DiSenS: Scalable Distributed Sensor Network Simulation *

Ye Wen

University of California, Santa Barbara
wenye@cs.ucsb.edu

Abstract

Simulation is widely used for developing, evaluating andlgz-
ing sensor network applications, especially when depbpwgitarge
scale sensor network remains expensive and labor intertéove-
ever, due to its computation intensive nature, existenukition
tools have to make trade-offs between fidelity and scatgtaind
thus offer limited capabilities as design and analysisstolnl this
paper, we introduce DiSenS (Dlstributed SENsor networkuBim
tion) — a highly scalable distributed simulation system $ensor
networks. DiSenS does not only faithfully emulates an esiten
set of sensor hardware and supports extensible radio/poagels,
so that sensor network applications can be simulated taa@spy
with high fidelity, but also employs distributed-memory aléel
cluster system to attack the complex simulation problemmKio-
ing an efficient distributed synchronization protocol argbphisti-
cated node partitioning algorithm (based on existent rebgaDiS-
ensS achieves greater scalability than even many discrete sim-
ulators. On a small to medium size cluster (16-64 nodes)eBtS
is able to simulate hundreds of motes in realtime speed ald 8t
thousands in sub-realtime speed. To our knowledge, DiSetifi
first full-system sensor network simulator with such sciitgb

Categories and Subject Descriptors
ing]
General Terms Experimentation, Performance

1.6 [Simulation and Model-

Keywords Distributed Simulation, Sensor Network, Simulation

1. Introduction

Recent interest in sensor networks, in which tiny sensoicde\are
interconnected by unreliable wireless radio for non-ikaand in-
expensive instrumentation and analysis of our living envinent,
have provided a chance to revisit many interesting trautiprob-
lems in the parallel and distributed computation area abeapw a
new discipline. One such opportunity comes in the form ofitbed
to be able to run large-scale ensemble sensor network giomga
consisting of many independent-but-communicating irtlial de-
vice emulations. As in other distributed research areasylsition

* This work was supported by grants from Intel/UCMicro, Misodt, and
the National Science Foundation (No. EHS-0209195 No. CKE3336,
and No. NGS-0204019).

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’07 March 14-17, 2007, San Jose, California, USA.
Copyright(© 2007 ACM 978-1-59593-602-8/07/0003. . . $5.00

Rich Wolski

University of California, Santa Barbara
rich@cs.ucsb.edu

Gregory Moore

University of California, Santa Barbara
gmoore@umail.ucsb.edu

is a useful tool for the system development, evaluation anadya
sis, and is widely used in sensor network research. In thigegg
simulation is particularly necessary since large-scalesigal de-
ployments are difficult to execute and expensive to maintain

To be useful as a program development and debugging tool,
these ensemble simulations require the precise emulatimer-
nal functioning inside each entity to provide accurate eviening
of the system. These machine-accurate emulations then agoinm
cate over a simulated network to provide a full scale sinmtat
however the computation and communication requiremerdssie
sary to support the simulation (particularly in real time¢ aub-
stantial.

In this work, we explore the use of parallel cluster commiter
to support ensemble sensor network simulations. Previau& w
in this area either implements such simulations sequén{ib?]
or using shared-memory parallelism [30]. In our approack, w
treat the problem of implementing ensemble simulation ask-t
parallel cluster computing problem and borrow severalr@gres
from high-performance parallel scientific computing to iach
execution efficiency.

The state of art research in sensor network simulation eraplo
two general approaches. Discrete-event systems such e diee
scribed in [12, 18, 28] model device functionality and conmica-
tion as a set of partially ordered events modifying distitustate,
much like in the traditional network simulation [16]. Oftethese
systems have focused on communication interactions (whkds
place via unreliable and difficult-to-model communicatiawlios)
and only roughly approximate the behavior of the constitukn
vices themselves. By sacrificing device fidelity, discretent sim-
ulators can achieve very high performance and scale well.

Full-system simulators [23, 26, 30, 19] take an alternatige
proach. They simulate the internal device functionalityditail
and allow ensemble behavior to emerge from the interactidns
independent-but-communicating simulated devices. Thgstems
achieve sufficient fidelity levels, but the tightly coupleabedina-
tion among multiple simulated devices has limited theitauiity.

Our work attempts to extract and combine the benefits of both
approaches by employing distributed-memory paralleltelusys-
tem to attack the scalability problem while maintaining siraula-
tion fidelity. This is essentially to map one distributedteys with
large number of emulations of simple, unreliable compatei
devices (tasks) to a cluster with a smaller number of muchemor
powerful reliable hosts. The difference in computatiorahpr be-
tween physical sensor network devices and commonly availab
cluster nodes is so great that it is possible for a singla@tusde
to emulate multiple sensors in real time. To simulate ind@&vice
communication, we intercept packets generated by eachatioml
and translate them into network packets for transmissiovsache
cluster's network fabric. Our work, in the form of DiSenS €I
tributed SENsor network Simulation) — a distributed sofevin-
frastructure for scalable sensor network simulation, &sesed
satisfying results towards this goal.

DiSensS is first a sensor device emulator with high-fidelitd an
high-performance. It faithfully executes the programrinstion by
instruction and maintains the correct device state cycleyiole. It
also models the radio communications among sensor devicks a
the power consumption of each device. More importantly,-DiS
enS provides the distributed framework for the simulatibrc@
ordination among sensor devices (homogeneous or heterogen
on a distributed-memory cluster system so that scalahibity be
achieved by utilizing available computation resourcesr Qlti-
mate goal in developing DiSenS is to build a simulation frer
that permits exploration of fidelity, completeness, sdtitgband
bridging, as outlined in [12]. We report on the degree to \rhie
currently achieve this goal with DiSenS using both benclsde-
signed to exercise various component features, and puilézeil-
able sensor network operating system and application ¢cedeve
treat as inviolate. In so doing, we believe that this work ezathe
following research contributions.

e We describe the distributed implementation methodology we
have chosen for DiSenS, with a particular emphasis on the
protocol we use to synchronize the emulated device clocis, a
the partitioning strategy for mapping simulation compdeda
cluster processors.

¢ We report on the fidelity that our full-system device emulas
are able to achieve.

e We provide a detailed exposition and analysis of DiSenS’s
efficacy in terms of simulation performance, completenasd,
most importantly, scalability.

As a whole, we believe these contributions extend the statbe-
art in distributed sensor network simulation.

In rest of paper, Section 2 gives a brief overview of the devic
emulation framework, including the hardware emulatiorecand
the pluggable radio and power models. Section 3 studiesytie s
chronization problem and presents DiSenS distributed Isition
algorithms. We present measurements and analysis of DiffanS
tionality in Section 4, survey the related work in Sectionnsl &-
nally conclude in Section 6.

2. Parameterizable Device Simulation
Framewor k

In this section, we give a brief overview of the device sintiola
framework, which faithfully emulates the sensor devicedhasare
and lays the foundation for distributed simulation. We atkn
scribes the pluggable fidelity enhancing models, e.g. rawdidel,
power model, etc., which allow experimentation with diéfet fi-
delity levels and modes of investigation.

2.1 Cycle-Accurate Hardware Emulator

As the basis for accurate simulations, we have stressectaogp-
ment of simulation tools that achieve timing accuracy. Whitcu-
rate power and radio simulation techniques are the subjextioh
current research activity, we believe that successfulagmgbres will
depend, ultimately, on the ability to simulate device cyaieings
correctly.

