 − γ)ft (2)

The function predicts the performance of the resource at the next
time step (ft+1) as the sum of weighted values for the measure-
ment at timet (mt) and the forecast made for timet (ft). Odyssey
employs weighting (gain) factors (γ) of 0.75 for round trip time
and0.875 for throughput. This formulation combines the current
performance with an aggregation of the previous prediction history
to make the prediction.

An exponential smoothing predictor with a constant gain fac-
tor does not adapt dynamically to the changes in the system. To
address this issue Kim et.al. [15] developed a flip-flop filter. The
flip-flop filter employs two exponential smoothing predictors: one
with γ = 0.1 and the other withγ = 0.9. Using a small gain fac-
tor, the former can respond to changes more quickly than the latter
one. However, a small gain is more susceptible to a transient noise.
As such, by using both gain factors, the filter is able to achieve the
benefits from both while avoiding the limitations of each. Our pre-
diction methodology, described in the next section, takes a similar
but more general approach.

Finally, to estimate the CPU demand (execution time) of ap-
plications, Odyssey and Spectra use an online-learning predictor.
The predictor maintains coefficients, specific to each program in-
put, that it uses to model the cost behavior of the application when
executed using each input. However, computing the initial coef-
ficient values requires off-line training. The online-learning algo-
rithm then updates coefficients using recursive least squares regres-
sion with exponential decay. Due to exponential decay characteris-
tics, more weight is given to the recent observations.

The recursive least squares method is an efficient way to predict
the valuey when it is dependent on a set of parametersx such that
y = Ax+w, andw is the measurement error or noise. The general
formula is given by:

Ak = Ak−1 − Pk{xkxT
k Ak−1 − xkyk}

Pk = {Pk−1 − Pk−1xk[α + xT
k Pk−1xk]−1xT

k Pk−1}/α

whereα is the decay factor andyk is the measurement at timek. In
the equation above,yk+1 is predicted byAk+1xk. ThePk matrix
is commonly referred to as thehistory or filtering factor [34].

Recursive least squares estimation is not specific application re-
source consumption (CPU demand), i.e., it is a general technique
for estimation of any type of time-series data. However, it is partic-
ularly amenable to application that can be decomposed into tasks
with similar execution time, e.g., scene rendering in an augmented
reality application given multiple scenes being scanned by a cam-
era. For such applications, the resource consumption behavior for
the generation of a scene will be similar to that of a neighboring
scene. However, if there is no correlation between the resource
consumption of application tasks, this methodology may result in
large prediction errors. Another limitation of this type of statisti-
cal technique is that numerical computation errors can accumulate
after each recursion causing algorithm to become unstable and di-
verge [5].

The value of the exponential decay factor determines the agility
of the method. A smaller value increases responsiveness, but de-
creases the amount of noise that can be filtered out. Odyssey uses
a decay factor of0.5, which makes it very agile. Our observations
show that, with such a small value the method can become unsta-
ble and diverge if the observed data is noisy or moderately variable.
Based on our experimentation using several different parameters on



a large dataset, we found that a decay factor of0.8 is more appro-
priate and as such, use it in our experimental results. We consider
the efficacy of recursive least squares for a wide range of resource
types (including CPU demand) in our empirical evaluation section;
we refer to this method asLSQ in our experimental results.

3.2 Remote Processing Framework (RPF)
The remote processing framework (RPF) uses a different exe-

cution model than that of Spectra and other remote execution sys-
tems [23]. RPF models a single metric – power consumption – of
the executing task. That is, it collects history data on the power
consumption of previous tasks and uses it to predict the consump-
tion of future tasks. The comparison between local and remote task
execution is performed on the device itself. All code and data are
shared and kept synchronized between the device and server. The
server simply processes the tasks transmitted by the device and re-
turns the results.

The device and server interact via a simple handshake proto-
col. During this protocol, the device verifies that the server has
enough resources and the appropriate software packages. Follow-
ing this, the device predicts whether off-loading will reduce power
consumption. The RPF system uses asmoothing filter to make its
forecasts given prior history. In particular, the RPF cost model is
theparameterized function:

ft+1 = (1 − α)

Pn
i=n−k vi

k
+ αft (3)

wheref is the forecasted value (at timet andt + 1), andvi is the
measured value at measurement indexi.

