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Abstract

This paper describes a new technique in the Network
Weather Service for producing multi-variate forecasts.
The new technique uses the NWS’s univariate forecast-
ers and emprically gathered Cumulative Distribution
Functions (CDF s) to make predictions from correlated
measurement streams. Experimental results are shown
in which throughput is predicted for long TCP/IP trans-
fers from short NWS network probes.

1 Introduction

Performance monitoring in Computational Grid set-
tings is widely recognized to be an essential capabil-
ity [7, 11, 16, 26, 29]. There are a variety of systems
available for taking measurements to this end, particu-
larly for network performance [3, 10, 12, 15, 18, 20, 24,
26, 30]. For the Grid, this information is used primar-
ily to optimize application execution. Applications are
directed (either by a human user or an automatic sched-
uler) to use the resource (network, CPU, memory sys-
tem, etc.) that exhibits the best measured performance.

Frequently, monitor data gathered from these tools
is used as a prediction of future performance. That is,
an observation of past performance implies that future
performance levels will be similar. For network band-
width estimation, in particular, many users simply con-
duct lengthy data transfer between end-hosts, observe
the throughput, and use that observation as a harbinger
of future available bandwidth.

There are two significant problems with this method-
ology. First, it is not clear that the last observa-
tion, particularly of network throughput, is a good es-
timate of future levels since network performance can
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fluctuate significantly [17, 32]. Secondly, it requires
that the resource be loaded “enough” to yield a sig-
nificant estimate. On high-throughput networks with
lengthy round-trip times (e.g. the NSF Abilene [1] net-
work) enough data must be transferred to match the
bandwidth-delay product [14] for the end-to-end route.
This intrusiveness can be costly, both in terms of wasted
resource and lost time while the probe takes place.

Performance monitoring tools such as the Network
Weather Service (NWS) [25, 30] address the first prob-
lem by making the predictions explicitly using statisti-
cal techniques. Application-level schedulers [2, 5, 19,
23] have been able to use these predictions (and mea-
sures of prediction error) to achieve good execution per-
formance levels in a variety of Grid settings, despite
fluctuating resource performance.

However, in making these forecasts, current NWS
methodologies (described in [29, 30]) share the sec-
ond problem with other performance monitoring tools
for the Grid. Performance responses that are expensive
to generate with probing, such as steady-state TCP/IP
throughput, are unfortunately best forecast from a his-
tory of such responses. Moreover, the dynamics of the
network are frequently changing, making old measure-
ments increasingly less statistically valuable as time
passes. As such, instrumenting Grid applications or
tools (e.g. GridFTP [2]) and using the observations
from the instrumentation may yield dramatic inaccura-
cies if the time between application runs is significant.

In this work, we describe a new multivariate fore-
casting technique that enables the NWS to automat-
ically correlate monitor data from different sources,
and to exploit that observed correlation to make bet-
ter, longer-ranged forecasts. In particular, this new cor-
relative method allows the NWS to combine infrequent
and irregularly spaced expensive measurements (pos-
sibly obtained through instrumentation) with regularly



spaced, but far less intrusive probes to make predictions
that would be far too expensive to generate with probes
alone.

We demonstrate the effectiveness of the technique
by showing how it can be used to forecast long HTTP
transfers using a combination of short NWS TCP/IP
bandwidth probes and previously observed HTTP trans-
fers. Using short TCP/IP messages to predict steady-
state throughput is the subject of significant research [6,
13,28]. Our particular experimental verification is sim-
ilar to the work described in [27], but unlike that work,
our new method does not rely on linear regression.

Our results indicate that the combination of short
NWS bandwidth probes and previous HTTP history
can be used to generate more accurate HTTP transfer
bandwidth forecasts than has been previously possible,
particularly when the time between observable HTTP
transfers is long.

More generally, we observe that it is often advan-
tageous to combine data from two or more measure-
ment streams which may correlated in some way. The
HTTP experiment described herein is an example of
how heavy-weight operations that would be too intru-
sive to duplicate as explicit probes can be monitored
and combined with lightweight, inexpensive probes of a
resource to produce a forecast of the heavy-weight op-
eration. Similar correlation problems exist when pre-
dicting CPU availability [31] and real memory. As
such, we believe that this new forecasting technique can
be used to combine probe monitor data with applica-
tion instrumentation data (e.g. internal code timings)
gathered from a computation by a mechanism such as
Autopilot [21] or Tau [22].

