SimGate: Full-System, Cycle-Close Simulation
of the Stargate Sensor Network Intermediate Node

Ye Wen, Selim Gurun, Navraj Chohan, Rich Wolski, and Chandra Krintz
Department of Computer Science
University of California, Santa Barbara

Abstract— We present SimGate — a full-system simulator
for the Stargate intermediate-level, resource-constrained, sen-
sor network device. We empirically evaluate the accuracy and
performance of the system in isolation as well as coupled with
simulated Mica2 motes. Our system is functionally correct and
achieves accurate cycle estimation (i.e. cycle-close). Moreover,
the overhead of simulated execution is modest with respect to
previously published work.

I. INTRODUCTION

Sensor networks have emerged as a technology for transpar-
ently interconnecting our physical world with more powerful
computational environments, and ultimately, global informa-
tion systems. In a typical sensor network, computationally
simple, low-power, sensor elements take physical readings
and may perform minor processing of these readings before
relaying them to more powerful computational devices. The
need for non-intrusiveness influences sensor design toward
small, inexpensive, low-power sensor implementations that can
be deployed in large numbers. Because the sensor nodes are so
resource constrained, complex tasks such as data storage and
advanced processing are typically offloaded to more capable
nodes.

Designing and investigating these systems, to date, has
relied primarily on physical deployments and experimenta-
tion [1], [2], [3], [4], [5]. While the quality of the results from
such efforts is invaluable, the requirement that researchers
work directly with the physical systems imposes a substantial
research impediment and financial cost. Alternatively, several
systems [6], [7], [8], [9], [10], [11], provide simulation,
which complement deployed experiments and offer flexible
and controllable environment for sensor network development,
analysis, and application prototyping. However, extant ap-
proaches to sensor network simulation do not support simula-
tion of intermediate-level devices and the interactions between
devices at different levels.

In this paper, we investigate SimGate — a full-system
sensor network simulator. SimGate simulates the Intel Stargate
device [12]. The Stargate device is intended to function as a
general purpose processing, storage, and network gateway el-
ement in a sensor network deployment. Our goal is to provide
both functional correctness and accurate cycle estimation. We
refer to the latter as cycle-close [13]. Our system is unique
in that is supports cycle-close, functional simulation of the
entire Stargate device as opposed the processor [14] or power
consumption [15], [16] alone. SimGate captures the behavior

of most Stargate components including the processor, memory
hierarchy, communications (serial and radio), and peripherals.
As the result, SimGate boots and runs the Familiar Linux
operating system and any program binary that executes over
it, without modification.

Our system is also unique in that we use it to simulate the
ensemble of both intermediate and base level sensor devices,
i.e. Stargate and motes (e.g. Mica2). We do so by coupling
SimGate with SimMote, a cycle-accurate full-system simulator
of motes [17]. This interoperability reveals the potential of
simulating a complete sensor network setting including both
basic nodes, gateway nodes, and their interactivity.

We evaluate the accuracy of our system by comparing
the simulated clock cycles to measured clock cycles using a
range of stressmarks and community benchmarks. We also
present results for similar experiments in which the SimGate
and SimMote inter-operate via a serial interface (simulated in
both). Finally, we examine a multi-device ensemble consisting
of a SimGate node, a serially-connected SimMote, and a third
SimMote that communicates only via simulated radio. We
compare our simulated results to measurements that we gather
from physical Stargate and Mica2 devices.

Our results indicate that our system is cycle-close — we
are able to simulate the full Stargate system with a maximum
error of 12.4% across the benchmark that we considered.
Our simulator is also fast: we observe a 58X slowdown over
real-time device execution. Moreover, when functional simu-
lation is acceptable, simulation is 3X faster than cycle-close
simulation. As a result, we believe this work demonstrates
the potential of multi-device, sensor network simulation as a
research-enabling technology.

In the next section, we overview the design and implemen-
tation of our simulator. In Section III, we describe our exper-
imental setup and measurement methodology. We then detail
the accuracy and performance of our system in Section IV. In
Sections V and VI, we present related work and conclude with
some observations and our plans for future work respectively.

II. SIMGATE SIMULATOR

Simulation is an important tool for sensor network system
and application development. The focus of most prior work
in simulation has been on high-end devices [18], [19], [20],
processor and power simulation [21], [14], [15], [16], or on
the sensing devices themselves [6], [7], [8], [9], [10], [11].
However, to our knowledge, no extant approach to sensor

network simulation enables full-system simulation of a key
sensor network component, the intermediate “gateway” node.
Moreover, no simulation system facilitates co-simulation of
different sensor network devices as part of an ensemble. The
goal of our work is to investigate, implement, and evaluate
such techniques.