RPF is parameterized with two parameters,k andα which deter-
mine how conservative the forecaster is: A smallk combined with
a largeα will result in higher responsiveness to recent changes.
Unfortunately, the authors in [23] do not specify default values for
these parameters, nor do they discuss the values that they used. To
enable our evaluation and comparison to this technique, we empir-
ically evaluated several different combinations of parameters for a
large set of data. We then selected best-performing set across all
experiments. For the data we detail in this study, the best overall
parameterization isk = 20 andα = 0.0. With this parameteriza-
tion, RPF becomes a “sliding window average” over a fixed win-
dow (sizek) of previous data history. The data for all experiments
(including that for our different parameterizations) can be found in
the technical report version of this paper [14].

Note that the RPF smoothing filter (Equation 3) is the same as the
equation for CPU prediction in Odyssey (Equation 1) whenk = 1.
In addition, the smoothing filter is the same as the bandwidth and
latency prediction function in Odyssey (Equation 2) whenk = 1
andα = 1 − γ.

4. NWSLITE
Odyssey and RPF employ parameterized prediction methodolo-

gies to forecast the cost of local and remote execution. The parame-
ters are identified through empirical evaluation and are specific not
only to the executing application but also to the individual tasks. In
addition, different types of resource data (task execution time and
characteristics, and network and CPU performance) require differ-
ent predictors or different parameterization of the same predictors
to be effective. Moreover, prediction of task execution behavior in
Odyssey requires extensive off-line training. Our approach to the
problem of remote execution cost forecasting takes a different ap-
proach. Specifically, it is one that isnon-parametric, automatic,
and completely general.

To enable this, we developed NWSLite, an accurate and efficient
prediction utility for mobile devices. NWSLite is an extension of
the Network Weather Service [32], a freely available toolkit [22],
originally developed for Computational Grid computing [11, 3].
The Computational Grid is a computing paradigm for the devel-
opment of software systems that enables dynamic acquisition of
resources from a heterogeneous and non-dedicated resource pool.
To extract performance from these systems, application schedulers
must use predictions of future resource behavior to determine how
the application can best use the available resources.

The NWS operates a distributed set of performance sensors, from
which it periodically, and unobtrusively, collects performance mea-
surements, applies a set of statistical forecasting techniques to in-
dividual performance histories, and generates forecast reports for
the resources being monitored, which it disseminates via a number
of different APIs in near-real-time [33]. Currently, the NWS pro-
vides sensors for end-to-end TCP/IP bandwidth and latency, avail-
able CPU and memory, battery power, and disk storage, and is used
in a large number of different of Grid technologies.

NWS prediction uses a mixture-of-experts approach to predic-
tion instead of relying on a single model. It implements a large
set of models, each having its own parameterization. Given a per-
formance history of observed measurement values, it generates a
forecast for each measurement. NWS ranks each predictor by com-
puting the prediction errors (the difference between measured and
forecasted values). Each time a forecast is requested, NWS re-
calculates the ranking across all predictors using the most recent
history and chooses the most-accurate model. The implementation
of NWS that we extended uses the 24 prediction models shown in
Table 1.

This mixture-of experts method achieves its accuracy by employ-
ing wide range of statistical models, each of which may be most
appropriate at a given time, for a given resource. This method also
has other important advantages. First, even though the individual
NWS models may be parametric, the overall system is not. The
only input to the system is the measurement history. Second, NWS
can easily adjust itself to changes in the characteristics of the data
series by switching to another model. Third, it can be used on any
type of data for which measurements can be made. There is no
distinction between CPU availability and network bandwidth, for
example.

Because the NWS was originally designed to support perfor-
mance applications in wired settings, its designers put a premium
on speed and extensibility. As such, it consumes significant re-
sources to perform a single prediction since many models are eval-
uated at once. TheAverage Cost column shows the number of float-
ing point instructions executed for each predictor (all are computed
for each forecast made) on average. To enable its use in resource-
restricted environments, we have significantly reduced this con-
sumption without sacrificing appreciable accuracy. To this end, we
first evaluate the cost of NWS prediction in terms of dynamic float-
ing point instructions.

Given a history of measurements and their predicted values, pre-
diction error can be defined using the square of the errors:

E =
nX

i=1

(fi − vi)
2 (4)

wherefi is the output of the predictor,vi is the measurement and
n is the length of history.