In summary, the contributions that this new work
makes are:

• the description of a new correlation technique that
greatly improves observed prediction error, partic-
ularly for longer-ranged predictions

• an empirical evaluation of the technique to the
problem of long-message bandwidth prediction
using short-message bandwidth probes

Our results show similar or better prediction accu-
racy than what has been previously reported in either
the networking or Grid computing literature and in-
dicate a general methodology for combining histori-
cal instrumentation data with periodic explicit measure-
ments.

2 Forecasting using Correlation

The generalized NWS forecasting system can be
thought of as having access to a collection of measure-
ment series. These series are characterized by units and
frequency. In order to make multivariate predictions, a
system needs to operate on some subset of these mea-
surement series with a combination of correlation and
forecasting. The correlator serves to map X values onto
Y values where the X values are plentiful and “cheap”
and the Y values are “rare” and expensive. The univari-
ate forecaster produces forecasts, which represent the
current and future performance of a single dataset. At
present, the NWS provides us with a rich set of tools
for the latter, and our goal is to augment those tools by
addressing the former.

Given two correlated variables, knowledge of one at
a given point in time provides us some information as
to the value of the other. Stated more formally, being
able to fix the value of one of the variables allows us
to make reasonable assumptions about the probability
of various values of the other variable, based on their
history of correlation. The question is how to exploit
that empirically to make a prediction.

2.1 Correlator Methodology
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Figure 1. CDF of NWS data (X)

The correlator can determine the mapping between
the X and Y values in a number of ways. Methods such
as linear regression and traditional correlation operate
on datasets of equal sizes and assume that the variables
in question are related linearly. However, in the case of
measurement data gathered from a variety of sources:
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Figure 2. CDF of HTTP data (Y )

• data sets may be of different sizes

• data items within each set may be gathered with
different frequencies and/or with different regular-
ities.

• the units of measure may be different between data
sets.

The mechanism that our correlator uses is similar to
rank correlation techniques. A rank correlation mea-
sure sorts datasets and does linear correlation based on
their position in the sorted list, (their “rank”). For our
purposes, rank correlation is attractive because it is non-
parametric. A non-parametric technique is appropriate
since we cannot be certain of the distribution of the
data. However, if there are different amounts of data
in the respective datasets, something must be done to
make the set sizes equal.

The Cumulative Distribution Function (CDF ) is de-
fined as the probability for some set of sample points
that a value is less than or equal to some real valued
x. If the probability density function (PDF ) is known,
then it is defined as follows:

CDFX(x) =

∫ x

−∞

PDFX (1)

Empirically, we can approximate the CDF by:

CDFX(x) =
positionx∑

i=1

1

countx
(2)

Where countx is the total elements in the sample set.
Which is equivalent to:

CDFX(xtarget) =
countx′ | x′ ≤ xtarget

countx
(3)

So, we are able to compute the empirical CDF for
both the X and Y variables (CDFX and CDFY , re-
spectively.) Now we have a way to rank measurements
in datasets of different sizes. By computing the CDF
for multiple datasets, we are able to compare them in a
way similar to the rank correlation technique.

However, since our goal is forecasting, we are not
interested in using this to quantify the correlation be-
tween the X and Y datasets, but rather in using them as
a mapping function from X to Y 1. We can use the po-
sition of the value in X (xtarget) to produce a value of
Y (yforecast). This allows us to inexpensively compute
a relationship between the two sets.

Specifically:

yforecast = CDF−1

Y (CDFX(xtarget)) (4)

This gives us the value in Y (in CDFY ) associ-
ated with the position xtarget. If the CDF position
of xtarget (CDFX(xtarget)) is between measured Y
values, linear interpolation is used to determine the
value of yforecast. This mapping is similar in spirit to
quantile-quantile comparisons (e.g. qq-plot) that are fa-
miliar. Again, however, the goal is forecasting and not
the quantification of relationship.

