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Abstract
Simulation is widely used for developing, evaluating and analyz-
ing sensor network applications, especially when deploying a large
scale sensor network remains expensive and labor intensive. How-
ever, due to its computation intensive nature, existent simulation
tools have to make trade-offs between fidelity and scalability and
thus offer limited capabilities as design and analysis tools. In this
paper, we introduce DiSenS (DIstributed SENsor network Simula-
tion) – a highly scalable distributed simulation system forsensor
networks. DiSenS does not only faithfully emulates an extensive
set of sensor hardware and supports extensible radio/powermodels,
so that sensor network applications can be simulated transparently
with high fidelity, but also employs distributed-memory parallel
cluster system to attack the complex simulation problem. Combin-
ing an efficient distributed synchronization protocol and asophisti-
cated node partitioning algorithm (based on existent research), DiS-
enS achieves greater scalability than even many discrete event sim-
ulators. On a small to medium size cluster (16-64 nodes), DiSenS
is able to simulate hundreds of motes in realtime speed and scale to
thousands in sub-realtime speed. To our knowledge, DiSenS is the
first full-system sensor network simulator with such scalability.

Categories and Subject Descriptors I.6 [Simulation and Model-
ing]

General Terms Experimentation, Performance

Keywords Distributed Simulation, Sensor Network, Simulation

1. Introduction
Recent interest in sensor networks, in which tiny sensor devices are
interconnected by unreliable wireless radio for non-invasive and in-
expensive instrumentation and analysis of our living environment,
have provided a chance to revisit many interesting traditional prob-
lems in the parallel and distributed computation area as applied to a
new discipline. One such opportunity comes in the form of theneed
to be able to run large-scale ensemble sensor network simulations
consisting of many independent-but-communicating individual de-
vice emulations. As in other distributed research areas, simulation
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is a useful tool for the system development, evaluation and analy-
sis, and is widely used in sensor network research. In this context,
simulation is particularly necessary since large-scale physical de-
ployments are difficult to execute and expensive to maintain.

To be useful as a program development and debugging tool,
these ensemble simulations require the precise emulation of inter-
nal functioning inside each entity to provide accurate event timing
of the system. These machine-accurate emulations then communi-
cate over a simulated network to provide a full scale simulation
however the computation and communication requirements neces-
sary to support the simulation (particularly in real time) are sub-
stantial.

In this work, we explore the use of parallel cluster computers
to support ensemble sensor network simulations. Previous work
in this area either implements such simulations sequentially [12]
or using shared-memory parallelism [30]. In our approach, we
treat the problem of implementing ensemble simulation as a task-
parallel cluster computing problem and borrow several techniques
from high-performance parallel scientific computing to achieve
execution efficiency.

The state of art research in sensor network simulation employs
two general approaches. Discrete-event systems such as those de-
scribed in [12, 18, 28] model device functionality and communica-
tion as a set of partially ordered events modifying distributed state,
much like in the traditional network simulation [16]. Often, these
systems have focused on communication interactions (whichtakes
place via unreliable and difficult-to-model communicationradios)
and only roughly approximate the behavior of the constituent de-
vices themselves. By sacrificing device fidelity, discrete event sim-
ulators can achieve very high performance and scale well.

Full-system simulators [23, 26, 30, 19] take an alternativeap-
proach. They simulate the internal device functionality indetail
and allow ensemble behavior to emerge from the interactionsof
independent-but-communicating simulated devices. Thesesystems
achieve sufficient fidelity levels, but the tightly coupled coordina-
tion among multiple simulated devices has limited their scalability.

Our work attempts to extract and combine the benefits of both
approaches by employing distributed-memory parallel cluster sys-
tem to attack the scalability problem while maintaining thesimula-
tion fidelity. This is essentially to map one distributed system with
large number of emulations of simple, unreliable computational
devices (tasks) to a cluster with a smaller number of much more
powerful reliable hosts. The difference in computational power be-
tween physical sensor network devices and commonly available
cluster nodes is so great that it is possible for a single cluster node
to emulate multiple sensors in real time. To simulate inter-device
communication, we intercept packets generated by each emulation
and translate them into network packets for transmission across the
cluster’s network fabric. Our work, in the form of DiSenS (DIs-
tributed SENsor network Simulation) – a distributed software in-
frastructure for scalable sensor network simulation, has achieved
satisfying results towards this goal.



DiSenS is first a sensor device emulator with high-fidelity and
high-performance. It faithfully executes the program instruction by
instruction and maintains the correct device state cycle bycycle. It
also models the radio communications among sensor devices and
the power consumption of each device. More importantly, DiS-
enS provides the distributed framework for the simulation of co-
ordination among sensor devices (homogeneous or heterogeneous)
on a distributed-memory cluster system so that scalabilitycan be
achieved by utilizing available computation resources. Our ulti-
mate goal in developing DiSenS is to build a simulation framework
that permits exploration of fidelity, completeness, scalability, and
bridging, as outlined in [12]. We report on the degree to which we
currently achieve this goal with DiSenS using both benchmarks de-
signed to exercise various component features, and publically avail-
able sensor network operating system and application code that we
treat as inviolate. In so doing, we believe that this work makes the
following research contributions.

• We describe the distributed implementation methodology we
have chosen for DiSenS, with a particular emphasis on the
protocol we use to synchronize the emulated device clocks, and
the partitioning strategy for mapping simulation components to
cluster processors.

• We report on the fidelity that our full-system device emulations
are able to achieve.

• We provide a detailed exposition and analysis of DiSenS’s
efficacy in terms of simulation performance, completeness,and
most importantly, scalability.

As a whole, we believe these contributions extend the state-of-the-
art in distributed sensor network simulation.

In rest of paper, Section 2 gives a brief overview of the device
emulation framework, including the hardware emulation core and
the pluggable radio and power models. Section 3 studies the syn-
chronization problem and presents DiSenS distributed simulation
algorithms. We present measurements and analysis of DiSenSfunc-
tionality in Section 4, survey the related work in Section 5 and fi-
nally conclude in Section 6.