Since the NWS uses a mixture-of-experts approach, all forecast-
ers are invoked (logically in parallel) and a single winner is selected
and used for the next estimation. We use zero-one integer variables



Name Average Cost
1 Last Value 0
2 Running Mean 3
3 5% Exp Smooth 3
4 10% Exp Smooth 3
5 15% Exp Smooth 3
6 20% Exp Smooth 3
7 30% Exp Smooth 3
8 40% Exp Smooth 3
9 50% Exp Smooth 3
10 75% Exp Smooth 3
11 90% Exp Smooth 3
12 5% Exp Smooth, with 0.1% trend 10
13 10% Exp Smooth, with 0.1% trend 10
14 15% Exp Smooth, with 0.1% trend 10
15 20% Exp Smooth, with 0.1% trend 10
16 30% Exp Smooth, with 0.1% trend 10
17 Median Window 31 88
18 Median Window 5 16
19 Sliding Median Window 31 124
20 Sliding Median Window 5 26
21 30% Trimmed Median Window 31 106
22 30% Trimmed Median Window 51 169
23 Adaptive Median Window 5-21 171
24 Adaptive Median Window 21-51 455

Table 1: NWS Forecasters and the Approximate Costs of Each.
We show cost in column three as the number of floating point
operations performed.

si,j to denote the winning forecaster:

si,j =

8<
:

1 If model j is used to predict
measurementi

0 Otherwise

9=
; (5)

Specifically, ifsi,j is 1, theith forecast is made using predictorj.
If si,j is 0, the predictor is not the winner for theith forecast. If
we setk to be the number of models in NWS, using ( 4), we can
formulate prediction error of NWS as:

E =
nX

i=1

kX
j=1

(fi − vi)
2si,j (6)

Similarly, we can compute the cost of using the winning fore-
casters (in terms of floating point instructions,c) as:

C =

nX
i=1

kX
j=1

cjsi,j (7)

Theoretically, it is possible to optimize NWS by running it with
different combination of internal models on a set of representative
data and then removing the least efficient ones. However, the search
space is prohibitive: There are a total of224 combinations. To re-
duce the search space, we used a heuristic that evaluates how much
the total computation cost and error would change if a forecasteru
is substituted with another forecasterv throughout the series.

Formally, this process can be expressed as:

s′i,j =

8>>><
>>>:

1 If model j is winner forecaster
for measurementi andj �= u

1 if modelj is not winner forecaster
for measurementi andj = v

0 Otherwise

9>>>=
>>>;

(8)

whereEu,v andCu,v are defined same as (6) and (7) usings′i,j
instead ofsi,j

We computedEu,v andCu,v for every pair ofu andv on a set
of six representative traces and represented it as matrix withu as
rows andv as columns. This representation provides a very com-
pact form with which we can evaluate the efficiency of each model:
Every column of the matrix shows how much the error rate would
change ifv had been used instead ofu. For example,E2,1 shows
the new error iflast value is used instead ofrunning mean. If the
E2,1 is smaller than original NWS’s error rate forall the trace files,
then we considerlast value to be a better predictor thanrunning
mean. Similarly, if in an extreme case, all the values of column 2
are smaller than original NWS’s error rate, thenrunning mean out-
performs the original NWS. Even though, it is theoretically possi-
ble, we did not come across an example of such a case.

Our methodology is similar to off-line, profile-based optimiza-
tion research in which a set of representative program inputs are
used to collect profile information that is used to guide optimiza-
tion [18, 26, 17]. Empirical experiments then use a different set of
inputs to evaluate the efficacy of the technique. Here, we used six
traces to identify NWS forecasters that enable high accuracy at low
cost. We then evaluated NWSLite using over 300 different traces.
Given the evaluation matrix, we used a set of empirical rules with
which we eliminated forecasters. We removed any model

• that had more than 1% error rate across all traces,

• for which there is another model with significantly lower cost
that can replace it, with a slight but acceptable (less than 5%)
increase in error rate, and

• for which there is a combination of other models that enable
a similar error rate.