The xtarget can be chosen in a variety of ways.
Tests have shown that the most effective way to choose
xtarget is by using the NWS forecasters to produce the
value. This is because the univariate forecast is less sen-
sitive to transient outliers (i.e. for all the same reasons
that univariate forecasting is effective at all.) This is
simply:

xtarget = Forecast(X) (5)

As an illustration of the CDF forecaster, consider
the plots of the CDF s computed from the data de-
scribed in Section 4. The NWS (X) values are shown

1Indeed, no correlation coefficient is defined for this correlation
technique, although we are investigating this for selection among
datasets.



in Figure 1 and the HTTP (Y ) values are shown in Fig-
ure 2. To compute the forecast for Y we use the position
in the CDF of xtarget, which yields some real number
between 0 and 1. The forecast is the value of y at that
point in the CDF of Y .

This predictive method then forms both the X and Y
CDF s. At each prediction cycle, a univariate forecast
of X is taken and that X value’s position is determined.
That value is used to determine the value in Y at the
corresponding position, which is the prediction.

We have implemented an adaptive version of this
correlator that uses varying amounts of history used to
form the CDF of each dataset. These different ver-
sions are selected against based on their accuracy in the
same way that the univariate forecasters do [30]. We
have also implemented a prototype that alters the com-
putation of the CDF and weights current values more
heavily when creating the mapping function. However,
the data presented in this paper uses only the most sim-
ple case in that the computed CDF s contain all mea-
surement data.

The CDF is a useful measure for a number of rea-
sons. One reason deals with the practicality of deliv-
ering this information to clients of this system – Grid
programs and schedulers. A CDF dataset may be com-
pressed with varying degrees of loss. In simple cases,
a handful of points can describe the CDF with linear
interpolation between specified points.

2.2 Error

The NWS uses prediction error internally to choose
optimal forecasts and provides that information to
clients as a measure of the forecast accuracy.

Some notion of normalized error is necessary so
that over-prediction and under-prediction (and exces-
sively high or low measurement values) are represented
fairly. For instance, 1Mbit prediction error is quite dif-
ferent for transfers that observe 100Mbits/second than
for those that see 10Mbits/second. So, to determine the
accuracy of various datasets which might not have the
same units and to evaluate the overall performance of
the system, we compute the Mean Normalized Error
Percentage (MNEP) as the last prediction’s error over
the current average value.

MNEP =

∑
|valuet − predictiont|/meant

observations
(6)

Again, this is required due to the forecast-oriented
application of the system. The mean used (meant) is
the current mean and is reevaluated at each timestep.

3 Experimental Methodology
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Figure 3. 64KB NWS Probes.
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Figure 4. 16MB HTTP Transfers.

To investigate the effectiveness of our new technique,
we used the following experimental procedure. We
generated default-sized NWS bandwidth measurements
(64K bytes), using the TCP/IP end-to-end sensor be-
tween a pair of machines every 10 seconds. Every
minute, we initiated a 16MB HTTP transfer and the
recorded the observed transfer bandwidth. The NWS
data is depicted in Figure 3 and the HTTP data is shown
in Figure 4. While the exact correlative relationship is
not clear visually, the shapes of each data set appear to
share similar characteristics.
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Figure 5. Comparison of Mean Absolute Error (MAE) between univariate and multivariate forecasts for
different frequencies of HTTP measurements.

Our goal was to use this data to investigate the ac-
curacy with which the short 64K NWS transfers could
be used to predict the long 16MB HTTP transfers
given successively longer periods between 16MB trans-
fers. This experimental configuration emulates the case
where instrumentation data is gathered from an appli-
cation (e.g. HTTP/web client). We examine the effects
as this data ranges from plentiful (frequent 16MB trans-
fers) to scarce. In particular, we wish to study how well
NWS 64K messages can be used to predict large mes-
sages that are separated by several hours as the network
conditions often change over this time scale.