To simulate intermediate nodes, we developed SimGate,
which provides a cycle-close simulation of the Intel XScale
processor [22]. Furthermore, SimGate emulates the complete
functionality of the Stargate, such that it can boot and execute
the Stargate software distribution (Linux kernel and programs)
without any software modification. In addition, SimGate pro-
vides a unified debugging interface for program development.

A. SimGate Design and Implementation

The Stargate is a single-board, embedded system that con-
sists of a 400MHz Intel XScale processor, an Intel SAT1111
companion chip for I/O, Intel StrataFlash, SDRAM, PCM-
CIA/CF slots, and serial connector for a mote sensing de-
vice [12]. Currently, the Stargate does not have a mote-
compatible RF radio. In situ, any Stargate-mote radio com-
munication must be relayed by another mote, called the base
station, that is physically attached to the Stargate expansion
bus.

We simulate the following features of the Stargate device:

o ARM vVS5TE instruction set without Thumb support and
with XScale DSP instructions

o XScale pipeline simulation, including the 32-entry TLBs,
128-entry BTB, 32KB caches and 8-entry fill/write
buffers

o PXA255 processor, including MMU (co-processor),
GPIO, interrupt controller, real time clock, OS timer, and
memory controller

e Serial device (UART) that communicates with the at-
tached mote

e SAI1111 StrongARM companion chip

e 64MB SDRAM chip

o 32MB Intel StrataFlash chip

e Orinoco wireless LAN PC card including the PCMCIA
interface

We are currently working to develop Stargate power models.

One expensive operation in our simulation system is mem-
ory access. Simulation of MMU components, including the
TLB, BTB, I/D caches, and fill/write buffers, is complex but
required for cycle-close simulation. However, such fine-grain
simulation is not necessary for functional simulation. As such,
users of our system can turn off the simulation of individual
MMU components to improve simulation performance when
cycle accuracy is not a primary concern. To further increase
the address translation speed, we implement an address lookup
cache (soft TLB) for both instruction and data addresses. This
soft TLB increases functional simulation time by 10% on
average.

To estimate cycle counts accurately, we simulate fine-
grain XScale CPU pipeline process. The Intel XScale core
employs a seven or eight stage, single-issue pipeline. There are

Manager Services
Create

—_—
/" Multi-Si i ; - Start
M: i -1 Stop
lanager / = Tain
/Event Leave
777777 Unified Control and /[[Queve _ SimMote/
Debugging Interface / =
i | /Event]
i ! / Queve SimMote/ Event
Debugger Services | a ent Queues
Dump Memory = = Thread Sync.
Dump Flash Event / vent Control Events
Step Execution Quewe SimGate/ /% SimMote/

Breakpoints
Checkpointing

Fig. 1. Coupled Simulation System.

three parallel pipeline stages that execute in parallel after the
execution stage. As a result, multiplication and memory access
can occur concurrently and the results can be written back to
memory out of order. Since we were unable to obtain pipeline
documentation from Intel, we revise and enhance a reference
pipeline model from XTREM power simulator [16]. We run
hand-coded benchmarks on a real device and use hardware
performance monitors to estimate various pipeline parameters,
such as cache and TLB miss penalties.

The peripheral and I/O devices that we simulate include
the flash chip and the Orinoco PCMCIA wireless card. The
flash chip is controlled by memory mapped 1I/O registers. The
simulator sends and receives I/O commands and data through
these registers. In the flash chip, a state machine controls the
sequence of operations. We simulate both the interface and the
internal state machine according to a Verilog model of the flash
chip from Intel (http://www.intel.com/design/
flcomp/toolbrfs/298189.htm). We estimate the cycle
cost of flash operations using empirical data; we run flash
benchmarks, collect timing data and use it to advance the
simulation clock accordingly.

Since the 802.11b wireless is not commonly used in sensor
network, we do not discuss its implementation detail in this
paper. To communicate between the Stargate and sensor nodes,
researchers attach a mote to the serial port of the Stargate and
use the mote to interface to the radio network of other sensor
nodes.

B. Coupling SimGate with Other Sensor Network Simulators

We next describe how we co-simulate Stargate and sensing
devices, e.g. Crossbow Motes [23], [24]. Figure 1 depicts
the system. We use SimMote for cycle-accurate, full-system
mote (Mica2 and Mica2) simulation, which we developed
in prior and ongoing work [17] on scalable sensor network
simulation. To couple device simulators, we employ a multi-
simulation manager. This manager is a multi-threaded system
that controls the life cycle of constituent simulators, e.g., it
provides simulator services that include create, start, stop, join
and leave. To start a simulation, the manager creates a thread
for each simulator and invokes the start routine in each. The
start routine then initiates the OS boot process. A configuration
file specifies which binary to boot for each simulator.