2. Parameterizable Device Simulation
Framework

In this section, we give a brief overview of the device simulation
framework, which faithfully emulates the sensor device hardware
and lays the foundation for distributed simulation. We alsode-
scribes the pluggable fidelity enhancing models, e.g. radiomodel,
power model, etc., which allow experimentation with different fi-
delity levels and modes of investigation.

2.1 Cycle-Accurate Hardware Emulator

As the basis for accurate simulations, we have stressed the develop-
ment of simulation tools that achieve timing accuracy. While accu-
rate power and radio simulation techniques are the subject of much
current research activity, we believe that successful approaches will
depend, ultimately, on the ability to simulate device cycletimings
correctly.

At the core of our device simulation framework is a hardware
emulator with extensive support for various popular sensornetwork
devices. In the current implementation, we emulate the mote[15]
devices (the Mica2 and MicaZ platforms), Stargate devices [27],
and iPAQ devices [10] and we are adding the support of other de-
vices, like Telos [29]. Thus, the system is capable of heterogeneous
sensor network simulations. In this work, however, we focusonly
on simulating ensembles of Mica2 and MicaZ devices exclusively.

The emulation core supports the following sensor node func-
tionality and components by emulating

• the AVR instruction set,

• the ATmega128L microcontroller, including most on-chip func-
tions: program memory, RAM, EEPROM, timers, serial de-
vices (UARTs), SPI (Serial Peripheral Interface), ADC (Ana-
log/Digital Converter), Watch Dog Timer and fuse bit setting
(for boot loader and self programming),

• the 512KB on-board flash,

• the Serial ID chip,

• the CC1000 (Mica2) and CC2420 (MicaZ) radio chips,

• the LEDs and the sensor boards.

The heart of hardware emulator is a cycle-accurate AVR instruc-
tion interpreter. Hardware emulation is a mature area yielding sev-
eral good technologies for simulating one architecture on another
with high efficiency [23, 3]. However, we choose to use a fairly
simple switch-based interpreter, that is similar to SimpleScalar [1].
The biggest reason is for portability. Since we intend to implement
simulations using collections of machines, the ability to run on a
broad range of architectures is essential. Moreover, the relatively
simple nature of the AVR architecture and the high clock speeds
available from commodity powered workstations makes it possible
to achieve faster-than-real time emulations of many sensordevices.
For example, our system is able to emulate motes using a 3.2GHz
x86 processor at approximately9-times real-time speed.

The interpreter emulates each instruction, changes the state of
microcontroller and drives an internal clock cycle by cycle, which
in turn fires the asynchronous events in an event queue, generated
by hardware components like timers, UARTs and ADCs. The col-
lection of emulated devices is rich enough and accurate enough
to boot and execute unmodified TinyOS [8] binaries. Thus appli-
cations and operating systems cannot distinguish execution on the
emulator from execution on the actual hardware.

2.2 Pluggable Models

Our device simulation framework provides a set of common inter-
faces for integrating the core hardware emulator to variousexten-
sions for power and communication. Our intention is to provide a
platform for experimentation with different “plug-in” models, both
to support the development of new models as well as to providea
way to trade simulation speed for fidelity using a suite of models.
Since our focus is scalability, we only discuss the radio models in
the following, which has great impact on the design of distributed
synchronization protocol, and skip the power models.

2.2.1 Radio Models

Our system includes a “simple” or “ideal” radio model in which
radio packets are sent losslessly to all the neighbor nodes within its
radio range. While the ideal model is typically highly inaccurate, it
is often used for initial code development and debugging as well
as to achieve an upper bound on potential performance. Under
this model, each sensor node buffers the packets sent to it even
if it is not in receiving mode. Packets are time stamped and when
a sensor node receives, it checks the packet buffer and readsthe
packets that match its current clock time. In addition, packets from
different nodes may conflict with each other. When conflicting
transmissions interfere, the ideal model performs a bit-wiseORof
the bits received during the conflict period. As a result, this basic
radio model is able to simulate transmission conflicts and thus the
“hidden terminal” effect [31]. Also, packet loss due to the partial
reception of packet preamble (because of the mis-synchronization
of packet receiving and packet transmitting) is naturally modelled
as part of the radio chip emulation logic.

The ideal model can be made more realistic through the addition
of channel loss models. There are different ways to model thechan-



nel loss. Analytical techniques use a mathematical description of a
physical electromagnetic radiation propagation. Thus, loss or signal
perturbation is based on the “physics” of the intervening communi-
cation medium. There is a large body of literature on such physical
models [21]. Despite their accuracy, however, their complexity and
potential computational expense make them difficult to use in sen-
sor network simulations.

A more popular approach is based a statistical description of
channel loss, often derived from measurement trace data [4,34,
33]. In this approach, a large set of radio transmission datais
collected using different parameters. The trace data is then “mined”
using statistical methods to derive distributional descriptions of
characteristics such as reception rate. Cerpa et al. [4] explored
this approach and achieved some noteworthy results. They have
also proposed methods of generating realistic network instances
based on the discovered feature distribution. In our work, we have
developed a plug in that uses a loss rate distribution generated
from our own measurement trace data using a similar methodology
as in [4]. Thus, using the basic model and the trace-derived loss
model, our system can incorporate both deterministic models based
on mechanism and statistical models based on off-line analysis of
trace data.

3. Distributed Simulation
One of the primary motivations for the development of our sys-
tem is the ability to simulate “large” ensembles of sensors so
that potential problems of scale can be studied. While previous
work [30, 12, 17, 2] has addressed the issue of scalability using
different approaches (cf. Section 5 for a review of related work),
our goal is to support binary transparency with respect to the appli-
cations and operating system (similar to Avrora [30]) in a way that
maximizes the size of the ensemble that can be simulated.

There are two measures of scalability DiSenS attempts to max-
imize. The first, analogous to the standard notion of speedupused
to characterize parallel programs, is to maximize the ratioof wall-
clock time that elapses for a complete sensor network simulation on
a single processor to that for the same simulation running onmul-
tiple processors. This ratio characterizes the benefit of parallelism
in terms of reduced execution time for a given simulation.