At the core of our device simulation framework is a hardware
emulator with extensive support for various popular senstwork
devices. In the current implementation, we emulate the rfidg
devices (the Mica2 and MicaZ platforms), Stargate devi@d§, [
and iPAQ devices [10] and we are adding the support of other de
vices, like Telos [29]. Thus, the system is capable of hgmeous
sensor network simulations. In this work, however, we foonly
on simulating ensembles of Mica2 and MicaZ devices excilgiv

The emulation core supports the following sensor node func-
tionality and components by emulating

e the AVR instruction set,

e the ATmegal28L microcontroller, including most on-chipdu
tions: program memory, RAM, EEPROM, timers, serial de-
vices (UARTS), SPI (Serial Peripheral Interface), ADC (Ana
log/Digital Converter), Watch Dog Timer and fuse bit sedtin
(for boot loader and self programming),

¢ the 512KB on-board flash,

o the Serial ID chip,

e the CC1000 (Mica2) and CC2420 (MicaZ) radio chips,
e the LEDs and the sensor boards.

The heart of hardware emulator is a cycle-accurate AVRustr
tion interpreter. Hardware emulation is a mature area iyigldev-
eral good technologies for simulating one architecture rastteer
with high efficiency [23, 3]. However, we choose to use a Yairl
simple switch-based interpreter, that is similar to SirSgiaar [1].
The biggest reason is for portability. Since we intend tolament
simulations using collections of machines, the ability ta pn a
broad range of architectures is essential. Moreover, tlagively
simple nature of the AVR architecture and the high clock dpee
available from commodity powered workstations makes isjide
to achieve faster-than-real time emulations of many sesedices.
For example, our system is able to emulate motes using a Z2GH
x86 processor at approximatedytimes real-time speed.

The interpreter emulates each instruction, changes tie sta
microcontroller and drives an internal clock cycle by cyeidich
in turn fires the asynchronous events in an event queue, aeder
by hardware components like timers, UARTs and ADCs. The col-
lection of emulated devices is rich enough and accurate gimou
to boot and execute unmodified TinyOS [8] binaries. Thusiappl
cations and operating systems cannot distinguish execaticdhe
emulator from execution on the actual hardware.

2.2 Pluggable Models

Our device simulation framework provides a set of commoaerint
faces for integrating the core hardware emulator to vareen-
sions for power and communication. Our intention is to pdeva
platform for experimentation with different “plug-in” meds, both

to support the development of new models as well as to pravide
way to trade simulation speed for fidelity using a suite of eied
Since our focus is scalability, we only discuss the radio ef®é¢h
the following, which has great impact on the design of disted
synchronization protocol, and skip the power models.

221 RadioModels

Our system includes a “simple” or “ideal” radio model in whic
radio packets are sent losslessly to all the neighbor nodbanits
radio range. While the ideal model is typically highly inacate, it
is often used for initial code development and debugging el$ w
as to achieve an upper bound on potential performance. Under
this model, each sensor node buffers the packets sent t@iit ev
if it is not in receiving mode. Packets are time stamped anenvh
a sensor node receives, it checks the packet buffer and teads
packets that match its current clock time. In addition, péskrom
different nodes may conflict with each other. When confligtin
transmissions interfere, the ideal model performs a bi#e@R of
the bits received during the conflict period. As a results thasic
radio model is able to simulate transmission conflicts and the
“hidden terminal” effect [31]. Also, packet loss due to thertal
reception of packet preamble (because of the mis-synctation
of packet receiving and packet transmitting) is naturallydelled
as part of the radio chip emulation logic.

The ideal model can be made more realistic through the additi
of channel loss models. There are different ways to modeadtiaa-

nel loss. Analytical techniques use a mathematical desamipf a
physical electromagnetic radiation propagation. Thiss & signal
perturbation is based on the “physics” of the interveningowni-
cation medium. There is a large body of literature on suctsiglay
models [21]. Despite their accuracy, however, their coxipteand
potential computational expense make them difficult to nssen-
sor network simulations.

A more popular approach is based a statistical description o
channel loss, often derived from measurement trace dat834[4,
33]. In this approach, a large set of radio transmission data
collected using different parameters. The trace data is‘théed”
using statistical methods to derive distributional dgstans of
characteristics such as reception rate. Cerpa et al. [4peg
this approach and achieved some noteworthy results. They ha
also proposed methods of generating realistic networlanmsts
based on the discovered feature distribution. In our wokkhave
developed a plug in that uses a loss rate distribution gstera
from our own measurement trace data using a similar metbgglol
as in [4]. Thus, using the basic model and the trace-deriged |
model, our system can incorporate both deterministic nsoeted
on mechanism and statistical models based on off-line aisabf
trace data.

3. Distributed Simulation

One of the primary motivations for the development of our-sys
tem is the ability to simulate “large” ensembles of sensars s
that potential problems of scale can be studied. While previ
work [30, 12, 17, 2] has addressed the issue of scalabilitygus
different approaches (cf. Section 5 for a review of relateutk)y
our goal is to support binary transparency with respecteafbpli-
cations and operating system (similar to Avrora [30]) in g weat
maximizes the size of the ensemble that can be simulated.

There are two measures of scalability DiSenS attempts te max
imize. The first, analogous to the standard notion of speeded
to characterize parallel programs, is to maximize the mattioall-
clock time that elapses for a complete sensor network stioalan
a single processor to that for the same simulation runningnoi
tiple processors. This ratio characterizes the benefit cljgtism
in terms of reduced execution time for a given simulation.

In addition, we also consider speedup (or more probably-slow
down) in terms of the clock periods of the sensor network ki
under study. By calculating the number of device clock cythet
have been simulated in a given wall-clock period, we can adep
the speedup or slowdown of the simulation relative to thelclo
cycles that the real device experiences in real time.

Notice that these two notions of speedup are related but dis-
tinct. For example, it is possible for our system to achiexaeent
speedup using the first measure (the parallel time is mudkrfas
than the sequential time) but poor speedup or even largeisiow
using the second measure (devices are simulated only afsagall
tion of their real time speeds). While we have designed D&Sten
attempt to optimize both measures, we focus on the lattesunea
— the relationship to real time device speed — in this work as w
believe it is the more challenging of the two.

Clearly, the degree to which these measures can be optimized
depends on both the structure, constituent devices, araompp
of the ensemble simulation and the characteristics of tinepce
tational resources. For the latter, we believe a distributeem-
ory cluster computing environment has the largest poteiav-
ever, the typically close coupling of simulation system&kezadis-
tributed implementation challenging.

3.1 Background and Approach

Our approach is to simulate ensembles of sensor devicessoyex
ing individual cycle-accurate device simulations whicmeouni-

cate via simulated radios. Notice that this approach isrmtistrom
an event-driven methodology in that we do not decomposedhe ¢
lection of simulations into explicit events that must thentbme
ordered. Rather, we use individual device emulations aritha-s
lated radio communication environment as a virtual depleynof

a complete sensor network, and run the same operating sgsigm
applications on the virtual sensor network as if they wereing
on an actual deploymentTo coordinate between individual device
emulations, when radio communication occurs, the two conimu
cating sensor devices must be synchronized with respetieto t
relative internal clocks.