We chose to use HTTP transfers as a prediction tar-
get for several reasons. HTTP is, of course, widely used
in the Internet. Further, HTTP is a key component of
SOAP and Web services and we are likely to see this
used more and more in high-performance computing.
This data represents two of the cases mentioned previ-
ously. That is, it is representative both of the relation-
ship between short and long network experiments, and
also of instrumentation data (which it indeed is) being
fed into the forecasting service.

Our basis of comparison is prediction error measures
as either the mean absolute difference between predic-
tion and corresponding measurement, or the square root

of the mean square prediction error. We compare three
prediction methods: the last value method which uses
the last observed value as a prediction, the univariate
NWS forecast applied solely to the 16MB probe his-
tory, and the new correlative method.

We chose 16MB as our test case to limit intrusive-
ness. Also, there is less variability, in general, in the
observed bandwidth as the amount of data transferred
gets larger (evidenced one of many places by the bet-
ter predictive accuracy of longer transfers seen in [27]).
This can be intuitively explained by the notion that any
transient periods of high congestion are amortized over
the longer transfer time. So, 16MB transfers are not so
long as to make things easy, but long enough to repre-
sent real applications and real data.

4 Results

The following data represents 10 days of mea-
surement data between Argonne National Laboratory
(ANL) and UC Santa Barbara (UCSB). These results
are based on a version of the forecaster we have im-
plemented that automatically computes the empirical
CDF for each forecast incrementally, based on all pre-
vious measurement data. That is, the forecaster “learns”
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Figure 6. Comparison of Moving Normalized Error Percent (MNEP) of the Mean Absolute Error (MAE)
between univariate and multivariate forecasts for different frequencies of HTTP measurements.

as it goes and acquires more data. The X-axis of these
graphs represents the time between 16MB transfers.
That is, we gradually decimate the Y dataset until there
are measurements approximately every 500 minutes.

Figure 5 shows the Mean Absolute Error (MAE) of
the NWS univariate forecasters compared to the MAE
of the multivariate forecasters. The NWS uses the MAE
as it is a unit-preserving metric of success. We can
see that the multivariate forecaster enjoys slightly bet-
ter, but comparable, performance as the 16MB Y val-
ues are being measured frequently. However, while the
multivariate forecaster maintains effectiveness as the Y
values become less frequent, the univariate forecast-
ers begin to lose accuracy. Notice that the mean ab-
solute prediction error is only 0.47 megabits/second at
500 minutes. That is, using the new forecasting tech-
nique, the NWS can predict 16MB transfer bandwidth
using 64K measurements with a mean error of 0.47
megabits/second.

To give some notion of magnitude, we normalize
the MAE by the average transfer bandwidth resulting
in the MNEP. Figure 6 shows the MNEP of the MAE.
The MNEP shows us the percentage of the current av-
erage value that an error represents. This is not unit-
preserving, but depicts the error values in relation to the

moving average of the data. Again, at 500 minutes, the
64K transfers, when used in our forecaster, can predict
16MB transfer bandwidth to within 7% on the average.

Figure 7 shows the square root of the Mean Square
Error (MSE) of both types of forecasts. This value bears
resemblance to the traditional notion of standard de-
viation and tends to indicate the variance of the error.
Using a combination of the univariate NWS forecast-
ing technique and incrementally constructed empirical
CDF s, our new technique can predict actual through-
put with relatively high levels of accuracy.

For comparison purposes, we also include a “fore-
cast” based on the last value. This is the “accuracy” of
a prediction that assumes the the performance of a given
transfer will be the same as it was the last time it was
performed – actually, a common way that monitor data
is used in the “real” world. Figure 8 show the MNEP of
the MAE for the CDF forecaster and the “Last Value”
predictor. This shows that using the last value as a pre-
dictor for this dataset yields “forecasts” with over 100
percent error. Clearly, forecasting yields predictive ac-
curacy that significantly better than the the base case
“last-value” approach.

These results show that by combining instrumenta-
tion data with NWS forecasting, our technique is able
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Figure 7. Comparison of the square root of the Mean Square Error (MSE) between univariate and
multivariate forecasts for different frequencies of HTTP measurements.