In addition, we also consider speedup (or more probably slow-
down) in terms of the clock periods of the sensor network devices
under study. By calculating the number of device clock cycles that
have been simulated in a given wall-clock period, we can compute
the speedup or slowdown of the simulation relative to the clock
cycles that the real device experiences in real time.

Notice that these two notions of speedup are related but dis-
tinct. For example, it is possible for our system to achieve excellent
speedup using the first measure (the parallel time is much faster
than the sequential time) but poor speedup or even large slowdown
using the second measure (devices are simulated only a smallfrac-
tion of their real time speeds). While we have designed DiSenS to
attempt to optimize both measures, we focus on the latter measure
– the relationship to real time device speed – in this work as we
believe it is the more challenging of the two.

Clearly, the degree to which these measures can be optimized
depends on both the structure, constituent devices, and topology
of the ensemble simulation and the characteristics of the compu-
tational resources. For the latter, we believe a distributed mem-
ory cluster computing environment has the largest potential. How-
ever, the typically close coupling of simulation systems makes dis-
tributed implementation challenging.

3.1 Background and Approach

Our approach is to simulate ensembles of sensor devices by execut-
ing individual cycle-accurate device simulations which communi-

cate via simulated radios. Notice that this approach is distinct from
an event-driven methodology in that we do not decompose the col-
lection of simulations into explicit events that must then be time
ordered. Rather, we use individual device emulations and a simu-
lated radio communication environment as a virtual deployment of
a complete sensor network, and run the same operating systemand
applications on the virtual sensor network as if they were running
on an actual deployment1. To coordinate between individual device
emulations, when radio communication occurs, the two communi-
cating sensor devices must be synchronized with respect to their
relative internal clocks.

Previous work that takes a similar approach includes ATEMU [19]
and Avrora [30]. ATEMU [19] is a cycle-accurate sensor network
simulator. It maintains a global clock and emulates one instruction a
time for each simulated device. In this way, the sensor nodesare au-
tomatically synchronized and no extra facility is necessary to main-
tain the correct order of radio events. However, ATEMU is limited
to a single process and can not scale to larger systems. Avrora [30]
extends the simulation to a multi-threaded shared memory sys-
tem. It scales on multi-processor machines. In Avrora, eachde-
vice is simulated in a separate thread. Avrora loosens ATEMU’s
cycle-to-cycle synchronization requirement by extendingthe syn-
chronization period to the length of a byte transfer time –3072
ATmega128L cycles – since packets are always transmitted inbyte
unit. A thread barrier is used to achieve its lock-step stylesynchro-
nization, which stops all the threads periodically to ensure every
radio byte will be correctly received during the correct time period.

In a clustering computing environment, relatively large and vari-
able network latencies make direct extensions of these two ap-
proaches difficult. Cluster network latency is measured in milli-
seconds while a desktop PC can easily emulate one device instruc-
tion in the 0.1 micro-second range. If lock-step global synchroniza-
tion is used, the simulated clock speed will be determined bythe
all-to-all network communication latency.

3.2 Synchronizing Ensemble Emulations

Our approach to synchronizing multiple device emulations relies
on an abstraction of the radio communication protocol. To illumi-
nate the nature of this abstraction, we begin by discussing sensor
network radio behavior in some detail.

Currently two types of radio chips are emulated in our device
emulator, the CC1000 chip and CC2420 Zigbee radio chip [5], both
manufactured by Chipcon. The CC1000 is the radio chip used by
the Mica2 senor mote [13] and the CC2420 is used in the more
recent MicaZ [14] platform. The CC1000 is a rather simple radio
chip. It has two working modes: transmitting and receiving (ignor-
ing power saving features of the chip for the moment). In transmit-
ting mode, data bits are pumped in from the SPI line, modulated,
and emitted through the antenna. In receiving mode, the radio sig-
nal is amplified, demodulated and converted into digital bits which
will be assembled into radio packets by software protocol stack.
The mode transition is controlled by the software. CC1000 also has
a receive signal strength indication (RSSI) measurement function.
This analog value of the signal strength is output via a chip pin,
and converted into digital value by the ADC module of the micro-
controller. The RSSI value is used by the software MAC layer to
perform collision detection.

CC2420 is a more advanced radio chip that implements the
low level function of Zigbee (IEEE 802.15.4) standard. The major
difference between CC1000 and CC2420 from the simulation point

1 Our style of simulation might more properly be termed an “emulation” as
a way of emphasizing the distinction between our approach and an event-
driven one. Because the radio environment is purely simulated, however, we
have chosen to term our approach as a “simulation” since we believe that
term to be more general.



of view is that CC2420 performs the packet assembly in the chip
and has a much faster transmission speed. CC2420 has a similar
signal sampling function and also measures RSSI value. However
CC2420 uses a pin called CCA (clear channel access) to indicate
whether the radio channel is clear based on a preset threshold. This
provides a simpler interface for MAC layer collision detection.

The typical radio activity paradigm of TinyOS sensor appli-
cations can be described as follows. Normally, the radio stays in
receiving mode (it may be turned off for power saving). When a
preamble of a packet is recognized, the complete packet payload
is to be assembled and uploaded to the application. When a packet
needs to be sent, the MAC layer checks the channel using RSSI
value or CCA value. If the channel is busy, it backs off for a ran-
dom period of time and tries again. Otherwise, the radio chipis
switched into transmitting mode and a complete packet is sent out.

Thus, packet receiving and signal sampling are very similar
operations: they both read a value from the channel. The only
difference is the length of time they use to access the channel.
As a result, radio communication behavior can be abstractedinto
two operations:read channelandwrite channel. Theread channel
represents the packet receiving and the signal sampling. The
write channelrepresents the packet transmitting.

As discussed previously, global clock is not feasible in a dis-
tributed environment since every clock access needs to traverse
the network thereby incurring a large overhead. Instead, weuse
a peer-to-peer design in which each sensor node maintains its own
local clock, clocks are synchronized before message rendezvous,
and each node is otherwise simulated independently.

When a communication between nodes occurs, the causal re-
lationship that exists between sender and receiver is rectified at
the receiver so that packets are received in order, and that local
clock values roughly correspond to arrival timings. We formalize
this synchronization problem in abstract terms and then discuss our
proposed solution.

