
GridSAT Portal: A Grid Portal for Solving Satisfiability Pro blems
On a Computational Grid ∗†

Wahid Chrabakh
University of California Santa Barbara

Department of Computer Science
Santa Barbara, CA

chrabakh@cs.ucsb.edu

Rich Wolski
University of California Santa Barbara

Department of Computer Science
Santa Barbara, CA
rich@cs.ucsb.edu

Abstract

We present a Grid Portal for solving satisfiability problems: http://orca.cs.ucsb.edu/satportal . The
portal provides a trivial interface which allows the use of asophisticated and complex grid application
GridSAT [6] running a large set of distributed computational resources hosted in different national
computing centers. In this paper we describe the design goals of the portal and how it has influenced
some of the application features. We also describe how a truegrid application makes portal development
easier and less complex.

1 Introduction

Grid Computing is a research area with the vision of making computational power as easy and seam-
less to use as the electrical power grid. The grid paradigm allows for the aggregation of computational
power to be used to solver problems in science and engineering. Just like its electrical counterpart,
the computational grid consists of many sophisticated and powerful components. The complexity of
Grid applications is due to their distributed nature and the“hostile” computing environments where they
execute. It is a complex task to manage and coordinate a largeset of components each performing a
sub-task. The complexity is multiplied when the underlyingsets of resources is dynamic. Therefore
inorder to make the computational grid simple to use, the final user interface should be as simple as
possible just like the electric socket. The final interface should isolate the users from as much internal
complexity as possible. One way grid users are presented with an easy to use interface to complex grid
applications is through grid portals. For example, the Cactus [3] portal is used to simulate blackholes
and the Lattice [12] Portal specializes in high energy physics.

A computationally challenging problem with numerous application is boolean satisfiability. As satisfi-
ability solvers became more efficient, they have been adopted as a powerful tool in many areas of science
and engineering. In practice, many engineering disciplines require the solution of domain-specific large

∗This work was supported by grants from the National Science Foundation, numbered CAREER-0093166, EIA-9975020,
ACI-0103759, and CCR-0331654.

†This research was supported by an LRAC grant from the National Science Foundation through TeraGrid resources
provided by SDSC, NCSA,PSC,TACC.



satisfiability instances. Such disciplines include scheduling [5], model checking [4], security [2], Ar-
tificial Intelligence [9] and software verification [8]. Satisfiability is especially important in the area
of Electronic Design Automation (EDA). EDA encompasses a variety of problems such as circuit de-
sign [18], Field-Programmable Gate Arrays (FPGA) detailedrouting [13], combinational equivalence
checking [10, 15] and, automatic test and pattern generation [11].

p cnf 3 2
-1 2 3 0
3 -1 -2 0

Figure 1. A short CNF example
with three variables and a two
part expression

Since solving satisfiability instances is very important
in many fields of science and engineering, an annual com-
petition is held [16] for satisfiability solvers. The solvers
are rated using several criteria using a set of problems.
The problems are are submitted by the SAT commu-
nity [17] and belong to a large variety of fields. All the
problem are represented in a community standard canon-
ical CNF format. Figure 1 shows a short example where
the first line defines successively the number of variables and the number of subexpressions in the logical
formula. Each successive line defines a subexpression and terminates with a zero.

However, most solvers used in practice are sequential. We have developed a parallel solver GriDSAT,
as a true grid application. GridSAT is capable of out-performing current state of the art solvers on prob-
lems that these solvers can solve. Moreover, it has been ableto use a large set of computing resources
inorder to solve problems that current solvers could not solve.

In order to make this solving power available to interested users we have developed a GridSAT portal.
The portal allows users to submit and solve their specific problem instances. The portal presents a simple
interface for users where they just enter a few parameters. The portal then launches the problem on the
available resources and collects the final result. The portal is designed so that the user does not interact
directly with resources. It is the GridSAT application which automatically selects the resources and
schedules dynamically the parallel components inorder to provide the best performance.

2 GridSAT

A propositional satisfiability problem takes as input an arbitrary logical expression about a set of
variables. The problem is solved by determining whether there exists or there does not exist a set of
variable assignments so that the given expression evaluates logically to “true”.

GridSAT is a complete and parallel distributed satisfiability solver. GridSAT can combine many het-
erogeneous resources to solve a given satisfiability instance. Each resource used by the application
executes a client. The client consists of a sequential solver and can also asynchronously process in-
coming messages without interrupting the local solver. This method of communication allows clients to
cooperate and share intermediate results with the other resources throughout the duration of the execu-
tion.