Previous work that takes a similar approach includes ATEN®] [
and Avrora [30]. ATEMU [19] is a cycle-accurate sensor natwo
simulator. It maintains a global clock and emulates oneuiction a
time for each simulated device. In this way, the sensor nadeau-
tomatically synchronized and no extra facility is necegsamain-
tain the correct order of radio events. However, ATEMU isited
to a single process and can not scale to larger systems.aA\l80}
extends the simulation to a multi-threaded shared memasy sy
tem. It scales on multi-processor machines. In Avrora, edeh
vice is simulated in a separate thread. Avrora loosens ATEMU
cycle-to-cycle synchronization requirement by extendimg syn-
chronization period to the length of a byte transfer tima0+¥2
ATmegal28L cycles — since packets are always transmittbgten
unit. A thread barrier is used to achieve its lock-step stylechro-
nization, which stops all the threads periodically to easevery
radio byte will be correctly received during the correcteiperiod.

In a clustering computing environment, relatively largd aari-
able network latencies make direct extensions of these o a
proaches difficult. Cluster network latency is measured iti-m
seconds while a desktop PC can easily emulate one devicadnst
tion in the 0.1 micro-second range. If lock-step global $ypaiza-
tion is used, the simulated clock speed will be determinethby
all-to-all network communication latency.

3.2 Synchronizing Ensemble Emulations

Our approach to synchronizing multiple device emulaticelges
on an abstraction of the radio communication protocol. loil-
nate the nature of this abstraction, we begin by discussngs
network radio behavior in some detail.

Currently two types of radio chips are emulated in our device
emulator, the CC1000 chip and CC2420 Zigbee radio chip [8h b
manufactured by Chipcon. The CC1000 is the radio chip used by
the Mica2 senor mote [13] and the CC2420 is used in the more
recent MicaZ [14] platform. The CC1000 is a rather simpleigad
chip. It has two working modes: transmitting and receiviiggér-
ing power saving features of the chip for the moment). Ingnait-
ting mode, data bits are pumped in from the SPI line, modd]ate
and emitted through the antenna. In receiving mode, the gt
nal is amplified, demodulated and converted into digitad hihich
will be assembled into radio packets by software protocatist
The mode transition is controlled by the software. CC1080 hhs
a receive signal strength indication (RSSI) measurementtifon.
This analog value of the signal strength is output via a cliip p
and converted into digital value by the ADC module of the mmicr
controller. The RSSI value is used by the software MAC lager t
perform collision detection.

CC2420 is a more advanced radio chip that implements the
low level function of Zigbee (IEEE 802.15.4) standard. Thajon
difference between CC1000 and CC2420 from the simulatidamt po

10ur style of simulation might more properly be termed an “&tion” as

a way of emphasizing the distinction between our approachaanevent-
driven one. Because the radio environment is purely sirad/dtowever, we
have chosen to term our approach as a “simulation” since \evbethat

term to be more general.

of view is that CC2420 performs the packet assembly in thp chi

which mean/k, if N, and N; are neighborsclock, >= clock;,

and has a much faster transmission speed. CC2420 has arsimilathe simulationS is correct

signal sampling function and also measures RSSI value. t#awe
CC2420 uses a pin called CCA (clear channel access) to tedica
whether the radio channel is clear based on a preset thceSHos
provides a simpler interface for MAC layer collision detent

The typical radio activity paradigm of TinyOS sensor appli-
cations can be described as follows. Normally, the radigssta
receiving mode (it may be turned off for power saving). When a
preamble of a packet is recognized, the complete packebpay!
is to be assembled and uploaded to the application. Whenkatpac

Note that we have to be conservative by waiting all the nesghb
since we can not predict which neighbor will transmit at tineet
when we receive. We term this property tefeness property.

3.3 Distributed Synchronization Protocol

Based on the safeness property we design the complete synchr
nization protocol for distributed simulation. We first intluce a
primitive, wait.on_recv.

needs to be sent, the MAC layer checks the channel using RSSIDgriNITION 3 (Waitonrecy). waiton_recvis a primitive opera-

value or CCA value. If the channel is busy, it backs off for a-ra
dom period of time and tries again. Otherwise, the radio ¢hip
switched into transmitting mode and a complete packet is@én

tion. If itis called by a nodeV;, it waits until vk, Ny is a neighbor
of N;, clocky, >= clock;.

Thus, packet receiving and signal sampling are very similar Waitonrecvhas to be called every time the radio channel is ac-
operations: they both read a value from the channel. The only c€sSed (receiving or sampling).

difference is the length of time they use to access the clhanne
As a result, radio communication behavior can be abstraoted
two operationsread.channelandwrite_channel Theread channel
represents the packet receiving and the signal sampling. Th
write_channelrepresents the packet transmitting.

As discussed previously, global clock is not feasible ins di
tributed environment since every clock access needs tersav
the network thereby incurring a large overhead. Insteaduses
a peer-to-peer design in which each sensor node maintaingit
local clock, clocks are synchronized before message rendsz
and each node is otherwise simulated independently.

Sincewait.on_recvrelies on the clock information of neighbor-
ing nodes, each node has to be informed of its neighbors! loca
clock value. We use a clock update protocol in which each node
broadcasts its local clock time periodically. The lengthuptiate
interval does not affect correctness but does have effepedior-
mance. There are two requirements on when to send updatsts. Fi
clock updates can not be sent during the transmission of & byt
This is because if it is sent, a neighbor waiting on a receiile w
believe it is time to proceed (if it does not wait for othersjianay
miss a partial byte. Updates, then, can only be sent betwges b
during a transmission. Second, before a node starts to wailb

When a communication between nodes occurs. the causal re-iNgwaitonrecy, it must first send an update. Without notifying its

lationship that exists between sender and receiver isfiegttat
the receiver so that packets are received in order, and dbat |
clock values roughly correspond to arrival timings. We falize
this synchronization problem in abstract terms and thecudsour
proposed solution.

We first define the simulation:

DEFINITION 1 (Simulation).If we define a radio nodé/; as a tu-
ple (clock;, read_channel, write_.channel), whereclock; is the
internal clock of nodeV;, read_channel andwrite_channel are
the only two operations performed on a shared resou€erep-
resenting the channel, we can definesimulation S as a set:
(No, N1, ..., Ni, C).

We have to distinguish tr@mulation timeandsimulated timeThe
former is the wall clock time in real world that is used to meas
the simulation. The latter is the virtual clock time in simatdd
world that is shared by simulated motes.

Then we define the correctness of a simulation:

DEFINITION 2 (Correctness)A simulationis correct if the follow-
ing relationship is ensuredy simulated timeperiod [v¢;, , vti,]
(correspondingsimulation timeperiod [rt;, , rt;,]), at which node
N; is scheduled tawrite_channel(C), and its neighbor node
N; is to read_channel(C) during [vt;, ,vt;,] (simulation time
[rtj,rtg]); 1 [vti, vti,] O [otsy,vts,] # 0, [rti, rti] N
[rtji,rtj,

Intuitively, a correct simulation requires any receiver to receive
any data that it is meant to receive according to the caysalit
simulated time space. In our simulation structure, giveat gent
data is transferred in byte unit and buffered at the recedids,
correct simulation can be achieved if each receiving notiyd¢he
delivery of each message byte until the local clock on theivec
is past the local clock on the sender.