We first define the simulation:

DEFINITION 1 (Simulation).If we define a radio nodeNi as a tu-
ple (clocki, read channel, write channel), whereclocki is the
internal clock of nodeNi, read channel andwrite channel are
the only two operations performed on a shared resource,C, rep-
resenting the channel, we can define asimulation S as a set:
(N0, N1, ..., Nk, C).

We have to distinguish thesimulation timeandsimulated time. The
former is the wall clock time in real world that is used to measure
the simulation. The latter is the virtual clock time in simulated
world that is shared by simulated motes.

Then we define the correctness of a simulation:

DEFINITION 2 (Correctness).A simulationis correct if the follow-
ing relationship is ensured:∀ simulated timeperiod [vti1 , vti2 ]
(correspondingsimulation timeperiod [rti1 , rti2 ]), at which node
Ni is scheduled towrite channel(C), and its neighbor node
Nj is to read channel(C) during [vtj1 , vtj2 ] (simulation time
[rtj1 , rtj2 ]); if [vti1 , vti2 ] ∩ [vtj1 , vtj2 ] 6= ∅, [rti1 , rti2 ] ∩
[rtj1 , rtj2 ] 6= ∅.

Intuitively, a correct simulation requires any receiver to receive
any data that it is meant to receive according to the causality in
simulated time space. In our simulation structure, given that sent
data is transferred in byte unit and buffered at the receiverside,
correct simulation can be achieved if each receiving node delays the
delivery of each message byte until the local clock on the receiver
is past the local clock on the sender.

Conservatively,

PROPERTY1 (Safe Receive).if whenever a nodeNi invokes oper-
ationread channel, it waits until synchronized with its neighbors,

which means∀k, if Nk andNi are neighbors,clockk >= clocki,
the simulationS is correct.

Note that we have to be conservative by waiting all the neighbors
since we can not predict which neighbor will transmit at the time
when we receive. We term this property thesafeness property.

3.3 Distributed Synchronization Protocol

Based on the safeness property we design the complete synchro-
nization protocol for distributed simulation. We first introduce a
primitive, wait on recv.

DEFINITION 3 (wait on recv). waiton recv is a primitive opera-
tion. If it is called by a nodeNi, it waits until∀k, Nk is a neighbor
of Ni, clockk >= clocki.

wait on recv has to be called every time the radio channel is ac-
cessed (receiving or sampling).

Sincewait on recvrelies on the clock information of neighbor-
ing nodes, each node has to be informed of its neighbors’ local
clock value. We use a clock update protocol in which each node
broadcasts its local clock time periodically. The length ofupdate
interval does not affect correctness but does have effect onperfor-
mance. There are two requirements on when to send updates. First,
clock updates can not be sent during the transmission of a byte.
This is because if it is sent, a neighbor waiting on a receive will
believe it is time to proceed (if it does not wait for others) and may
miss a partial byte. Updates, then, can only be sent between bytes
during a transmission. Second, before a node starts to wait by call-
ing wait on recv, it must first send an update. Without notifying its
neighbors of its intention to wait, a node’s silent wait willcause a
deadlock if some other nodes are going to wait for it.

In summary, any receiverwait on recvs to block and wait for
neighbors’ clock updates before it receives a message or samples
the radio medium. Before blocking, however, it must reliably in-
form its neighbors of its local clock value to prevent deadlock.

Using the above synchronization protocol, we implement our
distributed simulation system. Given a set of nodes, we firstpar-
tition them into groups. Each group is simulated on one machine
and each node is simulated in one thread. In each group, a clock ta-
ble is maintained to keep the updated clock time for all localnodes
and their neighbor nodes. Whenever an clock update is sent, it first
updates the local neighbors and then multicasts to the remote neigh-
bors if it has. Our synchronization protocol treats the local and re-
mote synchronization in the same way. The following pseudo code
demonstrates the synchronization algorithm of a sensor node.

do_for_every_byte_transfer_time() {
switch (mode) {
case RECEIVING:

send my clock update;
wait_on_recv();
retrieve data byte from packet buffer;
break;

case TRANSMITTING:
send my clock update and data byte;
break;

default:
send my clock update;
break;

}
}

The above code doesn’t show the algorithm for signal sampling
(RSSI) operation, which is the same as receiving (the “RECEIV-
ING” section inswitchstatement). The code shows that we send
at least one clock update for every byte transfer time regardless of
radio modes. For transmission, data byte is “piggy-backed”on the
clock update messages to reduce the message traffic. Notice that



there is no constraint for senders. Senders send data bytes at any
time they want. The sent data bytes are buffered at receivers’ side.
And it is receiver’s responsibility to ensure the correct reception of
radio packets. Notice also that there is a great deal of overhead
in this protocol. If this overhead cannot be amortized or amelio-
rated by the performance of the network interconnect withinthe
cluster, the overall performance of the ensemble simulation will be
low. Our results seem to indicate that these issues are addressable,
however.

Here is the code forwait on recv:

wait_on_recv(nodei) {
for (all nodej as a neighbor of nodei) {

if (nodej’s time < nodei’s time) {
put nodei on nodej’s waiting list;

}
}
if (nodei waits on any node)

wait();
}

The following code shows what happens when a clock update is
received, regardless locally or remotely.

update_clock(nodei, clock) {
nodei.clock = clock;
for (all nodej waiting on nodei) {

if (clock >= nodej’s time) {
decrease nodej’s waiting count;
if (its waiting count is 0)

wake up nodej;
}

}
}

3.4 Node Partitioning for Parallel Execution

As indicated, the major potential source of overhead comes from
the network synchronization necessary to keep the various emula-
tions synchronized. To get maximal performance, we must reduce
the remote synchronization as much as possible. Thus partitioning
the sensor nodes into groups plays an important role in the making
of an efficient simulation.

The amount of remote network synchronization is determined
by the number of remote neighborhood links between sensor nodes.
Local updates to neighbors co-located on the same machine are
relatively inexpensive (because they can use a shared data structure
in memory) compared to remote clock update synchronization. As
such our nodes partition algorithm has two goals. First, we need
to evenly distribute the node workload among groups if we are
running simulation on a homogeneous system like a dedicated
cluster. This need for load balancing is because any slow host
will become the bottleneck of the whole simulation due to the
implicit dependency among nodes. Second, we want to minimize
the number of links among remote neighbors that are assignedto
processors that can only communicate via network messages.