Because the number of resources required by a given problem is unknown, GridSAT adjusts the num-
ber of resources it uses according to the current problem. Atthe start of execution, only one resource is
used. When the CPU or memory load exceeds a given threshold one more resources is added. New re-
sources as assigned work by splitting the problem’s search space. This process is applied to all resources
which become part of the execution. Eventually some of the resources are released as soon as they have
finished investigating their assigned search space.



Figure 2. GridSAT components and
their interactions. Grid resources
are shown in clouds.

The master process, shown in figure 2, manages the en-
tire application state. It uses existing grid services suchas
NWS [19] and Globus MDS [7] to discover and monitor
grid resources. The GridSAT master process is designed
to tolerate resource failures of remote clients at any stage
of the execution. The application uses checkpointing to
restart tasks after resource or network failures. Moreover,
GridSAT adapts its work load balancing depending on the
connectivity exhibited between groups of resources. For
instance, work assigned to scattered resources is migrated
to larger clusters of resources with higher network con-
nectivity.

3 GridSAT Portal

In general, there exists two classes of portals. The first class isuser portalswhich provides an interface
for grid infrastructure to users. An example user portal is the NPACI portal [1]. The other class of portals
is application portals. The GridSAT portal belongs to the latter category. There exists tools to help build
user portals such as [14]. Application portals, however, are more specific and there have been attempts
at building tools for such portals. For example, GridSpeed [14] abstracts portals into a mechanism for
specifying parameters and a predefined set of templates for task execution. Under this abstraction, the
purpose of the portal is to initiate commands on remote systems.

The GridSAT portal is different in two aspects. First, it is the GridSAT application that is responsible
for launching and monitoring the tasks on the remote resources. Second, the number of tasks, the number
of resources and duration of each task is not predefined. The GridSAT scheduler dynamically chooses
the job characteristics (i.e. location, size and duration)depending on the observed resource load and
problem behavior from previous jobs.

The GridSAT portal runs the GridSAT master component locally (or on a trusted host) to guard against
any remote resource failure. Since the master process is long lived, the probability of a remote resource
failing becomes higher. In fact, in GriDSAT we assume that any remote resource may fail at any moment.
This may happen because of the resource’s own failure or because the resource becomes unreachable
through the network. According to our experience, all resources even those which are professionally
maintained can become unresponsive from the application’sperspective. Those resources that do not
experience hardware and software failures usually have scheduled routine preventive maintenance pe-
riods or a combination of software and hardware upgrades. From the point of view of the application
these are “scheduled” or “anticipated” failures.

Thus the GridSAT portal starts the master process locally. It is the responsibility of this process to in-
sure the continual execution of the application in-spite ofresource failures or performance degradations.

3.1 User Environment



Figure 3. Screen shot of submission form used by Grid-
SAT portal to submit satisfiability problems.

The portal allows users to se-
curely login and create their pri-
vate accounts. After logging-
in a user can submit satisfiabil-
ity problems using the form shown
in figure 3. The user sub-
mits problems as files in the stan-
dard CNF format. A set of
test problems of variable sizes
are available for download and
can be submitted to the portal
athttp://orca.cs.ucsb.edu/satportal/test problems.htm.
The user also specifies the maximum number of processors to use and the duration. The GridSAT appli-
cation can take more parameters to control the rate of sharing intermediate results and other aspects of
the scheduling procedure. The portal hides all these details because most users cannot determine which
values to use for these parameters. Instead the GridSAT application uses heuristics to assign values to
these parameters.

Currently the GridSAT portal can use many TeraGrid sites at NCSA, SDSC and DataStar. We are also
in the process of integrating more computing resources suchas LoneStar and PSC. Additional resources
can be incorporated by simply installing the application and updating a configuration file. The user is
involved in selecting which set of resources will be used. Instead the GridSAT application selects the
resources automatically.

The user can query and manage his own set of submissions whilebeing provided with continuous
feedback. Th user can query the portal about all the sets of problems which he has previously submitted.
Moreover, the user can view a detailed status for each problem. The status of each problem is continu-
ously updated. The detailed view of a problem shows the CPU*Hours consumed, the number of active
clients are running and the number of total splits which occurred during the elapsed execution time.
Moreover, the portal displays which resources have been used and the submission,start and end time of
each job. The combination of all this information presents the user with the progress rate at which a
given problem is being solved.

When a problem is solved the satisfiable solution found is displayed. Otherwise the problem is marked
as unsatisfiable. In some cases, the problem might timeout because the specified period has expired
before a solution can be determined. The user can also cancela given problem at any time even when
it already started running. A user may also choose to delete the problem altogether and it will not be
displayed in the history of his submissions. Also any disk resources used by the problem will be purged.
In fact, all files associated with a given file will be deleted after a given time period inorder to alleviate
disk space consumption.