We ruled out many models directly using the first criteria. For
example, replacing30% trimmed median window 31 with running
mean generated an increase in error rate of at most 0.2%. On the
other hand, formedian window 31 therunning mean was only 0.2%
higher in 5 of the 6 traces, except the last for which it had an error
rate that was 32% higher. In the remaining trace,median window 5
had almost the same error rate. As such, we includedmedian win-
dow 5 and omitted30% trimmed median window 31. Eventually,
we identified five predictors (shown in bold in Table 1) that trade
off cost and prediction error most effectively.

5. EVALUATION
To empirically evaluate the efficacy of NWSLite, we performed

experiments using a wide range of datasets, applications, and met-
rics. In the following subsections, we describe the experimental
methodology (datasets and applications), detail the metrics we use
in Section 5.2, and present our results using these metrics in Sec-
tion 5.3.

5.1 Experimental Methodology
As mentioned previously, a remote execution system mustpre-

dict when to off-load work from a battery-powered, mobile device
to a remote server. To determine this, the system must estimate
the cost of performing the computation remotely and locally and
then compare the two results. Each component of the cost model
used for this comparison requires forecasts of what the underlying
resource performancewill be when the task is executed, e.g., CPU
availability for execution time, network performance for communi-
cation time, etc.

To empirically compare the resource forecasting system that we
present in this paper, NWSLite, to extant approaches to resource
performance prediction for remote execution systems, we collected



Name Trace Size Description
Application 20 traces Interactive, 3-D rendering application CPU demand. Measurements

17870 predictions are CPU time from user request to program response.
Network 132 traces Observations of 64Kb-1Mbyte TCP data transfers. 3 configurations:
Bandwidth [22] 750476 predictions UIUC LAN (inter-cluster), UIUC campus-wide network (intra-cluster),

and cross-country Internet (UIUC-UCSD)
CPU load [22] 59 traces Fraction of CPU occupancy time a standard user process can obtain

6000697 predictions Observations are in 10 seconds intervals.
Network 134 traces Round trip time of TCP. Transferring 4 bytes and measuring
Latency [22] 750305 predictions acknowledge time. Granularity levels same as network bandwidth.
Wireless 1 trace 4 access points on same subnet. Traces include 195 users, 300000 flows
Bandwidth [25] 3028 predictions and 4.6 GB of network traffic. Bandwidth measured in 1 minute intervals

Table 2: Datasets Used for Evaluation

Applications
Input Scene GLVU Radiosity
castle Yes
cessna Yes Yes
chevy Yes
cloister Yes
cup Yes
dragon Yes
ground-table-land Yes Yes
ground-riverain-valley Yes
shuttle Yes Yes
venus Yes

Table 3: Applications and Inputs Used for Evaluation. We col-
lected 10 trace files per application (3-D scene rendering pro-
grams) using different inputs and navigation paths. Empty en-
tries indicate that the application failed to process the particu-
lar scene; ”Yes” entries are those inputs we employed for this
study. We processed some inputs multiple times (to total 10)
using different navigation paths.

traces from a wide range of resource types: CPU demand (execu-
tion time) of application tasks, wired and wireless network band-
width, wired network latency, and CPU availability. We then used
the NWSLite and competitive approaches to make predictions us-
ing the trace data. In total, we performed experiments on 346 traces
which produced more than 7 million predictions. All of the traces,
with the exception of application execution times, were made freely
available to us via web-sites of research groups around the coun-
try [22, 1, 13]. We provide the details on the different datasets
in Table 2 and we refer to each of the different types of data sets
(application execution times, CPU availability, bandwidth, latency,
etc.) as “groups”.

We generated execution time traces, i.e., CPU demand, ourselves
using the 3-D rendering applications used in similar studies [20,
19]. Such applications implement rendering technologies that are
a key component of augmented reality applications. Such appli-
cations are highly suitable for remote execution: Independent tasks
used in 3-D scene rendering and image fidelity adjustment are comp-
utationally-intensive and easily divided into components for off-
loading. The applications and inputs that we considered are shown
in Table 3.

GLVU [12] allows navigating inside a 3-D scene by rendering
the scene from any viewpoint of user. From an augmented reality
view, Radiator [31] complements GLVU by computing the lighting
effects for a given scene. Both applications can easily be divided
into operations [20], which are a suitable unit for remote execution
and fidelity adjustment. An operation (which we also refer to as a

task) is the smallest user-visible execution unit, such as viewpoint
change in a rendering operation. For each application we rendered
a set of 10 scenes which produced a total of 17870 operations. We
employed all of the inputs shown in Table 3; we processed some
inputs multiple times using different navigation paths. We con-
sider the prediction performance for applications to be the accu-
racy with which the prediction system forecasts the CPU demand
of each task.