To achieve cycle-close, coordinated simulation of multiple
devices, the proportion of the rates of execution of simulated
devices must be held to be roughly the same as that for
real devices. This coordination is critical for correct execution
and communication (e.g., for a radio or serial connection).

To enable this coordination, we employ a simple, lock-step
method that forces the clock within each simulator to synchro-
nize periodically. This period is bounded by the mote-Stargate
communication rate (57.6 KB/second). We use the one byte
serial transmission time (128 mote cycles) as the period.

For communication, we distribute each packet to the re-
ceiving device simulator which assembles the packet using
its local clock. Since the simulators execute in lock-step, the
synchronization period is sufficient to ensure correct packet
assembly (in a rate at 19.2KB/s).

The lock-step synchronization forces us to simulate the
motes as slow as the Stargate. Since the machine on which
we run our simulations is much faster than the real speed of
the mote, we can simulate up to 6 times faster than real Mote
execution. However, in an ensemble system of heterogeneous
device simulators, the fastest machine simulated is the perfor-
mance bottleneck. As such, we must slow the SimMotes to
match SimGate speed.

C. Other Simulation Framework Features

To facilitate sensor network application development, mon-
itoring, and understanding, our system includes functionality
for both checkpointing and debugging. Our checkpointing
mechanism within each simulator saves the current, full-
system, simulation state including the snapshot of memory
and flash file system. We provide mechanisms that enable
storage and loading of such images to enable fast forwarding
and continuation of an executing system.

To facilitate debugging, our system provides a unified
debugging interface and dispatch within the multi-simulation
manager that enables debugging of concurrently executing
tasks. The manager dynamically dispatches debug commands
to the individual simulators. Since each simulator runs on a
separate thread, the debugger can attach to any of the simulator
threads to control its execution flow and to watch the change in
the execution state. The functions we support in the simulators
include step execution, the dump of memory and flash, and
watching of internal state and break points.

III. EXPERIMENTAL METHODOLOGY

To evaluate and analyze the performance and accuracy
of SimGate, we performed a number of experiments with
the SimGate alone and with SimGate-SimMote ensembles.
To evaluate the latter, we implemented two scenarios: (1)
A mote attached to a Stargate; and (2) A secondary mote
communicating with the first via simulated radio.

Scenario (1) represents the use of the Stargate as a gateway,
whereas Scenario (2) models a gateway and a mote. In the
latter one, the gateway act as a packet forwarding engine to and
from the sensor network. At present, our radio model discount
the RF interference, however, we are currently working on
robust and accurate radio models as part of future work.

A. Benchmarks

For stand-alone SimGate evaluation, we employed hand-
coded “stressmarks” and benchmarks from the suites of both

MiBench [26] and Mediabench [27]. Due to space constraints,
we only include the results from Mediabench in this paper;
our technical report version of this paper contains all of the
data [28]. Table I describes the Stargate benchmarks. We
execute all the benchmarks from the RAM drive.

To evaluate ensemble simulation, we employ open-source
applications as well as hand-coded programs. We describe the
applications in Table II. Column 3 shows the functional units
of the motes that are heavily utilized during the execution of
various benchmarks. In choosing benchmarks, we attempt to
exercise the full device, and cover the major functions of a
mote: communication, sensing, and logging.

Each ensemble benchmark has a Short and a Long form. The
former are used for evaluating Scenario 1, whereas the latter
are used for Scenario 2. Moreover, each of these applications
(except the Multi benchmarks) takes the form of a remote
procedure call (RPC). When the program on the Stargate sends
a query to the mote, it blocks until the receiver completes the
appropriate execution and returns. The Multi benchmark also
tests concurrent computation by running parallel computations
of ad-hoc positioning system (APS) [25] on both mote and
Stargate. This test is useful to evaluate the performance of
simulating coordinated computation on mote and Stargate.

B. Experimental Apparatus

We execute TinyOS v1.1 on the motes and a variation
of Familiar Linux v0.5.1 on the Stargate. For the stand-
alone Stargate applications, we measured the CPU cycles and
instruction count using the XScale HPM counters. The HPM
system can monitor three events concurrently.

We ran our simulators on a dedicated Linux (64 bit AMD
Opteron@2.4GHz) machine. To measure the execution time
of each benchmark, we modified the simulator. Each time the
performance monitoring registers of the simulated machine
are accessed, the simulator reads the real time from the host
system, and computes and logs the delta (time since previous
access).

IV. RESULTS

We detail the accuracy of SimGate by comparing it to
the Stargate in terms of clock cycles. In the first set of
comparisons, we make 20 identical runs of each benchmark on
both SimGate and Stargate and compare the average number
of cycles required per benchmark.

