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Abstract

In this paper we argue that the best approach to providing Quality
of Service (QoS) guarantees to current Internet services isto use
admission control and traffic shaping techniques at the entrance
points of Internet hosting sites. We propose a black-box approach
that does not require knowledge, instrumentation, or modification
of the system (hardware and software) that implements the ser-
vices provided by the site.

We maintain that such a non-intrusive QoS solution achieves
better resource utilization, has lower cost, and is more flexible than
the current approaches of physical partitioning and hardware over-
provisioning. Furthermore, we contend that our solution iseasier
to deploy, less complex to implement, and easier to maintainthan
more intrusive approaches which embed the QoS logic into theop-
erating system, distributed middleware, or application code. We
demonstrate empirically that despite being decoupled fromthe in-
ternal mechanisms implementing the site, a black-box approach
provides effective response times and capacity guarantees.

1 Introduction

With the increasing importance of Internet services, it is im-
perative for companies relying on web-based technology to
offer (and potentially guarantee) predictable, consistent, as
well as differentiated quality of service to their consumers.
For example, a search engine such as Google may want to
guarantee a different service quality for the results served to
America On-Line (AOL) than the quality it can guarantee
to Stanford University searches. Internet services are com-
monly hosted using clustered architectures where a number
of machines, rather than a single server, work together in a
distributed and parallel manner to serve requests to all in-
terested clients. Implementing service quality guarantees
scalably in such a distributed setting is a difficult challenge.

Traditional approaches to solving this QoS challenge
treat the problem as a capacity planning matter and rely on
over-provisioning the resources and on physically partition-
ing groups of cluster nodes for different classes of service.
Unfortunately, the necessity to handle enormous and unpre-
dictable fluctuations in load results in these techniques suf-
fering from high cost (enough resource must be available in
each partition to handle load spikes) and low resource uti-
lization (the extra resources are idle between spikes). More-

over, such a static approach does not offer much flexibility,
requiring hardware reconfiguration for any modification of
the QoS policy or change in the recurring load pattern. Fur-
thermore, although these hardware-based approaches can
certainly improve the quality of the service, they cannot pro-
vide QoS guarantees unless each of the partitions are always
kept from being overloaded.

As a result, software-based approaches have been sug-
gested that embed the QoS logic into the internals of the op-
erating system [3, 5, 16, 2], distributed middleware [19, 14],
or application code [1, 4, 17, 9] running on the cluster. Op-
erating System techniques have been shown to provide a
tight control on the utilization of resources (e.g., disk band-
width or processor usage) while techniques that are closer
to the application layer are able to satisfy QoS requirements
that are more important to the clients. However the major-
ity of existing software approaches offer guarantees within
the scope of a single machine or for an individual applica-
tion, and fail to provide global service quality throughout
the site. Most current Internet sites are composed of a myr-
iad of different hardware and software platforms which are
constantly evolving and changing. The largest drawback to
software-based approaches is the high cost and complexity
of reprogramming, maintaining, and extending the entirety
of the complex software system such that it can provide QoS
guarantees for all hosted services.

Moreover, many components of a service are com-
monly third-party, proprietary software (e.g., Commercial
Databases, Application Servers, etc) for which the source
code is not available. Approaches that rely on embedding
QoS support directly into each application are difficult to
implement in these cases. When the applications them-
selves have embedded QoS support, it is often a mechanism
that is unique to a particular application which makes en-
abling QoS and interoperability very difficult.

We propose to provide QoS through the use of traffic
shaping and admission control techniques at the entrance
of Internet sites. Our approach treats the cluster and the
services it is hosting as an unknown “black-box” system
and uses feedback-driven techniques to dynamically control
how each of the requests from the clients must be forwarded
into the cluster. We strongly believe that this approach at-
tains the best of both hardware and software worlds, being
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Figure 1:System Model for Internet Services

a uniform solution that does not require hardware recon-
figuration or software reprogramming while still ensuring
effective QoS guarantees for Internet services.

2 The QoS Challenge

In this section, we provide some background on QoS for
Internet services, and define the problem we are trying to
solve. We model Internet services (Figure 1) as a stream
of requests coming from clients that are received at the en-
trance of the site, processed by the internal resources, and
returned back to the clients upon completion. In the case of
system overload or internal error condition, requests can be
dropped before completion and thus may not be returned to
the client. Requests can be classified or grouped into dif-
ferentservice classesaccording to a combination of service
(e.g., URL, protocol, port, etc.) and client identity (e.g.,
source IP address, cookies, etc.). AQoS classdescribes
the predefined quality to be enforced for a particular service
class and the collection of all existing QoS classes forms a
QoS policy.