Conservatively,

PROPERTY1 (Safe Receive)if whenever a nodéV; invokes oper-
ationread_channel, it waits until synchronized with its neighbors,

neighbors of its intention to wait, a node’s silent wait vatluse a
deadlock if some other nodes are going to wait for it.

In summary, any receiverait.on.rec\s to block and wait for
neighbors’ clock updates before it receives a message qgolsam
the radio medium. Before blocking, however, it must relaiol-
form its neighbors of its local clock value to prevent dealllo

Using the above synchronization protocol, we implement our
distributed simulation system. Given a set of nodes, we fiast
tition them into groups. Each group is simulated on one nmechi
and each node is simulated in one thread. In each group, lateloc
ble is maintained to keep the updated clock time for all locales
and their neighbor nodes. Whenever an clock update is $éinst i
updates the local neighbors and then multicasts to the eenaagh-
bors if it has. Our synchronization protocol treats the lecal re-
mote synchronization in the same way. The following pseuatiec
demonstrates the synchronization algorithm of a sensa.nod

do_for_every_byte transfer_tinme() {

switch (node) {

case RECEIl VI NG
send ny cl ock update;
wait_on_recv();
retrieve data byte from packet buffer;
br eak;

case TRANSM TTI NG
send ny cl ock update and data byte;
br eak;

defaul t:
send ny cl ock update;
br eak;

The above code doesn’t show the algorithm for signal samgplin
(RSSI) operation, which is the same as receiving (the “RBEEI
ING” section inswitch statement). The code shows that we send
at least one clock update for every byte transfer time régssdf
radio modes. For transmission, data byte is “piggy-baclketdthe
clock update messages to reduce the message traffic. Notite t

there is no constraint for senders. Senders send data hyhey a
time they want. The sent data bytes are buffered at recésidis
And it is receiver’s responsibility to ensure the correciegion of
radio packets. Notice also that there is a great deal of eagth
in this protocol. If this overhead cannot be amortized or laone
rated by the performance of the network interconnect withia
cluster, the overall performance of the ensemble simuiatid be
low. Our results seem to indicate that these issues are ssddie,
however.
Here is the code fowait on_recv.

wai t_on_recv(nodei) {
for (all nodej as a neighbor of nodei) {
if (nodej’s tine < nodei’s tine) {
put nodei on nodej’s waiting list;
}

if (nodei waits on any node)
wai t();

The following code shows what happens when a clock update is
received, regardless locally or remotely.

updat e_cl ock(nodei, clock) {
nodei . cl ock = cl ock;
for (all nodej waiting on nodei) {
if (clock >= nodej’s tine) {
decrease nodej’s waiting count;
if (its waiting count is 0)
wake up nodej ;

}

3.4 Node Partitioning for Parallel Execution

As indicated, the major potential source of overhead commn f
the network synchronization necessary to keep the variousee
tions synchronized. To get maximal performance, we mustaed
the remote synchronization as much as possible. Thusipaitig
the sensor nodes into groups plays an important role in thénga
of an efficient simulation.

The amount of remote network synchronization is determined
by the number of remote neighborhood links between senstso
Local updates to neighbors co-located on the same machine ar
relatively inexpensive (because they can use a sharedtdattuse
in memory) compared to remote clock update synchronizafisn
such our nodes partition algorithm has two goals. First, aedn
to evenly distribute the node workload among groups if we are
running simulation on a homogeneous system like a dedicated
cluster. This need for load balancing is because any slow hos
will become the bottleneck of the whole simulation due to the
implicit dependency among nodes. Second, we want to migimiz
the number of links among remote neighbors that are assigned
processors that can only communicate via network messages.

We find that we can actually convert this optimization proble
into a “classical” graph partition problem that is well sied! in
parallel computing area [24, 25, 20]. Formally, the pantitprob-
lem is as follows. Given a weighted, undirected grépk- (V, E),
the k-way graph partition problem is to split the verticeslofinto
k disjoint subsets such that each subset has roughly equairemo
of vertex weight while minimizing the sum of the weights oéth
edges whose incident vertices belong to different subsetedge
cut) [24].

edge represents that the connected two nodes have theiglotent
communicate. Then the node partition problem is exactlyaplyr
partition problem with both edge and vertex weights to béaumpi
The graph partition problem is known to be NP-complete in
general. A large body of research explores heuristic algms.
There are geometric algorithms, like recursive inertiaebtion
that uses coordinate axes to partition the graph; combiahtal-
gorithms, like K-L algorithm that optimizes an partitionchly;
spectral methods, which transform the discrete optinvpainto
a continuous one using linear algebra; and multilevel dlgms
featuring a coarsening-refining process. In our simulater,use
a general graph partitioning package for parallel computiom
Sandia National Lab, called Chaco [7], which combines thesie-
nigues based on graph topology and vertex and edge weigkts. W
use Chaco without modification and plan to report on its ¢éffee
ness in a future effort. Anecdotally, however, we are quiéaged
with the quality of the partitions it generates for the siatidns we
have investigated.

3.5 Scalability Analysis

Before looking at the experimental results generated byrople-
mentation, we attempt to describe the potential scalgtulitthe
system analytically. The simulation performance is deteech by
the pure device simulation speed and the synchronizatiernead.
Ultimately, the computational and memory cost of emulaiimg
dividual devices will dominate performance, but the maehand
memory speeds of the cluster hosts are so much more powerful
than the devices simulated on them, it is the network symihae
tion that poses the greatest impediment to scalability.

We define the following property that describes the scatgbil
of our algorithm in the ideal case.

PROPERTY2 (Scalability).Given fixed map density and node
density D and node numbefV;, on each host, when the number
of hostsH increases, and thus the simulated nodésncrease,
the communication cost for each host is constant if the pantiof
nodes to hosts is optimal.

Here the map density is defined as the ratio between the sum of
areas of node range circles (the circle centered at the nitle w
maximal radio range as radius) and the area of the map (mbhxima
area that the nodes occupy). It is a good indication of nodes’
average number of neighbors.

Map density: d
Node density: D
Total nodes: N

R+r

O\
N/

sensor node map

Figure 1. Illlustration of Property 2

The property is illustrated in Figure 1. The circle with nasli

In our case, given a node map, which specifies the node coor- R represents a group. We can use circle is because, assuming
dinates in a 2D or 3D space, and the maximal transmissiorerang an optimal partition, the group should have minimal contaith

of a typical sensor node, we can build up a graph called patent
neighboring graph (PNG). Each vertex of the graph is a nodeh E

others and a circle is a good estimation of its boundary. &inc
the map densityl is fixed and the number of nodes per group

is also fixed, the area of a group and thus radii$s constant.
Moreover the ring area corresponding to the area betweelesir
having radiusk — r and radiusk + r both having the same center
is the area which nodes may have cross-group edgesjéfined

to be the maximal radio transmission range. Then the number o
cross-group edges for a group can be calculated as follows:

Numedge = AT€0ring* Densitynode * Densitymap = 4w RrdD

)
Since R, r, d and D are all constant with respect to thetal
number of nodeshe number of cross group edges is fixed. Thus
the communication cost of eatlostis fixed. Although Property 2
corresponds to an ideal upper bound on communication ocadrhe
it predicts that scalability will be affected most by the rhan of
nodes assigned to each processor rather than the total naibe
nodes simulated or the total number of processors emplayed g
fixed map density and nodes per host. Our experimental sesult
described in the next section seem to reflect this outcome.