Table III shows the result of this comparison in the follow-
ing format. The first column shows the name of the bench-
mark, the second column (fi,eq5) Shows the average number
of cycles measured on the Stargate hardware, the third column
(Usimulated) presents the cycles reported by SimGate , and the
fourth column shows the difference. In the fifth column, we
report the error percentage (|(ttmeas — Msimulated)/Pmeas!)
which is the difference between the average of the measured
cycle counts and the average of those generated by the
simulator. We also compute the 95% confidence interval for
the error percentage using a Student ¢ distribution [29] with

Benchmark | Executables Description
adpcm adpcmdecode/adpcmencode | Adaptive differential pulse code
modulation for audio coding

g721 g721decode/g721encode CCITT voice compression

gsm gsmencode/gsmdecode European standard for speed coding

jpeg jpegencode/jpegdecode Lossy compression for still images

TABLE I
BENCHMARKS (FOR STARGATE PLATFORM).

Benchmark | Description Functional Unit
Ping Echoes network packet back to sender Network interface
Sense Processes a sensor read query Analog/Digital converter
APS [25] Ad-hoc positioning system (heavy FP computation) Arithmetic/Logic unit
Log Reads log from Flash Secondary Flash & UART
Multi Parallel APS computations on both Mote and Stargate | Arithmetic/Logic unit

TABLE I
BENCHMARKS FOR EVALUATING A MOTE AND A STARGATE ENSEMBLE. EACH BENCHMARK STRESSES A PARTICULAR HARDWARE UNIT (SHOWN IN
THIRD COLUMN), FOR EXAMPLE, PING UTILITY TESTS THE NETWORK INTERFACE.

% error = 95% conf. bound

Benchmark Hmeas Hsimulated Hmeas = Msimulated

adpcmdecode | 3.367E+07 | 3.069E+07 2.980E+06 8.9% =+ 0.28%
adpcmencode | 3.068E+07 | 2.766E+07 3.014E+06 9.8% 4+ 0.36%
g721decode 6.272E+08 | 5.735E+08 5.368E+07 8.6% £ 0.17%
g721encode 6.527E+08 | 6.006E+08 5.213E+07 7.9% + 0.44%
gsmdecode 1.526E+08 | 1.420E+08 1.061E+07 7.0% + 0.57%
gsmencode 4.335E+08 | 3.995E+08 3.401E+07 7.8% + 0.09%
jpegdecode 2.554E+07 | 2.235E+07 3.191E+06 12.5% + 1.16%
jpegencode 5.412E+07 | 4.731E+07 6.813E+06 12.5% + 0.41%

TABLE 11T

SIMGATE ACCURACY RESULTS. THE TABLE PRESENTS AVERAGE CYCLE COUNTS FOR MEASUREMENTS AND SIMULATIONS OF MEDIABENCH

BENCHMARKS, THE 95% CONFIDENCE INTERVAL ON THE DIFFERENCE BETWEEN THE MEANS, AND THE FRACTION OF THE AVERAGE MEASUREMENT
THAT THE INTERVAL CONSTITUTES.

% error + 95% conf. bound

Benchmark Hmeas Hsimulated Hmeas = Msimulated

PingShort 9.414299E+07 | 9.592680E+07 -1.783813E+06 1.9% =+ 6.6%
SenseShort | 2.040608E+08 | 2.051871E+08 -1.126267E+06 0.6% £+ 1.1%
APSShort 1.997744E+08 | 1.966910E+08 3.083427E+06 1.5% + 0.07%
MultiShort | 2.128019E+08 | 2.080650E+08 4.736897E+06 22% £ 1.5%
LogShort 1.637669E+08 | 1.695956E+08 -5.828771E+06 3.6% £ 1.25%

TABLE IV
SCENARIO 1 ACCURACY RESULTS. THE TABLE SHOWS THE AVERAGE CYCLE COUNTS FOR MEASUREMENT AND SIMULATION OF THE BENCHMARKS

COUPLING SIMGATE WITH SIMULATED MOTE VIA SERIAL LINK. THE FINAL COLUMN SHOWS THE ERROR PERCENTAGE FOR A 95% CONFIDENCE BOUND.

19 degrees of freedom to model the difference of the averages
(the & bound in the table).

Note that the error percentage and confidence interval also
indicate whether we should reject the null hypothesis of
equivalence in a two-sided hypothesis test at 95% confidence.
If the “margin for error” (confidence interval) spans 0% (i.e.
the margin is greater than the error percentage itself), we fail
to reject the null hypothesis of equivalence and hence cannot

determine whether the observed difference in averages is due
to random variation or not. In this experiment, however, the
confidence intervals are all quite narrow indicating the the
error percentage we observe for each benchmark is statistically
significant at the 95% confidence level.

We observe that the accuracy of SimGate for this set of
benchmarks is acceptable as a full-system simulation. While
error percentages below 5% have been achieved for individual

system components [16], [21], because we simulate the full
device (including all parts of the memory hierarchy and the
interrupt structure) and run both an operating system and
application on it, we expect to introduce additional error.
That the maximum error is no more than 13.5% (with 95%
confidence) and most of the errors are below 10%, is surprising
and is an indication that the simulation is of high quality.