We find that we can actually convert this optimization problem
into a “classical” graph partition problem that is well studied in
parallel computing area [24, 25, 20]. Formally, the partition prob-
lem is as follows. Given a weighted, undirected graphG = (V, E),
thek-way graph partition problem is to split the vertices ofV into
k disjoint subsets such that each subset has roughly equal amount
of vertex weight while minimizing the sum of the weights of the
edges whose incident vertices belong to different subsets (an edge
cut) [24].

In our case, given a node map, which specifies the node coor-
dinates in a 2D or 3D space, and the maximal transmission range
of a typical sensor node, we can build up a graph called potential
neighboring graph (PNG). Each vertex of the graph is a node. Each

edge represents that the connected two nodes have the potential to
communicate. Then the node partition problem is exactly a graph
partition problem with both edge and vertex weights to be unitary.

The graph partition problem is known to be NP-complete in
general. A large body of research explores heuristic algorithms.
There are geometric algorithms, like recursive inertial bisection
that uses coordinate axes to partition the graph; combinatorial al-
gorithms, like K-L algorithm that optimizes an partition locally;
spectral methods, which transform the discrete optimization into
a continuous one using linear algebra; and multilevel algorithms
featuring a coarsening-refining process. In our simulator,we use
a general graph partitioning package for parallel computing from
Sandia National Lab, called Chaco [7], which combines thesetech-
niques based on graph topology and vertex and edge weights. We
use Chaco without modification and plan to report on its effective-
ness in a future effort. Anecdotally, however, we are quite pleased
with the quality of the partitions it generates for the simulations we
have investigated.

3.5 Scalability Analysis

Before looking at the experimental results generated by ourimple-
mentation, we attempt to describe the potential scalability of the
system analytically. The simulation performance is determined by
the pure device simulation speed and the synchronization overhead.
Ultimately, the computational and memory cost of emulatingin-
dividual devices will dominate performance, but the machine and
memory speeds of the cluster hosts are so much more powerful
than the devices simulated on them, it is the network synchroniza-
tion that poses the greatest impediment to scalability.

We define the following property that describes the scalability
of our algorithm in the ideal case.

PROPERTY2 (Scalability).Given fixed map densityd and node
densityD and node numberNh on each host, when the number
of hostsH increases, and thus the simulated nodesN increase,
the communication cost for each host is constant if the partition of
nodes to hosts is optimal.

Here the map densityd is defined as the ratio between the sum of
areas of node range circles (the circle centered at the node with
maximal radio range as radius) and the area of the map (maximal
area that the nodes occupy). It is a good indication of nodes’
average number of neighbors.

R

R + r

R - r

Map �density: d

Total nodes: N

sensor node map

Group

Node� �density: D

Figure 1. Illustration of Property 2

The property is illustrated in Figure 1. The circle with radius
R represents a group. We can use circle is because, assuming
an optimal partition, the group should have minimal contactwith
others and a circle is a good estimation of its boundary. Since
the map densityd is fixed and the number of nodes per group



is also fixed, the area of a group and thus radiusR is constant.
Moreover the ring area corresponding to the area between circles
having radiusR − r and radiusR + r both having the same center
is the area which nodes may have cross-group edges, ifr defined
to be the maximal radio transmission range. Then the number of
cross-group edges for a group can be calculated as follows:

Numedge ≈ Arearing∗Densitynode∗Densitymap = 4πRrdD
(1)

Since R, r, d and D are all constant with respect to thetotal
number of nodes, the number of cross group edges is fixed. Thus
the communication cost of eachhostis fixed. Although Property 2
corresponds to an ideal upper bound on communication overhead,
it predicts that scalability will be affected most by the number of
nodes assigned to each processor rather than the total number of
nodes simulated or the total number of processors employed given
fixed map density and nodes per host. Our experimental results
described in the next section seem to reflect this outcome.

4. Evaluation
In this section, we examine the fidelity and scalability of DiSenS.
As a measure of fidelity, we compare cycle counts generated byour
simulator to those observed from individual real devices (using an
oscilloscope to maximize measurement accuracy). This cycle count
comparison is for full-device emulation (CPU and memory, flash
storage, radio, etc.) using a set of benchmarks designed to exercise
all sensor hardware subsystems.

We also have investigated the transparency and completeness of
our system by booting unmodified TinyOS images on the simulator
and executing popular large sensor network applications: TinyDB,
Surge and Deluge [9]. However, due to the length limit and our
focus on scalability, these results are not provided in thispaper.

Finally we examine the scalability of DiSenS using a single
benchmark (employed previously in the literature for such studies)
and compare the results to those generated by previous efforts.

4.1 Experimental Framework

The results presented in the following exposition have beengener-
ated using two different machine clusters to which we have access
at UCSB. CLUSTER1 is a16 host2 dual-processor 3.2GHz Intel
Xeon cluster that uses switched gigabit Ethernet as its communi-
cation interconnect. CLUSTER2 is a larger, departmental cluster
composed of64 dual-processor 2.6GHz Intel Xeon hosts, again in-
terconnected via a gigabit Ethernet switch. Both systems are used
in dedicated mode to remove the effects of network or host con-
tention by other executing applications.

For all the scalability experiments, we use TinyOS application
CntToRfmas the benchmark.CntToRfmhas been used as the touch-
stone in previous scalability studies [12, 30].CntToRfmperiodi-
cally sends out radio packets and keeps the radio channel busy.
Note that although it does not actually receive packets, theradio
chip is still in receiving mode when it is not transmitting soit does
in effect exercise all radio activities. Our experiences with other
applications in scalability are similar asCntToRfm.

For most of the experiments, we use Mica2 as the target sensor
device. At the end of this section, however, we briefly discuss
scalability results for MicaZ to show how the effect of radiotransfer
speed on simulation performance.