4. Evaluation

In this section, we examine the fidelity and scalability o5BnS.
As a measure of fidelity, we compare cycle counts generatediby
simulator to those observed from individual real devicesng an
oscilloscope to maximize measurement accuracy). Thie@alint
comparison is for full-device emulation (CPU and memoryshla
storage, radio, etc.) using a set of benchmarks designecttoise
all sensor hardware subsystems.

We also have investigated the transparency and complstehes
our system by booting unmodified TinyOS images on the siraulat
and executing popular large sensor network applicatioimy.DiB,
Surge and Deluge [9]. However, due to the length limit and our
focus on scalability, these results are not provided inghjzer.

Finally we examine the scalability of DiSenS using a single
benchmark (employed previously in the literature for sucidiges)
and compare the results to those generated by previousseffor

4.1 Experimental Framework

The results presented in the following exposition have lggerer-
ated using two different machine clusters to which we havess

at UCSB. CLUSTERL is a6 host? dual-processor 3.2GHz Intel
Xeon cluster that uses switched gigabit Ethernet as its aamm
cation interconnect. CLUSTER2 is a larger, departmentadter
composed 064 dual-processor 2.6GHz Intel Xeon hosts, again in-
terconnected via a gigabit Ethernet switch. Both systerasused

in dedicated mode to remove the effects of network or host con
tention by other executing applications.

For all the scalability experiments, we use TinyOS appiicat
CntToRfmas the benchmarikcntToRfmhas been used as the touch-
stone in previous scalability studies [12, 3@ntToRfmperiodi-
cally sends out radio packets and keeps the radio channgl bus
Note that although it does not actually receive packetsrade
chip is still in receiving mode when it is not transmittingisdoes
in effect exercise all radio activities. Our experienceshwigther
applications in scalability are similar &ntToRfm

4.2 Cycle-Accuracy

We use four benchmarks to test the cycle-accuracy, exegcisi-
portant components on the mote devicpu benchmark runs CPU
intensive computationglashread performs small reads from the
on-board flash chigflashwrite writes to the on-board flashadio
exercises the CC1000 radio chip and transfers a small anadunt
data.

The execution time on real device is measured using an oscil-
loscope, Agilent 54621A (accurate up to 10 nanosecondsh Ea
benchmark starts by writing an “1” to a pin in 1/O port C and &nd
by writing a “0” to the pin. The pin is connected to the osdlttope
probe. The oscilloscope measures the pulse width. The mezhsu
time is then converted into cycle numbers using a divisicih -
megal28L's clock speed 372800 Hz). The numbers are compared
with our simulation result.

We run theradio benchmark in an environment with minimal
interferences and make the antennas of two motes in closandes
to minimize the effects of noise and communication charmsbi-
bility on cycle timings in an best effort, since we comparehe
ideal radio model.

1.2

1.0

0.4

Execution cycles nomalized to realtime
0.2 0.6
1

0.0
L

cpu flash_read flash_write radio

Figure2. Normalized average cycles for benchmarks.

Figure 2 gives the average of 20 measurements as the ratio of
simulated execution cycles to cycles measured from theabde:
vices (a ratio ofl.0 would indicate perfect accuracy). That is, we
normalize the data using actual measured cycle counts. Par C
emulation, the simulator closely approximates empiricebsure-
ment. Flash and radio emulation have slightly larger errbtg
the size of these errors is of limited statistical signif@nin [32]
we provide a more complete statistical analysis of this canispn
which we omit from this work due to space considerationgelad,
by way of summary, we note that in general the simulationrésro
relatively small.

43 Scalability

For each scalability experiment, we vary two experimenéabhm-
eters independently: the number of sensmdessimulated on each

For most of the experiments, we use Mica2 as the target sensorhostin a cluster, and the number bbstsused for each experiment.

device. At the end of this section, however, we briefly discus
scalability results for MicaZ to show how the effect of ratfiansfer
speed on simulation performance.

2The term “node” is rather unfortunately common to both thesse net-
work and cluster computing communities occasionally legdo confusion
when discussing sensor network emulation on clusters elmeimainder of
this paper, we will use the term “host” to refer to a node instr, and the
term “node” to refer to a sensor network device.

Thus, for example, the value in raiy column4 shows the results
for two nodes per host and four hosts. For each node-coustt-ho
count pair, we rurntToRfnfor 60 seconds and record the average
simulated clock speed. Except where noted explicitly redleéxper-
iments are run on CLUSTERL.

4.3.1 Best Case: One Dimensional Topology

Our first experiment simulates a one dimensional topolodjyth&
nodes are laid on a straight ling) meters apart (again assuming

Nodes Hosts number
perhost| 1 2 1 8 16 RN o x—x—x | §
il 928 | 2.26 | 1.06 | 1.72 | 1.67 N Y
2 6.68 | 2.12 | 1.82 | 1.68 | 1.68 - \ —a— best performance
4 2.18 | 1.83 | 1.70 | 1.68 | 1.67 8 b —%— host number -
8 1.20 | 1.21 | 1.18 | 1.16 | 1.15 29 T T,
16 0.78 | 0.61 | 0.60 | 0.60 | 0.60 §3 T AN g
32 0.35 | 0.36 | 0.31 | 0.31 | 0.31 k3 A\ 5
64 0.18 | 0.15 | 0.17 | 0.15 | 0.14 = X A rYa
128 | 0.09 | 0.09 | 0.09 | 0.08 | 0.08 % / ., £
gs | R
Table 1. Simulated clock speed far-D topology. Each row has 5° o S
fixed number of nodes per host and each column has fixed number ¢
of hosts. All value is normalized to real time clock speed.
g -1 X—X——X =

T T T T T T T T T T T T

1 2 4 8 16 32 64 128 256 512 1024
Total number of nodes

1 nodes —— 16 nodes
2 nodes —¥— 32 nodes
—8—
—*—

T 4 nodes o rodes Figure 4. Gold curves forl-D topology. X-axis is total number
of nodes simulated. The Ieft-axis is normalized performance and

‘ the right one is number of hosts. The decreasing curve isatedt

I e speed curve. The increasing curve gives the correspondisy h

number at each point.