A. Coupled SimGate and SimMote Simulations

To gauge how well SimGate will work in a simulation
of a heterogeneous sensor network, we examine its cycle-
count accuracy when it is used in conjunction with one or
two SimMotes (as described in Section III). Table IV shows
the cycle count results for the benchmarks that exercise the
Stargate device and the mote that is connected to it via a serial
interface (scenario 1). As noted previously, the Stargate device
does not support a radio device capable of communicating
directly with motes in a sensor network. Instead, it uses
mote directly connected to it via a serial interface as a
network interface peripheral. These benchmarks are intended
to exercise this interaction in a representative way.

The format of Table IV is the same as that described
for Table III in the previous subsection. Again, the sample
size used to calculate each average is 20 and we compute
a 95% confidence interval on the error percentage using a ¢
distribution with 19 degrees of freedom.

Again, the accuracy of the coupled simulation is reasonable
for two communicating independent full-device simulations.
Note that while the error percentages appear significantly
lower than for the SimGate simulation alone, the confidence
intervals are also significantly wider. Thus, based on error
percentage alone it may appear that the coupled simulations
are more accurate. However, there is more relative variation
(as we might expect) in the coupled case. As a result, it is the
error range, and not the specific error value, that is significant
in this case.

For example, consider the results for the PingShort bench-
mark shown in row 1 of Table IV. From the data, it is not
possible to determine that the difference between the measured
average and simulated average is statistically significant at
the 95% confidence level (since the error range spans 0%).
However, there is enough variation in both measurements
and simulation to make the difference indistinguishable from
random variation across an interval that is +6.6% centered on
the observed average.

The PingShort benchmark exhibits the widest variation, as
indicated by the error range. For the SenseShort benchmark
the difference in observed average is, once again, statistically
undetectable with 95% confidence, but the error range is
smaller. In the remaining three cases, there is a statistically
significant difference, but both the error percentages and the
confidence bounds on those percentages are remarkably small.
From this data, we conclude that cycle-counts taken from
SimGate when coupled to SimMote via a serial interface, while
introducing additional variation, are still reasonably accurate.

The final set of accuracy results we present is for bench-
marks that couple SimGate with a SimMote via its serial
interface that is then used to communicate with a second
SimMote via the radio interface (scenario 2). As described
previously, we do not yet know of a mote radio communication
simulation that is accurate enough not to overshadow the
accuracy (or lack thereof) of SimGate . Thus, these experi-
ments reflect a configuration in which the antenna of the two
motes are in physical contact. It is our experience that this
configuration eliminates much of the variation resulting from
radio communication.

Table V depicts these results using the same format as
the in the previous two tables. Similar to the results for
PingShort and SenseShort in Table IV, the additional variation
introduced by the second mote and the radio communication
makes the difference between observed and simulated averages
indistinguishable from random variation at a 95% confidence
level. However, the 95% confidence intervals on the error
percentage are, once again, similar in magnitude to the error
percentages in Tables III and IV for the cases where the
averages are significantly different.

From all three tables, then, we conclude that SimGate
achieves a similar level of accuracy both when it is used as
a single device simulation, and when it is part of a multi-
device simulation in which the devices are communicating.
Because the software, including the operating system, run by
the physical hardware in each of these three experiments is
precisely the same as that executed by the simulated devices,
we believe that SimGate can be used as an effective tool
for estimating Stargate cycle counts in heterogeneous sensor
network configurations.

B. SimGate Execution Performance

Since our ultimate goal is to provide a complete sensor
network simulation capability that can be used to complement
current deployment-based research strategies, the real-time
slowdown of SimGate versus the physical hardware is an im-
portant consideration. Table VI compares wall-clock timings
of the Stargate device to SimGate (t.yce) and to SimGate
with the functional simulation enabled (f,0cycie). For cases
where pipeline-simulation is desired, we can enable the parts
of SimGate that are necessary to make cycle count estimates
internally. Comparing the performance of the resulting func-
tional simulator to the full SimGate simulation gives the cost
of achieving the accuracy levels described previously.

The simulator is 10 to 27 times slower than the real
hardware when pipeline detailing is not required. This factor is
smallest for adpcm and jpeg (approximately 10 times) and
higher for gsm and g741 (approximately 25 times). Cycle-
close simulation (rqyc) increases the cost by 2.93X (37
to 78 times slower than real hardware). There is a higher
variance in these numbers, e.g., gsm vs jpeg, than for
functional simulation (7pecycle). One reason for this is cache
simulation. The time required to simulate a cache miss and
a cache hit is the same — although the simulator adjusts
the simulated clock and cycle counts appropriately for each.