Measurement Target Moving Normalized Error Pct. MNEP (square error) Last Value MAE MNEP

10MB-Transfers 0.184883 1.454097 1.008486
100MB-Transfers 0.102253 1.216345 1.033892
500MB-Transfers 0.074396 0.737839 1.030498
1GB-Transfers 0.096729 1.367443 1.040794

Table 1. ISI to ANL – Normalized Error Percentages when using NWS data to forecast GridFTP [8]
performance compared to the “last value” prediction. (data from ANL [27]).

to use relatively short transfers to predict long-message
throughput. Moreover, the predictive accuracy does not
degrade substantially when forecasts of events occur-
ring hours apart are used as inputs. Our work indicates
that the statistical techniques used by the NWS can ex-
tract and exploit the inherent performance relationship
that must exist between message transfers of different
sizes, and does so automatically.

4.1 Additional Results

This section further validates our experimental re-
sults by using additional datasets that were not gath-
ered by us. The first of these is from similar work from
Vazhkudai and Schopf [27]. This work is closely re-
lated to ours in that NWS measurements are used to

predict GridFTP [8] data transfers. Table 1 shows the
predictive performance of our approach over transfers
of various sizes from the Information Sciences Institute
(ISI) to ANL. We present the Moving Normalize Error
Percentage (MNEP) and the MNEP of the Mean Square
Error (MSE). Finally, we include the “last value” pre-
diction as before. Table 2 shows the results from ISI
to the University of Florida (UFL). Table 3 depicts the
results from Lawrence Berkeley Laboratory (LBL) to
ANL, and Table 4 presents results from LBL to UFL. In
all cases we see error that is comparable to, or slightly
lower than, the results presented in [27].

Finally, we validated our technique on data gathered
as part of the Internet End-to-End Performance Moni-
toring (IEPM) [9] project at the Stanford Linear Accel-
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between “Last Value” and multivariate forecasts.

Measurement Target Moving Normalized Error Pct. MNEP (square error) Last Value MAE MNEP

10MB-Transfers 0.148436 1.819804 1.002759
100MB-Transfers 0.077140 1.305875 1.024719
500MB-Transfers 0.107906 1.731765 1.045038

Table 2. ISI to UFL – Normalized Error Percentages when using NWS data to forecast GridFTP [8]
performance compared to the “last value” prediction (data from ANL [27]).

erator Center (SLAC). This data consists of a variety of
tests run from SLAC to a set of other sites over a period
of roughly 6 months. The tests are performed roughly
every 90 minutes and the timestamp is taken at the be-
ginning of a testing regime (avoiding the problems of
data matching mentioned in [27].) We compared the
measurements taken using iperf with the performance
of a bbftp [4] transfer. Table 5 shows the results for
various datasets. Again, the “last value” prediction for
the bbftp transfers is also presented. We note that in
many cases, the iperf measurements are quite predic-
tive of bbftp transfers using our approach.

5 Conclusion

We have described a general Grid performance pre-
diction architecture as well as our implementation of

this predictive technique. We have shown a novel
method for prediction based on the Cumulative Distri-
bution Functions (CDF s) of two time-series and ob-
served that its performance is promising – both on data
that we have gathered and two independently collected
data sets.
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Measurement Target Moving Normalized Error Pct. MNEP (square error) Last Value MAE MNEP

10MB-Transfers 0.246149 2.002583 0.997348
100MB-Transfers 0.177217 1.945978 1.069952
500MB-Transfers 0.248009 2.191534 1.062821
1GB-Transfers 0.050055 1.163226 0.994377

Table 3. LBL - ANL – Normalized Error Percentages when using NWS data to forecast GridFTP [8]
performance compared to the “last value” prediction (data from ANL [27]).

Measurement Target Moving Normalized Error Pct. MNEP (square error) Last Value MAE MNEP

10MB-Transfers 0.171448 3.227998 1.024326
100MB-Transfers 0.251636 3.913424 1.044074
500MB-Transfers 0.123307 1.770330 0.981202

Table 4. LBL - UFL – Normalized Error Percentages when using NWS data to forecast GridFTP [8]
performance compared to the “last value” prediction (data from ANL [27]).
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