10.00
|

1.00

Normalized simulated clock speed

=
o o* * —
g o 1
o . 1
S R~ —A— best performance
ﬁ\ — Avrora
- \
o .
T T T T T :;-J- i(\\Z 4 8 16
1 2 4 8 16 % f—o—o—a 16
Number of hosts % 8 — \\‘>< A\IG
N 416
Figure 3. Scalability of 1-D topology. X -axis is number of hosts E \A
andY -axis is clock speed. Each curve represents the performance E 1AG
with a fixed number of nodes per host. Dashed line shows real ti g \1;
k=l
S
=z

speed.

the maximal radio range B0 meters). This gives us the minimal
cross group edges (given an optimal partition). It consgithe — T T T T T T T T T 1
best possible case for the distributed simulation and as pta 1 2 4 8 16 32 64 128 256 512 1024
vides a rough upper bound on the performance. Total number of nodes

Table 1 presents the results. Each cell of the table showattioe
of the simulated average clock speed to the real time cloekdp
of 7372800 cycles per second. To compute the average simulated
clock speed, the simulator records the number of clock syedeh
mote executed during thé0 second execution run. The sum of
the cycles is divided by the number of motes, and that nunser i
divided by 60. Thus each cell depicts the average slowdown or
speedup factor relative to native execution speed. the table) the speedup factors are remarkably similar déegs of

From the table, the best performance is a speed@®8ftimes host count. Further, the tipping point with respect to sppeaind
real time speed when simulating one node on one host (the up-slowdown (the point where the ratio falls belaw) is betweers
per lefthand corner in the table). Notice that as expectiedlat- and16 nodes per host faall host counts.
ing more nodes on a single host (column 1) yields a slower rate Figure 3 shows this relationship graphically using a log-lo
of decay in the speedup factor than does simulating one node o scale. The speedup drops for small node counts from one tost t
each of a successively larger number of hosts (row 1). When tw two, but for the other data points, the number of nodes per hos
nodes are co-located in the same host, the speedup facftw iro (and not the number of hosts) is the determining factor up6to
6.68 whereas two nodes each located on a separate host generatestests. This relationship is predicted by the analysis ofofée 2
speedup factor of onl2.26. This is due to the network communica- presented in the previous section but none the less, we fthand
tion overhead. The trend reverses when the host numbertisgget degree to which it holds somewhat surprising.
larger when the communication overhead is amortized amegag p By way of comparison to previous work, in this best case sce-
nodes on the host. nario 2048 nodes can be simulated at nearly a tenth of the real time

What is perhaps the most remarkable, however, is the sitgilar ~ speed using 6 hosts (lower righthand corner of Table 1), which
between the values far through 16 hosts. While we expected a is almost8 times better than results reported for TOSSIM [12].
substantial fall off in speedup in moving from one host to two Also, nearly160 nodes can be simulated in real time speed using
hosts, we expected that fall off to continue as the numbeiosfsh 16 hosts, and improvement of almost a factorsofver previous
increases. Indeed, starting wimodes per host (the fourth row in ~ TOSSIM results.

01

0.

Figure 5. Best performance curve comparisoX.-axis is to-

tal number of nodes simulated. Thé-axis is normalized per-
formance. Compare our best performandeD(topology) with

Avrora’s performance. The annotated number is the corretipg

number of hosts.

In Figure 4, we plot the best performance of simulating total
of 2, 4, ..., and2048 nodes respectively. The units of theaxis on
the lefthand side of the graph are for the ratio shown in Tabkeor
each point, we also plot the corresponding “host number’rathw
the best performance is achieved (the host count is showmegp t
axis at the righthand side of the graph). We call the two cutgeld
curves” since they show the number of hosts necessary tmdbéa
fastest simulation of a specific number of nodes. Note treafah
off in the best performance curve occurs when the number siho
reachesl6 (the maximum number in CLUSTER1) and the total
node count is increased beyodtl Thus, in this best case example,
scalability is limited by host availability througP048 simulated
nodes.

We compare Avrora [30]'s best performance curve with our
“gold curve” in Figure 5. We run Avrora on a single host from
CLUSTER1 (using both processors on that host) for upl@o
nodes (the implementation of Avrora we ported to our machine
did not execute correctly with more thaé nodes). Recall that
Avrora is not designed to use distributed memory parattelnd
message passing but it can take advantage of multiple poses
in a single hosts that share memory. Despite the extra cadnve
have in our system that is necessary to take advantage aphault
hosts, the performance comparison is favorable to our weok.
up to 8 hosts, our system and Avrora achieve similar speedup
factors. For thes node comparison, however, we requxéosts,
using both processors on each host (the small integers oext t
each triangular graph feature in Figure 5 indicate how marsish
our system requires to achieve the corresponding speedtgr)fa
where Avrora is using only one. Beyorglnodes, however, our
methodology, using successively larger host counts, eebia
considerable scalability improvement over Avrora.

4.3.2 Common Case: Two Dimensional Topology

Nodes Hosts number

perhost| 1 2 4 8 16
1 9.14 | 252 | 1.83 | 1.66 | 1.64
2 6.65 2.12 1.58 1.38 1.18
4 2.09 1.49 1.27 1.12 1.10
8 1.25 | 1.07 | 1.01 | 0.96 | 0.92
16 0.82 | 0.63 | 0.62 | 0.59 | 0.57
32 0.32 | 0.38 | 0.31 | 0.30 | 0.30
64 0.16 | 0.17 | 0.16 | 0.15 | 0.15
128 0.10 | 0.08 | 0.07 | 0.07 | 0.07

Table 2. Simulated clock speed far-D topology. Each row has

(=]

S ©

s = X— X— X —X—X— X—X—X — §

S 76—,

m\
2 S
o AL
8 L N —*— best performance |
v o NN A —&— host number
S S N ——A_—o— Avrora —
A ® 3
A

° <
g AN 5
© A E s o
=3 Q
1= Qo
@ \A 5
T o Z
2= N
=o N
<
§ X - o~
(=}
2 /

fml

S H4 x—x o

o

T T T T T T T T T T T T
1 2 4 8 16 32 64 128 256 512 1024

Total number of nodes

Figure 6. Gold curves for2-D topology. X -axis is total number
of nodes simulated. The Ieft-axis is normalized performance and
the right one is number of hosts. The decreasing curve isatedt
speed curve. The increasing curve gives the correspondisy h
number at each point. The dashed curve is Avrora’s speec curv

10.00

—4— one dimension
—%— two dimensions

1.00

0.10
1

Normalized simulated clock speed

T T T T T T T T T T T T

1 2 4 8 16 32 64 128 256 512 1024
Total number of nodes

Figure7. Best performance comparison D and2-D topology.
X-axis is total number of nodes simulated. THeaxis is normal-
ized performance.

fixed number of nodes per host and each column has fixed number

of hosts. All value is normalized to real time clock speed.

A two dimensional topology is more realistic for sensor ratw
applications. Using the same configurations, we perfornexiper-
iments on a two dimensional node map. The nodes are &gain

our system performs similarly to Avrora (this time on theD
problem) but in this case, it requires more hosts to achievsame
results. For example, the simulator requigesiosts to duplicate
Avrora’s 8 node performance (using a single host). Surprisingly,
however, the2-D gold curve and thé-D gold curve have similar

meters apart and fill a grid whose shape is as close to a sgsiare aShape. Figure 7 shows both on the same graph (note the log-log

possible. Table 2 provides the results. The performanca $D
space is somewhat worse than for 1hB case when the number of
nodes per host is belog2. However comparing Tables 1 and 2 for
node-per-host counts abo8e shows surprising similarity. Again,
as the number of simulated nodes increases, the number ibf ava
able hosts becomes the scalability limiting factor — not bele

scale). Betwee32 and 128 simulated nodes there is a reduction
in speedup factor for th2-D case, but apart from that region, the
curves track almost exactly.

4.3.3 Worst Case: All-to-all Network

The previous scalability results we have presented relyrerim-

count. In the2-D case, however, performance equivocates between ited neighborhood relationship imposed by radio range. tRer

16 and 32 nodes per host corresponding to a slowdown factor of
betweerD.6 and0.3. That is, while it is possible for our system to
achieve scalabl2-D simulation of the benchmark, it is not possible
to do so and to run in faster-than-real time.