2 The term “node” is rather unfortunately common to both the sensor net-
work and cluster computing communities occasionally leading to confusion
when discussing sensor network emulation on clusters. In the remainder of
this paper, we will use the term “host” to refer to a node in a cluster, and the
term “node” to refer to a sensor network device.

4.2 Cycle-Accuracy

We use four benchmarks to test the cycle-accuracy, exercising im-
portant components on the mote device.cpubenchmark runs CPU
intensive computations.flash read performs small reads from the
on-board flash chip.flash write writes to the on-board flash.radio
exercises the CC1000 radio chip and transfers a small amountof
data.

The execution time on real device is measured using an oscil-
loscope, Agilent 54621A (accurate up to 10 nanoseconds). Each
benchmark starts by writing an “1” to a pin in I/O port C and ends
by writing a “0” to the pin. The pin is connected to the oscilloscope
probe. The oscilloscope measures the pulse width. The measured
time is then converted into cycle numbers using a division with AT-
mega128L’s clock speed (7372800 Hz). The numbers are compared
with our simulation result.

We run theradio benchmark in an environment with minimal
interferences and make the antennas of two motes in close distance
to minimize the effects of noise and communication channel insta-
bility on cycle timings in an best effort, since we compare tothe
ideal radio model.

cpu flash_read flash_write radio
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Figure 2. Normalized average cycles for benchmarks.

Figure 2 gives the average of 20 measurements as the ratio of
simulated execution cycles to cycles measured from the actual de-
vices (a ratio of1.0 would indicate perfect accuracy). That is, we
normalize the data using actual measured cycle counts. For CPU
emulation, the simulator closely approximates empirical measure-
ment. Flash and radio emulation have slightly larger errors, but
the size of these errors is of limited statistical significance. In [32]
we provide a more complete statistical analysis of this comparison
which we omit from this work due to space considerations. Instead,
by way of summary, we note that in general the simulation error is
relatively small.

4.3 Scalability

For each scalability experiment, we vary two experimental param-
eters independently: the number of sensornodessimulated on each
hostin a cluster, and the number ofhostsused for each experiment.
Thus, for example, the value in row2, column4 shows the results
for two nodes per host and four hosts. For each node-count-host-
count pair, we runCntToRfmfor 60 seconds and record the average
simulated clock speed. Except where noted explicitly, all the exper-
iments are run on CLUSTER1.

4.3.1 Best Case: One Dimensional Topology

Our first experiment simulates a one dimensional topology. All the
nodes are laid on a straight line,50 meters apart (again assuming



Nodes Hosts number
per host 1 2 4 8 16

1 9.28 2.26 1.96 1.72 1.67

2 6.68 2.12 1.82 1.68 1.68

4 2.18 1.83 1.70 1.68 1.67

8 1.20 1.21 1.18 1.16 1.15

16 0.78 0.61 0.60 0.60 0.60

32 0.35 0.36 0.31 0.31 0.31

64 0.18 0.15 0.17 0.15 0.14

128 0.09 0.09 0.09 0.08 0.08

Table 1. Simulated clock speed for1-D topology. Each row has
fixed number of nodes per host and each column has fixed number
of hosts. All value is normalized to real time clock speed.
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Figure 3. Scalability of1-D topology.X-axis is number of hosts
andY -axis is clock speed. Each curve represents the performance
with a fixed number of nodes per host. Dashed line shows real time
speed.

the maximal radio range is60 meters). This gives us the minimal
cross group edges (given an optimal partition). It constitutes the
best possible case for the distributed simulation and as such pro-
vides a rough upper bound on the performance.

Table 1 presents the results. Each cell of the table shows theratio
of the simulated average clock speed to the real time clock speed,
of 7372800 cycles per second. To compute the average simulated
clock speed, the simulator records the number of clock cycles each
mote executed during the60 second execution run. The sum of
the cycles is divided by the number of motes, and that number is
divided by 60. Thus each cell depicts the average slowdown or
speedup factor relative to native execution speed.

From the table, the best performance is a speedup of9.28 times
real time speed when simulating one node on one host (the up-
per lefthand corner in the table). Notice that as expected, simulat-
ing more nodes on a single host (column 1) yields a slower rate
of decay in the speedup factor than does simulating one node on
each of a successively larger number of hosts (row 1). When two
nodes are co-located in the same host, the speedup factor drops to
6.68 whereas two nodes each located on a separate host generates a
speedup factor of only2.26. This is due to the network communica-
tion overhead. The trend reverses when the host number is getting
larger when the communication overhead is amortized among peer
nodes on the host.

What is perhaps the most remarkable, however, is the similarity
between the values for2 through16 hosts. While we expected a
substantial fall off in speedup in moving from one host to two
hosts, we expected that fall off to continue as the number of hosts
increases. Indeed, starting with8 nodes per host (the fourth row in
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Figure 4. Gold curves for1-D topology.X-axis is total number
of nodes simulated. The leftY -axis is normalized performance and
the right one is number of hosts. The decreasing curve is the fastest
speed curve. The increasing curve gives the corresponding host
number at each point.
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formance. Compare our best performance (1-D topology) with
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the table) the speedup factors are remarkably similar regardless of
host count. Further, the tipping point with respect to speedup and
slowdown (the point where the ratio falls below1.0) is between8
and16 nodes per host forall host counts.

Figure 3 shows this relationship graphically using a log-log
scale. The speedup drops for small node counts from one host to
two, but for the other data points, the number of nodes per host
(and not the number of hosts) is the determining factor up to16
hosts. This relationship is predicted by the analysis of Theorem 2
presented in the previous section but none the less, we foundthe
degree to which it holds somewhat surprising.

By way of comparison to previous work, in this best case sce-
nario2048 nodes can be simulated at nearly a tenth of the real time
speed using16 hosts (lower righthand corner of Table 1), which
is almost8 times better than results reported for TOSSIM [12].
Also, nearly160 nodes can be simulated in real time speed using
16 hosts, and improvement of almost a factor of5 over previous
TOSSIM results.