Benchmark Lmeas Usimulated | Mmeas - Msimulated | % error & 95% conf. bound

PingLong 3.228130E+08 | 3.116003E+08 1.121275E+07 3.5% + 2.9%

SenseLong | 2.267467E+08 | 2.254300E+08 1.316726E+06 0.58% =+ 2.1%

APSLong 2.273877E+08 | 2.212660E+08 6.121661E+06 2.7% + 6.3%

MultiLong | 2.362925E+08 | 2.285356E+08 7.756869E+06 3.3% + 3.3%

Loglong 1.891255E+08 | 1.915953E+08 -2.469811E+06 1.3% + 2.4%
TABLE V

SCENARIO 2 ACCURACY RESULTS. THE TABLE SHOWS THE AVERAGE CYCLE COUNTS FOR MEASUREMENT AND SIMULATION OF THE BENCHMARKS

COUPLING SIMGATE WITH SIMULATED MOTE VIA SERIAL LINK COMMUNICATING WITH A MOTE VIA THE RADIO. THE FINAL COLUMN SHOWS THE

ERROR PERCENTAGE FOR A 95% CONFIDENCE BOUND.

Benchmark t’meas tnocycle tcycle Tnocycle Teycle
adpcmdecode 7.60E-2 | 1.05E+00 | 3.23E+00 13.84 | 42.50
adpcmencode 8.40E-2 | 1.21E-02 | 3.61E+00 14.34 | 42.97
g721decode 1.57E+00 | 3.70E+01 | 1.13E+02 23.51 | 71.73
g721encode 1.64E+00 | 4.19E+01 | 1.19E+02 25.45 | 72.39
gsmdecode 3.82E-01 | 1.06E+01 | 2.86E+01 27.65 | 74.79
gsmencode 1.09E+00 | 3.01E+01 | 8.54E+01 27.67 | 78.64
ipegdecode | 6.31E-02 | 7.28E-01 | 2.37E+00 | 11.54 | 37.61
jpegencode 1.35E-01 | 2.02E+00 | 6.18E+00 14.95 | 45.85
TABLE VI

SIMGATE EXECUTION PERFORMANCE. THE TABLE PRESENTS THE AVERAGE EXECUTION TIME (IN SECONDS) FOR MEASUREMENT (MEAS) AND
SIMULATION (W/CYCLE ACCURACY DISABLED (NOCYCLE) AND ENABLED VERSIONS (CYCLE)) OF THE MEDIABENCH BENCHMARKS. THE FINAL TWO

COLUMS SHOW THE SLOWDOWN FOR CYCLE-CLOSE SIMULATION AND FUNCTIONAL SIMULATION, RESPECTIVELY.

On a real device a cache hit is much faster than a cache
miss. Thus, application memory access patterns can have a
large effect on the relative slow down of simulation. We are
encouraged by these results since other full system, cycle-
accurate, simulations of advanced computer systems executing
an OS and application, e.g., SimOS, report slowdowns of
4000X — 6000X [18] although the results are not completely
comparable since we use different host machines and simulate
different targets.

V. RELATED WORK

There is a large body of research on simulation systems. We
describe and contrast techniques that are most similar to our
work, in particular, frameworks for ensemble sensor device
simulation and tools for full system emulation.

A. Ensemble Sensor Network Simulation

There have been a number of significant efforts to sim-
ulate and emulate sensor network devices. Most of this
prior work has focused on the sensing devices and in par-
ticular Mote devices. These projects include Simulavr [9],
ATEMU [8], Mule [30] Avrora [11], TOSSIM [6], Sensor-
Sim [7], SENS [10] and our ongoing work [17].

The ATEMU and Avrora Mote simulation platforms are
most similar to our system. Both provide full-system multi-
simulation of Mote devices. However, the multi-simulation
enabled by these systems is homogeneous — only simulation of
Mote devices are coupled and no other sensor network devices,

e.g., intermediate nodes, are supported. Both systems use a
lock-step method similar to ours to synchronize simulation
threads and enable accurate timing and correct communica-
tion. ATEMU synchronizes at each cycle and Avrora loosens
the synchronization period to thousands Mote cycles. Both
ATEMU and Avrora can simulate Motes in real time. Since
Avrora is written in Java, its performance is highly dependent
on JVM implementation. In our work, we use the similar syn-
chronization technique as in Avrora. However, we must deal
with more complex situation in which coordination between
devices happens between very different devices.

There are also systems that employ heterogeneous, en-
semble simulation. In particular, our design vision is similar
to the work described in [31]. This prior work describes
a comprehensive framework that supports the simulation,
and deployment of heterogeneous sensor network systems.
This framework uses TOSSIM [6] to emulate Motes and
EmStar [32] to emulate “microservers” (a general term for
platforms like Stargate). The authors employ a wrapper library,
EmTOS, to glue the two simulation systems together by
enabling the execution of Mote application on EmStar. In the
framework, all applications must be re-compiled and linked to
the specific library to be emulated by the system.