We present the “gold curves” in Figure 6 but combine the node
count and Avrora comparison curves onto a single graph.igai

worst case, we simulate an “all-to-all” complete graph aunfa-
tion in which each simulated node must consider all of theioth
nodes to be in radio range making communication overheadmax
mal. Table 3 and Figure 8 shows the speedup factors and sitglab
curves respectively. In this worst case, communicatiomteexd in-
creases as the square of the node density. For small nodegier

Nodes Hosts number
perhost| 1 2 4 8 16
1 9.28 | 2.36 | 1.66 1.60 1.36
2 6.68 | 1.41 | 1.07 | 0.81 0.66
4 2.04 | 0.94 | 0.75 0.62 0.42
8 1.22 | 0.65 | 0.54 | 0.43 0.29
16 0.62 | 0.44 | 0.32 0.23 0.14
32 0.29 | 0.20 | 0.14 | 0.08 0.04
64 0.12 | 0.08 | 0.04 | 0.02 0.01
128 0.05 | 0.02 | 0.01 | 0.002 | 0.0008

Table 3. Simulated clock speed for “all-to-all” complete graph.

CLUSTER?2 both use gigabit Ethernet as an interconnect) con-
tribute to this lower performance. However, as the size efsbn-

sor network being simulated scales, the overhead is onda aga
amortized. For example, usirgt hosts of CLUSTER2 and28
nodes/host our system can simul@t®2 nodes in total with a slow-
down factor of0.07 representing an almo8@ fold improvement
over previously reported TOSSIM results.

5. Related Work
There have been numerous previously successful effortsitd b

Each row has fixed number of nodes per host and each column hagensor network simulation systems. Of these, Avrora [3@hés

fixed number of hosts. All value is normalized to real timecklo
speed.

16 nodes
32 nodes
64 nodes

1 nodes
2 nodes
4 nodes

10.00

1.00
|

Normalized simulated clock speed
0.10

0.01
|

Number of hosts

Figure 8. Scalability of “all-to-all” complete graphX-axis is
number of hosts ani'-axis is clock speed. Each curve represents
the performance with a fixed number of nodes per host. Daghed |
shows real time speed.

and host counts, the speedup factors are similar ta-thend2-D
grid cases, but as both are increased the speedup factartisico
ally reduced.

434 Larger Scale Experiment

Nodes Hosts number
perhost| 1 2 4 8 16 32 64
1 7.21 |1 0.85 | 0.70 | 0.55 | 0.45 | 0.41 | 0.41
2 3.33 | 0.55 | 0.50 | 0.44 | 0.38 | 0.34 | 0.32
4 2.51 | 0.55 | 0.48 | 0.42 | 0.39 | 0.35 | 0.34
8 1.37 | 0.51 | 0.44 | 0.39 | 0.36 | 0.39 | 0.30
16 0.74 | 047 | 0.39 | 0.37 | 0.37 | 0.36 | 0.33
32 0.37 | 0.32 | 0.29 | 0.29 | 0.27 | 0.28 | 0.23
64 0.17 | 0.16 | 0.15 | 0.15 | 0.13 | 0.16 | 0.12
128 0.08 | 0.07 | 0.07 | 0.07 | 0.07 | 0.08 | 0.07

Table 4. Simulated clock speed for simulation @fD grid of
Mica2 motes on CLUSTERZ2. Each row has fixed number of hodes
per host and each column has fixed number of hosts. All valges a
normalized to real time clock speed.

To test our simulator in a larger scale, we perform 2k ex-
periment on CLUSTERZ2, é4-node cluster. Table 4 presents the
results. Comparing Table 4 to Table 2 (which used CLUSTERL fo
the same configuration) CLUSTER2 achieves lower speedup fac
tors for the test cases they have in common (columtisrough

most similar to our work. Avrora is a full-system sensor natw
simulator supporting cycle-accurate emulation of the Kibéote
platform. Avrora uses a multithreaded structure in whiclehea
sensor node is simulated in a separate thread. A lock-syép st
synchronization scheme that is coordinated with the conicatn
tion model is used to ensure the correctness of radio siioolat
Avrora has a “Wait for Neighbors” operation that is similar t
our wait.on_recv primitive, but it is only used to implement cor-
rect signal sampling operation. In addition, because iesebn
clock-cycle synchronization according to a strict perodched-
ule, Avrora can only scale using shared-memory multipremes
using low-latency shared memory to facilitative the neagssom-
munication. In contrast, by synchronizing on message tnissson
(and not through a lock-step mechanism) and by controllieg-m
sage delivery to preserve time ordering, DiSenS execufiegetly
on both shared-memory multiprocessors and distributed anem
cluster platforms. DiSenS also includes an automatic tparing
system that optimizes simulated node to machine mappingdbas
on simulated deployment topology. It is thus able to achiggreater
scalability and overall performance than Avrora, and ide&ny
high-performance discrete-event simulators such as TRI$H1].
Finally, DiSenS also has extended hardware support, imgdud
even advanced platforms like Stargate (not discussedsp#per).

ATEMU [19] is another full-system sensor network simulator
focuses on the detailed bit-level hardware simulationmpleys a
very simple synchronization mechanism by executing onieuos
tion a time for each sensor node. Itis so simple that no eatititly
and protocol is required to ensure correct radio simuldiiecause
nodes are already synchronized cycle-by-cycle using dirasm-
ory data structures. However, it can only utilize one precasd
thus does not scale to parallel computational resources.

Other simulators, include TOSSIM [12], SensorSim [18], GT-
SNetS [17], OLIMPO [2] and Shawn [11], explore the tradeoff
between accuracy and performance by using discrete event si
lation to elide the complexity associated with cycle-aateihard-
ware emulation. These systems typically report highemgparédnce
levels than simulators such as Avrora and ATEMU, but saerific
execution transparency to do so. That is, these systems o no
achieve the transparency of DiSenS in that application gred-o
ating code must either be translated to, or compiled foir ttee
spective discrete-event environments.

TOSSIM is a popular event-driven simulator which models
not only the wireless network but also the application behav
ior. TOSSIM is light weight and can simulate thousands of- sen
sor nodes on one host. Nonetheless, we demonstrate how DiS-
enS is able to achieve improved performance levels over TRASS
by leveraging distributed cluster resources while achigvrans-
parency and cycle accuracy. That is, DiSenSachieves the age
curacy and execution transparency of systems such as Awitha
performance levels that exceed those achieved by disevetrs-
simulators such as TOSSIM.

Similarly, SensorSim is a sensor network simulator based on

5). Both a slower processor speed in CLUSTER2 and, somewhat NS-2 [16] which is a discrete event network simulator. It sloe

curiously, higher network latency (even though CLUSTER® an

not model application itself as TOSSIM does achieving eess |

transparency. A sensor network simulator based on GTN&P [2

claims to be able to simulate a sensor network at a scale ofads

[7] B. Hendrickson and R. Leland. The Chaco User’s Guidesidger2.0.
Technical Report SAND94-2692, Sandia National Lab, 1994.

of thousands of nodes. This scale exceeds what we have bleen ab [g] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and Kisger.

to test using the resources at our disposal, but to achiévéetrel
of scalability, the operating system and application cadest be
represented in a high-level, abstract way. Thus it is nosipsto
use this system to directly compare executions of sensaronlet
software in simulation and on real hardware, as it is usirgebDiS.
The general distributed simulation problem has been siij6ie
for quite a long time. Compared to most existent discretatesien-
ulation systems, the key feature of this work is that unmedifi

sensor network program binaries can run at scale, in or regar r

time in a fully instrumented simulated environment as ifythere
executing in real hardware. While there have been sometreiren
tualization efforts that can run native binaries using Vike Xen,

scaling these systems beyond what can be achieved in natide m
has yet to be demonstrated. In contrast, DiSenS is able ttatmu

sensor networks that are far greater in scale than previmtsras.
Thus, by employing effective parallel techniques and caorinigi
them with high performance virtualization, DiSenS enabviesi-
alized execution of program binaries at a scale that is tatgn
can be investigated through execution on native hardweistHis
capability that forms the novelty of the contribution.