We define a QoS class as a tuple with three quantities:
guaranteedthroughput, computing requirementsto fulfill a
request, and maximumresponse timeallowed. For exam-
ple, a QoS class for a typical e-Commerce site could spec-
ify a minimum throughput guarantee of 200 req/s, requir-
ing a computation of 10ms each, and a maximum response
time of 500ms. Throughput and response times are com-
monly expressed using percentiles or averages that must be
ensured over time intervals that are much longer than the
specified computing requirements.

We view the QoS challenge as the ability to enforce a
feasible set of QoS guarantees for a given cluster under all
input load conditions. A set of guarantees is feasible if the
cluster can honor them, without using any QoS mechanism,
when the incoming traffic for each class is below its guar-
anteed throughput. In other words we require the cluster to
be appropriately provisioned for the given QoS policy. We
note that the function of a QoS system is to enforce a set of
guarantees. It cannot resolve resource bottleneck problems
if the site implements insufficient hardware provisioning.

Figure 2:The Architecture of Quorum

In addition to ensuring quality guarantees, any solution
to the QoS problem should also have other desirable prop-
erties. A solution should achieve good resource utilization
(i.e. be efficient), not require any internal cluster modifica-
tion (non-intrusive), support a broad range of QoS needs
(comprehensive), support varying workloads and cluster
changes (adaptive), and degrade gracefully under overload
(robust). We strongly believe that the architectural charac-
teristics of our solution are able to attain all of these de-
sired properties while meeting the QoS challenge in scal-
able cluster environments.

3 The Quorum Approach

Our approach to QoS for Internet services consists of de-
ploying a single QoS engine at the entrance of the Internet
sites which contains the system-wide QoS policy that needs
to be enforced. Figure 2 depicts the architecture ofQuorum,
a QoS engine consisting of four modules, that follows the
approach presented in this paper. TheClassificationmod-
ule categorizes the intercepted requests from the clients into
one of the service classes defined in the QoS policy. The
Load Controlmodule determines the pace (for the entire
system and all client request streams) in which Quorum re-
leases requests into the cluster. TheRequest Precedence
module dictates the proportions in which requests of differ-
ent classes are released to the cluster. TheSelective Drop-
pingmodule drops requests of a service class to avoid work
accumulation and maintain responsiveness. The modules of
Quorum are designed to address each of the four different
functionalities we believe any QoS system must have. In
the next sections we explain why these functions are neces-
sary and provide more details on how they are built into our
modules. We explicitly exclude the details of Classification
since it is a well understood problem that has already been
studied in the literature [10] and being extensively used by
current sites in the form of firewalls and load-balancers.

3.1 Load Control

The primary function ofLoad Controlis to prevent incom-
ing traffic from overloading the internal resources of the
cluster. This functionality is necessary because no quality
guarantees can be enforced if the cluster is operating in an
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overloaded state. The Load Control module externally con-
trols the load in the cluster by appropriately either forward-
ing or holding the traffic received from the clients, accord-
ing to current performance metrics measured at the output
of the cluster.

Similar to TCP, our implementation uses a sliding win-
dow scheme which defines the maximum number of re-
quests that can be outstanding at any time. The Quorum
engine tries to increment successively the size of the win-
dow until the QoS class with the most restrictive response
times approaches the limits defined by its guarantees.

3.2 Request Precedence

The function ofRequest Precedenceis to virtually partition
resources among each of the service classes. Capacity iso-
lation is a necessary functionality that allows each service
class to enjoy a minimum amount of guaranteed resources,
independent of potential overload or misbehavior of others.
This module is able to partition externally the service deliv-
ered by the cluster, by controlling the proportions in which
the input traffic for each class is forwarded to the internal
resources.

Under Quorum, Request Precedence is implemented
through the use of modified Weighted Fair Queuing [8, 13,
6] techniques that function at the request level. By factoring
the expected computing requirements of each class into the
fair queuing weights, Quorum transforms throughput guar-
antees into capacity guarantees. Capacity (or computing
power) is a fungible metric that links output throughput and
computing requirements in a way that an increment of one
results in a decrement of the other. For example a capacity
of 4000ms/s corresponds to 400req/s at a compute cost of
10ms/req, but also to 800req/s if the compute cost is only
5ms/req. Using this fungible metric, the Request Prece-
dence safely protects the service classes even when one or
more of them violate the expected computing requirements
specified in the QoS class.

3.3 Selective Dropping

The function ofSelective Droppingis to discard the ex-
cessive traffic received for a service class in the situations
where it becomes overloaded. A service class becomes
overloadedwhen its guaranteed capacity it is not enough to
fulfill the totality of its incoming traffic. A dropping module
is necessary to prevent large delays from occurring in over-
loaded situations. This module observes each of the queues
of the engine and discards the requests that have been sitting
in the queue for too long.