The bandwidth, CPU availability, and latency data were col-
lected as a part of the NWS project [22]. NWS network sensors
use active network probes to collect TCP/IP latency and bandwidth
data on a group of geographically distributed hosts connected via
local, wide area, and Internet networks. Each probe establishes a
TCP connection, transmits a fixed amount of data, and tears down
the connection. Network sensors measure network bandwidth us-
ing a 64 KByte data transfer and network latency using a 4 byte
data transfer.

The NWS CPU sensors combine the information from Unix sys-
tem utilitiesvmstat anduptime with periodic active CPU occupancy
tests to provide measurements of CPU availability. Theuptime util-
ity reports the average number of processes in the run queue over
the last one, five and fifteen minutes. The sensor uses the average
load over the one minute period and computes the CPU availability
by using the idle, user, and system time output fromvmstat utility.
The CPU availability is measured as the fraction of CPU occupancy
time a standard user process can obtain.

The wireless bandwidth traces we used were collected during
the SIGCOMM’01 conference [25]. The conference building was
covered with four 802.11b access points. The traces span a 3 day
period capturing 300000 flows generated by 195 users consuming
a total of 4.6 GB of bandwidth.

5.2 Evaluation Metrics
We present our empirical evaluation of the different prediction

systems in terms of both accuracy and computational cost. We use
three metrics, described in this section, to evaluate predictor accu-
racy. We use instruction count (both total and floating point) as the
metric for predictor cost.

The first of the three metrics we use to evaluate predictor accu-
racy iserror deviation. We define error deviation as:

MSE =

Pn
i=1(xi − yi)

2

n

Error deviation=
√

MSE (9)

wherex is the set ofn predictions andy is the set ofn corre-
sponding observations. The mean square error (MSE) is the aver-
age square prediction error over then pairs, (x,y). The error devi-
ation is the square root of the mean square error. Error deviation



Description Units Avg NWSLite NWS LSQ RPF

APP1 - best 148845.000 5287.856 5358.179 8180.561 22013.694
APP2 - median msecs 9179.390 1322.139 1329.372 2385.072 5702.085
APP3 - worst 169753.000 135125.056 138064.335 145384.166 186430.176
BW1 - within cluster 65.801 17.161 16.958 52.112 17.191
BW2 - cross-cluster Mbits/sec 76.522 13.308 13.329 59.279 13.507
BW3 - cross-country 4.536 0.878 0.859 78.063 1.164
CPU1 - best 1.992 0.016 0.016 13.905 0.029
CPU2 - median CPU 0.543 0.017 0.017 14.451 0.049
CPU3 - worst fraction 1.391 2.672 2.684 3.113 2.661
LAT1 - within cluster 13.936 16.873 16.890 41.121 17.048
LAT2 - cross-cluster msecs 2.345 8.309 8.319 46.829 8.337
LAT3 - cross-country 77.217 14.295 12.753 81.820 13.149
WBW Kbits/sec 206.674 193.782 194.498 255.254 261.744

Table 4: Error Deviation for a Set of Representative Traces. The third column is the average of the measured values, the next four
columns show the error deviation for each of the prediction systems. The APP and CPU datasets are sorted with respect to error
deviation / average and best, median and worst cases are shown. For the BW and LAT datasets, the average error deviation within
cluster, across cluster and across country are reported.

describes the error in absolute terms and represents (in analogy)
thestandard deviation of the errors with respect to theexpectation
constituted by the forecast. Error deviation accounts for outliers
and is more sensitive to incorrect predictions than isabsolute error
in which the absolute value of the error is used.

However, the error deviation is most meaningful when compar-
ing the performance of predictors on the same time series. To pro-
vide a comparison across different series, we use a second metric
that is the ratio of error deviation over the average observed value,
i.e., therelative error rate:

Relative error rate=

√
MSE

observed mean
(10)

This metric provides insight into how severe the error is in terms
of the magnitude of the average measured value. For example, an
error of 2Mb/s is large in a 10Mb/s link, but may not be significant
in a 100Mb/s link.