In SimGate, our goal is to enable the study, verification,
debugging, and analysis of sensor network applications using
a simulation platform that does not require any modification to
the binaries of the applications or operating system on which

they run. This enables increased flexibility for researchers and
ensures that the simulation execution environment is the same
as that on the real devices. This SimGate model also enables
us to easily obtain important application characteristics (e.g.
accurate cycle estimation and interrupt properties) that is more
difficult to collect in an emulative environment. Emulation
systems do have a speed advantage however. For example,
TOSSIM [6] can emulate a Mote 50 times faster that actual
Mote execution using a 1.8GHz Pentium IV machine. EmStar
can execute re-compiled, microserver code at native speed. In
SimGate, we enable users to toggle functional and cycle-close
simulation to reduce the overhead of the latter.

B. Full System Simulation

From the perspective of full system simulation and emula-
tion, there are number of software systems that support a wide
range of devices [18], [14], [33], [19], [20], [34], [35], [36].
One such, very popular, system is SimOS [18]. SimOS is a
full system simulator containing simulation models for most
common hardware components, e.g., processor, memory, disk,
network interfaces, etc. SimOS features a range of advanced
processor models that trade-off accuracy for simulation speed.
The fastest model applies dynamic binary translation [37],
[33] for maximal simulation speed. The finest-grain model
simulates the advanced pipeline structure to provide accurate
cycle-level behavior. SimOS is able to simulate the MIPS
R4000 processor on a machine with the same architecture,
with a slowdown of about 10X for binary translation and
5000X for detailed pipeline simulation on a SGI 4-processor
(150MHz) machine.

SKYEYE (www.skyeye.org) is a similar project that
simulates a number of ARM-based processors and develop-
ment boards. SKYEYE also emulates a number of peripherals,
including LCD and the Ethernet interface. SKYEYE is based
on the GDB ARM emulator which naturally enables the use
of gdb as a debugging interface — in much the same way that
we do. Although some of the techniques employed in these
projects are complementary and useful to our endeavor, these
systems are not intended or used for sensor network research.
The focus of our work is on a toolset for full-system emulation
combined with cycle-close simulation of heterogeneous sensor
network devices.

VI. CONCLUSION

In an effort to make sensor network research more widely
accessible we have developed a simulator for functional and
cycle-close simulation of intermediate sensor nodes and motes.
Our system, called SimGate, implements the complete Intel
Stargate device and executes the Linux operating system and
XScale applications transparently, without modification.

We investigate the accuracy and efficiency of SimGate in
isolation as well as in concert with sensor device (Mote)
simulation. Our results indicate that SimGate is functionally
correct and enables cycle estimation (if desired) within 9%
on average for the benchmarks that we evaluated. When we
co-simulate SimGates with SimMotes (our Mote simulator),

our system introduces error of less than 4% in all cases.
On average, our system is 20X slower than a real device
when using functional emulation and 58X slower when using
cycle-close pipeline simulation. We believe that these results
indicate that SimGate can be used as an effective tool for
accurately simulating Stargate intermediate nodes in heteroge-
neous sensor network configurations. As part of future work,
we plan to investigate techniques for accurate radio and battery
modeling, optimization of simulation speed, the scalability of
our multi-simulation system for large-scale sensor networks,
and simulation of other devices and components.

REFERENCES
[

—

“Habitat Monitoring on Great Duck Island,” http://www.greatduckisland.

net/index.php.

[2] “Habitat Monitoring on James Reserve,” http://www.jamesreserve.edu.

[3] “Ohio State University,Kansei: Sensor Testbed for At-Scale Experi-

ments,” Poster, 2nd International TinyOS Technology Exchange, Berke-

ley, February 2005.

“Mirage: Microeconomic Resource Allocation for SensorNet Testbeds,”

https://mirage.berkeley.intel-research.net/.

[5]1 G. Werner-Allen, P. Swieskowski, and M. Welsh, “MoteLab: A Wireless

Sensor Network Testbed,” in Conference on Information Processing

in Sensor Networks: Platform Tools and Design Methods for Network

Embedded Sensors (IPSN/SPOTS), April 2005.

P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and

Scalable Simulation of Entire TinyOS Applications,” ACM Conference

on Embedded Networked Sensor Systems, Nov. 2003.

[7] S. Park, A. Savvides, , and M. B. Srivastava, “SensorSim: a simula-
tion framework for sensor networks,” ACM International workshop on
Modeling, analysis and simulation of wireless and mobile systems, pp.
104-111, 2000.