In Quorum, Selective Dropping works closely with the
Load Control module by signaling ahead of time when a

service class is likely to become overloaded. This module
leverages the queuing inside Quorum to absorb safely peaks
of traffic during transient overload conditions without vio-
lating the response time guarantees.

Combined, the functions of all four Quorum modules
(Classification, Load Control, Request PrecedenceandSe-
lective Dropping) enable cluster responsiveness, capac-
ity isolation and delay differentiation, thus guaranteeing
throughput and response times for each service class.

4 Preliminary Evaluation

In this section we show that Quorum as a black-box soft-
ware technique can provide effective response time and
throughput guarantees for Internet-based services. We em-
pirically show how our approach outperforms the current
hardware-based techniques in terms of resource utilization,
cost and flexibility. We also present arguments that substan-
tiate why our non-intrusive approach is better suited than
other software approaches to managing the current com-
plexity associated with the implementation of Internet ser-
vices.

To show the effectiveness of our technique, we define an
emulated QoS case that is difficult to address and observe
how each approach performs under the same conditions.
Our experiments compare four alternatives: a shared cluster
with no QoS control (No Control), a cluster with one phys-
ical partition for each service class (Physical Partitioning),
a physically partitioned cluster that has each partition over-
provisioned (Overprovisioning) and a shared cluster with
our module at the entrance (Quorum). We perform the ex-
periments using a 12-CPU cluster running the Tomcat [15]
web server and servlet engine. In the oveprovisioning case
we use 36 CPUs. We generate client requests by replaying
Web server traces of a real service provider [7] so that the
arrival times exhibit ill-behaved characteristics of current
Internet services.

We examine a common QoS scenario in which a large
number of clients compete for services that are hosted in the
same physical facility. In our scenario we emulate three dif-
ferent types of Internet services of different computational
complexity and we set up one class of clients to generate
service demands that far exceed the capacity that they have
guaranteed. The three emulated services1 are designed to
approximate the complexity of a typicale-Commerce, Stock
trading andSearchservice respectively. Table 1 has further
details of the experiment, including the throughput and re-
sponse time guarantees selected for each service.

1The services are emulated by using a certain amount of CPU through
a loop, and generating typical page sizes.
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Table 1:QoS Guarantees and Traffic Workload of the Experiment

Figure 3:Throughput Results

4.1 Throughput Guarantees

We begin by comparing the impact on throughput for each
of the four approaches. Figure 3 presents the total amount
of traffic both served and dropped. The scale for each class
is normalized to its guaranteed throughput (i.e., 100% for
the e-Commerce class corresponds to 350 req/s). Horizontal
marks delimit the amount of traffic expected to be served if
the guarantees were met. In the cases where a service class
receives less incoming traffic than its guaranteed throughput
(i.e., e-Commerce and Search) we expectall requests to be
served.

The results obtained show that the amount of traffic
served when there isno QoScontrol is directly dependent
on the input demands, making it impossible to provide any
output guarantees. In this case we can see that the domi-
nance of Stocks traffic provokes drops in the e-Commerce
and Search classes even though these classes only use 48%
and 69% respectively of their legitimate guarantee (invalid
drops). When using physical partitioning, the system al-
ways serves the expected amount of traffic for each class
and only drops requests when incoming traffic demands ex-
ceed the available capacity of the partition (valid drops in
the Stocks class). What it is not visually striking from this
graph is that the Stocks partition looses 4% of its guaranteed
traffic. This is due to the detrimental performance impact of
having the partition operating at an extreme overload. In the
case of overprovisioning there are enough resources to serve
all the traffic that is received. Our results show that despite
being a shared cluster, Quorum not only serves the amount
of expected traffic for each service class, but also reassigns
the un-utilized capacity to accommodate more clients ac-
cessing the Stocks service. Note that Quorum gives an extra
30% of traffic to the Stocks clients without affecting the per-
formance (i.e., dropping requests) of the e-Commerce and
Search services.