The third metric we use for reporting prediction error is similar
to relative error rate, however, instead of using the mean as the ex-
pected value, we use the absolute value of the forecast. This metric,
calledpredictability, indicates how predictable the series is rela-
tive to the forecasts it generates. It differs from therelative error in
that it treats each forecast as aconditional expectation that it uses
to normalize the error, instead of using the overall measurement
mean. We compute predictability as:

Pn
i=1

|xi−yi|
|xi|

n
(11)

5.3 Results
We next present the results from our empirical comparison be-

tween NWSLite and competing prediction systems: The Network
Weather Service (NWS), Odyssey (LSQ and ODY-BW,LAT), and
the Remote Processing Framework (RPF). We implemented all of
forecasters as efficiently as possible using the C language; we com-
piled each using gcc and -O2 optimization. Unlike NWSLite and
the NWS, the LSQ and RPF methods are parametric models and
hence, require parameterization. For each model, we created a pool
of parameter settings, that included the published values [20, 9, 21]
as well as our own values, resulting in 18 different forecasters. We
selected the best performing parameterization for each over all of
the datasets we considered.

We were unable to include the complete set of results due to

space constraints; however, they can be found in the technical re-
port version of this paper [14]. In the subsections that follow, we
first present results for prediction accuracy and then evaluate the
computational cost of each prediction system.

5.3.1 Predictor Accuracy
Table 4 compares theerror deviation (Equation 9) of the pre-

dictors using three representative traces, for brevity. In the appli-
cation (APP) and CPU availability (CPU) datasets, we sorted the
traces with respect to theerror deviation / average of NWSLite
and selected the best, worst, and median, which we report in the
table. For the wired network data (bandwidth (BW) and latency
(LAT)), we instead report data for three different types of links:
intra-cluster, inter-cluster, and inter-campus (across country). For
wireless (WBW), we only have a single trace and thus show data
only for it.

The first three columns of the table shows the description, trace
name, and value units for each trace. The third column, Avg, shows
the average observed value. The final four columns show the error
deviation for each of the four predictors: NWSLite, NWS, LSQ,
and RPF. LSQ and RPF are parameterized as described in Sec-
tion 5, and identify the best-performing, converging parameteriza-
tions of each technique.

The NWS and NWSLite have almost identical error deviations
in every case. LSQ performs well for applications (as was shown
in prior work [20]), but it is the worst-performing predictor for all
other types of data. NWSLite performs better than LSQ and RPF
in almost every case, and is significantly better than both LSQ and
RPF in most cases. For example, in the application group, for both
shuttle and cloister NWSLite performs 3 times better than RPF.
The wireless dataset is especially challenging. All the forecasters
show a high error rate.

Figure 2 shows therelative error rate of the predictors across all
of the traces in each group. The information in the graph confirms
the results of Table 4. NWSLite performance is very similar to that
of the NWS; in all groups it enables the best prediction error. LSQ
is ineffective for the bandwidth, CPU, and latency groups. RPF per-
forms quite well for the CPU and bandwidth groups; and exceeds
NWSLite performance for network latency by 1.5%. RPF is the
worst predictor however, for the application and wireless groups.
For the application group, the average error rate of RPF is 86%
higher than that of NWSLite.

We also compared the performance of predictors with Odyssey’s
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Figure 2: Relative Error Rate (Equation 10). This metric shows
how severe the error is with respect to the average measured
value. The LAT has the highest relative error rate among
all forecasters, however, as most latency observations are very
small (around 1 msecs), the absolute error is small.

specialized smoothing filters for bandwidth and latency, which we
refer to as ODY-BW and ODY-LAT (omitted for clarity). ODY-BW
performed 25% worse than NWSLite and ODY-LAT performed
19% worse than NWSLite.

Figure 3 shows thepredictability (Equation 11) of the series
given each predictor. This metric assumes that predictor is a valid
conditional expectation that can be used to normalize the error at
each point of the trace. The lower the value the more accurate the
forecaster. Since the variance of the results is high, we normalized
the results to NWSLite for each group.