[8] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S. Baras, “ATEMU: A
Fine-grained Sensor Network Simulator,” IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks, 2004.

[9] “Simulavr: A simulator for the Amtel AVR processor family,” http:/
www.nongnu.org/simulavr.

[10] S. Sundresh, W. Kim, and G. Agha, “SENS: A Sensor, Environment
and Network Simulator,” The IEEE 37th Annual Simulation Symposium,
2004.

[11] B. L. Titzer, D. K. Lee, and J. Palsberg, “Avrora: Scalable Sensor
Network Simulation with Precise Timing,” The Fourth International
Symposium on Information Processing in Sensor Networks, Apr. 2005.

[12] “Stargate: a platform X project,” http://platformx.sourceforge.net/.

[13] C. Pereira, J. Lau, B. Calder, and R. K. Gupta, “Dynamic phase
analysis for cycle-close trace generation,” In the Proceedings of the
3rd IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS 2005, Sept. 2005, jersey
City, NJ.

[14] “Intel XScale XDB Simulator 2.0,” http://www.intel.com/design/pca/
prodbret/250424.htm.

[15] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” International sym-
posium on Computer architecture, pp. 83-94, 2000.

[16] G. Contreras, M. Martonosi, J. Peng, R. Ju, and G.-Y. Lueh, “XTREM:
A Power Simulator for the Intel XScale Core,” ACM Conference on
Languages, Compilers, and Tools for Embedded Systems, June 2004.

[17] Y. Wen, R. Wolski, and G. Moore, “DiSenS: Scalable Distributed Sensor
Network Simulation,” University of California, Santa Barbara, Tech.
Rep. CS2005-30, 2005.

[18] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta, “Complete
Computer System Simulation: The SimOS Approach,” IEEE Parallel
and Distributed Technology, vol. winter, pp. 34—43, 1995.

[19] P. Magnusson and B. Werner, “Efficient Memory Simulation in SimICS,”
Simulation Symposium, 1995.

[20] P. S. Magnusson, F. Dahlgren, H. Grahn, M. Karlsson, F. Larsson,

F. Lundholm, A. Moestedt, J. Nilsson, P. Stenstrm, and B. Werner,

“SimICS/sun4m: A Virtual Workstation,” USENIX Technical Confer-

ence, 1998.

[4

=

[6

—_

[21]
[22]
[23]
[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]
[37]

T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infrastructure for
Computer System Modeling,” IEEE Computer, 2002.

“Intel XScale Technology,” http://www.intel.com/design/intelxscale.
“Mica2 sensor board,” http://www.xbow.com/.

“MicaZ sensor board,” http://www.xbow.com/.

D. Niculescu and B. Nath, “Ad Hoc Positioning System (APS),” IEEE
Global Communications Conference, Nov. 2001.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” Workshop on Workload Characterization, Dec. 2001.
C.Lee, M. Potkonjak, and W. Mangione-Smith, “Mediabench: A tool for
evaluating and synthesizing multimedia and communications systems,”
in International Symposium on Microarchitecture, 1997, pp. 330-335.
Y. Wen, S. Gurun, N. Chohan, R. Wolski, and C. Krintz, “Toward Full-
System, Cycle-Accurate Simulation of Sensor Networks,” University of
California, Santa Barbara, Tech. Rep. CS2005-12, 2005.

G. W. Hill, “ACM Alg. 395: Student’s T-Distribution,” Communications
of the ACM, vol. 13, no. 10, pp. 617-619, Oct. 1970.

D. Watson and M. Nesterenko, “Mule: Hybrid Simulator for Testing
and Debugging Wireless Sensor Networks,” in Workshop on Sensor and
Actor Network Protocols and Applications, Aug. 2004.

L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Os-
terweil, and T. Schoellhammer, “A System for Simulation, Emulation,
and Deployment of Heterogeneous Sensor Networks,” ACM Conference
on Embedded Networked Sensor Systems, Nov. 2004.

L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan, and
D. Estrin, “EmStar: a Software Environment for Developing and Deploy-
ing Wireless Sensor Networks,” USENIX Technical Conference, 2004.
E. Witchel and M. Rosenblum, “Embra: Fast and Flexible Machine Sim-
ulation,” ACM SIGMETRICS Performance Evaluation Review, vol. 24,
no. 1, pp. 68-79, May 1996.

R. C. Bedichek, “Efficient Memory Simulation in SimICS,” ACM
SIGMETRICS, 1995.

“QEMU: A Generic and Open Source Processor Emulator,” http://
fabrice.bellard.free.fr/qemu/.

“The Bochs IA-32 Emulator Project,” http://bochs.sourceforge.net.

R. F. Cmelik and D. Keppel, “Shade: A Fast Instruction Set Simulator
for Execution Profiling,” ACM SIGMETRICS, 1994.