Figure 4:Response Time Results

4.2 Response Times

Next we analyze the impact on response times. Figure 4
shows the 90th percentile of response times obtained by
each of the three alternatives. Response Times are normal-
ized to the guarantees and presented in logarithmic scale for
better visual comparison. Achieving a response time over
100% denotes an excessive delay, hence a failure to ful-
fill the QoS guarantee. As expected, when there is no QoS
control the servers become completely overloaded, accumu-
lating large amounts of traffic which results in all service
classes experiencing unboundedly long delays. When us-
ing physical partitioning, the classes that are not overloaded
(i.e., e-Commerce and Search) successfully meet their re-
sponse time requirements. However we see that the over-
loaded Stocks partition experiences an average delay that is
almost 10 times higher than the maximum allowed. Quo-
rum and Overprovisioning are the only two approaches that
can successfully provide response time guarantees indepen-
dently for each of the classes, regardless of how much in-
coming traffic they receive. However, we will see in the
next section that achieving such guarantees through the use
of overprovisioning comes at a very high cost.

4.3 Resource Utilization

Figure 5 shows both the cost and resource utilization of each
of the approaches. The utilization percentages are calcu-
lated as the available computational power divided by the
amount of work processed. Presented results are normal-
ized to the maximum observed performance of the cluster
for the tested workload as determined by an offline analysis.
Our results show that while overprovisioning must main-
tain a low utilization of the cluster (i.e., 43%) to achieve
fast service times, Quorum can accomplish the same goals
at 99% resource utilization. It is interesting to observe that
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Figure 5:Cost and Resource Utilization Results

despite tripling the size of the cluster, the resulting response
times for the Stocks partition are only 1% faster than those
achieved by Quorum (i.e., 477ms vs. 484ms).

4.4 Alternative Software Approaches

The existing alternatives to hardware approaches are either
based oninstrumentingthe internal software to actively par-
ticipate in QoS decisions, or based on a solution that re-
quires a preciseknowledgeof the internal operation of the
site. In this section we briefly introduce such approaches
and provide arguments for Quorum as a more flexible solu-
tion than the current state of the practice.

Software instrumentation can be implemented at the op-
erating system [3, 5, 16, 2], middleware [19, 14, 18] or
application code [1, 4, 17], and commonly requires close
cooperation between them. While the majority of the ex-
isting solutions can offer QoS guarantees within the scope
of a single machine, only a few are designed to provide
cluster-wide QoS. For example, Cluster Reserves [2] re-
quires a tailored OS [3] running at each node of the clus-
ter and needs a centralized controller to constantly modify
the resource allocation at the nodes based on reported usage
statistics. Other approaches such as Neptune [14] or Con-
trolWare [18] provide QoS in the form of a middleware in-
frastructure which applications can utilize to implement dis-
tributed QoS coordination. However, implementing these
techniques requires installing a tailored operating system at
each of the internal nodes, tuning and deploying a complex
middleware infrastructure, and even modifying each service
application to interact with the new QoS primitives. We
believe that such intrusive modifications are not always vi-
able due to lack of application source code, incompatibili-
ties between the applications and the patched operating sys-
tem, or site management policies. Even in the cases where
modifications are possible, the magnitude of the changes
and their maintenance cost would make the resulting sys-
tem have a much higher implementation complexity as well
as less flexibility than deploying Quorum at the entrance of
the site.

Few alternatives exist that do not require internal modifi-
cations. However these approaches rely on having a precise

knowledge of the internals of the site [11, 12] or depend
on deriving its service behavior by means of static applica-
tion profiling [9]. For example, many of the commercially
available load-balancer solutions can be highly tuned for a
specific site configuration such that system overload can be
prevented. Other work such as Gatekeeper [9] proposes a
proxy system, much like Quorum, that implements admis-
sion control for e-commerce applications. Although Gate-
keeper can be considered an external system, it requires
knowing the total available capacity of the cluster for the
tested workload (which must be done offline) and relies on
extensive profiling of the service application to avoid cluster
overload and to reduce service times. Although similar in
nature to Quorum, these approaches suffer from poor flexi-
bility, requiring reconfiguration, retuning or re-profiling the
applications at every hardware upgrade and for each addi-
tion of a new service. Moreover, these approaches are not
designed to provide QoS guarantees but rather, they are de-
signed to improve the overall performance of the cluster.

In conclusion, with the current heterogeneity, sophisti-
cation and rapid evolution of current Internet services, we
argue that any intrusive software approach to cluster-wide
QoS has a higher implementation complexity and lower
flexibility than an external technique such as Quorum.

5 Conclusions

In this position paper, we propose a novel technique for
providing QoS for Internet services. We have experimen-
tally shown the benefits of our external technique ver-
sus hardware-based approaches and have given arguments
on the advantages with respect to intrusive software ap-
proaches. We have also shown that despite what it may
seem, an external black-box technique can achieve tight
QoS guarantees even when the internal cluster is fully
shared by different services. We firmly believe that the right
approach to implement QoS for Internet services is to use
admission control and traffic shaping techniques at the en-
trance points of Internet hosting sites.
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