6. Conclusion

DiSenS is a complete sensor network simulation framewook pr

viding high levels fidelity, extensibility and scalability addresses

the conflict between accuracy and performance. Given enough
computational resources, researchers do not have to tmaume s

lation quality for simulation efficiency.

DiSenS also provides a complete and transparent simulation

framework, including a cycle-accurate device emulator aed

placeable plugin models. Users of DiSenS are able to empisy c

tomized models to explicitly control simulation qualitptérnally,
DiSenS uses a peer-to-peer simulation design for distribatock
synchronization. Individual node simulation threads dreed to-
gether by a simple and efficient synchronization protocdlictv
makes the complete simulation scalable to a large size wituised
computation resources. Using commodity cluster hardw2i®;
enS can simulate one node approxima®@iymes faster than real
time speed]160 nodes in real time speed usiing dual-processor

machines an@192 nodes at nearly tenth of real time speed, which

is 32 times of that reported previously [12].

We are actively improving DiSenS to make it a useful tool for

sensor network research. A big challenge is to look for a dyoa
node partition algorithm so that non-dedicated, hetereges dis-
tributed systems can be used for simulation.

References

[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An &sfructure
for Computer System ModelindEEE Computer2002.

[2] J. Barbancho, F. Molina, C. Len, J. Ropero, and A. Barbanc
OLIMPO, An Ad-Hoc Wireless Sensor Network Simulator for
Optimal SCADA-Applications. Communication Systems and
Networks (CSN 2004450, Sept. 2004.

[3] The Bochs Emulatorht t p: / / bochs. sour cef or ge. net .

[4] A. Cerpa, J. L. Wong, L. Kuang, M. Potkonjak, and D. Estrin
Statistical Model of Lossy Links in Wireless Sensor Netveork
In the ACM/IEEE Fourth International Conference on Infotina
Processing in Sensor Network&pr. 2005. Los Angeles, California.

[5] RF Receivers from Chipcon.ht t p: / / www. chi pcon. conl
i ndex. cf nPkat _i d=2.

[6] R. M. Fujimoto. Parallel and Distributed Simulation Systemiohn
Wiley and Sons, Inc., 2000.

System architecture directions for network sensdrgernational
Conference on Architectural Support for Programming Leaggs
and Operating System®ct. 2000.

[9] J. W. Hui and D. Culler. The Dynamic Behavior of a Data
Dissemination Protocol for Network Programming at Scalthe
2nd ACM Conference on Embedded Networked Sensor Sy&@ods

[10] iPAQ devices.ht t p: / / wel come. hp. conf count ry/ us/ en/
prodser v/ handhel d. ht m .

[11] A. Kroeller, D. Pfisterer, C. Buschmann, S. P. Feketel, @nFischer.
Shawn: A new approach to simulating wireless sensor neswork
eprint arXiv:cs/0502003Feb. 2005.

[12] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accierand
Scalable Simulation of Entire TinyOS ApplicationSCM Conference
on Embedded Networked Sensor Systéing. 2003.

[13] Mica2 sensor boarcht t p: / / www. xbow. coni .
[14] MicaZ sensor boardht t p: / / www. xbow. cont .

[15] Mote hardware platformht t p: / / ww. t i nyos. net/ scoop/
speci al / har dwar e.

[16] NS-2 network simulatorht t p: / / www. i si . edu/ nsnani ns/ .

[17] E. Ould-Ahmed-Vall, G. F. Riley, B. S. Heck, and D. Reddy
Simulation of Large-Scale Sensor Networks Using GTSNeit®.
Proceedings of the 13th IEEE International Symposium oneiiog|,
Analysis, and Simulation of Computer and Telecommunicatio
Systems (MASCOTS’Q®005.

[18] S. Park, A. Savvides, , and M. B. Srivastava. Sensor&igimulation
framework for sensor networksACM International workshop on
Modeling, analysis and simulation of wireless and mobilsteays
pages 104-111, 2000.

[19] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S. BapdEMU:
A Fine-grained Sensor Network SimulatdEEE Communications
Society Conference on Sensor and Ad Hoc Communications and
Networks 2004.

[20] A. Pothen. Graph partitioning algorithms with apptioas to
scientific computing. Parallel Numerical Algorithmspages 323—
368, 1997. Kluwer.

[21] Wireless Propagation Bibliographyhat t p: // w3. ant d. ni st .
gov/ wet g/ manet / wi r el esspropagat i on_bi bl i og.
htm .

[22] G. F. Riley. Large-scale network simulations with GTlle In
Proceedings of the 2003 Winter Simulation Confere2683.

[23] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta. Qxete
Computer System Simulation: The SimOS ApproalfEE Parallel
and Distributed Technologyvinter:34—43, 1995.

[24] K. Schloegel, G. Karypis, and V. Kumar. Graph Partitignfor High
Performance Scientific Simulation®raft to be included in CRPC
Parallel Computing Handbook, Morgan Kaufmarg@ept. 2000.

[25] H. D. Simon. Partitioning of Unstructured Problems fearallel
ProcessingComputing Systems in Engineerjrigl135-148, 1991.

[26] Simulavr: A simulator for the Amtel AVR processor familht t p:
/ I www. nongnu. or g/ si mul avr.

[27] Stargate: a platform X projedbt t p: / / pl at f or mx. sour cef or ge.
net/.

[28] S. Sundresh, W. Kim, and G. Agha. SENS: A Sensor, Enviremt and
Network Simulator.The IEEE 37th Annual Simulation Symposjum
2004.

[29] Moteiv Corporation. Telos Sensor Network Moduleht t p:
/[www. not ei v. cont .

[30] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: ScaéaBlensor
Network Simulation with Precise TimingThe Fourth International

(31]

[32]

(33]

[34]

Symposium on Information Processing in Sensor Netwaks 2005.

F. A. Tobagi and L. Kleinrock. Packet switching in radibannels:
Part II-The hidden terminal problem in carrier sense migtgccess
and the busy-tone solutiodEEE Transactions on Communications
COM-23:1417-1433, 1975.

Y. Wen, S. Gurun, N. Chohan, R. Wolski, and C. Krintz. Eod/Full-
System, Cycle-Accurate Simulation of Sensor Networks.hiaal
Report CS2005-12, University of California, Santa Barbaa05.

J. Zhao and R. Govindan. Understanding packet deligerjormance
in dense wireless sensor networkdn Proceedings of the 1st
international conference on Embedded networked sensoersgs
2003.

G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic.paut of
radio irregularity on wireless sensor networks.Proceedings of the
2nd international conference on Mobile systems, applicetj and
services (MobiSYS’'042004.