The predictability results support our findings in Figure 2. NWS-
Lite is as accurate as NWS in all cases, and it performed signifi-
cantly better than the parameterized forecasters in most cases. The
single exception is the latency dataset, in which RPF is the win-
ner. However, the difference between RPF and NWSLite is very
small. In contrast, the accuracy of RPF is significantly worse than
NWSLite for the application, CPU, and wireless bandwidth data,
emphasizing the difficulty of finding a good parameterization for
the general case. These results also show that, with the exception
of the application dataset, LSQ always performs worse than the pre-
dictors based on smoothing-filters. In the application dataset, LSQ
is approximately 40% more accurate than RPF, however, it is still
significantly worse than NWSLite. The predictability of NWSLite
is considerably higher than even the highly tuned predictors ODY-
LAT and ODY-BW (not shown in figure). For the latency dataset,
ODY-LAT is 13% less predictable than NWSLite; whereas in band-
width dataset, NWSLite does 21% better than ODY-BW.

An interesting case is the behavior of RPF in Figures 2 and 3;
even though the relative error rate of RPF is small, its predictability
is not. This is due to the characteristics of CPU dataset - the CPU
availability values are in the range(0, 1), or (0, n) if there aren
processors. As such, most of the time the values are a fraction of
1. This results in a small value for the sum of square errors even
though the errors are high relative to the expected value.

5.3.2 Computational Cost of Prediction
In addition to studying prediction error, we also considered the

cost of performing prediction on a resource-restricted device. To
our knowledge, no prior studies that use prediction on mobile de-
vices consider the resource consumption of the predictors them-
selves.

We first compare the predictors in terms of instructions required
for one prediction. We extracted this information by using the Sim-
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Figure 3: Predictor Predictability (Equation 11). Due to
high variation among forecasters, the values are normalized to
NWSLite for each group. The lower the value, the more accu-
rate the forecaster.

Prediction Floating Total Execution time
System Point Instructions (microsecs)
NWSLite 55 592 381.34
NWS 2626 9388 10231.31
LSQ 42 138 295.27
RPF 8 50 154.9

Table 5: Execution Cost Comparison per Prediction

pleScalar [6] simulator. Figure 4 shows the average cost of each
predictor. NWSLite uses 55 floating point instructions per forecast.
Even though this is more than the cost of RPF and LSQ, which use
8 and 42, respectively, the accuracy of NWSLite exceeds both of
these predictors significantly.

As most resource-restricted devices lack a floating point co-pro-
cessor, floating point instructions are very expensive. We break
down the instruction counts into floating-point and non-floating-
point instructions in the first two columns of Table 5.

We also executed the predictors on a real resource-restricted de-
vice: An iPAQ H3800 hand-held computer from Compaq [7]. The
iPAQ has a 206 MHz Intel StrongArm CPU and runs Familiar
Linux version 0.5.3. The execution times (in microseconds) are
shown in the final column of the table. These times include the
cost of IO to read the trace file from flash memory and to print the
results.

The execution time of NWSLite is approximately 4% that of
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Figure 4: Forecaster Cost as Number of Instructions Executed
(floating-point (FPOINT) and TOTAL) per Prediction



APP BW CPU LAT WBW
E90 E95 E90 E95 E90 E95 E90 E95 E90 E95

NWSLite 3319.000 7336.000 10.271 25.699 0.019 0.043 15.772 24.566 198.130 351.090
NWS 3343.000 7459.000 9.601 25.580 0.018 0.038 15.801 24.502 202.771 358.798
LSQ 5866.552 13305.338 14.105 28.459 0.058 0.115 16.415 26.867 230.591 422.977
RPF 17147.400 38696.700 10.596 25.561 0.080 0.209 16.187 24.915 326.340 533.047
ODY-LAT 3759.839 8806.945 9.923 39.717 0.025 0.094 16.318 29.848 197.429 335.172
ODY-BW 3458.320 7894.141 7.384 42.541 0.021 0.079 16.883 31.494 192.992 354.560

Table 6: Results in Summary: Percentile Error. We define the X percentile error, EX , as the maximum absolute error for X% of the
experiments. The table compares the E90 and E95 of all forecasters for all 5 datasets and prediction systems studied.

NWS but enables prediction accuracy that is nearly equivalent. Given
that it requires only 381 microseconds to execute a prediction, in-
cluding the IO, NWSLite is a more attractive solution for on-line
forecasting using resource-restricted devices, than the parametric
and less accurate models of Odyssey and the RPF.