3.2 Budget Based Scheduling

As shown in figure 3, when submitting a problem the user specifies two additional parameters which
are the maximal number of processes and a maximal duration for trying to solve the satisfiability prob-
lem.

The GridSAT scheduler uses these parameters as guidelines to submitting resource requests because



it is not always possible fulfill exactly the user requests through a single allocation. For example, if
the user asks for a number of processes greater than the number that can be provided by the resources
available, GridSAT uses the maximal number of processes available within the resources instead. Also
when a user specifies a small time duration lower than a minimal predetermined value, then all jobs
requested will use the minimal time value instead. The portal enforces a minimal time for using a CPU.
Using a CPU for a very short time period does not allow the solver enough time to make progress in
solving the problem it is assigned. Therefore, the same problem will at exactly the same state when
restarted later. Hence, a minimal duration for each job is enforced to avoid wasteful use of resources.

Effectively, the GridSAT scheduler tries to satisfy the user requests within the constraints of the re-
sources available. If it is not possible then the scheduler submits a series of usually smaller jobs with
equivalent total computational budget (cpu*hours). The scheduler keeps count of how much of the bud-
get has been consumed by the application. The remaining portion of the initial budget is decremented
continuously as processes are executing on behalf of the application. When a job terminates, the sched-
uler uses the remaining budget and resource specific parameters to submit a new job.

In the future we will replace both parameters with a single one. This new parameter will represent
the total CPU*hours which will be dedicated to solving the submitted problem. The GridSAT scheduler
will issue successively larger jobs inorder to solve the given problem.

4 Conclusion

In this paper we have presented the GridSAT portal based on the complete and parallel distributed
satisfiability solver GridSAT. The GridSAT portal presentsa simple user interface to a complex grid
application running on a set of volatile but powerful resources.

The GridSAT portal hides all complexities involved in managing a grid environment because the
underlying application manages all resources and failuresseamlessly. The robustness of the GridSAT
application has facilitated developing the portal and madeit less complex.

References

[1] Npaci hotpage.
[2] L. C. Alessandro Armando. Abstraction-driven sat-based analysis of security protocols. InTheory and

Applications of Satisfiability Testing, 6th InternationalConference, SAT 2003, pages 257–271, May 2003.
[3] G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu, T. Radke, E. Seidel, and J. Shalf. The Cactus Worm:

Experiments with dynamic resource discovery and allocation in a Grid environment.The International
Journal of High Performance Computing Applications, 15(4):345–358, 2001.

[4] C. W. B. Li and F. Somenzi. Abstraction refinement in symbolic model checking using satisfiability as the
only decision procedure. December 2003.

[5] R. Bjar and F. Many. Solving the Round Robin Problem UsingPropositional Logic. AAAI/IAAI, 2000.
[6] W. Chrabakh and R. Wolski. GridSAT: A chaff-based Distributed SAT solver for the Grid. InSupercomput-

ing Conference, Phoenix, AZ, November 2003.
[7] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information services for distributed resource

sharing. InProc. 10th IEEE Symp. on High Performance Distributed Computing, 2001.
[8] D. Jackson and M. Vaziri. Finding bugs with a constraint solver. International Symposium on Software

Testing and Analysis, 2000.



[9] H. Kautz and B. Selman. Planning as satisfiability. InProceedings of the Tenth European Conference on
Artificial Intelligence, pages 359–379, August 1992.

[10] W. Kunz and D. Stoffel.Reasoning in Boolean Networks: Logic Synthesis and Verification Using Tech-
niques. Kluwer Academic Publishers, Boston, 1997.

[11] T. Larrabee. Test pattern generation using boolean satisfiability. In IEEE Transactions on Computer-Aided
Design, pages 4–15, January 1992.

[12] Lattice Portal. http://lqcd.jlab.org/.
[13] G. Nam, F. Aloul, K. Sakallah, and R. Rutenbar. A Comparative Study of Two Boolean Formulations of

FPGA Detailed Routing Constraints.International Symposium on Physical Design (ISPD), SonomaWine
County, California, pages 222–227, 2001.

[14] J. Novotny. The grid portal development kit, 2001.
[15] S. Reda and A. Salem. Combinational equivalence checking using boolean satisfiability and binary decision

diagrams. InProceedings of the conference on Design, automation and test in Europe, pages 122–126. IEEE
Press, 2001.

[16] SAT Competitions.http://www.satlive.org/SATCompetition/.
[17] SAT Live. http://www.satlive.org/.
[18] J. P. M. Silva. Search Algorithms for Satisfiability Problems in Combinational Switching Circuits. Ph.D.

Thesis, The University of Michigan, 1995.
[19] R. Wolski, N. Spring, and J. Hayes. The network weather service: A distributed resource performance

forecasting service for metacomputing.Future Generation Computer Systems, 1999.