In Figure 4, we plot the best performance of simulating1, a total
of 2, 4, ..., and2048 nodes respectively. The units of they-axis on
the lefthand side of the graph are for the ratio shown in Table1. For
each point, we also plot the corresponding “host number” at which
the best performance is achieved (the host count is shown on they-
axis at the righthand side of the graph). We call the two curves “gold
curves” since they show the number of hosts necessary to obtain the
fastest simulation of a specific number of nodes. Note that the fall
off in the best performance curve occurs when the number of hosts
reaches16 (the maximum number in CLUSTER1) and the total
node count is increased beyond64. Thus, in this best case example,
scalability is limited by host availability through2048 simulated
nodes.

We compare Avrora [30]’s best performance curve with our
“gold curve” in Figure 5. We run Avrora on a single host from
CLUSTER1 (using both processors on that host) for up to16
nodes (the implementation of Avrora we ported to our machine
did not execute correctly with more than16 nodes). Recall that
Avrora is not designed to use distributed memory parallelism and
message passing but it can take advantage of multiple processors
in a single hosts that share memory. Despite the extra overhead we
have in our system that is necessary to take advantage of multiple
hosts, the performance comparison is favorable to our work.For
up to 8 hosts, our system and Avrora achieve similar speedup
factors. For the8 node comparison, however, we require2 hosts,
using both processors on each host (the small integers next to
each triangular graph feature in Figure 5 indicate how many hosts
our system requires to achieve the corresponding speedup factor)
where Avrora is using only one. Beyond8 nodes, however, our
methodology, using successively larger host counts, achieves a
considerable scalability improvement over Avrora.

4.3.2 Common Case: Two Dimensional Topology

Nodes Hosts number
per host 1 2 4 8 16

1 9.14 2.52 1.83 1.66 1.64

2 6.65 2.12 1.58 1.38 1.18

4 2.09 1.49 1.27 1.12 1.10

8 1.25 1.07 1.01 0.96 0.92

16 0.82 0.63 0.62 0.59 0.57

32 0.32 0.38 0.31 0.30 0.30

64 0.16 0.17 0.16 0.15 0.15

128 0.10 0.08 0.07 0.07 0.07

Table 2. Simulated clock speed for2-D topology. Each row has
fixed number of nodes per host and each column has fixed number
of hosts. All value is normalized to real time clock speed.

A two dimensional topology is more realistic for sensor network
applications. Using the same configurations, we perform theexper-
iments on a two dimensional node map. The nodes are again50
meters apart and fill a grid whose shape is as close to a square as
possible. Table 2 provides the results. The performance fora 2-D
space is somewhat worse than for the1-D case when the number of
nodes per host is below32. However comparing Tables 1 and 2 for
node-per-host counts above32 shows surprising similarity. Again,
as the number of simulated nodes increases, the number of avail-
able hosts becomes the scalability limiting factor – not thenode
count. In the2-D case, however, performance equivocates between
16 and32 nodes per host corresponding to a slowdown factor of
between0.6 and0.3. That is, while it is possible for our system to
achieve scalable2-D simulation of the benchmark, it is not possible
to do so and to run in faster-than-real time.

We present the “gold curves” in Figure 6 but combine the node
count and Avrora comparison curves onto a single graph. Again,
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Figure 6. Gold curves for2-D topology.X-axis is total number
of nodes simulated. The leftY -axis is normalized performance and
the right one is number of hosts. The decreasing curve is the fastest
speed curve. The increasing curve gives the corresponding host
number at each point. The dashed curve is Avrora’s speed curve.
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our system performs similarly to Avrora (this time on the2-D
problem) but in this case, it requires more hosts to achieve the same
results. For example, the simulator requires8 hosts to duplicate
Avrora’s 8 node performance (using a single host). Surprisingly,
however, the2-D gold curve and the1-D gold curve have similar
shape. Figure 7 shows both on the same graph (note the log-log
scale). Between32 and128 simulated nodes there is a reduction
in speedup factor for the2-D case, but apart from that region, the
curves track almost exactly.

4.3.3 Worst Case: All-to-all Network

The previous scalability results we have presented rely on the lim-
ited neighborhood relationship imposed by radio range. Forthe
worst case, we simulate an “all-to-all” complete graph configura-
tion in which each simulated node must consider all of the other
nodes to be in radio range making communication overhead maxi-
mal. Table 3 and Figure 8 shows the speedup factors and scalability
curves respectively. In this worst case, communication overhead in-
creases as the square of the node density. For small node-per-host



Nodes Hosts number
per host 1 2 4 8 16

1 9.28 2.36 1.66 1.60 1.36

2 6.68 1.41 1.07 0.81 0.66

4 2.04 0.94 0.75 0.62 0.42

8 1.22 0.65 0.54 0.43 0.29

16 0.62 0.44 0.32 0.23 0.14

32 0.29 0.20 0.14 0.08 0.04

64 0.12 0.08 0.04 0.02 0.01

128 0.05 0.02 0.01 0.002 0.0008

Table 3. Simulated clock speed for “all-to-all” complete graph.
Each row has fixed number of nodes per host and each column has
fixed number of hosts. All value is normalized to real time clock
speed.
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and host counts, the speedup factors are similar to the1-D and2-D
grid cases, but as both are increased the speedup factor is continu-
ally reduced.

4.3.4 Larger Scale Experiment

Nodes Hosts number
per host 1 2 4 8 16 32 64

1 7.21 0.85 0.70 0.55 0.45 0.41 0.41

2 3.33 0.55 0.50 0.44 0.38 0.34 0.32

4 2.51 0.55 0.48 0.42 0.39 0.35 0.34

8 1.37 0.51 0.44 0.39 0.36 0.39 0.30

16 0.74 0.47 0.39 0.37 0.37 0.36 0.33

32 0.37 0.32 0.29 0.29 0.27 0.28 0.23

64 0.17 0.16 0.15 0.15 0.13 0.16 0.12

128 0.08 0.07 0.07 0.07 0.07 0.08 0.07

Table 4. Simulated clock speed for simulation of2-D grid of
Mica2 motes on CLUSTER2. Each row has fixed number of nodes
per host and each column has fixed number of hosts. All values are
normalized to real time clock speed.