5.4 Result Summary
We summarize the result of our findings in Table 6. To make

our results comparable to previous studies [20], we report sum-
mary performance in terms of percentile error. We define the X
percentile error,EX , as the maximumabsolute error for X% of
the experiments. For example, for the bandwidth dataset,E95 of
NWSLite is25.6 meaning that95% of the time the prediction error
of NWSLite is within25.6 kilobits/second. The reason we use ab-
solute rather than relative error is to avoid skewed data in CPU and
latency datasets. We report the results for NWS, NWSLite, LSQ,
RPF as well as for the two other smoothing filters that we studied,
ODY-LAT (the Odyssey network latency predictor) and ODY-BW
(the Odyssey network bandwidth predictor).

The results show that NWS and NWSLite are general enough
that they perform well in all datasets. Even though parameter-
ized forecasters can match NWSLite in some datasets, they fail in
others. As an example, the performance of ODY-BW is close to
NWSLite in APP dataset, but it is significantly higher in BW, CPU
and LAT datasets. The same pattern also exists for ODY-LAT and
RPF. RPF matches NWSLite in BW and LAT, but it is significantly
worse in APP and CPU datasets.

Another pattern in the results is that both NWS and NWSLite
perform better than all others when a higher percentage of predic-
tions considered. This suggests that, NWS and NWSLite can bet-
ter adjust themselves to sudden changes in performance patterns by
switching to another model; the other models must simply rely on
their static parameters.

The wireless bandwidth dataset is significantly different than other
datasets. The error rates are very high, i.e.,E90 is around 200Kbits/sec
on a 11Mbits/sec link, hence none of the forecasters performed at
a satisfactory level. This emphasizes the need for additional study
of and novel forecasters for wireless network bandwidth data.

The success of NWSLite results from its capability to dynam-
ically switch between a carefully chosen set of competing mod-
els based on previously observed accuracy. If the dynamics of
the observed dataset changes over time, NWSLite can adapt to the
new conditions; the prediction systems of Odyssey and RPF cannot
and as such are data (input) dependent. For example, exponential
smoothing with a gain of 0.05 can be the most accurate predictor
at some point, however, a transient or permanent change can occur
so that the running mean can become the most accurate. In this
case, NWSLite will respond by switching to running mean if the
change is persistent enough to cause the aggregate error ranking
to change. Odyssey and RPF are statically configured by a set of
pre-determined parameters. Thus, even though there are individ-

ual cases that other predictors can match the accuracy of NWSLite,
they are unable to do well across dynamically changing series and
to different types resource performance data.

The flip-flop filter extension to Odyssey [15], described in Sec-
tion 2, incorporates some adaptivity by using two different parame-
ter settings in its exponential smoothing predictor. However, expo-
nential smoothing cannot always produce the best prediction accu-
racy (given any gain parameters). NWSLite incorporates exponen-
tial smoothing using two different gain factors but is more general
and adaptive than this filter since it considers a wide range of other
prediction techniques that can enable significant improvements in
accuracy at low computational cost.

6. CONCLUSIONS
By off-loading tasks from the resource-restricted devices to wall-

powered, high-performance servers, remote-execution can signifi-
cantly extend the capability and battery life of mobile and pervasive
devices. To determine when to offload, these devices must make
forecasts about the efficacy of doing so. A device must estimate the
cost of both remote and local execution given the highly-variable
underlying resource performance as well as the characteristics of
the task to be executed. As such, it must employ sophisticated pre-
diction techniques that are both accurate and light-weight, i.e., they
do not consume significant device resources.

We present a light-weight, computationally efficient, prediction
utility for mobile devices called NWSLite. The system is an ex-
tension of the Network Weather Service (NWS), a dynamic mea-
surement and forecasting toolkit designed and developed for adap-
tive application scheduling in Computational Grid environments
(performance-oriented distributed systems). We identify 5 of the
24 NWS forecasters for NWSLite implementation, that trade-off
computational cost for predictor accuracy most effectively.

We evaluate NWSLite using over 300 different traces of applica-
tion execution times, CPU availability, wired network bandwidth
and latency, and wireless bandwidth. In addition, we compare
NWSLite to the NWS and to two other extant remote execution
prediction systems. We find that NWSLite consistently outper-
forms the latter and achieves prediction accuracy similar to that of
the NWS. However, NWSLite achieves this level of accuracy at a
significantly lower execution cost than the NWS.
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