To test our simulator in a larger scale, we perform the2-D ex-
periment on CLUSTER2, a64-node cluster. Table 4 presents the
results. Comparing Table 4 to Table 2 (which used CLUSTER1 for
the same configuration) CLUSTER2 achieves lower speedup fac-
tors for the test cases they have in common (columns1 through
5). Both a slower processor speed in CLUSTER2 and, somewhat
curiously, higher network latency (even though CLUSTER1 and

CLUSTER2 both use gigabit Ethernet as an interconnect) con-
tribute to this lower performance. However, as the size of the sen-
sor network being simulated scales, the overhead is once again
amortized. For example, using64 hosts of CLUSTER2 and128
nodes/host our system can simulate8192 nodes in total with a slow-
down factor of0.07 representing an almost32 fold improvement
over previously reported TOSSIM results.

5. Related Work
There have been numerous previously successful efforts to build
sensor network simulation systems. Of these, Avrora [30] isthe
most similar to our work. Avrora is a full-system sensor network
simulator supporting cycle-accurate emulation of the Mica2 Mote
platform. Avrora uses a multithreaded structure in which each
sensor node is simulated in a separate thread. A lock-step style
synchronization scheme that is coordinated with the communica-
tion model is used to ensure the correctness of radio simulation.
Avrora has a “Wait for Neighbors” operation that is similar to
our wait on recv primitive, but it is only used to implement cor-
rect signal sampling operation. In addition, because it relies on
clock-cycle synchronization according to a strict periodic sched-
ule, Avrora can only scale using shared-memory multiprocessors
using low-latency shared memory to facilitative the necessary com-
munication. In contrast, by synchronizing on message transmission
(and not through a lock-step mechanism) and by controlling mes-
sage delivery to preserve time ordering, DiSenS executes efficiently
on both shared-memory multiprocessors and distributed memory
cluster platforms. DiSenS also includes an automatic partitioning
system that optimizes simulated node to machine mapping based
on simulated deployment topology. It is thus able to achievegreater
scalability and overall performance than Avrora, and indeed many
high-performance discrete-event simulators such as TOSSIM [12].
Finally, DiSenS also has extended hardware support, including
even advanced platforms like Stargate (not discussed in this paper).

ATEMU [19] is another full-system sensor network simulator. It
focuses on the detailed bit-level hardware simulation. It employs a
very simple synchronization mechanism by executing one instruc-
tion a time for each sensor node. It is so simple that no extra facility
and protocol is required to ensure correct radio simulationbecause
nodes are already synchronized cycle-by-cycle using shared mem-
ory data structures. However, it can only utilize one process and
thus does not scale to parallel computational resources.

Other simulators, include TOSSIM [12], SensorSim [18], GT-
SNetS [17], OLIMPO [2] and Shawn [11], explore the tradeoff
between accuracy and performance by using discrete event simu-
lation to elide the complexity associated with cycle-accurate hard-
ware emulation. These systems typically report higher performance
levels than simulators such as Avrora and ATEMU, but sacrifice
execution transparency to do so. That is, these systems do not
achieve the transparency of DiSenS in that application and oper-
ating code must either be translated to, or compiled for, their re-
spective discrete-event environments.

TOSSIM is a popular event-driven simulator which models
not only the wireless network but also the application behav-
ior. TOSSIM is light weight and can simulate thousands of sen-
sor nodes on one host. Nonetheless, we demonstrate how DiS-
enS is able to achieve improved performance levels over TOSSIM
by leveraging distributed cluster resources while achieving trans-
parency and cycle accuracy. That is, DiSenSachieves the cycle ac-
curacy and execution transparency of systems such as Avrora, with
performance levels that exceed those achieved by discrete-event
simulators such as TOSSIM.

Similarly, SensorSim is a sensor network simulator based on
NS-2 [16] which is a discrete event network simulator. It does
not model application itself as TOSSIM does achieving even less



transparency. A sensor network simulator based on GTNetS [22]
claims to be able to simulate a sensor network at a scale of hundreds
of thousands of nodes. This scale exceeds what we have been able
to test using the resources at our disposal, but to achieve this level
of scalability, the operating system and application codesmust be
represented in a high-level, abstract way. Thus it is not possible to
use this system to directly compare executions of sensor network
software in simulation and on real hardware, as it is using DiSenS.

The general distributed simulation problem has been studied [6]
for quite a long time. Compared to most existent discrete event sim-
ulation systems, the key feature of this work is that unmodified
sensor network program binaries can run at scale, in or near real
time in a fully instrumented simulated environment as if they were
executing in real hardware. While there have been some recent vir-
tualization efforts that can run native binaries using VMs like Xen,
scaling these systems beyond what can be achieved in native mode
has yet to be demonstrated. In contrast, DiSenS is able to emulate
sensor networks that are far greater in scale than previous systems.
Thus, by employing effective parallel techniques and combining
them with high performance virtualization, DiSenS enablesvirtu-
alized execution of program binaries at a scale that is larger than
can be investigated through execution on native hardware. It is this
capability that forms the novelty of the contribution.

6. Conclusion
DiSenS is a complete sensor network simulation framework pro-
viding high levels fidelity, extensibility and scalability. It addresses
the conflict between accuracy and performance. Given enough
computational resources, researchers do not have to trade simu-
lation quality for simulation efficiency.

DiSenS also provides a complete and transparent simulation
framework, including a cycle-accurate device emulator andre-
placeable plugin models. Users of DiSenS are able to employ cus-
tomized models to explicitly control simulation quality. Internally,
DiSenS uses a peer-to-peer simulation design for distributed clock
synchronization. Individual node simulation threads are glued to-
gether by a simple and efficient synchronization protocol, which
makes the complete simulation scalable to a large size of distributed
computation resources. Using commodity cluster hardware,DiS-
enS can simulate one node approximately9 times faster than real
time speed,160 nodes in real time speed using16 dual-processor
machines and8192 nodes at nearly tenth of real time speed, which
is 32 times of that reported previously [12].

We are actively improving DiSenS to make it a useful tool for
sensor network research. A big challenge is to look for a dynamic
node partition algorithm so that non-dedicated, heterogeneous dis-
tributed systems can be used for simulation.
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